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Introduction: infinite order symmetries

In its simplest form, the concept of symmetries in physics corresponds to a (univariate) transformation x ! R(x) preserving some structures. Whether these structures are linear differential equations, or more complicated mathematical objects (systems of differential equations, functional equations, etc ...), they must be invariant or covariant under the previous transformations x ! R(x). Of course, these transformation symmetries can be studied, per se, in a discrete dynamical perspective 2 . Along this iteration line, or more generally, commuting transformations line, there is no need to underline the success of the renormalization group revisited by Wilson [5,6] seen as a fundamental symmetry in lattice statistical mechanics or field theory.

The renormalization of the one-dimensional Ising model without a magnetic field (even if it can also be performed with a magnetic field [7]), which corresponds to the simple (commuting) transformations x ! x n (where x = tanh(K)), is usually seen as the heuristic 'student' example of exact renormalization in physics, but it is trivial being one-dimensional. For less academical models one could think that no exact 3 closed form representation of the renormalization group exists, but can one hope to find anything better? For Yang-Baxter integrable models [8,9] with a canonical genus-one parametrization [10][11][12] (elliptic functions of modulus k) exact representations of the generators of the renormalization group happen to exist. Such exact symmetry transformations must have k = 0 and k = 1 as a fixed point, be compatible with the Kramers-Wannier duality k $ 1/k, and, most importantly, be compatible with the lattice of periods of the elliptic functions parametrizing the model. Thus, these exact generators must be the isogenies [9,13] of the elliptic functions (of modulus k). The simplest example of a transformation carrying these properties is the Landen transformation [9] 

k ! k L = 2 p k 1 + k , (1) 
with the critical point of the square Ising model (resp. Baxter model) given by the fixed point of the transformation: k = 1. This algebraic transformation corresponds to multiplying (or dividing because of the modular group symmetry ⌧ $ 1/⌧ ) the ratio τ of the two periods of the elliptic curves ⌧ ! 2 ⌧ . The other (isogeny) transformations 4 correspond to ⌧ $ N • ⌧, for various integers N.

Setting out to find the precise covariance of some of the physical quantities related to the 2D Ising model, like the partition function per site, the correlation functions, the n-fold correlations (n) associated with the full susceptibility [15][16][17][18], with respect to transformations of the Landen type (1), is a difficult task. An easier goal would be to find a covariance, not on the selected 5 linear differential operators that these quantities satisfy, but on the different factors of these operators.

Luckily the factors of the operators associated with these physical quantities are linear differential operators whose solutions can be expressed in terms of elliptic functions, modular forms [19] (and beyond 4 F 3 hypergeometric functions associated with Calabi-Yau ODEs [22,23], etc ...).

Let us give an illustration of the precise action of non-trivial symmetries like (1) on some elliptic functions that actually occur in the 2D Ising model [22][23][24]: weight-one modular forms.

Let us introduce the j-invariant 6 of the elliptic curve and its transform by the Landen transformation

j(k) = 256 • (1 k 2 + k 4 ) 3 k 4 • (1 k 2 ) 2 , j(k L ) = 16 • (1 + 14 k 2 + k 4 ) 3 (1 k 2 ) 4 • k 2 . ( 2 
)
and let us also introduce the two corresponding Hauptmoduls [9] x = 1728 j(k)

, y = 1728 j(k L ) , (3) 
with the two Hauptmoduls being related by the modular equation [25][26][27][28][29][30]: 

1953
The transformation x ! y(x) = y, where y is given by the modular equation ( 4), is an algebraic transformation which corresponds to the Landen transformation (as well as the inverse Landen transformation: it is reversible because of the x $ y symmetry of ( 4)). The emergence of a modular form [22][23][24] corresponds to the remarkable identity on the same hypergeometric function but where the pullback x is changed x ! y(x) = y according to the modular equation ( 4) corresponding to the Landen transformation, or inverse Landen transformation

2 F 1 ⇣ [ 1 12 , 5 12 
], [1], y

⌘ = A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x

⌘ , (5) 
where A(x) is an algebraic function given by: 1024 A(x) 12 1152 A(x) 8 + 132 A(x) 4 + 125 x 4 = 0.

The emergence of a modular form is thus associated with a selected hypergeometric function having an exact covariance property [31,32] with respect to an infinite order algebraic transformation, corresponding here to the Landen transformation, which is precisely what we expect for an exact representation of the renormalization group of the square Ising model [7,9].

With the example of the Ising model one sees that the exact representation of the renormalization group immediately requires considering the isogenies of elliptic curves [9], and thus transformations, corresponding to the modular equations, x ! y(x) which are (multivalued) algebraic functions.

In a previous paper [7], we studied simpler examples of identities on 2 F 1 hypergeometric functions where the transformations x ! y(x) were rational functions. In that paper we found that the rational functions y(x) are differentially algebraic 7 [33,34]: they verify a (non-linear) differential equation 5 They are not only Fuchsian, the corresponding linear differential operators are globally nilpotent or G-operators [19][20][21]. 6 The j-invariant [9,14] (see also Klein's modular invariant) regarded as a function of a complex variable ⌧, is a modular function of weight zero for SL(2, Z). 7 All the non-linear differential equations we consider in this paper (see (24), see the Schwarzian equations ( 93) and (150), ... below) are differentially algebraic [33,34], i.e. y(x) is a solution of a polynomial equation P(x, y, y 0 , y 00 , ...), as a consequence of the fact that the functions A R (x) or W(x) in these equations are rational functions instead of general meromorphic functions (see (8) and (9) below).

A(y(x)) • y 0 (x) 2 = A(x) • y 0 (x) + y 00 (x).

(7)

Here A(x) is a rational function (which is in fact a log-derivative [7]). This non-trivial condition coincides exactly with one of the conditions Casale obtained [35][36][37][38][39][40][41] in a classification of Malgrange's D-envelope and D-groupoids on P 1 . Denoting y 0 (x), y 00 (x) and y 000 (x) the first, second and third derivative of y(x) with respect to x, these conditions read respectively8 µ(y) • y 0 (x) µ(x) + y 00 (x)

y 0 (x) = 0, (8) 
⌫(y) • y 00 (x) 2 ⌫(x) + y 000 (x) y 0 (x)

3 2 • ⇣ y 00 (x)
y 0 (x)

⌘ 2 = 0, (9) 
together with (y) • y 0 (x) n (x) = 0 and h(y) = h(x), corresponding respectively to rank two, rank three, together with rank one and rank nul groupoïds, where ⌫(x), µ(x), (x) are meromorphic functions (h(x) is holomorph). Clearly Casale's condition (8) is exactly the same condition as the one we already found in [7], and this is not a coincidence! In this paper we will refer to Casale's first condition (8) as the 'rank-two condition', and to the Casale's second condition (9) as the 'rank-three condition', or the 'Schwarzian condition'. When our paper [7] was published we had no example corresponding to a Schwarzian condition like (9).

Without going into the details of Malgrange's pseudo-groups [36,41], Galoisian envelopes, D-envelopes of a germ of foliation [40], and D-groupoïds, let us just say that these concepts are built in order to generalize the idea of differential Galois groups to non-linear [42] ODEs 9 or non-linear functional equations 10 (see [43]). In an experimental mathematics pedagogical approach, we will provide more examples of rational transformations verifying rank-two condition (8), and new pedagogical examples of algebraic transformations verifying Schwarzian conditions like in (9). We hope that these (slightly obfuscated for physicists) Galoisian envelope conditions will become clearer in a framework of identities on hypergeometric functions. In a modular form perspective, we will show that the infinite number of algebraic transformations corresponding to the infinite number of the modular equations, are solutions of a unique Schwarzian condition (9) with ⌫(x) a rational function.

The paper is organized as follows. We first recall the 2 F 1 results in [7] which correspond to rational transformations and rank-two condition (8) on these rational transformations. We then display a set of new results also corresponding to rational transformations with condition (8). Then focusing on a modular form hypergeometric identity, we show that it actually provides a first heuristic example of a Schwarzian condition (9) where ⌫(x) is a rational function and analyze them in detail. We then show that the rank-two condition (8) is a subcase of the rank-three Schwarzian condition (9), the restriction corresponding to a factorization condition of some associated order-two linear differential operator. We then explore generalizations of the hypergeometric identity to 3 F 2 , 2 F 2 and 4 F 3 hypergeometric functions, and show that the 3 F 2 attempt, in fact, just reduces to the previous 2 F 1 cases through a Clausen identity.

Recalls: rational transformation and 2 F 1 hypergeometric functions

We recall a few examples and results from [7] on the hypergeometric examples displayed in [44]. The hypergeometric function

Y(x) = x 1/4 • 2 F 1 ⇣ [ 1 2 , 1 4 
], [

];

x

⌘ = 1 4 • Z x 0 t 3/4 • (1 t) 1/2 • dt = x 1/4 • (1 x) 1/2 • 2 F 1 ⇣ [ 1 2 , 1 4 
], [

];

4 x (1 x) 2 ⌘ , (10) 
is the integral of an algebraic function. It has a simple covariance property with respect to the infinite order rational transformation x ! 4 x/(1 x) 2 :

Y ⇣ 4 x (1 x) 2 ⌘ = ( 4) 1/4 • Y(x). (11) 
This hypergeometric function can be seen as an 'ideal' example of physical functions, covariant by an exact (rational) transformation. Three other hypergeometric functions with similar covariant properties were analyzed in [7]:

Y(x) = x 1/3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [

],

x

⌘ = 1 3 • Z x 0 t 2/3 • (1 t) 2/3 • dt = ( 8) 1/3 • R(x) 1/3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [

], R(

⌘ , with : R(x) = x • (x 2) 3 (1 2 x) 3 , (12) as well as

Y(x) = x 1/6 • 2 F 1 ⇣ [ 1 2 , 1 6 
], [

],

x

⌘ = 1 6 • Z x 0 t 5/6 • (1 t) 1/2 • dt = ( 27) 1/6 • R(x) 1/6 • 2 F 1 ⇣ [ 1 2 , 1 6 
], [

], R(x) ⌘ , with : R(x) = 27 x (1 4 x) 3 , (13) which can be seen as a particular subcase (↵ = 1/2) of the identity on hypergeometric functions:

2 F 1 ⇣ [↵, 1 ↵ 3 ], [ 4 ↵ + 5 6 ], x ⌘ = (1 4 x) ↵ • 2 F 1 ⇣ [ ↵ 3 
,

↵ + 1 3 ], [ 4 ↵ + 5 6 ], 27 x (1 4 x) 3 ⌘ , (14) 
and, finally, the simple function Y(x) = tanh 1 (x 1/2 ) that one represents as a hypergeometric function:

Y(x) = x 1/2 • 2 F 1 ⇣ [1, 1 2 
], [ 3 2 
],

x

⌘ = 1 2 • Z x 0 t 1/2 • (1 t) 1 • dt = (4) 1/2 • R(x) 1/2 • 2 F 1 ⇣ [1, 1 2 
], [ 3 2 
], R(x) ⌘ , with : R(x) = 4 x (1 + x) 2 .

(15) Though not mentioned in [7], two other hypergeometric functions, also covariant under a rational transformation, could have been deduced from the previous hypergeometric examples using Goursat and Darboux identities (see appendix B, and especially (B.3)):

Y(x) = x 1/4 • (1 x) 1/4 • 2 F 1 ⇣ [ 1 2 , 1], [ 5 4 
],

x

⌘ = 1 4 • Z x 0 t 3/4
• (1 t) 3/4 • dt

= ( 4) 1/4 • R(x) 1/4 • (1 R(x)) 1/4 • 2 F 1 ⇣ [ 1 4 , 1 2 
], [

], R(x) ⌘ (16) where :

R(x) = 4 • x • (1 x) (1 2 x) 2 , (17) 
and

Y(x) = x 1/6 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

],

x

⌘ = 1 6 • Z x 0 t 5/6 • (1 t) 2/3 • dt = (64) 1/6 • R(x) 1/6 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

], R(

⌘ with : R(x) = 64 x (1 + 18 x 27 x 2 ) 2 .

(18) These six hypergeometric functions are incomplete integrals that are canonically associated with an algebraic curve u N P(t) = 0 of genus one for (10), ( 12), ( 13), ( 16) and ( 18), and genus zero for ( 15)

Y(x) = 1 N • Z x 0 dt u(t) = 1 N • Z x 0 dt N p P(t)
, or :

N • Y 0 (x) = 1 u(x) , (19) 
and are solutions of a second order linear differential operator:

⌦ = ! 1 • D x , with : ! 1 = D x + A R (x), (20) 
where D x denotes d/dx, where a rational function A R (x) is 11 the logarithmic derivative of a simple algebraic 12 function u(x) = N p P(x). The expressions of the rational functions A R (x) read respectively for the four hypergeometric examples (10), (12), ( 13) and ( 15)

1 4 3 5 x x • (1 x) , 2 3 • 1 2 x x • (1 x) , 1 6 • 5 8 x x • (1 x) , 1 2 • 1 3 x x • (1 x) . ( 21 
)
And for the two new examples (16) and (18):

3 4 • 1 2 x x • (1 x) , 1 6 • 5 9 x x • (1 x) . ( 22 
)
In the interesting cases emerging in physics [9,[22][23][24], the operator ⌦ happens to be globally nilpotent [19], in which case A R (x) is the log-derivative of the Nth root of a rational function. At first we do not require ⌦ to be globally nilpotent 13 , then we will see what this assumption entails.

Let us consider a rational transformation x ! R(x) and the order-one operator

! 1 = D x + A R (x).
The change of variable x ! R(x) on the order-one operator ! 1 reads:

D x + A R (x) ! 1/R 0 (x) • D x + A R (R(x)) = (x) • L 1 = (x) • ⇣ D x + A R (R(x)) • R 0 (x) ⌘ , (23) 
with (x) = 1/R 0 (x). Now imposing the order-one operator L 1 of the RHS expression (23) to be equal to the conjugation by (x) of ! 1 = D x + A R (x), namely

(x) • ⇣ D x + A R (x) ⌘ • 1 (x) = D x d ln( (x)) dx + A R (x),
one deduces a rank-two functional equation [7] on A R (x) and R(x):

A R (R(x)) • R 0 (x) 2 = A R (x) • R 0 (x) + R 00 (x). ( 24 
)
This condition is exactly the first rank-two condition of Casale given by (8). Using the chain rule formula of derivatives for the composition of functions, one can show, for a given rational function A R (x), that the composition R 1 (R 2 (x)) verifies condition (24) if two rational functions R 1 (x) and R 2 (x) verify condition (24). In particular if R(x) verifies condition (24), all the iterates of R(x) also verify that condition 14 : R(x) ! R(R(x)), R(R(R(x))), • • • Keeping in mind the well-known example of the parametrization of the standard map x ! 4 x • (1 x) with x = sin 2 (✓), yielding ✓ ! 2 ✓, let us seek a (transcendental) parametrization x = P(u) such that 15 

where H a1 denotes the scaling transformation x ! a 1 • x and Q = P 1 denotes the composition inverse of P. One can also verify an essential property that we expect to be true for a representation of the renormalization group, namely that two R a1 (x) for different values of a 1 commute, the result corresponding to the product of these two a 1 :

R a1 ⇣ R b1 (x) ⌘ = R b1 ⇣ R a1 (x) ⌘ = R a1•b1 (x). (26) 
The neutral element of this abelian group corresponds to a 1 = 1, giving the identity transformation R 1 (x) = x. Performing the composition inverse of R a1 (x) amounts to changing a 1 into its inverse 1/a 1 . The structure of the (one-parameter) group and the extension of the composition of n times a rational function R(x) (namely R(R(• • • R(x) • • • ))) to n any complex number, is a straight consequence of this relation. For example, in the case of the 2 F 1 hypergeometric function (12), the one-parameter series expansion of R a1 (x) reads: R(a, x) = a • x + a • (a 1) • S a (x) where :

S a (x) = 1 2 • x 2 + 1 28 • (5 a 9) • x 3
(3 a 2 12 a + 13) 56

• x 4 + • • • (27) 
This one-parameter series (27) is a family of commuting one-parameter series solution of the rank-two condition (24), and these solution series have movable singularities (more details in appendix A). Defining some 'infinitesimal composition' (Q = P 1 , ✏ ' 0)

R 1 + ✏ (x) = P H 1 + ✏ Q(x) = x + ✏ • F(x) + • • • (28) 
we see, from (26), that R a1 (R 1 + ✏ (x)) = R 1 + ✏ (R a1 (x)). Using (28) and Taylor expansion one gets the following relations between R a1 (x) and the function16 F(x):

R a1 ⇣ R 1 + ✏ (x) ⌘ = R a1 ⇣ x + ✏ • F(x) + • • • ⌘ = R a1 (x) + dR a1 (x) dx • ✏ • F(x) + • • • = R 1 + ✏ ⇣ R a1 (x) ⌘ = R a1 (x) + ✏ • F(R a1 (x)) + • • • (29) 
which gives at the first order in ✏:

dR a1 (x) dx • F(x) = F(R a1 (x)). (30) 
For R(x) and for the nth iterates of the rational function R(x) (which are in the one-parameter family R a1 (x)) relation (30) reduces to:

R 0 (x) • F(x) = F(R(x)), dR (n) (x) dx • F(x) = F(R (n) (x)),
where :

A R (x) • ⇣ Q 0 (x) 2 Q(x) • Q 00 (x) ⌘ • Q 0 (x) + A 0 R (x) • Q(x) • Q 0 (x) 2 + Q 00 (x) • Q 0 (x) 2 + Q(x) • Q 000 (x) • Q 0 (x) 2 Q(x) • Q 00 (x) 2 = 0. (36) 
The function P(x), being the composition inverse of a differentially algebraic function, is solution of the differentially algebraic [33,34] equation 18 :

A R (P(x)) • P 0 (x) 2 • ⇣ x • P 00 (x) + P 0 (x) ⌘ + x • A 0 R (P(x)) • P 0 (x) 4 + x • P"(x) 2 x • P 0 (x) • P 000 (x) P 0 (x) • P"(x) = 0.

For instance, for the hypergeometric function (10), one verifies straightforwardly that P(x) = sn 4 (x, ( 1) 1/2 ), given in [7], verifies (37) with A R (x) given by the first rational function in (21).

Assuming that ⌦ is globally nilpotent

The rank-two condition (24) turns out to identify exactly with the first Casale condition (8), the only difference being that A R (x) is not meromorphic as in Casale's condition (8), but a rational function: in lattice statistical mechanics and enumerative combinatorics, the differential operators are linear differential operators with polynomial coefficients. In fact, the operators emerging in lattice models are not only Fuchsian, but globally nilpotent operators [19], or G-operators [20], thus their wronskians are the N-th root of a rational function [19]. This naturally leads us to examine the case where ⌦ is taken to be globally nilpotent. Given ⌦ globally nilpotent, there exists an algebraic function u(x) (Nth root of a rational function) such that A R (x) is the log-derivative of u(x). Consequently ⌦ and ⌦ ⇤ , which read respectively 1 , are related by the simple conjugation:

⌦ = u(x) 1 • D x • u(x) • D x and ⌦ ⇤ = D x • u(x) • D x • u(x)
⌦ ⇤ • u(x) = u(x) • ⌦. (38) 
Thus, F(x) and Y(x) are related through the simple equation:

u(x) • Y(x) = F(x). ( 39 
)
The fact that the holonomic function Y(x) is solution of ⌦, amounts to writing that the log-derivative of Y 0 (x) is equal to A R (x). If ⌦ is globally nilpotent then A R (x) is the logderivative of the reciprocal 1/u(x), and the logarithm of Y 0 (x) is equal to the logarithm of 1/u(x), up to a constant of integration ln(↵), and thus:

↵ • dY(x) dx = 1 u(x) or : ↵ • Y 0 (x) Y(x) = 1 u(x) • Y(x) . (40) 
Recalling the fact that the rank-two condition (24) gives (33), namely that the logderivative of Q(x) is equal to 1/F(x), one deduces by combining (39) with (40):

Q 0 (x) Q(x) = 1 F(x) = ↵ • Y 0 (x) Y(x) i.e. Q(x) = • Y(x) ↵ . (41) 
Note that, without any loss of generality, one can restrict to = 1.

F(x) is solution of ⌦ ⇤ as a consequence of the rank-two condition (24). This second order linear differential equation can be integrated into F 0 (x) A R (x) • F(x) = u(x) • Y 0 (x), and taking into account (40) this gives:

F 0 (x) A R (x) • F(x) = 1 ↵ . ( 42 
)
For the new results (see sections 3 and 4 below), corresponding to a rank-two condition (24) like the hypergeometric examples seen in the beginning of this section, the holonomic function Y(x) is of the form (19). Thus the constant ↵ is actually equal to a positive integer N (see the case where N = 3 in appendix A for a worked example). Further one deduces from (41) that Q(x) is always a holonomic function: Q(x) = • Y(x) N , for instance, for the hypergeometric functions (10), (12), (13), (15), (16) and (18), we have Q(x) = Y(x) N with N = 4, 3, 6, 2, 4, 6 respectively.

Without assuming (19), the constant ↵ is not necessarily a positive integer, thus Q(x) has no reason to be holonomic: it is just differentially algebraic (see (36)). The log-derivatives of Q(x) and Y(x) being equal up to a multiplicative factor ↵ (see (41)), one deduces from the fact that ( 35) is a homogeneous (quadratic) condition in G(x) and its derivatives, that Q(x) and Y(x) verify necessarily the same differentially algebraic condition (36).

With this global nilpotence assumption, the differentially algebraic function P(x) is, in fact, solution of much simpler non-linear ODEs. From u(x) • Y(x) = F(x) one gets using (32):

u(P(x)) ↵ • Y(P(x)) ↵ = F(P(x)) ↵ = ⇣ x • P 0 (x) ⌘ ↵ . ( 43 
)
Using Q(x) = • Y(x) ↵ , and Q(P(x)) = x, one deduces:

x • u(P(x)) ↵ = • ⇣ x • P 0 (x) ⌘ ↵ . (44) 

More rational transformations: an identity on a Heun function

In this section we write an identity similar to the 2 F 1 hypergeometric identities (10), (12) and (13), but, this time, on a Heun function, that is a holonomic function with four singularities instead of the well-known three singularities 0, 1, 1 of the hypergeometric functions.

Let us consider the rational transformation 19x

! 4 • x • (1 x) • (1 k 2 x) (1 k 2 x 2 ) 2 , ( 45 
)
where one recognizes the transformation 20✓ ! 2 ✓ on the square of the elliptic sine x = sn(✓, k) 2 :

sn(✓, k) 2 ! sn(2 ✓, k) 2 = 4 • sn(✓, k) 2 • (1 sn(✓, k) 2 ) • (1 k 2 • sn(✓, k) 2 ) (1 k 2 • sn(✓, k) 4 ) 2 . ( 46 
)
Denoting M = 1/k 2 , the transformation (45) yields:

R(x) = 4 • x • (1 x) • (1 x/M) (1 x 2 /M) 2 . ( 47 
)
For a given M , the transformations ✓ ! p ✓ give rational transformations x ! R p (x) on the square of the elliptic sine, x = sn(✓, k) 2 , which are sketched for the first primes p in appendix C. The series expansions of these rational transformations read R p (x) = p 2 • x + • • • With these rational functions R p (x) we have the following identity on a Heun function 21 :

R p (x) • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
, R p (x)

⌘ 2 = p 2 • x • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
, x

⌘ 2 . ( 48 
)
Using the formalism introduced in section 2, we write

A R (x) = u 0 (x) u(x) = 1 2 (M x) + 2 x 1 2 x (x 1) = 1 2 • 3 x 2 2 (M + 1) x + M x • (1 x) • (M x)
, where :

u(x) = ⇣ x • (1 x) • (1 x/M) ⌘ 1/2 . ( 49 
)
The Liouvillian solution of the operator ⌦ = (D x + A R (x)) • D x corresponds to the incomplete elliptic integral of the first kind (introducing u = sin 2 (✓) and x = sin 2 ( )):

F( , m) = Z 0 d✓ (1 m • sin 2 (✓)) 1/2 = 1 2 • Z x 0 du u 1/2 • (1 u) 1/2 • (1 m • u) 1/2 .
This corresponds to a Heun function, or equivalently to the inverse Jacobi sine 22 :

x 1/2 • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 , x ⌘ 
= InverseJacobiSN ⇣ x 1/2 , 1 M 1/2 ⌘ . (50) 
The Heun solution of ⌦ reads with x = sin 2 ( ):

Y(x) = x 1/2 • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
, x

⌘ = 1 M 1/2 • F ⇣ , 1 M ⌘ = 1 2 • Z x 0 du u 1/2 • (1 u) 1/2 • (M u) 1/2 . ( 51 
)
The Heun identity (48) amounts to writing a covariance on this Heun function given by:

Y ⇣ R p (x) ⌘ = p • Y(x). (52) 
The adjoint operator ⌦ ⇤ = D x • (D x A R (x)) has the following Heun function solution:

F(x) = x • (1 x) 1/2 • ⇣ 1 x M ⌘ 1/2 • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 , x ⌘ 
. ( 53 
)
All the rational transformations R p (x) verify a rank-two condition (24) with A R (x) given by (49). More generally, the one-parameter series solution of the rank-two condition (24) are, again, commuting series: R(a, x) = a • x + a • (a 1) • S a (x)

where :

S a (x) = (M + 1)

3 M • x 2 + (2 • (M 2 + 1) • (a 4) + (13 a 7) • M) 45 • M 2 • x 3 (M + 1) 315 • M 3 • ⇣ (M 2 + 1) • (a 4) • (a 9) + (29 a 2 62 a 6) • M ⌘ • x 4 + • • • (54 
) with R(a 1 , R(a 2 , x)) = R(a 2 , R(a 1 , x)) = R(a 1 a 2 , x). The one-parameter series (54) reduces to the series expansion of the rational functions R p (x) for a = p 2 for every integer p. One thus sees that the rank-two condition (24) with A R (x) given by (49), encapsulates an infinite number of commuting rational transformations R p (x).

Finally, as far as the Koenig-Siegel linearization [45][46][47][48] of the one-parameter series is concerned, one has Q(x) = Y(x) 2 and:

P(x) = sn ⇣ x 1/2 , 1 M 1/2 ⌘ 2 . ( 55 
)
One easily verifies that this exact expression (55) in terms of the elliptic sine is solution of the differentially algebraic equation (37) with A R (x) given by (49). One can verify (though it is not totally straightforward) that the rational function (47), and more generally the R p (x), have the decomposition

4 • x • (1 x) • (1 x/M) (1 x 2 /M) 2 = P(4 • Q(x)), R p (x) = P( p 2 • Q(x)), (56) 
with P(x) and Q(x) given respectively by (55) and

Q(x) = Y(x) 2 .
3.1. 2 F 1 hypergeometric functions deduced from the Heun example

We know from [50,51] for example, that selected Heun functions can reduce to pullbacked 2 F 1 hypergeometric functions. This is also the case for the Heun function (53) in section 3 for selected values of M . For M = 2 we have:

Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
,

x ⌘ = (1 x) 1/4 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [

],

x 2 4 • (1 x) ⌘ , ( 57 
) for M = 1 : Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 , x 
⌘ = (1 x 2 ) 1/4 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [

],

x 2 1 x 2 ⌘ , (58) 
and for M = 1/2:

Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
,

x ⌘ = (1 2 x) 1/4 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [

],

x 2 1 2 x ⌘ . (59) 
Besides, the three previous values of M = 1/k 2 such that the Heun function (or the inverse Jacobi sine, InverseJacobiSN in Maple) reduces to pullbacked hypergeometric functions, correspond to a complex multiplication value of the j-function [52], namely [9] j = (12) 3 = 1728:

j = 256 • (M 2 M + 1) 3 M 2 • (M 1) 2 , j = 1728 ! M = 2, 1 2 , 1. (60) 
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The other complex multiplication values (Heegner numbers see [9]) do not seem to correspond to a reduction of the Heun function to pullbacked hypergeometric functions.

Recalling ( 57)- (59), and specifying the Heun identity (48), or (52), for M = 2, M = 1 , and M = 1/2 respectively, one gets three identities on the hypergeometric function 2 F 1 ([1/4, 3/4], [5/4], x). These three identities are in fact consequences of the simple identity:

Y(x) = x 1/4 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [

],

x

⌘ = 1 2 • P(x) 1/4 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [

], P(x)

⌘ , (61) 
where

P(x) = 16 • x • (1 x) (1 + 4 x 4 x 2 ) 2 , ( 62 
)
together with the 'transmutation' relations

P( p k (x)) = p k (P k (x)), k = 1, 2, 3, (63) 
where the pullbacks P( p k (z)) are transformation (47) for respectively M = 2, M = 1 , and M = 1/2

P 1 (x) = 8 • x • (1 x) • (2 x) (x 2 2) 2 , P 2 (x) = 4 • x • (1 x 2 ) (1 + x 2 ) 2 , P 3 (x) = 4 • x • (1 x) • (1 2 x) (1 2 x 2 ) 2 , (64) 
and where p k (x) are the pullbacks emerging in the 2 F 1 representations ( 57)-( 59) of the Heun function:

p 1 (x) = 1 4 • x 2 1 x , p 2 (x) = x 2 1 x 2 , p 3 (x) = x 2 1 2 x . ( 65 
)
The hypergeometric function Y(x) given by (61), is solution of the order-two linear differential operator ⌦ = (D x + A R (x)) • D x where

A R (x) = 3 4 • 1 2 x x • (1 x) , (66) 
verifies the rank-two condition (24):

A R (P(x)) • P 0 (x) 2 = A R (x) • P 0 (x) + P 00 (x). [START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF] One notes that the hypergeometric functions (16) and (61) are associated with the same A R (x) given by (66): one can easily show that these two hypergeometric functions are equal. Therefore (61) shares the same rank-two condition (24) with (66), a condition that is also verified for the rational transformation (17) together with the pullback (62), with (17) and (62) commuting. The hypergeometric function (61) verifies an identity with the pullback (17), namely Q(R(x)) = 4 • Q(x) with R(x) given by (17), where Q(x) = Y(x) 4 .

Remark. For these selected values of M , one could be surprised that the function Q(x) in the case of the Heun function is such that Q(x) = Y(x) 2 , when the Q(x) for the hypergeometric function (61) closely related to this Heun function (see identities ( 57)-( 59)) is such that 4 . This difference comes from the pullbacks (65): the pullbacked hypergeometric functions ( 57)-( 59) also correspond to Q(x) = Y(x) 2 .

Q(x) = Y(x)

A comment on the non globally bounded character of the Heun function

Heun functions with generic parameters are generally not reducible to 2 F 1 hypergeometric functions with one or several pullbacks 23 . Unlike 2 F 1 functions the corresponding linear differential Heun operators are generally not globally nilpotent, and the series of Heun functions are not globally bounded. While, for Heun functions, the reducibility to pullbacked 2 F 1 hypergeometric functions, the global nilpotence, and the global boundedness implicate each other in general, this is not true when the corresponding linear differential operator factors. Note that the series (53) as well as the series Q(x) = Y(x) N for the various hypergeometric functions ((10), ( 12) and ( 13), ... with N = 4, 3, 6, ...)) are not globally bounded 24 .

In this light, the fact that the series (53) as well as the series Q(x) = Y(x) N are not globally bounded, does not seem to be in agreement with the previous modular form emergence and the previous remarkable identities (52), or

Q(R(x)) = 4 • Q(x). The series G(x) = Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
, 4 M x ⌘ , (68) 
might not be globally bounded, yet it is 'almost globally bounded': the denominator of the coefficients of x n are of the form 2 n + 1. Therefore one finds that the closely related series

G(x) = 2 x • G 0 (x) + G(x) = 1 + 2 (M + 1) • x + 2 (3 M 2 + 2 M + 3) • x 2 + 4 (M + 1) (5 M 2 2 M + 5) • x 3 + 2 • (35 M 4 + 20 M 3 + 18 M 2 + 20 M + 35) • x 4 + • • • (69) 
is actually globally bounded for any rational number value of M : the coefficient of x n is a polynomial in M with integer coefficients of degree n. G(x) is solution of an order-one linear differential operator and is an algebraic function: 

G(x) = (1 4 x) 1/2 • (1 4M x)

Remark.

To be globally bounded [24] is a property that is preserved by operator homomorphisms: the transformation by a linear differential operator of a globally bounded series is also globally bounded, however, it is not preserved by integration.

2 F 1 hypergeometric function: a higher genus case

The 2 F 1 hypergeometric examples (10), (12), (13), and (15) are associated with elliptic or rational (see (15)) curves. It is tempting to imagine the rank-two conditions (24) to be only associated with hypergeometric functions connected to elliptic curves, and with pullbacks given by rational functions 25 . This is not the case though, as we shall see in the next genus-two hypergeometric example with algebraic function pullbacks.

Let us consider the hypergeometric function

Y(x) = x 1/6 • 2 F 1 ⇣ [ 1 6 , 1 3 ], [ 7 6 
],

x

⌘ = 1 6 • Z x 0 (1 t) 1/3 • t 5/6 • dt, (70) 
solution of the (factorized) order-two operator ⌦ = (D x + A R (x)) • D x where:

A R (x) = 1 6 7 x 5 x • (x 1) = u 0 (x) u(x)
where :

u(x) = (1 x) 1/3 • x 5/6 , (71) 
and one gets 6 • Y 0 (x) = 1/u(x). Introducing u = 6 • Y 0 (x), one can canonically associate to (71) the algebraic curve

u 6 (1 x) 2 • x 5 = 0, (72) 
which is a genus-two algebraic curve. We are seeking an identity on this hypergeometric function (70) of the form:

A(x) • 2 F 1 ⇣ [ 1 6 , 1 3 
], [ 7 6 
],

x

⌘ = 2 F 1 ⇣ [ 1 6 , 1 3 
], [ 7 6 
], y(x)

⌘ . ( 73 
)
Introducing the order-two linear differential operators annihilating respectively the LHS and RHS of ( 73), the identification of the wronskians of these two operators gives the algebraic function A(x) in terms of the pullback y(x):

A(x) = ⇣ 27 • x y(x) ⌘ 1/6 . (74) 
The pullback y(x) must be some symmetry (isogeny) of the genus-two algebraic curve [START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF]. At first sight, this seems to exclude rational function pullbacks similar to the ones previously introduced. In fact, remarkably, there exists a simple identity on this (higher genus) hypergeometric function:

2 F 1 ⇣ [ 1 6 , 1 3 
], [ 7 6 
], 27

• v • (1 v) • (1 + v) 4 (1 + 3 v) • (1 3 v) 4 ⌘ 6 = (1 + 3 v) 2 • (1 3 v) 4 (1 v) 2 • (1 + v) 4 • 2 F 1 ⇣ [ 1 6 , 1 3 
], [ 7 6 
],

v • (1 + 3 v) 1 v ⌘ 6 . ( 75 
)
The two pullbacks in this remarkable identity (75) yield the simple rational parametrization

x = v • (1 + 3 v) 1 v , y = 27 • v • (1 v) • (1 + v) 4 (1 + 3 v) • (1 3 v) 4 , (76) 
which parametrizes the following genus-zero (i.e. rational) curve 26 :

27 • x • (x 1) 4 • (y 2 + 1) (x 6 12 x 5 + 807 x 4 + 2504 x 3 + 807 x 2 12 x + 1) • y = 0. ( 77 
)
The algebraic function y = y(x), defined by the genus-zero curve [START_REF] Masoero | Painlevé I, coverings of the sphere and Belyi functions[END_REF], is an example of a pullback27 y(x) occurring in the 2 F 1 hypergeometric identity [START_REF] Boucher | Application of J-J Morales and J-P Ramis' theorem to test the non-complete integrability of the planar three-body problem From Combinatorics to Dynamical Systems[END_REF]. This (multivalued) algebraic function y = y(x) has the following series expansions: 

Note that the rational curve (77) has the obvious symmetry y $ 1/y (as well as the x $ 1/x symmetry, consequence of the palindromic form of ( 77)), therefore the series ( 79) is the reciprocal of (78): 

y 2 =
+ • • • , (81) 
the second series being the reciprocal of the first one 28 . Furthermore the two series ( 78) and ( 79) verify 29 the rank-two condition (24) with A R (x) given by ( 71):

A R (y(x)) • y 0 (x) 2 = A R (x) • y 0 (x) + y 00 (x). (82) 
Do note that the series, corresponding to the composition inverse of these two series ( 78) and (79) (namely ( 80) and [START_REF] Penson | On the properties of Laplace transform originating from one-sided Lé vy stable laws[END_REF] where one changes y into x ), also verify the rank-two condition (24) with A R (x) given by [START_REF] Shimura | Correspondances modulaires et les fonctions ⇣ de courbes algé briques[END_REF]. For example, introducing Q(x) = Y(x) 6 , one finds that Q(y(x)) = 27 • Q(x) for y(x) the algebraic function corre sponding to series [START_REF] Guttmann | Automata and the susceptibility of the square lattice Ising model modulo powers of primes[END_REF]. The composition inverse of series 30 (78) gives the (reversed) result:

Q(x) = 27 • Q(y(x)).
Remark. The rank-two condition (82) with A R (x) given by ( 71) has a one-parameter family of commuting solution series: 

R(a, x) = a • x + a • (a 1)
• x 5 + • • • (84) with R(a 1 , R(a 2 , x)) = R(a 2 , R(a 1 , x)) = R(a 1 a 2 , x)
, where (83) reduces to the algebraic series ( 78) and ( 80) for a = 27 and a = 1/27 respectively. Consequently the occurrence of a higher genus curve like [START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF] is not an obstruction to the existence of a family of oneparameter abelian series.

Schwarzian condition on an algebraic transformation: 2 F 1 representation of a modular form

The typical situation emerging in physics with modular forms [22,23,55] is that some

'selected' hypergeometric function 2 F 1 ([↵, ], [ ],
x) verifies an identity with two different pullbacks 31 related by an algebraic curve, the modular equation curve M( p 1 (x), p 2 (x)) = 0:

2 F 1 ⇣ [↵, ], [ ], p 1 (x) ⌘ = Ã(x) • 2 F 1 ⇣ [↵, ], [ ], p 2 (x) ⌘ , (85) 
where Ã(x) is an algebraic function. This representation of modular forms in terms of hypergeometric functions with many pullbacks, is well described in Maier's papers [56,57]. It is different from the 'mainstream' mathematical definition of modular forms as (complex) analytic functions on the upper halfplane satisfying functional equations with respect to the group action of the modular group. However, this hypergeometric representation is the one we do need in physics [22,23]. The reason why this hypergeometric function representation of modular forms exists is a consequence of a not very well-known equality between the Eisenstein [58] series E 4 (of weight four under the modular group), and a hypergeometric function of the (weight zero) modular j-invariant [9,14] (see theorem 3 page 226 in [31], see also page 216 of [59]):

E 4 (⌧ ) = 1 + 240 1 X n=1 n 3 • q(⌧ ) n 1 q(⌧ ) n = 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 j(⌧ ) ⌘ 4 . ( 86 
)
In terms of k the modulus of the elliptic functions, the E 4 Eisenstein series (86) can also be written as:

2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 27 4

k 4 • (1 k 2 ) 2 (k 4 k 2 + 1) 3 ⌘ 4 = (1 k 2 + k 4 ) • 2 F 1 ⇣ [ 1 2 , 1 2 ], [1], k 2 ⌘ 4 . 
(87) Another relation between hypergeometric functions and modular forms corresponds to the representation of the Eisenstein series E 6 in terms of the hypergeometric functions 32 (87) (see page 216 of [59]):

E 6 = (1 + k 2 ) • (1 2 k 2 ) • ⇣ 1 k 2 2 ⌘ • 2 F 1 ⇣ [ 1 2 , 1 2 
], [1], k 2 ⌘ 6 (88) = (1 + k 2 ) • (1 2 k 2 ) • ⇣ 1 k 2 2 ⌘ ⇥ (1 k 2 + k 4 ) 3/2 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 27 4

k 4 • (1 k 2 ) 2 (k 4 k 2 + 1) 3 ⌘ 6 . (89) 
One can rewrite a remarkable hypergeometric identity like [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] in the form 31 The modular forms occuring in physics often correspond to cases where the two different pullbacks p 1 (x) and p 2 (x) are rational functions, but they can also be algebraic functions [24,29]. 32 One easily verifies that the expressions (87) and (88) for respectively E 4 and E 6 , are such that 6 )/E 3 4 is actually the well-known expression of the Hauptmodul 1728/j given as a rational function of the modulus k (see (2) and ( 3)). where A(x) is an algebraic function and where y(x) is an algebraic function corresponding to the previous modular curve M(x, y(x)) = 0.

A(x) • 2 F 1 ⇣ [↵, ], [ ], x ⌘ = 2 F 1 ⇣ [↵, ], [ ], y(x) ⌘ , ( 90 
)
(E 3 4 E 2 
The Gauss hypergeometric function

2 F 1 ([↵, ], [ ],
x) is solution of the second order linear differential operator 33 :

⌦ = D 2 x + A(x) • D x + B(x)
, where :

A(x) = (↵ + + 1) • x x • (x 1) = u 0 (x) u(x) , B(x) = ↵ x • (x 1) . ( 91 
)
We would like now, to identify the two order-two linear differential operators of the LHS and RHS of identity [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF]. A straightforward calculation enables us to find the algebraic function A(x) in terms of the algebraic function pullback y(x) in (90):

A(x) = ⇣ u(x) u(y(x)) • y 0 (x) ⌘ 1/2 . ( 92 
)
Expression (92) for A(x) is such that the two order-two linear differential operators (of a similar form as (91)) have the same D x coefficient. The identification of these two operators thus corresponds (beyond (92)) to just one condition that can be rewritten (after some algebra ...) in the following Schwarzian form:

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (93) 
or:

W(x) y 0 (x) W(y(x)) • y 0 (x) + {y(x), x} y 0 (x) = 0, (94) 
where

W(x) = A 0 (x) + A(x) 2 2 2 • B(x), (95) 
and where {y(x), x} denotes the Schwarzian derivative [60]:

{y(x), x} = y 000 (x) y 0 (x) 3 2 • ⇣ y 00 (x) y 0 (x) ⌘ 2 = d dx ⇣ y 00 (x) y 0 (x) ⌘ 1 2 • ⇣ y 00 (x) y 0 (x) ⌘ 2 . ( 96 
)
In the identity [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF], characteristic of modular forms, the two pullbacks p 1 (x) and p 2 (x) are clearly on the same footing, while identity (90) breaks this fundamental symmetry, seeing y as a function of x. We can perform the same calculations seeing the variable x as a function of y in (90). Despite the simplicity of condition (94) it is not clear whether x and y are on the same footing in condition (94). This is actually the case, since if one considers x as a function of y, we have the well-known classical result that the Schwarzian derivative of x with respect to y is simply related to (96), the Schwarzian derivative of y with respect to x:

{y(x), x} = y 0 (x) 2 • {x(y), y}. (97) 
In other words, if one introduces the following Schwarzian bracket

[y, x] = {y(x), x} y 0 (x) = y 000 (x) y 0 (x) 2 3 2 • y 00 (x) 2 y 0 (x) 3 , (98) 
it is antisymmetric:

[y, x] = [x, y].
With this appropriate notation, x and y can be seen on the same footing. With this in mind we can now rewrite condition (94) in a balanced way:

2 • W(x) • dx dy + [y, x] = 2 • W(y) • dy dx + [x, y]. (99) 
If one denotes by L(x, y) the LHS of (99)

L(x, y) = 2 • W(x) + {y, x} y 0 , ( 100 
)
the Schwarzian condition (94), or (99), reads L(x, y) = L(y, x).

Being the result of the covariance (90), a Schwarzian identity like (99) has to be compatible with the composition of functions. For instance, from (90) one immediately deduces:

2 F 1 ⇣ [↵, ], [ ], y(y(x)) ⌘ = A(y(x)) • 2 F 1 ⇣ [↵, ], [ ], y(x) ⌘ = A(y(x)) • A(x) • 2 F 1 ⇣ [↵, ], [ ], x ⌘ . ( 101 
)
One thus expects condition (94) to be compatible with the composition of function (similarly to the previous compatibility of the rank-two condition (24) with the iteration of x ! R(x)): this is actually the case. Recalling the (well-known) chain rule for the Schwarzian derivative of the composition of functions

{z(y(x)), x} = {z(y), y} • y 0 (x) 2 + {y(x), x}, (102) 
it is straightforward to show directly (without referring to the covariance (90)) that condition (94) is actually compatible with the composition of functions (see appendix D for a demonstration). The Schwarzian derivative is the perfect tool [60] to describe the composition of functions and the reversibility of an iteration (the previously mentioned x ! y symmetry): it is not a surprise to see the emergence of a Schwarzian derivative in the description of the modular forms [61][62][63] corresponding to identities like (90). We are going to see, for a given (selected ...) hypergeometric function 2 F 1 ([↵, ], [ ], x), that the condition (94) 'encapsulates' all the isogenies corresponding to all the modular equations associated to transformations on the ratio of periods ⌧ ! N • ⌧ (resp. ⌧ ! ⌧ /N ), for various values of the integer N corresponding to the different modular equations.

Schwarzian condition and the simplest example of modular forms: a series viewpoint

Let us focus on an example of a modular form that emerged many times in the analysis of n-fold integrals of the square Ising model [8,9,24]. Let us recall the simplest example of a modular form and of a modular equation curve

A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x

⌘ = 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], y

⌘ , (103) 
where A(x) is an algebraic function and where y = y(x) is an algebraic function corresponding to the modular equation ( 4). The algebraic function y = y(x) is a multivalued function, but we can single out the series expansion 34 : 

y = 1 1728 • x 2 +
One verifies easily that the Schwarzian condition (94) is verified with:

W(x) = 32 x 2 41 x + 36 72 • x 2 • (x 1) 2 , A(x) = 3 • x 2 2 x • (x 1) , B(x) = 5 144 x • (x 1)
.

(105) The modular equations

M N (x, y) = 0, corresponding to the transformation ⌧ ! N • ⌧ , or ⌧ ! ⌧ /N
, define algebraic transformations (isogenies) x ! y for the identity (103) with A(x) given by an algebraic function.

Let us consider another important modular equation. The modular equation of order three corresponding to ⌧ ! 3 • ⌧ , or ⌧ ! ⌧ /3, reads 35 :

k 4 + 12 k 3 + 6 k 2 2 + 12 k 3 + 4 16 k 3 3 16 k = 0. ( 106 
)
Recalling that

x = 27 4 • k 4 • (1 k 2 ) 2 (k 4 k 2 + 1) 3 = 1728 j(k) , y = 27 4 • 4 • 1 2 2 ( 4 2 + 1) 3 = 1728 j( ) , (107) 
the modular equation ( 106) becomes the modular curve:

262 144 000 000 000 • x 3 y 3 (109) One can easily get the the polynomial with integer coefficients M 4 (x, y), in the modular equation M 4 (x, y) = 0 corresponding to the transformation ⌧ ! 4 • ⌧, or ⌧ ! ⌧ /4, as follows: if one denotes by M 2 (x, y) the LHS of the modular equation (4), the polynomial M 4 (x, y) is straightforwardly obtained by calculating the resultant of M 2 (x, z) and M 2 (z, y) in z, which factorizes in the form 36 (x y) 2

• M 4 (x, y). The modular equation M 4 (x, y) = 0 defines several algebraic series corresponding to the different branches 37 of the (multivalued) algebraic function transformation x ! y. We find Puiseux series and two analytic series at x = 0 given by 35 Legendre already knew (1824) this order three modular equation in the form (k

) 1/2 + (k 0 0 ) 1/2 = 1,
where k and k 0 , and , 0 are pairs of complementary moduli k 2 + k 02 = 1, 2 + 02 = 1, and Jacobi derived that modular equation [64,65]. 36 The exact expression of M 4 (x, y) is a bit too large to be given here. 37 These series can be obtained using the command 'algeqtoseries' in the 'gfun' package of Maple. 109)-(111) (as well as the other Puiseux series) are solutions of the Schwarzian condition (94), and that the series (104), ( 109) and (110) commute when composed, while (110) and (111) do not! This is a consequence of the fact that they correspond to the various commuting isogenies ⌧ ! N • ⌧ (resp. ⌧ ! ⌧ /N). 

• x 4 + • • • (113) 
The series ( 112) is a one-parameter family of commuting series:

y(e, y(ẽ, x)) = y(ẽ, y(e, x)) = y(e ẽ, x), (114) and in the e ! 1 limit of the one-parameter family (112), one has:

y(e, x) = x + ✏ • F(x) + ✏ 2 • G(x) + • • •
where : In order to generalize the solution-series (104), we will first seek solution-series of the Schwarzian condition (94) of the form a • x 2 + • • • A straightforward calculation gives a oneparameter family of solution-series of (94) of the form a • x 2 + • • •: (116) which actually reduces to (104) for a = 1/1728. Similarly, one also finds a one-parameter family of solution-series of (94) of the form b • x 3 + • • •: The composition of the one-parameter series (116) with the one-parameter series (112) gives the series (116) for a e and a e 2 respectively:

F(x) = x • (1 x) 1/2 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x ⌘ 2 , G(x) = 1 2 • F(x) • (F 0 (x) 1). (115) 
y 2 = a • x 2 + 31 • ax
y 3 = b • x 3 + 31 b 24 • x 4 + 36 
y 1 (e, y 2 (a, x)) = y 2 (a e, x), y 2 (a, y 1 (e, x)) = y 2 (a e 2 , x). (120) 
In other words if one introduces the modular equation series Y 2 (x) given by (104), corresponding to y 2 (a, x) for a = 1/1728, the one-parameter series y 2 (a, x) given by (116), can be obtained as y 1 (1728 a, Y 2 (x)) or as Y 2 (y 1 ((1728 a) 1/2 , x)). Therefore, all the one-parameter families (116)-(118), are nothing but the isogeny-series (104), ( 109) and ( 110) transformed by the one-parameter series (112).

5.2. The equivalent of P(x) and Q(x) for the Schwarzian condition: the mirror maps Let us recall the concept of mirror map [22,23,[66][START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF][68][69] relating the reciprocal of the j-function and the nome, with the well-known series with integer coefficients: X(q) = q 744 q 2 + 356 652 q 3 140 361 152 q 4 + 49 336 682 190 q 5 16 114 625 669 088 q 6 + 4999 042 477 430 456 q 7 1492 669 384 085 015 040 q 8 + 432 762 759 484 818 142 437 q 9 + • • • (121) and 41 its composition inverse: These series correspond to x being the reciprocal of the j-function: 1/j . In this paper, as a consequence of the (modular form) hypergeometric identities (103) (see (3) and ( 4) and also (86)), we need x to be identified with the Hauptmodul 1728/j. Consequently we introduce X(q) = 1728 • X(q) and Q(x) = Q(x/1728). With these appropriate changes of variables one finds that the series (112) is nothing but

Q(x) = x + 744 x 2 +
X(e • Q(x)).
Thus an interpretation of the one-parameter series (112) through the prism of the mirror map, is that the one-parameter series amounts to the multiplication of the nome of elliptic functions [9] by an arbitrary complex number e: q ! e • q. The isogenies correspond to q ! q N (resp. q ! q 1/N ) for an integer N and the one parameter families we have encountered (namely (116) and ( 117)) correspond to the composition of q ! e • q and q ! q N (resp. q ! q 1/N ), namely q ! e • q N (resp. q ! e • q 1/N ).

The series X(q) = 1728 • X(q) (with X(q) given by ( 121)) is solution of the Schwarzian equation

{X(q), q} 1 2 q 2 + 1 72 • 32 X(q) 2 41 X(q) + 36 X(q) 2 • (1 X(q)) 2 • ⇣ dX(q) dq ⌘ 2 = 0. (123) 
which is nothing but:

{X(q), q} 1 2 q 2 W(X(q)) • ⇣ dX(q) dq ⌘ 2 = 0. ( 124 
)
The series Q(x) = Q(x/1728) (with Q(x) given by ( 122)) is solution of the Schwarzian equation

{Q(x), x} 1 2 • Q(x) 2 • ⇣ dQ(x) dx ⌘ 2 + 1 72 • ⇣ 32 x 2 41 x + 36 x 2 • (1 x) 2 ⌘ = 0, (125) 
equivalently written as:

{Q(x), x} + 1 2 • Q(x) 2 • ⇣ dQ(x) dx ⌘ 2 + W(x) = 0. ( 126 
)
The two mirror map series (121) and (122) thus correspond to differentially algebraic [33,34] functions, and are solutions of simple Schwarzian equations like in (93). 41 In Maple the series (121) can be obtained substituting 3 /256. See https://oeis.org/A066395 for the series (121) and https://oeis.org/A091406 for the series (122).

L = EllipticModulus(q 1/2 ) 2 , in 1/j = L 2 • (L 1) 2 / (L 2 L + 1)
These differentially algebraic mirror maps transformations Q(x) and X(q) are the well-suited changes of variables such that the transformation x ! y(x) verifying the Schwarzian equation (93) become simple transformations, 'simple' meaning transformations like q ! S(q) = e • q N (or S(q) = e • q 1/N ) in the nome q of elliptic functions [9]. Generalizing the Koenig-Siegel linearization [45][46][47][48], we thus decompose y(x) as y(x) = X(S(Q(x))).

The Schwarzian conditions (124) and ( 126) are essentially the well-known Schwarzian equation discovered by Jacobi [64,65] on the j-function (see for instance equation (1.26) in [70]). The compatibility of the Schwarzian equations ( 124) and (126) on the mirror maps with the Schwarzian condition (93) on y(x) emerging from a more general Malgrange's pseudogroup perspective [35][36][37][38], is shown in section 5.2. The fact that the same function W(x) occurs in the Schwarzian conditions (124), (126) on the mirror maps, and on the Schwarzian condition (93), is crucial for this demonstration and is not a mere coincidence.

The general case:

2 F 1 ([↵, ], [ ], x) hypergeometric function 5.3.1. The 2 F 1 ([1/6, 1/3], [1],
x) hypergeometric function. We have analyzed in some detail in section 5.1 the modular form example (103). For other values of the [[↵, ], [ ]] parameters of the 2 F 1 (see ( 90) and ( 91)) one can easily find series expansions of the solution y(x) of the Schwarzian condition. A set of values like [1]] (see for instance [24,56] and Ramanujan's cubic theory of alternative bases [14]) which are known to yield modular form hypergeometric identities like (103) with algebraic pullbacks y(x) associated with modular equations. For these values of the [[↵, ], [ ]] parameters one finds a set of one-parameter series totally similar to what is described in section 5.1. The example of the 2 F 1 ([1/6, 1/3], [1], x) hypergeometric function is sketched in appendix F. 

[[1/2, 1/2], [1]], [[1/4, 1/4], [1]], [[1/3, 1/3], [1]], [[1/3, 2/3], [1]] or [[1/3, 1/6],
y 2 (u, x) = a • x 2 2 a • (2 ↵ ↵ ) • x 3 + a 2 • C 4 • x 4 + • • • with : C 4 = 2 (2 ↵ ↵ ) • a + (↵ 1)(↵ ↵ ) + 5 (2 ↵ ↵ ) 2 , ( 127 
)
and one also gets the following series of the form b

• x 3 + • • • solution of the Schwarzian condition y 3 (v, x) = b • x 3 3 b • (2 ↵ ↵ ) • x 4 + 3 b 4 • ⇣ (↵ 1) • (↵ ↵ ) + 7 (2 ↵ ↵ ) 2 ⌘ • x 5 + • • • (128)
together with the one-parameter family of commuting series of the form e

• x + • • • y 1 (e, x) = e • x + e • (e 1) • (2 ↵ ↵ ) • x 2 + e • (e 1) 4 • C 3 • x 3 + • • • with : C 3 = (↵ 1)(↵ ↵ ) • (e + 1) + (2 ↵ ↵ ) 2 • (5 e 3).
(129) Again one has the equalities 

and, again, the two series y 2 (a, x) and y 3 (b, x) commute for b = a 2 . As far as series analysis is concerned we have exactly the same structure (130) as the one previously described (see sections 5.1 and 5.3.1) where modular correspondences [START_REF] Shimura | Correspondances modulaires et les fonctions ⇣ de courbes algé briques[END_REF] take place. However, it is not clear if such one-parameter series can reduce to algebraic functions for some selected values of the parameter a, b 

y(e, x) = e • x e • (e 1) • 2 (↵ + + 1) • + 2 ↵ • ( 2) • x 2 + • • • (131) 
Again, it is not clear to see if such a one-parameter series can reduce to algebraic functions for some selected values of the parameter e.

Rank-two condition on the rational transformations as a subcase of the Schwarzian condition

6.1. Preliminary result: factorization of the order-two linear differential operator

When B(x) = C(x) 4 • (2 A(x) C(x)) + 1 2 • C 0 (x), (132) 
the second order linear differential operator

⌦ = D 2 x + A(x) • D x + B(x), (133) 
factorizes as follows:

⌦ = ⇣ D x + A(x) C(x) 2 ⌘ • ⇣ D x + C(x) 2 ⌘ . ( 134 
)
Let us assume that C(x) is a log-derivative:

C(x) = 2 • d ln(⇢(x)) dx , (135) 
one immediately finds that a conjugation of (134) factors as follows:

⇢(x) • ⌦ • 1 ⇢(x) = ⇣ D x + A(x) C(x) ⌘ • D x . ( 136 
)
Therefore the A R (x) in the rank-two condition (24) is not the A(x) in (133) but A R (x) = A(x) C(x) where B(x) is of the form (132).

