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Résumé

Le cancer du poumon est la premiere cause de déces par cancer dans le monde, tant
chez les femmes que chez les hommes. Chaque année, il représente plus de 18% de
tous les déces dus au cancer et fait presque autant de victimes que les cancers de
la prostate, du foie et du sein réunis. Cette mortalité élevée est principalement due
a une détection tardive de la maladie, lorsque les traitements curatifs ne sont plus
disponibles et que la survie des patients est trés faible. Heureusement, la récente mise
en ceuvre des programmes de dépistage a augmenté les chances de détection précoce
du cancer du poumon, de traitement curatif en temps utile et, en fin de compte, de
survie des patients.

Néanmoins, sur I'ensemble des nodules pulmonaires détectés par les programmes
de dépistage, seule une fraction est un cancer du poumon. Il est important d’établir
un diagnostic précis de ces nodules, car cela permet de déterminer un plan de trai-
tement approprié pour le patient. Bien que divers tests médicaux puissent aider a
prédire une malignité, seule I'analyse histologique d’échantillons de nodules peut
confirmer la présence d"un cancer et de son sous-type. Cependant, ces nodules sont
généralement trop petits, trop profonds ou pas assez denses pour que les techniques
de biopsie non chirurgicales (e.g. biopsie transthoracique par aiguille du ponction
ou biopsie bronchoscopique) soient fiables. Par conséquent, dans de nombreux cas,
une biopsie chirurgicale (i.e. retrait complet du nodule) mini-invasive par thoraco-
scopique vidéo-assistée (VATS), est la méthode préférée. En outre, cette résection
chirurgicale des nodules pulmonaires est également la principale option de traite-
ment a visée curative pour les patients atteints d'un cancer du poumon a un stade
précoce. Bien que la lobectomie (i.e. la résection d"un lobe pulmonaire entier) par tho-
racotomie ouverte soit la procédure classique, la pratique clinique a évolué vers des
techniques de résection moins invasives qui préservent mieux le tissu pulmonaire. En
fait, il a été démontré que les petites résections non anatomiques (i.e. résections cu-
néiformes, wedge resections en anglais) par VATS pouvaient étre réalisées sans aucun
compromis sur le résultat clinique. En tant que tel, la VATS s’avere étre un outil im-
portant pour la gestion précoce du cancer du poumon, tant au niveau du diagnostic
que du traitement.

Cependant, pendant la VATS, les nodules pulmonaires sont difficiles a localiser, car
ils ne sont souvent ni palpables, ni visibles a 1’ceil nu. Cette situation est aggravée par
la trés grande déformation subie par le poumon a cause d"un pneumothorax. En effet,
lorsque le chirurgien insére 1’espace intercostal pour y placer les trocarts nécessaires

au placement de la caméra et des outils, il se crée des entrés d’air qui entrainent le



dégonflement du poumon. Si ce pneumothorax donne l'espace nécessaire pour les
manceuvres chirurgicales, il induit une profonde déformation du poumon et un fort
déplacement du nodule. Pour surmonter ce probléme, différentes stratégies de locali-
sation des nodules pulmonaires sont couramment utilisées dans la pratique clinique.
La principale consiste a placer des marqueurs physiques (e.g. hamegons, teintures)
dans le nodule pour faciliter sa localisation pendant la chirurgie. Cette procédure est
réalisée sous guidage scanner X, scanner cone beam CT (CBCT) ou bronchoscopique,
soit de facon préopératoire (intervention suivie du transfert du patient au bloc opé-
ratoire), soit de fagon peropératoire (dans une salle d’opération hybride). Toutefois,
cette procédure de marquage présente encore certaines limites, comme la possibilité
de migration des marqueurs aprés le placement, la difficulté de placement a certains
endroits anatomiques et diverses complications cliniques, notamment le pneumo-
thorax, I’hémothorax et I’'embolie. En outre, les procédures de placement de mar-
queurs préopératoires comportent des risques et un inconfort supplémentaires pour
le patient en attendant son transfert en salle d’opération, sans mentionner la charge

logistique liée a la coordination des procédures de localisation et de résection.

Le développement de techniques de localisation des nodules pulmonaires pour la
VATS est toujours un domaine de recherche actif, avec des investigations en cours
pour trouver des méthodes plus stires, plus efficaces et plus fiables. Compte tenu
des limites des stratégies de localisation actuelles, une procédure peropératoire ne
nécessitant pas de marqueurs physiques externes est souhaitable. Dans ce contexte,
une solution innovante pour la localisation peropératoire des nodules pulmonaires
a été proposée par Rouzé et al. au CHU de Rennes. La méthode est basée sur la déli-
mitation du nodule pulmonaire sur une image CBCT du poumon semi-dégonflé, ac-
quise aprés un pneumothorax. Cette délimitation est ensuite projetée sur des images
fluoroscopiques en tant que marqueur virtuel qui est utilisé pour guider la localisa-
tion du nodule pulmonaire. Une étude clinique réalisée sur 24 patients a démontré
la faisabilité de cette approche. Cependant, bien que prometteuse, cette technique de
localisation de nodule sans marqueur repose entiérement sur la visibilité du nodule
pulmonaire dans I'image de CBCT, mais celle-ci peut étre insuffisante dans de nom-
breux cas. En effet, le dégonflement du poumon dt au pneumothorax augmente la
densité du parenchyme pulmonaire, ce qui diminue fortement le contraste d’inten-
sité entre le nodule pulmonaire et le tissu environnant sur 1'image CBCT, empéchant

ainsi sa localisation.

Les nodules pulmonaires sont toujours visibles sur I'image scanner X préopératoire
utilisées pour la planification du geste opératoire. L'idée principale de cette de These
est de fusionner, a l'aide de méthodes de recalage d’images, I'image scanner X pré-
opératoire avec I'image CBCT peropératoire afin de compenser la déformation des
poumons et ainsi d’estimer la position peropératoire des nodules pulmonaires. Ce

recalage permettra non seulement de localiser les nodules qui ne sont pas directe-



ment visibles sur I'image CBCT, mais également, a termes, d’ouvrir la porte a des
techniques de guidage chirurgical plus avancées (par exemple la réalité augmentée)
qui pourraient étre utiles a la pratique clinique actuelle.

Objectif de la thése

L'objectif principal de cette these est de proposer une méthode de recalage d’image
qui tient compte de la déformation du poumon pendant la VATS, afin de fournir une
estimation de la position peropératoire des nodules pulmonaires. Cette méthode de-
vra étre intégré dans la stratégie de localisation des nodules pulmonaires développée
au CHU de Rennes, en tant que mécanisme potentiel permettant d’atténuer les diffi-
cultés auxquelles cette méthode est actuellement confrontée.

Méthode de recalage pour la localisation peropératoire des no-
dules pulmonaires pendant la VATS

La déformation du poumon pendant la VATS peut étre comprise comme le résultat de
deux processus physiques de natures différentes. Le premier processus correspond
au placement du patient sur la table d’opération. Lors de 1’acquisition de 1'image
scanner X préopératoire, le patient est en décubitus dorsal, alors que sur la table
d’opération le patient est en décubitus latéral. Ce changement de position entraine
une déformation de la cage thoracique et surtout un changement de 1'orientation du
corps par rapport a la gravité, ce qui provoque un déplacement et une déformation
du poumon et des organes environnants sous l'effet de leur poids. Il est également
a noter un relichement du diaphragme d a 1’anesthésie avec pour conséquence un
certain déplacement provoqué par le poids des organes abdominaux. Le second pro-
cessus correspond au pneumothorax avec I'effondrement du poumon dans la cage
thoracique. Cette these présente une premiere tentative de prise en compte de ces
deux processus physiques, afin que la position du nodule pulmonaire puisse étre
projetée du cadre préopératoire au cadre chirurgical peropératoire. Cela a été réalisé
en introduisant une image CBCT supplémentaire peropératoire du poumon avant le
pneumothorax, ce qui a permis de décomposer le probléeme de recalage initial com-
plexe en deux sous-problémes plus faciles a traiter : le premier tenant compte de la
déformation du changement de la pose du patient entre le scanner X préopératoire et
son placement sur la table d’opération, et le second tenant compte de la déformation
du pneumothorax. La méthodologie globale de la méthode de recalage proposée est
présentée dans la figure 1.
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Apercu de la méthode de recalage proposée pour la localisation des no-
dules pulmonaires pendant la VATS. La méthode est composée de deux
étapes : la premiére pour estimer la déformation du poumon due au chan-
gement de pose, et la deuxieme pour estimer la déformation du poumon
due au pneumothorax.

Estimation de la déformation du poumon due au changement de pose

L'objectif de cette premiére étape est d’estimer la configuration déformée du poumon
complet apres le changement de pose. Cette estimation fourni la géométrie peropé-
ratoire du poumon gonflé, qui est nécessaire pour 1'estimation de la déformation du
pneumothorax dans la deuxiéme partie. Il est important de souligner que les images
peropératoires CBCT ne présentent qu'une vue partielle du poumon. Par conséquent,
une méthode de recalage seulement basée sur les intensités des images ne serait pas
suffisante, car seule une géométrie partielle du poumon pourrait étre estimée. Par
conséquent, une méthode hybride a été utilisée a la place, avec un recalage par in-
tensité d’image pour estimer partiellement la déformation du poumon, et un modéle
biomécanique poroélastique pour extrapoler cette déformation pour 'ensemble du

poumon.



Estimation de la déformation du poumon due au pneumothorax

L'objectif de cette deuxiéme étape est d’estimer la configuration déformée du pou-
mon apres pneumothorax. La déformation du pneumothorax est modélisée a 1’aide
d’un modeéle biomécanique poroélastique linéaire qui permet de prendre compte de
I’évacuation de I'air lorsque le poumon se dégonfle. La géométrie du poumon gonflé
résultant de I'estimation du changement de pose est utilisée comme configuration
initiale pour la simulation du pneumothorax. Pour la phase fluide du modele poroé-
lastique (air), des conditions aux limites inspirées du processus d’expiration ont été
définies, car elles correspondent naturellement & un processus du dégonflement de
poumon. Pour la phase solide de ce modele (parenchyme), des conditions de contact
avec la cavité thoracique et le diaphragme sont utilisées, et des conditions limites de
déplacement sont appliquées sur la face médiane pour tenir compte de la déforma-
tion du médiastin. Enfin, une formulation de probléme inverse a été utilisée pour
I'estimation des parametres tissulaires, minimisant une fonction de cofit basée sur
une distance de surface a surface entre le modele déformable et la surface pulmo-

naire dégonflée observée dans 1'image CBCT peropératoire.

Contexte et financement

Cette these est le résultat d'une forte collaboration entre deux équipes de recherche,
partenaires du projet national frangais «Laboratoire d"Excellence CAMI». D’une part,
I'équipe IMPACT du laboratoire LTSI de 1'Université de Rennes 1, avec une expé-
rience dans les techniques de traitement d’images appliquées a 1’assistance chirur-
gicale. D’autre part, 'équipe GMCAO du laboratoire TIMC-IMAG, Université de
Grenoble-Alpes, avec une expérience dans les procédures médico-chirurgicales as-
sistées par ordinateur. En outre, cinq mois (février 2018 - juin 2018) ont été passés au
laboratoire Biomechanical modeling laboratory du Vanderbilt Institute for Surgery and En-
gineering (VISE), Université de Vanderbilt, Nashville, Tennessee, dans le cadre d'un

programme de mobilité internationale.

De plus, cette thése a été développée en parallele avec la these de Sciences de Simon
Rouzé (M.D.), chirurgien cardio-thoracique au CHU de Rennes, France, qui a initié le
projet de recherche clinique sur la localisation peropératoire sans marqueurs guidée
par la CBCT pour la VATS.

Le financement de cette these a été partagé par la Région Bretagne a travers des «Allo-
cations de Recherche Doctorale» (ARED) et ’Agence Nationale de Recherche (ANR)
a travers le cadre «Investissements d’Avenir Labex CAMI» (ANR-11-LABX-0004).
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Structure du document

Ce manuscrit de these est divisé en sept chapitres et un annexe.

Le Chapitre 4, le Chapitre 5, le Chapitre 6 et I’Annexe A ont tous été basés sur des
publications présentées en conférences ou soumises a une revue internationale. Ces
chapitres sont divisés en deux parties. La premiere partie reproduit le contenu de la
publication sans modification. La seconde partie présente des méthodes et des résul-
tats supplémentaires qui completent le travail rapporté dans la publication. Afin de
différencier clairement les deux parties, toutes les pages appartenant a une publica-
tion sont marquées par une bande verticale, comme celle qui se trouve a c6té de ce
paragraphe.

Le Chapitre 1 fournit une description du contexte clinique dans lequel s’inscrit ce
travail de these. Ce chapitre commence par donner un apergu de I’anatomie et de la
fonction pulmonaire. Ensuite, une vue d’ensemble sur le cancer du poumon et de sa
gestion est présentée, en se focalisant plus sur la résection chirurgicale des nodules
pulmonaires par VATS. Ensuite, les principales stratégies de localisation des nodules
pulmonaires par VATS sont énumérées, la méthode de localisation peropératoire pro-
posée au CHU de Rennes étant une solution alternative. Les principaux avantages et
limites actuelles de ces méthodes de localisation sont discutés, ce qui conduit a la
motivation principale de cette thése.

Le Chapitre 2 présente le contexte méthodologique des travaux développés dans
cette these. Deux stratégies de compensation et d’analyse des déformations y sont
briévement décrites : celle du recalage d’images basé sur I'intensité et celle de la mo-
délisation biomécanique. Ensuite, une revue de la littérature sur les méthodes de
compensation des déformations pulmonaires est proposée, les méthodes étant clas-

sées en fonction de la stratégie utilisée.

Le Chapitre 3 donne un apercu global de la méthode de recalage proposée pour
la localisation des nodules pulmonaires pendant la VATS et développée durant le
travail de la These, ainsi que des justifications des principaux choix méthodologiques.
Pour ce faire, ce chapitre décrit tout d’abord les défis techniques a relever ainsi que
les solutions proposées/possibles. Ensuite, le déroulement général de la méthode de
recalage est présenté, ainsi que les données cliniques acquises pour sa validation, et
la liste des principales investigations menées dans le cadre de cette these.

Le Chapter 4 présente une caractérisation de la déformation pulmonaire résultant
d’un changement de pose du patient entre les configurations préopératoires et per-
opératoires du patient pendant la VATS. Cette déformation a d’abord été estimée a
I'aide d'une méthode de recalage basée sur I'intensité, puis a été quantifiée et carac-
térisée a I'aide d’indices de déformation issus de la littérature. Les résultats prélimi-

naires de cette étude ont été présentés lors d'une conférence internationale :



P. Alvarez, M. Chabanas, S. Rouzé, M. Castro, Y. Payan, and J.-L. Dillenseger.
Lung deformation between preoperative CT and intraoperative CBCT for tho-
racoscopic surgery : a case study. In Medical Imaging 2018 : Image-Guided Proce-
dures, Robotic Interventions, and Modeling, page 40, Houston, United States, Mar.
2018. SPIE. ISBN 978-1-5106-1641-7. doi : 10.1117/12.2293938

Le Chapitre 5 présente une premiere mise en ceuvre de la méthode de recalage propo-
sée pour la localisation des nodules pulmonaires. Pour faciliter cette mise en ceuvre,
les données cliniques ont été obtenues dans le contexte d"une biopsie par aiguille de
ponction du poumon au lieu d’une intervention de VATS. Cela a permis de traiter
des déformations pulmonaires tres similaires a celles du VATS, tout en utilisant des
données cliniques moins difficiles. Les résultats de cette étude ont été présentés lors

d’une conférence internationale :

P. Alvarez, S. Narasimhan, S. Rouzé, J.-L. Dillenseger, Y. Payan, M. I. Miga, and
M. Chabanas. Biphasic model of lung deformations for video-assisted thoraco-
scopic surgery (VATS). In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 1367-1371, Venice, Italy, 2019a. IEEE. ISBN 978-1-
5386-3641-1. doi : 10.1109/isbi.2019.8759219

Le Chapitre 6 présente la mise en ceuvre finale de la méthode de recalage proposée
pour la localisation des nodules pulmonaires pendant la VATS. Cette mise en ceuvre
s’appuie sur les travaux présentés dans les deux chapitres précédents afin d’étendre
la méthode développée du contexte de la biopsie par aiguille de ponction du poumon
au contexte de la VATS. Ce dernier est plus difficile en raison de la qualité des données
cliniques et de la quantité de déformations pulmonaires. Les résultats de cette étude

ont été soumis a une revue internationale et sont actuellement en cours de révision :

P. Alvarez, S. Rouzé, M. 1. Miga, Y. Payan, J.-L. Dillenseger, and M. Chabanas.
A hybrid image registration approach to markerless intraoperative nodule lo-
calization during video-assisted thoracoscopic surgery. Medical Image Analysis,
submitted in April 2020

Le Chapitre 7 fait le compte des principales contributions de ce travail de these et

discute des lignes de recherche envisageables pour des développements futurs.

L’Annexe A évalue la méthode de recalage basé sur l'intensité introduit au chapitre 4
comme outil de localisation des nodules pulmonaires pendant la VATS. Cette étude
permet d’illustrer la difficulté de la tache a accomplir, et comment un algorithme
classique basé seulement en des intensités d’image peut ne pas étre suffisant pour
construire une solution. Les résultats de cette étude ont été présentés lors d'une

conférence internationale :



P. Alvarez, S. Rouzé, M. Chabanas, Y. Payan, and J.-L. Dillenseger. Image-based
registration for lung nodule localization during VATS. In Surgetica 2019, Rennes,
France, 2019
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Introduction

Lung cancer is the worldwide leading cause of cancer death among both women and
men. Every year, it accounts for more than 18% of all cancer deaths, claiming almost
as many lives as do prostate, liver and breast cancer combined. This high mortal-
ity is primarily caused by a late detection of the disease, when curative treatment is
no longer available and patient survival is very low. Fortunately, the recent develop-
ment of screening programs has increased the chances for early lung cancer detection,

timely curative treatment, and ultimately, patient survival.

Nonetheless, of all pulmonary nodules detected through screening programs, only
a fraction are lung cancer. It is important to establish an accurate diagnosis of these
nodules, as it allows to determine an appropriate treatment plan for the patient. Al-
though various medical tests may help in predicting for malignancy, only histologi-
cal analysis of nodule samples can confirm the presence of cancer and its sub-type.
However, these nodules are typically too small, too deep, or not dense enough for
non-surgical biopsy techniques (e.g. transthoracic needle biopsy or bronchoscopic
biopsy) to be reliable. Consequently, in many cases, surgical biopsy (i.e. complete re-
moval of the nodule) through the minimally invasive video-assisted thoracoscopic
surgery (VATS) is the preferred method. In addition, this surgical resection of pul-
monary nodules is also the main treatment option with curative intent for patients
with early stage lung cancer. Although lobectomy (i.e. removal of an entire lung lobe)
through open thoracotomy is the classical procedure, the clinical practice has been
evolving towards less invasive, better tissue-preserving resection techniques. In fact,
ithas been demonstrated that small non-anatomical resections (i.e. wedge resections)
through VATS could be performed without any compromise in the clinical outcome.
As such, VATS reveals as an important tool for early lung cancer management in both,

diagnosis and treatment.

During VATS, however, pulmonary nodules are difficult to localize, as they are of-
ten neither palpable, nor visible to the naked eye. This is aggravated by the very
large lung deformation resulting from pneumothorax (i.e. lung deflation caused by
the entrance of air in the thoracic cavity), as the surgeon clears up space for surgical
maneuvering. To overcome this problem, various nodule localization strategies are
commonly used in clinical practice. The main approach consists in placing physical
markers (e.g. hook-wires, micro-coils, dyes) in the nodule to facilitate its localization
during surgery. This is carried out under CT, cone-beam CT (CBCT) or bronchoscopy
guidance, either preoperatively (interventional procedure followed by patient trans-
fer to the operating room) or intraoperatively (in a hybrid operating room). However,



there are still some limitations to this marking procedure, such as the possibility for
marker migration after placement, the difficult placement at some anatomical loca-
tions and various clinical complications including pneumothorax, hemothorax and
embolism. Furthermore, preoperative marker placement procedures bear additional
risks and discomfort for the patient while he/she awaits for transfer to the operating
room, not to mention the logistic burden of coordinating the localization and resec-

tion procedures.

The development of pulmonary nodule localization techniques for VATS is still an
active area of research, with ongoing investigations towards safer, more efficient and
more reliable methods. Considering the limitations of current localization strategies,
an intraoperative procedure not requiring physical markers is desirable. In this con-
text, an innovative solution for intraoperative pulmonary nodule localization has
been proposed by Rouzé et al., at the Rennes University Hospital. The method is
based on the delineation of the pulmonary nodule on a CBCT image of the semi-
deflated lung, acquired after pneumothorax. This delineation is then projected into
fluoroscopic images as a virtual marker serving for guidance. A clinical study per-
formed on 24 patients demonstrated the feasibility of this approach. However, while
promising, this markerless nodule localization technique relies entirely on the visibil-
ity of the pulmonary nodule in the CBCT image, which may be insufficient in many
cases. Indeed, the lung deflation after pneumothorax increases the density of lung
parenchyma, which in turn decreases the intensity contrast between the pulmonary
nodule and the surrounding tissue in the CBCT image.

An important observation is that pulmonary nodules are always visible in the CT im-
age that is used for surgical planning. Hence, it should be possible to integrate this
preoperative CT image and the intraoperative CBCT image into an image registration
framework, in order to compensate for lung deformation and estimate the intraoper-
ative position of pulmonary nodules. This would not only help with the localization
of the nodules that are not directly observable in the CBCT image, but would also
open the door for more advanced surgical guidance techniques that could benefit

the current clinical practice.

Thesis objective

The main objective of this thesis is to propose a registration framework that accounts
for lung deformation during VATS, in order to provide an estimation of the intra-
operative position of pulmonary nodules. This registration framework has to be in-
tegrated into the pulmonary nodule localization strategy developed at the Rennes
University Hospital, as a potential mechanism to alleviate the challenges that this
method currently faces.



Context and funding

This thesis is the result of a strong collaboration between two research teams, which
are partners of the nation-wide french project “Laboratory of Excellence CAMI”.
On the one hand, the IMPACT team from the LTSI laboratory, University of Rennes
1, with experience in image processing techniques applied to surgical assistance.
On the other hand, the GMCAO team from the TIMC-IMAG laboratory, University
Grenoble-Alpes, with experience in computer assisted medical-surgical procedures.

In addition, 5-months (February 2018 - June 2018) were spent at the Biomechanical
Modeling Laboratory of the Vanderbilt Institute for Surgery and Engineering (VISE),
University of Vanderbilt, Nashville, Tennessee, within the context of an international

mobility program.

Also, this thesis was developed in parallel to the Ph.D. thesis of Simon Rouzé (M.D.),
cardio-thoracic surgeon at the Rennes University Hospital, Rennes, France, who ini-
tiated the clinical research project on markerless CBCT-guided VATS.

The funding for this thesis was shared by the Région Bretagne through its Allocations
de Recherche Doctorale (ARED) framework and the Agence National de Recherche (ANR)
through the framework Investissements d’Avenir Labex CAMI (ANR-11-LABX-0004).

Thesis outline

This thesis manuscript is divided into seven chapters and one appendix.

Chapter 4, Chapter 5, Chapter 6 and Appendix A are all based from a manuscript.
These chapters are each divided in two parts. The first part reproduces the content of
the manuscript without modification. The second part presents additional methods
and results that complement the work reported in the manuscript. In order to clearly
differentiate the two parts, all pages belonging to a manuscript have been decorated
with a vertical stripe, such as the one next to this paragraph.

Chapter 1 provides a description of the clinical context encompassing this thesis
work. The chapter starts with an overview of lung anatomy and function. Then, an
overall picture of lung cancer and lung cancer management is presented, with a spe-
cial emphasis in surgical resection of pulmonary nodules through VATS. Following,
the major strategies for pulmonary nodule localization for VATS are listed, with the
intraoperative localization method proposed at the Rennes University Hospital as an
alternative solution. The main advantages and current limitations of these methods
are discussed, which lead to the main motivation of this thesis.

Chapter 2 introduces the methodological background of the work developed in this
thesis. Therein, two strategies for deformation compensation and analysis are briefly



described: that of intensity-based image registration and that of biomechanical mod-
eling. Then, a review of the literature for lung deformation compensation methods
is proposed, with the methods being classified with respect to the strategy used.

Chapter 3 provides an overview of the proposed registration framework for pul-
monary nodule localization during VATS, as well as justifications for the main method-
ological choices. This is done by first introducing the technical challenges that needed
to be addressed, and the proposed/potential solutions. Then, the overall workflow
of the registration framework is presented, as well as the clinical data collected for its
validation, and the list of the main investigations carried out in this thesis.

Chapter 4 presents a characterization of the lung deformation resulting from a change
of patient pose between the preoperative and the intraoperative settings in a VATS
intervention. This deformation was first estimated using an intensity-based image
registration framework, and was subsequently quantified and characterized using
deformation indexes issued from the literature. The preliminary results of this study

were presented in an international conference:

P. Alvarez, M. Chabanas, S. Rouzé, M. Castro, Y. Payan, and J.-L. Dillenseger.
Lung deformation between preoperative CT and intraoperative CBCT for tho-
racoscopic surgery: a case study. In Medical Imaging 2018: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, page 40, Houston, United States, Mar.
2018. SPIE. ISBN 978-1-5106-1641-7. doi: 10.1117/12.2293938

Chapter 5 presents a first implementation of the proposed registration framework
for pulmonary nodule localization. To facilitate this implementation, the clinical data
was obtained from the context of a lung needle-biopsy instead of a VATS interven-
tion. This allowed dealing with lung deformation very similar to that of VATS, but
with less challenging clinical data. The results of this study were presented in an

international conference:

P. Alvarez, S. Narasimhan, S. Rouzé, J.-L. Dillenseger, Y. Payan, M. I. Miga, and
M. Chabanas. Biphasic model of lung deformations for video-assisted thoraco-
scopic surgery (VATS). In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 1367-1371, Venice, Italy, 2019a. IEEE. ISBN 978-1-
5386-3641-1. doi: 10.1109/isbi.2019.8759219

Chapter 6 presents the final implementation of the proposed registration framework
for pulmonary nodule localization during VATS. This implementation builds upon
the work presented in the previous two chapters in order to extend the developed
framework from the context of lung needle-biopsy to the context of VATS. This latter
is more challenging because of the quality of clinical data, and the amount of lung
deformation. The results of this study were submitted to an international journal,

and are currently under review:



P. Alvarez, S. Rouzé, M. 1. Miga, Y. Payan, ].-L. Dillenseger, and M. Chabanas.
A hybrid image registration approach to markerless intraoperative nodule lo-
calization during video-assisted thoracoscopic surgery. Medical Image Analysis,
submitted in April 2020

Chapter 7 reviews the main contributions of this thesis work and discusses possible

lines of research for future developments.

Appendix A evaluates the intensity-based image registration framework introduced
in Chapter 4 as a tool for pulmonary nodule localization during VATS. This study
allows to illustrate the difficulty of the task at hand, and how a classical algorithm
based on image intensity alone may not be sufficient for constructing a solution. The

results of this study were presented in an international conference:

P. Alvarez, S. Rouzé, M. Chabanas, Y. Payan, and J.-L. Dillenseger. Image-based
registration for lung nodule localization during VATS. In Surgetica 2019, Rennes,
France, 2019






Clinical context

The objective of this chapter is to introduce the clinical problem that is addressed
in this manuscript. First of all, the main notions of lung anatomy and function are
provided, with emphasis in the physical mechanisms that allow human respiration.
Then, an overview of lung cancer statistics and lung cancer management is given.
Particular interest is accorded to the early detection of the disease, as well as the pos-
sible treatment options at this stage, which have been proven beneficial for patient
survival. Finally, the video-assisted thoracoscopic surgery (VATS) is introduced as
one of the main treatment options for early stage lung cancer. The advantages of this
minimally invasive technique are discussed, as well as its main limitation: the need
for pulmonary nodule localization. An overview of existing localization techniques
is presented, with a focus on current trends in clinical practice. This chapter finishes
by describing an alternative pulmonary nodule localization technique recently intro-
duced at the Rennes University Hospital, whose improvement was the main motiva-

tion of this thesis work.

1.1 Lung anatomy and breathing

The main function of the lung is the exchange of respiratory gases. This exchange is
performed by moving air in and out of the lungs by the process of breathing. The
purpose of this section is to describe the process of breathing from a mechanical per-
spective. To that, an overview of the overall anatomy and function of lung structures
is first provided, followed by the presentation of the breathing mechanisms. At the

end of the section, the particular case of pneumothorax will be discussed.

1.1.1  Gross anatomy and function

The lung is the major organ of the respiratory system, whose main function is the
exchange of oxygen and carbon dioxide with air from the atmosphere. The human
body has two lungs located inside the thoracic cavity, one at each side of the body. The
left and right lungs are separated by the mediastinum (the central compartment of
the thoracic cavity), which contains the heart, the trachea, the great arteries and major
veins, among other structures. Each lung possesses an interface to the mediastinum
which is called hilum. The hilum is the only point of access into the lungs, and is
crossed mainly by the major bronchi and the pulmonary arteries and veins. Each
lung is surrounded by the thoracic wall at the apex (top) and costal surfaces, by the
mediastinum at the medial (central) surface and by the diaphragm muscle at the



base. Since the heart lies to the left of the body, the left lung is comparatively smaller
than the right lung to accommodate for the needed space.

The fissures separate each lung into smaller units called lobes. The left lung is divided
by the oblique fissure into two lobes, namely the superior and inferior lobes. The
right lung is divided by the horizontal and oblique fissures into three lobes, namely
the superior, middle and inferior lobes (see Fig. 1.1). Each lung lobe is further di-
vided into anatomically and functionally independent units called segments. As it
will be described later in this chapter, this functional independence allows the surgi-
cal resection of isolated lung anatomical structures, with little impact to the remain-
ing structures (Levitzky, 2007). The anatomical resections of an entire lung, lobe or
segment, are respectively called pneumonectomy, lobectomy and segmentectomy.

Trachea

Superior lobe
Main (primary)
bronchus
Superior lobe | \ Lobar
| \ ———— (secondary)
\ bronchus
Segmental
(tertiary)
bronchus
Middle lobe —| | ‘ {— Cardiac notch
]
Inferior lobe J— > ) 4 : Inferior lobe
‘ .
Right lung Left lung

Coronal view of gross lung anatomy. The heart is located below the car-
diac notch. Illustration taken from Anatomy and Physiology, OpenStax
(2013).

The surfaces of lung and the thoracic cavity are lined with two thin membranes called
pleurae, as illustrated in Fig. 1.2. The visceral pleura encloses the surface of each lung
and penetrates deep within the fissures that separate the lobes. The parietal pleura
covers the internal surface of the thoracic wall, the upper surface of the diaphragm
and the mediastinum. For each lung, the two pleurae meet at the hilum, creating
a potential space! called pleural cavity or pleural space. This space contains a small
amount of serous liquid that is secreted from the pleurae and serves to lubricate their
surfaces. This lubrication permits the pleurae to slide one against the other by reduc-

ing friction, hence preventing trauma during breathing.

1. In anatomy, a potential space is a space between two structures facing one each other, and being
held together by pressure.
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Pleural cavity and main lung structures. Illustration adapted from
Anatomy and Physiology, OpenStax (2013).

Airways

Air is conducted from the atmosphere into the lungs within the airways. It enters
the body at the mouth or nose and finishes inside alveoli, which are small balloon
shaped structures where gas exchange takes place. Air gets later expelled out of the
lungs also through the airways. The section of the airways that extends from the
larynx and branches out from the trachea is called the bronchial tree. It is a fractal-
like tubular structure of 23 branching generations. From the trachea (generation 0),
it first divides into the left and right main bronchi before entering the lungs at the
hilum. Each main bronchi is divided into lobar bronchi (secondary bronchi), which
are in turn divided into segmental bronchi (tertiary bronchi). Further divisions fol-
low, giving rise to even thinner and shorter structures called bronchioles. Alveoli
start to appear on the walls of the smallest respiratory bronchioles, completely cover
the subsequent alveolar ducts and are clustered in alveolar sacs at the end of the
bronchial tree (see Fig. 1.3).

Gas exchange

The human body needs oxygen in order to break down foods that allow its normal
functioning. It also produces carbon dioxide as a byproduct of metabolism, which
needs to be expelled from the system. Gas exchange refers to the intake of oxygen
and the elimination of carbon dioxide through the process of breathing. It happens

within the numerous alveoli of lung parenchyma via diffusion.

The main pulmonary artery carries deoxygenated blood coming from the heart into
the lungs. This main artery first divides into the right and left main pulmonary arter-
ies, and branches down from there to the very small capillaries that surround alveo-
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lar walls. The deoxygenated blood within these capillaries contains lower amounts of
oxygen and higher amounts of carbon dioxide than the air inside alveoli. The differ-
ences in relative pressures allow gas diffusion to happen. This is, gas concentration
between the air and blood balance out. As a result, the carbon dioxide of deoxy-
genated blood passes through alveolar walls into the the alveolus. Similarly, oxygen
from air crosses alveolar walls into the bloodstream (see Fig. 1.3). This oxygenated
blood flows from the capillaries to the pulmonary veins and into the the heart, where
it gets pumped out to the rest of the body.

1.1.2 Mechanisms of breathing

Breathing, or ventilation, can be described as the movement of air into and out of the
lungs. This airflow allows for gas exchanges to happen inside the numerous alveoli
of lung parenchyma. Inhalation (the movement of air into the lungs) and exhalation
(the movement of air out of the lungs) are the two main phases of a breathing cycle.
These phases are dependent on the differences of pressure between the exterior and
the interior of the lung, which are caused by the contraction and relaxation of the

respiratory muscles.
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Pressure relationships

Air, like other fluids, moves from a region of higher pressure to a region of lower pres-
sure. Therefore, for airflow to exist, a pressure gradient between the exterior and the
interior of the lungs must be established. In lung ventilation, three main pressures are
of consideration: the atmospheric pressure; the pressure inside alveoli, called alveo-
lar pressure and the pressure inside the pleural cavity, called intra-pleural pressure
(see Fig. 1.4).

Atmospheric pressure

Parietal pleura

Visceral pleura

Transpulmonary pressure:
760 mm Hg =756 mm Hg
=4 mm Hg

Pleural cavity

Intrapleural pressure: Thoracic wall

Lung

Intra-alveolar pressure: Diaphragm
760 mm Hg (0 mm Hg)

Principal respiratory pressures. Relative values with respect to atmo-
spheric pressure are shown within parenthesis. Illustration taken from
Anatomy and Physiology, OpenStax (2013).

Atmospheric pressure is the pressure within the atmosphere of Earth. It is approx-
imately 760 mm Hg at sea level, and decreases with increasing elevation. During
breathing, the atmospheric pressure remains relatively constant. Therefore, when
discussing breathing mechanics, it is customary to express pressure values with re-
spect to atmospheric pressure. That is, a pressure lower or higher than the atmo-

spheric pressure is represented by positive and negative values respectively.

Alveolar pressure is the pressure of air inside alveoli. A difference between alveolar
pressure and atmospheric pressure is what allows airflow to occur. Hence, alveolar
pressure varies throughout the breathing cycle. It goes from negative during inhala-
tion, to positive during exhalation, and it is zero when there is no airflow at the end
of both phases.

The intra-pleural pressure is the pressure inside the pleural cavity. Like alveolar pres-
sure, it also fluctuates throughout the breathing cycle. However, in normal condi-
tions, intra-pleural pressure is always slightly negative (West, 2012), at approximately
—4 mm Hg. This negative pressure is mainly caused by the mechanical interaction

between the lung and the chest wall. Indeed, during breathing, these two structures
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are constantly pulling each other in opposing directions. On the one hand, the lung
parenchyma has a strong tendency to collapse into itself, which is caused by the in-
ward elastic recoil of distended alveolar walls. On the other hand, the outward elastic
recoil of the chest wall acts to expand the chest cavity. As a result, the chest wall holds
the lung open, while at the same time, it gets pulled inwards by the lung.

In addition, the differences among the three pressures presented above are known
as pressure gradients. There are three principal pressure gradients in lung ventila-
tion: the transrespiratory pressure, the transpulmonary pressure and the transtho-
racic pressure. The transrespiratory pressure is the difference between the alveolar
pressure and the atmospheric pressure. It is responsible for actual airflow into and
out of the lungs. The transpulmonary pressure is the difference between the alveo-
lar pressure and the intra-pleural pressure. It is responsible for holding the alveolar
walls open during breathing, avoiding their collapse. The transthoracic pressure is
the difference between the intra-pleural pressure and the atmospheric pressure. It

represents the pressure needed to expand or contract the lungs and chest wall.

Mechanics of breathing

During breathing, the pressure within lung structures varies according to Boyle’s
law. This law states that the volume and pressure of a gas within a closed system
under constant temperature are inversely proportional. That is to say that increasing
the space that can be occupied by the gas results in a decrease of gas pressure, and

vice-versa. Boyle’s law is expressed as:

PVi = PV, (1.1)

where P; and V; are the pressure and volume of the gas at the initial configuration;

and P and V5 are those at the final configuration.

Changes in lung volume are then necessary in order to establish the pressure gradi-
ents required for airflow. However, alveoli (and hence the lung) are not capable of
expanding themselves. They only expand passively in response to an increased dis-
tending pressure across the alveolar wall (Levitzky, 2007). This distending pressure

is generated by the contraction of the respiratory muscles during breathing.

At the end of exhalation, all respiratory muscles are relaxed and pressure relation-
ships are as depicted in Fig. 1.4. The alveolar pressure is zero, the intra-pleural pres-
sure is negative and there is no airflow. From this resting state, a breathing cycle takes
place: inhalation followed by exhalation to finally reach the initial resting state that
prepares for the next cycle. A schematic representation of these inhalation and exha-
lation phases is provided in Fig. 1.5.
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Anatomy and Physiology, OpenStax (2013).

Inhalation is an active process that involves the contraction of two groups of muscles:
the diaphragm and the external intercostal muscles. On the one hand, the contraction
of the diaphragm moves it away from the lung towards the abdominal cavity. On
the other hand, the contraction of the external intercostal muscles pulls the rib cage
upwards and outwards. As these muscles contract, the volume of the thoracic cavity
increases and the intra-pleural pressure becomes more negative. This drop in intra-
pleural pressure rises the transpulmonary pressure gradient, which in turn pulls the
lung open. This pressure gradient is transmitted to the interior of the lung, expanding
alveolar walls (Levitzky, 2007). The volume increase of alveoli decreases alveolar
pressure, establishing a negative transrespiratory pressure gradient that allows air
to enter into the lungs. As alveoli get filled in with air, alveolar pressure increases

until it reaches zero again at the end of inhalation.

