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“Dalla muta distesa delle cose deve partire un segno, un richiamo, un ammicco: una
cosa si stacca dalle altre con l’intenzione di significare qualcosa... che cosa? se stessa, una
cosa è contenta d’essere guardata dalle altre cose solo quando è convinta di significare se
stessa e nient’altro, in mezzo alle cose che significano se stesse e nient’altro.”

Italo Calvino,
Palomar, Einaudi, Torino, 1983, p. 117

“We have to look for power sources here, and distribution networks we were never
taught, routes of power our teachers never imagined, or were encouraged to avoid... we
have to find meters whose scales are unknown in the world, draw our own schematics, get-
ting feedback, making connections, reducing the error, trying to learn the real function...
zeroing in on what incalculable plot? Up here, on the surface, coal-tars, hydrogenation,
synthesis were always phony, dummy functions to hide the real, the planetary mission yes
perhaps centuries in the unrolling... this ruinous plant, waiting for its Kabbalists and new
alchemists to discover the Key, teach the mysteries to others...”

Thomas Pynchon,
Gravity’s Rainbow, Viking Press, New York, 1973, p. 521

“Le nouveau ne se produit jamais par simple interpolation de l’ancien ; les informations
s’ajoutaient aux informations comme poignées de sable, prédéfinies dans leur nature par
le cadre conceptuel délimitant le champs des expériences...”

Michel Houellebecq,
Les particules élémentaires, Flammarion, Paris, 1998, p. 279

“Boy, you’re gonna carry that weight
Carry that weight a long time
Boy, you’re gonna carry that weight
Carry that weight a long time”

The Beatles, Carry That Weight
from Abbey Road, Apple Records, 1969
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Poids du motif bord de certaines variétés de Shimura

Résumé. Pour S une variété de Shimura associée à un groupe réductif G, nous étudions
la filtration par le poids dans la cohomologie des variations de structure de Hodge µH(V )
et des faisceaux ℓ-adiques µℓ(V ) sur S construits à partir des représentations algébriques
de G, avec le but de définir des motifs pour les représentations automorphes de G.

Dans les deux premiers chapitres nous rappelons les théories utilisées et nous y ajoutons
des compléments. Dans le premier, nous faisons un survol des rélations entre cohomologie
des variétés de Shimura, représentations automorphes et théorie des poids, tandis que dans
le deuxième nous introduisons les motifs de Chow et de Beilinson rélatifs sur les variétés
de Shimura de type PEL, ainsi que les applications de la théorie des structures des poids
dans ce contexte. En particulier, nous étudions en detail l’action de l’algèbre de Hecke au
niveau des motifs.

Dans les deux derniers chapitres, nous nous concentrons sur le cas du groupe G =
ResF |QGSp4,F , où F est un corps de nombres totalement réel, et sur les variétés de Shimura
S qui lui sont associées, les variétés de Shimura de Hilbert-Siegel de genre 2. Dans le
troisième chapitre, nous menons une étude approfondie de la dégénérescence des faisceaux
µℓ(V ) au bord de la compactification de Baily-Borel de S. Nous parvenons à décrire les
poids en terme d’un invariant de la représentation V , appelé corang. Nous en déduisons
une caractérisation complète des représentations V telles que la dégénérescence de µℓ(V )
évite les poids 0 et 1, une classe qui s’avère être très large.

Dans le quatrième chapitre, étant donnée une représentation V de G qui vérifie la
condition susmentionnée, nous définissons des motifs attachés aux représentations auto-
morphes apparaissant dans la cohomologie du faisceau µℓ(V ). Nous étudions donc les
propriétés de ces motifs.

Weights of the boundary motive of some Shimura varieties

Abstract. Given a Shimura variety S associated to a reductive group G, we study
the weight filtration in the cohomology of variations of Hodge structure µH(V ) and ℓ-
adic sheaves µℓ(V ) on S coming from algebraic representations V of G, with the aim of
constructing motives for automorphic representations of G.

In the first two chapters we review the theories that we use and we give some com-
plements to them. In the first one we summarize the relationship between cohomology of
Shimura varieties, automorphic representations and weights, whereas in the second one
we recall relative Chow and Beilinson motives over PEL Shimura varieties and the appli-
cations of the theory of weight structures to this setting. In particular, we study in detail
the action of the Hecke algebra at the level of motives.

In the last two chapters we concentrate on the case of the group G = ResF |QGSp4,F , for
F a totally real number field, and to the associated Shimura varieties S (genus 2 Hilbert-
Siegel varieties). In the third chapter, we study in detail the weight filtration on the
degeneration of the sheaves µℓ(V ) along the boundary of the Baily-Borel compactification
of S. We are able to describe the weights in terms of an invariant of the representation
V , called corank. From this, we deduce a complete characterization of the representations
V such that the degeneration of µℓ(V ) avoids the weights 0 and 1, and we find that they
form a quite large class.

In the fourth chapter, given such a representation V , we define motives for those
automorphic representations of G which appear in the cohomology of µℓ(V ). We then
study the properties of such motives.
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Chapter 1

Introduction

This thesis is concerned with the analysis of weights in the cohomology of Shimura varieties.
The main motivation for carrying out this analysis springs from the desire of constructing
motives for automorphic representations, which can be seen as algebro-geometric objects
providing a deep connection between arithmetic, on one side, and entities of analytic na-
ture, on the other side. Starting from the end of this chain of motivations and going
backwards, one may ask: why should such a connection be interesting? Why does (al-
gebraic) geometry have a role in proving that it exists? And why should the theory of
weights come into play?

The purpose of this introduction is to briefly discuss these questions, to make explicit
the specific problems addressed in this thesis, and to synthesize its contents and its main
results.

1.1 From arithmetic to automorphic forms

Let Q be the field of rational numbers and fix an algebraic closure Q̄ of Q. It is a
very basic and important problem, yet still completely open, to find a description of the
absolute Galois group Gal(Q̄|Q), which we will denote by GQ. The word description is
admittely vague, and actually, one would like to know more about this group than its
abstract structure. So, let us agree that a good way to understand a group is through
its representations, and that it makes sense to begin from complex-valued representations
of dimension 1. The profinite group GQ has a natural topology, and we want to study
continuous such representations. Since C× = GL1(C) is abelian, these factorize through
the abelianised absolute Galois group, so what one wants to describe are the continuous
group homomorphisms

Gab
Q → GL1(C).

Now, the latter are completely understood, even when we start from an arbitrary number
field F and we consider its absolute Galois group GF , thanks to Artin’s reciprocity law -
which we may call, by using a somewhat overused turn of phrase, the crowning achievement
of class field theory, and hence of the algebraic number theory of the first half of the 20th
century. In the form given to it by Chevalley in the 30’s, it establishes, among many other
things, the existence of a canonical, surjective continuous homomorphism

F×\IF → Gab
F (1.1)

where the object IF on the left is the topological group of idèles, in which F× embeds as
a discrete subgroup. It is the restricted direct product of the invertible elements of every
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completion of F , and hence, in the case of Q, it takes into account at the same time all
p-adic fields (p any prime number) and the real field R. We call F×\IF the idèle class
group of F .

Since the idèles are by definition the invertible elements of the adèle ring AF , we get
that the 1-dimensional complex Galois representations are identified with a subset of the
continuous characters

GL1(F )\GL1(AF )→ C× (1.2)

namely with those with finite image. The key invariants associated to the two sides, the
respective L-functions, are preserved by this correspondence, and we can consider our
original problem as completely solved for n-dimensional representations with n = 1.

What happens for n ≥ 2? According to Langlands’ insight at the end of the 60’s, the
correct generalization of this picture is that irreducible (so, non-abelian) representations

GF → GLn(C)

should be classified, by replacing 1 with n in (1.2), by some subclass of functions of the
form

GLn(F )\GLn(AF )→ C

where now GLn(F )\GLn(AF ) is no more a group, but only a coset space. The large body
of conjectures known as the Langlands program is even more ambitious: roughly speaking,
for any connected reductive algebraic group G, say over Q, one hopes to prove that a
certain subspace of functions

G(F )\G(AF )→ C (1.3)

parametrizes those Galois representations, whose image lands in a well-specified reductive
subgroup of GLn, depending on G. This correspondence, again, should preserve suitably
defined L-functions. The first obvious problem one faces in pursuing such a generalization
is: which functions should one consider in (1.3)? With the benefit of hindsight, we can
sketch an (historically incorrect) heuristic approach to the conjectural answer.

The (abelianized) Galois group Gab
F is canonically isomorphic to the projective limit

lim
←−

F ≤L finite abelian
Gal(L|F )

of its (automatically finite) quotients by open subgroups, which classify all possible finite
abelian extensions of F . Artin’s reciprocity law also implies that these quotients, through
the epimorphism (1.1), are in bijection with the quotients of the idèle class group by
its finite-index open subgroups (the so-called norm groups NL|F ), i.e. with the double
quotients

F×\IF /NL|F

One could try to guess how these “finite approximations” of GL1(F )\GL1(AF ) should
generalize to the case of a general G and to understand which objects should be considered
as “good functions” on the resulting spaces, in the hope to find “in the limit” the good
functions on the whole of G(F )\G(AF ).

For this, we have to write the above double quotients in a slightly modified form. Let
us stick to the case of Q for simplicity and write I for its idèles. If If denotes the finite
idèles (which, by introducing the finite adèles Af , we can see as the group GL1(Af )), we
have that I = R×× If . Now, a norm group corresponding to a totally imaginary extension

14
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can be written as a product of R×
>0 with an open, finite index (in particular, compact)

subgroup K of If , so that the double quotient acquires the form

Q×\(π0(R×)×GL1(Af )/K) (1.4)

where π0 denotes the group of connected components. We may look at π0(R×) as a
homogeneous space for GL1(R), via the obvious transitive action of the latter. Then,
the generalization of the other objects appearing in (1.4) being now straightforward, it is
tempting to stipulate that for a reductive group G over Q, one should replace π0(R×) by
some homogeneous space X for G(R), and the above double quotients by

G(Q)\(X ×G(Af )/K)

with K a compact open subgroup of G(Af ).
For a general reductive G over Q, there exists a natural geometric object which may

serve as the G(R)-homogeneous space X, namely the symmetric space associated to G.
This is a Riemannian manifold, defined as the orbit space G(R)/AGK∞. Here, K∞ is a
compact maximal subgroup of G(R), and if SG is the maximal Q-split torus in the center
of G, AG denotes the connected component of the identity of SG(R). As a parallel with
the situation for GL1, it turns out that (see Chapter 2 for references):

(1) the space

SK := G(Q)\(X ×G(Af )/K) = G(Q)\G(A)/AGK∞K

is naturally a finite disjoint union of locally symmetric spaces, themselves Riemannian
manifolds, attached to the connected component of the identity G(R)0;

(2) for any K ′ ≤ K, there are natural maps SK′ → SK , such that the corresponding
projective limit

S := lim←−
K

SK

carries a natural action of G(Af ), which gives rise on each SK to the action of an algebra
of operators H(G,K), the Hecke algebra;

(3) the singular cohomology H ·(S,Q) of S can be completely expressed in terms of a
special class of C-valued functions on G(Q)\G(A), called automorphic forms;

(4) if H ·

c(·,Q) denotes cohomology with compact support, then information about an es-
pecially interesting type of automorphic forms, the cuspidal forms, can be found, for each
K, in the interior cohomology H ·

! (SK ,Q) = Im(H ·

c(SK ,Q)→ H ·(SK ,Q)) by decomposing
it in H(G,K)-submodules.

Admitting that these objects should be the right ones to consider, we have now to construct
the link with Galois representations.

1.2 Shimura varieties, weights and motives

There is a set of conditions on (G,X), verified by important families of reductive groups
G together with appropriate G(R)-homogeneous spaces X, under which the coset spaces
SK ’s defined as above acquire the structure of complex quasi-projective algebraic varieties.

15



Introduction

As complex-analytic objects, such SK ’s are actually disjoint unions of locally symmetric
spaces1. But one of the deep results of the theory is that they admit a canonical model
over a number field E independent of K. These varieties over E (which we will still denote
by SK for the sake of this introduction) are called Shimura varieties.

The obvious consequence is that one can apply the richer methods of algebraic geometry
to study these spaces and their singular cohomology. But moreover, for every prime ℓ, there
is now another cohomology theory available, étale ℓ-adic cohomology H ·

ét(SK,Q,Qℓ). Given
the Galois action on the whole projective system S, these vector spaces are equipped by
construction with Galois representations, up to an important change of perspective: they
are no more complex representations, but ℓ-adic. In any case, H ·

ét still admits an action of
the Hecke algebra H(G,K), since the elements of the latter operate by correspondences.
Moreover, this commutes with the Galois action.

Actually, in each cohomology theory, one can consider more general twisted coefficients
over SK , coming from an algebraic Q-representation V of G. The bridge between the two
worlds is provided by a canonical Hecke-equivariant comparison isomorphism

H ·(SK , V )⊗Q Qℓ ≃ H
·

ét(SK,Q̄, Vℓ) (1.5)

In the case of G = GL2, the Shimura varieties in question are disjoint unions of (non-
projective) modular curves, and the relevant cuspidal automorphic forms are cusp modular
forms f of weight ≥ 2. Such f ’s have an associated L-function L(f), and if f is moreover
an eigenvector for the elements ofH(G,K), then L(f) encodes the eigenvalues of the Hecke
operators on H ·(SK ,Q). In 1969, Deligne ([Del71a]) showed that in the Galois representa-
tion on ℓ-adic interior cohomology H ·

ét,!, the eigenvalues of Frobenius endomorphisms2 are
pure (modulo the Weil conjectures that he later proved himself). Moreover, through the
isomorphism (1.5), an Hecke submodule corresponding to an eigenform f gives rise to a
Galois representation, the eigenvalues of whose Frobenii satisfy the expected relationship
with the L(f). The known information on the latter can be thus used to improve our
knowledge of the Galois representation; on the other hand, purity of the Galois represen-
tations imply strong bounds on the Hecke eigenvalues (Ramanujan’s conjecture). This is
a substantial instance of the connection between Galois representations and automorphic
forms hinted to in the previous paragraph, and of its deep and spectacular consequences.

But there’s more. SK being an algebraic variety, the singular cohomology spaces
H ·(SK , V ) carry themselves additional information, namely they are endowed with a mixed
Hodge structure. Then, interior cohomology inherits a Hodge structure which is pure. By
Deligne’s theory of weights, the latter, together with the above compatible system of pure
Galois representations (for varying ℓ, the eigenvalues of Frobenius don’t depend on ℓ), and
with the comparison isomorphisms, constitute precisely the kind of data arising from the
cohomology of smooth projective varieties. It is then natural to look for an underlying
geometric object, built out of such varieties, responsible for those data.

Crucially, modular curves happen to be moduli spaces for elliptic curves with level
structures. Deligne had already constructed a canonical smooth compactification E of
suitable powers Ek of the resulting universal elliptic curve E over SK , and exploited its
relation with the cohomology spaces H ·(SK , V ) to show purity. Then, in 1990, Scholl
([Sch90]) proved that in the category of Chow motives, one could define an idempotent
endomorphism of E , the “cohomology objects” of whose image M in the different theories

1But associated to the adjoint group of G.
2For all primes outside a certain finite set.
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(i.e., its realizations) coincide with the interior cohomology seen above. Since Hecke oper-
ators extend to E , M comes equipped with an action of the Hecke algebra, which allows
to cut out of M certain subobjects M(f) corresponding to single eigenforms f . The L-
function L(f) of f coincides now with the one naturally associated with M(f), and this
opens the way to studying it in the framework of Beilinson’s conjectures ([Bei87]): they
suggest a deep relationship between the special values of L(f) and motivic cohomology3

of M(f).

Given the above, one wants to generalize this picture to other non-compact, higher-
dimensional Shimura varieties. The first aim is to construct an Hecke-equivariant Chow
motive which realizes to the pure (or weight zero) part of the cohomology of local systems
coming from algebraic representations, the one containing interior cohomology. Here we
should add that it is by now classical, in the context of the Langlands program, to speculate
that (at least some subclass of the cuspidal) automorphic forms should be associated not
only to Galois representations, but to motives (see e.g. [Clo90]).

Second, the higher weights, i.e. the genuinely mixed part, are of considerable interest,
too. To describe the weight filtration on the cohomology of Shimura varieties is certainly
significant for its own sake. But moreover, according to conjectures of Harder ([Har91]),
the splitting of the extensions of pure Hodge structures in these cohomology spaces should
control zeros and poles of L-functions of the more general automorphic forms appearing
therein, and viceversa4.

The origin of this thesis lies in the fact that the two problems just raised, the un-
derstanding of the higher weights and the construction of the desired Chow motives, are
intimately related, as we are going to see.

To begin, suppose SK to be a PEL-type Shimura variety, associated to a reductive
group G, defined over the number field E. Roughly speaking, this means that it admits
an interpretation as moduli space of abelian varieties with polarization, endomorphisms
and level structure. Hence, over SK there is an universal abelian variety AK . Choose an
irreducible representation Vλ of G of highest weight λ and write µ(Vλ), resp. µℓ(Vλ) for the
corresponding local system, resp. ℓ-adic sheaf on SK . If we want to find a Chow motive
underlying the interior cohomology of µℓ(Vλ) over SK , we face immediately a problem
which stops any attempt to generalizing Scholl’s approach: smooth compactifications of
AK and/or of its powers, to which the Hecke action extends, are not known. But, as
for any Shimura variety, there exists a canonical compactification of SK , although in
general highly singular: its Baily-Borel compactification S∗

K . Denote by j : SK →֒ S∗
K the

associated open immersion and by i : ∂SK →֒ S∗
K the closed immersion of the boundary.

We write j∗ for the total derived direct image functor. Then, the complex i∗j∗µℓ(Vλ) is an
object in the “derived category” of ℓ-adic sheaves over ∂S∗

K , which in our setting admits
an intrinsic notion of weights (cfr. Rmk. 3.3.2.12.(1)). The theory of Wildeshaus gives a
criterion on this complex which, once verified, produces the sought-for motive. We will
give a much more precise form of this theorem, and also a glimpse of the ideas on which
it is based, in Section 3.3.2. For the moment, let us state it in the following version:

Theorem. ([Wil19a]) If i∗j∗µℓ(Vλ) avoids weights5 0 and 1, then there exists a canonical
Chow motive M0 over E with an action of the Hecke algebra, whose realizations in any

3Here we are glossing over the fact that M(f) is defined as an homological motive, and only expected,
but not known, to lift to a Chow motive.

4A vision which fits with the one of Beilinson’s, if one considers the conjectural interpretation of motivic
cohomology as a space of extensions in the still hypotetical abelian category of mixed motives.

5This weight avoidance has to be understood in the following sense. Denote by Hn the perverse co-
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cohomological degree n coincide with Hn
! (SK(C), µ(Vλ)) and Hn

ét,!(SK,Q̄, µℓ(Vλ)).

This result was the starting point for this thesis, whose contents we are now going to
present.

1.3 Principal results and structure of the thesis

The main problem studied in the present work is the following: which families of Shimura
varieties, and of representations of the underlying group G, do verify the criterion given at
the end of the previous paragraph? Let us call degeneration at the boundary the complex
i∗j∗µℓ(Vλ), and let us say that weight α appears in it if it doesn’t avoid such a weight.
Notice that, because of its autoduality properties, weight 0 appears in the degeneration at
the boundary if and only if weight 1 appears. We also mention that the higher weights in
H ·(SK , µℓ(Vλ)), as recalled in Subsection 2.3.2, are determined by boundary cohomology,
which is the hypercohomology of the complex i∗j∗µℓ(Vλ). This fournishes the connection
between the two problems raised in the previous paragraph.

Our attention has concentrated on the case of the group G = ResF |Q GSp4,F , where
F is a totally real number field of some degree d over Q, whose set of complex (hence,
real) embeddings will be denoted by IF . The associated Shimura varieties, the Hilbert-
Siegel varieties of genus 2, are of dimension 3d and are moduli spaces of polarized abelian
varieties of dimension 2d with real multiplication (and additional structures).

Let us explain the reasons for this choice. The group G can be seen as the simul-
taneous generalization of the reductive Q-groups ResF |Q GL2,F and of the group GSp4.
The Shimura varieties corresponding to the former are called Hilbert modular varieties
(dimension d, parametrizing polarized abelian varieties of dimension d with real multipli-
cation) and the ones corresponding to the latter are called Siegel threefolds (dimension 3,
parametrizing polarized abelian surfaces)6. Irreducible representations Vλ of ResF |Q GL2,F

are parametrized by vectors λ = (kσ)σ∈IF
of non-negative integers; λ is called regular if

kσ > 0 for every σ. On the other hand, irreducible representations Vλ of GSp4 are
parametrized by couples (k1, k2) of integers such that k1 ≥ k2 ≥ 0, and are called regular
if k1 > k2 > 0.

In the context of our problem, the following is known:

Theorem. ([Wil12], cfr. [Wil19a, Example 5.5]) Over Hilbert modular varieties, weights
0 and 1 appear in i∗j∗µℓ(Vλ) if and only if λ is identically equal to 0.

Theorem. ([Wil19b], cfr. [Wil19a, Rmk. 5.11 (a)]) Over Siegel threefolds, weights 0 and
1 appear in i∗j∗µℓ(Vλ) if and only if λ is irregular.

Notice that for Hilbert modular varieties, saying that λ is the trivial character (in
particular a parallel character, i.e. such that each of its components is equal to each
other) is equivalent to saying that it is irregular for each σ, a condition under which we

homology objects of the complex F , by Grk their graded quotients of weight k, and by w the weight of
the pure object µℓ(Vλ) (see Rmk. 2.1.3.8.(2)). Then the sentence the complex F avoids weights α, . . . , β

for integers α ≤ β is equivalent to: for each integer n, the objects Grw+n+α HnF , . . . , Grw+n+β HnF are

trivial.
6For the purposes of this introduction, we will ignore the fact that the center of the groups under

consideration has to be modified in order to make the theory work properly. Moreover, since the results
that we will state only depend on the restriction of the representations to the derived subgroup G, we will
parametrize the weights as if we were dealing with Gder instead of G.
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may call it completely irregular. It follows from the above theorems that, in both this
case and the case of Siegel threefolds, one can construct Hecke-equivariant Chow motives
realizing to interior cohomology for most λ: regularity of λ is sufficient, but not always
necessary, for the avoidance of weights. Together with Picard modular varieties ([Wil15],
[Clo17], cfr. [Wil19a, Rmk. 5.8]), for which a similar characterization can be proven, these
were the only known families of Shimura varieties giving rise to a construction of the Chow
motives with the desired properties.

Given the previous examples, the group ResF |Q GSp4,F appears as the natural following
case to be investigated (we will come back later to this point, when discussing the content
of Chapter 4). Our contribution has been to find a criterion which completely characterizes
the presence of the weights 0 and 1 in the degeneration at the boundary, in the case of
this group.

Here, the highest weight is of the form λ = (k1, k2) := ((k1,σ)σ∈IF
, (k2,σ)σ∈IF

), with
k1,σ ≥ k2,σ ≥ 0 for every σ. It is called regular at σ if the inequality is strict at σ, and
completely irregular if for every σ, it is not regular at σ. For i = 1, 2 we call ki parallel if
there exists an integer κ such that ki,σ = κ for every σ, and in this case we write ki = κ.
Then, our criterion subsumes the ones for ResF |Q GL2,F and for GSp4, in the following
way:

Theorem A. (Cor. 4.3.1.3) Over genus 2 Hilbert-Siegel varieties, weights 0 and 1 appear
in i∗j∗µℓ(Vλ) if and only if λ is completely irregular and k2 is parallel.

As a consequence of this result, we have a large number of representations Vλ for which
we can construct Chow motives realizing to interior cohomology of Vλ.

This theorem actually follows from the main result of this thesis, which consists in a
detailed description of what one could call the limit weights in the “weight filtration” of
the degeneration at the boundary. In fact, the main interest of this description lies in
finding the correct invariant of the representation Vλ controlling the weights in question.
We refer to Def. 4.3.1.1 for the actual definition of this invariant, called the corank of λ.
We express our main result in the following imprecise form, calling a character λ = (k1, k2)
impair if it holds that k1 = κ1 and k2 = κ2 with κ1 and κ2 of different parity:

Theorem B. (Thm. 4.3.1) If λ is not impair, the minimal weight k ≥ 1 and the maximal
weight k ≤ 0 appearing in i∗j∗µℓ(Vλ) can be explicitly described in terms of k1 − k2, k2

and of the corank of λ.

The importance of the corank, as we will argue in Subsection 2.3.4, stems from the
fact that, when suitably generalized, it controls the existence of non-trivial non-cuspidal
automorphic forms on PEL-Shimura varieties of symplectic or unitary type. In the case of
genus 2 Hilbert-Siegel varieties, non-trivial, non-cuspidal automorphic forms can exist only
if the corank is at least 1. Now, Theorem A can be reformulated as saying that weights
0 and 1 appear in the degeneration if and only if λ is completely irregular of corank at
least 1. The conjunction of these facts - whose proofs are independent the one of the other
- may hint to a a path towards the understanding of the contribution of automorphic
forms to the weight filtration in the cohomology of Shimura varieties, a subject which is
still mysterious and largely unexplored (cfr. for example [OS90, 7.5]). Notice that all the
assertions that we have formulated for the ℓ-adic side could be repeated word by word on
the Hodge side, because the underlying computations are exactly the same (Rmk. 4.2.2.4).
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Overview.

In order to give an idea of the techniques used to obtain the previous results, and also to
cite the other facts that we have proven along the way, we pass to give an outline of this
thesis. We have striven to introduce the material in an organic way, putting in the right
context the objects and the theories that we use, whenever possible. Moreover, we wanted
to present various results from the literature, often scattered among different sources, in a
form adapted to our needs, and to give complements to them. This is the role of Chapters
2 and 3, which contain little of original, except for the exposition and some specific parts
pointed out below. These chapters are in fact preliminary in nature, and mainly set the
stage for Chapter 4. The latter, the heart of the thesis, is instead completely devoted to the
proof of the main results which we have discussed above. Lastly, Chapter 5 analyses the
Chow motives that we can construct as a consequence of those results and of Wildeshaus’
theory. These last two chapters can be seen as providing a detailed study of an example of
the general theory reviewed in the first two, and constitute the main content of the paper
[Cav19].

We give now a more precise overview of each Chapter. Chapter 2 is meant to intro-
duce our basic objects of interest, variations of Hodge structure and ℓ-adic sheaves over
Shimura varieties, to illustrate the interplay between various structures appearing in the
cohomology of such local systems, and to explain the role of different compactifications
in their comprehension. We spend some time in defining the action of the Hecke op-
erators, preparing the motivic definition of the Hecke algebra in the following chapter,
and in expliciting the relation of cohomology with automorphic forms. On the one hand,
this allows us to introduce L2-cohomology; on the other, it is useful in view of the last
chapter (see below). We give the structure of the Baily-Borel compactification, which will
be crucially used in Chapter 4, and we recall some facts on its intersection cohomology,
which we need to consider because the Chow motive realizing to interior cohomology is
actually constructed - under the weight avoidance hypothesis - as an intermediate exten-
sion. Thanks to intersection cohomology, we can prove the only original result of this part
(Thm. 2.3.2), which is basically a consequence of Zucker’s conjecture, of Hodge theory
and of an automorphic observation on L2-cohomology, but seems to be absent from the
literature. We see it as giving information on why weights 0 and 1 in the boundary should
be related to regularity of the highest weight λ, a condition which may be conjectured
to be sufficient for their absence (cfr. Rmk. 3.3.2.13). We finish the chapter by briefly
discussing toroidal compactifications: they allow for the definition of automorphic bundles
and hence for the definition of cusp forms on general Shimura varieties, which will play a
central role in proving the only if part in Theorem A. This also permits to motivate the
definition of corank, linking it to automorphic forms.

In Chapter 3 we switch to the motivic language. We begin by a rapid review of the
notions that we need from the theories of Beilinson and relative Chow motives, before
recalling the fundamental theorem of Ancona providing the relative motives over PEL
Shimura varieties, which are the basis for all later constructions. Actually, we need to
analyze Ancona’s result quite in detail, in order to move on to the original part of this
chapter, i.e. Subsection 3.2.2. There, we show that the correspondences defining Hecke
operators actually act as an algebra on the relevant motives, something which wasn’t
obvious from the literature. One can dispose of this result for the construction of the
motives we are interested in, but it seemed to us that filling this gap could be important for
future applications (cfr. Remark 5.2.0.5). The chapter ends by discussing the fundamental
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language of weight structures, clarifying why the existence of the desired Chow motives
follows from the weight avoidance, and formulating in our context the criterion found
by Wildeshaus to check the latter. Namely, this criterion tells that we have to consider
separately the restriction of the complex i∗j∗µℓ(Vλ) to each stratum of the boundary, and
to look at the weights of the perverse cohomology sheaves of such restrictions.

This is the subject of Chapter 4. We refer to its introduction for an overview of the
proof of Theorem B (and hence of Theorem A) contained therein, and of the interme-
diate results that are needed to complete it. Here we content ourselves with saying the
following: Pink’s theorem 4.2.1 gives an expression for the restriction to a single stratum
of the classical cohomology sheaves of the degeneration at the boundary, and for their
weight-graded objects, in terms of cohomology of unipotent groups and of cohomology
of arithmetic groups. In turn, the latter involves a genuinely arithmetic component, and
another one related to cohomology of free abelian groups, arising as groups of units of
the field F . Compared to the list of previously studied Shimura varieties given before,
Hilbert-Siegel varieties are the first ones, for which the phenomena related to these three
aspects make their appearance simultaneously. An ulterior motivation for their choice
came from the latter observation, as well as from the consideration of the structure of
the boundary: a disjoint union of two types of strata, i.e. cusps and Hilbert modular
varieties of dimension equal to the degree d of the field F (for Siegel threefolds, one has
cusps and modular curves; for Hilbert modular varieties, only cusps). Then, this chapter
is mainly concerned with computing the mentionned cohomologies, keeping track of their
mutual interrelations and of the resulting combinatorics, and meaningfully interpreting
the outcome (also in terms of automorphic forms), before relating the classical sheaves
with their perverse counterparts - the ones we are really interested in. The action of the
groups of units on the stalks of the degeneration turns out to be crucial, and to admit a
geometric interpretation that deserves further attention (cfr. Rmk. 4.30).

The final Chapter 5 draws the consequences of the above. Having proven the weight
avoidance for non completely irregular or corank 0 characters λ, we can apply the theory
explained at the end of Chapter 3 and construct motives realizing to interior cohomology
with coefficients in the corresponding representations Vλ, which turns out to coincide with
intersection cohomology. We describe the properties of these motives and we exploit the
action of the Hecke algebra to cut out homological submotives corresponding to irreducible
Hecke submodules. The material on automorphic representations summarized in Chapter
2 explains the semisimplicity of the action of the Hecke algebra on interior cohomology,
and the relation between the motives that we have constructed and the known information
about automorphic representations of ResF |Q GSp4,F , contained in Flicker’s book [Fli05].
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Conventions and notations.

The symbols A, resp. Af will denote the ring of adèles, resp. finite adèles.
An empty entry in a ring-valued matrix will mean that the corresponding coefficient is
zero. If R and B are modules over a ring A, we will often denote R⊗A B by RB.
We will use the symbol π0(X) for the set of connected components of a topological space
X. If G is an algebraic group over Q, we will use the notation G(R)0 for the topological
connected component of the identity.
If f : T → S is a morphism of schemes and X is a S-scheme, the notation X ×S,f T will
be used to specify that the fiber product has been taken along f : this can be shortened to
(XT )f and furthermore to XT (if the choice of S and/or f is evident from the context).
When T = SpecR we will often denote XT by XR.
An algebraic variety over a field k will always mean a separate, finite type scheme over
k. An algebraic group over k will mean a finite type scheme over k with the structure
of a group scheme. For an extension k′|k of fields, the symbol Resk′|k will denote Weil
restriction from k′ to k. We will denote by S the Deligne torus, i.e. the algebraic group
over R defined by ResC|RGm,C.
If C is a category, then GrZC will denote its category of graded objects. A sub-category B
of an additive category A is dense if for any object B of B, any direct factor of B formed
in A belongs already to B. The pseudo-Abelian completion of an additive category A
is denoted by A♮. If A is an abelian category, Db(A) will denote its bounded derived
category. The notion of a ⊗-category over a commutative ring is defined as in [And04,
2.2.2]. Idem for rigid ⊗-categories.
The constructible category over a complex analytic space S is the full subcategory of the
bounded derived category of sheaves consisting of complexes with constructible cohomol-
ogy objects. We will call such complexes constructible complexes.
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Chapter 2

Weights in the cohomology of
Shimura varieties

As alluded to in the introduction, the cohomology of locally symmetric spaces is naturally
interpreted in terms of automorphic forms. When such spaces are algebraic varieties, addi-
tional structures appear in the cohomology: Galois representations and Hodge structures.
Their relation with automorphic forms is the subject of this chapter and will form the
background for later considerations.

We begin in Section 2.1 by introducing the facts that we need about local systems
(coming from representations of the underlying group G) on locally symmetric spaces in
the general setting, specializing next to variations of Hodge structures and ℓ-adic sheaves
over Shimura varieties. In particular, we review the examples of Hilbert-Siegel varieties
(but also of Hilbert modular varieties) that we will study in detail in Chapter 4.

In Section 2.2 we start tracing the connection with automorphic representations and
forms. In particular, we define the Galois representations (2.27) associated to cuspidal
representations, which should arise from motives.

We pass then to introduce the point of view of weights, which is the crucial one in
this thesis (Section 2.3). Cuspidal representations lie in a subspace of the weight zero part
of the cohomology, the interior cohomology. The Hodge structures associated to these
automorphic representations are then defined in (2.32); these are the counterpart of the
Galois representations cited above. When the Shimura varieties are not compact, which
is our case of interest, the rest of the cohomology is captured by boundary cohomology.
The study of the latter, also motivated by the desire of understanding the higher weights,
naturally begins from a choice of a compactification.

We conclude the chapter by considering two types of these. The canonical one, the
Baily-Borel compactification, will be used in detail in Chapter 4: here we give the necessary
general information on the structure of its boundary, stratified by “smaller” Shimura
varieties. The knowledge of its intersection cohomology provided by Zucker’s conjecture
implies an observation on how regularity of the G-representations under consideration
influences the weights in the cohomology (Thm. 2.3.2), a theme which will surface again
in Chapter 4.

The second type of compactification, actually a whole family, is given by toroidal
compactifications. We explain their role in the general picture and we collect some facts
that we need, both for motivation and for later use.
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Weights in the cohomology of Shimura varieties

2.1 Local systems on locally symmetric spaces and Shimura
varieties

2.1.1 Locally symmetric spaces

We start by putting the description of Shimura varieties, or better of their spaces of
complex-valued points, in the broader context of locally symmetric spaces, of which we
will encounter non-algebraic examples later.

Fix, for the rest of this section, a connected Q-reductive group G and a maximal
compact subgroup K∞ of G(R), define SG as the maximal Q-split torus inside the center
Z(G), and define the commutative Lie group AG as

AG := SG(R)0. (2.1)

Definition 2.1.1.1. The symmetric space associated to G is defined as D := G(R)/AGK∞.

Remark 2.1.1.2. The space D has a canonical structure of Riemannian manifold, inde-
pendent of the choice of K∞, and is actually a symmetric space as in the usual definition
(as found for example in [Ji09, 4.7]). Moreover, it is a non-positively curved symmetric
space (product of non-compact type and flat factors), which implies in particular that it
is simply connected and even contractible (cfr. [BJ06, I.1.2]).

Example 2.1.1.3. (1) By choosing G = SL2, K∞ = SO2(R) one recovers the classical
description of the complex upper-half plane H as H ≃ SL2(R)/SO2(R), compatibly with
the classical action of G(R) by fractional transformations; notice that we obtain the same
space by choosing G = PGL2, K∞ = PO2(R). More generally, taking G = Sp2n and
K∞ = Un(R) gives as symmetric space D the Siegel upper-half space of genus n of n× n
complex symmetric matrices of positive definite imaginary part, denoted by Hn, equipped
with the classical action of G(R). Here the group AG is always trivial, since the groups G
are semisimple.

(2) Fix a totally real field F of degree d. The previous example can be then generalized
in the following way: by taking G = ResF |Q Sp2n,F and K∞ = Un(R)d we obtain as
symmetric space D the d-fold product Hd

n.

(3) Let be F as before, and take G = ResF |Q GL2,F , K∞ = O2(R)d. Then

AG ≃ R>0

and the associated symmetric space is given by

D ≃ hd × Rd−1,

which, contrary to the previous examples, has in general no complex structure (as seen in
the case d = 2, where the dimension 3d− 1 of D is odd).

The locally symmetric spaces considered here will always arise as quotients of symmet-
ric spaces by suitable arithmetic subgroups (i.e., having chosen an embedding G →֒ GLn,
subgroups of G(Q) which are commensurable with G(Z)):

Definition 2.1.1.4. Let Γ be a torsion-free arithmetic subgroup of G(Q) and D the sym-
metric space associated to G. Then the locally symmetric space associated to Γ is the
space XΓ := Γ\D.
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2.1. Local systems on locally symmetric spaces and Shimura varieties

Remark 2.1.1.5. (1) Since the hypotheses on Γ assure that it acts isometrically, properly
and freely on D, such XΓ’s are actually locally symmetric spaces as in the classical defini-
tion (see for example [Ji09, 4.9]), so that they have in particular a canonical structure of
Riemannian manifold. Moreover, as a consequence of Remark 2.1.1.2, Γ is identified with
the fundamental group of XΓ.

(2) Most commonly, it is useful to ask Γ to be neat, i.e. such that for any (equivalently, for
all) faithful representation ρ : G → GLn(V ), for every g ∈ G(Q), the eigenvalues of ρ(g)
in C generate a torsion free subgroup of C×. Every neat subgroup is torsion-free, but the
converse doesn’t hold. The notion of neatness has the advantage of being preserved under
passage to subgroups and to homomorphic images by morphisms of algebraic groups.

The main examples of locally symmetric spaces which we will make use of are connected
components of spaces of C-valued points of Shimura varieties; examples will be given in the
next subsection. The only exception is represented by the non-algebraic locally symmetric
spaces that will appear in the proof of Lemma 4.3.2.11.

We recall the following general construction:

Construction 2.1.1.6. Let L be any extension of Q and V be a finite dimensional represen-
tation of GL. Then V gives in particular a representation of the fundamental group Γ of
XΓ and hence defines a canonical local system V of L-vector spaces on XΓ. Moreover, for
every integer p, the group cohomology spaces Hp(Γ, V ) are canonically identified with the
cohomology spaces Hp(XΓ,V) of XΓ with coefficients in the local system V. This follows
from the contractibility of X.

For later use, we record here a general structural result on the cohomology groups of
the local systems described above. Fix a number field L over which G splits and fix a (split)
maximal torus T and Borel B of GL. For any root α of T , denote by α∨ the corresponding
coroot. Irreducible representations of GL are parametrized by those characters (or weights)
λ of T which are dominant, i.e. such that for any positive root α (with respect to T , B),
the evaluation 〈λ, α∨〉 of the canonical pairing on λ and α∨ is ≥ 0. The representation
associated to such a dominant weight λ is said to be of highest weight λ. The dominant
weight λ is called regular if, for any positive root α, 〈λ, α∨〉 > 0.

Theorem 2.1.1. ([LS04, Cor. 5.6]) Let Vλ be an irreducible representation of GL of
highest weight λ. Let D = G(R)/AGK∞ be the symmetric space associated to G, XΓ

any of the associated locally symmetric spaces, and Vλ the local system on XΓ associated
to Vλ by Construction 2.1.1.6. Denote by rk the absolute rank of a Lie group and pose
l0 := rk(G(R)) − rk(K∞). Then, if λ is regular, we have Hp(XΓ,Vλ) = {0} for every p
such that

0 ≤ p <
1
2

(dim(D)− l0)

Remark 2.1.1.7. The above vanishing results also follow from general theorems of Saper
([Sap05b, Thm. 5]), whose proof is contained in [Sap05a] but has still not appeared in
print.

2.1.2 Shimura varieties

Keep the notations of the previous subsection. As is well known, Deligne has identified
a set of axioms on G and on a chosen G(R)-conjugacy class X of morphisms S → GR

([Del79, 2.1.1]; a couple (G,X) satisfying such axioms is then dubbed a Shimura datum)
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Weights in the cohomology of Shimura varieties

which ensure in particular that, for any compact open subgroup K of G(Af ), the double
quotient

G(Q)\X ×G(Af )/K (2.2)

has a canonical structure of (non-connected) complex analytic variety. Even more, one
shows that this set is identified with the C-valued points of a canonical quasi-projective
algebraic variety SK (the Shimura variety associated to (G,X) and of level K) defined
over a number field E (the reflex field) independent of the choice of K.

Remark 2.1.2.1. (1) In all of this thesis we will use the extension of Deligne’s formalism
due to Pink, according to whose definition of a pure Shimura datum (G,X) ([Pin90, 2.1]),
the object X is allowed to be more generally a left homogeneous space under G(R) which
admits a G(R)-equivariant map X → Hom(S, GR) with finite fibers.