The rank-two condition reads:

y 00 (x) = (A(y(x)) C(y(x))) • y 0 (x) 2 (A(x) C(x)) • y 0 (x), (137) 
to be compared with the Schwarzian condition

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (138) 
where:

W(x) = A 0 (x) + A(x) 2 2 2 • B(x). ( 139 
)
Remark. For a general Gauss hypergeometric function 2 F 1 ([↵, ], [ ], x), A(x) and B(x) are given by (91). The factorization condition (132) can be satisfied only for selected values of the

[[↵, ], [ ]] parameters 43 : = ↵ + 1, = + 1, = 1, = 1, = , = ↵, ↵ = 0 and = 0.

Condition on the rational transformation as a subcase of the Schwarzian condition

Let us assume that the rank-two condition (137) is satisfied, then we can use it to express the second derivative y 00 (x) in terms of y(x) and the first derivative the y 0 (x). One finds that the Schwarzian condition (138) is automatically verified provided A(x), B(x), C(x) are related though the condition (132) which amounts to a factorization condition for the second order linear differential operator (133). The A R (x) in the rank-two condition (see (24)):

y 00 (x) = A R (y(x)) • y 0 (x) 2 A R (x) • y 0 (x), (140) 
is nothing but A R (x) = A(x) C(x), or after rearranging A(x) = A R (x) + C(x). Now substituting (132) in (139) one gets:

W(x) = A 0 R (x) + A(x) 2 2 C(x) A(x) C 2 (x) 2 , (141) 
with the last three terms being equivalent to A R (x) 2 . Thus one finds that W(x) is only a function of A R (x):

W(x) = A 0 R (x) + A R (x) 2 2 . ( 142 
)
With this expression (142) of W(x) the Schwarzian condition reads:

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (143) 
In order to see the compatibility of the rank-two condition (140) with the Schwarzian condition (143) when the function W(x) is given by (142), let us rewrite the rank-two condition (140) as 43 For these conditions on the parameters the function

C(x) read respectively C(x) = 2 ↵/x, C(x) = 2 /x, C(x) = 2 ( x + 1)/x/(x 1), C(x) = 2 (↵ x + 1)/x/(x 1), C(x) = 2 ↵/(x 1), C(x) = 2 /x/(x 1), C(x) = 0, C(x) = 0.
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y 00 (x) y 0 (x) = A R (y(x)) • y 0 (x) A R (x). (144) 
Using (144), one can rewrite the Schwarzian derivative as

{y(x), x} = d dx ⇣ y 00 (x) y 0 (x) ⌘ 1 2 • ⇣ y 00 (x) y 0 (x) ⌘ 2 (145) 
as W(y(x)) • y 0 (x) 2 W(x) + , where W(x) is given by (142), and where is given by:

= A R (y(x)) • y 00 (x) A R (y(x)) 2 • y 0 (x) 2 + A R (x) • A R (y(x)) • y 0 (x). ( 146 
)
Note that is clearly zero when the rank-two condition is fulfilled. This shows that the Schwarzian condition (143) when the function W(x) is given by (142), actually reduces to the rank-two condition (140), as expected.

Remark. The Heun function case of section 3 was a case where the rank-two condition was verified with A R (x) given by (49). One also verifies that the rational transformation (47), and more generally the rational transformations R p (x) (pullbacks on the Heun function, see (48)), are solutions of a Schwarzian equation (143) with W(x) deduced from (142) with A R (x) given by ( 49), namely:

W(x) = 3 8 • (x M) 2 1 4 • 2 x 1 (M x) • x • (x 1) 1 8 • 4 x 2 4 x + 3 x 2 • (x 1) 2 .
(147)

In the previous case where the rank-two condition can be seen as a subcase of the Schwarzian condition (143) on y(x), it is tempting to imagine, in a Koenig-Siegel linearization perspective, that the differentially algebraic function Q(x) (see (36)) also verifies a Schwarzian condition similar to the Schwarzian condition (126) on Q(x) now seen as a mirror map and we show in section 6 that this is actually the case. Generalizing the modular form identity considered in section 1, let us seek a 3 F 2 hypergeometric identity of the form

Schwarzian condition for generalized hypergeometric functions

A(x) • 3 F 2 ⇣ [a, b, c], [d, e], x ⌘ = 3 F 2 ⇣ [a, b, c], [d, e], y(x) ⌘ , (148) 
where A(x) is an algebraic function. Similarly to what has been performed in section 1, we consider the two order-three linear differential operators associated respectively to the LHS and RHS of (148).

A straightforward calculation enables us to find (from the equality of the wronskians of these two operators) the algebraic function A(x) in terms of the algebraic function pullback y(x) in (148):

A(x) = ⇣ y(x) ⌘ • (1 y(x)) ⌫ x ⌘ • (1 x) ⌫ ⌘ • ⇣ dy(x) dx ⌘ 1 , ⌘ = d + e + 1 3 , ⌫ = a + b + c + 2 d e 3 , (149) 
The identification of the D x coefficients of these two linear differential operators, gives (beyond (149)) a first condition that can be rewritten in the following Schwarzian form:

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (150) 
where W(x) reads:

W(x) = 1 6 • P W (x) x 2 • (1 x) 2 ,
where :

(151)

P W (x) = (a 2 + b 2 + c 2 ab ac bc 3) • x 2 + (3 (ab + ac + bc + de + 1) 2 (ad + ae + bd + be + cd + ce) + a + b + c) • x + d 2 + e 2 de d e 2. ( 152 
)
The identification of the coefficients with no D x of these two linear differential operators gives a second condition where the fourth derivative of y(x) takes place. The analysis of this set of conditions corresponds to tedious but straightforward differential algebra calculations which are performed in appendix H.

One finds that all the conditions on the parameters a, b, c, d, e of the 3 F 2 hypergeometric function associated with Q(x) = 0, correspond to cases where the order-three operator is the symmetric square of a second order operator having 2 F 1 solutions. In other words this situation correspond to the Clausen identity, the 3 F 2 hypergeometric function reducing to the square of a 2 F 1 hypergeometric function:

3 F 2 ⇣ [2 a, a + b, 2 b], [a + b + 1 2 , 2 a + 2 b], x ⌘ = 2 F 1 ⇣ [a, b], [a + b + 1 2 ], y(x) ⌘ 2 . (153) 
In that Clausen identity case, the Schwarzian condition (150) we found for the 3 F 2 is nothing but the Schwarzian condition on the underlying 2 F 1 .

7.1.1. The intriguing 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], x) case. Beyond the trivial transformation y(x) = x one hopes to find a condition (148) where the pullback y = y(x) is an algebraic function.

For the intriguing hypergeometric function 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], x), known to be a globally bounded 44 series [24], one does not know if it is the diagonal of a rational function, or not. It is natural to apply the previous conditions to see if we could have an identity like (148) generalizing the identities one gets for modular forms. The occurrence of a series with integer coefficients is a strong argument for a 'modular form interpretation' of this intriguing 3 F 2 hypergeometric function. Therefore, it is tempting to imagine that a remarkable identity like (148) exists for this 3 F 2 hypergeometric function.

The corresponding order-three operator has a differential Galois group that is an extension45 of SL (3, C). Therefore, this operator cannot be homomorphic to the symmetric square of an order-two operator: an identity of the Clausen type is thus excluded for this 3 F 2 hypergeometric function. The previous calculations showing that an identity like (148) exists only when the 3 F 2 hypergeometric function reduces to square of 2 F 1 hypergeometric functions discards an identity like (148) for 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], x). This is easily seen: for this hypergeometric function the 'invariant' I(x) = Iy(x) (see appendix H), and the rational function W(x) in the Schwarzian condition read respectively

I(x) = p 3 8 (140 x 3 + 81 x 2 + 2403 x 864) 8 , W(x) = 230 x 2 261 x + 207 486 x 2 (x 1) 2 , (154) 
where: 

p 8 =
Reinjecting the invariance condition I(x) = Iy(x) with (154) in the Schwarzian condition (150), one finds that there is no (algebraic) solution y(x) except the trivial solution y(x) = x.

Schwarzian condition and other generalized hypergeometric functions

In appendix I we seek an identity of the form (148) but where the 3 F 2 hypergeometric function is replaced by a 4 F 3 hypergeometric function known to correspond to a Calabi-Yau ODE [22,23], or a hypergeometric function with irregular singularities namely a simple 2 F 2 hypergeometric function. One finds, unfortunately, that the only solution, for these two examples sketched respectively in appendices I.1 and I.2, is the trivial solution y(x) = x. Keeping in mind the non trivial results previously obtained on a Heun function, or on a 2 F 1 hypergeometric function associated with a higher genus curve, these two negative results should rather be seen as an incentive to find more non trivial examples of these extremely rich and deep Schwarzian equations.

Conclusion

In this paper we focus essentially on identities relating the same hypergeometric function with two different algebraic pullback transformations related by modular equations. This corresponds to the modular forms that emerged so many times in physics [22][23][24]: these algebraic transformations can be seen as simple illustrations of exact representations of the renormalization group [7]. Malgrange's pseudo-group approach aims at generalizing differential Galois theory to non-linear differential equations. In his analysis of Malgrange's pseudo-group Casale found two non-linear differential equations ( 8) and ( 9) yet these two conditions were presented separately with no explicit link. In a previous paper [7], where we gave simple examples of exact representations of the renormalization group, associated with selected linear differential operators covariant by rational pullbacks, we found simple exact examples of Casale's condition (8). Building on this work we revisited these previous examples and provided non-trivial new examples associated with a Heun function and a 2 F 1 hypergeometric function associated with higher genus curves. Then we instantiated, for the first time, Casale's second condition (9) with the examples given in section 5. Furthermore we found that Casale's condition (8) can be seen as a subcase of the Schwarzian condition (9), corresponding to a factorization of a linear differential operator ⌦. Seemingly, this Schwarzian condition ( 9) is seen to 'encapsulate' in one differentially algebraic (Schwarzian) equation, all the modular forms and modular equations of the theory of elliptic curves. The Schwarzian condition (9) can thus be seen as some quite fascinating 'pandora box', which encapsulates an infinite number of highly remarkable modular equations, and a whole 'universe' of Belyi-maps 46 .

Furthermore we found, only when = 1, that one-parameter series starting with quadratic, cubic, or higher order terms satisfy the rank-three condition. The question of a modular correspondence interpretation of these series is an open question.

Recalling the two previous higher-genus and Heun examples, it is important to underline that these conditions (8) and (9) are actually richer than just elliptic curves, and go beyond 'simple' restriction to 2 F 1 hypergeometric functions.

This paper provides a simple and pedagogical illustration of such exact non-linear symmmetries in physics (exact representations of the renormalization group transformations like the Landen transformation for the square Ising model, ...) and is a strong incentive to discover more differentially algebraic equations involving fundamental symmetries, developping more differentially algebraic analysis in physics [33,34], beyond obvious candidates like the full susceptibility of the square-lattice Ising model [34,[START_REF] Guttmann | Automata and the susceptibility of the square lattice Ising model modulo powers of primes[END_REF].

⇣ [ 1 3 , 2 3 
], [

for which one has the following exact expressions for A R (x), u(x) and R(x):

A R (x) = 2 3 • 2 x 1 x • (x 1) = u 0 (x) u(x)
, where :

u(x) = x 2/3 • (1 x) 2/3 , R(x) = x • (x 2) 3 (1 2 x) 3 . (A.2) One verifies that Q(x) = Y(x) 3 : dQ(x) dx /Q(x) = 3 • dY(x) dx /Y(x) = 1 F(x)
, where :

F(x) = u(x) • Y(x). (A.3)
One has the identity:

Q(R(x)) = 8 • Q(x) = 8 • x • 2 F 1 ⇣ [ 1 3 , 2 3 
], [ 4 3 
],

x

⌘ 3 = x • (x 2) 3 (1 2 z) 3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [ 4 3 
],

x

• (x 2) 3 (1 2 x) 3 ⌘ 3 .
The rational function 47 :

R(x) = 27 x • (1 x) (1 x + x 2 ) 3 (1 + 3 x 6 x 2 + x 3 ) 3 , (A.4)
commutes with R(x) given by (A.2). Also note that R(x) given by (A.2) commutes with the two known symmetries of the hypergeometric function, namely R(x) = 1 x and R(x) = 1/x. These last two transformations yield the involution R(x) = x/(1 x) which commutes with the two previous rational transformations (A.2) and (A.4), and corresponds to

Q( x/(1 x)) = Q(x).
The composition of R(x) = x/(1 x) with (A.2) and (A.4) gives respectively:

x • (2 x) (1 x) • (1 + x) 3 , 27 x • (1 x) (1 x + x 2 ) 3 (1 6 x + 3 x 2 + x 3 ) 3 . (A.5)
Note that R(x) = 1/x and R(x) = 1 x also verify the rank-two condition.

As we can see, the one-parameter family of solution of

⇣ dR(a, x) dx ⌘ 2 • A(R(a, x)) = dR(a, x) dx • A(x) + d 2 R(a, x) dx 2 , (A.6)
namely the differentially algebraic series

R(a, x) = a • x 1 2 a • (a 1) • x 2 + 1 28 a • (a 1) • (5 a 9) • x 3 a • (a 1) (3 a 2 12 a + 13) 56 • x 4 + • • • + a • (a 1) • P 18 (a) D 20 • x 20 + • • • (A.7
) corresponds to movable singularities. For (an infinite number of) selected values of the parameter a, this series becomes a rational function, for instance (A.2) for a = 8 , (A.4) for a = 27, (A.5) for a = 8 and a = 27 . For a generic parameter a the series is much more complex, it is not globally bounded. For instance, P 18 (a) in (A.9) is a polynomial with integer coefficients of degree 18 in a, and the denominator D 20 = 1277 610 230 161 807 653 119 590 400 is an integer that factors in many primes: D 20 = 2 17 • 5 2 • 7 9

• 13 4 • 19 3 • 31 • 37 • 43. One verifies easily on this series that the two differentially algebraic series R(a, x) and R(b, x) commute and that R(a, R(b, x)) = R(b, R(a, x)) = R(a b, x).

(A.8)

Note that the a ! 1 limit of the one-parameter series (A.9) gives as expected

R(1 + ✏ • x) = x + ✏ • F(x) + • • • (A.9)
where:

F(x) = x • (1 x) 2/3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [ 4 3 
],

x Using the quadratic identity

⌘ = x x 2 2 x 3 7 + • • • (A.
2 F 1 ⇣ [↵, ], [ ↵ + + 1 2 ], x ⌘ = 2 F 1 ⇣ [ ↵ 2 , 2 ], [ ↵ + + 1 2 ], 4 x (1 x) ⌘ , (B.1)
one deduces:

2 F 1 ⇣ [ 1 2 , 1], [ 5 4 
],

x

⌘ = 2 F 1 ⇣ [ 1 4 , 1 2 ], [ 5 4 
],

4 x (1 x) ⌘ . (B.
2) The previously described relations on 2 F 1 ([1/4, 1/2], [5/4], x), together with the rational function R(x) = 4 x/(1 x) 2 , yields the new identity

(1 2 x) • 2 F 1 ⇣ [ 1 2 , 1], [ 5 4 
],

x

⌘ = 2 F 1 ⇣ [ 1 2 , 1], [ 5 4 
], 4

x

• (1 x) (1 2 x) 2 ⌘ , (B.3)
where we have used the relation

R 3 (R 1 (x)) = R 2 (R 3 (x)) with: R 1 (x) = 4 x • (1 x) (1 2 x) 2 , R 2 (x) = 4 x (1 x) 2 , R 3 (x) = 4 x • (1 x). (B.4) Introducing Y(x) = x 1/4 • (1 x) 1/4 • 2 F 1 ⇣ [ 1 2 , 1], [ 5 4 
], x ⌘ , (B. 5) one sees that it is solution of

⌦ = (D x + A R (x)) • D x with: A R (x) = 3 4 • 2 x 1 x (x 1) = u 0 (x) u(x) , u(x) = x 3/4 • (1 x) 3/4 . (B.6)
The rank-two condition is verified with A R (x) given by (B.6) and R(x) given by R 1 (x) in (B.11).

B.2. 2 F 1 hypergeometric functions deduced from the Goursat identity

Using the Goursat identity

2 F 1 ⇣ [↵, ], [2 ], x ⌘ = (1 x/2) a • 2 F 1 ⇣ [ ↵ 2 , ↵ + 1 2 ], [ + 1 2 ], x 2 (2 x) 2 ⌘ . (B.7)
for ↵ = 1/3, = 2/3, one gets:

2 F 1 ⇣ [ 1 3 , 2 3 
], [

],

x

⌘ = (1 x/2) 1/3 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

],

x 2 (2 x) 2 ⌘ . (B.8)
Combining this last identity with (A.4) one gets:

x • (x 2) 3 (1 2 x) 3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [

],

x

• (x 2) 3 (1 2 x) 3 ⌘ 3 = 8 • x • 2 F 1 ⇣ [ 1 3 , 2 3 
], [

],

x

⌘ 3 = 16 x x 2 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

],

x 2 (2 x) 2 ⌘ 3 = 2 x • (x 2) 3 x 4 + 10 x 3 12 x 2 + 4 x 2 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

],

x 2 • (x 2) 6 (x 4 + 10 x 3 12 x 2 + 4 x 2) 2 ⌘ 3 .
(B.9)

It yields the identity on this new hypergeometric function:

2 F 1 ⇣ [ 1 6 , 2 3 
], [

],

64 x (1 + 18 x 27 x 2 ) 2 ⌘ = (1 + 18 x 27 x 2 ) 1/3 • 2 F 1 ⇣ [ 1 6 , 2 3 
], [

], x ⌘ .

(B.10)

We have used the relation

R 3 (R 1 (x)) = R 2 (R 3 (x)) with: R 1 (x) = x • (x 2) 3 (1 2 x) 3 , R 2 (x) = 64 x (1 + 18 x 27 x 2 ) 2 , R 3 (z) = x 2 (2 x) 2 .
(B.11)

Appendix C. Miscellaneous rational functions for the covariance of a Heun function

Let us consider the well-known formula for the addition on elliptic sine:

sn(u + v) = sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u) 1 k 2 sn(u) 2 sn(v) 2 . (C.1)
Introducing the variables x = sn(u) 2 , y = sn(v) 2 and z = sn(u + v) 2 , and M = 1/k 2 , the previous addition formula (C.1) for the elliptic sine reads:

(M xy) 2 • z 2 + 2 M • ⇣ 2 xy • (M + 1) (x + y) • (xy + M) ⌘ • z + (x y) 2 • M 2 = 0. (C.2)
Note that, since y is the square of the elliptic sine, y = sn(v) 2 = sn( v) 2 , the 'master equation' (C.2) is also a representation of the difference on elliptic sine: x = sn(u) 2 , y = sn(v) 2 , z = sn(u v) 2 . Actually x, y and z are on the same footing in this 'master equation' (C.2) that can be rewritten in a symmetric way as an algebraic surface:

x 2 y 2 z 2 2 • M • (x + y + z) • x y z + 4 • M • (M + 1) • x y z + M 2 • ((x + y + z) 2 4 • (x y + x z + y z)) = 0. (C.3)
For every fixed z and M (except z = 0, 1, M, 1 and M = 0, 1, 1), condition (C.3) reduces to an algebraic curve of genus one. The algebraic surface (C.3) is thus foliated in elliptic curves 48 . This algebraic surface is left invariant by an infinite set of birational transformations generated by the three involutions:

(x, y, z) ! ⇣ M 2 • (y z) 2 (M y z) 2 • x , y, z ⌘ , (C.4)
and the two other ones corresponding to the permutation of x, y and z.

Remark. For fixed z condition (C.3) is an elliptic curve (except M = 0, 1, 1). If one calculates its j-invariant 49 one gets the same result as (60) namely

j = 256 • (M 2 M + 1) 3 M 2 • (M 1) 2 . (C.5)
which does not depend on z. Of course one gets the same result for the elliptic curves corresponding to condition (C.3) for fixed x or fixed y.

The rational transformation (47) corresponding to ✓ ! 2 ✓ is obtained by imposing y = x in (C.2). For y = x the relation (C.2) factorizes50 into:

z • ⇣ (M x 2 ) 2 • z 4 • M • x • (1 x) • (M x) ⌘ = 0. (C.6)
Discarding the trivial solution z = 0, one gets:

z = 4 • x • (1 x) • (1 x/M) (1 x 2 /M) 2 , (C.7)
which is exactly (47).

Imposing in (C.2) y to be equal to (47) one deduces the rational transformation corresponding to ✓ ! 3 ✓, and one can deduce from the 'master' equation (C.2) all the rational transformations corresponding to ✓ ! p ✓. When p is a prime number different from p = 2, the corresponding rational transformations have a simple form.

Introducing the square of the elliptic sine x = sn(✓, k) 2 , the rational transformations corre sponding to ✓ ! p ✓ give for a given M :

R p (x, M) = x • ⇣ P p (x, M) Q p (x, M) ⌘ 2
, where :

Q p (x, M) = x ( p 2 1)/2 • M ( p 2 1)/4 • P p ⇣ 1 x , 1 M ⌘ , (C.8)
where P p (x, M) are polynomials in x and M of degree ( p 2 1)/2 in x and of degree ( p 2 1)/4 in M . For instance, P 3 (x, M) reads:

P 3 (x, M) = x 4 6 M • x 2 + 4 • M • (M + 1) • x 3 M 2 .
(C.9)

The polynomial P p (x, M) reads for p = 5:

P 5 (z, M) = x 12 50 M x 10 + 140 M (M + 1) • x 9 5 M (32 M 2 + 89 M + 32) • x 8 + 16 M (M + 1) (4 M 2 + 31 M + 4) • x 7 60 M 2 (4 M 2 + 13 M + 4) • x 6 + 360 M 3 (M + 1) • x 5 105 M 4 • x 4 80 M 4 (M + 1) • x 3 + 2 M 4 (8 M 2 + 47 M + 8) • x 2 20 M 5 (M + 1) • x + 5 M 6 , (C.10)
It is straightforward to calculate the next P p (z, M) for p = 7, 11, 13, • • •, but the expressions become quickly too large to be given here.

As expected, the two rational functions (C.8) commute for different primes p. The series expansion of these rational transformations read:

R p (x) = p 2 • x p 2 • ( p 2 1) 3 • M + 1 M • x 2 + • • • (C.11)
When p is not a prime the rational functions R p (x) corresponding to ✓ ! p ✓, are no longer of the form (C.8) but they still have the series expansion (C.11).

We have the following identity on a Heun function where R p (x) are the previous rational functions (C.8):

R p (x) • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 
, R p (x)

⌘ 2 = p 2 • x • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 , x ⌘ 2 . 
(C.12)

Note that the Heun identity (C.12) is valid even when the integer p is no longer a prime, R p (x) being a rational function representation of ✓ ! p • ✓, and that all these (commuting) rational transformations are solutions of the rank-two condition.

Appendix D. The Schwarzian conditions are compatible with the composition of functions

We want to have

W(x) W(z(y(x))) • ⇣ dz(y(x)) dx ⌘ 2 + {z(y(x)), x} = 0, (D.1)
which reads using the derivative of composition of function and the previous chain rule (102):

W(x) W(z(y(x))) • ⇣ dz(y) dy ⌘ 2 • y 0 (x) 2 + {z(y), y} • y 0 (x) 2 + {y(x), x} = 0, (D.2) from W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (D.3) 
and

W(y) W(z(y)) • z 0 (y) 2 + {z(y), y} = 0. (D.4)
Let us multiply the previous relation (D.4) by y 0 (x) 2 one gets:

W(y) • y 0 (x) 2 W(z(y)) • z 0 (y) 2 • y 0 (x) 2 + {z(y), y} • y 0 (x) 2 = 0. (D.5)
Adding (D.3) to (D.6) one gets:

W(x) + W(y) • y 0 (x) 2 W(z(y)) • z 0 (y) 2 • y 0 (x) 2 + {z(y), y} • y 0 (x) 2 W(y(x)) • y 0 (x) 2 + {y(x), x} = 0. (D.6)
which gives after simplification nothing but (D.2). Q. E. D.

Appendix E. Compatibility of the three Schwarzian conditions (124), (126) and (93)

The Schwarzian equation on the j-invariant are known to be invariant by the group of modular transformations (see for instance equation (1.26) in [70] or (1.13) in [START_REF] Harnad | Picard-Fuchs equations[END_REF]). More remarkably (and less known) the Schwarzian equation (126) on the nome 51 is invariant under the transformations52 q ! S(q) = e • q N . Equation ( 126) is clearly invariant under the rescaling Q(x) ! e • Q(x), and one can verify easily, using the chain rule for the Schwarzian derivative of a composition, that the sum of the first two terms in the LHS of (126), namely

{Q(x), x} + Q 0 (x) 2 /Q(x) 2
/2 is actually invariant by Q(x) ! Q(x) N . Therefore we also have the equation:

{S(Q(x)), x} + 1 2 • S(Q(x)) 2 • ⇣ dS(Q(x)) dx ⌘ 2 + W(x) = 0. (E.1)
Equation (124) yields

{X(S(Q(q))), S(Q(x))} 1 2 S(Q(x)) 2 W(X(S(Q(q)))) • ⇣ dX(S(Q(x))) dS(Q(x)) ⌘ 2 = 0,
and thus:

{X(S(Q(x))), S(Q(x))} • ⇣ dS(Q(x)) dx ⌘ 2 1 2 S(Q(x)) 2 • ⇣ dS(Q(x)) dx ⌘ 2 W(X(S(Q(x)))) • ⇣ dX(S(Q(x))) dS(Q(x)) ⌘ 2 • ⇣ dS(Q(x)) dx ⌘ 2 = 0. (E.2)
Using the chain rule for Schwarzian derivative of the composition of functions

{X(S(Q(x))), x} = {X(S(Q(x))), S(Q(x))} • ⇣ dS(Q(x)) dx ⌘ 2 + {S(Q(x)), x},
we see immediately that the sum of (E.1) and (E.2) gives:

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (E.3)
Appendix F. The 2 F 1 ([1/6, 1/3], [1], x) hypergeometric function

Let us consider the Schwarzian condition in the case of the 2 F 1 ([1/6, 1/3], [1], x) hypergeometric function.

The one-parameter family of commuting series solution of the Schwarzian condition reads:

y 1 (e, x) = e • x + e • (e 1)
• S e (x), where :

S e (x) = 7 18 • x 2 + (109 e 283) 1296 • x 3 + • • • (F.1)
The series of the form a

• x 2 + • • • reads y 2 (a, x) = a • x 2 + 7 a 9 • x 3 a • 84a 127 216 • x 4 a • 47 628a 36 049 78 732 • x 5 + • • • (F.2)
and is such that:

y 1 (e, y 2 (a, x)) = y 2 (a e, x), y 2 (a, y 1 (e, x)) = y 2 (a e 2 , x). (F.3)
The series of the form b

• x 3 + • • • reads y 3 (b, x) = b • x 3 + 7 b 6 • x 4 + 479 b 432 • x 5 + b • 81 648b 210 031 209 952 • x 6 + • • • (F.4)
and is such that (F.5)

The two series y 2 (a, x) and y 3 (b, x) commute for b = a 2 . For a = 1/108 the series (F. This modular equation has a rational parametrization: it corresponds to the relation between two rational pullbacks in the hypergeometric identity (A.11) in [24]:

2 F 1 ⇣ [ 1 6 , 1 3 
], [1],

108 v 2 • (1 + 4v) ⌘ = (1 12 v) 1/2 • 2 F 1 ⇣ [ 1 6 , 1 3 
], [1],

108 v • (1 + 4v) 2 (1 12 v) 3 ⌘ . (F.8)
Appendix G. The solutions Q(x) of the non-linear conditions (36) seen as solutions of the Schwarzian conditions on the mirror maps

In all the cases recalled in section 2, the differentially algebraic function Q(x) was of the form53 

Y(x) N . From Q(x) = Y(x) N or even Q(x) = ↵ • Y(x) N
, one can rewrite the Schwarzian derivative on Q(x) with respect to x:

{Q(x), x} = {Y(x) N , x} = N 2 1 2 • ⇣ Y 0 (x) Y(x) ⌘ 2 + {Y(x), x}. (G.1)
Since Y(x) is a solution of the operator ⌦, the ratio Z(x) = Y"(x)/Y 0 (x) (log-derivative of Y 0 (x)) is in fact a rational function, namely A R (x). The Schwarzian derivative {Y(x), x} can also be written as:

{Y(x), x} = Z 0 (x) Z(x) 2 2 = A 0 R (x) A R (x) 2 2 = W(x). (G.2) From Q(x) = ↵ • Y(x)
N one deduces immediately the relation between the log-derivative of Q(x) and Y(x), namely Q 0 (x)/Q(x) = N • Y 0 (x)/Y(x). Equation (G.2) can be rewritten using

Q 0 (x)/Q(x) = N • Y 0 (x)/Y(x)
and (G.2), as 54 :

{Q(x), x} + N 2 1 2 N 2 • ⇣ Q 0 (x) Q(x) ⌘ 2 + W(x) = 0. (G.3)
For instance, one verifies immediately that Q(x) given by Q(x) = Y(x) N and Y(x) given by ( 10), ( 12), ( 13), ( 15) and ( 16) (which identifies with (61)) and ( 18) are actually solutions of the Schwarzian condition (G.3) for the corresponding A R (x) given in (21) for respectively N = 4, 3, 6, 2, 4, 6. Note that the higher-genus case hypergeometric function ( 70) is also such that Q(x) = Y(x) 6 is solution of the Schwarzian condition (G.3) with N = 6 and W(x) deduced from A R (x) given by [START_REF] Shimura | Correspondances modulaires et les fonctions ⇣ de courbes algé briques[END_REF]. One gets immediately the Schwarzian condition for the composition inverse P(x) = Q 1 (x), namely:

{X(q), q} N 2 1 2 N 2 • 1 q 2 W(X(q)) • ⇣ dX(q) dq ⌘ 2 = 0. (G.4)
Remark. One verifies straightforwardly for the Heun function example of section 3 that

Q(x) = Y(x) 2 = x • Heun ⇣ M, M + 1 4 , 1 2 , 1, 3 2 , 1 2 , x ⌘ 2 , (G.5) 
is actually solution of the Schwarzian condition (G.3) with N = 2, with W(x) given by (147).

The composition inverse of the holonomic function Q(x) given by (G.5) is

P(x) = sn ⇣ x 1/2 , 1 M 1/2 ⌘ 2 = x 1 3 M + 1 M • x 2 + 1 45 2 M 2 + 13 M + 2 M 2 • x 3 + • • • (G.6)
It is solution of (G.4) with N = 2:

{P(x), x} 3 8 • 1 x 2 W(P(x)) • P 0 (x) 2 = 0. (G.7)
G.1. From the Schwarzian condition (G.3) back to the differential algebraic condition (37) on Q(x)

If one compares the Schwarzian condition (G.3) with the differentially algebraic condition (37) on Q(x), one finds that they both have a third derivative Q 000 (x) but one condition depends on a constant N, while the other one is 'universal': let us try to understand the compatibility between these two conditions. If one eliminates the third derivative Q 000 (x) between these two equations one finds a remarkably factorized condition E + • E = 0 where:

E ± = F 0 (x) A R (x) • F(x) ± 1 N with : F(x) = Q(x) Q 0 (x) . (G.8)
Recalling (33) we see that F(x) is nothing but F(x). The holonomic function F(x) is known to be solution of ⌦ ⇤ , which can be rewritten, after one integration step, as F 0 (x) A R (x) • F(x) = Cst, which is actually (G.8). The compatibility of the Schwarzian condition (G.3) with the differentially algebraic condition (37) thus corresponds to F(x) being annihilated by ⌦ ⇤ . Appendix H. Reduction of 3 F 2 identities to 2 F 1 Schwarzian conditions Performing the derivative of the Schwarzian condition (150) one can eliminate this fourth derivative of y(x), and then, in a second step, eliminate the third derivative of y(x) between the previous result and the Schwarzian condition (150), and so on. One finally gets the following relation that can be seen as the compatibility condition between the two previous conditions:

x 3 • (1 x) 3 • Q(y(x)) • y 0 (x) 3 = y(x) 3 • (1 y(x)) 3 • Q(x), (H.1)
where the polynomial Q(x) reads: (H.4) The condition (H.1) can be seen as a an equality on a one-form and the same one-form where x has been changed into:

Q(x) = 2 • (b + c 2 a) (a + c 2 b) (a + b 2 c) • x 3 + 3 • q 2 • x 2 + 3 • q 1 • x 2 • (1 + d 2 e) (d
Q(x) 1/3 • dx x • (1 x) = dx u = Q(y) 1/3 • dy y • (1 y) . (H.5)
This one-form is clearly associated with the algebraic curve:

Q(x) • u 3 = x • (1 x). (H.6)
One actually finds that this algebraic curve (H.6) is a genus-one curve.

One can go a step further by eliminating all the derivatives y 0 (x), y 00 (x), y 000 (x), from the confrontation of the Schwarzian condition (150) with the compatibility condition (H.1). One gets that way (after some calculation) a condition reading

I(x) = I(y(x))
where :

I(x) = Q(x) 8 P 8 (x) 3 , (H.7)
where P 8 (x) is a (quite large) polynomial of degree 8 in x, sum of 4724 terms. We are seeking for non-trivial pullbacks y(x) being different from the obvious solution y(x) = x. The interesting cases for physics are the one where x ! y(x) is an infinite order transformation. In such cases one has

I(x) = I(y(x)) = I(y(y(x))) = I(y(y(y(x)))) = • • • (H.8)
which amounts to saying that I(x) must be a constant. The cases where Q(x) 8 = • P 8 (x) 3 correspond to a set of extremely large conditions on the parameters a, b, c, d, e of the 3 F 2 hypergeometric function, that is difficult to study because of the size of polynomial P 8 (x). However a simple case can fortunately be analyzed, namely I(x) = 0, which corresponds to Q(x) = 0. In such a case the two conditions are compatible, and one just has one condition: the Schwarzian condition (150) with the additional condition being automatically verified (see (H.1)).

One finds that all the conditions on the parameters a, b, c, d, e of the 3 F 2 hypergeometric function associated with Q(x) = 0 in fact correspond to cases where the order-three operator is exactly the symmetric power of a second order operator have 2 F 1 solutions. In other words this situation corresponds to the Clausen identity, the 3 F 2 hypergeometric function reducing to the square of a 2 F 1 hypergeometric function:

3 F 2 ⇣ [2 a, a + b, 2 b], [a + b + 1 2 , 2 a + 2 b], x ⌘ = 2 F 1 ⇣ [a, b], [a + b + 1 2 ], x ⌘ 2 .
(H.9)

In this Clausen identity case, we found that the Schwarzian condition (150) for 3 F 2 is nothing but the Schwarzian condition for the underlying 2 F 1 .

If one considers the other case P 8 (x) = 0 the vanishing condition of the x 8 coefficient and the vanishing condition of the constant coefficient in x read respectively:

(a 2 ab ac + b 2 bc + c 2 ) • (a + c 2 b) 2 • (a + b 2 c) 2 • (2 a c b) 2 = 0, (d 2 de + e 2 d e + 1) • (1 + d 2 e) 2 • (d + e 2) 2 • (2 d e 1) 2 = 0.
These two conditions are, respectively, very similar to the vanishing condition of the x 3 and constant coefficient of Q(x), the other coefficients of P 8 (x) being more involved. The vanishing condition of all the x n coefficients of P 8 (x) yields more relations on the a, b, c, d, d, e parameters. All these miscellaneous cases correspond to cases where the order-three linear differential operator reduces to the symmetric square of an order-two operator, and to the Clausen identities of the form (H.9). More simply on can verify that for parameters such that Q(x) = 0 (for which a Clausen reduction take place (H.9)) are also such that P 8 (x) = 0 (the invariant I(x) in (H.7) is thus of the form 0/0).

Appendix I. Schwarzian condition and other generalised hypergeometric functions

I.1. Schwarzian condition and 4 F 3 hypergeometric functions

Let us consider a 4 F 3 hypergeometric known to correspond to a Calabi-Yau ODE [22,23] and seek an identity of the form:

A(x) • 4 F 3 ⇣ [ 1 2 , 1 2 , 1 2 , 1 2 
], [1,

1, 1], x ⌘ = 4 F 3 ⇣ [ 1 2 , 1 2 , 1 2 , 1 2 
], [1, 1, 1], y(x)

⌘ (I.1)
where A(x) is an algebraic function. Again we introduce the order-four linear differential operator annihilating the LHS and RHS of identity (I.1). The equality of the wronskians of these two linear differential operators enables us to get the expression of A(x) in terms of y(x), namely:

A(x) = ⇣ (1 y(x)) • y(x) 3 (1 x) • x 3 • y 0 (x) 3 ⌘ 1/2 . (I.2)
After eliminating A(x) from (I.2), the identification of the D 2 x coefficients for these two linear differential operators of order four gives the Schwarzian condition

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (I.3)
where W(x) reads:

W(x) = 1 10 • 5 x 2 7 x + 5 x 2 • (1 x) 2 .
(I.4)

The condition corresponding to the identification of the D x coefficient can be seen to be compatible with the previous Schwarzian condition: it can be seen to be a consequence of condition (I.3), corresponding to a combination of (I.3) with the derivative of (I.3). One finds, unfortunately, that the only solution is the trivial solution y(x) = x, the other solutions being spurious solutions y + 5 = 0, 5 y + 1 = 0, y 1 = 0, etc ...

Remark.

Similarly to what has been performed in section 7.2 one can imagine to seek for an identity (I.1) but, now, for the general

4 F 3 hypergeometric function 4 F 3 ([a, b, c, d], [e, f , g], x).
These calculations are really too large.

I.2. Schwarzian condition and hypergeometric functions with irregular singularities

The n-fold integrals emerging in lattice statistical mechanics or enumerative combinatorics are naturally diagonal of rational functions [24], the corresponding linear differential operators being globally nilpotent, and in particular Fuchsian. In such a lattice framework only n F n 1 hypergeometric functions [START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF] with regular singularities occur. Of course irregular singularities can also occur in physics [START_REF] Penson | On the properties of Laplace transform originating from one-sided Lé vy stable laws[END_REF][START_REF] Gorska | The higher-order heat-type equations via signed Lé vy stable and generalized Airy functions[END_REF][START_REF] Gorska | Lé vy stable distributions via associated integral transform[END_REF], in particular in the scaling limit of lattice models [START_REF] Hassani | Scaling functions in the square Ising model[END_REF][START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] (modified Bessel functions, etc ...).

Let us consider a hypergeometric function with an irregular singularity, namely a simple 2 F 2 hypergeometric function solution of an order-three linear differential operator. We seek an identity of the form:

A(x) • 2 F 2 ⇣ [ 1 2 , 1 2 
], [1, 1], x ⌘ = 2 F 2 ⇣ [ 1 2 , 1 2 
], [1, 1], y(x) ⌘ . (I.5)
The calculations are the same as in section 7.1. The identification of the wronskians of the two operators (the pullbacked order-three linear differential operator and the conjugated one) gives

A(x) = exp ⇣ x y(x) 3 ⌘ • y(x) x • y 0 (x) , (I.6)
and the Schwarzian equation:

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, with : W(x) = 1 6 • x 2 3 x 2 .
(I.7)

However, combining equation (I.7) with the last condition emerging from the identification of the terms with no D x in the two operators, one finds that there is no pullback y(x) for (I.5) except the trivial solution y(x) = x.

Introduction

In a previous paper [1] we focused on identities relating the same 2 F 1 hypergeometric function with two different 1 algebraic pullback transformations. These identities correspond to modular forms, the algebraic transformations being solutions of a (non-linear) differentially algebraic [3,4] Schwarzian equation, that also emerged in a paper by Casale on Galoisian envelopes [5,6]. This covariance symmetry of 2 F 1 hypergeometric functions could be regarded as the simplest illustrations of the concept of symmetries (of the renormalization group type [2,7]) in physics or enumerative combinatorics, a univariate function being covariant (automorphic) with respect to an infinite set of rational or algebraic transformations. This paper [1] was essentially focused on n F n 1 hypergeometric functions and modular forms actually represented as 2 F 1 hypergeometric function with two different algebraic pullback transformations (modular correspondences [1,8]).

The applications of this Schwarzian equation [1] known to be associated to a quite large mathematical framework2 (Malgrange's pseudogroup, Galois groupoid [10][11][12][13][14][15]), extend well beyond hypergeometric functions in physics. We will show, in this paper, that these differentially algebraic [3,4] Schwarzian equations do emerge in a much more general holonomic framework.

We will show in section 2 that the covariance symmetry condition of general order-two linear differential operators with polynomial coefficients automatically yields this Schwarzian differential equation. We will then show in sections 3 and 4 that the covariance symmetry condition imposed on linear differential operators having order three and order four with respective orthogonal and symplectic differential Galois groups, yield Schwarzian differential equations like the one examined in [1]. When their respective symmetric and exterior powers are of order five (instead of six), one finds that these order-three and order-four operators reduce to symmetric square and symmetric cube of an underlying order-two operator. In section 5 we show that the Schwarzian condition can be derived for linear differential operators of arbitrary order N. The reduction of the solutions of this Schwarzian differential equation to only modular correspondences [8] was an open question in [1]: in section 6 a necessary condition to have such modular correspondences is derived. In section 7 generalizations of modular forms provide examples of pullback invariance of an operator, up to operator homomorphism. This invariance should be important to describing the symmetries of linear differential operators and thus, is of relevance to physics. Finally in section 8, we consider the more general problem already addressed in [17] where Schwarzian differential equations also occurred, of the equivalence of two different order-four linear differential Calabi-Yau operators [18] up to pullbacks and conjugation, possibly yielding the same Yukawa couplings [17], and we will generalize it to linear differential operators of arbitrary orders.

Beyond hypergeometric and Heun functions: order-two linear differential operators

We will show here that non-linear ODEs involving Schwarzian derivatives (see equation ( 9) below), that we will call 'Schwarzian ODEs'3 obtained in [1] for hypergeometric and Heun functions [22,23] can be generalized to arbitrary globally nilpotent [24] linear differential operators having an arbitrary numbers of singularities (as opposed to three and four singularities for hypergeometric and Heun functions).

Let us consider a linear differential operator of order two

L 2 = D 2 x + p(x) • D x + q(x),
where:

D x = d dx , (1) 
and let us also introduce two other linear differential operators of order two: the operator

L (c) 2 = 1/v(x) • L 2 • v(x)
being the conjugate of (1) by a function v(x), and the pullbacked operator L ( p) 2 which amounts to changing x ! y(x) in (1), the head coefficient being normalized 4 to 1. These two linear differential operators read respectively:

L (c) 2 = D 2 x + ⇣ p(x) + 2 • v 0 (x) v(x) ⌘ • D x + q(x) + p(x) • v 0 (x) v(x) + v 00 (x) v(x) , (2) 
where

v 0 (x) = dv(x) dx , v 00 (x) = d 2 v(x) dx 2 , (3) 
and

L ( p) 2 = D 2 x + ⇣ p(y(x)) • y 0 (x) y 00 (x) y 0 (x) ⌘ • D x + q(y(x)) • y 0 (x) 2 , (4) where 
:

y 0 (x) = dy(x) dx , y 00 (x) = d 2 y(x) dx 2 .
(

) 5 
The identification of these two linear differential operators

L (c) 2 = L ( p)
2 gives two conditions:

p(x) + 2 • v 0 (x) v(x) = p(y(x)) • y 0 (x) y 00 (x) y 0 (x) , (6) q 
(x) + p(x) • v 0 (x) v(x) + v 00 (x) v(x) = q(y(x)) • y 0 (x) 2 . (7) 
Since

v 00 (x) v(x) = d dx ⇣ v 0 (x) v(x) ⌘ + ⇣ v 0 (x) v(x) ⌘ 2 , (8) 
one can eliminate the log-derivative v 0 (x)/v(x) between ( 6) and (7), and obtain the Schwarzian condition previously given in [1] W

(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (9) 
where

W(x) = dp(x) dx + p(x) 2 2 2 • q(x), (10) 
and where {y(x), x} denotes the Schwarzian derivative [19]:

{y(x), x} = y 000 (x) y 0 (x) 3 2 • ⇣ y 00 (x) y 0 (x) ⌘ 2 = d dx ⇣ y 00 (x) y 0 (x) ⌘ 1 2 • ⇣ y 00 (x) y 0 (x) ⌘ 2 ,
where:

y 000 (x) = d 3 y(x) dx 3 , y 00 (x) = d 2 y(x) dx 2 , y 0 (x) = dy(x) dx
. 4 Throughout the paper we consider, for clarity and simplicity, this normalized form for the linear differential operators. The 'true' pullbacked operator which amounts to changing

x ! y(x) (see the command 'dchange' in PDEtools in Maple) is in fact 1/y 0 (x) 2 • L ( p) 2 where L ( p)
2 is given by (4).

Unlike in [1], the number of singularities of the second order operator (1) is arbitrary: it does not need to be three or four like in the hypergeometric or Heun examples in [1]. The second order linear differential operator L 2 is a general order-two linear differential operator with polynomial coefficients. Introducing w(x) the wronskian of

L 2 p(x) = w 0 (x) w(x)
where:

w 0 (x) = dw(x) dx , (11) 
we see that the LHS and RHS of the first condition ( 6) are both log-derivatives. Thus one can immediately integrate the first condition ( 6) and get (up to a multiplicative factor µ) the conjugation function v(x) in terms of the wronskian w(x) and the pullback function y(x):

v(x) = µ • ⇣ w(x) w(y(x)) • y 0 (x) ⌘ 1/2 . ( 12 
)
Remark. If the linear differential operator is not globally nilpotent [24] the wronskian is not necessarily an algebraic function. Introducing L v (x), the log-derivative of the conjugation function v(x), one can rewrite the two conditions ( 6) and ( 7) as:

p(x) + 2 • L v (x) = p(y(x)) • y 0 (x) y 00 (x) y 0 (x) , (13) 
q(x) + p(x) • L v (x) + dL v (x) dx + L v (x) 2 = q(y(x)) • y 0 (x) 2 . ( 14 
)
The elimination of L v (x) in ( 13) and ( 14) gives the Schwarzian condition ( 9) with ( 10), however the conjugation function v(x) is no longer an algebraic function when y(x) is an algebraic function (see ( 12)): it is a transcendental function, and we certainly move away from a modular correspondence [1, 8] framework 5 .

Order-three linear differential operators

General order-three linear differential operators

Considering an irreducible order-three linear differential operator

L 3 = D 3 x + p(x) • D 2 x + q(x) • D x + r(x), (15) 
we introduce two other linear differential operators of order three defined as previously in section 2: the operator L (c)

3 conjugated of (15) by a function v(x), namely L (c) 3 = 1/v(x) • L 3 • v(x)
, and the pullbacked6 operator L ( p) 3 which amounts to changing x ! y(x) in L 3 . These two linear differential operators read respectively

L (c) 3 = D 3 x + ⇣ p(x) + 3 • v 0 (x) v(x) ⌘ • D 2 x + ⇣ q(x) + 2 • p(x) • v 0 (x) v(x) + 3 • v 00 (x) v(x) ⌘ • D x + r(x) + q(x) • v 0 (x) v(x) + p(x) • v 00 (x) v(x) + v (3) (x) v(x) , (16) 
and:

L ( p) 3 = D 3 x + ⇣ p(y(x)) • y 0 (x) 3 y 00 (x) y 0 (x) ⌘ • D 2 x + ⇣ q(y(x)) • y 0 (x) 2 p(y(x)) • y 00 (x) y (3) (x) y 0 (x) + 3 • ⇣ y 00 (x) y 0 (x) ⌘ 2 ⌘ • D x + r(y(x)) • y 0 (x) 3 . ( 17 
)
The equality of these two order-three linear differential operators gives three conditions C n , with n = 0, 1, 2, corresponding, respectively, to the identification of the D n

x coefficients of

L ( p) 3 and L (c)
3 . Introducing the wronskian w(x) of L 3 , the LHS and RHS of condition C 2 being, again, log-derivatives, one can easily integrate condition C 2 and get the exact expression of the conjugation function v(x) in terms of the wronskian of L 3 and of the pullback y(x):

v(x) = µ • ⇣ w(x) w(y(x)) • y 0 (x) 3 ⌘ 1/3 . ( 18 
)
Similarly the elimination of the log-derivative v 0 (x)/v(x) between condition C 2 and condition

C 1 yields the Schwarzian condition W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (19) 
where this time W(x) reads:

W(x) = 1 2 • dp(x) dx + p(x) 2 6 q(x) 2 . ( 20 
)

Symmetric Calabi-Yau condition

Let us consider the condition corresponding to imposing the symmetric square of L 3 to be of order five instead of the generic order six. This (symmetric Calabi-Yau [35]) condition reads:

r(x) = 2 27 • p(x) 3 + 1 3 • p(x) • q(x) 1 3 • p(x) • dp(x) dx + 1 2 • dq(x) dx 1 6 • d 2 p(x) dx 2 . ( 21 
)
For a globally nilpotent [24] linear differential operator, this (symmetric Calabi-Yau) condition (21) together with ( 11) yields an order-three linear differential operator (15) simply conjugated to its adjoint:

L 3 • w(x) 2/3 = w(x) 2/3 • adjoint(L 3 ), (22) 
where the wronskian w(x) is a Nth root of a rational function.

Again for a globally nilpotent [24] linear differential operator, the exact expression (18) for the conjugation function v(x), becomes an algebraic function when y(x) is an algebraic function.

The symmetric square of an order-two linear differential operator

L 2 = D 2 x + A(x) • D x + B(x)
is an order-three linear differential operator (15) with the following coefficients:

p(x) = 3 • A(x), q(x) = 2 • A(x) 2 + 4 • B(x) + dA(x) dx , (23) r 
(x) = 4 • B(x) • A(x) + 2 • dB(x) dx . ( 24 
)
These coefficients ( 23) and ( 24) automatically verify the (symmetric Calabi-Yau) condition (21): the symmetric square of a symmetric square of an order-two linear differential operator is of order five instead of the generic order six. Conversely, the (symmetric Calabi-Yau) condition ( 21) can be parametrized7 by ( 23) and ( 24) and amounts to imposing the order-three linear differential operator (15) to be exactly the symmetric square of an order-two operator.

Thus our calculations show that the pullback-compatibility of an order-three linear differential operator is equivalent to saying that this order-three operator reduces to (the symmetric square of) an underlying order-two linear differential operator. The Schwarzian condition (19) with W(x) given by (20), is thus inherited from the Schwarzian condition (9) of the underlying order-two linear differential operator.

Order-four linear differential operators

Consider the irreducible order-four linear differential operator

L 4 = D 4 x + p(x) • D 3 x + q(x) • D 2 x + r(x) • D x + s(x), (25) 
and introduce two other linear differential operators of order four defined as previously in sections 2 and 3.1: the linear differential operator

L (c)
4 conjugated of ( 25) by a function v(x) and the (normalized) pullbacked operator L ( p) 4 . These two linear differential operators read respectively

L (c) 4 = D 4 x + ⇣ p(x) + 4 • v 0 (x) v(x) ⌘ • D 3 x + ⇣ q(x) + 3 • p(x) • v 0 (x) v(x) + 6 • v 00 (x) v(x) ⌘ • D 2 x + ⇣ r(x) + 2 • q(x) • v 0 (x) v(x) + 3 • p(x) • v 00 (x) v(x) + 4 • v (3) (x) v(x) ⌘ • D x + s(x) + r(x) • v 0 (x) v(x) + q(x) • v 00 (x) v(x) + p(x) • v (3) (x) v(x) + v (4) (x) v(x) , (26) 
and:

L ( p) 4 = D 4 x + ⇣ p(y(x)) • y 0 (x) 6 • y 00 (x) y 0 (x) ⌘ • D 3 x + ⇣ q(y(x)) • y 0 (x) 2 3 • p(y(x)) • y 00 (x) 4 • y (3) (x) y 0 (x) + 15 • ⇣ y 00 (x) y 0 (x) ⌘ 2 ⌘ • D 2 x + ⇣ r(y(x)) • y 0 (x) 3 q(y(x)) • y 0 (x) • y 00 (x) p(y(x)) • y (3) (x) + 3 • p(y(x)) • y 00 (x) 2 y 0 (x) y (4) y 0 (x) + 10 • y 00 (x) • y (3) y 0 (x) 2 15 • ⇣ y 00 (x) y 0 (x) ⌘ 3 ⌘ • D x + s(y(x)) • y 0 (x) 4 . ( 27 
)
The identification of these two order-four linear differential operators L 4 . Eliminating once again the log-derivative v 0 (x)/v(x) between C 3 and C 2 one deduces a Schwarzian condition

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (28) 
where this time:

W(x) = 3 10 • dp(x) dx + 3 40 • p(x) 2 q(x) 5 . ( 29 
)
Introducing the wronskian w(x) of the order-four linear differential operator L 4 with ( 11), the condition C 3 just corresponds to log-derivatives and can be easily integrated giving the exact expression of the conjugation function v(x) as:

v(x) = ⇣ w(x) w(y(x)) • y 0 (x) 6 ⌘ 1/4 . ( 30 
)
The next conditions C 1 and C 0 yield extremely involved non-linear differential conditions on the miscellaneous derivatives of the various coefficients. It turned out to be very difficult to proceed with such huge expressions. Yet when the linear differential operator L 4 has a selected (symplectic) differential Galois group one can go much further in the calculations, as we will see in the coming subsection.

Calabi-Yau condition (exterior square)

Imposing the Calabi-Yau condition [29,30] in the case of an order-four linear differential operator gives:

r(x) = p(x) • q(x) 2 p(x) 3 8 + dq(x) dx 3 4 • p(x) • dp(x) dx 1 2 • d 2 p(x) dx 2 . ( 31 
)
In this case the exterior square of the order-four operator L 4 has order five instead of order six. When condition (31) is verified, the order-four linear differential operator L 4 has a symplectic differential Galois group Sp(4, C). Note that if condition (31) is verified, the Calabi-Yau conditions for the pullbacked and conjugated operators L Recall that the Calabi-Yau condition (31) together with the globally nilpotent condition [24] automatically yields L 4 to be conjugated to its adjoint

L 4 • w(x) 1/2 = w(x) 1/2 • adjoint(L 4 ), (32) 
where w(x) is a N-root of a rational function.

At the last step we consider the identification of the constant terms in

D x in L ( p) 4 and L (c)
4 . After injecting in this 'large' non-linear differential equation, equation (11), the Schwarzian condition (28) with W(x) given by ( 29), and the Calabi-Yau condition (31), we eventually find that this last 'large' equation becomes independent of the pullback y(x) and reduces to a quite simple condition giving s(x) as a polynomial expression in the two coefficients p(x) and q(x) and their derivatives:

s(x) = 9 100 • q(x) 2 1 200 • q(x) • p(x) 2 + 1 4 • p(x) • dq(x) dx 1 50 • q(x) • dp(x) dx + 3 10 • d 2 q(x) dx 2 11 1600 • p(x) 4 9 50 • p(x) 2 • dp(x) dx 21 100 • ⇣ dp(x) dx ⌘ 2 1 5 • d 3 p(x) dx 3 7 20 • p(x) • d 2 p(x) dx 2 .
(

) 33 
In order to understand what this new condition (33) coming on top of the Calabi-Yau condition (31) really means, we calculated, for various MUM9 order-four linear differential operators L 4 verifying ( 31) and ( 33), the corresponding nome and Yukawa couplings [31]. The corresponding Yukawa couplings were actually found to be trivial: K q = 1 !! This amounts to saying that combining the two conditions ( 31) and ( 33) corresponds to a drastic reduction: the (irreducible) order-four linear differential operator L 4 is not a 'true' order-four operator. Typically one can imagine that L 4 reduces to an order-two operator, being homomorphic to the symmetric cube of an underlying order-two linear differential operator. In fact it is exactly the symmetric cube of an order-two operator.

Let us consider the symmetric cube of an order-two linear differential operator

L 2 = D 2 x + A(x) • D x + B(x)
which is an order-four linear differential (25) with the following coefficients:

p(x) = 6 • A(x), q(x) = 11 • A(x) 2 + 4 • dA(x) dx + 10 • B(x), r(x) = 6 • A(x) 3 + 7 • A(x) • dA(x) dx + 30 • B(x) • A(x) + d 2 A(x) dx 2 + 10 • dB(x) dx , s(x) = 18 • A(x) 2 • B(x) + 6 • B(x) • dA(x) dx + 15 • dB(x) dx • A(x) + 9 • B(x) 2 + 3 • d 2 B(x) dx 2 . ( 34 
)
One finds straightforwardly that the coefficients given by ( 34) verify the Calabi-Yau condition (31), as well as the new condition (33). In this case the differential Galois group is no longer the symplectic differential Galois group Sp(4, C), but actually reduces 10 to the differential Galois group of the underlying order-two linear differential operator, namely SL(2, C). The fact that the Calabi-Yau condition (31) is verified is not a surprise: the exterior square of a symmetric cube is naturally of order less than six. The fact that being the symmetric cube of an underlying order-two operator verifies automatically the new condition (33) emerging from a compatibility condition of an order-four linear differential operator by pullback is far less obvious. The 'parametrization' (34) necessarily yields the Calabi-Yau condition (31) and the new condition (33), and, conversely, ( 31) and ( 33) can be parametrized by (34).