Exhalation is a passive process that consists in the relaxation of the muscles con-
tracted during inhalation. As the diaphragm and the intercostal muscles come back
to their resting positions, the volume of the thoracic cavity decreases. This reduces the
transpulmonary pressure gradient that was pulling the lung open. Alveoli then start
to recoil and decrease in volume, which rises alveolar pressure above atmospheric
pressure. A positive transrespiratory pressure gradient is then established, and air
starts to flow out of the lungs. The resting configuration is reached again once the
alveolar pressure has decreased to zero at the end of exhalation.

The inhalation and exhalation processes described above are executed unconsciously
during normal breathing. However, conscious forceful inhalation and exhalation are
also possible if bigger breaths are necessary. These two active processes require the
contraction of additional muscles that help in exaggerating volume changes of the
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thoracic cavity. These additional muscles are located primarily in the neck, thorax
and abdomen; and are called accessory respiratory muscles given their secondary

role during normal breathing.

Pneumothorax

As mentioned earlier, alveoli have a strong tendency to collapse that is caused by the
inward recoil of their distended walls. During breathing, the transpulmonary pres-
sure gradient is always positive, pulling the lung outwards and avoiding its collapse.

This is mainly due to the negative intra-pleural pressure.

Under certain circumstances (e.g. perforation of the thoracic cavity after trauma or
during surgery), an abnormal pathway of air can make the pleural cavity get in direct
communication with the atmosphere. Consequently, air from the atmosphere rushes
into the pleural cavity until intra-pleural pressure reaches atmospheric pressure. In
such scenario, the transpulmonary pressure gradient is no longer positive, making
the outward pull at the lung surface to disappear and ultimately resulting in lung
collapse. This condition is called pneumothorax. An illustration of a pneumothorax

is provided in Fig. 1.6.

Collapsed lung
Normal lung

Illustration of a collapsed lung after pneumothorax. Illustration adapted
from Blausen Medical (2014).

1.2 Lung cancer

Lung cancer is the worldwide leading cause of cancer death among both women and
men (Bray et al., 2018). It accounts for more than 18% of all cancer deaths, claiming
each year almost as many lives as do prostate, liver and breast cancer combined (see
Fig. 1.7). In 2018, it is estimated that more than 2.1 million new lung cancer cases
were diagnosed worldwide, and more than 1.8 million people died from the disease
(Bray et al., 2018). In Europe, although tobacco regulation has helped decreasing
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lung cancer incidence in men (Lortet-Tieulent et al., 2015), it is still considered one
of the major global health problems (World Health Organization, 2019).

Colorectum
10.2%

Other Colorectum

Other cancers Mortality 9.2%

cancers 49.4%

R Stomach

8.2%

Total new cases: 18 078 957 Total deaths: 9555 027

Figure 1.7: Estimated incidence and mortality rates for the 5 main cancer types in
both men and women. This estimations were performed by Bray et al.
(2018) for the year 2018.

In spite of the strong efforts towards better lung cancer management, patient survival
following diagnosis of lung cancer is still pessimistic. A recent study by the American
Cancer Society (Siegel et al., 2020) reported a 5-year survival rate? of 19% for lung
cancer patients diagnosed from 2009 through 2015. This is in strong contrast with the
significantly higher survival rates reported for other main cancer types, such as fe-
male breast cancer (62%) or prostate cancer (78%). The higher lung cancer mortality
is largely explained by the generalized late detection of the disease, where curative
treatment is no longer available (Spiro et al., 2007). It is well understood that patient
survival and general prognosis are strongly dependent on the stage of lung cancer at
diagnosis, being worst in advanced stages. Therefore, in order to improve the clinical

outcome of lung cancer patients, early diagnosis is of paramount importance.

1.2.1  Early lung cancer detection

The early detection of lung cancer provides an opportunity for curative treatment,
which ultimately results in higher survival probability. However, lung cancer patients
are typically diagnosed after the onset of symptoms, where the cancer is already in
an advanced stage (Buccheri, 2004). Currently, no curative treatment is available for
advanced stages, and in the worst case scenario, the 5-year survival rate drops to only
5% (Siegel et al., 2020). In contrast, if timely detection and treatment are possible, the
5-year survival rate could improve significantly, up to 57% (Siegel et al., 2020). Con-

2. The 5-year survival rate is the ratio between the percentage of patients alive after five years of
their diagnosis and the percentage of people of corresponding gender and age alive after five years.
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sequently, considerable efforts have been put forward to develop screening programs

that allow the early detection of the disease.

Screening programs

Several large studies have evaluated the efficacy of chest radiography for lung can-
cer screening (Manser et al., 2004; Melamed et al., 1984). This screening strategy was
found to be potentially harmful to patients, without providing any significant reduc-
tion in mortality rates (Manser et al., 2004). Alternatively, low-dose CT (LDCT), pro-
viding more anatomical details, was also evaluated for lung cancer screening. Studies
demonstrated that screening with LDCT increased the detection of early stage lung
cancers with respect to chest radiographies (Henschke et al., 1999, 2001). However,
the overall benefit for mortality from lung cancer was uncertain, and the increase in

patient radiation and over-diagnosis raised concern.

Within this context, the National Lung Cancer Screening Trial (NLST) was developed
to determine whether screening with LDCT could reduce mortality from lung cancer
(The National Lung Screening Trial Research Team, 2011). The NLST is to date the
largest of the many randomized trials conducted for lung cancer screening, includ-
ing a total of 53,454 participants. The participants were randomly enrolled into one
of two possible screening programs, following LDCT or chest radiography screen-
ing. The selection criteria aimed to include a population at high risk of developing
lung cancer: a minimum of 30 pack-years of smoking history 3, age between 55 and
74 years, and, if former smoker, had quit whith the previous 15 years. The NLST
study reported a 20% reduction in mortality from lung cancer in the LDCT group
as compared to the chest radiography group. The results of the NLST study were
complemented recently by the European screening trial NELSON (de Koning et al.,
2020). This study, including a total of 15,792 participants, demonstrated a 26% reduc-
tion in mortality from lung cancer mortality with LDCT screening as compared to no
screening. Based on these results, screening for lung cancer with LDCT is currently
endorsed by several recognized scientific societies (Kauczor et al., 2015; Smith et al.,
2015).

Current research focuses on improved inclusion criteria, personalized benefit-risk
assessment and novel lung cancer predictive tools (Tanoue et al., 2015). Today, the
implementation of screening programs is currently ongoing in cancer centers with

appropriate infrastructure and expertise (Pirker, 2020).

3. A pack-year history measures the amount of tobacco a person has smoked over a long period of
time. It is calculated by multiplying the number of packs of cigarrettes per day by the number of years
the person has smoked.

16 * Chapter 1



1.2.2 Lung cancer diagnosis and staging

Cancer diagnosis is achieved through a series of observations and tests including
medical history, biopsies, laboratory tests, imaging tests and biomarker tests. Al-
though the procedure may change from patient to patient, only histological analysis
of tumor cells will determine the presence of cancer and its subtype (Dietel et al.,
2016). Once lung cancer has been diagnosed, it is important to determine the stage
of the disease, which is an estimation of the amount of cancer and its spread on the
body. Diagnosis and staging allow medical doctors to prescribe the most appropriate
treatment to patients, and provide an idea of their survival probability.

Non-Small Cell Lung Cancer (NSCLC) is the most common type of cancer and ac-
counts for 80% - 85% of the cases. NSCLC groups together several cancer subtypes
that differ in the type of cells at the origin of the cancer. The three main NSCLC sub-
types are adenocarcinoma, squamus cell carcinoma and large cell carcinoma. NSCLC
subtypes are grouped together because their management and patient outcomes are

very similar.

Small Cell Lung Cancer (SCLC) accounts for the remaining 15% - 20% of lung cancer
cases. SCLC exhibits aggressive behavior with rapid growth and early spread to dis-
tant sites. This type of cancer is almost exclusively associated to heavy smokers (Toh
et al., 2007), and has been given its name after the smaller size of tumor cells under

the microscope.

Lung cancer staging is carried out according to the 8th edition of the TNM Classifi-
cation for Lung Cancer (Brierley et al., 2017). The TNM system allows for stratified
staging of lung cancer, important for prognosis and treatment planning (Interna-
tional Agency for Research on Cancer, 2015). Although it can be used for staging both
NSCLC and SCLGC, it is generally not used for SCLC since it does not predict well for
survival (International Agency for Research on Cancer, 2015). In the SCLC case, a
simplified staging process differentiating limited and extensive (metastasized) can-

cer is often preferred.

TNM clinical classification

The TNM system is based on the evaluation of three key components: the extent
of the primary tumor, the absence or presence and extent of regional lymph node

metastasis, and the absence or presence of distant metastasis (Brierley et al., 2017).

The tumor is a pulmonary nodule that has been confirmed for cancer. Its extent refers
to how large it has grown. Metastasis refers to cancer that has spread outside the pri-
mary tumor, and it is called distant metastasis if it affects distant organs. The lymph
nodes are part of the immune system, and their function is to filter out harmful sub-

stances from the body. Lymph nodes are typically the first structures to be affected
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by cancer metastasis. The three components of the TNM system are stratified as in-
dicated in Table 1.1.

The TNM system for cancer staging. Further subdivisions are possible if
greater specificity is needed but are not included in this table. Adapted
from TNM Classification of Malignant Tumours, 8th edition (Brierley et al.,

2017).
Component Grade Description
X Tumor cannot be assessed
T0 No evidence of primary tumor
T - Primary tumor Tis Carcinoma in situ
T1-T4 Increasing size and/or local extent
of primary tumor
NX Regional lymph nodes cannot be
assessed
N - Regional lymph nodes NO No regional lymph node metastasis
N1 -N3 Increasing involvement of regional
lymph nodes
. . MO No distant metastasis
M- Distant Metastasts M1 Distant Metastasis

Staging of NSCLC

Once the T, N, and M components have been determined, the information is com-
bined in a process called stage grouping. The stage of the lung cancer gives the overall
extent and severity of the disease. Stage 0 is the earliest of all possible stages, followed
by stages I through IV. Further subdivisions are indicated using letters A to C along
with the stage number. The higher the number and the letter of the stage, the larger
the extent and the more advanced the cancer.

Staging of lung cancer is very complex, allowing each stage to be represented by
various different combinations of the T, N and M components (American Joint Com-
mittee on Cancer, 2017). A minimal overview of the staging system is provided in
Table 1.2.

1.2.3 Treatment strategies for NSCLC

The treatment plan for NSCLC is decided by a multidisciplinary team of medical ex-
perts. It is chosen based on the cancer stage, the cancer subtype and the suitability to
the patient. In general, the earlier the cancer diagnosis, the better the possibilities of
curative treatment. There are five principal ways to treat NSCLC: surgery, radiation
therapy, chemotherapy, targeted therapy and immunotherapy. Surgery and radiation
therapy correspond to localized treatment options, whereas the remaining three cor-
respond to systemic treatment options. Depending on the situation, treatments may

be administered in combination in order to improve patient outcomes.
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Overview of lung cancer staging, adapted from American Joint Committee
on Cancer (2017). Note that the staging process is very complex, and only
the main features are presented herein.

Stage Subdivision Description

Stage 0 - This is called cancer in situ, meaning that the cancer
has not grown into nearby tissues nor spread outside
the chest cavity.

Stage I IA, IB Small tumors (less than 4 cm in the greatest direction)
that have not spread to any lymph nodes and have not
metastasized.

Stage II ITA, IIB Larger tumors (between 4 cm and 7 cm in the great-
est direction) that have not spread to any lymph nodes
and have not metastasized, or, small tumors (less than
4 cm in the greatest direction) that have spread to
nearby lymph nodes and have not metastasized.

Stage III  IIIA, IIIB, IIIC  The cancer has spread within the chest but has
not metastasized to other parts of the body. Mul-
tiple tumors can be found in the same lung and
within surrounding structures (e.g. heart, medi-
astinum, bronchi).

Stage IV IVA, IVB The cancer has metastasized to the other lung or other
structures of the body outside the chest cavity. At this
stage, the size of the tumor and the compromise to
lymph nodes is irrelevant.
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Surgery

Surgical resection of the primary tumor is the preferred treatment when cancer is
very localized and has not metastasized (Gould et al., 2013). This resection is per-
formed either by open thoracotomy or by the minimally invasive video assisted tho-
racoscopic surgery (VATS). Several surgical gestures are available and the choice de-
pends on the specifics of the cancer diagnosis and stage, as well as the overall clinical
situation of the patient.

The surgical resection can be either anatomical or non-anatomical. Anatomical resec-
tions consist in the removal of a lung, lobe or segment, and are respectively referred
to as pneumonectomy, lobectomy and segmentectomy. In current clinical practice,
the lobectomy is the main treatment choice, allowing complete tumor resection while
partially maintaining lung function (Yan et al., 2009). However, certain circumstances
may require different resections. For instance, a pneumonectomy may be needed if
the tumor is close to the mediastinum; or a segmentectomy may be needed if the pa-
tient cannot withstand the removal of a whole lobe because of poor lung function.
Non-anatomical resections, called wedge resections, are also possible. The objective
of a wedge resection is the removal of the tumor while maximizing lung function

preservation.

In recent years, sublobar resections (i.e. segmentectomy and wedge resection) have
gained interest of the scientific community because of their function-preserving ca-
pabilities. To date, the choice between lobar or sublobar resection appears to be estab-
lished in favor of the smaller resections (Berfield and Wood, 2017). However, there
is no consensus when choosing between segmentectomy or wedge resections, as the
former are larger, technically more challenging resections; and the latter have been
associated with higher rates of cancer recurrence (Berfield and Wood, 2017). How-
ever, some recent studies suggest that with appropriate negative margins, wedge
resections could provide patient outcomes equivalent to those of traditional lobec-
tomies for small pulmonary nodules (Mohiuddin et al., 2014; Wolf et al., 2017). Con-
sequently, wedge resections are increasingly being adopted as the main surgical re-
section method for small pulmonary nodules, and they may become the standard in

upcoming years.

Surgical resection is mainly prescribed with curative intent for NSCLC in stages I and
II. It may be prescribed for localized tumors in stage III, and it is rarely prescribed in
more advanced stages since the tumors are not resectable. Surgical resection may be
precluded if the patient has poor cardiac function, poor lung function and or signif-
icant co-morbidities (Miller et al., 2019).
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Radiation therapy

Radiation therapy, or radiotherapy, consists in the use of high energy x-rays to kill
cancer cells. This treatment is often used after surgery (adjuvant radiotherapy) in
order to eliminate any remaining cancer cell from the tissue. It can also be used to
reduce the size of the tumor, before surgical resection (neoadjuvant radiotherapy)
or as a palliative treatment. Like surgical resection, radiation therapy is a localized
treatment, typically not prescribed if the cancer has metastasized. The most com-
mon mechanism to deliver radiation is by external-beam radiation therapy. With this
approach, an external machine delivers high energy x-rays to the patient. Although
this radiation is directed at the tumor, it passes through the body, causing inevitable
damage to the surrounding structures. The objective is hence to optimize radiation
delivery at the tumor, while sparing as much as possible healthy tissue. Radiation
therapy can be used with curative intent for localized NSCLC if the tumors are not

resectable. It is often used in combination with other treatment strategies.

Thermal ablation

Thermal ablation uses high/low temperature to destroy tumor cells. Radiofrequency
ablation (RFA) is the most common technique, but more recently, microwave ablation
(MWA) and cryotherapy have been proposed (Sabath and Casal, 2019). The heating
(for RFA and MWA) or cooling (for cryotherapy) of the tumor is achieved using spe-
cialized needles, inserted via transthoracic access and CT guidance. Since the needle
placement is not devoid of clinical complications, some researchers have proposed
to deliver thermal ablation under bronchoscopy guidance (Palussiere et al., 2017).
Thermal ablation has been described as an alternative to radiation therapy, and may
be prescribed with curative intent for inoperable patients.

Systemic treatment

The intake of medication for the treatment of lung cancer is known as systemic treat-
ment. Three principal treatments can be differentiated: chemotherapy, targeted ther-
apy and immunotherapy. Each one of these treatments uses different mechanisms to

fight the cancer, as follows:

— Chemotherapy aims at the destruction of cancer cells, usually by keeping them
from dividing and creating more cells. This treatment may cause damage to the

healthy cells of the body and cause several side effects.

— Targeted therapy acts by targeting specific cancer genes or proteins, or the
tissue environment that fosters cancer cell growth. This treatment focuses on

fighting the cancer by limiting the damage to healthy cells.
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— Immunotherapy acts by boosting the body’s immune system, helping it to fight

cancer growth.

Systemic treatments are typically prescribed in combination with surgery or radi-
ation therapy as secondary treatment options, with the intent of augmenting the
chances of curing the cancer. In metastatic NSCLC (stage IV), systemic treatments are
used as the main treatment option in order to relieve the discomfort caused by cancer
and lengthen patient’s life. A combination of systemic treatments may be prescribed,

and the specific choices depend on the patient’s preference and/or applicability.

1.3 Video-Assisted Thoracoscopic Surgery (VATS)

The surgical resection of lung tumors is the mainline treatment for operable patients
with early stage NSCLC. Tradionally, it is performed via open thoracotomy, requiring
a large incision through one of more major muscles of the chest wall, as well as the use
of aretractor to spread and hold the ribs apart (see Fig. 1.8 left). The procedure is very
traumatic and often results in rib fracture and damage to intercostal nerves, leading
to accute post-operative pain. Consequently, open thoracotomy has been described
as the most painful of surgical procedures (Mesbah et al., 2016).

Open Video-assisted
thoracotomy thoracoscopic surgery

Comparison of surgical incisions in open thoracotomy and VATS

Recent decades have brought technological advancements allowing the development
of minimally invasive surgical techniques. In the context of lung cancer management,
it is the case for the video-assisted thoracoscopic surgery (VATS). In comparison to
open thoracotomy, a VATS intervention uses considerably smaller incisions to access
internal thoracic structures (see Fig. 1.8 right). Combining the use of a thoracoscope
(small camera) and specialized surgical tools, surgeons can perform tumor resections
while minimizing trauma. In fact, studies have reported results in favor of VATS in-
terventions regarding perioperative complications, hospital stay, post-operative pain
and quality of life (Al-Ameri et al., 2018; Bendixen et al., 2016). More importantly, it
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has also been shown that VATS interventions provide similar clinical outcomes than
traditional thoracotomies (Falcoz et al., 2015; Paul et al., 2014). Consequently, VATS
interventions are increasingly replacing open thoracotomies as the default treatment

option for operable lung cancer patients (Yan et al., 2013).

VATS is also an important diagnostic tool. Indeed, the advent of screening programs
has increased the detection of pulmonary nodules with unknown histology. Accord-
ing to general clinical consensus, these nodules should be biopsed for diagnosis when
suspected of malignancy (Gould et al., 2013). As mentioned earlier, this diagnosis is
of paramount importance for appropriate treatment planning. However, nonsurgi-
cal biopsy techniques (e.g. transthoracic needle biopsy or bronchoscopic biopsy) still
carry potential risks and are not applicable to all cases. More importantly, they may
also be unreliable, specially for small, low-dense and/or deep nodules, for which
a wedge resection through VATS is the preferred diagnostic method (Keating and
Singhal, 2016).

1.3.1 Surgical procedure

A VATS intervention requires the active collaboration of a multidisciplinary team,
including, but not limited to, a surgeon, an assisting surgeon, an anesthesiologist and
a scrub nurse (Mehrotra and Arthur, 2019). Figure 1.9 illustrates the configuration of
these specialists in a typical operating room setup. As depicted in the figure, during
VATS, the patient lies to his/her side in lateral decubitus position, with one arm over
the head and the operating lung at the top.

The specific VATS procedure depends very much on the health-care institution, the
current clinical condition of the patient and the surgical procedure to be performed.
However, in general, it involves the use of general anesthesia, artificial one-lung ven-
tilation (OLV) and a triangular shaped three-port thoracic access (Hansen and Pe-
tersen, 2012; Mehrotra and Arthur, 2019). The overall procedure can be outlined as
follows:

1. General anesthesia. The patient is placed on the operating table in supine po-
sition where general anesthesia is administered. This procedure typically in-
cludes the use of muscle relaxants (curare) to avoid spontaneous respiratory
efforts (mainly diaphragmatic movement and coughing reflex). The muscle re-
laxant facilitates the setup of artificial OLV.

2. Artificial lung ventilation and positioning. An endotracheal tube, typically a
double-lumen tube, is inserted in the patient’s throat while in supine position.
The tube is connected to a mechanical ventilator that provides controlled oxy-
genated airflow to the patient. The surgery is usually performed under OLV,
meaning that only the non-operated lung contributes to breathing. The param-
eters of the mechanical ventilator and the placement of the endotracheal tube
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Figure 1.9: A typical operating room setup for VATS. Illustration taken from Hansen
and Petersen (2012).
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are carefully monitored to ensure adequate oxygen and carbon-dioxide levels.
Finally, the patient is placed in lateral decubitus position, which is the operating

position (see Fig. 1.9).

. Incisions and pneumothorax. Access to the lung is typically achieved using
three to four small incisions on the thoracic wall (surgical ports). These inci-
sions are protected with plastic soft-tissue retractors and are configured in a

triangular shape, allowing optimal use of the camera and surgical tools.

The rupture of the thoracic wall disrupts the normal respiratory pressure gra-
dients, causing a drop of the transpulmonary pressure gradient that results in
pneumothorax (see Sec. 1.1.2). The resulting lung deflation creates space in
the thoracic cavity that the surgeon uses for maneuvering during surgery. Total
lung collapse may be avoided with a minimum positive transrespiratory pres-
sure gradient applied from the mechanical ventilator.

. Resection. After verification of appropriate patient setup, the surgeon proceeds
to the surgical resection. The type of resection depends on the specific proce-
dure to be performed. In general, the surgeon isolates the tissue to be removed
(anatomical or non-anatomical) and uses surgical staples to cut it and suture.
In particular, if a wedge resection is to be performed, localization of the pul-
monary nodule might be required before resection. The resected specimen is
placed in a special plastic bag, and is further extracted from the thoracic cavity

through one of the surgical ports.

. Closing. The patient is sutured, and a draining tube is placed on one of the sur-
gical ports to allow the evacuation of any remaining air and/or secretions. The
artificial lung ventilation is stopped once it has been verified that the patient is
able to breath alone. The patient is placed in a post-operative care unit and is

monitored closely until recovery.

If needed, the surgeon may enlarge one of the surgical ports in order to perform a
traditional thoracotomy. This may become necessary if perioperative complications
make the minimally-invasive intervention unfeasible or unsafe. This unplanned change
in surgical technique is known as surgical conversion. Among the possible compli-
cations requiring surgical conversion, excessive bleeding due to vascular injury is
the most common. Although non-negligible surgical conversion rates have been re-
ported (e.g around 7% according to Puri et al. (2015)), they have been shown to de-
crease with surgical expertise (Vallance et al., 2017). Moreover, VATS interventions
with unplanned surgical conversion appear to provide clinical outcomes that are no
different than those with traditional open thoracotomy, which suggests that VATS
should still be preferred even at the risk of surgical conversion (Subramanian and
Puri, 2019).
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1.3.2 Nodule localization for wedge resection

As mentioned earlier, during a wedge resection, pulmonary nodules are removed
from the lung using non-anatomical cuts of tissue. This procedure naturally requires
the localization of pulmonary nodules before resection, which has been typically per-
formed by palpation and visual inspection. However, this manual localization tech-
nique becomes unreliable for small and/or deep nodules, since they are generally not
palpable nor visible at the lung surface (Chao et al., 2018). This is especially the case
for ground glass opacity (GGO) nodules, which can have very low density (GGO
nodules are partly solid, partly sub-solid). Besides, finger palpation may also cause
discomfort to the surgeon since his/her finger passing through a surgical port re-
ceives considerable pressure from the ribs. Furthermore, a priori estimations of the
nodule position during surgery are hindered by the very large deformation suffered
by the lung after pneumothorax. Nonetheless, failing to localize the nodules may ul-
timately result in unplanned surgical conversion with a rate as high as 54% (Suzuki
et al., 1999). Consequently, the VATS clinical practice is evolving towards more reli-
able, more efficient and more practical localization techniques. This section presents
an overall picture of the main pulmonary nodule localization strategies for VATS

wedge resections.

Preoperative marker-placement localization

This technique consists in placing a distinctive marker inside or close to the nodule
in order to facilitate its identification during surgery. The marker is inserted using
a specialized needle under CT or broncoscopy guidance, for which an additional
preoperative intervention is required. This intervention is minimally invasive, uses
only local or no anesthesia, and is performed by an interventional radiologist in a CT
interventional suit. Following marker placement, the patient is placed in a waiting
room, before being transferred to the operating room. Three main marker types can
be distinguished:

— Hook-wires might be the most commonly used method in current clinical prac-
tice. Nodule localization is achieved by hooking a long metallic wire to the nod-
ule, which protrudes out of the lung and is visible during surgery. The hook-
wire is inserted via transthoracic needle injection under CT guidance.

— Microcoils are small pieces of metal (generally platinum or gold) that are in-
serted into or close to the nodule by transthoracic needle injection under CT
guidance. In comparison to hook-wires, microcoils are not directly seen from
the exterior of the lung and require intraoperative fluoroscopy guidance for

their localization.

— Dyes are also commonly used for nodule marking, and can be injected under

either CT or broncoscopy guidance. According to the specific dye used, intraop-
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erative nodule localization varies from visual inspection (e.g. methylene blue),
fluoroscopy guidance (e.g. lipiodol) or radiation guidance (e.g. technetium 99).

Although high success rates have been reported for these nodule localization tech-
niques (Chao et al., 2018; Keating and Singhal, 2016), significant disadvantages still
prevail. For instance, hook-wires or microcoils have a potential for dislodgement or
migration, which may occur during patient transfer to the operating room, or after
pneumothorax or manipulation of the lung during surgery (Lin and Chen, 2016).
Also, dyes might rapidly diffuse to lung parenchyma, or may result in dye/air em-
bolism as they are often not water-soluble (Lin and Chen, 2016). Moreover, the use
of transthoracic needle injections often results in complications such as pneumotho-
rax or hemothorax, which are particularly cumbersome as the patient is under risk
while waiting to be transferred to the operating room. The more the waiting time, the
higher the discomfort for the patient and the higher the risk of complications (Chao
et al., 2018). Consequently, although the optimal coordination of the preoperative
marker-placement intervention and the VATS intervention may be challenging, it is

of paramount importance.

Intraoperative image guided localization

To overcome the problems associated with preoperative localization procedures, in-
traoperative nodule localization has been proposed. This strategy uses imaging de-
vices to localize pulmonary nodules directly in the operating room. The main pro-

posed approaches are the following:

— Intraoperative marker-placement uses marker for pulmonary nodule localiza-
tion as described previously, but takes place at the operating room immediately
before surgery. Since intraoperative guidance is needed for marker placement,
surgeons typically use C-arm imaging devices, as they provide cone-beam CT
(CBCT) and fluoroscopy technology. For instance, Gill et al. (2015) have intro-
duced the iVATS system that uses intraoperative CBCT images to place metallic
fiducial markers, which are later localized under fluoroscopic guidance. Similar
approaches exist, combining intraoperative CBCT guidance with either hook-
wire (Zhao et al., 2016), dye (Yang et al., 2016), micro-coil (Lempel and Ray-
mond, 2019) or double nodule marking (near-infrared and micro-coil marking,
Chao et al. (2019)). With these intraoperative marker-placement techniques,
the time at risk of the patient can be reduced without sacrificing localization
success (Chao et al., 2018). However, although needle-induced pneumothorax
or hemothorax are no longer of concern, heavier complications such as air/dye
embolism may still happen.

— Intraoperative ultrasonography is a non-ionizing, portable and affordable imag-

ing technology that has been proposed for the intraoperative localization of pul-
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monary nodules. The feasibility of this method has been demonstrated, with
pulmonary nodules identified as hyperechoic regions with hypoechoic shad-
ows (Kondo et al., 2009; Sperandeo et al., 2019). However, this method assumes
that the pulmonary nodules are visible in the ultrasound images, which may
not be the case for some challenging nodules. For instance, the fuzzy borders
and low density of GGO nodules could make them indistinguishable from nor-
mal lung parenchyma. Moreover, this method is also known to be difficult to
learn and highly expert-dependent, which hinders its widely adoption. In ad-
dition, since any residual air in the lung leads to poor image quality, this local-
ization technique must be performed on a fully deflated lung (after pneumoth-

orax), which is unfeasible in some cases.

— Near-Infrared imaging uses fluorescent contrast agents that are administered
systemically to the patient hours before surgery. These contrast agents bind to
tumor cells, and are visible under near-infrared equipped thoracoscopes. This
technique has been the subject of active research in recent years with promis-
ing results (Keating and Singhal, 2016; Predina et al., 2018). However, several
questions remain open. For instance, the applicability to different patient pop-
ulations and the binding of the contrast agent to different types of pulmonary
nodules remain to be determined (Suda, 2018). In addition, issues such as the
inability to detect deep pulmonary nodules (the deeper the nodule, the weaker
the signal) or the detection of false positive nodules have been reported (Mao
et al., 2017).

The major benefit of these localization strategies is that a single procedure is required
for both localization and resection. This not only eliminates the logistic burden and
patient discomfort associated to preoperative localization, but also reduces the time
at risk for the patient as a transfer to the operating room is no longer necessary (Chao
etal., 2018).

Intraoperative pulmonary nodule localization is a subject of active research. As each
method has its advantages and limitations, establishing a gold standard will necessi-
tate comparative clinical trials (Lin and Chen, 2016). However, it is worth highlight-
ing that nodule localization techniques based on intraoperative imaging only are de-
sirable, avoiding the complications and costs associated to preoperative localization
and nodule marking procedures. In that regard, intraoperative ultrasound imaging is
promising, but it still has limitations concerning image quality, nodule visibility and
difficult interpretation. An alternative intraoperative imaging technique has been re-
cently proposed for the localization of pulmonary nodules for VATS. This technique
will be presented in the next section.
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1.3.3 Intraoperative CBCT for pulmonary nodule localization during VATS

As an alternative to existing methods, a novel intraoperative localization strategy has
been introduced at the Rennes University Hospital (Rouzé et al., 2016; Rouzé et al.,
2018). The method requires a hybrid operating room equipped with a C-arm de-
vice, as the one illustrated in Fig. 1.10. Intraoperative CBCT images are acquired to
help in the localization of pulmonary nodules, but, in contrast to the intraoperative

CBCT-guided strategies discussed before, it does not require the use of any marker

or contrast agent.

Figure 1.10: Hybrid operating room at the Rennes University Hospital. The C-arm
is ready for a CBCT image acquisition of the patient, who lies on the
operating table.

The VATS intervention is carried out following the standard procedure described
previously in Sec. 1.3.1, with the exception of the nodule localization process, which
is performed after the creation of surgical ports. A CBCT image is acquired once the
lung has been deflated by the pneumothorax. However, the larger the pneumotho-
rax, the denser the lung tissue becomes and the poorer the visibility of internal lung
structures in the CBCT image. For this reason, oxygen is insufflated to the operating
lung as to prevent its complete collapse. Then, the pulmonary nodule is localized by
visual inspection of the image, and it is delineated using a dedicated image process-
ing software. Figure 1.11 shows an example of a pulmonary nodule localized using
this technique. The pulmonary nodule, the delineation, both lungs and the pneu-

mothorax are visible in the figure.

Finally, the 3D reconstruction of the delineated nodule serves as an artificial marker
that is localized under fluoroscopy guidance. This reconstruction is superposed onto
fluoroscopic images with the surgical tools inside the thoracic cage, as shown in Fig.
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Axial 3D reconstruction

Manual delineation of a pulmonary nodule in an intraoperative CBCT
image of a semi-deflated lung.

1.12. This mechanism provides the necessary spatial guidance for the surgeon to
identify the section of the lung to be removed, which is resected immediately after.

The feasibility of this approach has already been demonstrated in a preliminary clin-
ical study with promising results (Rouzé et al., 2016; Rouzé et al., 2018). Currently,
there is ongoing research at the Rennes University Hospital to further evaluate its
safety and efficacy.

Current challenges and motivation

The nodule localization method described above avoids using markers or contrast
agents, which have both associated complications and non-negligible failure rates.
However, some pulmonary nodules may still be very difficult to visualize in the in-
traoperative CBCT image. This is especially the case for GGO nodules, as the one
illustrated in Fig. 1.13.

The visibility of the pulmonary nodule in the intraoperative CBCT image depends
on the difference in density between the nodule and the surrounding parenchyma.
Since the density of parenchyma increases with lung deflation, the larger the pneu-
mothorax the more difficult it is to localize the nodules in the image. Even though ar-
tificial ventilation to the operating lung avoids total lung collapse and provides some
control of the amount of pneumothorax, it is not possible to precisely regulate lung
deflation, and heterogeneous localized airway collapse cannot be avoided. Moreover,
lung structures in the intraoperative CBCT image are very largely deformed with re-
spect to the preoperative CT image, which makes it difficult to take advantage of the
known anatomical position of the nodule for its localization during surgery. Some of

these difficulties can be observed in the example provided in Fig. 1.13.

In addition, the need for fluoroscopic guidance implies supplementary radiation dose
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Intraoperative localization of a pulmonary nodule under fluoroscopic
guidance. The 3D reconstruction of the delineated nodule is displayed
in the fluoroscopic images to help the placement of surgical tools. The
figure shows the original (top left) and augmented (bottom left) fluoro-
scopic, a view of the hybrid room during surgery (top right) and a view
of lung from the endoscopic camera (bottom right).

Preoperativ CcT Intraoperative CBCT

Comparison of GGO nodule visibility in preoperative and intraoperative
images. Full-line and hashed-line circles indicate that the position of the
nodule is known and unknown, respectively. The visibility of the nodule
in the intraoperative CBCT image is not sufficient to allow its localiza-
tion.
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for the patient, but also for the surgical team. Indeed, this guidance relies on the po-
sition of the surgical tools and the 3D reconstructed pulmonary nodule in the flu-
oroscopic images to localize the resection zone. The surgeon and assistant surgeon
need to stay close to the patient during fluoroscopy acquisitions, and therefore, re-
ceive radiation dose. The importance of this issue becomes clear in the long term by
considering multiple fluoroscopic images during multiple localization procedures.
It should be recalled that this limitation is intrinsic to the fluoroscopic guidance,
and hence various pulmonary localization strategies are of concern (e.g. micro-coils,
indocyanine-green dye). Ultimately, a virtual reality localization system would re-
move the need for fluoroscopic localization, and therefore reduce the radiation dose
for the patient and the surgical team.

An important remark is that the position of the pulmonary nodule is always known
in the preoperative images. Moreover, even though the nodule itself may not be visi-
ble in the intraoperative images, these images provide useful structural information
about the actual state of the lung during surgery. For instance, the surface of the de-
flated lung, the main bronchi, as well as the main arteries and veins are visible. In
some cases, even the fissures separating the lobes are partially visible (see Fig. 1.13).
Consequently, it should be possible to integrate these observations into a deforma-
tion compensation algorithm, in order to estimate the intraoperative position of pul-
monary nodules for cases where they are not directly observable. This is the main
premise that motivated the works developed during this thesis.

Deformation compensation algorithms, in combination with lung imaging techniques,
have the potential to improve the efficiency of the diagnosis, treatment-planning, and
intervention guidance of lung diseases (McClelland et al., 2013). In the context of this
thesis, they can help in the intraoperative localization of pulmonary nodules during
VATS. The next chapter deals with the main methodological aspects of such algo-
rithms and provides an overview of the literature in the context of lung deformation

compensation.
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Lung motion compensation: background
and related works

In the previous chapter, it has been established that the combination of intraoper-
ative imaging and lung motion compensation methods could prove useful for the
intraoperative localization of pulmonary nodules during VATS. This chapter has the
purpose of presenting a methodological background for lung motion compensation
and a review of the literature. As it will be discussed herein, mainly two methods are
used in lung motion compensation: intensity-based image registration methods and
biomechanical modeling methods. An introduction to these methods is then neces-
sary, and will be provided at the beginning of the chapter. Following, the main works
on lung motion compensation will be presented, which will allow the introduction
of the methodology developed during this thesis.

2.1 Intensity-based image registration

Image registration is an active research field, important in the area of medical imag-
ing. Various methods exist with many different applications. Comprehensive reviews
in medical image registration can be found in (Hill et al., 2001; Oliveira and Tavares,
2012; Sotiras et al., 2013). In the context of lung motion compensation, methods based
on image-intensity are the most common (see for example (Murphy et al., 2011)),

and the general framework will be introduced in this section.

2.1.1 Medical image

A medical image provides a discrete visual representation of the structure or func-
tion of some part of the body. Several imaging modalities are used in clinical prac-
tice for the acquisition of medical images, with Computed Tomography (CT) scan-
ners, Magnetic Resonance Imaging (MRI) scanners and Ultrasound (US) scanners
being the most common. The image is composed of a n-dimensional array of unit
elements called voxels, which are accommodated in a finite rectangular grid of non-
overlapping regions (see Fig. 2.1). To simplify, only images in 3 dimensions will be
discussed in the remaining of this section, but the notions are the same for other

dimensions.

Each voxel is associated to a discrete numeric quantity called image intensity, which
results from quantizing the signal measured from the imaging device. The range of
possible image intensity values as well as their physical interpretation are dependent
on the imaging modality. For instance, intensity values may correspond to acoustic
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lustration of a medical image in two dimensions. The position of voxel
centers is illustrated with black circles. The bounds of the voxel array de-
termine the domain of definition 2.

impedance (B-mode Ultrasound), amount of water and fat content (Magnetic Reso-
nance Imaging) or radiodensity (Computed Tomography).

The bounds of the voxel array determine the domain € C R? in which the image
is defined, which is a subspace of some world coordinate system. This coordinate
system is also called the physical space. Each voxel has a center that is associated to
a position « € Q in the physical space. The position of the first voxel in the physical
space determines the origin of the image. The coordinate system whose origin is at
the image origin and whose axes are aligned with the voxel array is called the image
coordinate system. The world coordinate system and the image coordinate system are

related by the image origin and a rotation matrix that represents image orientation.

A useful interpretation is to consider an image I as a mapping of voxel center posi-

tions x to image intensities: I :  — I(x).