(2) The link with the theory of locally symmetric spaces is the following. Fix an element
h ∈ X and define Kh

∞ := StabG(h). Then, the axioms imply that: (i) through the
isomorphism X ≃ G/Kh

∞, the space X is identified with a finite disjoint union of copies
of the symmetric space D for the connected component of the identity of the derived
subgroup1 Gder; (ii) the symmetric space D is of non-compact type and endowed with a
canonical complex structure, compatible with the Riemannian one (i.e. it is an hermitian
symmetric domain). The group G acts on D through Gad. Then, one shows that the
double quotient (2.2) is identified with a finite disjoint union

⊔

i

Γi\D (2.3)

where the Γi’s are arithmetic subgroups of G(Q). More precisely, their images in Gad(Q)
are congruence subgroups of the latter group (i.e. of the form Gad(Q) ∩ K ′ for some
compact open subgroup K ′ of Gad(Af )). This identifies SK(C) with a disjoint union of
locally symmetric spaces associated to the connected component of the identity of Gad.

(3) Suppose the compact open subgroup K to be neat ([Pin90, 0.6]), a notion which
ensures that the arithmetic subgroups Γi in the previous point are themselves neat as
defined in Remark 2.1.1.5.(2). Then, the associated Shimura variety is a smooth quasi-
projective variety defined over the reflex field E. In the following, our K’s will always be
neat.

Example 2.1.2.2. (1) Take G = GL2 and take as X the conjugacy class of the morphism
h : S→ GR defined on real points by

S(R)→ G(R)

x+ iy 7→

(

x y
−y x

)

Then, we have an isomorphism X ≃ C \R which G(R)-equivariantly identifies X with the
disjoint union H± of two copies of the complex upper half plane, i.e. of two connected
components, each of whose is isomorphic to the domain D of the first part of Example

1To emphasize the fact that these spaces come from the derived subgroup of G, notice that Kh
∞ will in

general different from the group AGK∞ defined in the previous subsection; it is connected (whereas the
latter, in general, is not) and, in general, it will contain strictly the connected component of the identity
of AGK∞. Also notice that this description implies that in general, Kh

∞ is not compact.
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2.1. Local systems on locally symmetric spaces and Shimura varieties

2.1.1.3.(1). The couple (G,X) is a pure Shimura datum ([Del71c, 1.6]) and the associ-
ated Shimura varieties SK are modular curves of level K; the connected components of
their C-points are locally symmetric spaces for PGL2, henceforth called complex analytic,
connected modular curves. By considering, for all positive integer n, the 2n× 2n matrix

Jn :=

(

In

−In

)

∈ GL2n(Q),

by taking as G the group GSp2n of symplectic similitudes of dimension 2n, defined as the
algebraic group over Q such that, for all Q-algebra R, one has

GSp2n(R) :=
{

g ∈ GL2n(R)|tgJng = ν(g)Jn, ν(g) ∈ Gm(R)
}

,

and by taking as X the G(R)-conjugacy class of the morphism h : S→ GR defined on real
points by

S(R)→ G(R)

x+ iy 7→ xI2 + yJ2,

one gets that X is G(R)-equivariantly identified with the space H±
n of n×n complex sym-

metric matrices with definite imaginary part (positive or negative), i.e. with the disjoint
union of two copies of the domain D = Hn of the second part of Example 2.1.1.3.(1).
The couple (G,X) is again a pure Shimura datum (loc. cit.) and the associated Shimura
varieties SK are the Siegel varieties of genus n (of level K); a similar remark as before,
about the connected components of their C-points, holds.

(2) Fix a totally real number field F of degree d over Q and denote by IF its set of complex
(hence, real) embeddings. In parallel with Example 2.1.1.3.(2), the previous example
generalizes (first, in the genus 1 case) by choosing G = ResF |Q GL2,F and defining as X
the G(R)-conjugacy class of the morphism h : S→ GR defined on real points by

S(R)→ G(R)

x+ iy 7→ (

(

x y
−y x

)

σ

)σ∈IF

with the effect that one has a G(R)-equivariant isomorphism X ≃ (H±)d; the associated
Shimura varieties are called Hilbert-Blumenthal or Hilbert modular varieties, with C-points
which are disjoint unions of complex analytic, connected ones (which can be seen as locally
symmetric spaces for ResF |Q SL2,F , when the groups Γi of Remark 2.1.2.1.(2) happen to
be subgroups of SL2(F )). More generally, for any positive integer n, one takes G =
ResF |Q GSp2n,F and defines X as the G(R)-conjugacy class of the morphism h : S → GR

defined on real points by

S(R)→ G(R)

x+ iy 7→ ((xI2 + yJ2)σ)σ∈IF
,

obtaining a G(R)-equivariant isomorphism X ≃ (H±
n )d and, as associated Shimura va-

rieties, the Hilbert-Siegel varieties of genus n. Actually, the Hilbert and Hilbert-Siegel
varieties that we will consider will be associated to a slightly different Shimura datum, see
Example 2.1.3.2.
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Weights in the cohomology of Shimura varieties

Let us end this subsection by recalling the system of finite coverings which arises from
a Shimura datum (which also exists, in its topological version, in the more general context
of locally symmetric spaces). Let (G,X) be a pure Shimura datum and K ⊂ G(Af ) a
open compact subgroup. For every g ∈ G(Af ), consider the holomorphic, finite maps (cfr.
[Pin90, 3.4])

[·g] : SK∩gKg−1(C)→ SK(C)

G(Q)(x, h)K ∩ gKg−1 7→ G(Q)(x, hg)K

Then (cfr. [Pin92, (3.4)]), this map algebraizes and gives rise to a map

[·g] : SK∩gKg−1 → SK (2.4)

which is an étale covering if K is neat. The canonical maps corresponding, by the case
g = 1 of (2.4), to the choice of two compact open subgroups K,K ′ of G(Af ) such that
K ′ ≤ K, give rise to a projective system of complex spaces

lim←−
K

SK(C) (2.5)

endowed with a right action of G(Af ) (defined by the morphisms (2.4)). Thus, we get a
projective system of finite type E-schemes whose projective limit

S := lim←−
K

SK (2.6)

exists as a scheme over E, and is endowed with an action of G(Af ) ([Del79, 2.1.4]).

2.1.3 The canonical construction of mixed sheaves on Shimura varieties

Keep the notation of the previous subsection. For a reductive group G underlying a pure
Shimura datum, we want now to refine Construction 2.1.1.6 and obtain not only local
systems on the topological space of C-valued points of Shimura varieties, but objects with
more structure, i.e. mixed sheaves, in the sense of Hodge or étale ℓ-adic theory.

Convention 2.1.3.1. Let w : Gm,R → S be the cocharacter which induces the inclusion
R× →֒ C× on real points. A representation (ρ, V ) of S induces a (semisimple) mixed
Hodge structure on the real vector space V . Coherently with [Pin90] 1.3, we will say that
the subspace of V where ρ ◦ w acts as multiplication by t−k is the subquotient of V of
weight k.

Observe now that, if (G,X) is a Shimura datum, defined by h : X → Hom(S, GR),
then every representation ρ : G → GL(V ) gives rise, for all x ∈ X, to a Hodge structure
on V , by applying the above observation to ρ ◦ h(x) ◦ w. By design, the axioms which
define a Shimura datum (G,X) allow one to obtain from such punctual Hodge structures
a variation of Hodge structure on X. In order to descend this on the C-valued points
of the associated Shimura varieties without additional complications, and in a functorial
way, we will restrict to pure Shimura data (G,X) which satisfy the following assumption
(cfr. [BW04, pag. 367]):

(+) the neutral connected component Z(G)0 of the center Z(G) of G is, up to isogeny,
the direct product of a Q-split torus with a torus T of compact type (i.e. T (R) is
compact) defined over Q.
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2.1. Local systems on locally symmetric spaces and Shimura varieties

This condition ensures, for example, that the arithmetic subgroups Γi appearing in (2.3).
are identified with the fundamental groups of the connected components Γi\D of the C-
valued points of the Shimura varieties under consideration ([Mil90, Proof of Prop. II.3.3]).

Example 2.1.3.2. In order to get couples (G,X) verifying the above condition (+), we
slightly modify the Shimura data introduced in Example 2.1.2.2.(2), in the following way.

(1) Consider the canonical adjunction morphism i : Gm → ResF |QGm,F , induced by the
fact that Weil restriction is right adjoint to base change. If G̃ := ResF |Q GL2,F , define G
by

G := Gm ×ResF |QGm,F
G̃, (2.7)

where the fibered product has been taken with respect to the morphisms i and det : G̃→
ResF |QGm,F ; then define X exactly as in the first part of Example 2.1.2.2.(2), but as a
G(R)-conjugacy class, with respect to the new G. The Shimura datum (G,X) verifies now
the desired condition (cfr. Rmk. 3.2.1.3 for some comments on the difference with the
Shimura datum utilising the “classical” G).

(2) More generally, if G̃ := ResF |Q GSp2n,F , define G as in (2.7), this time taking the
fibered product with respect to the morphisms i and ν : G̃ → ResF |QGm,F , which is the
multiplier morphism coming from the definition of G̃; one then defines X as in the second
part of Example 2.1.2.2.(2), obtaining a Shimura datum sastisfying the desired condition
(this will follow from Rmk. 4.1.0.1.(2)).

Let now (G,X) be a Shimura datum satisfying condition (+), K a neat compact
open subgroup of G(Af ), and SK the corresponding Shimura variety. For any subfield
L of C, denote by Rep(GL) the Tannakian category of algebraic representations of G in
finite dimensional L-vector spaces, and by LocSysL(SK(C)) the category of local systems
of L-vector spaces on SK(C). Thanks to the above considerations, Construction 2.1.1.6
generalizes immediately to non-connected analytic Shimura varieties:

Definition 2.1.3.3. The topological canonical construction is the functor

µK
top : Rep(GL)→ LocSysL(SK(C)) (2.8)

naturally extending construction 2.1.1.6.

Remark 2.1.3.4. For a representation V of GL, the total space of the local system µK
top(V )

is given by
G(Q)\V (R)×X ×G(Af )/K (2.9)

with the obvious left action of G(Q) on V (R) defined by the representation V .

Then, because of the fact that we are working with Shimura varieties, we can enrich
the previous functor:

Definition 2.1.3.5. Denote by MVarL(SK(C)) the category of graded-polarizable ad-
missible variations of mixed L-Hodge structure2 over SK(C). We call Hodge canonical
construction functor the exact tensor functor (cfr. [Wil97, Part II, Chap. 2])

µK
H : Rep(GL)→ MVarL(SK(C)). (2.10)

naturally enriching the topological canonical construction.
2If L is not a subfield of R, this category is obtained from the analogous category over Q by tensoring

morphisms with L, and passing to the pseudo-abelian completion. Also notice that, since GL is reductive,
every object in the essential image of this functor will actually be semisimple.
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Weights in the cohomology of Shimura varieties

This admits an étale ℓ-adic analogue (over the E-variety SK): under our assumptions,
by a construction analogous to the one leading to the scheme introduced in (2.6), there is
a pro-finite étale Galois covering

lim←−
K′≤K

SK′ → SK

of Galois group K (cfr. [Pin92, (3.8)]). Since a Qℓ-representation of G gives rise to a
representation of K through K →֒ G(Af ) ։ G(Qℓ), we obtain:

Definition 2.1.3.6. Suppose that L is a finite extension of Q. Let ℓ be a fixed prime, l
a fixed prime of L above ℓ, and Etℓ,L(SK) the Ll-linear version of the category of lisse
ℓ-adic sheaves over SK . We call ℓ-adic canonical construction functor3 the exact tensor
functor (cfr.[Wil97, Part II, Chap. 4])

µK
ℓ : Rep(GL)→ Etℓ,L(SK) (2.11)

defined as explained above.

But what about the analogy with Hodge theory, i.e. the mixed structure? In this sense,
the correct target category of the above functor should be the following (cfr. [Wil97, Part
I, Definition before Theorem 2.8]):

Definition 2.1.3.7. The category of mixed lisse sheaves with a weight filtration is the
full subcategory EtM

ℓ,L(SK) of Etℓ,L(SK) formed by objects V for which there exists a finite
set S ⊂ Spec(OE) containing the primes dividing ℓ, a smooth, separated scheme X →
Spec(OS) of finite type and a lisse Ll-sheaf V on X such that

1. SK = X⊗OS
E, V = V⊗OS

E;

2. the model V of V admits an ascending finite filtration (WnV)n∈Z (the weight filtra-
tion) such that

GrWn V := WnV/Wn−1V

is pure of weight n for all n, i.e. for each closed point x of X, the eigenvalues of the
action of the geometrical Frobenius on the stalk at x are pure of weight n.

Note that the above definition is stronger than the definition of a mixed ℓ-adic sheaf
in [Del80, Déf. 1.2.2] (which only asks for some finite filtration with pure quotients, not
necessarily ascending) and that, contrary to the Hodge-theoretical picture, the fact that
the objects obtained through the ℓ-adic canonical construction are mixed with a weight
filtration is by no means clear.

Remark 2.1.3.8. (1) By results of Pink [Pin92, Proposition (5.6.2)], if the Shimura datum
(G,X) is of abelian type, then the essential image of the ℓ-adic canonical construction lies
in the subcategory of mixed sheaves with a weight filtration. We won’t recall the definition
of abelian type here, but we notice that all Shimura data we will make use of will be of
PEL type (cfr. subsection 3.2.1), hence of abelian type.

(2) If (G,X) is of abelian type and V ∈ Rep(GL), then the results of Pink in loc. cit. also
imply that the weights of µK

ℓ (V ) as an object of EtM
ℓ,L(SK) are identical to the weights of

µK
H(V ) as a variation of mixed Hodge structure.

3We will systematically abuse of notation and forget the choice of l.
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2.1. Local systems on locally symmetric spaces and Shimura varieties

(3) Suppose G to be split over L and V to be an irreducible representation of GL. Then,
the Hodge structure induced on V (cfr. the discussion after 2.1.3.1) is pure. If the
irreducible representation V is of highest weight λ, we will often denote it by Vλ and by
w(λ) its weight as a pure Hodge structure.

Remark 2.1.3.9. (1) In the following we will sometimes abusively denote by the same sym-
bol µK

H the obvious factorization of the latter functor through the category GrZVarL(SK(C))
(where VarL(SK(C)) is the category of pure polarizable variations of L-Hodge structure).
If (G,X) is a Shimura datum of abelian type, the above considerations will give us an
obvious factorisation of the functor µK

ℓ through the category GrZEtℓ,L(SK), still abusively
denoted by µK

ℓ .

(2) The exact functor µK
H extends to a triangulated functor, denoted by the same symbol,

µK
H : Db(Rep(GL))→ Db(MHM(SK(C))L, (2.12)

where Db(MHM(SK(C))L denotes the bounded derived category of mixed Hodge modules
(with L-coefficients) over SK(C) ([Sai90]). Analogously, the exact functor µK

ℓ extends to
a triangulated functor, denoted by the same symbol,

µK
ℓ : Db(Rep(GL))→ Db

c,ét(SK)L, (2.13)

where Db
c,ét(SK)L is the Ll-linear version of the bounded "derived" category of ℓ-adic

constructible sheaves over SK (cfr. [Eke90, Section 6]).

Now let DSK
denote either the duality endofunctor on Db(MHM(SK(C))L or, if L is

a finite extension of Q, ℓ is a prime and l a prime of L above ℓ, the ℓ-adic local duality
endofunctor over SK . Denote by µK the triangulated extension either of the Hodge or
of the ℓ-adic canonical construction, and by L̄ either the field L (over which G splits) or
the field Ll. We end our recollections about the canonical construction with the following
standard property:

Proposition 2.1.3.10. Let (G,X) be a Shimura datum satisfying condition (+), K a neat
compact open subgroup of G(Af ), and SK the corresponding Shimura variety (of dimension
dSK

). Let moreover V be an irreducible representation of GL of weight w as a pure Hodge
structure (cfr. Rmk. 2.1.3.8.(3)). Then there is a canonical isomorphism

DSK
(µK(V )) ≃ µK(V )(w + dSK

)[2dSK
].

Proof. Since SK is smooth of dimension dSK
, there exists an isomorphism

DSK
(µK(V )) ≃ RHom(µK(V ), L̄)(dSK

)[2dSK
].

On the other hand, following [Pin90, Summary 1.18 (d)], the Tate Hodge structure L(−w)
is endowed with a natural GL-representation, such that there exists a perfect pairing in
Rep(GL)

V ⊗L V → L(−w)

Hence, we have a perfect pairing

µK(V )⊗L̄ µ
K(V )→ L̄(−w)

of variations of Hodge structures over SK(C) or of lisse ℓ-adic sheaves over SK , which
gives a second isomorphism

µK(V ) ≃ RHom(µK(V ), L̄)(−w).

So, these isomorphisms yield the desired one.
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2.2 Cohomology and automorphic representations

For all of this section, let (G,X) be a Shimura datum satisfying condition (+), K a neat
compact open subgroup of G(Af ), and SK the corresponding Shimura variety, as in the
previous subsection. Now that we have established a link between representation theory
and mixed sheaves over Shimura varieties, we want to study the structures appearing in
the cohomology of such sheaves, and their mutual interaction.

2.2.1 Hecke operators

The first structure we have to define is the action of Hecke operators in their various
incarnations. For any g ∈ G(Af ), consider the diagram of (finite, étale) morphisms, as
defined in (2.4),

SK∩gKg−1

[·1]

zz

[·g]

$$

SK SK

For any subfield L of C (resp. L finite extension of Q, ℓ any fixed prime), for any represen-
tation V ∈ Rep(GL), if µK denotes the topological canonical construction (resp. the ℓ-adic
canonical construction) defined in Subsection 2.1.3, then there are canonical isomorphisms

[·1]∗µK(V )
θ-1

1
≃ //

θ

22
µK∩gKg−1

(V )
θg
≃ // [·g]∗µK(V )

of local systems over SK∩gKg−1(C) (resp. of étale lisse ℓ-adic sheaves over SK∩gKg−1). In
the topological case, the isomorphism θg is given on the underlying total spaces (cfr. Rmk.
2.9) by

µK∩gKg−1

top (V )→ [·g]∗µK
top(V )

[v, x, h] 7→ ([v, x, hg], [x, h]) (2.14)

where the symbols [·, ·, ·] or [·, ·] denote the appropriate equivalence classes.
Thus, if H ·(SK , µ

K(V )) denotes Betti cohomology of local systems over SK(C) (resp.
étale ℓ-adic cohomology H ·

ét of étale ℓ-adic sheaves over SK,Q̄), we get isomorphisms (abu-
sively denoted with the same symbol)

θ : H ·(SK∩gKg−1 , [·1]∗µK(V )) ≃ H ·(SK∩gKg−1 , [·g]∗µK(V )).

Definition. Let g ∈ G(Af ) and consider (with a slight abuse of notation) the canonical
adjunction morphisms

[·1]∗ : H ·(SK , µ
K(V ))→ H ·(SK , [·1]∗[·1]∗µK(V )) ≃ H ·(SK∩gKg−1 , [·1]∗µK(V ))

and (remembering that [·g] is finite)

[·g]∗ : H ·(SK∩gKg−1 , [·g]∗µK(V )) ≃ H ·(SK , [·g]∗[·g]∗µK(V ))→ H ·(SK , µ
K(V ))

Then, the Hecke operator TK,g ∈ EndH ·(SK , µ
K(V )) associated to g is defined by

TK,g := [·g]∗ ◦ θ ◦ [·1]∗. (2.15)
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Remark 2.2.1.1. For any finite extension L of Q and any prime l of L above any fixed
prime ℓ, the action of Tg respects the comparison isomorphisms

H ·(SK(C), µK
top(V ))⊗L Ll ≃ H

·

ét(SK,Q̄, µ
K
ℓ (V )) (2.16)

Then, we define:

Definition 2.2.1.2. For any fixed L-representation V , the Hecke algebra H(K,G(Af ))
(associated to V ) is the L-subalgebra of EndH ·(SK(C), µK

top(V )) generated by the operators
TK,g with g ∈ G(Af ).

By the previous remark, it is consistent to define the ℓ-adic counterpart of the Hecke
algebra either as an analogous Ll-subalgebra of endomorphisms of ℓ-adic étale cohomology
or as H(K,G(Af ))Ll

. We will encounter the motivic avatar of these algebras, defined as
an algebra of correspondences, in Subsection 3.2.2.

The action of the operators TK,g is compatible with the transition maps of the G(Af )-
projective system (2.5), resp. (2.6), of complex analytic spaces, resp. of finite-type E-
schemes. Then, we can let g ∈ G(Af ) act through the TK,g’s on the corresponding projec-
tive system of spaces and sheaves. Letting g vary, we get an action of G(Af ) on

H ·(S, µ(V )) := lim−→
K

H ·(SK , µ
K(V ))

(either Betti or ℓ-adic cohomology).

Remark 2.2.1.3. Recall that a G(Af )-module H is called smooth if the stabilizer of any
element in H is open in G(Af ). Denote by H the space H ·(S, µ(V )) (either Betti or ℓ-adic
cohomology). Then, the above G(Af )-action makes of H an admissible G(Af )-module, i.e.
a smooth G(Af )-module such that, for any compact open K ≤ G(Af ), the K-invariants
are finite dimensional; this follows from the fact that, for any such K,

H ·(S, µ(V ))K ≃ H ·(SK , µ
K(V )). (2.17)

canonically.

Lemma 2.2.1.4. Let C∞
c (G(Af )) be the algebra of compactly supported, locally constant

L-valued (or Ll-valued) functions on G(Af ) under convolution and let C∞
c (G(Af )//K)

denote its subalgebra of bi-invariant functions under K. Then, the space H ·(S, µ(V ))K

has a natural structure of C∞
c (G(Af )//K)-module.

Proof. This results from considering the equivalence of categories given in [Car79, 1.4(d)]
between smooth G(Af )-modules and non-degenerate (loc. cit, page 113) C∞

c (G(Af ))-
modules, which takes admissible modules to admissible ones, and passing to K-invariants.

Remark 2.2.1.5. The isomorphism (2.17) intertwines the C∞
c (G(Af )//K)-module struc-

ture on the left-hand side with the H(K,G(Af ))-action on the right hand side in the
following way: for any g ∈ G(Af ), the characteristic function 1KgK of the double coset
KgK is transported to the operator TK,g, compatibly with the algebra structure.
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2.2.2 Automorphic representations and Galois representations

Keep the notations established in the previous subsection. Having endowed the cohomol-
ogy spaces H ·(SK , µ

K(V )) with the structure of C∞
c (G(Af )//K)-modules, we are now

interested in decomposing them, if possible, into irreducible submodules, or in at least
obtaining such a decomposition for some interesting subspace.

We start with the analytic picture. If A·(SK(C), V ) denotes the complex of C∞-
differential forms over SK(C) with coefficients in (the C∞-vector bundle underlying)
µK

top(VC), then the de Rham theorem provides us with a canonical isomorphism

H ·(SK(C), µK
top(VC)) ≃ H ·(A·(SK(C), V )) (2.18)

On the other hand, write
A := C∞(G(Q)\G(A)/K)

where C∞(·) means that we are taking functions induced by locally constant (resp. smooth)
C-valued functions over the non-archimedean (resp. archimedean, regarded as smooth
manifolds) components of G(A). Denote now by g the complexification of the Lie algebra
of G(R) and recall the subgroup Kh

∞ of G(R) introduced in Remark 2.1.2.1.(2). Then, the
space A is a (g,Kh

∞)-module4 ([BW00, 0, 2.5]), equipped with a natural C∞
c (G(Af )//K)C-

action (coming from the natural G(Af )-action on C∞(G(Q)\G(A)) and the equivalence
of categories of Lemma 2.2.1.4). The same considerations hold for the space A⊗ VC, and
we can look at the complex

C ·(g,Kh
∞;A⊗ VC)

computing its (g,Kh
∞)-cohomology ([BW00, I, 5.1]). Then, we have the following:

Proposition 2.2.2.1. (adelic version of [BW00, VII, Corollary 2.7]) There is a canonical
isomorphism of graded complexes

A·(SK(C), V ) ≃ C ·(g,Kh
∞;A⊗ VC)

inducing (through the isomorphism (2.18)) canonical isomorphisms of cohomology groups

H ·(SK(C), µK
top(VC)) ≃ H ·(g,Kh

∞;A⊗ VC) (2.19)

commuting with the C∞
c (G(Af )//K)C-actions on both sides.

Remark 2.2.2.2. On the topological side, nothing that has been said until this point in
this section has used the fact that we are working with Shimura varieties.

This general interpretation of Betti cohomology of the topological canonical construc-
tion brings us closer to the link with automorphic representations. Fix a translation-
invariant measure dg on G(A) and let G(A) act by right translation on the space

L2(G(Q)\G(A))

4We flag the following oversimplifications in our exposition, which however will play no role: (a) the
group Kh

∞ is in general only compact modulo center (cfr. Footnote 1), whereas strictly speaking (g, K)-
modules are defined for compact subgroups K, but one can work in this slightly extended setting without
any problems; (b) it is only a subspace of A which is a (g, Kh

∞)-module, i.e. its subspace of Kh
∞-finite

vectors. However, passing to this subspace doesn’t affect (g, Kh
∞)-cohomology; (c) let Z be the center of G.

For the following results to be true as stated, A should be chosen more precisely as the space of functions
which transform, under Z(R)-translation, via multiplication by the inverse of the central character of the
representation VC.
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2.2. Cohomology and automorphic representations

of complex-valued functions on G(Q)\G(A) which are square-integrable modulo center
with respect to dg, and which transform under the action of Z(A) via multiplication by
some character w : Z(Q)\Z(A) → C× (here Z is the center of G). For us, an (irre-
ducible) automorphic representation of G will be an irreducible subquotient of this G(A)-
module. An automorphic representation π can be decomposed as π = πf ⊗ π∞ in its
non-archimedean (or finite) and archimedean components; the spaces πK

f of K-invariants
are irreducible C∞

c (G(Af )//K)C-modules and the subspaces of smooth vectors (or differ-
entiable vectors, [BW00, 0, 2.3]) in each space π∞ give rise to (g,Kh

∞)-modules, that we
will still denote by π∞. Then, the spaces π∞ ⊗ VC inherit a (g,Kh

∞)-module structure,
too.

To see why such representations appear in our cohomology spaces, we have to introduce
a new definition:

Definition 2.2.2.3. Let A·

2(SK(C), V ) be the complex of µK
top(VC)-valued, C∞-differential

forms ω over SK(C) such that both ω and dω are square-integrable with respect to the
canonical volume form on SK(C). The L2-cohomology of SK(C) with values in V is by
definition the cohomology H ·

2(SK(C), µK
top(VC)) of the complex A·

2(SK(C), V ).

Denote by L2,∞ the subspace of smooth vectors inside L2(G(Q)\G(A)/K) and consider
the (g,Kh

∞)-module (arising from) L2,∞ ⊗ VC. Then, isomorphism (2.19) generalizes to
([Bor83, Thm. 3.5])

H ·

2(SK(C), µK
top(VC)) ≃ H ·(g,Kh

∞;L2,∞ ⊗ VC) (2.20)

Now recall that the G(A)-module L2(G(Q)\G(A)) contains a maximal subspace

L2
d(G(Q)\G(A))

which decomposes as a direct sum of irreducible G(A)-subrepresentations, called the dis-
crete spectrum. At finite levels, we can write such a decomposition as

L2
d(G(Q)\G(A)/K) =

⊕

π

(πK
f ⊗ π∞)m(π)

where m(π) denotes the (finite) multiplicity of an automorphic representation π appearing
in the discrete spectrum. Then, since Shimura varieties verify the necessary hypotheses,
passing to smooth vectors and applying (g,Kh

∞)-cohomology yields the same result as if
we had started with the whole of L2(G(Q)\G(A)/K) and applied the same operations, i.e.
the complement of the discrete spectrum (the continuous spectrum) doesn’t contribute to
(g,Kh

∞)-cohomology. In other words, the following holds:

Proposition 2.2.2.4. (consequence of [BC83, Sect. 4]) The isomorphism (2.20) and the
G(Af )-action on the underlying complexes induce a decomposition into a finite direct sum

H ·

2(SK(C), µK
top(VC)) ≃

⊕

π discrete spectrum

(πK
f ⊗H

·(g,Kh
∞;π∞ ⊗ VC))m(π) (2.21)

which is called the Matsushima-Murakami decomposition of L2-cohomology.

The natural arrow

H ·

2(SK(C), µK
top(VC))→ H ·(SK(C), µK

top(VC)) (2.22)
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Weights in the cohomology of Shimura varieties

induced by the de Rham isomorphisms is in general neither injective nor surjective. But
one can restrict attention to a subspace of the discrete spectrum, the one formed by
cuspidal representations: an automorphic representation is called cuspidal if it is a sub-
representation A of L2(G(Q)\G(A)) such that for every φ ∈ A, for all parabolic subgroups
P of G with unipotent radical U , and for every g ∈ G(Af ),

∫

U(Af )
φ(ng)dn = 0

Definition. The cuspidal cohomology (with values in VC) is the subspace of L2-cohomology
defined by

H ·

cusp
(SK(C), µK

top(VC)) :=
⊕

π cuspidal

(πK
f ⊗H

·(g,Kh
∞;π∞ ⊗ VC))m(π) (2.23)

and given by the direct sum of those subspaces which correspond to cuspidal discrete spec-
trum automorphic representations.

Then, the crucial point is the following:

Proposition 2.2.2.5. ([Bor81, Cor. 5.5]) The natural arrow (2.22) induces an injection
of C∞

c (G(Af )//K)C-modules

H ·

cusp
(SK(C), µK

top(VC)) →֒ H ·(SK(C), µK
top(VC)) (2.24)

Hence, cuspidal cohomology is the sought-for subspace of ordinary cohomology whose
decomposition in C∞

c (G(Af )//K)C-submodules can be meaningfully described.
We will see later (cfr. Eq. (2.31)) that we can be more precise about the the way in

which cuspidal cohomology sits inside the ordinary one. Before addressing this point, let
us say a word about rationality issues. Since there is already an action of the L-algebra
C∞

c (G(Af )//K) on the L-vector spaces H ·(SK(C), µK
top(V )), we have the following:

Lemma 2.2.2.6. There exist a finite extension L′ of L such that, for any cuspidal au-
tomorphic representation π such that πK

f appears as a C∞
c (G(Af )//K)C-submodule in

H ·(SK(C), µK
top(VC)), πK

f admits an L′-model, still denoted by the same symbol.

Notice that a cuspidal π verifies the above hypothesis if and only if its finite component
πf has non vanishing K-invariants and its infinite component has non-vanishing (g,Kh

∞)-
cohomology. Now, by writing

H ·(πK
f ) := HomC∞c (G(Af )//K)L′

(πK
f , H

·(SK , µ
K
top(V )⊗ L′)) (2.25)

we can define the cuspidal cohomology with L′-coefficients as

H ·

cusp(SK(C), µK
top(V )) :=

⊕

π cuspidal

(πK
f ⊗H

·(πK
f )) (2.26)

This also allows us to consider the relationship with étale ℓ-adic cohomology. As
seen in Subsection 2.2.1, H ·

ét(SK,Q̄, µ
K
ℓ (V )) is a C∞

c (G(Af )//K)Ll
-module; since it is also

equipped with a Gal(Q̄, E)-action commuting with the Hecke action, we can look at it as
a C∞

c (G(Af )//K)Ll
×Gal(Q̄, E)-module. Let L′ be the number field of the above lemma,

use the same symbol l for a place of L′ above ℓ, and write πK
f,L′

l
for πK

f ⊗L′ L
′
l. We can

then pose the following:
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Definition 2.2.2.7. Let π be a cuspidal automorphic representation such that πK
f appears

as a C∞
c (G(Af )//K)C-submodule in H ·(SK(C), µK

top(VC)). The Gal(Q̄, E)-representation
(over L′

l) associated to πK
f is defined as

H ·

ét
(πK

f ) := HomC∞c (G(Af )//K)L′
l

(πK
f,L′

l
, H ·

ét
(SK,Q̄, µ

K
ℓ (V ))⊗ L′

l) (2.27)

By choosing an embedding of Ll in C we get a C∞
c (G(Af )//K)C-equivariant compar-

ison isomorphism

H ·

ét(SK,Q̄, µ
K
ℓ (V ))⊗Ll

C ≃ H ·(SK(C), µK
top(VC)) (2.28)

induced by (2.16). Hence:

Corollary 2.2.2.8. Define the cuspidal étale cohomology by

H ·

cusp, ét
(SK,Q̄, µ

K
ℓ (V )) :=

⊕

π cuspidal

(πK
f,L′

l
⊗H ·

ét
(πK

f )) (2.29)

Then, the isomorphism (2.28) restricts to

H ·

cusp, ét
(SK,Q̄, µ

K
ℓ (V ))⊗Fl

C ≃ H ·

cusp
(SK(C), µK

top(VC))

and we have the relation

dimL′
l
H ·

ét
(πK

f ) =
∑

π∞ s.t. π≃πf ⊗π∞

m(πf ⊗ π∞) dimCH
·(g,Kh

∞;π∞ ⊗ VC)

These considerations explain why the cohomology of Shimura varieties provides a vital
link between Galois representations and (at least cuspidal) automorphic representations.

2.3 Weights and automorphic representations

The last layer of structure that we have to add on the cohomology of Shimura varieties,
and the one that will be the most important for this thesis, is given by the theory of
weights. Let us phrase it in the language of Hodge structures.

2.3.1 Weight zero and cuspidal cohomology

Take (G,X) satisfying condition (+), K and an algebraic representation V of G over
a number field L as in Subsection 2.1.3, and, as there, consider the Hodge canonical
construction µK

H . Suppose V to be irreducible, of weight w as a pure Hodge structure (cfr.
Rmk. 2.1.3.8.(3)). Then (for example as a byproduct of Saito’s theory of mixed Hodge
modules), in each degree n, the cohomology spaces Hn(SK(C), µK

H(V )) are endowed with
a mixed Hodge structure over L, of weights ≥ n + w (since SK is smooth), hence, in
particular, with a weight filtration W

·

On the other hand, the compactly-supported cohomology spaces Hn
c (SK(C), µK

H(V ))
are endowed with a mixed Hodge structure of weights ≤ n+ w, and, the canonical arrow
Hn

c → Hn being a morphism of mixed Hodge structures, we have that, in each degree n,
the so called interior cohomology, i.e. the subspace of Hn defined as

Hn
! := Im(Hn

c → Hn) (2.30)
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actually injects in the subspace GrWn+w H
n(SK(C), µK

H(V )), i.e. in the lowest-weight sub-
quotient of Hn with respect to the weight filtration. We will often slightly improperly refer
to this subspace as the pure or weight zero part of cohomology, since in this subspace, up
to the contribution w coming from our representation, the deviation between weight and
cohomological degree is zero.

Now, employing the cuspidal cohomology with L′-coefficients defined in Eq. (2.26), the
link with the automorphic description of cohomology is given by the following consequence
of Prop. 2.2.2.5:

Lemma 2.3.1.1. The inclusion (2.24) refines to an inclusion

Hn
cusp
→֒ Hn

! ⊗ L
′ →֒ (GrWn+w H

n)⊗ L′ (2.31)

By the comparison isomorphism (2.16) and the decomposition (2.29), we see that the
understanding of the weight zero part of cohomology is relevant for the study of the Galois
representations associated to cuspidal automorphic representations. (See Rmk. 2.3.4.4.(3)
for a comment on the relation with the more classical notion of Galois representations
associated to cusp forms).

Notice that that since the Hecke algebra acts by morphisms of Hodge structure, a
cuspidal representation π appearing inside the interior cohomology of SK gives also rise
to a (pure) Hodge structure:

Definition 2.3.1.2. Let π be a cuspidal automorphic representation such that πK
f appears

in H ·(SK , µ
K
top(V )). Let L′ be the number field of Lemma 2.2.2.6. The Hodge structure

H ·(πK
f ) associated to πK

f is the one that the spaces

H ·(πK
f ) = HomC∞c (G(Af )//K)L′

(πK
f , H

·(SK , µ
K
top(V )⊗ L′)) (2.32)

(cfr. (2.25)) are naturally endowed with.

Remark 2.3.1.3. Observe that since X = G(Q)\G(Af )/KKh
∞ is a disjoint union of her-

mitian symmetric domains, the spaces H ·(g,Kh
∞;π∞⊗VC) appearing in the Matsushima-

Murakami decomposition (2.23) of cuspidal cohomology carry an intrinsic (p,q)-decomposition
([BW00, II, 4]). This decomposition coincides, through the isomorphism (2.23), with
the Hodge decomposition on H ·(πK

f )C coming from the above-defined Hodge structure
([Har94, Prop. 3.3.9]).

2.3.2 Higher weights and boundary cohomology

The previous subsection raises the natural question of what interpretation (if any) one
could give to the subquotients of higher weight of the cohomology of Shimura varieties
with respect to the weight filtration. Indeed, as we will observe in Rmk. 2.3.2.3, the study
of these subquotients will be relevant even for the understanding of the weight zero part
itself.

Let us first address the problem from a geometric standpoint. Keep the notations
of the preceding subsection and suppose that the Q-rank of Gad is strictly positive; in
this case, it is well known that the corresponding Shimura varieties SK are non-projective
([BHC62, Thm. 12.3 and Cor. 12.4]). Then, take any compactification5 S̄K , write ∂S̄K

for the boundary of SK in S̄K and denote by j : SK →֒ S̄K (resp. i : ∂S̄K the open

5In the category of algebraic varieties, even if topological compactifications of SK(C) can be very relevant.
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(resp. closed) immersions of SK and of the boundary inside the compactification. Then,
the complex i∗j∗µ

K
H(V ) (often called the degeneration of µK

H(V ) at the boundary) is a
constructible complex over ∂S̄K(C), which can be naturally endowed with a structure of
a bounded complex of mixed Hodge modules, and whose direct image via i fits in the
canonical boundary triangle over S̄K

j!µ
K
H(V )→ j∗µ

K
H(V )→ i∗i

∗j∗µ
K
H(V )→ j!µ

K
H(V )[1] (2.33)

This gives rise to a natural long exact sequence

· · · → Hn
c (SK(C), µK

H(V ))→ Hn(SK(C), µK
H(V ))→ ∂Hn(SK(C), µK

H(V ))→ · · · (2.34)

where the boundary cohomology spaces ∂Hn are defined as the hypercohomology

∂Hn(SK(C), µK
H(V )) := Hn(∂S̄K(C), i∗j∗µK

H(V ))

Notice that

1. the long exact sequence (2.34) is a sequence of mixed Hodge structures, and

2. by proper base change, the boundary cohomology spaces ∂Hn(SK(C), µK
H(V )) don’t

depend on the chosen compactification, and are hence canonically defined.

This implies, recalling the definition (2.30) of interior cohomology, that we have a canonical
inclusion

Hn(SK(C), µK
H(V ))/Hn

! (SK(C), µK
H(V )) →֒ ∂Hn(SK(C), µK

H(V ))

by means of which, in particular, we can canonically see the higher-weight subquotients
with respect to the weight filtration onHn(SK(C), µK

H(V )) as subquotients (in the category
of Hodge structures) of the boundary cohomology spaces.

Moreover, the complex i∗j∗µK
H(V ) has the following autoduality property:

Proposition 2.3.2.1. There is an isomorphism

i∗j∗µ
K
H(V ) ≃ i!j!µK

H(V )[1] (2.35)

The existence of some such isomorphism is formal, once one considers the dual of
the boundary triangle (2.33). For later motivation, let us make explicit the following
consequence on the weights of boundary cohomology:

Corollary 2.3.2.2. Let w be the weight of the pure Hodge structure on the irreducible
G-representation V and let β ≥ 0 be an integer. If dSK

is the complex dimension of SK ,
then weight w+n+β appears in ∂Hn(SK(C), µK

H(V )) if and only if weight w+m−β+ 1
appears in ∂Hm(SK(C), µK

H(V )), for m = 2dSK
− 1− n.

Proof. Let s : S̄K(C)→ {·} denote the constant morphism to a one-point space and denote
by DS the duality functor on the bounded derived category of mixed Hodge modules over
a complex variety S. By (2.35),

s̃∗i∗i
∗j∗µ

K
H(V ) ≃ s̃∗i∗i

!j!µ
K
H(V )[1]

and since, by Proposition 2.1.3.10, we have

µK
H(V ) ≃ DSK

(µK
H(V )(w + dSK

)[2dSK
])
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one then gets

s̃∗i∗i
∗j∗µ

K
H(V ) ≃ s̃∗DS̄K

(i∗i∗j∗µK
H(V )(w + dSK

)[2dSK
− 1]) (2.36)

Now, by taking cohomology objects over a point, we know that, for every bounded complex
M of mixed Hodge modules over S̄K(C) (and since s is proper),

Hns̃∗(DS̄K
M) ≃ (H−n(s̃∗M))∨

where (·)∨ denotes duality of mixed Hodge structures. Hence, Eq. (2.36) yields

∂Hn(SK(C), µK
H(V )) ≃ (∂H2dSK

−1−n(SK(C), µK
H(V ))(w + dSK

))∨

and the assertion on weights follows.