Our large calculations thus show that the pullback-compatibility of an order-four linear differential operator which verifies the Calabi-Yau condition (31), amounts to saying that this order-four linear differential operator reduces to (the symmetric cube of) an underlying order-two linear differential operator. The Schwarzian condition (28) with W(x) given by (29), is thus inherited from the Schwarzian condition (9) of the underlying order-two linear differential operator.

Reducible operators

Throughout the paper we make the assumption that the linear differential operators are irreducible. The reduciblility of the linear differential operators is not an academic scenario: it is the situation we encounter (almost) systematically with the linear differential operators emerging in physics, typically in the case of the n-fold integral (n) of the two-dimensional Ising model [32][33][34]. When the linear differential operators are reducible, it is clear that all the calculations of this paper must be revisited, taking into account the miscellaneous factorization scenarios.

Sketching the kind of situation we may encounter, let us consider an order-four linear differ ential operator L 4 = D 4

x + p r (x)

• D 3 x + q r (x) • D 2 x + • •
• which factorizes into the product of two order-two linear differential operators:

L 4 = M 2 • L 2 ,
where:

L 2 = D 2 x + p(x) • D x + q(x), M 2 = D 2 x + p(x) • D x + q(x), p r (x) = p(x) + p(x), q r (x) = p(x) • p(x) + q(x) + 2 • dp(x) dx + q(x), • • • . ( 35 
)
In general the exterior square of L 4 is an order-six linear differential operator which is the product of an order-one operator, of the symmetric product of L 2 and M 2 , and of the order-one linear differential operator D x + p(x). Therefore, this reducible order-four linear differential operator L 4 does not verify in general the Calabi-Yau condition (31).

Imposing the (normalized) pullback by y(x) of this reducible order-four linear differential operator L 4 = M 2 • L 2 to be equal to a conjugation by a function v(x) of that operator, it is important to remember that a change of variable x ! y(x) on a linear differential operator which is the product of two operators, is the product of these two linear differential operators on which this change of variable has been performed. One gets a set of equations where one can disentangle two Schwarzian equations

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (36) 
W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (37) 
where W(x) and W(x) are the functions (10) already encountered in the analysis of order-two linear differential operators

W(x) = dp(x) dx + p(x) 2 2 2 • q(x), (38) 
W(x) = dp(x) dx
corresponding to the Schwarzian conditions written separately on L 2 and M 2 , together with another relation which couples L 2 and M 2 :

4 • y 00 (x) y 0 (x) + p(x) p(x) = ⇣ p(y(x)) p(y(x)) ⌘ • y 0 (x). (40) 
Among the four solutions of the order-four operators L 4 = M 2 • L 2 , the two solutions of the order-two linear differential operator L 2 transform nicely under the pullback x ! y(x), provided the Schwarzian condition ( 36) is satisfied, but this just corresponds to a partial symmetry. In general the set of equations ( 36), ( 37) and ( 40) seems to be too rigid to allow solutions other than trivial symmetries or partial symmetries.

It is however worth mentioning a quite curious result. If one imposes the reducible orderfour linear differential operator L 4 = M 2 • L 2 to verify the Calabi-Yau condition (31) (i.e. to be such that the exterior square of that operator is order five instead of order six), one gets a condition that becomes remarkably simple when written in terms of the functions W(x) and W(x) given by ( 38) and (39). Introducing the difference W(x) = W(x) W(x), the Calabi-Yau condition (31) simply reads:

2 • d W(x) dx = (p(x) p(x)) • W(x). (41) 
Therefore, if one restricts oneself to W(x) = W(x) which identifies the two Schwarzian conditions ( 36) and ( 37), one sees that condition ( 41) is automatically verified: condition

W(x) = W(x)
is thus a sufficient condition for the Calabi-Yau condition (31).

The analysis of pullback symmetry on reducible linear differential operators is clearly an interesting and challenging problem in physics. It will require many more calculations to explore the arborescence of these various factorization scenarios.

Symmetric Calabi-Yau condition

The condition, we called in [35,36] symmetric Calabi-Yau condition for the order-four linear differential operator L 4 (which correspond to impose that its symmetric square is of order less than 10), is a huge11 polynomial condition on the coefficients of L 4 and their derivatives. This condition is invariant by pullback and conjugation. Provided the Schwarzian condition (28) with W(x) given by ( 29) is satisfied, this symmetric Calabi-Yau condition alone is not sufficient to have

L p 4 = L c 4 .
Similarly to what we saw with the Calabi-Yau condition (31), would a supplementary condition to the symmetric Calabi-Yau condition be sufficient to have L p 4 = L c 4 ? Could one also have, in this selected subcase, a reduction of L 4 to an underlying order-two operator? This scenario remains open.

Working with such huge polynomials will not get us far. In order to advance, let us introduce a parametrization based on the ideas explained in [36], namely that an order-four linear differential operator L 4 , with an orthogonal differential Galois group SO(4, C) and such that its symmetric square is of order less than 10, is necessarily of the form12 

L 4 = (U 1 • U 3 + 1) • d(x), (42) 
where U 1 and U 3 are order-one and order-three self-adjoint linear differential operators:

U 3 = a(x) • D 3 x + 3 2 • da(x) dx • D 2 x + b(x) • D x + 1 2 • db(x) dx 1 4 • d 3 a(x) dx 3 , (43) 
U 1 = c(x) • D x + 1 2 • dc(x) dx . ( 44 
)
This yields a parametrization of this huge polynomial differential (symmetric Calabi-Yau) condition:

p(x) = 5 2 • a 0 (x) a(x) + 1 2 • c 0 (x) c(x) + 4 • d 0 (x) d(x) , (45) 
q(x) = b(x) a(x) + 3 2 • a 00 (x) a(x) + 3 4 • a 0 (x) a(x) • c 0 (x) c(x) + 6 • d 00 (x) d(x) + 15 2 • a 0 (x) a(x) • d 0 (x) d(x) + 3 2 • c 0 (x) c(x) • d 0 (x) d(x) , (46) 
r(x) = 1 2 • c 0 (x) c(x) • b(x) a(x) + 4 • d 000 (x) d(x) + 4 • a 0 (x) a(x) • c 0 (x) c(x) • d 0 (x) d(x) + 3 2 • d 00 (x) d(x) • c 0 (x) c(x) 1 4 • a 000 (x) a(x) + 3 2 • b 0 (x) a(x) + 15 2 • d 00 (x) d(x) • a 0 (x) a(x) + 2 • d 0 (x) d(x) • b(x) a(x) + 3 • d 0 (x) d(x) • a 00 (x) a(x) , (47) 
s(x) = d (4) d(x) + 1 2 • c 0 (x) c(x) • d 000 (x) d(x) + 1 2 • b 00 (x) a(x) 1 4 • a (4) (x) a(x) 1 8 • a 000 (x) a(x) • c 0 (x) c(x) + 1 4 • b 0 (x) a(x) • c 0 (x) c(x) + 1 a(x) c(x) 1 4 • a 000 (x) a(x) • d 0 (x) d(x) + 3 2 • b 0 (x) a(x) • d 0 (x) d(x) + b(x) a(x) • d 00 (x) d(x) + 3 2 • a 00 (x) a(x) • d 00 (x) d(x) + 5 2 • a 0 (x) a(x) • d 000 (x) d(x) + 1 2 • c 0 (x) c(x) • d 0 (x) d(x) • b(x) a(x) + 3 4 • a 0 (x) a(x) • c 0 (x) c(x) • d 00 (x) d(x) . ( 48 
)
One easily verifies that this parametrization (45)...( 48) is such that the polynomial encoding the symmetric Calabi-Yau condition, is identically equal to zero. Moreover one verifies that the order-four linear differential operator (42), with parametrization ( 45)-( 48), is, generically, such that its symmetric square has order 9 (instead of 10), its exterior square being of order 6.

Imposing L ( p) 4 = L (c)
4 for an order-four linear differential operator, corresponding to this parametrization (such that it verifies the symmetric Calabi-Yau condition, and such that its symmetric square is of order nine), one naturally finds the Schwarzian condition ( 28) with ( 29), as well as the exact expression (30) for the conjugation function v(x). Taking into account the Schwarzian condition (28), the identification of the coefficients of D x for L ( p) 3 , where (x) is a rational function. Together with the last condition, this gives an invariance of the form (x) = (y(x)) yielding only trivial cases 13 for

4 and L (c) 4 yields a relation of the form (x) = (y(x)) • y 0 (x)
L ( p) 4 = L (c) 4 .
This symmetric Calabi-Yau condition, even if it is invariant by pullback and conjugation, is not sufficient to get

L ( p) 4 = L (c) 4 .
We have here a situation similar to the one described in the previous section 4.1, with the emergence of the additional condition (33) on top of the Calabi-Yau condition (31). However here the calculations are way too large: finding the additional condition(s) together with the symmetric Calabi-Yau condition yielding

L ( p) 4 = L (c)
4 , is beyond our reach for now. The case, described in the previous section 4.1, where the orderfour operator (42) is the symmetric cube of an underlying order-two operator is also such that the symmetric square of L 4 is not of the generic order 10, but, in fact, of order 7: in this case the coefficients of L 4 verify14 the symmetric Calabi-Yau condition. Since the calculations are way too large, it is not possible for now to tell if the additional condition(s) to the symmetric Calabi-Yau condition, also gives eventually a linear differential operator that is the symmetric cube of an order-two operator, as described in the previous section 4.1, or whether it would give something else. This would mean the emergence of the 'classic' Calabi-Yau condition (31) combined with the condition (33). This remains an open question.

Order-N linear differential operators

Let us now consider an irreducible order-N linear differential operator

L N = D N x + p(x) • D N 1 x + q(x) • D N 2 x + • • • (49) 
and let us also introduce two other linear differential operators of order N: the operator

L (c) N conjugated of (49) by a function v(x), namely L (c) N = 1/v(x) • L N • v(x)
, and the (normalized) pullbacked operator

L ( p) N which amounts to changing x ! y(x) in L N . The pull- backed operator L ( p) N reads L ( p) N = D N x + ⇣ p(y(x)) • y 0 (x) N • (N 1) 2 • y 00 (x) y 0 (x) ⌘ • D N 1 x + ⇣ q(y(x)) • y 0 (x) 2 (N 2) • (N 1) 2 • p(y(x)) • y 00 (x) N • (N 1) • (N 2) 6 • y (3) y 0 (x) (N + 1) • N • (N 1) • (N 2) 8 • ⇣ y (2) y 0 (x) ⌘ 2 ⌘ • D N 2 x + • • • (50) 
and the conjugate of (49) reads:

L (c) N = D N x + ⇣ p(x) + N • v 0 (x) v(x) ⌘ • D N 1 x + ⇣ q(x) + (N 1) • v 0 (x) v(x) • p(x) + N • (N 1) 2 • v 00 (x) v(x) ⌘ • D N 2 x + • • • .
(51) We impose the identification of these two order-N linear differential operators:

1 v(x) • L N • v(x) = pullback ⇣ L N , y(x) ⌘ . ( 52 
)
The identification of the D N 1

x coefficients gives the exact expression of v(x) in terms of the wronskian w(x) and of the pullback y(x):

v(x) = y 0 (x) (N 1)/2 • ⇣ w(x) w(y(x)) ⌘ 1/N where: p(x) = w 0 (x) w(x) . ( 53 
)
Injecting this exact expression in (51), or eliminating the log-derivative v 0 (x)/v(x), the identification of the D N2 

x coefficients gives the following Schwarzian equation

W(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (54) 
where

W(x) = 6 (N + 1) • N • dp(x) dx + 6 • p(x) 2 (N + 1) • N 2 12 • q(x) (N + 1) • N • (N 1) , (55) 
i.e.

W(x) = 6 (N + 1) • N • W(x)
where:

(56)

W(x) = dp(x) dx + p(x) 2 N 2 • q(x) N 1 = N • z 00 (x) z(x) 2 • q(x) N 1 , (57) 
where:

z(x) = w(x) 1/N , p(x) = w 0 (x) w(x) . (58) 
This is in agreement with the fact that the symmetric (N 1)-th power of an order-two linear differential operator

L 2 = D 2 x + A(x) • D x + B(x) gives an order-N linear differential operator L N = D N x + p(x) • D N 1 x + q(x) • D N 2 x + • • • such that p(x) = N • (N 1) 2 • A(x), q(x) = (3 N 1) • N • (N 1) • (N 2) 24 • A(x) 2 + N • (N 1) • (N + 1) 6 • B(x) + N • (N 1) • (N 2) 6 • dA(x) dx , (59) 
and thus conversely:

A(x) = 2 N • (N 1) • p(x), B(x) = 6 • q(x) (N + 1) • N • (N 1) (3 N 1) • (N 2) • p(x) 2 (N + 1) • N 2 • (N 1) 2 2 • (N 2) (N + 1) • N • (N 1) • dp(x) dx . ( 60 
)
Injecting (60) in the expression of W(x) for an order-two linear differential operator L 2 (see (10))

W(x) = dA(x) dx + A(x) 2
one gets again the expression (55) for W(x) for an order-N linear differential operator

L N = D N x + p(x) • D N 1 x + q(x) • D N 2 x + • • •
Remark. The Schwarzian condition (54) and the associated function W(x) given by ( 55), correspond to an elimination of the conjugation function v(x) in (52). If one changes the order-N linear differential operator L N by conjugation,

L N ! LN = 1/⇢(x) • L N • ⇢(x)
, one gets again (52), L N being replaced by LN and v(x) being replaced by ṽ(x):

v(x) ! ṽ(x) = v(x) • ⇢(y(x)) ⇢(x) . ( 62 
)
Consequently one gets again the same Schwarzian condition (54) with the function W(x) given by ( 55), since they are obtained by elimination of the conjugation functions v(x) or ṽ(x). Therefore W(L N , x) given by ( 55), which is invariant by the conjugation

L N ! 1/⇢(x) • L N • ⇢(x),
is left invariant by:

p(L N , x) ! p(L N , x) + N • ⇢ 0 (x) ⇢(x) , (63) 
q(L N , x) ! q(L N , x) + (N 1) • ⇢ 0 (x) ⇢(x) • p(L N , x) + N • (N 1) 2 • ⇢ 00 (x) ⇢(x) . ( 64 
)
Conversely imposing this invariance by conjugation ( 63) and ( 64), on a function of the form

W(x) = ↵ N • p 0 (x) + N • p(x) 2 + • q(x)
gives ( 55) up to an overall constant factor.

Solutions of the Schwarzian conditions

Let us study the solutions y(x) of the Schwarzian equation ( 54) that emerge for any pullback-symmetry condition of linear differential operators of arbitrary order N. This should provide valuable information on the pullbacks that are symmetries of linear differential operators.

6.1. Solutions of the Schwarzian equation that are diffeomorphisms of the identity: a condition on W (x)

The Schwarzian condition (9) has been shown in [1] to be compatible under the composition of the pullback-functions y(x) verifying (9). The fact that the composition of two solutions y(x) of the Schwarzian condition ( 9) is also a solution 15 of the Schwarzian condition (9), is crucial to describe the set of solutions y(x) of ( 9). Once a solution y(x) of the Schwarzian condition ( 9) is known, the nth composition

y (n) (x) = y(y( • • • y(x) • • • ))
, yields automatically a commuting set of solutions 16 of (9). By obtaining the series expansions of these solutions, one can extend to non integer complex values of n, and in order to build a one-parameter family of commuting solution series, consider the infinitesimal composition [2]:

y ✏ (x) = x + ✏ • F(x) + • • • . ( 65 
)
The one-parameter family of commuting solution series y (n) (x) commutes with (65) yielding the functional equations [2]:

F(x) • dy (n) (x) dx = F(y (n) (x)), F(x) • dy ✏ (x) dx = F(y ✏ (x)). (66) 
Inserting (65) in the Schwarzian condition (9), one sees that F(x) is actually holonomic being solution of the linear differential equation of order-three:

d 3 F(x) dx 3 2 • W(x) • dF(x) dx dW(x) dx • F(x) = 0, (67) 
whose corresponding order-three linear differential operator L 3 is exactly the symmetric square of an underlying order-two linear differential operator17 L 2 :

L 3 = D 3 x 2 • W(x) • D x dW(x) dx = Sym 2 ⇣ D 2 x W(x) 2 ⌘ . ( 68 
)
Conversely W(x) can be expressed in terms of F(x) as follows:

W(x) = F 00 (x) F(x) 1 2 • ⇣ F 0 (x) F(x) ⌘ 2 + F(x) 2 (69) = d dx ⇣ F 0 (x) F(x) ⌘ + 1 2 • ⇣ F 0 (x) F(x) ⌘ 2 + F(x) 2 . ( 70 
)
This last result ( 69) is easily obtained by multiplying the LHS of (67) by F(x) and integrating the result. One gets this way 18 :

F(x) • d 2 F(x) dx 2 1 2 • ⇣ dF(x) dx ⌘ 2 + F(x) 2 • W(x) = 0, (71) 
which is (69). Thus, for a given pullback y(x), or for a given one-parameter family of commuting solution series (65), or for a given F(x), one has a one-parameter family (69) of W(x) in the Schwarzian equation (9). Conversely, for a given W(x), one has at least a one-parameter family of commuting solution series (65).

6.1.1. Selected subcase of the Schwarzian equation. Let us consider an order-two linear differential operator

L 2 = D 2 x + A(x) • D x + B(x)
(where A(x) and B(x) are rational functions), such that its corresponding function W(x) = A 0 (x) + A(x) 2 /2 2 B(x) (see (10)) in the Schwarzian equation (9), is of the form (see section 6.2 of [1])

W(x) = dA R (x) dx + A R (x) 2 2 , (72) 
where A R (x) is a rational function. Introducing the rational function

C(x) = (A(x) A R (x))/2, the identification of the expression of W(x), namely W(x) = A 0 (x) + A(x) 2 / 2 2 B(x) with (72), gives B(x) in terms of A R (x) and C(x) /F(x) 2 /F(y(x)) 2
• y 0 (x) 2 = 0 which allows to change W(x) ! W(x) + /F(x) 2 in the Schwarzian equation (9), as well as in the third order linear differential ODE [START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF]. One easily verifies that inserting (69) in [START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF] gives an identity.
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B(x) = dC(x) dx + C(x) • (C(x) + A R (x)), (73) 
which is the condition for the order-two linear differential operator L 2 to factorize into two order-one linear differential operators:

L 2 = ⇣ D x + A R (x) + C(x) ⌘ • ⇣ D x + C(x) ⌘ . ( 74 
)
In other words, condition (72) with A R (x) a rational function, is the condition of factorization of the order-two linear differential operator L 2 . In this case, the Schwarzian equation ( 9) reduces to a simpler second order non-linear differential equation (that was studied extensively in [1,2]):

d 2 y(x) dx 2 = A R (y(x)) • ⇣ dy(x) dx ⌘ 2 A R (x) • dy(x) dx . ( 75 
)
Seeking the following one-parameter solutions (65),

y ✏ (x) = x + ✏ • F(x) + • • •, one finds that F(x) verifies a linear differential equation of order two [2] d 2 F(x) dx 2 A R (x) • dF(x) dx dA R (x) dx • F(x) = 0, (76) 
corresponding to the linear differential operator of order two 19 :

L F = D 2 x A R (x) • D x dA R (x) dx = D x • ⇣ D x A R (x) ⌘ . ( 77 
)
Introducing the wronskian w(x), A R (x) reads A R (x) = w 0 (x)/w(x). Thus the linear differ ential operator (77) has two solutions: 1/w(x) which is the solution of the right factor D x A R (x), and another (transcendental) solution that we denote S F . The function F(x) corresponds to this last (transcendental) solution, and not the 1/w(x) solution. Conversely A R (x) can be expressed 20 in terms of F(x) as follows:

A R (x) = F 0 (x) F(x) + µ F(x) . ( 78 
)
One easily verifies that by inserting [START_REF] Guttmann | Automata and the susceptibility of the square lattice Ising model modulo powers of primes[END_REF] in [START_REF] Khadjavi | Belyi maps and elliptic curves[END_REF] ones gets an identity, and that by inserting [START_REF] Guttmann | Automata and the susceptibility of the square lattice Ising model modulo powers of primes[END_REF] in [START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF] one recovers (70) with = µ 2 /2. Here the µ/F(x) term is crucial, because when µ = 0 condition (78) with A R (x) = w 0 (x)/w(x) yield the trivial result, F(x) = 1/w(x) which is different from the transcendental (holonomic) function we are looking for. For instance in the example detailed in [2], we had the condition (78) verified with µ 6 = 0, namely µ = 1/4:

F(x) = x • (1 x) 1/2 • 2 F 1 ⇣ [ 1 2 , 1 4 
], [ 5 4 
], x

⌘ , A R (x) = 3 5 x 4 x (1 x) . ( 79 
)
Now let us describe this one-parameter family of commuting solution series (65) of the Schwarzian equation (9).

Solutions of the Schwarzian equation that are diffeomorphisms of the identity: the general formal solution

Let us consider (65) as a series in ✏:

y ✏ (x) = x + ✏ • F(x) + 1 X n=2 ✏ n n! • F(x) • Q n (x), (80) 
solution of the functional equation (66). This is sufficient to find, order by order in ✏, the solution ( 80) of ( 66) where the Q n (x) are given by

Q 1 (x) = F(x), Q 2 (x) = F(x) • dQ 1 (x) dx = F(x) • dF(x) dx , Q 3 (x) = F(x) • d dx Q 2 (x) = F(x) • ⇣ F(x) • F 00 (x) + F 0 (x) 2 ⌘ , Q 4 (x) = F(x) • d dx Q 3 (x), Q 5 (x) = F(x) • d dx Q 4 (x), • • • Q n+1 (x) = F(x) • d dx Q n (x), (81) 
the most general solution ( 80) of ( 66) corresponding to linear combinations of the Q n 's which amounts to changing ✏ in (80) into:

✏ ! ✏ • (1 + 1 • ✏ + 2 • ✏ 2 + 3 • ✏ 3 + • • • ). ( 82 
)
Note that all the Q n 's are polynomial expressions of F(x) and its derivatives.

The functional equation ( 66) corresponds to the one-form d⇥ = dx/F(x) = dy/F(y) giving:

⇥(x) = Z x dx F(x) , d d⇥ = F(x) • d dx . ( 83 
)
Seeing x as a function of ⇥, one finds that the series (80) together with the recursion (81), gives the well-known Taylor expansion

y ✏ (x(⇥)) = x(⇥) + 1 X n=1 ✏ n n! • d n x(⇥) d⇥ n = x(⇥ + ✏), (84) 
meaning that x ! y ✏ (x) is just a shift in ⇥ ⇥ x ! ⇥ y = ⇥ x + ✏, (85) 
corresponding to the integration of the one-form d⇥ = dx/F(x) = dy/F(y). The two transformations y ✏1 (x) and y ✏2 (x) of the one-parameter family clearly commute 21 :

y ✏1 (y ✏2 (x(⇥))) = y ✏1 (x(⇥ + ✏ 2 )) = x(⇥ + ✏ 1 + ✏ 2 ). ( 86 
)
One verifies order by order in ✏, that the one-parameter family of commuting series (80) with ( 81) is solution of the Schwarzian equation

W(x) W(y ✏ (x)) • y 0 ✏ (x) 2 + {y ✏ (x), x} = 0, (87) 
where W(x) is given by (69). In terms of ⇥, the expression (69) for W(x) can be written using the Schwarzian derivative:

W(x) + {⇥(x), x} • ⇣ d⇥(x) dx ⌘ 2 = 0. ( 88 
)
Recalling the chain rule for the Schwarzian derivative of a composition of functions 22 and the fact that d⇥(y(x))/dx = d⇥(x)/dx, one finds that the Schwarzian condition (87) corresponds to the equality of the two Schwarzian derivatives:

{⇥(y(x)), x} = {⇥(x), x}, which is verified since d⇥(y(x))/dx = d⇥(x)/dx. This is another way to see that the oneparameter family of commuting series (80) (with the Q n 's given by ( 81)) is solution of the Schwarzian equation.

A simple modular form example

We have considered in [1,[29][30][31]37] many examples of modular forms represented as pullbacked 2 F 1 hypergeometric functions. Each time the one-parameter commuting series combined with the modular correspondences [8] series yields one-parameter series of the form

y n (x) = a n • x n + • • • , n = 2, 3, 4, • • • that are solutions of the Schwarzian equation (87).
In [1] the pullback symmetry of the order-two linear differential operator was given as a covariance of its solution, namely a hypergeometric function with two different 23 pullbacks related by modular equations24 

2 F 1 ⇣ [ 1 12 , 5 12 
], [1], y(x)

⌘ = A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x ⌘ , (89) 
the pullback y(x) being solution of the Schwarzian condition (87).

In this example, the pullback y ✏ (x) is solution of the Schwarzian solution (87) with w(x) and F(x) given by 25 :

W(x) = 32 x 2 41 x + 36 72 x 2 • (x 1) 2 , F(x) = x • (1 x) 1/2 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x ⌘ 2 . ( 90 
)
One can also check that these expressions (90) verify ( 69) with26 = 0, thus providing a quite non-trivial (non-linear differential) identity between the rational function W(x) and the holonomic function F(x).

The one-parameter commuting family (65) solution of the Schwarzian equation (87) can be expressed using the two (mirror maps) differentially algebraic [3,4] functions P(x) and Q(x) described in [1] and in appendix A, as y 1 (a 1 , x) = P(a 1 • Q(x)): 

y 1 (a 1 , x) = a 1 • x 31 a 1 • (a 1 1) 72 • x 2 + a 1 • (
• x 4 + • • • (91)
where a 1 = exp(✏).

Besides this one-parameter commuting family (65), the Schwarzian equation (87) has a remarkable (infinite) set of algebraic functions solutions [1] y(x) defined by the corresponding modular equations [25,[41][42][43][44][45]. Their series expansions near x = 0 read:

y n (x) = P(Q n (x)) = 1728 • ⇣ x 1728 ⌘ n + • • • ( 92 
)
where n is an integer n = 2, 3, 4, • • • These series expansions commute for different values of the integer n. This is a consequence of the fact that, up to the previous change of variables P(x), Q(x), these modular correspondences (92) correspond to taking the nth power of the nome: q ! q n (see [1] for more details).

6.3.1. A pre-modular concept.
The composition of the one-parameter series (65) (which corresponds to q ! a 1 • q) and of the modular correspondences (92), yields an infinite set of one-parameter series [1]: These one-parameter series do not commute but verify [1] the simple composition formulae 27 :

y n (x) = a n • x n + • • • , n = 2, 3, 4, • • • for instance
y 3 = a 3 • x 3 +
y n (a n , y m (a m , x)) = y nm (a n a n m , x), n, m = 1, 2, 3, • • • . ( 93 
)
When the a n are arbitrary rational numbers the corresponding series y n (a n , x) are not globally bounded series [31] in general. Therefore, they cannot be the series expansion of an algebraic function: they are differentially algebraic [3,4] since they are solutions of the Schwarzian equation (87).

In general, finding the Schwarzian equation ( 87) is easy, and getting solutions order by order as series expansions is also easy. However finding the selected values of the rational numbers a n such that the differentially algebraic [3,4] series y n (a n , x) are globally bounded and thus can be algebraic functions, and, possibly, modular correspondences, is a quite difficult task 28 .

We will call 'pre-modular' 29 the existence of an infinite set of one-parameter differentially algebraic series (solution of the Schwarzian equation) of the form y n (x) = a n • x n + • • • which verify (93), but for which one does not know if there exist some selected values of the parameter a n such that these differentially algebraic series [3,4] become algebraic functions.

In the next section, we will characterize the Schwarzian equations corresponding to these 'pre-modular' structure, thus finding conditions that are necessary for the emergence of modular forms.

Schwarzian equation: conditions for modular correspondence

In the previous sections it was shown that the pullback symmetry condition of arbitrary ordertwo linear differential operators yields Schwarzian equation (87). The solutions of these ordertwo linear differential operators are much more general than hypergeometric functions and 27 Consequence of the fact, in the nome, they correspond to the composition of transformations like q ! a n • q n . 28 Similar to finding the selected values of the parameters so that a quantum Hamiltonian becomes integrable, or finding modular forms among Beukers' second order differential equations depending on three parameters [46] (36 cases emerging of a numerical exploration of 10 millions triples). 29 Of course, this 'pre-modular' term should not be confused with the term premodular in 'premodular categories' (i.e. ribbon fusion categories). Here we mean prerequisites for the emergence of modular forms.

Heun functions [1]: they can have an arbitrary number of singularities. Let us see which Schwarzian equation (87), or equivalently, which function W(x) gives relations (93) corresponding to rigid constraints necessary to have modular correspondences [1].

Series calculations give the conditions on W(x) such that series solutions of the form y n (x) = a n • x n + • • • are solutions of the Schwarzian equation with these y n (x)'s verifying relations (93). These constraints are conditions on the Laurent series of W(x). For the solution series of the Schwarzian equation to have the pre-modular structure (93), i.e. the same structure as modular correspondences, the Laurent series of W(x) must be of the form:

W(x) = 1 2 x 2 + b 1 x + 1 X m=0 a m • x m . ( 94 
)
One easily verifies that this is the case for the previous modular form example where W(x) reads (90), as well as for all the other modular forms emerging in physics or enumerative combinatorics we mentioned in previous papers [29-31, 35, 37]. Condition (94) is a result whose scope transcends the hypergeometric functions framework. In order to show this, let us apply this result on the open problem of finding Heun functions 30 that could be modular forms [38], or pullbacked 2 F 1 functions [16,50]. The Heun function HeunG (a, q, ↵, , , , x) is solution of a linear differential operator of order two

L 2 = D 2 x + A(x) • D x + B(x)
where A(x) and B(x) read:

A(x) = (↵ + + 1) • x 2 (( + ) • a + ↵ + + 1) • x + • a x • (x 1) • (x a) , (95) 
B(x) = ↵ • x q x • (x 1) • (x a) . (96) 
The corresponding function W(x) is easily deduced from the formula (10) given by W(x) = A 0 (x) A 2 (x)/2 2 B(x). It has the following Laurent series expansion:

W(x) = • ( 2) 2 x 2 a + ↵ + 2 + 2 q a x + • • • , (97) 
and has the form (94) given by 1/2/x 2 + • • • only when = 1. Thus a general analytical constraint like (94) yields a simple exact constraint on the intriguing problem of the classification of the Heun functions that can be modular forms, and more specifically on the necessary conditions for the Heun functions to have a 'pre-modular' structure.

6.4.1. Rank-two condition (75) and pre-modular structures. The factorization of the ordertwo linear differential operator which corresponds to W(x) of the form (72), yields the ranktwo non-linear differential equation ( 75) (see section 6.1.1). We would like to know when the modular correspondences structures (existence of solutions series

y n (x) = a n • x n + • • • , n = 2, 3, 4, • • • such that (93), thus requiring W(x) = 1/2/x 2 + • • •)
are compatible with a factorization of the order-two linear differential operator and thus with condition [START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF]. Imposing

W(x) = dA R (x) dx + A R (x) 2 2 = 1 2 x 2 + • • • (98)
where A R (x) is a rational function, one finds that A R (x) must have the following Laurent series expansion:

A R (x) = 1 x + 1 X m=0 r m • x m . ( 99 
)
This result (99) can be directly obtained by looking for the Laurent series for A R (x) with a pre-modular structure, i.e. such that the series [START_REF] Vidunas | Computation of highly ramified coverings[END_REF]. As a byproduct, one finds that in the case (99) the solutions

y n (x) = a n • x n + • • • , n = 2, 3, 4, • • • are solutions of condition
y n (x) = a n • x n + • • • are such that (93).
In particular the solution

y 1 (x) = a 1 • x + • • • is a one-parameter family of commuting series. The case W(x) = 1/2/x 2 , or A R (x) = 1/
x, corresponds to the simple order-two linear differential operator ✓ 2 where ✓ is the homogeneous derivative ✓ = x • D x . It also corresponds to a trivialization of the mirror map (the nome reduces to the x variable).

Pullback symmetry of an operator up to equivalence of operators

With the aim of generalizing covariance (89), we introduce the derivative of

2 F 1 ([1/12, 5/12], [1], x) (x) = d dx ⇣ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

x ⌘⌘ = 5 144 • 2 F 1 ⇣ [ 13 12 , 17 12 
], [2], x

⌘ , (100) 
which does not correspond to a modular form, since the derivative of a modular form is not a modular form. A derivative of the simple covariance identity (89) gives

(y(x)) • y 0 (x) = A(x) • (x) + A 0 (x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x ⌘ . ( 101 
)
Using the order-two linear differential equation verified by 2 F 1 ([1/12, 5/12], [1], x), one can rewrite the 2 F 1 ([1/12, 5/12], [1], x) in the RHS of (101), as a linear combination of (x) and its derivative 0 (x). One then deduces from relation (101) a slightly more general relation than the initial simple covariance (89)

(y(x)) = ⇣ A (x) • d dx + B (x) ⌘ • (x), (102) 
where A (x) and B (x) read in this particular example 31 :

A (x) = 144 • x • (x 1) • A(x) 5 • y 0 (x) , B (x) = 5 • A(x) + 72 • (2 3 x) • A 0 (x) 5 • y 0 (x)
.

Recalling two Hauptmoduls p 1 (x) and p 2 (x)

p 1 (x) = 1728 • x (x + 16) 3 , p 2 (x) = 1728 • x 2 (x + 256) 3 , (103) 
one can also write relation (102) in a more 'balanced' form (see equation (7) in [2]). Introducing the two algebraic functions A 1 (x) and A 2 (x)

A 1 (x) = ⇣ 1 + x 16 ⌘ 1/4 , A 2 (x) = ⇣ 1 + x 256 ⌘ 1/4 , (104) 
one has the (modular form) hypergeometric identity:

A 1 (x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], p 1 (x)

⌘ = A 1 (x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], p 2 (x)

⌘ . ( 105 
)
After performing calculations of a similar nature of the ones previously seen, one deduces the

1 $ 2 balanced relation on (x): 144 • p 1 (x) • ( p 1 (x) 1) • dA 1 (x) dx • 0 ( p 1 (x)) + ⇣ 72 • (3 p 1 (x) 2) • dA 1 (x) dx 5 • A 1 (x) • dp 1 (x) dx ⌘ • ( p 1 (x)) = 144 • p 2 (x) • ( p 2 (x) 1) • dA 2 (x) dx • 0 ( p 2 (x)) + ⇣ 72 • (3 p 2 (x) 2) • dA 2 (x) dx 5 • A 1 (x) • dp 2 (x) dx ⌘ • ( p 2 (x)), (106) 
which should be viewed as a (rational) parametrization of the relation having the form (102).

The interested reader shall find in appendix B a detailed (and we hope pedagogical) analysis of the more general relation (102) given for a selected hypergeometric function 32 solution

2 F 1 ([ 1/4, 3/4], [1], x).
Let us provide an example of the relevance of the relation (102) in the context of integrable models in physics. In the case of the two-dimensional Ising model, the covariance (102) is instantiated on ˜ (2) , the simplest of the low-temperature n-fold integrals ˜ (n) occurring in the decomposition of the susceptibility of the square Ising model [32][33][34] (see section 5.1 in [54]). When applied to ˜ (2) , the Landen transformation k ! k L = 2 p k 1 + k , which provides an exact representation of a generator of the renormalization group [2,7,53], gives the following covariance relation (see equation 33 (64) in [54]):

˜ (2) ⇣ 2 p k 1 + k ⌘ = 4 • 1 + k k • d ˜ (2) (k) dk , (107) 
where:

˜ (2) (k) = k 4 4 3 • 2 F 1 ⇣ [ 3 2 , 5 2 
], [3], k 2 ⌘ . ( 108 
)
This relation (107) can also be written as

˜ (2) (k) = 1 4 • ⇣ k • (k 1) • d dk + k 2 + k + 2 k + 1 ⌘ ˜ (2) ⇣ 2 p k 1 + k ⌘ , (109) 
or, introducing the inverse Landen transformation (descending Landen transformation): 32 We thank Guttmann for showing us this remarkable hypergeometric function emerging in a dual context of combinatorics and random-matrix theory, counting the number of avoiding permutations [51,52].

1 (1 k 2 ) 1/2 1 + (1 k 2 ) 1/2 = k 2 4 + k 4 8 + 5 64 k 6 + 7 128 k 8 + 21 512 k 10 + • • • , (110) 
˜ (2) ⇣ 1 (1 k 2 ) 1/2 1 + (1 k 2 ) 1/2 ⌘ = ⇣ (k 2 2) • (1 k 2 ) 1/2 + 2 4 k 2 ⌘ • ˜ (2) (k) + k 2 1 4 k • ⇣ 1 (1 k 2 ) 1/2 ⌘ • d ˜ (2) (k) dk . ( 111 
)
Remark. Note that the premodular condition (94), W(x) = 1/2/x 2 + • • • , has no reason to be verified for such generalizations of modular forms (100) and (102). For instance for ˜ (2) given by ( 109), the function W(x) = p 0 (x) + p(x) 2 /2 2 q(x) (see (10)) has the following Laurent series expansion (here x = k):

W(x) = 3 2 • x 2 5 x 2 • (x 2 1) = 15 2 • 1 x 2 + 6 + 6 x 2 + 6 x 4 + • • • . ( 112 
)
More generally these (hypergeometric) examples provide simple illustrations of a more general pullback symmetry, where one imposes the pullback of an order N linear differential operator to be homomorphic to that operator. In this case there exists two intertwiners (of order N 1 in general) L N 1 and M N 1 , such that:

M N 1 • L N = pullback ⇣ L N , y(x) ⌘ • L N 1 . (113) 
The pullback symmetry up to conjugation studied in sections 2-6 is appropriate for modular forms [29][30][31]37], but not for derivatives of modular forms that also occur in physics (see for instance the previous relation (107) on the square Ising model). The emergence of such generalized covariance (113) for the representation of the Landen transformation (and more generally the modular correspondences providing exact representations of the generators of the renormalization group) on the other n-fold integrals ˜ (n) 's of the susceptibility of the Ising model [32][33][34] is a challenging open problem, that will require one to consider reducible operators (see section 4.2). Analyzing these more general constraints (113) will require many additional assumptions (beyond the one of having selected differential Galois group) on the linear differential operator L N to be able to perform more calculations.

Schwarzian conditions for different Calabi-Yau operators with the same Yukawa couplings

In the previous sections we have analyzed the question of the covariance under algebraic pullbacks of a linear differential operator of arbitrary order N, i.e. the question of linear differential operators with algebraic pullback symmetries. Let us consider here the more general problem of the equivalence under pullbacks up to conjugations of two different linear differential operators, which is an enlightening sieve when one tries to classify selected linear differ ential operators in theoretical physics (Calabi-Yau linear differential operators [17,18]). The interested reader will find in appendix C an illustration of this important question where we revisit in detail some calculations of a paper by Almkvist, van Straten and Zudilin [17]. This calculation reexamines the question of pullback equivalence up to conjugation, of two selected order-four operators L 4 and L 4 verifying the Calabi-Yau condition:

v(x) • L 4 • 1 v(x) = pullback ⇣ L 4 , 4 x (1 x) 2 ⌘ , (114) 
with:

v(x) = ⇣ x • (1 + x) 1 x ⌘ 1/2 . ( 115 
)
One finds that a Schwarzian equation verified by these two order-four linear differential operators L 4 and L 4 reads:

ÛR (x) U M (y(x)) • y 0 (x) 2 + {y(x), x} = 0, (116) 
where U M (x) and ÛR (x) are given by ( 29), and where p(x) and q(x) are the coefficients of D 3

x and D 2 x for respectively L 4 and L 4 , (see (C.12) and (C.13) in appendix C). One sees on this example that the nome and Yukawa couplings, expressed in terms of the x variable, are related (see (C. 16) and (C.18)) by the pullback transformation. Yet, the Yukawa couplings of the two linear differential operators expressed in term of the nome, are related in an even simpler and 'universal' way: K q (L 4 ) = K q (L 4 )( 4 • q), as shown in appendix E of [31]. For a pullback y(x) with a series expansion of the form

y(x) = • x n + • • • (117)
the nome and Yukawa couplings expressed in terms of the x variable, of two order-four operators such that

v(x) • L 4 • 1 v(x) = pullback ⇣ L 4 , y(x) ⌘ , (118) 
are simply related through the relations

q x (L 4 ) n = 1 • q x (L 4 ) ⇣ y(x) ⌘ , K x (L 4 ) = K x (L 4 ) ⇣ y(x) ⌘ . ( 119 
)
The Yukawa couplings expressed in terms of the nome 34 , are related in an even simpler ' universal' way as so:

K q (L 4 ) = K q (L 4 )( • q n ). ( 120 
)
The previous example (114) corresponds to n = 1 and = 4. In the case n = 1 and = 1, the pullback is a deformation of the identity y(x) = x + • • • and the Yukawa couplings expressed in terms of the nome, of the two linear differential operators are equal. Thus one recovers proposition (6.2) of Almkvist et al paper [17] where the Yukawa couplings coincide.

Since the Schwarzian equation ( 116) corresponds to the equivalence of two linear differential operators by pullback with remarkably simple relations (120) on their Yukawa couplings expressed in terms of the nome, the Schwarzian equation ( 116) can be seen as a condition to have simply related Yukawa couplings. In the case of deformation of the identity y(x) = x + • • • pullbacks, it can be seen as a condition of preservation of the Yukawa couplings (seen as functions of the nome). These results are not restricted to order-four operators (see appendices E of [31] and [sec12]C). For instance, one can impose that two different pullbacks of the same order-N linear differential operator L N are homomorphic, i.e. there exist two intertwiners (of order N 1 in general) L N 1 and M N 1 such that:

pullback ⇣ L N , p 1 (x) ⌘ • L N 1 = M N 1 • pullback ⇣ L N , p 2 (x) ⌘ . ( 121 
)
This last generalization turns out to be instructive for physics and enumerative combinatorics.

Conclusion

In a previous paper [1] we focused on identities relating the same 2 F 1 hypergeometric function with two different algebraic pullback transformations

A(x) • 2 F 1 ⇣ [a, b], [c], x ⌘ = 2 F 1 ⇣ [a, b], [c], y(x) ⌘ , (122) 
along with the existence of n F n 1 analogues of the previous relation. Such remarkable identities correspond to modular forms that emerged in the analysis of multiple integrals related to the square Ising model [29][30][31]35] or in other enumerative combinatorics context [37]. They can be seen as a simple occurence of infinite order 35 covariance symmetries in physics [2] or enumerative combinatorics.

The current paper generalizes these previous results beyond hypergeometric functions 36 , analyzing the conditions for order-N linear differential operators with an arbitrary number of singularities 37 to be pullback invariant up to conjugations:

1 v(x) • L N • v(x) = pullback ⇣ L N , y(x) ⌘ . ( 123 
)
One finds that the pullbacks y(x) are differentially algebraic [3,4], being necessarily solutions of the same Schwarzian equations as in [1] W

(x) W(y(x)) • y 0 (x) 2 + {y(x), x} = 0, (124) 
where the function W(x) encoding the Schwarzian equation ( 124) is a simple expression of the first two coefficients of the linear differential operator (see (55)). For order-two linear differ ential operators this Schwarzian condition turns out to be sufficient. In the case of linear differential operators with selected differential Galois groups however, we showed, for orders three and four, that the 'Calabi-Yau' conditions (see section 4.1) are rigid enough to force the pullbacked-invariant (up to conjugation) operators (see (123)) to reduce to symmetric powers of an order-two linear differential operator. The reduction of the solutions of this Schwarzian differential equation to modular correspondences was an open question in [1]. Modular correspondences require the existence, for any integer n, of solutions of the Schwarzian equation (124) of the form y n (x) = a n • x n + • • • such that, for any integer m and n, the following 'pre-modular' condition is satisfied:

y n (a n , y m (a m , x)) = y nm (a n a n m , x). ( 125 
)
We derived in this paper a necessary and sufficient condition to obtain such 'pre-modular' solutions for the 'Schwarzian condition' (124). This condition turns out to be a simple condition on the Laurent series of W(x) encoding the Schwarzian condition:

2 • x 2 + b x + 1 X m=0 a m • x m . ( 126 
)
In light of what we have discussed so far, the current paper generates more questions than answers that give directions for further research. We have seen for example that (126) is a necessary and sufficient condition for obtaining 'pre-modular' solutions for the 'Schwarzian condition', corresponding, in general, to a transcendental38 declination of modular correspondences. To have modular correspondences one needs the existence of selected values of the parameters such that the solution series y n (x) = a n • x n + • • • (see (93)) actually reduce to algebraic functions. Is it only in the case of modular correspondences that such algebraic reductions for selected values take place?

Then we showed that an order-two linear differential operator emerging in the context of avoiding permutations counting [51,52], provides a good illustration of a generalization of the pullback-covariance (122) or of the pullback invariance up to conjugation (123): the

2 F 1 ⇣ [ 1/4, 3/4], [1], x
⌘ that comes up in the context of avoiding permutations counting [51,52], verify a relation (see (B.9) and (B.11)), whose general form is given by

(y(x)) = ⇣ A(x) • d dx + B(x) ⌘ • (x), (127) 
giving a non-trivial explicit example of a pullback invariance of an operator up to operator homomorphisms (see ( 113))

M N 1 • L N = pullback ⇣ L N , y(x) ⌘ • L N 1 . (128) 
Equation ( 107) providing an exact representation of the Landen transformation (generator of the renormalization group) on ˜ (2) , together with the explicit calculations of section 7, make quite clear that conditions like (127) provide a natural and interesting generalization of modular forms, going beyond the Schwarzian equation (124).

At last, we examined the equivalence of two different linear differential operators, under pullback and conjugation, yielding again some Schwarzian condition relating these two linear differential operators (see relation (C.26)), and we discussed the consequence of such equivalence on the corresponding Yukawa couplings. These results revisiting and complementing the results of [17], provide powerful tools to analyze various symmetry and classification problems of selected linear differential operators, in particular linear differential operators of the Calabi-Yau type [18] (not necessarily of order four [31]).

When dealing with linear differential operators, we have seen the emergence of Schwarzian derivatives, consequence of the fact that the Schwarzian derivative is appropriate for the composition of functions [19] (see the chain rule of the Schwarzian derivative of the composition of function). Do higher order Schwarzian derivatives [55][56][57]58] occur for pullback-symmetries of non-linear ODE's, or, more generally, for functional equations?

Restraining oneself to the univariate linear differential operators case, let us remark that if condition (122), or (123), describe effectively all the modular forms that often occur in physics [29,30,35], or enumerative combinatorics [37], a pullback symmetry up to conjugation constraint like (123) could be restrictive in some sense since it seems to yield systematic reduction 39 to order-two linear differential operators. In contrast the simple hypergeometric example of section 7 seems to provide a natural generalization of modular forms: the pullback invariance of an operator up to operator homomorphisms condition (128) promises to cover a larger ensemble of exact representations of symmetries in physics or enumerative combinatorics. In particular the emergence of conditions like (127) of higher order, namely generalized covariance (128) for the representation of the Landen transformation 40 on the other n-fold ˜ (n) 's of the Ising susceptibility (see [32][33][34]), together with their corresponding large order reducible linear differential operators, is a challenging open problem.

⇣ [ 1 12 , 5 12 
], [1], y(x)

⌘ = A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], x ⌘ , (A.1)
where A(x) is an algebraic function. The modular correspondences y(x) are solutions of the Schwarzian condition (87), where W(x) simply related to the function F(x) (see [START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF]) are given by equation (90). These modular correspondences have series expansion at x = 0 of the form

y n (x) = P(Q n (x)) = 1728 • ⇣ x 1728 ⌘ n + • • • n = 2, 3, 4, • • • (A.
2) where P(x) and Q(x) are such that P(Q(x)) = Q(P(x)) = x, corresponding to the 'simplest' examples of mirror maps [1]. More precisely, the well-known 'mirror maps' [61][62][63] are often described as series with integer coefficients [64]. These series correspond to a rescaling of P(x) and Q(x) by 1728, namely [1]: The two functions P(x) and Q(x) are differentially algebraic [3,4], but not holonomic functions. Introducing the function Q(x) = exp(⇥(x)), equation ( 69) with = 0 yields the following Schwarzian relations on Q(x)

Q(1728 • x) 1728 = x +
W(x) + {Q(x), x} + 1 2 • ⇣ Q 0 (x) Q(x) ⌘ 2 = 0, or: (A.3) W(x) + {ln(Q(x)
), x} = 0 where:

Q 0 (x) Q(x) = 1 F(x)
, (A.4) when P(x) the (composition) inverse of Q(x) verifies the functional equation and Schwarzian equation:

x • dP(x) dx = F(P(x)), {P(x), x} 1 2 • x 2 W(P(x)) = 0.
(A.5)

Note that the one-parameter commuting family (65) solution of the Schwarzian equation (87), can be expressed using these two functions P(x) and Q(x) as y 1 (a 1 , x) = P(a 1 • Q(x)) where a 1 = exp(✏).

Appendix B. Pullback invariance up to operator homomorphisms: a simple hypergeometric example

Let us consider the order-two linear differential operator

L 2 = D 2 x + 3 x 2 2 • x • (x 1) • D x 3 16 • x • (x 1) , (B.1)
which has the hypergeometric function solution 2 F 1 ([ 1/4, 3/4], [1], x). We have the following homomorphism of the type (121) between L 2 pullbacked by two simple different rational functions p 1 (x) and p 2 (x):

pullback ⇣ L 2 , p 1 (x) ⌘ • L 1 • ↵(x) = ↵(x) • M 1 • pullback ⇣ L 2 , p 2 (x) ⌘ , (B.2) 
where:

p 1 (x) = 64 x (1 x) • (1 9 x) 3 , p 2 (x) = 64 x 3 (1 x) 3 • (1 9 x) , (B.3) ↵(x) = x 3 • ⇣ 1 x 1 9 x ⌘ 1/2 , M 1 = 8 • (1 9 x) (1 x) • x 2 • D x + 171 x 2 142 x + 19 (1 x) 2 • x 3 ,
and:

L 1 = 8 • (1 9 x) (1 x) • x 2 • D x 189 x 2 226 x + 21 (1 x) 2 • x 3 .
(B.4) Denoting A and B the two rational pullbacks p 1 (x) and p 2 (x) in (B.2) one finds that they are related by the following rational algebraic curve:

3 (A, B) = 4096 • A B • (A 2 B 2 + 1) 4608 • A B • (AB + 1) • (A + B) (A 4 900 A 3 B + 28 422 A 2 B 2 900 AB 3 + B 4 ) = 0. (B.5)
The two Hauptmoduls parametrizing the modular equation 41 corresponding to the representation of ⌧ ! 3 ⌧ , are given as follows:

P 1 (x) = 1728 x (x + 27) • (x + 3) 3 , P 2 (x) = 1728 x 3 (x + 27) • (x + 243) 3 .
(B.6)

Note that we have the following relations between p 1 (x) and p 2 (x), and the two Hauptmoduls P 1 (x) and P 2 (x):

p 1 (x) = P 1 ( 27 x), p 2 (x) = P 2 ( 243 x), (B.7)
which explain the compatibility between the two relations:

p 2 (x) = p 1 ⇣ 1 9 x ⌘ , P 2 (x) = P 1 ⇣ 729 x ⌘ . (B.8)
Relation (B.2) yields the following identity on the 2 F 1 hypergeometric function

2 F 1 ⇣ [ 1 4 , 3 4 
], [1], p 1 (x)

⌘ = L 1 ⇣ 2 F 1 ⇣ [ 1 4 , 3 4 
], [1], p 2 (x) ⌘⌘ , (B.9)

where:

L 1 = 8 • (1 9 x) 1/2 3 • (1 x) 1/2 • x • d dx + 1 3 x 45 x 2 81 x 3 (1 x) 3/2 • (1 9 x) 3/2 , (B.10) 2 F 1 ⇣ [ 1 4 , 3 4 
], [1], p 2 (x)

⌘ = L 2 ⇣ 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

p 1 (x) ⌘⌘ , (B. 11 
)
where:

L 2 = 8 • (1 x) 1/2 3 • (1 9 x) 1/2 • x • d dx + 1 + 5 x + 3 x 2 9 x 3 (1 x) 3/2 • (1 9 x) 3/2 .
(B.12)

Introducing the order-two linear differential operator H 1 annihilating the pullbacked hypergeometric function 2 F 1 ([ 1/4, 3/4], [1], p 1 (x)):

H 1 = D 2 x + (1 3 x) 2 x • (1 x) • (1 9 x) • D x + 12 x • (1 x) 2 • (1 9 x) 2 ,
(B. 13) the compatibility between relation (B.9) and (B.11) is a consequence of the identity

L 1 • L 2 = 1 64 x 2 9 • H 1 , (B.14)
namely that the product L 1 • L 2 is equal to 1 modulo H 1 . Of course introducing the ordertwo linear differential operator H 2 annihilating the pullbacked hypergeometric function

2 F 1 ([ 1/4, 3/4], [1], p 2 (x)
) one also has a very similar identity:

L 2 • L 1 = 1 64 x 2 9 • H 2 , (B.15)
which means that the product

L 2 • L 1 is equal to 1 modulo H 2 .
Relation 42 (B.11) can be seen as a particular case of a generalized pullback symmetry condition of the form

2 F 1 ⇣ [↵, ], [ ], y(x) ⌘ = ⇣ A(x) • d dx + B(x) ⌘ • 2 F 1 ⇣ [↵, ], [ ], x ⌘ , (B.16)
where A(x) and B(x) are algebraic functions. Identities like (B.9) can be seen as generalizations of the identities

2 F 1 ([↵, ], [ ], y(x)) = A(x) • 2 F 1 ([↵, ], [ ],
x) analysed in [1].

B.1. Representation of the composition of the algebraic transformations x ! y(x)

We want to see the algebraic transformations x ! y(x) as symmetries. In particular we want to have a representation of the composition of these algebraic transformations, like:

2 F 1 ⇣ [↵, ], [ ], y(y(x)) ⌘ = ⇣ A 2 (x) • d dx + B 2 (x) ⌘ • 2 F 1 ⇣ [↵, ], [ ], x ⌘ . (B.17)
Let us show here that by building on the previous example we can actually provide identities of the type (B.17). Introducing

q 1 (x) = 1728 • x • (1 81 x + 2187 x 2 ) (1 81 x) 9 • (1 27 x) • (1 + 2187 x 2 )
, (B.18)

q 2 (x) = q 1 ⇣ 1 2187 x ⌘ = 1728 • 3 24 • x 9 • (1 81 x + 2187 x 2 ) (1 + 2187 x 2 ) • (1 27 x) 9 • (1 81 x) . (B.19)
one has the new pullback symmetry relation similar to (B.9):

2 F 1 ⇣ [ 1 4 , 3 4 
], [1], q 1 (x)

⌘ = L1 ⇣ 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

q 2 (x) ⌘⌘ , (B. 20 
)
where: 

L1 = 32 9 • x • (1 81 x + 2187 x 2 ) • U 1 (x) (1 81 x) • (1 27 x) 5 • D x + V 1 (x) (1 108 x + 2187 x 2 ) • (1 81 x) • (1 27 x)
2 F 1 ⇣ [ 1 4 , 3 4 
], [1], q 2 (x)

⌘ = L2 ⇣ 2 F 1 ⇣ [ 1 4 , 3 4 
], [1], Let us introduce the order-two linear differential operator Ĥ1 annihilating the pullbacked hypergeometric function 2 F 1 ([ 1/4, 3/4], [1], q 1 (x)):

q 1 (x) ⌘⌘ , (B.24) L2 = 32 9 • x • (1 81 x + 2187 x 2 ) • U 2 (x) (1 81 x) 5 • (1 27 x) • D x + V 2 (x) (1 108 x + 2187 x 2 ) • (1 81 x)
Ĥ1 = D 2 x + ↵ 1 (x) (1 81 x) • (1 27 x) • (1 + 2187 x 2 ) • (1 81 x + 2187 x 2 ) • x • D x 324 x • (1 81 x + 2187 x 2 ) • (1 + 2187 x 2 ) 2 • (1 81 x) 2 • (1 27 x) 2 , (B.28)
where The compatibility between relation (B.9) and (B.11) is a consequence of the identity:

↵ 1 (x) = 1 +
L1 • L2 = 1 + R 1,2 (x) • Ĥ1 , where: (B.29) R 1,2 (x) = 1024 81 • x 2 • (1 81 x + 2187 x 2 ) 4 • (1 + 2187 x 2 ) 2 (1 81 x) 6 • (1 27 x) 6 . (B.30)
Of course introducing the order-two linear differential operator Ĥ2 annihilating the pullbacked hypergeometric function 2 F 1 ([ 1/4, 3/4], [1], q 2 (x)), one also has a similar identity with the same rational function R 1,2 (x):

L2 • L1 = 1 + R 1,2 (x) • Ĥ2 . (B.31)
Again we have that L1 and L2 are obtained from each other by the (involutive) change of variable x ! 1/2187/x:

9 • L1 = pullback ⇣ L2 , 1 2187 x ⌘ , L2 = 9 • pullback ⇣ L1 , 1 2187 x ⌘ . (B.32)
Note that the two pullbacks q 1 (x) and q 2 (x) (see (B.18) and (B. 19)) are related to the two previous pullbacks p 1 (x) and p 2 (x) (see (B.3)):

q 1 (x) = p 1 ⇣ 27 • x • (1 81 x + 2187 x 2 ) ⌘ , (B.33) q 2 (x) = p 2 ⇣ 19 683 • x 3 1 81 x + 2187 x 2 ⌘ = p 1 ⇣ 1 81 x + 2187 x 2 177 147 • x 3 ⌘ . (B.34) Recalling (x) = 2 F 1 ([ 1/4, 3/4], [1], p 1 (x)
) the new identities (B.20) and (B.24) read one sees that they are related by the simple A, B symmetric algebraic curve:

⇣ 27 • x • (1 81 x + 2187 x 2 ) ⌘ = L1 ⇣ ⇣ 1 81 x + 2187 x 2 177 147 • x 3 ⌘⌘ , (B.35) ⇣ 1 81 x + 2187 x 2 177 147 • x 3 ⌘ = L2 ⇣ ⇣ 27 • x • (1 81 x + 2187 x 2 ) ⌘⌘ , (B.36) or, introducing (x) = 2 F 1 ([ 1/4, 3/4], [1], q 1 (x)): (x) = L1 ⇣ ⇣ 1 2187 • x ⌘⌘ , ⇣ 1 2187 • x ⌘ = L2 ⇣ (x) ⌘ . (B.
9 A 3 B 3 30 A 2 B 2 + 12 AB • (A + B) A 2 AB B 2 = 0. (B.39)
Let us consider the algebraic equation (B.5), that we denote 3 (A, B) = 0 because it is so closely related to the modular equation representing ⌧ ! 3 ⌧ (see their close relation with the Hauptmoduls (B.6) and (B.8)). Performing the resultant in B of the polynomial 3 (A, B) with the same one 3 (B, C) one gets a new algebraic equation 9 (A, C) = 0. The two pullbacks q 1 (x) and q 2 (x) are actually a rational parametrization of that new algebraic equation 9 (A, C) = 0.

