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Résumé et introduction en français

Le contexte de recherche

Les micro-structures telles que celles étudiées dans ce travail doctoral sont généralement
constituées d’un certain nombre d’éléments de même nature, qui sont distribués de
manière périodique dans une certaine région de l’espace (dite Region of Interest ou
ROI), et la taille de ces éléments et leur séparation possèdent des caractéristiques de
sous-longueur d’onde, ici mesurées par rapport à la longueur d’onde d’opération si il
s’agit de signaux mono-fréquences ou à la bande de fréquence concernée s’il s’agit de
signaux multi-fréquences (ou impulsionnels).

Si les cristaux phononiques et photoniques correspondent bien à la description ci-
dessus, c’est également le cas notamment des laminés fibrés comme devenus courants dans
nombre de pièces aéronautiques et automobiles, tandis que les réseaux d’antennes destinés
aux illuminations agiles ainsi qu’aux communications privilégiées peuvent également
satisfaire cette description.

Mais comment se comporte une micro-structure si certains éléments ne fonctionnent
pas comme prévu, ou sont simplement manquants, ou diffèrent de l’élément nominal, que
le phénomène résultant soit apprécié d’ailleurs en terme de rayonnement (par exemple,
le réseau) ou en terme de diffusion/diffraction (par exemple, le cristal, le laminé) ?

Une bonne compréhension et une bonne analyse des micro-structures intactes et
éventuellement affectées sont donc nécessaires, et nous devons les tester, localiser tout
changement significatif et, au mieux, cartographier ce qui se passe dans la micro-structure,
en pouvant aller bien au-delà du critère classique de demi-longueur d’onde de résolution
de Rayleigh (vu cette déterminante propriété sous-longueur d’onde), même si le champ
proche est absent de nos données.
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Le cas d’étude

La micro-structure dans le travail présent est constituée d’un ensemble en forme de
grille régulière d’un nombre fini de tiges diélectriques cylindriques circulaires, le rayon
d’une tige étant assez petit et les tiges adjacentes étant proches les unes des autres,
de telles dimensions étant donc plus petites, voire significativement plus petites que
la demi-longueur d’onde, comme insisté ci-dessus. Compte tenu de ce phénomène de
sous-longueur d’onde, le défi est de parvenir à une localisation significative, améliorée
(on parlera d’enhancement) en résolution, ou même super-résolue (super-resolved).

Cette super-résolution est difficile à obtenir par les méthodes conventionnelles avec
l’existence de caractéristiques géométriques sous-longueur d’onde. Cela nécessite donc
des approches élaborées et tout particulièrement une utilisation appropriée des a priori,
tout en essayant d’atténuer les coûts de calcul et de rester fiable même si les données
recueilies sont erronées ou rares.

Pour traiter des systèmes micro-structurés complexes, et de fait celui introduit ci-
dessus l’est déjà, malgré simplifications certaines, une compréhension exhaustive de la
physique comme support de l’analyse des ondes et des champs est nécessaire, ce qui signifie
que la caractérisation des structures matérielles à partir du champ électromagnétique qui
est diffracté sous des illuminations données nécessite efforts combinés de modélisation,
simulation, imagerie et traitement du signal.

Le modèle computationnel direct

Au début des travaux présents, deux méthodes ont été développées afin de procéder à la
modélisation de la micro-structure. La méthode dite de diffraction multiple (Multiple
Scattering Method ou MST, mais on rencontre d’autres désignations) est spécialisée au cas
de tiges cylindriques circulaires et est basée sur des développements en ondes cylindriques
rigoureux adaptées à cette géométrie spécifique. Elle est précise pour la structure étudiée
car les ondes cylindriques sont aisément prises en compte, et de comportement bien connu.
Une autre approche est la méthode des moments (Method of Moments ou MoM); elle
convertit les équations intégrales qui décrivent le champ en un système linéaire discret,
et l’on a choisi par simplicité (tout en maintenant une précision correcte, comme nous
l’avons constatée) des fonctions de base d’impulsions (pulse-basis) et des fonctions de
test en Dirac (point-matching).
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Chaque méthode présente "plus" et "moins". A titre d’exemple, la MST telle que
nous la déployons est donc limitée à notre géométrie circulaire1. Ce n’est pas le cas
comme il est iévident de la MoM (ainsi, imaginons des sections transversales carrées de
tiges), sachant aussi que si le contraste des tiges au sein de la ROI (contraste vu par
rapport à l’air qui les entoure en fait) augmente fortement, voire même est associé à des
conductivités de tiges métalliques, la MST n’y voit point inconvénient.

Une méthode par discrétisation en temps et en espace est aussi mise en œuvre (Finite
Difference Time Domain ou FD-TD) en ce travail, quand on s’intéresse au domaine
temporel, alors à l’aide d’une plate-forme open source, dénommée gprMax —clairement
concernée par le radar à pénétration de sol (Ground Probing Radar ou GPR) et des
objets naturels ou artificiels enfouis en des sols, mais qui s’adapte avec aisance à notre
cas de figure. Le cœur de l’algorithme FD-TD est comme bien connu que les dérivées
partielles spatiales et temporelles des équations différentielles de Maxwell sont discrétisées,
la réponse de l’interaction entre une impulsion fournie par une antenne appropriée et la
structure matérielle concernée étant alors obtenue.

Une fois modélisé avec précision et si possible efficacité de calcul le problème direct,
permettant donc d’acquérir des données sous des formes variées pour un ensemble de
micro-structures, mais plus encore d’insérer les solveurs (MST, MoM, FD-TD) dans
les algorithmes d’inversion, le problème inverse (donc d’imagerie, si l’on recherche une
carte de contraste, et/ou de diagnostic, si l’on recherche une indication de présence
ou d’absence, la première indication de fait contenant la seconde) peut être résolu par
différentes méthodes allant des méthodes semi-analytiques —nous les notons closed-form
dans le titre du manuscrit— aux méthodes d’apprentissage profond, comme discuté
ci-après.

L’inversion

Il existe déjà de nombreuses méthodes semi-analytiques bien développées, comme
l’approximation de Born distordue (Distorted (Wave) Born approximation ou D(W)BA),
les méthodes d’optimisations de sous-espaces (Sub-space Optimization Methods or SOM),
ces dernières qui possèdent de multiples variantes, entre beaucoup d’autres. La méthode
d’inversion de source de contraste (contrast source inversion ou CSI) est pour sa part
l’une des méthodes les plus couramment utilisées pour les problèmes de diffraction inverse,

1Des développements plus élaborés permettent de traiter des cylindres non-circulaires, mais ceux-ci
sont hors notre cadre d’étude, d’autant plus que les diamètres des tiges sont petits devant la longeur
d’onde et que leur apport serait limité.
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deux séquences, le contraste et la source de contraste étant alternativement mises à jour
par une optimisation de type gradient conjugué en minimisant une fonction objectif (ou
fonction coût) qui combine des différences normalisées dans l’équation de données (qui
lie les données aux sources dans la structure) et dans l’équation d’état (qui les lie à
elles-mêmes).

Ici, nous utilisons non seulement le CSI traditionnel, mais nous profitons également
des informations de binarité afin d’assurer une meilleure performance, binaire signifiant
que l’état normal (une tige effectivement présente) est représentée par "1", et toute tige
manquante est représentée par "0".

Une autre méthode que nous développons est basée sur la parcimonie, c’est-à-dire
qu’elle prend celle-ci comme un a priori. En effet, les tiges manquantes sont escomptées
être peu nombreuses par rapport au nombre de tiges effectivement présentes, de sorte que
ces tiges manquantes peuvent être traitées comme des sources fictives à l’intérieur de la
micro-structure investiguée. L’inversion de source équivalente à contrainte de parcimonie
(qui implique un développement en ondes cylindriques des champs et est donc basée sur la
MST) assure par construction une super-résolution, puisque diagnostic absence/présence,
quel que soit le (petit) diamètre d’une tige, mais au prix d’hypothèses fortes sur la
micro-structure endommagée, ce sur quoi que l’on vient d’insister.

En contraste avec ce qui précède, les méthodes basées sur les données, ou méth-
odes d’apprentissage, qui jouent un rôle de plus en plus important dans de multiples
communautés de recherche et d’application —on n’entrera pas ici dans l’abondante et
croissante litérature, avec insistance sur le traitement du langage naturel, le traitement
d’image et la reconnaissance de formes, pour ne citer que quelques domaines applicatifs—
ne bénéficient pas des connaissances préalables et elles utilisent à leur place de grands
ensembles de données, afin d’apprendre la solution inconnue du problème inverse posé.

Les réseaux de neurones profonds sont notre choix, sachant que l’augmentation du
nombre de couches améliore les performances du réseau de neurones, par extraction de
caractéristiques couche par couche, la représentation des caractéristiques des échantillons
dans l’espace d’origine étant transformée en un nouvel espace de caractéristiques, ce
qui facilite classification ou prédiction —de nombreuses contributions existent déjà dans
le domaine de l’imagerie, différentes architectures étant aussi appliquées à différentes
situations. Notons que nous bénéficions ici de l’adaptabilité d’un GPU et d’un langage
élaboré (type Python), qui facilitent nos algorithmiques et simulations.

Deux types de réseaux sont considérés par nous : les réseaux de neurones convolutifs
(Convolutional Neural Network ou CNN) et les réseaux de neurones récurrents (Recurrent
Neural Network ou RNN). CNN est un type de réseau neuronal artificiel d’apprentissage
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en profondeur conçu à l’origine pour analyser des images visuelles, tandis que RNN est
conçu pour traiter des données séquentielles et reconnaître des modèles. Et les combinant
en CRNN (Convolutional Recurrent Neural network) sera montré novateur et performant.

Ceci est complété par l’utilisation du retournement temporel (Time Reversal ou TR)
afin de réaliser la localisation d’une source ou d’une ou plusieurs tiges manquantes (vues
comme des sources artificielles de contraste localisées dans la ROI).

L’organisation du manuscrit

Le manuscrit est constitué de sept chapitres principaux. Le chapitre 1 décrit le contexte
de la recherche et résume la contribution de cette thèse. La modélisation directe du
système micro-structuré utilisant deux méthodes différentes, la méthode de diffusion
multiple et la méthode des moments, est présentée au chapitre 2. Le chapitre 3 illustre
méthode d’inversion à contrainte de parcimonie, et méthode d’inversion de source de
contraste, essentiellement avec la binarité étant imposée. L’application des méthodes
basées sur les données suit. Le réseau de neurones convolutif est présenté au chapitre 4,
et le réseau de neurones récurrent l’est aux chapitre 5 et chapitre 6, les détails de mise
en œuvre de la validation expérimentale sont également présentés dans ce chapitre. Le
chapitre 7 contient la méthode d’imagerie directe : le retournement temporel, qui, en
résumant, enregistre une onde entrante puis retransmet sa version inversée dans le temps.
Le chapitre 8 résume le travail accompli et présente quelques perspectives. Les annexes
proposent des documents supplémentaires. La dissémination nationale et internationale
des résultats est fournie à la fin du manuscrit.

L’expérimentation

Cette expérience en chambre anéchoïque a été réalisée sur deux prototypes de micro-
structure diélectrique bien conçus (avec des tiges manquantes), avec la complexité
supplémentaire que les antennes utilisées émettrices et réceptrices sont évidemment 3-D,
même si les tiges sont assez longues. pour s’adapter à l’hypothèse 2-D susmentionnée,
en plus des problèmes d’étalonnage (un champ total est collecté, non pas un champ
diffracté, et l’antenne n’est pas un récepteur ou un transmetteur idéal). Au-delà de
la transmission des données acquises au CNN ci-dessus, le principal défi est de savoir
comment combiner simulations et expériences, par exemple, via des réseaux antagonistes
génératifs (generative adversarial network ou GAN), nous y reviendrons ci-après.
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Sur les résultats

Les performances des différentes méthodes ne peuvent pas être jugées selon un critère
simple, ce sont des avantages et des inconvénients, de chacune, et cela, compte tenu de
la question effectivement posée. Les méthodes semi-analytiques nécessitent une bonne
connaissance de la physique et des mathématiques, elles sont difficiles à comprendre
si ces connaissances ne sont pas disponibles. De l’autre côté, de grandes quantités de
données sont la condition sine qua none de l’utilisation de méthodes d’apprentissage,
mais les performances ne peuvent pas être garanties, car la méthode d’apprentissage
en profondeur ressemble dans une bonne mesure à une boîte noire, bien que beaucoup
s’efforcent d’obtenir plus d’explications ; comme avec la non-linéarité élevée de la capacité
de modélisation de CNN, le RNN apparaît être une bonne approximation de la séquence
temporelle, mais il reste encore beaucoup de questions ouvertes.

Dans l’ensemble, la méthode CNN spécialisée en binaire réalise une reconstruction
précise de la carte de contraste dans tous les cas étudiés, sauf contrastes vraiment
élevés, à la fois en terme de localisation des tiges et en terme de récupération de leurs
contrastes, même si des données bruitées sont entrées. Vérité terrain et la carte récupérée
sont presque impossibles à distinguer. Le cas binaire concerne la localisation des tiges
manquantes, mais le réseau construit peut être utilisé pour obtenir la distribution du
contraste aléatoire, comme il est aussi montré.

Comme discuté dans le manuscrit, CRNN présente de bonnes performances sur
les données générées par MoM, alors que les performances sur les données générées
par FD-TD sont légèrement moins bonnes, et nous n’avons pas pu trouver la raison
exacte de cet écart de comportement. Quant à la méthode de "physique expérimentale",
le retournement temporel, il présente de bonnes performances non seulement pour le
problème de source inverse mais aussi pour le problème de diffraction inverse, étant
souligné que la résolution du résultat n’est pas assez élevée, comme prévu —seule la prise
en compte de résonances de la structure via l’analyse des singularités de sa fonction de
Green (associée à la micro-structure intacte) pourrait le permettre via un développement
adéquat de MST.

D’un autre point de vue, l’applicabilité des méthodes est et demeure un sujet de
préoccupation. La méthode de parcimonie ne peut pas être transférée facilement pour
traiter d’autres problèmes en raison de la modélisation très spécialisée. En revanche,
la méthode d’apprentissage souffre moins de ce type de limitations, les méthodes CNN
ou RNN ont plus de chances de s’appliquer à des problèmes similaires. Pour être plus
précis, avec un réseau bien formé, seules des tâches telles que le réglage des paramètres
ou la modification de certaines couches sont nécessaires pour les adapter à d’autres
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micro-structures, qui seraient différentes en termes de contraste, de nombre, de taille et
d’inter-distance des tiges, et aussi de différentes configurations de mesure.

Le cas binaire et le cas aléatoire sont tous deux analysés dans la présente recherche ;
le cas binaire concerne la localisation des tiges manquantes, et le cas du contraste
aléatoire peut être étendu aux cas généraux de reconstruction d’un objet pour en obtenir
les paramètres physiques exacts, la carte de la permittivité ici. Différentes valeurs et
différentes formes sont également développées dans cette recherche sur ce type d’extension.

Les travaux envisageables

Bien que la micro-structure sous-longueur d’onde ait été analysée en profondeur, par
diverses méthodes, en allant de la modélisation directe à la résolution de problèmes
inverses, d’autres explorations apparaissent d’un bon intérêt.