We turn now to a second point of view. The following question is natural: if cuspidal
cohomology contributes to weight zero, is there an automorphic interpretation of the higher
weights? The best answer to date was provided by Franke, who showed ([Fra98]) that the
isomorphism (2.19) can be refined: one can replace A⊗V by a smaller (g,Kh

∞)-submodule,
the spaceAut⊗V , whereAut is the space of automorphic forms6 onG(Q)\G(A)/K ([FS98,
1.1(2)]), without altering (g,Kh

∞)-cohomology, i.e., one has

H ·(SK(C), µK
top(VC)) ≃ H ·(g,Kh

∞;Aut⊗ VC)

More precisely, this isomorphism induces a decomposition

H ·(SK(C), µK
top(VC)) ≃

⊕

{P }

H ·(g,Kh
∞;Aut(P )⊗ VC) (2.37)

where {P} varies over the conjugacy classes of parabolic Q-subgroups of G, and Aut(P )
denotes the subspace of automorphic forms with cuspidal support in {P} ([FS98, 1.1(4)]),
in such a way that Aut(G) coincides with the space of cuspidal automorphic forms. (For
an observation relating our results on Hilbert-Siegel varieties to this decomposition, see
Rmk. 4.3.4.7). In any case, we see that the higher weights are determined by non-cuspidal
forms, and indeed the complement to cuspidal cohomology is called Eisenstein cohomology
(see Remark 2.3.4.4.(3) for a classical instance of this decomposition and its relation with
weights). Nevertheless, one should observe that non-cuspidal forms may also contribute
to weight zero (see the Remark below).

All these facts lead to the following web of problems: how can one compute the coho-
mology of the degeneration of the canonical construction to the boundary of a well-chosen
compactification and get a grasp on boundary cohomology? Supposing to be able to do
this, is there a way to relate this information with the automorphic description coming
from (2.37)? And how does all of this interact with the weight filtration? It is the deter-
mination of the latter that we take as our motivating goal.

Remark 2.3.2.3. Let us say that for an integer k ≥ 0, weight k appears in H ·, resp. in
∂H ·, if there exists a n such that

GrWn+w+k H
n(SK(C), µK

H(V )), resp. GrWn+w+k ∂H
n(SK(C), µK

H(V ))

6The relation between these objects and the previously introduced automorphic representations is subtle,
especially in the non-cuspidal case. We will be careful in distinguishing the two terminologies.
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is non trivial. One way to begin our study of the weight filtration would be to ask: which
is the first integer k > 0 which appears in H ·? Of course, weight k > 0 appears in ordinary
cohomology only if it appears in boundary cohomology.

Observe that Corollary 2.3.2.2 tells us that weight 1 appears in ∂H ·(SK(C), µK
H(V )) if

and only if weight 0 appears. This is the case, for example, if there exists an n such that
the complement of Hn

! in Grn+w H
n(SK(C), µK

H(V )) is non-trivial. We will see that this
latter condition can be characterized by automorphic means (Remark 2.3.3.6).

2.3.3 The Baily-Borel compactification and intersection cohomology

We start from the first part of the questions asked at the end of the previous subsection,
namely by laying out the basis for the computation of boundary cohomology.

In fact, in order to do this, we have first to choose a compactification. With the
notation of the previous subsection, there is a canonical choice of compactification of
the Shimura variety SK , called its Baily-Borel compactification, denoted by S∗

K . It is a
projective variety, in general singular, defined over the reflex field E of SK ([Pin90, Main
Theorem 12.3, (a), (b)]), in which SK embeds as an open dense sub-scheme.

If Γ\D is a connected component of SK(C), then its closure (Γ\D)∗ in S∗
K(C) (a

connected component of S∗
K(C)) is still called the Baily-Borel compactification of Γ\D,

and the canonical nature of S∗
K comes from the following minimality property of (Γ\D)∗

with respect to simple normal crossing compactifications:

Proposition 2.3.3.1. ([Bor72]) For any simple normal crossing compactification S̄ of
Γ\D, there exists an unique morphism S̄ → (Γ\D)∗ extending the identity on Γ\D.

The variety S∗
K admits a stratification by locally closed strata, amongst which SK is the

only open stratum. The other ones form a stratification of the boundary ∂S∗
K := S∗

K\SK .
Let us recall, for later use, how the stratification is obtained: if (Qm)m∈Φ is any ordering of
any (finite) set of representatives of the conjugacy classes of admissible parabolic subgroups7

([Pin90, Def. 4.5]) in G, one sees from [Pin92, Section 3.6-3.7] that, for all m ∈ Φ, there
exist suitable finite sets Cm of G(Af ) such that the set of strata of ∂S∗

K is given by

{Sm,g|m ∈ Φ, g ∈ Cm}. (2.38)

Here, the locally closed subscheme Sm,g of ∂S∗
K is the image of a canonical morphism

ig : Sπm(Km,g) := Sπm(Km,g)(Gm, Xm)→ S∗
K (2.39)

where the compact open subgroup πm(Km,g) and the pure Shimura datum (Gm, Xm)
defining the Shimura variety Sπm(Km,g) are given as follows: there exists a canonical normal
subgroup Pm ofQm ([Pin90, 4.7]) whose unipotent radicalWm coincides with the unipotent
radical ofQm (cfr. [Pin90, proof of Lemma 4.8]), and we denoteKm,g := Pm(Af )∩g·K·g−1,
πm : Pm → Pm/Wm the natural projection, (Gm, Xm) the pure Shimura datum obtained
by quotienting by Wm any of the rational boundary components ([Pin90, 4.11]) associated
to Pm. In particular, Gm is a reductive subgroup of the Levi component of Qm. In the
following, we will rather use the stratification of ∂S∗

K indexed by m ∈ Φ, each of whose
strata Zm corresponds to the m-th conjugacy class of admissible parabolics of G and
coincides with the disjoint union of those subschemes Sm,g with g ∈ Cm. The latter will
be called strata of ∂S∗

K contributing to Zm.

7For a parabolic Qm to be admissible, it is in particular required that its projection to any Q-simple
factor G′ of Gad be either G′ itself or a maximal proper parabolic Q-subgroup of G′.

41



Weights in the cohomology of Shimura varieties

Moreover, by accepting a little restriction on our Shimura datum we can get a more
precise description of the subschemes Sm,g. Define

HQm,g := StabQm(Q)(Xm) ∩ Pm(Af ) ·Kg, (2.40)

HCm,g := CentQm(Q)(Xm) ∩Wm(Af ) ·Kg, (2.41)

∆m,g := HQm,g/Pm(Q)HCm,g , (2.42)

where we denoted by CentQm(Q)(Xm) the group of elements of StabQm(Q)(Xm) which
induce the identity on Xm. The results we are interested in can be then resumed as
follows.

Proposition 2.3.3.2. Suppose that the Shimura datum (G,X) satisfies condition (+)
from Subsection 2.1.3. Then: a) The group ∆m,g is finite and acts naturally and freely on
Sπm(Km,g).

b) The stratum ig(Sπm(Km,g)) equals the quotient of Sπm(Km,g) by the action of ∆m,g

and is smooth over E.

Proof. Everything follows from [Wil17, Lemma 8.2] and its proof, remembering that K is
neat by hypothesis.

We will see explicitly in Chapter 4 what this description of the boundary gives in the
cases of Hilbert and (genus 2) Hilbert-Siegel varieties (Subsection 4.3.4.1, resp. 4.2.1).
Moreover, one can exploit the structure of the boundary in order to compute the coho-
mology of the restriction to each stratum of the complex i∗j∗µK

H(V ), where j : SK →֒ S∗
K

and i : ∂S∗
K →֒ S∗

K are now the open-closed immersions corresponding to the Baily-Borel
compactification and V ∈ RepL(G) for some number field L. We will explain this in
Subsection 4.2.2.

Now, having in mind the second and third part of the questions raised at the end of the
previous subsection, we want rather to introduce some object of crucial importance living
on the Baily-Borel compactification, namely the intersection complex, and more generally
the intermediate extensions to the Baily-Borel compactification of local systems arising
from the canonical construction. This will allow us, in particular, to clarify completely
the automorphic meaning of the weight-zero part of the cohomology of such local systems.
For the rest of this subsection, keep the above notation for i and j. Let S denote one of
the two varieties SK , S∗

K , let ℓ be any prime, and consider the Q-linear, abelian categories
Perv(S(C)), resp. Perv(Et)ℓ(S) of topological, resp. ℓ-adic perverse sheaves (with respect
to the middle perversity) over S(C), resp. over S. By choosing a subfield L of C, one
also has L-linear versions PervF (S(C)). When L is a number field and l is a prime of
L above ℓ, one has Ll-linear versions Perv(Et)ℓ,L(S). These categories are full abelian
subcategories of the L-linear constructible category Db

c(S(C))L of sheaves on S(C), resp.
of its Ll-linear ℓ-adic analogue Db

c,ét(S)L on S. Denote by Perv(S) any of these categories;
then, in both contexts, topological and ℓ-adic, one has a canonical intermediate extension
functor ([BBD82, Déf. 1.4.22])

j!∗ : Perv(SK)→ Perv(S∗
K) (2.43)

suitably characterized, informally speaking, as providing a minimal extension of a perverse
sheaf on SK to a perverse sheaf on S∗

K (cfr. [BBD82, Cor. 1.4.25]). In particular, if dSK
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is the complex dimension of SK , then, denoting by V any (topological) local system on
SK(C) or ℓ-adic lisse étale sheaf on SK , the object V[dSK

] is a perverse sheaf on SK , and
one can take its intermediate extension to S∗

K . The V-valued intersection complex on S∗
K

is then defined as
ICSK∗(V) := j!∗(V[dSK

])

and the hypercohomology groups

IH ·(S∗
K ,V) := H·(S∗

K , ICSK∗(V)[−dSK
])

are called the intersection cohomology groups of S∗
K with coefficients in V. There is a

comparison isomorphism between singular and étale intersection cohomology groups, anal-
ogous to (2.16).

From now on, we choose as local system V, with the notations of the previous subsec-
tion, one of the objects µK(V ) arising through the canonical construction functors; here
V is a irreducible representation V of GL (L a number field over which G splits), which
carries a pure Hodge structure of some weight w, and µK is either the topological or the
ℓ-adic canonical construction. The first property of the intermediate extension that we
want to make use of is the following:

Proposition 2.3.3.3. Let Db
c(S∗

K) denote either one of the above constructible categories.
Write j!∗µ

K(V ) for the object j!∗(µK(V )[dSK
])[−dSK

] of the category Db
c(S∗

K). Then,
j!∗µ

K(V ) fits in the following commutative diagram of exact triangles in Db
c(S∗

K):

0 //

��

i∗i
!j!∗µ

K(V )

��

i∗i
!j!∗µ

K(V ) //

��

0

��

j!µ
K(V ) // j!∗µ

K(V ) //

��

i∗i
∗j!∗µ

K(V ) //

��

j!µ
K(V )[1]

j!µ
K(V ) //

��

j∗µ
K(V ) //

��

i∗i
∗j∗µ

K(V ) //

��

j!µ
K(V )[1]

��

0 // i∗i
!j!∗µ

K(V )[1] i∗i
!j!∗µ

K(V )[1] // 0

Proof. Everything follows formally from the axioms satisfied by the functors under con-
sideration ([BBD82, Sect. 1.4.3.]), by taking into account that, with the convention in
the statement, we have j∗j!∗µ

K(V ) ≃ µK(V ). The reader can consult the completely
analogous proof of [Wil13, Thm. 1.6(b)] for more details.

Notice that the third line of the above diagram is exactly (the topological or ℓ-adic
version of) the boundary triangle introduced in (2.33). Bringing into consideration the
theory of weights, we get the following well-known consequence of the previous proposition,
of which it is useful to spell out the details for later reference.8

Corollary 2.3.3.4. For every integer n ≥ 0, the image of IHn(SK , µ
K(V )) in Hn(SK , µ

K(V ))
(via the morphism induced by the arrow j!∗ → j∗ in the diagram of Proposition 2.3.3.3) co-
incides with GrWn+w H

n(SK , µ
K(V )) (with the respect to the weight filtration of the mixed

8In order to have an (ascending) weight filtration on the étale cohomology spaces, one has to suppose
SK to be of abelian type (cfr. Rmk. 2.1.3.8.(2)). Otherwise, we only get the result on the Hodge side,
which is enough for our later purposes.
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Hodge structure, resp. of the Gal(Q̄|E)-module structure, on Betti, resp. ℓ-adic étale
cohomology).

Proof. We prove the statement by working in the topological setting; the ℓ-adic proof is
formally analogous, or given by applying the comparison isomorphisms. Then, the diagram
of triangles in Db

c(S∗
K(C)) of Proposition 2.3.3.3 can be lifted to a diagram of triangles in

the bounded derived category of mixed Hodge modules over S∗
K(C), whose theory implies

in particular that the object j!∗µK
H(V ) is pure of weight w ([Sai90, Sect. 4.5]) and that

therefore (loc. cit., (4.5.2)) i!j!∗µK
H(V ) is of weights ≥ w. The same is then true after

application of the functor i∗.
Now remember that since SK is smooth, j∗µK

H(V ) is of weights ≥ w. Using the fact
that S∗

K is proper, by taking the long exact sequence in hypercohomology given from the
second column of (the Hodge-theoretical analogue of) the diagram in Proposition 2.3.3.3,
we not only see that, for every n, the object

Hn
int := Im(IHn(SK(C), µK

H(V ))→ Hn(SK(C), µK
H(V )))

has to be contained in GrWn+w H
n := GrWn+w H

n(SK(C), µK
H(V )), but also that the cokernel

GrWn+w H
n/Hn

int has to be trivial: in fact, it has to inject in the weight-(n + w) subspace
of Hn+1(S∗

K(C), i∗i!j!∗µK
H(V )), which, by what we have said, is reduced to zero.

Now we bring into the picture a deep link with the automorphic structure.

Theorem 2.3.1. (Zucker’s conjecture, [Loo88], [SS90]) There exists a canonical isomor-
phism ZC between the L2-cohomology of SK(C) with values in V (cfr. Def. 2.2.2.3) and
IH ·(S∗

K(C), µK
top(VC)) such that the diagram

H ·

2(SK(C), µK
top(VC)) ZC //

��

IH ·(S∗
K(C), µK

top(VC))

��

H ·(SK(C), µK
top(VC)) H ·(SK(C), µK

top(VC))

commutes. Here, the left vertical arrow is the composition of the morphism induced by the
natural arrow between the complexes A·

2 and A· of Subsection 2.2.2 and of the inverse of the
isomorphism (2.18), while the right vertical arrow is induced by the canonical morphism
j!∗ → j∗ in the diagram of Prop. 2.3.3.3.

Together with the previous corollary, this gives:

Corollary 2.3.3.5. Denote by H ·

(2)(SK(C), µK
top(VC)) the image of L2-cohomology in or-

dinary cohomology through the natural map. Then:

(1) the C∞
c (G(Af )//K)C-module H ·

(2)(SK(C), µK
top(VC)) is semisimple;

(2) for each integer n ≥ 0, we have a canonical isomorphism

Hn
(2)(SK(C), µK

top(VC)) ≃ GrWn+w H
n(SK(C), µK

H(V ))C

Note that point (1) comes from the fact that H ·

(2) is by definition identified, through a
C∞

c (G(Af )//K)C-equivariant morphism, with the quotient of a semisimple C∞
c (G(Af )//K)C-

module (cfr. the Matsushima-Murakami decomposition ((2.21)). The above results give
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us a completely automorphic description of the weight-zero part of cohomology of local
systems arising from the canonical construction, and moreover tell us, recalling (2.31),
that we have the following inclusions:

H ·

cusp,C →֒ H ·

!,C →֒ H ·

(2) ≃ (GrW
·+w H

·)C (2.44)

Remark 2.3.3.6. From the above inclusions, we see that there exists an n such that the
complement of Hn

! in Grn+w H
n(SK(C), µK

H(V )) is non-trivial if and only if there exist
discrete spectrum, non-cuspidal automorphic representations (these are called residual
representations) contributing non-trivially to cohomology in degree n.

The previous remark characterizes by automorphic means a situation which is natu-
ral to consider when studying weights (cfr. Remark 2.3.2.3). One could ask for purely
algebraic conditions on the representation Vλ allowing to draw similar conclusions on the
weight filtration (possibly, still through the intermediation of the automorphic theory).
We conclude this subsection by the following observation, which puts together a good
part of the information gathered so far.

Theorem 2.3.2. Let Vλ be an irreducible representation of GL of highest weight λ and
let dSK

be the complex dimension of the Shimura variety SK . If λ is regular, then the
following hold:

(1) Hn
! is non-trivial if and only if n = dSK

, and in that case

Hn
! ≃ GrWn+w H

n

(2) The cohomology spaces with compact support Hn
c can be non-trivial only if n ∈ {1, . . . , dSK

}.
For every n ∈ {1, . . . , dSK

− 1}, they verify

Hn
c ≃ ∂H

n−1

and they are of weights < n+ w.

(3) The cohomology spaces Hn can be non-trivial only if n ∈ {dSK
, . . . , 2dSK

}. For every
n ∈ {dSK

+ 1, . . . , 2dSK
}, they verify

Hn ≃ ∂Hn

and they are of weights > n+ w.

Proof. The crucial input here is a result explicitly stated and proved in [LS04, 5.3] (but
also a consequence of [Fra98, Thm. 19, II]), which says that if λ is regular, then cuspidal
cohomology coincides with L2-cohomology, hence with its image in ordinary cohomology.
Thus, by (2.44) we get that, in every degree, interior cohomology coincides with the
lowest weight-graded step of the weight filtration (with C-coefficients). But then, this is
necessarily already true with L-coefficients. Now, by the hypothesis on λ and Thm. 2.1.1,
the spaces Hn can be non-trivial only if n ∈ {dSK

, . . . , 2dSK
} (notice that, in the case of

Shimura varieties, the constant l0 is equal to 0). By Poincaré duality, the spaces Hn
c can

in turn be non-trivial only for n ∈ {0, . . . , dSK
}, and the long exact sequence (2.34) tells

us that it is actually necessary that n ∈ {1, . . . , dSK
}. Hence, Hn

! can be non-trivial only
if n = dSK

, and we have proven (1). But the same is then true a fortiori for GrWn+w H
n.

This, together with consideration of the same long exact sequence (2.34) (of mixed Hodge
structures), yield the isomorphisms and the assertions on weights in (2) and (3).
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2.3.4 Toroidal compactifications and automorphic bundles

Keep the notations of the preceding subsection. The aim of this last subsection is to
explain the role of another possible choice of a family of compactifications of the Shimura
variety SK , the toroidal compactifications. In particular, this will allow us to explain why
we see the main result of Chapter 4 as a partial step in the direction of the last two
questions emerging at the end of Subsection 2.3.2.

The toroidal compactifications of SK are a class of compactifications parameterized
by so-called K-admissible cone decompositions [Pin90, 6.4], i.e. certain collections S

of convex rational polyhedral cones, whose associated compactification is then denoted
SK(S). Modulo a suitable refinement of S, the variety SK(S), which is defined over E,
can be supposed to be projective and smooth [Pin90, proof of Thm. 9.21], which explains
the appeal of such compactifications when compared to the Baily-Borel one, although
they are highly non-canonical. Moreover, one can assume that the divisor ∂SK(S) :=
SK(S) \ SK has simple normal crossings. We will always implicitly assume that the
toroidal compactifications that we consider satisfy these requirements.

Remark 2.3.4.1. The minimality property of the Baily-Borel compactification (Rmk. 2.3.3.1)
tells us that, for every toroidal compactification SK(S) as above, we have a (proper) map
πS : SK(S)→ S∗

K extending the identity on SK .

The second class of objects that we need to define is a certain kind of locally free
coherent sheaves on SK and on its toroidal compactifications, called automorphic bundles:
a reference for everything we will say on this subject is [Mil90, Chap. III]. We start by
recalling that the complex analytic manifold X ≃ G(R)/Kh

∞ associated to the Shimura
datum admits a canonical open embedding β in a compact complex analytic manifold
X̌(C) (respectively called the Borel embedding and the compact dual of X) in such a
way that there exist a parabolic subgroup P of GC for which X̌(C) ≃ G(C)/P (C), Kh

∞ =
P (C)∩G(R), Kh

∞ →֒ P (C) identifies9 Kh
∞,C with a Levi subgroup of P (C) and the diagram

G(R)/Kh
∞

≃

��

� � // G(C)/P (C)

≃

��

X � � β
// X̌(C)

commutes. Moreover, the complex manifold X̌(C) is identified with the space of C-points
of a canonical projective variety X̌ over the reflex field E (hence the notation), and there
is an equivalence of categories

RepC(P )
i
≃ {GC − vector bundles on X̌C} (2.45)

Hence, in particular, any representation VC of GC, seen as a P -representation by re-
striction, defines a GC-vector bundle over X̌. One then sees that

B(VC)K(C) := G(Q)\β∗i(VC)×G(Af )/K

is a vector bundle over SK(C), which canonically algebraizes to a vector bundle B(VC)K on
SK,C: this is called the automorphic bundle associated to the representation VC. Moreover,
if L is a number field containing the reflex field and V ∈ RepL(G), then B(VC)K admits a
model over SK,L, denoted by B(V )K .

9Here we are denoting by a subscript C the complexification of the real Lie group Kh
∞.
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Definition 2.3.4.2. Suppose that the number field L contains the reflex field E and that
G splits over L. If Vλ denotes the irreducible representation of G over L of highest weight
λ, then the automorphic bundle of type λ over SK,L is B(λ)K := B(Vλ)K .

Remark 2.3.4.3. (1) In the following we will make no difference between vector bundles
and the associated locally free coherent sheaves of sections.

(2) The automorphic vector bundles B(V )K(C) associated to GF -representations V are
endowed with a canonical flat connection such that the corresponding locally constant
subsheaf of horizontal sections coincides precisely with the local system µK

top(V ).

Now, given any toroidal compactification SK(S), the bundles V(V )K defined above
admit a canonical extension B(V )can

K on SK(S) ([Har89]). This allows us to give the
following definition, in the cases of interest to us:

Definition. Let Vλ be as in Definition 2.3.4.2. Then:

(1) the space of automorphic forms of type λ and of level K is the space of global sections
Mλ,K := H0(SK(S)L,B(λ)can

K );

(2) the space of cusp forms of type λ and of level K is the space of global sections M cusp
λ,K :=

H0(SK(S)L,B(λ)can
K ⊗ (−D)), where D is the divisor ∂SK(S).

These definitions can be seen to be independent of the choice of the toroidal compact-
ification SK(S) ([Har90]).

Remark 2.3.4.4. (1) Denote by D a connected component of X, so that a connected com-
ponent of SK(C) will be of the form Γ\D for a suitable arithmetic subgroup Γ of Gad(Q)
(cfr. Remark 2.2.(2)). The construction of the compact dual (resp. of the toroidal com-
pactifications, of the automorphic bundles and of their canonical extensions to such com-
pactifications) can be (and are) of course carried out first for D (resp. for Γ\D). Hence,
we can define in the obvious way the spaces Mλ,Γ of automorphic forms of type λ and level
Γ, along with the spaces M cusp

λ,Γ of cuspidal ones, as spaces (at least with C-coefficients) of
sections over Γ\D.

(2) In the case of G = GL2, we have that the arithmetic subgroups Γ arising in the context
of the preceding point are conjugates of the image in PGL2(Q) of the group K ∩GL2(Q).
Assume that they can be identified with congruence subgroups of SL2(Q). In this case,
as a highest weight of SL2, the character λ corresponds to a non-negative integer k, and
the resulting spaces Mλ,Γ, resp. M cusp

λ,Γ , are identified with the usual spaces Mk+2(Γ) of
modular forms, resp. Sk+2(Γ) of cusp modular forms, of weight k+2. Notice the difference
between the notion of type and weight, which is the reason for adopting our (slightly non-
standard) terminology. Also notice that we are already using other two notions of weight,
the representation-theoretic and Hodge-theoretic ones, which one has to be careful to
distinguish.

(3) In the setting of the preceding point, denote simply by k the (representation-theoretic)
weight λ and recall the classical Eichler-Shimura isomorphism ([Shi71, 8.2])

H1
! (YΓ, µ

K
top(Vk,C)) ≃ Sk+2(Γ)⊕ Sk+2(Γ), (2.46)

where YΓ is the modular curve Γ\D ≃ Γ\h; in particular, this isomorphism intertwines
the action of Hecke operators on Betti cohomology as defined in Subsection 2.2.1 with the
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classically-defined one on cusp forms. Besides providing an explicit identification of cusp
forms with interior cohomology classes of the local system µK

top(Vk,C), it can be seen that
(2.46) gives a realization of the Hodge decomposition of the space H1

! (YΓ, µ
K
top(Vk,C)) (no-

tice that in this case, H1
! (YΓ, µ

K
H(Vk)) carries a pure Hodge structure of weight k + 1, cfr.

Subsection 2.3.1) into a direct sum of two subspaces of type (k+1, 0) (the space of cuspidal
modular forms) and (0, k + 1) (the conjugate of the former). Also, it can be shown that
H1

! (YΓ, µ
K
H(Vk)) and Grk+1H

1(YΓ, µ
K
H(Vk)) coincide. The only other non-trivial weight

graded object, the quotient of H1 by H1
! , is then Gr2k+2H

1(YΓ, µ
K
H(Vk)), whose complexi-

fication is identified with the space of Eisenstein, i.e. non-cuspidal, modular forms of level
Γ and weight k + 2.

On the other hand, the Galois representations associated by Deligne to classical cusp
forms ([Del71c]) are then found inside the ℓ-adic étale cohomology spacesH1

ét,!(YΓ,Q̄, µ
K
ℓ (Vk))

and related to the action of Hecke operators on cusp forms through the comparison iso-
morphism.

(4) The decomposition of H1
! (YΓ, µ

K
H(Vk,C)) in eigenspaces for Hecke operators induced

by the isomorphism (2.46) and the decomposition of (in general, a subspace of) interior
cohomology as sum of cuspidal C∞

c (G(Af )//K)-modules discussed in Subsection 2.3.1 are
related by a standard recipe which associates a cuspidal automorphic representation to
a (classical) cusp form ([Bum97, 3.6]). Through this, the Hodge decomposition induced
on each Hecke-eigenspace by (2.46) can be seen as a special case of the intrinsic Hodge
decomposition existing on the (g,Kh

∞)-cohomology spaces H ·(g,Kh
∞;π∞⊗ VC) associated

to cuspidal automorphic representations (cfr. Rmk. 2.3.1.3).

(5) The previous points emphasize, in the case G = GL2, a relationship between sections
of automorphic bundles and cohomology of the associated local systems of horizontal
sections (cfr. Remark 2.3.4.3.(2)). For general G, it is a spectral sequence coming from
the so-called BGG-complex ([Fal83]) which encodes the (much more complicated) way in
which the coherent cohomology of automorphic bundles contributes to Betti cohomology
of the local systems µK

top(VC).

We are now prepared to end this chapter by introducing the crucial notion of corank.
We have seen that in Subsection 2.3.3 that the boundary ∂S∗

K of the Baily-Borel compact-
ification of our Shimura variety SK admits a stratification of the form (with the notations
of that Subsection)

∂S∗
K =

p
⊔

m=1

⊔

g∈Cm

Sm,g,

where in particular the integer p is the number of conjugacy classes of admissible Q-
parabolics in G. Coherently with the notation in 2.3.3, denote, for m = 1, · · · , p, Zm =
⊔

g∈Ci
Sm,g. Then, the geometrically connected components of Zm are of equal dimension

dm, and we can suppose that the ordering of the conjugacy classes of parabolics has been
chosen so that dm ≥ dn whenever m ≤ n.

Fix a number field L over which G splits and an irreducible representation Vλ of GL

of highest weight λ. Then, we pose the following:

Definition. (cfr. [BR18, Def. 1.10]) Let f ∈ Mλ,K be a non-zero automorphic form
of type λ and level K. The corank of f is the minimal integer cor(f) := q such that
⊕g∈Cq+1f |Sq+1,g

= 0 (with Cp+1 = ∅ by convention).
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Notice that this notion gives a measure, in some sense, of the degree of cuspidality of f :
for example, cor(f) = 0 ⇐⇒ f is cuspidal, and we could define completely non-cuspidal
forms the f ’s such that cor(f) = p.

Now, the results of [BR18] imply that, at least when the Shimura datum to which G
is associated is of PEL-type (see Subsection 3.2.1)10, the existence of non-zero forms of
a given corank is controlled by a purely representation-theoretic invariant, the so-called
corank of the highest weight λ. Let us define it in the case which will be of interest to us,
for G equal to the modification of ResF |Q GSp2n,F (for F totally real of degree d) defined
as in (2.7) : it is the case of genus n Hilbert-Siegel varieties, which we will later specialize
to n = 2 and which in turn subsumes the cases of Hilbert modular varieties (n = 1) and
Siegel threefolds (F = Q). In order to give such a definition, notice that in this case, the
highest weight λ will be of the form

λ = ((ki,σ)i=1,··· ,n
σ∈IF

, c)

where IF is the set of (real) embeddings of F and, in particular, the non-negative integers
ki,σ are such that, for each σ, k1,σ ≥ · · · ≥ kn,σ ≥ 0; see Subsection 4.1.3 for more details
in the case n = 2 (the general case is completely analogous). In the following, let L be a
Galois closure of F .

Definition 2.3.4.5. (cfr. [BR18, Def. 1.5.3]) Let λ = ((ki,σ)i=1,··· ,n
σ∈IF

, c) be a highest

weight of GL.

1. For each i ∈ 1, · · · , n, ki := (ki,σ)σ∈IF
is called parallel if ki,σ is constant on IF ,

equal to a non-negative integer κ.

2. We say that λ has corank q (and we write cor(λ) = q) if

q = |{1 ≤ i ≤ n|ki = kn}|

and kn is parallel. If there is no such q, we say that the corank is 0.

Now, the result that we need from [BR18] (where the role of λ, resp. Mλ,K , is played
by k, resp. Mk(H, R)) spells out as follows (for the translation between our analytical
definition of the relevant objects and the algebraic definitions of loc. cit., see [Lan12a]):

Theorem 2.3.3. ([BR18, Thm. 1.5.6]) If f ∈ Mλ,K is non-zero, then cor(λ) ≥ cor(f).

This implies for example that, in order to have non-zero non-cuspidal forms, it is neces-
sary for λ to be of corank ≥ 1; moreover, in order to have non-zero completely non-cuspidal
forms, it is necessary for λ to be of corank n. In the case of Hilbert modular varieties, λ is
a list of integers indexed by the embeddings σ, and hence the latter observation generalizes
the well-known fact that there can’t be non-zero non-cusp forms of type λ over Hilbert
modular varieties, if λ is not parallel ([Fre90, Rem. I.4.8]).

The importance of this theorem for us lies in the fact that, in the genus 2 case, the
main result of Chapter 4, i.e. Thm. 4.3.1, says that the corank of λ is also the invariant
which controls the presence of higher weights in the cohomology of Hilbert-Siegel vari-
eties. In particular, it allows to give a precise bound on the first strictly positive weights
appearing in the boundary cohomology, in the direction of the problem raised in Remark

10More precisely, when the PEL-datum is of symplectic or unitary type.
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Weights in the cohomology of Shimura varieties

2.3.2.3. Notice that we make no direct use of the result from [BR18], which served only
as inspiration for imagining that a description of the weights in these terms should have
been possible.

We think of these facts as an evidence for the possible role of the corank as a gateway
between automorphic description of the cohomology and weight filtration.
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Chapter 3

Motives of Shimura varieties and
weight structures

For a Shimura variety SK associated to a reductive group G as considered in Subsection
2.1.3, and for a representation V of G, the behaviour of the Hodge and ℓ-adic canonical
constructions hints at the existence of an underlying algebro-geometric object over SK ,
of which the local systems µK

H(V ), µK
ℓ (V ), with their additional structures (Hodge struc-

ture, Galois representations) should be the realizations. At least for PEL-type Shimura
varieties (moduli spaces for abelian varieties with a prescribed choice of polarization, endo-
morphisms and level structure), this is actually the case, due to the presence of an universal
abelian scheme AK over SK , as we will recall in Section 3.2. In fact, π : AK → SK being
proper and smooth, we have at our disposal the framework of relative Chow motives over
SK (to be firstly reviewed in Section 3.1), which allows, in the case of abelian schemes,
to give an intrinsic geometric meaning to the corresponding relative cohomology sheaves,
independent of the chosen cohomology theory. This is the source of the relative motives
V giving rise to the objects in the image of the canonical constructions.

Nevertheless, our real aim is to find motives realizing to the Galois representations
H ·

ét(π
K
f ) and Hodge structures H ·(πK

f ) attached in Subsections 2.2.2, resp. 2.3.1 to cus-
pidal automorphic representations π appearing in the cohomology of the canonical con-
structions over SK . If we are to build such motives out of the universal abelian scheme,
we are confronted to the fact that AK , seen (through AK

π
−→ SK

s̃
−→ SpecE) as a variety

over the point SpecE (E the reflex field of SK), is in general not proper at all, due to
non-properness of SK . For reasons that will become clear in the following, we will also
need to consider the degeneration of such an abelian scheme at the boundary of a suitable
compactification of SK . Thus, we need first a setting in which to treat these more general
objects, i.e. the theory of Beilinson motives over a base, also reviewed in Subsection 3.1,
equipped with its adequate six functors formalism. Secondly, we have seen in Subsection
2.3.1 that our Galois representations and Hodge structures are found inside interior coho-
mology and hence in particular, in the terminology established there, in weight zero. This
implies that we have to extract, from the mixed object s̃∗V, a Chow motive realizing to the
lowest-weight subquotients of cohomology. We will prove in Subsection 3.2.2 that there is
an algebra action of the Hecke operators on s̃∗V, and we would like our Chow motive to
carry an induced action of this algebra, whose idempotent elements will then cut out the
submotives corresponding to individual automorphic representations.

It is the theory of weight structures, to be reviewed in the first part of Section 3.3, which
provides the motivic version of the weight filtration. But the lack of functoriality of the
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Motives of Shimura varieties and weight structures

latter forces one to look for an additional criterion, allowing to define a canonical, hence
Hecke-equivariant, lowest-weight Chow submotive. This criterion, due to Wildeshaus, is
reviewed at the end of Section 3.3. The attempt to verify it for specific families of Shimura
varieties has been the motivation for the study of weights carried out in this thesis.

3.1 Review of Beilinson motives and relative Chow motives

For a varying base scheme S, the system of Q-linear, triangulated categories DMB(S) of
Beilinson motives over S can be thought of, roughly speaking, as a universal system of
triangulated categories of Q-linear mixed (complexes of) sheaves over S, equipped with
a six functors formalism, thus realizing to any available theory of mixed (complexes of)
sheaves (depending on the base scheme S: ℓ-adic sheaves for suitable primes ℓ, mixed
Hodge modules...), compatibly with this formalism. This system of categories is known
to satisfy almost all of the expected properties required by the original program of Beilin-
son’s ([Bei87]), the most notable exception being the existence of a suitable (perverse)
t-structure, which would allow one to define an Abelian category of mixed motivic sheaves
and to get far-reaching consequences (for example, over a point of characteristic zero,
the validity of the so- called standard conjectures ([Bei12]) and hence the completion of
Grothendieck’s original program for the construction of a Tannakian category of pure
motives).

For our purposes, it will be enough to consider as base S a separated, finite type
Q-scheme (in the following, we will refer to such schemes as to base schemes). Even
in this case, we won’t give the definition of the category of Beilinson motives ([CD12,
Def. 14.2.1]), but only list the properties of DMB(S) which we will concretely need (the
sense in which to understand the mixed structure will be explained in Subsection 3.3).
We recall, however, that this category can be canonically identified with the category
DA1,ét(S,Q) obtained from the derived category of étale sheaves of Q-vector spaces on the
site of smooth S-schemes by, informally speaking, imposing the relation Y ×S A1

S ≃ Y for
any smooth S-scheme Y (the so-obtained category is in particular monoidal symmetric,
so that it admits a tensor product) and by making the operation of tensoring with P1

S

invertible (more precisely, applying the process of P1
S-stabilization); this is the content of

[CD12, Thm. 16.2.18]. One of the crucial consequences of the approach of Cisinski and
Déglise is that spaces of morphisms in the resulting category have the correct relation with
K-theory ([CD12, Cor. 14.2.14]). The list of the features of DMB(S) that we will need is
the following:

Property 3.1.0.1. (1) The construction of DMB(S) can be done taking an arbitrary Q-
algebra L as ring of coefficients instead of Q ([CD12, 14.2.20]), yielding triangulated, L-
linear categories DMB(S)L, such that the canonical functor DMB(S) ⊗Q L → DMB(S)L

is fully faithful, and satisfying the F -linear analogues of the properties of DMB(S). In
particular, such categories are pseudo-Abelian ([Hé11, Sect. 2.10]).

(2) The categories DMB(S)L are monoidal symmetric, and we denote the unit of their
tensor product ⊗ by 1S . For every integer i, one has objects 1S(i) called Tate twists, and
for every smooth S-scheme X, one has a corresponding object MS(X) in DMB(S)L, the
motive of X [CD12, 1.1.34]; its Tate twist by i is the object MS(X)(i) := MS(X)⊗1S(i).
Then, the category DMB,c(S)L of constructible Beilinson motives over S is defined as
the full, thick, triangulated subcategory of DMB(S)L generated by the objects MS(X)(i),
for varying X and i. Over a point S = Spec k, for k, say, a finite extension of Q, the
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3.1. Review of Beilinson motives and relative Chow motives

category DMB,c(k)L is canonically identified ([CD12, Rmk. 11.1.14, Thm. 16.1.4]) with
the F -linear variant of Voevodsky’s category DMgm(k)L of geometrical motives1 ([Voe00]).

(3) Any morphism f : T → S of base schemes induces a functor f∗ : DMB(T )L →
DMB(S)L with a left adjoint f∗ : DMB(S)L → DMB(T )L which is a monoidal functor.
There is also a functor f! with right adjoint f !, along with a natural transformation
αf : f! → f∗ which is an isomorphism if f is proper [CD12, Thm. 2.2.14 (2)]. The system
of such functors, together with the ⊗ bifunctor, which admits a right adjoint HomS ,
satisfies more generally the six functor formalism as defined in [CD12, A.5.1]. Moreover,
these functors preserve constructible Beilinson motives ([CD12, 4.2.29]).

(4) The only other part of the six functors formalism that we want to recall is the following:
if f as in the preceding point and it is the base of a Cartesian diagram

T ′ f ′
//

g′

��

S ′

g

��

T
f

// S

of base schemes, then the exchange transformation g∗f! → f ′
! g

′∗ is an isomorphism; the
same then holds for the adjoint exchange transformation g′

∗f
′! → f !g∗.

(5) Let L be a number field. For every prime ℓ, there exists (see [CD16, Sect. 7.2]) a
canonical triangulated functor Rℓ : DMB,c(S)L → Db

c,ét(S)L, compatible with the six-
functor formalism, called the ℓ-adic realization functor (here Db

c,ét(S)L is the category
of Remark 2.1.3.9.(2)). Composition with the collection of cohomology functors, resp.
perverse cohomology functors, R∗ : Db

c,ét(S)L → GrZEtℓ,L(S), resp. H∗ : Db
c,ét(S)L →

GrZPerv(Et)ℓ,L(S) (where Perv(Et)ℓ,L(S) is the Ll-linear category of ℓ-adic perverse sheaves
over S introduced in Subsection 2.3.3), gives rise to the ℓ-adic cohomological realization,
resp. perverse cohomological realization functors.

Remark 3.1.0.2. Notice that an analogous functor to the ℓ-adic realization Rℓ introduced
above, but taking values in the category of mixed Hodge modules over S(C) (i.e. a Hodge
realization functor with the expected properties) doesn’t exist yet in the generality that
we need (namely, we will need to consider singular bases S). This is why we will only work
with ℓ-adic sheaves in Chapter 4, whereas the (completely analogous) computations and
results there could be phrased and obtained in the Hodge setting too (cfr. Rmk. 4.2.2.4).

Suppose from this point until the end of this Section that all base schemes are quasi-
projective and regular. We have now to introduce a more classical category of relative
motives over S, which recovers over Spec k the category CHM(k)Q of Chow motives
(with rational coefficients) originally constructed by Grothendieck. We are speaking of
the category CHM s(S) of smooth Chow motives over S, as introduced in [DM91, Sect.
1]: it is obtained in the following way. First, one takes the category SmProj(S) of smooth,
projective S-schemes and replaces the spaces of morphisms between objects X and Y , if X
is connected of relative dimension dX/S over S, by the (rational) Chow groups of relative
correspondences of degree dX/S

CHdX/S (X ×S Y ) := CHdX/S (X ×S Y,Q)

1Note however that realizations (see below) behave covariantly on Beilinson motives and contravariantly

on Voevodsky motives.
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with composition given in the usual way (for a first cycle on X ×S Y and a second one on
Y ×S Z, pull back the two to X ×S Y ×S Z, intersect there and push forward the result
to X ×S Z), obtaining an additive category Corr(S). Second, one takes the idempotent
completion CHM s, eff (S) of Corr(S), which comes then equipped with a canonical, con-
travariant faithful functor h : SmProj(S)→ CHM s, eff (S), sending a morphism f to the
class tΓf of the transpose of its graph; it is a pseudo-abelian category with a tensor prod-
uct induced by the Cartesian product of schemes. Third, one inverts a canonical direct
factor LS of h(P1

S), the Lefschetz motive, with respect to the tensor product, obtaining the
desired (Q-linear, rigid) ⊗-category CHM s(S), in which CHM s, eff (S) naturally embeds;
in particular, every object M of CHM s,eff (S) admits a dual M∨ in CHM s(S) (see loc.
cit. for more details on each step). One can obviously redo the whole construction with
coefficients in a Q-algebra L and obtain a L-linear category CHM s(S)L. Notice that for
a morphism of base schemes f : T → S, the natural functor given by fiber product with
T over S induces an additive functor f∗ : CHM s(S)L → CHM s(T )L commuting with
tensor product.