2.1.2 Registration framework

Image registration refers to the process of spatially aligning two medical images. One
of the images, called the moving image I,,, is deformed so that it aligns with the other
image, the fixed image I;. Although each image is defined in its own domain, they
both share the same physical space: €2,, C R3, and 7 C R3, respectively. The two
images usually represent the same object under different configurations, moments
of time or with different imaging modalities. As such, the registration process con-
sists in finding a spatial transformation T' that maps points in the fixed image Iy to
homologous points in the moving image I,,, i.e. T : Q; — €. In many cases, T is
also described in terms of a displacement field u, such that: T'(x) = « + u(x). A
schematic representation of the registration process is provided in Fig. 2.2.
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Fixed image Moving image

Spatial mapping in image registration. The transformation 7" is defined
from the fixed image to the moving image.

The registration process is commonly expressed as an optimization problem in which
a cost function C (also called energy function) is minimized with respect to T', which
can be formulated as:

A

T =argminC (Iy, I, o T) (2.1)
T

where T is the estimated transformation, I,,, o T is the moving image after being de-

formed by T, and arg min represents the optimization process with respect to T'.

In order to evaluate the quality of the transformation T', a measure of difference or
similarity between the two images I and I,,, o T is required. The objective being that
after registration, the measure of difference is minimal, or, the measure of similar-
ity is maximal. In intensity-based image registration, both measures are commonly
termed as similarity metric or similarity measure (Hill et al., 2001). In addition, the
registration process is generally ill-posed, as there is no unique transformation T that
maximizes the similarity metric. Consequently, constraints may be applied over T as
to improve the behavior of the cost function C, or to ensure a physically plausible

transformation T'. With these considerations, the cost function C can be written as:
C(If Iy oT)=—8(If, I oT) +~vP(T) (2.2)

where S is the similarity metric, P is a penalty term devised to ensure the regularity
of T, and v is a parameter weighting similarity against regularity.

Several options exist for each one of the components appearing in Egs. (2.1) and (2.2).
In each case, the appropriate choice is dependent on the type of medical images at
hand, as well as the desired application. The following subsections provide further
details regarding the transformation 7" and the similarity metric S, which are the

most relevant components concerning this manuscript.
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Transform

The transformation T' maps voxel positions from the fixed image domain to the moving
image domain, so that the objects represented by those images are in alignment. How-
ever, the direction in which T is defined may seem contradictory, as it is the moving
image and not the fixed image who gets deformed. The reason for this has to do with
the computation of the deformed moving image (I,,, o T) at the end of the registration
process. In fact, the mapped positions T'(x) generally do not correspond with voxel
centers in the moving image, and hence, do not have associated intensity values. In
practice, this issue is solved by using image interpolation: for each voxel position x
in the fixed image domain €2, calculate the value of the deformed moving image by
interpolating the moving image at the mapped position T'(x). On the contrary, if the
transformation T was defined from the moving to the fixed image, there would be
holes in the deformed moving image, as there is no guarantee that all voxels in the
fixed image will be mapped to from the moving image (see (Schwarz, 2007, Sec. 3.2)).

In order to solve the optimization problem in Egs. (2.1) and (2.2), different represen-
tations can be used for the transformation T'. The choice of the specific representa-
tion is problem-dependent, and the compromise between computational efficiency
and richness of description plays an important role. Two main categories are usually

distinguished in the literature: parametric and non-parametric transformations.

Parametric transformations: these transformations rely on a model, depending on a
(typically small) set of parameters, which fully describes T'. The simplest transfor-
mation in this category is the so-called rigid-body transformation, with a total of 6
parameters: 3 for translation and 3 for rotation. More degrees of freedom can be al-
lowed by introducing scaling (similarity transformation) and shearing (affine trans-
formation) parameters in the transformation model. These transformation models
are most of the time used for the registration of bony structures, as they undergo lit-
tle to none deformation. However, the soft tissue deformation cannot be accurately

represented with such simple transformation models.

Registration of soft tissue can be handled with transformation models that allow
non-linear, localized deformation. Such transformation models are termed non-rigid,
elastic or curved transformations. Parametric non-rigid transformation models op-
timize for displacements on a set of control points, and calculate the complete dis-
placement field u using interpolation. For instance, the free-form-deformation (FFD)
method uses control points defined on a regular lattice completely overlying the fixed
image. It is typically used in conjunction with B-Spline functions for the interpolation
of the displacement field (Rueckert et al., 1999). The main advantage of this method
is that computation of the displacement field at any point depends only on a small
set of neighboring control points, as the interpolation functions have compact sup-

port. This allows modeling highly local deformations in a computationally-efficient
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manner. Another commonly used method is the thin-plate splines (TPS), in which
control points can be placed arbitrarily in the physical space. This allows more flex-
ibility, but requires all control points for the computation of the displacement field
at a given point. Because of this, TPS transformations are generally less efficient than

FFD transformations.

Non-parametric transformations: these transformations are also non-rigid transfor-
mations used for registering soft tissue deformation. In comparison with the para-
metric transformations, however, the displacement at each voxel position has to be
found independently during optimization. The most commonly used approach in
this category is the Demons algorithm (Thirion, 1998). It was conceived originally as
an iterative algorithm, with attraction forces (i.e. displacement estimates) being com-
puted at each iteration from image intensity gradients, and then being smoothed out
using a Gaussian kernel. It has been shown, however, that a formulation similar to
that given in Eq. (2.1) can be adopted (Vercauteren et al., 2007). The Demons al-
gorithm has gained interest of the community as it has been shown to be very effi-
cient, and various improvements have been proposed (Vercauteren et al., 2009; Wang
etal., 2005). However, as every displacement vector may change independently from
its neighbors during optimization, careful constraints should be enforced to the dis-
placement field as to avoid physically implausible deformation.

Similarity metric

Different similarity metrics can be used to measure the quality of alignment during
registration. Their use is problem-dependent, as each one has underlying assump-
tions that should be met for the registration process to work. Commonly, similarity
metrics are classified with respect to the intended application: mono-modal or multi-
modal image registration (Sotiras et al., 2013, Sec. III).

Mono-modal registration: in mono-modal registration, both images have been ac-
quired using the same imaging modality. Under the hypothesis that the same ob-
jects and features appear with the same intensity values in both images, the mean of
squared-distances (MSD) or the mean of absolute-differences (MAD) can be used to
measure image similarity. However, such hypothesis may not be sufficient in some
circumstances. For instance, different calibration parameters, different reconstruction
techniques (e.g. CT - CBCT registration) or some physical processes (e.g. varying lung
density during breathing) may result in large intensity differences between the im-
ages. In such cases, the normalized cross-correlation (NCC) and related similarity
metrics may be more appropriate, as they only require a linear relationship between
image intensities (Kim and Fessler, 2004).

Multi-modal registration: in multi-modal registration, the intensity values between

both images may not be directly related as they typically represent different physical
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quantities (e.g. CT - MRI registration). Instead of direct intensity associations, simi-
larity metrics for multi-modal registration are based on information theory. As such,
no assumptions are made for the intensity values between the images. The most com-
monly used similarity metric is the mutual information (MI) (Pluim et al., 2003). It
is based on the computation of the marginal and joint entropy of the images, and
measures the quantity of information one image has about the other. Several mod-
ifications have been proposed to the original similarity metric, with normalization
(Studholme et al., 1999) and region-based computation (Studholme et al., 2006) be-

ing some examples.

Typically, the computation of the similarity metric is not performed over the whole
image domains, but rather on a region of interest (ROI) enclosing the anatomical
structures to be registered. This ROI can be manually or automatically segmented
in one of both images, and then be used to define the voxels that will contribute
in the computation of the similarity metric. This not only allows to better drive the
registration process (e.g. if only the lungs are to be segmented in CT images of the
whole chest), but it may even become necessary when registering structures with

sliding interfaces.

2.2 Biomechanical modeling

Biomechanical models, issued from the field of continuum mechanics, allow to rep-
resent the physical and/or physiological behavior of tissue in the form of mathemat-
ical models. Using this representation, the tissue is considered to be a continuum
delimited by a given geometry, governed by physical laws that ensure its mechani-
cal coherence, and subject to specific conditions that induce its deformation. Several
biomechanical models have been used in the context of lung motion compensation,
and the general aspects for their mathematical description are provided in this sec-
tion. For reference, a more complete and comprehensive description of these same
aspects can be found in (Lai, 1993; Mase, 2009; Reddy, 2008).

2.2.1 Description of motion

Let us consider a material body B with known geometry and constitution in a three
dimensional euclidean space R3. This body B can be understood as a collection of
infinitesimal units called particles, each one occupying a unique position X. For a
given instant of time, the specification of position for all particles is said to determine
the configuration of B. The configuration of B at the instant ¢ = 0, is called the initial
configuration. The configuration of B at the instant ¢ is called the current configu-
ration. The analysis of motion and deformation is done with respect to one specific

reference configuration, which is commonly assumed to be the initial configuration.

38 = Chapter2



Reference
configuration

Current
configuration

Reference and current configurations of a body subject to deformation.

Suppose that B has deformed after the application of loads. In such situation, the
particle with reference position X is now at position x in the current configuration.
This process is illustrated in Fig. 2.3. The position in the reference and current con-
figurations of the particle are related by the displacement field u(X)

uX)=x-X (2.3)

2.2.2 Deformation and strain

Deformation occurs when the relative distances among particles in the reference con-
figuration are not conserved in the current configuration. One of the key quantities
in the analysis of deformation is the deformation gradient tensor, noted by F, which
describes the relationship between a differential material line dX before deformation

to its counterpart differential material line dx after deformation.

Let us consider a particle P with position X in the reference configuration. Using the
relation provided by Eq. (2.3), the position of P in the current configuration (P’) is
expressed as

x = X+ u(X) (2.4)

Consider now a neighboring particle Q whose position with respect to P in the ref-
erence configuration is given by the differential relation X + dX. The position of Q)

in the current configuration (Q’) is thus given by
X +dx = X + dX + u(X + dX) (2.5)

where the differential vector dX in the reference configuration gets mapped to dx in
the current configuration. Using the principles of differential calculus and subtract-
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ing Eq. (2.4) from Eq. (2.5), the following relation can be obtained:
dx = dX +u(X + dX) — u(X) = dX + (Vu)dX (2.6)

where Vu is a second-order tensor called displacement gradient, and corresponds to
the derivative of the displacement field u(X) with respect to X. The right hand side
of Eq. (2.6) can be factorized such that the equation becomes

dx = F dX (2.7)
where F is the deformation gradient tensor, which corresponds to

F=I+Vu (2.8)

As can be seen in Eq. 2.7, the deformation gradient tensor relates the differential vec-
tors dX and dx, and provides a measure of local deformation at every position X. If
F does not depend on X (i.e. it is constant), it is said that the deformation is homo-
geneous. On the other hand, if F is a function of X, it is said that the deformation
is inhomogeneous, as the particles deform differently according to their position. It
should be noted that F is assumed to represent physically plausible deformation.
Consequently, it is a bijective mapping between the reference and current configura-
tions, and hence Eq. 2.7 implies that

dX =F ldx (2.9)

An important quantity issued from F is its determinant, which is called Jacobian of
motion and is denoted by J = det F. The Jacobian of motion is a measure of volume
change between the reference and current configurations. Realistic deformation is
obtained only for positive values of .J, and it may correspond to volume reduction

(J < 1), volume conservation (J = 1) or volume expansion (J > 1).

The deformation gradient tensor F fully describes the deformation state of a body B.
Although it is translation invariant, it is not rotation-invariant. However, both trans-
lation and rotation-invariance are desirable, as rigid-body movement does not alter
relative distances among particles, and hence, should not alter the measure of defor-
mation. The deformation gradient tensor F can be used to derive other tensors that

are invariant to rigid body movement, as introduced below.

Cauchy-Green deformation tensors

The Cauchy-Green deformation tensors describe the relationship of squared local
distances between the reference and current configurations and vice versa. Consid-
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ering the particles P and () introduced above, their squared distance in the reference
and current configurations is given respectively by

(dL)*? = dX-dX (2.10)
(dl)? = dx-dx (2.11)

Using the relationship provided in Eq. (2.7), Eq. (2.11) becomes

(dl)? = (FdX)-(FdX)
= (FdX)T(FdX)
= dXTFTFax
= dXTcdXx (2.12)

where C is the right Cauchy-Green deformation tensor, which corresponds to

C=F'F (2.13)

Likewise, taking into consideration Eq. (2.9), it can be obtained that
(dL)?* = dxT b tax (2.14)
where b is the left Cauchy-Green deformation tensor, which corresponds to

b=FFT (2.15)

If the deformation gradient tensor F is orthogonal, then C = F'F =1 and b =
FF” = I. This means that there is no deformation between the reference and cur-
rent configurations, and the length of the differential material lines is conserved,
ie. (dL)? = (dl)?. In this case, F represents a rigid-body motion.

Green-Lagrange strain tensor and infinitesimal strain tensor

The Green-Lagrange strain tensor describes the changes in squared lengths that occur
from the reference to the current configuration. Consider again the differential vector
dX and its deformed version dx, as well as the respective squared lengths (dL)? and
(dl)%. Using the Egs. (2.11) and (2.12), a change in squared length with respect to the
reference configuration is written as

(ds)? — (dS)? = dXT CdX —dXTdX
= JdXT(C-1)dX
= 2dXTEdX (2.16)
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where E is the Green-Lagrange strain tensor, which corresponds to

E— %(c _1) (2.17)

In comparison with the previously introduced deformation tensors, the Green-Lagrange
strain tensor is zero when no deformation is present, i.e. E = 0. It is typically de-

scribed in terms of the displacement gradient Vu, which gives

E = %(C -1 = %(FTF—I)
_ %((1 + v’ (I+ Vu) - T)
_ %((vw + (V)T + (Vu)T (V) (2.18)

where the relationships from Egs. (2.8), (2.13) and (2.17) have been used.

When the displacements u are very small (i.e. the assumption of "small deforma-
tions"), it is possible to neglect the second-order terms in the Green-Lagrange strain
tensor, which results in

Exe= é(Vu + vu?l) (2.19)

where ¢ is the infinitesimal strain tensor, also called linear strain tensor or small-

deformation tensor.

2.2.3 Stress

So far, different ways to measuring the deformation of a body have been considered,
without paying attention to the forces that may cause such deformation. These forces
may be of two forms: body forces and surface forces. Body forces act throughout the
volume of the body and do not require contact between its particles for being trans-
mitted. The forces induced by gravity or by an electromagnetic field are examples of
body forces. Body forces are typically expressed in terms of force per unit mass or
force per unit volume. Surface forces, on the other hand, are forces that act upon a
surface of the body, may it be real or imaginary. The forces emerging on the outer
surface of two bodies when pressed one against each other (contact forces), or those
emerging at the interior of a body while it resists being deformed are both examples
of surface forces. These forces are designated by stress, or traction, and are expressed
in terms of force per unit area.

Stress vector

Consider a body subject to arbitrary surface and body forces. Suppose that there
is a cross-sectional surface S with normal unit vector n, which passes through an
arbitrary internal point P. The body is divided into two parts, one at each side of S,

42 = Chapter 2



which are designated by I and /1 respectively. When considering I as a free body, its
action upon /1 generates a force Af distributed on a small area AS of S that contains
P, as depicted in Fig. 2.4. The Cauchy stress principle states that on the limit as the
area AS shrinks to zero around P, the net force at P depends uniquely on n and is

defined by
Af df
(n)

dmAs T as ! (220)

where t™) is called the stress vector at P on S.

S

p

A body divided into two parts by a cross-sectional surface S. The action
of I upon II generates a force Af distributed in a small area AS centered
at P.

Considering I1 also as a free body acting upon I, Newton’s law of action and reaction
states that there should be a stress vector at the same point P on the same surface S
with opposite unit normal vector —n that is equal in magnitude and opposite to that
defined in Eq. (2.20)

t™ = ¢ (2.21)

By definition, for each point inside the body, there is an infinite number of stress
vectors, each one associated to one of the infinite number of possible cross-sectional
surfaces. However, it is more convenient to describe the stress state of a point in the

body as depending only on its position.

Stress tensor

Consider a small portion of the body in the shape of a tetrahedron with vertex at an
arbitrary point P and base ABC perpendicular to an arbitrary normal unit vector n,
as the one illustrated in Fig. 2.5. An euclidean coordinate system of mutually orthog-
onal bases e, e5 and es is chosen, so that the three faces of the tetrahedron BPC,
CPA, APB are aligned with the coordinate planes, and the unit normal vector n can

be expressed as n = n; e; + nz ez + nzes.

If the area of the base ABC is designated as d A, then the areas of the remaining three
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Free-body diagram of a tetrahedron having its vertex at a point P.

faces are respectively

dA1 = nldA, for BPC
dAy = nodA, for CPA
dAs = n3dA, for APB

Assuming that the tetrahedron is in equilibrium, the sum of all forces acting on it
should be zero. Considering the relationship for the areas defined above, this is ex-

pressed by
t dA — £ ny dA — 2 nydA — ) nydA + pfdv =0 (2.22)

where t() is the average force acting on a face of the tetrahedron, p is the density of
the material, f the average body force acting throughout the body and dV' the volume
of the tetrahedron.

Let us designate h as the height of the tetrahedron, corresponding to the perpendic-
ular distance between P and the base. The volume of the tetrahedron dV' can be then
be expressed in terms of the area of the base dA by dV = (dAh)/3, so that Eq. (2.22)

becomes

~

~ ~ ~ 1 -
t) _ gler) ny — f(e2) no — tles) ns + 3 pfh=0 (2.23)

Now, on the limit as the height & of the tetrahedron reduces to zero, the average forces
on each face become stress vectors at P, which leads to

t(m) — ¢(e1) ny+ t(e2) no + t(e3) ns (2.24)
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which can be rewritten as
t™ =on (2.25)

where o is a second-order tensor called the Cauchy’s stress tensor, and Eq. (2.25) is

known as the Chauchy’s stress formula.

The Cauchy’s stress tensor is a property of the body that is independent to any unit
vector normal n. The stress state of the body is fully determined by a tensor field
bounded by the body’s geometry: it is possible to calculate a stress tensor for any

given point in any given direction.

2.2.4 Elasticity

In order to describe the behavior of a body subject to loading, a relationship between
the forces applied to this body (stress) and the resulting deformation (strain) must
be established. Such a relationship is given the name of constitutive law or consti-
tutive equation. The derivation of a constitutive law requires the formalization of a
number of assumptions about the specific behavior and constitution of the material.
In the study of soft tissue deformation, one common assumption is that the mate-
rial is elastic: the stress in the material is a unique function of strain and the material
completely recovers its original shape upon release of the applied loading. In the fol-
lowing, the three constitutive laws that are mostly used for lung motion description

and compensation are introduced.

Linear elasticity

This is the simplest of all constitutive laws, and assumes that the relationship between
stress and strain is linear. This assumption, however, is only suitable for the study
of small deformations, as increasingly higher resistance to deformation may occur
with higher stress. In consequence, this law is typically expressed in terms of the
infinitesimal strain tensor € as

o =ce (2.26)

where c is a fourth-order tensor, usually called stiffness tensor or elasticity tensor.

Equation (2.26) is known as the generalized Hook’s law, as it is analogous to Hook’s
spring law. The stiffness tensor contains a total of 81 coefficients (it is a linear map-
ping between the 9 components of o and the 9 components of €), which represent
properties inherent of the body under study. However, it can be shown that only 21
of these coefficients are independent. Furthermore, only two coefficients are needed
for the particular case of isotropic materials. In such case, Eq. (2.26) is reduced to

o = 2ue + Mr(e)l (2.27)
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where 1 and A are called Lamé constants.

The Lamé constants are commonly written in terms of the Young’s Modulus E and

Poisson’s ratio v through the relations

FEv FE

A aroasmy M AT aay

(2.28)

The Young’s Modulus (E), also called modulus of elasticity, corresponds to the ma-
terial’s ability to resist deformation. On the other hand, the Poisson’s ratio (v) rep-
resents the material’s ability to preserve its volume with deformation (compressibil-
ity). These two parameters could be determined for each material by experimenta-

tion.

Hyper-elasticity

Hyper-elastic constitutive laws describe stress-strain relationships as being non-linear.
This allows to represent the increasing resistance to deformation coming from in-
creasing stress. They do not make any assumptions on the amount of deformation
undergone by the body under study, thus being more adequate for modeling large
deformations than linearly-elastic constitutive laws. Hyper-elastic models rely on the
existence of a strain energy density (W) which is a function of the deformation gra-

dient tensor F, such that
— l aﬂFT
J OF

o

(2.29)

Poroelasticity

Poroelasticity models (Biot, 1941; Verruijt, 2013) assume that a single body is com-
posed of two coexisting media: a solid, porous structure that is assumed to be elastic,
and an incompressible fluid that moves within the pores of the solid structure. The
total stress applied to the material is carried out partly by the fluid and partly by
the solid structure. The hydrostatic pressure of the fluid inside the pores generates
tensile/compressive stresses that cause deformation of the whole medium. It is as-
sumed that the total stress on the porous medium can be decomposed as the sum
of the stress carried by the solid structure and the stress carried by the fluid. This is

known as the principle of effective stress and is described by
o, =0, —apl (2.30)

where o and o, are the Cauchy stress tensors for total and effective stresses, respec-
tively, and p is the hydrostatic pore pressure. The parameter « is called the Biot-Willis
coefficient, and describes the amount of bulk volume change that is explained by a
pore pressure change under constant stress.
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The definition of the effective stress o. depends upon the mechanical behavior as-
sumed for the solid medium. Both linear and non-linear stress-strain relationships
(as those described in the previous sections) can be used in poroelastic constitutive
laws. Since the porous medium is composed of two phases, its density may also be
defined in terms of its constituent densities as

p=(1—9¢)ps+ ops (2.31)

where ps and p; are the densities of the solid and fluid media, respectively, and ¢ is
the porosity of the whole medium (the fraction of the volume of pores over the total

volume).

In a porous medium, the fluid flows through the pores according to Darcy’s law. This
law proposes a relationship between the instantaneous flow rate g of an incompress-
ible fluid through a porous medium, and the hydrostatic pressure drop over a given
distance Vp , which is expressed by

a=——Vp (2.32)

K
where £ is the intrinsic permeability of the porous medium (the ability of the porous
medium to allow fluid to pass through it) and p ¢ the dynamic viscosity of the fluid.

The changes in strain of the solid medium are related to the changes in hydration
level by the storage equation, which is defined by
dp Oe
. e — e e 2.

V-qg+ 5 9 o 5 (2.33)
where S is the storativity parameter and ¢ = OJu,/0x + Ou, /0y + du,/0z =V - u is
the volumetric strain. The storativity parameter S may be understood as the amount
of fluid that can be forced into the porous medium while maintaining a constant bulk

volume.

The term to the right hand of Eq. (2.33) expresses the time rate of change of dilata-
tion/contraction of the solid structure and how that affects fluid mass transport. For
instance, if the pores are considered to be totally saturated with fluid, a negative rate
of volumetric strain will shrink the porous material and immediately squeeze fluid
out (interstitial pressure raises). On the contrary, if the pores are not fully saturated
with fluid, the rate of volumetric strain does not have an instantaneous effect on the
distribution of pore pressure.

Finally, an important consideration is the evacuation of fluid from the porous medium.

According to Eq. (2.33), the fluid can flow through the porous medium following

variations in hydrostatic pressure and in strain rate of the solid structure, and it can
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be eventually evacuated from the porous medium at the boundary (by means of
boundary conditions). However, in structures such as the lung, the fluid is evacu-
ated through an intricate network of conducts (airways) distributed throughout the
whole body. Although this fluid evacuation may be modeled explicitly (see the works
by Berger et al. (2015) and Pozin et al. (2017)), it may as well be modeled implicitly.
For instance, Chen et al. (2011) introduced a source term into the storage equation
in order to account for fluid evacuation (in the context of brain modeling). As such,
the fluid is allowed to sink inside the porous medium, hence approximating the fluid
exchange happening at the small conducts. This is achieved by modifying Eq. (2.33),
such that it becomes

Vgt 2 o %) (234
with —k,(p — p.) being the source term allowing for fluid evacuation. In the context
of modeling lung deformation, the parameters «; and p. represent the intrabronchi

permeability and the intrabronchi pressure, respectively.

2.3 Related works in lung deformation compensation

The lung is a very soft, highly deformable organ in constant motion and deformation
due to breathing, heart beats, and body movements. A wide variety of lung image
registration techniques based on image intensity, biomechanical models, or hybrid
approaches have been developed to compensate for lung deformation. These tech-
niques were proposed mainly in the context of respiratory motion, with tomographic
images typically acquired by pairs at both the end inhalation and the end of exhala-
tion, or during the entire breathing cycle through 4DCT. This thesis work, however,
deals with the compensation of lung deformation occurring during VATS using in-
traoperative CBCT imaging.

Breathing deformation and VATS deformation have different orders of magnitude,
and are caused by different factors. For instance, during normal breathing, lung de-
formation results from the contraction and relaxation of respiratory muscles that in
turn induce volumetric changes (see Sec. 1.1.2). Furthermore, the pleural space al-
lows the lungs and the thoracic cavity to slide one against the other almost inde-
pendently. On the other hand, during VATS, lung deformation results from vari-
ous causes: the patient’s change of pose; the muscle relaxants (curare) needed for
surgery; and the pneumothorax. The change of patient’s pose (observed in tomo-
graphic images from the preoperative and the intraoperative settings) entails a change
in the direction of gravity with respect to the patient, which deforms the lung and
other chest organs. The muscle relaxant administered with general anesthesia dis-

tends the diaphragm muscle, which in turn gets pushed upwards (i.e. towards the
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apex) by the weight of the abdominal organs. The pneumothorax, resulting from
the insertion of surgical ports, induces very large lung deflation that also leads to
deformation of the mediastinum. The combination of these factors results in lung

deformations that are considerably larger during VATS than during breathing.

2.3.1 Intensity-based image registration methods

Besides large lung deformation, sliding motion against the thoracic cage is widely
known to be one of the major challenges encountered when dealing with intensity-
based elastic registration of the lung parenchyma. In practical terms, the deforma-
tions of the lung and surrounding structures are constrained at the interface in the
normal direction, but move almost freely in the tangential direction. However, most
transformation models used in medical image registration assume a continuous dis-
placement field that can not model this sliding effect (Maintz and Viergever, 1998;
Sotiras et al., 2013).

Several authors have introduced methods for taking into account sliding interfaces
for lung registration. Anatomical segmentations can be used to independently reg-
ister the structures at the interface (Rietzel and Chen, 2006). With this technique,
classical image registration algorithms can be used with little to none modification.
However, gaps or overlaps may appear at the interface as a result of the independent
registration. One solution consists in using a boundary-matching penalty method so
that the interfaces are tied together. Wu et al. (2008) proposed to dilate the segmen-
tations after a masking procedure to enforce the alignment of the interface. Another
strategy is based on decomposing the deformation field at the interface into normal
and tangential components. Sliding motion can be preserved by applying regular-
ization on the normal component (Schmidt-Richberg et al., 2012), or by using a com-
posite transformation with a shared normal component but independent tangential
components (Delmon et al., 2013). The main drawback of these methods is the need
for anatomical segmentations. Indeed, these segmentations are time-consuming to
extract manually or may be inaccurate if extracted automatically, especially for patho-

logical lungs or low contrast images.

In order to overcome the maksing issue, other works have proposed alternative meth-
ods that do not require prior anatomical segmentations. Ruan et al. (2009) presented
a regularization strategy that discriminates the divergence and the curl of the defor-
mation field separately. The authors are able to preserve sliding motion by allowing
large shearing while penalizing other forms of non-smooth deformation. Another
technique consists in using several layers of supervoxels (i.e. groups of neighboring
voxels with similar intensities) connected using minimum spanning trees (Heinrich
etal., 2016). The deformation field is enforced to be smooth across edge connections

via regularization. However, non-connected supervoxels are allowed to be registered
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independently, hence preserving sliding motion.

2.3.2 Biomechanical model-based methods

Another approach for lung deformation compensation is the use of biomechanical
models describing the lung’s behavior. The Finite Element Method (FEM) is com-
monly used to obtain numerical solutions to the underlying equations. For instance,
Zhang et al. (2004) proposed a Finite Element (FE) deformable model of the lung re-
constructed at the end of exhalation to simulate lung expansion motion. The thoracic
cage surface at the end of inhalation was included in the formulation as frictionless
contact conditions that constrained lung expansion. A uniformly distributed negative
surface pressure was applied to the deformable model until it filled the thoracic cage.
A similar approach to lung expansion motion was proposed by Werner et al. (2009).
The authors performed a study on 12 lung tumor patients and evaluated how chang-
ing tissue parameters affect the estimated deformations. The results suggested that if
tissue homogeneity was considered, changing tissue parameters could only produce
marginal perturbations in lung deformation, since it was mainly dictated by the lim-
iting geometry of the thoracic cage. Another study investigated the effect of tissue
heterogeneity while modeling lung expansion (Ilegbusi et al., 2014). The elasticity
modulus was estimated locally using an inverse non-invasive method. In average,
the obtained values decreased with proximity to the diaphragm. The authors showed
that the history of deformation as well as its spatial distribution were different when
considering heterogeneous versus homogeneous material properties. Other authors
have also investigated the use of non-constant, non-uniformly distributed negative
surface pressures to produce lung expansion. Eom et al. (2010) computed negative
pressure values from patient-specific Pressure-Volume (P-V) curves calculated from
4DCT data. With this approach, the authors were able to simulate lung deformation
for the whole breathing cycle. The FE deformation predictions were more accurate
than simple linear interpolation between end expiration and end inspiration defor-
mations. Fuerst et al. (2015) automatically divided the lung surface in disjoint contact
zones. The negative pressure applied at the surface was then differentiated for each
contact zone, the specific values being found through an inverse problem formula-
tion. Although the authors used homogeneous material properties, the results sug-
gested an improvement of the deformation estimation thanks to the heterogeneous
surface pressures, which are able to account for the lack of heterogeneous material

properties.

Several works have also approached lung deformation estimation during breathing
as a contraction motion. Al-Mayah et al. (2008) proposed a deformable model of the
lung and surrounding structures reconstructed at the end of inhalation. Surface dis-
placements from the end inhalation to the end exhalation phases were found using
a mesh morphing method. These displacements were imposed as boundary condi-
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tions to the inner surface of the thoracic cage, which is in direct contact with the de-
formable lung model. Interactions between the lung and thoracic cage was modeled
via frictionless contact, which allowed the integration of lung sliding. This study was
further extended to investigate the effects of contact friction at the lung interface (Al-
Mayah et al., 2009) or heterogeneous material properties (Al-Mayah et al., 2010), as
well as the influence of linear and non-linear elasticity constitutive laws (Al-Mayah
etal., 2011). These studies led to the development of the biomechanical model-based
deformable image registration framework Morfeus for treatment planning and accu-
rate target delineation during external radiation therapy. Recently, Velec et al. (2017)
validated the accuracy of a commercial version of Morfeus on tomographic and MR
images of the thorax, prostate and liver of 74 patients, with validation errors mea-

sured in the range of the image spacing.

All the methods reported above model the lung parenchyma as a single elastic con-
tinuum. In reality, the volume occupied by the lung is composed of not only the
parenchyma but also a great quantity of air that is stored inside the airways and alve-
oli. External forces exerted by the respiratory muscles allow the inhalation or exha-
lation of air from the lung, ultimately resulting in tissue deformation. Following this
interpretation, the lung can be modeled as a porous medium composed of two co-
existing physical domains: a solid domain (i.e. the parenchyma) and a fluid domain
(i.e. the air flowing inside the lung). Physical laws governing the behavior of such
porous medium constitute the theory of poroelasticity, which has been previously
used to model breathing deformation. For instance, Ilegbusi et al. (2012) proposed
a poroelastic model to simulate lung deformation throughout a complete breathing
cycle. Boundary conditions for the fluid and solid domains consisted in a time vary-
ing positive pressure and a fixed support, respectively. The authors reported realistic
deformations including a hysteresis deformation effect when accouting for hetero-
geneous material properties. Gravity was later added in the loads which improved
the accuracy of the predicted deformation (Seyfi Noferest et al., 2018). Berger et al.
(2015) also proposed a dynamic poroelastic model of the lung tightly coupled with
an airway network modeling the airways. The authors presented a comprehensive
description of their model and introduced its applicability to normal and physiolog-
ical breathing using varying airflow resistance and local elasticity. Physiologically

realistic global measurements were reported.

2.3.3 Hybrid methods

Lung deformation compensation methods using intensity-based image registration
methods or biomechanical models have both advantages and disadvantages. Intensity-
based methods are limited by the reduced quality of intraoperative images and the
need for complex regularization strategies for realistic motion estimation. On the

other hand, good results on a voxel-by-voxel basis, especially for internal structures,
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can be obtained if images of adequate quality are available. Regarding biomechanical
models, limits mostly come from the uncertainties on boundary conditions needed
for realistic lung motion simulations, the high variance in tissue constitutive parame-
ters that could be difficult to estimate accurately, or the compliance of computational
requirements with clinical practice. However, when compared with intensity-based
methods, biomechanical models are able to work with less data since the underly-
ing biophysical representation naturally constrains the solution space. In addition,
as these are naturally boundary valued problems, their resolution is quite compati-
ble with environments where primarily only surface information is available. Also,
approaches that use modeled physical and physiological phenomena may provide
insight into understanding disease and its effects on lung behavior. The hypothesis
of hybrid methods is that combining the two strategies allows to compensate for their

individual limitations.

Hybrid methods for lung deformation estimation have already been investigated in
previous works. Li et al. (2008) used intensity-based image registration to estimate
a deformation field from end of exhalation to end of inhalation breathing phases.
Dirichlet boundary conditions (i.e. imposed displacements) were then computed by
interpolating the deformation field on the surface nodes of a deformable FE lung
mesh. A similar approach was employed by Tehrani et al. (2015), who used Demons
image registration to estimate surface displacement boundary conditions at several
moments of the breathing cycle. In addition, the authors studied the effects of tissue
parameters and non-linear elasticity laws on tumor displacement estimation accu-

racy, reporting best results under non-linear elasticity assumptions.

Other studies have used intensity-based image registration to reduce residual errors
resulting from biomechanical model motion estimation. For example, Samavati et al.
(2015) used the Morfeus platform to estimate lung contraction between end of in-
halation and end of exhalation. The estimated deformation was then refined using
nonrigid image-intensity registration between the warped end of inhalation image
and the target end of exhalation image, which lead to improved estimation accuracy.
Han et al. (2017) applied the same methodology to lung expansion deformation es-
timation during breathing. The authors compared their approach to only intensity-
based or only biomechanical-model based image registration, and also evaluated the
influence of tissue parameters, contact friction and tissue heterogeneity. Their results
suggest better performance of hybrid approach with respect to intensity or biome-
chanical models alone, but a performance similar to intensity-based approaches that
account for sliding motion. The uncertainty of model parameters was accounted for
by the refinement image-intensity step, allowing the use of simplified assumptions
for the biomechanical models in hybrid approaches.

Finally, in the context of lung deformation compensation for VATS, very few works
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have been proposed. Uneri et al. (2013) carried out a preliminary study using CBCT
images of an inflated and deflated ex-vivo pig lung. Although the authors did not
use biomechanical modeling, a hybrid approach was implemented combining sur-
face morphing and nonrigid intensity-based image registration. The reported results
were promising, but the applicability to clinical practice remains to be determined,
since the quality of real intraoperative VATS images is potentially lower than the qual-
ity of the images used by the authors, and the amount of pneumothorax deformation
is not under control. More recently, Nakao et al. (2019) proposed a surface-based
shape model of lung deflation validated on lungs of Beagle dogs. The authors pro-
vided inter-subject statistical analysis of lung deformation on a population of 10 an-
imals. However, validation results were reported only for surface landmarks, and its
applicability to internal lung deformation remains to be investigated. To date, these
studies are the only ones within the VATS context, but are limited to animal speci-

mens in non-clinical conditions.

2.3.4 Summary

In this section, the state-of-the-art for lung deformation compensation methods was
presented. Although there is plenty of research in the context of deformation during
breathing, very few works have been proposed in the context of deformation during
VATS. Indeed, as explained in Chapter 1, surgical resection of pulmonary nodules
has seen a paradigm shift to minimally invasive, tissue-preserving techniques, which
only recently benefit from the use of intraoperative images. As a result, the problem
of lung deformation compensation for pulmonary nodule localization during VATS
has been barely addressed by the scientific community, with only some notable ex-
ceptions (Nakamoto et al., 2007; Nakao et al., 2019; Uneri et al., 2013).

Recent studies have shown that hybrid approaches have the ability to deal with the
restrictions of intensity-based or biomechanical model-based registration approaches
in a complementary manner. This could be specially useful for the compensation
of lung deformation during VATS, as bad-quality images and unknown boundary
conditions, external loading and tissue properties need to be handled.
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Challenges, method overview and
clinical data

The previous two chapters have introduced the general clinical and methodological
contexts encompassing the works presented in this manuscript. The overall objective
of this thesis was the development of a registration framework for lung deformation
compensation, as a tool for pulmonary nodule localization for VATS. This chapter
provides an overview of the proposed registration framework, which corresponds to
the main contribution of this thesis work. The chapter starts by listing the principal
technical challenges to be addressed, which provides the context for introducing the
methodological choices that were made. Following, an overview of the registration
framework is presented, and the clinical data that was acquired for its validation is
described. Finally, the last section provides a summary of the main investigations
carried out during this thesis.

3.1 Technical challenges and methodological choices

The current surgical VATS workflow, described in Sec. 1.3.3, has been proposed only
very recently (Rouzé et al., 2016; Rouzé et al., 2018). Consequently, developing a reg-
istration framework that accounts for lung deformation in such a surgical workflow
needs to overcome various technical challenges that have not been addressed pre-
viously in the literature. Indeed, although some authors have proposed registration
approaches for pulmonary nodule localization during VATS, these are either based
on simplified surgical workflows in animal studies (Nakao et al., 2019; Uneri et al.,
2013), or do not account for internal lung deformation and are based on surface fea-
tures only (Nakamoto et al., 2007; Nakao et al., 2019).

This section introduces the main technical challenges and presents how they were
addressed in this thesis. For illustration purposes, some of the problems associated
to these challenges are pointed out in Fig. 3.1, over a CBCT image of the deflated lung
that was acquired according to the current clinical VATS workflow.