Tout d’abord, la recherche proposée est toujours limitée à des situations qui sont bi-
dimensionnelles (tiges infiniment longues) ou quasi bi-dimensionnelles (tiges suffisamment
longues), aller à trois dimensions complètes (tiges de hauteur finie, e.g., au plus un couple
de longueurs d’onde) semble nécessaire, une fois noté que le problème en trois dimensions
est plus difficile en termes de modélisation mathématique, simulations numériques,
problèmes inverses eux-mêmes, et expérimentations devant supporter les avancées.

Pour ce qui concerne la partie expérimentale, au-delà de la généralisation à trois dimen-
sions, une correction intelligente entre les données de simulation et celles d’expérimentation
est nécessaire, en utilisant une méthode comme celle des GAN afin de générer les (des)
données simulées, évitant expérimentations manuelles, possiblement chronophages. Pour
mémoire, un GAN se compose d’un discriminateur qui estime la probabilité qu’un échan-
tillon donné provienne de l’ensemble de données réel, et d’un générateur qui produit
des échantillons synthétiques à partir d’une entrée de variable de bruit. Ce dernier
est construit pour capturer la distribution réelle des données afin que les échantillons
génératifs puissent "tromper" le discriminateur pour offrir une probabilité élevée.

Sinon, utiliser les méthodes d’analyse et d’apprentissage proposées pour traiter directe-
ment les données expérimentales demeure une solution. À l’exception de l’application
directe des réseaux de neurones pour les traiter, la combinaison de la physique et des
réseaux de neurones est une voie à suivre. Entre autres exemples, une méthode de
rétro-propagation fournissant une carte de contraste approximative utilisée comme entrée
d’une architecture type U-net se rencontre déjà. L’apprentissage profond peut aussi
être intégré dans la CSI pour de nouvelles améliorations. Les RNN, que nous avons
considérés en combinaison CRNN avec les CNN, sont aussi prometteurs, en combinant
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approche semi-analytique et méthode d’apprentissage, une image profonde étant analysée
pour résoudre le problème inverse en association avec une régularisation classique pour
surmonter le problème du manque de généralisation après entraînement avec données
insuffisantes.

Changement de paradigme, la fusion de données provenant de différentes modalités
d’imagerie peut tirer parti de différents comportements. Les méthodes de fusion sont
diverses, nous ne les considérons pas ici en détail, mais la méthode bayésienne bénéficie
d’une bonne réputation et a fait l’objet de réalisations fructueuses. Quant à une méthode
d’apprentissage, elle rassemblerait les données de différents modèles dans plusieurs canaux
de l’ensemble de données, de sorte que les réseaux neuronaux puissent apprendre les
données en vue de réaliser différents objectifs à partir des informations desdits canaux.
Une remarque, ceci s’appliquerait naturellement à des laminés à fibres, pour lesquels
ultrasons et ondes millimétriques peuvent facilement se combiner au sein d’un contrôle
non destructif, ceci semble moins évident dans notre cas, même s’il existe une littérature
originale portant sur des réseaux de fils et retournement temporel en acoustique sonore.
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Chapter 1

Introduction

1.1 Research background

Micro-structures, the type of object under investigation herein, are usually made of a
number of elements of same nature, which are distributed in periodic fashion within a
certain region of space most of the time, and the characteristic size of such elements
and their separation, which have sub-wavelength features, are measured with respect
to the wavelength of operation for the time-harmonic single-frequency signals, or to
the frequency band of operation for multi-frequency signals [1], [2]. Micro-structures
have applications in industry and daily life, so the good understanding and analysis is
necessary.

If phononic and photonic crystals well correspond to the above description, this
is also the case with fibered laminates as now common in aeronautic and automotive
work pieces, while antenna arrays devoted to agile illuminations as well as to privileged
communications can also be seen as fitting to that description. And if considering those
situations, people often ask how does a micro-structure behave if some elements do
not work as expected or are simply missing or differ from the nominal element, be the
resulting phenomenon appreciated in terms of radiation (e.g., the array) or scattering
(e.g., the crystal, the laminate).

So, the challenge is multi-fold, since a good understanding and analysis of the intact
as well as the possibly affected micro-structures are needed, and since we need to test
those, locate any meaningful change, and at best in effect map what is happening in the
micro-structure, possibly reaching far beyond the Rayleigh criterion.

Plenty of imaging tools have already been developed in past years, and a microwave
imaging method is often chosen for multiple advantages, like the low cost and safe
implementation, compared with other methods. For example, ultrasonic methods are
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often applied for the characterization of metals and alloys, but it requires a coupling
medium, and significant attenuation of the high-frequency components might cause miss-
detection. Infra-red thermography is also widely applied, however it does not with the low
lossy medium. Lots of methods based on microwave imaging then have been developed,
like time reversal, linear sampling, Born approximation, distorded Born approximation,
contrast source inversion or subspace-based optimization methods, and so on. Different
methods are developed in effect for different situations of application, and each also has
its own merits.

The micro-structure in my work contains a grid-like set of a finite number of circular
cylindrical dielectric rods, the radius of a rod being quite small and the adjacent rods
being close to each other, such dimensions smaller than the sub-wavelength. In view of
the sub-wavelength feature, the main challenge is how to achieve meaningful localization,
resolution-enhanced or even, super-resolved.

Super-resolution is hard to achieve by conventional methods with the existence of
sub-wavelength geometrical features. This calls for smart approaches and also proper
use of priors, while trying to mitigate computational costs and being reliable even if data
were to be erroneous or scarce. As a result, conventional methods combined with some
prior information or data-driven methods can provide some new direction to solve the
problem. Some examples of the above are found in the contributions [3] and [4]; the
work in [3] is specially dedicated to non-destructive electromagnetic testing with the
sparsity-constrained method to diagnose the composite materials. In contrast, the work
in [4] is to be applied in the field of telecommunications, using time reversal to realize the
super-resolution of an antenna array in order to increase the transmission performance.

To deal with complex micro-structured systems, exhaustive understanding of physics as
support of the wave and field analysis is necessary, which means that the characterization
of material structures from electromagnetic fields which are scattered under given wave-
field illuminations should be analysed in a proper mathematical framework; such a work
requires effort on computational modelling, imaging, and signal processing as well.

As the start of my research, two methods have been used to proceed with the forward
modelling of the micro-structure. The so-called multiple scattering method (MST) [5], [6]
is specialized to the circular cylindrical rod case, and is based on rigorous cylindrical wave
expansions tailored to this peculiar geometry1. It is quite accurate for the investigated
structure as cylindrical waves are easily accounted for.

1More elaborate developments, e.g., [7], make it possible to treat non-circular cylinders, but those lie
outside our scope of study, especially as the rod diameters are small compared to the wavelength and
their contribution would then be limited.
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Another approach is the method of moments (MoM) [8]; this method as is well-known
converts the integral equations which describe the field into a discrete system, here one
has been choosing for the sake of simplicity (with still maintaining proper accuracy)
pulse basis functions and delta testing functions. Yet we need to mention that each
method has advantages and limitations, as an example the MST as deployed is limited
to our specific geometry which is not the case as obvious of the MoM (imagine squared
cross-sections of rods).

The Finite Difference Time Domain (FDTD) method is also used for the work in
time domain with the help of an open source software named gprMax [9]. The core of
FDTD algorithm is that the time-dependent Maxwell’s equations are discretized using
central-difference approximations to the space and time partial derivatives, and then,
to simulate the response of the interaction between the assumed pulse signals and the
object interacting with.

Once accurately modeled the forward problem, the inverse one can be solved by
different methods from closed-form methods to learning methods. There are already
many well developed analytical methods, as said in the above, like the distorted Born
approximation, the subspace optimization method and many variants. As for the contrast
source inversion (CSI) method, it is one of the most commonly used methods for inverse
scattering problems, two sequences, namely, the contrast and the contrast source being
alternately updated using the conjugate gradient direction by minimizing an objective
function which combines normalized mismatches in the data equation and in the state
equation. In the research, we not only use the traditional CSI but we also take advantage
of the binary information to achieve a better performance, binary here meaning that
the normal status (an effectively present rod) is represented by 1 and any missing rod is
represented by 0.

Another method is based on sparsity [10], [11], i.e., it takes sparsity as the prior
information [12]. In brief, considering the system faced with, the missing rods are
expected to be few compared with the number of normal rods, so those missing rods can
be treated as sources inside the periodic structure in the forward modelling. Sparsity-
constrained equivalent-source inversion [13], involving cylindrical wave expansion of the
field everywhere can thus yield the location of missing rods provided that those are
indeed few and that the intact structure is known beforehand, and in doing so it yields
super-resolution (in terms of diagnostic of absence/presence of a sub-wavelength-sized
rod) yet at the price of strong hypotheses about the damaged micro-structure as just
insisted upon.
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In an era of explosive data growth, data-driven methods play a more and more
important role in different aspects. Unlike aforementioned methods for which the
problem is explicitly defined and domain knowledge carefully engineered into the solution,
learning methods do not benefit from such prior knowledge and instead they make use
of large data sets in order to learn the unknown solution to the inverse problem. A
lot of learning methods are applied to solve the electromagnetic problems, one popular
machine learning method —support vector regression(SVM)— has created significant
results in non-destructive evaluation, artificial neural networks are widely used in the
medical imaging problem [14], including imaging and image processing, like medical
images segmentation.

Neural networks have been applied to electromagnetic detection for a long time [15].
With the exploration of big data and improvement of computational performance of
computers, deep neural networks play a more and more important role among numerous
learning methods. The increase of the number of layers improves the performance of the
neural network, by layer-by-layer feature extraction, the feature representation of samples
in original space is transformed into a new feature space, which makes classification or
prediction easier.

Convolutional neural networks (CNN) and recurrent neural networks (RNN) are two
of the most important deep learning models [16] and are widely used in tasks like natural
language processing, image processing, and pattern recognition, to mention but a few of
applicative fields. CNN is a type of artificial deep learning neural network designed to
analyse visual images, while RNN is designed to process sequential data and recognize
patterns, which has achieved good results in text generation, machine translation, and
face detection [17], [18], without pretence to exhaustivity of our tour of the literature.

Quite many contributions are already made by the researchers in the imaging domain,
different architectures are applied to different situations [19], [20]. Neural networks learn-
ing techniques are also considered to tackle detection and imaging issues in applications
of the ground penetrating radar [21], [22], [23], the modified neural network is applied to
contribute to antenna design and optimization [24]. Neural networks are also used to
analyse model-based sensitivity of non destructive testing systems [25].[26], RNN is used
in Magnetic Resonance image reconstruction [27], and there are also existing works that
analyse the equivalence between wave dynamics and recurrent neural networks [28].

As introduced in the above, most of the work in this thesis is about the inverse
scattering problem related to the probing of a micro-structure, mapping from the scattered
field to the dielectric distribution of the region of interest (ROI) containing the said
micro-structure being run so as to realize the localization of the missing rods. In effect,
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Figure 1.1: Structure of the work, the same color means the corresponding process

some further works like using time reversal in order to realize the localization of a source
have also been carried out to investigate the micro-structure from different points of view.
Time reversal is a direct imaging method with the help of time reversal mirror [29], [30],
it can be carried out in the frequency domain or in the time domain. Time reversal has
plenty of applications, for example, telecommunications, source localizations, medical
imaging. In the present research, time reversal is used to find the active source and the
missing rods, which are consequently regarded as passive sources.

Laboratory-controlled experiments in a microwave anechoic chamber have also been
carried out to perform further validation of our research on a micro-structure prototype,
experiments being performed in a broad band. The work about these experiments involves
calibration of the experimental data and simulated data, and aims at validation of the
previous methods, like CNN, using such experimental data.

1.2 Outline

The thesis contains seven main chapters in full. Chapter 1 (this one) describes the
background of the research and summarizes the contribution of this thesis. The forward
modelling of the micro-structure system using two different methods, namely, multiple
scattering method and method of moments, is introduced in Chapter 2. Chapter 3
illustrates two conventional inversion methods: using sparsity prior information inversion
method and contrast source inversion method. As for the application of data-driven
methods: convolutional neural networks are presented in Chapter 4, recurrent neural
networks are presented in Chapter 5 and Chapter 6 for both time domain and frequency
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domain, the implementation details of the experimental validation are also introduced
in this chapter. Chapter 7 contains the direct imaging method: time reversal, Chapter
8 summarizes the achieved work and outlines some perspectives. In Fig. 1.1, the main
work is sketched, here alos including the direct imaging method (time reversal is not
strict inversion method, technically). Appendices provide supplementary materials. The
dissemination of the work is also listed at the end of the manuscript.



Chapter 2

Modelling of the forward problem

The direct problem is about modelling the physics of the interaction between a known
interrogating (electromagnetic) wave and the object, which is supposed to be known
as well. The configuration of the system is sketched in Fig. 2.1. Sources and receivers
are put outside of the region of interest (ROI) in free space (air), and a finite number
of infinitely long circular cylindrical rods, indexed l, counting from left to right, top to
bottom in the structure —consider a cross-sectional transverse plane as displayed in the
figure—, with same radius c, are periodically arranged inside the ROI with period d

(counted in this transverse plane), λ is the wavelength in air, here c and d are smaller
even much smaller (the radius) than the wavelength, which means that each rod is thin
and close to its neighbours with respect to the wavelength of operation. Rods in the
structure are homogeneous, isotropic, their common relative dielectric permittivity being
ϵr, the relative permeability being unit, µr = 1, yet some of the rods may also be absent,
with then ϵr = 1.

The scattered field is collected by receivers when the structure is illuminated by the
transmitters. From the collected field samples, we can attempt to determine the physical
or geometrical properties of the probed micro-structure. Emphasize that the essential of
the work considered thereafter deals with a Transverse Magnetic or TM field polarization
(the electric field is orientated parallel to the axis, unit vector ez, of the rods, and has
only a single component). Examples with the dual Transverse Electric or TE polarization
and the corresponding z-orientated single-component magnetic field are found in Chapter
6. Whenever time-harmonic fields, the dependance, implied from now, is e−jwt.
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ROI

T/R

Figure 2.1: Inverse scattering architecture, T: transmitter, R: receiver.

2.1 Multiple scattering method

The multiple scattering method is the mathematical formalism that can be used handily
to describe the propagation of a wave through a collection of scatterers, and it is already
well applied in acoustics and optics [5]. In the research, as seen, the micro-structure is
composed of collection of rods, line sources are used to illuminate the structure, sources
are of unit amplitude and radiate a single-component electric field H

(1)
0 (krs)/4i, H

(1)
0

zero-order first-kind Hankel function, rs the distance between observation point and
the line source. For the field of the model described by the multiple scattering method,
within the vicinity of the l-th rod, the exterior field in local coordinates is written as

Eext(r) =
∞∑

m=−∞
[Al

mJm(krl) + Bl
mH(1)

m (krl)]eimθl , (2.1)

where Jm and H(1)
m are the Hankel function of m-th order and the first-kind Bessel

function of m-th order, k is the wave number in air, r = (rl, θl) are coordinates of
observation point in local coordinate system originated at the center of the l-th rod.