The link between smooth Chow motives and Beilinson motives comes from the fact
that by [Lev09, Prop. 5.19, Cor. 6.14] there is a canonical, fully faithful embedding

CHM s(S)L →֒ DMB,c(S)L

which is a tensor functor. Notice that, over a point, this embedding recovers the fully
faithful embedding CHM(k)op →֒ DMgm(k) constructed by Voevodsky in [Voe00]. For
any smooth projective p : X → S, it sends h(X) to p∗1X (we may call the latter the
cohomological motive of X). Moreover, it sends LS to 1S(−1)[−2], and it is compatible
with the functors f∗ induced by morphisms f : T → S on the two sides. In particular, for
any couple of objects p : X → S, q : Y → S in SmProj(S), with X connected of relative
dimension dX/S over S, one has

HomDMB,c(S)L
(p∗1X , q∗1Y ) = CHdX/S (X ×S Y )L (3.1)

compatibly with composition.

Remark 3.1.0.3. Let L be a number field. The constructions of [DM91, Sec. 1.8] show
that on CHM s(S)L one has many realization functors at one’s disposal. As in loc. cit.,
there exists, for any prime ℓ, an ℓ-adic cohomological realization functor on smooth Chow
motives over S; one sees that this equals the restriction of R∗ ◦ Rℓ (Property 3.1.0.1.(5))
to CHM s(S)L. Moreover, one can construct in the same way the Hodge cohomological
realization, with values in the category GrZVarL(S(C)) of Rmk. 2.1.3.9.(1)

We will say more on the link between relative Chow motives and Beilinson motives in
Section 3.3.

3.2 The motivic canonical construction and the action of
the Hecke algebra

3.2.1 The motivic canonical construction over PEL Shimura varieties

In order to apply the theory of Beilinson motives and of relative Chow motives to Shimura
varieties, we need to introduce the class of (rational) PEL data. Referring to [Lan17, 5.1]
for precise definitions and for all the facts recalled on this subject, what we actually need to
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3.2. The motivic canonical construction and the action of the Hecke algebra

use is that such data are given by tuples (V,B, ∗, 〈·, ·〉, h0) where B is a finite dimensional
semisimple Q-algebra with positive involution ∗, V is a finite dimensional Q-vector space
on which B acts, 〈·, ·〉 is a non-degenerate, alternating paring on V , and h0 is a certain
R-algebra homomorphism C→ EndBR

(VR). These objects are required to satisfy a series
of compatibilities. Denoting by G the (reductive) Q-algebraic group of automorphisms
of V commuting with B and preserving the pairing 〈·, ·〉 up to a scalar, and putting
X := G(R) · h0, one defines coset spaces

G(Q)\X ×G(Af )/K

where K is an open compact subgroup of G(Af ). If such a (G,X) is a Shimura datum,
it is called a PEL-type Shimura datum; then the above coset spaces are Shimura varieties
SK , defined over their reflex field E.

In the following, we will denote a PEL datum simply by (V,B, 〈·, ·〉), assuming as
implicit the choices of the involution and of h0.

Remark 3.2.1.1. If G is the group associated to a PEL datum (V,B, 〈·, ·〉), denote by Q(1)
the 1-dimensional representation of G on which G acts by the character g 7→ gg∗, and
for any representation W of G, for any positive integer n, denote W (n) := W ⊗ Q(1)⊗n,
W (−n) := W ⊗ (Q(1)∨)⊗n. Then, the pairing 〈·, ·〉 induces a canonical morphism of
G-representations

V ⊗ V → Q(1)

and hence a canonical isomorphism

V ∨ ≃ V (−1). (3.2)

When G underlies a Shimura datum, this coincides with a particular case of the pairing
utilised in the proof of Prop. 2.1.3.10.

The above defined coset spaces can be canonically identified with (a disjoint union
of connected components of) moduli spaces of complex abelian varieties A equipped, in
particular, with a polarization of a specific type, with a canonical injection of a fixed order
of B in End(A), and with a suitable level structure, all of this depending on the choice of
K.

From now on, we will fix a PEL datum (V,B, 〈·, ·〉) and we will suppose that it gives rise
to a Shimura datum (G,X) satisfying condition (+) of 2.1.3. As usual, we will assume
the compact open subgroups K that we use to be neat, in order to work with smooth
(quasi-projective) Shimura varieties. The description of the complex points of the latter
as moduli spaces descend to the reflex field. Hence, we will have universal abelian schemes
AK → SK at our disposal; such schemes are of relative dimension over SK equal to half the
(necessarily even) dimension of V over Q, and admit a canonical injection of Q-algebras
B →֒ End(AK)⊗Q, the latter denoting the algebra of endomorphisms of AK as an abelian
scheme over SK .

Example 3.2.1.2. The Shimura data defined in Example 2.1.3.2 are all examples of PEL
Shimura data satisfying condition (+). In these cases, V is just the standard reprentation
of the associated group G, the semisimple algebra B is just the field F and the pairing is
the one tautologically preserved by definition by G; thus, when this field is a non-trivial
extension of Q, the abelian varieties parametrized by the corresponding moduli problem
are equipped with real multiplication by a fixed order O of F .
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We will use freely the terminology universal for the abelian schemes defined above,
and we will not discuss whether the previous moduli spaces are fine moduli spaces, but as
an example of the utility of condition (+), we note the following:

Remark 3.2.1.3. The objects of the more restricted class of Hilbert modular varieties,
obtained in Example 2.1.3.2.(1) from a groupG satisfying condition (+), can be interpreted
as fine moduli spaces, whereas “classical” Hilbert modular varieties arising from G =
ResF |Q GL2,F can not (although they admit a modular interpretation, too). Cfr. [DT04,
Remarque 1.1] for details and for a discussion of advantages and disadvantages of working
with the two classes of Hilbert modular varieties.

Remark 3.2.1.4. For a PEL Shimura variety SK , we denote by H i(A) the local systems
over SK(C), resp. ℓ-adic sheaves over SK , defined by Riπ∗Q, resp. Riπ∗Qℓ.

On the Hodge side, the functor H1 induces an (anti-)equivalence of categories ([Del71b,
4.4.3])
{

abelian schemes over SKx,C

modulo isogeny

}

≃

{

polarizable variations of Q-Hodge structure
over SKx(C) of type (1, 0), (0, 1)

}

such that H1(AK) is canonically identified with µH
K(V ∨), where µK

H is the Hodge canonical
construction functor (Subsection 2.1.3). In particular, the pure Hodge structure, which V
is endowed with by definition of Shimura datum, is of type (−1, 0), (0,−1).

Let us connect the above with the theory described in Section 3.1. Since π : AK → SK

is proper and smooth over the regular quasi-projective variety SK , we can consider the
object h(AK) of the category of smooth Chow motives over SK . This motive admits a
remarkable functorial decomposition:

Theorem 3.2.1. ([DM91, Thm. 3.1, Cor. 3.2]) Let π : A → SK be an abelian scheme
and let n denote the endomorphism of multiplication by n on A. Let g = dimSK

A. Then,
for each i ∈ {0, · · · , 2g} there exist canonical idempotents pi

A ∈ CHg(A×SK
A) (called the

Chow-Künneth projectors) uniquely characterized by the equation

tΓn ◦ p
i
A = nipi

A = pi
A ◦

tΓn (3.3)

in CHg(A×SK
A). They are such that, if hi(A) denotes the direct factor of h(A) = π∗1A

in CHM s(SK) determined by pi
A (called the i-th Chow-Künneth component of h(A)), one

has

π∗1A =
2g
⊕

i=0

hi(A)[−i]

Moreover, if R = (Ri)i∈Z denotes the Hodge or the ℓ-adic cohomological realization (cfr.
Remark 3.1.0.3), and H i is as in Rmk. 3.2.1.4, then

R(π∗1A) = (Ri(hi(A)))2g
i=0 = (H i(A))2g

i=0. (3.4)

Remark 3.2.1.5. (1) The Chow-Künneth projectors pi
A are such that, for any i, tpi

A =
p

2g−i
A ([DM91, Remark 3, page 218]).

(2) For any homomorphism f : A→ B of abelian schemes over SK , we have

tΓf ◦ p
i
B = pi

A ◦
tΓf ,
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so that any such f induces a map

f∗ : hi(B)→ hi(A)

for all i ([DM91, Prop. 3.3]).

The Chow-Künneth components of the universal abelian scheme are at the heart of
the following crucial result:

Theorem 3.2.2. ([Anc15, Thm. 8.6], stated as in [Wil19a, Thm. 5.1])
Let L be a number field and fix (G,X) a PEL-type Shimura datum satisfying condition

(+) associated to a PEL datum (V,B, 〈·, ·〉), SK one of the associated Shimura varieties,
AK → SK the corresponding universal abelian scheme. Let CHM s(SK)L denote the
category of smooth Chow motives over SK of Section 3.1, seen as a full subcategory of
DMB,c(SK). Then, there exists a L-linear tensor functor

µ̃ : Rep(GL)→ CHM s(SK)L (3.5)

called the motivic canonical construction, with the following properties:

1. The composition of µ̃ with the Hodge cohomological realization, resp., for all primes
ℓ, with the ℓ-adic cohomological realization (Remark 3.1.0.3), is isomorphic to µK

H ,
resp. to µK

ℓ (with the convention of Rmk. 2.1.3.9. (1)).

2. µ̃ commutes with Tate twists, in the sense that for any W ∈ Rep(GL) and any n ∈ Z,
with the notation of Rmk. 3.2.1.1,

µ̃(W (n)) = µ̃(W )(n)[2n]

3. The functor µ̃ maps the GL-representation VL to the Chow motive h1(AK)(1)[2].

For the last point, one should keep in mind Rmk. 3.2.1.4 and the normalization
concerning Tate twists explained before equation (3.1).

Remark 3.2.1.6. For every positive integer n, let πn : An
K → SK be the n-fold fibred

product of AK with itself over SK . Observe that since the group G underlies a PEL
Shimura datum, it will be isomorphic over R to a product of classical groups ([Lan17, pag.
51]); hence, the direct sum V ⊕V ∨ of the standard representation V with its dual generates
the Tannakian category Rep(GL), by taking tensor products and direct summands. As
a consequence, Theorem 3.2.2 implies that every object in the essential image of µ̃ is
isomorphic to a finite direct sum

⊕

i
Mi, where each Mi is a direct factor of a Tate twist

of a Chow motive of the form πni,∗✶A
ni
K

, for suitable ni’s.

This theorem allows us to define the objects which will be the main characters in
everything to follow:

Definition 3.2.1.7. Suppose G to be split over L, and let Vλ be a irreducible L-representation
of GL of highest weight λ. The Chow motive λV over SK is defined by

λV := µ̃(Vλ).

Remark 3.2.1.8. (1) Let w(λ) be the weight of the pure objects µK
H(Vλ) and µK

ℓ (Vλ) (cfr.
Remark 2.1.3.8.(3)). Then, the Hodge, resp. ℓ-adic cohomological realizations of λV are
zero in degree 6= w(λ), and identical to µK

H(Vλ), resp. µK
ℓ (Vλ), in degree w(λ).
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(2) Let dSK
be the dimension of SK . Then, (1) can be reformulated by saying that the

perverse ℓ-adic cohomological realizations (cfr. Property 3.1.0.1.(5)) are zero in perverse
degree 6= w(λ) + dSK

, and identical to µK
ℓ (Vλ) in perverse degree w(λ) + dSK

.

(3) Let Dℓ,SK
denote the ℓ-adic local duality endofunctor over SK . Then, since we have

that
Rℓ(λV) = µK

ℓ (Vλ)[−w(λ)] (3.6)

Proposition 2.1.3.10 implies that

Dℓ,SK
(Rℓ(λV)) ≃ Rℓ(λV)(w(λ) + dSK

))[2w(λ) + 2dSK
].

3.2.2 The Hecke algebra

Retain the notation of the preceding subsection and fix a Shimura variety SK of PEL-
type, with underlying group G and associated PEL datum (V,B, 〈·, ·〉), and fix a field L of
characteristic 0. If λV are the Chow motives over SK defined in the previous Subsection
and s̃ : SK → SpecE is the structural morphism, we want to construct an algebra of
correspondences acting on the object s̃λ

∗V of the category DMB,c(E)L, in such a way
to recover, on its cohomological realization, the action of the Hecke algebra defined in
Subsection 2.2.1.

Hence, fix an element x ∈ G(Af ), define Kx := K ∩ xKx−1, and recall the two finite,
étale morphisms defined in (2.4)

g1 := [·1] : SKx → SK

g2 := [·x] : SKx → SK (3.7)

There is a compact open subgroup W of V (Af ) such that the complex points of the
universal abelian scheme π : AK → SK over SK can be written as

AK(C) = V (Q) ⋊G(Q)\V (R)×X × V (Af ) ⋊G(Af )/W ⋊K

where the semidirect product is defined by the standard representation of G on V . Then,
seeing x as an element of V (Af ) ⋊G(Af ) and denoting Wx := W ∩ xWx−1, the complex
points of the universal abelian scheme AKx over SKx are given by

AKx(C) = V (Q) ⋊G(Q)\V (R)×X × V (Af ) ⋊G(Af )/Wx ⋊Kx

Remark 3.2.2.1. These descriptions identify AK and AKx as mixed Shimura varieties
([Pin90, Def. 3.1]).

Now, for i = 1, 2, define the abelian schemes AK,i over SKx as the fiber products of
AK and SKx over SK along the morphisms gi. These objects and morphisms fit in the
following diagram, where all subdiagrams commute and the two lower subdiagrams are
cartesian:
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AKx

f1

ww

πx

��

f2

''

AK,1 π1

//

  

SKx

g1

��

g2

		

AK,2π2

oo

~~

SK

AK

π

OO

The morphisms fi are isogenies; they are concretely described on C-points by (we give the
example of f2)

AKx(C)→ AK(C)×SK(C),g2
SKx(C)

[(v, p), (w, h)] 7→ ([(v, p), (wx, hx)], [(p, h)]) (3.8)

where square brackets denote the appropriate equivalence classes.

Definition 3.2.2.2. Let g denote the relative dimension dimAK,1/SKx
. We define the

morphism

φx ∈ HomDMB,c(SKx )L
(π1,∗1AK,1

, π2,∗1AK,2
) = CHg(AK,1 ×SKx

AK,2)L

(cfr. (3.1)) as the (class of the) correspondence Γf2 ◦
tΓf1.

Remark 3.2.2.3. Unraveling the identifications, one can see that the above morphism is the
same as the one given by the following composition of adjunction morphisms associated
to f1, f2 (cfr. Property 3.1.0.1.(3))

φx : π1,∗1AK,1
→ πx,∗1AKx

→ π2,∗1AK,2
,

Remark 3.2.2.4. By Rmk. 3.2.1.5.(1) and by functoriality of the Chow-Künneth compo-
nents with respect to isogenies (point (2)), we get in particular a canonical morphism

φ1
x : h1(AK,1)→ h1(AK,2),

and hence, for any positive integer i, a canonical morphism

φi,1
x := (φ1

x)⊗i : (h1(AK,1))⊗i → (h1(AK,2))⊗i. (3.9)

Remark 3.2.2.5. Thanks to the motivic canonical construction (Thm. 3.2.2), we can define
a canonical isomorphism

α : h1(A) ≃ h1(A)∨(−1) (3.10)

induced by the canonical isomorphism in (3.2).
For later reference, let us give some more details on this definition. Fix a field L of

characteristic zero and let the abelian scheme A be either equal to AK or to AKx . By
[Kin98, Prop. 2.2.1], the functor h1 (on the category of abelian schemes over S) induces
an isomorphism of L-algebras

End(A)op ⊗ L ≃ EndCHMs(S)L
(h1(A)) (3.11)
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On the other hand, reasoning as in [Anc15, Prop. 4.4], one sees that the natural arrow
induces an isomorphism Bop ⊗ L ≃ EndRep(GF )(V ∨

L ). Hence, by composing the inverse of
this isomorphism with the inclusion

Bop ⊗ L →֒ End(A)op ⊗ L

and with the first isomorphism, we obtain a canonical identification of EndRep(GL)(V ∨
L ) as

a subalgebra of EndCHMs(S)L
(h1(A)), which is seen to be induced by the motivic canonical

construction functor of Subsection 3.2. In this way, one gets a canonical injection

HomRep(GL)(V
∨

L , VL(−1)) →֒ HomCHMs(S)L
(h1(A), h1(A)∨(−1))

which in particular associates the above defined α to the canonical isomorphism in (3.2).

In order to define the Hecke algebra, we have to look more in detail at the construction
lying behind the functor µ̃ of Subsection 3.2:

Definition 3.2.2.6. [Anc15, Def. 5.2] Let the abelian scheme A be either equal to AK or
to AKx. For each positive integer i, the L-algebra Bi,L is defined2 as the sub-L-algebra

Bi,L →֒ EndCHM(S)L
((h1(A))⊗i)

generated by the following:

• the permutation group Si,

• the ring Bop ⊗ Id⊗i−1
h1(A) (canonically seen as a subalgebra of EndCHM(S)L

((h1(A))⊗i

as in Remark 3.2.2.5),

• the morphism P ⊗ Id⊗(i−2)
h1(A) , if i ≥ 2 (where, for 2g = dimV , P is the projector

1
2g
ι ◦ p ∈ EndCHM(S)L

(h1(A)⊗ h1(A))

defined by the morphisms
ι : L→ h1(A)⊗ h1(A)

resp.
p : h1(A)⊗ h1(A)→ L

corresponding to α−1 ◦ τ , resp. α (see (3.10)) by adjunction - denoting by τ the
canonical isomorphism switching the factors in a tensor product).

The above algebra enjoys the following fundamental property3.

Proposition 3.2.2.7. [Anc15, Prop. 8.5] The motivic canonical construction functor

µ̃ : Rep(GL)→ CHM(S)L

induces an isomorphism of L-algebras

Bi,L ≃ EndRep(GL)((V
∨)⊗i).

2Notice that we are adapting the original definition, given for general abelian schemes, to the more
restricted context of loc. cit., Section 8.3.

3Here we are in some sense reversing the natural order of reasoning, because it is exactly this property
which actually allows one to define the motivic canonical construction functor.
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Remark 3.2.2.8. Suppose that G splits over L. As observed in Remark 3.2.1.6, any object
of the category Rep(GL) is isomorphic to a direct factor N of

⊕

s

Vas,bs :=
⊕

s

V ⊗as ⊗ (V ∨)⊗bs ,

for some choice of (as)s, (bs)s. Denote by N the object µ̃(N) ∈ CHM(S)L. Without
loss of generality, let us suppose that N is a direct factor of µ̃(Va,b), for some a, b, and
use the canonical isomorphism (3.10) to identify it with a direct factor of µ̃(V ∨)⊗(a+b)(a).
By writing i := a + b, we get a direct factor of µ̃(V ∨)⊗i = h1(A)⊗i, still denoted by N ,
corresponding to an idempotent element e of the algebra Bi,L.

In particular, for κ replacing any of the symbols K, Kx, we will denote by Nκ the
corresponding object over Sκ, a direct factor of h1(Aκ)⊗i. Here and in the following, the
algebra associated to any of the Aκ will be considered the same one, by identifying its
elements along the isomorphisms provided by Proposition 3.2.2.7; in particular, we will
use the same symbol e in both cases.

We pass now to the construction of the Hecke algebra of correspondences we are looking
for. We begin by the following lemma:

Lemma 3.2.2.9. Let g1, g2 be the morphisms defined in (3.7). There exist canonical
isomorphisms

g∗
1(h1(AK)⊗i) ≃ h1(AK,1)⊗i

and
h1(AK,2)⊗i ≃ g∗

2(h1(AK)⊗i)

Proof. By proper base change (Rmk. 3.1.0.1.(4)), we have canonical isomorphisms

g∗
1π∗1AK

≃ π1,∗1AK,1
(3.12)

and
π2,∗1AK,2

≃ g∗
2π∗1AK

(3.13)

Since the characterization (3.3) of Chow-Künneth projectors shows immediately that
the Chow-Künneth components are compatible with pullback, and since the functors g∗

1,
g∗

2 are monoidal, these isomorphisms induce the isomorphisms in the statement.

Then, the crucial point consists in showing that the morphisms (3.9) respect the objects
N , i.e.:

Proposition 3.2.2.10. Let NK be as in Remark 3.2.2.8. For any x ∈ G(Af ), the mor-
phism φi,1

x in (3.9) induces a canonical morphism

φ̃N
x : g∗

1NK → g∗
2NK .

such that the following holds: fix x̃ ∈ G(Af ) of the form x̃ = x′x and denote by g′
j, resp.

by g̃j, for j = 1, 2, the morphisms SKx̃ → SKx, resp. the morphisms SKx̃ → SK defined
in (3.7) as associated to x′, resp to x̃. Denote by

φ̃N ′
x′ : g′∗

1 g
∗
2NK → g′∗

2 g
∗
2NK

the morphism defined in the same way as φ̃N
x , by considering g∗

2NK as a direct factor of
h1(AK,2)⊗i via the isomorphism of Lemma 3.2.2.9.

Then, the diagram
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g′∗
1 g

∗
2NK

φ̃N
′

x′

((

g′∗
1 g

∗
1NK = g̃∗

1NK

g′∗(φ̃Nx )
66

φ̃Nx̃

// g̃∗
2NK = g′∗

2 g
∗
2NK

commutes.

Let us record here an auxiliary lemma that will be used in the course of the proof:

Lemma 3.2.2.11. Fix three objects U , V , W in a rigid ⊗-category T (over a field L)
and a morphism χ : W → V ∨. For any triple of objects O1, O2, O3 in T , denote by

adj : HomT (O1 ⊗O2,O3) ≃ HomT (O1,O
∨
2 ⊗O3)

the canonical (and functorial) adjunction isomorphism. Then:

(1) for any morphism ψ : U ⊗ V →W , we have

(IdV ∨ ⊗χ) ◦ adj(ψ) = adj(χ ◦ ψ);

(2) for any morphism µ : U ⊗W∨ →W , we have

(χ⊗ IdW ) ◦ adj(µ) = adj(µ ◦ (IdU ⊗χ
∨));

(3) for any morphism φ : V ∨ → V ⊗ U , we have

adj−1(φ) ◦ (χ⊗ IdV ∨) = adj−1(φ ◦ χ);

(4) for any morphism λ : W → V ⊗ U , we have

adj−1(λ) ◦ (IdW ⊗χ) = adj−1((χ∨ ⊗ IdU ) ◦ λ).

See [AK02, Sect. 6.1] for a very general treatment of rigid ⊗-categories (and actually,
of more general rigid monoidal L-categories) which allows to derive the above formulae
(especially as a consequence of Eq. (6.5) in loc. cit., where the isomorphism ιAB coincides
with our isomorphism adj−1 provided one sets O1 = 1, O2 = A, O3 = B - this gives back
our point (1) for this special case).

Proof. (of Proposition 3.2.2.10)
For j = 1, 2, the algebra Bi,L acts on h1(AK,j)⊗i, by letting an element β ∈ Bi,L act as

g∗
j (β) conjugated by one of the isomorphisms of Lemma 3.2.2.9. With these conventions, in

order to get the desired statement, it suffices to show the following commutation relation
with respect to the action of the idempotent e:

φ1,i
x ◦ e = e ◦ φ1,i

x

(as morphisms of relative Chow motives over SKx). This boils down to showing that φ1,i
x

commutes with the action of any of the explicit generators of the algebra Bi,L. Since
commutation with elements of the symmetric group Si is clear, let us turn our attention
to a fixed element b ∈ B.
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By Def. 3.2.2.2, commutation of b ⊗ Id⊗i−1
h1(AK,j) with φ1,i

x follows once we prove that b

commutes with tΓf1 and Γf2 . But since the fj ’s are isogenies, let’s say of some degree dj ,
we have Γfj

◦t Γfj
= dj · IdAK,j

for j = 1, 2, and b commutes with tΓfj
if and only if it

commutes with Γfj
, so that we are reduced to show commutation of b (as an endomorphism

of AK,j and AKx) with the fj ’s (as morphisms of abelian schemes). This is immediate
from the analytical description (3.8) of the morphisms fj .

Finally, in order to show commutation of P ⊗ Id⊗i−2
h1(AK,j) with φ1,i

x (which will conclude

the proof), we have to prove that the P ’s commute with φ1,2
x . To this end, consider

the canonical isomorphism α defined in (3.10) when A = AK and the morphisms ι, p
intervening in the definition of P (again, when A = AK). For j = 1, 2, apply g∗

j to these
elements and conjugate them by the isomorphisms provided by proper base change: this
yields canonical isomorphisms αj and morphisms ιj , pj , whose sources and targets are
clear from their construction. Then, we have to show the identity

ι2 ◦ p2 ◦ (φ1
x ⊗ φ

1
x) = (φ1

x ⊗ φ
1
x) ◦ ι1 ◦ p1 (3.14)

For this, we first observe that, by defining

φ1
x,a := φ1

x ⊗ Idh1(AK,2), φ1
x,b := Idh1(AK,1)⊗φ

1
x

and
φ1

x,c := Idh1(AK,2)⊗φ
1
x, φ1

x,d := φ1
x ⊗ Idh1(AK,1)

we get two factorizations

φ1
x,a ◦ φ

1
x,b = φ1

x ⊗ φ
1
x = φ1

x,c ◦ φ
1
x,d

Then, we claim that the diagram

h1(AK,1)

φ1
x
��

α1

≃
// h1(AK,1)∨(−1)

h1(AK,2)
α2

≃
// h1(AK,2)∨(−1)

(φ1
x)∨(−1)

OO
(3.15)

commutes. Grant this for a moment, and employ the notation adj as in Lemma 3.2.2.11.
Choosing U = L, V = h1(AK,2)∨, W = h1(AK,1) and χ = φ1

x in that same Lemma, we see

63



Motives of Shimura varieties and weight structures

that

ι2 ◦ p2 ◦ (φ1
x ⊗ φ

1
x) = adj(α−1

2 ◦ τ) ◦ adj−1(α2) ◦ φ1
x,a ◦ φ

1
x,b =

(by commutativity of (3.15))

= adj(φ1
x ◦ α

−1
1 ◦ (φ1

x)∨(−1) ◦ τ) ◦ adj−1(α2) ◦ φ1
x,a ◦ φ

1
x,b =

(by Lemma 3.2.2.11 in its instance (1), choosing ψ = α−1
1 ◦ (φ1

x)∨(−1) ◦ τ)

= φ1
x,c ◦ adj(α

−1
1 ◦ (φ1

x)∨(−1) ◦ τ) ◦ adj−1(α2) ◦ φ1
x,a ◦ φ

1
x,b =

(by Lemma 3.2.2.11 in its instance (2), choosing µ = α−1
1 ◦ τ

and identifying τ−1 ◦ (φ1
x)∨(−1) ◦ τ = IdL⊗(φ1

x)∨)

= φ1
x,c ◦ φ

1
x,d ◦ adj(α

−1
1 ◦ τ) ◦ adj−1(α2) ◦ φ1

x,a ◦ φ
1
x,b =

(by Lemma 3.2.2.11 in its instance (3), choosing φ = α2)

= φ1
x,c ◦ φ

1
x,d ◦ ι1 ◦ adj

−1(α2 ◦ φ
1
x) ◦ φ1

1,b =

(by Lemma 3.2.2.11 in its instance (4), choosing λ = α2 ◦ φ
1
x)

= φ1
x,c ◦ φ

1
x,d ◦ ι1 ◦ adj

−1((φ1
x)∨(−1) ◦ α2 ◦ φ

1
x) =

(by commutativity of (3.15))

= φ1
x,c ◦ φ

1
x,d ◦ ι1 ◦ adj

−1(α1) =

= (φ1
x ⊗ φ

1
x) ◦ ι1 ◦ p1.

So, identity (3.14) is proved, and it remains only to justify the commutativity of (3.15).
This can be checked by applying a pullback and working in the category of smooth Chow
motives over SKx,C, where, as a consequence of the isomorphism (3.11) and of the equiv-
alence of categories of Rmk. 3.2.1.4, we can equivalently show the commutativity of the
corresponding diagram in the category of polarizable variations of Q-Hodge structure on
SKx(C), obtained by realization. This, by Def. 3.2.2.2, amounts to showing the commu-
tativity of the following:

H1(AK,1)

f̃1

��

α1

≃
// H1(AK,1)∨(−1)

H1(AKx)
α2

≃
// H1(AKx)∨(−1)

(f̃1)∨(−1)

OO
H1(AKx)

f̃2

��

α1

≃
// H1(AKx)∨(−1)

H1(AK,2)
α2

≃
// H1(AK,2)∨(−1)

(f̃2)∨(−1)

OO

where f̃1, resp. f̃1 denote the morphisms of sheaves obtained from tΓf1 , resp. Γf2 .
By proper base change applied to the underlying local systems, we have, for j = 1, 2,

g∗
jH

1(AK)
BCj
≃ H1(AK,j)

Given the canonical pairing on V , the canonical construction induces a canonical pairing
on the variation of Hodge structure H1(AK)∨ and hence, by pullback and conjugation by
the proper base change isomorphisms, on the variations H1(AK,j)∨. There is an analogous
pairing on H1(AK,x)∨. Denoting by A any of the schemes AK,1, AKx , AK,2 and by

〈·, ·〉 : H1(A)∨ ×H1(A)∨ → Q(1)

the corresponding pairing, showing the commutation of the previous diagrams is equivalent
to showing the identities

〈·, ·〉 = 〈f̃1(·), f̃1(·)〉, 〈·, ·〉 = 〈f̃2(·), f̃(·)〉
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Consider the new identities obtained from the latter by replacing H1(AK,1) and f̃1,
resp. H1(AK,2) and f̃2, with g∗

1H
1(AK) and f̃1◦BC1, resp. with g∗

2H
1(AK) and BC−1

2 ◦f̃2.
We can equivalently show that these identities hold. Now, it is clear from the analytical
description of the fj ’s (3.8) that the morphisms f̃1 ◦BC1 and BC−1

2 ◦ f̃2 are the same as
the isomorphisms of sheaves θ−1

1 , resp. θx occurring in Eq. (2.14) when defining Hecke
operators topologically. Using this description, we see immediately that the required
identities are true.

Remark 3.2.2.12. The last part of the above proof shows that φx, in the appropriate sense,
commutes with the canonical isomorphism (3.10). Hence our previous identification of our
direct factor with a direct factor of µ̃(V ∨)⊗(a+b)(a) (Rmk. 3.2.2.8) doesn’t imply any loss
of generality.

We can now complete the construction of the Hecke algebra, following [Wil17, pp.
591-592]. Fix x ∈ G(Af ) and let NK be as in Remark 3.2.2.8 and φ̃N

x be the canonical
morphism defined in Proposition 3.2.2.10. Consider moreover the adjunction morphisms
adj1 : NK → g1,∗g

∗
1NK , adj2 : g2,∗g

∗
2NK = g2,!g

!
2NK → NK , and the structure morphism

s̃ : SK → SpecE defined at the beginning of this Subsection. Applying s̃∗ to adj1 and
adj2, one gets

s̃∗(adj1) : s̃∗NK → (s̃ ◦ g1)∗g
∗
1NK , s̃∗(adj2) : (s̃ ◦ g2)∗g

∗
2NK → s̃∗NK (3.16)

and by applying (s̃ ◦ g1)∗ = (s̃ ◦ g2)∗ to φ̃N
x one gets

(s̃ ◦ g1)∗(φ̃N
x ) : (s̃ ◦ g1)∗g

∗
1NK → (s̃ ◦ g2)∗g

∗
2NK (3.17)

Definition 3.2.2.13. The Hecke correspondence on s̃∗NK associated to x ∈ G(Af ) is the
morphism

KxK := s̃∗(adj2) ◦ (s̃ ◦ g1)∗(φ̃N
x ) ◦ s̃∗(adj1) : s̃∗NK → s̃∗NK . (3.18)

The Hecke algebra HDM (K,G(Af )) is the subalgebra of EndDMB,c(E)L
(s̃∗NK) generated

by the elements KxK for x ∈ G(Af ).

Remark 3.2.2.14. (1) An Hecke algebra acting on s̃!NK can be defined in an analogous
way, so that the canonical map s̃!NK → s̃∗NK is equivariant with respect with the actions.

(2) Suppose that L is a number field and take as NK the motive λV corresponding to
the irreducible representation Vλ of GL of highest weight λ (Def. 3.2.1.7). For any prime
ℓ and any prime l of L above ℓ, we see that by construction, the application the ℓ-
adic cohomological realization (over SpecE) to s̃λ

∗V (also remembering 3.2.1.8.(3)) trans-
ports the algebra HDM (K,G(Af )) to the algebra H(K,G(Af ))Ll

acting on the spaces

H
·−w(λ)
ét (SK,Q̄, µ

K
ℓ (Vλ)) as defined in Subsection 2.2.1.

3.3 From weight structures to the intersection motive

In this final subsection, we recall the formalism of weight structures and its implications
for the construction of motives associated to automorphic representations.
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3.3.1 Weight structures

We start by recalling the notion of weights on triangulated categories that we will use,
introduced by Bondarko.

Definition 3.3.1.1. ([Bon10, Def. 1.1.1.]) Let C be a triangulated category. A weight
structure on C is a pair w = (Cw≤0, Cw≥0) of full sub-categories of C, such that, putting

Cw≤n := Cw≤0[n] , Cw≥n := Cw≥0[n]

(respectively called the categories of objects of weight at most n and at least n) the
following conditions are satisfied.

(1) For any object M of Cw≤0, resp. Cw≥0, any direct summand of M in C is an object of
Cw≤0, resp. Cw≥0.

(2) There are inclusions
Cw≤0 ⊂ Cw≤1 , Cw≥1 ⊂ Cw≥0

of full sub-categories of C.

(3) For any pair of objects A ∈ Cw≤0 and B ∈ Cw≥1, we have

HomC(A,B) = 0.

(4) For any object M of C, there exists an exact triangle

A→M → B → A[1]

in C, such that A ∈ Cw≤0 and B ∈ Cw≥1.

Definition 3.3.1.2. For any object M of C, for any n ∈ Z, an exact triangle

M≤n →M →M≥n+1 → A[1] (3.19)

in C, with M≤n ∈ Cw≤n and M≥n+1 ∈ Cw≥n+1, is called a weight filtration of M .

Notice the similarity with the notion of a t-structure on a triangulated category, the
crucial difference being in the use of the shifts in the definition of the subcategories Cw≤0

and Cw≥0 of objects of weight ≤ 0 and of weight ≥ 0. In fact, this difference has the effect
that, contrary to truncations with respect to a t-structure, the “weight truncated” objects
in a weight filtration are in general not unique up to unique isomorphism, and hence not
functorial in general.

But one can push the analogy with t-structures further, with the following notion.

Definition 3.3.1.3. ([Bon10, Def. 1.2.1 1]) Let w be a weight structure on C. The heart
of w is the full additive subcategory Cw=0 of C whose objects belong both to Cw≤0 and to
Cw≥0.

Here is a basic property which follows from the axioms of weights structures.

Property 3.3.1.4. ([Bon10, Prop. 1.3.3 3], stated in the shape of [Wil09, Prop. 1.4]) Let
w = (Cw≤0, Cw≥0) be a weight structure on C and let

L→M → N → L[1]

be an exact triangle in C. If both L and N belong to Cw≤0 (resp. if both belong to Cw≥0)
then so does M .
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3.3. From weight structures to the intersection motive

The following result gives the crucial link between the theory of weight structures and
Beilinson motives. For the latter, we use notations and conventions fixed in Subsection
3.1: in particular, our base schemes will always be regular.

Theorem 3.3.1. ([Hé11, Thm. 3.3, thm. 3.8 (i)-(ii)]) There are canonical weight struc-
tures w on the categories DMB,c(S), called motivic weight structures, uniquely character-
ized by the following properties.

(1) The objects 1S(p)[2p] belong to the heart DMB,c(S)w=0 for all integers p.

(2) For a morphism of base schemes f : T → S, the left adjoint functors f∗, resp. f! and
f♯ (the latter for f smooth), map DMB,c(S)w≤0 to DMB,c(T )w≤0, resp. DMB,c(T )w≤0 to
DMB,c(S)w≤0 (they are w-left exact).

The right adjoint functors f∗, resp. f ! and f∗ (the latter for f smooth), map DMB,c(T )w≥0

to DMB,c(S)w≥0, resp. DMB,c(S)w≥0 to DMB,c(T )w≥0 (they are w-right exact).

Since important results of Bondarko ([Bon10, Sec. 6], relying on deep inputs from
[Voe00]) identify, over a point, the heart of the weight structure on DMB,c({·}) with the
category of Chow motives, the following definition is very natural:

Definition 3.3.1.5. The Q-linear category CHM(S) of Chow motives over S is defined
as the heart DMB,c(S)w=0 of the motivic weight structure.

But then, recall that Corti and Hanamura have defined in [CH00], for a general quasi-
projective base S, a Q-linear, pseudo-abelian category of Chow motives over S, starting
from the category of projective schemes over S which are smooth (only) over the base
field, and containing the category CHM s(S) of smooth Chow motives over S of Section
3.1 as a full subcategory. Thanks to the following result, we are allowed to denote their
category by CHM(S), too:

Theorem 3.3.2. ([Fan16]) The category of Chow motives over S of Corti and Hanamura
is canonically identified with the heart DMB,c(S)w=0 of the motivic weight structure on
DMB,c(S).

This is the final link between Beilinson motives and Chow motives that we wanted
to emphasize. Let us conclude this subsection by observing that over the spectrum of
a field k of characteristic 0 (but see [Wil09, Cor. 1.14] for more general results) the
(cohomological) motive and motive with compact support of a smooth variety satisfy the
estimates on weights which one expects from Hodge theory:

Proposition 3.3.1.6. ([Bon10, dual of Thms. 6.2.1(1) and (2)]) Let X be smooth over
k of dimension dX , with structure morphism a. Then its cohomological motive a∗1X ∈
DMB,c(k) lies in

DMB,c(k)w≥0 ∩DMB,c(k)w≤dX

and its cohomological motive with compact support a!1X ∈ DMB,c(k) lies in

DMB,c(k)w≥−dX
∩DMB,c(k)w≤0
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3.3.2 A criterion for the existence of the intersection motive

Come back now to the setting and to the notations of Subsection 3.2.2. Hence, s̃ : SK →
SpecE is a PEL-type Shimura variety, associated to a group G which is split over a
field L, and we have objects λV of the category CHM s(SK)L corresponding to irreducible
representations ofGL of highest weight λ. How to extract the “weight-zero part” (hence, by
what we said before Def. 3.3.1.5, a Chow motive over E) of the object s̃λ

∗V ∈ DMB,c(E)L,
in such a way that the algebra HDM (K,G(Af )) (Def. 3.2.2.13) still act on it?

Let us begin by explaining what could be the naive approach for constructing “the
weight-zero (Chow) submotive” of the cohomological motive a∗1X ∈ DMB,c(E) of a
smooth variety a : X → E.

Approach 1. By using axiom (4) of weight structures and applying a shift, the motive
M := a∗1X fits in an exact triangle

M≥1[−1]→M≤0 →M →M≥1

where the object M≥1, resp. M≤0, is of weights at least 1, resp. at most 0. Now, by Prop.
3.3.1.6, M is of weights at least zero, and by axiom (2) of weight structures, this is the
case for M≥1[−1] too. Thus, by property 3.3.1.4, the object M0 := M≤0 belongs to the
heart of the weight structure (i.e., it is of weight zero) and hence it is a Chow motive.

Remark 3.3.2.1. The problem of Approach 1 is that we have no guarantees that the object
M0 is unique up to unique isomorphism, and in fact this is far from true: one can prove
that any smooth compactification ã : X̃ → E of X provides a weight filtration of M , which
identifies the corresponding object M0 with the Chow motive M̃ := ã∗1X̃ . In particular,
we can’t conclude that endomorphisms of M induce endomorphisms of M0.

Recall now from Subsection 2.3.3 the Baily-Borel compactification s : S∗
K → SpecE of

SK , along with the open, resp. closed immersions j : SK →֒ S∗
K , i : ∂SK →֒ S∗

K . Let us
denote

∂s̃λ
∗V := s∗i∗i

∗j∗s̃
λ
∗V (3.20)

the boundary motive of s̃λ
∗V (an object of DMB,c(E)L which actually doesn’t depend on the

choice of the particular compactification S∗
K). There is an approach, due to Wildeshaus,

that allows to quantify the obstructions to “the weight-zero part" of s̃λ
∗V being unique up

to unique isomorphism (the exposition here follows the lines of [Wil13, Rmk. 1.20]. This
approach makes use of the following:

Definition 3.3.2.2. (cfr. [Wil09, Defs. 1.6-1.10]) Let S be a base scheme. Let M ∈
DMB,c(S)L and let α, β be integers. We say that M avoids weights α, . . . , β if α ≤ β and
there exists an exact triangle in DMB,c(S)L

M≤α−1 →M →M≥β+1 →M≤α−1[1]

such that M≤α−1 is of weight at most α− 1 and M≥β+1 of weight at least β + 1.
Such a triangle is called a weight filtration of M avoiding weights α, . . . , β.