3.1.1 Challenge of CBCT images

The acquisition processes for the CT and CBCT images differ significantly. On the one
hand, CBCT images require less irradiation than CT images (Kalender and Kyriakou,
2007), which is beneficial for the patient but not without detriment of the resulting
image quality. On the other hand, the projection and reconstruction strategies are also
different, with larger 2D flat detectors for the CBCT images (cone beam) instead of
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Coronal Axial

Coronal and axial slices of a CBCT image of the deflated lung illustrating
some of the technical challenges. The large deformation induced by the
pneumothorax is clearly visible. The arrows indicate localized atelecta-
sis (yellow), cupping artifacts (magenta), image reconstruction artifacts
(green) and lobe sliding (cyan). The CBCT image only provides a partial
view of the lung.

line 1D detectors for the CT images (fan beam). These larger 2D detectors allow faster
acquisitions, but suffer from higher image intensity scattering, and introduce cup-
ping, aliasing, and truncation artifacts (Kalender and Kyriakou, 2007; Schulze et al.,
2011). Furthermore, parenchyma densification and atelectasis can also be observed
under large lung deformations, which decreases even more the contrast among inter-
nal lung structures and between the lung parenchyma and surrounding structures.
Finally, only a partial view of the lung is available within the CBCT images due to the
limited FOV of the scanner. All these problems (some of them illustrated in Fig. 3.1)
hinder the interpretation of these images, as well as their automatic processing for
intensity-based image segmentation and registration . In this thesis, the challenge of

CBCT images was handled in two ways:

Image preprocessing: The cupping, truncation and reconstruction artifacts signifi-
cantly modify intensity values in the CBCT images, which leads to
poor-performing intensity-based image processing algorithms. In this thesis,
the CBCT images were pre-processed with an in-house artifact reduction algo-
rithm (see Sec. 6.5).

Semi-automatic/manual segmentation: Automatic segmentation of lung structures
in CBCT images is a challenging problem in itself, especially with the lung de-
flated by pneumothorax. Since this thesis was focused in solving a registration
problem rather than a segmentation problem, automatic segmentation was not
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addressed, and semi-automatic or even manual approaches were used instead.
However, it is expected that automatic segmentation methods could be devel-
oped in the future.

3.1.2 Challenge of large lung deformation

In the current VATS clinical workflow, two structural images of the lung are used
for localizing pulmonary nodules (see Sec.1.3.3): a preoperative chest CT with the
patient in supine position, and an intraoperative CBCT of the deflated lung (i.e. af-
ter pneumothorax) with the patient in lateral decubitus position. Between the two
acquisitions, the lung undergoes very large deformation. Finding a transformation
that aligns these two images (i.e. solving the registration problem) requires not only
dealing with such large deformation, but also with the challenges associated to the
CBCT image that were discussed in the previous section (see Fig. 3.1). Up until now,
this registration problem has not been directly addressed in the literature. The closest
example is the work carried out by Uneri et al. (2013), in which CBCT images of the
inflated and deflated lung of porcine specimens were registered in order to account
for lung deformation. In comparison to this thesis, the authors did not study real
VATS clinical cases and used images of the complete lung, both in lateral decubitus
position. In this thesis, the registration problem was approached differently, and the

large lung deformation was addressed in two ways:

Two registration sub-problems: Lung deformation during VATS may be understood
as a result of two physical processes. The first process corresponds to a change
of the patient pose from supine to lateral decubitus, which alters the orienta-
tion of the body with respect to gravity and causes weight to deform the lung
and surrounding organs. The second process corresponds to the pneumotho-
rax, which causes lung deflation and deformation of other chest structures. This
thesis presents a first attempt to account for both physical processes, so that the
position of the pulmonary nodule can be projected from the preoperative set-
ting into the intraoperative surgical setting. This was achieved by introducing
an additional intraoperative CBCT image of the lung after the change of pose
but before pneumothorax, which allowed to decouple the original registration
problem into two smaller, more tractable sub-problems: the first accounting for
the change of pose deformation, and the second accounting for the pneumoth-

orax deformation.

Hybrid approach to lung registration: As discussed in the previous chapter, lung
deformation compensation could be addressed using intensity-based image
registration methods, biomechanical model-based methods, or hybrid meth-
ods combining both (see Sec. 2.3.3). However, the large lung deformation may
be too difficult to deal with using only intensity-based methods or only biome-
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chanical model-based methods. Indeed, on the one hand, using intensity-based
methods only would require sophisticated mechanisms to deal with the chal-
lenging CBCT images, and preliminary investigations carried out in that di-
rection deemed unsatisfactory (see Appendix A). On the other hand, using
biomechanical model-based methods only would require a validated model of
lung deformation in the context of VATS, as well as appropriate boundary con-
ditions, which are both unknown to date. Consequently, in this thesis, a hybrid
approach was considered to be the most appropriate. Moreover, this goes in
accordance with the literature in lung deformation compensation, where hy-
brid approaches have been found helpful in solving challenging registration
problems (see Sec. 2.3.3).

3.1.3 Challenge of modeling lung deformation

The lung is a very soft, highly deformable organ in constant motion and deformation
due to breathing, heart beats, and body movements. Although various biomechani-
cal models have been proposed in the literature for the study of this deformation (see
Sec. 2.3.2), to date, neither of these has been evaluated in the context of change of pa-
tient pose or pneumothorax during VATS. Consequently, in principle, the boundary
conditions and tissue parameters reported in those studies may not be applicable to
the registration problem addressed in this thesis, since the physical processes causing
lung deformation are inherently different. Moreover, the observed lung deformation
(and hence the tissue parameters and the boundary conditions) is likely to be patient-
and intervention-specific. In this thesis, the challenge of modeling lung deformation
was handled in the following ways:

The lung as a poroelastic medium: Various biomechanical models have been used
to account for lung deformation. For the most part, these models represent the
lung as a single elastic medium, and both linearly-elastic and hyperelastic con-
stitutive laws have been used for that purpose (Al-Mayah etal., 2011). However,
in reality, a large amount of volume inside the lung is occupied by air, and it
is the air-tissue interaction that ultimately causes lung deformation. Although
this aspect has been obviated in many works modeling breathing deformation,
it was considered essential in this thesis for modeling pneumothorax deforma-
tion, which is driven principally by air evacuation. Consequently, this air-tissue
interaction was modeled via a poroelastic biomechanical model with allowance
for air evacuation. A first order approximation using linear-strain theory was
adopted, which facilitated the formulation and implementation, while allowing
investigating the feasibility of the approach.

Image registration to boundary conditions: Intensity-based image registration has

proven useful in the estimation of boundary conditions for biomechanical mod-
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els in breathing deformation compensation (Li et al., 2008; Tehrani et al., 2015).
This approach consists in imposing the observed displacement (issued from the
intensity-based image registration process) as a partial solution to the biome-
chanical simulation (boundary conditions). This allows to exploit the image
information that is available/measurable while leaving to the biomechanical
model the estimation of the overall deformation. This approach was used in
this thesis to estimate boundary conditions for the solid phase of the poroelas-
tic biomechanical model.

Inverse problem formulation for patient-specific simulation: The amount of pneu-
mothorax observed during VATS could differ significantly from patient to pa-
tient. This entails a difference in lung deformation, which can be modeled using
different tissue parameters. These parameters, however, are unknown in ad-
vance. Therefore, in this thesis, an inverse problem formulation was adopted
in order to estimate the tissue parameters required to simulate each clinical
case. This formulation used an objective function based on a data-driven criteria
within an unconstrained optimization framework. The criteria corresponded to
a surface-to-surface distance, between the simulated deformation and the ob-

served deformation in the CBCT image.

3.1.4 Challenge of clinical compatibility

Naturally, the pulmonary nodule localization tool has to be designed and devel-
oped to be compatible with the surgical workflow. This introduces restrictions on the
amount of manual interaction needed, as well as the time required for the execution
of the localization method. However, this thesis was focused primarily in developing
and studying the feasibility of a registration framework as a nodule localization tool
during VATS, for which some compromises had to be made with respect to the clini-
cal compatibility. Nonetheless, the numerous perspectives discussed in the following
chapters would allow future improvements to the proposed registration framework,

which will help ensuring its clinical compatibility.

3.2 A hybrid registration framework to markerless intraopera-
tive pulmonary nodule localization during VATS

The intraoperative localization of pulmonary nodules during VATS was addressed

as a deformation compensation problem, for which a hybrid registration framework
combining intensity-based image registration and biomechanical modeling techniques
was developed. The registration framework consists of two phases that estimate lung
deformation resulting from change of patient pose (Phase 1) and pneumothorax (Phase 2),
respectively. Each phase corresponds to a registration problem, firstly between the
preoperative CT and the intraoperative CBCT of the inflated lung, and secondly be-
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tween the intraoperative CBCTs of the inflated and deflated lung. A composition of
the estimated deformations produced a displacement field that was used to estimate
the position of the pulmonary nodule in the CBCT image of the deflated lung. The
overall methodology is depicted in Fig. 3.2.

The proposed registration framework implements the solutions to the technical chal-
lenges that were discussed in the previous section. The overall registration framework
constitutes the main contribution of this thesis, and its implementation the main re-
sult. The characteristics of the framework are briefly discussed in this section, but a

more comprehensive description will be provided later in Chapter 6.

Preoperative Intraoperative

v

. e :
CBCT inflated CBCT deflated

| |

e

J Estimated intraoperative Estimated pulmonary
Patient-specific geometry of the entire lung nodule position
biomechanical

lung model

Overview of the proposed registration framework for pulmonary nodule
localization during VATS. The framework is composed of two phases that
respectively estimate the change of pose deformation and the pneumoth-
orax deformation.

3.2.1 Phase 1: estimation of change of pose deformation

The objective of Phase 1 was to estimate the deformed configuration of the complete
lung after change of pose and before pneumothorax. This estimation provided the
intraoperative geometry of the inflated lung, which was required for the estimation
of pneumothorax deformation in Phase 2. It should be emphasized that intensity-
based image registration alone would not be sufficient, as only a partial view of
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the lung is available in the CBCT images, and consequently, only a partial geome-
try can be estimated. Therefore, a hybrid registration framework was used instead,
with intensity-based image registration for partially estimating lung deformation,
and a linear poroelastic biomechanical model for extrapolating that deformation to
the complete lung.

3.2.2 Phase 2: estimation of pneumothorax deformation

The objective of Phase 2 was to estimate the deformed configuration of the lung af-
ter the pneumothorax. The pneumothorax deformation was modeled using a linear
poroelastic biomechanical model with allowance for air evacuation. The geometry of
the inflated lung resulting from Phase 1 was used as the initial configuration for the
pneumothorax simulation. For the fluid phase (air), boundary conditions inspired
from the process of exhalation were prescribed, as these naturally correspond with
lung deflation. For the solid phase (parenchyma), contact conditions with the tho-
racic cavity and the diaphragm were included, and boundary conditions were ap-
plied at the medial face to account for hilum deformation. Finally, an inverse problem
formulation was used for the estimation of tissue parameters, minimizing an objec-
tive function based on a surface-to-surface distance from the deformable model to

the observed deflated lung surface.

3.3 Clinical data

As part of this thesis project, the current clinical workflow (see Sec. 1.3.3) was modi-
fied to introduce an intraoperative CBCT acquisition before pneumothorax, with the
lung fully inflated and the patient in lateral decubitus position. A total of 6 patients
were enrolled in the study, all with single pulmonary nodules scheduled for resection
via VATS at the Rennes University Hospital. The study counted with the approval of
the local ethics committee (2016-A01353-48 35RC16_9838) and of the patients, who

gave informed consent prior surgery.

3.3.1 Clinical dataset

Three tomographic images were acquired for each patient: a preoperative CT and
two intraoperative CBCTs. The preoperative CT is the standard diagnosis image. It
provides a complete view of the lung with the patient in supine position. The CBCT
images were acquired with a C-arm system (Artis Zeego, Siemens Healthcare, Ger-
many) after general anesthesia, with the patient on the operating table, in lateral
decubitus position. The first CBCT image was acquired just before the creation of sur-
gical ports, with the target lung still inflated. The second CBCT image was acquired
after pneumothorax, with the target lung deflated. In contrast to the preoperative CT
image, these two CBCT images provide only a partial view of the lung. Details for
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the CT and CBCT acquisitions are provided in Table 3.1. Coronal slices for all three

images and the corresponding patient positions are shown in Fig. 3.3.

Details for image acquisitions in the in-house VATS clinical workflow.

CT CBCT
Acquisition Preoperative Intraoperative
Patient position Supine Lateral decubitus
Lung state Inflated Inflated / Deflated
Lung view Complete Partial
Spacing (mm) | 0.97 x 0.97 x 0.8  0.48 x 0.48 x 0.48
Size 512 x 512 x 3371 512 x 512 x 354

T The number of slices in the cranio-caudal direction varies among cases and only the median is reported.
However, for all cases, the complete lung anatomy is visible in the image.

Coronal slices of structural tomographic images acquired for a VATS in-
tervention. Left: preoperative CT image with the patient in supine posi-
tion. Right: intraoperative CBCT images of the inflated (top) and deflated
(bottom) lung with the patient in lateral decubitus position. Middle: su-
perposition of the preoperative CT image rigidly registered to the intra-
operative CBCT image of the deflated lung. The FOV of the CBCT image
(outlined in yellow) only provides a partial view of the lung. The pul-
monary nodule is encircled in the preoperative CT image and is visible in
all other images.

All patients were intubated with a double-lumen tube (Bronchocath, Mansfield, MA,
USA), which allowed independent ventilation of the operated and non-operated lungs.
The amount of lung deflation was controlled to ensure enough space for maneuver-
ing during surgery, while avoiding a total collapse of the lung that would heavily
deteriorate the image quality. This was achieved by controlling gas insufflation for
two distinct mechanisms. The first mechanism consisted in insufflating oxygen into

62 = Chapter 3



the operated lung through the lumen of the tube, which corresponds to the current
surgical workflow (see Sec. 1.3.3). The second mechanism consisted in insufflating
pressurized CO> into the thoracic cavity through airtight trocars . The second mech-
anism was used only for one of the patients (Case 5, see Table 3.2) as an alternative to
the first mechanism. It should be noted that neither of both mechanisms allows full
control of pneumothorax, and excessive or too limited lung deflation cannot always
be avoided.

3.3.2 Anatomical landmarks for validation

For validation purposes, paired anatomical landmarks were manually placed on the
three tomographic images by the expert thoracic surgeon who performed all VATS
interventions. These landmarks were distributed among vessel and airway bifurca-
tions in the CBCT image of the deflated lung, and were then localized in the other
two images. However, the pneumothorax was so pronounced for one of the clinical
cases (Case 6) that no anatomical landmarks could be identified in the corresponding
CBCT image of the deflated lung. For this case, the landmarks were placed only on
the other two images. The study characteristics for each clinical case are summarized
in Table 3.2.

Study characteristics for the 6 clinical cases considered. The pneumothorax

was controlled using two mechanisms: insufflation of oxygen into the oper-

ated lung through the intubation tube; or insufflation of CO; into the tho-

racic cage through airtight trocars. The number of validation landmarks
depends on the visibility of lung structures in the images.

Case Operated lung Pneumothorax #landmarks

1 Left Air 27
2 Right Air 40
3 Right Air 46
4 Right Air 23
5 Left COq 23
6 Right Air 48 1

JrNo landmarks were available for the deflated lung because of very poor visibility of internal structures.

Finally, the spatial distribution of anatomical landmarks is depicted for two clinical
cases in Fig. 3.4. Although in principle the anatomical landmarks should cover as
much of lung volume as possible, this was impossible because of the reduced FOV in
the CBCT images. In addition, the restrictions of image quality were difficult to sur-
pass in some cases and further reduced the spatial extent of these landmarks, notably

near the periphery of the lung, where partial volume effects were more pronounced.

1. Airtight trocars, in contrast to the soft tissue retractors used in the current surgical protocol, do not
allow air to pass into the thoracic cavity. The pneumothorax is created with the injection of pressurized
COs into the thoracic cavity. This is the procedure used in other minimally invasive procedures such as
laparoscopy, where the internal organs do not retract naturally.
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Case 1

Case 3

Figure 3.4: Spatial distribution of anatomical landmarks within the lung in the pre-
operative configuration.

3.4 Summary of the main investigations

The hybrid registration framework presented in this chapter is the result of three
main studies that were carried out during this thesis. These studies progressively
addressed the main challenges discussed above, and provided contributions to the
problem of pulmonary nodule localization during VATS. These studies are discussed
in the remaining chapters of this thesis, and are briefly introduced below:

In Chapter 4, the lung deformation between the preoperative CT and the intraop-
erative CBCT of the inflated lung is estimated using intensity-based image regis-
tration, and subsequently quantified and characterized using deformation indexes
taken from the literature. In this study, all the clinical cases presented above were
taken into account. The first preliminary results were presented in an international

conference:

P. Alvarez, M. Chabanas, S. Rouzé, M. Castro, J.-L. Dillenseger, and Y. Payan.
Lung deformation between preoperative CT and intraoperative CBCT for tho-
racoscopic surgery: a case study. In Medical Imaging 2018: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, page 40, Houston, United States, 2018.
ISBN 978-1-5106-1641-7 978-1-5106-1642-4. doi: 10.1117/12.2293938

In Chapter 5, a first implementation of the proposed hybrid registration framework
is developed in the context of needle-biopsy, which involves dealing with lung de-
formation very similar to that of VATS but with less challenging clinical data. The
clinical data used for this study (and only this study) is different from that presented
in this chapter, and it will be described in Chapter 5. The results of this study were

presented in an international conference:
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P. Alvarez, S. Narasimhan, S. Rouzé, ].-L. Dillenseger, Y. Payan, M. I. Miga, and
M. Chabanas. Biphasic model of lung deformations for video-assisted thoraco-
scopic surgery (VATS). In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 1367-1371, Venice, Italy, 2019a. IEEE. ISBN 978-1-
5386-3641-1. doi: 10.1109/isbi.2019.8759219

In Chapter 6, the final implementation of the proposed hybrid registration frame-
work is presented. This implementation extends and adapts the registration frame-
work introduced in Chapter 5, such that it applies to the context of VATS. The result-
ing framework corresponds the main contribution of this thesis work. In this study,
all clinical cases except for Case 6 were used for validation, as anatomical landmarks
were not available for this case. The results were submitted to an international jour-

nal, and are currently under review:

P. Alvarez, S. Rouzé, M. 1. Miga, Y. Payan, ].-L. Dillenseger, and M. Chabanas.
A hybrid image registration approach to markerless intraoperative nodule lo-
calization during video-assisted thoracoscopic surgery. Medical Image Analysis,
submitted in April 2020
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Characterization of lung deformation after a
change of patient pose during VATS

Foreword

The lung undergoes very large deformation from the preoperative configuration to
the intraoperative, surgical configuration. As introduced in Chapter 3, this deforma-
tion may be understood as the result of a change of patient pose (from supine to
lateral decubitus) followed by a pneumothorax. To date, the few works on lung defor-
mation compensation for VATS either only account for pneumothorax deformation
(Nakao et al., 2019; Uneri et al., 2013), or approximate the change of pose deforma-
tion using a simple rigid body transformation (Nakamoto et al., 2007). However, even
though the change of patient pose probably entails more than rigid body motion, un-
til now, little is known about its effects on lung the deformation.

The study presented in this chapter aims at quantifying and characterizing the lung
deformation induced by the change of patient pose from the preoperative to the in-
traoperative configuration. This investigation had the purpose of identifying patterns
of deformation, in case simple rules could be employed to compensate for the change
of pose deformation. This study was inspired by the work of Amelon et al. (2011), in
which deformation measures are used to characterize lung breathing deformation.

The first part of this chapter reproduces the initial investigation, which was presented

in an international conference:

P. Alvarez, M. Chabanas, S. Rouzé, M. Castro, J.-L. Dillenseger, and Y. Payan.
Lung deformation between preoperative CT and intraoperative CBCT for tho-
racoscopic surgery: a case study. In Medical Imaging 2018: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, page 40, Houston, United States, 2018.
ISBN 978-1-5106-1641-7 978-1-5106-1642-4. doi: 10.1117/12.2293938

The second part of this chapter extends the work to include multiple cases, a more
thorough characterization of lung deformation, as well as some methodological im-

provements.
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Article: Lung deformation between preoperative CT and intraop-
erative CBCT for thoracoscopic surgery: a case study

Abstract: Video-Assisted Thoracoscopic Surgery (VATS) is a promising surgical treat-
ment for early-stage lung cancer. With respect to standard thoracotomy, it is less in-
vasive and provides better and faster patient recovery. However, a main issue is the
accurate localization of small, subsolid nodules. While intraoperative Cone-Beam CT
(CBCT) images can be acquired, they cannot be directly compared with preoperative
CT images due to very large lung deformations occurring before and during surgery.
This paper focuses on the quantification of deformations due to the change of po-
sitioning of the patient, from supine during CT acquisition to lateral decubitus in
the operating room. A method is first introduced to segment the lung cavity in both
CT and CBCT. The images are then registered in three steps: an initial alignment,
followed by rigid registration and finally non-rigid registration, from which defor-
mations are measured. Accuracy of the registration is quantified based on the Target
Registration Error (TRE) between paired anatomical landmarks. Results of the regis-
tration process are on the order of 1.01 mm in median, with minimum and maximum
errors 0.35 mm and 2.34 mm. Deformations on the parenchyma were mesured to be
up to 14 mm and approximately 7 mm in average for the whole lung structure. While
this study is only a first step towards image-guided therapy, it highlights the impor-
tance of accounting for lung deformation between preoperative and intraoperative

images, which is crucial for the intraoperative nodule localization.

4.1 Introduction

Lung cancer remains as the worldwide leading cause of cancer death for both women
and men (Jemal et al., 2011; Stewart and Wild, 2014). Such a high mortality is related
to the late detection of the disease, where curative treatements are normally not avail-
able and the 5-year survival rate lies between 6% and 18% (Siegel et al., 2016; Stewart
and Wild, 2014). However, screening programs performed on patients at risk have
demonstrated that survival rates might be significantly increased if diagnosis and
treatement are performed at early stages (Henschke et al., 1999; The National Lung
Screening Trial Research Team, 2011). In such scenarios, surgical resection of malig-
nant nodules is prescribed to patients. The treatement is performed via either open
thoracotomy or video-assisted thoracoscopic surgery (VATS), the latter being the
least invasive method with better and faster patient recovery (McKenna and Houck,
2005).

Even if preoperative CT images are used for planning VATS intervention, intraop-
erative localization of lung nodules is still challenging in many cases. This is partic-

ulary true when the nodules to be resected are small, sub-solid or deep within the
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parenchyma (Gould et al., 2013). The cause of this problem is the anatomical dis-
parity between the intraoperative and preoperative configurations, as a consequence
of large lung deformations present during surgery. These lung deformations can be
mainly associated to two different sources: on the one hand, the patient position is
changed from supine in preoperative CT acquisition to lateral decubitus in the op-
erating room, which affects the way gravity influences internal organs. On the other
hand, for the comfortable manipulation of the lung during surgery, the surgeon cre-
ates space inside the thoracic cage by allowing air getting into the intrapleural space.
This phenomenon, known as a pneumothorax, produces a total collapse of the lung
towards the mediastinum that modifies internal lung structures.

Thanks to its low dose radiation and fast acquisition time, intraoperative Cone-Beam
CT (CBCT) imaging could guide the localization of challenging nodules during a
VATS intervention (Rouzé et al., 2016; Uneri et al., 2013). Nonetheless, lung struc-
tures are more difficult to see in CBCT images given the reduced image quality when
compared to CT images. In addition, the intensity contrast between lung nodules
and lung’s parenchyma is decreased as a consequence of the deformation induced
by the pneumothorax. In fact, the parenchyma becomes denser due to lung defla-
tion. This is particularly problematic for the localization of low density lung nodules
also referred as Ground Glass Opacities (GGO). A possible solution to this prob-
lem might be the superposition of preoperative CT information (e.g. segmentation
of nodules and other important structures) with the intraoperative CBCT image, via
an image registration procedure. However, the existence of large lung deformations
makes such a task a real challenge.

This paper focuses on the quantification of the deformations induced by the change
of the patient position between preoperative and intraoperative configurations dur-
ing a VATS intervention. Understanding these deformations might be an important
factor towards the development of an efficient image-guided surgery procedure. A
non-rigid registration method is proposed for the superposition of preoperative CT
and intraoperative CBCT lung structures. The resulting geometrical transformation
is then used to quantify the deformations needed to achieve such superposition. To
the best of our knowledge, no study has ever tried to quantify the lung deformations

occurring during a VATS intervention, even before pneumothorax.

4.2 Materials and Methods

421 Data

The work herein presented is a feasibility study performed on one clinical case only.
In this context, a wedge resection was prescribed to the patient for a solitary nodule of
approximately 13 millimeters in diameter. The VATS surgical intervention was done
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at the Rennes University Hospital, Rennes, France. This study was approved by the
local ethics committee and the patient gave informed consent prior to the procedure.

The study consisted of the acquisition of two tomographic images: a preoperative
CT, where the patient is in supine position and was instructed to hold his breath
during the capture (end of inspiration cycle); and an intraoperative CBCT where the
patient is in lateral decubitus position under sedation and mechanical ventilation.
No surgical action was done before the CBCT acquisition, so that the patient’s lung

could be imaged in a fully inflated state, i.e. witouth pneumothorax.

Figure 4.1 shows an axial view of the images. Although the nodule is here clearly
visible in both modalities, it is worth mentioning that it might not be the case, par-
ticularly for GGO nodules. While nodule visibility in intraoperative images plays an
important role in image guided thoracic surgery, it is not relevant for the purposes of

this work.

Slices in approximately the same transversal plane for preoperative CT
(supine position) and intraoperative CBCT (lateral decubitus position).
The nodule is encircled in orange. The change of configuration from pre-
operative to intraoperative configurations is clearly visible.

4.2.2 Segmentation

Segmentation of the lung parenchyma was achieved using an own modified version
of Chest Imaging Platform, an open source library for image processing and analysis
of chest CTs (Estepar et al., 2015). The method is based on a thresholding approach
that exploits the differences in intensity of voxels inside and outside the lungs, which
resulted in a segmentation containing both lungs and airways. A 3D Iterative Region
Growing approach was used to segment only the primary airway branches, which
were then removed from the previously obtained lung’s segmentation. This allowed
the separation of the two lungs, to extract the affected lung by using connected com-

ponent analysis and a priori information on the position. Finally, morphological op-
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erations where applied to fill in holes and smooth irregular boundaries that were

present mostly towards the mediastinum.

Given the reduced quality of the CBCT image, the aforementioned segmentation pro-
cedure was only used on the preoperative CT image. However, a similar approach us-
ing morphological eroding operations instead of airways extraction was applied to
the CBCT to obtain a rough segmentation of the intraoperative lung. This latter is not

accurate, and hence it is only used for the initialization of the registration workflow.

4.2.3 Registration

The registration process aims to account for lung deformations that occur after a
change in patient position before and during a VATS intervention. A registration
workflow composed of three steps is proposed: (1) initial alignment, (2) rigid regis-

tration and (3) non-rigid registration.

Initial alignment

As discussed before, preoperative and intraoperative images were taken under dif-
ferent configurations. Hence, the position of such images in the physical space is
non-overlapping. To compensate for this misalignment, the centroids of the lung seg-
mentations were superposed by translating the preoperative CT image. In addition,
the change of orientation of the lung was assumed to be of approximately 90 degrees
on the axial plane, so a rotation of this amount was also applied.

Rigid registration

Once the images were roughly aligned, an image-based rigid registration process was
performed. The idea was to find a geometrical transformation that maximized im-
age correspondence without introducing local deformations. This rigid registration
step is of great importance since it affects directly the latter measurement of local de-
formations. Although different sources of information could be used to drive such
registration (e.g. spine and ribs, airway tree, etc.), emphasis was made on structural
information of the parenchyma. So, the optimization of a similarity metric estimated
over the gray level information contained inside the lung mask was performed, dis-

regarding the rest of the information on the image.

The procedure was accomplished using the multi-resolution image registration tech-
niques implemented in the Elastix toolbox (Klein et al., 2010). Normalized Mutual
Information was used as a similarity metric, with an Adaptive Stochastic Gradient
Descent optimization process. For each iteration, a set of 3000 paired random points
were extracted inside the lung’s segmentation and were used for the computation of
the similarity metric. Several image resolutions were necessary to allow the algorithm

to account for large displacements.
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Non-rigid registration

The last step of the registration workflow consists of maximizing image correspon-
dence by allowing local deformations. Any non-rigid registration procedure is char-
acterized by the similarity metric, the optimization method and the elastic transfor-
mation model. For the first two components, as for the rigid registration step, the Nor-
malized Mutual Information similarity metric estimated on samples over the lung’s
parenchyma, along with an Adaptive Stochastic Gradient Descent optimizer were
used. B-Splines were chosen as the elastic transformation model. Over-deformation
was avoided by restricting the degrees of freedom of the transformation, i.e. reducing
the amount of control points. For that, a grid spacing of 16 mm in the highest resolu-
tion was chosen, which was found empirically to be large enough to allow fine defor-
mations but also small enough to avoid over-registration. Elastix toolbox was again
used to accomplish this task, by taking the rigidly registered image as the starting

point.

4.3 Results

An illustration of the qualitative results obtained after applying the proposed regis-
tration workflow is presented in Figure 4.2. Image misalignment is represented us-
ing a complementary color approach. After the initial alignment and rigid registra-
tion steps, there is an overall good overlap of the lung’s parenchyma (left). This can
be particularly appreciated towards the lateral and posterior parts of the lung con-
tour. However, important misalignments still remain towards the medial and anterior
parts of the lung, since they can not be recovered without allowing local deforma-
tions. These misalignments mainly disappear after the final non-rigid registration
step (middle). The lung contours are now better matched and disparities on internal

structures are recovered.

Axial view of the lung. Left: CT-CBCT image overlap after rigid registra-
tion. Middle: CT-CBCT image overlap after non-rigid registration. Right:
target intraoperative CBCT image.

Before the quantification of local lung deformations, a quantitative evaluation of the
registration accuracy had to be performed. For that, the Target Registration Error
(TRE) between a set of 51 paired anatomical landmarks was calculated. These land-
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Target Registration Errors (TRE) in millimeters for different landmark
groups before and after non-rigid registration.

marks were manually placed by an expert thoracic surgeon both in CT and CBCT,
during a single session. Instructions were given so that the spatial distribution was
as homogeneous as possible, covering the whole lung. Three landmark groups could
be identified: 20 landmarks on airway bifurcations, 30 landmarks on vessel bifurca-
tions and 14 landmarks towards the periphery of the lung, where the distance to the
surface is lower than 18 mm. Additionally, another landmark was placed inside the
nodule. Figure 4.3 presents the TREs obtained before and after the non-rigid regis-
tration procedure was applied.

The spatial distribution of the anatomical landmarks can be seen in Figure 4.4. Em-
phasis was given to the set of peripheral landmarks, which was the group where
the remaining TREs were the highest. It is clear from the figure that misalignments
of anatomical landmarks existing after rigid registration were successfully recovered
after non-rigid registration, when local deformations of the lung were taken into ac-
count.

294 mm 550 100 5 S0 100 550 100

0.35 mm

Spatial distribution of the whole set of landmarks. Left: Color map repre-
sentation of the TREs after non-rigid registration, for all landmarks. Mid-
dle: Set of preoperative periphery landmarks (red spheres) after rigid reg-
istration compared to intraoperative periphery landmarks (blue squares).
Right: Set of preoperative periphery landmarks (green spheres) after
non-rigid registration compared to intraoperative periphery landmarks
(blue squares).

Finally, the magnitude of the deformation field obtained after non-rigid registration
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is depicted in Figure 4.5. Two anatomical planes are used to illustrate how such de-
formation is distributed throughout the parenchyma. In addition, the normalized

histogram of deformations present on the whole lung volume is also presented.

14 mm

0

Deformation (mm)

& 7 4
0mm Coronal Deformation (mm)

Left: color mapped local deformations in millimeters for coronal and axial
views of the lung. Right: the normalized histogram of local deformations
in millimeters for the whole lung volume.

4.4 Discussion

As for the segmentation of the lung, the proposed procedure was straightforward on
the preoperative CT and produced a smooth binary mask of the lung’s parenchyma.
For the CBCT, however, the reduced image quality did not allow the same results.
The modified segmentation procedure was then applied, and even if it could not
completely recover the whole lung structure, the result was sufficient to estimate the
lung’s centroid required for the initialization of the registration workflow.

With respect to image registration, the TREs obtained after rigid registration only
where on the order of 7 mm, with better aligned landmarks near the vessels and lung
periphery (~ 6 mm) than near the airways (~ 8 mm). A significant error reduction
was achieved after non-rigid registration. In fact, median values of TREs for all land-
mark groups where reduced to 1.04 mm, 0.89 mm and 1.24 mm for airways, vessels
and peripheral landmarks, respectively. In particular, a TRE reduction from 7.3 mm
to 0.4 mm was observed for the the landmark placed inside the nodule. It is impor-
tant to note that after non-rigid registration, the largest TREs are located in the lung’s
periphery. Lung structures are the smallest in this regions, hence Partial Volume Ef-
fects (PVE) in the image are more important. As a result, the registration algorithm
has more trouble finding correspondences, which produces larger misalignments.
Overall, a median TRE of 1.01 mm was obtained for the whole set of landmarks af-
ter non-rigid registration, with a minimum of 0.35 mm and a maximum of 2.24 mm.
Since the majority of the TREs are around 1.01 mm (see Figure 4.3), one can conclude
that the resulting registration is accurate, since the errors are on the order of image
spacing.

Regarding the magnitude of the deformations, experimental results showed non-

negligible measurements with maximum values around 14 mm, in different areas.
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However, a special remark has to be made with respect to the anatomical interpre-
tation of these deformations’ locations. Although the measured deformations were
here the highest near the apex and anterior parts of the lung (see Figure 4.5), this
does not necessarily mean that these regions are the most affected by the change
of configuration before the VATS intervention. In fact, the measurement of local de-
formations is highly sensitive to the initial alighment and rigid registration steps: a
minimization of these local deformations in some regions of the lung will necessarily
result in an increase in others. Hence, since there is anatomically no fixed point in the
chest, deformations between the lung’s areas are always relative. Other results would
have been obtained with different initial geometrical transformations. However, the

relative differences would remain similar.

To conclude, it is clear that important, non-uniform deformations of the lung occur
between the pre- and intraoperative configurations. They are caused by a change of
the patient pose, breathing mechanics and how gravity affects internal structures.
Only a non-rigid registration procedure can cope with these local deformations, to

obtain a perfect match between preoperative CT and intraoperative CBCT images.

4.5 (Conclusion

This paper presents a registration workflow that was used to measure lung defor-
mations resulting from changes between preoperative and intraoperative configura-
tions during a VATS intervention. Registration accuracy was measured using TREs
on a set of 51 paired anatomical landmarks, obtaining a median error of 7.09 mm
after rigid registration, which was significantly reduced to 1.01 mm after non-rigid
registration. Deformations throughout the lung where measured to be of maximum

14 mm (~ 7 mm in average) on different regions of the lung.

Experimental results highlighted the importance of accounting for lung deforma-
tions during VATS, since it will be necessary for transforming information extracted
from preoperative images to the intraoperative setting. This will be of particular im-
portance for the localization of lung nodules, which might be not visible through

intraoperative imaging when their density or size is considerably low.

Future work includes the study of lung deformations on a dataset of several cases.
Also, the analysis of the deformation under different rigid initialization approaches
might be of interest for the identification of deformed lung regions. Finally, special
focus must be brought to the correction of deformations induced by the pneumotho-
rax that will allow the prediction of nodule displacement during VATS, which is the
long-term goal of this work.
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Additional methodological aspects, results and discussion

The preliminary study presented in this chapter provides a first insight into lung
deformation during the change of patient position. The displacement field obtained
after non-rigid registration of the preoperative CT and intraoperative CBCT images
was locally varying, with an average displacement of approximately 7 mm. These
measurements were validated using TREs computed on a set of 51 paired anatomical
landmarks, with a median error of 1.01 mm after non-rigid registration. The displace-
ment measurements were clearly not negligible, and demonstrate the importance of
taking into account lung deformation from the change of patient position. Several as-
pects were investigated after publication of the first preliminary study. This section
first describes the new methodological aspects introduced, and then presents new
findings obtained in a multiple-case study.

Additional methodological aspects

In order to improve the accuracy of the proposed registration framework, two modi-
fications were considered. Firstly, a rigid-body initialization strategy that generalizes
to multiple patients. Secondly, an intensity masking procedure that allows to better
account for sliding lung motion during registration. Also, in order to provide a more
thorough characterization of lung deformation, additional measurements extracted
from the literature were considered. The two improvements to the registration frame-

work and the additional deformation measurements are described bellow.

Rigid-body initialization using the spine

As mentioned earlier, the displacement measurements are sensible to the rigid-body
initialization. In the literature, bony structures are typically used for this initializa-
tion, as they undergo little to none deformation (Hartkens et al., 2003). In the con-
text of lung registration, the ribs move and rotate with respiratory movements, and
the spine may be subject to deformation with the change of patient position. For
these reasons, neither of those structures were used for rigid-body initialization in
the study presented above, where intensity information of internal lung structures
was preferred. However, such initialization may result in an underestimation of lung
deformation, and deformation patterns may be difficult to generalize for several pa-
tients, as each one would be initialized differently. Moreover, a closer look to rigid
registration using the spine as the reference shows that within the FOV of the CBCT
image, the spine remains rigid for the most part, as shown in Fig. 4.6. As such, the
remaining works of this thesis document assumed very few deformation of the spine
among changes of configuration of the lung.
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ugitt.al | | Coronal
Result of change of pose rigid registration using the spine as the refer-
ence. The FOV of the intraoperative CBCT image of the inflated lung is
indicated with yellow contours. The CBCT image is superimposed over

the CT image within this FOV. It can be observed that the spine undergoes
little to none deformation.

Accounting for sliding motion

The registration accuracy was better for airways and vessel landmarks (average TREs
of 0.44 mm and 0.89 mm respectively) than for peripheral landmarks (average TREs
of 1.24 mm). Although this miss-registration in the periphery may be partially ex-
plained by partial-volume effects, it can also be caused by the sliding motion of lung
parenchyma against the thoracic cavity. Indeed, the parametric B-Spline transforma-
tion model used assumes a continuous displacement field, which is not well suited to
represent such sliding motion. This is a well known problem in lung registration liter-
ature, and several methods have been proposed to deal with it, mainly through regu-
larization schemes (Delmon et al., 2013; Schmidt-Richberg et al., 2012) and anatom-
ical segmentations (Vandemeulebroucke et al., 2012; Wu et al., 2008).