The field outside the rod is a summation of fields scattered by all rods and the one
due to the emitting source,

Eext(r) =
L∑

l=1

+∞∑
m=−∞

Bl
mH(1)

m (k|r − cl|)eim arg(r−cl) + 1
4i

H
(1)
0 (k|r − cs|). (2.2)
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where cl is the center of l-th rod and cs is the center of the source. Applying Graf’s
addition theorem (refer to Appendix A) to Eq. 2.2,

H(1)
m (k|r−cq|)eim arg(r−cq) =

+∞∑
p=−∞

H
(1)
p−m(k|cq −cl|)e−i(p−m) arg(cq−cl)Jp(k|r−cl|)eip arg(r−cl),

(2.3)

H
(1)
0 (k|r − cs|) =

+∞∑
p=−∞

H(1)
p (k|cs − cl|)e−ip arg(cs−cl)Jp(k|r − cl|)eip arg(r−cl), (2.4)

then one can exchange m and p and express the global field expansion in the local
coordinates of the lth cylinder, so as we get

Eext(r) = 1
4i

+∞∑
m=−∞

H(1)
m (kcls)e−imθlsJm(krl)eimθl +

+∞∑
p=−∞

Bl
pH(1)

p (kcl)eipθl

+
L∑

q=1,q ̸=l

+∞∑
p=−∞

Bq
p

+∞∑
m=−∞

H
(1)
m−p(kclq)e−i(m−p)θiqJm(krl)eimθl .

(2.5)

By equating the global expansion Eq. 2.5 with the local expansion Eq. 2.1, the following
equations are obtained,

∞∑
m=−∞

Al
mJm(krl)eimθl = 1

4i

+∞∑
m=−∞

H(1)
m (kcls)e−imθlsJm(krl)eimθl

+
L∑

q=1,q ̸=l

+∞∑
p=−∞

Bq
p

+∞∑
m=−∞

H
(1)
m−p(kclq)e−i(m−p)θiqJm(krl)eimθl ,

(2.6)

Al
m = 1

4i
H(1)

m (kcls)e−imθls +
L∑

q=1,q ̸=l

+∞∑
p=−∞

Bq
pH

(1)
m−p(kclq)e−i(m−p)θiq , (2.7)

and they can be rewritten as

Al
m = K l

m +
L∑

q=1,q ̸=l

+∞∑
p=−∞

Slq
mpBq

p, (2.8)

where
K l

m = 1
4i

H(1)
m (kcls)e−imθls , (2.9)

Slq
mp = H

(1)
m−p(kclq)e−i(m−p)θiq , (2.10)
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so the matrix form is
A = SB + K, (2.11)

where (clq, θlq) are the local polar coordinates of clq = cl − cq meaning the position of
cylinder q relative to cylinder l, and (cls, θls) are the local polar coordinates cls= cs- cl.
The interior field expansion within the rod l in such a local system is

Eint(r) =
∞∑

m=−∞
[C l

mJm(k√
ϵrrl) + Ql

mH(1)
m (k√

ϵrrl)]eimθl , (2.12)

Ql
m = χlJm(k√

ϵrr
s
l )e(−imθs

l )/4i, (2.13)

where χl equals to 1 if a line source would be present inside and 0 otherwise, (rs
l , θs

l ) are
polar coordinates of the line source in the local coordinate system associated with the
l-th rod. The interior field expansion within the rod l in global coordinates is written as:

Eint(r) =
L∑

l=1

+∞∑
m=−∞

C l
mJ (1)

m (k√
ϵr|r − cl|)eim arg(r−cl) + 1

4i
H

(1)
0 (k√

ϵr|r − cs|). (2.14)

The boundary continuity conditions shown in Fig. 2.2 are expressed in terms of cylindrical
harmonic reflection and transmission coefficients as:

Bl
m = Rl

mAl
m + T l

mQl
m, (2.15)

C l
m = T

′l
mAl

m + R
′l
mQl

m, (2.16)

or in matrix form,
B = RA + TQ, (2.17)

C = T′A + R′Q, (2.18)

B = (I − RS)−1(RK + TQ). (2.19)

To calculate the reflection and transmission coefficients, the boundary conditions at a
smooth enough boundary between a medium 1 and a medium 2, with the cylindrical coor-
dinate system, for the TM case of our main interest, the angular and radial components
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Figure 2.2: Cylindrical wave expansion coefficients

of the electric field being null, read as

∂E1

∂r
|rl=al

= ∂E2

∂r
|rl=al

, (2.20)

∂E1

∂θ
|rl=al

= ∂E2

∂θ
|rl=al

, (2.21)

where al is the radius of the l-th cylinder, actually in the structure all the rod has same
radius al = c. Upon application of the relation in Eq. 2.1 and Eq. 2.12,

k
∞∑

m=−∞
[Al

mJ ′
m(kal)+Bl

mH(1)′

m (kal)]eimθl = k
√

ϵr

∞∑
m=−∞

[C l
mJ ′

m(k√
ϵral)+Ql

mH(1)′

m (k√
ϵral)]eimθl ,

(2.22)

i
∞∑

m=−∞
m[Al

mJm(kal)+Bl
mH(1)

m (kal)]eimθl = i
∞∑

m=−∞
m[C l

mJm(k√
ϵral)+Ql

mH(1)
m (k√

ϵral)]eimθl .

(2.23)
From Eq. 2.22 and Eq. 2.23, one can know the expression of Bl

m, and from the comparison
with the Eq. 2.19, one can get the values of Rl

m T l
m Rl′

m T l′
m as:

Rl
m = −

√
ϵrJ

′
m(k√

ϵral)Jm(kal) − Jm(k√
ϵral)J ′

m(kal)
√

ϵrJ ′
m(k√

ϵral)H(1)
m (kal) − Jm(k√

ϵral)H(1)′
m (kal)

, (2.24)

T l
m =

√
ϵrJm(k√

ϵral)H(1)′
m (kal) − √

ϵrJ
′
m(k√

ϵral)H(1)
m (k√

ϵral)
Jm(k√

ϵral)H(1)′
m (kal) − nlJ ′

m(k√
ϵral)H(1)

m (kal)
, (2.25)
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Rl′

m = −
√

ϵrH
′
m(k√

ϵral)H(1)
m (kal) − H(1)

m (k√
ϵral)H(1)

m (kal)
√

ϵrJ ′
m(knlal)H(1)

m (kal) − Jm(k√
ϵral)H(1)′

m (kal)
, (2.26)

T l′

m = Jm(kal)H(1)′
m (kal) − J ′

m(kal)H(1)
m (kal)

Jm(k√
ϵral)H(1)′

m (kal) − √
ϵrJ ′

m(k√
ϵral)H(1)

m (kal)
. (2.27)

From these values, one can calculate the A, B, C, Q, so that the field can be gotten.
The field calculated by the multiple scattering method is well applied in the time reversal
direct imaging method, and the sparsity-constrained inversion method, more detail is in
next chapters.

2.2 Method of moments

The interaction between wave and object is described in this approach by the Helmholtz
wave equation. Applying the Green’s theorem to this equation and taking into account
the conditions of continuity of the fields and of radiation at infinity, the forward problem
can be appraised from an integral representation of the electric field consisting of two
coupled integral equations: observation and state equations. The solution of the direct
problem requires the discrete counterparts of these integral equations which are obtained
in an algebraic framework using the method of moments [8].

Letting the p−th transmitter illuminating the ROI, the state equation describes the
electric field

Etot
p (r) = Einc

p (r) + k2
∫

D
g(r, r′)χ(r′)Etot

p (r′)dr′, r ∈ D, (2.28)

where Etot
p (r) is the total electric field, Einc

p (r) the incident field, and g(r, r′) the 2-D
scalar Green’s function, χ(r) being the dielectric contrast defined as ϵr(r) − 1, D is the
region of interest. The other equation is the observation equation

Esca
p (r) = k2

∫
D

g(r, r′)χ(r′)Etot
p (r′)dr′, r ∈ S, (2.29)

where Esca
p (r) is the scattered field, S is the region of observation. Here, one defines

Jp(r) = χ(r)Etot
p (r) as the contrast source, and henceforth considers operators Gs and

Gd as
Gs(Jp) = k2

0

∫
D

g(r, r′)Jp(r′)dr′, r ∈ S, (2.30)
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Gd(Jp) = k2
0

∫
D

g(r, r′)Jp(r′)dr′, r ∈ D, (2.31)

so the equations can be concatenated as

Etot
p (r) = Einc

p (r) + Gd(χEtot
p ), r ∈ D, (2.32)

Esca
p (r) = Gs(χEtot

p ), r ∈ S. (2.33)

From these two equations the value of Etot
p and Esca

p can be calculated. The method of
moments is used to that effect, with pulse basis functions and delta testing functions, in
order to convert the integral equations into a linear system solved numerically.

Let L be a linear operator L : G → H, and h = L(g) where g ∈ G and h ∈ H, the
purpose here is determine g as knowing L and h. The function g can be written in
the form g = ∑I

i=1 αiui, where αi is constant coefficient u1, u2, ..., uI are a set of basis
functions. The property of linearity of the operator L is

h = L(g) = L(
I∑

i=1
αiui) =

I∑
i=1

αiLui. (2.34)

To approach Eq. 2.34 by a discrete linear system, a set of test functions t1, t2, .., tN is
introduced, so,

⟨tn, h⟩H =
I∑

i=1
αi⟨tn, Lui⟩,∀n = 1, ..., N, (2.35)

where ⟨., .⟩H is a scalar product on H such as ⟨tn, h⟩H =
∫

H tn(x)h∗(x)dx. By omitting
the index H, we can obtain the algebraic writing h = Lα with

L =


⟨t1, Lu1⟩ ⟨t1, Lu2⟩ . . . ⟨t1, LuI⟩
⟨t2, Lu1⟩ ⟨t2, Lu2⟩ . . . ⟨t2, LuI⟩

... ... . . . ...
⟨tN , Lu1⟩ ⟨tN , Lu2⟩ . . . ⟨tN , LuI⟩

 , α =


α1
...

αI

 , h =


⟨t1, h⟩

...
⟨tN , h⟩

 ,

so α = L−1h, then the value of g = ∑I
i=1 αiui is determined. The method of moments is

used to solve the state and observation equations, the choice of basis functions and test
functions essentially depends upon the nature of the physical state. The ROI is divided
into N small square subunits Dn, whose centres are located at ri (i = 1, 2, ..., N). One
take basis functions as the characteristic functions of the pixels partitioning the domain
D, hence field and permittivity are assumed to be constant within each pixel. E(r) and
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Figure 2.3: Division of ROI into N cells

χ(r) are approximated by using pulse basis functions defined over the square cells:

E(r) =
N∑

i=1
Eif(ri − r), (2.36)

χ(r) =
N∑

i=1
χif(ri − r), (2.37)

where f(ri − r) is the basis function defined as

f(ri − r) =

1 r ∈ Di

0 r /∈ Di

(2.38)

where χ is a N ×1 vector storing the samples of χ(r). The test functions are a distribution
of Dirac δ located at the center of the pixels, so

Einc(r) =
N∑

i=1
Einc

i δ(ri − r), δ(ri − r) =

1 r = ri

0 r ̸= ri

(2.39)

So, upon projection of the basis functions onto the state equation:

Etot(r) = Einc(r) + k2
0

N∑
i=1

∫
Di

g(r, r′)f(r − r′)dr′χiE
tot
i , (2.40)
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then one projects the test functions by Eq. 2.39

Etot
j = Einc

j + k2
0

N∑
i=1

∫
Di

g(r, r′)f(rj − r′)dr′χiE
tot
i , j = 1, ..., N, (2.41)

thus the linear system to be solved is

Einc
j =

N∑
i

[δji − Gijχi]Etot
i with Gij = k2

0

∫
Di

g(rj, r′)dr′ (2.42)


Einc

1

Einc
2
...

Einc
N

 =


1 − G11χ1 G12χ2 . . . G1NχN

G21χ1 1 − G22χ2 . . . G2NχN

... ... . . . ...
GN1χ1 1 − GN2χ2 . . . 1 − GNNχN

 ×


Etot

1

Etot
2
...

Etot
N

 ,

so the result is
Etot

1

Etot
2
...

Etot
N

 =


1 − G11χ1 G12χ2 . . . G1NχN

G21χ1 1 − G22χ2 . . . G2NχN

... ... . . . ...
GN1χ1 1 − GN2χ2 . . . 1 − GNNχN



−1

×


Einc

1

Einc
2
...

Einc
N

 .

Similarly, by applying

Etot =
N∑

i=1
Etot

i f(ri − r), (2.43)

χ(r) =
N∑

i=1
χif(ri − r), (2.44)

the observation equation for z−th receiver,

Esca
z (r) = k2

0

N∑
i=1

[∫
Di

g(r, r′)
]

χiE
tot
i dr′, (2.45)

where
∫

Di
g(r, r′) can be calculated easily. For Nr receivers,


Esca

1

Esca
2
...

Esca
Nr

 =


G11 G12 . . . G1N

G21 G22 . . . G2N

... ... . . . ...
GNr1 GNr2 . . . GNrN

 ×


χ1 0

χ2

0
. . .

χN

 ×


Etot

1

Etot
2
...

Etot
N
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As demonstrated above, by using MoM, a discrete version of the problem is obtained.
The field calculated by MoM is used in the contrast source inversion method and the
CNN application, as detailed in next chapters.

2.3 Validation of the modelling
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Figure 2.4: Comparison of two methods (MSM, MOM) for ϵr = 2.5 (left) and ϵr = 10
(right).
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Figure 2.5: Comparison of two methods (MSM, MOM) for ϵr = 2.5 (left) and ϵr = 10
with three rods missing.

To validate the reliability of the proposed two methods, in Fig. 2.4, the two methods
based on Multiple Scattering Method (MSM) and MoM are compared. The parameter of
the structure for the comparison are that d equals λ/12, r equals λ/12 and D equals 7.2λ,
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the source is at the position(7.2λ, 0), and 36 receivers are used to collect the scattered
field.

As shown, not only for the case shown here when the dielectric contrast is equal
to 2.5, but in effect as observed up to such a contrast reaching of the order of 10, the
scattered fields calculated by both methods match; though there still exists a difference
at some receivers, which might be caused by the discrimination of MoM, i.e., the number
of cells used in it, herein the region of interest in divided into 50 × 50 cells, and/or the
truncation of the cylinder wave expansion (the upper mode number being automatically
chosen, and a number of previous references quoted therein) within the MSM.

The calculated fields for the structure which contains missing rods are shown in
Fig. 2.5, the two methods still match well. One thing should be mentioned, the MSM
takes much less time than the MoM, since the computational time of MoM depends upon
the number of cells, for example, using 50 × 50 cells takes a relative short time compared
with the 80 × 80 cells respecting to achieving the same calculated field accuracy.





Chapter 3

Sparsity constrained inversion and
contrast source inversion

3.1 Sparsity constrained method

The imaging performances are expected to be better if more prior information about the
probed object is provided. Here, the missing rods can be treated as equivalent (fictitious)
sources of unknown location inside the structure. The equivalence theory provides a
link between the collected data and the expansion coefficients of equivalent sources, the
non-zero elements of which indicate the index of a missing rod. With data from sources
and receivers in use, the solution is achieved by sparsity-constrained method hereafter.