In other words, if we think identity (B.11) as a symmetry transformation identity of the type (B. 16), the new identity (B.20) must be seen as the identity for the iteration of that transformation:

2 F 1 ⇣ [↵, ], [ ], y(y(x)) ⌘ = ⇣ A 2 (x) • d dx + B 2 (x) ⌘ • 2 F 1 ⇣ [↵, ], [ ], x ⌘ . (B.40)
We are very close to a modular form, the previous algebraic curve (B.5) playing the role of the modular equation 43 (see (B.8)), and the algebraic curve 9 (A, C) = 0 playing the role of the modular equation corresponding to ⌧ ! 9 • ⌧.

Note that if one calculates the function W(x) = A 0 (x) + A(x) 2 /2 2 B(x) corresponding to the order-two operator L 2 , one gets

W(x) = x 4 8 • (x 1) • x = 1 2 x 2 7 8 x 5 4 13 8 x 2 x 2 + • • • (B.41)
which is also of the form

W(x) = 1/2/x 2 + • • •.

Appendix C. Schwarzian conditions for different Calabi-Yau operators with related Yukawa couplings

C.1. Revisiting a Calabi-Yau operator in [17] Following Almkvist, van Straten and Zudilin [17], let us consider the order-four linear differential operator L 4 such that its exterior square annihilates44 

5 F 4 ⇣ [ 1 2 
, a, 1 a, b,

1 b], [1, 1, 1, 1], x ⌘ . (C.1)
This order-four linear differential operator such that its exterior square is order-five (it verifies the Calabi-Yau condition (31)) reads

L 4 = D 4 x + P(x) • D 3 x + Q(x) • D 2 x + R(x) • D x + S(x), (C.2)
where P(x) and Q(x) read:

P(x) = 4 5 x x • (1 x) , Q(x) = (3 x 2) • (11 x 10) 8 • x 2 • (x 1) 2 + a • (1 a) + b • (1 b) 2 • x • (x 1) . (C.3)
The other rational functions R(x) and S(x) are more involved rational functions that will not be given here. The operator L 4 can be seen as the 'exterior (or antisymmetric) square root 45 ' of the order-five linear differential operator that annihilates the 5 F 4 hypergeometric function (C.1).

Remark.

In [17] the authors introduce a proxy of the exact 'exterior square root' L 4 namely the so-called Yifan Yang pullback, given in general by the equations in the section 'definition' p 10 of [60] 46 and, in this example, by equation (3.11), p 278 in [17], which reads

M 4 = D 4 x + P YY (x) • D 3 x + Q YY (x) • D 2 x + R YY (x) • D x + S YY (x), (C.4)
where P YY (x) and Q YY (x) read:

P YY (x) = 2 • (3 5 x) x • (1 x) , Q YY (x) = 99 x 2 122 x + 28 4 • x 2 • (x 1) 2 + a • (1 a) + b • (1 b) 2 • x • (x 1) , (C.5)
the other rational functions R YY (x) and S YY (x) being more involved rational functions that will not be given here. The 'Yifan Yang pullback' M 4 is related to the exact 'exterior square root' L 4 by a simple conjugation

M 4 • u(x) = u(x) • L 4 , with u(x) = x 1/2 • (1 x) 3/4 .
In general one may prefer to introduce the Yifan Yang pullback defined pp 10 and 11 of [60] instead of the exact 'exterior square root', because the corresponding formulae are simpler. It does not make any difference however since the two operators are simply conjugated.

Let us consider the order-four linear differential operator L 4 given on page 284 of [17] which annihilates the Hadamard product of two simple 2 F 1 hypergeometric functions:

⇣ 1 1 x • 2 F 1 ([a, 1 a], [1], x) ⌘ ? ⇣ 1 1 x • 2 F 1 ([b, 1 b], [1], x) ⌘ . (C.6)
This order-four operator L 2 reads

L 4 = D 4 x + P(x) • D 3 x + Q(x) • D 2 x + R(x) • D x + Ŝ(x), (C.7)
where:

P(x) = 2 5 x 2 + 4 x 3 x • (x + 1) (x 1) , Q(x) = 2 • a • (1 a) + b • (1 b) x • (x 1) 2 + 25 x 4 + 40 x 3 16 x 2 32 x + 7 x 2 • (x + 1) 2 (x 1) 2 . (C.8)
Introducing the pullback y(x) and the function v(x)

y(x) = 4 • x (1 x) 2 , v(x) = ⇣ x • (1 + x) 1 x ⌘ 1/2 , (C.9)
one has the relation 45 See the concept of Yifan Yang pullback introduced in [60]. 46 The author of [60] has benefited from an unpublished result by Yifan Yang. Note that there is a misprint in [60] with:

M 4 • u(x) = u(x) • L 4 , where 3/10 • b 4 = u 0 (x)/u(x). v(x) • L 4 • 1 v(x) = pullback ⇣ L 4 , 4 x (1 x) 2
U M (x) = Q(x) 5 
+ 3 40 • P(x) 2 + 3 10 • dP(x) dx , (C.12) ÛR (x) = Q(x) 5 
+ 3 40 • P(x) 2 + 3 10 • d P(x) dx . (C.13)
This Schwarzian equation (C.11), together with the definitions (C.12) and (C.13), are exactly the Schwarzian equation (6.5) together with definition (6.4), p 290 of [17].

C.1.1. Schwarzian conditions for Calabi-Yau operators and Yukawa couplings. Let us calculate the series expansion of the nome and Yukawa couplings [31] of L 4 and L 2 . In order to perform the calculations for arbitrary values of a and b, let us introduce the same variables s and p as the one introduced by [17]:

s = a • (1 a) + b • (1 b), p = a • b • (1 a) • (1 b). (C.14)
Considering the subcase a = 3 and b = 5, the nome of L 4 reads 

q x (L 4 ) = x + (2 p s + 1) • x 2 2 
+
q x (L 4 ) = 1 4 • q x (L 4 ) ⇣ 4 • x (1 x) 2 ⌘ = x 2 • (2 p s) • x 2 + ⇣ 93 p 2 98 ps + 26 s 2 16 p + 4 s ⌘ • x 3 8 + • • • , (C.16)
The respective Yukawa couplings of L 4 and L 4 read:

K x (L 4 ) = 1 (5 p + 1 2 s) • x + ⇣ 825 p 2 638 ps + 120 s 2 + 244 p 80 s ⌘ • x 2 64 + • • • , (C.17) K x (L 4 ) = K x (L 4 ) ⇣ 4 • x (1 x) 2 ⌘ = 1 + 4 • (5 p 2 s + 1) • x + ⇣ 825 p 2 638 ps + 120 s 2 + 404 p 144 s + 32 ⌘ • x 2 4 + • • • , (C.18)
In terms of the nome the Yukawa couplings read:

K q (L 4 ) = 1 (5 p 2 s + 1) • q + ⇣ 1145 p 2 926 ps + 184 s 2 + 468 p 176 s + 32 ⌘ • q 2 64 + • • • , (C.19)
and

K q (L 4 ) = K q (L 4 )( 4 • q) = 1 + 4 • (5 p 2 s + 1) • q + ⇣ 1145 p 2 926 ps + 184 s 2 + 468 p 176 s + 32 ⌘ • q 2 4 + • • • . (C.20)
On this example we see that the nome and Yukawa couplings expressed in terms of the x variable, are simply related (see (C. 16) and (C.18)) by the pullback transformation. The Yukawa couplings expressed in term of the nome of the two linear differential operators are related in an even more simple and 'universal' way: K q (L 4 ) = K q (L 4 )( 4 • q). This is a general result (see appendix E of [31]). For a pullback y(x) with a series expansion of the form

y(x) = • x n + • • • , (C.21)
the nome and Yukawa couplings expressed in terms of the x variable of two order-four linear differential operators such that

v(x) • L 4 • 1 v(x) = pullback ⇣ L 4 , y(x) ⌘ , (C.22)
are simply related as follows:

q x (L 4 ) n = 1 • q x (L 4 ) ⇣ y(x) ⌘ , K x (L 4 ) = K x (L 4 ) ⇣ y(x) ⌘ . (C.23)
Their Yukawa couplings, expressed in terms of the nome, are related in an even simpler ' universal' way:

K q (L 4 ) = K q (L 4 )( • q n ). (C.24)
The previous example corresponded to the case n = 1 and = 4. In the case n = 1 and = 1, the pullback is a deformation of the identity y(x) = x + • • • and the Yukawa couplings expressed in terms of the nome of the two operators are equal. One thus recovers proposition (6.2) of [17] where the Yukawa couplings coincide.

C.2. Schwarzian conditions for Calabi-Yau operators related by pullback and conjugation

In fact the Schwarzian condition (C.11) can be obtained in a totally general framework where two order-four linear differential operators are equal up to pullback and conjugation. Let us consider two order-four operators L 4 and M 4 such that

v(x) • M 4 • 1 v(x) = pullback ⇣ L 4 , y(x) ⌘ . (C.25)
A straightforward calculation similar to the one performed in section 4 yields the Schwarzian relation47 

W(M 4 , x) W(L 4 , y(x)) • y 0 (x) 2 + {y(x), x} = 0, (C.26)
where the W(M 4 , x) and W(L 4 , x) are given by ( 29), the p(x) and q(x) being the ones of the corresponding operators M 4 and L 4 :

W(M 4 , x) = 3 10 • dp(M 4 , x) dx + 3 40 • p(M 4 , x) 2 q(M 4 , x) 5 , (C.27) W(L 4 , x) = 3 10 • dp(L 4 , x) dx + 3 40 • p(L 4 , x) 2 q(L 4 , x) 5 .
(C.28)

Remark C.1.

There is nothing specific with order-four linear differential operators. One has the same result for two operators of arbitrary orders N equal up to pullback and conjugation (see (C.25)): the expressions of W(M N , x) and W(L N , x) being the ones given in ( 55) and (56).

One also has:

W(M N , x) W(L N , y(x)) • y 0 (x) 2 + {y(x), x} = 0. (C.29)
Remark C.2. The expressions of W(M N , x) and W(L N , x) are related by (C.29). Let us assume that W(L N , x) is compatible with the modular correspondences structures (existence of solutions of the Schwarzian equations of the form

y(x) = a n • x n + • • • with (93)). One thus has W(L N , x) = 1/2/x 2 + • • • Is this condition automatically satisfied for W(M N , x)
as a consequence of (C.29)? For pullbacks of the form y(x) = a n • x n + • • • , the function W(M N , x) deduced from (C.29), reads:

W(M N , x) = W(L N , y(x)) • y 0 (x) 2 {y(x), x} = ⇣ n 2 2 x 2 + • • • ⌘ + ⇣ n 2 1 2 x 2 + • • • ⌘ = 1 2 x 2 + • • • . (C.30)
The condition (94) for the modular correspondences structures is thus preserved by pullbacks.

C.3. More general framework

For arbitrary orders we observed that the functions W(x) that occur in the Schwarzian conditions are left invariant under conjugations of the operators ( 63) and (64). More generally, one can consider operators that are not conjugated by a function ⇢(x), yet homomorphic, in the sense of the equivalence of operators 48 . For a given operator L N of order-N, one can easily obtain operators LN homomorphic to L N . For instance, for an order-two linear differential operator L 2 = D 2

x + A(x) D x + B(x), introducing the order-one operator L 1 = ⌘(x) D x + ⇢(x), an order-two operator L2 homomorphic to L 2 is easily obtained performing 49 the rightdivision by L 1 of the LCLM of L 2 and L 1 . If one now compares the functions W(x) corresponding respectively to L 2 and L2 , one sees that they are quite different, except when ⌘(x) = 0, in which case one reduces the operator equivalence to a conjugation by a function ⇢(x). The analysis of the conditions for two order-N operators L N and M N to be homorphic up to pullback

M N 1 • M N = pullback ⇣ L N , y(x) ⌘ • L N 1 , (C.31)
is a much more general problem corresponding to massive calculations even if one restricts to operators that are homomorphic to their adjoint (thus corresponding to selected, orthogonal or symplectic, differential Galois groups) 50 . Performing such calculations will require new tools and ideas. This cannot be performed in general (like we did in the first section of this paper) but could be considered on particular problems emerging from physics or enumerative combinatorics, where the operators will be of some 'selected' form.
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Introduction

It was shown in [1,2] that different physical related quantities, like the n-fold integrals (n) , corresponding to the n-particle contributions of the magnetic susceptibility of the Ising model [3][4][5][6], or the lattice Green functions [7][8][9][10][11], are diagonals of rational functions [12][13][14][15][16][17].

While showing that the n-fold integrals (n) of the susceptibility of the Ising model are diagonals of rational functions requires some effort, seeing that the lattice Green functions are diagonals of rational functions nearly follows from their definition. For example, the lattice Green functions (LGF) of the d-dimensional face-centred cubic (fcc) lattice are given [10,11] by:

1 ⇡ d Z ⇡ 0 • • • Z ⇡ 0 dk 1 • • • dk d 1 x • d , with: d = ✓ d 2 ◆ 1 d X i=1 d X j=i+1 cos(k i ) cos(k j ).
(

) 1 
The LGF can easily be seen to be a diagonal of a rational function: introducing the complex variables z j = e i kj , j = 1, • • • , d , the LGF (1) can be seen as a d-fold generalization of Cauchy's contour integral [1]:

Diag(F) = 1 2⇡i I F(z 1 , z/z 1 ) dz 1 z 1 . (2) 
Furthermore, the linear differential operators annihilating the physical quantities mentioned earlier (n) , are reducible operators. Being reducible they are 'breakable' into smaller factors [4,5] that happen to be operators associated with elliptic functions, or generalizations thereof: modular forms, Calabi-Yau operators [18,19]... Yet there exists a class of diagonals of rational functions in three variables5 whose diagonals are pullbacked 2 F 1 hypergeometric functions, and in fact modular forms [21]. These sets of diagonals of rational functions in three variables in [21] were obtained by imposing the coefficients of the polynomial P(x, y, z) appearing in the rational function 1/P(x, y, z) defining the diagonal to be zero or one 6 .

While these constraints made room for exhaustivity, they were quite arbitrary, which raises the question of randomness of the sample : is the emergence of modular forms [20], with the constraints imposed in [21], an artefact of the sample?

Our aim in this paper is to show that modular forms emerge for a much larger set of rational functions of three variables, than the one previously introduced in [21], firstly because we obtain a whole family of rational functions whose diagonals give modular forms by adjoining parameters, and secondly through considerations of symmetry.

In particular, we will find that the seven-parameter rational function of three variables, with a numerator equal to one and a denominator being a polynomial of degree two at most, given by:

R(x, y, z) = 1 a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y , (3) 
can be expressed as a particular pullbacked 2 F 1 hypergeometric function 7 1

P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 4 (x) 2 P 2 (x) 3 ⌘ , (4) 
where P 2 (x) and P 4 (x) are two polynomials of degree two and four respectively. We then focus on subcases where the diagonals of the corresponding rational functions can be written as a pullbacked 2 F 1 hypergeometric function, with two rational function pullbacks related algebraically by modular equations 8 . This seven-parameter family will then be generalized into nine, then ten-parameter families of rational functions that are reciprocal of a polynomial in three variables of degree at most three. We will finally show that each of the previous results yields an infinite number of new exact pullbacked 2 F 1 hypergeometric function results, through symmetry considerations on monomial transformations and some function-dependent rescaling transformations.

Diagonals of rational functions of three variables depending on seven parameters

Recalls on diagonals of rational functions

Let us recall the definition of the diagonal of a rational function in n variables R(x 1 , . . . , x n ) = P(x 1 , . . . , x n )/Q(x 1 , . . . , x n ), where P and Q are polynomials of x 1 , • • • , x n with integer coefficients such that Q(0, . . . , 0) 6 = 0. The diagonal of R is defined through its multi-Taylor expansion (for small x i 's)

R ⇣ x 1 , x 2 , . . . , x n ⌘ = 1 X m1 = 0 • • • 1 X mn = 0 R m1, ..., mn • x m1 1 • • • x mn n , (5) 
as the series in one variable x:

Diag ⇣ R ⇣ x 1 , x 2 , . . . , x n ⌘⌘ = 1 X m = 0 R m, m, ..., m • x m . (6) 
Diagonals of rational functions of two variables are algebraic functions [26,27]. Interesting cases of diagonals of rational functions thus require considering rational functions of at least three variables.

A seven-parameter family of rational functions of three variables

We obtained the diagonal of the rational function in three variables depending on seven parameters:

R(x, y, z) = 1 a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y . ( 7 
) This result was obtained by:

• Running the HolonomicFunctions [28] package in Mathematica for arbitrary parameters

a, b 1 , • • • , c 1 , • •
• and obtaining a large-sized second order linear differential operator L 2 . 7 The selected 2 F 1 ([1/12, 5/12], [1], P) hypergeometric function is closely related to modular forms [22,23]. This can be seen as a consequence of the identity with the Eisenstein series E 4 and E 6 and this very 2 F 1 ([1/12, 5/12], [1], P) hypergeometric function (see theorem 3 page 226 in [24] and page 216 of [25]):

E 4 (⌧ ) = 2 F 1 ([1/12, 5/12], [1]
, 1728/j(⌧ )) 4 (see also equation (88) in [22] for E 6 ). 8 Thus providing a nice illustration of the fact that the diagonal is a modular form [23].

• Running the maple command ' hypergeometricsols' [29] for different sets of values of the parameters on the operator L 2 , and guessing9 the Gauss hypergeometric function 2 F 1 with general parameters solution of L 2 .

2.3. The diagonal of the seven-parameter family of rational functions: the general form

We find the following experimental results: all these diagonals are expressed in terms of only one pullbacked hypergeometric function. This is worth pointing out that for an ordertwo linear differential operator with pullbacked 2 F 1 hypergeometric function solutions, the 'hypergeometricsols' command in nearly all cases gives the solutions as a sum of two 2 F 1 hypergeometric functions. Here, quite remarkably, the result is 'encapsulated' in just one pullbacked hypergeometric function. We find that these diagonals are expressed as pullbacked hypergeometric functions of the form

1 P 4 (x) 1/6 • 2 F 1 ⇣ [ 1 12 , 7 12 
], [1],

1728 • x 3 • P 5 (x) P 4 (x) 2 ⌘ , (8) 
where the two polynomials P 4 (x) and P 5 (x), in the 1728 x 3 P 5 (x)/P 4 (x) 2 pullback, are polynomials of degree four and five in x respectively. The pullback in (8), given by 1728 x 3 P 5 (x)/P 4 (x) 2 , has the form 1 Q where Q is given by the simpler expression

Q = P 2 (x) 3 P 4 (x) 2 , (9) 
where P 2 (x) is a polynomial of degree two in x. Recalling the identity

2 F 1 ⇣ [ 1 12 , 7 12 
], [1],

x ⌘ = (1 x) 1/12 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

x 1 x ⌘ , (10) 
the previous pullbacked hypergeometric function (8) can be rewritten as

1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x 3 • P 5 (x) P 2 (x) 3 ⌘ , (11) 
where P 5 (x) is the same polynomial of degree five as the one in the pullback in expression (8). This new pullback also has the form 1 Q with Q given by10 :

1728 • x 3 • P 5 (x) P 2 (x) 3 = 1 Q where: Q = P 4 (x) 2 P 2 (x) 3 . (12) 
Finding the exact result for arbitrary values of the seven parameters now boils down to a guessing problem. Assuming that the diagonal of the rational function (7) has the form explicited in the previous subsection

1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 4 (x) 2 P 2 (x) 3 ⌘ , (13) 
where P 2 (x) and P 4 (x) are two polynomials of degree two and four respectively:

P 4 (x) = A 4 x 4 + A 3 x 3 + A 2 x 2 + A 1 x + A 0 , (14) 
P 2 (x) = B 2 x 2 + B 1 x + B 0 , (15) 
one can write the order-two linear differential operator having this eight-parameter solution (13), and identify this second order operator depending on eight arbitrary parameters A i , B i in (14), with the second order linear differential operator obtained using the HolonomicFunctions [28] program for arbitrary parameters. Using the results obtained for specific values of the parameters, one easily guesses that A 0 = a 6 and B 0 = a 4 . One finally gets11 :

P 2 (x) = 8 • ⇣ 3 a c 1 c 2 c 3 + 2 • (b 2 1 c 2 1 + b 2 2 c 2 2 + b 2 3 c 2 3 b 1 b 2 c 1 c 2 b 1 b 3 c 1 c 3 b 2 b 3 c 2 c 3 ) ⌘ • x 2 8 • a • ⇣ a • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) 3 b 1 b 2 b 3 ⌘ • x + a 4 , (16) 
and

P 4 (x) = 216 • c 2 1 c 2 2 c 2 3 • x 4 16 • ⇣ 9 • a c 1 c 2 c 3 • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) 6 • (b 2 1 b 2 c 2 1 c 2 + b 1 b 2 2 c 1 c 2 2 + b 2 1 b 3 c 2 1 c 3 + b 1 b 2 3 c 1 c 2 3 + b 2 2 b 3 c 2 2 c 3 + b 2 b 2 3 c 2 c 2 3 ) + 4 • (b 3 1 c 3 1 + b 3 2 c 3 2 + b 3 3 c 3 3 ) 3 b 1 b 2 b 3 c 1 c 2 c 3 ⌘ • x 3 + 12 • ⇣ 3 a 3 c 1 c 2 c 3 + 4 • a 2 • (b 2 1 c 2 1 + b 2 2 c 2 2 + b 2 3 c 2 3 ) + 2 • a 2 • (b 1 b 2 c 1 c 2 + b 1 b 3 c 1 c 3 + b 2 b 3 c 2 c 3 ) 12 • a • b 1 b 2 b 3 • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) + 18 • b 2 1 b 2 2 b 2 3 ⌘ • x 2 12 • a 3 • ⇣ a • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) 3 b 1 b 2 b 3 ⌘ • x + a 6 . (17) 
The polynomial P 5 (x) in (12), given by P 5 (x) = (P 4 (x) 2 P 2 (x) 3 )/1728/x 3 , is a slightly larger polynomial of the form

P 5 (x) = 27 • c 4 1 c 4 2 c 4 3 • x 5 + • • • + q 1 • x + q 0 ,
where:

q 0 = b 1 b 2 b 3 a 3 • (a c 1 b 2 b 3 ) • (a c 2 b 1 b 3 ) • (a c 3 b 1 b 2 ). ( 18 
)
The coefficient q 1 in x reads for instance:

q 1 = c 1 c 2 c 3 (b 1 b 2 c 1 c 2 + b 1 b 3 c 1 c 3 + b 2 b 3 c 2 c 3 ) • a 5 ⇣ b 2 1 b 2 2 c 2 1 c 2 2 + b 2 1 b 2 3 c 2 1 c 2 3 + b 2 2 b 2 3 c 2 2 c 2 3 8 b 1 b 2 b 3 c 1 c 2 c 3 • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) ⌘ • a 4 b 1 b 2 b 3 • ⇣ 57 b 1 b 2 b 3 c 1 c 2 c 3 + 8 • (b 2 1 b 2 c 2 1 c 2 + b 2 1 b 3 c 2 1 c 3 + b 1 b 2 2 c 1 c 2 2 + b 1 b 2 3 c 1 c 2 3 + b 2 2 b 3 c 2 2 c 3 + b 2 b 2 3 c 2 c 2 3 ) ⌘ • a 3 + 8 b 2 1 b 2 2 b 2 3 • (b 2 1 c 2 1 + b 2 2 c 2 2 + b 2 3 c 2 3 ) • a 2 + 46 • b 2 1 b 2 2 b 2 3 • (b 1 b 2 c 1 c 2 + b 1 b 3 c 1 c 3 + b 2 b 3 c 2 c 3 ) • a 2 36 • b 3 1 b 3 2 b 3 3 • (b 1 c 1 + b 2 c 2 + b 3 c 3 ) • a + 27 b 4 1 b 4 2 b 4 3 . (19) 
Having 'guessed' the exact result, one can easily verify directly that this exact pullbacked hypergeometric result is truly the solution of the large second order linear differential operator obtained using the 'HolonomicFunctions' program [28].

Simple symmetries of this seven-parameter result

The different pullbacks

P 1 = 1728 • x 3 • P 5 (x) P 2 (x) 3 , 1728 • x 3 • P 5 (x) P 4 (x) 2 , 1 P 4 (x) 2 P 2 (x) 3 , (20) 
turn out to be compatible with the symmetries

P 1 ( • a, • b 1 , • b 2 , • b 3 , • c 1 , • c 2 , • c 3 , x) = P 1 (a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , x) (21) 
and

P 1 ⇣ a, 1 • b 1 , 2 • b 2 , 3 • b 3 , 2 3 • c 1 , 1 3 • c 2 , 1 2 • c 3 , x 1 2 3 ⌘ = P 1 (a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , x), (22) 
where λ, 1 , 2 and 3 are arbitrary complex numbers. A demonstration of these symmetryinvariance relations ( 21) and ( 22) is sketched in appendix A.

A symmetric subcase

⌧ ! 3 ⌧ : 2 F 1 ([1/3, 2/3], [1], P)
2.6.1. A few recalls on Maier's paper. We know from Maier [23] that the modular equation associated with 12⌧ ! 3⌧ corresponds to the elimination of the z variable between the two rational pullbacks:

P 1 (z) = 12 3 • z 3 (z + 27) • (z + 243) 3 , P 2 (z) = 12 3 • z (z + 27) • (z + 3) 3 . ( 23 
)
Following Maier [23] one can also write the identities:

⇣ 9 • ⇣ z + 27 z + 243 ⌘⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], 1728 z 3 (z + 27) • (z + 243) 3 ⌘ = ⇣ 1 9 • ⇣ z + 27 z + 3 ⌘⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], 1728 z (z + 27) • (z + 3) 3 ⌘ ( 24 
) = 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

z z + 27 ⌘ . ( 25 
)
Having a hypergeometric function identity (24) with two rational pullbacks (23) related by a modular equation provides a good heuristic way to see that we have a modular form [22,23] 13 .

2.6.2. The symmetric subcase. Taking the symmetric limit b 1 = b 2 = b 3 = b and c 1 = c 2 = c 3 = c in expression (13), we obtain the solution of the order-two linear differential operator annihilating the diagonal 14 in the form

1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 4 (x) 2 P 2 (x) 3 ⌘ = 1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x 3 • P 5 (x) P 2 (x) 3 ⌘ , (26) 
with

P 2 (x) = a • (24 • c 3 • x 2 24 • b • (a c b 2 ) • x + a 3 ), (27) 
P 4 (x) = 216 • c 6 • x 4 432 • b c 3 • (a c b 2 ) • x 3 + 36 • (a 3 c 3 + 6 • a 2 b 2 c 2 12 • a b 4 c + 6 • b 6 ) • x 2 36 • a 3 b • (a c b 2 ) • x + a 6 (28) 
and:

P 5 (x) = (27 c 3 x 2 27 b • (a c b 2 ) • x + a 3 ) • (c 3 x b • (a c b 2 )) 3 . (29) 
In this symmetric case, one can write the pullback in (26) as follows:

1728 • x 3 • P 5 (x) P 2 (x) 3 = 12 3 • z 3 (z + 27) • (z + 243) 3 , (30) 
where z reads:

z = 9 3 • x • (c 3 • x b • (a c b 2 )) 27 • c 3 • x 2 27 • b • (a c b 2 ) • x + a 3 . (31) 
Injecting the expression (31) for z in P 2 (z) given by ( 23), one gets another pullback

P 2 (z) = 1728 • x • P5 P2 (x) 3 , (32) 
with

P5 (x) = (27 c 3 x 2 27 b • (a c b 2 ) • x + a 3 ) 3 • (c 3 x b • (a c b 2 )) (33) 
and:

P2 (x) = a • ( 216 • c 3 • x 2 + 216 • b • (a c b 2 ) • x + a 3 ). ( 34 
)
13 Something that is obvious here since we are dealing with a 2 F 1 ([1/12, 5/12], [1], x) hypergeometric function which is known to be related to modular functions [22,23] due to its relation with the Eisenstein series E 4 , but is less clear for other hypergeometric functions. 14 Called the 'telescoper' [30,31].

In this case the diagonal of the rational function can be written as a single hypergeometric function with two different pullbacks

1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x 3 • P 5 (x) P 2 (x) 3 ⌘ = 1 P2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x • P5 (x) P2 (x) 3 ⌘ , (35) 
with the relation between the two pullbacks given by the modular equation associated [22,23] with ⌧ ! 3 ⌧ :

2 27 • 5 9 • Y 3 Z 3 • (Y + Z) + 2 18 • 5 6 • Y 2 Z 2 • (27 Y 2 45 946 YZ + 27 Z 2 ) + 2 9 • 5 3 • 3 5 • YZ • (Y + Z) • (Y 2 + 241 433 YZ + Z 2 ) + 729 • (Y 4 + Z 4 )
779 997 924

• (YZ 3 + Y 3 Z) + 31 949 606 • 3 10 • Y 2 Z 2 + 2 9 • 3 11 • 31 • Y Z • (Y + Z) 2 12
• 3 12 • YZ = 0.

2.6.3. Alternative expression for the symmetric subcase. Alternatively, we can obtain the exact expression of the diagonal using directly the 'HolonomicFunctions' program [28] for arbitrary parameters a, b and c to get an order-two linear differential operator annihilating that diagonal. Then, using ' hypergeometricsols' 15 we obtain that the solution of this second order linear differential operator is given by

1 a • 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

27 a 3 • x • (c 3 x b • (a c b 2 )) ⌘ , (36) 
which looks, at first sight, different from ( 26) with ( 27) and ( 28). Yet this last expression (36) is compatible with the form (26) as a consequence of the identity:

⇣ 9 8 x 9 ⌘ 1/4 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [1], x

⌘ = 2 F 1 ⇣ [ 1 12 , 5 12 
], 64

x 3 • (1 x) (9 8 x) 3 ⌘ . ( 37 
)
The reduction of the (generic) 2 F 1 ([1/12, 5/12], [1], P) hypergeometric function to a 2 F 1 ([1/3, 2/3], [1], P) form corresponds to a selected ⌧ ! 3 ⌧ modular equation situation (23) well described in [23].

These results can also be expressed in terms of 2 F 1 ([1/3, 1/3], [1], P) pullbacked hypergeometric functions [23] using the identities

2 F 1 ⇣ [ 1 3 , 1 3 
], [1],

x) = (1 x) 1/3 • 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

x 1 x ) = ⇣ (1 9 x) 3 • (1 x) ⌘ 1/12 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

64 x (1 9 x) 3 • (1 x) ⌘ , (38) 
or:

2 F 1 ⇣ [ 1 3 , 1 3 
], [1], x

) = ⇣ 1 + x 27 ⌘ 1/3 • 2 F 1 ⇣ [ 27 
], [1],

x x + 27 ⌘ = ⇣ (x + 3) 3 • (x + 27) 729 
⌘ 1/12 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 x (x + 3) 3 • (x + 27) ⌘ . ( 39 
) 2.7. A non-symmetric subcase ⌧ ! 4 ⌧ : 2 F 1 ([1/2, 1/2], [1], P)
Taking the non-symmetric limit b 1 = b 2 = b 3 = b and c 1 = c 2 = 0, c 3 = b 2 /a in (13), the pullback in (26) reads:

P 1 = 1728 • x 3 • P 5 (x) P 2 (x) 3 = 1728 • a 3 b 12 • x 4 • (16 b 3 x + a 3 ) (16 b 6 x 2 + 16 a 3 b 3 x + a 6 ) 3 . (40)
This pullback can be seen as the first of the two Hauptmoduls

P 1 = 1728 • z 4 • (z + 16) (z 2 + 256 z + 4096) 3 , P 2 = 1728 • z • (z + 16) (z 2 + 16 z + 16) 3 , (41) 
provided z is given by 16 :

z = 256 b 3 x a 3 or: z = 256 b 3 • x a 3 + 16 b 3 x . ( 42 
)
These exact expressions (42) of z in terms of x give exact rational expressions of the second Hauptmodul P 2 in terms of x:

P (1) 2 = 1728 • a 12 b 3 • x • (a 3 + 16 b 3 x) 4 (4096 b 6 x 2 + 256 a 3 b 3 x + a 6 ) 3 or: (43) 
P (2) 2 = 1728 • a 3 b 3 • x • (a 3 + 16 b 3 x) 4 (256 b 6 x 2 224 a 3 b 3 x + a 6 ) 3 . (44) 
These two pullbacks ( 40), ( 43) and ( 44) (or P 1 and P 2 in ( 41)) are related by a modular equation corresponding 17 to ⌧ ! 4 ⌧ . This subcase thus corresponds to the diagonal of the rational function being expressed in terms of a modular form associated to an identity on a hypergeometric function:

(16 b 6 x 2 + 16 a 3 b 3 x + a 6 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

P 1 ⌘ = (4096 b 6 x 2 + 256 a 3 b 3 x + a 6 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], P

⌘ = (256 b 6 x 2 224 a 3 x + a 6 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 (1) 2 
], [1], P

⌘ = 2 F 1 ⇣ [ (2) 2 
], [1],

16 • b 3 a 3 • x ⌘ . ( 45 
)
The last equality is a consequence of the identity:

2 F 1 ⇣ [ 1 2 , 1 2 
], [1],

x 16 ⌘ = 2 • (x 2 + 16 x + 16) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x • (x + 16) (x 2 + 16 x + 16) 3 ⌘ . (46) 
Similarly, the elimination of x between the pullback X = P 1 (given by ( 40)) and

Y = P (1) 2 
gives the same modular equation (representing ⌧ ! 4 ⌧ ) as the elimination of x between the 16 These two expressions are related by the involution z $ 16 z/(z + 16). 17 See page 20 in [22].

pullback X = P 1 (given by ( 40)) and Y = P 2.8. 2 F 1 ([1/4, 3/4], [1], P) subcases: walks in the quarter plane

The diagonal of the rational function

4 4 + 2 • (x + y + z) + 2 • x z + x y , ( 47 
)
is given by the pullbacked hypergeometric function:

⇣ 1 + 3 4 • x 2 ⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

27 x 4 • (x 2 + 1) (3 x 2 + 4) 3 ⌘ = 2 F 1 ⇣ [ 1 4 , 3 4 
], [1], x 2 ), (48) 
which is reminiscent of the hypergeometric series number 5 and 15 in figure 10 of [32]. Such pullbacked hypergeometric function (48) corresponds to the rook walk problems [33][34][35].

Thus the diagonal of the rational function corresponding to the simple rescaling (x, y, z) ! (± p 1 x, ± p 1 y, ± p 1 z) of ( 47) given by

R ± = 4 4 ± 2 p 1 • (x + y + z) 2 • x z x y (49) 
or the diagonal of the rational function

(R + + R )/2 reading 4 • (4 xy 2 xz) y 2 x 2 + 4 x 2 yz + 4 x 2 z 2 + 4 x 2 8 xz + 4 y 2 + 8 yz + 4 z 2 + 16 , (50) 
becomes (as a consequence of identity ( 48)):

⇣ 1 3 4 • x 2 ⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

27 x 4 • (1 x 2 ) (4 3 x 2 ) 3 ⌘ = 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

x 2 ⌘ . ( 51 
)
Though it is not explicitely mentioned in [23] it is worth pointing out that the 2 F 1 ([1/4, 3/4], [1], P) hypergeometric functions can be seen as modular forms corre sponding to identities with two pullbacks related by a modular equation. For example the following identity:

2 F 1 ⇣ [ 1 4 , 3 4 
], [1], x 2 (2 x) 2 ⌘ = ⇣ 2 x 2 • (1 + x) ⌘ 1/2 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

4 x (1 + x) 2 ⌘ , (52) 
where the two rational pullbacks

A = 4 x (1 + x) 2 , B = x 2 (2 x) 2 , ( 53 
)
are related by the asymmetric 18 modular equation:

81 • A 2 B 2 18 A B • (8 B + A) + (A 2 + 80 • A B + 64 B 2 ) 64 B = 0. (54) 
The modular equation ( 54) gives an expansion for B that can be seen as an algebraic series 19 in A:

B = 1 64
A 2 + 5 256

A 3 + 83 4096
A 4 + 163 8192

A 5 + 5013 262 144 A 6 + • • • (55) 
More details are given in appendix C.

2.9. The generic case: modular forms, pullbacked hypergeometric functions with just one rational pullback

The pullbacks of the 2 F 1 hypergeometric functions in the previous sections can be seen as Hauptmoduls [23]. It is only in certain cases like in sections (2.6) or (2.7) that we encounter the situation underlined by Maier [23] of a representation of a modular form as a pullbacked hypergeometric function with two rational pullbacks, related by a modular equation of genus zero.

Examples of modular equations of genus zero with rational pullbacks include for example reductions of the generic 2 F 1 ([1/12, 5/12], [1], P) hypergeometric function to particular hypergeometric functions like [1], P), and also [25] 2 F 1 ([1/6, 5/6], [1], P) (see for instance [36]).

2 F 1 ([1/2, 1/2], [1], P), 2 F 1 ([1/3, 2/3], [1], P), 2 F 1 ([1/4, 3/4],
In the generic situation corresponding to (13) however, we have a single hypergeometric function with two pullbacks A and B

2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

A ⌘ = G • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

B ⌘ , (56) 
with G an algebraic function of x, and where A and B are related by an algebraic modular equation, with one of the pullbacks a rational function given by ( 12) where P 2 (x) and P 4 (x) are given respectively by ( 16) and (17). The two pullbacks A and B are also related by a Schwarzian equation [22,37,38] that can be written in a symmetric way in A and B:

1 72 32 B 2 41 B + 36 B 2 • (B 1) 2 • ⇣ dB dx ⌘ 2 + {B, x} = 1 72 32 A 2 41 A + 36 A 2 • (A 1) 2 • ⇣ dA dx ⌘ 2 + {A, x}. (57) 
One can rewrite the exact expression (13) in the form

1 P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 4 (x) 2 P 2 (x) 3 ⌘ = B • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], B ⌘ , ( 58 
)
18 At first sight one expects the two pullbacks (53) in a relation like (54) to be on the same footing, the modular equation between these two pullbacks being symmetric: see for instance [22]. This paradox is explained in detail in appendix C 19 We discard the other root expansion B = 1

+ A + 5 4 A 2 + 25 16 A 3 + 31 16 A 4 + • • • since B(0) 6 = 0.
where B is an algebraic function of x, and B is an algebraic pullback related to the rational pullback A = 1 P 4 (x) 2 /P 2 (x) 3 by a modular equation. In the generic case, only one of the two pullbacks (58) can be expressed as a rational function of x.

Nine and ten-parameter generalizations

Adding randomly terms in the denominator of (7) yields diagonals annihilated by minimal linear differential operators of order higher than two: this is what happens when quadratic terms like x 2 , y 2 or z 2 are added for example. This leads to irreducible telescopers [30,31] (i.e. linear differential operators annihilating the diagonals) of orders higher than two, or to reducible telescopers [30] that factor into several irreducible factors, one of them being of order larger than two.

With the idea of keeping the linear differential operators annihilating the diagonal of order two, we were able to generalize the seven-parameter family (7) by carefully choosing the terms added to the quadratic terms in (7) and still keep the linear differential operator annihilating the diagonal of order two.

3.1. Nine-parameter rational functions giving pullbacked 2 F 1 hypergeometric functions for their diagonals Adding the two cubic terms x 2 y and y z 2 to the denominator of ( 7)

1 a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y + d x 2 y + e y z 2 , (59) 
gives a linear differential operator annihilating the diagonal of ( 59) of order two 20 . After computing the second order linear differential operator annihilating the diagonal of ( 59) for several values of the parameters with the 'HolonomicFunctions' program [28], then obtaining their pullbacked hypergeometric solutions using the maple command 'hypergeometricsols' [29], we find that the diagonal of the rational function (59) has the form

1 P 4 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 6 (x) 2 P 4 (x) 3 ⌘ , (60) 
where P 4 (x) and P 6 (x) are two polynomials of degree four and six respectively 21 :

P 4 (x) = p 2 + 16 • d 2 • e 2 • x 4 16 • ⇣ 3 • c 2 • (c 2 1 • d + c 2 3 • e) + (b 1 c 1 + b 3 c 3 14 b 2 c 2 ) • d e ⌘ • x 3 + 8 • (3 a b 3 c 1 d + 3 a b 1 c 3 e a 2 d e 6 b 2 b 2 3 d 6 b 2 b 2 1 e) • x 2 , (61) 
and

P 6 (x) = p 4 12 • a 4 d e • x 2 + 36 • a 2 ⇣ b 3 • (a c 1 2 b 2 b 3 ) • d + b 1 • (a c 3 2 b 1 b 2 ) • e ⌘ • x 2 72 • a c 1 • (a c 1 c 2 10 b 2 b 3 c 2 + 2 b 2 3 c 3 ) • d • x 3 72 • a c 3 • (a c 2 c 3 10 b 1 b 2 c 2 + 2 b 2 1 c 1 ) • e • x 3 144 • b 2 b 2 3 • (b 1 c 1 + 4 b 2 c 2 2 b 3 c 3 ) • d • x 3 144 • b 2 b 2 1 • (b 3 c 3 + 4 b 2 c 2 2 b 1 c 1 ) • e • x 3 144 • a b 1 b 3 • (c 2 1 • d + c 2 3 • e) • x 3 + 24 • a (a b 3 c 3 + a b 1 c 1 20 a b 2 c 2 + 30 b 1 b 2 b 3 ) • d • e • x 3 + 216 • (b 2 3 c 2 1 • d 2 + b 2 1 c 2 3 • e 2 ) • x 4 144 • c 2 1 c 2 • (b 3 c 3 + 4 b 2 c 2 2 b 1 c 1 ) • d • x 4 144 • c 2 3 c 2 • (b 1 c 1 + 4 b 2 c 2 2 b 3 c 3 ) • e • x 4 + 48 • a 2 d 2 • e 2 • x 4 + 96 • (b 2 1 c 2 1 + b 2 3 c 2 3 + 22 b 2 2 c 2 2 ) • d • e • x 4 144 • ⇣ (a b 3 c 1 + 4 b 2 b 2 3 ) • d + (a b 1 c 3 + 4 b 2 b 2 1 ) • e ⌘ • d • e • x 4 + 48 • (b 1 b 3 c 1 c 3 + 15 a c 1 c 2 c 3 20 b 1 b 2 c 1 c 2 20 b 2 b 3 c 2 c 3 ) • d • e • x 4 + 96 • (b 1 c 1 + 22 b 2 c 2 + b 3 c 3 ) • d 2 • e 2 • x 5 576 c 2 • (c 2 3 • e + c 2 1 • d) • d e • x 5 64 • d 3 • e 3 • x 6 , (62) 
where the polynomials p 2 and p 4 are the polynomials P 2 (x) and P 4 (x) of degree two and four in x given by ( 16) and ( 17) in section 2: p 2 and p 4 correspond to the d = e = 0 limit. It is worth pointing out two facts, firstly that the d $ e symmetry corresponds to keeping c 2 fixed, but changing c 1 $ c 3 (or equivalently y fixed, x $ z), secondly that the simple symmetry arguments displayed in section 2.5 for the seven-parameter family straightforwardly generalize for this nine-parameter family (see relations (A.6) and (A.7) in appendix A.3).

Ten-parameter rational functions giving pullbacked 2 F 1 hypergeometric functions for their diagonals

Adding the three cubic terms 22 x 2 y, y 2 z and z 2 x to the denominator of (7) we get the rational function:

R(x, y, z) = 1 a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y + d 1 x 2 y + d 2 y 2 z + d 3 z 2 x .
(63) Note that ( 63) is not a generalization of (59).

After computing the second order linear differential operator annihilating the diagonal of ( 63) for several values of the parameters with the 'HolonomicFunctions' program [28], then their pullbacked hypergeometric solutions using 'hypergeometricsols' [29], we find that the diagonal of the rational function (63) has the experimentally observed form: 22 An equivalent family of ten-parameter rational functions amounts to adding x y 2 , y z 2 and z x 2 .

1 P 3 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1

P 6 (x) 2 P 3 (x) 3 ⌘ . ( 64 
)
Furthermore, the pullback in ( 64) is seen to be of the form:

1 P 6 (x) 2 P 3 (x) 3 = 1728 x 3 • P 9 P 3 (x) 3 . ( 65 
)
The polynomial P 3 (x) reads

P 3 (x) = p 2 24 • ⇣ 9 • a • d 1 d 2 d 3 6 • (b 1 c 3 • d 2 d 3 + b 2 c 1 • d 1 d 3 + b 3 c 2 • d 1 d 2 ) + 2 • (c 2 1 c 2 d 1 + c 1 c 2 3 d 3 + c 2 2 c 3 d 2 ) ⌘ • x 3 + 24 • ⇣ a • (b 1 c 2 d 2 + b 2 c 3 d 3 + b 3 c 1 d 1 ) 2 • (b 2 1 b 3 d 2 + b 1 b 2 2 d 3 + b 2 b 2 3 d 1 ) ⌘ • x 2 , ( 66 
)
where p 2 is the polynomial P 2 (x) of degree two in x given by ( 16) in section 2: p 2 corresponds to the d 1 = d 2 = d 3 = 0 limit. The expression of the polynomial P 6 (x) is more involved. It reads 23 :

P 6 (x) = p 4 + 6 (x), (67) 
where p 4 is the polynomial P 4 (x) of degree four in x given by ( 17) in section 2. The expression of polynomial 6 (x) of degree six in x is quite large and is given in appendix D.

A set of results and subcases (sections 3.2.2 and 3.2.3), were used to 'guess' the general exact expressions of the polynomials P 3 (x) and P 6 (x) in ( 64) for the ten-parameters family (63). From the subcase d 3 = 0 of section 3.2.1 below, it is easy to see that one can deduce similar exact results for d 1 = 0 or d 2 = 0 by performing the cyclic transformation

x ! y ! z ! x corresponding to the transformation b 1 ! b 2 ! b 3 ! b 1 , c 1 ! c 2 ! c 3 ! c 1 , d 1 ! d 2 ! d 3 ! d 1 .
So one can see P 3 and P 6 (x) as the polynomials p 2 and p 4 given by ( 16) and ( 17) with corrections terms given, in appendix E, by (E.1) and (E.2) for d 3 = 0. Similar corrections 24 for d 1 = 0 and d 2 = 0, as well as correction terms having the form d 1 d 2 d 3 ⇥ ( • • • ), and so on and so forth, these terms being the most difficult to obtain 25 .

Similarly to the previous section the symmetry arguments displayed in section 2.5 for the seven-parameter family also apply to this ten-parameter family (see (A.8) and (A.9) in appendix A.3).

Remark. Do note that adding arbitrary sets of cubic terms yields telescopers [30,31] of order larger than two: the corresponding diagonals are no longer pullbacked 2 F 1 hypergeometric functions.

Let us just now focus on simpler subcases whose results are easier to obtain than in the general case (63). 63): a nine-parameter rational function. Instead of adding three cubic terms, let us add two cubic terms. This amounts to restricting the rational function (63) to the

Subcase of (

d 3 = 0 subcase 1 a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y + d 1 x 2 y + d 2 y 2 z , (68) 
which cannot be reduced to the nine parameter family (59) even if it looks similar. The diagonal of the rational function (68) has the experimentally observed form

1 P 3 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1

P 5 (x) 2 P 3 (x) 3 ⌘ , ( 69 
)
where P 3 (x) and P 5 (x) are two polynomials of degree respectively three and five in x. Furthermore the pullback in (69) has the form:

1 P 5 (x) 2 P 3 (x) 3 = 1728 x 3 • P 7 P 3 (x) 3 . ( 70 
)
The two polynomials P 3 (x) and P 5 (x) are given in appendix E.

3.2.2. Cubic terms subcase of (63). Taking the limit 63) we obtain:

b 1 = b 2 = b 3 = c 1 = c 2 = c 3 = 0 in (
R(x, y, z) = 1 a + d 1 • x 2 y + d 2 • y 2 z + d 3 • z 2 x , whose diagonal reads 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

27 • d 1 d 2 d 3 a 3 • x 3 ⌘ = ⇣ 1 216 • d 1 d 2 d 3 a 3 • x 3 ⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 6 (x) 2 P 3 (x) 3 ⌘ , (71) 
with:

P 3 (x) = 216 • a d 1 d 2 d 3 • x 3 + a 4 , (72) 
P 6 (x) = 5832 • d 2 1 d 2 2 d 2 3 • x 6 + 540 • a 3 d 1 d 2 d 3 • x 3 + a 6 . ( 73 
)
3.2.3. A symmetric subcase of (63). Taking the limit symmetric limit (63), the diagonal reads26 

b 1 = b 2 = b 3 = b, c 1 = c 2 = c 3 = c, d 1 = d 2 = d 3 = d in
1 a 6 d • x • 2 F 1 ⇣ [ 1 3 , 2 3 ], [1], P ⌘ , (74) 
where the pullback P reads:

P = 27 x • ⇣ a 2 d a b c + b 3 + (c 3 3 b c d 3 a d 2 ) • x + 9 d 3 • x 2 ⌘ (a 6 d • x) 3 . ( 75 
)
At first sight the hypergeometric result [START_REF] Sijsling | On computing Belyi maps Publications[END_REF] with the pullback [START_REF] Vidunas | Computation of highly ramified coverings[END_REF] does not seem to be in agreement with the hypergeometric result (71) of section 3.2.2. In fact these two results are in agreement as a consequence of the hypergeometric identity:

1 1 6 X • 2 F 1 ⇣ [ 1 3 , 2 3 ], [1], 27 • X • (1 3 X + 9 X 2 ) (1 6 X) 3 ⌘ = 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

27 • X 3 ⌘ with: X = d • x a . ( 76 
)
This hypergeometric result (71) can also be rewritten in the form (64) where the two polynomials P 3 (x) and P 6 (x) read respectively:

P 3 (x) = 72 • d • (3 ad 2 6 bcd + 2 c 3 ) • x 3 + 24 • (3 abc d + ac 3 6 b 3 d) • x 2 24 • a b • (ac b 2 ) • x + a 4 , (77) 
P 6 (x) = 5832 • d 6 • x 6 + 3888 • c d 3 • (3 b d c 2 ) • x 5 216 • (18 abc d 3 + 18 b 3 d 3 12 ac 3 d 2 9 b 2 c 2 d 2 + 6 bc 4 d c 6 ) • x 4 + 108 • (5 a 3 d 3 18 a 2 bc d 2 2 a 2 c 3 d + 12 ab 2 c 2 d + 24 ab 3 d 2 4 a bc 4 12 b 4 c d + 4 b 3 c 3 ) • x 3 + 36 • (3 a 3 bc d 6 a 2 b 3 d + a 3 c 3 + 6 a 2 b 2 c 2 12 ab 4 c + 6 b 6 ) • x 2 36 • a 3 b • (ac b 2 ) • x + a 6 .
(78)

Transformation symmetries of the diagonals of rational functions

The previous results can be expanded through symmetry considerations: performing monomial transformations on each of the previous (seven, nine or ten-parameter) rational functions yields an infinite number of rational functions whose diagonals are pullbacked 2 F 1 hypergeometric functions.

4.1. (x, y , z) ! (x n , y n , z n ) symmetries
We have a first remark: once we have an exact result for a diagonal, we immediately get another diagonal by changing (x, y, z) into (x n , y n , z n ) for any positive integer n in the rational function. As a result we obtain a new expression for the diagonal changing x into x n .

A simple example amounts to revisiting the fact that the diagonal of (49) given above is the hypergeometric function (51). Changing (x, y, z) into (8 x 2 , 8 y 2 , 8 z 2 ) in ( 49), one obtains the pullbacked 2 F 1 hypergeometric function number 5 or 15 in figure 10 of [32] (see also [33][34][35])

2 F 1 ⇣ [ 1 4 , 3 4 
], [1], 64 x 4 ), [START_REF] Harnad | Picard-Fuchs equations[END_REF] can be seen as the diagonal of

2 2 + 8 p 1 • (x 2 + y 2 + z 2 ) 64 x 2 z 2 32 • x 2 y 2 , (80) 
which is tantamount to saying that the transformation (x, y, z) ! (x n , y n , z n ) is a symmetry.

Monomial transformations on rational functions

More generally, let us consider the monomial transformation

(x, y, z) ! M(x, y, z) = (x M , y M , z M ) = ⇣ x A1 • y A2 • z A3 , x B1 • y B2 • z B3 , x C1 • y C2 • z C3 ⌘ , (81) 
where the A i 's, B i 's and C i 's are positive integers such that A 1 = A 2 = A 3 is excluded (as well as

B 1 = B 2 = B 3 as well as C 1 = C 2 = C 3 )
, where the determinant of the 3 ⇥ 3 matrix 2 6 6 4

A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 3 7 7 5 , (82) 
is not equal to zero 27 , and where:

A 1 + B 1 + C 1 = A 2 + B 2 + C 2 = A 3 + B 3 + C 3 . (83) 
We will denote by n the integer in these three equal 28 sums [START_REF] Gorska | Lé vy stable distributions via associated integral transform[END_REF]: 83) is introduced in order to force the product 29 of x M y M z M to be an integer power of the product of x y z: x M y M z M = (x y z) n . If we take a rational function R(x, y, z) in three variables and perform a monomial transformation (81) (x, y, z) ! M(x, y, z), on the rational function R(x, y, z), we get another rational function that we denote by R = R(M(x, y, z)). Now the diagonal of R is the diagonal of R(x, y, z) where we have changed x into x n :

n = A i + B i + C i . The con- dition (
(x) = Diag ⇣ R ⇣ x, y, z ⌘⌘ , Diag ⇣ R⇣ x, y, z ⌘⌘ = (x n ). (84) 
A demonstration of this result is sketched in appendix F. From the fact that the diagonal of the rational function

1 1 + x + y + z + 3 • (x y + y z + x z) , (85) 
is the hypergeometric function

2 F 1 ⇣ [ 1 3 , 2 3 ], [1], 27 x • (2 27 x) ⌘ , (86) 
one deduces for example that the diagonal of the rational function [START_REF] Boukraa | Holonomy of the Ising model form factors[END_REF] transformed by the monomial transformation (x, y, z) ! (z, x 2 y, y z)

1 1 + y z + x 2 y + 3 • (y z 2 + x 2 y z + x 2 y 2 z) , ( 87 
)
is the pullbacked hypergeometric function

2 F 1 ⇣ [ 1 3 , 2 3 
], [1], 27

x 2 • (2 27 x 2 ) ⌘ , (88) 
which is (86) where x ! x 2 .

To illustrate the point further, from the fact that the diagonal of the rational function

1 1 + x + y + z + 3 x y + 5 y z + 7 x z , ( 89 
)
is the hypergeometric function

1 (2712 x 2 96 x + 1) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1 (2381 400 x 4 181 440 x 3 + 7524 x 2 144 x + 1) 2 (2712

x 2 96 x + 1) 3 ⌘ , (90) 
one deduces immediately that the diagonal of the rational function (89) transformed by the monomial transformation (x, y, z) ! (x z, x 2 y, y 2 z 2 )

1 1 + x z + x 2 y + y 2 z 2 + 3 x 2 y 3 + 5 x y 2 z 3 + 7 x 3 y z , ( 91 
)
is the hypergeometric function

1 (2712 x 6 96 x 3 + 1) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1 (2381 400 x 12 181 440 x 9 + 7524 x 6 144 x 3 + 1) 2 (2712

x 6 96 x 3 + 1) 3 ⌘ , (92) 
which is nothing but (90) where x has been changed into x 3 .

More symmetries on diagonals

Other transformation symmetries of the diagonals include the function dependent rescaling transformation

(x, y, z) ! ⇣ F(x y z) • x, F(x y z) • y, F(x y z) • z ⌘ , (93) 
where F(x y z) is a rational function 30 of the product of the three variables x, y and z. Under such a transformation the previous diagonal (x) becomes (x • F(x) 3 ).