Proposition 3.3.2.3. ([Wil09, Cor. 1.9]) If M ∈ DMB,c(S)L admits a weight filtration
avoiding weights α, . . . , β, then it is unique up to unique isomorphism.

Approach 2. By the formalism of six functors in the categories DMB,c, the motive s̃λ
∗V fits

in a (canonical) exact triangle

∂s̃λ
∗V[−1] a

→ s̃λ
! V

u
→ s̃λ

∗V
b
→ ∂s̃λ

∗V (3.21)
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3.3. From weight structures to the intersection motive

which is the motivic analogue of (a shift of) the boundary triangle of (2.33). By applying
the axioms of weight structures, take a weight filtration of ∂s̃λ

∗V as in Def. 3.3.1.3 (for
n = 0) and shift it by -1: we have

∂s̃λ
∗V≤0[−1]→ ∂s̃λ

∗V[−1] δ
→ ∂s̃λ

∗V≥1[−1]→ ∂s̃λ
∗V≤0 (3.22)

Consider now the morphism
∂s̃λ

∗V≤0[−1]→ s̃λ
! V

obtained by composition from the one with source ∂s̃λ
∗V≤0[−1] in the weight filtration

(3.22) and the one with target s̃λ
! V in the triangle (3.21), and choose a cone (M0, pr) of

such a morphism, i.e. complete it to a triangle

∂s̃λ
∗V≤0[−1]→ s̃λ

! V
pr
→M0 → ∂s̃λ

∗V≤0 (3.23)

Thanks to Thm. 3.3.2, the object λV, being a relative Chow motive, is of weight
zero, and hence s̃λ

! V belongs to DMB,c(E)L,w≤0, since, by Thm. 3.3.1, s̃! doesn’t increase
weights. Thus, Property 3.3.1.4 shows that the object M0 belongs to DMB,c(E)L,w≤0,
too, and given its construction, we could informally think to it as a “quotient” of s̃λ

! V of
weights at most zero.

But then, the octahedral axiom of triangulated categories says in particular that one
can choose morphisms δ′ and in such that

in ◦ pr = u , δ′ ◦ δ = pr ◦ a

and such that the triangle

∂s̃λ
∗V≥1[−1] δ′

→M0
in
→ s̃λ

∗V
δ[1]b
→ ∂s̃λ

∗V≥1 (3.24)

is exact. Since, by axiom (2), the object ∂s̃λ
∗V≥1[−1] is of weights at least 0, and since the

same is true for s̃λ
∗V by theorem 3.3.1, Property 3.3.1.4 shows that the object M0 belongs

to DMB,c(E)L,w≥0. Since the triangle (3.24) exhibits (M0, δ
′) as a shift by -1 of a cone of

s̃λ
∗V

δ[1]b
→ ∂s̃λ

∗V≥1, we see that we can also informally think to M0 as the shift by -1 of a
“quotient” of ∂s̃λ

∗V≥1 of weights at least 1.
Much more importantly, being at the same time of weights at most and least 0, M0 is

of weight zero, i.e. a Chow motive, through which the morphism s̃λ
! V

u
→ s̃λ

∗V factors.
The problem now becomes (a) to select canonical choices of the objects ∂s̃λ

∗V≤0 and
∂s̃λ

∗V≥1, and (b) to make the data (M0, pr, in) unique up to unique isomorphism (if these
two points are settled, then δ, δ′ will be canonically determined, too). For (b), start by fix-
ing a second cone (M ′

0, pr
′) (hence equipped with some isomorphism (M0, pr) ≃ (M ′

0, pr
′)):

then, supposing to have two isomorphisms ι1, ι2 between the two cones, consideration of
the diagram of exact triangles

∂s̃λ
∗V≤0[−1] // s̃λ

! V
pr

//M0
d //

ι1

��

ι2





∂s̃λ
∗V≤0

∂s̃λ
∗V≤0[−1] // s̃λ

! V
pr′

//M ′
0

// ∂s̃λ
∗V≤0

shows that since (ι1 − ι2) ◦ pr = 0, then ι1 − ι2 = γ ◦ d for some element γ in

HomDMB,c(E)L
(∂s̃λ

∗V≤0,M
′
0).
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If the latter space is zero, then ι1 = ι2, and (M0, pr) is unique up to unique isomorphism.
An analogous diagram shows that we would be sure that (M0, in) is unique up to unique
isomorphism if, for some object M ′

0 isomorphic to M0, the space

HomDMB,c(E)L
(M ′

0, ∂s̃
λ
∗V≥1[−1]).

was zero. By axiom (3) of weight structures, the two spaces would be zero if one could
actually choose ∂s̃λ

∗V≤0 of weights at most -1, and ∂s̃λ
∗V≥1 of weights at least 2. Now,

by Proposition 3.3.2.3, if ∂s̃λ
∗V avoids weights 0 and 1 in sense of the above definition,

then not only such choices exist, but they are also unique up to unique isomorphism, thus
solving problem (a), too.

Remark 3.3.2.4. (1) Approach 2 leads us to the problem of determining when the bound-
ary motive ∂s̃λ

∗V avoids weight 0 and 1. Since proper morphisms respect weights (Thm.
3.3.1), a sufficient condition for this is that, for some compactification S̄K with open,
resp. closed immersions j : SK →֒ S̄K , i : ∂S̄K →֒ S̄K , the relative boundary motive
i∗jλ

∗V ∈ DMB,c(∂S̄K)L avoids weight 0 and 1.

(2) By the minimality property of the Baily-Borel compactification S∗
K (Prop. 2.3.3.1) and

by the fact that proper morphisms respect weights, if the relative boundary motive with
respect to some simple normal crossing compactification (e.g., a toroidal compactification)
avoids weight 0 and 1, then the relative boundary motive with respect to the Baily-Borel
compactification does. Hence, we will study the weight avoidance on the latter, i.e. we
will study, given an object M ∈ CHM(SK)L, the motive i∗j∗M ∈ DMB,c(∂S∗

K)L.

To explain that Approach 2 and the above remark do actually give rise to a construction
of the Chow motive we are looking for, we start by fixing some notation.

Definition 3.3.2.5. (1) We denote by DMB,c(E)L,w≤0, 6=−1 the full subcategory of DMB,c(E)L,w≤0

of objects avoiding weight -1, and by DMB,c(E)L,w≥0, 6=1 the full subcategory of DMB,c(E)L,w≥0

of objects avoiding weight 1.

(2) We denote by CHM(SK)L,∂w 6=0,1 the full subcategory of CHM(SK)L of objects M
such that i∗j∗M avoids weights 0 and 1, and by CHM(S∗

K)L,i∗w≤−1,i!w≥1 the full subcat-
egory of objects M such that i∗M is of weights at most -1 and i!M is of weights at least
1.

Then, as a first step, arguments similar to the ones outlined in Approach 2 give the
following:

Proposition 3.3.2.6. (cfr. [Wil19a, Prop. 3.3]) The inclusions

ι− : CHM(E)L →֒ DMB,c(E)L,w≤0, 6=−1

and
ι+ : CHM(E)L →֒ DMB,c(E)L,w≥0, 6=1

admit a left adjoint
Gr0 : DMB,c(E)L,w≤0, 6=−1 → CHM(E)L

and a right adjoint
Gr0 : DMB,c(E)L,w≥0, 6=1 → CHM(E)L

respectively. Both adjoints map objects (and morphisms) to the term of weight zero of
a weight filtration avoiding weight 1 and -1, respectively. The compositions Gr0 ◦ι− and
Gr0 ◦ι+ both equal the identity on CHM(E)L.
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As a second step, the following theorem and its corollary give a source of objects to
which the above functors can be applied (and much more than that).

Theorem 3.3.3. (cfr. [Wil19a, Thm. 2.2, Def.2.4]) The restriction of j∗ to

CHM(S∗
K)L,i∗w≤−1,i!w≥1

induces an equivalence of categories

CHM(S∗
K)L,i∗w≤−1,i!w≥1 ≃ CHM(SK)L,∂w 6=0,1

the composition of whose inverse with the inclusion CHM(S∗
K)L,i∗w≤−1,i!w≥1 →֒ CHM(S∗

K)L

is denoted by
j!∗ : CHM(SK)L,∂w 6=0,1 → CHM(S∗

K)L

The functor j!∗ is such that, for every n, for every prime ℓ, the diagram

CHM(SK)L,∂w 6=0,1

Hn◦Rℓ

��

j!∗
// CHM(S∗

K)L

Hn◦Rℓ

��

Perv(Et)ℓ,L(SK)
j!∗

// Perv(Et)ℓ,L(S∗
K)

commutes (where, for a base scheme S, Hn are the perverse cohomology functors on
Db

c,ét(S)L, and the lower j!∗ denotes the intermediate extension of perverse sheaves, cfr.
Sec. 2.3.3).

Notice that the second part of the statement comes from [Wil19a, Rmk. 2.6 (d)] and
[Wil17, Thm. 7.2 (b)].

Corollary 3.3.2.7. (cfr. [Wil19a, Thm. 3.4])

(1) The essential image of the restriction of the functor s̃! to the subcategory CHM(SK)L,∂w 6=0,1

is contained in DMB,c(E)L,w≤0, 6=−1.

(2) The essential image of the restriction of the functor s̃∗ to the subcategory CHM(SK)L,∂w 6=0,1

is contained in DMB,c(E)L,w≥0, 6=1.

(3) Denote by the same symbols the restrictions of the above functors to CHM(SK)L,∂w 6=0,1.
There are canonical isomorphisms of functors

Gr0 ◦s̃! ≃ s∗j!∗ and s∗j!∗ ≃ Gr0 ◦s̃∗

and if m : s̃! → s̃∗ is the standard natural transformation, then, denoting by the same
symbol its restriction to CHM(SK)L,∂w 6=0,1, their composition is given by

Gr0 ◦m : Gr0 ◦s̃! → Gr0 ◦s̃∗

(which is then an isomorphism of functors on CHM(SK)L,∂w 6=0,1).

Observe the following: if we suppose λV to belong to CHM(SK)L,∂w 6=0,1, then by
the six functors formalism, since by definition j∗jλ

!∗V ≃
λV, the object jλ

!∗V fits in a
commutative diagram of triangles
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0 //

��

i∗i
!jλ

!∗V

��

i∗i
!jλ

!∗V
//

��

0

��

jλ
! V

// jλ
!∗V

//

��

i∗i
∗jλ

!∗V
//

��

jλ
! V[1]

jλ
! V

//

��

jλ
∗V //

��

i∗i
∗jλ

∗V //

��

jλ
! V[1]

��

0 // i∗i
!jλ

!∗V[1] i∗i
!jλ

!∗V[1] // 0

which is the motivic analogue of the one of Proposition 2.3.3.3. This explains how the
corollary follows from the equivalence of categories of the previous theorem.

We are now in position, provided a weight avoidance hypothesis on ∂λV is verified, to
define a natural candidate for our sought-for Chow motive:

Definition 3.3.2.8. If i∗jλ
∗V avoids weights 0 and 1 (i.e. if λV belongs to CHM(SK)L,∂w 6=0,1),

the intersection motive of SK ( relative to S∗
K and with coefficients in λV) is defined as

the Chow motive s∗j
λ
!∗V.

Notice that, by the above theorem, we could have equivalently defined our candidate
for the "weight-zero" object as Gr0(s̃λ

∗V) (or Gr0(s̃λ
! V)); but the existence of the motivic

intermediate extension functor j!∗ on CHM(SK)L,∂w 6=0,1 allows for a definition which adds
important information on this object, and justifies the terminology intersection motive.
We will expand on this in Chapter 5, notably by clarifying the behaviour of the intersection
motive with respect to realizations. This will permit to cut out (homological) submotives
of the intersection motive corresponding to automorphic representations.

For the moment being, our task becomes to understand when i∗jλ
∗V avoids weights 0

and 1.

Remark 3.3.2.9. (1) One could hope to determine if i∗jλ
∗V avoids weight 0 and 1 by first

proving that the weights 0 and 1 don’t appear in its ℓ-adic realization (Property 3.1.0.1
and.(5); cfr. Rmk. 3.1.0.2) and then appealing to a weight conservativity result to deduce
that this is already true for the motive itself. This is actually (part of) the content of the
criterion that we will give below.

(2) The strategy outlined in the preceding point is consistent with the fact that, in the
ℓ-adic realizations of the relative boundary motive, weight 0 appears if and only if weight
1 appears (cfr. Corollary 2.3.2.2 and its proof).

In fact, Wildeshaus has also found a powerful criterion to verify the desired weight
avoidance, which, again, exploits the existence and the properties of the functor j!∗ on
CHM(SK)L,∂w 6=0,1. We begin by introducing the subcategory of Beilinson motives which
enters in the proof of this criterion.

Definition 3.3.2.10. (Cfr. [Wil19b, Def. 2.1]) An object M ∈ DMB,c(∂S∗
K)L is said to

be a motive of abelian type over ∂S∗
K , and a stratification Φ of ∂S∗

K is said to be adapted
to M , if the following condition is verified: the motive M belongs to the strict, full, dense,
F -linear triangulated subcategory DMAb

B,c,Φ(∂S∗
K)L generated by the images via π∗ of the

S-constructible Tate motives ([Wil17, Def. 4.6 (a)]) over S(S), where

π : S(S)→ ∂S∗
K
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runs over the morphisms of abelian type ([Wil17, page 579]) whose target is ∂S∗
K .

Now recall that by Subsection 2.3.3, ∂S∗
K admits a natural stratification ∂S∗

K =
⊔

m∈Φ
Zm, indexed by conjugacy classes of maximal parabolics of G and denoted itself by

Φ. We denote then by im : Zm →֒ ∂S∗
K the corresponding closed immersions.

Proposition 3.3.2.11. The motive i∗jλ
∗V ∈ DMB,c(∂S∗

K)L is of abelian type, and Φ is
adapted to i∗jλ

∗V.

Proof. The proof of [Wil19b, Thm. 2.2] can be translated word by word in our setting.
We include a sketch for the convenience of the reader: by Remark 3.2.1.6, λV is an object
of the Q-linear triangulated category πn,∗DMT (An

K)♮ generated by the images via πn,∗ of
the objects of the category of Tate motives over the fibred product πn : An

K → SK of the
universal abelian variety over SK . But then, since the pure Hodge structure on the vector
space V in the Shimura datum underlying SK is of type (−1, 0), (0,−1) (Rmk. 3.2.1.4), it is
standard (cfr. [Pin90, Prop. 2.17]) to identify An

K with a mixed Shimura variety4 MKn and
the morphism πn with a morphism induced by a morphism of mixed Shimura data ([Pin90,
De. 2.1]). By choosing a suitable smooth toroidal compactification MKn(S) of MKn (as
in [Pin90, proof of Thm. 9.21]), one has that πn extends to a surjective, proper morphism
πn : MKn(S) → S∗

K ([Pin90, Sect. 6.24, Main Theorem 12.4 (b)]) which is seen to be of
abelian type ([Wil17, Lemma 8.4]); hence, the category πn,∗DMTS(π−1

n (∂S∗
K))♮ generated

by the images via πn,∗ of S-constructible Tate motives over π−1
n (∂S∗

K) is contained inside
DMAb

B,c,Φ(∂S∗
K)L. Now, one sees that i∗jλ

∗V is an object of πn,∗DMTS(π−1
n (∂S∗

K))♮. This
follows formally from the fact that the categories of constructible Tate motives are well-
behaved with respect to the six functors formalism ([Wil17, Cor. 4.10 (b), Rem. 4.7]).

Given this, one can prove the weight avoidance by reduction to a stratum-by-stratum
study of the weights (over ∂S∗

K) of the ℓ-adic realization of i∗jλ
∗V.

Theorem 3.3.4. Let β ≥ 1 be an integer, dSK
the dimension of SK , w(λ) the weight of

the pure Hodge structure on Vλ, and fix a prime number ℓ. For any stratum Z of ∂S∗
K ,

denote by Hn the n-th perverse cohomology functor on Db
c,ét(Z)L and write j!∗(Rℓ(λV))

for
(

j!∗(Rℓ(λV)[w(λ) + dSK
])
)

[−w(λ)− dSK
].

The following assertions are then equivalent:

(1) the motive i∗jλ
∗V avoids weights −β + 1,−β + 2, . . . , β;

(2) for every m ∈ Φ, for every n ∈ Z, the perverse sheaves Hni∗mi
∗j!∗(Rℓ(λV)) are of

weights ≤ n− β.

Proof. Since the ℓ-adic realization of the motive λV is concentrated in only one perverse
degree (Remark 3.2.1.8.(2)) and is autodual (up to a twist and a shift) (Remark 3.2.1.8.(3))
everything follows from [Wil19a, Corollary (3.6)(b)], because we have proved that the
motive i∗jλ

∗V ∈ DMB,c(∂S∗
K)L belongs to the subcategory DMAb

B,c,Φ(∂S∗
K)L.

Remark 3.3.2.12. (1) In the above statement we are using the intrinsic notion of weights
existing on those ℓ-adic perverse sheaves on ∂S∗

K which are in the image of the cohomo-
logical realization ([Bon15, Prop. 2.5.1 (II)]). Thus, the notion of weight-graded objects

4See Rmk. 3.2.2.1 for the case n = 1.
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of such perverse sheaves makes sense, even if there is no weight structure on the ambient
category inducing such weights.

(2) The key point of the above argument is that it is on the subcategory DMAb
B,c,Φ(∂S∗

K)L

that one can invoke the weight conservativity argument alluded to in Remark 3.3.2.9 and
contained in [Wil18], of which [Wil19a, Corollary (3.6)(b)] makes use. This wouldn’t have
worked for the motive s∗i

∗jλ
∗V (over a point), since it is no more of Abelian type. This

explains the necessity of employing the relative category DMB,c(∂S∗
K)L.

Remark 3.3.2.13. This subsection gives a deep motivation for investigating the presence
of the weights 0 and 1 in the boundary cohomology of local systems arising from the
canonical construction, a problem that was already raised in Remark 2.3.2.3. Theorem
2.3.2 tells us that regularity of the representation-theoretic weight λ implies that boundary
cohomology avoids weight 0 in half of the cohomological degrees, and (hence) weight 1 in
the other half. Regularity may be conjectured to actually imply the full weight avoidance
([Wil19a, Question 5.13]). The next chapter studies a family of PEL Shimura varieties for
which we can completely characterize the presence of the weights 0 and 1 in the relative
boundary motive in terms of the regularity of λ and of its corank as introduced in Def.
2.3.4.5.

————–

——————————————————————–
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Chapter 4

The boundary motive of genus 2
Hilbert-Siegel varieties

This chapter contains the main results of this thesis. We will work with genus 2 Hibert-
Siegel varieties SK , i.e. the Shimura varieties defined in Ex. 2.1.3.2.(2), whose underlying
group G is (a modification of) ResF |Q GSp4,F , for F a totally real number field of degree
d. Then, if λV is the Chow motive attached to a irreducible representation Vλ of G (Def.
3.2.1.7), our purpose is to show that we can completely characterize the absence of the
weights 0 and 1 in the relative boundary motive i∗jλ

∗V introduced in Subsection 3.3.2.
Thanks to Corollary 3.3.2.7, this will open the way to the construction of motives for
automorphic representations of ResF |Q GSp4,F , which will be studied in the next chapter.

Actually, as explained in the introduction, we will prove more: in fact, our main result,
Theorem 4.3.1, will give a general description of the first positive and negative weights
appearing in i∗jλ

∗V, in the sense of Rmk. 2.3.2.3 (suitably generalized to our situation).
This description will make use of the corank of λ (Def. 4.3.1.1).

Theorem 3.3.4 tells us that in order to understand the weights of the complex i∗jλ
∗V,

we have to take its ℓ-adic realization, restrict it to each stratum of the boundary of S∗
K ,

and study the weights of the perverse cohomology objects of each one of the resulting
ℓ-adic complexes.

In Section 4.1 we collect all the facts that we need about the structure of ResF |Q GSp4,F ,
of its parabolic subgroups and of its representation theory. Then, in Section 4.2, we give
the necessary tools for carrying out the analysis of the weights of the perverse cohomology
sheaves: (1) the precise structure of the boundary of S∗

K in our case (a disjoint union of
cusps and Hilbert modular varieties of dimension d); (2) a theorem of Pink, which gives a
formula for the ℓ-adic classical cohomology sheaves of the restriction of the degeneration
to each stratum, in terms of cohomology of unipotent algebraic groups and of arithmetic
groups; (3) a theorem of Kostant, which allows one to express the cohomology of unipotent
groups in terms of representations of subgroups, which are attached to the Shimura data
underlying the strata of the boundary; (4) some general lemmas which are useful for
studying the cohomology of free abelian subgroups of arithmetic groups.

In Section 4.3 we begin by stating the main result cited above (Thm. 4.3.1) and by
showing its main consequence (the characterisation of the absence of weights 0 and 1, Cor.
4.3.1.3). The rest of the section is occupied by the proof of Thm. 4.3.1, which is divided
in the following steps:

• we begin by studying separately the classical cohomology sheaves of the degeneration
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The boundary motive of genus 2 Hilbert-Siegel varieties

along the 0-dimensional strata (Subsection 4.3.2) and along the strata of dimension
d = [F : Q] (Subsection 4.3.3);

• in each of the two above cases, we decompose the cohomology of unipotent groups
into a sum of irreducible representations carrying pure Hodges structures (para-
graphs 4.3.2.1, 4.3.3.1). Thus, we get a list of the possible weights appearing;

• in each case, we use the cohomology of arithmetic groups to give restrictions on
the non-triviality of the occurring spaces, and hence to give necessary conditions for
certain weights to appear (paragraphs 4.3.2.2, 4.3.3.2). The main technical ideas here
consist in exploiting, often by spectral sequence arguments, the action of suitable
subgroups of units of F on the fibers of the degeneration (Lemmas 4.3.2.7, 4.3.2.10
- where the action is exploited in two "orthogonal" ways, Lemmas 4.3.3.5) and some
vanishing theorems on the cohomology of locally symmetric spaces (Lemma 4.3.2.11);

• some additional work is needed (as an existence statement for suitable non-trivial
Hilbert cusp modular forms, relying on recent results from [MSSYZ15], see Prop.
4.3.2.13) to show that the above conditions are also sufficient for some weights to
appear;

• finally, we have to relate the weights of the classical cohomology sheaves to those
of the perverse cohomology sheaves appearing in Thm. 3.3.4. For this, we are
led to study the double degeneration along the cusps of the d-dimensional strata,
along the same lines as before (Subsection 4.3.4), and to use the perverse t-structure
(Subsection 4.3.5, where we complete the proof of the main theorem, i.e. we find the
description of the relation between λ and the weights of the motive i∗jλ

∗V).

Some interesting points appearing in the course of the proof are the geometric signifi-
cance of the action of the groups of units (Rmk. 4.30), the parallels with the automorphic
interpretation of cohomology described in Subsections 2.2.2 and 2.3.2 (Rmk. 4.3.2.14,
Rmk. 4.3.4.7) and the role of some complex analytic Hilbert modular varieties, not ap-
pearing in the boundary (Rmk. 4.3.2.14, 4.3.5.8).

In all of this chapter, F will denote our fixed totally real field of degree d over Q, and
IF its set of real embeddings (hence, of cardinality d). We fix moreover a Galois closure
L of F in C.

4.1 Preliminaries: the underlying group

Recall from Example 2.1.2.2.(1) the group GSp2n of symplectic similitudes of dimension
2n. It is a reductive group over Q, whose center Z is isomorphic to Gm and whose
derived subgroup is isomorphic to Sp2n, the usual symplectic group over Q of dimension
2n. Remember that the morphism ν : GSp2n → Gm entering in the definition is called the
multiplier (or similitude factor).

For the rest of this chapter, fix n = 2. Define then the Q-algebraic group G̃ by posing

G̃ := ResF |QGSp4,F .

For every subfield k of C containing L, one has, for every k-algebra R, an isomorphism

F ⊗Q R→̃
∏

σ∈IF

R, f ⊗ r 7→ (σ(f) · r)σ (4.1)
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4.1. Preliminaries: the underlying group

which induces a canonical isomorphism

G̃k ≃
∏

σ∈IF

(GSp4,k)σ,

In the rest of this chapter, the symbol G will denote the reductive subgroup of G̃
defined in Example 2.1.3.2, i.e. (with the notations introduced there)

G := Gm ×ResF |QGm,F
G̃, (4.2)

Remark 4.1.0.1. (1) The isomorphism (4.1) induces, for every subfield k of C containing
L, an isomorphism

Gk ≃ Gm × ∏

σ∈IF

(Gm,k)σ ,
∏

ν

∏

σ∈IF

(GSp4,k)σ. (4.3)

(2) The center of G is such that Z(G) ≃ Gm ×ResF |QGm,F ,x 7→x2 ResF |QGm,F . Its neutral
component is then isogenous to Gm.

4.1.1 The structure of parabolic subgroups of G

The group GSp4,F (F ) acts on F⊕4 through the natural action induced by its inclusion
into GL4,F (F ).

The standard F -basis {e1, e2, e3, e4} gives then a symplectic basis for the non-degenerated,
F -bilinear alternated form defined by J2 ∈ GSp4,F (F ), which we will also denote J2. Fix
as a maximal torus of GSp4,F the standard diagonal torus T̃ defined on F -points by

T̃ (F ) := {diag(α1, α2, α
−1
1 ν, α−1

2 ν) | α1, α2, ν ∈ Gm(F )}, (4.4)

along with the standard Borel B̃ containing it, defined on F -points as the subgroup of
matrices in GSp4,F (F ) of the form











∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗











One knows that the parabolic subgroups of GSp4,F (F ) correspond bijectively to sub-
groups of the form Stab(V ), for V a sub-F -vector space of F⊕4 which is totally isotropic
for the form J2. The case V = {0} corresponds to the whole group GSp4,F (F ), while
V = 〈e1〉 gives the Klingen parabolic

Q̃1(F ) := {











α ∗ ∗ ∗
a ∗ b

β
c ∗ d











|ad− bc = αβ ∈ Gm,F (F )} ∩GSp4,F (F )

and V = 〈e1, e2〉 gives the Siegel parabolic

Q̃0(F ) := {

(

αA AM
tA−1

)

|α ∈ Gm,F (F ), A ∈ GL2,F (F ),tM = M};
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every other parabolic subgroup is conjugated to one of the above.
One also knows that a maximal torus, resp. a Borel, of G̃ are given by ResF |Q(T̃ ),

resp. ResF |Q(B̃), which we will still denote by T̃ , B̃ in the following; note that T̃ is not
split over Q. A maximal torus and a Borel containing it in G are then respectively defined
by T := Gm ×ResF |QGm,F

T̃ and B := Gm ×ResF |QGm,F
B̃.

In the same way, the standard maximal parabolics of G̃ corresponding to the choice
(T̃ , B̃) are exactly given, up to conjugation, by ResF |QQ̃0, ResF |QQ̃1, which we will still
denote by Q̃0, Q̃1. Then, Q0 := Gm ×ResF |QGm,F

Q̃0, Q1 := Gm ×ResF |QGm,F
Q̃1 are the

standard maximal parabolics of G with respect to (T,B), still called the Siegel and the
Klingen one.

4.1.2 The Levi components of parabolic subgroups

Let W0 and W1 be the unipotent radicals of the groups Q0 and Q1 defined above. The
quotients Qi/Wi will be canonically identified with subgroups of the Qi’s, thanks to the
Levi decomposition of the latter.

Fix now a subfield k of C which contains L. One has the following explicit description
of the diagonal embedding of Q0/W0(Q) into Q0/W0(k):

Q0/W0(Q) ≃ {(

(

ασ(A)
(σ(A)−1)t

)

)σ∈IF
|α ∈ Q×, A ∈ GL2(F )} →֒

→֒ Q0/W0(k) = {(

(

αAσ

(A−1
σ )t

)

)σ∈IF
|α ∈ k×, Aσ ∈ GL2(k) for every σ}

and of the diagonal embedding of (Q1/W1)(Q) into (Q1/W1)(k):

Q1/W1(Q) ≃ {(











σ(t) · (ad− bc)
σ(a) σ(b)

σ(t−1)
σ(c) σ(d)











)σ∈IF
|t ∈ F×,

a, b, c, d ∈ F such that ad− bc ∈ Q×} →֒

→֒ Q1/W1(k) = {(











tσ · (aσdσ − bσcσ)
aσ bσ

t−1
σ

cσ dσ











)σ∈IF
|tσ ∈ k

× for every σ,

aσ, bσ, cσ, dσ ∈ k such that aσdσ − bσcσ = aσ̂dσ̂ − bσ̂cσ̂ ∈ k
× for every σ, σ̂ ∈ IF }.

Thus, there is an isomorphism

Q0/W0 ≃ Gm × ResF |QGL2,F , (4.5)

given on k-points by
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(Q0/W0)(k) ≃ Gm(k)× (
∏

σ∈IF

(GL2(k))σ)

(

αAσ

(A−1
σ )t

)

)σ∈IF
7→ (α, (Aσ)σ∈IF

),

and an isomorphism

Q1/W1 ≃ (ResF |QGL2,F ×ResF |QGm,F ,det Gm)× ResF |QGm,F (4.6)

given on k-points by

(Q1/W1)(k) ≃ ((
∏

σ∈IF

(GL2,k)σ)× ∏

σ∈IF

(Gm,k)σ
Gm,k)(k)×

∏

σ∈IF

(Gm(k))σ

(











tσ · (aσdσ − bσcσ)
aσ bσ

t−1
σ

cσ dσ











)σ∈IF
7→

(

(

(

aσ bσ

cσ dσ

)

)σ∈IF
, (tσ)σ∈IF

)

.

4.1.3 Characters and dominant weights

Consider our fixed Galois closure L of F . Using the isomorphism (4.3) (for k = L) and
Eq. (4.4), we get the following description for the points of the maximal torus TL of GL:

TL(L) = {(diag(α1,σ, α2,σ, α
−1
1,σν, α

−1
2,σν))σ∈IF

| α1,σ, α2,σ ∈ L
∗, ν ∈ Q×}

This description naturally identifies TL with a subtorus of rank 2d−1 of the rank-3d torus
∏

σ∈IF

Tσ, where each Tσ is a copy of the diagonal maximal torus of GSp4,L.

The elements λ of the group X∗(TL) of characters (or "weights") of TL (a subgroup of
⊕

σ∈IF

X∗(Tσ)) are then parametrized by the (2d+ 1)-tuples of integers of the form

((k1,σ, k2,σ)σ∈IF
, c) such that

∑

σ∈IF

(k1,σ + k2,σ) ≡ c (mod 2) (4.7)

where the character λ((k1,σ, k2,σ)σ∈IF
, c) corresponding to ((k1,σ, k2,σ)σ∈IF

, c) is defined by

(diag(α1,σ, α2,σ, α
−1
1,σν, α

−1
2,σν))σ∈IF

7→
∏

σ∈IF

α
k1,σ

1,σ ·
∏

σ∈IF

α
k2,σ

2,σ · ν

1
2

·[c−
∑

σ∈IF

(k1,σ+k2,σ)]

. (4.8)

The dominant weights are the characters such that k1,σ ≥ k2,σ ≥ 0 ∀σ. A weight is
called regular at σ if k1,σ > k2,σ > 0 and regular if it is regular at σ for every σ.

4.1.4 Root system and Weyl group

The choice of (TL, BL) (obtained from the couple (T,B) fixed at the end of 4.1.1, by base
change to our fixed Galois closure L of F ) allows one to identify the set of roots r of GL

with
⊔

σ∈IF

rσ, where each rσ is a copy of the set of roots of GSp4,L corresponding to the
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diagonal torus and the standard Borel. For every fixed σ̂ ∈ IF , rσ̂ contains two simple
roots ρ1,σ̂ and ρ2,σ̂, which, through the inclusion of rσ̂ into r, can respectively be written
ρ1,σ̂ = ρ1,σ̂((k1,σ, k2,σ)σ∈IF

, c), with

k1,σ =

{

1 if σ = σ̂
0 otherwise

, k2,σ =

{

−1 if σ = σ̂
0 otherwise

, c = 0,

and ρ2,σ̂ = ρ2,σ̂((k1,σ, k2,σ)σ∈IF
, c), with

k1,σ = 0 ∀σ, k2,σ =

{

2 if σ = σ̂
0 otherwise

, c = 0.

The Weyl group Υ of GL is in turn isomorphic to the product
∏

σ∈IF

Υσ, where, for

every fixed σ̂ ∈ IF , Υσ̂ is a copy of the Weyl group of GSp4,L. The latter is a finite group
of order 8 acting on X∗(Tσ̂), generated by two elements s1 and s2, whose images sρ1,σ̂

and
sρ2,σ̂

through the inclusion Υσ̂ into Υ are characterised as follows by their action on the
elements of X∗(TL): if λ = λ((k1,σ, k2,σ)σ∈IF

, c), then sρ1,σ̂
.λ = λ((h1,σ, h2,σ)σ∈IF

, c), with

h1,σ =

{

k2,σ if σ = σ̂
k1,σ otherwise

, h2,σ =

{

k1,σ if σ = σ̂
k2,σ otherwise

and sρ2,σ̂
.λ = λ((h1,σ, h2,σ)σ∈IF

, c), with

h1,σ = k1,σ ∀σ ∈ IF , h2,σ =

{

−k2,σ if σ = σ̂
k2,σ otherwise

.

These descriptions mean that sρ1,σ̂
corresponds to the reflection associated to ρ1,σ̂ and

that sρ2,σ̂
corresponds to the reflection associated to ρ2,σ̂.

4.1.5 Irreducible representations

Irreducible representations of a split reductive group over a field of characteristic 0 are
parametrized by its dominant weights. By the description of the dominant weights of GL

given in (4.7), we see that isomorphism classes of irreducible L-representations of GL are
in bijection with the set

Λ := {λ((k1,σ, k2,σ)σ∈IF
, c)) | k1,σ, k2,σ, c ∈ Z and k1,σ ≥ k2,σ for every σ,

∑

σ∈IF

(k1,σ + k2,σ) ≡ c mod 2)}.

4.2 Preliminaries: some tools for computing the degenera-
tion

4.2.1 The Baily-Borel compactification of genus 2 Hilbert-Siegel vari-
eties

Recall now the genus 2 Hilbert-Siegel varieties SK arising from the datum (G,X) in-
troduced in Example 2.1.3.2.(2) (for n = 2) and their Baily-Borel compactification S∗

K

introduced in Subsection 2.3.3. Let us describe in detail the (pure) Shimura data under-
lying the strata of ∂S∗

K , according to the description in that Subsection.
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Each admissible parabolic subgroup Q of G is conjugated to exactly one of the sub-
groups Q0 (Siegel parabolic) or Q1 (Klingen parabolic) defined in 4.1.1. Denote respec-
tively by P0 and P1 the canonical normal subgroups of Q0 and Q1 considered in 2.3.3.
Denote also by G0, resp. G1 their quotients by the respective unipotent radicals, and by
(G0, X0), resp. (G1, X1) the associated Shimura data. An immediate generalisation to
ResF |QGSp4,F (and then to G) of [Pin90, 4.25] (which treats the case of GSp4) gives us
the following:

• The group G0 is identified with the factor Gm inside Q0/W0 ≃ Gm × ResF |QGL2,F

(remember (4.5)). Moreover, let k be the morphism S → G0,R which induces on real
points, via the above identification,

S(R)→ G0(R)

z 7→ (

(

zz̄ · I2

I2

)

)σ∈IF
(4.9)

and let X0 be the set of isomorphisms between Z and Z(1). Consider the unique tran-
sitive action of π0(Gm(R)) on X0 and denote by h0 the constant map X0 → {k} ⊂
Hom(S, G0,R)). Then, the Shimura datum corresponding to G0 is given by (G0, X0).
Thus, G0 contributes with 0-dimensional strata to ∂S∗

K . (Here is where we need Pink’s
general definition of a pure Shimura datum, cfr. Rmk. 2.1.2.1.(1)).

• The group G1 is identified with the factor ResF |QGL2,F ×ResF |QGm,F
Gm inside

Q1/W1 ≃ (ResF |QGL2,F ×ResF |QGm,F
Gm)× ResF |QGm,F

(remember (4.6)). Denoting by X1 the G1(R)-conjugacy class of the morphism

h1 : S(R)→ G1(R)

x+ iy 7→ (











x2 + y2

x y
1

−y x











)σ∈IF
(4.10)

the Shimura datum corresponding to G1 is then given by (G1, X1). Thus, G1 contributes
with d-dimensional strata to ∂S∗

K . The description of the Shimura datum shows that
these strata are in particular isomorphic to (quotients by the action of a finite group of)
Hilbert modular varieties (cfr. Example 2.1.2.2.(2)).

By the description in (2.38), each stratum of ∂S∗
K corresponds to a Shimura datum of

one of the above two types. In particular, it is either of dimension 0 (and it will be then
called a Siegel stratum) or of dimension d (and it will be then called a Klingen stratum).

4.2.2 Pink’s theorem

Having in mind the equivalence stated in Thm. 3.3.4, our aim is to compute the weights of
certain perverse cohomology sheaves on the boundary of the Baily-Borel compactification
of genus 2 Hilbert-Siegel varieties. For this, we will first study the weights of some classical
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sheaves supported on the boundary, through a theorem of Pink which also provides us with
the general approach to the computation of boundary cohomology alluded to at the end
of Subsection 2.3.3.

It will be useful to state this theorem in general. Hence, let j : SK →֒ S∗
K be the

open immersion of a Shimura variety SK , associated to a datum (G, X) and to a neat
compact open subgroup K ⊂ G(Af ), into its Baily-Borel compactification. Recall the
finite stratification (Zm)m∈Φ of ∂S∗

K introduced in 2.3.3 and for m ∈ Φ, denote by im :
Zm →֒ ∂S∗

K the corresponding locally closed immersion.
In the following, with the notation of 2.3.3, denote by Z a fixed stratum Sm,g of

∂S∗
K contributing to Zm, and denote by πm(Km) the associated compact open subgroup

πm(Km,g) of Gm(Af ) (i.e., drop the subscript g), so that Z is the quotient of a Shimura
variety Sπm(Km) by the action of the finite group ∆m = HQm/Pm(Q)HCm introduced in
Eq. (2.42).

Denote again by πm the projection Qm ։ Qm/Wm, and define

Γm := πm(HCm). (4.11)

It is an arithmetic subgroup Qm/Wm(Q), which is moreover torsion-free (because K
is neat).

Notation 4.2.2.1. Since Qm/Wm is reductive, there exists a complement Mm of Gm inside
Qm/Wm, i.e. a normal subgroup Mm of Qm/Wm which is connected and reductive and
such that Qm/Wm ≃ Gm ·Mm, with Gm ∩Mm finite.

Remark 4.2.2.2. Since K is neat, Γm is torsion-free. Moreover, it is such that Γm∩Gm(Q) =
{1} (cfr. [BW04, Sec. 2], where Γm is denoted by H̄C). We will then see Γm as a subgroup
of the complement Mm(Q) introduced above.

Denote now by µK
ℓ , µπm(Km)

ℓ the extensions of the ℓ-adic canonical construction func-
tors introduced in Remark 2.1.3.9.(2), and by Rn the n-th classical, i.e. non-perverse,
cohomology functor on the category Db

c. ét(Zm)L, for any stratum Zm of ∂S∗
K . Here is our

first main tool for the analysis of the weights:

Theorem 4.2.1. ([Pin92, Thms. (4.2.1)-(5.3.1)], stated in the shape of [BW04, Thms.
2.6-2.9])

Let R be a subfield of R, V· ∈ Db(RepR(G)), m ∈ Φ and Z a stratum of ∂S∗
K con-

tributing to Zm.

(1) There exists a canonical isomorphism in Db
c,ét(Z)R

i∗mi
∗j∗µ

K
ℓ (V·)

∣

∣

∣

Z
≃
⊕

n

Rni∗mi
∗j∗µ

K
ℓ (V·)

∣

∣

∣

Z
[−n].

(2) For every n, there exists a canonical and functorial isomorphism in Etℓ,R(Z)

Rni∗mi
∗j∗µ

K
ℓ (V·)

∣

∣

∣

Z
≃

⊕

p+q=n

µ
πm(Km)
ℓ (Hp(Γm, H

q(Wm,R,V
·))) .

(3) Suppose that the datum (Gm,Hm) is of abelian type. Then, denoting by W both
the weight filtration in the sense of Remark 2.1.3.8.(2) and the one induced on Gm,R-

representations as explained in 2.1.3.1, the sheaf Rni∗mi
∗j∗µ

K
ℓ (V·)

∣

∣

∣

Z
is the direct sum of
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its weight-graded objects (in particular, it is a semisimple object) and there exist canonical
and functorial isomorphisms in Etℓ,R(Z)

GrWk R
ni∗mi

∗j∗µ
K
ℓ (V·)

∣

∣

∣

Z
≃

⊕

p+q=n

µ
πm(Km)
ℓ

(

Hp(Γm,GrWk H
q(Wm,R,V

·))
)

.