In the remaining of this chapter and later in this thesis (Chapter 6, Appendix A),
sliding motion was taken into account using the method of sub-anatomical regis-
tration proposed by Wu et al. (2008). The method independently registers sliding
structures by selectively masking image intensities with anatomical segmentations
of lung parenchyma in both images.

However, although the automatic segmentation of lung parenchyma is straightfor-
ward in the preoperative CT image (see Sec. 4.2.2), it remains challenging in the intra-
operative CBCT image (lower signal-to-noise ratio, reconstruction artifacts, limited
FOV). Asboth segmentations are needed, a semi-automatic approach based on image
registration was implemented for the segmentation of lung parenchyma in the CBCT
image. A first registration step was performed as described previously in Sec. 4.2.3.
Then, an estimation of the intraoperative CBCT lung segmentation was achieved by
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warping the preoperative CT segmentation with the resulting transformation. The re-
sult was further processed using morphological operations and manually adjusted in
poorly segmented regions. The manual adjustments were necessary notably for the
lung contours near the border of the FOV of the CBCT image, where reconstruction
artifacts are not uncommon. An illustration of a manually corrected segmentation is
provided in Fig. 4.7. This semi-automatic process avoids the highly time-consuming
manual segmentation, and hence, it was used in the remaining of this thesis for the
segmentation of the inflated lung in the intraoperative CBCT image.

CBCT inflated hing Estimared segmenrartion Final segmenrcarion
(warped after registration) (manually adjusted)

Lung segmentation in CBCT image of the inflated lung. A reconstruc-
tion artifact in the CBCT image results in a poorly segmented region after
warping that is manually corrected in the final segmentation.

After the segmentation of the lung parenchyma, the images were registered using
the sub-anatomical registration process proposed by Wu et al. (2008). First, the CT
and CBCT images were masked using the corresponding lung segmentation. The
voxels lying outside these masks were replaced with a constant HU value below the
range of possible parenchyma values (i.e. below -1000 HU, corresponding to air).
The similarity metric was computed using the masks after being extended 5 mm
using morphological dilation. By extending the masks, points lying outside the lung
in the fixed image (intraoperative CBCT image) are registered to the same intensity
values in the moving image (preoperative CT image), which also lie outside the lung.
Moreover, matching outside points has no cost in terms of the similarity metric, which
results in the registration process to be guided mostly by the information within the
lung. As a result, this process minimizes the misalignment error of the internal lung
structures while allowing sliding at the lung interface. In the remaining of this thesis,

the registration of CT/CBCT lung images was carried out using this method.
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Measures of deformation

In addition to characterizing tissue displacement, it is also interesting to analyze the
local variations of lung deformation. During deformation, the lung changes its vol-
ume and overall shape in ways that are generally region-specific. These variations are
related to the constitution of lung tissue and the loading applied to it. Local deforma-
tion changes during breathing have been reported in previous studies (Amelon et al.,
2011), and the measurements have been used as estimates of local lung function (Du
etal., 2013; Patton et al., 2018). However, to date, no study has reported local changes
of lung deformation during change of patient pose.

Two measures of local deformation are herein considered. The first measure is the
Jacobian of motion (.J), introduced in Sec. 2.2.2, which provides information of local
volume change. The second measure is the Anisotropy Deformation Index (ADI),
introduced by Amelon et al. (2011), which provides information of shearing stretch.
These two measurements are extracted from the deformation gradient tensor, which
is computed from the displacement field (see Sec.2.2.2). Here, the displacement field

results from the process of intensity-based image registration.

To recall, the deformation gradient tensor F relates line segments in a reference con-
figuration to a deformed configuration:

dx = FdX (4.1)

Here, the reference and deformed configuration correspond to the lung configura-
tions before and after change of pose respectively. A physically plausible deforma-
tion assumes that F has an inverse. As such, F can then be decomposed in a purely
rotation tensor R and a purely stretching tensor U using the theorem of polar de-
composition:

F=RU (4.2)

The rotation tensor R can be factored out by multiplying F with its transpose F

F'F=(RU)T(RU)
=UTRTRU
=vlu=cC (4.3)

with C being the right Cauchy-Green deformation tensor introduced previously in
Sec.2.2.2.

The eigenvalues of U, noted \;,i € {1, 2,3}, are known as principal stretches. From
the relation in Eq. (4.3), the values \; can be calculated as the square roots of the

eigenvalues of C. The two measures of deformation herein studied are determined
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from the principal stretches by

_ 2 _ 2
J =det(F) = AMA2d3 , ADI= (Al AZ) + <A2 A?’) (4.4)
A2 A3

Both measures have values ranging from zero to infinity. In the case of J, they corre-
spond to volume contraction (J < 1), volume preservation (J = 1) and volume ex-
tension (J > 1). In the case of ADI, higher values indicate larger relative differences
among principal stretches and hence larger deformation anisotropy. Perfect isotropic

deformation (i.e. \; = Ay = A3) results in zero ADI.

Additional results: a deformation study with multiple clinical cases

The initial investigation presented in the first part of this chapter was further ex-
tended to a total of 6 clinical VATS cases. All cases belong to the same clinical study
previously described in Sec. 3.3. The preoperative CT and intraoperative CBCT im-
ages were registered for all clinical cases, taking into account the improved initializa-
tion and registration protocols discussed in the previous sections. The resulting TRE

distributions are presented in Fig. 4.8.
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TRE distributions for change of pose rigid and elastic registration for all
clinical cases. The bounds of the box represent the 25" and 75" percentile;
the horizontal line inside the box represents the median; and the error
bars extend from the 2! to 98 percentile.

The average (+ standard deviation) TRE after rigid registration were 6.8 mm (£ 1.8 mm),
12.1mm (£4.0mm), 13.5mm (£ 3.2mm),25.8 mm (+4.9mm), 18.0 mm (£ 6.9 mm),
and 16.3 mm (+ 5.1 mm), for each clinical case respectively. These errors were re-
duced after elastic to 1.5 mm (£ 1.4 mm), 1.0 mm (£ 0.5 mm), 1.6 mm (£ 1.4 mm),
2.8 mm (£ 2.7 mm), 2.7 mm (£ 3.3 mm), and 1.1 mm (£ 0.4 mm), for each clinical



case respectively. Although very large differences in initial alignment were observed
among clinical cases, average TREs below 2 mm were consistently obtained after elas-
tic registration. The average error correction ranged between 78% (Case 1) and 93%
(Case 6). This level of accuracy was considered sufficient for the purpose of charac-
terizing lung deformation.

The spatial distributions for displacement, displacement magnitude, J and ADI are
illustrated for Case 4 in Fig. 4.9, and for Case 6 in Fig. 4.10.

In both cases, the displacement field near the diaphragm indicates upward move-
ment. This was the expected behavior, since the diaphragm gets pushed by the weight
of the abdominal organs after anesthesia. Also, the displacement field indicates im-
portant movement in the direction of gravity (from the ribs to the spine). The mag-
nitude of displacement is larger near the diaphragm in both cases, and decreases
with proximity to the spine and the apex. Concerning J, the distribution fluctuates
smoothly with no specific regional preference, with the exception of a hot-spot at the
posterior tip of the lung for both cases, which is most likely explained by registration
artifacts. The average J value in both cases is below 1, indicating overall volume con-
traction. In the case of ADI, higher values appear near the lung fissures in both cases,
which corroborates the findings presented by Amelon et al. (2011). This is explained
by lung lobes sliding one against the other, and the impossibility of the transforma-

tion model used to represent such discontinuities in the displacement field.

To further investigate regional deformation, the lobes were segmented for each clini-
cal case with the open source Chest Imaging Platform (Estepar et al., 2015). The dis-
tributions of deformation measurements for the entire lung and its individual lobes
are shown for the displacement magnitude in Fig. 4.11, for J in Fig. 4.12, and for ADI
in Fig. 4.13. It is important to notice that since the FOV of the CBCT image contains
only a portion of each patient’s lung, it was not possible to quantify deformation for
the entire lung. Consequently, deformation patterns exposed by the distribution of
deformation measurements should be interpreted carefully, as they may be affected
by a sample bias effect.

The average displacement magnitude among cases was very heterogenous, ranging
approximately from 5 mm to 24 mm. Very large displacements of more than 30 mm
were observed for Case 4 and Case 5. This amount of displacement is even larger than
that of respiratory motion (e.g. Delmon et al. (2013) reported average displacement
ranging from 3.9 mm to 15.0 mm for anatomical landmarks of 16 patients), especially
considering that diaphragm motion could not be fully measured herein. In addition,
larger displacement was consistently observed for the middle right lobe across cases
(p < .001, two-sample independent t-test). A possible physical interpretation could
be derived from the position of this lobe, as it is both far from the attachments to the

spine and in contact with the diaphragm. As gravity and diaphragm movement are
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Figure 4.9: Sagittal and coronal slices showing spatial distribution of estimated de-
formation measurements for Case 4. The arrows (first row) represent ac-
tual displacement field vectors, subsampled on a regular grid of 20 mm
of spacing.
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Figure 4.10: Sagittal and coronal slices showing spatial distribution of estimated de-
formation measurements for Case 6. The arrows (first row) represent ac-
tual displacement field vectors, subsampled on a regular grid of 20 mm
of spacing.
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Distributions of estimated J for all clinical cases. For each case, the distri-
bution of the entire lung and individual lobes are shown. The following
notation is used: entire left lung (ELL), upper left lobe (ULL), lower
left lobe (LLL), entire right lobe (ERL), upper right lobe (URL), lower
right lobe (LRL) and middle right lobe (MRL). The bounds of the box
represent the 25" and 75" percentile; the horizontal line inside the box
represents the median; and the error bars extend from the 2th to 9gth
percentile.
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Distributions of estimated ADI for all clinical cases. For each case, the
distribution of the entire lung and individual lobes are shown. The fol-
lowing notation is used: entire left lung (ELL), upper left lobe (ULL),
lower left lobe (LLL), entire right lobe (ERL), upper right lobe (URL),
lower right lobe (LRL) and middle right lobe (MRL). The bounds of the
box represent the 25" and 75t percentile; the horizontal line inside the
box represents the median; and the error bars extend from the 2th 5 9gth
percentile.

the two main causes of deformation, the middle right lobe is heavily affected by both,
whereas roughly speaking, the lower right lobe is mostly affected by the diaphragm
and the upper right lobe is mostly affected by gravity (see Figs. 4.9 and 4.10).

No significant differences were observed in J values across lung lobes for all clini-
cal cases. Across clinical cases, it fluctuated around 0.9 for cases 1 to 3 and around
0.8 for cases 4 and 6, an indication of generalized volumetric contraction. Case 5 had
significantly higher J values than all other cases (p < .001, two-sample independent
t-test). The average value for this case was above 1.0, an indication of generalized
volumentric expansion. In addition, it is interesting to note that this was the only
case were curare was not administered with anesthesia, as airtight trocars in com-
bination with pressurized CO, were used to generate the required pneumothorax
during surgery (see Sec. 3.3). As such, the diaphragm remains contracted, holding
the weight of the abdominal organs, and staying in its natural position (i.e. it does
not move upwards). The resulting deformation is then inherently different than for
the other clinical cases, as the external loading is different. Unfortunately, no clinical

case with the same surgical workflow was available to confirm these findings.

Finally, although some significant differences were found for ADI values across lobes,
they were not consistent for all clinical cases. In addition, as ADI values are higher
for sliding interfaces, the distributions are sensitive to the ratio of sampled voxels
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and voxels at the interface. This ratio can change among patients as an expression of
anatomical differences, but it can also change with the amount of volume per lobe
within the FOV of the CBCT image. It can be said, however, that the measured val-
ues were relatively low throughout the analyzed lung volume, and across clinical
cases, i.e. below 0.5 for the most part. These values were equal or lower than those
previously reported by Amelon et al. (2011) (between 0.2 and 2.5), suggesting less

anisotropic deformation during change of pose than during breathing.

General conclusion

The study presented in this chapter provided a characterization of lung deforma-
tion from the preoperative to the intraoperative conditions, as the patient undergoes
a change of pose. Measurements of deformation were computed from a displace-
ment field, which was automatically calculated using a registration framework with
allowance for sliding motion. Very large displacement was observed, with average
values approximately ranging from 5 mm to 24 mm, which are larger than those re-
ported in the breathing lung literature. Analysis of the displacement field suggested
that the diaphragm upward movement and the change in direction of gravity with
respect to the patient were the main factors causing lung deformation. Values of ADI
were higher at sliding interfaces, confirming the findings of previous studies. Also,
J values below unity were observed in general, indicating volumetric lung contrac-
tion. This had a remarkable exception in one clinical case for which intraoperative
setup was different than for the others. This study also provided valuable insights
and methods that were useful for the development of the works presented in the
subsequent chapters.
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A hybrid registration framework for lung
deformation compensation after change of
pose and pneumothorax: an initial
investigation

Foreword

In the context of transthoracic needle biopsy of pulmonary nodules, one of the main
complications after the procedure is a pneumothorax. The management of this com-
plication often requires a follow-up low-dose CT (LDCT) image acquisition of the
affected lung, with the patient in lateral decubitus position. Therefore, with respect
to the CT standard diagnosis image, this LDCT image provides structural informa-
tion of the lung after being deformed by a change of patient pose and a pneumoth-
orax, namely, with lung deformation very similar to that of VATS. In contrast to the
CBCT images used in the current clinical workflow (see Sec. 3.3), this LDCT image
provides a complete view of the deflated lung, without the various artifacts affecting
image quality. As such, these transthoracic needle biopsy images allow the study of
lung deformations present during VATS, but with better quality clinical data.

The study presented in this chapter aims at evaluating the feasibility of a hybrid
image-based and biomechanics-based registration framework to compensate for lung
deformation after change of pose and pneumothorax. The image-based components
are based on the work presented in Chapter 4. The biomechanics-based components
use a linear poroelastic (biphasic) model of the lung with allowance for air evacu-
ation (see Sec. 2.2.4). This model was considered the most appropriate for simulat-
ing a pneumothorax, since it is primarily caused by air flowing out of the lung. The
first-order approximation allowed an initial study of suitable material properties and

boundary conditions, but non-linearity may be taken into account later.

The initial investigation was developed during a mobility program in the Department
of Biomechanical Engineering, Vanderbilt University, Nashville, USA, in collabora-
tion with professor Michael Miga, who has extensive experience with biomechanical
modeling, and particularly, with linear poroelastic models with allowance for fluid

evacuation.

The first part of this chapter reproduces this initial investigation, which was pre-

sented in an international conference:
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P. Alvarez, S. Narasimhan, S. Rouzé, J.-L. Dillenseger, Y. Payan, M. I. Miga, and
M. Chabanas. Biphasic model of lung deformations for video-assisted thoraco-
scopic surgery (VATS). In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 1367-1371, Venice, Italy, 2019a. IEEE. ISBN 978-1-
5386-3641-1. doi: 10.1109/isbi.2019.8759219

The second part of this chapter presents additional results concerning the distribu-
tion of material properties, which were studied after the initial publication, as well

as supplementary discussions and perspectives of the work.
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Article: Biphasic model of lung deformations for Video-Assisted
Thoracoscopic Surgery (VATS)

Abstract: Intraoperative localization of small, low-density or deep lung nodules dur-
ing Video-Assisted Thoracoscopic Surgery (VATS) is a challenging task. Localization
techniques used in current practice require an additional preoperative procedure
that adds complexity to the intervention and might yield to clinical complications.
Therefore, clinical practice may benefit from alternative, intraoperative localization
methods. We propose a nonrigid registration approach for nodule localization. Our
method is based on a biomechanical model of the lung, where lung parenchyma is
represented as a biphasic medium. Preliminary results are promising, with target
registration errors reduced from 28.39 mm to 9.86 mm in median, and to 3.68 mm for

the nodule in particular.

5.1 Introduction

Surgical resection of lung nodules via Video-Assisted Thoracoscopic Surgery (VATS)
is one of the treatments available for early stage lung cancer. In comparison to open
thoracotomy, this minimally invasive procedure reduces the length of hospitalization
and minimizes post-operative complications (Falcoz et al., 2015). However, at the be-
ginning of the procedure, the insertion of surgical ports and the artificial ventilation
applied only on the contralateral lung, allow air to flow into the intrapleural space.
This abnormal air inflow, known as pneumothorax, induces a collapse of the lung
towards the hilum, and, therefore large anatomical deformations. As a result, the in-
traoperative localization of small, deep or low-density nodules becomes considerably
difficult (Gould et al., 2013).

In current practice, localization techniques rely on preoperative procedures for nod-
ule marking, generally involving the placement of hookwires or dyes under CT flu-
oroscopy (Keating and Singhal, 2016). However, these procedures not only increase
the cost and complexity of care, but also occasionally lead to serious complications
(Park et al., 2017). As an alternative, several groups have recently proposed local-
ization methods based on intraoperative imaging only, for example, Cone Beam CT
(CBCT) (Rouzé et al., 2016) or Ultrasound (Wada et al., 2015). While promising,
these methods rely entirely on nodule visibility in the images, which may be insuffi-
cient. For instance, the fuzzy borders and low-density of ground glass opacity nod-
ules could make them indistinguishable, especially considering the increased density
of the collapsed lung. A potential solution to address this limitation could be nonrigid
image registration, to transfer information from the preoperative CT to the deformed

intraoperative configuration.

Many studies have addressed the registration of lung images, with methods based on
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image intensity (Murphy et al., 2011), biomechanical models (Al-Mayah et al., 2010;
Seyfi Noferest et al., 2018) or a combination of both (Han et al., 2017). The purpose of
these methods is to compensate for the lung deformations during normal breathing,
mainly for conformational radiation therapy. However, lung deformations are con-
siderably larger during VATS (Alvarez et al., 2018), which increases the difficulty of
the registration problem. To the best of our knowledge, only one study has proposed
the use of nonrigid image registration in the context of VATS using CBCT images of
a pig lung (Uneri et al., 2013).

In this preliminary work, we propose to compensate for lung deformation using a
nonrigid image registration approach guided by a biomechanical model of the lung.
Using clinical data with deformations consistent to those of VATS, we modeled the
lung as a biphasic medium and estimated its deformation via finite element model-
ing. The main objective was to evaluate the capacity of the model to estimate lung
deformations during VATS. We intend to use this approach as an intraoperative nod-
ule localization strategy for VATS.

5.2 Materials and Methods

5.2.1 Data

This retrospective study was conducted on a single clinical case. After a CT image was
acquired, the patient had a needle biopsy of a solitary nodule located in his left lung.
During this procedure, the patient developed a pneumothorax that was later detected
with a post-interventional Low Dose CT (LDCT) image. Although this clinical case is
not a VATS intervention, the resulting lung deformation is approximately the same.
Specifically, there is a change of patient pose from supine during the CT imaging to
lateral decubitus during the LDCT imaging, as well as a pneumothorax (Fig. 5.1).

Several structures were manually segmented from these images: the airway tree, lung
parenchyma and nodule from the CT image; and the deflated lung parenchyma, tho-
racic cage, and nodule from the LDCT image.

5.2.2 Finite element model

In this work, the biphasic model proposed in (Miga et al., 1999) was used to repre-
sent the lung. This model is based on Biot’s theory of soil consolidation (Biot, 1941),
and has been previously used for brain shift compensation (Sun et al., 2014). The
governing equations are:

V- (GVu)+V V-u)—Vp = —pg (5.1)

(1-— 21/)(
V- (BVp) + ke(p —pe) = O (5.2)
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Left lung containing a solid, solitary nodule, indicated with a circle. Left:
Axial cut of the CT image with the patient in supine position. Right: Ax-
ial cut of the LDCT image after pneumothorax with the patient in lateral
decubitus position. The pneumothorax is indicated by arrows.

where u is the displacement vector, p is the interstitial pressure, v is the Poisson’s
ratio, G is the shear modulus defined by 2(171/) with E as Young’s modulus, p is a
density measure defined by (ps — p,) with py and p, as the density of the fluid and
solid phases respectively, g is the gravitational unit vector, £ is the bronchi perme-
ability, p. is the internal bronchi pressure and k the hydraulic conductivity. In addi-
tion, we should note that the interchange of air between the lung parenchyma and
small bronchi has been approximated by lumping these exchange-effects using the
organ-wide distributed term k.(p—p.). It allows the simulation of air evacuation from
small-scale lower bronchi structures distributed throughout the lung parenchyma,

therefore producing local volume changes.

5.2.3 Geometry reconstruction

Using CGAL library (www.cgal.org), two finite element meshes of the lung with
four-node-tetrahedral elements were generated (Fig. 5.2). The first mesh (L) was
generated from the lung parenchyma segmented in the CT image. The second mesh
(Lidet) was generated from the the thoracic cage segmented in the LDCT image. For
the latter, the underlying assumption is that the original shape of the lung (i.e. before
pneumothorax) matches the shape of the thoracic cage.

5.2.4 Material properties

As shown in previous studies, the lung parenchyma is highly heterogeneous (Seyfi Nofer-
est et al., 2018). The Young’s modulus E, for instance, is considered to be lowest near
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the diaphragm and highest near the hilum. Similarly, we have made the approxi-
mation that the hydraulic conductivity k£ decreases significantly with the distance
from the main airways. The natural anatomic structure of the lung with its decreas-
ing bronchi diameter scale would result in a more restricted exchange, or a lower

hydraulic conductivity.

Young's
Modulus (Pa)
1000.0

~700.00
-400.00

100.00

Figure 5.2: Left: Tetrahedral mesh of lung parenchyma from the CT image (L. ). Mid-
dle: Tetrahedral mesh of the thoracic cage from the LDCT image (Ljgct)-
Right: Example of mesh stratification on L;4.+ and the corresponding val-
ues of Young’'s modulus E (E,,i, = 0.1 kPa and E,,,, = 1 kPa).

Similar to the hydraulic conductivity, we have adopted a distance-to-airway depen-
dence with Young’s modulus. As the arrangement of bronchi cartilage rings and sub-
sequent structural elements is present, an approximation of tissue heterogeneity is
proposed to decrease Young’s modulus with increasing distance from these struc-
tures. We have used distance ranges of approximately 15 mm (0 - 15 mm, 15 - 30 mm,
etc.) to vary the Young’s modulus as an exponential function of this distance (Fig. 2
right). This relationship is represented by:

E(d)=ae 43 (5.3)

where d is the distance to the airway tree and 7 is the decay constant. Constants «
and 3 are computed based on fit values of E,,;, and E,,q, such that E(din) = Enag
and E(dmaz) = Emin. An analogous exponential function was used for the hydraulic
conductivity k, based on fit values of &, and k4,

5.2.5 Initial alignment

Before nonrigid deformation, registration to a common reference frame was per-
formed. We aligned the spine from the CT and LDCT images using rigid body regis-
tration guided by Mutual Information. This procedure was performed with the help
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of the multi-resolution, image-based registration techniques implemented in Elastix
toolbox (Klein et al., 2010).

5.2.6 Deformation compensation strategy

The deformation experienced by the lung from the CT configuration to the LDCT
configuration might be understood as a combination of three interdependent events:
(1) a change in the direction of gravity and its effects on internal structures; (2) a
change in patient pose that affects the position and shape of the lung; and (3) the
deflation of the lung as a result of pneumothorax. The true deformation is an in-
tricate combination of the individual deformations resulting from each one of these
events. In this preliminary study, we explored the feasibility of a linear biomechanical
model to estimate these lung deformations. The three deformations were estimated
independently before being superposed to produce the final post-pneumothorax reg-
istered CT image.

Deformations (1) and (2) dealt with the estimation of the pre-pneumothorax anatomy
of the lung in the LDCT image configuration. Deformation (3) used the previously
estimated anatomy to calculate the deformation associated with only the pneumoth-
orax. It is worth mentioning that our approach does not employ a moving grid from
stage to stage so geometric nonlinearities are neglected. We should also note that no
hereditary approach accounting for strain history has been implemented. Rather, in
this preliminary work, we have estimated each condition from a single mesh pose
and deformation was a simple linear combination of deformation modes.

Gravity compensation

The direction of gravity with respect to the patient is different in the CT and LDCT
configurations. We compensated for this difference by first estimating a gravity-free
state of the lung in the CT configuration, and then recomputing the effects of gravity
in the LDCT configuration. For the gravity-free state, the deformation was computed
on L. by applying a body force with the magnitude of gravity, but in the opposite
direction, i.e. the right hand side of Eq. (5.1) becomes positive.

Tissue parameters were assigned as described in section 5.2.4, using empirically-
found values within the range suggested in (Seyfi Noferest et al., 2018). The fluid
medium was disregarded during the simulation to compute this deformation. In ad-
dition, nodes on the boundaries of the parenchyma were allowed to slide along the

surface, while assuming no friction between the visceral and parietal pleurae.

Change of pose compensation

Notable deformation is introduced in the thorax after the change of patient pose (Al-
varez et al., 2018). We used a surface matching strategy to compensate for this de-
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formation, where displacements were imposed on surface nodes of L.; to match the

surface of Ljgg.

First, the borders of the thoracic cage of the CT and LDCT images were matched
using a BSpline-based Free-Form Deformation (FFD) registration algorithm guided
by Mutual Information, as implemented in Elastix toolbox (Klein et al., 2010). From
this, we obtained a displacement map describing the deformation necessary to align
the surface of L. to that of L;4.. Then, we imposed displacements on each node of
the surface of L, according to the displacement map computed previously. Material

properties were designated as in the previous step.

Pneumothorax compensation

We modeled the pneumothorax as being caused by differences in pressure between
the surface and the interior of the parenchyma. The fluid mass conservation law as-
sociated with equation (5.2) allows for the evacuation of the fluid phase (air) via
the bronchi and the subsequent volumetric contraction of tissue.A positive pressure
(5 cm HyO) was assigned to the surface nodes of L4, while remaining nodes had
a no-flux boundary condition. Bronchi permeability was addressed with k. and p.,
with pressure p. equals to zero inside the airways. Additionally, the deflation of the
lung is constrained by the boundaries of the thoracic cage. Therefore, we assigned
slip conditions to the nodes in contact with the thoracic cage, as visualized in the
LDCT image.

Since, to the best of our knowledge, the material properties used in the governing
equations have never been established for the pneumothorax, we approximated these
values using the trust-region nonlinear optimization method implemented in MAT-
LAB. The 7 parameters being fit for in this inverse model were: E00, Emin, kmaz,
Emin, 7, pand k.. We iteratively minimized the difference between our model-estimated
deformation and the true deformation measured in the LDCT image. More specifi-
cally, we used a measure of surface-to-surface proximity between the current(model)
and target (LDCT) deformations as the indicator of deformation optimality. That is,
we minimized the objective function €2 defined as:

N
Q= l Z (Xdi — Xt nm-)2 (5.4)
NiH
where N is the number of deformed surface points, x,4; is an indexed deformed-
surface point, x; ; is the corresponding closest target-surface point, n; ; is the normal
of the target surface on x; ;, and (-,-) is the inner product operator. The objective func-
tion (2 is a variant of the point-to-point distance that takes into account the local shape
of the target surface. We clarify that x4 comes from the surface of L;4. after simula-
tion, and x; comes from the surface of the deflated lung, in the LDCT image.
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Deformation superposition

The computed deformations were superposed to obtain the post-pneumothorax reg-
istered CT image. First, deformations (1) and (2) were added on every node of L.

The resulting deformation field was used to warp the CT image into the pre-pneumothorax,
LDCT configuration. Then, this synthetic image was warped again using deforma-

tion (3) on L4 to produce the final post-pneumothorax registered CT image.

5.3 Experimental results

Our approach was validated using Target Registration Errors (TRE) on a set of 22
paired anatomical landmarks. Twenty-one of those landmarks were localized in clearly
identifiable airway and vessel bifurcations, covering a large portion of the lung vol-

ume. Finally, an additional landmark was defined in the center of the lung nodule.

Figure 5.3 collects the resulting TREs after three different levels of deformation com-
pensation. First, we applied the rigid initial alignment only, which provides an order
of magnitude for the deformation. Then, we applied the pneumothorax compensa-
tion step only, to evaluate the relevance of accounting for the gravity and the change
of pose. Finally, we evaluated our whole deformation compensation strategy.

Rigid Registration  Pneumothorax  Chang. pose and
only pneumothorax

TREs after three levels of deformation compensation.

A graphical representation of the spatial distribution of post-deformation anatom-
ical landmarks is depicted in Fig. 5.4. Each landmark is displayed with a color in-
dicating final TRE. In particular, the landmark positioned in the nodule had a TRE
of 28.39 mm after initial alignment, 8.06 mm after correcting for the pneumothorax

only, and 3.64 mm after applying the whole deformation compensation strategy.

Finally, the parameters found in the optimization procedure were as follows: E,,q; =
0.94 kPa, Epnin = 0.14 kPa, kpar = 1.7 x 10712 m3s/kg, ki = 1.5 x 10713 m3s/kg,
v =0.28, p = 165.96 kg/m> and k. = 2.51 x 10~° Pa/s.
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Left: Spatial distribution of post-deformation landmarks represented
with a color code indicating TREs. Right: 3D reconstructions of the
ground truth tumor (in blue), deformation compensated tumor (in
green) and rigidly transformed tumor (in black). The surfaces represent
Ly4. before and after simulation of pneumothorax.

5.4 Discussion and conclusion

Preliminary results suggest that our proposed nonrigid registration approach could
compensate for lung deformations occurring during VATS. The reported TREs are
promising, considering that the necessary negative margins for nodule resection in
VATS are approximately 15 mm (Mohiuddin et al., 2014). In addition, we have also
shown the importance of accounting for the change of pose of the patient, and gravity.
To that end, it is interesting to note that our preliminary linear superposition of the

three deformations resulted in improvements in terms of TRE.

As tissue parameters of the lung are patient-dependent, we did not know the prop-
erty values required to induce the pneumothorax deformation. For this reason, we
used optimization as the tool to estimate these tissue parameters, which ultimately
dictated the required deformation. The found values were consistent with previous
studies (Dumpuri et al., 2007; Seyfi Noferest et al., 2018). We could then use these
values to test the ability of the proposed model to reproduce the lung deformation
occurring during VATS.

Future work will include validating our method with more clinical data, to reflect
varying degrees of pneumothorax and different nodule locations. Also, the registra-
tion approach will have to be adapted for intraoperative CBCT images, by dealing

with partial lung anatomy and increased image noise.
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Additional results and discussion

This chapter presented a first lung deformation compensation framework, in which
image processing and biomechanical modeling techniques were combined. The very
large lung deformation observed from the CT image (supine position) to the LDCT
image (lateral decubitus position) was approximated using a deformation super-
position approach, where the deformations caused by gravity, change of pose, and
pneumothorax were estimated independently. In reality, lung deformation is caused
by an intricate mixture of the three phenomena, and is governed by the complex
dynamics of the lung and surrounding structures. To date, such complex dynamics
cannot be modeled directly as they are not completely understood: unknown patient-
specific material properties, unknown external loads, unknown stress-free condition,
etc. In that regard, the functional approach herein proposed is valuable, as it pro-
vides means to approximate the solution of a very complex problem by solving three
smaller, more tractable sub-problems. Moreover, the results suggest the feasibility of
this approach, as the better estimations were obtained with the composition of the
three approximated deformations.

Some aspects of the proposed approach are worth of a more detailed analysis. For in-
stance, it is unclear whether using heterogeneous material properties with the linear
poroelastic lung model is effective in the current context. Also, the contact conditions
used at the lung surface have some implications in lung deformation that have not
yet been discussed. Finally, the accuracy and efficiency of the inverse problem formu-
lation necessitate further improvements, which reveals various perspectives. These

three aspects will be discussed in the following.

Additional results: an evaluation of tissue heterogeneity

Previous works on lung-deformation modeling generally assume homogeneous ma-
terial properties (see for example the works by Fuerst et al. (2015) and Tehrani et al.
(2015)). However, it has been shown that lung parenchyma exhibits an elastic re-
sponse that can be spatially heterogeneous (Hasse et al., 2018; Santhanam et al.,
2010). Nonetheless, the spatial distribution of heterogeneous material properties is
patient-specific, and its estimation remains difficult to date. For that reason, the study
presented in this chapter included an approximation of heterogeneous material prop-

erties using a functional varying with distance to the airway tree.

As can be seen in Fig. 5.2, the Young’s Modulus was varying along distance ranges
of approximately 15 mm from the airway tree. However, such discretization may in-
troduce deformation artifacts due to discontinuities at the interfaces between layers,
which can be avoided by using a continuous function of distance instead. Moreover,
thinner airways are expected to be softer than thicker airways, as there is less carti-
lage covering their surface. As airway thickness decreases with depth, the distance
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from an airway to the inlet may provide an approximation to airways’ thickness, and

hence provide an estimation of airways’ stiffness. These factors were taken into ac-

count to improve the spatial distribution of Young’s Modulus, as illustrated to the

right of Fig. 5.5.

Depth
>4
{

Young's Modulus

Depth of airways and continuous stiffness approximation. The left fig-
ure illustrates the skeleton of the airway tree and the evolution of depth
at each point. The right figure shows the heterogeneous distribution of
Young’s Modulus by layers (as previously presented in this chapter) and
by taking into account distance to airways and and airway’s depth.

To complement the results provided by the initial study presented above, the pneu-

mothorax deformation compensation was repeated using homogeneous and hetero-

geneous (with layers and continuous variations) Young’s Modulus. The objective of

this experimentation was to provide further insights in the impact of tissue hetero-

geneity in deformation compensation. The results are provided in Fig. 5.6.
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Comparison of deformation compensation results with homogeneous
and heterogeneous Young’s Modulus. The two different heterogeneous

distributions are illustrated in

Fig. 5.5.
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Although differences in minimal and maximal values among TRE distributions can
be appreciated in Fig. 5.6, the median differences were not statistically significant
(minimum p > .38, non-parametric Wilcoxon signed rank test). This could be caused
by the simplified poroelastic biomechanical model, the chosen boundary conditions
or even the assumptions made for tissue heterogeneity. For studying the feasibility
of the proposed deformation compensation approach, these results suggest that a
homogeneous assumption for the material properties might be sufficient, as median
TREs after deformation compensation would be similar to those obtained with het-
erogeneous material properties. However, the benefit of taking into account material
heterogeneity will have to be re-evaluated if further improvements on the constitu-
tive law or boundary conditions are studied.

In addition, a limitation of the heterogeneous material properties herein used is the
need for an airway tree segmentation. This would not represent a problem if such
segmentation is performed automatically or before surgery, but it will be incompati-
ble with the VATS protocol if it has to be manually performed during surgery as this
is greatly time consuming. Alternatively, the automatic generation of a structure with
spatial properties similar to that of the real airways could be used to avoid segmen-
tation. Such approach has been used in the literature in the context of respiratory
motion (Berger et al., 2015; Pozin et al., 2017), and its value in the context of VATS

could be evaluated in future work.

Contact conditions

In the study presented in this chapter, nodal/tangential contact conditions were used
to simulate sliding friction-less contact between the deformable lung and the thoracic
cavity. These conditions allow tangential displacement while enforcing zero normal
displacement for the surface nodes where they are prescribed. The major advantage
of this approach is its efficiency, as only Dirichlet boundary conditions are necessary
for each node at the contact surface (in a rotated coordinate system, local to each
node). However, it requires to determine beforehand the surface nodes that should
remain in contact at the end of the simulation, which seems difficult since it is simu-
lation dependent. Although a priori information can be used to try to list such con-
tact nodes (e.g. the medial face of the lung cavity, as was used in the study herein
presented), it still remains impractical. Furthermore, it may also be inaccurate, as
prescribing too many or too few surface nodes with nodal/tangential contact con-
ditions may result in deformation artifacts. These issues could be resolved by using
more realistic contact conditions that are deformation dependent, and are calculated
iteratively during solving. This, however, would come with significantly higher com-
putational cost and potential convergence issues, since such contact conditions are
highly nonlinear.
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Inverse problem formulation

The model parameters required to approximate the observed lung deflation observed
were estimated through an inverse problem formulation, in which a surface-to-surface
distance was used to measure data misfit. It should be noted that the final deforma-
tion is predicted by the linear poroelastic model only (with the parameters found by
optimization), and hence, the resulting accuracy is limited by the degrees-of-freedom
of the model. Although so far promising results have been obtained for one clinical
case (TREs of approximately 10 mm in median), it is likely that an improved model

would be necessary to reach the desired accuracy (TREs below 5 mm).

At least two mechanisms could be evaluated to improve the accuracy of the proposed
deformation compensation framework. The first mechanism deals with linear poroe-
lastic model. Indeed, it is expected that including non-linearity in the strain tensor
(Seyfi Noferest et al., 2018), or using a non-linear stress-strain relationship (Berger
etal., 2015) would improve the deformation estimation. The second mechanism deals
with the intraoperative data used to drive the deformation. Regardless of the consti-
tutive law used, a perfect surface-to-surface match after deformation compensation
is unlikely. The current approach only provides a min-least-squares approximation
to surface displacement, which may be insufficient for some cases. To alleviate such
misfit error, point-to-surface projection based on shape features could be calculated
(Nakao etal., 2019), and incorporated as relaxed imposed displacements to help con-

strain surface deformation (Morin et al., 2017).

Another consideration of the inverse problem formulation is its computation time.
Among the several factors affecting computation time, the number of parameters to
be estimated is relevant to this discussion. The higher the number of parameters to be
estimated, the higher the computation time required. In the study herein presented,
7 parameters were estimated in total. However, it is expected that not all parameters
contribute the same way in the cost function, and the total number may be reduced.
For instance, it was suggested in a previous section that homogeneously distributed
material properties could be sufficient, in which case the number of parameters is
reduced from 7 to 4. A sensitivity analysis could provide further insights on the con-
tribution of each parameter, but it was out of the scope of this thesis. Finally, the
computation time may also be significantly decreased using model reduction or ma-
chine learning approaches (Mendizabal et al., 2020). Currently, each simulation takes
about two or three minutes to run in a local computer (Intel Core i7-6820 2.7 GHz,
32GB RAM), with a total optimization time of approximately seven hours (~ 170
simulations) in the heterogeneous case, and three hours (~ 70 simulations) in the
homogeneous case. Reducing the simulation time below 1 second, as in the work
by Mendizabal et al. (2020), could result in total optimization time in the order of

minutes, which would remain compatible with the clinical workflow.
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General conclusion

In this chapter, a preliminary study towards lung deformation compensation during
VATS was presented. The method relied on a hybrid approach, where the deforma-
tions induced by gravity, patient’s change of pose and pneumothorax were estimated
independently before being combined to predict the total lung deformation observed
from the CT to the LDCT image. A linear poroelastic model predicted lung deforma-
tion at each phase. In the gravity and change of pose estimation phases, intensity-
based image registration allowed the computation of boundary conditions for the
solid phase of the poroelastic model. In the pneumothorax estimation phase, an in-
verse problem formulation allowed the estimation of tissue parameters necessary to
reproduce as close as possible the observed intraoperative lung deflation. The ma-
jor limits of this approach were discussed, and potential further research directions
were provided. This first registration framework was conceived with a clinical case of
transthoracic needle biopsy, for which lung deformation is very similar to that dur-
ing VATS. The next chapter deals with the adaptation of the same approach for a real
VATS context, where CBCT images are available with partial views of the lung only
and significantly reduced image quality.
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A hybrid registration framework for lung
deformation compensation during VATS

Foreword

In this chapter, the hybrid registration framework introduced in Chapter 5 is im-
proved and adapted from the context of transthoracic needle biopsy to the context
of VATS. The methodological changes introduced here were driven by two primary
factors: a change in the clinical data, and a change in the clinical workflow that affects

lung deformation.