To illustrate the point take

(x, y, z) ! ⇣ x • F, y • F, z • F ⌘ , with: (94) 
F = 1 + 2 x y z 1 + 3 x y z + 5 x 2 y 2 z 2 = (x y z), (95) 
where:

(x) = 1 + 2 x 1 + 3 x + 5 x 2 ,
(96) the rational function

1 1 + x + y + z + y z + x z + x y , ( 97 
) whose diagonal is 2 F 1 ([1/3, 2/3], [1], 27 x 2 )
, becomes the rational function P(x, y, z)/Q(x, y, z), where the numerator P(x, y, z) and the denominator Q(x, y, z), read respectively:

P(x, y, z) = (1 + 3 x y z + 5 x 2 y 2 z 2 ) 2 , (98) 
Q(x, y, z) = 25 x 4 y 4 z 4 + 10 • (x 4 y 3 z 3 + x 3 y 4 z 3 + x 3 y 3 z 4 ) + 30 x 3 y 3 z 3

+ 4 • (x 3 y 3 z 2 + x 3 y 2 z 3 + x 2 y 3 z 3 ) + 11 • (x 3 y 2 z 2 + x 2 y 3 z 2 + x 2 y 2 z 3 ) + 19 x 2 y 2 z 2 + 4 • (x 2 y 2 z + x 2 yz 2 + xy 2 z 2 ) + 5 • (x 2 yz + xy 2 z + xyz 2 ) + 6 xyz + xy + xz + yz + x + y + z + 1. (99) 
The diagonal of this last rational function is equal to:

2 F 1 ⇣ [ 1 3 , 2 3 ], [1], 27 • ⇣ x • (x) 3 ⌘ 2 ⌘ = 2 F 1 ⇣ [ 1 3 , 2 3 
], [1], 27

x 2 • ⇣ 1 + 2 x 1 + 3 x + 5 x 2 ⌘ 6 ⌘ . ( 100 
)
Let us give another example: let us consider again the rational function (89) whose diagonal is (90), and let us consider the same function-rescaling transformation (94) with (95). One finds that the diagonal of the rational function

1 1 + F • x + F • y + F • z + 3 • F 2 • x y + 5 • F 2 • y z + 7 • F 2 • x z , ( 101 
)
is the hypergeometric function

1 (2712 x 2 (x) 6 96 x (x) 3 + 1) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 1 H ⌘ , (102) 
where the pullback 1 H reads:

1 (2381 400 x 4 (x) 12 181 440 x 3 (x) 9 + 7524 x 2 (x) 6 144 x (x) 3 + 1) 2 (2712 x 2 (x) 6 96 x (x) 3 + 1) 3 .

The pullbacked hypergeometric function ( 102) is nothing but (90) where x has been changed into x (x) 3 . A demonstration of these results is sketched in appendix G. Thus for each rational function belonging to one of the seven, eight, nine or ten parameter families of rational functions yielding a pullbacked 2 F 1 hypergeometric function, one can deduce from the function dependent rescaling transformations (93) and the monomial transformations (81) as well as through the combination of these two transformations an infinite number of other rational functions, having denominators with a higher degree than three, yielding pullbacked 2 F 1 hypergeometric functions related to modular forms for their diagonals.

Conclusion

We found here that a seven-parameter rational function of three variables with a numerator equal to one and a polynomial denominator of degree two at most, can be expressed as a pullbacked 2 F 1 hypergeometric function. We then generalized that result to nine and ten parameters, by adding specific cubic terms. We focused on subcases where the diagonals of the corresponding rational functions are pullbacked 2 F 1 hypergeometric function with two possible rational function pullbacks algebraically related by modular equations, thus obtaining the result that the diagonal is a modular form 31 .

We have finally seen that monomial transformations, as well as a function rescaling of the three (resp. N) variables, are symmetries of the diagonals of rational functions of three (resp. N) variables. Consequently, each of our previous families of rational functions, once transformed by these symmetries, yields an infinite number of families of rational functions of three variables (of higher degree) whose diagonals are also pullbacked 2 F 1 hypergeometric functions, related to modular forms.

Since diagonals of rational functions emerge naturally in integrable lattice statistical mechanics and enumerative combinatorics, exploring the kind of exact results we obtain for diagonals of rational functions (modular forms, Calabi-Yau operators, pullbacked n F n 1 hypergeometric functions, ...) is an important work to be performed to provide results and tools in integrable lattice statistical mechanics and enumerative combinatorics.

a m, n, p • x m y n z p ! a m, n, p • m 1 • n 2 • p 3 • x m y n z p . (A.2)
Taking the diagonal yields

a m, m, m • x m ! a m, m, m • ( 1 2 3 ) m • x m . (A.3)
Therefore it amounts to changing x ! 1 2 3 • x. With that rescaling (x, y, z) ! ( 1 • x, 2 • y, 3 • z) the diagonal of the rational function remains invariant if one changes the seven parameters as follows:

(a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 ) ! (a, 1 • b 1 , 2 • b 2 , 3 • b 3 , 2 3 • c 1 , 1 3 • c 2 , 1 2 • c 3 ).
(A.4)

One deduces that the pullbacks (20) verify:

P 1 ⇣ a, 1 • b 1 , 2 • b 2 , 3 • b 3 , 2 3 • c 1 , 1 3 • c 2 , 1 2 • c 3 , x 1 2 3 ⌘ = P 1 (a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , x).
(A.5)

A.3. Generalization to nine and ten-parameter families

The previous arguments can also be generalized for the nine and ten-parameter families analysed in sections 3.1 and 3.2.

• The pullback H in ( 60) verifies (as it should)

H ⇣ a, 1 • b 1 , 2 • b 2 , 3 • b 3 , 2 3 • c 1 , 1 3 • c 2 , 1 2 • c 3 , 2 1 2 • d, 2 3 2 • e, x 1 2 3 
⌘ = H(a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d, e, x), (A.6)
and:

H ⇣ • a, • b 1 , • b 2 , • b 3 , • c 1 , • c 2 , • c 3 , • d, • e, x) = H(a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d, e, x). (A.7)
• The H pullback ( 65) in ( 64) verifies (as it should):

H ⇣ a, 1 • b 1 , 2 • b 2 , 3 • b 3 , 2 3 • c 1 , 1 3 • c 2 , 1 2 • c 3 , 2 1 2 • d 1 , 2 2 3 • d 2 , 2 3 1 • d 3 , x 1 2 3 ⌘ = H(a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 , x), (A.8)
and:

H ⇣ • a, • b 1 , • b 2 , • b 3 , • c 1 , • c 2 , • c 3 , • d 1 , • d 2 , • d 3 , x) = H(a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 , x).
(A.9)

825 9 • X 6 Y 6 389 • 11 6 • 5 16 • 3 10 • 2 6 • X 5 Y 5 • (X + Y) + 11 3 • 5 12 • 3 7 • 2 4 • X 4 Y 4 • ⇣ 26 148 290 096 • (X 2 + Y 2 ) 15 599 685 235 • X Y ⌘ 105 955 481 959 • 5 10 • 3 7 • 2 15 • X 3 Y 3 • (X + Y) • (X 2 + Y 2 ) + 503 027 637 092 599 • 5 10 • 3 7 • 2 6 • X 4 Y 4 • (X + Y) + 5 6 • 3 4 • 2 16 • X 2 Y 2 • ⇣ 1634 268 131 • (X 4 + Y 4 ) + 1788 502 080 642 816 • X 2 Y 2
+ 848 096 080 668 355

• (X 3 Y + X Y 3 ) ⌘ 5 4 • 3 4 • 2 22 • X Y • (X + Y) • ⇣ 389 • (X 4 + Y 4 ) + 41 863 592 956 503 • X 2 Y 2 54 605 727 143 • (X 3 Y + X Y 3 ) ⌘ + 2 24 • ⇣ X 6 + Y 6 + 561 444 609 • (X 5 Y + X Y 5 ) + 1425 220 456 750 080 • (X 4 Y 2 + X 2 Y 4 ) + 2729 942 049 541 120 • X 3 Y 3 ⌘ 5 • 3 7 • 2 34 • X Y • (X + Y) • (391 X 2 12 495 392 X Y + 391 Y 2 ) + 31 • 3 7 • 2 40 • X Y • (X + 2 Y) • (2 X + Y) 3 9 • 2 42 • X Y • (X + Y) = 0. (B.1)
Instead of identities on 2 F 1 ([1/12, 5/12], [1], P) hypergeometric functions like (45), one can consider directly identities on 2 F 1 ([1/2, 1/2], [1], P) hypergeometric functions. One has for instance the following identity:

2 F 1 ⇣ [ 1 2 , 1 2 
], [1],

8 x • (1 + x 2 ) (1 + x) 4 ⌘ = (1 + x) 2 • 2 F 1 ⇣ [ 1 2 , 1 2 
], [1],

x 4 ⌘ . (B.2) Denoting A = 8 x • (1 + x 2 ) (1 + x) 4 , B = x 4 , (B.3)
the two pullbacks in (B.2), one has the following asymmetric modular equation (of the ⌧ ! 4 ⌧ type [22]) between these two pullbacks (B.3):

A 4 B 4 4 A 4 B 3 + 6 A 3 B 2 • (A + 128 B) 4 A 2 B • (A 2 640 AB + 1216 B 2 ) + A • (A 3 + 768 A 2 B + 5632 AB 2 + 8192 B 3 ) 256 B • (19 A 2 + 64 AB + 16 B 2 ) + 8192 B • (A + B) 4096 B = 0. (B.4)
Note that changing B ! 1 B the previous algebraic equation becomes a symmetric modular equation:

A 4 B 4 768 A 3 B 3 + 4864 (A 3 B 2 + A 2 B 3 ) 8960 A 2 B 2 8192 (A 3 B + A B 3 ) + 4096 (A 3 + B 3 ) + 8192 (A 2 B + A B 2 ) 4096 (A 2 + B 2 ) = 0. (B.5)
As far as representations of ⌧ ! 4 ⌧ isogenies, the modular equations (B.4) and (B.5) are clearly much simpler than (B.1).

Appendix C. 2 F 1 ([1/4, 3/4], [1], P) hypergeometric as modular forms

C.1. 2 F 1 ([1/4, 3/4], [1], P) identities
Let us focus on the 2 F 1 ([1/4, 3/4], [1], P) hypergeometric function:

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

x ⌘ = (1 + 3 x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], 27 x • (1 x) 2 (1 + 3 x) 3 ⌘ . (C.1)
The emergence of 2 F 1 ([1/4, 3/4], [1], P) hypergeometric functions in physics, walk problems in the quarter of a plane [33][34][35] in enumerative combinatorics, or in interesting subcases of diagonals (see section 2.8), raises the question if 2 F 1 ([1/4, 3/4], [1], P) should be seen as associated to the isogenies [22] ⌧ ! 2 ⌧ or ⌧ ! 4 ⌧ . The identity

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

64 x 2 ⌘ = (1 + 8 x) 1/2 • 2 F 1 ⇣ [ 1 2 , 1 2 
], [1],

16 x 1 + 8 x ⌘ , (C.2)
or equivalently

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

⇣ x 2 x ⌘ 2 ⌘ = ⇣ 2 x 2 ⌘ 1/2 • 2 F 1 ⇣ [ 1 2 , 1 2 
], [1], x ⌘ , (C.3) seems to relate 2 F 1 ([1/4, 3/4], [1], P) to 2 F 1 ([1/2, 1/2], [1],
x), and thus seems to relate

2 F 1 ([1/4, 3/4], [1], P) rather ⌧ ! 4
⌧ . Yet things are more subtle. Let us see how 2 F 1 ([1/4, 3/4], [1], P) can be described as a modular form corresponding to pullbacked 2 F 1 ([1/4, 3/4], [1], P) hypergeometric functions with two different rational pullbacks. For instance, one deduces from (B.2) combined with (C.3), several identities on the hypergeometric function 2 F 1 ([1/4, 3/4], [1], P) like

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

x 2 (2 x) 2 ⌘ = ⇣ 2 x 2 • (1 2 x) ⌘ 1/2 • 2 F 1 ⇣ [ 1 4 , 3 4 ], [1], 4 • x • (1 x) (1 2 x) 2 ⌘ , (C.4) or 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

x 2 (2 x) 2 ⌘ = ⇣ 2 x 2 • (1 + x) ⌘ 1/2 • 2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

4 x (1 + x) 2 ⌘ (C.5)
and thus:

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

4 x (1 + x) 2 ⌘ = ⇣ 1 + x 1 2 x ⌘ 1/2 • 2 F 1 ⇣ [ 1 4 , 3 4 ], [1], 4 • x • (1 x) (1 2 x) 2 ⌘ . (C.6) C.2

. Schwarzian equations

Recalling the viewpoint developed in our previous paper [22] these identities can be seen to be of the form

2 F 1 ⇣ [ 1 4 , 3 4 
], [1],

B ⌘ = G • 2 F 1 ⇣ [ 1 4 , 3 4 
], [1], A ⌘ ,
where G is some algebraic factor. The important result of [22] is that after elimination of the algebraic factor G one finds that the two pullbacks A and B verify the following Schwarzian equation:

1 8 3 A 2 3 A + 4 A 2 (A 1) 2 + 1 8 3 B 2 3 B + 4 B 2 (B 1) 2 • ⇣ dB dA ⌘ 2 + {B, A} = 0,
(C.7) where {B, A} denotes the Schwarzian derivative. Do note that 2 F 1 ([1/4, 3/4], [1], P) is a selected hypergeometric function since the rational function in the Schwarzian derivative (C.7)

W(A) = 1 8 3 A 2 3 A + 4 A 2 • (A 1) 2 , (C.8) is invariant under the A ! 1 A transformation: W(A) = W(1 A).
This Schwarzian equation can be written in a more symmetric way between A and B, namely:

1 8 3 B 2 3 B + 4 B 2 (B 1) 2 • ⇣ dB dx ⌘ 2 + {B, x} = 1 8 3 A 2 3 A + 4 A 2 (A 1) 2 • ⇣ dA dx ⌘ 2 + {A, x}. (C.9)
Let us denote ⇢(x) the rational function of the LHS or the RHS of equality (C.9). For the two identities (C.4) and (52), this rational function is (of course 32 ) the same rational function, namely

⇢(x) = 1 2 • x 2 x + 1 x • (x 1) 2 . (C.10)
Let us consider the first two identities (C.4) and ( 52), denoting by A and B the corresponding pullbacks:

A = 4 • x • (1 x) (1 2 x) 2 ,
or:

4 x (1 + x) 2 , B = x 2 (2 x) 2 .
(C.11)

These two pullbacks are related by the asymmetric modular equation:

81 • A 2 B 2 18 A B • (8 B + A) + (A 2 + 80 • A B + 64 B 2 ) 64 B = 0 (C.12)
giving the following expansion for B seen as an algebraic series 33 in A:

B = 1 64
A 2 + 5 256

A 3 + 83 4096
A 4 + 163 8192 32 Since these identities share one pullback. 33 We discard the other root expansion

A 5 + 5013 262 144 A 6 + • • • (C.13)
B = 1 + A + 5 4 A 2 + 25 16 A 3 + 31 16 A 4 + • • •
Such an algebraic series is clearly34 a ⌧ ! 2 ⌧ (or q ! q 2 in the nome q) isogeny [22]. The modular curve (C.12) is unpleasantly asymmetric: the two pullbacks are not on the same footing. Note however, that using the A $ 1 A symmetry (see (C.8)) on the Schwarzian equation (C.9), and changing A ! 1 A in the asymmetric modular curve (54), one gets the symmetric modular curve:

81 • A 2 B 2 18 • (A 2 B + A B 2 ) + A 2 44 A B + B 2 2 • (A + B) + 1 = 0. (C.14)
Changing B ! 1 B in the asymmetric modular curve (54), one also gets another symmetric modular curve:

81 • A 2 B 2 144 • (A 2 B + A B 2 ) + 208 A B + 64 • (A 2 + B 2 A B) = 0.
(C.15)

The two pullbacks for (C.15) read:

A = 4 x (1 + x) 2 , B = 4 • (1 x) (2 x) 2 . (C.16)
The price to pay to restore the symmetry between the two pullbacks (C. 16) is that the corresponding pullbacks do not yield hypergeometric identities expandable for x small. Finally, the identity (C.6) corresponds to a symmetric relation between these two-pullbacks which reads:

81 • C 2 D 2 144 • (C 2 D + CD 2 ) + 16 • (4 C 2 + 13 C D + 4 D 2 ) 64 • (C + D) = 0.
(C.17)

The corresponding series expansion 

D = C 5 
+ • • • (C.18)
is an involutive series.

Appendix D. Exact expression of polynomial P 6 for the ten-parameter rational function (63)

The diagonal of the ten-parameters rational function ( 63) is the pullbacked hypergeometric function

1 P 3 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1 P 6 (x) 2 P 3 (x) 3
⌘ , (D.1) where P 3 (x) is given by ( 66) and P 6 (x) is a polynomial of degree six in x of the form

P 6 (x) = p 4 + 6 (x), (D.2)
where p 4 is the polynomial P 4 (x) given by ( 17) in section 2, and where 6 (x) is the following polynomial of degree six in x:

R⇣ x, y, z ⌘ = 1 X M1 = 0 1 X M2 = 0 1 X M3 = 0 RM1, M2 M3 • x M1 • y M2 • z M3 = 1 X m1 = 0 1 X m2 = 0 1 X m3 = 0 R m1, m2 m3 • ⇣ x A1 y A2 z A3 ⌘ m1 ⇣ x B1 y B2 z B3 ⌘ m2 ⇣ x C1 y C2 z C3 ⌘ m3 = 1 X m1 = 0 1 X m2 = 0 1 X m3 = 0 R m1, m2 m3 • x M1 • y M2 • z M3
where:

M 1 = A 1 • m 1 + B 1 • m 2 + C 1 • m 3 , (F.3) M 2 = A 2 • m 1 + B 2 • m 2 + C 2 • m 3 , (F.4) M 3 = A 3 • m 1 + B 3 • m 2 + C 3 • m 3 . (F.5)
Taking the diagonal amounts to forcing the exponents m 1 , m 2 and m 3 to be equal. It is easy to see that when condition ( 83) is verified,

m 1 = m 2 = m 3 yields M 1 = M 2 = M 3 .
Conversely if the determinant of ( 82) is not zero it is straightforward to see that the conditions

M 1 = M 2 = M 3 yield m 1 = m 2 = m 3 .
Then if one knows an exact expression for the diagonal of a rational function, the diagonal of this rational function changed by the monomial transformation [START_REF] Penson | On the properties of Laplace transform originating from one-sided Lé vy stable laws[END_REF] reads

Diag ⇣ R⇣ x, y, z ⌘⌘ = 1 X M = 0 RM, M, M • x M = 1 X m = 0 R m, m, m • x n• m = (x n ), (F.6)
and is thus equal to the previous exact expression (x), where we have changed x ! x n , where n is the integer

n = A 1 + B 1 + C 1 = A 2 + B 2 + C 2 = A 3 + B 3 + C 3 .
These monomial symmetries for diagonal of rational functions are not specific of rational functions of three variables: they can be straightforwardly generalized to an arbitrary number of variables.

Appendix G. Rescaling symmetries on diagonals

We sketch the demonstration of the result in section 4.3. One recalls that the diagonal of the rational function of three variables R is defined through its multi-Taylor expansion (for small x, y and z)

R ⇣ x, y, z ⌘ = 1 X m1 = 0 1 X m2 = 0 1 X m3 = 0 R m1, ..., m3 • x m1 • y m2 • z m3 , (G.1)
as the series in one variable x:

(x) = Diag ⇣ R ⇣ x, y, z ⌘⌘ = 1 X m = 0 R m, m, m • x m . (G.2)
The (function rescaling) transformation (93) transforms the multi-Taylor expansion (G.1) into:

R ⇣ x, y, z ⌘ = 1 X m1 = 0 1 X m2 = 0 1 X m3 = 0 R m1, ..., m3 • x m1 • y m2 • z m3 • F(x y z) m1 +m2 +m3 . (G.3)
We assume that the function F(x) has some simple Taylor series expansion. Each time taking the diagonal of (G.3) forces the exponents m 1 , m 2 and m 3 to be equal in the term x m1

• y m2

• z m3 of the multi-Taylor expansion (G.3), one gets a factor F(x y z) m1 +m2 +m3 = F(x y z) 3 m . Consequently, the diagonal of (G.3) becomes:

Diag ⇣ R⇣ x, y, z ⌘⌘ = 1 X m = 0 R m, m, m • x n • F(x) 3 n = Diag ⇣ R ⇣ x, y, z ⌘⌘⇣ x • F(x) 3 ⌘ . (G.4)
Clearly, these function-dependent rescaling symmetries for diagonals of rational functions are not specific of rational functions of three variables: they can be straightforwardly generalized to an arbitrary number of variables.
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Introduction

Diagonals of rational functions naturally emerge in lattice statistical mechanics, enumerative combinatorics, and more generally, in the context of n-fold integrals of theoretical physics [1,2]. In previous papers [3,4,5] we have seen 5 that many diagonals of rational functions were pullbacked 2 F 1 hypergeometric functions 6 that turn out to be related to classical modular forms 7 . Sticking with diagonals of rational functions that are solutions of linear differential operators of order two, it is natural to study diagonals of rational functions that are Heun functions. 4 Author to whom any correspondence should be addressed. 5 These calculations were performed using the creative telescoping program of Koutschan [6]. 6 See [7] equation (6) for a definition of a pullback of a hypergeometric function. 7 In a sense that we define in appendices A and B.

Heun functions emerge in different areas of physics [1,[8][9][10] (see also page 60 of [2]) and enumerative combinatorics: the simple cubic lattice Green function [11] can be written as a Heun function, the eigenvalue equation of the Laplace-Beltrami operator on the Eguchi-Hanson space is given by a Heun equation [12,13]. Heun functions emerging in physics often 8correspond to globally bounded series [1,2], i.e. series that can be recast into series with integer coefficients. Most of the time they turn out to be pullbacked 2 F 1 hypergeometric functions [14] and in fact classical modular forms. In [3] we found diagonals of 'simple' rational functions corresponding to classical modular forms when the operator annihilating the diagonal of the rational function had order two. This leads us here to study the class of Heun functions related to classical modular forms that are diagonals of rational functions 9 . We will discard the case where the Heun functions are almost trivial, their linear differential operators of order two factorising into two linear differential operators of order one [15,16]. In this paper we examine Heun functions, which happen to be either diagonals of simple rational functions [2] in three or four variables, or solutions of 'telescopers'. A telescoper is an operator annihilating an n-fold integral over all possible integration cycles, including evanescent integration cycles which correspond to diagonals of rational functions. More specifically, the 'telescoper' of a rational function, say R(x, y, z), we refer to here, is the output of the creative telescoping program [6], applied to the transformed rational function R = R(x/y, y/z, z)/(yz). Such a telescoper is a differential operator T in x,D x such that T + D y • U + D z • V annihilates R, where U, V are rational functions in x, y, z. In other words, the telescoper T represents a linear ODE that is satisfied by Diag(R). Now the Heun functions examined in this paper fall into one of three categories:

(1) Heun functions that are diagonals of rational functions, having globally bounded series expansions, and can be rewritten as pullbacked hypergeometric functions that are classical modular forms. (2) Heun functions that are diagonals of rational functions, having globally bounded series expansions, and can be rewritten as pullbacked hypergeometric functions that are derivatives of classical modular forms. (3) Heun functions that are solutions of telescopers of rational functions that have series expansions that are not globally bounded and hence cannot be diagonals of rational functions, but are instead solutions of the telescoper 10 . We show that in this case the Heun functions correspond to Shimura automorphic forms.

The Heun function Heun(a, q, ↵, , , , x) is solution of the order-two Heun linear differential operator with four singularities (D x denotes d/dx)

H 2 = D 2 x + ⇣ x + x 1 + ✏ x a ⌘ • D x + ↵ x q x • (x 1) • (x a) , (1) 
where one has the Fuchsian constraint ✏ = ↵ + + 1, where ↵, , , need to be rational numbers, and a is an algebraic number. The parameter q is called the accessory parameter and the ratio q/(↵ ) is called the normalised accessory parameter.

In the first two sections, we examine the Heun functions emerging from diagonals of simple rational functions that fall into the first and second category above, and show how they happen to be related to classical modular forms, or derivatives of classical modular forms, corresponding to pullbacked 2 F 1 hypergeometric functions. These Heun functions turn out to be globally bounded. This leads us to define a criterion in appendix A, that allows us to draw a list of parameters of the Gauss hypergeometric function 2 F 1 ([a, b], [c], x) that correspond to a classical modular form in appendix B. Furthermore, we show in section 2.2 that some of these Heun functions are periods of extremal rational surfaces.

In the third section, we examine the solutions of the telescoper of a rational function, corresponding to a Heun function with a series expansion that is not globally bounded, and we show that this Heun function is related to a specific Shimura curve [17][18][19][20][21][22][23].

Lattice Green functions as diagonals of rational functions

The diagonal of a rational function in n variables R(x 1 , . . . , x n ) = P(x 1 , . . . , x n )/Q(x 1 , . . . , x n ), where P, Q 2 Q[x 1 , . . . , x n ] such that Q(0, . . . , 0) 6 = 0, is defined through its multi-Taylor expansion around (0, . . . , 0):

R ⇣ x 1 , . . . , x n ⌘ = 1 X m1 = 0 • • • 1 X mn = 0 R m1, ..., mn • x m1 1 . . . x mn n , (2) 
as the series in one variable x:

Diag ⇣ R ⇣ x 1 , . . . , x n ⌘⌘ = 1 X m = 0 R m, m, ..., m • x m . ( 3 
)
With this definition in mind, one can see the simple cubic lattice Green function [24] 1

(2 ⇡) 3 • Z 2 ⇡ 0 Z 2 ⇡ 0 Z 2 ⇡ 0 d✓ 1 d✓ 2 d✓ 3 1 x • (cos(✓ 1 ) + cos(✓ 2 ) + cos(✓ 3 )) , (4) 
as the diagonal of the rational function in four variables x, z 1 , z 2 , z 3 :

1 1 x • z 1 z 2 z 3 • ((1 + z 2 1 )/z 1 /2 + (1 + z 2 2 )/z 2 /2 + (1 + z 2 3 )/z 3 /2) = 2 2 x • z 1 z 2 z 3 • (z 1 + 1/z 1 + z 2 + 1/z 2 + z 3 + 1/z 3 ) , ( 5 
)
where the simple lattice Green function is obtained as the diagonal of a four variable rational function through the following substitution: cos(✓ i ) = (1 + z 2 i )/2/z i , i.e. z i = exp(i ✓ i ), and

x ! x • z 1 z 2 z 3 .
The linear differential operator annihilating the diagonal (5), has order three. This operator is the symmetric square11 of a linear differential operator of order two where ✓ is the homogeneous derivative x • d/dx:

9 x 4 • (2 ✓ + 3) • (2 ✓ + 1) 4 x 2 • (10 ✓ 2 + 10 ✓ + 3) + 4 ✓ 2 , ( 6 
)
whose solution is given by a Heun function. Hence, we see that the diagonal of ( 5) reads:

Heun ⇣ 1 9 , 1 12 , 1 4 , 3 4 
, 1,

1 2 , x 2 ⌘ 2 or Heun ⇣ 9, 3 4 , 1 4 , 3 4 
, 1,

1 2 , 9 x 2 ⌘ 2 . ( 7 
)
The Heun function on the right in (7) happens to be a period of an extremal rational curve as can be seen in the work of Doran and Malmendier [25]. These Heun functions 12 in (7) can be rewritten as pullbacked 2 F 1 hypergeometric functions that correspond to classical modular forms as can be seen in example 1 in section 2.1 below 13 .

Diagonals of rational functions in three and four variables, corresponding to Heun functions related to classical modular forms

In the previous section we have mentioned that the rational function whose diagonal is given by the simple cubic lattice is related to modular forms. We will begin by showing this link explicitly in Example 1. In the five other examples we give different rational functions in four variables, some of whom can be found in [27], whose diagonal is given by Heun functions that can be rewritten in terms of Gauss hypergeometric functions related to modular forms. As the reader might guess, the problem of finding rational functions in four variables, whose diagonal is given by Heun functions that can be rewritten in terms of modular forms, is not an easy task!

Diagonals of rational functions corresponding to Heun functions

• Example 1. Let us consider the following rational function in four variables x, y, z and w

R(x, y, z, w) = 1 1 (y + z + w y + x z + w x y + w x z) , (8) 
or the rational function:

R(x, y, z, w) = 1 1 + x y + y z + z w + w x + y w + x z . ( 9 
)
The diagonals of these two rational functions ( 8) and ( 9) have the same series expansion with integer coefficients: 

Diag ⇣ R(x,
The linear differential operator of order three annihilating the series (10) is the symmetric square of a linear differential operator of order two. The diagonal (10), solution of this order-three operator, can be written as:

Heun ⇣ 1 9 , 1 12 , 1 4 , 3 4 , 1, 1 2 
, 4 x

⌘ 2 = (1 4 x) • Heun ⇣ 1 9 , 5 36 , 3 4 , 5 4 , 1, 3 2 , 4 x ⌘ 2 . 
(11) 12 These Heun functions can be alternatively written as Heun ⇣

1 9 , 1 3 , 1, 1, 1, 1, x ⌘ . See appendix A equation (A.12)
in [2] for more details. 13 An example of emergence of modular functions in the context of K3 surfaces through Dedekind's ⌘-functions can be found in section 4 of [26].

The Heun function (11) can be written as a pullbacked 2 F 1 hypergeometric function

Heun ⇣ 1 9 , 1 12 , 1 4 , 3 4 , 1, 1 2 
, 4 x

⌘ = A (1) ± • 2 F 1 ⇣ [ 1 6 , 2 3 
], [1], H

± ⌘ = A (2) ± • 2 F 1 ⇣ [ 1 8 , 5 (1) 
], [1],

H (2) ± ⌘ , ( 12 
)
where the two pullbacks H

± , H

± are square root algebraic functions

H (1) ± = 54 • x • 1 27 x 108 x 2 (1 54 x) 2 ± 54 • x • (1 9 x) • (1 4 x) 1/2 • (1 36 x) 1/2 (1 54 x) 2 , ( 13 
)
H (2) ± = 128 • x • 1 38 x + 200 x 2 (1 100 x) 2 • (1 4 x) ± 128 • x • (1 20 x) • (1 36 x) 1/2 (1 100 x) 2 • (1 4 x) , (14) 
where Y ± = A

(1) ±

12 are simple algebraic functions, respectively solutions of

64 + p 3 (x) • Y + + (1 54 x) 4 • Y 2 + = 0, ( 15 
)
1 + p 3 (x) • Y + 64 • (1 54 x) 4 • Y 2 = 0, (16) 
where

p 3 (x) = 186 624 x 3 15 552 x 2 + 2484 x 65, (17) 
and where Y ± = A

(2) ± 8 are simple algebraic functions, respectively solutions of

81 2 • (41 900 x) • (1 4 x) • Y + + (1 100 x) 2 • (1 4 x) 2 • Y 2 + = 0, ( 18 
)
1 2 • (41 900 x) • (1 4 x) • Y + 81 • (1 100 x) 2 • (1 4 x) 2 • Y 2 = 0. ( 19 
)
The two Hauptmoduls H

± have the following series expansions 

and are related by the genus zero modular equation:

625 A 3 B 3 525 A 2 B 2 • (A + B) 96 AB • (A 2 + B 2 ) 3 A 2 B 2 4 • (A 3 + B 3 ) + 528 • A B • (A + B) 432 • A B = 0. ( 22 
)
• Example 2. The diagonal of the rational function R(x, y, z, w) = 1 1

(w x + y z + w x y + w x z + w y z + x y z) , (23) reads:

Diag ⇣ R(x, y, z, w) ⌘ = 1 + 2 x + 18 x 2 + 164 x 3 + 1810 x 4 + • • • (24) 
The linear differential operator annihilating the diagonal (24) of the rational function (23) has order three:

L 3 = 2 + 60 x (1 40x 444 x 2 ) • D x 3 x • (1 18 x 128 x 2 ) • D 2 x x 2 • (1 + 4 x) • (1 16 x) • D 3 x . ( 25 
)
The operator (25) is the symmetric square of a linear differential operator of order two.

Hence the solution corresponding to the diagonal of ( 23) is given by the square of a Heun function:

Heun ⇣ 1 4 , 1 16 , 3 8 , 5 8 , 1, 1 2 
, 4

x 

⌘ 2 = 1 + 2 x +
This Heun function can be written as a pullbacked 2 F 1 hypergeometric function:

Heun ⇣ 1 4 , 1 16 , 3 8 , 5 8 , 1, 1 2 , 4 x 
⌘ = A ± • 2 F 1 ⇣ [ 1 8 , 3 8 ], [1], H ± ⌘ , (27) 
where A ± and the Hauptmodul H ± are algebraic functions expressed with square roots:

H ± = 128 x • 1 20 x + 50 x 2 + 400 x 3 224 x 4 512 x 5 (1 88 x 112 x 2 256 x 3 ) 2 ± 128 x • (1 + 2 x) (1 12 x) (1 4 x) • (1 + 4 x) 1/2 • (1 16 x) 1/2 (1 88 x 112 x 2 256 x 3 ) 2 . ( 28 
)
These Hauptmoduls (28) are also given by the quadratic relation having genus zero:

(256 x 3 + 112 x 2 + 88 x 1) 2 • H 2 ± 256 • x • (512 x 5 + 224 x 4 400 x 3 50 x 2 + 20 x 1) • H ± + 65 536 x 6 = 0, (29) 
and have the series expansions: 

H = 256 x 39 
The relation between these two Hauptmoduls corresponds to a genus zero q $ q 5 modular equation (q denotes the nome of the operator of order two).

• Example 3. The rational function in four variables: R(x, y, z, w) = 1 1

(y + z + x y + x z + w x y + w x z + w y z) , (31) has a diagonal that reads: 

Diag ⇣ R(x,
The linear differential operator annihilating the diagonal of this rational function is the following linear differential operator of order three, which is the symmetric square of an operator of order two:

x 2 • (1 + x) • (1 27 x) • D 3 x + 3 x • (1 39 x 54 x 2 ) • D 2 x + (1 86 x 186 x 2 ) • D x 4 • (1 + 6 x). ( 33 
)
The operator (33) admits a Heun function that has series expansion with integer coefficients as a solution: 

Heun ⇣ 1 27 , 2 27 , 1 3 , 2 3 , 1, 1 2 , x 
We also have the following series expansion with integer coefficients:

Heun ⇣ 1 27 , 2 27 , 1 3 , 2 3 , 1, 1 2 , x 
⌘ = 1 + 2 x + 22 x 2 + 336 x 3 + 6006 x 4
+ 117 348 x 5 + 2428 272 x 6 + 52 303 680

x 7 + • • • (35) 
The Heun function (35) can be written as a pullbacked 2 F 1 hypergeometric function

Heun ⇣ 1 27 , 2 27 , 1 3 , 2 3 , 1, 1 2 
, x

⌘ = ⇣ 25 80 x 24 • (1 + x) 1/2 • (1 27 x) 1/2 ⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

H + ⌘ , (36) 
where the Hauptmodul H reads:

H ± = 864 • x • (1 21 x + 8 x 2 ) • (1 42 x + 454 x 2 1008 x 3 1280 x 4 ) (1 + 224 x + 448 x 2 ) 3 ± 864 • x • (1 8 x) • (1 2 x) • (1 24 x) • (1 16 x 8 x 2 ) ⇥ (1 + x) 1/2 • (1 27 x) 1/2 (1 + 224 x + 448 x 2 ) 3 . ( 37 
)
The series expansions of these two Hauptmoduls (37) 

These two Hauptmoduls are the two solutions of the quadratic genus zero relation:

1728 2 • x 8 + 1728 • (1 21 x + 8 x 2 ) (1280 x 4 + 1008 x 3 454 x 2 + 42 x 1) • x • H ± + (1 + 224 x + 448 x 2 ) 3 • H 2 ± = 0, (40) 
and the two j-invariants (H ± = 1728/j ± ) are solutions of the quadratic relation:

x 8 • j 2 ± + (1 21 x + 8 x 2 ) (1280 x 4 + 1008 x 3 454 x 2 + 42 x 1) • x • j ± + (1 + 224 x + 448 x 2 ) 3 = 0.
(41) Denoting A = H + and B = H and considering the two (identical) quadratic relations (40) Q(x, A) = 0 and Q(x, B) = 0, one easily gets by performing the resultant between Q(x, A) = 0 and Q(x, B) = 0 in x, and thus eliminating x, the modular equation P(A, B) = 0. One gets a large modular equation of genus zero corresponding to q $ q 7 in the nome q (see ( 38) and ( 39)):

81 600 9 • A 6 B 6 • (343 A 2 + 286 A B + 343 B 2 ) + • • • 2 36 • 3 18 • A B = 0. ( 42 
)
Now the previous Heun function can be written with a different algebraic Hauptmodul H and a different algebraic function A:

Heun ⇣ 1 27 , 2 27 , 1 3 , 2 3 , 1, 1 2 
, x

⌘ = A • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

H ⌘ , ( 43 
)
where this Hauptmodul is solution of the degree six equation:

p 6 (x) 3 • (1 2 x) 6 • H 6 + 3 • 1728 • x 4 • p 20 (x) • (1 2 x) 3 • H 5 1728 2 • x • p 23 (x) • H 4 + 1728 3 • x 3 • p 21 (x) • H 3 + 1728 4 • x 8 • p 16 (x) • H 2 1728 5 • x 10 • p 14 (x) • H + 1728 6 • x 24 = 0, (44) 
where the polynomials p n (x) are polynomials of degree n. Note that the curve ( 44) is a genus one curve. This degree six polynomial equation (44) 

corresponding to q $ q 7 in the nome q. By denoting A and B two Hauptmoduls solutions of degree six of (44), Q 6 (x, A) = 0 and Q 6 (x, B) = 0, one gets by elimination of x through a resultant of Q 6 (x, A) and Q 6 (x, B) in x, the modular equation P(A, B) = 0. Now this modular curve is also a genus one curve. R(x,y,z,w

• Example 4. The rational function in four variables

) = 1 1 (y + z + w z + x y + x z + w x y) , ( 47 
)
has a diagonal whose series expansion reads: 

Diag ⇣ R(x,
The linear differential operator annihilating the diagonal of this rational function (47) has order three:

4 + 96 • x (1 92 • x 864 • x 2 ) • D x 3 x • (1 42 • x 256 • x 2 ) • D 2 x x 2 • (1 + 4 x) • (1 32 x) • D 3 x . ( 49 
)
This order-three linear differential operator is the symmetric square of a linear differential operator of order two, admitting as solution the square of a Heun function, which has a series expansion with integer coefficents:

Heun ⇣ 1 8 , 1 16 , 1 4 , 3 4 , 1, 1 2 
, 4

x

⌘ 2 = 1 + 4 x + 60 x 2 + 1120 x 3 + 24 220 x 4 + 567 504 x 5 + • • • , ( 50 
)
which is related to the Heun function of example 1 through the following relation:

Heun ⇣ 1 8 , 1 16 , 1 4 , 3 4 , 1, 1 2 
, 4

x

⌘ 2 = (1 + 4 x) 1/2 • Heun ⇣ 1 9 , 1 12 , 1 4 , 3 4 , 1, 1 2 
,

4 x 1 + 4 x ⌘ 2 . ( 51 
)
The linear differential operator ( 49) is the symmetric square of a linear differential operator of order two having a pullbacked 2 F 1 hypergeometric function as a solution:

Heun ⇣ 1 8 , 1 16 , 1 4 , 3 4 , 1, 1 2 , 4 x 
⌘ = 1 + 2 x + 28 x 2 + 504 x 3 + 10 710 x 4
+ 248 220 x 5 + 6091 680 x 6 + 155 580 000 x 7 + 4092 325 500

x 8 + • • • = A (1) 
± • 2 F 1 ⇣ [ 1 6 , 2 3 ], [1], H (1) ± 
⌘ = A (2) 
± • 2 F 1 ⇣ [ 1 8 , 5 8 ], [1], H (2) 
± ⌘ , (52) where A 
(1)

± , A (2) 
± and the two Hauptmoduls H

± are square root algebraic functions:

H (1) ± = 54 x • 1 19 x 200 x 2 (1 + 4 x) • (1 50 x) 2 ± 54 • x • (1 32 x) 1/2 • 1 5 x (1 + 4 x) • (1 50 x) 2 . ( 53 
)
The two Hauptmoduls H

± are solutions of the quadratic relation:

(1 + 4 x) • (1 50 x) 2 • H (1) ± 2 108 x • (200 x 2 + 19 x 1) • H (1) ± + 11 664 x 3 = 0. (54) 
The two Hauptmoduls H

± in ( 52) are also square root algebraic functions: 

H (2) ± = 28 • x • 1 30 x + 64 x 2 (1 96 x) 2 ± 28 • x • (1 16 x) • (1 + 4 x) 1/2 • (1 32 x) 1/2 (1 96 x) 2 , (55) and H (2) 
The relation between these last two Hauptmoduls H (2) ± corresponds to a genus zero modular equation:

640 000 • A 2 B 2 • (9 A 2 + 14 A B + 9 B 2 ) + 4800 A B • (A + B) • (A 2 1954 A B + B 2 ) + A 4 + B 4 56 196 A B • (A 2 + B 2 ) + 3512 070 A 2 B 2 + 116 736 • A B • (A + B) 65 536 • A B = 0, (67) 
which is the same modular equation as (62). Now the modular equation ( 22) of example 1, is actually the same as the modular equation ( 67) of example 4! This is a consequence of identity (51). • Example 5. The rational function in four variables

R(x, y, z, w) = 1 1 (y + z + x y + x z + w y + w z + w x z) , (68) 
has a diagonal that reads:

Diag ⇣ R (x, y, z, w) 
⌘ = 1 + 6 x + 114 x 2 + 2940 x 3 + 87 570 x 4 + • • • (69) 
The operator annihilating the diagonal (69) of this rational function in four variables (68) reads:

6 + 12 • x (1 144 • x 108 • x 2 ) • D x x • (3 198 • x 96 • x 2 ) • D 2 x x 2 • (1 44 • x 16 • x 2 ) • D 3 x . (70) 
It is the symmetric square of a linear differential operator of order two which admits a Heun solution analytic at x = 0. Consequently the rational function of order three (70) has a solution that is the square of a Heun function, and admits the series expansion with integer coefficients: 

Heun ⇣ 123 2 + 55 2 • 5 1/2 , 33 8 
+ 15 8 • 5 1/2 , 1 4 , 3 4 , 1, 1 2 , 2 • 
(11 5 • 5 1/2 ) • x ⌘ 2 = 1 + 6 x +
The Heun solution (71) can also be rewritten as a pullbacked 2 F 1 hypergeometric function:

A(x) • 2 F 1 ⇣ [ 1 12 
,

5 12 ], [1], H ⌘ 2 , (72) 
where A(x) is an algebraic function and where the Hauptmodul H is solution of the quadratic relation:

(144 x 2 + 216 x + 1) 3 • H 2 1728 x • (3456 x 5 + 7776 x 4 12 600 x 3 + 1890 x 2 80 x + 1) • H + 2985 984 x 6 = 0. (73) 
The two Hauptmoduls read

H ± = 864 x • (3456 x 5 + 7776 x 4 12 600 x 3 + 1890 x 2 80 x + 1) (144 x 2 + 216 x + 1) 3 ± 864 (1 36 x) • (1 18 x) (1 4 x) x (144 x 2 + 216 x + 1) 3 • (1 44 x 16 x 2 ) 1/2 , (74) 
and admit the respective expansions: 

H + =
These two Hauptmoduls series [START_REF] Sijsling | On computing Belyi maps Publications[END_REF] are related by a genus zero modular equation which admits the following rational parametrization 14 as:

H + = 1728 z (z 2 + 10 z + 5) 3 , H = 1728 z 5 (z 2 + 250 z + 3125) 3 . (76) 
• Example 6. The rational function in four variables

R(x, y, z, w) = 1 1 (y + z + x y + x z + w z + w x y + w x y z) , (77) 
has a diagonal that reads:

Diag ⇣ R (x, y, z, w) 
⌘ = 1 + 5 x + 73 x 2 + 1445 x 3 + 33 001 x 4 + • • • (78) 
The operator annihilating the diagonal of the rational function (77) reads:

L 3 = x 2 • (1 34 x + x 2 ) • D 3 x + 3 x • (1 51 x + 2 x 2 ) • D 2 x + (1 112 x + 7 x 2 ) • D x + x 5. (79) 
It is the symmetric square of an order-two linear differential operator with a Heun solution, analytic at x = 0. Consequently the diagonal of (77), solution of (79), can be written in terms of the square of two Heun functions 15 which have series expansions with integer coefficients:

(1 34 x + x 2 ) ⇥ Heun ⇣ 577 + 408 • 2 1/2 , 663 2 + 234 • 2 1/2 , 3 2 , 3 2 , 1, 3 2 , (17 
+ 12 • 2 1/2 ) • x ⌘ 2 = (1 34 x + x 2 ) ⇥ Heun ⇣ 577 408 • 2 1/2 , 663 2 234 • 2 1/2 , 3 2 , 3 2 , 1, 3 2 , 
(17 12 • 2 1/2 ) • x ⌘ 2 = 1 + 5 x + 73 x 2 + 1445 x 3 + 33 001 x 4 + 819 005 x 5 + 21 460 825 x 6 + • • • (80) 
It can also be written as a pullbacked 2 F 1 hypergeometric function

A • 2 F 1 ⇣ [ 1 3 
,

2 3 ], [1], H ⌘ 2 , (81) 
where the Hauptmodul H ± reads 

H ± = 1 24 x + 30 x 2 + x 3 2 • (1 + x) 3 ± 1 7 x + x 2 2 • (1 + x) 3 • (1 34 x + x 2 ) 1/2 , ( 82 
and where the algebraic factor A reads:

A = 3 2 • 1 x (1 + x) 2 (1 34 x + x 2 ) 1/2 2 • (1 + x) 2 .
(84)

Periods of extremal rational surfaces

The rational function in three variables:

R(x, y, z) = 1 1 + x + y + z + x y + y z x 3 y z , (85) 
has a diagonal given by the following series expansion:

Diag ⇣ R(x, y, z) ⌘ = 1 2 x + 6 x 2 11 x 3 10 x 4 + 273 x 5 1875 x 6
+ 9210 x 7 34 218 x 8 + 78 721 x 9 + 108 581

x 10 + • • • (86) 
In order to find the diagonal of this rational function of three variables, one gets the telescoper annihilating this diagonal using creative telescoping [6]. This telescoper is a linear differential operator of order four L 4 , which is the direct sum of two 16 linear differential operators having order two L 4 = L 2 M 2 . These two operators read respectively

L 2 = (1 + 9 x + 27 x 2 ) • x 2 • D 2 x + (1 + 9 x) 2 • x • D x + 3 x • (1 + 9 x),
and:

M 2 = (1 + 9 x + 27 x 2 ) • (5 + 18 x) • (1 2 x) • x 2 • D 2 x + (5 + 70 x + 261 x 2 756 x 3 2916 x 4 ) • x • D x + x • (1 9 x) • (5 + 60 x + 108 x 2 ). (87) 
The solution of the order-two linear differential operator L 2 has the following Heun function 17solution, analytic at x = 0: 16 These two operators L 2 and M 2 are not homomorphic because they do not have the same singularities.

S 1 = Heun ⇣ 1 2 i p 3 2 , 1 2 i p 3 6 , 1, 1, 1, 1, 3 2 • ⇣ 3 + i p 3 ⌘ • x ⌘ (88)
= 1 3 x + 9 x 2 21 x 3 + 9 x 4 + 297 x 5 2421 x 6 + 12 933

x 7 + • • • (89)
This Heun function (88) can also be written alternatively in terms of other 2 F 1 hypergeometric functions:

Heun ⇣ 1 2 i p 3 2 , 1 2 i p 3 6 , 1, 1, 1, 1, 3 2 • ⇣ 3 + i p 3 ⌘ • x ⌘ = ⇣ 1 1 + 3 x ⌘ 1/4 • ⇣ 1 1 + 9 x + 27 x 2 + 3 x 3 ⌘ 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x 9 • (1 + 9 x + 27 x 2 ) (1 + 3 x) 3 • (1 + 9 x + 27 x 2 + 3 x 3 ) 3 ⌘ (90) = (1 + 9 x) 1/4 • (1 + 243 x + 2187 x 2 + 6561 x 3 ) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x • (1 + 9 x + 27 x 2 ) (1 + 9 x) 3 • (1 + 243 x + 2187 x 2 + 6561 x 3 ) 3 ⌘ . (91)
The modular equation relating the Hauptmoduls of the two Gauss hypergeometric functions in (91) corresponds to q $ q 9 in the nome q (see also tables 4 and 5 in [28]).

The Heun function ( 90) is in fact the period of an extremal rational surface [25], and was shown to be related 18 to classical modular forms in table 15 in [28] for N = 9:

Heun ⇣ 9 ⌥ 3 p 3 i 9 ± 3 p 3 i , 9 ± 3 p 3 i 18 , 1, 1, 1, 1, 2 x 9 ± 3 p 3 i ⌘ = Heun ⇣ 1 ± p 3 i 2 , 3 ± p 3 i 6 , 1, 1, 1, 1, 3 ⌥ p 3 i 18 • x ⌘ . (92) 
The other operator M 2 has the following (classical modular form, see appendix B) pullbacked 2 F 1 hypergeometric solution analytic at x = 0:

S 2 = 1 (1 + 4 x 2 x 2 36 x 3 + 81 x 4 ) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 • x 5 • (1 + 9 x + 27 x 2 ) • (1 2 x) 2 (1 + 4 x 2 x 2 36 x 3 + 81 x 4 ) 3 ⌘ = 1
x + 3 x 2 x 3 29 x 4 + 249 x 5 1329 x 6 + 5487 x 7 16 029 x 8 + 12 149 x 9 + 252 253

x 10 + • • • (93)
Thus the diagonal of ( 85) is the half-sum of the two series (88) and (93) corresponding to classical modular forms:

Diag ⇣ R(x, y, z) ⌘ = S 1 + S 2 2 . ( 94 
)

Derivatives of classical modular forms

We give here an example of a diagonal of a rational function in three variables yielding a derivative of a classical modular form (or a derivative of a Heun function). Let us consider the following rational function in three variables:

R(x, y, z) = 3 x 3 y 1 + x + y + z . ( 95 
)
The diagonal of (95) has the following series expansion with integer coefficients: 

The telescoper of this rational function of three variables (95) gives a linear differential operator of order three L 3 = L 1 L 2 that is the direct sum of a linear differential operator of order one L 1 , and a linear differential of operator of order two L 2 , where:

L 1 = x • D x 1, L 2 = (1 + 27 x) • (1 + 30 x) • x • D 2 x 3 • x • D x + 180 x + 3. (97) 
The operator L 1 admits the solution y(x) = x, while the operator L 2 has the following Heun solution:

x • Heun ⇣ 9 10 , 0, 1 3 , 2 3 , 2, 1, 27 • x 
⌘ = x 30 x 3 + 840 x 4 20 790x 5
+ 504 504 x 6 12 252 240 x 7 + 299 304 720

x 8 + • • • (98) = x • 2 F 1 ⇣ [ 1 3 , 2 3 
], [1], 27

• x ⌘ + 2 • x • (1 + 27 x) • 2 F 1 ⇣ [ 4 3 , 5 3 [2], 27 • x) 
(99)

= L 1 ⇣ 2 F 1 ⇣ [ 1 3 , 2 3 ], [1], 27 • x) ⌘ (100) 
where:

L 1 = x 1 + 27 x 3 • x • d dx . (101) 
With this example we see that a Heun function which has a series expansion with integer coefficients (or more generally a globally bounded series), may not necessarily be a classical modular form 19 , and can instead be a linear differential operator of order one acting on a classical modular form.

Generalization of the previous result

Let us recall example 6, and let us consider, instead of the rational function (9), its homomogeous partial derivative with respect to one of its four variables:

x • @R(x, y, z, w) @x = x • (y + z + w) (1 + x y + y z + z w + w x + y w + x z) 2 . (102)
The telescoper of this rational function (102) is a linear differential operator of order three M 3 which is homomorphic to the operator of order three L 3 which was the telescoper of the rational function (9). This homomorphism reads:

M 3 • ✓ = L 1 • L 3
where:

L 1 = (1 18 x) • ✓ + 18 x, ( 103 
)
where ✓ is the homogeneous derivative ✓ = x • D x . Consequently the solutions of the orderthree linear differential operator M 3 are simply obtained by taking the homogeneous derivative ✓ = x • D x of the solutions of the order-three linear differential operator L 3 . In particular, the diagonal of the rational function (102) is the homogeneous derivative of the diagonal of the rational function ( 9):

Diag ⇣ x • @R(x, y, z, w) @x ⌘ = x • d dx ⇣ Diag ⇣ R(x, y, z, w) ⌘⌘ . ( 104 
)
The diagonal of (102) will thus be the homogeneous derivative of the classical modular form (11). We do not provide a proof, but in the experimental framework the following identity seems to hold for any order-N linear differential operator L:

Diag ⇣ L ⇣ R(x, y, z, w) ⌘⌘ = L ⇣ Diag ⇣ R(x, y, z, w) ⌘⌘ , (105) 
where:

L = N X n=0 P n (x) • ✓ n , L = N X n=0 P n (x y z w) • ⇥ n , (106) 
with:

✓ = x • d dx , • • • ⇥ = w • @ @w , (107) 
where the P n 's are polynomials. This identity can, of course be generalized to the diagonal of rational functions of an arbitrary number of variables. For any Heun function or classical modular form of this paper obtained as a diagonal of a rational function, we can use these identities (104), (105) to get other rational functions that will be derivatives of Heun functions or classical modular forms 20 .

Heun function solutions of telescopers of rational functions related to Shimura curves

The rational function in four variables R(x, y, z, w) = x y z

1 x y z w + x y z • (x + y + z) + x y + y z + x z , (108) 
has a telescoper that is a linear differential operator of order three:

L 3 = 8 x • (1 x) • (1 4 x) • D 3 x + 12 • (1 10 x + 12 x 2 ) • D 2 x 6 • (7 17 • x) • D x + 3, (109) 
which corresponds to the symmetric square of a linear differential operator of order two. The solutions of L 3 are thus expressed in terms of the following Heun functions:

Heun ⇣ 1 4 , 1 64 , 1 8 , 3 8 , 1 2 , 1 2 , x ⌘ 2 , x • Heun ⇣ 1 4 , 21 64 , 5 8 , 7 8 , 3 2 , 1 2 , x ⌘ 2 , (110) 
or:

x 1/2 • Heun ⇣ 1 4 , 1 64 , 1 8 , 3 8 , 1 2 , 1 2 , x ⌘ 
• Heun ⇣ 1 4 , 21 64 , 5 8 , 7 8 , 3 2 , 1 2 , x 
⌘ . (111) 20 Derivatives of modular forms are not modular forms.

The series expansion of the first expression in (110) reads:

1 + 1 4
x + 5 16

x 2 + 5 8

x 3 + 2795 1792

x 4 + 15 691 3584

x 5 + 1039 363 78 848

x 6 + • • • (112)
While the other Heun functions obtained in this paper are diagonals of rational functions and have globally bounded series expansions, the series expansion (112) is not 21 globally bounded: it cannot be recast into a series with integer coefficients. Hence (112) cannot be a diagonal of a rational function since diagonals of rational functions are necessarily globally bounded [1]: it is instead a solution of the telescoper of a rational function. In fact the diagonal of the rational function ( 108) is zero.

The operator (109) is the symmetric square of the linear differential operator of order two L 2 :

L 2 = D 2 x + 1 10 x + 12 x 2 2 x • (1 4 x) • (1 x) • D x 1 3 x 16 • x • (1 4 x) • (1 x) , (113) 
whose (formal) series expansions at 0, 1, and 1 do not contain logarithms. This linear differential operator of order two L 2 admits the solutions:

x 1/2 • (1 x) 7/8 • 2 F 1 ⇣ [ 7 24 , 11 24 
], [

],

27 4 • x 2 (1 x) 3 ⌘ , (1 x) 1/8 • 2 F 1 ⇣ [ 1 24 , 5 24 ], [ 3 4 
],

27 4 • x 2 (1 x) 3 ⌘ . (114) 
The precise correspondence with the Heun functions in (110) reads:

Heun ⇣ 1 4 , 1 64 , 1 8 , 3 8 , 1 2 , 1 2 , x ⌘ 
= (1 x) 1/8 • 2 F 1 ⇣ [ 1 24 , 5 24 
], [

],

27 4 • x 2 (1 x) 3 ⌘ , (115) Heun ⇣ 1 4 , 21 64 , 5 8 , 7 8 , 3 2 , 1 2 , x ⌘ 
= (1 x) 7/8 • 2 F 1 ⇣ [ 7 24 , 11 24 
], [

],

27 4 • x 2 (1 x) 3 ⌘ . (116) 
The two solutions of the linear differential operator (113) can be used to construct a basis for the space of automorphic forms, which can then be used to construct Hecke operators relative to this basis 22 . The second solution in (114) corresponds to an automorphic form associated with a Shimura curve with signature (0, 4, 2, 6) which appears in table 1 in [30]. Hence one obtains Shimura curves associated to telescopers of rational functions. More details on Heun functions or 2 F 1 automorphic forms associated to Shimura curves [31][32][33][34][35] are given in appendix C.