In order to explain the above statements, some remarks are in order:

Remark 4.2.2.3. (1) Reasoning as in [BW04], before Definition 2.2, we see that the functor
µ

πm(Km)
ℓ , a priori with values in Etℓ,R(Sπm(Km)), gives rise to a functor with values in

Etℓ,R(Z), still denoted by the same symbol.

(2) (Qm/Wm)R (seen as a subgroup ofQm,R via the Levi decomposition) acts onHq(Wm,R,V
·)

via its action on Wm and on V·, and so it acts on Hp(Γm, H
q(Wm,R,V

·)). Hence, the latter
space is seen as a representation of Gm,R via the inclusion Gm,R ⊂ (Qm/Wm)R.

(3) The statement of point (3) contains in particular the fact that

GrWk H
p(Γm, H

q(Wm,R,V
·)) ≃ Hp(Γm,GrWk H

q(Wm,R,V
·)).

Remark 4.2.2.4. Our necessity of working with ℓ-adic sheaves instead of variations of Hodge
structures comes from the observations in Rmk. 3.1.0.2. Anyway, the above theorem ad-
mits an analogue in the Hodge setting, i.e. [BW04, Thms. 2.6-2.9], whose conclusions
are formally identical to the ones of the theorem above. Because of this and of Rmk.
2.1.3.8.(3), all our results for ℓ-adic sheaves will be automatically valid for the correspond-
ing mixed Hodge modules.

4.2.3 Kostant’s theorem

The second ingredient for the analysis of the weights is a theorem of Kostant which allows
one to make explicit the (Qm/Wm)R-representations Hq(Wm,R,V

·) appearing in Theorem
4.2.1.

Fix a split reductive group G over a field of characteristic zero, with root system r

and Weyl group Υ. Denote by r+ the set of positive roots and fix moreover a parabolic
subgroup Q with its unipotent radical W . Let w be the Lie algebra of W and rW the set
of roots appearing inside w (necessarily positive). For every w ∈ Υ, we define:

r+(w) := {α ∈ r|w−1α /∈ r+}, (4.12)

l(w) := |r+(w)|, (4.13)

Υ′ := {w ∈ Υ|r+(w) ⊂ rW }. (4.14)

We can now state Kostant’s theorem:

Theorem 4.2.2. ([Vog81, Thm. 3.2.3])
Let Vλ be an irreducible G-representation of highest weight λ, and let ρ be the half-sum

of the positive roots of G. Then, as (Q/W )-representations,

Hq(W,Vλ) ≃
⊕

w∈Υ′|l(w)=q

Uw.(λ+ρ)−ρ,

where Uµ denotes an irreducible (Q/W )-representation of highest weight µ.
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In order to spell out the consequences of this theorem in the cases of interest to us,
consider our fixed Galois closure L of the totally real field F and the group G underlying
the genus n = 2 Hilbert-Siegel Shimura datum of Example 2.1.3.2.(2). We will apply
Kostant’s theorem by choosing G = GL and by setting Q/W equal to, for i = 0, 1, the
Levi components (Qi/Wi)L of the standard parabolics Qi,L, defined as in 4.1.2. We have
seen in 4.1.4 that the root system of GL is given by r =

⊔

σ∈IF

rσ and that every component

rσ contains two simple roots ρ1,σ, ρ2,σ; the other positive roots in such a component are
then given by ρ1,σ + ρ2,σ and 2ρ1,σ + ρ2,σ.

Lemma 4.2.3.1. (1) Let Υ be the Weyl group of GL (cfr. 4.1.4) and denote by Υ′
m, for

m ∈ {0, 1}, the sets defined in (4.14), corresponding to the choices G = GL and Q = Qm,L.
Then, in both cases, for every σ ∈ IF , there exist sets Υ′

m,σ = {wi
σ}i=0,...,3 ⊂ Υσ such that

l(wi
σ) = i for every i ∈ {0, . . . , 3} and that Υ′

m =
∏

σ∈IF

Υ′
m,σ.

(2) For m = 0, 1, one has 0 ≤ l(w) ≤ 3d for every w ∈ Υ′
m. Moreover, for every integer

q ∈ {0, . . . , 3d}, there exists a bijection between the set {w ∈ Υ′
m | l(w) = q} and the set

of q-admissible decompositions of IF

Pq := {decompositions IF =
⊔

i=0,...,3

Ii
F |

3
∑

i=0

i|Ii
F | = q}. (4.15)

Proof. (1) In the case of (Q0/W0)L, by fixing a component rσ of the root system of GL

(cfr. 4.1.4), one easily sees that the positive roots which are contained in such a component
and which appear in the Lie algebra of W0,L are given by {ρ1,σ + ρ2,σ, 2ρ1,σ + ρ2,σ, ρ2,σ}.

Coherently with the notation of 4.1.4, denote by sρ the reflection, belonging to the
Weyl group Υ, whose axis is orthogonal to the root ρ. By direct inspection of the action
of the component Υσ on rσ, we find that the elements of the sets Υ′

0,σ = {wi
σ}i=0,...,3

defined in the statement (for m = 0) are given by

w0
σ = id,

w1
σ = sρ2,σ ,

w2
σ = sρ1,σ+ρ2,σsρ2,σ ,

w3
σ = sρ1,σ+ρ2,σ

and that Υ′
0 =

∏

σ∈IF

Υ′
0,σ.

In the case of (Q1/W1)L, fix again a component rσ of the root system of GL: the
positive roots contained in this component which appear inside the Lie algebra of W1,L

are given this time by {ρ1,σ, ρ1,σ + ρ2,σ, 2ρ1,σ + ρ2,σ}.

With notations as in the previous case, we find that the elements in the sets Υ′
1,σ =

{wi
σ}i=0,...,3 ⊂ Υσ appearing in the statement (for m=1) are given by

w0
σ = id,

w1
σ = sρ1,σ ,

w2
σ = sρ1,σ+ρ2,σsρ1,σ ,
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w3
σ = s2ρ1,σ+ρ2,σ

and that Υ′
1 =

∏

σ∈IF

Υ′
1,σ.

(2) The preceding point implies that every w = (wσ)σ∈IF
∈ Υ′

m determines a decomposi-
tion

IF =
⊔

i=0,...,3

Ii
F

where Ii
F := {σ ∈ IF |wσ = wi

σ}. Hence, since l((wσ)σ∈IF
) =

∑

σ∈IF

l(wσ), we get the desired

bounds on l(w). The bijection in the statement follows immediately.

Notation 4.2.3.2. For a an integer q ∈ {0, . . . , 3d}, a q-admissible decomposition Ψ of
IF will be denoted by Ψ = (I0

F , I
1
F , I

2
F , I

3
F ). If only one of the four subsets, say Ii

F , is
non-empty, we will denote Ψ by the symbol Ii

F itself.

Fix now a irreducible GL-representation Vλ of highest weight λ = λ((k1,σ, k2,σ)σ∈IF
, c)

(as defined in 4.1.5) and, for m = 0, 1, apply Theorem 4.2.2 to identify the cohomol-
ogy spaces Hq(Wm,L, Vλ) as (Qm/Wm)L-representations: employing the notation fixed in
(4.15), we get isomorphisms

Hq(Wm,L, Vλ) ≃
⊕

Ψ∈Pq

V m,q
Ψ , (4.16)

where each V m,q
Ψ is an irreducible (Qm/Wm)L-representation. With the notations of

Lemma 4.2.3.1.(1), the explicit computation of w.(λ + ρ) − ρ for w ∈ Υ′
m (as in [Lem15,

Sec. 4.3]) gives us the highest weight of such irreducible representations, as stated in the
following lemma:

Lemma 4.2.3.3. (1) Adopting Notation 4.2.3.2, the highest weight of the irreducible
(Q0/W0)L-representation V 0,q

Ψ in (4.16) is given by the restriction (along the inclusion
(Q0/W0)L ⊂ Q0,L ⊂ GL) of the character

λ((η1,σ, η2,σ)σ∈IF
, c), (4.17)

where

η1,σ =



















k1,σ if σ ∈ I0
F

k1,σ if σ ∈ I1
F

k2,σ − 1 if σ ∈ I2
F

−k2,σ − 3 if σ ∈ I3
F

, η2,σ =



















k2,σ if σ ∈ I0
F

−k2,σ − 2 if σ ∈ I1
F

−k1,σ − 3 if σ ∈ I2
F

−k1,σ − 3 if σ ∈ I3
F

(2) Adopting Notation 4.2.3.2, the highest weight of the irreducible (Q1/W1)L-representation
V 1,q

Ψ is the restriction (along the inclusion (Q1/W1)L ⊂ Q1,L ⊂ GL) of the character

λ((ǫ1,σ, ǫ2,σ)σ∈IF
, c) (4.18)

where
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The boundary motive of genus 2 Hilbert-Siegel varieties

ǫ1,σ =



















k1,σ if σ ∈ I0
F

k2,σ − 1 if σ ∈ I1
F

−k2,σ − 3 if σ ∈ I2
F

−k1,σ − 4 if σ ∈ I3
F

, ǫ2,σ =



















k2,σ if σ ∈ I0
F

k1,σ + 1 if σ ∈ I1
F

k1,σ + 1 if σ ∈ I2
F

k2,σ if σ ∈ I3
F

4.2.4 Cohomology of groups of units

We finish this section by recalling, for the convenience of the reader, some standard argu-
ments that will be useful in the analysis of the cohomology of arithmetic groups appearing
in Theorem 4.2.1.

Lemma 4.2.4.1. Let Γ be a free abelian group of finite rank r, acting on a finite-
dimensional vector space V over a field L by L-linear automorphisms. Suppose that Γ
acts through a character λ. Then, there exists an integer s such that the cohomology space
Hs(Γ, V ) is non-trivial if and only if the action of Γ on V is trivial.

In this case, Hs(Γ, V ) is non-trivial if and only if 0 ≤ s ≤ r, and for such integers s
we have (non-canonically)

Hs(Γ, V ) ≃ V (r
s).

Proof. We proceed by induction on the rank r, denoting by V Γ the space of invariants of
the Γ-action on V and by VΓ the space of coinvariants.

• If r = 1, we have Γ ≃ Z and it is then well-known that

Hs(Γ, V ) =















V Γ if s = 0

VΓ if s = 1

{0} otherwise

Now, choose a generator γ of Γ. Then, the space V Γ is non-trivial if and only if there
exists a non-zero element v ∈ V such that λ(nγ)·v = v for every n ∈ Z, which is equivalent
to asking that λ(γ) = 1, i.e. that Γ act through the trivial character. Analogously, the
space VΓ is non-trivial if and only if Γ acts trivially. Thus, Hs(Γ, V ) ≃ V if s = 0, 1, and
is trivial otherwise.

• Suppose the assertion to be true for free abelian groups of rank r. If Γ ≃ Zr+1, then
choose a basis of Γ as a Z-module and use it to define an exact sequence

0→ Zr → Γ→ Z→ 0 (4.19)

By the case r = 1, the Lyndon-Hochschild-Serre spectral sequence associated to this exact
sequence, i.e.

E2 = Hm(Z, Hn(Zr, V ))⇒ Hm+n(Γ, V ) (4.20)

has only two non-trivial columns (for n = 0, 1). Hence, for each s ≥ 1, we have an exact
sequence

0→ H0(Z, Hs(Zr, V ))→ Hs(Γ, V )→ H1(Z, Hs−1(Zr, V ))→ 0

and moreover
H0(Γ, V ) ≃ H0(Z, H0(Zr, V )).
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By the induction hypothesis, Hs(Γ, V ) can be non-trivial only if 0 ≤ s ≤ r+ 1. Moreover,
if the action of Γ is non-trivial, the subgroup isomorphic to Zr appearing in (4.19) can be
chosen as acting non-trivially on V , and in this case, by induction, Hs(Γ, V ) is trivial for
every s. If, on the contrary, Γ acts trivially, then the induced action of Z on the spaces
Hn(Zr, V ) is again trivial, so that, by the case r = 1, we have

H0(Γ, V ) ≃ H0(Z, H0(Zr, V )) ≃ H0(Zr, V ) ≃ V

and for every s ∈ {1, . . . , r + 1},

Hs(Γ, V ) ≃ (non-canonically) H0(Z, Hs(Zr, V ))⊕H1(Z, Hs−1(Zr, V )) ≃

(by the case r = 1)

≃ Hs(Zr, V )⊕Hs−1(Zr, V ) ≃

(by the induction hypothesis, and setting V ( r
r+1) = {0} by convention)

≃ V (r
s) ⊕ V ( r

s−1) ≃ V (r+1
s ).

The preceding lemma leads to the problem of determining the triviality of the action
of some free abelian groups, which in our case will arise as subgroups of units of totally
real fields. This is the object of the following lemma:

Lemma 4.2.4.2. Let OF be the ring of integers of F and fix (0, . . . , 0) 6= (n1, . . . , nd) ∈ Zd.
Then,

∏

i=1,...,d

|σi(t)|ni = 1 for every t ∈ O×
F

if and only if (n1, . . . , nd) ∈ Z · (1, . . . , 1).

Proof. Choose a base {γ1, . . . , γd−1} of O×
F as Z-module. Write t =

∏

0,...,d−1
γai

i , choose a

d-tuple of integers (n1, . . . , nd) 6= (0, . . . , 0), and define

Λ :=







log|σ1(γ1)| . . . log|σd(γ1)|
... . . .

...
log|σ1(γd−1)| . . . log|σd(γd−1)|







Then, we have

∏

i=1,...,d

|σi(t)|ni = 1 ∀ t ⇐⇒
∑

j=1,...,d−1



aj

∑

i=1,...,d

nilog|σi(γj)|



 = 0,

∀ (a1, . . . , ad−1) 6= (0, . . . , 0) ∈ Zd−1

⇐⇒ 〈







a1
...

ad−1






,Λ ·







n1
...
nd






〉 = 0,∀ (a1, . . . , ad−1) 6= (0, . . . , 0) ∈ Zd−1

(where 〈·, ·〉 is the standard scalar product in Rd−1) ⇐⇒ (n1, . . . , nd) ∈ ker Λ. But by
Dirichlet’s unit theorem, ker Λ = R · (1, . . . , 1).
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Remark 4.2.4.3. (1) By choosing adapted bases, Lemma 4.2.4.2 generalises immediately
to the case where O×

F is replaced by a finite-index subgroup of O×
F , and furthermore to

the case where it is replaced by an arithmetic subgroup of F×.

(2) Consider the norm morphism N : O×
F → {±1}. As the image of a neat subgroup by

a morphism is again neat, the elements of a neat subgroup of O×
F are of norm 1. Thus, if

the neat subgroup Γ0,Z is a finite-index subgroup of O×
F , we have that

∏

i=1,...,d
|σi(t)|ni =

1 ∀ t ∈ Γ0,Z ⇐⇒
∏

i=1,...,d
σi(t)ni = 1 ∀ t ∈ Γ0,Z , and, by (1), Lemma 4.2.4.2 tells us that

the action of Γ0,Z on a vector space by multiplication by
∏

i=1,...,d
σi(t)ni is trivial if and

only if (n1, . . . , nd) ∈ Z · (1, . . . , 1). This equivalence continues to hold in the general case
where Γ0,Z is a (neat) arithmetic subgroup of F×, again via (1).

4.3 The degeneration of the canonical construction at the
boundary

In this section we prove our main result (Thm. 4.3.1), i.e. the description of the interval
of weight avoidance of the motive i∗jλ

∗V ∈ DMB,c(∂S∗
K)L in terms of the corank of λ.

4.3.1 Statement of the main result

Let G be the group considered in the previous Section. In order to state our central
theorem about the degeneration of the motive λV (Subsection 3.2.1) at the boundary of
the Baily-Borel compactification, we reformulate the notion of corank introduced in Def.
2.3.4.5 (where the reader can find some motivation for it) in the more restricted context of
genus 2 Hilbert-Siegel varieties. Moreover, we add some notions about the weight λ that
will be crucial in the sequel.

Definition 4.3.1.1. Let λ = λ((k1,σ, k2,σ)σ∈IF
, c)) (cfr. 4.1.5) be a weight of GL.

(1) k1 := (k1,σ)σ∈IF
or k2 := (k2,σ)σ∈IF

is called parallel if ki,σ is constant on IF , equal
to a positive integer κ (and we write ki = κ). The weight λ is called κ-Kostant parallel if
there exist a κ ∈ Z and a decomposition IF = I0

F

⊔

I1
F such that

{

k1,σ = κ ∀σ ∈ I0
F

k2,σ = κ+ 1 ∀σ ∈ I1
F

and is called Kostant parallel if there exists a κ such that λ is κ-Kostant parallel.

(2) We define the corank cor(λ) of λ by

cor(λ) =















0 if k2 is not parallel

1 if k2 is parallel and k1 6= k2

2 if k2 is parallel and k1 = k2

(3) λ is completely irregular if (k1,σ, k2,σ) is irregular for every σ ∈ IF .

Assume λ to be dominant. We make some observations that may help enlightening
the above definitions and their mutual relationships:
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• If cor(λ) = 2, then λ is completely irregular.

• If cor(λ) ≥ 1, then λ is κ-Kostant parallel with respect to the decomposition IF = I1
F ,

with k2 = κ+ 1; this decomposition and this κ are then the only ones such that both
I1

F 6= ∅ and λ is Kostant-parallel with respect to them.

• If cor(λ) = 1 and λ is completely irregular, then necessarily k2 = 0.

• If cor(λ) = 0, then there are at most a κ and a decomposition IF = I0
F

⊔

I1
F with respect

to which λ is κ-Kostant parallel.

Remark 4.3.1.2. The terminology Kostant parallel comes from the more specific termi-
nology in Definitions 4.3.2.5 and 4.3.3.3 (see also Remark 4.3.3.7) and expresses the fact
that some linear combinations of the coordinates of the character λ are required to take a
constant (parallel) value over certain subsets of IF . As the computations leading to those
definitions will make clear, this terminology is motivated by the fact that such linear
combinations and subsets arise from Lemma 4.2.3.3, which is an application of Kostant’s
theorem, Thm. 4.2.2.

We can now state our main result, in the language of weight structures introduced in
3.3.1:

Theorem 4.3.1. Let Vλ be the irreducible representation of GL of highest weight

λ = λ((k1,σ, k2,σ)σ∈IF
, c)),

SK the genus 2 Hilbert-Siegel variety of level K corresponding to (G,X) and λV ∈ CHM(SK)
the Chow motive over SK introduced in Definition 3.2.1.7. Let moreover j : SK → S∗

K ,
resp. i : ∂S∗

K → S∗
K denote the open, resp. closed immersion in the Baily-Borel compact-

ification S∗
K of SK . Then:

(1) If λ is not Kostant parallel, then the boundary motive i∗jλ
∗V is zero.

(2) Suppose that cor(λ) = 0 and that λ is κ-Kostant parallel. Denote d1 := |I1
F |. Then

i∗jλ
∗V avoids weights −d1 − dκ+ 1, . . . , d1 + dκ and the weights −d1 − dκ, d1 + dκ+ 1 do

appear in i∗jλ
∗V.

(3) Suppose that cor(λ) = 1, with k2 = κ2, and that k1 is not parallel. Then i∗jλ
∗V avoids

weights −dκ2 + 1, . . . , dκ2 and the weights −dκ2, dκ2 + 1 do appear in i∗jλ
∗V.

(4) Suppose that cor(λ) ≥ 1, with k2 = κ2, and that k1 = κ1. Denote κ := min{κ1 −
κ2, κ2}. Then i∗jλ

∗V avoids weights −dκ+1, . . . , dκ. The weights −dκ2, dκ2 +1 do appear
in i∗jλ

∗V, and if κ1, κ2 have the same parity1, then the weights −d(κ1−κ2), d(κ1−κ2)+1
do appear in i∗jλ

∗V.

The proof of theorem 4.3.1 will be completed at the end of paragraph 4.3.5.2, by invok-
ing Theorem 3.3.4 and after having employed all the tools recalled in Sections 4.1. and 4.2.
Admitting this theorem for the moment, we can prove its most important corollary for the
construction of the intersection motive (Def. 3.3.2.8), i.e. the following characterization
of the absence of the weights 0 and 1:

1Cfr. Footnote 2 for this supplementary hypothesis.
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Corollary 4.3.1.3. The weights 0 and 1 appear in the boundary motive i∗jλ
∗V if and only

if λ is completely irregular of corank ≥ 1.

Proof. Suppose λ to be κ-Kostant parallel with respect to (I0
F , I

1
F ) (otherwise, by point

(1) of the above theorem, there is nothing to do).
If cor(λ) = 0, then, by point (2) of the above theorem, the weights 0 and 1 appear if

and only if d1 = 0 = κ. But d1 = 0 means that I1
F = ∅, i.e. I0

F = IF , and by definition of
Kostant-parallelism this implies k1 = κ. Now, necessarily κ > 0, because otherwise k2 = 0
(remember that k1,σ ≥ k2,σ for every σ ∈ IF ) and cor(λ) = 2, a contradiction.

If cor(λ) = 1, with k2 = κ2, then, by point (3) and (4) of the above theorem, the
weights 0 and 1 appear if and only if κ2 = 0; observe in fact that, even if k1 = κ1, we
have κ1 − κ2 > 0 (otherwise cor(λ) = 2, a contradiction). But if κ2 = 0, λ is completely
irregular.

If cor(λ) = 2, then k1 = κ = k2; this means that λ is completely irregular, and implies
that, in point (4) of the above theorem, the parity condition is trivially satisfied and that
κ1 − κ2 = 0, so that the weights 0 and 1 appear.

To conclude, we only have to observe that if cor(λ) ≥ 1 and λ is completely irregular,
either k2 = 0 or k1 = κ = k2 (cfr. the observations after Def. 4.3.1.1).

The rest of this section is devoted to the proof of Thm. 4.3.1, following the outline
given in the introduction to this chapter.

4.3.2 The degeneration along the Siegel strata

With notation as in the statement of Thm. 4.3.1, fix a irreducible GL-representation Vλ

of highest weight λ = λ((k1,σ, k2,σ)σ∈IF
, c): we want to employ Theorem 4.2.1 to study

the degeneration of µK
ℓ (Vλ) along the Siegel strata, whose underlying Shimura datum is

(G0,H0), where G0 ≃ Gm, as explained in 4.2.1.

Remark 4.3.2.1. From the definition of the morphism S → GR underlying the Hilbert-
Siegel datum (2.1.2.2.(2)), we see that an irreducible representation of G of highest weight
λ = λ((k1,σ, k2,σ)σ∈IF

, c)) is such that µK
H(Vλ), resp. µK

ℓ (Vλ), is a variation of Hodge
structure, resp. an ℓ-adic sheaf, pure of weight w(λ) := −c (cfr. the convention fixed in
2.1.3.1, which is extended to variations of Hodge structure in the obvious way).

4.3.2.1 Weights in the cohomology of the unipotent radical.

We start by identifying the possible weights appearing in the degeneration along the Siegel
strata, i.e. in the (Q0/W0)L-representations

Hq(W0,L, Vλ) ≃
⊕

Ψ∈Pq

V 0,q
Ψ , (4.21)

for q ∈ {0, . . . , 3d} (cfr. (4.16)). Recall from (4.5) that we have

(Q0/W0)L ≃ Gm,L ×
∏

σ∈IF

(GL2,L)σ

Let us then compute the weight of the pure Hodge structure carried by each irreducible
summand V 0,q

Ψ .
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Lemma 4.3.2.2. For every q ∈ {0, . . . , 3d} and for every q-admissible decomposition Ψ
as in Notation 4.2.3.2, the action of the Gm,L-factor inside (Q0/W0)L induces on V 0,q

Ψ a
pure Hodge structure of weight

w(λ)− [
∑

σ∈I0
F

(k1,σ +k2,σ)+
∑

σ∈I1
F

(k1,σ−k2,σ−2)−
∑

σ∈I2
F

(k1,σ−k2,σ +4)−
∑

σ∈I3
F

(k1,σ +k2,σ +6)].

Proof. By the discussion in 4.1.2, the L-points of the Gm,L-factor are identified with the
subgroup

{(

(

αI2

I2

)

)σ∈IF
|α ∈ L×}

of Q0/W0(L). With the notation of Lemma 4.2.3.3.(1) for the highest weight of the
representation V 0,q

Ψ , and recalling (4.8), we see that Gm,L(L) acts on V 0,q
Ψ via the character

α 7→ α

1
2

·[c+
∑

σ∈IF

(η1,σ+η2,σ)]

, (4.22)

Now remember that w(λ) = −c (Rmk. 4.3.2.1). By the convention fixed in 2.1.3.1 and the
definition in (4.9) of the Shimura datum (G0, X0), the expression for η1,σ and η2,σ given
in Lemma 4.2.3.3.(1) yields the formula in the statement.

Notice for later use that if V is the standard 2-dimensional L-representation of GL2,L,
the above computations imply that the representation obtained by restriction to the factor
∏

σ∈IF

(GL2,L)σ of (Q0/W0)L is isomorphic to

(
⊗

σ∈I0
F

Symk1,σ−k2,σ V⊗ detk2,σ )⊗ (
⊗

σ∈I1
F

Symk1,σ+k2,σ+2V⊗ det−k2,σ−2)⊗

⊗(
⊗

σ∈I2
F

Symk1,σ+k2,σ+2V⊗ det−k1,σ−3)⊗ (
⊗

σ∈I3
F

Symk1,σ−k2,σ V⊗ det−k1,σ−3)
(4.23)

4.3.2.2 Cohomology of the arithmetic subgroup.

Consider now the arithmetic group Γ0 of Rmk. 4.2.2.2: according to Theorem 4.2.1, and
remembering (4.38), we need to identify the cohomology spaces

Hp(Γ0, H
q(W0,L, Vλ)) ≃

⊕

Ψ∈Pq

Hp(Γ0, V
0,q

Ψ ) (4.24)

and their weight-graded objects GrWk H
p(Γ0, H

q(W0,L, Vλ)) ≃
⊕

Ψ∈Pq
Hp(Γ0,GrWk V

0,q
Ψ )

(cfr. Remark 4.2.2.3(3)). As the cohomological dimension of W0,L is 3d, these spaces
can be non-zero only for q ∈ {0, . . . , 3d}. We are now going to put further restrictions on
the non-triviality of such spaces.

Construction 4.3.2.3. Γ0 is identified with a neat (hence, torsion-free) arithmetic subgroup
of

ResF |QGL2,F (Q) = GL2(F )

(Remark 4.2.2.2). Let π be the projection GL2(F ) ։ GL2(F )/Z(GL2(F )) and define
Γ0,Z := Γ0 ∩ Z(GL2(F )) and Γ′

0 := π(Γ0) (non trivial, torsion-free arithmetic subgroups
of Z(GL2(F )) ≃ F×, resp. PGL2(F )). Then, Γ0 can be written as an extension
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1→ Γ0,Z → Γ0
π
−→ Γ′

0 → 1, (4.25)

and applying the Lyndon-Hochschild-Serre spectral sequence to this extension

E2 = Hr(Γ′
0, H

s(Γ0,Z , V
0,q

Ψ ))⇒ Hr+s(Γ0, V
0,q

Ψ ) (4.26)

we see that every subspace Hp(Γ0, V
0,q

Ψ ) is (non-canonically) isomorphic to a direct sum

⊕

r+s=p

U r,s (4.27)

where every U r,s is a subquotient of Hr(Γ′
0, H

s(Γ0,Z , V
0,q

Ψ )). Thus, if Hs(Γ0,Z , V
0,q

Ψ ) is zero
for every s, then Hp(Γ0, V

0,q
Ψ ) is.

Lemma 4.2.4.1 gives necessary conditions for the non-triviality of the cohomology of
a free abelian group acting on a vector space. The following lemma tells us when these
conditions are verified in a specific case:

Lemma 4.3.2.4. Let Γ0,Z be the group defined in Construction 4.3.2.3. Then, its action
on on V 0,q

Ψ is trivial if and only if there exists an integer κ such that


















k1,σ + k2,σ = κ ∀σ ∈ I0
F

k1,σ − k2,σ − 2 = κ ∀σ ∈ I1
F

−(k1,σ − k2,σ + 4) = κ ∀σ ∈ I2
F

−(k1,σ + k2,σ + 6) = κ ∀σ ∈ I2
F

(4.28)

(remembering Notation 4.2.3.2).

Proof. By Dirichlet’s unit theorem, we have that ResF |QGm,F (Z) ≃ O×
F ≃ Zd−1 × Z/2Z.

On the other hand, the torsion-free group Γ0,Z is commensurable to O×
F . The group Γ0,Z

is then isomorphic to Zd−1. By choosing generators γ1, . . . , γd−1, and remembering the
discussion in 4.1.2, it is then identified with the subgroup

{(











σ(t)
σ(t)

σ(t)−1

σ(t)−1











)σ∈IF
|t = γp1

1 . . . γ
pd−1

d−1 , p1, . . . , pd−1 ∈ Z} →֒ Q0/W0(L).

(4.29)
Recalling the expression for the highest weight of the representation V 0,q

Ψ given in Lemma
4.2.3.3.(1), we see that an element t = γp1

1 . . . γ
pd−1

d−1 ∈ Γ0,Z acts on V 0,q
Ψ via multiplication

by
∏

σ∈IF

σ(t)η1,σ+η′2,σ , i.e. by

∏

σ∈I0
F

σ(t)k1,σ+k2,σ ·
∏

σ∈I1
F

σ(t)k1,σ−k2,σ−2 ·
∏

σ∈I2
F

σ(t)−(k1,σ−k2,σ+4) ·
∏

σ∈I3
F

σ(t)−(k1,σ+k2,σ+6).

The condition in the statement then follows by applying Remark 4.2.4.3.

Definition 4.3.2.5. If λ satisfies the above condition with respect to a q-admissible de-
composition Ψ and to κ ∈ Z, we say that λ is (κ, 0)-Kostant parallel with respect to Ψ.
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4.3. The degeneration of the canonical construction at the boundary

Definition 4.3.2.6. A q-admissible decomposition Ψ is said to be (λ, 0)-admissible if there
exists κ ∈ Z such that λ is (κ, 0)-Kostant parallel with respect to Ψ. The set of q-admissible
decompositions which are moreover (λ, 0)-admissible will be denoted by P(λ,0)

q .

With these definitions in hand, we can prove:

Lemma 4.3.2.7. For every s /∈ {0, . . . , d − 1}, the cohomology space Hs(Γ0,Z , V
0,q

Ψ ) is
trivial. For every s ∈ {0, . . . , d − 1}, it is non-trivial if and only if λ is (κ, 0)-Kostant
parallel with respect to Ψ and one of the following two conditions holds:

1. IF = I0
F ⊔ I

1
F . In this case, q ∈ {0, . . . , d} and GrWw(λ)−dκV

0,q
Ψ 6= {0};

2. IF = I2
F ⊔ I

3
F . In this case, q ∈ {2d, . . . , 3d} and GrWw(λ)−dκV

0,q
Ψ 6= {0}.

Proof. We make first a preliminary observation: suppose that λ satisfies (4.28) for a certain
q-admissible decomposition Ψ. We see then that if I0

F ⊔ I
1
F is non empty, then κ ≥ −2,

and that if I2
F ⊔ I

3
F is non-empty, then κ ≤ −4. This follows from the formulae in (4.28)

and from the fact that, since λ is dominant, k1,σ ≥ k2,σ ≥ 0 for every σ ∈ IF .
Now, Lemma 4.2.4.1 says that for each s ∈ {0, . . . , d− 1}, Hs(Γ0,Z , V

0,q
Ψ ) is non-trivial

if and only if the action of Γ0,Z is trivial, i.e. if and only if condition (4.28) is satisfied. But
in this case, the previous observation says that only one of the subsets I0

F ⊔I
1
F , I2

F ⊔I
3
F can

be non-empty. Then, in both situations, the assertion on q comes from the definition of q-
admissible decomposition (Eq. (4.15)), while the assertion on the weight appearing in V 0,q

Ψ

comes by comparing the computation of Lemma 4.3.2.2 with the formulae in (4.28).

Remark 4.3.2.8. The above lemma, which is an essential step towards Theorem 4.3.1,
implicitly makes use of the “coincidences” in the computations in Lemma 4.3.2.2 and
in (4.28), i.e. of the fact that the linear combinations of coordinates of characters that
appear in the two cases are the same. This can be rephrased as follows. With M0 as in
Notation 4.2.2.1, let ι : Gm,L → Z(M0)L be the composition of the adjunction embedding
Gm,L →֒ Gd

m,L and of the isomorphism Gd
m,L ≃ Z(M0)L deduced from the isomorphism

(Q0/W0)L ≃ G0,L ×M0,L ≃ Gm,L ×
∏

σ∈IF

(GL2,L)σ. Let moreover w : Gm,R → S, resp.

k : S → G0,R be the cocharacter defined in 2.1.3.1, resp. the morphism defining the
Shimura datum corresponding to G0. Then, for every λ, Lemma 4.3.2.2 and (4.28) show
that we have

λ|G0,R
◦ k ◦ w = λ|Z(M0)R

◦ ιR. (4.30)

In other words, the "Hodge weight", determined by the restriction of λ to the center of the
G0-component of Q0/W0, equals the (a priori different) character obtained by restriction
to the center of the M0-component.

This is indeed a general phenomenon, as we explain now. Denote by A the maximal
Q-split torus in the center of (Q0/W0)∩Gder, which is a subgroup of Z(M0) isomorphic to
Gm. If ιA is the isomorphism A ≃ Gm obtained in the same way as ι, then λ|Z(M0)R

◦ ιR =
λ|AR

◦ ιA,R. Hence, we see that (4.30) is a consequence of [LR91, Prop. 6.4]: the proof
in loc. cit. is valid for quite general Shimura data and is based on the description of the
action of A (through λ) on the fibers of the degeneration as the lifting of a local Hecke
operator, a self-(multivalued) map defined in a neighbourhood of the stratum (in our case,
of a cusp). This is seen to coincide with an action induced by the geodesic action of A on
the rational boundary components of the underlying hermitian symmetric domain (in our
case, Hd

n).
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Observe now that, by the considerations in Costruction 4.3.2.3, the necessary condi-
tions for non-triviality of the cohomology of Γ0,Z give necessary conditions for non-triviality
of the cohomology of the bigger group Γ0. Applying this, and employing Definition 4.3.2.6,
the isomorphism from Theorem 4.2.1.(2) for a stratum Z of ∂S∗

K contributing to Z0 now
becomes

Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
≃

⊕

p+q=n

µ
π0(K0)
ℓ (

⊕

Ψ∈P
(λ,0)
q

Hp(Γ0, V
0,q

Ψ )). (4.31)

We are interested in the weight-graded objects

GrWk R
ni∗0i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z
≃

⊕

p+q=n

µ
π0(K0)
ℓ (

⊕

Ψ∈P
(λ,0)
q

Hp(Γ0,GrWk V
0,q

Ψ )). (4.32)

We are going to find a second set of necessary conditions for these objects to be non-trivial,
through a dévissage which is "orthogonal" to the one described in Remark 4.3.2.3.

Construction 4.3.2.9. The groups Γ0,ss := Γ0 ∩ SL2(F ), resp. det Γ0 are non-trivial sub-
groups of SL2(F ), resp. F×, which are again arithmetic and torsion-free. In particular,
det Γ0 ≃ Zd−1 (as in the proof of Lemma 4.3.2.4). Moreover, Γ0 can be written as an
extension

1→ Γ0,ss → Γ0
det
−→ det Γ0 → 1,

so that the Lyndon-Hochschild-Serre spectral sequence applied to this extension

E2 = Hr(det Γ0, H
s(Γ0,ss, V

0,q
Ψ ))⇒ Hr+s(Γ0, V

0,q
Ψ )

tells us that each space Hp(Γ0, V
0,q

Ψ ) is (non-canonically) isomorphic to a direct sum
⊕

r+s=p

N r,s

where each N r,s is a subquotient of

Hr(det Γ0, H
s(Γ0,ss, V

0,q
Ψ )).

If the latter subgroup is zero for every r or Hs(Γ0,ss, V
0,q

Ψ ) is zero for every s, then
Hp(Γ0, V

0,q
Ψ ) is.

For every integer q ∈ {0, . . . , 3d}, we know by (4.23) that det Γ0 acts on V 0,q
Ψ , and a

fortiori on its subspace H0(Γ0,ss, V
0,q

Ψ ), via multiplication by the character χ defined by

t 7→
∏

σ∈I0
F

σ(t)k2,σ ·
∏

σ∈I1
F

σ(t)−k2,σ−2 ·
∏

σ∈I2
F

σ(t)−k1,σ−3 ·
∏

σ∈I3
F

σ(t)−k1,σ−3 (4.33)

and the following lemma will allow us to identify the cohomology spaces corresponding to
this action:

Lemma 4.3.2.10. Let λ = λ(k1, k2, c) be (κ, 0)-Kostant parallel with respect to a q-
admissible decomposition Ψ of IF (notation as in 4.2.3.2). Fix s ∈ {0, . . . , 3d} and suppose
that Hs(Γ0,ss, V

0,q
Ψ ) is non-zero. For every r ∈ {0, . . . , d− 1},

Hr(det Γ0, H
s(Γ0,ss, V

0,q
Ψ )) 6= {0} ⇐⇒ H0(det Γ0, H

s(Γ0,ss, V
0,q

Ψ )) 6= {0}

⇐⇒ one of the following conditions is satisfied:
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4.3. The degeneration of the canonical construction at the boundary

1. IF = I0
F and k2 is parallel. In this case, q = 0;

2. IF = I1
F and k2 is parallel. In this case, q = d;

3. IF = I2
F ⊔ I

3
F and such that k1 is parallel. In this case, q ∈ {2d, . . . , 3d}.

Proof. The point is to reduce oneself to the case where the action of det Γ0 on the spaces
Hs(Γ0,ss, V

0,q
Ψ ), for s > 0, remains semisimple. Now, if [Φ] ∈ Hs(Γ0,ss, V

0,q
Ψ ) is the class of

a s-cocycle
Φ ∈ HomL[Γ0,ss](L[Γ0,ss]s+1, V 0,q

Ψ ),

then, for t ∈ det Γ0, the element t.[Φ] ∈ Hs(Γ0,ss, V
0,q

Ψ ) equals the class of the morphism

t.Φ ∈ HomL[Γ0,ss](L[Γ0,ss]s+1, V 0,q
Ψ )

that to every (t0, . . . , ts) associates χ(t)Φ(t̃−1(t0, . . . , ts)t̃) (where t̃ is any lifting of t in Γ0,
and χ is as in (4.33)).

Consider now the subgroup of Γ0 defined in (4.29), which is free abelian, generated
by {γ1, . . . , γd−1}. The elements {(γ1)2, . . . , (γd−1)2} generate a free abelian subgroup Γ̃
of det Γ0, of rank d − 1, each of whose elements has a central lifting in Γ0. Then, for
every s, Γ̃ still acts via the character χ on Hs(Γ0,ss, V

0,q
Ψ ). We can now apply Lemma

4.2.4.1 and Remark 4.2.4.3 to Γ̃ and conclude that if Hs(Γ0,ss, V
0,q

Ψ ) is non-zero, then

Hr(Γ̃, Hs(Γ0,ss, V
0,q

Ψ )) ≃ H0(Γ̃, Hs(Γ0,ss, V
0,q

Ψ ))(
d−1

r ) 6= {0} if and only if (remembering
the definition of χ) there exists an integer θ such that



















k2,σ = θ ∀σ ∈ I0
F

−k2,σ − 2 = θ ∀σ ∈ I1
F

−k1,σ − 3 = θ ∀σ ∈ I2
F

−k1,σ − 3 = θ ∀σ ∈ I3
F

Now recall that k1,σ ≥ k2,σ ≥ 0: the above condition is then equivalent to the one in the
statement. Remember that precisely under this condition, the character χ is trivial.

In order to finish the proof, put F := det Γ0/Γ̃: it is a finite group, that we can assume
non trivial, of a certain order f (otherwise, there is nothing else to do). Let {φ1 . . . , φf}
be a system of representatives of F inside det Γ0 and denote by e the endomorphism

of multiplication by 1
f

f
∑

i=1
χ(φi). By considering the Lyndon-Hochschild-Serre spectral

sequence associated to this quotient and by applying [Wei94, Prop. 6.1.10], we see that

Hr(det Γ0, H
s(Γ0,ss, V

0,q
Ψ )) ≃ H0

(

F , Hr(Γ̃, Hs(Γ0,ss, V
0,q

Ψ ))
)

≃ e ·Hr(Γ̃, Hs(Γ0,ss, V
0,q

Ψ )).

Now, if e is not the zero endomorphism, then

e ·Hr(Γ̃, Hs(Γ0,ss, V
0,q

Ψ )) ≃ Hr(Γ̃, Hs(Γ0,ss, V
0,q

Ψ ))

and the lemma is demonstrated. But in the case we are working in, χ is trivial, and e is
just the identity morphism.

The third and last set of necessary conditions for non-triviality of the cohomology of
Γ0 comes from general results on the cohomology of locally symmetric spaces.