The possibility of finding missing rods by analysing its electromagnetic responses
relies on the perturbation of the background field due to the missing rods. The evaluation
of this perturbation is performed with the Lippman-Schwinger integral formulation:

Ẽ(r) − E(r) =
L∑
l

∫
Dl

G(r, r′)(k2
l − k2ϵr)Ẽ(r′)dr′ (3.1)

D

d
c

observation point

Figure 3.1: Sketch of the missing-rod scattering configuration.
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where E denotes the total field by the well-organized structure and parameters with ∼
above are associated with the disorganized structure with missing rods, Dl is the surface
area of the l-th missing rod, and G(r, r′) is the Green’s function for the case that the
line source is located at r′ when there is no missing rod in the structure. That is

G(r, r′) =
L∑

j=1

∞∑
m=−∞

Bj
m(r′)H(1)

m (krj)eimθj , (3.2)

and
Ẽ(r′) =

∞∑
m′=−∞

C̃ l
m′Jm′(klr

′
l)eim′θ′

l , (3.3)

within which (r′
l, θ′

l) are polar coordinates of r′ in the local coordinate system with respect
to the l-th missing rod. Substituting Eq. 3.2 and Eq. 3.3 into Eq. 3.1,

Ẽ(r) − E(r) =
L∑
l

∫
Dl

L∑
j=1

∞∑
m=−∞

Bj
m(r′)H(1)

m (krj)eimθj (k2
l − k2ϵr)

∞∑
m′=−∞

C̃ l
m′Jm′(klr

′
l)eim′θ′

ldr′

=
L∑

j=1

∞∑
m=−∞

H(1)
m (krj)eimθj (k2

l − k2ϵr)
∞∑

m′=−∞

L∑
l=1

C̃ l
m′

∫
Dl

Bj
m(r′)Jm′(klr

′
l)eim′θ′

ldr′

=
L∑

j=1

∞∑
m=−∞

H(1)
m (krj)eimθj (k2

l − k2ϵr)
∞∑

m′=−∞

L∑
l=1

C̃ l
m′υ

(3.4)
where υ =

∫
Dl

Bj
m(r′)Jm′(klr

′
l)eim′θ′

ldr′, in υ, Bj
m(r′) is calculated by Eq. 3.6, since no

exterior source in the derivation of the Green’s function, K = 0. Then Bj
m can be

expressed as
B = (I − RS)−1TQ. (3.5)

Denoting W = (I − RS)−1T, so B = WQ, since the Green’s function is calculated with
only a line source located inside the l-th rod, Bj

m(r′) is calculated by

Bj
m(r′) =

∞∑
n=−∞

W j,m
l,n

1
4i

Jn(k√
ϵrr

′
l)e−inθ′

l (3.6)
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in which W j,m
l,n indicates the element corresponding to l-th rod and n-th mode, and j-th

rod and m-th mode. So,

υ =
∫

Dl

Bj
m(r′)Jm′(klr

′
l)eim′θ′

ldr′

=
∫ c

0

∫ 2π

0

∞∑
n=−∞

W j,m
l,n

1
4i

Jn(k√
ϵrr

′
l)e−inθ′

lJm′(klr
′
l)eim′θ′

ldr′
ldθ′

l

=
∞∑

n=−∞
W j,m

l,n

1
4i

∫ c

0
Jn(k√

ϵrr
′
l)Jm′(klr

′
l)dr′

l

∫ 2π

0
e−inθ′

leim′θ′
ldθ′

l,

(3.7)

two formulas are applied to solve the equation
∫ 2π

0
e−inθ′

leim′θ′
ldθ′

l = 2πδ(m′ − n), (3.8)

and

∫
xJp(αx)Jp(βx)dx =


αxJp+1(αx)Jp(βx)−βxJp(αx)Jp+1(βx)

α2−β2 , forα ̸= β

x2

2 [(Jp(αx))2 − Jp−1(αx)Jp+1(αx)], for α = β.
(3.9)

Thus υ becomes

υ =



πc

2i(k2ϵr − k2
l )

∞∑
n=−∞

W j,m
l,n [k√

ϵrJn+1(k
√

ϵrc)Jn(klc) − klJn(k√
ϵrc)Jn+1(klc)]δ(m − n′)

forkl ̸= k
√

ϵr

πc2

4i

∞∑
n=−∞

W j,m
l,n [(Jn(√ϵrc))2 − Jn−1(k

√
ϵrc)Jn+1(k

√
ϵrc)]δ(m − n′)

for kl = k
√

ϵr

(3.10)
so Eq. 3.4 becomes as

Ẽ(r) − E(r) =
L∑

j=1

∞∑
m=−∞

H(1)
m (krj)eimθj

L∑
l=1

∞∑
n=−∞

W j,m
l,n ql

n (3.11)

in which

ql
n =

−πc
2i

C̃ l
n[k√

ϵrJn+1(k
√

ϵrc)Jn(klc) − klJn(k√
ϵrc)Jn+1(klc)], for kl ̸= k

√
ϵr

πc2(k2
l −k2ϵr)
4i

C̃ l
n[(Jn(k√

ϵrc))2 − Jn−1(k
√

ϵrc)Jn+1(k
√

ϵrc)], for kl = k
√

ϵr

(3.12)
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and it can be simplified as

ql
n =

−πc
2i

C̃ l
n[k√

ϵrJn+1(k
√

ϵrc)Jn(klc) − klJn(k√
ϵrc)Jn+1(klc)], for kl ̸= k

√
ϵr

0, for kl = k
√

ϵr

(3.13)
which means that, if the l-th rod is missing, ql

n is non-zero, and zero otherwise. Denoting
that

bj
m =

L∑
l=1

∞∑
n=−∞

W j,m
l,n ql

n, (3.14)

then one can get

Ẽ(r) − E(r) =
L∑

j=1

∞∑
n=−∞

bj
mH(1)

m (krj)eimθj (3.15)

By comparing the expression of Ẽy(r) − Ey(r) in Eq. 3.15 with the one of the Green
function in Eq. 3.2, and comparing the expression of Bj

m in Eq. 2.19 with the one of bj
m in

Eq. 3.14, one interesting fact observed is that the calculation approach of Ẽy(r)−Ey(r) is
similar with the calculation of the Green function, but changing Ql

n = 1
4i

Jn(k√
ϵrr

′
l)e−inθ′

l

to ql
n. As Ql

n are coefficients of field scattered by interior line source, ql
n can be interpreted

as those of the field scattered by cylindrical source.

Considering the general situation of a receiver array with Nr elements and a source
array with Ns elements, for the υ-th source, values of Ed

y (r) collected by the receiver array
are composed of a column vector gυ = [Ed

y (r1), Ed
y (r2), ..., Ed

y (rNr)]T with dimension Nr,
υ = 1, 2, .., Ns, rn position of the n-th receiver element, the subscript T being transpose
operator, so Eq. 3.15 becomes as

gυ = Hbυ (3.16)

where H =


H

(1)
−M(kr1

1)ei(−M)θ1
1 H

(1)
−M+1(kr1

1)ei(−M+1)θ1
1 · · · H

(1)
M (kr1

L)ei(M)θ1
L

H
(1)
−M(kr2

1)ei(−M)θ2
1 H

(1)
−M+1(kr2

1)ei(−M+1)θ2
1 · · · H

(1)
M (kr2

L)ei(M)θ2
L

... ... . . . ...
H

(1)
−M(krNr

1 )ei(−M)θNr
1 H

(1)
−M+1(krNr

1 )ei(−M+1)θNr
1 · · · H

(1)
M (krNr

L )ei(M)θNr
L

 ,

within which (rn
l , θn

l ) are the polar coordinates of rn in the local coordinate system with
respect to the l-th rod, so

bυ = Wqυ, (3.17)

where qυ = [q1, q2, ..., qL]T , ql being coefficient vector associated with the l-th rod, and
ql = [ql

−M , ql
−M+1, ..., ql

M ]. As the expression HW is invariant with the sources, taking
different gυ as columns, the data matrix Y is defined as Y = [g1, g2, ..., gNs ], and denoting
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Q = [q1, q2, ..., qNs ],
Y = HWQ, (3.18)

Let us define G = HW, thus, the equation in matrix form linking collected data and
locations of missing rods reads as

Y = GQ, (3.19)

without noise corruption. Considering additive noise, assumed to be Gaussian random
herein.

Y = GQ + N. (3.20)

The goal is to get the information about indexes of missing rods from the multi-static
response matrix. If there is only a single emitting source, Q becomes a column vector.
If the l-th rod is missing, the corresponding element in Q is non-zero. In the general
situation, only few rods are missing, so most elements in Q are zero, so Q is sparse. The
imaging performance is expected to be better because there is sparsity prior information
available about the structure.

With an incident field of frequency low enough, when the radius of the rod c <

(0.31λ/(2π
√

ϵ)), (k√
ϵrc)1/3 + k

√
ϵrc can be smaller than 1 so that M = int((k√

ϵrc)1/3 +
k
√

ϵrc) is reduced to 0 without a security factor [31]; consequently, G = G0, Q = Q0.

Since sparsity can be accurately evaluated via a l0 norm which counts the number of
non-zero elements, the optimal problem becomes

Q = arg min∥Q∥0, s.t.∥Y − GQ∥2
2 ≤ τ 2, (3.21)

where the parameter τ is decided by the noise variance.

Solving such an equation would call for exhaustive enumeration of all possible locations
of non-zero entries in Q, which is NP hard. However, when there are sufficient collected
data, ℓp norm can provide a good approximation of ℓ0 norm, the definition of ℓp being

∥Q∥p
p =

L∑
i=1

|Qi|p, 0 < p ≤ 1, (3.22)

where one uses p = 0.8 after numerical trial, so the optimization problem can be rewritten
as

Q = arg min∥Q∥p, s.t.∥Y − GQ∥2
2 ≤ τ 2, (3.23)
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and expressed using the Lagrangian form

Q = arg minJ(Q) = ∥Y − GQ∥2
2 + γ∥Q∥p, (3.24)

where the parameter γ realizes a trade-off between sparsity and quality of the data fit.
If γ increases, more weight is put on the sparsity. Using gradient-descent and L-curve
methods [32], [33], one can solve the optimization problem. When ∇J(Q) = 0,

∇J(Q) = 2GHGQ − 2GHY + 2βΠ(Q)Q = 0, (3.25)

where H is transpose operation and β = pγ/2.
An algorithm is developed based on the methodology sketched above which is shown in

the flow chart below. In it, ξ is the threshold to stop the whole algorithm, ξ = 10−8, and δ

should be small enough not to affect the behavior of the solution, e.g., δ = 10−3max{Qi}.
Based on this algorithm, Q(k) is the solution at the k-th iteration, the regularization
parameter β being updated at each iteration to ensure the trade-off effectively.

Algorithm 1 Optimization algorithm of locating missing rods
1: Initialization: Q(0) = 0 and k = 0;
2: Update Π(Q(k)) using gradient-descent method, herein Π(Q) = diag{|Q2

i + δ|(p/2−1)};
3: Select optimal parameter using L-curve method;
4: Q(k+1) =

[
GHG + β(k)Π(Q(k))

]−1
GHY;

5: k = k + 1;
6: if ∥Q(k) − Q(k−1)∥2 < ξ, stop, otherwise, repeat the steps from 2 to 6;

3.1.1 Results of sparsity-constrained method

The results shown in Fig. 3.3 correspond to three different cases when SNR = 30dB:
missing one rod, missing two rods, missing three rods in the micro-structure, for two rod
distributions: 36 rods, 64 rods. Super-localization appears well realized by using the
sparsity information.

Some other tests for different values of d and c are also carried out. Fig. 3.4 shows
different radii of rod, Fig. 3.5 shows the results of different distances between rods. It
turns out that the proposed method still works.

Different ϵr values are also used to guarantee the robustness of the sparsity-constrained
method. As shown in Fig. 3.6, when the ϵ of rod is 7.5, the sparsity-constrained method
succeed in locating the missing rod for the 36 rods case with a higher value of M , while
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Figure 3.2: Results of localization for three cases: one missing rod, two missing rods,
three missing rods, finding missing rods in the micro-structure, here indexed from 1 to
36, left to right, top to bottom, ϵ = 2.5.
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Figure 3.3: Results of localization for three cases: one missing rod, two missing rods,
three missing rods, finding missing rods in the micro-structure, here indexed from 1 to
64, left to right, top to bottom, ϵ = 2.5.
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Figure 3.4: left column is the 36-rod case, right column is the 64-rod case, from top to
bottom: the radius of the rod c equals λ/10,λ/12,λ/14, the distance between rods d is
λ/4.
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Figure 3.5: left column is the 36-rod case, right column is the 64-rod case, from top to
bottom: the distance between rods d equals λ/2,λ/4,λ/6, the radius of rods c is λ/12.
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Figure 3.6: left column is the 36-rod case, right column is the 64-rod case, from top to
bottom: ϵ = 2.5, 5, 7.5.
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it does not succeed for the 64 rods case even with a higher value of M , which shows that
the proposed method still has limitations.
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3.2 Contrast source inversion

One of the most widely used methods to tackle an inverse scattering problem is the
contrast source inversion (CSI) method [34]. Based on the modified gradient method
and the source-type integral equation method, the CSI method is proposed, where
the unknown contrast sources and the unknown contrast are updated by an iterative
minimization of a cost functional. The modified gradient method (MGM) is based
on the field-type equations and treat both contrast and electric field as independent
unknowns, which are simultaneously updated at each iteration, and the objective function
is composed of two types of normalized mismatches, one for the data equation and the
other for the state equation. The source-type integral method is also based on the
source-type integral equation and it treats the contrast and the contrast current as
independent unknowns. As a consequence, with the CSI method, the necessity of a full
solution of the forward problem at each iteration is avoided by the simultaneous update
of the field and of the contrast.

Since the objects tackled in this research is either normal rods or missing rods, so
it can be defined as a binary problem; there already exist analysis of inverse scattering
for binary objects, the modified gradient methods (MGM) [35] is the case as pioneering
investigation, and the 3-D eddy-current evaluation [36] in a CSI framework. The material
properties are also coded on a binary basis in obstacles reconstruction by controlled
evolution of level sets as appearing under various guises, refer to, e.g. [37], [38], [39]. For
the sake of completeness, the binary-specialized CSI method is described thereafter.

Binary-specialized CSI method

The CSI method is based on source-type integral equations as

Jp(r) = χ(r)
[
Einc

p (r) + Gd(Jp)
]

, r ∈ D, (3.26)

Esca
p (r) = Gs(Jp), r ∈ S, (3.27)

where the contrast source Jp(r) is regarded as an independent parameter.
For the binary case, providing us with a binary-specialized CSI, the contrast value

can be set as χ = χmf(τ), equating χm to (ϵr − ϵb)/ϵb, ϵr relative permittivity of rods, ϵb

the one of the background (here valued to 1), and f(τ) equals 1/(1 + e− τ
θ ). The real

and strictly positive parameter θ is a tuning parameter which is controlling the slope of
f(τ) between 0 and 1 and it plays the role of a regularization parameter which could be
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progressively reduced in magnitude whether necessary. The cost function takes a linear
combination of normalized mismatches in the data equation and in the state equation as

L(J1, . . . , JNi
, χ, β) =

∑Ni
p=1 ∥ Esca

p − Gs(Jp) ∥2∑Ni
p=1 ∥ Esca

p ∥2

+ β

∑Ni
p=1 ∥ χmf(τ)Einc

p + χmf(τ)Gd(Jp) − Jp ∥2∑Ni
p=1 ∥ χmf(τ)Einc

p ∥2
.