Conclusion

The examples of diagonals of rational functions in three or four variables, that we presented here, illustrate cases where the diagonal of the rational functions are given by Heun functions having series with integer coefficients, and can be expressed either in terms of pullbacked hypergeometric functions that are classical modular forms, or derivatives of classical modular forms. Furthermore, we constructed in section 2.2, a rational function whose diagonal is given by a Heun function that has already been identified as a 'period' of an extremal rational elliptic surface [25], and that has also emerged in the context of pullbacked 2 F 1 hypergeometric functions [28]. Finally we have also seen a case where the rational function has a telescoper with Heun function solutions, that can be expressed as pullbacked 2 F 1 hypergeometric functions that are not globally bounded, and happen to be associated with one of the 77 cases of Shimura curves [30]. Such remarkable 2 F 1 hypergeometric functions solutions of a telescoper of a rational function are not diagonals of that rational function since their series are not globally bounded. They can be interpreted as 'periods' [36,37] of an algebraic variety over some non-evanescent 23 

cycles.

These examples suggest an algebraic geometrical link between the diagonals/solutions of the telescopers, and the original rational functions, and this link should be investigated. This study should help shed light on the geometrical nature of the algebraic varieties associated with the denominators of the rational functions (K3, Calabi-Yau threefolds, extremal rational elliptic surfaces, Shimura varieties). In a forthcoming paper which is a work in progress at the current stage, we intend to introduce an algebraic geometry approach that proves to be efficient in explaining this link.

⇣ [ 1 3 , 2 3 
], [1],

x ⌘ = (1 + 8 x) 1/4 • 2 F 1 ⇣ [ 1 12 
,

5 12 ], [1], 64 • x • (1 x) 3 (1 + 8 x) 3
⌘ .

(A.1)

The nome associated to the linear differential operator of order two having

2 F 1 ([1/3, 2/3], [1], x)
as a solution is given by:

Q(x) = x + 5 9
x 2 + 31 81

x 3 + 5729 19 683

x 4 + 41 518 177 147

x 5 + 312 302 1594 323

x 6 + • • • (A.2)
and the nome associated to the operator of order two having 2 F 1 ([1/12, 5/12], [1], x) as a solution expands as follows:

q(x) = x + 31 72
x 2 + 20 845 82 944

x 3 + 27 274 051 161 243 136

x 4 + 183 775 457 147 1486 016 741 376

x 5 + • • • (A.3)
The two 2 F 1 hypergeometric series are globally bounded, the series of the corresponding nomes (A.2) and (A.3) are also globally bounded, as one expects for a classical modular form. The identity (A.1) on the other solutions of the linear differential operators annihilating

2 F 1 ([1/3, 2/3], [1], x) and 2 F 1 ([1/12, 5/12], [1], p(x))
, gives the following identity on their respective ratio

⌧ ⌧ ⇣ [ 1 3 , 2 3 ], [1], x ⌘ 
= µ • ⌧ ⇣ [ 1 12 , 5 12 ], [1] 
, 64 • x • (1 x) 3 (1 + 8 x) 3 ⌘ , (A.4) 
where µ is a constant, which gives after exponentiation:

64 • Q(x) = q ⇣ 64 • x • (1 x) 3 (1 + 8 x) 3 ⌘ . (A.5)
Now, the RHS of (A.5) is necessarily globally bounded, which agrees with the globally bounded character of the nome (A.2). In contrast, let us consider 2 F 1 ([1/5, 1/5], [1], x). The corresponding series is globally bounded 24 , however the corresponding nome which reads

Q [1/5,1/5] (x) = x + 8 25
x 2 + 102 625 

x
+ • • • (A.6)
is not globally bounded. Therefore, it is not possible to find any algebraic (or rational) pullback p(x) such that

µ • Q [1/5,1/5] (x) = q ⇣ p(x) ⌘ , (A.7)
since the RHS of (A.7) is necessarily globally bounded when µ • Q [1/5,1/5] (x) cannot be globally bounded regardless of the constant µ. In appendix B we give the exhaustive list of these 28 hypergeometric 2 F 1 's related to classical modular curves that were obtained using the necessary condition on the nome explained here.

Appendix B. Special 2 F 1 hypergeometric functions associated with classical modular forms

The Heun functions of this paper can all be rewritten in terms of pullbacked 2 F 1 hypergeometric functions which turn out to correspond to classical modular curves (with the exception of the 'Shimura' Heun functions of section 3. These 2 F 1 hypergeometric functions correspond in fact to classical modular forms because they can be rewritten [38] as

A • 2 F 1 ([1/12, 5/12], [1], p(x))
where the pullback p(x) is in general more involved than simple rational pullbacks, being often algebraic functions. Using the globally bounded nome condition of appendix A, we looked for all possible 2 F 1 hypergeometric functions related 25 to pullbacked 2 F 1 ([1/12, 5/12], [1], x) (see (A.7)). We give here a list of 28 hypergeometric functions that have series with integer coefficients, that are related to modular forms.

2 F 1 ⇣ [ 1 2 , 1 2 
], [1],

16 x ⌘ , 2 F 1 ⇣ [ 1 2 , 1 3 
], [1],

36 x ⌘ , 2 F 1 ⇣ [ 1 3 , 1 3 
], [1],

27 x ⌘ , 2 F 1 ⇣ [ 1 3 , 2 3 
], [1],

27 x ⌘ , 2 F 1 ⇣ [ 1 6 , 1 2 
], [1], 432 x

⌘ , 2 F 1 ⇣ [ 1 6 , 1 3 
], [1],

108 x ⌘ , 2 F 1 ⇣ [ 1 6 , 2 3 ], [1], 108 x ⌘ , 2 F 1 ⇣ [ 1 6 , 1 6 
], [1], 432 x

⌘ , 2 F 1 ⇣ [ 1 6 , 5 6 ], [1], 432 x ⌘ , 2 F 1 ⇣ [ 1 4 , 1 4 ], [1], 64 x ⌘ , 2 F 1 ⇣ [ 1 4 , 1 2 ], [1], 32 x ⌘ , 2 F 1 ⇣ [ 1 4 , 3 4 ], [1], 64 x ⌘ , 2 F 1 ⇣ [ 1 8 , 3 8 
], [1],

256 x ⌘ , 2 F 1 ⇣ [ 1 8 , 5 8 
], [1],

256 x ⌘ , 2 F 1 ⇣ [ 3 8 , 7 8 
], [1],

256 x ⌘ , 2 F 1 ⇣ [ 2 3 , 5 6 
], [1], 108 x

⌘ , 2 F 1 ⇣ [ 1 3 , 5 6 
], [1], 108 x

⌘ , 2 F 1 ⇣ [ 1 2 , 3 4 
], [1],

32 x ⌘ , 2 F 1 ⇣ [ 3 4 , 3 4 
], [1], 64 x

⌘ , 2 F 1 ⇣ [ 5 8 , 7 8 
], [1], 256 x

⌘ , 2 F 1 ⇣ [ 2 3 , 2 3 
], [1],

27 x ⌘ , 2 F 1 ⇣ [ 5 6 , 5 6 
], [1], 432 x

⌘ , 2 F 1 ⇣ [ 1 2 , 5 6 
], [1], 144 x

⌘ , 2 F 1 ⇣ [ 1 2 , 2 3 
], [1], 36 x

⌘ 2 F 1 ⇣ [ 1 12 , 7 12 
], [1],

1728 x ⌘ , 2 F 1 ⇣ [ 1 12 , 5 12 
], [1],

1728 x ⌘ , 2 F 1 ⇣ [ 5 12 , 11 12 
], [1],

1728 x ⌘ , 2 F 1 ⇣ [ 7 12 , 11 12 
], [1],

1728 x ⌘ . (B.1)
Using this globally bounded condition of the nome criterion, we wrote a program that went through all the values of a and b in [ 1, 1] (with small increments like 1/200), with c = 1, singling out the 2 F 1 hypergeometric functions that have series with integer coefficients (or more generally globally bounded), both for the 2 F 1 hypergeometric functions, and for the nome. Running this program returned to us exactly the 2 F 1 hypergeometric functions in the above list (B.1).

or equivalently, the pullbacked 2 F 1 solutions:

x 3/8 • (1 x) 7/8 • 2 F 1 ⇣ [ 7 24 , 11 24 
], [

],

27 4 • x (1 x) 3 ⌘ , x 1/8 • (1 x) 1/8 • 2 F 1 ⇣ [ 1 24 , 5 24 
], [

],

27 4 • x (1 x) 3 ⌘ (C.2)
similar to (114) but with a different pullback. One recovers the same 'Shimura' 2 F 1 hypergeometric function as the one in ( 114), but with a different pullback. Like the pullback in (114), this last pullback 27 4 •

x (1 x) 3 is 'special' as can be seen in appendix C.1 with equations (C.5) and (C.6).

C.1. The pullbacks in 2 F 1 ([ 1 24 , 7 24 ], [ 5 6 ], x) and 2 F 1 ([ 5 24 , 11 24 ], [ 7 6 ], x) are special Like all the Belyi coverings [39], the pullback27 4 • x 2 (1 x) 3 in (114) is 'special'. It has already been seen to occur in another framework [40], namely 26 the walk in a Weyl chamber of the Lie algebra sl 3 (C). It actually occurs in the well-known 'kernel equation' for that particular walk described in [40] G(x, y) + G(0, 0) = G(x, 0) + G(0, y), (C.3) where:

G(x, y) = L(x, y) • H(x, y), (C.4) 
and where the generating function H(x, y) of the walk and the kernel of the walk L(x, y), read respectively:

H(x, y) = 1 x y (1 x) 3 • (1 y) 3 , L(x, y) = 27 4 • (y + x y 2 + x 2 3 x y).
Noticeably, G(x, y) is the sum of the particular rational function pullback

w(x) = 27 4 • x 2 (1 x) 3
and of another rational function of y:

G(x, y) = 27 4 • x 2 (1 x) 3 + 27 4 • y (1 y) 3 .
(C.5)

Note that this additional rational function of y corresponds to the duality x $ 1/x:

G(x, y) = L(x, y) • H(x, y) = w(x) w ⇣ 1 y ⌘ . (C.6) C.2. Identities on Shimura 2 F 1 hypergeometric

functions and modular equations

There exists an algebraic series y(x) such that the two hypergeometric (114) (or (C.2)) verify the two following identities:

w 3/8 • ⇢ • y 0 (x) 1/2 • x 3/8 • (1 x) 1/4 • 2 F 1 ⇣ [ 1 24 , 5 24 
], [

],

x

⌘ = y(x) 3/8 • (1 y(x)) 1/4 • 2 F 1 ⇣ [ 1 24 , 5 24 
], [

and (with the same ⇢ and w )

w 5/8 • ⇢ • y 0 (x) 1/2 • x 5/8 • (1 x) 1/4 • 2 F 1 ⇣ [ 7 24 , 11 24 
], [

],

x

⌘ = y(x) 5/8 • (1 y(x)) 1/4 • 2 F 1 ⇣ [ 7 24 , 11 24 
], [

where the two complex constants ⇢ and w are given by ⇢ = (7 24 i)/25 and w = 1/⇢ 2 . These two complex numbers w and ⇢ are on the unit circle |w| = |⇢| = 1 but are not Nth root of unity. The algebraic series y(x) is given by the symmetric genus zero modular equation of level five P(x, y) = 0 which is parametrised by:

x = x(v) = 225 v 2 + 18 v + 1 1350 000 • v 6 , y = y(v) = x ⇣ 11 v + 2 252 v 11 ⌘ .
(C.9) The algebraic series y(x) in (C.7) or (C.8), given by the modular equation of level five P(x, y) = 0 reads: 

y(x) = w • x + ⇣ 172
⌘ • x 3 + • • • .
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⌘ , We show that the results we had obtained on diagonals of nine and ten parameters families of rational functions using creative telescoping, yielding modular forms expressed as pullbacked 2 F 1 hypergeometric functions, can be obtained, much more e ciently, by calculating the j-invariant of an elliptic curve canonically associated with the denominator of the rational functions. In the case where creative telescoping yields pullbacked 2 F 1 hypergeometric functions, we generalize this result to other families of rational functions in three, and even more than three, variables. We also generalise this result to rational functions in more than three variables when the denominator can be associated to an algebraic variety corresponding to products of elliptic curves, or foliation in elliptic curves. We also extend these results to rational functions in three variables when the denominator is associated with a genus-two curve such that its Jacobian is a split Jacobian corresponding to the product of two elliptic curves. We sketch the situation where the denominator of the rational function is associated with algebraic varieties that are not of the general type, having an infinite set of birational automorphisms. We finally provide some examples of rational functions in more than three variables, where the telescopers have pullbacked 2 F 1 hypergeometric solutions, the denominator corresponding to an algebraic variety having a selected elliptic curve in the variety explaining the pullbacked 2 F 1 hypergeometric solution.
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Introduction

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals ‡ of nine and ten parameters families of rational functions, given by (classical) modular forms expressed as pullbacked 2 F 1 hypergeometric functions [12]. The natural emergence of diagonals of rational functions † † in lattice statistical mechanics is explained in [19,20]. This can be seen as the reason of the frequent occurrence of modular forms, Calabi-Yau operators in lattice statistical mechanics [21,22,23,24,25,26,27]. In another previous paper [17,18], dedicated to Heun functions that are diagonals of simple rational functions, or only solutions of telescopers [28,29] of simple rational functions of three variables, but most of the time four variables, we have obtained many solutions of order-three telescopers having squares of Heun functions as solutions that turn out to be squares of pullbacked 2 F 1 hypergeometric solutions corresponding to classical modular forms and even Shimura automorphic forms [30,31], strongly reminiscent of periods of extremal rational surfaces [32,33], and other fibration of K3 surfaces in elliptic curves. This last paper [18] underlined the di↵erence between the diagonal of a rational function and solutions of the telescoper of the same rational function. These results strongly suggested to find an algebraic geometry interpretation for all these exact results, and, more generally, suggested to provide an alternative algebraic geometry approach of the results emerging from creative telescoping. This is the purpose of the present paper. We are going to show that most of these pullbacked 2 F 1 hypergeometric functions can be obtained e ciently through algebraic geometry calculations, thus providing a more intrinsic algebraic geometry interpretation of the creative telescoping calculations which are typically di↵erential algebra calculations.

The paper is essentially dedicated to solutions of telescopers of rational functions which are not necessarily diagonals of rational functions. These solutions correspond to periods [34] of algebraic varieties over some cycles which are not necessarily evanescent cycles [35,36] like in the case of diagonals of rational functions.

The paper is organised as follows. We first recall in section (2) the exact results of [1,2] for nine and ten parameters families of rational functions using creative telescoping, yielding modular forms expressed as pullbacked 2 F 1 hypergeometric functions. We show in section (3) that these exact results can be obtained, much more e ciently, by calculating the j-invariant of an elliptic curve canonically associated with the denominator of the rational functions, and we underline the fact that one can drastically generalise these results, the parameters becoming quite arbitrary rational functions. Section (4) generalises the previous calculations to denominators of the rational functions of more than three variables, corresponding to products (or foliations) of elliptic curves. In section (5) we show how modular forms expressed as pullbacked 2 F 1 hypergeometric functions occur for rational functions in three variables when the denominator is associated with a genus-two curve such that its Jacobian is a split Jacobian corresponding to the product of two elliptic curves. In section (6) we sketch the situation where the denominator of the rational function is associated with algebraic varieties of low Kodeira dimension, having an infinite set of birational automorphisms. We finally provide some examples of rational functions in more than three variables, where the telescopers have pullbacked 2 F 1 hypergeometric solutions, ‡ For the introduction of the concept of diagonals of rational functions, see [4,5,6,7,8,9,10,11]. † † The lattice Green functions are the simplest examples of such diagonals of rational functions [13,14,15,16,17,18].

the denominator corresponding to an algebraic variety having a selected elliptic curve in the variety explaining these pullbacked 2 F 1 solutions.

Classical modular forms and diagonals of nine and ten parameters family of rational functions

In a previous paper [1,2], using creative telescoping [3], we have obtained diagonals of nine and ten parameters families of rational functions, given by (classical) modular forms expressed as pullbacked 2 F 1 hypergeometric functions. Let us recall these results.

2.1. Nine-parameters rational functions giving pullbacked 2 F 1 hypergeometric functions for their diagonals Let us recall the nine-parameters rational function in three variables x, y and z:

1

a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y + d y 2 z + e z x 2 .
(

) 1 
Calculating † the telescoper ¶ of this rational function (1), one gets an order-two linear di↵erential operator annihilating the diagonal of the rational function (1). The diagonal of the rational function ( 1) can be written [1,2] as a pullbacked hypergeometric function 1

P 4 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1

P 6 (x) 2 P 4 (x) 3 ⌘ , (2) 
where P 4 (x) and P 6 (x) are two polynomials of degree four and six in x, respectively. The Hauptmodul pullback in (2) has the form

H = 1728 j = 1 P 6 (x) 2 P 4 (x) 3 = 1728 • x 3 • P 8 (x) P 4 (x) 3 , (3) 
where P 8 (x) is a polynomial of degree eight in x. Such a pullbacked 2 F 1 hypergeometric function (2) corresponds to a classical modular form [1,2].

2.2. Ten-parameters rational functions giving pullbacked 2 F 1 hypergeometric functions for their diagonals.

Let us recall the ten-parameters rational function in three variables x, y and z: R(x, y, z) = (4) 1

a + b 1 x + b 2 y + b 3 z + c 1 y z + c 2 x z + c 3 x y + d 1 x 2 y + d 2 y 2 z + d 3 z 2 x .
Calculating the telescoper of this rational function (4), one gets an order-two linear di↵erential operator annihilating the diagonal of the rational function (4). † Using the "HolonomicFunctions" Mathematica package [3].

¶ By "telescoper" of a rational function, say R(x, y, z), we here refer to the output of the creative telescoping program [3], applied to the transformed rational function R = R(x/y, y/z, z)/(yz). Such a telescoper is a linear di↵erential operator T in x, Dx such that T + Dy • U + Dz • V annihilates R, where U, V are rational functions in x, y, z. In other words, the telescoper T represents a linear ODE that is satisfied by Diag(R).

The diagonal of the rational function ( 4) can be written [1,2] as a pullbacked hypergeometric function 1

P 3 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1

P 6 (x) 2 P 3 (x) 3 ⌘ , (5) 
where P 3 (x) and P 6 (x) are two polynomials of degree three and six in x, respectively. Furthermore, the Hauptmodul pullback in ( 5) is seen to be of the form:

H = 1728 j = 1 P 6 (x) 2 P 3 (x) 3 = 1728 • x 3 • P 9 (x) P 3 (x) 3 . ( 6 
)
where P 9 (x) is a polynomial of degree nine in x. Again, (5) corresponds to a classical modular form [1,2].

Deducing creative telescoping results from e↵ective algebraic geometry

Obtaining the previous pullbacked hypergeometric results (2) and ( 5) required [1,2] an accumulation of creative telescoping calculations, and a lot of "guessing" using all the symmetries of the diagonals of these rational functions ( 1) and ( 4). We are looking for a more e cient and intrinsic way of obtaining these exact results. These two pullbacked hypergeometric results ( 2) and ( 5), are essentially "encoded" by their Hauptmodul pullbacks ( 3) and ( 6), or, equivalently, their corresponding j-invariants.

The interesting question, which will be addressed in this paper, is whether it is possible to canonically associate elliptic curves whose j-invariants correspond precisely to these Hauptmoduls H = 1728 j .

3.1. Revisiting the pullbacked hypergeometric results in an algebraic geometry perspective.

One expects such an elliptic curve to correspond to the singular part of the rational function, namely the denominator of the rational function. Let us recall that the diagonal of a rational function in (for example) three variables is obtained through its multi-Taylor expansion [19,20] 

R(x, y, z) = X m X n X l a m, n, l • x m y n z l , (7) 
by extracting the "diagonal" terms, i.e. the powers of the product p = xyz:

Diag ⇣ R(x, y, z) ⌘ = X m a m, m, m • x m . (8) 
Consequently, it is natural to consider the algebraic curve corresponding to the intersection of the surface defined by the vanishing condition D(x, y, z) = 0 of the denominator D(x, y, z) of these rational functions ( 1) and ( 4), with the hyperbola p = x y z (where p is seen, here, as a constant). This amounts, for instance, to eliminating the variable z, substituting z = p/x/y in D(x, y, z) = 0. 

which can be rewritten as a (general, nine-parameters) biquadratic:

a x y + b 1 x 2 y + b 2 x y 2 + b 3 p + c 1 p y + c 2 p x + c 3 x 2 y 2 + d p y 2 + e p x 2 = 0. ( 10 
)
Using formal calculations ¶ one can easily calculate the genus of the planar algebraic curve (10), and find that it is actually an elliptic curve (genus-one). Furthermore, one can (almost instantaneously) find the exact expression of the j-invariant of this elliptic curve as a rational function of the nine parameters a, b 1 , b 2 , • • • , e in (1).

One actually finds that this j-invariant is precisely the j such that the Hauptmodul H = 1728 j is the exact expression (3). In other words, the classical modular form result (2) could have been obtained, almost instantaneously, by calculating the jinvariant of an elliptic curve canonically associated with the denominator of the rational function (1). The algebraic planar curve (10) corresponds to the most general biquadratic of two variables, which depends on nine homogeneous parameters. Such general biquadratic is well-known to be an elliptic curve for generic values of the nine parameters ‡.

Thus, the nine-parameters exact result (2) can be seen as a simple consequence of the fact that the most general nine-parameters biquadratic is an elliptic curve.

3.1.2. Ten-parameters case: In the case of the rational function (4), substituting z = p/x/y in D(x, y, z) = 0, one obtains the ten-parameters bicubic:

a x y 2 + b 1 x 2 y 2 + b 2 x y 3 + b 3 p y + c 1 p y 2 + c 2 px y + c 3 x 2 y 3 + d 1 x 3 y 3 + d 2 y 3 + d 3 p 2 = 0. (11) 
As before, we find that this planar algebraic curve is actually an elliptic curve † and that the exact expression of its j-invariant is precisely the j of the Hauptmodul H = 1728/j in (6).

Thus, this ten-parameters result (5) can again be seen as a simple consequence of the fact that there exists a family of ten-parameters bicubics (see (11)) which are elliptic curves for generic values of the ten parameters.

These preliminary calculations are a strong incentive to try to replace the di↵erential algebra calculations of the creative telescoping, by more intrinsic algebraic geometry calculations, or, at least, perform e↵ective algebraic geometry calculations to provide an algebraic geometry interpretation of the exact results obtained from creative telescoping.

Finding creative telescoping results from j-invariant calculations.

One might think that these results are a consequence of the simplicity of the denominators of the rational functions (1) or ( 4), being associated with biquadratics or selected bicubics. In fact, these results are very general. Let us, for instance, consider a nine-parameters family of planar algebraic curves that are not biquadratics or (selected) bicubics:

a 1 x 4 + a 2 x 3 + a 3 x 2 + a 4 x + a 5 + a 6 x 2
y + a 7 y 2 + a 8 y + a 9 x y = 0. (12) ¶ Namely using with(algcurves) in Maple, and, in particular, the command j invariant. ‡ So many results in integrable models correspond to this most general biquadratic: the Bethe ansatz of the Baxter model [37,38], the elliptic curve foliating the sixteen-vertex model [38], so many QRT birational maps [39], etc ... † Generically, the most general planar bicubic is not a genus-one algebraic curve. It is a genus-four curve.

One can easily calculate the genus of this planar curve and see that this genus is actually one for arbitrary values of the a n 's. Thus the planar curve ( 12) is an elliptic curve for generic values of the nine parameters a 1 , • • • , a 9 . It is straightforward to see that the algebraic surface S(x, y, z) = 0, corresponding to z • (a 1 x 4 + a 2 x 3 + a 3 x 2 + a 4 x + a 5 + a 6 x 2 y + a 7 y 2 + a 8 y) + a 9 p = 0, (13) will automatically be such that its intersection with the hyperbola p = x y z gives back the elliptic curve (12).

Using this kind of "reverse engineering" yields to consider the rational function in three variables x, y and z

R(x, y, z) = 1 1 + z • (a 1 x 4 + a 2 x 3 + a 3 x 2 + a 4 x + a 5 + a 6 x 2 y + a 7 y 2 + a 8 y) , (14) 
which will be such that its denominator is canonically associated with an elliptic curve.

Again we can immediately calculate the j-invariant of that elliptic curve. If one calculates the telescoper of this eight-parameters family of rational functions (14), one finds that this telescoper is an order-two linear di↵erential operator with pullbacked hypergeometric solutions of the form

A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], H ⌘ , (15) 
where A(x) is an algebraic function and, where again, the pullback-Hauptmodul H = 1728/j, precisely corresponds to the j-invariant of the elliptic curve. More generally, seeking for planar elliptic curves, one can, for given values of two integers M and N , look for planar algebraic curves

n=N X n=0 m=M X m=0 a m, n • x n y m = 0, (16) 
defined by the set of a m, n 's which are equal to zero, apart of N homogeneous parameters a m, n being, as in (10) or (11) or (13), independent parameters. Finding such an N -parameters family of (planar) elliptic curves automatically provides an Nparameters family of rational functions such that their telescopers have a pullbacked 2 F 1 hypergeometric solution we can simply deduce from the j-invariant of that elliptic curve.

Recalling the results of section 2.2, the quite natural question to ask now is whether it is possible to find families of such (planar) elliptic curves which depend on more than ten independent parameters? Before addressing this question, let us recall the concept of birationally equivalent elliptic curves. Let us consider the monomial transformation:

(x, y) ! (x M y N , x P y Q ), (17) 
where M, N, P, Q are integers such that M • Q P • N = 1, then its compositional inverse is the monomial transformation:

(x, y) ! ⇣ x Q y N , y M x P ⌘ . ( 18 
)
This monomial transformation ( 17) is thus a birational † transformation. A birational transformation transforms an elliptic curve, like (12), into another elliptic curve with far as these diagonals, or telescopers, of rational function calculations are concerned, higher genus curves like (21) must in fact be seen as "almost" elliptic curves up to an

x ! x n covering. Such results for monomial transformations like (x, y, z) ! (x n , y n , z n ) can, in fact, be generalised to more general (non birational †) monomial transformations. This is sketched in Appendix B.

3.4.

Changing the parameters into functions of the product p = x y z.

All these results for many parameters families of rational functions can be drastically generalised when one remarks that allowing any of these parameters to be a rational function of the product p = x y z also yields to the previous pullbacked 2 F 1 exact expression, like (2), where the parameter is changed into that rational function of x (see [1]). Let us consider a simple (two-parameters) illustration of this general result. Let us consider a subcase of the previous nine or ten parameters families, introducing, for example, the two parameters rational function:

1 1 + 2x + b 2 • y + 5 y z + x z + c 3 • x y . ( 22 
)
The diagonal of this rational function (22) is the pullbacked hypergeometric function: 1

P 2 (x) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 43200

• x 4 • P 4 (x) P 2 (x) 3 ⌘ , (23) 
where 

P 2 (x) = 1 8 • (b 2 + 10) • x + 8 • (2 b 2 2 20 b 2 + 15 c 3 + 200) • x 2 , (24) and 
The new corresponding rational function becomes more involved but one can easily calculate the telescoper of this new rational function of three variables x, y and z, and find that it is, again, an order-two linear di↵erential operator having the pullbacked hypergeometric solution (23) where b 2 and c 3 are, now, replaced by ( p is now x) the functions:

b 2 (x) = 1 + 3 x 1 + 7 x 2 , c 3 (x) = 1 + x 2 1 + 2 x . (27) 
In that case (22) with ( 26), one gets a diagonal which is the pullbacked hypergeometric solution

(1 + 2 x) 1/4 • (1 + 7 x 2 ) 1/4 • q 1/4 8 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 43200

• x 4 • (1 + 7 x 2 ) 2 • q 20 (1 + 2 x) • q 3 8 ⌘ , (28) 
† In contrast with transformations like (17).

where q 8 and q 20 are two polynomials with integer coe cients of degree eight and twenty in x. The exact expression ( 28) is nothing but (23) (with ( 24) and ( 25)) where b 2 and c 3 have been replaced by the rational functions (27). Similar calculations can be performed for more general rational functions (1) or ( 4), when all the (nine or ten) parameters are more involved rational functions.

From a creative telescoping viewpoint, this result is quite impressive. From the algebraic geometry viewpoint, it is almost tautological, if one takes for granted the result of our previous subsections 3.1 and 3.2, namely that the pullbacked hypergeometric solution of the telescoper corresponds to the Hauptmodul 1728/j, where j is the j-invariant of the elliptic curve corresponding to the intersection of the algebraic surface corresponding to the vanishing of the denominator, with the hyperbola p = x y z: this calculation of the j-invariant is performed for p fixed, and arbitrary (nine or ten) parameters a, b 1 , • • • . It is clearly possible to force the parameters to be functions † of p, the j-invariant being changed accordingly. Of course, in that case, the parameters in the rational function are the same functions but of the product p = x y z.

One thus gets pullbacked hypergeometric solutions (classical modular forms) for an (unreasonably ...) large set of rational functions in three variables, namely the families of rational functions (1) or ( 4), but where, now, the nine or ten parameters are nine, or ten, totally arbitrary rational functions (with Taylor series expansions) of the product p = x y z.

We see experimentally that changing the parameters of the rational function into functions, actually works for diagonals of rational functions.

Creative telescoping on rational functions of more than three variables associated with products or foliations of elliptic curves

Let us show that such an algebraic geometry approach to creative telescoping can be generalised to rational functions of more than three variables, when the vanishing condition of the denominator can be associated with products of elliptic curves, or more generally, algebraic varieties with foliations in elliptic curves.

• The telescoper of the rational function in the four variables x, y, z and w x y z

(1 + z) 2 x • (1 x) • (x x y z w) • y • (1 y) • (y x y z w) , (29) 
gives an order-three self-adjoint linear di↵erential operator which is, thus, the symmetric square of an order-two linear di↵erential operator. The latter has the pullbacked hypergeometric solution:

S 1 (x) = (1 x + x 2 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 27 4 • x 2 • (1 x) 2 (x 2 x + 1) 3 ⌘ (30) = 2 F 1 ⇣ [ 1 2 , 1 2 ], [1], x ⌘ .
In [18] we underlined the di↵erence between the diagonal of a rational function and solutions of the telescoper of the same rational function. In this case, the diagonal of the rational function ( 29) is zero and is thus di↵erent from the pullbacked hypergeometric solution (30), which is a "Period" [34] of the algebraic variety corresponding to the denominator over some (non-evanescent †) cycle. From now, we will have a similar situation in most of the following examples of this paper. This example is a simple illustration of what we expect for products of elliptic curves, or algebraic varieties with foliations in elliptic curves. Introducing the product p = xyzw, the vanishing condition of the denominator of the rational function (29) reads the surface S(x, y, z) = 0:

(1 + z) 2 x • (1 x) • (x p) • y • (1 y) • (y p) = 0. ( 31 
)
For fixed p and fixed y, equation ( 31) can be seen as an algebraic curve

(1 + z) 2 • x • (1 x) • (x p) = 0 (32) 
with: = y • (1 y) • (y p).

For fixed p and fixed y, can be considered as a constant, the algebraic curve (32) being an elliptic curve with an obvious Weierstrass form:

Z 2 x • (1 x) • (x p) = 0 where: Z = 1 + z p . (33) 
The j-invariant of (32), or ‡ (33), is well-known and yields the Hauptmodul H:

H = 1728 j = 27 4 • p 2 • (1 p) 2 (p 2 p + 1) 3 (34) 
For fixed p and fixed x, equation ( 31) can be seen as an algebraic curve

(1 + z) 2 µ • y • (1 y) • (y p) = 0 (35) 
for: µ = x • (1 x) • (x p), which is also an elliptic curve with an obvious Weierstrass form and the same Hauptmodul (34). This Hauptmodul is precisely the one occurring in the pullbacked hypergeometric solution (30).

More generally, the rational function of the four variables x, y, z and w

x y z (1 + z) 2 x • (1 x) • (x R 1 (p)) • y • (1 y) • (y R 2 (p)) , (36) 
where p = x y z w, and where R 1 (p) and R 2 (p) are two arbitrary rational functions (with Taylor series expansions) of the product p = x y z w, yields a telescoper which has an order-four linear di↵erential operator which is the symmetric product of two order-two linear di↵erential operators having respectively the pullbacked hypergeometric solutions (30) where x is replaced by R 1 (x) and R 2 (x). These two hypergeometric solutions thus have the two Hauptmodul pullbacks

H 1 = 1728 j 1 = 27 4 • R 1 (p) 2 • (1 R 1 (p)) 2 (R 1 (p) 2 R 1 (p) + 1) 3 , (37) 
H 2 = 1728 j 2 = 27 4 • R 2 (p) 2 • (1 R 2 (p)) 2 (R 2 (p) 2 R 2 (p) + 1) 3 , ( 38 
)
† Diagonals of the rational functions correspond to periods over evanescent cycles [35,36]. ‡ A shift z ! z + 1 or a rescaling z 2 ! z 2 / does not change the j-invariant of the Weierstrass elliptic form.

obtained by calculations similar to the ones previously performed on (31) but, now, for the Weierstrass form corresponding to the denominator (36).

A solution of the telescoper of ( 36) is thus the product of these two pullbacked hypergeometric functions. Let us give a simple illustration of this general result, with the next example.

• The telescoper of the rational function in the four variables x, y, z and w x y z

(1 + z) 2 x • (1 x) • (x x y z w) • y • (1 y) • (y 3 x y z w) , (39) 
corresponding to (36) with R 1 (p) = p and R 1 (p) = 3 p, gives an order-four linear di↵erential operator which is the symmetric product of two order-two operators having respectively the pullbacked hypergeometric solution (30) and the solution (30) where the variable x has been changed into 3 x:

S 2 (x) = S 1 (3 x) (40) 
= (1 3 x + 9 x 2 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 243 4 • 

x 2 • (1 3 x) 2 (1 3 x + 9 x 2 ) 3 ⌘ .
where the denominator D(x, y, z, v, w) reads:

D p = (42) 
(

1 + v) 2 x • (1 x) • (x p) • y • (1 y) • (y 3 p) • z • (1 z) • (z 5 p)
, where: p = x y z v w. The telescoper of the rational function (41) of five variables gives ‡ an order-eight linear di↵erential operator which is the symmetric product of three order-two linear di↵erential operators having respectively the pullbacked hypergeometric solution (30), the solution (30) where x has been changed into 3 x, namely (40), and the solution (30), where x has been changed into 5 x:

S 3 (x) = S 1 (5 x) (43) 
= (1 5 x + 25 x 2 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 675 4 •

x 2 • (1 5 x) 2 (1 5 x + 25 x 2 ) 3 ⌘ .
In other words, the order-eight telescoper of the rational function (41) has the product 30), ( 40) and ( 43) as a solution. From an algebraic geometry viewpoint, this is a consequence of the fact that, for fixed p, the algebraic variety D p = 0, where D p is given by (42), can be seen, for fixed y and z, as an elliptic curve E 1 of equation D y,z,p (v, x) = 0, for fixed x and z as an elliptic curve E 2 of equation D x,z,p (v, y) = 0, and for fixed x and y also as an elliptic curve E 3 of equation D x,y,p (v, z) = 0, the j-invariants j k , k = 1, 2, 3 of these three elliptic curves E k yielding (in terms of p), precisely, the three Hauptmoduls

S = S 1 • S 2 • S 3 , of (
H k = 1728/j k 27 4 • x 2 • (1 x) 2 (x 2 x + 1) 3 , 243 4 • x 2 • (1 3 x) 2 (1 3 x + 9 x 2 ) 3 , 675 4 • x 2 • (1 5 x) 2 (1 5 x + 25 x 2 ) 3 , (44) 
‡ Such a creative telescoping calculation requires "some" computing time to achieve the result.

occurring as pullbacks in the three S k 's of the solution S = S 1 • S 2 • S 3 , of the telescoper of (41).

Remark: Other examples of rational functions of three, four, five variables where the denominators also correspond to Weierstrass (resp. Legendre) forms, are displayed in Appendix C. They provide simple illustrations of rational functions where the denominator is associated with K3 surfaces ¶, or Calabi-Yau three-folds. In these cases the algebraic varieties have simple foliations in terms of two or three families of elliptic curves, and the solutions of the corresponding telescopers can be selected 3 F 2 and 4 F 3 hypergeometric functions (see (C. 16) in Appendix C), naturally associated with K3 surfaces and Calabi-Yau operators [27].

Creative telescoping of rational functions in three variables associated with genus-two curves with split Jacobians

In a paper [17,18], dedicated to Heun functions that are solutions of telescopers of simple rational functions of three and four variables, we have obtained † an order-four telescoper of a rational function of three variables, which is the direct sum of two order-two linear di↵erential operators, each having classical modular forms solutions which can be written as pullbacked 2 F 1 hypergeometric solutions. Unfortunately, the intersection of the algebraic surface corresponding to the denominator of the rational function with the p = x y z hyperbola, yields a genus-two algebraic curve.

Let us try to understand, in this section, how a genus-two curve can yield two classical modular forms. Let us first recall the results in section 2.2 of [18].

Periods of extremal rational surfaces

Let us recall the rational function in just three variables [18]: R(x, y, z) =

1 1 + x + y + z + x y + y z x 3 y z . ( 45 
)
Its telescoper is actually an order-four linear di↵erential operator L 4 which, not only factorizes into two order-two linear di↵erential operators, but is actually the direct sum (LCLM) of two ‡ order-two linear di↵erential operators L 4 = L 2 M 2 . These two (non homomorphic) order-two linear di↵erential operators have, respectively, the two pullbacked hypergeometric solutions:

S 1 = (1 + 9x) 1/4 • (1 + 3 x) 1/4 • (1 + 27 x 2 ) 1/4 (46) 
⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1728

• x 3 • (1 + 9 x + 27 x 2 ) 3 (1 + 3 x) 3 • (1 + 9 x) 3 • (1 + 27 x 2 ) 3 ⌘ ,
and:

S 2 = 1 (1 + 4 x 2 x 2 36 x 3 + 81 x 4 ) 1/4
(47)

⇥ 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1728

• x 5 • (1 + 9 x + 27 x 2 ) • (1 2 x) 2 (1 + 4 x 2 x 2 36 x 3 + 81 x 4 ) 3

⌘

. ¶ See the emergence of product of elliptic curves from Shioda-Inose structure on surfaces with Picard number 19 in [40]. In [40], Ling Long considers one-parameter families of K3 surfaces with generic Picard number 19. The existence of a Shioda-Inose structure implies that there is a one-parameter family of elliptic curves. † See equation ( 83) in section 2.2 of [18]. ‡ These two order-two linear di↵erential operators L 2 and M 2 are not homomorphic.

The diagonal of ( 45) is actually the half-sum of the two series (46) and (47):

Diag ⇣ R(x, y, z) ⌘ = S 1 + S 2 2 . ( 48 
)
As far as our algebraic geometry approach is concerned, the intersection of the algebraic surface corresponding to the denominator of the rational function (45) with the hyperbola p = x y z gives the planar algebraic curve (corresponding to the elimination of the z variable by the substitution z = p/x/y):

1 + x + y + p x y + x y + y p x y x 3 y p x y = 0. ( 49 
)
One easily finds that this algebraic curve is (for p fixed) a genus-two curve, and that this higher genus situation does not correspond to the "almost elliptic curves" described in subsection 3.2 namely an elliptic curve transformed by a monomial transformation. How can a "true" genus-two curve give two j-invariants, namely a telescoper with two Hauptmodul pullbacked 2 F 1 solutions? We are going to see that the answer is that the Jacobian of this genus-two curve is in fact isogenous to a product E ⇥ E 0 of two elliptic curves (split Jacobian).

Split Jacobians

Let us first recall the concept of split Jacobian with a simple example. In [41], one has a crystal-clear example of a genus-two curve C y 2 (x 3 + 420 x 5600)

• (x 3 + 42 x 2 + 1120) = 0, (50) 
such that its Jacobian J(C) is isogenous to a product of elliptic curves with jinvariants j 1 = 2 7

• 7 2 = 6272 and j 2 = 2 5

• 7 • 17 

of j-invariant j = j 2 = 2 5

• 7 • 17 3 . We consider the following morphism of degree 3 to an elliptic curve §:

u = 882000 • (x 14)
x 3 + 420 x 5600

, v = 49000 • (x 3 21 x 2 140) (x 3 + 420 x 5600) 2 • y. (52) 
This change of variable (52) actually transforms the elliptic curve (51) in u and v into the genus-two curve (50) in x and y. This provides a simple example of a genus-two curve with split Jacobian through K3 surfaces.

More generally, let us consider the Jacobian of a genus-two curve C. The Jacobian is simple if it does not contain a proper abelian subvariety, otherwise the Jacobian is reducible, or decomposable or "split". For this latter case, the only possibility for a genus-two curve is that its Jacobian is isogenous to a product E ⇥ E 0 of two elliptic curves ‡. Equivalently, there is a degree n map C ! E to some elliptic curves. Classically such pairs † C, E arose in the reduction of hyperelliptic integrals to elliptic ones [41]. The j-invariants correspond, here, to the two elliptic subfields: see [41]. § This transformation is rational but not birational. If it were birational, then it would preserve the genus. Here, one goes from genus one to genus two. ‡ Along these lines, see also the concepts of Igusa-Clebsch invariants and Hilbert modular surfaces [41,42,43,44]. † One also has an anti-isometry Galois invariant E 0 ' E under Weil pairing. The decomposition corresponds to real multiplication by quadratic ring of discriminant n 2 . 5.3. Creative telescoping on rational functions in three variables associated with genus-two curves with split Jacobians: a two-parameters example.

Let us now consider the example with two parameters, a and b, given in section 4.5 page 12 of [41]. Let us substitute the rational parametrisation ¶ u =

x 2 x 3 + a x 2 + b x + 1 , v = y • (x 3 b x 2) (x 3 + a x 2 + b x + 1) 2 , (53) 
in the elliptic curve

R • v 2 = R • u 3 + 2 • (ab 2 6 a 2 + 9 b) • u 2 + (12 a b 2 ) • u 4, (54) 
where

R = 4 • (a 3 + b 3 ) a 2 b 2 18 ab + 27. ( 55 
)
This gives the genus-two curve C a, b (x, y) = 0 with:

C a, b (x, y) = R • y 2 + (4 x 3 + b 2 x 2 + 2 b x + 1) • (x 3 + a x 2 + b x + 1). ( 56 
)
The j-invariant of the elliptic curve (54) gives the following exact expression for the Hauptmodul H = 1728/j:

H = 108 • (b 3) 3 • (4 a 3 + 4 b 3 a 2 b 2 18 ab + 27) 2 • (b 2 + 3 b + 9) 3 (a 2 b 4 + 12 b 5 126 ab 3 + 216 ba 2 + 405 b 2 972 a) 3 . ( 57 
)
Let us consider the telescoper of the rational function of three variables

x y/D a (x, y, z) where the denominator D a (x, y, z) is C a, b (x, y) given by ( 56), but for b = 3 + x y z: 

D a (x, y, z) = C a, 3 + xyz (x, y) = x 6 y 3 z 3 +
• (xyz + 3) 2 • a 2 + 4 y 2 • a 3 . ( 58 
)
This telescoper of the rational function

R a (x, y, z) = x y D a (x, y, z) , (59) 
is an order-four linear di↵erential operator L 4 which is actually the direct-sum,

L 4 = LCLM (L 2 , M 2 ) = L 2 M 2
, of two order-two linear di↵erential operators, having two pullbacked hypergeometric solutions. One finds out that one of the two pullbacks precisely corresponds to the Hauptmodul H given by ( 57) for b = 3 + x.

Let us consider the a = 3 subcase †. For a = 3, the Hauptmodul H = 1728/j, given by ( 57) becomes for b = 3 + x:

H = 4 • x • (27 + 4 x) 2 • (x 2 + 9 x + 27) 3 (9 + x) 3 • (4 x 2 + 27 x + 27) 3 . ( 60 
)
The telescoper of the rational function (59) with D a (x, y, z) given by ( 58) for a = 3, is an order-four linear di↵erential operator which is the direct-sum of two ¶ See also [45] order-two linear di↵erential operators L 4 = LCLM (L 2 , M 2 ) = L 2 M 2 , these two order-two linear di↵erential operators having the pullbacked hypergeometric solutions

(27 + 4 x) 1/2 • x 5/4 • 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 1 + 27 4 x ⌘ , (61) 
for L 2 , and 3 + x

(9 + x) 1/4 • (4 x 2 + 27 x + 27) 1/4 • x 3/2 • (27 + 4 x) 1/2 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 4 • x • (27 + 4 x) 2 • (x 2 + 9 x + 27) 3 (9 + x) 3 • (4 x 2 + 27 x + 27) 3 ⌘ , (62) 
for M 2 , where we see clearly that the Hauptmodul in (62) is precisely the Hauptmodul (60). The Jacobian of the genus-two curve is a split Jacobian corresponding to the product E 1 ⇥ E 2 of two elliptic curves, the j-invariant of the second elliptic curve corresponds to the Hauptmodul H = 1728/j given by ( 57) when the j-invariant of the first elliptic curve reads

j 1 = 6912 x 27 + 4 x , (63) 
corresponding to the Hauptmodul 1728/j 1 = 1 + 27 4 x in (61). This second invariant is, as it should, exactly the j-invariant of the second elliptic curve E 0 , given page 48 in [45]:

j(E 0 ) = 256 • (3 b a 2 ) 3 4 a 3 c a 2 b 2 18 abc + 4 b 3 + 27 c 2 , (64) 
for c = 1, a = 3 and b = 3 + x.

5.4. Creative telescoping on rational functions of three variables associated with genus-two curves with split Jacobians: a simple example

Another simpler example of a genus-two curve with pullbacked 2 F 1 solution (not product of pullbacked 2 F 1 ) of the telescoper can be given if one considers the genustwo algebraic curve C p (x, y) = 0 given in Lemma 7 of [46] (see also [47,48])

C p (x, y) = x 5 + x 3 + p • x y 2 . ( 65 
)
Let us introduce the rational function x y/D(x, y, z) where the denominator D(x, y, z) is given by:

D(x, y, z) = C (p = xyz) (x, y) = x 5 + x 3 + x 2 y z y 2 . ( 66 
)
The telescoper of this rational function is an order-two linear di↵erential operator which has the two hypergeometric solutions

x 1/4 • 2 F 1 ⇣ [ 1 8 , 5 8 ], [ 3 4 ], 4 x ⌘ (67) 
which is a Puiseux series at x = 0 and:

x 1/4 • 2 F 1 ⇣ [ 1 8 , 5 8 ], [1], 1 4 x ⌘ . (68) 
These two hypergeometric solutions can be rewritten as †

A(x) • 2 F 1 ⇣ [ 1 12 , 5 12 
], [1], 1728 where the j-invariant J, in the Hauptmodul 1728/J in (69), corresponds exactly to the degree-two elliptic subfields

J ⌘ , ( 69 
) † The fact that 2 F 1 ⇣ [ 1 8 , 5 8 ], [1], z ⌘ can be rewritten as 2 F 1 ⇣ [ 1 
J 2 128 • (2000 x 2 + 1440 x + 27) (1 4 x) 2 • J 4096 • (100 x 9) 3 (1 4 x) 3 = 0, (70) 
given in the first equation of page 6 of [46].

Remark: In contrast with the previous example of subsection 5 where we had two j-invariants corresponding to the two order-two linear di↵erential operators L 2 and M 2 of the direct-sum decomposition of the order-four telescoper, we have, here, just one order-two telescoper, which is enough to "encapsulate" the two j-invariants (70), since they are Galois-conjugate.

6. Rational functions with tri-quadratic denominator and N -quadratic denominator.

We try to find telescopers of rational functions corresponding to (factors of) linear di↵erential operators of "small" orders, for instance order-two linear di↵erential operators with pullbacked 2 F 1 hypergeometric functions, classical modular forms, or their modular generalisations (order-four Calabi-Yau linear di↵erential operators [27], etc ...). As we saw in the previous sections, this corresponds to the fact that the denominator of these rational functions is associated with an elliptic curve, or products of elliptic curves, with K3 surfaces or with threefold Calabi-Yau manifolds corresponding to algebraic varieties with foliations in elliptic curves †. Since this paper tries to reduce the di↵erential algebra creative telescoping calculations to e↵ective algebraic geometry calculations and structures, we want to focus on rational functions with denominators that correspond to selected algebraic varieties [38,49], beyond algebraic varieties corresponding to products of elliptic curves or foliations in elliptic curves ‡, namely algebraic varieties with an infinite number of birational automorphisms [38,49,50,51]. This infinite number of birational symmetries, excludes algebraic varieties of the "general type" [38,49,50,51] (with finite numbers of birational symmetries). For algebraic surfaces, this amounts to discarding the surfaces of the "general type" which have Kodaira dimension 2, focusing on Kodaira dimension one (elliptic surfaces), or Kodaira dimension zero (abelian surfaces, hyperelliptic surfaces, K3 surfaces, Enriques surfaces), or even Kodaira dimension 1 (ruled surfaces, rational surfaces).

In contrast with algebraic curves where one can easily, and very e ciently, calculate the genus of the curves to discard the algebraic curves of higher genus and, in the case of genus-one, obtain the j-invariant using formal calculations ¶, it is, in practice, quite di cult to see for higher dimensional algebraic varieties, that the algebraic variety is not of the "general type", because it has an infinite number of birational symmetries. For these "selected cases" we are interested in, calculating the generalisation of the j-invariant (Igusa-Shiode invariants, etc ...) is quite hard.

Along this line we want to underline that there exists a remarkable set of algebraic surfaces, namely the algebraic surfaces corresponding to tri-quadratic equations:

X m=0,1,2 X n=0,1,2 X l=0,1,2 a m,n,l • x m y n z l = 0, (71) 
depending on 27 = 3 3 parameters a m,n,l . More generally, one can introduce algebraic varieties corresponding to N -quadratic equations:

X m1=0,1,2 X m2=0,1,2 • • • X mN =0,1,2 a m1, m2,••• , mN • x m1 1 x m2 2 • • • x mN N = 0. ( 72 
)
With these tri-quadratic ( 71), or N -quadratic (72) equations, we will see, in Appendix D.1 and Appendix D.2, that we have automatically (selected) algebraic varieties that are not of the "general type" having an infinite number of birational symmetries, which is precisely our requirement for the denominator of rational functions with remarkable telescopers †. Let us first, as a warm-up, consider, in the next subsection, a remarkable example of tri-quadratic [START_REF] Shimura | Correspondances modulaires et les fonctions ⇣ de courbes algé briques[END_REF], where the underlying foliation in elliptic curves is crystal clear.

Rational functions with tri-quadratic denominator simply corresponding to elliptic curves.

Let us first recall the tri-quadratic equation in three variables x, y and z:

x 2 y 2 z 2 2 • M • xyz • (x + y + z) + 4 • M • (M + 1) • xyz + M 2 • (x 2 + y 2 + z 2 ) 2 M 2 • (xy + xz + yz) = 0, (73) 
already introduced in Appendix C of [52]. This algebraic surface, symmetric in x, y and z, can be seen for z (resp. x or y) fixed, as an elliptic curve which j-invariant is independent of z yielding the corresponding Hauptmodul:

H = 1728 j = 27 • M 2 • (M 1) 2 4 • (M 2 M + 1) 3 . ( 74 
)
This corresponds to the fact that this algebraic surface (73) can be seen as a product of two times the same elliptic curve with the Hauptmodul (74). This is a consequence of the fact that, introducing x = sn(u) 2 , y = sn(v) 2 and z = sn(u + v) 2 , and M = 1/k 2 , this algebraic surface (73) corresponds to the well-known formula for the addition on elliptic sine ¶:

sn(u + v) = sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u) 1 k 2 sn(u) 2 sn(v) 2 . ( 75 
)
For M = x y z w, the LHS of the tri-quadratic equation ( 73) yields a polynomial of four variables x, y, z and w, that we denote T (x, y, z, w):

T (x, y, z, w) = (76)

x 2 y 2 z 2 2 • x 2 y 2 z 2 w • (x + y + z) + 4 • (xyzw + 1) • x 2 y 2 z 2 w + x 2 y 2 z 2 w 2 • (x 2 + y 2 + z 2 ) 2 x 2 y 2 z 2 w 2
• (xy + xz + yz). † Telescopers with factors of "small enough" order, possibly yielding classical modular forms, Calabi-Yau operators, ... Rational functions with denominators of the "general type" will yield telescopers of very large orders.

¶ See equation (C.3) in Appendix C of [52].

The telescoper of the rational function in four variables x, y, z and w,

x y z T (x, y, z, w) ,

is an order-three (self-adjoint) linear di↵erential operator which is the symmetric square of the order-two linear di↵erential operator having the following pullbacked 2 F 1 hypergeometric solution:

x 1/2 • (x 2 x + 1) 1/4 ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 27 • x 2 • (x 1) 2 4 • (x 2 x + 1) 3 ⌘ . ( 78 
)
As it should the Hauptmodul in ( 78) is the same as the Hauptmodul [START_REF] Sijsling | On computing Belyi maps Publications[END_REF]. The algebraic surface (73) can be seen as the product of two times the same elliptic curve with the Hauptmodul [START_REF] Sijsling | On computing Belyi maps Publications[END_REF]. As expected the solution of the order-three telescoper is the square of the pullbacked 2 F 1 hypergeometric function [START_REF] Guttmann | Automata and the susceptibility of the square lattice Ising model modulo powers of primes[END_REF] with that Hauptmodul. More generally, we can also consider a tri-quadratic equation of three variables

x, y and z and two parameters M and N :

x 2 y 2 z 2 2 M • xyz • (x + y + z) + N • xyz (79) + M 2 • (x 2 + y 2 + z 2 ) 2 M 2
• (xy + xz + yz) = 0. This surface, symmetric in x, y and z, can be seen for z (resp. x or y) fixed as an elliptic curve which j-invariant is, again, independent of z yielding the corresponding Hauptmodul:

H = 1728 j = 1728 • M 6 • (64 M 3 N 2 ) (48 M 3 N 2 ) 3 . (80) 
Let us consider the following change of variables M = m 2 and N = 8 • m 3 + p in [START_REF] Harnad | Picard-Fuchs equations[END_REF]. For p = x y z w, the LHS of the tri-quadratic equation ( 79) yields a polynomial in four variables x, y, z and w, that we denote T m (x, y, z, w):

T m (x, y, z, w) = x 2 y 2 z 2 2 m 2 • xyz • (x + y + z) + (8 • m 3 + x y z w) • xyz + m 4 • (x 2 + y 2 + z 2 ) 2 m 4 • (xy + xz + yz). (81) 
For z (resp. x or y) fixed the corresponding Hauptmodul (80) reads:

H = 1728 • m 12 • p • (16 m 3 + p) (16 m 6 + 16 m 3 • p + p 2 ) 3 . (82) 
The telescoper of the rational function in four variables x, y, z and w,

x y z T m (x, y, z, w) ,

is an order-three (self-adjoint) linear di↵erential operator which is the symmetric square of an order-two linear di↵erential operator having the following pullbacked

2 F 1 hypergeometric solution: (16 m 6 + 16 m 3 • x + x 2 ) 1/4 • ⇥ 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 1728 • m 12 • x • (16 m 3 + x) (16 m 6 + 16 m 3 • x + x 2 ) 3 ⌘ . ( 84 
)
As it should the Hauptmodul in [START_REF] Hassani | Scaling functions in the square Ising model[END_REF] is the same as the Hauptmodul [START_REF] Gorska | The higher-order heat-type equations via signed Lé vy stable and generalized Airy functions[END_REF]. The algebraic surface (79) can be seen as the product of two times the same elliptic curve

If one considers the intersection of the vanishing condition of the denominator of (91) with the hyperbola p = x y z u, eliminating for instance u = p/x/y/z in the vanishing condition of the denominator of (91), one gets a condition, independent of

x, which corresponds to a genus-one curve 11

y 2 z 3 + 9 y 2 z 2 + 3 y 2 z + yz 2 + yz + 3 p = 0. ( 94 
)
The Hauptmodul of this elliptic curve (94) reads:

H = 419904 • p 3 • (5 12 p 19440 p 2 + 2665872 p 3 ) (1 2592 p 2 ) 3 , (95) 
which corresponds precisely to the Hauptmodul pullback in (92).

Remark : The expansion (93) of ( 92) is not only the diagonal of the rational function R(x, y, z, u) in four variables (91), it is also the diagonal of the rational function of three variables R(x, y, z, 1). Actually, using section (3), one sees easily that eliminating x = p/y/z in the the vanishing condition of the denominator of R(x, y, z, 1) gives exactly the same elliptic curve (94).