Lemma 4.3.2.11. The following statements hold.
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(1) The cohomology space Hp(Γ0, V
0,q

Ψ ) is trivial for every p < 0 and all p > 3d− 2.

(2) If the irreducible representation V 0,q
Ψ is non-trivial as a SLd

2,L-representation, then
Hp(Γ0, V

0,q
Ψ ) = {0} for every 0 ≤ p < d.

Proof. 1. Recall from Notation 4.2.2.1 the group M0 ≃ ResF |QGL2,F , and denote by K∞ a
maximal compact subgroup of M0(R) (isomorphic to

∏

σ∈IF

O2(R)), by AM0 the group S(R)0

(for S the maximal Q-split torus inside Z(M0)) and by H the complex upper half plane.
Then, remember the symmetric space associated to M0 (Example 2.1.1.3.(3)), defined by
D := M0(R)/K∞AM0 ≃ Hd ×Rd−1, and recall that every V 0,q

Ψ (as a M0,L-representation)
defines a local system V

0,q
Ψ on the locally symmetric space XΓ0 = Γ0\D (Def. 2.1.1.4) such

that Hp(Γ0, V
0,q

Ψ ) ≃ Hp(XΓ0 ,V
0,q
Ψ ) for every p (see Construction 2.1.1.6). Let now R(·),

resp. rQ(·) denote the radical, resp. the Q-rank of a Q-algebraic group. The statement then
follows from [BS73, Thm. 11.4.4], taking into account that dim(D) − rQ(M0/R(M0)) =
3d− 2.

2. Recall the group Γ0,ss defined in Construction 4.3.2.9, recall the (complex analytic,
connected) Hilbert modular variety XΓ0,ss defined as Γ0,ss\H

d in Example 2.1.2.2.(2), and
abusively also denote by V

0,q
Ψ the local system on XΓ0,ss induced by the the restriction

of the representation V 0,q
Ψ to Mder

0,L ≃ (ResF |QSL2,F )L ≃ SLd
2,L. Then, for every p, we

have Hp(Γ0,ss, V
0,q

Ψ ) ≃ Hp(XΓ0,ss ,V
0,q
Ψ ). The statement now follows from the fact that

Hp(XΓ0,ss ,V
0,q
Ψ ) = {0} for every 0 ≤ p < d if V0,q

Ψ is non-trivial ([MSSYZ15, Thm. 1.1(i)])
and by employing the considerations at the end of Construction 4.3.2.9.

4.3.2.3 Computation of weights along the Siegel strata.

We can finally describe the weights appearing in the degeneration of the canonical con-
struction along the Siegel strata, in the cohomological degrees which we will need in the
sequel:

Proposition 4.3.2.12. Let Vλ be the irreducible L-representation of GL of highest weight
λ = λ((k1,σ, k2,σ)σ, c) and Z a stratum of ∂S∗

K which contributes to Z0. Adopt Notation
4.2.3.2 and the notation of Definition 4.3.1.1.

(1) Let n < 0 or n > 6d− 2. Then the cohomology sheaf Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
is zero.

(2) Let 0 ≤ n < d. Then the cohomology sheaf Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
can be non-zero only if

k1 = κ0 = k2. In this case,

Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
≃ µ

π0(K0)
ℓ (Hn(Γ0, V

0,0
I0

F
))

is pure of weight w(λ)− 2dκ0. If n = 0, then it is non-zero.

(3) Let n ∈ {d, . . . , 2d−1}. Then the cohomology sheaf Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
can be non-zero

only if k1 = κ1 and k2 = κ2. In this case,

Rni∗0i
∗j∗µ

K
ℓ (Vλ)Z ≃ µπ0(K0)

ℓ (Hn(Γ0, V
0,0

I0
F

)) (4.34)

is pure of weight w(λ)− d(κ1 + κ2). If κ1 6= κ2 and n = d, then it is non-zero.
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(4) Let n ∈ {2d, . . . , 3d − 1}. Then the cohomology sheaf Rni∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
can be non-

zero only if k1 = κ1 and k2 = κ2. In this case, it is isomorphic to

µ
π0(K0)
ℓ (Hn(Γ0, V

0,0
I0

F
))⊕ µπ0(K0)

ℓ (Hn−d(Γ0, V
0,d

I1
F

)),

where the first factor is isomorphic to

GrWw(λ)−d(κ1+κ2)R
ni∗0i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z

and the second one to

GrWw(λ)+2d−d(κ1−κ2)R
ni∗0i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z

If n = 2d, then the second factor is non-zero.

Proof. We begin by proving the necessary conditions for the non-vanishing of the coho-
mology sheaves.

(1) Clear from Remark 4.3.2.11.(1) and from the fact that the representations V 0,q
Ψ are

trivial for q > 3d.

(2) The isomorphisms (4.31) and Lemma 4.3.2.10 (taking into account the considerations
at the end of Construction 4.3.2.9) imply that, in order to have non-zero cohomology
objects in degree 0 ≤ n < d, k2 has to be parallel and that q can only take the value 0.
On the other hand, adding the Kostant-parallelism conditions imposed by Lemma 4.3.2.7,
we obtain that k1 has to be parallel, too. Moreover, by hypothesis, we are in the case
p ∈ {0, . . . , d − 1}, but in this interval, by Lemma 4.3.2.11.(2), V 0,0

I0
F

can have non-trivial

cohomology objects only if it is the trivial SLd
2,L-representation. Now, looking at the

description in (4.23), we see that this is the case if and only if k1 and k2 are equal.

(3) The isomorphisms (4.31) and Lemma 4.3.2.10 (taking into account the considerations
at the end of Construction 4.3.2.9) imply that, in order to have non-zero cohomology
objects in degree d ≤ n < 2d, k2 has to be parallel and that q can only take the values
0 or d. Again, the Kostant-parallelism conditions imposed by Lemma 4.3.2.7 imply that
k1 has to be parallel, too. Now if q = d, then p ∈ {0, . . . , d − 1}, and in this interval, by
Lemma 4.3.2.11.(2), V 0,d

I1
F

can have non-trivial cohomology objects only if it is the trivial

SLd
2,L-representation; but the description in (4.23) shows that this is never the case. The

only remaining possibility is then q = 0 and p ∈ {d, . . . , 2d− 1}.

(4) Arguing as above, we see that k1 and k2 have to be parallel, and that q can only
take values in {0, d, 2d, . . . , 3d}. The cases q = 0 and q = d give the two summands in the
statement. If 2d ≤ q ≤ 3d−1, then the fact that p ∈ {0, . . . , d−1} and Lemma 4.3.2.11.(2)
imply that the spaces Hp(Γ0, V

0,q
Ψ ) can give non-trivial contributions to the cohomology

objects if and only if V 0,q
Ψ is the trivial SLd

2,L-representation, which is never the case, by
the description in (4.23) (remember that in this case, Ψ is of the form (∅,∅, I2

F 6= ∅, I3
F )).

Finally, in all cases, the statements about weight-graded objects follow from Remark
4.3.2.7 and from the isomorphisms (4.32), while the non-triviality statements are conse-
quences of the following proposition.
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Proposition 4.3.2.13. Let λ, Vλ and Z be as in Proposition 4.3.2.12. If k1 = κ1 and
k2 = κ2, then:

(1) if κ1 = κ2, then the lisse ℓ-adic sheaf µπ0(K0)
ℓ (H0(Γ0, V

0,0
I0

F
)) on Z is non-zero;

(2) if κ1 6= κ2, then the lisse ℓ-adic sheaf µπ0(K0)
ℓ (Hd(Γ0, V

0,0
I0

F
)) on Z is non-zero;

(3) the lisse ℓ-adic sheaf µπ0(K0)
ℓ (Hd(Γ0, V

0,d
I1

F
)) on Z is non-zero. If moreover κ1 and κ2

have the same parity2, it is locally of dimension > h, where h := |Γ0,ss\P
1(F )| is the

(strictly positive) number of cusps of the (complex analytic, connected) Hilbert modular
variety XΓ0,ss of Example 2.1.2.2.(2).

Proof. If κ1 = κ2, then the spectral sequence considered in Construction 4.3.2.9 shows
that the space H0(Γ0, V ) is isomorphic to H0(det Γ0, H

0(Γ0,ss, V )), which, by the proof of
Lemma 4.3.2.10, is in turn isomorphic to H0(Γ0,ss, V ). Moreover, the description in (4.23)
tells us that here, V is the trivial SLd

2,L-representation, and thus, it is a 1-dimensional
L-vector space. This shows point (1).

Assume then to be in one of the two following cases: either κ1 6= κ2 and V is the
irreducible SLd

2,L-representation V 0,0
I0

F
(which in this case is non-trivial), or V := V 0,d

I1
F

(which by the description in (4.23) is then isomorphic to
⊗

σ∈IF

Symκ1+κ2+2V, where V is

the standard 2-dimensional L-representation of SL2,L, so that V 0,d
I1

F
is never trivial).

In both cases, the same Remark 4.3.2.9 and Remark 4.3.2.11 show that the space
Hd(Γ0, V ) is isomorphic to H0(det Γ0, H

d(Γ0,ss, V )), which by the hypothesis on k1 and
k2 and by the proof of Lemma 4.3.2.10 is in turn isomorphic to Hd(Γ0,ss, V ). Now, for
every integer κ̃ > 0, [MSSYZ15, Thm. 1.1(iv)] shows that dim Hd(Γ0,ss,

⊗

σ∈IF

Symκ̃V) =

h + δ(Γ0,ss, κ̃), where δ(Γ0,ss, κ̃) is a non-negative integer which depends on Γ0,ss and on
κ̃. This is enough to show (2) and the first half of (3).

To finish the proof of (3), suppose that κ1 and κ2 have the same parity and put
κ1 + κ2 =: 2κ. We will show that, in this case, δ := δ(Γ0,ss, 2κ + 2) > 0. Actually,
[MSSYZ15, Thm. 1.1 (iv)] shows that, more precisely, δ = hIF

+ δ′, where δ′ is a certain
positive integer and hIF

is the dimension of the space of cusp forms of (parallel) weight
2κ + 4, i.e. of type 2κ+ 2, and of level Γ0,ss (see Rmk. 2.3.4.4.(1)). Thus, in order to
conclude, it is enough to show that this dimension is strictly positive.

Let XΓ0,ss be the complex analytic Hilbert modular variety associated to Γ0,ss. Ac-
cording to [Fre90, Chap. II, Thm. 3.5], we have

hIF
= vol(XΓ0,ss)(2κ+ 3)d + Lcusp, (4.35)

where Lcusp is a (not necessarily positive) integer which does not depend on κ (recall that
Γ0,ss is neat). Now, if d is odd, then the discussion in [Fre90, page 111] implies that
Lcusp = 0, so that we obtain hIF

> 0, as desired.
If instead d is even, let us consider a smooth toroidal compactification X̄Γ0,ss of XΓ0,ss

(see Subsection 2.3.4). Then, by applying the Hirzebruch-Riemann-Roch theorem to the

2This restriction on parity is necessary in order to apply the results from [Fre90], which in turn depend
on the formulae for the dimension of certain spaces of cusp forms proved in [Shi63]. By [Shi63, Note 11,
pag. 63], it is possible that these formulae could admit a suitable generalisation, such that the hypothesis
on parity could be removed.
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automorphic bundles of type 2κ+ 2 (cfr. Def. 2.3.4.2 and Rmk. 2.3.4.4.(1)) on X̄Γ0,ss , the
authors show in [MSSYZ15, Prop. 7.10] that

hIF
= χ(X̄Γ0,ss ,OX̄Γ0,ss

) + ǫ (4.36)

for a certain integer ǫ. Now, [Fre90, Chap. II, Thm. 4.8], implies that, if d is even,
χ(X̄Γ0,ss ,OX̄Γ0,ss

) > 0 (this quantity is in particular equal to 1 plus the dimension of the

space of cusp forms of weight 2 with respect to Γ0,ss) and that

χ(X̄Γ0,ss ,OX̄Γ0,ss
) = vol(XΓ0,ss) + Lcusp (4.37)

(let us stress the fact that Lcusp is the same integer of equation (4.35)). By replacing
the expression for χ(X̄Γ0,ss ,OX̄Γ0,ss

) into equation (4.36), the equality between the two

expressions (4.35) and (4.36) for hIF
tells us that ǫ = vol(XΓ0,ss)(2κ+3)d−vol(XΓ0,ss) > 0.

The equation (4.36) then implies that hIF
> 0 in this case too.

Remark 4.3.2.14. The above proof shows that the presence of the weights we are interested
in is dued to non-trivial Hilbert cuspidal forms, living on the “virtual” (i.e., not explicitly
appearing in ∂S∗

K) complex analytic Hilbert modular variety XΓ0,ss .

4.3.3 The degeneration along the Klingen strata

Let λ, Vλ be as in Subsection 4.3.2 and let us now study, by using Theorem 4.2.1, the de-
generation of µK

ℓ (Vλ) along the Klingen strata. The group G1 in their underlying Shimura
datum is isomorphic to ResF |QGL2,F ×ResF |QGm,F ,det Gm (cfr. 4.2.1).

4.3.3.1 Weights in the cohomology of the unipotent radical.

As before, let us start by identifying the possible weights appearing in the degeneration
along the Siegel strata, i.e. in the (Q1/W1)L-representations

Hq(W1,L, Vλ) ≃
⊕

Ψ∈Pq

V 1,q
Ψ , (4.38)

for q ∈ {0, . . . , 3d} (cfr. (4.16)). Recall from (4.6) that

(Q1/W1)L ≃ ((
∏

σ∈IF

(GL2,L)σ)× ∏

σ∈IF

(Gm,L)σ
Gm,L)×

∏

σ∈IF

(Gm,L)σ

We are now going to compute the weight of the pure Hodge structure carried by each
irreducible summand V 1,q

Ψ .

Lemma 4.3.3.1. For every q ∈ {0, . . . , 3d} and for every q-admissible decomposition Ψ
as in Notation 4.2.3.2, the action of the factor isomorphic to

(
∏

σ∈IF

(GL2,L)σ)× ∏

σ∈IF

(Gm,L)σ ,
∏

det Gm,L

inside (Q1/W1)L induces on V 1,q
Ψ a pure Hodge structure of weight

w(λ)− [
∑

σ∈I0
F

k1,σ +
∑

σ∈I1
F

(k2,σ − 1)−
∑

σ∈I2
F

(k2,σ + 3)−
∑

σ∈I3
F

(k1,σ + 4)]. (4.39)
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Proof. By the discussion in 4.1.2, the L-points of the factor of (Q1/W1)L that we are
considering are identified with the subgroup

{(











ρ
τσ

1
τ−1

σ ρ











)σ∈IF
| ρ ∈ L×, τσ ∈ L

× for every σ ∈ IF }

of Q1/W1(L). By the convention fixed in 2.1.3.1 and the definition in (4.10) of the Shimura
datum (G1, X1), the expression given in Lemma 4.2.3.3.(2) for the highest weight of the
representation V 1,q

Ψ yields the formula in the statement (recalling (4.8) and Rmk. 4.3.2.1).

4.3.3.2 Cohomology of the arithmetic subgroup.

Consider now the arithmetic group Γ1 of Rmk. 4.2.2.2, which is identified with a torsion-
free arithmetic subgroup of ResF |QGm,F (Q) = F× (cfr. Remark 4.2.2.2). We need to
identify the cohomology spaces

Hp(Γ1, H
q(W1,L, Vλ)) ≃

⊕

Ψ∈Pq

Hp(Γ1, V
1,q

Ψ ).

Reasoning as in the proof of Lemma 4.3.2.4, we obtain:

Lemma 4.3.3.2. The group Γ1 is isomorphic to Zd−1, and for every q ∈ {0, . . . , 3d}, its
action on V 1,q

Ψ is trivial if and only if there exists an integer κ such that


















k1,σ = κ ∀σ ∈ I0
F

k2,σ − 1 = κ ∀σ ∈ I1
F

−(k2,σ + 3) = κ ∀σ ∈ I2
F

−(k1,σ + 4) = κ ∀σ ∈ I2
F

(4.40)

(remembering Notation 4.2.3.2).

Hence, we are led to pose the following:

Definition 4.3.3.3. We say that λ is (κ, 1)-Kostant parallel with respect to a q-admissible
decomposition Ψ if λ satisfies condition (4.40) with respect to κ ∈ Z.

Definition 4.3.3.4. A q-admissible decomposition Ψ is said to be (λ, 1)-admissible if there
exists κ ∈ Z such that λ is (κ, 1)-Kostant parallel with respect to Ψ. The set of q-admissible
decompositions which are moreover (λ, 1)-admissible will be denoted by P(λ,1)

q .

Then, the proof of the following lemma is completely analoguous to the proof of Lemma
4.3.2.7:

Lemma 4.3.3.5. For every s /∈ {0, . . . , d−1}, the cohomology space Hs(Γ1, V
1,q

Ψ ) is trivial.
For every s ∈ {0, . . . , d−1}, it is non-trivial if and only if λ is (κ, 1)-Kostant parallel with
respect to Ψ and one of the following two conditions holds:

(1) IF = I0
F ⊔ I

1
F . In this case, q ∈ {0, . . . , d} and GrWw(λ)−dκV

1,q
Ψ 6= {0};

(2) IF = I2
F ⊔ I

3
F . In this case, q ∈ {2d, . . . , 3d} and GrWw(λ)−dκV

1,q
Ψ 6= {0}.
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Remark 4.3.3.6. An essential ingredient for the proof of the above lemma is again the
same phenomenon of Rmk. 4.3.2.8.

Remembering Definition 4.3.3.4, the isomorphism in 4.2.1.(2) for a stratum Z ′ of ∂S∗
K

contributing to Z1 becomes now

Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
≃

⊕

p+q=n

µ
π1(K1)
ℓ (

⊕

Ψ∈P
(λ,1)
q

Hp(Γ1, V
1,q

Ψ )) (4.41)

and we want to study the weight-graded objects

GrWk R
ni∗1i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z′
≃

⊕

p+q=n

µ
π1(K1)
ℓ (

⊕

Ψ∈P
(λ,1)
q

Hp(Γ1,GrWk V
1,q

Ψ )). (4.42)

4.3.3.3 Computation of weights along the Klingen strata.

In order to describe the weights appearing in the degeneration of the canonical construction
along the Klingen strata (in the cohomological degrees which will be needed in the sequel),
we just need a last preliminary remark:

Remark 4.3.3.7. 1. Suppose the dominant weight λ = λ((k1,σ, k2,σ)σ∈IF
, c) of GL to be

(κ, 1)-Kostant parallel with respect to a decomposition Ψ of the form (I0
F , I

1
F ,∅,∅). Then,

by the definition of Kostant-parallelism and the hypothesis on λ, we see that such κ and
Ψ are necessarily unique, except if k1 = κ1 and k2 = κ2. In this last case, there exist
exactly two pairs (κ, (I0

F , I
1
F )) such that λ is κ-Kostant-parallel with respect to (I0

F , I
1
F ),

i.e. (κ1, I
0
F ) and (κ2 − 1, I1

F ).

2. The condition on λ of being (κ, 1)-Kostant parallel with respect to a decomposition Ψ of
the form (I0

F , I
1
F ,∅,∅) coincides with the condition of being κ-Kostant parallel introduced

in Definition 4.3.1.1; hence, we will adopt this terminology in the following. Moreover, by
the preceding point, whenever we suppose λ to be κ-Kostant parallel with respect to a
decomposition such that I0

F 6= ∅, resp. I1
F 6= ∅, then I0

F , resp. I1
F , is uniquely determined

by λ.

Then, remembering the above Remark, by employing Lemma 4.3.3.5 and reasoning
along the same lines of the proof of Prop. 4.3.2.12, we deduce the following:

Proposition 4.3.3.8. Let Vλ be the irreducible L-representation of GL of highest weight
λ = λ((k1,σ, k2,σ)σ, c) and Z ′ be a stratum of ∂S∗

K contributing to Z1.

(1) Let n < 0 or n > 4d− 1. Then, Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
is zero.

(2) Let n ∈ {0, . . . , d− 1}. Then the ℓ-adic sheaf Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
on Z ′ is non-zero if

and only if the following hold:

• λ is κ-Kostant parallel and I0
F 6= ∅;

• posing d1 := |I1
F | ∈ {0, . . . , d− 1}, we have n ≥ d1.

In this case,
Rni∗1i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z′
≃ µ

π1(K1)
ℓ (Hn−d1(Γ1, V

1,d1

Ψ ))

and it is pure of weight w(λ)− dκ.
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(3) Let n ∈ {d, . . . , 2d− 1}. Then the ℓ-adic sheaf Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
on Z ′ is non-zero if

and only if the following hold:

• λ is κ-Kostant parallel and I1
F 6= ∅;

• posing d1 := |I1
F | ∈ {1, . . . , d}, we have n ≤ d− 1 + d1.

In this case,
Rni∗1i

∗j∗µ
K
ℓ (Vλ)

∣

∣

∣

Z′
≃ µ

π1(K1)
ℓ (Hn−d1(Γ1, V

1,d1

Ψ ))

and, denoting κ2 := κ+ 1, it is pure of weight w(λ) + d− dκ2.

(4) Let n ∈ {2d, . . . , 3d− 1}. Then the ℓ-adic sheaf Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
on Z ′ is non-zero

if and only if λ is (κ, 1)-Kostant parallel with respect to a Ψ such that IF = I2
F ⊔ I

3
F and

I2
F is non-empty. In this case, posing d3 := |I3

F | ∈ {0, . . . , d− 1},

Rni∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
≃ µ

π1(K1)
ℓ (Hn−2d−d3(Γ1, V

1,2d+d3

Ψ ))

and, denoting κ3 = −κ− 3, it is pure of weight w(λ) + 3d+ dκ3.

4.3.4 The double degeneration along the cusps of the Klingen strata

Keep the notation of Thm. 4.3.1. In order to study the weights of the motive i∗jλ
∗V, the

study of the degeneration of the canonical construction to each stratum of ∂S∗
K will not

be enough: in Lemma 4.3.5.5, we will also need to consider a double degeneration, the
one of mixed sheaves on the Klingen strata, already obtained by degeneration, along the
boundary of the closure in ∂S∗

K of the Klingen strata themselves.
By paragraph 4.2.1, every stratum Z ′ of ∂S∗

K contributing to Z1 (as defined in para-
graph 4.2.2) is (a smooth quotient by the action of a finite group of) a Hilbert modular vari-
ety Sπ1(K1) of dimension d. Remember from the same paragraph 4.2.1 that the Shimura da-
tum underlying Sπ1(K1) corresponds to the algebraic groupG1 ≃ ResF |QGL2,F×ResF |QGm,det
Gm, whose L-points are identified, up to conjugation, with

G1(L) = {(











ρ
aσ bσ

1
cσ dσ











)σ∈IF
|aσ, bσ, cσ, dσ ∈ L, ρ ∈ L

×,

such that ρ = aσdσ − bσcσ for every σ ∈ IF } =

= {(Aσ)σ∈IF
∈
∏

σ∈IF

GL2,L(L) such that det(Aσ) = det(Aσ̂) ∀ σ, σ̂ ∈ IF }.

The boundary ∂S∗
π1(K1) of the Baily-Borel compactification S∗

π1(K1) of Sπ1(K1) is 0-
dimensional: it is in fact a finite disjoint union of strata (called cusps), obtained as Shimura
varieties coming from the group Gm. Fix such a stratum Z ′′, corresponding up to conju-
gation, in the formalism of 2.3.3, to the standard Borel subgroup of G1 (denoted by Q2 for
the sake of coherence with the notations in the sequel): it is a representative of the unique
G1(Q)-conjugacy class of standard maximal parabolics of G1. Its unipotent radical will
be denoted by W2. The Levi component of Q2 is a torus T1 isomorphic to

Gm × ResF |QGm,F (4.43)
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via the isomorphism defined on L-points by

T1(L) ≃ Gm(L)×
∏

σ∈IF

Gm(L)σ











β
βuσ

1
u−1

σ











)σ∈IF
7→ (β, (uσ)σ∈IF

).

Then, the Shimura datum (G2, X2) underlying Z ′′ is such that the L-points of the
group G2 ≃ Gm are identified with

G2(L) = {(

(

β · I2

I2

)

)σ∈IF
|β ∈ L×} →֒ T1(L)

and X2 is defined exactly as X0 in (4.9) (cfr. [Pin90, Example 12.21]).

4.3.4.1 The degeneration of the canonical construction along the cusps of

Hilbert modular varieties.

Let j′ be the open immersion of Sπ1(K1) in S∗
π1(K1) and adopt the notations of paragraph

4.2.2, by replacing j with j′ and K with π1(K1). The stratification Φ of ∂S∗
π1(K1) is then

formed by only one element, called Z2. Denote by i2 : Z2 →֒ S∗
π1(K1) the closed immersion

complementary to j′. Let us consider a stratum Z ′′ contributing to Z2 and let us spell
out, thanks to Theorem 4.2.2, the conclusions of Theorem 4.2.1, applied this time to
µ

π1(K1)
ℓ (Uχ), where Uχ is a irreducible L-representation of G1,L.

Such a representation is determined by its highest weight χ = χ((hσ)σ∈IF
, g), where

hσ ∈ Z, hσ ≥ 0 ∀σ ∈ IF , g ∈ Z (we will write h for the vector (hσ)σ∈IF
). This character

is defined on the points of the maximal torus T1,L of G1,L by

(











β
βuσ

1
u−1

σ











)σ∈IF
7→

∏

σ∈IF

uhσ
σ · β

g.

The vector h is called parallel if there exists an integer h such that hσ = h for every
σ ∈ IF . In that case, we will write h= h.

Remark 4.3.4.1. Notice that, with these conventions, the restriction to T1,L of the character
λ((k1,σ, k2,σ)σ, c) defined in 4.8 is given by

χ((k2,σ)σ,
1
2
· [c+

∑

σ

(k1,σ + k2,σ)]). (4.44)

Using the notations fixed in the beginning of this subsection, we have an identification

(Q2/W2)L ≃ T1,L,

so that, by Theorem 4.2.2, the cohomology spaces Hq(W2,L, Uχ) are identified with repre-
sentations of the group T1,L ≃ Gm,L×

∏

σ∈IF

Gm,L. Let us determine the weight of the pure

Hodge structure carried by each irreducible factor of these representations.
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Lemma 4.3.4.2. Let χ = χ((hσ)σ∈IF
, g) as above. Then, the spaces Hq(W2,L, Uχ) are

non-trivial if and only if q ∈ {0, . . . , d}. For each q ∈ {0, . . . , d}, letting I run over the
subsets of IF of cardinality q, they are direct sums of pure Hodge structures of weight

− 2g + 2
∑

σ∈I

(hσ + 1). (4.45)

Proof. We begin by making explicit the data which are needed in order to apply Theorem
4.2.2. By choosing (T1,L, Q2,L) as a maximal torus and a Borel of G1,L, we can identify
the set of roots r of G1,L with

⊔

σ∈IF

rσ, where each rσ is a copy of the set of roots of GL2,L

corresponding to the obvious choice of maximal torus and Borel. For each fixed σ̂ ∈ IF ,
rσ̂ contains only one simple root ρσ̂, which, through the inclusion of rσ̂ inside r, acquires
the expression ρσ̂ = ρσ̂((hσ)σ∈IF

, g), where

hσ =

{

2 if σ = σ̂
0 otherwise

, g = 1.

The Weyl group Υ of G1,L is in turn isomorphic to the product
∏

σ∈IF

Υσ, where, for each

fixed σ̂ ∈ IF , Υσ̂ is a copy of the Weyl group of GL2,L. The latter is a finite group of order
2, the image of whose only non-trivial element through the inclusion of Υσ̂ in Υ is given
by the element of τσ̂ which acts on X∗(T1,L) in the following way: if χ = χ((hσ)σ∈IF

, g),
then τσ̂.χ = χ((ℓσ)σ∈IF

, f), where

ℓσ =

{

−hσ if σ = σ̂
hσ otherwise

, f = g − hσ̂.

By employing the notations of 4.2.3, it is now clear that, with respect to the only
parabolic of G1,L (up to conjugation), i.e. Q2,L, we have Υ′ = Υ, and that, if w =
(wσ)σ∈IF

∈ Υ′ ≃
∏

σ∈IF

Υσ, we have ℓ(w) = ♯{σ ∈ IF |wσ = τσ}.

The explicit computation of w.(χ + ρ) − ρ (for w ∈ Υ′) and Theorem 4.2.2 now give
the isomorphisms

Hq(W2,L, Uχ) ≃
⊕

I⊂IF s.t. |I|=q

U q
I , (4.46)

where the U q
I ’s are 1-dimensional L-vector spaces on which Gm,L×

∏

σ∈IF

Gm,L acts via the

character
χ′((lσ)σ∈IF

, g′)

defined by

lσ =

{

hσ if σ /∈ I
−hσ − 2 if σ ∈ I

, g′ = g −
∑

σ∈I

(hσ + 1).

To obtain the statement, it is now sufficient to remember that the Hodge structure on
each U q

I is induced by the action of the real points of the factor Gm of T1, corresponding
to the Shimura datum (G2, X2) defined in 4.3.4, and to employ the convention fixed in
2.1.3.1.
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4.3. The degeneration of the canonical construction at the boundary

Consider now the group Γ2 of Rmk. 4.2.2.2, which is a torsion-free arithmetic subgroup
of ResF |QGm(Q), i.e. of F× (cfr. the isomorphism (4.43) and Remark 4.2.2.2). By the
same argument as in the proof of Lemma 4.3.2.4, it is isomorphic to Zd−1. We need to
study the cohomology spaces

Hp(Γ2, H
q(W2,L, Uχ)) ≃

⊕

I⊂IF s.t. |I|=q

Hp(Γ2, U
q
I ).

By choosing generators ω1, . . . , ωd−1, Γ2 is identified with the subgroup

{(











1
σ(t)

1
σ(t−1)











)σ∈IF
|t = ωp1

1 . . . ω
pd−1

d−1 , p1, . . . , pd−1 ∈ Z} →֒ T1,L(L), (4.47)

and an element t ∈ Γ2 acts on U I by multiplication by
∏

σ /∈I
σ(ω)hσ ·

∏

σ∈I
σ(ω)−hσ−2. By

reasoning as in the proof of Lemma 4.3.2.7, and employing Lemma 4.3.4.2, we get:

Lemma 4.3.4.3. The cohomology space Hp(Γ2, U
q
I ) is non-zero if and only if h = h and

one of the following conditions is satisfied:

(1) I = ∅. In this case, q = 0 and the Hodge structure on U0
I = H0(W2,L, Uχ) is pure of

weight −2g;

(2) I = IF . In this case, q = d and the Hodge structure on Ud
I = Hd(W2,L, Uχ) is pure of

weight −2g + 2d+ 2dh.

The isomorphism of Theorem 4.2.1.(2) for a stratum Z ′′ contributing to ∂S∗
π1(K1) now

becomes

Rn(i2)∗j′
∗µ

π1(K1)
ℓ (Uχ)

∣

∣

∣

Z′′
≃

⊕

p+q=n

⊕

I⊂IF s. t. |I|=q

µ
π2(K2)
ℓ (Hp(Γ2, U

q
I )). (4.48)

The computation of the weights of these cohomology objects is then a direct consequence
of 4.3.4.3:

Proposition 4.3.4.4. Let Uχ be the irreducible representation of G1,L of highest weight
χ = χ(h, g) and Z ′′ a stratum contributing to ∂S∗

π1(K1). Then:

(1) Let n < 0 or n > 2d− 1. Then Rn(i2)∗j′
∗µ

π1(K1)
ℓ (Uχ)

∣

∣

∣

Z′′
is zero.

(2) Let n ∈ {0, . . . , d − 1}. Then Rn(i2)∗j′
∗µ

π1(K1)
ℓ (Uχ)

∣

∣

∣

Z′′
is non-zero if and only if h is

parallel. In this case, it is isomorphic to µπ2(K2)
ℓ (Hn(Γ2, U

0
I )), and pure of weight −2g.

(3) Let n ∈ {d, . . . , 2d−1}. Then Rn(i2)∗j′
∗µ

π1(K1)
ℓ (Uχ)

∣

∣

∣

Z′′
is non-zero if and only if h = h.

In this case, it is isomorphic to µπ2(K2)
ℓ (Hn−d(Γ2, U

d
I )), and pure of weight −2g+2d+2dh.

Remark 4.3.4.5. The results of Proposition 4.3.4.4 had already been obtained in [Wil12,
Thm. 3.5], by slightly different considerations, when the representations Uχ are such that
g = 0.
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4.3.4.2 The double degeneration.

Let λ = λ((k1,σ, k2,σ)σ, c), Vλ and SK be as in Subsection 4.3.3, and let Z ′ and Sπ1(K1) be
as in paragraph 4.3.4.1.

By (4.41) and Theorem (4.2.1).(1)-(2), we have the following isomorphism in the de-
rived category:

i∗1i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z′
≃
⊕

m





⊕

p+q=m

µ
π1(K1)
ℓ (V p,q)



 [−m], (4.49)

where
V p,q :=

⊕

Ψ∈P
(λ,1)
q

Hp(Γ1, V
1,q

Ψ ). (4.50)

In this latter direct sum, every factor is, by restriction, a certain power of an irreducible
representation of G1,L, whose dominant weight is the one prescribed by Remark (4.3.4.1)
applied to the character λ((ǫ1,σ, ǫ2,σ)σ∈IF

, c) defined in (4.18).

Recall that the functor µπ1(K1)
ℓ used in the isomorphism (4.49), with values in Etℓ,R(Z ′),

is deduced from the canonical construction functor, which takes values in Etℓ,R(Sπ1(K1))

(Remark 4.2.2.3.(1)). In order to study the degeneration of µπ1(K1)
ℓ (V p,q) along the points

in the closure of Z ′ in ∂S∗
K , we will rather consider the sheaves on Sπ1(K1), denoted by

the same symbol, which are obtained by interpreting this time µπ1(K1)
ℓ as the canonical

construction functor.
Let us now apply Theorem 4.2.1.(2) to µ

π1(K1)
ℓ (V p,q)[−m] and to Sπ1(K1), by posing

p + q = m and by adopting the notations of 4.3.4.1, for a stratum ∂Sπ1(K1), in order to
study the weights of the objects

Rn−m(i2)∗j′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
.

We will only need this for m ∈ {2d, . . . , 3d− 1}.

Proposition 4.3.4.6. Fix two positive integers p and q such that p+ q ∈ {2d, . . . , 3d− 1}
and let V p,q be the L-representation of G1,L defined in (4.50), deduced from the irreducible
L-representation Vλ of GL of highest weight λ = λ((k1,σ, k2,σ)σ∈IF

, c). Let Z ′′ be a stratum
contributing to ∂Sπ1(K1). Then:

(i) if m′ ∈ {0, . . . , d−1}, the ℓ-adic sheaf Rm′(i2)∗j′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
on Z ′′ is non-zero if

and only if k1 = κ1 and k2 = κ2. In this case, it is pure of weight w(λ) + 2d− d(κ1− κ2);

(ii) if m′ ∈ {d, . . . , 2d− 1}, the ℓ-adic sheaf Rm′(i2)∗j′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
on Z ′′ is non-zero

if and only if k1 = κ1 and k2 = κ2. In this case, it is pure of weight w(λ)+6d+d(κ1 +κ2);

(iii) if m′ /∈ {0, . . . , 2d − 1}, then the ℓ-adic sheaf Rm′(i2)∗j′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
on Z ′′ is

zero.

Proof. Lemma 4.3.3.5 implies that in order to have non-trivial cohomology objects, we
must have p ∈ {0, . . . , d− 1}; hence, by hypothesis, we have q ∈ {d + 1, . . . , 3d− 1}, and
the same lemma then implies that V p,q is non-zero if and only if there exists a q-admissible
decomposition Ψ = (I2

F 6= ∅, I3
F ) of IF and an integer ι1 such that
{

k2,σ = ι1 ∀σ ∈ I2
F

k1,σ = ι1 − 1 ∀σ ∈ I3
F
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4.3. The degeneration of the canonical construction at the boundary

In this case, if P ′
q

(λ,d) is the set of such decompositions, we have

V p,q =
⊕

Ψ∈P ′q
(λ,d)

Hp(Γ1, V
1,q

Ψ )

The highest weight of the action of G1,L on Hp(Γ1, V
1,q

Ψ ) is then the restriction to T1,L of
the character λ((ǫ1,σ, ǫ2,σ)σ∈IF

, c) defined in (4.18), where

ǫ1,σ =

{

−k2,σ − 3 if σ ∈ I2
F

−k1,σ − 4 if σ ∈ I3
F

, ǫ2,σ =

{

k1,σ + 1 if σ ∈ I2
F

k2,σ if σ ∈ I3
F

By Remark 4.3.4.1, this restriction, as a character of the maximal torus T1,L of G1,L,
has the form χ((ǫ2,σ)σ,

1
2 · [c+

∑

σ∈IF

(ǫ1,σ + ǫ2,σ)]).

Now, by Proposition 4.3.4.4, Rm′(i2)∗j′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
is non-zero if and only if m′ ∈

{0, . . . , 2d− 1} and ǫ2,σ is constant on IF , say equal to an integer ι2. This means that
{

k1,σ = ι2 − 1 ∀σ ∈ I2
F

k2,σ = ι2 ∀σ ∈ I3
F

Thus, the fact that k1,σ ≥ k2,σ for every σ ∈ IF and that I2
F 6= ∅ imply that the

sheaves we are interested in are non-zero if and only if IF = I2
F and k1 = ι2 − 1, k2 = ι1.

Denoting κ1 := ι2 − 1 and κ2 := ι1, we get the constants in the statement.
In order to conclude, it is now enough to apply again Proposition 4.3.4.4, by observing

that if m′ ∈ {0, . . . , d − 1} then the highest weight of the action of G1,L on Hp(Γ1, V
1,q

Ψ )
is the character

((uσ)σ∈IF
, β) 7→

∏

σ∈IF

uκ1+1
σ · β

1
2

·[c−2d+d(κ1−κ2)] (4.51)

(and analogously for the case m′ ∈ {d, . . . , 2d− 1}).

Remark 4.3.4.7. The above proof shows that the double degeneration i∗2j
′
∗i

∗
1j∗µ

K
ℓ (Vλ) of

µℓ(Vλ) along the 0-dimensional strata of ∂S∗
K is non-trivial only if the vectors k1 and k2

in the character λ are both parallel. This condition is then necessary for the non-triviality
of the hypercohomology of i∗2j

′
∗i

∗
1j∗µ

K
ℓ (Vλ). Even if we won’t make this precise here, one

could interpret the contribution of the latter hypercohomology to boundary cohomology of
µK

ℓ (Vλ) in terms of Franke’s automorphic decomposition (2.37): i.e., this contribution cor-
responds to the summand given by the conjugacy class of the minimal standard parabolic
subgroup B of G, which is not “seen” by the Baily-Borel compactification. Our result is
then compatible with [GG13, Prop. 2.1], where it is proved that the summand coming
from B in Franke’s decomposition is actually trivial, unless k1 and k2 are parallel.

4.3.5 Weight avoidance

In this section, we employ the notations of 4.3.1 and 4.2.2. Our aim is to use the results
of the preceding paragraphs in order to prove Theorem 4.3.1, thanks to the criterion
given by Theorem 3.3.4. Thus, we have to relate, for m ∈ {0, 1}, the weights of the
objects Hni∗mi

∗j!∗(Rℓ(λV)) to the weights of the objects Rni∗mi
∗j∗(Rℓ(λV)), which are now

known.
In the following, the symbols τ>·

Z will denote the truncation functors with respect to the
perverse t-structure on Z. We will need to keep in mind the following diagram, denoted
by (D) (analogous to the one arising when studying Siegel threefolds, see [Wil19b, p. 21]):
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Z1H h

î

uu

Pp

i1

◦

��

S∗
K \ Z0
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ˆ̂j◦
��

SK

( �
ĵ

◦

55

� �

j

◦ // S∗
K ∂S∗

K
? _

i
oo

Z0

?�

ˆ̂i

OO

0�

i0

AA

In this diagram, arrows on the same line denote complementary immersions: the ones
with “◦” are open, the others are closed.

Remark 4.3.5.1. Since the immersions î and ĵ, resp. ˆ̂i and ˆ̂j, are complementary, [BBD82,
Prop. 1.4.23] tells us that for every perverse sheaf F ′ on SK we have an exact triangle

î∗τ
>0
Z1
î∗ĵ∗F

′[−1]→ ĵ!∗F
′ → ĵ∗F

′ → î∗τ
>0
Z1
î∗ĵ∗F

′ (4.52)

resp., for every perverse sheaf F ′′ on S∗
K \ Z0 we have an exact triangle

ˆ̂i∗τ
>0
Z0

ˆ̂i∗ˆ̂j∗F ′′[−1]→ ˆ̂j!∗F ′′ → ˆ̂j∗F ′′ → ˆ̂i∗τ
>0
Z0

ˆ̂i∗ˆ̂j∗F ′′ (4.53)

4.3.5.1 Weight avoidance on the Siegel strata.

Let us begin by studying the weight avoidance on the Siegel strata, by employing Propo-
sitions 4.3.2.12 and 4.3.4.6.

Lemma 4.3.5.2. (1) For every n ≥ w(λ) + 3d, Hn(i∗0i
∗j!∗Rℓ(λV)) is zero.