With respect to the intraoperative data, two CBCT images are used here (after change
of pose and after pneumothorax) instead of only one LDCT image (after a change of
pose with pneumothorax). On the one hand, besides image quality, the main diffi-
culty was the partial view of the lung in the CBCT images. As a result, intensity-
based image registration can only provide a partial estimation of the boundary con-
ditions for the change of pose. On the other hand, the CBCT image of the lung before
pneumothorax provides information that was unavailable in the LDCT image. As
such, the effects of gravity during change of pose can be estimated directly using
intensity-based image registration, hence reducing the amount of deformation esti-

mation phases from three (first implementation) to two (final implementation).

With respect to lung deformation, the use of anesthesia and curare in the VATS surgi-
cal workflow induces large diaphragm displacement that is not present in the context
of needle biopsy. Moreover, the lung deformation caused by the pneumothorax also
entails deformation of the thoracic cavity, especially at the medial face (hilum). This
had to be taken into account before the inverse problem formulation, as this inverse
problem was designed to estimate pneumothorax deformation for the lung only.

The first part of this chapter reproduces a manuscript that was submitted to the in-

ternational journal Medial Image Analysis:

P. Alvarez, S. Rouzé, M. 1. Miga, Y. Payan, ].-L. Dillenseger, and M. Chabanas.
A hybrid image registration approach to markerless intraoperative nodule lo-
calization during video-assisted thoracoscopic surgery. Medical Image Analysis,
submitted in April 2020

The second part of this chapter provides further discussion and perspectives with

respect to the investigations presented in the other chapters of this thesis.

= 105



Article: A hybrid image registration approach to markerless in-
traoperative nodule localization during video-assisted thoraco-
scopic surgery

Abstract: The resection of small, low-dense or deep lung nodules during video-assisted
thoracoscopic surgery (VATS) is surgically challenging. Nodule localization methods
in clinical practice typically rely on the preoperative placement of markers, which
may lead to clinical complications. We propose a markerless lung nodule localiza-
tion framework for VATS based on a hybrid method combining intraoperative cone-
beam CT (CBCT) imaging, free-form deformation image registration, and a poroe-
lastic lung model with allowance for air evacuation. The difficult problem of estimat-
ing intraoperative lung deformations is decomposed into two more tractable sub-
problems: (i) estimating the deformation due the change of patient pose from pre-
operative CT (supine) to intraoperative CBCT (lateral decubitus); and (ii) estimating
the pneumothorax deformation, i.e. a collapse of the lung within the thoracic cage. We
were able to demonstrate the feasibility of our localization framework with a retro-
spective validation study on 5 VATS clinical cases. Average initial errors in the range
of 22 to 38 mm were reduced to the range of 4 to 14 mm, corresponding to an error
correction in the range of 63 to 85%. To our knowledge, this is the first markerless
lung deformation compensation method dedicated to VATS and validated on actual
clinical data.

6.1 Introduction

Lung cancer is the leading cause of cancer death among both men and women, mak-
ing up more than 18% of all cancer deaths (Bray et al., 2018). The high mortality of
lung cancer is associated with its asymptomatic nature that hinders its early detec-
tion, diagnosis and treatment. However, the advent of screening programs with low-
dose computed tomography (CT) have significantly increased patient survival (Hen-
schke et al., 1999; The National Lung Screening Trial Research Team, 2011). Surgical
resection is considered one of the best curative treatments for patients with early-
stage lung cancer. Historically, lung lobectomy (i.e. the removal of entire lung lobes)
through open thoracotomy was the chosen protocol. Within the last decades, clinical
practice has evolved towards less invasive, better tissue preserving techniques. For in-
stance, minimally-invasive video-assisted thoracoscopic surgery (VATS) has proven
to yield equivalent clinical outcomes while improving patient care, and decreasing
both the length of hospitalization and post-operative complications (Falcoz et al.,
2015). In parallel, the interest for smaller, non-anatomic resections (known as wedge
resections) has arisen for small nodules as a substitute to lung lobectomy. Although
no consensus has been reached yet, studies suggest that the use of appropriate neg-
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ative margins during wedge resections could provide patient outcomes equivalent
to those of traditional lobectomies (Mohiuddin et al., 2014; Wolf et al., 2017). How-
ever, this shift from lung lobectomy to wedge resection through minimally-invasive
VATS has introduced new surgical challenges. For instance, thoracic incisions to in-
sert surgical instrument break the pressure equilibrium in the intrapleural space and
cause air to flow into the thoracic cage. This abnormal air inflow, known as a pneu-
mothorax, induces very large tissue deformation by collapsing the lung towards the
hilum. While this voluntary induced pneumothorax is required to create surgical
workspace, it significantly impairs the intraoperative localization of lung nodules,
especially for small nodules that are generally not visible to the naked eye nor pal-
pable through thoracoscopic instruments (Chao et al., 2018). Failing to localize lung
nodules during VATS may ultimately result in unplanned surgical conversion to open
thoracotomy, with a conversion rate as high as 54% reported in some studies (Suzuki
et al., 1999). Therefore, several nodule localization strategies are commonly used in
clinical practice. The main approach consists in placing fiducial markers in the nodule
to facilitate its intraoperative localization. This nodule marking generally requires an
additional preoperative procedure, just before surgery, to typically place hookwires,
micro-coils, or dyes under fluoroscopy guidance (Keating and Singhal, 2016). De-
spite the high success rates reported for these nodule localization techniques (Chao
etal., 2018), the risk of marker migration is still non negligible and the patient is sub-
ject to additional radiation exposure. Furthermore, the optimal coordination of the
two procedures (i.e. preoperative localization and surgical resection) may become a
logistic burden, while the patient is at risk during the transfer from the CT suite to

the operating room.

To overcome the problems associated with preoperative localization procedures, in-
traoperative nodule localization has been proposed. This strategy relies on intraop-
erative imaging to guide nodule-marker placement immediately before surgery, gen-
erally in a hybrid operating room. For instance, Gill et al. (2015) have introduced the
iVATS system that uses a C-arm to localize nodules placing metal fiducial markers
under fluoroscopy guidance. Other groups have implemented similar approaches
combining intraoperative CT guidance with either hook-wire (Zhao et al., 2016), dye
(Yang et al., 2016), or double nodule marking (Chao et al., 2019). Chao et al. (2018)
showed that these intraoperative localization techniques were associated with de-
creased time at risk but increased time in the operating room, without any significant

difference in clinical outcomes with respect to preoperative localization.

Another intraoperative localization paradigm consists in markerless approaches. The
idea is to use intraoperative imaging on the patient under operating conditions, namely,
after the insertion of surgical ports and the induction of pneumothorax. This al-
lows to localize the nodule immediately before its surgical resection. Several authors
have proposed to use intraoperative ultrasound for the localization of lung nodules
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(Kondo etal., 2009; Rocco et al., 2011; Wada et al., 2015). In these images, nodules can
be identified as hyperechoic regions with hypoechoic shadows (Kondo et al., 2009).
However, this strategy is highly expert-dependent and requires a fully deflated lung,
which is in many cases unfeasible. Another method has been introduced by Rouzé
et al. (2016) in a hybrid operating room. A Cone Beam CT (CBCT) image of the
semi-deflated lung is used for the localization and delineation of the nodule. This
delineation is then registered to intraoperative fluoroscopic images that are used for
guidance. A clinical study performed on 8 patients demonstrated the feasibility of
this approach. While promising, all these intraoperative markerless approaches rely
entirely on the nodule visibility in the images, which may be limited in many cases
by the reduced quality and contrast of intraoperative images. For instance, the fuzzy
borders and low-density of ground glass opacity (GGO) nodules could make them
indistinguishable from normal parenchyma in a low-contrast CBCT or US image. To
overcome this limitation, we believe that image registration techniques can be used

to bring preoperative surgical planning information into the intraoperative setting.

Image registration has been previously used to compensate for lung deformation to
improve the efficiency of medical lung imaging in the diagnosis, treatment-planning,
and guided intervention of lung diseases (McClelland et al., 2013). Several registra-
tion methods have been proposed based on image intensity (Murphy et al., 2011),
biomechanical models (Al-Mayah et al., 2010; Seyfi Noferest et al., 2018), or a com-
bination of both (Han et al., 2017). The applicability of these methods is currently
restricted to lung breathing motion, mainly for conformational radiation therapy.
However, lung deformation is considerably larger during VATS (Alvarez et al., 2018)
which increases the difficulty of the registration problem. To our knowledge, only
a handful of works have addressed the problem of lung nodule localization during
VATS through image registration (Alvarez et al., 2019a; Uneri et al., 2013). This pa-
per presents a novel method to address this problem, evaluated for the first time on
actual VATS clinical cases.

The contributions of this work can be summarized as follows: (i) we propose a mark-
erless approach for lung nodule localization during VATS that is based on intraop-
erative CBCT imaging and image registration techniques; (ii) we propose a hybrid
registration method combining intensity-based and biomechanics-based image reg-
istration; (iii) we specifically take into account lung deformation resulting from the
patient’s change of pose, the pneumothorax, the diaphragm movements, and the
hilum deformation during the surgical procedure; and (iv) we evaluate our method

on 5 retrospective clinical cases of patients that underwent wedge resection through
VATS.

The remaining of this document is organized as follows: Sec. 6.2 presents an overview
of existing methods for lung deformation estimation. Sec. 6.3 exposes the general

108 = Chapter 6




workflow of our proposed approach. Sec. 6.4 describes the poroelastic biomechanical
model used in our simulations. Secs. 6.5, 6.6 and 6.7 then present the different steps
involved in our registration method. Results and discussion are presented in Sec. 6.8,

followed by final concluding remarks in Sec. 6.10.

6.2 Related works

The lung is a very soft, highly deformable organ in constant motion and deformation
due to breathing, heart beats, and body movements. A wide variety of lung image
registration techniques based on image intensity, biomechanical models, or hybrid
approaches have been developed to compensate for lung motion. These techniques
were proposed mainly for breathing motion compensation, with tomographic im-
ages typically acquired by pair at both the end inhalation and the end of exhala-
tion, or during the entire breathing cycle through 4DCT. In this study, our interest
is the compensation of lung deformation occurring during VATS using intraoper-
ative CBCT imaging. Breathing deformation and VATS deformation have different
orders of magnitude, the latter being significantly larger. Causes of these lung defor-
mation differ with the context. During normal breathing, lung deformation results
from the contraction and relaxation of respiratory muscles that induce volumetric
changes. Since the lung parenchyma and the thoracic cage can move independently,
sliding motions between these structures can be observed. The intraoperative lung
configuration results from different sources of deformation, mostly the patient pose,
the insertion of surgical ports, and the general anesthesia. The insertion of surgical
ports induces a pneumothorax that deflates the lung parenchyma and deforms the
hilum. General anesthesia also relaxes the diaphragm muscle which therefore moves
upwards (i.e. towards the apex), pushed by the weight of abdominal organs. The
combination of these factors with the reduced quality of intraoperative CBCT images
make the compensation of lung deformation for nodule localization during VATS a
real challenge.

6.2.1 Intensity-based image registration methods for lung deformation com-
pensation

Besides large lung deformation, sliding motion against the thoracic cage is widely
known to be one of the major challenges encountered when dealing with intensity-
based elastic registration of the lung parenchyma. In practical terms, the deforma-
tions of the lung and surrounding structures are constrained at the interface in the
normal direction, but move almost freely in the tangential direction. However, most
transformation models used in medical image registration assume a continuous de-
formation field that can not model this sliding effect (Maintz and Viergever, 1998;
Sotiras et al., 2013).
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Several authors have introduced methods for taking into account sliding interfaces
for lung registration. Anatomical segmentations can be used to independently reg-
ister the structures at the interface (Rietzel and Chen, 2006). With this technique,
classical image registration algorithms can be used with little to none modification.
However, gaps or overlaps may appear at the interface as a result of the independent
registration. One solution consists in using a boundary-matching penalty method so
that the interfaces are tied together. Wu et al. (2008) proposed to dilate the segmen-
tations after a masking procedure to enforce the alignment of the interface. Another
strategy is based on decomposing the deformation field at the interface into normal
and tangential components. Sliding motion can be preserved by applying regular-
ization on the normal component (Schmidt-Richberg et al., 2012), or by using a com-
posite transformation with a shared normal component but independent tangential
components (Delmon et al., 2013). The main drawback of these methods is the need
for anatomical segmentations. Indeed, these segmentations are time-consuming to
extract manually or may be inaccurate if extracted automatically, especially for patho-
logical lungs or low contrast images. In order to overcome this issue, other works
have proposed alternative methods that do not require prior anatomical segmenta-
tions. Ruan et al. (2009) presented a regularization strategy that discriminates the
divergence and the curl of the deformation field separately. The authors are able to
preserve sliding motion by allowing large shearing while penalizing other forms of
non-smooth deformation. Another technique consists in using several layers of su-
pervoxels (i.e. groups of neighboring voxels with similar intensities) connected using
minimum spanning trees (Heinrich et al., 2016). The deformation field is enforced to
be smooth across edge connections via regularization. However, non-connected su-
pervoxels are allowed to be registered independently, hence preserving sliding mo-
tion.

In a previous preliminary study, we applied the methods proposed by Wu et al.
(2008) to register two intraoperative CBCT images of the undeformed and deformed
lung acquired during a VATS intervention (Alvarez et al., 2019b). We managed to
obtain reasonable alignment of the lung surface, but insufficient alignment of the in-
ternal structures. To our knowledge, no other study has addressed the same problem

using intensity-based image registration only.

6.2.2 Biomechanical model-based methods for lung deformation compen-
sation

Another approach for lung deformation compensation is the use of biomechanical
models describing the lung’s behavior. The Finite Element Method (FEM) is com-
monly used to obtain numerical solutions to the underlying equations. For instance,
Zhang et al. (2004) proposed a Finite Element (FE) deformable model of the lung re-

constructed at the end of exhalation to simulate lung expansion motion. The thoracic
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cage surface at the end of inhalation was included in the formulation as frictionless
contact conditions that constrained lung expansion. A uniformly distributed negative
surface pressure was applied to the deformable model until it filled the thoracic cage.
A similar approach to lung expansion motion was proposed by Werner et al. (2009).
The authors performed a study on 12 lung tumor patients and evaluated how chang-
ing tissue parameters affect the estimated deformations. The results suggested that if
tissue homogeneity was considered, changing tissue parameters could only produce
marginal perturbations in lung deformation, since it was mainly dictated by the lim-
iting geometry of the thoracic cage. Another study investigated the effect of tissue
heterogeneity while modeling lung expansion (Ilegbusi et al., 2014). The elasticity
modulus was estimated locally using an inverse non-invasive method. In average,
the obtained values decreased with proximity to the diaphragm. The authors showed
that the history of deformation as well as its spatial distribution were different when
considering heterogeneous versus homogeneous material properties. Other authors
have also investigated the use of non-constant, non-uniformly distributed negative
surface pressures to produce lung expansion. Eom et al. (2010) computed negative
pressure values from patient-specific Pressure-Volume (P-V) curves calculated from
4DCT data. With this approach, the authors were able to simulate lung deformation
for the whole breathing cycle. The FE deformation predictions were more accurate
than simple linear interpolation between end expiration and end inspiration defor-
mations. Fuerst et al. (2015) automatically divided the lung surface in disjoint contact
zones. The negative pressure applied at the surface was then differentiated for each
contact zone, the specific values being found through an inverse problem formula-
tion. Although the authors used homogeneous material properties, the results sug-
gested an improvement of the deformation estimation thanks to the heterogeneous
surface pressures, which are able to account for the lack of heterogeneous material

properties.

Several works have also approached lung deformation estimation during breathing
as a contraction motion. Al-Mayah et al. (2008) proposed a deformable model of the
lung and surrounding structures reconstructed at the end of inhalation. Surface dis-
placements from the end inhalation to the end exhalation phases were found using
a mesh morphing method. These displacements were imposed as boundary condi-
tions to the inner surface of the thoracic cage, which is in direct contact with the de-
formable lung model. Interactions between the lung and thoracic cage was modeled
via frictionless contact, which allowed the integration of lung sliding. This study was
further extended to investigate the effects of contact friction at the lung interface (Al-
Mayah et al., 2009) or heterogeneous material properties (Al-Mayah et al., 2010), as
well as the influence of linear and non-linear elasticity constitutive laws (Al-Mayah
etal., 2011). These studies led to the development of the biomechanical model-based

deformable image registration framework Morfeus for treatment planning and accu-
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rate target delineation during external radiation therapy. Recently, Velec et al. (2017)
validated the accuracy of a commercial version of Morfeus on tomographic and MR
images of the thorax, prostate and liver of 74 patients, with validation errors mea-

sured in the range of the image spacing.

All the methods reported above model the lung parenchyma as a single elastic con-
tinuum. In reality, the volume occupied by the lung is composed of not only the
parenchyma but also a great quantity of air that is stored inside the airways and alve-
oli. External forces exerted by the respiratory muscles allow the inhalation or exha-
lation of air from the lung, ultimately resulting in tissue deformation. Following this
interpretation, the lung can be modeled as a porous medium composed of two co-
existing physical domains: a solid domain (i.e. the parenchyma) and a fluid domain
(i.e. the air flowing inside the lung). Physical laws governing the behavior of such
porous medium constitute the theory of poroelasticity, which has been previously
used to model breathing deformation. For instance, Ilegbusi et al. (2012) proposed
a poroelastic model to simulate lung deformation throughout a complete breathing
cycle. Boundary conditions for the fluid and solid domains consisted in a time vary-
ing positive pressure and a fixed support, respectively. The authors reported realistic
deformations including a hysteresis deformation effect when accouting for hetero-
geneous material properties. Gravity was later added in the loads which improved
the accuracy of the predicted deformation (Seyfi Noferest et al., 2018). Berger et al.
(2015) also proposed a dynamic poroelastic model of the lung tightly coupled with
an airway network modeling the airways. The authors presented a comprehensive
description of their model and introduced its applicability to normal and physiolog-
ical breathing using varying airflow resistance and local elasticity. Physiologically
realistic global measurements and dynamic were reported.

To our knowledge, no biomechanical model has ever been proposed to compensate
for intraoperative deformation during VATS. As mentioned before, deformation dur-
ing VATS can be significantly larger than during breathing, primarily because of the
pneumothorax. The parenchyma deflation observed following a pneumothorax is
caused by air getting out of the lung. Using elasticity models to represent this kind
of deformation may be oversimplifying, since the loss of air mass (i.e. air escaping
from the lungs) would be modeled as large tissue strain, which is unrealistic given
the amount of volume change. A poroelasticic model could instead be better suited to
separate the deformation of the two different media, which would allow to model the
air-tissue coupling in a macro-scale and cost-effective manner, as well as to simulate

air loss from the fluid phase.
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6.2.3 Hybrid methods for lung deformation compensation

Lung deformation compensation methods using intensity-based image registration

methods or biomechanical models have both advantages and disadvantages. Intensity-

based methods are limited by the reduced quality of intraoperative images and the
need for complex regularization strategies for realistic motion estimation. On the
other hand, good results on a voxel-by-voxel basis, especially for internal structures,
can be obtained if images of adequate quality are available. Regarding biomechanical
models, limits mostly come from the uncertainties on boundary conditions needed
for realistic lung motion simulations, the high variance in tissue parameters that
could be difficult to estimate accurately, or the compliance of computational require-
ments with clinical practice. However, when compared with intensity-based meth-
ods, biomechanical models are able to work with less data since the underlying bio-
physical representation naturally constrains the solution space. In addition, as these
are naturally boundary valued problems, their resolution is quite compatible with en-
vironments where primarily only surface information is available. Also, approaches
that use modeled physical and physiological phenomena may provide insight into
understanding disease and its effects on lung behavior. The hypothesis of hybrid
methods is that combining the two strategies allows to compensate for their indi-
vidual limitations.

Hybrid methods for lung deformation estimation have already been investigated in
previous works. Li et al. (2008) used intensity-based image registration to estimate
a deformation field from end of exhalation to end of inhalation breathing phases.
Dirichlet boundary conditions (i.e. imposed displacements) were then computed by
interpolating the deformation field on the surface nodes of a deformable FE lung
mesh. A similar approach was employed by Tehrani et al. (2015), who used Demons
image registration to estimate surface displacement boundary conditions at several
moments of the breathing cycle. In addition, the authors studied the effects of tissue
parameters and non-linear elasticity laws on tumor displacement estimation accu-

racy, reporting best results under non-linear elasticity assumptions.

Other studies have used intensity-based image registration to reduce residual errors
resulting from biomechanical model motion estimation. For example, Samavati et al.
(2015) used the Morfeus platform to estimate lung contraction between end of in-
halation and end of exhalation. The estimated deformation was then refined using
nonrigid image-intensity registration between the warped end of inhalation image
and the target end of exhalation image, which lead to improved estimation accuracy.
Han et al. (2017) applied the same methodology to lung expansion deformation es-
timation during breathing. The authors compared their approach to only intensity-
based or only biomechanical-model based image registration, and also evaluated the

influence of tissue parameters, contact friction and tissue heterogeneity. Their results
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suggest better performance of hybrid approach with respect to intensity or biome-
chanical models alone, but a performance similar to intensity-based approaches that
account for sliding motion. The uncertainty of model parameters was accounted for
by the refinement image-intensity step, allowing the use of simplified assumptions

for the biomechanical models in hybrid approaches.

Finally, Uneri et al. (2013) carried out a preliminary study using CBCT images of an
inflated and deflated ex-vivo pig lung. Although the authors did not use biomechani-
cal modeling, a hybrid approach was implemented combining surface morphing and
nonrigid intensity-based image registration. The reported results were promising,
but the applicability to clinical practice remains to be determined, since the quality
of real intraoperative VATS images is potentially lower than the quality of the images
used by the authors, and the amount of pneumothorax deformation is not under
control. More recently, Nakao et al. (2019) proposed a surface-based shape model of
lung deflation validated on Beagle lungs. The authors provided inter-subject statisti-
cal analysis of lung deformation on a population of 10 animals. However, validation
results were reported only for surface landmarks, and its applicability to internal
lung deformation remains to be investigated. To our knowledge, these studies are to
date the only ones within the VATS context, but are limited to animal specimens in

non-clinical conditions.

In a preliminary study, we recently proposed a hybrid approach to account for pneu-
mothorax related lung deformations (Alvarez et al., 2019a). This method was evalu-
ated on a retrospective clinical case of needle biopsy with pneumothorax complica-
tion, using a preoperative CT of the inflated lung and a postoperative low-dose CT
of the deflated lung. The present work complements our deformation compensation
approach and propose its adaption to actual intraoperative CBCT images acquired
during VATS interventions.

6.3 Method Overview

From the preoperative, routinely acquired structural chest CT image to the intraop-
erative surgical conditions, the lung undergoes very large deformation. This defor-
mation may be understood as a combination of two main factors: (i) a change of the
patient pose from supine to lateral decubitus, which changes the orientation of the
body and hence the influence of gravity on internal structures; and (ii) the pneu-
mothorax, which induces lung and hilum deformation. Accounting for these two
sources of deformation at once is a nontrivial task. To reduce the complexity of this
challenge, we thus introduced a functional approach that treats each source of de-
formation independently in two sequential phases. The lung deformation caused by
the change of patient pose was first estimated, followed by the one resulting from
the pneumothorax. Intraoperative CBCT images at each phase provided structural
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Left: preoperative CT image with the patient in supine position. Right:
intraoperative CBCT images of the inflated (CBCT;,s) and deflated
(CBCT4es) lung with the patient in lateral decubitus position. Middle:
superposition of the preoperative CT image rigidly registered to the in-
traoperative CBCT 4. r image. The FOV of the CBCTj. s image (outlined in
yellow) only provides a partial view of the lung. The nodule is encircled
in the preoperative CT image and is in this visible in all other images.

information of the deformed lung, which was integrated into our hybrid nonrigid
registration framework. In total, three anatomical images were used in this study:
a preoperative CT image containing the whole lung of the patient in supine posi-
tion (CT), and two intraoperative CBCT images of the patient in lateral decubitus
position. The two CBCT images provide a partial view of the inflated lung before
pneumothorax (CBCT;,, ) and the deflated lung after pneumothorax (CBCT.y), re-
spectively. It should be noted that only the preoperative CT image is currently used
in the medical protocol of a VATS intervention. Figure 6.1 shows the three images for

one clinical case.

The overall methodology proposed in this work is depicted in Fig. 6.2. A patient-
specific biomechanical lung model was first built from the preoperative CT image
before the intervention. As a first approximation, we considered the lung as a single
unified structure. The three or two lobes of a right or left lung, respectively, were then
not modeled separately. A poroelastic constitutive law was chosen to represent both

the parenchyma and the air flow within the lung.

The first stage of our process, later referred as Phase 1, estimates the deformation
associated to the patient change of pose. Nonrigid intensity-based image registration
was performed between the CT and CBCTj,, s images to compute the deformation
within the field of view (FOV) of the CBCT},, s image. The biomechanical model was
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Overview of the proposed nodule localization framework. The process is
split into two stages, Phase 1 and Phase 2, that respectively estimate the
change of pose deformation then the pneumothorax deformation.

then used extrapolate this deformation to the whole extent of the lung, including
portions that are not visible in CBCTj,, . This estimation of the whole lung geometry
will allow to define proper boundary conditions in the next phase, which would not
be possible with only the lung portion included in the CBCTj,, ; FOV. After this Phase
1, that will be detailed in Sec. 6.6, the complete intraoperative lung geometry before
pneumothorax is thus estimated.

The second stage of our method, Phase 2, estimates the deformation induced by the
pneumothorax. Surface information of the deflated lung was first extracted from the
CBCT. s image, while also evaluating the associated deformation of the hilum. Anin-
verse problem was then iteratively solved, using biomechanical simulations, to iden-
tify the model parameters that minimize a distance between the lung model and the
CBCTerinputs. At the end of this process the final pneumothorax deformation is
applied to the preoperative CT image, which provides an estimation of the intraop-
erative lung nodule position. Phase 2 of our methodology will be described in Sec. 6.7.
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6.4 Poroelastic model of the lung

The physical laws governing the poroelastic material used in this work were first
introduced in Biot’s theory of 3D soil consolidation (Biot, 1941, 1955). The total stress
in the porous material is carried partly by the fluid and partly by the solid structure.
The hydrostatic pressure of the fluid inside the pores generates tensile/compressive
stresses that cause deformation of the whole medium. It is assumed that the total
stress on the porous medium can be decomposed as the sum of the stress carried by
the solid structure and the stress carried by the fluid (Verruijt, 2013). This is known
as the principle of effective stress and is described by the expression

oy =0, —apl (6.1)

where o; and o, are the stress tensors for the total and effective stresses, p is the
hydrostatic pore pressure and I is the second-order identity tensor. The parameter «
is the Biot-Willis coefficient that describes the amount of bulk volume change that is

explained by a pore pressure change under constant stress.

The definition of the effective stress tensor o. depends upon the mechanical behav-
ior assumed for the solid medium. In this work, we used a first order approximation
assuming the theory of linear elasticity. We hypothesized that most of the deforma-
tion is caused by the fluid medium, thus the solid medium was modeled as linearly
elastic (i.e. assuming small deformations for this solid medium). The solid medium
was also considered as isotropic. It should be noted that more elaborate fluid-solid
interaction non-linear models are possible and this work represents a linearization
of considerably complex physics as a first step in understanding the potential of a
model-based approach. Following these assumptions, the effective stress o, (known
as the Cauchy stress tensor in the framework of linear elasticity) is related to the
deformation tensor € by the Hooke’s constitutive equation

o.=Mtr(e)I +2ue (6.2)

where A and p: are the Lamé constants that characterize the tissue’s response to stress.
These Lamé constants can also be written in terms of the Young’s Modulus £ and
Poisson’s ratio v through the relations

Ev E
A= A=) H o +v) (63)
The strain tensor e of Eq. (6.2) is defined in terms of tissue displacements u as
1 T
€= §(Vu +Vu') (6.4)
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This corresponds to the definition of the infinitesimal strain tensor, where second-
order terms are neglected. This is a first-order geometrical approximation of tissue
deformation.

Mechanical equilibrium is reached when stresses within the porous medium are in
balance with external loads. If inertial forces are not considered and the only external
force is gravity, the total stress tensor o; must then satisfy the equilibrium equation

V.-or+pg=0 (6.5)

where p is the density of the porous medium and g is the gravitational acceleration
vector. Since the porous medium is composed of two phases, its density may also be
defined in terms of its constituent densities as

p=ps(1— )+ ¢py (6.6)

where p, and p are the densities of the solid and fluid media, respectively, and ¢ is
the porosity of the whole medium.

An additional equation is needed in order to complete the description of the contin-
uum. In Biot’s theory of consolidation, the fluid flows through the pores according
to Darcy’s law. This law proposes a relationship between the instantaneous flow rate
g of an incompressible fluid through a porous medium, which is expressed by the
equation:

K
q=——Vp (6.7)
K

where & is the intrinsic permeability of the porous medium and 1y the dynamic vis-
cosity of the fluid. The conservation of fluid and solid mass is expressed by the stor-
age equation:

dp Oe

where S is the storativity parameter and € = Ou,/0x + Ju, /0y + Ou./0z =V -uis

(6.8)

the volumetric strain.

The term to the right hand of Eq. (6.8) expresses the time rate of change of dilata-
tion/contraction of the solid matrix and how that affects the nature of fluid mass
transport. For instance, if we consider the pores to be totally saturated with fluid, a
negative rate of volumetric strain will shrink the porous material and immediately
squeeze fluid out of the pores by means of raising interstitial pressure. Such fully
saturated porous medium is modeled by choosing the parameters o = 1 and S = 0.
On the contrary, if the pores are not fully saturated with fluid, the rate of volumetric
strain does not have an instantaneous effect on the distribution of pore pressure. This
is represented by the second term of Eq. (6.8) being nonzero, which results in a delay

on the transferal of volumetric strain to net fluid flow. The storativity parameter S is
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also understood as the amount of fluid that can be forced into the porous medium
while maintaining a constant bulk volume. Eq. (6.8) is in essence a mass conserva-
tion law that relates changes in volumetric strain of the solid medium to changes in

hydration level.

Animal studies were carried out by Miga et al. in order to evaluate the applicability of
a poroelastic model to brain shift deformation compensation. The authors extracted
in vivo measurements of displacement and interstitial pressure of interstitial fluid
within the context of two separate deformations sources, an expanding mass repre-
sented by a balloon catheter (Paulsen et al., 1999), and a temporal piston-delivery
system (Miga et al., 2000). The objective was to determine the accuracy of the poroe-
lastic model to compensate for the main bulk brain deformation under surgically
realistic loads. The results reported in those studies in conjunction with more recent
follow-up studies (Narasimhan et al., 2018) suggest that deformation and intersti-
tial pressure gradients measured from tissue can be predicted reasonably well using
relatively simple boundary conditions on the poroelastic model. Another remarkable
finding found in the human environment was that sources of brain deformation were
identified that involved significant fluid exchange with the parenchymal space as a
result of hyperosmotic agents (Chen et al., 2011). This exchange is very similar to the
evacuation occurring in the collapsing lung here. Based on that work, the additional
source term was employed into Eq. (6.8) to represent this fluid evacuation dynamic,
so that the storage equation is rewritten as

Vgt 5P = ast —mp-n) (69)
with —kp(p — p.) being the source term allowing for fluid evacuation. The parameter
Ky represents intrabronchi permeability. The parameter p. represents the pressure at
the interior of the anatomical structures that allow fluid evacuation. In this present
work, p. corresponds to intrabronchi pressure. It can be seen from Eq. (6.9) that fluid
evacuation (i.e. fluid sinking) occurs for positive values of x;(p — p.). This modified
version of the poroelastic equations was used to estimate brain shift deformation
(Dumpuri et al., 2007; Sun et al., 2014), and more recently yielded promising results

to estimate lung pneumothorax deformation (Alvarez et al., 2019a).

Finally, Egs. (6.5) and (6.9) fully describe the dynamic behaviour of a poroelastic ma-
terial with allowance for fluid evacuation. However, computing the transition from
the undeformed configuration to the equilibrium configuration is not necessary in
our context. Instead, we only seek to estimate the deformation once the lung has set-
tled after the pneumothorax. Consequently, computing only the equilibrium config-
uration is sufficient. We then implemented the steady-state version of the poroelastic
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equations previously presented, simplified as:

V-o.—aVp+pg = 0 (6.10)

-V (ﬁVp> +rp(p—p) = 0 (6.11)
Ky

The solution to these equations was computed using a FEM formulation implemented
on the open source library GetFEM (http://getfem.org/). Tissue parameters and
boundary conditions prescribed for each simulation will be described in Sec. 6.7.2.

6.5 Preprocessing of the CBCT images

CBCT scanners produce image reconstruction artifacts as any other conventional CT
scanner. However, the acquisition of the CT and CBCT images differ on the projection
data used, namely 1D for the CT (fan-beam) and 2D for the CBCT (cone beam). The
2D projection strategy relies on larger detectors that allow the CBCT scanner to have
a better spatial resolution and reduced irradiation dose (Kalender and Kyriakou,
2007). These are desirable features that make the CBCT scanner portable and OR-
compatible. However, the benefits come in detriment of the image quality, since the
larger detector suffers from higher image intensity scattering (Schulze et al., 2011),
and the particular mechanics of the acquisition process introduces cupping, alias-
ing and truncation artifacts (Kalender and Kyriakou, 2007; Schulze et al., 2011). The
presence of these artifacts will deteriorate the performance of any processing algo-
rithm based on Hounsfield unit (HU) values. We thus proposed to pre-process CBCT

images before our registration method.

Two artifacts affect HU values: the truncation artifact that appears when the imaged
object is larger than the scanner FOV (Lehr, 1983), and the cupping artifact due to
scatter radiation. As a result, the reconstructed images presents an overestimation of
HU values near the circular border of the FOV and an underestimation of HU values
towards the center of the FOV. In this work, we assumed the reconstructed image to
be the sum of real HU values and artifact effects. We modeled these artifact effects
via a piece-wise linear function that is circular symmetric with respect to the cranio-
caudal axis (i.e. the rotation axis of the CBCT scanner) and constant across axial slices.
The shape of this function was designed empirically by observing CBCT images. The
artifact-corrected images were obtained by subtracting the modeled artifacts to the

reconstructed images.

In addition to HU artifacts, reconstruction errors are also present at the superior and
inferior borders of the FOV, in the cranio-caudal direction. These errors are caused by
projection data missing in several projections of the whole gauntry rotation, as well as

beam scattering and aliasing. As a consequence, the reconstructed image is severely
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distorted in these regions, where structural information is almost completely lost.
We observed that this effect is present in the axial slices of the first and last 12 mm of
the image approximately. For all the processing algorithms described in subsequent

sections, we did not take into account the information contained in these slices.

6.6 Phase 1: Estimation of the change of pose deformation

This section describes the Phase 1 processes of the general workflow presented in
Fig. 6.2. The aim is here to estimate the geometry of the whole lung in intraoperative
condition from the CBCTj,, s scan, just before the pneumothorax is induced. These
Phase 1 processes are schemed in Fig. 6.3. First, a deformation field was computed
between the preoperative CT and intraoperative CBCT},, ; images, via intensity-based
image registration. This registration process involved both a rigid and a nonrigid
transformation, as well as a masking procedure that permitted sliding motion at the
lung interface. The computed deformation field then defined imposed displacement
boundary conditions to a biomechanical model of the lung, to extrapolate the whole

lung deformation.

6.6.1 Image-based change of pose estimation

The following subsections describe the intensity-based image registration of the pre-

operative CT and intraoperative CBCTj,, s images, as illustrated on top of Fig. 6.3.

Segmentation of CT structures

The lung parenchyma was segmented using an own modified version of Chest Imag-
ing Platform (https://chestimagingplatform.org/), an open source library for
image processing and analysis of chest CTs. A threshold-based approach was used
for the segmentation of air-like voxels in the preoperative CT volume. This provided
an initial segmentation containing both lungs and the airways. Connected compo-
nent analysis was then applied on an axial slice located at approximately 40 mm
from the top of the initial segmentation for the automatic detection of a voxel inside
the trachea. This voxel was used as a starting seed of a 3D region growing algorithm
that segmented the trachea and the first airway branches. The resulting airways seg-
mentation was removed from the initial air-like voxels segmentation, to isolate the
lung of interest. The result was manually adjusted to include the areas of the hilum
that remained under-segmented. Finally, morphological closing was applied to the

lung segmentation to fill in the remaining wholes and to smooth out the contours.
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Image based change of pose deformation estimation
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Schematic diagram of the Phase 1 process to estimate the change of pose
deformation. The top block illustrates the image-based registration of the
preoperative CT and intraoperative CBCTj,,; images. After rigidly reg-
istering the spine, an elastic registration based on anatomical segmenta-
tions of the lung is carried out. The bottom block concerns the estima-
tion of the complete lung geometry after the change of pose deformation.
The previously computed deformation field is transferred as imposed dis-
placements boundary conditions on a FEM model. This model extrapo-
lates the deformation to the whole extent of the lung, including regions
that are not within the FOV of the CBCTj,,; image.