Let us, now, generalize the rational function (91) of four variables x, y, z, u, introducing the rational function of

N + 3 variables x, y, z, u 1 , u 2 , • • • , u N : R(x, y, z, u 1 , u 2 , • • • , u N ) (96) = 1 1 + 3y + z + 9 y z + 11 z 2 y + 3 x • u 1 u 2 • • • u N .
The telescoper of this rational function of N + 3 variables is the same order-two telescoper as for (91), which has the pullbacked hypergeometric solution (92). Again one can verify that the diagonal of (96) is the expansion (93) of the pullbacked hypergeometric function (92). If one considers the intersection of the vanishing condition of the denominator of (96) with the hyperbola p = x y z u 1 u 2 Other examples, corresponding to simple polynomial deformations of (91), such that their diagonal is the pullbacked 2 F 1 hypergeometric function (92) are displayed in Appendix E. This (infinite) family of rational functions correspond to a di↵erent algebraic geometry scenario: the "canonical" algebraic surface corresponding to the intersection of the vanishing condition of the denominator of the rational function with the hyperbola p = xyz, is foliated in algebraic curves depending on the variable x. One sees (experimentally) that the Hauptmodul of the pullbacked 2 F 1 hypergeometric functions corresponds to the Hauptmodul of the x = 0 algebraic curve, which is an elliptic curve †. In contrast with the other examples and results of this paper, we have no algebraic geometry interpretation of this experimental result yet.

Conclusion

Diagonals of rational functions emerge quite naturally in lattice statistical mechanics [19,20]. This explains the frequent occurrence of modular forms, represented as pullbacked 2 F 1 hypergeometric functions [1,2] in lattice statistical mechanics [21,22,23,24,25,26,27].

We have shown that the results we had obtained on diagonals of nine and ten parameters families of rational functions in three variables, using creative telescoping yielding classical modular forms expressed as pullbacked 2 F 1 hypergeometric functions [1,2], can be obtained much more e ciently calculating the j-invariant of an elliptic curve canonically associated with the denominator of the rational functions. In the case where creative telescoping yields pullbacked 2 F 1 hypergeometric functions, we generalize this result to other families of rational functions of three, and even more than three, variables, when the denominator can be associated with products of elliptic curves or foliation in terms of elliptic curves, or when the denominator is associated with a genus-two curve with a split Jacobian corresponding to products of elliptic curves.

We have seen di↵erent scenarii.

In the first cases, we have considered denominators corresponding to products of elliptic curves: in these cases the solutions of the telescoper were products of pullbacked 2 F 1 hypergeometric functions. We have also considered denominators corresponding to genus-two curves with split Jacobians isogenous to products of two elliptic curves, and in these cases the solutions of the telescoper were sums of two pullbacked 2 F 1 hypergeometric functions, sometimes one pullbacked 2 F 1 hypergeometric function being enough to describe the two Galois-conjugate j-invariants (see 5.4). We also considered denominators corresponding to algebraic varieties where the Hauptmodul pullback in the pullbacked 2 F 1 hypergeometric functions emerges from a selected (x = 0, see Appendix E.1, Appendix E.2) elliptic curve of the algebraic variety. We also encountered denominators corresponding to algebraic manifolds with an infinite set of birational automorphisms and elliptic curves foliation yielding, no longer classical modular forms represented as pullbacked 2 F 1 hypergeometric functions, but more general modular structures associated with selected linear di↵erential operators like Calabi-Yau linear di↵erential operators [27,53] and their generalisations.

The creative telescoping method on a rational function is a way to find the periods of an algebraic variety over all possible cycles ‡. The fact that the solution of the telescoper corresponds to "periods" [34] over all possible cycles is a simple consequence of the fact that creative telescoping corresponds to purely di↵erential algebraic manipulations on the integrand independently of the cycles, thus being blind to analytical details. In this paper, we show that the final result emerging from such di↵erential algebra procedures (which can be cumbersome when the result depends on nine or ten parameters), can be obtained almost instantaneously from a more fundamental intrinsic pure algebraic geometry approach, calculating, for instance, the j-invariant of some canonical elliptic curve. This corresponds to a shift Analysis ! Di↵erential Algebra ! Algebraic Geometry. Algebraic geometry studies of more involved algebraic varieties than product of elliptic curves, foliation in elliptic curves (Calabi-Yau manifolds, ...) is often a tedious and/or di cult task (finding Igusa-Shiode invariants, ...), and formal calculations tools are not always available or user- ‡ Not only the evanescent cycles [35,36] corresponding to diagonals of rational functions.

friendly. Ironically, for such involved algebraic varieties the creative telescoping then becomes a simple and e cient tool to perform e↵ective algebraic geometry studies. ten-parameters family (11) consists of the following 10 points in N 2 : (0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3,3) which form a right triangle of side length 3. Only one of these points is an interior point, namely (1, 2), hence the genus is 1.

Therefore we may ask: which integer lattice polytopes exist which have exactly one interior point and what is the largest such polytope? Not surprisingly, the answer is known: there are (up to transformations like translation, rotation, shearing) exactly 16 di↵erent polytopes with a single interior point [68] (see also Figure 5, page 548 in [69]), the above-mentioned right triangle being the one with the highest total number of lattice points.

This shows that there cannot be a family of elliptic curves with more than ten parameters.

Appendix B. Monomial transformations preserving pullbacked hypergeometric results

More generally, recalling subsection 4.2 in [2] and subsection 4.2 page 17 in [1], let us consider the monomial transformation

(x, y, z) ! M (x, y, z) = (x M , y M , z M ) = ⇣ x A1 • y A2 • z A3 , x B1 • y B2 • z B3 , x C1 • y C2 • z C3 ⌘ , (B.1) 
where the A i 's, B i 's and C i 's are positive integers such that

A 1 = A 2 = A 3 is excluded (as well as B 1 = B 2 = B 3 as well as C 1 = C 2 = C 3 )
, and that the determinant † of the 3 ⇥ 3 matrix [1, 2] 2 6 6 4

A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 3 7 7 5 , (B.2)
is not equal to zero † †, and that:

A 1 + B 1 + C 1 = A 2 + B 2 + C 2 = A 3 + B 3 + C 3 . (B.3)
We will denote by n = A i + B i + C i the integer in these three equal sums (B.3). Condition (B.3) is introduced in order to impose that the product ¶ of x M y M z M is an integer power of the product of x y z: x M y M z M = (x y z) n . If we take a rational function R(x, y, z) in three variables and perform such a monomial transformation (B.1) (x, y, z) ! M (x, y, z), on this rational function R(x, y, z), we get another rational function that we denote by R = R(M (x, y, z)). Now the diagonal of R is the diagonal of R(x, y, z) where we have changed x into

x n : (x) = Diag ⇣ R ⇣ x, y, z ⌘⌘ , Diag ⇣ R⇣ x, y, z ⌘⌘ = (x n ).
(B.4) † Note a typo in the footnote 28 page 17 of [1] as well as in the second footnote page 18 in [2]. The sentence has been truncated. One should read: For n = 1, the 3 ⇥ 3 matrix (B.2) is stochastic and transformation (B.1) is a birational transformation if the determinant of the matrix (B.2) is ± 1. † † We want the rational function R = R(M (x, y, z)) deduced from the monomial transformation (B.1) to remain a rational function of three variables and not of two, or one, variables.

¶ Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor expansion, only the terms that are n-th power of the product x y z.

Appendix C. Weierstrass and Legendre forms

The telescoper of the rational function in three variables

x y (1 + y) 2 x • (1 x) • (x x y z) , (C.1)
associated § with the elliptic curve in a Weierstrass form:

(1 + y) 2 x • (1 x) • (x p) = 0, (C.2)
is the order-two linear di↵erential operator

L 2 = 1 + 4 • (1 2 x) • D x + 4 • x • (1 x) • D 2 x , (C.3)
which has the hypergeometric solution:

2 F 1 ⇣ [ 1 2 , 1 2 ], [1], x ⌘ (C.4) = (1 x + x 2 ) 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 27 4 • x 2 • (1 x) 2 (1 x + x 2 ) 3 ⌘ .
The elliptic curve (C.2) has the Hauptmodul

H = 27 4 • p 2 • (1 p) 2 (1 p + p 2 ) 3 . (C.5)
in agreement with the pullback in (C.4).

Appendix C.1. K3 surfaces as products or foliations of two elliptic curves.

The examples of section 4 correspond to denominators which are algebraic varieties that can be seen as Weierstrass elliptic curves for fixed values of all the variables except two. Let us show other simple telescopers for rational functions with denominators which are algebraic varieties with some foliation in elliptic curves ‡.

The telescoper of the rational function in four variables

x y z (1 + z) 2 x • (1 x) • y • (x y) • (y x y z w) , (C.6)
associated § with the K 3 surface written in a Legendre formk

(1 + z) 2 x • (1 x) • y • (x y) • (y p) = 0, (C.7)
is an order-three self-adjoint ¶ linear di↵erential operator L 3

L 3 = x • (2 ✓ + 1) 3 8 • ✓ 3 , (C.8)
which has the following 3 F 2 solution (which is also, because of Clausen's formula, the square of a 2 F 1 function):

3 F 2 ⇣ [ 1 2 , 1 2 , 1 2 ], [1, 1], x ⌘ = 2 F 1 ⇣ [ 1 4 , 1 4 ], [1], x ⌘ 2 .
(C.9) § The diagonal extracts the terms function of the product p = x y z in the multi-Taylor series. ‡ Like K3 surfaces, or three-fold Calabi-Yau manifolds. § The diagonal extracts the terms function of the product p = x y z w in the multi-Taylor series. k Along this line see the first equation page 19 of [70].

¶ The order-three linear di↵erential operator is thus the symmetric square of an order-two linear di↵erential operator.

The K 3 surface (C.7) can be seen as associated with the product of two Weierstrass elliptic curves † of Hauptmoduls respectively:

H x = 27 4 • p 2 • (1 p) 2 (1 p + p 2 ) 3 , H y = 27 4 • y 2 • (1 y) 2 (1 y + y 2 ) 3 .
(C.10)

This order-three linear di↵erential operator L 3 is the symmetric square of the ordertwo linear di↵erential operator

M 2 = 1 + 8 • (2 3 x) • D x + 16 • x • (1 x) • D 2 x , (C.11)
which has the hypergeometric solutions:

2 F 1 ⇣ [ 1 4 , 1 4 ], [1], x ⌘ = ⇣ 1 x 4 ⌘ 1/4 • 2 F 1 ⇣ [ 1 12 , 5 12 ], [1], 27 • x 2 (x 4) 3 ⌘ . (C.12)
Appendix C.2. Calabi-Yau three-fold manifolds as foliation in three elliptic curves.

The telescoper of the rational function in five variables x, y, z, v and w

x y z v (1 + w) 2 x • (1 x) • y • (x y) • z • (y z) • (z x y z v w) , (C.13)
associated † † with the Calabi-Yau three-fold written in a Legendre form

(1 + w) 2 x • (1 x) • y • (x y) • z • (y z) • (z p) = 0, (C.14)
is an order-four (self-adjoint) linear di↵erential operator L 4

L 4 = 16 • ✓ 4 x • (2 ✓ + 1) 4 , (C.15)
which is a Calabi-Yau operator ¶ with the 4 F 3 solution:

4 F 3 ⇣ [ 1 2 , 1 2 , 1 2 , 1 2 ], [1, 1, 1], x ⌘ . (C.16)
For y and z fixed, the Calabi-Yau three-fold (C.14) is foliated in genus-one curves

(1 + w) 2 • x • (1 x) • (x y) = 0, (C.17)
where is the constant expression (p is fixed):

= y • z • (y z) • (z p). (C.18)
The Hauptmodul of these genus-one curves is independent of p and z, reading:

H y,z = 27 4 • y 2 • (1 y) 2 (1 y + y 2 ) 3 . (C.19)
Similarly for x and z fixed, the Calabi-Yau three-fold (C.14) is foliated in genus-one curves

(1 + w) 2 µ • y • (x y) • (y z) = 0, (C.20)
where µ is the constant expression (p is fixed):

µ = x • z • (1 x) • (z p).
(C.21) † K 3 surfaces are not abelian varieties, but they are "close" to abelian varieties: from a creative telescoping viewpoint they can be seen as essentially products of two elliptic curves. † † The diagonal extracts the terms function of the product p = x y z v w in the multi-Taylor series. ¶ This linear di↵erential operator is self-adjoint, its exterior square is of order five, it is MUM (maximum unipotent monodromy [27,53,54]), ... The genus-one curves (C.20) can be written in a simpler Weierstrass form:

(1 + w) 2 ⇢ • Y • ⇣ 1 Y ⌘ • ⇣ Y z x ⌘ = 0, (C.22)
where the constant ⇢ reads ⇢ = µ • x 3 , and the variable y has been rescaled into 

Y = y/x.
H x,z = 27 4 • x 2 • z 2 • (x z) 2 (x 2 x z + z 2 ) 3 . (C.23)
Similarly for x and y fixed, the Calabi-Yau three-fold (C.14) is foliated in genus-one curves,

(1 + w) 2 ⌫ • z • (y z) • (z p) = 0, (C.24)
where ⌫ reads:

⌫ = x • (1 x) • y • (x y). (C.25)
A reduction to a canonical Weierstrass form similar to (C.22) gives immediately the Hauptmodul of the genus-one curve (C.24) which reads:

H x,y = 27 4 • y 2 • p 2 • (y p) 2 (y 2 y p + p 2 ) 3 . (C.26)
The Calabi-Yau three-fold (C.14) thus has a foliation in a triple of elliptic curves E 1 , E 2 and E 3 .

Appendix D. Rational functions with tri-quadratic and N -quadratic denominators.

Appendix D.1. Rational functions with tri-quadratic denominators.

Let us consider the most general tri-quadratic surface

X m=0,1,2 X n=0,1,2 X l=0,1,2 a m,n,l • x m y n z l = 0, (D.1)
depending on 27 = 3 3 parameters a m,n,l . It can be rewritten as:

A(x, y) • z 2 + B(x, y) • z + C(x, y) = 0. (D.2)
It is straightforward to see that condition (D.2) is preserved by the birational involution

I z I z : ⇣ x, y, z ⌘ ! ⇣ x, y, C(x, y) A(x, y) • 1 z ⌘ , (D.3)
and we have of course two other similar birational involutions I x and I y that single out x and y respectively. The (generically) infinite-order birational transformations We have a foliation in two families of elliptic curves E and E 0 of the surface. Consequently, this tri-quadratic surface (D.1), having an infinite set of birational automorphisms, an infinite set of birational symmetries, cannot be of the "general type" (it has Kodaira dimension less than 2). Appendix D.2. Rational functions with N -quadratic denominators.

K x = I y • I z , K y = I z • I x and K z = I x • I
The calculations of Appendix D.1 can straightforwardly be generalised to N -quadratic equations, writing the N -quadratic (72) as

A(x 1 , x 2 , • • • , x N 1 ) • x 2 N + B(x 1 , x 2 , • • • , x N 1 ) • x N + C(x 1 , x 2 , • • • , x N 1 ) = 0, (D.4)
and introducing the birational involution

I N I N : ⇣ x 1 , x 2 , • • • , x N ⌘ (D.5) ! ⇣ x 1 , x 2 , • • • , x N 1 , C(x 1 , x 2 , • • • , x N 1 ) A(x 1 , x 2 , • • • x N 1 ) • 1 x N ⌘ .
Similarly to Appendix D.1, we can introduce N involutive birational transformations I m and consider the products of two such involutive birational transformations K m,n = I m • I n . These K m,n 's are (generically) infinite order birational transformations preserving the N 2 variables that are not x m and x n .

Using such remarkable N variables algebraic varieties, with an infinite set of birational automorphisms, one can build rational functions of N + 1 variables, any of the parameter of the algebraic variety, becoming an arbitrary rational † function of the product p = x 1 x 2 • • • x N in order to build the denominator of the rational function. The telescopers of such rational functions are seen (experimentally using creative telescoping) to be of substantially smaller order than the ones for rational functions where their denominators are, after reduction by p = x 1 x 2 • • • x N , associated with algebraic varieties of the "general type". hypergeometric solution (92). Actually the diagonal of the rational function (91) is the expansion (93) of the pullbacked hypergeometric function (92). In this case (E.6), the elimination of u = p/x/y/z in the vanishing condition of the denominator (E.6) gives the algebraic curve:

x 2 y 4 z + x y 3 z 3 + 11 y 2 z 3 + 9 y 2 z 2 + 3 y 2 z + y z 2 + y z + 3 p = 0. (E.7) For x fixed (and of course p fixed) this algebraic curve (E.7) is a genus-five curve, but, of course, in the x = 0 case it reduces to the same genus-one curve as for the first example (91), namely:

11 y 2 z 3 + 9 y 2 z 2 + 3 y 2 z + y z 2 + y z + 3 p = 0. (E.8)
which corresponds to the Hauptmodul (E.5). The generalisation of this result is straightforward. Let us consider the rational function in four variables x, y, z and u R(x, y, z, u) = (E.9) 1 1 + 3y + z + 9 y z + 11 z 2 y + 3 u x + x • P (x, y, z) ,

where P (x, y, z) is an arbitrary polynomial of the three variables x, y and z. On a large set of examples one verifies that the diagonal of (E.9) is actually the expansion (93) of the pullbacked hypergeometric function (92):

1 + 648 x 2 72900 x 3 + 1224720 x 4 330674400 x 5 + 23370413220 x 6 (E.10) 1276733858400 x 7 + 180019474034400 x 8 12013427240614800 x 9 + • • • However, as far as creative telescoping calculations are concerned ‡, the telescoper corresponding to di↵erent polynomials P (x, y, z) becomes quickly a quite large nonminimal linear di↵erential operator. For instance, even for the simple polynomial P (x, y, z) = x + y, one obtains a quite large order-ten telescoper. Of course, since this telescoper has the pullbacked hypergeometric function (92) as a solution, it is not minimal, it is rightdivisible by the order-two linear di↵erential operator having (92) as a solution. It is straightforward to see that the previous elimination of u = p/x/y/z in the vanishing condition of the denominator (E.9) gives an algebraic curve † 11 y 2 z 3 + 9 y 2 z 2 + 3 y 2 z + y z 2 + y z + 3 p + y z • P (x, y, z) = 0. (E.11) which reduces again, in the x = 0 case, to the same genus-one curve (E.8).

With that general example (E.9) we see that there is an infinite set of rational functions depending on an arbitrary polynomial P (x, y, z) of three variables whose diagonals are actually a pullbacked 2 F 1 hypergeometric solution, namely (92). • (1 wx wy wz) • (1 + w) 3 1 • (1 wx wy wz) 2 (1 + w) 3 • (1 wx wy wz) 3 (1 wx wy) There is a plethora of multiple integrals in physics: Feynman integrals, lattice Green functions, the summands of the magnetic susceptibility of the 2D Ising model [1,2], that have very specific mathematical properties. These functions are D-finite, i.e., solutions of linear differential operators with polynomial coefficients, and have series expansions with integer coefficients. It was also shown that the linear differential operators annihilating the summands of the magnetic susceptibility of the Ising model ˜ (n) , verify the specific property of being Fuchsian4 operators: the critical exponents of all their singularities are given by rational numbers, and their Wronskians are Nth roots of rational functions [1,2]. It was also shown that the ˜ (n) functions are solutions of globally nilpotent operators [3], and that they 'come from geometry' being G-operators [5].

The unifying scheme behind these seemingly sparse properties is that these functions are diagonals of rational functions [6,7]. It was shown for example in [7], that if summands of the magnetic susceptibility ˜ (n) for any n have an integer coefficient series expansion reducing to algebraic series modulo any prime, it is because they are diagonals of rational functions for any integer n. In fact many problems in mathematical physics involving n-fold integrals, could be interpreted in terms of diagonals of algebraic or rational 5 functions 6 .

In the case of the magnetic susceptibility of the square Ising model, it was possible to show that the ˜ (n) 's are diagonals of rational functions because one had access to the algebraic integrands 7 . The only hurdle to overcome was to show the integrand to be analytic at the origin. Now, it is straightforward to show that 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], 3 6 • x and 3 F 2 [1/9, 4/9, 7/9], [1/3, 1], 3 6 • x verify the criteria that every diagonal of a rational function needs satisfy [9]: It is however much harder to prove these two functions to be diagonals of rational functions, as it is an example of an inverse problem of creative telescoping 8 . Now, solving inverse problems is hard, and it is relevant to physics. Inverse problems are hard because the objects they study are not attainable through direct study. This is the case with the problem we tackle in this paper: it is very hard to guess the rational function whose diagonal is given by 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], 3 6 • x or 3 F 2 [1/9, 4/9, 7/9], [1/3, 1], 3 6 • x , and that is why the problem of showing any member of this 'class' of hypergeometric functions to be a diagonal of a rational function, has been open since Christol came up with a first unresolved example in 1986 [22].

•
Computational software tools such as Maple and Mathematica, as well as the software package [12], were heavily used to guess the rational functions whose diagonals give these 3 F 2 functions. While physicists know that these tools can be used for direct computation in physics 9 , it is less known that they can be used to study inverse problems like the one we discuss in this paper, which makes this paper all the more relevant to physicists.

Furthermore, these 3 F 2 hypergeometric functions are shown in appendix A to be related to Shimura curves, a type of curves that appears in the context of Calabi-Yau varieties [14] (which can be seen as generalizations of K3 surfaces [15]), and in the context of mathematical physics [16], for instance mirror symmetry in physics [4]. For example in [16], Shimura curves are discussed in the context of superelliptic curves which have different applications in mathematical physics [18]. Furthermore, in the context of Calabi-Yau operators [19,20], it is worth recalling that the (non-holonomic but differentially algebraic) series of the nome, or the Yukawa coupling series [21], are actually series with integer coefficients, this property having a deep physical meaning like counting the number of instantons.

Christol's conjecture is an important problem for D-finite series. As explained in [22], the conjecture states that every series verifying the two properties appearing in the bullet points above, is the diagonal of a rational function. In the same paper [22], Christol came up with an unresolved example to his conjecture, and a longer list was generated by Christol and 5 Any diagonal of an algebraic function in n variables can be rewritten as the diagonal of a rational function in 2n variables: see [8]. 6 See [6,7] p 26 and p 58. 7 See the integrand of equation ( 26) in [7]. 8 See section 8 of [11]. 9 The software package [12] can be used to compute differential equations verified by various sunset and sunrise Feynman diagrams [13]. [7] [?] 17 that we are looking at here, we see that neither 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], x , nor 3 F 2 [1/9, 4/9, 7/9], [2/3, 1], x , can be obtained as diagonals of rational functions through Hadamard products 18 since the three 2 F 1 hypergeometric series are not globally bounded 19 

The main results

The globally bounded 3 F 2 hypergeometric series 

These two hypergeometric series 21 (9) can be recast into series with integer coefficients 16 Instead of 2 F 1 ([c, 1], [e], x), or one could take any one of the three permuted versions: 2 F 1 ([b, 1], [e], x) , etc. 17 Appendix F p 58 of [7]. 18 See [28] for a proof that 3 F 2 [1/9, 4/9, 7/9], [2/3, 1], x cannot be written as a Hadamard product. 19 One can see this experimentally by taking the series expansion of any of the Gauss hypergeometric functions: the prime numbers in the denominators of the coefficients grow continuously. 20 The operators annihilating the two hypergeometric functions (9) are adjoint of each other. 21 The hypergeometric function 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 27x) can be rewritten as the Hadamard product 2 F 1 [ 2 9 , 5 9 ], [ 2 3 ], 27 x ? (1 x) 8/9 with 2 F 1 [ 2 9 , 5 9 ], [ 2 3 ], 27 x being associated with a Shimura curve [31]. For more details please refer to appendix A.

From diagonals of algebraic functions to diagonals of rational functions: Denef and Lipshitz

We explain a method which, for a given algebraic power series in n variables, constructs a rational function in 2n variables whose diagonal equals the diagonal of the given algebraic series. Moreover, the partial diagonal of that 2n-variable rational function, with respect to the pairs of variables (x 1 , x n+1 ), . . . , (x n 1 , x 2n ), yields the original n-variable algebraic power series. The method is described in the paper by Denef and Lipshitz [8] in the proof of their theorem 6.2. As a running example we use the three-variable algebraic function f (x, y, z) =

(1 x y) 1/3 1 x y z , (

whose multi-Taylor series expansion at 0 is actually a power series in the three variables x, y, z: 

f (x,
Note that the minimal polynomial of f is given by p(x, y, z, f ) = ((x + y + z 1)

• f ) 3 + 1 x y. ( 16 
)
Denef and Lipshitz's theorem is formulated for étale extensions, which basically means that the partial derivative (w.r.t. f ) of the minimal polynomial has a nonzero constant coefficient at 0. Clearly, the above polynomial p(x, y, z, f ) does not meet this criterion. However, by considering f = f 1, i.e. by removing the constant term of f, we can achieve an étale extension. The minimal polynomial then reads p(x, y, z, f ) = ((x + y + z 1) • ( f + 1)) 3 + 1 x y.

(17) Indeed, @p @ f (0, 0, 0, 0) = 3 6 = 0. According to the proof of theorem 6.2 (i) in [8], the rational function r(x, y, z, f ) = f 2 • @p @ f (x f , y f , z f , f ) p(x f , y f , z f , f ) (18) has the property that D (r(x, y, z, f )) = f (x, y, z), and hence D (r(x, y, z, f )) = f (x, y, z) for r(x, y, z, f ) = r(x, y, z, f ) + 1. Here the operator D denotes a special kind of 'diagonalization' with respect to the last variable: for f (x 1 , . . . , x n , y) = X a i 1 ,...,i n , j

• x i 1 1 • • • x i n n y j , ( 1 9 ) 
one defines

D ( f (x 1 , . . . , x n , y)) = X j=i 1 +•••+i n a i 1 ,...,i n , j • x i 1 1 • • • x i n n . (20) 
In our running example we obtain:

r(x, y, z, f ) = 3 f 2 • ( f + 1) 2 • (x f + y f + z f 1) 3 ( f + 1) 3 • (x f + y f + z f 1) 3 x f y f + 1 + 1. (21) 
In the second step, which is explained in the proof of theorem 6.2(ii) of [8], one has to transform the rational function r (that has n + 1 variables) into another rational function (having 2n variables) such that its 'true' (partial) diagonal gives the n-variable algebraic series f. It consists of a sequence of n 1 elementary steps, each of which is adding one more variable. In our example, we have to do the following r 1 (x, y, z, u 1 , v 1 ) = u 1 • r(x, y, z, u 1 ) v 1 • r(x, y, z, v 1 )

u 1 v 1 , ( 2 2 ) 
r 2 (x, y, z, u 1 , u 2 , v 2 ) = u 2 • r 1 (x, y, z, u 1 , u 2 ) v 2 • r 1 (x, y, z, u 1 , v 2 ) u 2 v 2 ,
and obtain with r 2 the desired rational function in six variables.

Generalization of the previous result

By the algorithm of Denef and Lipshitz given in the previous section, it is possible to show that the algebraic function The diagonal of the rational function ( 24) is annihilated by the linear differential operator of order three: For example if we consider the parameter values b = 1 and a = 7, we see that the diagonal of ( 24) is given by the globally bounded 22 

being a globally bounded series, which means that it can be written as a diagonal using one of the procedures given in section 2.3. We note that algebraic functions close to the algebraic functions appearing in (10) and (11), also give 3 F 2 or 4 F 3 hypergeometric functions as their diagonals that are unresolved examples to Christol's conjecture: 

Proof

A computer algebra proof of this result can easily be obtained using the creative telescoping program [12]: one computes the operator (25) using the program [12], and verifies that this operator does annihilate the diagonal of ( 23) 24 . Another longer way to do it which we provide below, is through binomial sums.

The denominator of the algebraic function (1 x y) b/a /(1 x y z) can be expanded as a geometric series:

(1 x y z) 1 = 1 X n=0 1 X m=0 ⇣ n m ⌘ • (x + y) m z n m = 1 X n=0 1 X m=0 1 X l=0 ⇣ n m ⌘ ⇣ m l ⌘ • x l y m l z n m , ( 3 4 ) 
while the numerator can be written as the sum: 

Multiplying these two sums (34) and (35) and re-indexing, we obtain:

1 X s=0 1 X t=0 1 X u=0 x s y t z u • s X j=0 1 X k=0 ( b/a) k k! • ✓ k j ◆ ✓ s + t + u k s + t k ◆ ✓ s + t k s j ◆ . (36) 
Now taking the coefficients corresponding to the diagonal in (36), i.e. such that s = t = u = n, we get:

n X j=0 1 X k=0 ( b/a) k k! • ✓ k j ◆ ✓ 3n k 2n k ◆ ✓ 2n k n j ◆ = 2n X k=0 ( b/a) k k! • ✓ 3n k 2n k ◆ • n X j=0 ✓ k j ◆ ✓ 2n k n j ◆ . ( 37 
)

Conclusion

The emergence of series with integer coefficients in physics is often an indicator, of existence of mathematical structure behind the function one is considering. For instance [36] the low or high-temperature expansions of ˜ (2) , and of the full magnetic susceptibility of the squarelattice Ising model, reduce to algebraic functions modulo 2 r . For ˜ (2) , it was understood that the reason behind the reduction modulo 2 r was the fact that ˜ (2) was a diagonal of a rational function 28 . This property is not yet fully understood for the full magnetic susceptibility, which is a non-holonomic function, and is probably not differentially algebraic [37]. In [17] it was shown that Fuchsian linear differential operators having coefficients in Q(z), with a rigid monodromy group, and with the critical exponents being rational numbers, have a strong Frobenius structure for almost all prime numbers p. In fact theorem 1 in [17], allows one to know right away that the 3 F 2 [1/9, 4/9, 5/9], [1/3, 1], x is an algebraic series modulo almost any prime p, without doing any of the calculations of section 4.1 that we give for illustration purposes.

Yet neither the property of algebraicity of diagonals modulo p, nor the result of [17], are helpful in proving the hypergeometric functions 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], x and 3 F 2 [1/9, 4/9, 7/9], [1/3, 1], x to be the diagonals of rational functions. We have shown in this paper that the hypergeometric series 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], x and 3 F 2 [1/9, 4/9, 7/9], [1/3, 1], x appearing in [7] are diagonals of rational functions. We did so by first finding two algebraic functions whose diagonals were given by these two hypergeometric functions, and through an algorithm outlined in the paper [8], we were able to recover the rational functions whose diagonals are given by these two 3 F 2 hypergeometric functions.

We were also able to give a generalization of this result, and obtain other unresolved examples of Christol's conjecture as diagonals of rational functions. Furthermore, even though we were not able to write the 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], 27 • x) given by Christol in [22], as a diagonal of a rational function, we gave two arguments that suggested that it was likely to be so, one of them using the result of [17]. More generally, we believe after writing the 13 36 ], [ 8 9 ], x) which occurs in p 14 of [34], corresponds to a hypergeometric function related to a Shimura curve since it has exponent differences 29 (1/9, 1/2, 1/3), and these exponent differences are listed in the exhaustive list of hypergeometric functions that are associated with Shimura curves appearing in table 1 of [30]. Other 3 F 2 functions that are unresolved examples to Christol's conjecture that we found to be 29 See [35] p 10 for a definition of exponent difference.

après un axe

x dirigé de haut en bas et un axe des y dirigé de gauche à droite, conve nonsd'écrire le terme A^z 1 au point x = /c, y = l. Traçons dans ce tableau une droite quelconque non parallèle à l'axe des x ;

V ensemble des termes disposés le long de cette droite forme une série entière dont le rayon de convergence est différent de zéro et dont la somme est une fonction algébrique.

Dans cet énoncé, les fonctions rationnelles sont considérées

See [24] p.38.

and after associating an x-axis directed from the top to bottom, and a y-axis directed from left to right, the term A kl • z l corresponds to the points x = k and y = l, in the table above. If one traces in the above table an arbitrary line that is not parallel to the x-axis, the terms along this line form a power series whose radius of convergence is greater than zero, and the sum of these terms yields an algebraic function. So Pólya does not restrict his proof to "diagonals" + (as defined below) of rational functions like Furstenberg does.

Furstenberg starts by defining diagonals of formal series as the formal series R (x 1 , . . . , x n ):

R ⇣ x 1 , . . ., x n ⌘ = 1 X m 1 = 0 • • • 1 X m n = 0 R m 1 , ..., m n • x m 1 1 • • • x m n n , (5) 
reduced to the series in one variable x given by: 

Then he sketches a proof, using contour integration like in the case of Pólya's proof, that diagonals of bi-variate rational functions are algebraic. So his proof does not discuss the algebraicity of the sums, of off diagonal terms, and unlike Pólya who works with algebraic functions in his proof, Furstenberg restricts himself to rational functions. He then obtains the diagonal of a rational function in three variables and shows that it is algebraically transcendental. He manages to prove a similar result to the one in two variables, but in finite characteristic ¶ Theorem (H. Furstenberg [11]) If the ground field  has finite characteristic, then the diagonal of a rational function of several variables is an algebraic function of one variable.

+ As we explained earlier, Pólya in his 1922 paper does not use the word diagonal. ¶ The only attainable result in characteristic zero case is the one we just discussed applicable to diagonals of bi-variate rational functions.

is proved again in 1962, in the context of rational formal non-commutative series, in the paper "On a theorem of R. Jungen" [26]. "Re"-proving theorems is very common in mathematical practice, as Gian Carlo Rota explains [25]:

The overwhelming majority of research papers in mathematics is concerned not with proving, but with re-proving; not with axiomatizing, but with reaxiomatizing; not with inventing, but with unifying, with streamlining, with adding marginal results to known theories.

In fact mathematicians seek in older mathematical texts, practices, that resonate with their own contemporary mathematical practices ¶. For instance, the re-proving of Jungen's 1931 theorem, by Schützenberger in the 1960's, happens in a context where members of the Bourbaki group sought to put forward their own view of how mathematics should be conducted. As explained in [4], Chevalley who was a Bourbaki member:

he worked on the elimination of all tools relying on analytical number theory from class field theory While we do not try to establish a precise historical link between Chevalley's efforts, and Schützenberger's re-proving of Jungen's theorem, many results from analysis were being re-proven in the 50's and 60's according to the editorial line of the Bourbaki group.

One could think that there is historical continuity between the proof of Pólya in 1922, and the proof of Furstenberg in 1967, or that Furstenberg's proof was re-proving Pòlya's result (as well as proving the converse of the result), according to the norms practice of mathematics common in that period etc. This is not true however, because Furstenberg was not aware of Pólya's 1922 paper, nor any of the other papers we mentioned [22,19,26]. When asked about the motivations behind this result, and about the works he had read, when he wrote his 1967 paper, he explained in a private communication:

I was not aware of any of the papers you refer to at the time I wrote my paper. of the sequence of fractional parts of powers of 3/2 (or, for that matter any non-integer rational > 1.) Are they dense in [0,1], or even equidistributed?

One can reinterpret this question to a question about a particular "cellular automaton" studying the orbit of a particular point. By changing the rule guiding the cellular automaton to a simpler rule, the defining function being "linear", the behavior in question becomes that of studying the diagonal of a rational function of two variables over a finite field. This doesn't solve the problem but it does show that this type of cellular automaton need not lead to the density behavior I was looking for. Unfortunately this is not published [12] In fact, Furstenberg became aware of Pólya's paper [24] through my exchange with him.

Christol and diagonals

Like Furstenberg, Christol did not know about the result of Pólya, when he learnt about diagonals through Furstenberg's 1967 paper:

Pisot, my master, often cited Pólya but I never heard him speak about this article, and I only became aware of its existence much later [7].

Christol explains that he was aware of the article of Martin [22]: I had quickly found the article by Martin-Cameron (through J-P. Allouche) and saw that it was not directly related to my interests [at that time] [7].

Christol became first interested in diagonals when he generalized Furstenberg's result discussed earlier, namely that algebraic functions over finite fields are diagonals of rational functions. While Furstenberg restricted his theorem to finite fields, Christol in his paper [5] proved this result for any field. Christol became interested in diagonals through Furstenberg's article, because he saw in it a good application of his PhD thesis work:

I had a precise and reliable source (the article by Furstenberg) and I did not look for other articles -and like it often hapoens, most people that were interested in my work have done the same thing with a few exceptions (notably J-P. Allouche who carried a systematic research). In fact I was in the middle of writing my thesis and I saw diagonals as a good tool provided by Furstenberg, to get where I wanted, namely, provide a p-adic caracterization of algebraic functions and their uniform limits ("éléments algébriques" in my jargon) through their Taylor coefficients [7].

Then Christol came up with his conjecture about integer coefficient series being diagonals of rational functions in the paper [6]:

Regarding the conjecture on globally bounded solutions, I can affirm that it emerged (in my spirit and in my writings) while preparing my presentation in Tokyo (lecture notes 1434 -1988). It was largely inspired by conjectures on G-functions (Dwork), where he affirms that the G-functions "come from

Geometry". Then it was only a matter of weight: the extreme cases of weight zero and maximal weight being true, there was only one step to make in order to extrapolate this result to all weights [8].

This quote shows that more could be said about the link between diagonals, and the larger mathematical context of mathematics in the eighties: Dwork's work, G-functions etc. This is beyond the scope of the current paper however.

Conclusion

As Goldstein rightfully explains in [14]:

Mathematicians do not do without history of mathematics: they build and use it. The specific caracter of these histories favor their assimilation within mathematics.

This is what we see here in the work of Melczer [23] that we discussed in the introduction.

Melczer is writing a history when he identifies as equivalent the results of Pólya, Furstenberg, as well as the one of Hautus-Klarner.

This historiographical practice that consists in "identifying the past with the present" as Goldstein explains ‡, apparent in Weil's wordsk:

What makes the [study of the past] interesting, is precisely the emergence of precocious concepts and methods, destined to emerge later in the conscious spirit of mathematicians: the task of the historian is to unveil them and to trace their influence, or lack thereof, on ulterior developments [in mathematics].

and that many mathematicians have had recourse to, actually proved to be very useful to Weil himself for examplek. However as Goldstein explains, this way of writing the history of mathematics can surely not be taken as encompassing the whole history of mathematics ‡:

However the identification between the past and the present, the identification in old texts of what could resonate with a contemporary science, has as much positive value to mathematicians [...], to whome it gives meaning their exoerience of historical exploration, than negative value to their opponents, to whom it is these irreducible differences with the past that are significant and potential sources for deep historicity.

Thus, historically speaking, Gessel's account of Pólya's result on bi-variate rational functions, is more precise than the account of [23].

More could be said on how diagonals developed after the 1967 article of Furstenberg.

There are several "histories" that are yet to be written: on diagonals of rational functions and G-functions, on the link between diagonals of rational functions and diagonals of algebraic functions, on diagonals of rational functions and differential transcendence, as well as diagonals and mathematical physics, diagonals and experimental mathematics.

In a future paper, we will discuss these last two aspects.
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• x 6 b

 6 • (183 649 959 936 b 187 769 367 601) 165 112 971 264 • x 7 + • • • (117) which reduces to (108) for b = 1/2985 984 = 1/1728

where d = a • b 2 .

 2 The composition of the one-parameter series (116) with the oneparam eter series (117) gives a similar result where, now, d = b • a 3 . These two oneparameter series commute when a • b 2 = b • a 3 , i.e. b = a 2 , and the modular equation series corresponds to b = a 2 with a = 1/1728.

5. 3 . 2 .

 32 The general case: 2 F 1 ([↵, ], [ ], x) hypergeometric function. Let us now consider arbitrary parameters of the Gauss hypergeometric function[[↵, ], [ ]] that are not in the previous selected set, and are different from the cases given in sections 2, 3.1 and 4 corresponding to the rank-two condition.A simple calculation shows that one always finds a series of the form e • x + • • • (like (112) or (F.1)), solution of the Schwarzian condition, but it is only for = 1 that series of the form a• x 2 + • • •, b • x 3 + • • •, etc ... (like (116) or (117)) can be solutions of the Schwarzian condition. When = 1 one gets the following series of the form a • x 2 + • • • solution of the Schwarzian condition

y 1

 1 (e, y 2 (a, x)) = y 2 (a e, x), y 2 (a, y 1 (e, x)) = y 2 (a e 2 , x), y 1 (e, y 3 (b, x)) = y 3 (b e, x), y 3 (b, y 1 (e, x)) = y 3 (b e 3 , x),

7. 1 .

 1 Schwarzian condition and 3 F 2 hypergeometric identities

y 1 (

 1 e, y 3 (b, x)) = y 3 (b e, x), y 3 (b, y 1 (e, x)) = y 3 (b e 3 , x).

  time four conditions C n , n = 0, 1, 2, 3, corresponding, respectively, to the identification of the D nx coefficients of L

  verified: this is a consequence of the fact that the Calabi-Yau condition(31) is left invariant by conjugation and pullback8 . In other words the following identification of the D x coefficients ofL ( p) 4 and L (c)4 is automatically verified when the Calabi-Yau condition (31) is verified.

  in the 'definition' of Yifan Yang pullback: on top of page 11, the term b 3 b 4 /25 should be replaced by b 3 b 0 4 /25. With this correction the exact 'exterior square root' L 4 and the Yifan Yang pullback M 4 are related by a simple conjugation

  that a Schwarzian equation (C.11) is actually verified for (C.5) and (C.8) ÛR (x) U M (y(x)) • y 0 (x) 2 + {y(x), x} = 0, (C.11)

2. 4 .

 4 Exact expression of the diagonal for arbitrary parameters a, b 1 , ..., c 1 , ... Now that the structure of the result is understood 'experimentally' we obtain the result for arbitrary parameters a, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 .

( 2 ) 2 , 1 ) 2 (

 2212 given in appendix B by equation (B.1). The elimination of x between the pullback X = P (given by(40)) and the pullback Y = P (2) 2 also gives the same modular equation (B.1).

⌘ = 1 + 4 x + 60 x 2 + 1120 x 3 + 24 220 x 4 + 567 504 x 5 +

 142345 y, z, w) 14 030 016 x 6 + 360 222 720x 7 + • • •
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3. 1 . 1 .

 11 Nine-parameters case: In the case of the rational functions (1) this corresponds to the (planar) algebraic curve a + b 1 x + b 2 y + b 3

P 4 (x) = 675 c 4 3 • x 4 + 4 c 2 3 • (b 2 + 10 ) • (4 b 2 2 100 b 2 + 45 c 3 + 400 ) • x 3 + (64 b 4 2 32 b 3 2 c 3 8 b 2 2 c 2 3b 3 2 + 1280 b 2 2 c 3 460 b 2 c 2 3 5 c 3 3 + 6400 b 2 2 3200 b 2 c 3 800 c 2 3 ) • x 2 ( 25 )(b 2 + 10 ) • (32 b 2 2 16 b 2 c 3 c 2 3 )

 4343210223400343222253232521023 1280 • x + 2 b 2 • (2 b 2c 3 ), Let us now consider the previous rational function(22) where the two parameters b 2 and c 3 become some rational functions of the product p = x y z, for instance:

4. 1 .

 1 Creative telescoping on rational functions of five variables associated with products or foliations of three elliptic curvesLet us, now, introduce the rational function in five variables x, y, z, v and wx y z v D(x, y, z, v, w) ,

  following two values of the Hauptmodul H = 1728/j: H 1 = 27/98 and H 2 = 54/34391. Let us consider the genus-one elliptic curve v 2 = u 3 + 4900 u 2 + 7031500 u + 2401000000,

section 6 page 48 . † The discriminant in b of 4 a 3 + 4 b 3 a 2 b 2

 4832 18 ab + 27 reads: (a 3) 3 • (a 2 + 3 a + 9) 3 , consequently the exact expressions are simpler at a = 3.

  y are birational symmetries of the surface (D.1) or (D.2). They are related by K x • K y • K z = identity. Note that the birational transformation K x preserves x. The iteration of the (generically) infiniteorder birational transformation K x gives elliptic curves. Since equation (D.1) or (D.2) is preserved by K x , which also preserves x, the equation of the elliptic curves corresponding to the iteration of K x is actually (D.1) for fixed values of x. Equation (D.1), for fixed values of x, is a (general) biquadratic curve in y and z and is thus an elliptic curve depending on x. Therefore one has a canonical foliation of the algebraic surface (D.1) in elliptic curves. Of course the iteration of K y (resp. K z ) also yields elliptic curves, and similarly yields two other foliations in elliptic curves.

3 F 2 ‡ 3 F 2 (• v 4 • ( 1

 323241 y) 1/3 /(1 x y z) hypergeom([1/9, 4/9, 5/9], [1/3, 1], 3 6 x)p+1 F p ¶ [2/9, 5/9, 8/9], [2/3, 1], 3 6 x) 3 F 2 ([1/9, 4/9, 7/9], [1/3, 1], 3 6 x) 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 3 6 x) (1 x y) 1/3 (1 x y z) , 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 3 6 x) 3 • u 3 v • (1 ux uy uz) • (1 + u) 2 • (1 ux uy uz) 2 (1 + u) 3 • (1 ux uy uz) 3 (1 ux uy) 1 • (u v) • (v w) 3 vx vy vz) • ((1 + v) • (1 vx vy vz)) 2 (1 + v) 3 • (1 vx vy vz) 3 (1 vx vy) 1 • (u v)(v w) 3 • u 3 w • (1 ux uy uz)((1 + u) • (1 ux uy uz)) 2 (1 + u) 3 • (1 ux uy uz) 3 (1 ux uy) 1 • (u w) • (v w) 3w 4

  .

3 F 2

 32 ([1/9, 4/9, 7/9], [1/3, 1], 3 6 x) 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 3 6 x) 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], 3 6 x) 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], 3 6 x)

•

  It is globally bounded: there exist integers c and d in N ⇤ , such that d f (c x) 2 Z[[x]] and f(x) has a radius of convergence that is non-zero in C. It is D-finite: there exists a linear differential operator L 2 Z[x] ⇥ d d x ⇤ , with L 6 = 0, such that L( f ) = 0.

• 2 F

 2 1 ([b, c], [e], x) ? 1 F 0 ([a], x) • 2 F 1 ([a, b], [1], x) ? 2 F 1 ([c, 1], [e], x) • 2 F 1 ([a, c], [1], x) ? 2 F 1 ([b, 1], [e], x) • 2 F 1 ([b, c], [1], x) ? 2 F 1 ([a, 1], [e], x) Now 1 F 0 ([c], x) and 2 F 1 ([a, b], [1], x) are diagonals of rational functions by what we have said above. Then 3 F 2 ([a, b, c], [1, e], x) is a diagonal of rational functions if 2 F 1 ([c, 1], [e], x) or 2 F 1 ([a, b], [e], x)16 , are diagonals of rational functions, i.e. if and only if they are algebraic functions, since e 2 Q\Z. Now 2 F 1 ([c, 1], [e], x) cannot be an algebraic function for e 2 Q by Goursat [27]. Hence if one of 2 F 1 ([a, b], [e], x), 2 F 1 ([b, c], [e], x), or 2 F 1 ([a, c], [e], x) is an algebraic function, then 3 F 2 ([a, b, c], [1, e], x) is the diagonal of a rational function. Now taking the two examples given in

( 4 • ( 1

 41 following rational function in six variables, by taking the diagonal with respect to (x, u), (y, v) and (z, w):a • u 3 v • (1 ux uy uz) • (1 + u) a 1 • (1 ux uy uz) a 1 (1 + u) a • (1 ux uy uz) a (1 ux uy) b • (u v) • (v w) a • v 4 • (1 vx vy vz) • ((1 + v) • (1 vx vy vz)) a 1 (1 + v) a • (1 vx vy vz) a (1 vx vy) b • (u v)(v w) (24)a • u 3 w • (1 ux uy uz)((1 + u) • (1 ux uy uz)) a 1 (1 + u) a • (1 ux uy uz) a (1 ux uy) b • (u w) • (v w) aw wx wy wz) • (1 + w) a 1• (1 wx wy wz) a 1 (1 + w) a • (1 wx wy wz) a(1 wx wy) b • (u w) • (v w) + 1.

a 3 x 2 ( 2 x ( 25 ) 2 ✓ 3

 222523 27 x 1) • D 3 x + a 2 x (135 a • x 27 b • x 3 a + b) • D + a • ((9 b 2 63 b a + 114 a 2 ) • x + b a a 2 ) • D x + (3 a b) • (2 a b) • (a b),and can be expressed as the 3 F 2 hypergeometric function 3 F the two hypergeometric functions 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 27 • x) and 3 F 2 ([1/9, 4/9, 7/9], [1/3, 1], 27 • x) appearing in (9), correspond respectively to the parameters (b, a) = (1, 3), and (b, a) = (2, 3) in the algebraic function (23). Other values of the parameters (b, a) are not necessarily unresolved examples of Christol's conjecture.

( 1 (

 1 x + y)) b/a =

  m, ..., m • x m .

I

  will try to explain my motivation. It was related to "equidistribution" of sequences. (See the book by Einsiedler and Ward on Dynamics and Number Theory). The problem I was working on was the question of the behavior ¶ See [14] p. 15.

  s 2 s cos j ) 2 s 2 , j = 1, 2, 3 1 + 2 + 3 = 0

	ỹj =	p (1 +		s					
			s	1/4	1 4⇡ 2	Z 2⇡ 0	d 1	Z 2⇡ 0	d 2 ỹ1 ỹ2 ỹ3	1 + x1 x2 x3 1 x1 x2 x3	H (3)
		xj =	1 + s 2 s cos j +	s (1 + s 2 s cos j ) 2 s 2 p
	+								

  125 x 3 y 3 187 500 x 2 y 2

• (x + y) + 375 xy • (16 x 2 4027 xy + 16 y 2 ) 64 (x + y) • (x 2 + 1487 xy + y 2 ) + 110 592 xy = 0.

  1/2 . Thus the series (69) is globally bounded for any rational number M .

  1/y 1 . Clearly x and y are not on the same footing. The composition inverse of the previous series gives the series

	y 27	8 y 2 729	104 y 3 19 683	1672 y 4 531 441	30 248 y 5 14 348 907	196 568 y 6 129 140 163	+ • • •	(80)
	27 y	+ 8 +	40 y 27	+	520 y 2 729	+	8552 y 3 19 683	+	158 344 y 4 531 441	+	3151 144 y 5 14 348 907

  similar to the previous series (104) and (109), but also an involutive38 series of radius of convergence 1, of the (quite unexpected) simple form x + • • • namely:

	y =	x 4 5159 780 352	+	31 x 5 92 876 046 336	+	43 909 x 6 106 993 205 379 072	+ • • •	(110)
	which is clearly y = x 31 x 2 36			961 1296	• x 3	203 713 314 928	• x 4	4318 517 7558 272	• x 5	832 777 775 1632 586 752	• x 6
		729 205 556 393 1586 874 322 944	• x 7 2978 790 628 903 7140 934 453 248	• x 8	43 549 893 886 943 114 254 951 251 968	• x 9 + . . . (111)
	One easily verifies that all these series (104) and (

  5.1.2. A one-parameter solution series of the Schwarzian condition. Let us first seek solutionseries of the Schwarzian condition (94) of the form e • x + • • • with W(x) given by (105). One finds that the Schwarzian condition (94) has a one-parameter family of solution-series as well of the form e • x + • • • namely 39 :

	S e (x) =	31 72	• x 2 +	(9907 e 20 845) 82 944	• x 3	(112)
	(4386 286 e 2	20 490 191 e + 27 274 051)	
			161 243 136		

y(e, x) = e • x + e • (e 1) • S e (x), where :

  2 , and another one-parameter family of solution-series of (94) of the form c • x 4 + • • •:

	y 4 = c • x 4 +	31 c 18	• x 5 +	43 909 c 20 736	• x 6 +	46 242 779 c 20 155 392	• x 7
	+	c • (869 687 301 215 159 953 190 912 c) 371 504 185 344	• x 8 + • • •	(118)
							+	59 285 d 13 824	• x 8 +	19 676 177 d 3359 232	• x 9
		+	197 722 802 303 d 27 518 828 544	• x 10 +	8173 747 929 317 d 990 677 827 584

which reduces to (110) for c = 1/5159 780 352 = 1/1728 3 . The series (116), (

117

) and (118), do not commute. The composition of the one-parameter series (117) with the oneparameter series (116) gives the series

40 

:

y 2 (y 3 (x)) = d • x 6 + 31 d • x 7 12 • x 11 + • • •

  750 420 x 3 + 872 769 632 x 4 + 1102 652 742 882 x 5 + 1470 561 136 292 880 x 6 + 2037 518 752 496 883 080 x 7 + 2904 264 865 530 359 889 600 x 8

	+ 4231 393 254 051 181 981 976 079 x 9 + • • •	(122)

  • • In other words, are these series modular correspondences, or are they just 'similar' to modular correspondences? The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. When 6 = 1 the situation is drastically different 42 : one does not have solution of the Schwarzian equation of the form a • x 2 + • • • or b • x 3 + • • • etc ... One only has a oneparameter family of commuting series:

10) Appendix B. 2 F 1 hypergeometric functions deduced from Goursat and Darboux identity

  

	B.1. 2 F 1 hypergeometric functions deduced from the quadratic identity

  1 = 18 abc 6 abd 6 abe 6 acd 6 ace + 4 ad 2 + 2 ade + 4 ae 2 6 bcd 6 bce + 4 bd 2 + 2 bde + 4 be 2 + 4 cd 2 + 2 cde + 4 ce 2 6 d 2 e 6 de 2 + 3 ab + 3 ac 4 ad 4 ae + 3 bc 4 bd 4 be 4 cd 4 ce + 21 de + a + b + c 6 d 6 e + 3.

						+ e 2) (2 d e 1),	(H.2)
	where					
	q 2 = 6 a 2 b + 6 a 2 c 4 a 2 d	4 a 2 e + 6 ab 2	18 abc	2 abd 2 abe + 6 ac 2
	2 acd	2 ace + 6 ade + 6 b 2 c	4 b 2 d	4 b 2 e + 6 bc 2	2 bcd	2 bce
	+ 6 bde	4 c 2 d 4 c 2 e + 6 cde + 2 a 2 + ab + ac + 2 b 2 + bc + 2 c 2
	9 de	3 a 3 b 3 c + 6 d + 6 e	3,			(H.3)

q

  744 x 2 + 750 420 x 3 + 872 769 632 x 4 + 1102 652 742 882 x 5 + • • •

	and:			
	P(1728 • x)	= x	744 x 2 + 356 652 x 3	140 361 152 x
	1728			

4 

+ 49 336 682 190 x 5 + • • • .

  2187 x 2 354 294 x 3 + 23 914 845 x 4 774 840 978 x 5 + 10 460 353 203 x 6 .

  37) Denoting A and B the two pullbacks in (B.35) and (B.36),A = 27 • x • (1 81 x + 2187 x 2 ),

	B =	1 81 x + 2187 x 2 177 147 • x 3	,	(B.38)

  18 x 2 + 164 x 3 + 1810 x 4 + 21 252 x 5 + 263 844 x 6 + 3395 016 x 7 + 44 916 498 x 8 + • • •

  y, z, w) ⌘ = 1 + 4 x + 48 x 2 + 760 x 3 + 13 840 x 4 + 273 504 x 5 + 5703 096 x 6 + 123 519 792 x 7 + • • •

  read respectively = 1728 x 7 + 108 864 x 8 + 4536 000 x 9 + 158 251 968 x 10 + 5017 070 016 x 11 + 150 134 378 688 x 12 + 4328 271 255 168 x 13 + • • •

	1270 080 x 2 + 593 381 376 x 3 + 76 907 095 308 288 x 5 H + = 1728 x 24 246 668 175 851 520 x 6 + • • • 226 343 666 304 x 4	(38)
	and:	

H

  in H , gives Hauptmoduls having the following series expansions:

	1728 x 2 + 31 104 x 3	689 472 x 4	34 193 664 x 5	431 329 536 x

6

+ • • • (45) and 1728 x 14 + 217 728 x 15 + 15 930 432 x 16 + 888 039 936 x 17 + • • •

  114 x 2 + 2940 x 3 + 87 570 x 4 + 2835 756 x 5 + 96 982 116 x 6

+ 3446 781 624 x 7 + 126 047 377 170 x 8 + • • •

  1728 x 1257 984 x 2 + 575 828 352 x 3 214 274 336 256 x 4 + • • • H = 1728 x 5 + 138 240 x 6 + 7793 280 x 7 + 383 961 600 x 8 + • • •

  ) with the expansions:H = 27 x 2 +648 x 3 + 15 471 x 4 + 389 016 x 5 + 10 234 107 x 6 + 278 861 616 x 7 + 7808 397 759 x 8 + 223 397 228 880 x 9 + • • •

  The Hauptmodul of these genus-one curves (C.20) is the same as the Hauptmodul of the genus-one curves (C.17), and corresponds to expression (C.19) where y has been changed into z/x (see the canonical form (C.22)), namely:

  F 2 3 F 2 ([1/9, 4/9, 7/9], [1/3, 1], 3 6 x) 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 3 6 x)

																								a b
	3 F 2	⇣	[	3 a b 3 a	,		2 a b 3 a	,			a b 3 a	], [	a a b	, 1], 27 x	⌘
														3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], 3 6 x)
	4 F 3																						
	3 F 2 ([	1 8	,	3 8	,	5 8	,	7 8	], [	1 3	,		2 3	, 1],	65536 27	x 4 ),
	3 F 2 ([	1 12	,	1 4	,	5 12	,	7 12	,	3 4	,	11 12	], [,	1 5	,	2 5	,	3 5	,	4 5	, 1],	191102976 3125	x 6 ),
	1 1 x z x y 4 ,								
							1																
	1 x z x y 6									
																								+ 1.
	¶ ‡																						

1 

• (u w) • (v w) 3

  :

	2 F 1	✓ [	2 9	,	5 9	], [	2 3	], x	◆ , 2 F 1	✓ [	2 9	,	8 9	], [	2 3	], x	◆ , 2 F 1	✓ [	5 9	,	8 9	], [	2 3	], x	◆ ,	( 7 )
	and nor are the 2 F 1 hypergeometric series:													
	2 F 1	✓ [	1 9	,	4 9	], [	1 3	], x	◆ , 2 F 1	✓	[	4 9	,	7 9	], [	1 3	], x	◆ , 2 F 1	✓ [	1 9	,	7 9	], [	1 3	], x	◆ .

  series(27) are not globally bounded. Hence the hypergeometric series (27) cannot be easily written as a Hadamard product, as explained in section 2.3.In contrast, for b = 3 and a = 4 the diagonal of (24) which is given by the globally bounded 23 series(28) 

						3 F 2	✓ [	2 7	,	13 21	,	20 21	], [	6 7	, 1], 27 x	◆	= 1 +	260 49	x +	188190 2401	x 2 + • • •	(27)
	with the 2 F 1 series																					
	2 F 1	✓ [	13 21	,	20 21	], [	6 7	], 27 x	◆		, 2 F 1	✓ [	2 7	,	20 21	], [	6 7	], 27 x	◆	, 2 F 1	✓ [	2 7	,	13 21	], [	6 7	], 27 x	◆	,
	being series that 3 F 2	✓ [	3 4	,	5 12	,	1 12	], [	1 4	, 1], 27 x	◆	= 1 +	45 16	x +	41769 1024	x 2 + • • •	(28)
	with the 2 F 1 series																					
													2 F 1	✓ [	5 12	,	1 12	], [	1 4	], 27 x	◆	,	(

  Now the Gauss hypergeometric function 2 F 1 ([1 36 ,

												1/9	• (1 36 x + 216 x 2 ) 1/18
								⇥ 2 F 1	✓ [	1 36	,	19 36	], [	8 9	], 1728 •	x 3 (1 36 x + 216 x 2 ) 2 • (1 27 x)	◆	.
																						(A.3)
	The Gauss hypergeometric function 2 F 1 [ 1 36 , 19 36 ], [ 8 9 ], x can be also expressed as:
	2 F 1	✓ [	1 36	,	19 36	], [	8 9	], x	◆	= (1 x) 1/36	• 2 F 1	✓ [	1 36	,	13 36	], [	8 9	],	x 1 x	◆	.
																						(A.4)

J. Phys. A: Math. Theor. 50 (2017) 215203

More generally see the concept of differential algebraic invariant of isogenies in[13].