(2) For every n ≤ w(λ) + 3d− 1, there are exact sequences

Hn−1(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))→ Hn(i∗0i

∗j!∗Rℓ(λV))→ Hn(i∗0i
∗j∗Rℓ(λV)) (4.54)

fitting in a long exact sequence.

(3) For every n ≤ w(λ) + 2d − 1, the perverse sheaf Hn(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV)) is

zero.

Proof. (Analogous to [Wil19b, Rmk. 2.7 (a)-(b)-(c)-(d)]) With the notations of diagram

(D), we have j!∗ = ˆ̂j!∗ĵ!∗ ([BBD82, Cor. 1.4.24]), so that, by the commutativity of that
diagram, the functor that we are interested in, i.e. the functor i∗0i

∗j!∗ on perverse sheaves
on SK , verifies

i∗0i
∗j!∗ ≃

ˆ̂i∗ˆ̂j!∗ĵ!∗

Now, for every perverse sheaf F ′ on SK , triangle (4.53) applied to F ′′ = ĵ!∗F
′ tells us that

ˆ̂i∗ˆ̂j!∗ĵ!∗F ′ ≃ τ6−1
Z0

ˆ̂i∗ˆ̂j∗ĵ!∗F ′ (4.55)
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4.3. The degeneration of the canonical construction at the boundary

On the other hand, application of the functor ˆ̂i∗ˆ̂j∗ to the triangle (4.52) and the commu-

tativity of diagram (D) show that for such a F ′, the complex ˆ̂i∗ˆ̂j!∗ĵ!∗F ′ is inserted into a
triangle

i∗0i1,∗τ
>0
Z1
î∗ĵ∗F

′[−1]→ ˆ̂i∗ˆ̂j!∗ĵ!∗F ′ → i∗0i
∗j∗F

′ → i∗0i1,∗τ
>0
Z1
î∗ĵ∗F

′ (4.56)

Now choose F ′ = Rℓ(λV)[w(λ) + 3d] (remember Rmk. 3.2.1.8.(2)) and remember the
conventions of Thm. 3.3.4 for the symbol j!∗Rℓ(λV). Equation (4.55) gives point (1), and,
employing the commutativity of diagram (D), the triangle (4.56) gives point (2).

To conclude, observe that by Theorem 4.2.1.(2), the classical cohomology objects of
i∗1i

∗j∗µℓ(Vλ) are all lisse, hence concentrated in perverse degree equal to their classical
degree plus dimZ1 = d. It follows that the classical cohomology objects of i∗1i

∗j∗Rℓ(λV)
are concentrated in perverse degree equal to their classical degree plus w(λ)+d (remember
Rmk. 3.2.1.8.(1)). Hence, perverse truncation of i∗1i

∗j∗Rℓ(λV) above degree w(λ) + 3d
gives a complex concentrated in classical degrees ≥ w(λ) + 2d. The same is true after
application of i∗0i1,∗. Since Z0 is 0-dimensional, the perverse cohomology objects of the
resulting complex are the same as the classical cohomology objects, which by the previous
reasoning vanish in degrees ≤ w(λ) + 2d− 1. This yields point (3).

Corollary 4.3.5.3. For every n ≤ w(λ) + 2d− 1, we have

Hn(i∗0i
∗j!∗Rℓ(λV)) ≃ Hn(i∗0i

∗j∗Rℓ(λV))

The above lemma and corollary tell us the following: if n ≤ w(λ) + 2d− 1, the weights
of the perverse sheaf Hn(i∗0i

∗j!∗Rℓ(λV)) are the same as the weights of Hn(i∗0i
∗j∗Rℓ(λV)),

which have already been computed. Moreover, there is nothing to do for n ≥ w(λ) + 3d.
It remains to study the interval [w(λ) + 2d,w(λ) + 3d− 1].

Remark 4.3.5.4. Each stratum Z ′ of ∂S∗
K contributing to Z1 is the quotient of a Hilbert

modular variety SK,Z′ by the action of a finite group; let S∗
K,Z′ be its Baily-Borel com-

pactification. If Z̄1 is the closure of Z1 in ∂S∗
K and

Z∗
1 :=

⊔

Z′ stratum of ∂S∗K
contributing to Z1

S∗
K,Z′ , (4.57)

then there exists a surjective, finite morphism

q : Z∗
1 → Z̄1 (4.58)

whose restriction to each SK,Z′ is the quotient morphism from SK,Z′ to Z ′ (cfr. [Pin90,
Main Thm. 12.3 (c), Sec. 7.6]).

Thanks to the above Remark, we can now compute the weights of

Hn(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))

in the degrees we are interested in.

Lemma 4.3.5.5. If n ∈ [w(λ) + 2d,w(λ) + 3d− 1], then Hn(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))

is non-zero if and only if k1 = κ1 and k2 = κ2. In this case, it is pure of weight w(λ) +
2d− d(κ1 − κ2).
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Proof. Recall that, with respect to the classical t-structure, Rℓ(λV) = µK
ℓ (Vλ)[−w(λ)].

Then, for each stratum Z ′ contributing to Z1, we have, by Theorem 4.2.1.(1),

i∗1i
∗j∗Rℓ(λV)|Z′

≃
⊕

k

Rki∗1i
∗j∗µ

K
ℓ (Vλ)[−w(λ)− k]|Z′ .

Moreover, as we observed in the proof of Lemma 4.3.5.2, Theorem 4.2.1.(2) implies
that the objects Rh−w(λ)i∗1i

∗j∗µ
K
ℓ (Vλ) are all lisse, and since Z1 is of dimension d, perverse

truncation above degree w(λ) + 3d equals classical truncation above degree w(λ) + 2d.
Thus, by fixing a stratum Z contributing to Z0, we obtain

Hn(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))|Z ≃

⊕

Z′



Hni∗0i1,∗(
⊕

k≥2d

Rki∗1i
∗j∗µ

K
ℓ (Vλ)[−w(λ)− k]|Z′ )





|Z

,

(4.59)
where the direct sum runs over all strata Z ′ contributing to Z1 and containing Z in their
closure. Fix now such a stratum: as in (4.49) and (4.50), we get

⊕

k≥2d

Rki∗1i
∗j∗µ

K
ℓ (Vλ)[−w(λ)− k]|Z′ ≃

⊕

k≥2d

(
⊕

p+q=k

µ
π1(K1)
ℓ (V p,q))[−w(λ)− k], (4.60)

and as a consequence, by taking into account the fact that Z is of dimension 0,



Hni∗0i1,∗(
⊕

k≥2d

Rki∗1i
∗j∗µ

K
ℓ (Vλ)[−w(λ)− k]|Z′ ))





|Z

≃
⊕

k≥2d

⊕

p+q=k

Rn−w(λ)−ki∗0i1,∗µ
π1(K1)
ℓ (V p,q)

∣

∣

∣

Z

(4.61)
Now, let us adopt the notations of Remark 4.3.5.4, and extend the notations of 4.3.4.1

in the following way: j′ will denote the open immersion of the union of the SK,Z′ ’s in
the union of the S∗

K,Z′ ’s, while i2 will denote the complementary closed immersion of the
union of the ∂S∗

K,Z′ ’s in the union of the S∗
K,Z′ ’s. By restriction to Z ′, we get, by proper

base change, the relation

i∗0i1,∗µ
π1(K1)
ℓ ≃ q∗i

∗
2j

′
∗µ

π1(K1)
ℓ , (4.62)

where on the left, resp. right hand side, we have interpreted the functor µπ1(K1)
ℓ as a

functor with values in Etℓ,R(Z ′), resp. in Etℓ,R(Sπ1(K1)). Denote now by ∂Z′ the stratum
of SK,Z′ such that q(∂Z′) = Z (such a stratum is unique, because two rational boundary
components (cfr. 2.3.3) are conjugated by G1(Q) if and only if they are conjugated by
G(Q), by [Pin90, Rmk. at page 91, (iii)]). Since the morphism q is finite, we deduce that,
for every k, p, q,

Rn−w(λ)−ki∗0i1,∗µ
π1(K1)
ℓ (V p,q)

∣

∣

∣

Z
≃ q∗(Rn−w(λ)−ki∗2j

′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

∂Z′
). (4.63)

Now, the functor q∗ preserves weights, because the morphism q is finite. Thus, the iso-
morphisms (4.59)-(4.63) allow us to deduce the weights ofHn(i∗0i1,∗τ

>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))

from the weights of the sheaf Rn−w(λ)−ki∗2j
′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

Z′′
. But since n ∈ [w(λ) +

2d,w(λ) + 3d − 1] and k ≥ 2d, then, by Proposition 4.3.4.6, the objects which appear as
summands in the right hand side of (4.61) are non-zero only for indices n − w(λ) − k ∈
{0, . . . d− 1}. We can then conclude by Proposition 4.3.4.6.(i).
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We now dispose of all the necessary information in order to determine an interval of
weight avoidance on the Siegel strata:

Proposition 4.3.5.6. The perverse cohomology sheaf Hn(i∗0i
∗j!∗Rℓ(λV)) can be non-zero

only if k1 = κ1, k2 = κ2 and n ∈ {w(λ), . . . , w(λ)+3d−1}. In this case, Hn(i∗0i
∗j!∗Rℓ(λV))

is of weight ≤ n− d(κ1 − κ2) for each n ∈ Z.
If κ1 and κ2 have the same parity, then the weight-graded object of weight w(λ) + 2d−

d(κ1 − κ2) of the perverse sheaf Hw(λ)+2d(i∗0i
∗j!∗Rℓ(λV)) is non-zero.

Proof. If n < w(λ)+2d, thenHn(i∗0i
∗j!∗Rℓ(λV)) ≃ Hn(i∗0i

∗j∗Rℓ(λV)), by Corollary 4.3.5.3.
Now, Z0 is of dimension 0; hence,

Hn(i∗0i
∗j∗Rℓ(λV)) ≃ Rn(i∗0i

∗j∗Rℓ(λV)) = Rn−w(λ)i∗0i
∗j∗µ

K
ℓ (V ). (4.64)

Thus, the perverse sheaf Hn(i∗0i
∗j!∗Rℓ(λV)) is zero for every n < w(λ). If k1 and k2 are

not parallel, then Proposition 4.3.2.12 tells us that Hn(i∗0i
∗j!∗Rℓ(λV)) is zero for every

w(λ) ≤ n < w(λ)+2d. If instead k1 = κ1, k2 = κ2, then the same proposition tells us that
for every w(λ) ≤ n < w(λ) + 2d, Hn(i∗0i

∗j!∗Rℓ(λV)) is of weight ≤ w(λ) − d(κ1 + κ2) ≤
n− d(κ1 − κ2).

Let now n ≥ w(λ)+2d. If n ≥ w(λ)+3d, Lemma 4.3.5.2 implies thatHn(i∗0i
∗j!∗Rℓ(λV))

is zero. Assume then n ∈ {w(λ) + 2d, . . . , w(λ) + 3d− 1}. In this case, by reasoning as in
(4.64) and by applying again Proposition 4.3.2.12, along with Lemma 4.3.5.5, we also see,
by the exact sequence (4.54), that if k1 and k2 are not parallel, then Hn(i∗0i

∗j!∗Rℓ(λV)) is
zero for every n ∈ {w(λ) + 2d, . . . , w(λ) + 3d − 1}. If instead k1 = κ1, k2 = κ2, then we
see in same way that the weights that can appear in Hn(i∗0i

∗j!∗Rℓ(λV)) are of the form
w(λ)−d(κ1 +κ2) or w(λ) + 2d−d(κ1−κ2). In any case, we get weights ≤ n−d(κ1−κ2).

To see that if κ1 and κ2 have the same parity, then weight w(λ) + 2d−d(κ1−κ2) does
appear in the perverse sheaf Hw(λ)+2d(i∗0i

∗j!∗Rℓ(λV)), notice that the long exact sequence
(4.54) gives a short exact sequence

0 Hw(λ)+2d(i∗0i
∗j!∗Rℓ(λV)) Hw(λ)+2d(i∗0i

∗j∗Rℓ(λV))

Hw(λ)+2d(i∗0i1,∗τ
>w(λ)+3d
Z1

i∗1i
∗j∗Rℓ(λV))

ad

so that Hw(λ)+2d(i∗0i
∗j!∗Rℓ(λV)) is identified with the kernel of the arrow ad. Proposi-

tion 4.3.2.13 shows that if κ1 and κ2 have the same parity, then Hw(λ)+2d(i∗0i
∗j∗Rℓ(λV))

contains a direct factor, which is pure of weight w(λ) + 2d − d(κ1 − κ2) and locally of
dimension > h, where h := |Γ0,ss\P

1(F )| is the (strictly positive) number of cusps of the
Hilbert modular variety XΓ0,ss . In order to conclude, it is then enough to show that lo-
cally, the kernel of ad has non-trivial intersection with this sub-object. The isomorphisms
(4.59)-(4.63) in the proof of Lemma 4.3.5.5 show that, if we let the index Z ′ run over all
strata Z ′ contributing to Z1 and containing Z in their closure, and if the finite morphism
q : Z∗

1 → Z̄ is the one of Remark 4.3.5.4, then, above a stratum Z of ∂S∗
K contributing to

Z0, the arrow ad has the form

R2di∗0i
∗j∗µ

K
ℓ (Vλ)

∣

∣

∣

Z
→ q∗

⊕

Z′

(R0i∗2j
′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

∂Z′
) (4.65)

Moreover, we know that, for each fixed Z ′, we have

R0i∗2j
′
∗µ

π1(K1)
ℓ (V p,q)

∣

∣

∣

∂Z′
≃ µ

π2(K2)
ℓ (H0(Γ2, U

0
I ))
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The boundary motive of genus 2 Hilbert-Siegel varieties

where H0(Γ2, U
0
I ) is a 1-dimensional L-vector space (cfr. the proof of Lemma 4.3.4.2).

We are then reduced to show that, locally, the dimension of the target of ad is strictly
smaller than the dimension of the source (remember that by Lemma 4.3.5.5, the target
is pure of weight w(λ) + 2d − d(κ1 − κ2)). But this is true, thanks to the following
proposition.

Proposition 4.3.5.7. Let Z, q and h be as in the proof of Proposition 4.3.5.6.
Then, above Z ⊂ Z0, the number of points in the geometrical fibers of q|∂Z∗1

: ∂Z∗
1 → Z0

is ≤ h.

Proof. We translate word by word in our context the part of the proof of [Wil19b, Prop.
2.9] at pages 27-28.

Our statement can be proven on C-points. Let us employ the notation Q01 for the
intersection of the two standard maximal parabolics Q0 and Q1 inside G, and (Gm, Xm) :=
(Pm,Xm)/Wm) (where m = 0, 1) for the Shimura data contributing to ∂S∗

K (cfr. 4.2.1),
seen as quotients of rational boundary components associated to Pm (cfr. 2.3.3). Then, by
[Pin90, Sec. 6.3], the adelic description of the morphism obtained from q by analytification,
i.e. from the diagram

Z∗
1

q

��

∂Z∗
1

? _

i2

oo

q

��

S∗
K Z0

? _

i0

oo

(the notation Z∗
1 is as in Rmk. 4.3.5.4) is the following:

Q1(Q)\(X∗
1 ×G(Af )/K)

q

��

Q01(Q)\(X0 ×G(Af )/K)? _

i2

oo

q

��

G(Q)\(X∗ ×G(Af )/K) Q0(Q)\(X0 ×G(Af )/K)? _

i0

oo

where all maps are induced by the obvious inclusions of groups and spaces. Here we
have used G and K in the upper right corner because two rational boundary components
of (G1, X1) are conjugated under G1(Q) if and only if they are conjugate under G(Q)
([Pin90, (iii) of Remark on p. 91]), and we have used Qm(Q) in the upper left and lower
right corner (m = 0, 1) because in each case, the full group Qm(Q) stabilizes Xm.

Now, Z is a subscheme of Z0 obtained as the image of a Shimura variety associated to
(G0, X0) under a certain morphism ig, for a certain g ∈ G(Af ), as defined in Eq. (2.39).
The adelic description of ig in [Pin90, Sect. 6.3] tells us that with the identifications in
the above diagram, a point z ∈ Z(C) is represented by a class [h0, p0g] in

Q0(Q)\(X0 ×G(Af )/K)

of a pair of the form (h0, p0gg), for a certain h0 ∈ X0 and p0 ∈ P0(Af ). Now, if we define

Q+
0 (Q) := {q0 ∈ Q0(Q), ν(q0) > 0}

then this group coincides with the group of elements which act as the identity on h0 and
more in general on the whole of X0. Observe that, if we represent the element q0 of
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4.3. The degeneration of the canonical construction at the boundary

Q0(Q) as in the matrix-form description of the latter group given at the end of 4.1.1, then
ν(q0) > 0 corresponds to α > 0. Then, putting

H ′
C,0 := Q+

0 (Q) := Q+
0 (Q) ∩ p0gKg

−1p−1
0

a computation shows that the map

Q01(Q)\Q0(Q)/H ′
C,0 → q−1(z)

[q0] 7→ q0[h0, p0g] = [q0h0, q0p0g]

is well-defined and bijective. Thus, we have identified our fibre, and we have to interpret
its description on the left.

For this, observe that by strong approximation,

W0(Q) ·H ′
C,0 = Q+

0 ∩W0(Af ) · p0gKg
−1p−1

0

But modulo W0, elements in P0 and Q0 commute with each other (because of the isomor-
phism (4.5)) and so

W0(Q) ·H ′
C,0 = Q+

0 ∩W0(Af ) · gKg−1

This description shows that the group W0(Q) · H ′
C,0 coincides, by definition, with the

group HC,0 of Eq. (2.41). Hence, under the projection π0 → Q0/W0, we have the equality
π0(H ′

C,0) = π0(HC,0). This implies that reduction modulo P0 in Q0 (which we will denote
by a vertical bar) induces a bijection

Q01(Q)\Q0(Q)/H ′
C,0 ≃ Q01(Q)\Q0(Q)/H ′

C,0 = Q01(Q)\Q0(Q)/HC,0

NowQ0(Q) = GL2(F ), andQ01(Q) equalsB2(F ), whereB2 is the standard Borel subgroup
of GL2. Moreover, HC,0 equals by definition the group Γ0 of Eq. (4.11). This means that
our fiber is identified with B2(F )\GL2(F )/Γ0. Now, this set is exactly the set of cusps of
Γ0, whose cardinality is ≤ the cardinality of the set of cusps of Γ0,ss.

Remark 4.3.5.8. By the preceding proof, the number of d-dimensional strata in ∂S∗
K which

contain a fixed cusp is related to the number of cusps in the Baily-Borel compactification
of a (complex analytic, connected) virtual Hilbert modular variety, which does not appear
in ∂S∗

K , i.e. XΓ0,ss . Cfr. [Wil19b, Rmk. 2.10 (c)] for an analogous remark.

4.3.5.2 Weight avoidance on the Klingen strata and proof of the main theo-

rem.

Let us now study the weight avoidance on the Klingen strata, by means of Proposition
4.3.3.8.

Remark 4.3.5.9. Using again the commutativity of diagram (D) and the fact that j!∗ =
ˆ̂j!∗ĵ!∗, we see that, by triangle (4.52),

i∗1i
∗j!∗(Rℓ(λV)) ≃ τ t6w(λ)+3d−1

Z1
i∗1i

∗j∗Rℓ(λV), (4.66)

Thanks to the latter remark, and remembering Remark 4.3.3.7, we are ready to deter-
mine the interval of weight avoidance on the Klingen strata.
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Proposition 4.3.5.10. The perverse cohomology sheaf Hn(i∗1i
∗j!∗Rℓ(λV)) can be non-zero

only if λ is κ-Kostant parallel and if n ∈ {w(λ) + d, . . . , w(λ) + 3d− 1}.
In this case, let κ2 := κ+ 1. Then:

(1) if I0
F 6= ∅, denote d1 := |I1

F | ∈ {0, . . . , d−1}. Then, the perverse sheaf Hn(i∗1i
∗j!∗Rℓ(λV))

is of weight ≤ n− d1 − dκ for every n ∈ {w(λ) + d, . . . , w(λ) + 2d− 1}, and the perverse
sheaf Hw(λ)+d+d1(i∗1i

∗j!∗Rℓ(λV)) is non-zero and pure of weight w(λ) + d− dκ.

Otherwise, Hn(i∗1i
∗j!∗Rℓ(λV)) is zero for every n ∈ {w(λ) + d, . . . , w(λ) + 2d− 1};

(2) if I1
F 6= ∅, then the perverse sheaf Hn(i∗1i

∗j!∗Rℓ(λV)) is of weight ≤ n− dκ2 for every
n ∈ {w(λ) + 2d, . . . , w(λ) + 3d − 1}, and the perverse sheaf Hw(λ)+2d(i∗1i

∗j!∗Rℓ(λV)) is
non-zero and pure of weight w(λ) + 2d− dκ2.

Otherwise, Hn(i∗1i
∗j!∗Rℓ(λV)) is zero for every n ∈ {w(λ) + 2d, . . . , w(λ) + 3d− 1}.

Proof. By Remark 4.3.5.9,

Hn(i∗1i
∗j!∗Rℓ(λV)) ≃ Hni∗1i

∗j∗Rℓ(λV))

for every n ≤ w(λ) + 3d − 1, and Hn(i∗1i
∗j!∗Rℓ(λV)) is zero for every n ≥ w(λ) + 3d.

Moreover,
Hni∗1i

∗j∗(Rℓ(λV)) = (Rn−w(λ)−di∗1i
∗j∗µℓ(Vλ))[d].

Then, by applying Proposition 4.3.3.8, we see the following facts.
If n < w(λ) + d, then Hn(i∗1i

∗j!∗Rℓ(λV)) is zero.
If n ∈ {w(λ)+d, . . . , w(λ)+2d−1}, then Hn(i∗1i

∗j!∗Rℓ(λV)) is non-zero if and only if λ
is κ-Kostant parallel and I0

F 6= ∅, and if n ≥ w(λ)+d+d1, where d1 = |I1
F | ∈ {0, . . . , d−1}.

In this case, it is pure of weight w(λ) + d− dκ, in particular of weight ≤ n− d1 − dκ.
If n ∈ {w(λ)+2d, . . . , w(λ)+3d−1}, thenHn(i∗1i

∗j!∗Rℓ(λV)) is non-zero if and only if λ
is κ-Kostant parallel and I1

F 6= ∅, and if n ≤ w(λ)+2d+d1−1, where d1 = |I1
F | ∈ {1, . . . , d}.

In this case, it is pure of weight w(λ) + 2d− dκ2, in particular of weight ≤ n− dκ2.

Corollary 4.3.5.11. Suppose λ to be κ-Kostant parallel and fix n ∈ {w(λ)+d, . . . , w(λ)+
3d − 1}. Let d1 and κ2 be as in the previous proposition, and recall the notation cor(λ)
from Def. 4.3.1.1. Then:

(1) if cor(λ) = 0, then Hn(i∗1i
∗j!∗Rℓ(λV)) is of weights ≤ n − d1 − dκ, and the weight

n− d1 − dκ does appear when n = w(λ) + d+ d1;

(2) if cor(λ) ≥ 1, then Hn(i∗1i
∗j!∗Rℓ(λV)) is of weights ≤ n− dκ2, and the weight n− dκ2

does appear when n = w(λ) + 2d.

Proof. Everything follows from the previous proposition, by observing that:

1. if cor(λ) = 0, then I0
F 6= ∅, and either I1

F = ∅ (in which case only the weights in
the first point of the previous proposition can contribute) or I1

F 6= ∅ (in which case, by
definition of Kostant parallelism, n− dκ2 = n− d− dκ ≤ n− d1 − dκ);

2. if cor(λ) ≥ 1, then either k1 is not parallel (in which case, since λ is dominant, λ can’t
be Kostant parallel with I0

F 6= ∅, and only the weights in the second point of the previous
proposition can contribute) or k1 = κ1 (in which case κ1 ≥ κ2 and the first point of the
previous proposition gives weights ≤ n− dκ1 ≤ n− dκ2).
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4.3. The degeneration of the canonical construction at the boundary

We now have all the necessary ingredients for the proof of Theorem 4.3.1.

Proof. (of Theorem (4.3.1))

We only have to apply the criterion 3.3.4.(2) and use Proposition 4.3.5.6 and Corollary
4.3.5.11.
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Chapter 5

Motives for automorphic
representations of ResF |Q GSp4,F

In this chapter we study the properties of the intersection motive of genus 2 Hilbert-Siegel
varieties (with coefficients in suitable irreducible representations Vλ), whose existence fol-
lows from Thm. 4.3.1 and Wildeshaus’ theory, and the implications for the construction
of motives associated to automorphic representations.

5.1 Properties of the intersection motive

Adopt the notation of Subsection 4.3.1 and assume from now on that λ is either not
completely irregular or of corank 0. Then, the weight avoidance proved in Corollary
4.3.1.3 allows us to apply the theory of Section 3.3.2 and to employ Definition 3.3.2.8 to
define the intersection motive of a genus 2 Hilbert-Siegel variety SK relative to S∗

K with
coefficients in λV. It is the object s∗j

λ
!∗V of the category CHM(Q)L and it will be simply

called intersection motive.
Let us spell out its main properties. For doing so, if λ satisfies in addition the hy-

potheses of point (1) or (2) or (3), resp. (4), of Theorem 4.3.1, put β := dκ, resp.
β := min{dκ1, d(κ1 − κ2)} (with notations as in the Theorem). The general theory then
implies the following:

Corollary 5.1.0.1. Let s and β be as above, and let s̃ be the structural morphism of SK .

(1) The motive s̃λ
! V ∈ DMB,c(Q)L avoids weights −β,−β + 1, . . . ,−1, and the motive

s̃λ
∗V ∈ DMB,c(Q)L avoids weights 1, 2, . . . , β. More precisely, the exact triangles

s∗i∗i
∗jλ

!∗V[−1]→ s̃λ
! V → s∗j

λ
!∗V → s∗i∗i

∗jλ
!∗V

and
s∗j

λ
!∗V → s̃λ

∗V → d∗i∗i
!jλ

!∗V[1]→ s∗j
λ
!∗V[1]

are weight filtrations of s̃λ
! V, resp. of s̃λ

∗V, which avoid weights −β,−β + 1, . . . ,−1, resp.
1, 2, . . . , β.

(2) The intersection motive s∗j
λ
!∗V is functorial with respect to s̃λ

! V and to s̃λ
∗V. In par-

ticular, every endomorphism of s̃λ
! V or s̃λ

∗V induces an endomorphism of s∗j
λ
!∗V.
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(3) If s̃λ
! V → N → s̃λ

∗V is a factorisation of s̃λ
! V → s̃λ

∗V through a Chow motive N ∈
CHM(Q)L, then the intersection motive s∗j

λ
!∗V is canonically identified with a direct factor

of N , with a canonical direct complement.

Proof. Since Theorem 4.3.1 tells us that, under our hypotheses on λ, i∗jλ
∗V avoids weights

0 and 1, the first two points follow from Corollary 3.3.2.7 and from the diagram of triangles
considered after that corollary. The third point is [Wil19a, Thm. 2.6].

Fix now an integer N such that, as in Remark 3.2.1.6, λV is a direct factor of a
Tate twist of πN,∗✶AN

K
, where πN : AN

K → SK denotes the N -fold fibred product of
the universal abelian variety AK with itself over SK . The property stated in Corollary
5.1.0.1.(2) has important consequences for the Hecke algebra HDM (K,G(Af )) associated
to the open compact subgroup K (Def. 3.2.2.13), acting on the object s̃λ

∗V. In fact,
corollary 5.1.0.1.(2) gives us immediately the following consequence:

Corollary 5.1.0.2. The algebra HDM (K,G(Af )) acts naturally on the intersection motive
s∗j

λ
!∗V.

It is also useful to explicitly formulate the property stated in Corollary 5.1.0.1.(3) in
a specific context:

Corollary 5.1.0.3. Let ÃN
K be a smooth compactification of AN

K . Then, the intersection
motive s∗j

λ
!∗V is canonically identified with a direct factor of a Tate twist of a∗✶ÃN

K
(where

a is the structural morphism of ÃN
K towards Spec Q), with a canonical direct complement.

This corollary has important consequences for the realizations of s∗j
λ
!∗V.

Corollary 5.1.0.4. Let O be the order of F prescribed by the PEL datum corresponding
to SK (cfr. Example 3.2.1.2), D the discriminant of O as defined in [Lan13, Def. 1.1.1.6],
and N the level of K. Let p be a prime which does not divide D ·N . Then:

(1) the p-adic realization of s∗j
λ
!∗V is crystalline, and if ℓ is a prime different from p, the

ℓ-adic realization of s∗j
λ
!∗V is unramified at p;

(2) consider on the one hand the action of Frobenius φ on the φ-filtered module associated
to the (crystalline) p-adic realization of s∗j

λ
!∗V, and on the other hand the action of a

geometrical Frobenius at p on the ℓ-adic realization of s∗j
λ
!∗V (unramified at p). Then, the

characteristic polynomials of the two actions coincide.

Proof. (1) By [Wil09, Thm. 4.14], and with the notations of the preceding corollary, the
existence of a smooth compactification of AN

K with good reduction properties is enough to
get the conclusion. Now, we have at our disposal the very general results of [Lan12b] on the
existence of smooth projective integral models of smooth compactifications of PEL-type
Kuga-Sato families: namely, Thm. 2.15 of loc. cit. (by taking into account Definition 1.6
of loc. cit. and [Lan13, Prop. 1.4.4.3]) implies that there exists a smooth compactification
of AN

K with good reduction at every prime p which does not divide D ·N . Thus, we can
invoke [Wil09, Thm. 4.14] to conclude.

(2) We argue exactly as in [Wil19b, Cor. 1.13], in order to use [KM74, Thm. 2.2] and
conclude.
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In order to end this list of properties of s∗j
λ
!∗V, we recall that the reason for the name

of the intersection motive is the behaviour of its realizations (recall that we are supposing
that λ is either not completely irregular or of corank 0):

Corollary 5.1.0.5. (1) For µK equal to the Hodge or ℓ-adic canonical construction, write
j!∗µ

K for the complex
j!∗(µK(Vλ)[3d])[−3d]

Then, for every n ∈ Z, the natural maps

Hn(S∗
K(C), j!∗µK

H(Vλ))→ Hn(SK(C), µK
H(Vλ))

(between cohomology spaces of Hodge modules) and

Hn((S∗
K)×Q Q̄, j!∗µ

K
ℓ (Vλ))→ Hn((SK)×Q Q̄, µK

ℓ (Vλ))

(between cohomology spaces of ℓ-adic perverse sheaves) are injective, and dually, the nat-
ural maps

Hn
c (SK(C), µK

H(Vλ))→ Hn
c (S∗

K(C), j!∗µK
H(Vλ))

and
Hn

c ((SK)×Q Q̄, µK
ℓ (Vλ))→ Hn

c ((S∗
K)×Q Q̄, j!∗µ

K
ℓ (Vλ))

are surjective. Consequently, the natural maps from intersection cohomology of SK towards
interior cohomology (with coefficients in µK

H(Vλ), resp. µK
ℓ (Vλ)) are isomorphisms.

(2) The Hodge realization, resp. ℓ-adic realization of the intersection motive s∗j
λ
!∗V ∈

CHM(Q)L is identified with interior cohomology

H∗
! (SK(C),RH(λV))

resp.
H∗

! ((SK)×Q
Q̄,Rℓ(λV)).

Proof. We have proven that, under our standing hypotheses on λ, the complex of ℓ-adic
sheaves i∗j∗µK

ℓ (Vλ) avoids weights −β, . . . , β+ 1, and a completely analogous proof shows
that this is also the case for the complex of mixed Hodge modules i∗j∗µK

H(Vλ) (cfr. Rmk.
4.2.2.4). In particular, it avoids weights 0 and 1. Now, the equivalence of categories given
in Thm. 3.3.3, works whenever we have categories with weight structures compatible with
gluing (i.e. such that the six functors satisfy the conclusions of Thm. 3.3.1.(2)), as is
the case for the bounded derived categories of mixed Hodge modules. Hence, the latter
weight avoidance is equivalent to saying that the complex i!j!∗µK

H(Vλ) is of weights at least
1 and that the complex i∗j!∗µK

H(Vλ) is of weights at most -1. Then, consider the diagram
of triangles of Prop. 2.3.3.3. On the one hand, absence of weight 0 in i∗j∗µ

K
H(Vλ) shows

that in each degree n, interior cohomology is identified with the lowest weight-graded step
Grn+w(λ) of Hn. On the other hand, the fact that i!j!∗µK

H(Vλ) is of weights at least 1
implies that the arrow from intersection cohomology to Grn+w(λ) is not only surjective
(Corollary 2.3.3.4), but also injective. This shows point (1).

Point (2) follows from (1) and from the fact that, by Thm. 3.3.3, the realizations of
the intersection motive are identified with intersection cohomology.
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Remark 5.1.0.6. (1) The vanishing results of Thm. 2.1.1 imply that, if λ is regular, the
spaces Hn(SK(C), µK

H(Vλ)), and so (by comparison) Hn(SK ×Q Q̄, µK
ℓ (Vλ)) are zero for

n < 3d = dimSK . Dually, we get Hn
c (SK(C), µK

H(Vλ)) = 0 and Hn
c (SK ×Q Q̄, µK

ℓ (Vλ)) =
0 for n > 3d. As a consequence, if λ is regular, then the interior cohomology spaces
Hn

! (SK(C), µK
H(Vλ)) and Hn

! (SK ×Q Q̄, µK
ℓ (Vλ)) are zero in degrees different from n = 3d.

(2) Corollary 5.1.0.5.(2) and the preceding point imply that, if λ is regular, the Hodge
realization of the intersection motive s∗j

λ
!∗V ∈ CHM(Q)L is given by

H3d
! (SK(C), µK

H(Vλ))[−(w(λ) + 3d)],

and that its ℓ-adic realization is given by

H3d
! (SK ×Q Q̄, µK

ℓ (Vλ))[−(w(λ) + 3d)].

5.2 Homological motives for automorphic representations

Keep the notations of the preceding subsection and assume moreover that λ is regular.
In this last part, following [Wil19b, Sec. 3], we would like to exploit the action of the
algebra HDM (K,G(Af )) on the intersection motive s∗j

λ
!∗V ∈ CHM(Q)L (cfr. Corollary

5.1.0.2) to cut out certain homological sub-motives thereof. Recall from Rmk. 3.2.2.14
that HDM (K,G(Af )) acts on H3d

! (SK(C), µK
H(Vλ)) and on H3d

! (SK×Q Q̄, µ
K
ℓ (Vλ)) through

the algebra H(K,G(Af )) of Subsection 2.2.1. For brevity, denote the latter algebra by H.
Remembering that the action of H is nothing but the action of the algebra C∞

c (G(Af )//K)
(Rmk. 2.2.1.5), the following is the consequence of Cor. 2.3.3.5.(1) and of the inclusions
(2.44) (cfr. also [Har, Sect. 8.1.7, page 253]):

Theorem 5.2.1. For every extension L′ of L, the HDM (K,G(Af ))⊗L L
′-module

H3d
! (SK(C), µK

H(Vλ))⊗ L′

is semisimple.

Corollary 5.2.0.1. Denote by R(H) the image of H in the endomorphism algebra of
H3d

! (SK(C), µK
H(Vλ)). For every extension L′ of L, the algebra R(H)⊗L L

′ is semisimple.

In particular, isomorphism classes of simple right R(H)⊗L L
′-modules are in bijection

with isomorphism classes of minimal right ideals. Now, by fixing L′, and one of these
minimal right ideals Yπf

of R(H) ⊗L L′, there exists an idempotent eπf
∈ R(H) ⊗L L′

which generates Yπf
. The following definitions are motivated by (2.32) and (2.27):

Definition 5.2.0.2. (1) The Hodge structure W (πf ) associated to Yπf
is defined by

W (πf ) := HomR(H)⊗LL′(Yπf
, H3d

! (SK(C), µK
H(Vλ))⊗ L′).

(2) Let L′ be a finite extension. For every prime number ℓ, and for every prime l of L′

above ℓ, the Galois module W (πf )ℓ associated to Yπf
is defined by

W (πf )ℓ := HomR(H)⊗LL′
l
(Yπf

, H3d
! (SK ×Q Q̄, µK

ℓ (Vλ))⊗ L′
l).

The following proposition tells us how to define the desired motives:
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Proposition 5.2.0.3. (cfr. [Wil19b, Prop. 3.4])) There are canonical isomorphisms of
Hodge structures, resp. of Galois modules

W (πf ) ≃ H3d
! (SK(C), µK

H(Vλ)⊗ L′) · eπf
,

resp.
W (πf )ℓ ≃ H

3d
! (SK ×Q Q̄, µK

ℓ (Vλ)⊗ L′
l) · eπf

.

Proof. The proof is standard, and identical in the two cases. Let us give it in the case of
Hodge structures. By mapping an element g of

HomR(H)⊗LL′(R(H)⊗L L
′, H3d

! (SK(C), µK
H(Vλ))⊗ L′)

to the image of 1R(H)⊗LL′ through g, we identify the above space of morphisms with

H3d
! (SK(C), µK

H(Vλ))⊗ L′

But inside that space, the sub-Hodge structure W (πf ) corresponds exactly to those mor-
phisms g vanishing on 1R(H)⊗LL′ − eπf

.

Since we do not know if eπf
lifts to an idempotent element of HDM (K,G(Af )) ⊗L

L′, we are forced to consider its action on the homological (or Grothendieck) motive
which underlies the intersection motive s∗j

λ
!∗V ∈ CHM(Q)L. Denote then by s∗j

λ
!∗V

′ this
homological motive, and define, thanks to Corollary 5.1.0.2:

Definition 5.2.0.4. The (homological) motive corresponding to Yπf
is defined byW(πf ) :=

s∗j
λ
!∗V

′ · eπf
.

Remark 5.2.0.5. The above motives could have been defined without knowing that there is
an algebra action of the Hecke endomorphisms on the intersection motive, because we only
need the existence of an algebra action on its homological counterpart (a fact which holds
by contruction). Nonetheless, it is expected that the idempotent (modulo homological
equivalence) element eπf

lifts to an idempotent modulo rational equivalence (and hence
that the motives W(πf ) may be lifted to Chow motives). In order to even formulate this
expectation - let alone trying to prove its validity - one needs the Hecke algebra action on
the Chow motive s∗j

λ
!∗V.

We finish by making explicit the properties of the latter motive which follow from the
preceding constructions:

Theorem 5.2.2. The realizations of the motive W(πf ) are concentrated in cohomological
degree w(λ) + 3d, where in particular the Hodge realization equals W (πf ), and the ℓ-adic
realizations equal W (πf )ℓ, for every prime ℓ.

Proof. Follows from the construction of W(πf ) and Remark 5.1.0.6.(2) (remember that
we are supposing λ to be regular).

Corollary 5.2.0.6. Let p be a prime number which does not divide the integer D ·N from
Corollary 5.1.0.4, and ℓ a prime different from p. Then:

(1) the p-adic realization of W(πf ) is crystalline, and the ℓ-adic realization of W(πf ) is
unramified at p;
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(2) consider on the one hand the action of the Frobenius φ on the φ-filtered module asso-
ciated to the p-adic (crystalline) realization of W(πf ), and on the other hand the action of
a geometrical Frobenius in p on the ℓ-adic realization of W(πf ) (unramified at p). Then,
the characteristic polynomials of the two actions coincide.

Proof. 1. Follows from Corollary 5.1.0.4.(1), by taking into account the fact thatW(πf )
is a direct factor of s∗j

λ
!∗V

′.

2. We can argue as in Corollary 5.1.0.4.(2) to apply [KM74, Thm. 2.2] and conclude.

Remark 5.2.0.7. (1) Suppose that λ is a regular weight of G whose restriction to the
center is trivial and that the image of K along the natural projection GSp4 → PGSp4

is still a compact open subgroup of PGSp4(Af ). Then, the ℓ-adic realizations W (πf )ℓ

of the motive W(πf ) coincide with the Galois modules H∗
c (πHf ) associated to suitable

automorphic representations of G in [Fli05, Part 2, Chap. I.2, Thm. 2] (remember that
by Thm. 2.3.2, under the regularity assumption, cuspidal and intersection cohomology
coincide). There, the precise relation between eigenvalues of (suitable) Frobenii and Hecke
eigenvalues is given. The existence of the motive W(πf ) then adds to the description in
loc. cit. the information about the behaviour at p of the Galois module W (πf )p, which
has been obtained in Corollary 5.2.0.6 (when p doesn’t divide the integer D ·N).

(2) Keep the assumptions of the preceding point and let l be a place of E above the prime
ℓ. The Galois modules W (πf )ℓ are then of dimension 4d or 1

2 · 4
d over L′

l ([Fli05, Part
2, Chap. I.2, Thm. 2.(1),(4)]). One can expect that, in the case of a (Hilbert-Siegel)
eigenform f , the motives W(πf ) over Q can be written as tensor products over L′ of
rank-4 motives over F , whose L-function has the correct relation with the L-function of
f . However, there are no known methods for constructing motives with such properties.
It is the same problem which arises for motives corresponding to Hilbert modular forms,
when cut out inside Kuga-Sato varieties over Hilbert modular varieties, cfr. for example
[Har94, 5.2].
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