(3.28)

where both χmf(τ) and Einc
p are vectors, and where the χmf(τ)Einc

p means multiplying
corresponding elements in these two vectors, same hereafter. From now, one simply sets
β = 1 so as to give the same weight to the two types of errors.

The cost function is minimized by alternately updating contrast source and contrast
parameter. A conjugate-gradient method with Polak-Ribière direction is used to optimize
the parameters of interest. The optimization method is the same as in [34]. There is
no need to solve the forward problem and the optimization procedure becomes more
efficient this way. The initial guess for τ is zero, and the initial guess for Jp is calculated
by standard back-propagation as

Jbp
p =

∥ G∗
s(Esca

p ) ∥2

∥ Gs(G∗
s(Esca

p )) ∥2 G∗
s(Esca

p ), (3.29)

where Etot
p = Einc

p +Gd(Jbp
p ), Etot

p is the conjugate of Etot
p and G∗

s(·) is the adjoint operator
of Gs(·).

The problem is solved iteratively. At the nth iteration, the object function with
respect to J is written as

L(J1, . . . , JNi
) =

∑Ni
p=1 ∥ Esca

p − Gs(Jp) ∥2

ηs

+
∑Ni

p=1 ∥ χEinc
p + χGd(Jp) − Jp ∥2

ηd,n−1
, (3.30)

where the two denominators read as ηs = ∑Ni
p=1 ∥ Esca

p ∥2 and ηd,n−1 = ∑Ni
p=1 ∥ χn−1Einc

p ∥2.
One now defines the data error and the object error to be

err_dp,n = Esca
p − GsJp,n−1, err_op,n = χnEtot

p,n−1 − Jp,n−1, (3.31)

where Etot
p,n−1 = Einc

p + GdJp,n−1. The gradient (Fréchet derivative) gJ
p,n evaluated at

Jp,n−1 and χn−1 is

gJ
p,n = −G∗

serr_dp,n

ηs

−
err_op,n − G∗

d

(
χn−1err_op,n

)
ηd,n−1

. (3.32)
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The Polak-Ribière conjugate gradient search direction as

dJ
p,0 = − gJ

p,0,

dJ
p,n = − gJ

p,n +
Re⟨gJ

p,n, gJ
p,n − gJ

p,n−1⟩
⟨gJ

p,n−1, gJ
p,n−1⟩

dJ
p,n−1,

(3.33)

and the step size along this search direction reads as

αJ
p,n =

−⟨gJ
p,n, dJ

p,n⟩
∥ GsdJ

p,n ∥2

ηs

+
∥ dJ

p,n − χn−1GddJ
p,n ∥2

ηd,n−1

. (3.34)

Then, the contrast source is calculated according to Jp,n = Jp,n−1 + αJ
p,ndJ

p,n. The
normalization parameter ηd,n−1 is considered as constant during the update of τ . The
object function with respect to the contrast parameter τ is

L(τ) =
∑Ni

p=1 ∥ χmf(τ)Etot
p,n − Jp,n ∥2

ηd,n−1
, (3.35)

and its gradient with respect to τn is

gτ
n =

Ni∑
p=1

χmRe⟨Etot
p,n, χmEtot

p,nf(τn−1) − Jp,n⟩
ηd,n−1

· f(τn−1)(1 − f(τn−1))
θ

, (3.36)

where χm is real-valued in the case under investigation. The search directions are

dτ
0 = − gτ

0 , (3.37)

dτ
n = − gτ

n + Re⟨gτ
n, gτ

n − gτ
n−1⟩

⟨gτ
n−1, gτ

n−1⟩
dτ

n−1. (3.38)

The contrast parameter is updated as

τn = τn−1 + αndτ
n, (3.39)

wherein the value of α is calculated using line search. As a consequence, the value of τ is
updated when one gets the value of α, then J and τ are iteratively updated.
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3.2.1 Results of binary-specialized contrast source inversion

In the present section, the binary-specialized CSI is tested for different cases of interest,
wherein the radius r and the distance d that characterize the micro-structure are kept
constant, as λ/12 and λ/4 respectively, λ wavelength in air. The size of the region of
interest (the ROI) is set at 1.75λ × 1.75λ, and is discretized into 60 × 60 cells in the
direct problem, and into 50 × 50 cells in the inverse problem. 36 receivers and 36 sources
are placed in a regular fashion on a circle of radius 7.2 λ. The single operating frequency
is in practice fixed at 3 GHz (λ = 0.1 m). The collected fields are used to reconstruct
the contrast map of the damaged micro-structure by the binary-specialized CSI method.
The micro-structure is involving 4 × 4 or 6 × 6 rods.

Two cases are considered: one with no prior information on the positions of the rods,
the other with that prior position information, the signal to noise ratios being taken as
30dB. From Fig.3.7, without the prior position information, the binary-specialized CSI
method cannot realize the reconstruction of the contrast map for both 16 and 36 rods,
the distance between two rods d equals λ/4, which is smaller than λ/2, may lead to this
failure. From Fig. 3.8 and Fig. 3.9, one concludes that the binary-specialized CSI can
realize the reconstruction with the prior position information.

Though no systematic studies of divergence of CSI methods when dielectric contrasts
get higher and higher seem to exist, examples in [40] appear fitted to rather low contrasts,
while in [41], now using subspace-based optimization methods, expected to be more
effective, the same holds true, high contrast domains being not retrieved (some interesting
yet limited improvement is observed if the coupling equation is transformed, this type of
transform being beyond the scope of the present work).

The binary-specialized CSI method as considered here failed the reconstruction of
the contrast map when the contrast value is 3 or above because of high no-linearity. In
short, it works well for some range of contrasts, but has limitations, so one turns to the
convolutional neural networks to devise another solution for this problem.

3.3 CSI for reconstruction of random contrast dis-
tribution

The contents described earlier in this chapter are about the binary case of the structure.
While, the contrast of rods can be different, so, deleting the binary prior, the traditional
CSI method is used to reconstruct the distribution of ROI whose contrast value is random.
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Figure 3.7: Results of the binary-specialized CSI without prior position information.

Illustrative results of application of traditional CSI to the micro-structure are shown in
Fig. 3.10. About the test, two choices have been made: (i) using the CSI method without
any information on the positions of rods, (ii) using the CSI method with information on
those. Without prior position information, one cannot really reconstruct the contrast
map, while helped by prior positions, it works slightly better but still cannot achieve
precise retrieval.
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Figure 3.8: Results of the binary-specialized CSI for three examples of damages in the
16 rods case; left column is the ground truth, right column is the binary-specialized CSI
result.
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Figure 3.9: Results of the binary-specialized CSI for three examples of damages in the
36 rods case; left column is the ground truth, right column the binary-specialized CSI
result.
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Figure 3.10: Maps provided by CSI. Top to bottom: ground truth, CSI with prior
information, CSI without it. Left: 16 rods case, right: 36 rods case.



Chapter 4

Imaging by convolutional neural
networks in frequency domain

Inverse scattering problem can be not only solved by traditional objective function
approaches but also learning methods. As shown in previous chapter, the traditional
objective function needs iterative computation. Neural networks learning as providing
powerful tools has achieved several results already in the inverse scattering problem, and
the potential mathematical link between deep learning and inverse problem is discussed
in some research [26]. In this chapter, the CNN based method is introduced to tackle
the inverse scattering problem that one is faced with, and the design of the structure is
based on the regression between the collected field and the contrast distribution of the
ROI, so it should be considered as a supervised learning.

4.1 CNN architecture

Fig. 4.1 shows the designed architecture. The input of the network is the collected field,
the output is the reconstructed ROI. The built network realizes the construction of a
map from the scattered field to the distribution of contrast. It is composed of three main
components as follows. The first component contains several repeated blocks, each block
contains one convolutional layer with kernel size [5, 5], one batch normalization layer,
one ReLU function, and one max-pooling layer, which is a typical block in convolutional
neural networks. The second component is the fully-connected layer, which combines
all the feature information gotten from previous layers. The third component is the
deconvolutional layer, which can help retrieve the contrast map. Here the details of each
part are introduced:
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Figure 4.1: CNN architecture

1) The convolutional layer has strong local modelling capabilities with a small
number of parameters, and it has the ability to extract local features. The detail of the
convolutional layer is shown in Fig 4.2, the convolutional layer uses the kernel of size
[5, 5], and pad zeros outside the edges using a stride of 1, so the layer’s outputs have
the same spatial dimensions as its inputs. Convolutional operation contributes to the
learning system from three aspects: sparse interactions, parameter sharing, equivariant
representation. Sparse interactions, or called sparse weights, is realized by the fact that
the kernel size is much smaller than the size of input, compared with the traditional
neural network, which builds the full connection between input and output by matrix
multiplication. So, sparse weights can improve the efficiency of the calculation; parameter
sharing is the sharing of a set of weights by all neurons within a particular map, which
helps to reduce the number of parameters in the whole system and renders the computation
more efficient, and the speciality of sharing parameters makes the neural networks to
have the property of translation equivariance.

2) ReLU, a non-saturated function, is chosen as activation function in neural net-
works, written as g(z) = max(0, z). Applying this function to the output of a linear
transformation can produce a non-linear transformation. The ReLU function is composed
of two linear parts, it is very close to a linear function, so it contains plenty of properties
that help the model to use the optimization method based on gradient. Thus, using the
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convolutional layer 

kernel size: 5×5

sizen

sizen+1

Figure 4.2: convolutional layer

Relu function can avoid vanishing gradients and accelerate the convergence speed. As
for the last layer in the structure, the sigmoid function δ(z) = 1

1+e−z is used as activation
function, since it can produce results close to either 0, when z has a quite small negative
value, or 1, when z has a quite large positive value. The sigmoid function is a saturated
function, it is not sensitive to the input except for the value around 0, which makes the
method based on gradient descent hard to carry out, so normally it is not used in the
hidden layer.

3) The fact that the distribution of each layer’s input changes during training, as the
parameters of the previous layers change, makes the training procedure difficult, and
it slows it down by requiring lower learning rates and careful parameter initialization;
this phenomenon is called as internal covariate shift. Batch normalization normalizes
input and hidden layers by scaling the activations to alleviate the internal covariate shift
[42], as shown in Eq. 4.1, Eq. 4.2, Eq. 4.3, and normalization is a part of the model
architecture and performs that said normalization for each training mini-batch. Batch
normalization enables us to use much higher learning rates and in a way to be less careful
about initialization, which can consequently speed up the learning.

H′ = H − υ

σ
(4.1)
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where
υ = 1

m

∑
i

H (4.2)

and

σ =
√√√√δ + 1

m

∑
i

(H − υ)2
i (4.3)

where δ is a quite small value, like 10−8 to avoid the situation that gradient of
√

z is not
defined at z = 0.

pooling layer 

kernel size: 5×5

sizen+1

sizen+2

Figure 4.3: max pooling layer

4) Each convolutional layer is followed by a pooling layer; the pooling function
uses a global statistical characteristic of the neighbouring outputs of a location instead
of the network’s output at that position, and the pooling of space contributes to the
translation invariance of the representation of input. Max-pooling is a commonly used
pooling method, and the invariance property can be extended to different transformation
invariance by pooling on the output of convolution which is used for separation parameters.
Pooling has important influence on the processing of inputs of different size, since the
pooling can change the data dimension, and reduce the computational burden. The
detail of max-pooling is shown in Fig. 4.3, the max pooling layer uses the kernel of size
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[2, 2], and pads zeros outside the edges using a stride of 2, so the layer’s outputs have
the half spatial dimensions of its inputs.

4.2 Loss function

The loss function combines the misfit between predictions and the ideal output of the
network and a regularization term of the weights. For the binary case, inspired by the
idea of binary classification [43], the loss function for logistic regression is employed. The
binary reconstruction problem resembles the binary classification, and when the number
of classes is equal to 2, cross-entropy can be calculated as

LOSS = − 1
N

N∑
i=1

lilog(h(ϵ̂i
r)) + (1 − li)log(1 − h(ϵ̂i

r))

+ α
P∑

j=1
W2

j .

(4.4)

within which N is the number of samples and P is the number of layers. For the ith
sample, ϵ̂i

r and ϵi
r are the prediction values generated from the CNN and the ground

truth, respectively. Wj are the weights of the jth layer, and α is a hyper-parameter
introduced to balance the trade-off. The h(x) function here is the sigmoid function, and l

is the binary label, which equals 1 for normal rods and 0 for missing rods or background.

4.3 Training method

The learning algorithm chosen is the Adam algorithm [44], which is an adaptive learning
rate optimization algorithm, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order moments. It
derives from the optimization methods AdaGrad [45] and RMSProp [46]. It leverages
the power of adaptive learning rates methods to find individual learning rates for each
parameter. The Adam algorithm was designed to combine the advantages of AdaGrad,
which works well with sparse gradients, and RMSprop, which works well in on-line and
non-stationary settings. Having both of these enables us to use Adam for a broader
range of tasks. It uses the squared gradients to scale the learning rate like RMSProp
and it takes advantage of momentum by using moving average of the gradient instead of
gradient. Its name is derived from adaptive moment estimation, and the Adam method
uses estimations of first and second moments of gradient to adapt the learning rate for
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each weight of the neural network. The method is straightforward to implement, is
computationally efficient, has little memory requirements, the hyper-parameters have
intuitive interpretations, and is well suited for large scale problems in terms of data
and/or parameters. For completeness, it is described next.

Algorithm 2 ADAM optimization method
1: Initialize the biased first moment estimate and biased second raw moment estimate

mt = 0, vt = 0;
2: Initialize the hyper-parameter β1 = 0.9, β2 = 0.999, δ = 10−8, β1, β2 are exponential

decay rates;
3: Update t = t + 1; mt = β1mt−1 + (1 − β1)gt, gt is the gradient of loss function with

respect to W;
4: Update vt = β2vt−1 + (1 − β2)g2

t ;
5: Compute bias-corrected moment estimates, m̂t = mt/(1 − βt

1), v̂t = vt/(1 − βt
2);

6: Update the parameters Wt = Wt−1 − αmt/(
√

v̂t + δ) , α is exponential decaying
step size;

7: ∥Wt − Wt−1∥2 < ξ, stop, otherwise, repeat steps from 3 to 6.

4.4 Training dataset

The approach is evaluated on a dataset of a binary 36-rod case. The configuration to
collect the data is consistent with the binary-specialized CSI method. Radius c and
distance d are the same as mentioned before, in particular, c equals λ/12 and d equals
λ/4. The dataset involves 3000 samples for the training of the network, each sample
containing the real part of the scattered fields collected by 36 receivers when illuminated
by 36 sources set at the same position along the circle of radius 7.2 λ at 3 GHz, and the
corresponding contrast map of the micro-structure. Another 100 samples are used to
validate the performance of the trained network. Signal to noise ratios equal 30dB. In
Fig. 4.4, one example of the training set is given:

4.5 Implementation

The implementation is based on TensorFlow, the batch size is set to 100, and the learning
is stopped after 6000 iterations (200 epochs). The GPU employed is Nvidia Geforce Gtx
1080, which takes about 10 minutes for the training of the network. With a well-trained
network, it then takes less than 1 second to get the evaluation of the contrast map,
which means that real-time diagnostic could be achieved. Fig. 4.5 shows how the average
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Figure 4.4: Example of training set, left: the real part of scattered field, right: the
corresponding contrast map of the micro-structure

standard error between the updated ROI map and the true ROI map changes during
each iteration of optimisation. Obviously, the error descends gradually, and when the
cost function converges, the error is small enough.