Segmentation of the CBCT,,, s structures

The CBCT artifacts and noise, combined with the deformed lung morphology after
the patient change of pose, make the automatic segmentation of the lung in CBCT im-
ages very challenging. The segmentation algorithm used on the preoperative CT in-
deed performed poorly on the CBCTj,, s image. We thus implemented a semi-automatic
growing method, initialized by the CT segmentation and propagating in the CBCT;,, s
image. This propagation was based on an elastic image registration process very
similar to the one described in Sec. 6.6.1 and 6.6.1. To avoid redundancy, we refer
the reader to those sections for details on the registration process. After registra-
tion, the preoperative lung segmentation was warped with the resulting deformation
field and the resulting segmentation was manually adjusted to correct for poorly-
segmented regions.

The spine was also semi-automatically segmented. First, a line profile crossing the
spine was computed. Then, a minimal Region of Interest (ROI) containing the whole
spine was determined using the spatial derivative of intensities on the line profile.
After thresholding the image intensities within the ROI, a connected component anal-
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ysis and morphological operations yielded the final spine segmentation.

Rigid registration of the spine

The CT and CBCT;,,; images are defined in non-overlapping reference frames, as
they were acquired by distinct scanners with the patient in a different pose (supine
and lateral decubitus, respectively). An initial rigid transformation between the two
images is thus necessary before considering any local deformations. In this study, we
hypothesized that the spine’s curvature is minimally affected by the change of pose,
and we thus used this structure as the reference for the rigid registration.

The rigid registration process was carried out with the Elastix toolbox (Klein et al.,
2010), with the preoperative CT as the moving image and the intraoperative CBCTj,,
as the fixed one. A Normalized Correlation Coefficient (NCC) similarity metric was
computed over a series of 2000 image points randomly pooled from the spine seg-
mentation. Since the NCC metric uses image intensities and vertebrae resemble sig-
nificantly one another, a single spine landmark was manually selected to initialize
the transformation and avoid shifting in the spine’s direction. The optimal transfor-
mation parameters were found using the adaptive stochastic gradient descent opti-

mization algorithm.

Elastic registration

The elastic registration process, again using the NCC similarity metric, was based
on the sub-anatomical registration approach proposed by Wu et al. (2008). This ap-
proach independently registers sliding structures by selectively masking image in-
tensities with anatomical segmentations. First, we masked the CT and CBCTj,,; im-
ages using the lung segmentations. The voxels lying outside these masks were re-
placed with a constant HU value below the range of possible parenchyma values (i.e.
below -1000 HU, corresponding to air). The lung mask in the intraoperative CBCTj,,
image was extended by 5 mm using morphological dilation, and the set of points
used to compute the NCC metric were pooled from this extended mask. By extend-
ing the mask, points lying outside the lung in the fixed image are registered to the
same intensity values in the moving image, which also lie outside the lung. In ad-
dition, matching outside points has no cost in terms of the similarity metric, which
results in the registration process to be guided mostly by the information within the
lung. As a result, this process minimizes the misalignment error of the internal lung

structures while allowing sliding at the lung interface.

Large deformations were accounted for using a multi-resolution Free Form Defor-
mation (FFD) strategy, with a B-Splines transformation model parameterized on a
regular grid in the fixed image domain (i.e. CBCTj,r). A total of 5 incremental grid

resolutions were used, where the increments were calculated by factors of two. The

6.6. .

123



finest resolution had a regular grid size of 16 mm. The adaptive stochastic gradient

descent algorithm was used for the optimization process.

The result of this registration process is a non-rigid deformation field that maps
all points of the fixed image (CBCT},,r) domain to the moving image (rigidly regis-
tered CT) domain. Thanks to the multi-grid, multi-resolution transformation model,
the spatial Jacobian of the deformation field is positive throughout the whole do-
main (Choi and Lee, 1999). This ensures the invertibility of the deformation field,
which is important to later compute imposed displacement boundary conditions.

6.6.2 Extrapolation of the deformation to the entire lung

The deformation field obtained in the previous step provides a first estimation of the
change of pose deformation, but is limited to the FOV of the CBCT},,; image. A FEM
model was then used to extrapolate this deformation to the entire lung, especially in
the lung apex and/or the diaphragm area that are usually at least partially not visible.
The hypothesis is that the unknown deformation in these regions can be estimated
by means of mechanical forces that emerge to counter external loads applied in the
middle of the lung (i.e. inside the FOV). In other words, deformation in unknown
regions is estimated by finding a state of mechanical equilibrium after imposing the
partially known deformation. Note that we did not try to simulate the very complex
mechanisms of the patient change of pose; we have so far no means of estimating
the actual external and body loads of this complex phenomenon. Instead, we simply
tried to functionally estimate the entire lung deformation for the practical purposes
of intraoperative surgical guidance.

The following subsections describe the FE extrapolation process which main steps
are illustrated at the bottom of Fig. 6.3.

FE mesh generation

The geometry of the lung was meshed from the preoperative lung segmentation us-
ing CGAL library (https://www.cgal.org/). This FE mesh consisted of approxi-
mately 27000 first order tetrahedral elements with an average size of 8 mm.

Computation of imposed displacements

The FEM boundary conditions were computed from the rigid transformation and the
deformation field described previously in Sec. 6.6.1. First, the patient-specific preop-
erative FE mesh was rigidly registered to the intraoperative setting using the rigid
transformation parameters. Then, we calculated the deformation associated to every
node of the mesh lying within the bounds of the change of pose deformation field.
The deformation field at every node position was inverted using the iterative algo-
rithm proposed by Crum et al. (2007), to define the displacement from the rigidly
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registered CT domain to the CBCTj,,; domain. As a result, we obtained a set of dis-
placement vectors that can be used as nodal boundary conditions in a FE simulation.
In the following, we will refer to these boundary conditions as imposed displace-

ments.

FE estimation of the change of pose

The lung was modeled as an homogeneous and isotropic medium, governed by the
biphasic constitutive laws described by Egs. (6.10) and (6.11). We here hypothesized
that the change of pose deformation is mainly caused by gravity and contacts be-
tween the lung and its surrounding moving structures. Thus, effects of the fluid phase
on this deformation were assumed to be negligible at this stage, which implies no
fluid flow throughout the whole domain and fluid mass conservation.

For the fluid phase, we prescribed homogeneous Dirichlet boundary conditions of
pressure on the whole lung surface (p = 0), with the intrabronchi permeability pa-
rameter x; set to zero to ensure mass conservation. For the solid phase, imposed
displacement were applied to surface nodes as Dirichlet boundary conditions, while
ensured on nodes inside the mesh via Lagrange multipliers. The remaining nodes
were left unconstrained.

Since imposed displacements boundary conditions enforce the final deformation, tis-
sue parameters have little influence on the final equilibrium state. Thus, we simply

used the parameters of the pneumothorax estimation phase described in Sec. 6.7.2.

6.7 Phase 2: Estimation of the pneumothorax deformation

This section describes the second stage of the general workflow presented in Fig. 6.2.
The pneumothorax deformation was estimated using a pipeline based on an inverse
formulation, as illustrated in Fig. 6.4. This inverse formulation fitted the lung biome-
chanical model to the real intraoperative deflated state observed in the CBCTy, ¢ im-
age. The nodule position was then updated by warping the preoperative CT with the
change of pose deformation and then the simulated pneumothorax deformation.

6.7.1 Intraoperative data processing

The intraoperative CBCT;,,; and CBCTy.y images can be in misalignment, because
the patient may had to be moved between the two scans so that the surgeon could bet-
ter perform the thoracic incisions. We thus rigidly registered these images using the
rigid spine as a reference. The resulting transformation served to align the FE extrap-
olated lung model with the CBCT .y image. Afterwards, this image was processed to
extract the surface of the deflated lung and to estimate the hilum deformation after

pneumothorax.
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Schematic diagram of the Phase 2 stage to estimate the pneumothorax de-
formation. Intraoperative images are processed to segment the surface of
the deflated lung, and to compute a deformation field approximating the
hilum deformation between CBCT;,,; and CBCT.¢. An inverse problem
based on FE simulations estimated the pneumothorax deformation. Tis-
sue parameters were optimized until the simulated model best fits the in-
traoperative data. Finally, the intraoperative nodule position is obtained
by warping the undeformed position with the simulated pneumothorax
deformation.

Segmentation of the deflated lung surface

The lung deflation process causes the complete collapse of some airways branches
and alveoli. This condition, known as atelectasis, locally increases the density of the
lung parenchyma making its boundary with other soft tissues barely distinguishable
in some regions. Therefore, automatically segmenting the deflated lung is extremely
challenging. Since providing an automatic method was out of the scope of this paper,
we decided to segment this surface manually. In this study, only the external surface
of the deflated lung is considered.

A set of about 300 points were manually placed over the CBCT,.; image along the
surface of the deflated lung. The distance among points varied with the local curva-
ture of the deflated surface, ranging roughly from 10 mm to 30 mm. Then, we used
MeshLab (Cignoni et al., 2008) to reconstruct a triangular surface from these points.
First, the convex-hull of the point cloud provided an initial estimation of the surface.
Then, this initial surface was re-sampled with the Poisson disk sampling algorithm
(Corsini et al., 2012) to obtain a homogeneous point resolution. Finally, a refined sur-
face mesh was reconstructed from the sampled point cloud using the ball-pivoting
algorithm (Bernardini et al., 1999). It is worth noting that because of the convex-hull
algorithm, details of independent lobe deformation were averaged. This goes in ac-
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cordance with our single structure assumption for representing the lung anatomy.

Estimation of the hilum deformation

During pneumothorax, the hilum deforms in the same direction as the lung deflates.
The extent of this deformation is intervention-dependent and unknown a priori. In
addition, regions of the lung parenchyma closest to the hilum are often totally col-
lapsed by the pneumothorax. The image intensity of the hilum and the collapsed
parenchyma become nearly indistinguishable. For these reasons, in this study, we
used the deformation of the main airways as a surrogate for the hilum deformation.
We estimated this airways deformation by means of intensity-based image registra-
tion. First, the three main level airways were semi-automatically segmented from
the CBCT . image. This segmentation was extended by 5 mm using morphological
dilation in order to ensure the inclusion of airway contours (see purple contours on
Fig. 6.4). Elastic registration between the rigidly registered CBCT;,,; and the CBCT s
images was then performed using the NCC similarity metric computed over the air-
ways segmentation. The resulting deformation field was used as an estimation of the

hilum deformation.

6.7.2 Simulation of the pneumothorax

At the end of exhalation phase of a breathing cycle, no air flows into or out of the
lung. At this moment, the internal lung pressure is equal to the external atmospheric
pressure. This is explained by a perfect equilibrium between the inward recoil of
the alveoli and the outward recoil of the chest wall, which is possible thanks to the
negative pressure (~ -5 cm HyO relatively to the atmosphere) in the intrapleural
space (Levitzky, 2007). As illustrated in Fig. 6.5, the pneumothorax phenomenon
may be understood as a disruption of this natural state of equilibrium. Specifically,
the rupture of the parietal pleura resulting from surgical thoracic incisions allows
the entrance of air into the intrapleural space (or the forceful inflow of gas, if airtight
trocars are used). As a result, this pressure in the intrapleural space is no longer neg-
ative, which produces a lost of balance between the outward recoil of the chest wall
and the inward recoil of the alveoli. Without the negative pressure in the intrapleural
space, the lung parenchyma is no longer pulled out by the thoracic cavity, resulting

in the shrinking effect observed during a pneumothorax.

We decided to model the pneumothorax deformation using a functional approach.
First, the lack of outward recoil from the chest wall was represented by a positive
pressure on the lung surface of 5 cm HyO relative to the atmosphere. This fixed hy-
drostatic pore pressure, corresponding to the transmural pressure, was applied as
Dirichlet boundary conditions on all surface nodes of the FE mesh, for the fluid phase
only (p =5 cm Hy0). Second, the inward recoil of the alveoli was modeled by fluid

6.7. = 127



atmospheric pressure
(0 cm H,0)

rupture in parietal
pleura
chest /
wall

chest )
wall €= alveoli S alveoli
outward inward . inward .
recoil recoil gravity recoil gravity
__Visceral_
/ pleura \
intrapleural pressure transmural pressure intrapleural pressure
(-5cm H,0) (5cmH,0) (0 ecm H,0)
Before pneumothorax Beginning of pneumothorax

Schematic representation of the pneumothorax phenomenon. Left, the
state of the lung at end of expiration. The lung is at equilibrium and no
airflow is present. Right, the rupture in the parietal pleura makes the in-
trapleural negative pressure vanish which voids the outward recoil from
the chest wall. The transmural pressure and the inward recoil of the alve-
oli produce the lung deflation observed during a pneumothorax.

evacuation. In the constitutive law of the fluid represented by Eq. (6.9), this evac-
uation of fluid from the system is modeled by a nonzero value for the evacuation
term ry(p — pc). Using these two conditions, internal pore pressure gradients were
generated in the fluid phase during simulations. These gradients induced volumetric
stresses in the porous medium, which resulted in the desired pneumothorax tissue

contraction.

Boundary conditions and loads

For the fluid phase, all surface nodes were prescribed with a fixed pressure condition
of 5 cm HyO, whereas remaining nodes were left with the natural no-flux boundary
condition. As for the solid phase, nodes inside the main airways were constrained
with imposed displacements coming from the estimation of the hilum deformation.
Remaining nodes were left with the natural stress-free boundary condition. Finally,
a gravitational load was applied to the whole porous medium in the lateral to medial

direction (horizontal axis in the CBCTj. s image).

Contact with the thoracic cage

Frictionless contact conditions were used to simulate the deforming lung sliding
along the parietal pleura, i.e. the inner surface of the thoracic cavity. This surface
corresponds to the outer surface of the initial FE lung mesh, before simulation, that

was re-sampled with a coarser mean triangle size of approximately 20 mm. This re-
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sampled surface, later referred as the contact surface, was assumed rigid throughout
the simulations. Node-to-node frictionless contact conditions were prescribed on all
surface nodes of the FE lung model, excluding the nodes with imposed displacement
boundary conditions. These contact conditions restrict the deformation of the lung,

and can be expressed using the following inequality constraints:

gl) = 0 (6.12)
on(x) < 0 (6.13)
g(x)on(x) = 0 (6.14)

where g(x) is the gap distance between the contact surface and the deformable sur-
face at the material point «; and o, (x) is the applied normal contact force at the

material point x.

The gap distance is calculated as g(x) = go(x)+u(x) - v, where v is the inward point-
ing normal of the contact surface, go(x) is the initial gap distance before deformation,
and u(z) is the displacement vector. The distance g(x) is thus negative when there
is penetration of the deformable surface into the contact surface. The term o, (x) is
a shorthand notation for (o (x)n) - n, the projection of the Cauchy traction at the

material point « onto the outward pointing normal n.

The Egs. (6.12) to (6.14) correspond to Signorini’s conditions. The relation expressed
in Eq. (6.12) represents a condition of impenetrability, while Eq. (6.13) states that
the contact forces must always be compressive. The complementary condition in
Eq. (6.14) allows contact forces to be generated only during contact (i.e. g(x) = 0).

Contact with the upward moving diaphragm

During surgery, the use of curare (a muscle relaxant) relieves tension in the diaphragm
that then deforms under the pressure from abdominal organs. This deformation is
transferred to the lung parenchyma which moves upwards towards the apex. Al-
though this phenomenon is clinically observed for all patients, those with higher
indices of obesity undergo larger diaphragm displacement.

During intraoperative imaging, the position of the diaphragm is not always in the
FOV of the CBCT images.We thus introduced an additional contact surface represent-
ing the diaphragm that can push the lung model upwards during the FE simulations.
This diaphragm contact surface was initialized as the lower surface of the initial FE
lung mesh, before simulation, that was re-sampled with a coarser mean triangle size
of approximately 20 mm. Since the position of this diaphragm surface was unknown
in the intraoperative CBCT images, we defined its position with an additional pa-
rameter dg;qp,. The surface is allowed to move towards the apex along the principal
axis of the lung’s geometry, which was computed using Principal Component Anal-
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Material properties and their values during pneumothorax simulations.
The last three parameters are patient and intervention specific and varied
within the reported range during an optimization process.

Parameter Value Units
E 550 Pa
v 0.35 -
« 1.0 -
s 700 kg / m?
pf 1.205 kg / m?
K 2.75 x 10717 m?
[y 1.83 x 107° Pa-s
Pe 0 Pa
g 9.81 m /s>
0] [0.00, 0.93] -
Kb [1.83 x 10719, 1.83 x 107?] 1/Pa-s

ddiaph [15 x 1073, 40 x 1073] m

ysis (PCA) on the mesh nodes. dgiq,, represent the distance, along the vertical axis,
between the current diaphragm position and its initial position. This displacement
was included in the parameters to be optimized by our inverse problem formulation,

with a minimum value of 15 mm defined empirically by clinical observation.

Material properties

The lung tissue was considered as an isotropic and homogeneous poroelastic contin-
uum. An important characteristic of our pneumothorax modeling approach is the al-
lowance of air evacuation. We hypothesized that during pneumothorax air exchanges
happen at the level of small bronchi, resulting in air being transported out of the
porous medium through the airways. These exchange effects were approximated by
an organ-wide distributed term x;(p — p.) that allowed the simulation of air evacua-
tion (Eq. (6.9)). In addition, we hypothesized that tissue porosity may change from
patient to patient according to his/her response to general anesthesia and mechanical
ventilation, and the amount of atelectasis. The values for tissue porosity and intra-
bronchi permeability are unknown for every particular surgery, and were then in-
cluded in the parameters to be optimized by our inverse problem formulation. For
the remaining material properties, values and ranges reported in previous studies
were chosen (Alvarez et al., 2019a; Seyfi Noferest et al., 2018; Sun et al., 2014). Ta-

ble 6.1 collects the values used during the pneumothorax simulations.

6.7.3 Inverse problem formulation

The amount of pneumothorax deformation observed during a VATS intervention is
patient and intervention dependent. This difference in deformation can be translated
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as different values for specific model parameters. Since these values are unknown
in advance, we proposed to estimate them using an inverse problem formulation.
The goal was to simulate several pneumothorax deformations and to optimize the

parameters until the model best reproduces the observed intraoperative deformation.

The trust-region non-linear optimization method was used to solve the inverse prob-
lem. The cost function was defined as a surface-to-surface distance between the lung
deflated surface, segmented from the CBCT,.; image (c.f. Sec. 6.7.1), and the simu-
lated lung deformed surface. Formally, we solved the following problem:

N
argmin 0(0) = 3 I~ ai0)1 (615)
where 6 is a set of tissue parameters and (2 the surface-to-surface distance. N is the
total number of nodes in the target surface segmented in CBCTy., p; is an indexed
node of that surface and g;(0) is its corresponding closest node on the surface of the
deformed FE mesh.

Since the optimization may be highly sensitive to initialization, we repeated the pro-
cess three times with a different initialization parameter vector 8y. Values were each
time randomly generated from realizations of uniform distributions with empirically-
defined ranges (see Table 6.1). In this study all three simulations were always con-

sistent, and only the first simulation results were reported in the results section.

6.7.4 Nodule localization

Tissue parameters () that solve the optimization problem defined in Eq. (6.15) pro-
duce the lung deformation that more closely approaches the intraoperative observed
lung surface. The associated deformation field is defined on a spatial domain bounded
by the FE mesh, and can be computed at any point by means of barycentric interpo-
lation. This interpolation was used to warp the preoperative CT, which provided an

estimation of the nodule position after pneumothorax.

6.8 Resulis

This section presents and comments the quantitative and qualitative findings from
this study. The clinical dataset used for validation is first described, followed by the
evaluation of the deformation estimated after the change of pose (Phase 1) and pneu-
mothorax (Phase 2).
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Study characteristics for each clinical case. The pneumothorax was con-
trolled following two techniques: mechanical control of air inflow into the
lung through the intubation tube; or pressurized insufflation of CO; into
the thoracic cage through airtight trocars. The number of validation land-
marks depends on the visibility of lung structures in the images.

Case Operated lung Pneumothorax #landmarks

1 Left Air 27
2 Right Air 40
3 Right Air 46
4 Right Air 23
5 Left CO, 23

6.8.1 Clinical dataset

Our retrospective study included five patients with single pulmonary nodules de-
tected by CT examination. All were enrolled for a VATS wedge resection guided by
intraoperative CBCT imaging. The experimental protocol was based on the work in-
troduced by Rouzé et al. (2016). This protocol was extended to include two CBCT ac-
quisitions instead of one, before and after induction of the pneumothorax. This study
was realized at Rennes University Hospital (France) under the approval of the local
ethics committee (2016-A01353-48 35RC16_9838). All patients signed an informed

consent prior to the procedure.

Preoperative CT is the standard diagnostic image and was acquired with the patient
in supine position. Both CBCT images were acquired with a C-arm system (Artis
Zeego, Siemens Healthcare, Germany) after general anesthesia, with the patient in
lateral decubitus position. The first CBCT image (CBCTj,,s) was acquired just before
the creation of surgical incisions, with the target lung still inflated. The second CBCT
image (CBCT4.s) was acquired after pneumothorax, with the target lung deflated.
The amount of lung deflation had to be controlled to provide enough space for ma-

neuvering during surgery, while avoiding a total collapse of the lung.

All patients were intubated with a double lumen tube (Bronchocath, Mansfield, MA,
USA) which allows independent ventilation of the operated and non-operated lungs.
For the image acquisitions, lung deflation was controlled using two mechanisms.
For patients 1 to 4, air flew naturally into the thoracic cavity through the thoracic
incisions. The lung deflation was controlled by insufflating oxygen into the operated
lung through the lumen of the tube. For patient 5, airtight trocars were used and
CO; was insufflated into the thoracic cavity. The lung deflation was controlled by

modulating the CO; pressure.

For validation purposes, paired anatomical landmarks were manually placed on the
CT, CBCT;,, rand CBCTj. s images. This was performed by a single rater, the expert
thoracic surgeon who performed all the VATS interventions. A total of 23 to 45 land-
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Case 1

Figure 6.6: Spatial distribution of anatomical landmarks within the lung FE mesh re-
constructed from the preoperative CT image.

marks were placed for each patient. These landmarks were distributed among vessel
and airway bifurcations in the most complex image, i.e. the CBCT . image, and then
were localized in the CBCTj,,; and CT images. The validation was based on Target
Registration Errors (TRE) computed as the distance between corresponding land-
marks after deformation compensation. Differences among TRE distributions were
tested with the non parametric Wilcoxon signed rank test, with a confidence level of
5%. The study characteristics for each clinical case are detailed in Table 6.2.

Landmark positions are illustrated in two representative cases in Fig. 6.6. Since these
anatomical landmarks are used for validation, their positions should be distributed
inside the lung parenchyma as homogeneously as possible. However, the restrictions
of the image quality were difficult to surpass and reduced the spatial distribution
of these landmarks in some cases. Notably, structures of medium-size and below
that are clearly visible in the preoperative CT image were impossible to locate in the
CBCT 4.y image. It is clear from Fig. 6.6 that validation can only be performed for re-
gions of the lung inside the FOV of the CBCT scans. Notably, regions of the apex and

diaphragm do not contain any landmarks.

6.8.2 Results: Phase 1, estimation of the change of pose

The change of pose deformation estimation relies heavily on the computation of a
deformation field through intensity based image registration. The accuracy of this
deformation field was evaluated with TRE distributions computed from the land-
marks of the preoperative CT and intraoperative CBCT;,, y images. Figure 6.7 depicts
the obtained TRE distributions for all clinical cases. First, rigid registration provided
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TRE distributions for rigid and elastic registration between the preopera-
tive CT and intraoperative CBCT;,,; (Phase 1, change of pose).

an insight on the amount of deformation induced by the change of patient pose. We
could observe large deformations, with the main structures in major miss-alignment.
We obtained mean (+ standard deviation) TREs of 6.8 mm (£1.9 mm), 12.1 mm
(£4.1 mm), 13.5 mm (+3.2 mm), 25.8 mm (+5.0 mm), and 18.0 mm (+£7.1 mm) for
cases 1 to 5, respectively. These errors are even larger than those reported for respira-
tory motion in the lung registration literature (e.g. a mean error of 8.4 mm reported by
Delmon et al. (2013)). After elastic registration, TREs were significantly reduced to
mean values of 1.5 mm (£1.4 mm), 1.0 mm (+0.5 mm), 1.6 mm (£1.4 mm), 2.7 mm
(£2.7mm), 1.6 mm (£1.4 mm), respectively. This registration accuracy is compara-
ble to the one reported in studies for lung breathing motion compensation (Murphy
etal., 2011).

Fig. 6.8 depicts the results obtained after rigid and elastic registration. Coronal slices
of the registered CT and intraoperative CBCT},,; images were superposed to show
the quality of registration on two representative clinical cases. It can be observed that
internal structures were within reasonable alignment, as suggested by the obtained
TRE distributions. Also, lung contours were well aligned thanks to the masking ap-
proach used during registration. However, we found poorly-registered regions near
the rim of the CBCT;,,; images, where the lung is incomplete because of the limited
FOV of the scanner and where reconstruction artefacts were present (e.g. Case 1). Fur-
thermore, localized atelectasis also reduced the registration quality, since voxel inten-
sities drastically differed between images in the affected regions (e.g. Case 4). These
registration errors may be under-represented in the TRE distributions of Fig. 6.7 given
the difficult landmark placement in these regions. However, we consider that the
achieved registration accuracy is sufficient for the purpose of estimating the com-
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Qualitative results of rigid and elastic registration between the preopera-
tive CT (green) and intraoperative CBCT;,,; (magenta) images. Coronal
slices are shown for two representative cases. The target CBCT},,; image
in gray-scale is shown in the far right column.

plete lung geometry after the change of pose.

Due to the lack of landmarks outside the FOV of the CBCT images, it was not pos-
sible to directly evaluate the quality of the complete lung geometry after FEM ex-
trapolation. Nonetheless, the benefit of this extrapolation approach was assessed in
comparison to a baseline rigid registration approach, and the results are presented
later in Sec. 6.8.4.

6.8.3 Results: Phase 2, estimation of the pneumothorax

The solution to the inverse problem formulation was used to warp the CBCT;,, s land-
marks with barycentric interpolation. The TRE distributions were computed using
these deformed landmarks and the ground truth CBCTg.; landmarks. To illustrate
our contribution, the errors that would be obtained without a deformation compen-
sation method were also estimated in two ways. First, TREs between the rigidly reg-
istered CT and CBCTy,.; images were computed. This corresponds to the errors ex-
pected when the CBCT;,,;y image is not available and only a rigid transformation of
the preoperative data to the intraoperative setting is possible. Second, TREs were
computed between the rigidly registered CBCT;,, ; and CBCT . s images. These would
be the expected errors when estimating the nodule position directly from the CBCT;,, s
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image, without compensating for the pneumothorax deformation. These TRE distri-
butions are presented for all clinical cases in Fig. 6.9.

Figure 6.9 first puts in evidence the large lung deformation that occurs during a
VATS procedure. After rigid registration of the preoperative CT and intraoperative
CBCT. s images, we obtained mean TREs of 33.8 mm (410.1 mm), 34.1 mm (43.7 mm),
22.0mm (£8.9mm), 34.4 mm (£+4.6 mm), and 37.9 mm (£8.2 mm) for cases 1 to 5, re-
spectively. Likewise, mean TREs after rigid registration of the CBCT;,,; and CBCT ¢
images were 28.7 mm (£11.6 mm), 24.6 mm (£+4.0mm), 19.5mm (+4.0 mm), 25.9 mm
(£6.8 mm), and 37.7 mm (+8.8 mm). This deformation is considerably larger than
both breathing and change of pose deformations. Except for Case 5, larger deforma-
tions were obtained from rigidly registering the preoperative CT image instead of the
CBCT;,,y image (maximum p = .018). This result corroborates that the change of pa-
tient pose does have an influence in lung deformation during VATS. Also, it is clear
from Fig. 6.9 that our deformation compensation framework is able to account for
a considerable amount of this intraoperative deformation. Indeed, mean TREs were
reduced to 4.9 mm (£2.2 mm), 10.3 mm (+5.2 mm), 7.5 mm (£3.3 mm), 11.2 mm
(£4.9mm), and 14.3 mm (£7.5 mm), respectively, which corresponds to a correction
of 85%, 70%, 68%, 68%, and 63% (71% in mean) of the initial error without compen-
sation. Specifically, the nodule localization errors were 8.4 mm, 13.4 mm, 9.9 mm,

11.6 mm and 10.2 mm, respectively.

Figure 6.10 illustrates quantitative results for two clinical cases. It can be observed
that the surfaces of the deformed FE meshes were close to the intraoperative de-
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Qualitative results of our deformation compensation framework for two
clinical cases. Left: final deformed lung FE mesh superposed over the
extracted deflated lung surface (in green). Middle: Registered landmark
errors, deformed FE lung mesh and thoracic cage contact surface. Right:
Initial nodule position (wireframe, black surface), ground truth nod-
ule position (wireframe, green surface) and predicted nodule position
(solid, purple surface).

flated surfaces without fitting them perfectly. This is a consequence of the chosen
simplified approach to model the complex lung deformation. For instance, the con-
stant fluid pressure boundary conditions generated highly symmetrical and homo-
geneous lung deformation, given that the contribution of the fluid medium to total
stress is purely volumetric. This symmetry was only constrained by the shape of the
estimated lung geometry (i.e. the deformable FE mesh and contact surfaces) and the
direction of gravity, which may be oversimplifying. For Case 2, lobes also deform very
independently from each other, which is currently not taken into account for model-
ing pneumothorax deformation. Finally, it can also be observed in Fig. 6.10 that the
landmarks with the lowest registration errors were those closest to the hilum. These
better results in the hilum area can be explained by the hilum deformation estimation

step, which was based on intensity-based registration of the main airways.

The tissue parameters obtained from our inverse problem formulation are listed in
Table 6.3. The optimization process resulted in values for the intrabronchi permeabil-
ity (kp) and tissue porosity (¢) that were consistent with a previous study (Alvarez
etal., 2019a). As for the diaphragm upward displacement (dg;qpn ), we could observe
that besides Case 1, a value of 15 mm was found for all clinical cases. This value corre-
sponds to the lower bound of the range specified during optimization, meaning that
a higher diaphragm displacement only increased the distance from the FE deformed

mesh and the target intraoperative deflated lung surface in these clinical cases.

The complete deformation compensation framework allows the warping of the pre-
operative CT image with the FE deformed meshes issued from Phase 1 and Phase 2.
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Tissue parameters estimated from our inverse problem optimization
approach: intrabronchi permeability (x;), tissue porosity (¢), and di-
aphragm upward displacement (dgiqpn)-

Case kp (1/Pas) ¢ (unitless)  dgigpn (M)

1 1444 x 1077 0.56 20.41 x 1073
2 95.31x107° 0.79 15.00 x 1073
3 2.61 x 107? 0.82 15.00 x 1073
4 1.23 x 1079 0.37 15.00 x 1073
5 3729 x 107 0.64 15.00 x 1073

This warped CT image is shown in Fig. 6.11 along with the preoperative CT, CBCT;,, s
and CBCT. s images, for two representative cases (results for all cases are available
in the online supplementary materials ®.). Color contours are used to illustrate the
changing shape of the FE lung mesh through the deformation compensation stages:
before change of pose (cyan), after change of pose (orange), and after change of
pose and pneumothorax (purple). It can be observed that the diaphragm is com-
pletely out of the FOV of both CBCT images for Case 1, and is only barely visible in
the CBCT.s image for Case 2. Also, the cranio-caudal misalignment between both
CBCTs can be very important, as seen for Case 2, reducing significantly the overlap
between the intraoperative images. In terms of deformation compensation, it can be
observed for Case 1 that the estimated deflated lung surface is well aligned with the
CBCTgey deflated surface. Also, the cranio-caudal height of the oblique fissure fits
well with its actual position. These results are consistent with the mean TRE mea-
sured below 5 mm. For Case 2, however, the estimated deformation is clearly poorer.
In this highly complex case, the lung lobes deformed independently during pneu-
mothorax, inducing the opening of both fissures and a highly heterogeneous lung
deflation. Furthermore, atelectasis was significant in the lower lobe, causing it to de-
flate more than the other two lobes. While the mean TRE is reduced from 34 mm
to 10 mm, the estimated deformed lung is too regular in comparison with its actual
shape. While our compensation framework seems promising for several cases, fur-

ther investigations will be necessary for such complex deformations.

6.8.4 Variants of the method

The relevance of the main components of our deformation compensation framework
was investigated using variant implementations presented in this section.

Influence of the change of pose and hilum estimation

Three variants of our method were implemented to assess the influence of the change

of pose and hilum deformation estimation processing steps:

1. The supplementary materials are included in the second part of this chapter, under the section
Additional qualitative results
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Warped CT

Case 2

Qualitative results of our deformation compensation framework for two
representative cases. The CT and CBCTj,, images are rigidly registered
to the CBCTj. s image. Coronal slices of exactly the same region of inter-
est are shown for all images. The color contours illustrate the position of
the FE mesh at the beginning of Phase 1 (cyan) and Phase 2 (orange), as
well as at the end of Phase 2 (purple).

(A) No change of pose: neither the change of pose deformation nor the hilum de-
formation between the CBCTj,,; and CBCTj,; images were taken into account.
The preoperative CT image was simply rigidly registered to the CBCT. s image
using the spine as the reference, as in Sec. 6.6.1. The transformed lung segmen-
tation was used to generate the lung FE mesh and to define contact surfaces.
Boundary conditions were prescribed as in Sec. 6.7.2, with the exception of the
imposed displacements in the airway inlet that were replaced with fixed bound-
ary conditions (u = 0).

(B) No hilum deformation: the change of pose deformation was taken into account
but the hilum deformation between both CBCT images was not compensated.
Since no deformation field mapping the airways before and after pneumotho-
rax was available, fixed boundary conditions were applied at the airway inlet

(u = 0). The remaining boundary conditions, introperative geometry and con-
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TRE distributions for three variants of the proposed lung deformation
compensation method.

tact conditions were applied as described in Sec. 6.7.2.

(C) Complete framework: This variant corresponds to the implementation of all the
methods described in Sec. 6.7.2.

The TRE distributions of each variant are presented in Fig. 6.12. With the exception
of Case 2, a significant improvement can be observed of variant (B) over (A) across
cases (maximum p = .006). Likewise, variant (C) provided better results than variant
(B) (maximum p = .019), except for Case 4. These results suggest that all process-
ing steps of the complete deformation compensation framework are important. Even
though the amount of change of pose and hilum deformation varies among cases,

taking these deformations into account allows for a better final estimation.

Influence of the moving diaphragm

Another important element of our deformation compensation framework is the mod-
eling of the diaphragm movement. Its influence was evaluated by comparing the re-
sults of the complete framework with and without nullifying the diaphragm move-
ment, i.e. fixing dgi,pn, = 0 mm. The results are shown in Fig. 6.13. Modeling the
diaphragm upward movement significantly reduced TREs for Cases 1, 3, and 4 (max-
imum p < .001). However, the estimation accuracy remained unchanged for Case 5
and actually decreased for Case 2 (p = .002). For this complex case, the estimated
diaphragm position after the change of pose compensation roughly matched the ac-
tual diaphragm position barely visible in the CBCT,.¢ image (see Fig. 6.11). There-
fore, any positive displacement of the diaphragm (dg;qpn) Would worsen estimation

accuracy.
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TRE distributions for our deformation compensation framework with
and without including the upward diaphragm movement.

It should be noted that for all clinical cases except Case 1, the displacement dg;qph
of the optimal solution was 15 mm, namely the minimum value allowed during the
optimization process. However, an observation of the predicted landmark positions
with respect to the ground truth landmarks suggests that deformation compensation
errors may be partially explained by a miss-prediction of this diaphragm movement.
An explanation could reside in the antagonism between a diaphragm upward move-
ment and the cost function of the optimization problem: moving the diaphragm up-
wards tends to enlarge the lung outwards, in the opposite direction of lung deflation,

therefore increasing the surface-to-surface cost function distance.

While the effects of our diaphragm model are still limited in several cases, our results
suggest that accounting for the diaphragm movement, even empirically, could allow
for a better estimation of the intraoperative deflated lung shape.

6.9 Discussion

Advantages, limits, and perspectives of the main components of the proposed method

are discussed in this section.

6.9.1 Hybrid approach to deformation estimation

In this study, we used intensity-based image registration to estimate displacement
boundary conditions for FEM lung simulations of change of pose and pneumoth-
orax deformation. This hybrid approach was crucial for the estimation of complex
lung deformation that would have been more difficult, if not impossible, using purely
intensity-based or FEM strategies. For Phase 1, we estimated the change of pose defor-
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mation between the preoperative CT and the intraoperative CBCTj,, y images with an
algorithm that accounts for sliding at the lung interface (Wu et al., 2008). We found
the magnitude of this deformation to be consistent with values reported in a previous
study (Alvarez et al., 2018). For Phase 2, the hilum deformation was approximated by
registering the main airways of the intraoperative CBCT;,,y and CBCT .y images. Fi-
nal results suggest that even though approximative, this approach provides better es-
timations than alternatives not taking into account hilum deformation. To go further,
it will be necessary to better capture the non-homogeneous variations of the hilum
deformation. This is quite challenging due to the occurrence, to date unpredictable,
of very localized atelectasis after pneumothorax. This collapsing of the airways re-
sults in severe intensity and textural discrepancies of the CBCT images before and
after pneumothorax, which are difficult to cope with using traditional segmentation
and registration methods. We believe, however, that these challenges may be over-
come thanks to the efforts recently put forward by the community, with registration
algorithms not requiring prior segmentation (Heinrich et al., 2016) and/or relying
on salient keypoints rather than image intensity (Ruhaak et al., 2017). Incorporating
such approaches into our framework could lead to substantial improvements that
will be studied in future work.

6.9.2 Modeling choices

For the pneumothorax simulations, we used a poroelastic model of the lung with al-
lowance for air evacuation. This approach follows the principle of effective stress that
decomposes the total stress into fluid and solid stresses. This principle permits the
macro-scale simulation of airflow-parenchyma interaction in a cost-effective manner.
We hypothesized that the solid medium behaves as a homogeneous, linearly-elastic
material undergoing small deformations. This assumption was supported by not-
ing that pneumothorax deformation during our simulations was mainly caused by
the stress generated from the fluid phase. Also, this simplified model is in principle
computationally efficient, which would be important in the future to comply with
the time restrictions of clinical practice. However, despite promising preliminary re-
sults, the lung deformation can be underestimated, for which several improvements
can be investigated. For instance, we envision other constitutive laws for the solid
medium, such as the Saint Venant-Kirchhoff model that does not linearize the strain
tensor to allow for large displacements (Seyfi Noferest et al., 2018), or more com-
plex hyperelastic non-linear stress-strain relations (Berger et al., 2015). We will also
assess the use of heterogeneous material properties estimated from measured lung
deformation (Hasse et al., 2018).