In the case of linear ODEs the D-envelope gives back the differential Galois group of the linear ODEs.

The typical example is the (non-linear) functional equation f (x + 1) = y( f (x)), which is such that its Malgrange pseudo-group (generalization of the Galois group) will be 'small enough' if and only if, there exists a rational function ⌫(x), such that the Schwarzian condition (9) is satisfied.

The fact that A R (x) is the log-derivative of the Nth root of a rational function, here a polynomial, is a consequence of the fact that ⌦ is a globally nilpotent linear differential operator[19].

Note that u(x) being an algebraic function, these examples are such that N • Y 0 (x) = 1/u(x), Y 0 (x) is holonomic but also its reciprocal 1/Y 0 (x).

Imposing the global nilpotence generates additional relations (see section 2.2 below).

This is in agreement with the fact that(24) is the condition for ⌦ = (D x + A R (x)) • D x to be covariant by x ! R(x): this condition is obviously preserved by the composition of R(x)'s (for A(x) fixed).

This is the idea of Siegel's linearization[45][46][47] (or Koenig's linearization theorem see[48]).

Generically, F(x) is a transcendental function, not a rational nor an algebraic function. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Equation (37) can be obtained using the Faà di Bruno formulas for the higher derivatives of inverse functions. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Emerging as a symmetry of the complete elliptic integrals of the third kind in the anisotropic Ising model (see[49]).

The general case ✓ ! p ✓ is laid out in appendix C.Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor.50 (2017) 

The Heun function is the Heun general function, HeunG function in Maple, not a confluent Heun function.

The Jacobi sine function arises from the inversion of the incomplete elliptic integral of the first kind. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

This corresponds to the emergence of a modular form represented as a 2 F 1 hypergeometric functions with two possible pullbacks[24]: the series expansion can be recast into a series with integer coefficients[53].

A globally bounded series is a series that can be recast into a series with integer coefficients[24].

Casale showed in[35] that the only rational functions from P 1 to P 1 with a non-trivial D-envelope are Chebyshev polynomials and Lattès transformations. Lattè s transformations are rational transformations associated with elliptic curves (see for instance[54]).

One should not confuse these two algebraic curves: the genus-two curve (72) is associated with integrant of the hypergeometric integral(70), when the rational curve (77) is associated with the pullback in the hypergeometric identity[START_REF] Boucher | Application of J-J Morales and J-P Ramis' theorem to test the non-complete integrability of the planar three-body problem From Combinatorics to Dynamical Systems[END_REF].

This is a consequence of identity[START_REF] Vidunas | Computation of highly ramified coverings[END_REF]. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Note that the rational curve (77) provides additional Puiseux series.

These two series are related by y $ 1/y. Note that y $ 1/y is not a symmetry of (82) in general.

Namely series[START_REF] Mckay | Replicable functions: an introduction Frontiers in Number Theory[END_REF] where one changes y into x.

Note that A(x) is the log-derivative of u(x) = x • (1 x) ↵+ +1 .Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

This series (104) has a radius of convergence 1, even if the discriminant of the modular equation (4) which vanishes at x = 1, vanishes for values inside the unit radius of convergence, for instance at x = 64/125. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

The series (111) is the only involutive series of the form x + • • • which verifies the Schwarzian condition (94).

The one-parameter series (112) is completely defined by the fact that it is a series of the form e • x + • • • commuting with the algebraic series (111) and the hypergeometric series (115), without referring to the Schwarzian condition (94). Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

If one seeks for the solution series of the Schwarzian condition (94) of the form d • x 6 + • • • one recovers the one-parameter family (119).Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Recall that globally bounded n F n 1 series of 'weight zero'[START_REF] Beukers | Monodromy for the hypergeometric function n F n 1[END_REF] (no 'down' parameter is equal to 1 or to an integrer, i.e. in the case of globally bounded 2 F 1 series, is different from an integer), are algebraic functions. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

The series 3 F 2 ([1/9, 4/9, 5/9], [1/3, 1], 3 5 x) is a series with integer coefficients[24].

See the Boucher-Weil criterion[START_REF] Boucher | Application of J-J Morales and J-P Ramis' theorem to test the non-complete integrability of the planar three-body problem From Combinatorics to Dynamical Systems[END_REF]. The symmetric square and exterior square of a normalized order-three operator has no rational solutions. One sees also clearly that this order-three operator is not homomorphic to its adjoint. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Belyi-maps[51,[START_REF] Sijsling | On computing Belyi maps Publications[END_REF][START_REF] Vidunas | Computation of highly ramified coverings[END_REF][START_REF] Khadjavi | Belyi maps and elliptic curves[END_REF][START_REF] Masoero | Painlevé I, coverings of the sphere and Belyi functions[END_REF] are central to Grothendieck's program of 'dessins d'enfants'. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Note a typo in[44]: the R(x) in equation (64) of[44] is R(x).Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

In mathematics, an elliptic surface is a surface that has an elliptic fibration: almost all fibers are smooth curves of genus 1.

In Maple use with(algcurves) and the command j invariant.Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor.

(2017) 215203 

Other cases of factorizations are, up to permutations in x, y and z:y = 0, 1, M, 1, y = M/x, y = (M x)/(1 x), y = M • (1 x)/(M x).Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

In the Schwarzian equation (126) the nome is seen as a function of the Hauptmodul.

See the concept of replicable functions[START_REF] Mckay | Replicable functions: an introduction Frontiers in Number Theory[END_REF]. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

The constant N being a positive integer Q(x) was, in fact, holonomic.

One recovers the Schwarzian condition (126) in the N ! 1 limit. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 215203

Beyond the x ! 1 x, 1/x, ... known pullback symmetries of hypergeometric functions. The correspondence between the two pullbacks must be an infinite order rational or algebraic transformation[1, 

2].

In Casale's paper[5, 6] the Schwarzian equation is associated with meromorphic functions instead of the rational functions of our paper[1]. See also[9, 10, 11].

See[1, 19] for a definition. See also[20, 21].

J. Phys. A: Math. Theor. 50 (2017) 465201

For modular correspondences see also the concept of modular equations[25][26][27][28].

The D 3 x coefficient is normalized to 1. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Note that rewriting the exact expression ofW(x) given by(20) in terms of A(x) and B(x) using (23) one recovers (10), p(x) and q(x) in (10) being now A(x) and B(x).

To see that the Calabi-Yau condition is preserved by conjugation is straightforward. However, as remarked in[17], to see that the Calabi-Yau condition is preserved by pullback transformations is very hard to see by direct computation, since one gets an enormous fourth-order nonlinear differential equation. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Maximal unipotent monodromy (MUM) linear operators[24, 31].

When an order-four linear differential operator is the symmetric cube of an underling order-two operator its symmetric square is no longer of order 10 but reduces to order7. 

• q(x),(39) Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

This polynomial is the sum of 3548 monomials in the coefficients of L 4 and their derivatives.

The differential Galois groupSO(4, C) with an order-10 symmetric square situation corresponds to a decomposition L 4 = (U 3 • U 1 + 1) • d(x), see[36].Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

See[1] for similar calculations. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

This can be verified straightforwardly substituting(34) in the 3548 monomials symmetric Calabi-Yau condition. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

• B(x),(61)Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

See appendix D in[1].

Cum grano salis: when the pullbacks y(x) are algebraic functions, they are multivalued functions. The composition of multivalued functions is limited to their analytic series expansions (setting aside Puiseux series).

The reduction of L 3 to a symmetric square(68) does not mean that F(x) is solution of a second order linear differential (Liouvillian) equation F 00 (x)/F(x) = W(x)/2.

This 'gauge' W(x) ! W(x) + /F(x) 2 in (69) corresponds to the fact that because of (66) one has

In fact the order-two operator L F is the adjoint of the operator ⌦ = (D x + A R (x)) • D x (see[2]). When A R (x) = w 0 (x)/w(x) the linear differential operator L F is conjugated by the wronskian w(x) to the linear differential operator ⌦, namely ⌦ • w(x) = w(x) • L F .

 20 Just integrate the LHS of[START_REF] Khadjavi | Belyi maps and elliptic curves[END_REF].

This can also be checked directly using[START_REF] Mckay | Replicable functions: an introduction Frontiers in Number Theory[END_REF] with[START_REF] Penson | On the properties of Laplace transform originating from one-sided Lé vy stable laws[END_REF] for any rational function F(x).Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Namely {⇥(y(x)), x} = {⇥(y(x)), y(x)} • y 0 (x) 2 + {y(x), x}.

We exclude the trivial well-known changes of variables on hypergeometric functions x ! 1 x, 1/x, ... The transformation x ! y(x) must be an infinite order transformation symmetry.

The emergence of a modular form[29, 38, 30] corresponds to the emergence of a selected hypergeometric function having an exact covariance property[39, 40] with respect to an infinite order algebraic transformation (the modular correspondences).

One can easily check that these expressions (90) for W(x) and F(x) verify (67).

This selected value of has to be compared with the value µ = 1/4 in (79). Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Finding the selected values of the parameters of a Heun function[47] (in particular the accessory parameter[48]) such that its series expansion is a series with integer coefficients (or more generally is globally bounded[31]), or such that the corresponding order-two linear differential operator is globally nilpotent[24] is a difficult problem. These classification problems are closely related to finding the Heun functions reducible to pullbacked hypergeometric functions[49], and to modular forms[46]. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

If instead of the simple derivative (100) we had introduced (x) =L 1 ( 2 F 1 ([1/12, 5/12], [1], x)) where L 1 is an arbitrary order-one linear differential operator, we would have also obtained a relation of the form (102) but where A (x) and B (x) are much more involved expressions. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Note a misprint in the expression of the Landen transformation in the unlabelled equation above equation(62) in[54].Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

This function is often viewed as a function of the nome q = e ⌧ , since its q-expansion in the case of degenerating family of Calabi-Yau 3-folds is supposed to encode the counting of rational curves of various degrees on a mirror manifold.Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

We have for instance in mind to provide exact representations of the renormalization group[2, 7, 53].

Or even Heun functions, see[1].

Far beyond operators with hypergeometric solutions, or pullbacked hypergeometric solutions. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

The series y n (x) (see (125)) are differentially algebraic, but, not necessarily algebraic functions.

At least in the case where the operators verify Calabi-Yau conditions and thus have selected differential Galois groups.Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

And more generally the modular correspondences providing exact representations of the generators of the renormalization group[2, 53]. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

See equation (108) in section 5.1 of [1]. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Or relation (B.9).Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Given by equation (108) in section 5.1.1 in[1].

See also[59].Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

This result is the same as the one in[17].Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Two linear differential operators L N and LN of order N are homomorphic[35, 36] when there exists operators (intertwiners) of order at mostN 1, such that M N 1 L N LN MN 1 = 0.

In Maple just to rightdivision(LCLM( L 2 , L 1 ),L 1 ).

In that general framework (C.31), we do not have the Calabi-Yau, or symmetric Calabi-Yau, equations that help us to perform our calculations. Y Abdelaziz and J-M Maillard J. Phys. A: Math. Theor. 50 (2017) 465201

Diagonals of rational functions of two variables are just algebraic functions, so one must consider at least three variables to obtain special functions.

Or 0 or ±1 in the four variable case also examined in[21].

J. Phys. A: Math. Theor. 51 (2018) 455201

The program 'hypergeometricsols'[29] does not run for arbitrary parameters, hence our recourse to guessing.

Note that Q given in(12), is the reciprocal of Q given in (9): Q = 1/ Q.

The exact expressions(16) and(17) of these two polynomials P 2 (x) and P 4 (x) can be found as electronic material, at (www.koutschan.de/data/diag/).

τ denotes the ratio of the two periods of the elliptic functions that naturally emerge in the problem[22].

We use M van Hoeij 'hypergeometricsols' program[29] for many values of a, b and c, and then perform some guessing.

The nine-parameter family (59) singles out x and y, but of course, similar families that single out x and z, or single out y and z exist, with similar results (that can be obtained permuting the three variables x, y and z).

The exact expressions(61) and (62) of these two polynomials P 4 (x) and P 6 (x) can be found as electronic material, at (www.koutschan.de/data/diag/).

The exact expressions(66) and (67) of these two polynomials P 3 (x) and P 6 (x) can be found as electronic material, at (www.koutschan.de/data/diag/).

Taking care of the double counting!

We already know some of these terms from (72) and (73) in section 3.2.2 below. Furthermore, the symmetry constraints (A.9) and (A.8) in appendix A.3, as well as other constraints corresponding to the symmetric subcase of section 3.2.3, give additional constraints on the kind of allowed final correction terms.

Trying to mix the two previous subcases by imposingb 1 = b 2 = b 3 = b, c 1 = c 2 = c 3 = c with d 1 , d 2 ,d3 not being equal, does not yield a 2 F 1 ([1/3, 2/3],[1], P) hypergeometric function.

We want the rational function R = R(M(x, y, z)) deduced from the monomial transformation (81) to remain a rational function of three variables and not of two, or one, variables.

For n = 1 the 3 ⇥ 3 matrix (82) is stochastic and transformation (81) is a birational transformation.

Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor expansion (5), only the terms that are nth power of the product x y z.

More generally one can imagine that F(x y z) is the series expansion of an algebraic function. Y Abdelaziz et al J. Phys. A: Math. Theor. 51 (2018) 455201

Differently from the usual definition of modular forms in the τ variables. Y Abdelaziz et al J. Phys. A: Math. Theor. 51 (2018) 455201

From (C.13) see[22]. Y Abdelaziz et al J. Phys. A: Math. Theor. 51 (2018) 455201

This is not the case for the Heun functions in[10] which do not correspond to globally bounded series.

Diagonals of rational functions are necessarily globally bounded[1, 2].

In this case the diagonal is equal to zero.

J. Phys. A: Math. Theor. 53 (2020) 075206

The symmetric power of an operator L is the minimal operator M such that for every set of m solutions y 1 , . . . , y m of L, the product y 1 y 2 . . . y m is a solution of M. In particular, the symmetric square of an operator L is the symmetric power of the operator L with m = 2.

It corresponds to N = 5 in tables 4 and 5 of[28].

These two Heun functions are Galois conjugates.

This Heun function Heun(a, q, ↵, , , , ⇢ x) is such that q = a/(1 + a), q/⇢ = 1/9, a/⇢ 2 = 1/27, 1/⇢ and a/⇢ are complex conjugates.

Change x ! x/27 to match S 1 , given by (88), with (92). Y Abdelaziz et al J. Phys. A: Math. Theor. 53 (2020) 075206

In the sense defined in appendices A and B. Y Abdelaziz et al J. Phys. A: Math. Theor. 53 (2020) 075206

After a rescaling of the variable.

See example 9 in[29] for more details. Y Abdelaziz et al J. Phys. A: Math. Theor. 53 (2020) 075206

Diagonals are periods over evanescent cycles. Y Abdelaziz et al J. Phys. A: Math. Theor. 53 (2020) 075206

Any 2 F 1 (a, b], [c],x) with c = 1 is globally bounded since it is of weight zero: it is of the form n F n 1, and has c given by an integer and not a fractional number.

See[1, 2], and the hypergeometric functions in the previous sections in this paper. Y Abdelaziz et al J. Phys. A: Math. Theor. 53 (2020) 075206

See equation w(x) =

4 • x 2(1 x) 3 , page 3165 in[40].

† This transformation is rational and its compositional inverse is also rational (here monomial).

† The functions should be rational functions if one wants to stick with diagonals and telescopers of rational functions, but the result remains valid for algebraic functions, or even transcendental functions with reasonable Taylor series expansions at x = 0: for instance, for 2 F 1 hypergeometric functions, one gets a di↵erentially algebraic function corresponding to the composition of 2 F 1 hypergeometric functions.

† Its exterior square has a rational solution. However this order-four linear di↵erential operator is not MUM (maximum unipotent monodromy[53, 27, 54])

† The algebraic curves for other values of x are not necessarily elliptic curves, they can be algebraic curves of quite large genus.

Author to whom any correspondence should be addressed.

Denoting by ✓ the homogeneous derivative x • d d x , the degrees of all the polynomial terms of the Fuchsian linear differential operator P n P n (x) • ✓ n are equal.

F 2 ([a, b, c], [1, e],x) as a Hadamard product of hypergeometric functions:• 2 F 1 ([a, b], [e], x) ? 1 F 0 ([c], x) • 2 F 1 ([a, c], [e], x) ? 1 F 0 ([b], x)13 Furstenberg's theorem states that any algebraic function is the diagonal of a rational function in two variables.14 The only 2 F 1 hypergeometric functions that are globally bounded with c 2 Q are the algebraic ones: they are the ones appearing in the list of Schwarz[26].15 This follows from the result of Beukers and Heckmann in[24].

F 2 ([1/9,

4/9, 7/9], [1/3, 1], 27 • x) functions. We recall the algorithm of Denef and Lipshitz and apply it to the algebraic function (1 x y)1/3 /(1 x y z) in the first subsection below, and then we give the rational function and a generalization of the result in the second subsection. Finally, we give a second proof of the general result using binomial sums.

One also needs to note that initial conditions have to be compared.

By 'telescoper' of a rational function R(x, y, z) we denote the output of the creative telescoping program[12], applied to the transformed rational function R(x/y, y/z, z)/(yz), which is a differential operator that annihilates the diagonal of R.

Diagonals correspond only to evanescent integration cycles over algebraic functions.

To be totally rigorous, one has to consider the two certificates of the telescoping equation see if that the integral of the derivatives of these two certificates over that cycle are actually zero.

F 2 [2/9, 5/9, 8/9], [2/3, 1], x and 3 F 2 [1/9,

4/9, 7/9], [1/3, 1], x as diagonal of rational functions, that it is likely that the other 3 F 2 unresolved examples of Christol's conjecture are diagonals of rational functions.

Diagonals of rational functions are necessarily algebraic modulo p.

F 1

Acknowledgments

We would like to thank S Boukraa, G Casale, S Hassani, E Paul, C Penson and J-A Weil for very fruitful discussions. We would like to thank the anonymous referee for his very careful reading of our manuscript and his valuable suggestions and corrections. This work has been performed without any ERC, ANR, PES or MAE financial support.

Acknowledgments

We would like to thank S Boukraa, M van Hoeij and J-A Weil for very fruitful discussions on differential systems. We thank AJ Guttmann for providing an interesting pullbacked hypergeometric example. This work has been performed without any ERC, ANR or MAE financial support.

Acknowledgments

J-MM would like to thank G Christol for many enlightening discussions on diagonals of rational functions. SB would like to thank the LPTMC and the CNRS for kind support. We would like to thank A Bostan for useful discussions on creative telescoping. CK was supported by the Austrian Science Fund (FWF): P29467-N32. YA was supported by the Austrian Science Fund (FWF): F5011-N15. He would like to thank the RICAM for hosting him. We thank the Research Institute for Symbolic Computation, for access to the RISC software packages. We thank M Quaggetto for technical support. This work has been performed without any support of the ANR, the ERC or the MAE, or any PES of the CNRS. 1751-8121/ 20 /075206+24$33.00 © 2020 IOP Publishing Ltd Printed in the UK J. Phys. A: Math. Theor. 53 (2020) 075206 (24pp) https://doi.org/10.1088/1751-8121/ab67e5

Acknowledgments YA and J-MM would like to thank the Stat. and Math. Department of Melbourne University for hospitality, where part of this paper was written. YA and J-MM would like to thank Tony Guttmann for numerous discussions on lattice Green functions. YA would like to thank Andreas Malmendier for several enlightening discussions on the periods of rational extremal surfaces. YA would like to thank Dahlia Abdelaziz, Rashida Abdelaziz and Siwa Abdelaziz for the great time spent together while working on this paper, and for being the joyful and loving cousins they are. YA would like to thank Mark van Hoeij for the explanations he provided him on Heun to hypergeometric functions pullbacks. YA would like to thank John Voight for enlightening explanations on Shimura curves and for pointing out the [30]. YA would like to thank Yifang Yang for several very explanatory e-mails on automorphic functions and Shimura curves. YA would like to thank Wadim Zudilin for an enlightening exchange on the modular parametrization of hypergeometric functions. J-MM would like to thank Pierre Charollois for many enlightening discussions on modularity and automorphic forms. J-MM would like to thank Kilian Raschel for enlightening discussions on walks on the quarter plane. SB would like to thank the LPTMC and the CNRS for kind support. YA and CK were supported by the Austrian Science Fund (FWF): F5011-N15. We thank the Research Institute for Symbolic Computation for access to the RISC software packages. We thank M Quaggetto for technical support.

Acknowledgments. J-M. M. would like to thank G. Christol for many enlightening discussions on diagonals of rational functions. J-M. M. would like to thank D. van Straten for several enlightning e↵ective algebraic geometry explanations. J-M. M. would like to thank the School of Mathematics and Statistics of Melbourne University where part of this work has been performed. S. B. would like to thank the LPTMC and the CNRS for kind support. We thank Josef Schicho for providing the demonstration of the results of Appendix A. We would like to thank A. Bostan for useful discussions on creative telescoping. Y. A. and C.K. were supported by the Austrian Science Fund (FWF): F5011-N15. We thank the Research Institute for Symbolic Computation, for access to the RISC software packages. We thank M. Quaggetto for technical support. This work has been performed without any support of the ANR, the ERC or the MAE, or any PES of the CNRS.

Acknowledgments

J-MM and YA would like to thank G Christol for many enlightening discussions on diagonals of rational functions. We would like to thank A Bostan for useful discussions on creative telescoping. YA would like to thank A Bostan for many explanations on Christol's conjecture including the details of 2.3 in an enlightening email correspondence [29]. J-MM would like to thank the School of Mathematics and Statistics of Melbourne University where part of this

Appendix A. 2 F 1 hypergeometric example: N = 3 Recalling Vidunas paper [44] one introduces the following hypergeometric function:

Appendix A. Mirror maps for 2 F 1 ([1/12, 5/12], [1],

x)

The modular correspondences x ! y(x) are infinite order algebraic transformations such that 2 F 1 Appendix A. Simple symmetries of the diagonal of the rational function (7 ) Let us recall the pullbacks (20) in section 2.5, that we denote P 1 .

A.1. Overall parameter symmetry

The seven parameters are defined up to an overall parameter (they must be seen as homogeneous variables).

• c 3 ) the rational function R given by (7) and its diagonal Diag(R) are changed into R/ and Diag(R)/ . It is thus clear that the previous pullbacks (20), which totally 'encode' the exact expression of the diagonal as a pullbacked hypergeometric function, must be invariant under this transformation. This is actually the case:

This result corresponds to the fact that P 2 (x) (resp. P 4 (x)) is a homogeneous polynomial in the seven parameters a, b 1 , • • • , c 1 , • • • of degree two (resp. four ).

A.2. Variable rescaling symmetry

On the other hand, the rescaling of the three variables (x, y, z) in ( 7), (x, y, z) !

is a change of variables that is compatible with the operation of taking the diagonal of the rational function R.

When taking the diagonal and performing this change of variables, the monomials in the multi-Taylor expansion of (7) transform as: Appendix B. Modular equation for the non-symmetric ⌧ ! 4 ⌧ subcase:

2 F 1 ([1/2, 1/2], [1], P)

The pullback X = P 1 (given by (40)) and the pullback Y = P

(2) 2 given by (44) are related by the modular equation (representing ⌧ ! 4 ⌧ ):

Appendix E. Polynomials P 3 (x) and P 5 (x) for the nine-parameter rational function (63) The two polynomials P 3 (x) and P 5 (x) encoding the pullback of the pullbacked hypergeometric function (69) for the nine-parameter rational function (63) in section 3.2.1, read

and

where the polynomials p 2 and p 4 are the polynomials P 2 (x) and P 4 (x) of degree two and four in x given by ( 16) and ( 17) in section 2: p 2 and p 4 correspond to the d 1 = d 2 = 0 limit.

Appendix F. Monomial symmetries on diagonals

Let us sketch the demonstration of the monomial symmetry results of section [START_REF] Penson | On the properties of Laplace transform originating from one-sided Lé vy stable laws[END_REF], with the condition that the determinant of ( 82) is not zero and the conditions (83) are verified. We will denote by n the integer in the three equal sums [START_REF] Gorska | Lé vy stable distributions via associated integral transform[END_REF]:

The diagonal of the rational function of three variables R is defined through its multi-Taylor expansion (for small x, y and z):

as the series in one variable x:

The monomial transformation (81) changes the multi-Taylor expansion (F.1) into 

which are solutions of the quadratic relation

the algebraic function A

± being solution of

where Y = A

(1) ± 18 , and the algebraic function A

± being solution of 

where

The series expansions of the Hauptmoduls H

± read: 

H 

The relation between these two Hauptmoduls corresponds to the genus zero modular equation:

which can (for instance) be rationally parametrised as follows:

where A(v) and B(v) are related by an involution:

The series expansions of the Hauptmoduls H

± read: has a telescoper that is a linear differential operator of order three which actually corresponds to the symmetric square of a linear differential operator of order two. The solutions of this operator of order two are expressed in terms of the following Heun functions:

,

⌘ , the same j-invariant: these two elliptic curves are called birationally equivalent. In the case of the birational and monomial transformation (17), the elliptic curve ( 12) is changed into † †:

With this kind of birational monomial transformation (17), we see that one can obtain families of elliptic curves (19) of arbitrary large degrees in x and y. Consequently one can find nine or ten parameters families of rational functions of arbitrary large degrees yielding pullbacked 2 F 1 hypergeometric functions. There is no constraint on the degree of the planar algebraic curves (19): the only relevant question is the question of the maximum number of (linearly) independent parameters of families of planar elliptic curves which is shown to be ten. The demonstration ¶ is sketched in Appendix A.

3.3. Pullbacked 2 F 1 functions for higher genus curves: monomial transformations.

Let us recall another important point. We have already remarked in [1,2] that once we have an exact result for a diagonal of a rational function of three variables R(x, y, z), we immediately get another exact result for the diagonal of the rational function R(x n , y n , z n ) for any positive integer n. As a result we obtain a new expression for the diagonal changing x into x n . In fact, this is also a result on the telescoper of the rational function R(x, y, z): the telescoper of the rational function R(x n , y n , z n ) is the x ! x n pullback of the telescoper of the rational function R(x, y, z). Having a pullbacked 2 F 1 solution for the telescoper of the rational function R(x, y, z) (resp. the diagonal of the rational function R(x, y, z)), we will immediately deduce a pullbacked 2 F 1 solution for the telescoper of the rational function R(x n , y n , z n ) (resp. the diagonal of the rational function R(x n , y n , z n )). Along this line, let us change in the rational function (1), (x, y, z) into (x 2 , y 2 , z 2 ):

The diagonal of this new rational function (20) will be the pullbacked 2 F 1 exact expression (2) where we change x ! x 2 . The intersection of the algebraic surface corresponding to the vanishing condition of the denominator of the new rational function (20), with the hyperbola p = x y z (i.e. z = p/x/y), is nothing but the equation (10) where we have changed (x, y; p) into (x 2 , y 2 ; p 2 )

which is no longer ‡ an elliptic curve but a curve of genus 9.

With that example we see that classical modular form results, or pullbacked 2 F 1 exact expressions like (2), can actually emerge from higher genus curves like (21). As † † One can easily verify for particular values of the M , N , P , Q and a k 's, using with(algcurves) in Maple, that the j-invariants of ( 12) and ( 19) are actually equal.

¶ We thank Josef Schicho for providing this demonstration. ‡ If we perform the same calculations with the ten-parameters rational function (4) we get an algebraic curve of genus 10 instead of 9.

with the Hauptmodul (80) (or ( 82)). As expected the solution of the order-three telescoper is the square of the pullbacked 2 F 1 hypergeometric function [START_REF] Hassani | Scaling functions in the square Ising model[END_REF] with the Hauptmodul [START_REF] Gorska | The higher-order heat-type equations via signed Lé vy stable and generalized Airy functions[END_REF].

Remark: Let us perform some (slight) deformation of the rational function ( 77), changing the first 2 coe cient in (76) into a 3 coe cient. One thus considers the polynomial T (x, y, z, w):

The telescoper of the rational function in four variables,

is an (irreducible) linear di↵erential operator of (only) order-four L 4 which is nontrivially homomorphic to its adjoint †. A priori, we cannot exclude the fact that L 4 could be homomorphic to the symmetric cube of a second-order linear di↵erential operator, or to a symmetric product of two second-order operators. Furthermore, it could also be, in principle, that these second-order operators admit classical modular forms as solutions (pullbacks of special 2 F 1 hypergeometric functions). However, these options can both be excluded by using some results from di↵erential Galois theory [55], specifically from [56, Prop. 7, p. 50] for the symmetric cube case, and from [56, Prop. 10, p. 69] for the symmetric product case, see also [57, §3]. Indeed, if L 4 were either a symmetric cube or a symmetric product of order-two operators, then its symmetric square would contain a (direct) factor of order 3 or 1. This is ruled out by a factorization procedure which shows that the symmetric square of L 4 is (LCLM-)irreducible. This example does not correspond to an addition formula like [START_REF] Vidunas | Computation of highly ramified coverings[END_REF], but the polynomial T (x, y, z, w) still corresponds to a tri-quadratic. Consequently it is an algebraic variety with an infinite number of birational automorphisms, as shown in Appendix D.1.

Rational functions with tri-quadratic denominator: Fricke cubics examples associated with Painlevé VI equations

Let us consider other simple examples of tri-quadratic surfaces that occur in di↵erent domains of mathematics and physics.

Among the Fricke families of cubic surfaces, the family [58,59,60] x y z

of a ne cubic surfaces parametrised by the four constants (b

to be a deformation of a D 4 singularity which occurs at the symmetric (Manin's) case

Algebraic Geometry approach of Diagonals 20 Some of these symmetric cubics can be seen as the monodromy manifold of the Painlevé VI equation (see equation (1.7) in [61], see also equations (1.2) and (1.4) in [60]): the Picard-Hitchin cases (0, 0, 0, 4), (0, 0, 0, 4), (0, 0, 0, 32), Kitaev's cases (0, 0, 0, 0), ( 8,8,8,64), and especially Manin's case ( 8,8,8,28).

Let us consider the (symmetric) rational function in three variables x, y and

which takes into account the other Picard-Hitchin cases ‡ (0, 0, 0, 4), (0, 0, 0, 4), (0, 0, 0, 32). The rational function (90) has an order-two telescoper which has a simple pullbacked hypergeometric solution:

where †:

y in the denominator of (90) gives the genus-four algebraic curve:

Again, the question is to see whether the Jacobian of this genus-four algebraic curve (90) could also correspond to a split Jacobian, with a j-invariant corresponding to the Hauptmodul in (89).

Telescopers of rational functions of several variables

Let us consider the rational function in four variables x, y, z, u: R(x, y, z, u) =

The telescoper of this rational function of four variables is an order-two linear di↵erential operator L 2 which has the pullbacked hypergeometric solution:

(1 2592 x 2 ) 1/4 (92)

The diagonal of (91) is the expansion of this pullbacked hypergeometric function (92):

1 + 648 x 2 72900 x 3 + 1224720 x 4 330674400 x 5 + 23370413220 Appendix A. Maximum number of parameters for families of planar elliptic curves.

We have seen, in section 3, that the previous results on diagonals of nine or ten parameters families of rational functions of three variables being pullbacked 2 F 1 hypergeometric functions (and in fact classical modular forms) can actually be seen as corresponding to the (well-known in integrable models and integrable mappings) fact that the most general biquadratic corresponding to elliptic curves is a nine-parameters family and that the most general ternary cubic corresponding to elliptic curves is a ten-parameters family. One can, for instance recall page 238 of [62], which amounts to considering the collection of all cubic curves in CP 2 with the homogeneous equation

and the associated problems of passing through nine given points. One can also recall the ternary cubics in [63,64] and other problems of elliptic curves of high rank [65] (see the concept of Neron-Severi rank). Since the rational functions of three variables we consider are essentially encoded by the denominator of these rational functions, and in the cases we have considered, the emergence of pullbacked 2 F 1 hypergeometric functions (and in fact classical modular forms) corresponds to the fact that the intersection of these denominators with the hyperbola p = x y z corresponds to elliptic curves, one sees that these rational functions are essentially classified by the possible n-parameters families P (x, y) = 0 of elliptic curves.

If one considers a polynomial

with generic coe cients a m,n 2 C, then the genus of the algebraic curve defined by P is determined by the support supp(P ) = {(m, n) 2 N 2 : a m,n 6 = 0}. More precisely, the genus equals the number of interior integer lattice points inside the convex hull of supp(P ) [66] (see also the discussion in [START_REF] Doran | Picard-Fuchs uniformization and modularity of the mirror maps[END_REF]). For example, the support of the

Appendix E. Telescopers of rational functions of several variables: some examples

Let us consider here the following family of rational functions in four variables

,

where P (x, y, z) is an arbitrary polynomial of the three variables x, y and z. † Or even an arbitrary algebraic function of the product p = x 1 x 2 • • • x N , with a Taylor series expansion at p = 0, the diagonal of rational functions becoming diagonal of algebraic functions.

Appendix E.1. Telescopers of rational functions of several variables: a second example with four variables

Let us now consider the rational function in four variables x, y, z, u: R(x, y, z, u) = (E.2) 1 1 + 3y + z + 9 y z + 11 z 2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x 2 y .

which corresponds to P (x, y, z) = 9 + 2 y + 5 z + 7 x y. The telescoper of this rational function of four variables is the same order-two linear di↵erential operator L 2 as for the telescoper of (91). It has the same pullbacked hypergeometric solution (92). The diagonal of the rational function (E.2) is the expansion of (92), namely (93).

Performing the intersection of the codimension-one algebraic variety 1 + 3 y + z + 9 y z + 11 z 2 y + 3 u x + 9 x + 2 x y + 5 x z + 7 x 2 y = 0, corresponding to the denominator of (E.2), with the hyperbola p = x y z u amounts to eliminating, for instance u (writing u = p/x/y/z). This gives P u = 0 where P u reads:

Assuming x to be constant the previous condition P u (y, z) = 0 is an algebraic curve. Calculating its genus, one finds immediately that it is genus-one. Calculating its j-invariant, one deduces the expression of the Hauptmodul H p,x = 1728/J as a rational expression of p and x:

where N is a polynomial expression of degree eight in w and three in p, and D is a polynomial expression of degree four in w and two in p. In the x ! 0 limit of the Hauptmodul H p,x = 1728/J, one finds:

which is actually the Hauptmodul in (92). In other words, the exact expression of the diagonal of the rational function (E.2), which is (92), and is essentially encapsulated in the Hauptmodul in (92), could have been obtained from the x = 0 selection of the Hauptmoduls H p,x .

Appendix E.2. Telescopers of rational functions of several variables: a third example with four variables

Let us consider the rational function in four variables x, y, z, u: R(x, y, z, u) = (E.6) 1 1 + 3y + z + 9 y z + 11 z 2 y + 3 u x + x • (y 2 z 2 + x y 3 ) , which corresponds to P (x, y, z) = y 2 z 2 + x y 3 in the family (E.1). Again, the telescoper of this rational function of four variables is the same order-two linear di↵erential operator L 2 as for the telescoper of (91). It has the same pullbacked his co-authors in 2012 in [7]. In this paper we show that two of the unresolved examples of the conjecture given in [7] on page 58, namely the 3 F 2 [2/9, 5/9, 8/9], [2/3, 1], 3 6 • x and 3 F 2 [1/9, 4/9, 7/9], [1/3, 1], 3 6 • x are indeed diagonals of rational functions and provide a generalization of this result.

Recalls on diagonals of rational functions and on Christol's conjecture

Definition of the diagonal of a rational function

The diagonal of a rational function in n variables R(x 1 , . . . , x n ) P(x 1 , . . . , x n )/ Q(x 1 , . . . , x n ), where P, Q 2 Q[x 1 , . . . , x n ] such that Q(0, . . . , 0) 6 = 0, is defined through its multi-Taylor expansion around (0, . . . , 0):

as the series in one variable x:

Hadamard product of algebraic functions and Christol's conjecture

Recall that the Hadamard product of two series f (x) = P , where the height h is given by:

with b p = 1, that can be written 10 as the Hadamard product of h globally bounded 11 series of height 1, were shown to verify Christol's conjecture. For example, the globally bounded hypergeometric series 3 F 2 ([1/3, 1/3, 1/3], [1,1], x) has height 3, and it can be written as the Hadamard product of three algebraic functions 12 :

and can thus be written as the diagonal of the algebraic function in three variables:

10 See [22] p 15. 11 Globally bounded series can be recast into series with integer coefficients [6,7]. 12 Diagonals are closed under the Hadamard product: if two series are diagonals of rational functions, their Hadamard product is also a diagonal of a rational function.

Unlike the case of 3 F 2 ([1/3, 1/3, 1/3], [1, 1], x), the hypergeometric functions 3 F 2 ([2/9, 5/9, 8/9], [2/3, 1], x) and 3 F 2 ([1/9, 4/9, 7/9], [1/3, 1], x), while being globally bounded functions [23], were constructed in a way that prevents them from being written as 'simple' Hadamard products of algebraic functions [10]. Note that a p F p 1 hypergeometric function can be shown to be globally bounded in general, by looking at Landau functions as explained in the work of Christol [22]. Furthermore, Beukers and Heckman have shown in [24], that p F p 1 globally bounded hypergeometric functions of height one according to the definition above, are algebraic functions.

Unresolved examples to the conjecture

Generalized hypergeometric functions with regular singularities p F p 1 are a simple and natural testing ground for Christol's conjecture.

x) hypergeometric series with a, b 2 Q\Z and c 2 Z that are globally bounded are diagonals of rational functions. There are three cases that fall into this category:

• If the parameter c = 1, then the 2 F 1 function can be written as the Hadamard product of two 1 F 0 functions, which are algebraic functions, and thus are diagonals of rational functions by Furstenberg's [25] theorem 13 .

• If the parameter is such that c > 1 with c 2 Z, then the 2 F 1 function can be written as the Hadamard product of a 1 F 0 and an algebraic function, and is thus the diagonal of a rational function by Furstenberg's theorem.

• If parameter c is not an integer, in this case the 2 F 1 function is a diagonal of a rational function if and only if it is an algebraic function 14 .

Moving on to 3 F 2 hypergeometric functions, one can ask the question: when is a globally x) are rational numbers but not integers, then the 3 F 2 is algebraic 15 , and is thus a diagonal by Furstenberg's theorem.

Excluding the case where any of the parameters of the hypergeometric function p F q is a non-positive integer, because in this case the p F q is either a polynomial or not defined, the interesting case occurs when only one of the two parameters d or e is rational but not integer, and the other is an integer. But even in this case, a lot of the 3 F 2 functions are easily seen to be diagonals of a rational function. Suppose that a 3 F 2 ([a, b, c], [1, e], x) is globally bounded, with the parameters a, b, c, e 2 Q\Z, then there are six ways to write the 3 F 2 ([a,b,c],[1,e],x) function as the diagonal of a rational function. This corresponds to the six ways to write the

and

, 1], 3 6 • x

Now Denef and Lipshitz in [8] show that any power series in 

⌘ , we find that (37) can be written as

and by using a computer algebra tool like Mathematica or Maple to simplify this sum into a closed form, from which we can read off the hypergeometric function representation of the diagonal. More precisely, we used creative telescoping (Zeilberger's algorithm) to prove that (38) satisfies the first-order recurrence:

Together with the initial condition S(0) = 1, we obtain the closed form

Telescopers of algebraic functions versus diagonals of algebraic functions

The diagonal of an algebraic function and a solution of a telescoper 25 of an algebraic function are close, yet distinct notions. A telescoper annihilates an n-fold integral of an algebraic function over all integration cycles 26 . For example the hypergeometric function

x) is the solution of the telescoper of the following algebraic function obtained through creative telescoping:

( 

admits as a solution the hypergeometric function 3 F 2 ([ 1 9 , 4 9 , 7 9 ], [ 1 3 , 1], x). Yet the diagonal of the algebraic function ( 42) is equal to zero. This is not incompatible with the fact that the hypergeometric function 3 F 2 ([ 1 9 , 4 9 , 7 9 ], [ 1 3 , 1], x) can be written as as the diagonal of another algebraic function, namely (11). Other 3 F 2 unresolved examples to Christol's conjecture like [22] 3

Y Abdelaziz et al

were not obtained here as diagonals of an algebraic function, yet they are solutions of the telescoper of an algebraic function and can thus be seen as a period of an algebraic variety over a non-evanescent cycle 27 , but not necessarily as a diagonal of an algebraic function (i.e. a period over an evanescent cycle). We give two arguments in favor of the fact that the 3 F 2 hypergeometric function ( 43) is most probably a diagonal of an algebraic function.

Diagonal: algebraic mod p

If one expects 3 F 2 hypergeometric functions like (43) to be diagonals of an algebraic function, one should find [6,7] that the corresponding series expansion reduces to an algebraic series modulo any prime number p, or power of a prime number p r . In order to verify this fact on (43) we look at the series expansion of

+ 4881796920 x 4 + 2734407111744 x 5

Straightforward guessing gives the infinite product formula

which is solution of

i.e. 3 F 2 [ 1 9 , 4 9 , 5 9 ], [ 1 3 , 1], 27 2 • x is an algebraic function modulo 2 satisfying:

or:

Modulo 3 we have the following expansion

where:

which is solution of

i.e. F(x) is an algebraic function modulo 3:

Unlike for the hypergeometric series 3 F 2 [ 1 9 , 4 9 , 7 9 ], [ 1 3 , 1], 27 2 • x , it is less obvious how to obtain the 3 F 2 [ 1 9 , 4 9 , 5 9 ], [ 1 3 , 1], 27 2 • x as the diagonal of a rational function. It is however possible to obtain the solution of 3 F 2 [ 1 9 , 4 9 , 5 9 ], [ 1 3 , 1], 27 2 • x , as the solution of a telescoper of an algebraic function, and this solution is an algebraic function modulo p. The diagonal of the product of algebraic functions

is given by the 4 F 3 hypergeometric function H which is the Hadamard product of 3 F 2 ([1/9, 4/9, 7/9], [1/3, 1], 27 • x) and (1 x) 5/9 :

This 4 F 3 hypergeometric series (55) can also be written as the Hadamard product:

, 1], 27

So even though we did not find a rational (or algebraic) function whose diagonal is given by (43), knowing that 3 F 2 [ 1 9 , 4 9 , 7 9 ], [ 1 3 , 1], 27 • x is the diagonal of a rational function,

Appendix A. Counterexamples and links with Shimura curves

The Gauss hypergeometric function appearing on the left in ( 9)

, 1], 27 x

can be seen as the Hadamard product of a Gauss hypergeometric function and an algebraic function given by:

, 27 x happens to be a hypergeometric function corresponding to an automorphic form associated with a Shimura curve [31][32][33]. One has the identity: Y Abdelaziz et al related to 2 F 1 hypergeometric functions related to Shimura curves are given by:

], 3 6 x ◆ , (A.6)

, 1], 7 4 x

Besides two hypergeometric functions, the 3 F 2 ([ 2 9 , 5 9 , 8 9 ], [ 2 3 , 1], 27 x) and the 3 F 2 hypergeometric 3 F 2 ([ 1 9 , 4 9 , 7 9 ], [ 4 3 , 1], 27 x), and the three globally bounded 3 F 2 hypergeometric series (A.6)-(A.8), we were not able to write the other examples given in this section as a Hadamard product involving a 2 F 1 hypergeometric function associated to a Shimura curve. In any case, since the class of potential counterexamples formulated by Christol is infinite, while the list of Shimura in table 1 of [30] is finite, a list of 3 F 2 functions both related to Shimura curves and to Christol's conjecture is bound to be finite. n p n n ˜ (5) n ˜ (6) (3) (
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ALGEBRAIC TRANSCENDENCE AND DIAGONALS: A HISTORICAL PERSPECTIVE by Youssef Abdelaziz

According to the account of [23], Pólya proves that diagonals § of bi-variate rational functions are algebraic functions in the paper [24]. Melczer in [23] puts on the same footing the "proof" of this result, as well as the proof of the "same" result according to him, by Furstenberg [11], as well as the one obtained by Hautus-Klarner in [17].

However, when discussing this result on bi-variate rational functions, Gessel in [13] attributes this result to Furstenberg [11] ⇤ , and he talks of Pólya's result as a "related" result and not as an equivalent resultk. So which account of the two is the "right" account, historically speaking? Forty-five years separate the two papers [11,24], and it is legitimate to ask the questions: when did the term "diagonals" first appeared in the context of algebraic functions, and how did the classification of "diagonals" evolve between 1922 and today? What was Pólya's interest when looking at diagonals? What was Furstenberg's interest when looking at diagonals, and was Furstenberg in 1967 aware of Pólya's 1922 paper? Was Christol aware of Pólya's paper when he first worked on diagonals in the early seventies, and what were his motivations to look at diagonals? Diagonals are an important chapter in the history of algebraic transcendence, and that is why we would like discuss them in the context of this conference, and we will attempt to answer these questions in this respective order in the sections below.

"Diagonals": "first" emergence, and classification

A search for the first occurrence † of the word "diagonal" in the title of a paper in Zentralblatt, in the context of sums of diagonals terms of multivariate Taylor series development, leads to the paper "Analytic continuation of diagonals and Hadamard § We give a definition below of "diagonals". ⇤ As we will see later in the text, Furstenberg, proves the converse of this result.

k See [13] p.337-335 † "First occurence" is a thorny issue, in the history of mathematics. See the introduction of [15] for a brief discussion of this issue.

compositions of multiple power series" written in 1938 by R. H. Cameron and W. T.

Martin [22]. A review of this paper on Zentralblatt [21], describes the main theorem of the paper in the following words:

This theorem contains, as a particular case, the theorem of multiplication of Mr. Hadamard. The preceding theorem is then deepened in order to provide a generalization of the theorem of Hadamard (under a multiplicative form) to

Taylor series in two variables.

The word "diagonal" is not mentioned explicitly in this review. However, in a second review of the same paper [20], the reviewer mentions explicitly the term "diagonal":

"Diagonalfunktion" (quotations are from the author). Quotations here are an indication that the reviewer is not familiar with the term, which is a strong indication that the usage of the term "diagonal" in this context in [22] is new.

Different authors discuss "diagonals" in relation to the paper written earlier by Pólya [24]. For example in [2], the author explains that "almost a century ago, Pólya proved that diagonals of bi-variate rational functions are algebraic". In [3], when discussing diagonals of bi-variate rational functions, they explain that "The following observation goes back to at least Pólya". Similarly, in theorem 16 in [23], the author cites Pólya's paper when discussing "diagonals" of bi-variate rational functions. However, the word "diagonal" never appears in the paper of Pólya [24], so it is a posteriori that the word diagonal was associated to the 1922 paper of Pólya [24].

Furthermore, formal power series in general, and integer power series in particular, are today closely associated to combinatorics. For example, the scientific conferences "Formal power series and algebraic combinatorics" (FPSAC) and "Séries formelles et combinatoire algébrique" (SFCA), were held yearly since 1988]. A search on google scholar of recent scientific works that cite Pólya's 1922 paper, and that seem to consider it as a result pertaining to combinatorics includes the titles:

• Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice

Path Enumeration [23].

• Basic analytic combinatorics of directed lattice paths [1].

• Computer Algebra for Lattice Path Combinatorics [2] ] Except for the year 1989 [10].

3 Now Pólya's paper [24] was definitely not associated to combinatorics in 1922. Historians of science have access to the yearly volumes of the Jahrrbuch über die Fortschritte der Mathematik, originally with the support of Borchardt, Kronecker and Weierstrass and edited between 1870 to 1942, which provided reviews of all mathematical publications. Now looking at the table of contents of first volume of the "Jahrbuch über die Fortschritte der Mathematik" for the years 1921-1922 [18], one reads that it is divided into 8 sections ("Abschnitt"):

• History, philosophy and pedagogy (Geschichte, Philosophie und Pädagogie)

• Arithmetic and algebra (Arithmetik und Algebra)

• Set theory (Mengenlehre)

• Analysis (Analysis)

• Geometry (Geometrie)

• Mechanics (Mechanik)

• Relativity theory, and theory of gravitation (Relativitätstheorie und Theorie der Gravitation)

• Astronomy, geodesics, geophysics (Astronomie, Geodäsie une Geophysik)

The analysis section contains seventeen subsections:

The review of Pólya's 1922 paper is classified in "Kapitel 4", under "Allgemeine Theorie der Funktionen komplexer Argumente" (general theory of functions with complex arguments). In the meanwhile, combinatorics was put in the section "Artihmetic und Algebra", in "Kaptiel 2" under "Elementare Arithmetic und Algebra.

Kombinationslehre": Hence Pólya's 1922 paper was seen as part of analysis by the mathematical community, and not combinatorics back then.

Motivation behind Pólya's theorem

In the first volume of Euler's Opuscula analytica [9], Euler examines the polynomial expansion:

See [9], p.49.

In particular he looks at series formed by the "middle terms" of the powers of the trinomial given by 1 + x + x 2 :

See [9], p.49.

He proves this sum to be equal to the algebraic function:

See [9], p.68.

Here the notation xx means x 2 , thus rewriting Euler's result gives that the sum of the middle terms of the powers of the trinomial 1 + x + x 2 gives:

Pólya derives this result in his 1922 paper using contour integration. He obtains the series:

1

u 1 being the root of the equation u z(1 + u + u 2 ) = 0, which reduces to zero for z = 0. The second pole is given by:

from which Pólya concludes that:

Thus the contour integral (2) admits algebraic functions at its poles. With the help of this example, and from an example that Pólya attributes to M. Hurwitz, Pólya got the idea of the theorem in his paper [24]. The motivation behind Pólya's proof is outlined in a footnote in his paper:

??

\ /i / 71 = 0 7 M'présente une l'onction algébrique. C'est ce; problème qui, conjointement avec le problème d'Kn.Kn précité, m'a suggéré le théorème général que je viens de démontrer. ' s L. I^ui.kr. Opéra postuma, Tom. 1 (Petropoli, 18 (52), p. 299-31 't.

See [24] p.43.

3. From Pólya's theorem to Furstenberg's theorem

Polya's and Furstenberg's proofs

If one compares Pólya's and Furstenberg's theorems about bi-variate rational functions having diagonals that are algebraic, one notices that they are not identical. In fact Pólya's theorem is more general. Furthermore, when one compares both papers as wholes, one notices that one has enough clues to guess how Pólya came to consider this result, unlike in the paper of Furstenberg.

In Pólya's paper [24], Pólya proves that given two algebraic functions (z) and

(z), analytic near the point z = 0, and given the tablek:

k We are including the table in the form presented in Pólya's paper because it will be important when we will discuss at the end of this section the importance of pictorial representation, in Pólya's motivation.

Furstenberg also proves the converse of the result he obtained on bi-variate rational functions:

Theorem (H. Furstenberg [11]) If (x) is an algebraic function over a finite field, the = Diag(R(x, y)) for a power series in two variables R(x, y) that represents a rational function of x and y.

where "Diag(R(x, y))" refers to the operation of taking the diagonal as defined above.

Furthermore Pólya rearranges the power expansions of the trinomial 1

appearing in the Euler's work [9] above in a pyramidal shape: R(z) est ler résidu correspondant au point u = 0. R(^) est une fonction rationnelle, qui peut se réduire à 0. On sait que les fonctions algébriques d'une fonction algébrique sont algébriques, ainsi que la dérivée d'une fonction algébrique ; donc u, n w 2 , ... Mp sont algébriques, chaque terme de la somme dans l'équation (6) est algébrique et F(z) est aussi algébrique, c. q. f. d.

3. ? Gomme premier exemple, posons $(z) = 1 , <f(z) = 1 + z + z 1 et considérons avec Euler 1 le tableau On trouve la somme de la série qui commence par les termes en caractères gras d'après la méthode exposée. u { désignant la racine de l'équation u?z(l +v -\-2 ) ?0 qui se réduit à zéro pour z = 0. On a donc résultat dû à Euler, loc. cit. 1 Je considère un second exemple. Je désigne par a, |S deux nombres rationnels, par a, b deux nombres entiers non négatifs.

Je pose $(z) =(1+ z) a , cp(z) =(1+ zy j et je considère la droite y = a + bx. J'obtiens la série 1 L. Euliïr. Opuscula analytica, Tomus I (Petropoli, 1783), p. 48-02. See [24] p.42.

Pólya says explicitly that the series examined by Euler (2), made him think about the theorem he proves in [24]. Now, there are many resources on the role played by pictures in mathematical proofs, see for example [27]. Without going into any of the details of this topic, we would like to point out that it seems that the way that Pólya rewrote the power expansion of the trinomial 1 + x + x 2 , i.e. a way that underlines that the sum of the terms of the diagonal as an algebraic series, played a role in proving the theorem we explained above which involves summing series along different "lines" of the expansion.

Diagonals between 1922 and 1967

After Pólya's 1922 paper, diagonals of formal series emerged in the context of analysis. A few years later, R. H. Martin and W. T. Martin [22] looked at the region of convergence of the diagonal of two power series, as a generalization of the Hadamard theorem [16].

Then there was shift, and the interest in diagonals was more pertaining to their algebraic properties. For example, the paper in 1931, by R. Jungen, where the following theorem is proved [19]:

Theorem (R. Jungen [19]). If a is rational and b algebraic, then their

Hadamard product is c is algebraic. If a and b are both rational, then c is also rational.

Youssef ABDELAZIZ 15 septembre 2020 Sujet : Diagonales de fractions rationnelles en physique Résumé : Nous étudions les séries à coe cients entiers solutions d'équations di érentielles linéaires. Nous nous concentrons sur les diagonales de fractions rationnelles liées à la physique théorique et à la combinatoire énumérative, correspondant à des fonctions hypergéométriques ou à des fonctions de Heun. Ces fonctions hypergéométriques ou de Heun, obtenues par la méthode dite de création télescopique, se sont avérées être dans tous les cas correspondre à des formes modulaires ou des carrés de formes modulaires, voire des dérivées de formes modulaires. Une approche de géométrie algébrique e ective nous a permis une compréhension profonde, et intrinsèque, de l'émergence de telles fonctions remarquables. Les méthodes de création télescopique nous ont enfin permis d'avancer dans la compréhension de la validité de la conjecture avancée par Gilles Christol dans les années 1980. En particulier, nous avons pu montrer que certains contre-exemples potentiels à cette conjecture correspondaient bien, en fait, à des diagonales de fractions rationnelles.

Mots clés : fonction hypergéométrique de Gauss, fonction hypergéométrique avec un pull-back, courbes de Shimura, diagonales de fractions rationnelles, modèle d'Ising, fonction de Heun, création télescopique, histoire des mathématiques, mathématiques expérimentales, conjecture de Christol

Subject : Diagonals of rational functions in physics

Abstract:

We study integer coe cient series that are solution of linear di erential equations. We focus on diagonals of rational functions related to theoretical physics and enumerative combinatorics. These diagonals correspond to hypergeometric functions or Heun functions. These hypergeometric and Heun functions, are obtained using the method of creative telescoping. We show that these hypergeometric and Heun functions are in fact modular forms, or squares of modular forms, and in some cases derivatives of modular forms. Using algebraic geometry, we were able to understand some of the reasons behind the emergence of these functions, in the context of diagonals of rational functions. The creative telescoping method also allowed us also to understand better the validity of the conjecture advanced by Christol in the 80's. In particular, we were able to show several potential counter-examples to this conjecture corresponded in fact to diagonals of rational functions.