Figure 4.5: The error variation as a function of the iteration number.

4.6 The binary-specialized CNN: a reference exam-
ple

Fig. 4.6 shows the results of the binary-specialized CNN for the 36-rod case. From the
retrieved map, the positions of missing rods can easily be recognized. From the top to
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the bottom in the figure, one displays the test results of the well-trained network for
three different contrast cases, 2.5, 4, and 5. When the contrast value is as high as 5, the
retrieval of the contrast map is still realized, so that one can localize the missing rods.

4.6.1 Different configurations for the test

One important consideration for an inverse scattering problem is the configuration of
transmitters and receivers; the number and the position of transmitters and receivers
should be well designed, or better said, such as results do not overly depend on this
decision. Here one is testing three different configurations, the relative error being
computed as

ERR = 1
N

N∑
i=1

∥ϵi
r − ϵ̂i

r∥2

∥ϵi
r∥2 , (4.5)

where N is the number of test samples.
1) The monostatic configuration is constituted by a single antenna which is operated

on the S circle both as transmitter and as receiver, for which the relative error is equal
to 0.00021.

2) The bistatic configuration involves two antennas on S, separated by an angle of 60
degrees: one works as transmitter and receiver, the other as receiver; in this case, the
relative error is equal to 0.00018.

3) The multistatic configuration comprises four antennas on S, distributed over a
sector of 90 degrees, each one separated by 30 degrees: one antenna works as transmitter
and receiver, the other three work as receivers; the relative error is equal to 0.00016 for
this case.

One observes that (results are not illustrated for sake of brevity) upon increasing the
number of antennas, which means that the dataset contains increasing information (up
to an extent as is well known), the result of the trained network improves.

4.6.2 Single frequency vs. multiple frequencies of operation

The results of the binary-specialized CNN when using data at a single frequency and at
multiple frequencies are to be compared. Indeed, in any experimental condition, using
different frequencies to generate the training data is expected to be much easier to be
performed than changing the geometrical configuration of the micro-structure, so one
compares the difference between using a single frequency as 3 GHz for 3000 different
configurations of the micro-structure and using 10 of them from 1 to 10 GHz with a 1
GHz step for 300 different configurations of the micro-structure (evidently one keeps the
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Figure 4.6: Results of the binary-specialized CNN for 36 rods, left column is the ground
truth, right column is the CNN reconstruction result, from top to bottom the contrast
values are 2.5, 4 and 5.
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geometrical dimensions of the micro-structure the same throughout the frequency band
of operation). According to the results observed, as long as one has a similar size of the
data, the results are similar, but the weight of frequency and configuration deserves more
investigation, here one performs simple tests, without further mathematical inspection.

4.6.3 Different data noise ratios

In this work, three different signal to noise ratios have been used to test the performance
of the trained network. Three results are proposed in Table 4.1. From those, one observes
that when the SNR is equal to 30dB, the performance of the trained network is quite
good, while when the SNR is equal to 10dB, the performance of the trained network
remains fair, yet errors are larger than 4%.

Table 4.1: Errors of reconstruction for different noise levels.
SNR(dB) 30 20 10

Example of 36 rods 0.00021 0.01172 0.04502

4.6.4 Different values of contrast

As shown in Fig. 4.6 introduced before, the binary-specialized CNN can achieve recon-
structions of the contrast map for contrast values 2.5, 4, and 5. As one knows, for the
CSI method, the contrast value should be small, so the purpose of this test is to make
sure of the performance of binary-specialized CNN for the higher contrast case. As one
has investigated, for a relative contrast up to 4, the CNN method works well, while for a
contrast value equal to 5, the result turns out less good, though it can still be seen as
acceptable. Table 4.2 provides the relative error ERR of CNN for the 36-rod-case, when
the contrast value is set at the aforementioned contrsats of 2.5, 4, and 5.

Table 4.2: Errors ERR of reconstruction using binary-specialized CNN.
relative permittivity 2.5 4 5
Example of 36 rods 0.00021 0.02363 0.04320
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4.6.5 Additional results for different numbers of missing rods
and different shapes using binary-specialized CNN

Extending the application of the binary-specialized CNN method to different numbers of
missing rods, i.e., not limited to three missing rods, is of interest. A training set that
contains 6000 examples with missing rod number that is going from 2 to 5 is used to
train the network as built. Illustrative results of application of the binary-specialized
CNN to cases with different numbers of missing rods are displayed in Fig. 4.7. Two
cases: missing 1 rod and missing 6 rods, which are not included in the training set of
missing-rod cases, have been tested to further evaluate the performance of the trained
network, typical results being displayed in Fig. 4.8. The test result on the missing 1 rod
case appears quite good, and all the test cases can achieve accurate reconstruction, and
for the 6 rods missing case, most results are good, though a few of the test results may
not, which is also shown in the proposed figure.

Another extension of the binary-specialized CNN method is for different shapes of
the micro-structure. Another training set that contains 6000 examples of different shapes
is used to train the built network. Results for three different shapes are shown in Fig. 4.9.
In brief, when the training set contains more different shapes, the trained network can
be more adaptive for more different cases.

Overall, the binary-specialized CNN method achieves accurate contrast map recon-
struction in all cases studied, pending the problem that it encounters with truly high
contrasts, both in terms of localization of rods and retrieval of their contrasts with respect
to the embedding medium and to one another, even if noisy data are input. Ground
truth and the retrieved map are almost indistinguishable, as epitomized by the small
values of the square-norm errors which are correspondingly achieved in most examples.

4.6.6 Extension to random contrast distribution

The binary case of ROI is for the localization of missing rods, while in the inverse
scattering problem, there are several situations that the task is about the reconstruction
of ROI with different permittivities. After some modification, the built network can be
used to reconstruct the distribution of random contrast. Firstly, the loss function can be
redefined as:

LOSS = 1
N

N∑
i=1

∥ϵi
r − ϵ̂i

r∥2 + α
P∑

j=1
W2

j , (4.6)

within which N is the number of samples and P is the number of layers. For the ith
sample, ϵ̂i

r and ϵi
r are the prediction values generated from the CNN and the ground
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Figure 4.7: Maps provided by CNN trained by different missing rods cases. Top to
bottom: missing 2 rods cases, missing 3 rods cases, missing 4 rods cases, missing 5 rods
cases. Left: ground truth, right: binary-specialized CNN reconstruction result.



4.6 The binary-specialized CNN: a reference example 51

Figure 4.8: Test examples for different missing numbers: first row is missing 1 rod case,
second and third rows are two missing 6 rods cases: one is a good reconstruction result,
another one is an imperfect reconstruction result.
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Figure 4.9: Test examples for different shapes: from top to bottom: 16 rods, 20 rods, 25
rods, 30 rods
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truth, respectively. Wj are the weights of the jth layer, and α is a hyper-parameter
introduced to balance the trade-off. As for the CNN structure, there is no modification.
While the training set and test set are changed to random contrast value distribution
and the related collected field.

CNN reconstruction results for the random contrast case are shown in Fig. 4.10 and
Fig. 4.11. The contrast value is random in [1, 3], and the trained network can realize
the mapping from scattered field to contrast distribution for the two different structures
with a number of rods equal to 16 and to 36.

Figure 4.10: Maps provided by CNN for examples involving 16 rods. Top to bottom:
ground truth, CNN result. Left column: example 1 with lower permittivity. Right
column: example 2 with higher permittivity.
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Figure 4.11: Maps provided by CNN for examples involving 36 rods. Top to bottom:
ground truth, CNN result. Left column: example 1 with lower permittivity. Right
column: example 2 with higher permittivity.



Chapter 5

Imaging by recurrent neural
networks in time domain

Compared with the work in last chapter, all the work herein is carried in the time domain,
i.e., data are due to transient illuminations. RNN are introduced to solve the inverse
scattering problem at hand, long short-term memory (LSTM) as a gated RNN being
used, as such kind can make use of the sequential information. CNN method is also
used, considering that it has already shown good performances for dealing the inverse
scattering problem.

In addition, according to a carefully designed protocol, several experiments are carried
out in a microwave anechoic chamber on a prototype of dielectric micro-structure using
wide-band ridged horn antennas operated in a forward scattering configuration, and the
collected laboratory-controlled measurement data further validate the performance of
the proposed methods, now in a truly non-ideal context.

5.1 Motivation of using RNN

In the previous chapter, the CNN method has been applied to tackle the inverse scattering
problem under different guises. In the present chapter, another important deep learning
model-RNN is introduced and the hidden association between the RNN and electromag-
netic wave is discussed, and from that on, RNN is used to solve the problem. As we
know that most problems in electromagnetics can be described by the wave equation, the
dynamics of a scalar wave field distribution u(x, y, z) are governed by the second-order
partial differential equation.

∂2u

∂t2 − c2 · ∇2u = f, (5.1)
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where ∇2 is the Laplace operator, c is the wave speed, and f is the source term, and the
discretization version is written as,

ut+1 − 2ut + ut−1

∆t2 − c2 · ∇2ut = ft, (5.2)

where ∆ is a time step size. Define ht = [ut, ut−1]T , where ut or ut−1 is the field vector.
The updated wave equation can be represented in the following matrix form [28]:

ut+1

ut

 =
2 + ∆t2 · c2 · ∇2 −1

1 0

 ·

 ut

ut−1

 + ∆t2 ·

ft

0

 , (5.3)

So the matrix form is
ht = A(ht−1) · ht−1 + P · xt, (5.4)

where P is a linear operator. In Fig. 5.1, the architecture of RNN is detailed; RNN is
a network that maintains some kind of state [16], its output could be used as part of
the next input, so the information can propagate along as the network passes over the
sequence. Compare the wave equation with the RNN update equation:

ht = δ(Wihxt + bih + Whhh(t−1) + bhh), (5.5)

ignoring the bih and bhh, the wave equation can be approximated by RNN, which is the
inspiration of using RNN to solve the inverse scattering problem at hand here.

Figure 5.1: RNN cell.
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Actually the simple RNN has gradient exploration and gradient vanishing problems
because of the long-term dependencies, it is rather hard for training and it cannot process
very long sequences if using tanh or ReLU as an activation function. To avoid the
gradient vanishing problem in simple RNN, gated RNN employs a gate function, which
selectively let part of the information passes. The gate is composed of a sigmoid unit and
a point-wise product operation. The sigmoid unit outputs 1 or 0 to determine whether to
pass or to block, and then train the combination of these gates. Therefore, when the gate
is open (the gradient is close to 1), the gradient will not be vanishing. As the sigmoid
does not exceed 1, then the gradient will not explode. The long short-term memory
(LSTM) [47] is a typical gated RNN, it is used in our work, since compared with simple
RNN, LSTM has a better performance on longer sequences. It has two transmission
states: hidden state and cell state, LSTM have 3 gates: forget gate, input gate and

Figure 5.2: LSTM cell.

output gate; the forget gate decides how much information can be omitted from the
previous cell, as shown in the Eq. 5.6, it takes the previous state ht−1 and the input xt

and outputs a number between 0 and 1 for the cell state ct − 1 by a sigmoid function,
where 0 means "omitting" and 1 means "keeping". Similarly, the input gate decides how
much of this unit is added to the current state, the sigmoid function is used to decide
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the mount of passing value, the tanh function gives weight from -1 to 1. The output gate
determines which part of the current cell enters into the output. The detailed relations
are

ft = σ(Wifxt + bif + Whfht−1 + bhf ), (5.6)

it = σ(Wiixt + bii + Whiht−1 + bhi), (5.7)

gt = tanh(Wigxt + big + Whght−1 + bhg), (5.8)

ot = σ(Wioxt + bio + Whoht−1 + bho), (5.9)

ct = ft ⊙ ct−1 + it ⊙ gt, (5.10)

ht = ot ⊙ tanh(ct), (5.11)

where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at
time t, ht−1 is the hidden state of the layer at time t − 1, and it, ft, gt, ot are the input,
forget, cell, and output gates, respectively, ⊙ is the Hadamard product.

To compare different types of RNN cell, the GRU [48] is represented in Fig. 5.3. GRU
also uses the gate function, and it can be regarded as a simplified version of LSTM. The
functional details of GRU are listed below:

rt = σ(Wirxt + bir + Whrht−1 + bhr), (5.12)

zt = σ(Wizxt + biz + Whzht−1 + bhz), (5.13)

nt = tanh(Winxt + bin + rt ⊙ (Whnht−1 + bhn)), (5.14)

ht = (1 − zt) ∗ nt + zt ⊙ h(t−1). (5.15)
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Figure 5.3: GRU cell.

5.2 LSTM structure

As shown in Fig. 5.4, the proposed LSTM structure contains two blocks, the first LSTM
block has 128 features in the hidden state h, and the second one has 64 features in the
hidden state, then a full-connected layer combines the outputs from two blocks. After
the linear transform, the batch normalization is used before a ReLU function to avoid
gradient vanishing. The x0...xn is the field time sequence.

To design the architecture, in order to avoid augmenting the complexity too much,
one LSTM block contains 128 features in the hidden state h, is used at the beginning,
but the modelling capability is not satisfied, thus another block with 64 features in the
hidden state is added, thus it meets the need of modelling, and with the help of batch
normalization and the ReLU function, the speed of convergence is increased.

As said, the input of the structure is the collected field thus the size of one input is
[Nt, Nr, t], Nt number of transmitters, Nr number of receivers, t time steps in one signal.
Meanwhile the output is the index of the rods, i.e., a list of data contains only two values,
for example [1, 1, 1, 0..., 0, 1, 0, ...], the size of which is the number of rods, wherein 1
represents a normal (present) rod, and 0 represents a missing rod. 1500 examples in total
are used to train the network here. One example of dataset is shown in Fig. 5.5, the
collected field being the input and the index of rod being the output of the network.



60 Imaging by recurrent neural networks in time domain

x1

LSTM
h0

yt

xt

…
ht-1

x2

h1

y1 y2

ht
LSTM LSTM

x1

LSTM
h0

yt

xt

…
ht-1

x2

h1

y1 y2

ht
LSTM LSTM

In
p

u
t: C

o
llected

 field

F
u

ll co
n

n
ected

O
u

tp
u

t: in
d

ex
 o

f ro
d

Figure 5.4: Architecture of the proposed LSTM structure, input: collected field, output:
index of rods.
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Figure 5.5: Example of dataset for LSTM, the left part is an example of input, the
normalized received field at one receiver for one transmitter, each input should have 18
received signals with 18 transmitters, the right part is an example of rod’s index.
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5.2.1 Dataset

The dataset contains the field in time sequence form is generated by gprMax, it is an
open source that uses the FDTD algorithm to solve the Maxwell equations, the core
of FDTD method is that the time-dependent Maxwell equations are discretized using
central-difference approximations to the space and time partial derivatives, providing
at the end a model of interactions between given impulses and the material structure
of interest. Suitable absorbing (PML) boundary conditions around a virtual box of
proper size complete the model. Ideal line-like transmitters are assumed to generate
transverse-magnetic-polarized fields which are impinging upon the micro-structure, and
the corresponding scattered scalar electric fields are collected by ideal point-like receivers.
The excitation signal used here in the gprMax simulation is a Ricker. Its central
frequency from now on is 3 GHz —central wave-length λ in air as of 0.1 m. A multi-static
configuration composed of coincident transmitters and receivers at a fixed distance of
0.36 m from the center of the micro-structure is to generate and collect the transient
E-field. The computational region with side 0.8 m is meshed with a step of 0.002 m into
each direction for the simulation chosen in order to yield reliable numerical results, the
distance between closest rods d being equal to 0.02 m and the radius of any present rod
being equal to 0.005 m. Notice that rods (present or not) are counted from top left to
bottom right, row after row, from top to bottom.