In parallel to more adequate constitutive laws and tissue parameters, a major im-
provement would be expected with a multiple-lobes lung model as opposed to a
single-structure lung model. As observed for Case 2, lobes can slide against each
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other, the fissures can open widely, or a combination of the two. Modeling such ef-
fects will be challenging, as not only they are technically difficult but also very un-
predictable.

6.9.3 Inverse formulation approach

The inverse problem formulation based on the poroelastic lung model allowed the
compensation of patient-specific and intervention-specific pneumothorax deforma-
tion. This was achieved by fitting the deformable lung model to the observed intra-
operative surface of the deflated lung, changing tissue porosity (¢) and intrabronchi
permeability (x;,) parameters, as well as simulating the upward movement of the
diaphragm (dgiqpn ). It should be acknowledged that our inverse problem formula-
tion did not take into account internal lung structural information, which had a clear
impact on the correct estimation of the upward moving diaphragm, and possibly the
complete lung parenchyma. With improved processing of the CBCT images, it should
be possible to include internal lung structures such as vessels (Cazoulat et al., 2016),
salient keypoints (Ruhaak et al., 2017), or even the lobe boundaries, in the inverse

problem formulation.

Finally, the inverse problem formulation currently minimizes the surface-to-surface
distance between the deformable lung model and the intraoperative data in a least-
squares sense. Since the proposed model has few degrees of freedom, the deformed
lung surface does not exactly fit the intraoperative data. An alternative to this ap-
proach would be to use Lagrange multipliers to constrain the deformation so that

surface nodes of the FE mesh fit local surface data (Morin et al., 2017).

6.9.4 Diaphragm movement

Clinically, it is known that the diaphragm tends to move upwards due to the surgical
setup. This phenomenon was consistently observed on all cases, based on inner-lung
landmark measurements. Therefore, a functional approach to model the diaphragm
movement was introduced, with the dg;q,, parameter as part of the optimization pro-
cess. However, as shown in Sec. 6.8.4, a meaningful estimation of diaphragm move-
ment could be obtained for one case only. Although several factors may be affecting
this issue, we believe the definition of the cost function (Eq. (6.15)) to be among the
most important. Indeed, currently, it relies on surface data only, which may not be
well suited to compensate for longitudinal deformation. Improvements could consist
in extracting the diaphragm surface when it is partially visible in the CBCT images
(e.g. cases 4 and 2), and to include sub-surface information in the computation of the

cost function, as mentioned above.
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6.9.5 Towards clinical practice: practicability and accuracy

Since the aim of this study was to evaluate the capacity to compensate for lung de-
formation during VATS, we did not primarily focused on the clinical practicality.
Therefore, several processes required limited manual interactions: the initialization
of registration or segmentation algorithms, the refinement of segmentation masks,
and the extraction of the CBCT .y deflated lung surface. However, we are confident
that most of these interactions can be avoided with dedicated image processing meth-
ods, which we will investigate. Another important factor will be the computational
efficiency, especially when considering the methodological improvements previously
discussed. It will become necessary to find an equilibrium between accuracy and ef-
ficiency, for which deformation atlas (Sun et al., 2014) or learning-based FEM (Men-
dizabal et al., 2020) approaches will be investigated.

Finally, no standard criteria stands to date regarding the required accuracy and time
for an intraoperative nodule localization algorithm. While current results are already
significant, our long term objective will be to consistently obtain registration errors
under 5 mm, and to limit all intraoperative processes under 15 minutes. These objec-
tives were designed by the clinical investigator of this study.

6.10 Conclusion

To our best knowledge, this is the first study to propose an intraoperative markerless
lung nodule localization framework for VATS, which relies on a hybrid method com-
bining intraoperative CBCT imaging, intensity-based image registration, and biome-
chanical modeling techniques. We proposed to decouple the very challenging prob-
lem of intraoperative deformation estimation into two more tractable sub-problems:
estimating the change of pose deformation (Phase 1) and then estimating the pneu-
mothorax deformation (Phase 2). We were able to demonstrate the feasibility of our
deformation compensation framework on 5 retrospective clinical cases of patients
who underwent a VATS intervention. Average initial errors in the range of 22 to
38 mm were reduced to the range of 4 to 14 mm, which corresponds to a correction

of 63 to 85% of the error without compensation (71% in mean).

To improve the methods towards errors consistently under the 5 mm objective, future
works will be mostly focused on allowing for lobes separation within the model and
taking into account sub-surface lung information to drive the simulations. Another
challenge will be to acquire a single CBCT scan instead of two (only CBCT.¢ after
lung deflation) to simplify the procedure and limit the radiation dose. Finally, our
overall objective aims at overlaying the simulated deformed lung and the nodule
position over the CBCT image, and ultimately in real time in the endoscopic view. By

removing the need for a preoperative nodule marking localization procedures and its
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associated risks, and increasing the resection accuracy, the proposed method could

significantly benefit the clinical practice in thoracoscopic surgery.
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Additional results and discussion

In the first part of this chapter, a hybrid registration framework for lung deformation
compensation during VATS was presented, along with an extensive discussion of the
methodology and the results. This second part completes the presentation of qualita-
tive results for the entire clinical dataset, and introduces further discussion elements
to compare the study presented in this chapter to the other studies carried out in this
thesis.

Additional qualitative results

This section presents qualitative results in the same form used for Fig. 6.11, but for
the complete dataset. These results correspond to the supplementary materials sub-
mitted with the journal article presented above. The following five figures illustrate
coronal slices of the preoperative CT, CBCT},,; and CBCT.; images, as well as the
warped CT after deformation compensation, for the five clinical cases. The CT and
CBCTj,, s images are rigidly registered to the CBCTj. s image, and the coronal slices
are extracted from exactly the same region across all images of a same clinical case.
Color contours show the changing shape of the FE lung mesh through the deforma-
tion compensation stages: before change of pose (cyan), after change of pose (or-
ange), and after change of pose and pneumothorax (purple).

CBCTj, CBCTge Warped CT

Qualitative result of the proposed deformation compensation method in
Case 1.

As observed in the Figs. 6.14 to 6.18, the lung deformation varies among clinical cases,
and so do the qualitative results. Table 6.4 lists some observations from these quali-

tative results for each clinical case.
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Observations on qualitative results of the proposed deformation compen-
sation method per clinical case.

Clinical case Observations

— Good alignment of the estimated lung surface.

— The oblique fissure moved upwards from CBCT;,,; to CBCTy .
— The estimated fissure (in Warped CT) is adequate near the
hilum but poorer in the periphery. This unnatural deformation
occurred during the elastic registration process during the change
of pose deformation estimation.

Case 1

— The FOVs of the CBCT images are offset by several millimeters.

— The diaphragm is barely visible in CBCT ., putting in evidence

the very large change of pose deformation of the diaphragm and
Case 2 an inaccurate estimation of the intraoperative lung’s shape.

— The three lung lobes deform separately during pneumothorax,

whereas the proposed approach currently assumes a single de-

formable object (first approximation).

— Good alignment of the estimated lung surface.
Case 3 — The diaphragm and a large inferior portion of the lung are not
visible in the CBCTs images.

— An upward movement of both fissures and the diaphragm can
be observed from CBCT;,, s to CBCT ;-

— The estimated upward movement of the diaphragm in CBCT . ¢
approaches this observation.

— Significant amount of atelectasis. The limits of the lung near the
hilum in CBCTy, are indistinguishable.

Case 4

— The FOVs of the CBCT images are offset by several millimeters.
— Very large deformation at the hilum from CBCTj,,; to CBCTy;.
It can be observed at and under the main bronchus, through the
medial wall of the lung.

— During pneumothorax, the two lobes stay attached together but
slide one against the other.

Case 5
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a0 CBCT;, CBCTge Warped CT

Qualitative result of the proposed deformation compensation method in
Case 2.

Qualitative result of the proposed deformation compensation method in
Case 3.

Additional discussion

In addition to the discussion presented in Sec. 6.9, further elements are worth men-
tioning. On the one hand, the studies presented in Chapter 4, Appendix A and in this
chapter share some of the clinical cases considered, and hence are worthy of compar-
ison. On the other hand, some methodological differences between the hybrid reg-
istration framework presented in Chapter 5 and that presented in this chapter have
not been discussed, mainly because it would require direct comparison of the two
frameworks, which was not of interest for the article presented above.

First of all, the intensity-based image registration component of Phase 1 corresponds
to the registration framework presented previously in Chapter 4. As such, the regis-
tration results presented in that chapter (Fig. 4.8) and in this one (Fig. 6.7) are the
same. However, although Case 6 was taken into account in the deformation char-
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Qualitative result of the proposed deformation compensation method in
Case 4.

CBCTj, CBCTge Warped CT

Qualitative result of the proposed deformation compensation method in
Case 5.

acterization study presented in Chapter 4, it was not included in the current study
because no anatomical landmarks were available for the CBCT.; image. In fact, the
internal lung structures have been so heavily deformed in that case that the surgeon
could not identify any meaningful anatomical landmarks in this image.

Also, it should be noted that the registration framework presented in this chapter
is one potential solution to the registration problem considered, but other solutions
based on other methodological strategies may as well be possible. For the sake of
comparison, an initial investigation was carried out to evaluate the feasibility of a
registration approach based on image-intensity only as an alternative solution. This
intensity-based image registration approach was based on the work presented previ-
ously in Chapter 4, and was used to register the preoperative CT image to the intra-
operative CBCT. s image of Case 1. The details of such study are presented in Ap-
pendix A. In comparison to the results presented in this chapter, the average (& stan-
dard deviation) TRE obtained were 6.3 mm (£ 3.4 mm) and 4.9 mm (£ 2.2 mm)
for the the intensity-based and hybrid approaches, respectively. The resulting TRE
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distributions of both approaches are illustrated in Fig. 6.19.

Intensity-based registration Hybrid registration

TRE distributions of intensity-based registration and hybrid registration
frameworks for Case 1.

A comparison of the two registration frameworks shows a significant improvement in
favor of the hybrid approach (p = .021, non-parametric Wilcoxon signed rank test).
However, such improvement could not be verified for the other four clinical cases, as
they were not studied using the intensity-based approach (lack of segmentation of
the deflated lung). Therefore, a definitive conclusion comparing the two approaches
in their current state would require further evaluation. Nonetheless, the same trend
should be expected for the other cases as well, especially considering the method-
ological improvements to the hybrid approach already discussed (see Sec. 6.9 and
the Additional results and discussion of Chapter 5).

Finally, the hybrid registration framework presented in this chapter improved in two
ways the framework previously presented in Chapter 5. The first improvement corre-
sponds to a change in contact conditions, from nodal/tangential to real small-
deformation contact conditions. In comparison with the nodal/tangential conditions,
the new contact conditions can be prescribed over all nodes of the lung surface, as
their movement will not be restricted in the normal direction if no contact is detected.
This not only simplifies the procedure of specifying the contact conditions, but also
avoids potential deformation artifacts coming from under- or over-restriction of sur-
face movement. The second improvement involves the extraction of the intraoper-
ative deflated lung surface. In Chapter 5, a manual segmentation was required to
generate this surface, which should be avoided as it is incompatible with the surgical
workflow. In this chapter, a series of points were used to reconstruct the surface of
the deflated lung. Although this process was also manual, it is in principle less time
consuming, but more importantly, easier to automate than a manual segmentation.
The reason is that manually extracting points of the deflated lung surface does not
require dealing with atelectasis, as it happens mostly near the medial face.
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General conclusion

In this chapter, the hybrid registration framework previously introduced in Chapter 5
was adapted to the context of a VATS intervention. Methodological changes were nec-
essary for estimating the change of pose deformation with partial intraoperative data,
as well as for taking into account hilum and diaphragm deformations. Also, improve-
ments were made with respect to the contact conditions at the lung surface and the
extraction of intraoperative data for the inverse problem formulation. The framework
was validated using 5 retrospective clinical VATS cases, with varying algorithms that
helped to determine the relevance of the main processing steps. Average TRE errors
were obtained in a rage from 4.9 mm to 14.3 mm, with average error correction from
63% to 85%. This performance is comparable to that obtained previously in Chapter 5
in the context of transthoracic needle biopsy, but on the more challenging context of
VATS. However, further improvements towards better accuracy and clinical compat-
ibility would be necessary, for which potential solutions have been outlined.
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Summary, perspectives and conclusion

In the context of lung cancer management, the surgical resection of pulmonary nod-
ules through video-assisted thoracoscopic surgery (VATS) is an established diagnos-
tic and treatment tool. During surgery, these pulmonary nodules are generally nei-
ther palpable nor visible, especially when they are small, low-dense and/or deep
within lung parenchyma. Consequently, adjuvant preoperative/intraoperative pul-
monary nodule localization procedures are commonly used in current clinical prac-
tice, mostly relying on the placement of various physical markers (e.g. hookwires,
micro-coils, dyes). However, such localization procedures are not devoid of compli-
cations either from the marker placement (e.g. pneumothorax, hemothorax, air/dye
embolism) or the marker itself (e.g. marker migration), and therefore, markerless lo-
calization solutions would be preferable. Therefore, an alternative solution based on
the delineation of pulmonary nodules within intraoperative CBCT images has been
proposed at the Rennes University Hospital, with promising results. The main limi-
tation of this innovative localization strategy is the poor visibility of some pulmonary
nodules in the intraoperative CBCT images. The main objective of this thesis was then
to propose and evaluate a registration framework accounting for lung deformation
during VATS, in order to facilitate the localization of pulmonary nodules within the

surgical protocol introduced at the Rennes University Hospital.

An analysis of lung deformation during VATS lead to the interpretation of this de-
formation as a combination of two primary factors: a change of patient pose, from
the preoperative to the intraoperative conditions; followed by a pneumothorax. With
the purpose of studying these physical processes independently, the surgical VATS
procedure was modified (with the approval of the local ethics committee) in order
to include an additional intraoperative CBCT image of the lung before pneumotho-
rax. Accordingly, three structural images were available for a total of 6 VATS clinical
cases: a preoperative CT with the patient in supine position, an two intraoperative
CBCTs with the patient in lateral decubitus position, before and after pneumotho-
rax, respectively.

Contributions

A first contribution is an analysis of lung deformation after the change of patient
pose during VATS. A study was carried out to quantify and characterize this lung
deformation for 6 clinical cases. Deformation measurements were extracted from
displacement fields that were computed via intensity-based image registration. This
study revealed very large displacement (up to 40 mm) and generalized volumetric
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contraction of lung tissue. Two primary causes were identified for this deformation:
a change in gravity direction with respect to the body, and an upward movement
of the diaphragm induced by the muscle relaxants administered for the surgery. A
remarkable exception was found for one clinical case, for which a different surgical
procedure without muscle relaxants was performed, and therefore, no upward di-
aphragm movement was observed. This study revealed the change of patient pose as
a significant factor causing lung deformation during VATS, which has however been
excluded in related works from the literature. This study focused on a phenomenon
that has not been addressed in the literature, and contributed to the understanding

of lung deformation during VATS.

A second contribution, and the main contribution of this thesis, is a hybrid reg-
istration framework accounting for lung deformation during VATS. This registra-
tion framework decouples the original registration problem into two smaller, more
tractable sub-problems: the first accounting for the change of patient pose deforma-
tion, and the second accounting for the pneumothorax deformation. The hybrid ap-
proach combines intensity-based image registration and a linear poroelastic model of
the lung with allowance for fluid evacuation for the estimation of lung deformation.
An initial investigation provided promising results for a clinical case of transthoracic
needle biopsy, for which lung deformation was very similar to that of VATS. Then, a
follow up investigation with 5 VATS clinical cases (which are considerably more chal-
lenging), indicated the feasibility of the proposed approach within the VATS context.
These studies constitute a first attempt to compensate for lung deformation for both
the change of patient pose and the pneumothorax, using real clinical data.

Finally, a third contribution is a preliminary evaluation of an intensity-based image
registration framework as an alternative solution for lung deformation compensation
during VATS. This study allowed establishing a baseline method to be compared with
the proposed hybrid registration approach. The obtained results in a VATS clinical

case suggested better accuracy in favor of the hybrid approach.

Perspectives

The ultimate objective of the registration framework proposed in this thesis is to fa-
cilitate the localization of pulmonary nodules during VATS. In order to achieve that

goal, various perspectives may be considered.

Assistance to clinical procedure

The image quality currently constitutes an important bottleneck for the interpreta-
tion and automatic processing of the intraoperative CBCT images. In this thesis, an
artifact-removal post-processing algorithm was used in order to partially account for

this problem, but a more appropriate approach for improving image quality would
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be the use of state-of-the-art image reconstruction algorithms (Gardner et al., 2019;
Schmidgunst et al., 2007). However, this would require access to raw projection-data
of the CBCT scanner, which may not be readily accessible in the short term (necessi-
tates an agreement with Siemens, the manufacturer). A more accessible alternative
would be to improve image quality by optimizing the scanner acquisition parameters
for lung imaging, since these are currently dedicated for heart imaging. This would

require a multidisciplinary study involving expert radiologists and engineers.

Also, in order to minimize the radiation dose delivered to the patient, the proposed
hybrid registration framework will require adaptation to a surgical protocol with only
one intraoperative CBCT image (after pneumothorax) instead of two (before and af-
ter pneumothorax). This may be achieved by estimating the change of pose defor-
mation directly from the preoperative CT to the intraoperative CBCT of the deflated
lung, using the deformation of the thoracic cavity as guidance. However, this will
probably require improvements in modeling lung deformation (see next sections), as
well as thorough validation. Also, in the long term, lung deformation compensation
strategies accounting for the change of pose and the pneumothorax deformations at
once may be investigated.

Finally, an important limitation of the current surgical protocol is the need for flu-
oroscopy guidance, since it necessitates unavoidable radiation dose to the surgical
team and the patient. This limitation may be overcome with the use of augmented
reality visualization and real-time tracking techniques, to present guidance informa-
tion directly into the endoscopic view. The development of such intraoperative guid-
ance tool will constitute an important breakthrough for the localization of pulmonary
nodules during VATS.

Image processing aspects

The deformation characterization study performed in this thesis contributed to a bet-
ter understanding of the change of pose deformation during VATS. Such characteri-
zation would also be desirable for the pneumothorax deformation, which is consid-
erably larger and more complex than the change of pose deformation. However, the
same methodology will likely be insufficient as image density disparities (tissue den-
sification and atelectasis) and complex deformation (independent lobe movement)
present during pneumothorax are currently not being taken into account. Obtain-
ing a dense displacement field is necessary for the characterization of deformation
(measures based on the deformation gradient tensor), but it is a real challenge for
pneumothorax deformation. As an alternative, the analysis of displacement over a
series of anatomical landmarks placed at the interior of the lung would be worth
studying, since this would at least provide insight in the amount and direction of

displacement during pneumothorax.
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Another aspect to consider is the segmentation/delineation of lung structures. Al-
though automatic segmentation algorithms were used for the preoperative CT im-
ages, this was not possible for the intraoperative CBCT images because of their re-
duced image quality. Therefore, semi-automatic or manual methods were used in-
stead. However, some of this segmentations would need to be performed during
surgery, and hence, such time consuming manual interactions are to be avoided. The
segmentation of lung structures in the CBCT images is a challenging problem that
has been poorly addressed in the literature. Future works may include the use of ma-
chine learning algorithms in order to perform these automatic segmentations (Pang
etal., 2019).

Modeling aspects

Concerning the linear poroelastic model, the first order approximation facilitated the
design and implementation of the proposed hybrid registration framework, as well
as the evaluation of its feasibility in the context of VATS. However, given the large
lung deformation occurring during VATS, this approximation may constitute an im-
portant limitation, and hyperelastic constitutive laws for the solid structure would
be more appropriate (Berger et al., 2015; Seyfi Noferest et al., 2018). This is expected
to improve the accuracy of the deformation estimations with more realistic simula-
tions. However, although various possibilities exist for the hyperelastic law, to date,
neither of them has been utilized for simulating lung deformation during VATS, and
consequently, comparison studies may be necessary.

In addition, there are two aspects that should be considered with respect to the ob-
served pneumothorax lung deformation. Firstly, the lobes deform as independent
structures constrained only at their interfaces. Currently, the single-body assump-
tion considered for the lung parenchyma completely disregards this important as-
pect. This lobe deformation may be taken into account by modeling each lobe inde-
pendently, with contact conditions at their interfaces. This, however, would greatly
increase the complexity of the simulation (especially if hyperelastic constitutive laws
are considered) with consequences in convergence and computation time, which will
have to be studied. Secondly, the simulation of lung pneumothorax currently uses a
homogeneous value for the intrabronchi permeability parameter. In reality, the pres-
ence of localized atelectasis indicates that lung deflation is heterogeneous, with some
regions being affected more than others. Although it is difficult to precisely deter-
mine these regions, in general, more deflation can be observed near the hilum. As
such, using a heterogeneous distribution for intrabronchi permeability that varies
with distance to the medial face of the lung may be worth studying, with the intent

to reproduce this heterogeneous deflation behavior.
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On the inverse problem formulation

The inverse problem formulation used for pneumothorax deformation compensation
has various limitations. Firstly, from the available intraoperative information of the
deflated lung, only the external surface was integrated into the computation of the
cost function. Including internal lung information as well would likely improve the
estimation of diaphragm upward movement in the current implementation. More-
over, if heterogeneous material properties are considered (e.g. localized deflation or
varying tissue elasticity and permeability), this internal lung information may be
necessary for converging to meaningful solutions. To improve this aspect, it may be
helpful taking into account airway or vessel deformation (Cazoulat et al., 2016; Morin
etal.,, 2017), as well as the inclusion of salient keypoints for deformed internal struc-
tures (Ruhaak et al., 2017). Secondly, since no imposed displacements are used at
the lung surface, a perfect surface-to-surface match after deformation compensation
is very unlikely. To alleviate such misfit error, point-to-surface projection based on
shape features could be calculated (Nakao et al., 2019), and incorporated as relaxed
imposed displacements to help constrain surface deformation (Morin et al., 2017).

Finally, the current implementation of the inverse problem formulation is not yet
compatible with the clinical practice, because it requires many simulations before
converging to a solution (after a couple of hours). In order to account for this limita-
tion, model reduction or machine learning approaches may be investigated (Mendiz-
abal etal., 2020), since these are expected to reduce simulation times considerably. Ul-
timately, a forward problem formulation instead of an inverse problem formulation
would be desirable, but this would require deeper understanding of pneumothorax
deformation, an improved biomechanical model of lung deformation, and sufficient
intraoperative data for guiding such model.

Conclusion

The compensation of lung deformation for the localization of pulmonary nodules
during VATS is a challenging problem that has been barely addressed in the litera-
ture. In this thesis, a hybrid registration framework combining intensity-based image
registration and a linear poroelastic model with allowance for fluid evacuation was
proposed in order to account for such deformation. The studies herein performed
demonstrated the feasibility of the proposed approach, and provided insights that
were useful for the understanding of lung deformation during VATS from a macro-
scopic perspective. Further research is needed before the proposed approach can be
used in the current VATS surgical protocol, but numerous perspectives towards that
end were here discussed. Continuing this research has the potential to pave the way
for advanced surgical guidance techniques, which may greatly benefit the current

clinical practice.
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Image-based registration for lung nodule
localization during VATS

Foreword

In order to be compatible with the localization strategy described in Sec. 1.3.3, a de-
formation compensation algorithm should be able to provide an estimation of the
position of the nodule in the CBCT image of the deflated lung. Since structural and
positional details are available in the preoperative CT image, a reasonable approach
would be to register this preoperative image to the intraoperative image of the de-
flated lung, and to use the resulting displacement field to estimate the intraoperative

position of the pulmonary nodule.

The study presented in this appendix aims at evaluating an intensity-based approach
for the registration of the two images. This study introduces an alternative poten-
tial solution to be compared with the hybrid approach proposed in this thesis. This
intensity-based approach uses the framework previously introduced in Chapter 4,
which provided good results for the registration of the preoperative CT image to the
intraoperative CBCT image of the inflated lung (i.e. change of pose deformation). It
should be noted, however, that the two CBCT images contain the lung in consider-
ably different configurations, and the introduction of pneumothorax and atelectasis
make the registration problem considerably harder. This initial investigation was car-
ried out in order to compare the intensity-based and hybrid registration approaches.

The first part of this appendix reproduces the investigation that was presented in an

international conference:

P. Alvarez, S. Rouzé, M. Chabanas, Y. Payan, and J.-L. Dillenseger. Image-based
registration for lung nodule localization during VATS. In Surgetica 2019, Rennes,
France, 2019

The second part of this appendix further discusses the potential advantages and lim-
itations of the intensity-based registration approach, in comparison to the hybrid ap-

proach proposed in this thesis.
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Article: Image-based registration for lung nodule localization dur-
ing VATS

Abstract: Lung nodule localization during Video-Assisted Thoracoscopic Surgery
(VATS) is a challenging task for small, low-density nodules. Current preoperative
localization techniques are still sub-optimal in some cases. In this work, we stud-
ied the use and the limitations of an image-based nonrigid registration approach for
nodule localization during VATS. Average target registration errors were of 5.67 mm,

meaning an error reduction of 84.36 %.

A.1 Introduction

In clinical practice, early stage lung cancer nodules are prescribed for resection through
Video-Assisted Thoracoscopic Surgery (VATS). Because of their typically reduced
size and density, these nodules might be difficult to find during surgery. This is
caused by the pneumothorax (i.e. abnormal presence of air inside the thoracic cage)
resultimg from the insertion of the surgical ports. To account for this problem, preop-
erative nodule localization procedures are typically used. These procedures consist
mainly on the placement of hook-wires, dyes or micro-coils in the nodule (Keating
and Singhal, 2016). However, studies have found these localization techniques to still
be sub-optimal (Park et al., 2017).

Consequently, there is a growing interest towards the development of intraoperative
lung localization procedures. In fact, previous studies have proposed the use of in-
traoperative imaging for nodule localization (Rouzé et al., 2016; Wada et al., 2015). In
addition, image processing techniques can also be used in combination with intraop-
erative imaging for nodule localization. For instance, Uneri ef al. used intraoperative
Cone Beam CT (CBCT) and a hybrid shape-intensity nonrigid registration approach
for nodule localization on an animal study (Uneri et al., 2013).

In this preliminary work, we propose to use intraoperative CBCT imaging and non-
rigid image registration for lung nodule localization during VATS. Our approach was
inspired by Wu et al. (Wu et al., 2008), who proposed an algorithm that takes into
account sliding effects for registering images of breathing lungs. To the best of our
knowledge, this is the first study on human data using intraoperative imaging and

nonrigid image registration for nodule localization.
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A.2 Materials and Methods

A.2.1 Clinical data

This study used two tomographic images issued from a single clinical case of a VATS
intervention performed at the Rennes University Hospital. The first image, a preop-
erative CT, was taken following current clinical protocol (Fig. A.1 left). The second
image, an intraoperative CBCT, was taken after the patient’s lung was deflated as
result of pneumothorax (Fig. A.1 right). Both images were acquired under the in-

formed consent of the patient and the approval of the local ethics committee.

Left: the preoperative CT with the segmentation of the lung (cyan) and
its extension (green). Right: the intraoperative CBCT with the segmenta-
tions of the lung (cyan) and the thoracic cage (orange). The pneumoth-
orax is the space between the lung and the thoracic cavity.

A.2.2 Segmentation

Three anatomical structures were manually segmented: the lung in the CT and CBCT
images and the thoracic cavity in the CBCT image. The binary masks were post-
processed using morphological dilatation to extend the boundaries (Fig. A.1 left).

A.2.3 Nodule localization approach

Our registration approach consists of two steps: a rigid registration for initial align-
ment followed with image-based nonrigid image registration to account for pneu-
mothorax deformation. Both processes were implemented using Elastix toolbox (Klein
et al., 2010).

Rigid registration

We used the thoracic cavity as a reference for aligning the preoperative CT to the in-
traoperative CBCT images. We performed rigid image registration using the Mutual
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Information (MI) similarity metric. The MI computation was filtered to the regions
contained in the extended masks of the thoracic cavity. We used discrete probability
distributions of a very low resolution for the computation of the MI (i.e. the number
of bins was only 8). In this way, the strong gradients corresponding to the borders
of the thoracic cage and the main airway branches are more likely to drive the reg-
istration process than the weak gradients at the interior of the mismatching thoracic
cavities. This is important given that the thoracic cavities contain mismatching lungs.

Nonrigid registration

Before nonrigid registration, we performed an intensity assignment procedure. The
intensity values of the voxels outside the segmented lungs were assigned with a con-
stant intensity value, while those at the inside were left unchanged. This constant
value (-1500 HU) lies outside the range of values inside the lung. A nonrigid regis-
tration process was then performed using these intensity-modified images and the
extended masks of the lung parenchyma. We accounted for large deformations using
a multi-resolution Free Form Deformation (FFD) strategy, with a total of 4 resolu-
tions. At each iteration, the resolution was doubled and the transformation obtained
was carried through consecutive iterations. We used BSplines as the transformation
model and two intensity-based similarity metrics: Mutual Information (MI) and Nor-
malized Cross Correlation (NCC). The size of the grid for the BSplines was allowed
to change with image resolution, reaching 16 mm in the last iteration.

A.3 Results and Discussion

We used a set of 27 paired anatomical landmarks to compute Target Registration
Errors (TRE) for validation. These landmarks were manually placed by an expert
thoracic surgeon on the tumor and bifurcations of airways and vessels. After rigid

registration, these landmarks were at a distance of 40.2 mm (£1.0 mm).

Nonrigid registration with MI resulted in TREs of 80 mm (420.4 mm), which are
worse than those of rigid registration. This bad performance may be explained by
the fact that the MI similarity metric does not necessarily penalize mismatches of
intensity, which makes it is less costly to move the CT-lung voxels out of the CBCT-

mask than to move them inside.

However, nonrigid registration with NCC reduced the TREs to 6.23 mm (£3.4 mm),
which corresponds to an error reduction of 84.4 %. In comparison to MI, NCC aims
to closely match image intensities, and hence benefits from the usage of the intensity-
modified images and the dilated masks. The reason is that the borders of the CT and
CBCT lung are forced to match as a result of the strong intensity gradients artificially
generated by the intensity assignment procedure.
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Result of nonrigid registration with NCC. The preoperative CT is shown
to the left. The deformed CT and the CBCT are shown to the right. Col-
ored circles indicate the paired landmarks for the tumor. The image in
the window is a closeup of the superposition of the result.

The result of nonrigid registration with NCC is shown in Fig. A.2. A qualitative com-
parison of the deformed CT and the CBCT reveals large misalignment. This can be
seen throughout the lung parenchyma, where several internal structures are visi-
ble in only one of the images. In addition, the landmarks placed on the tumor are
11.77 mm apart after registration, which is not within the clinical requirements. The
registration problem at hand is a real challenge (i.e. very large deformations and low
quality images). Although more sophisticated techniques do exist, the use of image

intensity only to guide registration is possibly insufficient.

A.4 Conclusion

We have presented a preliminary study that evaluates an intensity-based nonrigid
registration approach for nodule localization during VATS. The obtained results show
an error correction of 84.36 % when using NCC, which seemed unsatisfactory af-
ter a closer qualitative analysis. We believe that intensity-based nonrigid registration
techniques are insufficient for nodule localization during VATS. Hence, hybrid ap-
proaches combining images and biomechanical models will be explored.

Acknowledgments

This work was supported in part by the Région Bretagne through its Allocations de
Recherche Doctorale (ARED) framework and by the French National Research Agency
(ANR) through the frameworks Investissements d’Avenir Labex CAMI (ANR-11-LABX-
0004) and Infrastructure d’Avenir en Biologie et Santé (ANR-11-INBS-0006).

A4, = 165



Additional discussion

The work presented in this appendix proposes an intensity-based registration frame-
work for the compensation of lung deformation between the preoperative CT image
and the intraoperative CBCT image of the deflated lung during VATS. The framework
was adapted from the work presented previously in Chapter 4, as good alignment of
internal structures was possible even with very large deformation. The results herein
obtained, however, were not as satisfactory. Although the large initial landmark er-
ror was reduced by 84.3% in average after registration, the internal structures were

clearly misaligned. Indeed, the registration framework used has several limitations.

First of all, the NCC similarity metric assumes that the intensities corresponding to
the same structures in both images are linearly related. However, this is clearly not
the case, as the lung deflation after pneumothorax not only increases tissue density,
but also generates localized atelectasis that completely collapses the parenchyma.
Consequently, the image intensity increases significantly and heterogeneously in the
CBCT image of the deflated lung, hence invalidating the assumption. The obtained
error reduction is then explained notably by the alignment of the lung surfaces, which
is achieved by the masking process. In practical terms, the volume of the inflated lung
in the preoperative CT image is forced to fit the volume of the deflated lung in the
CBCT image. It should be noted that similar results are to be expected with the use of
the non-parametric Demons algorithm, as it also relies on intensity similarity of the
images (Vercauteren et al., 2007). In order to alleviate this issue, density correction
techniques may be used during the registration process (Nithiananthan et al., 2011;
Sarrut et al., 2006).

Another limitation is the need of segmenting the lung parenchyma in the images. In-
deed, this segmentation is typically required for the registration of lung images, as it
helps taking into account sliding motion, restricts the computations to a determined
ROI, and provides shape information of lung deformation (Murphy etal., 2011; Uneri
etal., 2013; Wu et al., 2008). Although the quality of the CT image allows for this seg-
mentation to be performed automatically, this is considerably harder in the CBCT
image, since the contours of the deflated lung may become indistinguishable in the
medial and lateral faces of the lung. In the medial face, this is the result of atelec-
tais increasing the density of parenchyma up to a point where it is very close to the
density of the mediastinum (see Fig. 3.1). In the lateral face, the parenchyma that is
still filled with air can have an intensity very close to that of surrounding air. This is-
sue gets aggravated by the reduced quality of the CBCT image, which may comprise
significant image noise and artifacts. The quality of this segmentation is crucial for
the performance of the registration framework herein presented and for most lung
image registration algorithms. However, a manual procedure cannot be afforded as
it is too time consuming for being compatible with the surgical workflow.
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General conclusion

This appendix presented an intensity-based registration framework for the compen-
sation of lung deformation during VATS. The framework was based on a classical
approach for the registration of lung images in the context of respiratory motion,
which allows for sliding motion (Wu et al., 2008). Although a similar framework
proved useful for the estimation of the change of pose deformation during VATS
(see Chapter 4), the results obtained herein were not satisfactory, which illustrates
the complexity of the registration problem at hand. As discussed, only intensity in-
formation may not be sufficient to solve such registration problem, and approaches

relying less on image information are thus desirable.
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Titre: Estimation des déformations du poumon par une approche hybride image/modéele biomécanique
pour la localisation des nodules pulmonaires pendant la vidéo-thoracoscopie
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Résumé: La résection des nodules pulmonaires
par chirurgie thoracique vidéo-assistée (VATS) est
une intervention de plus en plus utilisée pour le
diagnostic et le traitement des cancers du pou-
mon. La localisation de ces nodules pendant la chi-
rurgie étant difficile visuellement et/ou par palpa-
tion, de nombreuses techniques d’aide a la loca-
lisation sont actuellement utilisées en pratique cli-
nique. Cependant, ces techniques reposent essen-
tiellement sur le placement, avant I'intervention, de
marqueurs physiques dans le nodule par des tech-
niques proches de la ponction. Par contre ce place-
ment est souvent sujet a des complications. Pour
éviter cela, une nouvelle approche consiste a re-
pérer le nodule pulmonaire sur le scanner X pré-
opératoire puis de localiser sa position sur I'image-
rie CBCT peropératoire. Le probléme vient du fait
que lors de lintervention, un pneumothorax (dé-
flation du poumon) entraine des déformations im-
portantes du poumon ainsi gu’un changement des
densités tissulaires, ce qui rend impossible la lo-

calisation directe du nodule dans le CBCT peropé-
ratoire. Les travaux effectués dans cette thése ont
porté sur I'estimation des différentes déformations
subies par le poumon pendant la VATS, afin de
pouvoir suivre et ainsi reporter sur le CBCT per-
opératoire la position du nodule repéré dans le
scanner X préopératoire. Cela a été fait a I'aide
d’'une méthode hybride basée sur des techniques
de recalage d’'images associées a un modeéle bio-
mécanique poroélastique du poumon capable de
simuler I'évacuation d’air. Lévaluation de cette mé-
thode a été réalisée sur les données de 5 patients
par le suivi de points de repére du poumon (bi-
furcations vasculaires) définis par un chirurgien.
Cette évaluation a permis de montrer que I'erreur
moyenne de suivie/report de ces points était de
'ordre du centimeétre. Ce résultat a prouvé la fai-
sabilité de I'approche proposée qui peut alors étre
considérée comme une possible solution pour la
localisation des nodules pulmonaires pendant la
VATS.

Title: Lung deformation estimation using a hybrid image-based/biomechanics-based approach for the
localization of pulmonary nodules during video-assisted thoracoscopic surgery

Keywords: Medical image processing, image registration, biomechanical modeling, computer-assisted
medical intervention, video-assisted thoracoscopic surgery, pulmonary nodules

Abstract: The resection of lung nodules by video-
assisted thoracoscopic surgery (VATS) is an estab-
lished procedure for the diagnosis and treatment
of lung cancer. As the localization of these nod-
ules during surgery is difficult visually and/or by
palpation, many adjuvant localization techniques
are currently used in clinical practice. Nonetheless,
these techniques rely primarily on the placement
of physical markers in the nodule before surgery,
which has various limitations and may lead to com-
plications. To avoid this, an alternative approach
consists in the identification of pulmonary nodules
in the preoperative CT image, followed by their
intraoperative localization using CBCT imaging.
However, during surgery, a pneumothorax (lung
deflation) causes significant lung deformation and
large tissue density changes that hinder the lo-
calization of nodules directly in the intraoperative

CBCT. This thesis focused on the compensation
of the various lung deformations occurring during
VATS as a mechanism for the localization of pul-
monary nodules in the intraoperative CBCT image.
First, a characterization study allowed to identify
the principal factors driving lung deformation dur-
ing VATS. Then, a hybrid method based on image
registration techniques and a poroelastic biome-
chanical model of the lung was proposed to ac-
count for such deformation. A retrospective study
comprising 5 clinical VATS cases was performed
for the evaluation of the proposed method. The re-
sults showed that prediction errors measured at
anatomical landmarks were of the order of one
centimeter, which suggests the feasibility of the
proposed approach as a possible solution for the
localization of pulmonary nodules during VATS.
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