So a dataset containing the field in the time domain is generated by gprMax when 18
transmitters and receivers are used. Considering the data limitation, the training set
contains 1500 experiments, and in each E-field data only the first 1000 time steps are
kept, since significant information appears to reside within this interval (non zero field),
so the size of the input is [1500, 18, 18, 1000]. Another 100 examples are used to test the
performance. With the performance limitation of GPU, an under-sampling procedure
is adopted to reduce the dataset, 1000 time steps are under-sampled by a factor 4 (the
Nyquist criterion is respected), so the real size of the input is [1500, 18, 18, 250].

5.2.2 Training process

The loss function henceforth used is

LOSS = 1
N

N∑
i=1

∥yi − ŷi∥2, (5.16)
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in which N is the number of samples at each iteration. For the ith sample, ŷi and yi

are the prediction index value generated from the LSTM method and the ground truth,
respectively.

The learning algorithm chosen is still the ADAM one, choosing a initial learning rate
of 0.001 and a decay of 0.9 at every 20 epochs. All the code is realized on the platform
Pytorch. Fig. 6.4 shows the iteration curve during training. A GPU NVIDIA Geforce
Gtx 1080 is used, which overall takes about 15 minutes.
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Figure 5.6: Iteration curve during the training.

5.2.3 LSTM Results

Different tests from various configurations of the micro-structure have been carried out
in order to validate the performance of the proposed network. The results are shown
in Fig. 6.5 for three different missing rod numbers. The mean square error between the
ground truth and the predicted value is as small as 0.009.

More missing rods cases are also tested, 300 samples for 4 or 5 missing rods cases
replace 300 samples of 3 missing rods cases in the original dataset to increase the diversity
of the dataset. The result by using the new dataset is shown in Fig. 5.8, the localization
of more missing rods is seen as successful.
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Figure 5.7: LSTM retrievals, from top to bottom: 1, 2, and 3 missing rods, the blue line
represents the predicted index, the black line represents the true index.
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Figure 5.8: LSTM retrievals for 4 and 5 missing rods, the blue line represents the
predicted index, the black line represents the true index.
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5.3 Comparison with imaging by convolutional neu-
ral networks

5.3.1 CNN architecture
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connected
reshape
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Figure 5.9: Proposed CNN structure, input: the collected field, output: the map of RoI.

CNN has strong modelling capability, and has achieved great success to solve different
regression problems. So a structure based on CNN has also been designed for the
time domain data, the architecture of which is shown in Fig. 5.9. It has six layers,
containing four convolutional layers, one max pooling layer and a full connected layer.
The convolutional layer has strong local modelling capabilities with a small number of
parameters, and it has the ability to extract local features. the convolutional layer uses a
kernel of size [5, 5], and pad zeros outside the edges using a stride of 1, so the layer’s
outputs have the same spatial dimensions as its inputs. The max pooling layer uses a
kernel of size [2, 2], and pads zeros outside the edges using a stride of 2, so the layer’s
outputs have the half spatial dimensions of its inputs. The full-connected layer gathers
the extracted features.

At the start, the CNN structure is designed for dealing with the same dataset as the
one of the LSTM structure, but a good regression from the collected field to the index of
rod was not achieved. So, instead of using index of rod locations, the map of RoI, which
includes more information of the micro-structure, is used as the output of the network.
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Figure 5.10: Example of dataset for CNN, the left part displays the normalized signal
collected at the first receiver when the structure is illuminated by the first transmitter,
the right part is the corresponding map of the RoI.

Fig. 5.10 shows one example, the input field remains the same as for the LSTM structure,
while the map of the RoI is divided into 67×67 pixels. Correspondingly, the loss function
becomes as

LOSS = 1
N

N∑
i=1

∥ϵi − ϵ̂i∥2, (5.17)

for the ith sample, ϵ̂i and ϵi are the prediction value generated from CNN and the ground
truth, respectively.

5.3.2 CNN results

As shown in Fig. 5.11, the results for three different missing rod numbers turn out to be
clear enough to tell the location of the missing rod, the mean square error between the
reconstructed map and the ground truth being 0.00137. The results for more missing
rod cases are shown in Fig. 5.12.

5.3.3 Comparison between CNN and RNN

The proposed two learning methods both achieve the localization of the missing rods
with different forms of output representation. The difference of performance between two
structures can be inferred however. The proposed RNN structure (namely the LSTM), is
more like wave propagation from the working principle, RNN is recurrent in nature, it is
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Figure 5.11: CNN retrievals, from top to bottom: 1, 2 and 3 missing rods, the left column
shows the CNN retrieved results, the right column shows the ground truth.
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Figure 5.12: CNN retrievals for 4 and 5 missing rods, the left column shows the CNN
retrieved results, the right column shows the ground truth.
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a network that maintains some kind of states, its output could be used as the part of the
next input, so the information can be propagated along as the network passes over the
sequence. Yet, to our knowledge, CNN exhibits better performance on processing images.

5.4 Validation on laboratory-controlled data

5.4.1 The configuration of experiments

Figure 5.13: Configuration of the laboratory-controlled experiment.

Fig. 5.13 is the photography of a dielectric micro-structure as considered in a
laboratory-controlled experiment in a microwave anechoic chamber. 36 of rather long (30
cm) circular cylindrical rods, quite thin (nominal diameter of 1.5 cm) and close to one
another (nominal distance center to center of 2.5 cm) with respect to the wavelength
of operation (one takes as central value a 3 GHz frequency —10 cm-wavelength— but
experiments are carried out in a broad band, typically 2 to 6 GHz) are placed within an
air RoI. Each rod is homogeneous, isotropic and non-magnetic in practice, and it has
been cut from a lossless plexiglass material, with relative permittivity measured at about
3 ± 0.1.
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Two identical microwave ridged horn antennas are set outside the region of interest
wherein the micro-structure is centred, one is acting as emitter and one is acting as
receiver, centred within the central cross-section of the set, in present practice in a
forward scattering configuration (transmitting and receiving antennas simply face each
other).

The set of rods can be rotated around from 0 to 360 degrees, in a step-by-step fashion,
and signals thereupon collected for each position using a vector network analyser in the
frequency domain over 301 points between 2 and 6 GHz. The network analyser has been
calibrated to cancel the effect of the cables losses and the measurement data are filtered
with a Hamming window centred at the frequency 3 GHz with a bandwidth of 2 GHz.
Then the filtered data are inverse Fourier transformed to get the time domain field that
can be used in the validation procedure of the proposed methods.

5.4.2 Results on experimental data

The proposed LSTM structure is applied using the collected experimental data. There are
815 experimental data in total, 765 of them are used to do the training, the remaining 50
are used as the test set. One example of the field is shown in Fig 5.14, which contains 601
time samples for each signal, so the input size of the training dataset is [765, 36, 1, 601].
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Figure 5.14: Example of collected experimental data.
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The result is shown in Fig. 5.15, the mean square error between the retrieved results
and the ground truth being equal to 0.024. From the LSTM result, for most cases,
the location of a missing rod can be found, even though with some fluctuation. Yet,
sometimes the fluctuation looks somewhat erratic, which makes the identification not so
clear, as exemplified in the bottom figure in Fig. 5.15.

The proposed CNN method is also applied on the laboratory-controlled experimental
data. That turns out to be doable, the structure remaining the same, the mean square
error being now equal to 0.0128, yet it needs more epochs (2000) to achieve a stable
result. Not all of the testing cases can be well retrieved however, refer to Fig. 5.16; one
example that CNN can be not successful is shown at its bottom, for the three missing
rods, only two can indeed be identified.

In brief, both the proposed RNN method and CNN method exhibit good performance
on the experimental data. The RNN method works better than the CNN one with
counting the number of well retrieved cases in the test set, which is agreeing with the
results on simulated data.
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Figure 5.15: LSTM retrievals with experimental data, the black line is the ground truth,
the blue line shows the RNN results.
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Figure 5.16: CNN retrievals with experimental data, the left part is the ground truth,
the right part shows the RNN results, the two upper ones appear as good retrievals, the
bottom one as a failed retrieval.





Chapter 6

Imaging by convolutional-recurrent
neural networks

As already shown in previous chapters, CNN has strong local modelling capabilities and
can extract the features of interest. The idea behind RNN is to make use of sequential
information, RNN is recurrent in nature as it performs the same function for every input
of data while the output of the current input depends on the past one computation. This
proposed approach combines CNN and RNN to take advantage of both of them, and the
validation is on the frequency domain data.

6.1 Architecture of proposed CRNN

Fig. 6.1 sketches the proposed frame, denoted from now as CRNN. CNN processes the
initial collected field and recognizes the features, RNN uses the known features to make
sense of the field and put together a cohesive description, the reconstruction information
being shared across the multiple iterations of the said process.

As shown, the input of the structure is the field collected by the 36 receivers when
the ROI is illuminated by 36 transmitters at the same distance 7.2λ, and the distance
between rod d equals λ/4 and the radius of rod equals to λ/12, thus the size of the input
is [36, 36]. Meanwhile the output is the index of the rods [2.5, 2.5, 2.5, 1..., 1, 2.5, 1, ...],
wherein 2.5 represents a normal rod, and 1 represents a missing rod. 3000 examples in
total are used to train the network. One example of dataset is shown in Fig. 6.3, the real
part of the collected field being the input and the index of rod being the output of the
network.

In this structure, four parallel blocks compose the main body, each block containing two
convolutional components and one recurrent neural network layer; in each convolutional
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Figure 6.1: Architecture of proposed CRNN structure.

Figure 6.2: Details of RNN layer.
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Figure 6.3: Example of dataset.

component, one convolutional layer with batch normalization and ReLU function is
applied to achieve feature extraction. Convolutional layer with well chosen kernel size in
each block has the ability to extract local features. ReLU, a non-saturated function, is
chosen as activation function, applying it to the output of a linear transformation can
produce a non-linear transformation. Batch normalization normalizes input and hidden
layers by scaling the activations to alleviate the internal covariate shift.

Details of the RNN layer are shown in Fig. 6.2, each RNN layer having 64 cells with
the same structure. The input of the RNN is made of the extracted features coming from
the convolutional components, and the output is combined with another three outputs
from another three blocks. After a linear transform, the output of the structure is the
corresponding index of the rod position. As for the choice of the RNN cell, two types
are considered: the LSTM and the gated recurrent units (GRU) [48]. The detail of the
RNN layer is shown in Fig. 6.2, the t-th cell receives both xt and the state from last cell
ht−1, then produces the ht for the next cell. The result of the two types yet having been
shown of similar performance.

6.2 Training process

The loss function that one henceforth uses is

LOSS = 1
N

N∑
i=1

∥ϵi − ϵ̂i∥2, (6.1)
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Figure 6.4: Iteration curve during the training.

in which N is the number of samples at each iteration. For the ith sample, ϵ̂i and ϵi are
the prediction value generated from the RNN and the ground truth, respectively.

The learning algorithm chosen is the ADAM algorithm as the same as for the training
in the previous chapters. All the code is realized on the platform Pytorch. Fig. 6.4 shows
the iteration curve during training. The GPU NVIDIA Quadro M620 is used, which
takes about 35 minutes to perform a training.

6.3 Results of CRNN

Different tests from various configurations of the micro-structure, including the rod shape,
to the method of observation, including the frequency and the number of observations,
have been carried out in order to validate the performance of the proposed CRNN
network.

Two different frequencies: 3 GHz vs 1 GHz

3000 datasets collected at 3 GHz are used to train the network, and 100 examples which
are not included in the training set are used to test the performance of the designed
network. In Fig. 6.5, three different examples are displayed: 1 missing rod, 2 missing
rods and 3 missing rod. The error is 0.0029, where it is defined as mean squared error.
For 1 GHz, with the same configuration as for 3 GHz, the error equals 0.0036, which is
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Figure 6.5: CRNN retrievals when 3 GHz, from top to bottom: 1 missing rod, 2 missing
rods, 3 missing rods, blue line represents predicted index, black line represents truth
index.
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larger, compared with 0.0029 when the frequency is 3 GHz, but the CRNN still achieve
the correct localization of missing rods.
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Figure 6.6: CRNN retrieval with less data, blue line represents predicted index, black
line represents truth index.

Less transmitters and receivers information

To be in accord with the experiment, one only takes the data that when one transmitter
radiates, and that there is only a single receiver that can collect the scattered field, this
receiver being directly faced with the transmitter (180 degrees). As a result, in this
forward-scattering case, the number of collected field data is quite reduced, from [36, 36]
to [36, 1] for each sample. As one can see in the figure, there are larger fluctuations, and
the error is increased, yet the index of the missing rods can still be recognized.

Different shape of rod

To illustrate the influence of shape, another training set for a rod with a square shape is
used to test the performance, the side length of the square being equated to λ/6 and
the distance between rod still being λ/4. In Fig. 6.7, identification of missing rod index
succeeds well.

Increasing number of missing rods

For now, the maximum missing rod number is limited to 3, to extend the validation,
a complementary analysis where the maximum number of missing rods is 5 has been
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Figure 6.7: CRNN retrieval for square shape rod distribution, blue line represents
predicted index, black line represents truth index.

carried out. The condition is the same as before, 3000 examples as training set, another
100 examples as test set, the localization results for different missing rod number is shown
in Fig. 6.8, which is still acceptable.
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Figure 6.8: CRNN retrieval for 4 (top) and 5 (bottom) missing rods, blue line represents
predicted index, black line represents truth index.



Chapter 7

Direct imaging method: time
reversal

The imaging methods from CSI, sparsity constrained-method to neural networks learning
methods introduced in the previous chapters are developed from the concept of inverse
scattering problem, that is, the reconstruction of the ROI from the collected field. In
this chapter a direct imaging method is introduced to tackle the problem of refocusing of
a source, and localization of a missing rod in the micro-structure. Time reversal (TR)
is realized by time reversal mirror (TMR), which records an incoming wave and then
re-transmits its time-reversed version, the field distribution in the ROI illuminated by
the reversed signal should indicate the location of the source or of the missing rods. The
basic principle of time-reversal is from geometrical optics, as the functionality of mirror,
the received signal is sent back along the original path to yield an image at the position
of the original object. TR can be carried out in time domain and in frequency domain,
the localization of active source by TR is implemented in the frequency domain, and the
localization of missing rods by TR is carried out in the time domain, the constraint of
sub-wavelength is maintained.

7.1 Time reversal for localization of source

The procedure of time reversal is shown in Fig. 7.1, e.g., [29], the signal received by the
TRM is inverted in the time domain and re-emitted again [49]. TR invariance means
that result of equation remains unchanged under a TR transformation T : t 7→ −t [40].
For a scalar wave

▽2u(r, t) − 1
v2(r)

∂2u(r, t)
∂t2 = 0, (7.1)
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Figure 7.1: Procedure of time reversal.

u(r, t) is even under TR transformation Tu(r, t) = u(r, −t) since the wave equation only
contains an even order time-derivative operator, the Fourier transform of the real-valued
signal u(r, t) is

u(r, w) = 1
2π

∫ ∞

−∞
u(r, t)e−iwtdt, (7.2)

implies u(r, −w) = u∗(r, w), where superscript ∗ denotes complex conjugation. So TR is
simply equivalent to phase conjugation of every frequency component Tu(r, w) = u∗(r, w).

In the simulation proposed here as illustration, 36 TRM are regularly set around
the structure at a distance D, D = 100d, different D are tried, more details can be
found in Appendix D. TR imaging is implemented according to two mains steps. First,
the TRM receives the outgoing fields radiated from the source inside or outside the
structure. Second, it carries out the phase conjugation of the obtained fields in the
frequency domain, then re-transmits its time-reversed version. The re-transmitted wave
propagates back through the same structure and is expected, as already indicated, to
refocus at the location of the original source.

2-D and 3-D maps of TR are shown in Fig. 7.2. There are three different cases being
considered, from top to bottom: the source is at the center of structure, at position
(−3d, −3d), and at position (−10d, 0), which in this latter case means that the source is
outside of structure. One sees that TR can achieve a good solution no matter where the
sought-after source is located.

Although refocalization is realized in both TM and TE cases, considering for the
enhancement of resolution, Fig. 7.3 illustrates that as the relative rod permittivity is
increased, the resolution is enhanced in the TM case, yet there is no enhancement
whatsoever in the TE case. The difference of resolution enhancement between TE and
TM cases can be explained by homogenization formulas (without elaborating further,
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Figure 7.2: 2D and 3D representations of the time-reversed field for three different source
locations within a 20d × 20d box.
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this holds if one has a large number of small enough rods of not too high contrast within
the structured system, and no resonances occurring inside) [50].

Those read as

ϵT M = ϵ1S1 + ϵ2S2

S1 + S2
, ϵT E = S1 + S2

S1/ϵ1 + S2/ϵ2
, (7.3)

ϵT M , ϵT E effective permittivities, S1 cross-sectional rod area, S2 elementary cell area,
which is shown in Fig. 7.4, ϵ1 and ϵ2 permittivities in S1 and S2.
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Figure 7.3: Enhancement of resolution, source at center, cross-section along the horizontal
axis passing by it, as function of rod permittivity ϵr = 1 (no rod) (red), 10 (green) and
100 (blue), Top: TM case, bottom: TE case.
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S2

S1

Figure 7.4: Elementary cell of the system, illustration of areas S1 and S2.

7.2 Time Reversal for localization of missing rods

Unlike the refocalization of source, the localization of missing rods in structure by TR
is carried in time domain. The missing rod is regarded as the passive source, since
scattered fields generated by the passive source can be considered as the radiated field
by an equivalent source.

The collected field is also computed by using gprMax as was the case in the previous
section, a ROI with length 0.8 m along X axis, length 0.8 m along Y axis, is meshed
with step of 0.002 into each direction for simulation. The procedure of time reversal
in the time domain is sketched in Fig. 7.5: transmitters send out a signal one by one,
receivers collect the field reflected by the micro-structure, the collected field is reversed
as shown in Fig. 7.6, then the reversed signal is re-emitted onto the ROI, and from the
field distribution, the position of missing rod is easy to tell. In Fig. 7.6, the left part is

Figure 7.5: Illustration of Time Reversal procedure

the signal received by one receiver, and the right part is the signal already reversed and
ready to be sent out. There are 3181 time steps in each signal.
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Figure 7.6: Illustration of Time Reversal of one position

As seen in Fig. 7.7, time reversal can realize the localization of missing rods indeed.
From the results, the index of missing rods in first one is [11, 27, 35], the second one
is [13, 15, 20], the third one is [7, 11, 30], the last one is [8, 15, 20]. While there is one
fact that one needs to admit, from the left bottom image, it is hard to tell if the exact
localization is 11 or 12, which should be improved in further.
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Figure 7.7: Examples of time reversal result





Chapter 8

Conclusion

8.1 Summary of the work as completed

The investigation of a damaged or missing-rod distribution of circular cylindrical dielectric
rods which exhibit sub-wavelength-sized diameters and inter-element distances has been
conducted according to different situations. To probe the micro-structure, the work is
mainly divided into two parts, the forward problem and the inverse problem. For the
forward one, methods from method of moments to multiple scattering method to FDTD,
are used to carry out the mathematical modelling of the problem, while the inverse
problem is solved from analytical methods, contrast source inversion to joint-sparsity to
learning method, including CNN, RNN and so on.

From another point of view, the problem can also be divided by the processing domain:
frequency domain and time domain, the analysis of signal in different spaces indeed
could explore specialized features. The multiple scattering method and the method of
moments are constructed in the frequency domain, and the corresponding joint-sparsity
method and the CSI method are developed in the same frequency domain. In contrast,
the FDTD method carries out the modelling in the time domain, and the RNN is tailored
to the processing of time sequence data. As for time reversal, it is an imaging method
directly used in time domain, yet it involves also, from conjugation, frequency domain
data. To be mentioned, the transformation of signal between time domain and frequency
domain is obvious a way to go, and it can be carried out if in need. The Table shown
below attempts to clarify the aforementioned methods.

The performance of different methods cannot be judged according to a simple criterion,
they are advantages and disadvantages considering the standing issue. The closed form
methods need a good knowledge of physics and maths, they are hard to understand if
that knowledge is not available. On the other side, large amounts of data are the premise
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Figure 8.1: Table of used methods.

of the usage of learning methods, yet the performance cannot be guaranteed. The deep
learning method is to a good extent like a black box, many people try to get further
explanation of deep learning [26]; as with the high no-linearity of modelling capability of
CNN, the RNN is a good approximation of time sequence. As for the method that one
could say as being experimental physics, time reversal exhibits a good performance not
only for the inverse source problem but also for the inverse scattering problem, being
underlined that the only issue of time reversal is that the resolution of the result is not
high enough, as expected from previous work.

In another side, the applicability of the methods is a matter of concern. The joint-
sparsity method cannot be transferred easily in order to deal with other problems because
of the specialized mathematical analysis of the modelling. In contrast, the learning
methods suffer less from this kind of limitation, to say, the CNN or RNN methods have
a higher prospect to apply to similar problems. To be more specific, with a well-trained
network, only tasks like tuning parameters or modifications of some layers are required
to adapt them to other different micro-structures in terms of contrast, number, size and
inter-distance of the rods, and different measurement configurations as well.

The binary case and the random case are both analysed in the present research,
the binary case is for the localization of missing rods, and the random contrast case
can be extended to the general cases for object reconstruction to get the exact physical
parameters, like permittivity here. Different values and different shapes are also developed
in this research to this kind of extension.
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8.2 Potential work

Although the sub-wavelength micro-structure has been analysed by various methods from
the modelling to the imaging and diagnostic problem, further explorations are of good
interest.

First of all, the research so far as proposed is still limited to two-dimensional and
quasi two-dimensional situations, to go to full three dimensions is still something to
investigate, once noted that the three-dimensional problem is more difficult both in terms
of the mathematical modelling and of the inverse problem itself.

Other remaining works are about the experimental part, the correction between the
simulation and experiment data, using a method like Generative Adversarial Network
(GAN) [51], or further WGAN [52], to generate the simulated data in order to avoid the
time-consuming manual experiments. GAN consists of two models: A discriminator D

estimates the probability of a given sample coming from the real dataset. It works as a
critic and is optimized to discriminate the fake samples from the real ones. A generator
G outputs synthetic samples given a noise variable input z (z brings in potential output
diversity). It is trained to capture the real data distribution so that its generative samples
can be as real as possible, or in other words, can trick the discriminator to offer a high
probability. Otherwise, using the proposed analytical and learning methods to process
the experimental data directly is another possible solution. GAN has been applied to
solve the electromagnetic scattering problem in some pioneer researcher’s work [53].

Except for directly applying the neural networks to process the data, the combination
of physics and neural networks is a path ahead. Much work has been done by others, for
example, for the similar inverse scattering problem, a back-propagation method is used
first to transfer the electrical field into a rough contrast map, then the contrast map
instead of the scattered field is used as the input of the U-net architecture. In [54], the
DNN is integrated into the CSI to achieve further improvement. As insisted upon already,
[28] explains the relationship between wave equation and RNN, which provides a quite
sharp idea for the research based on a wave equation. It turns out that the combination
of closed-form method and learning method can benefit from the physical background
and the potential of big data. A deep image prior is analysed to solve the inverse problem
[55], the deep image prior approach in combination with classical regularization can
overcome the problem of the lack of generalization after training with insufficient data
[56].

The fusion of data from different imaging methods can take advantage of different
behaviours. Fusion of ultrasound and microwave could provide a new sort of solution [57],
which may not apply to micro-structures as in this research, but in many cases of inverse
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scattering it remains a good option. For example, ultrasound imaging yielding a contour
of the object, which would be further used as the prior information for the microwave
imaging. In [58], microwave breast imaging is investigated with a priori information on
tissue boundaries yielded from ultrasound reflection data. Fusion methods are various,
the Bayesian method benefits from a good reputation and surely has achieved fruitful
accomplishments since a long time. The learning method gathers the data from different
models in multiple channels of the dataset, so that the neural networks can learn the
data to realize different purposes from the information of these channels.



Appendix A

Graf’s addition theorem

Figure A.1: Application of the Graf’s addition theorem.

Fields near a rod are expanded into cylindrical waves and the resulting expression
is based on the local coordinate system originated at the rod center. However, in the
analysis of rod array, expressing the field in the local coordinate system of another rod is
often required. The Graf’s addition theorem is used to make this transformation.

As sketched in Fig. A.1, oi and oj are centers of two rods and P is the observation
position. The distances between them satisfy rP

j < rj
i < rP

i .
Assume the field value at P is with expression

V (P) = H(1)
m (krP

i )eimθP
i , (A.1)

where (rP
i , θP

i ) are polar coordinates of P in the local coordinate system originated at
oi. With condition rP

j < rj
i , (A.1) can be transformed into an equation expressed in the
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coordinate system associated with oj, as

V (P) =
∑
n∈Z

Hm−n(krj
i )ei(m−n)θj

i Jn(krP
j )einθP

j . (A.2)

Another form of (A.2) using θi
j, instead of θj

i , is given as

V (P) =
∑
n∈Z

Hn−m(krj
i )ei(m−n)θi

j Jn(krP
j )einθP

j . (A.3)

We assume the field value at P is with expression

V (P) = H(1)
m (krP

j )eimθP
j , (A.4)

and are trying to transform the expression into the one in the coordinate system originated
at oi. Since rP

i > rj
i , the above procedures cannot be operated and an alternative way

applying the Graf’s addition theorem is developed.
Making use of the identity H(1)

m (krP
j )eimθP

j = (−1)mH(1)
m (krP

j )eimθj
P , V is expressed

in the coordinate system originated at P. Applying the Graf’s addition theorem with
condition rP

i > rj
i , we have

H(1)
m (krP

j )eimθP
j = (−1)m

∑
n∈Z

Hn−m(krP
i )ei(m−n)θP

i Jn(krj
i )einθj

i

=
∑
n∈Z

Hm+n(krP
i )ei(m+n)θP

i Jn(krj
i )e−inθj

i

=
∑
n∈Z

Jn−m(krj
i )ei(m−n)θj

i Hn(krP
i )einθP

i ,

(A.5)

which is the expression of V in the coordinate system about oi.
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The Lippman-Schwinger formulation

Assume that E(r) is the electric field by the well-organized structure (which means they
are no defects) at the point r. According to the Helmholtz equation,

▽ × ▽ × E(r) − k2(r)E(r) = 0 (B.1)

Similarly, the field corresponding to disorganized structure (now, with missing rods) Ẽ(r)
satisfies

▽ × ▽ × Ẽ(r) − k̃2(r)Ẽ(r) = 0 (B.2)

so the subtraction of the two equations,

▽ × ▽ ×(Ẽ(r) − E(r)) − k̃2(r)Ẽ(r) − k2(r)E(r)
= ▽ × ▽ × (Ẽ(r) − E(r)) − k2(r)(Ẽ(r) − E(r)) − (k̃2(r) − k2(r))Ẽ(r) = 0

(B.3)

Let y(r) = Ẽ(r) − E(r), then

▽ × ▽ × y(r) − k2((r))y(r) = (k̃2(r) − k2(r))Ẽ(r) (B.4)

According to the definition of the Green function G(r),

▽ × ▽ × G(r, r′) − k2(r)G(r, r′) = δ(r − r′) (B.5)

then y(r) can be written as

y(r) =
∫

G(r, r′)(k̃2(r′) − k2(r′))Ẽ(r′)dr′ (B.6)
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Assume that there are P missing rods, then, expect for the surface area of these P rods,
k̃2(r′) − k2(r′) = 0. so

y(r) =
P∑

p=1

∫
Dp

G(r, r′)(k̃2(r′) − k2(r′))Ẽ(r′)dr′ (B.7)

Dp is the surface area of the p-th missing rod.



Appendix C

Further complementary material on
time reversal I

In the contribution —H. Tu, M. Serhir, P. Ran, and D. Lesselier, On the modeling and
diagnosis of a micro-structured wire antenna system, 2018 International Conference
on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, May 2018. IEEE
Conference Publication no. 8563875 (3 pp), Dec. 2018— that I delivered as a poster in the
ICMMT conference, a 3-D full-wave configuration, supported by laboratory experiments
on a properly built previous prototype in a microwave anechoic chamber, has been
discussed in depth from simulated and experimental data: short monopole wire antennas
apart by a small fraction of the operation wavelength are inserted within a finite set of
regularly distributed, shorter thin metal wires also apart similarly, and the monopole
that radiates must be found from far field patterns (those exhibit sharp changes versus
the position of the radiator in the frequency band associated to resonances).

The investigation has not be pursued beyond 2018, as focus shifted to 2-D cases
and dielectric micro-structures, yet this remains of good interest, as moving up to 3-D
cases of dielectric micro-structures is one of the proposed paths of investigation, and
experimental challenges of the same order should be faced with, while the fact that they
may exhibit resonances of some sort, even if less obvious than as with the metal wire
system, is also to be appraised further.

Notice that elements of the above have been orally given in September 2018 upon
invitation at a Workshop in Singapore by D. Lesselier —Z. Liu, P. Ran, Y. Zhong, M.
Serhir, and D. Lesselier, Computational imaging of micro-structured media at small scale
- from one-shot first-order solutions to full-wave iterative ones, Workshop on Qualitative
and Quantitative Approaches to Inverse Scattering Problems, Institute for Mathematical
Sciences, National University of Singapore, Singapore, Sept. 2018.
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Emphasize that no specific Chapter of the present PhD manuscript is associated to the
issue, as seen somewhat aside the main investigation, yet brief comments in Introduction
and Conclusion are made about it.



Appendix D

Further complementary material on
time reversal II

The work about time reversal for a source and for missing rods is carried out at different
stages of the present research, and if some parameters of the configuration are not
identical, the condition of sub-wavelength geometries is always maintained. To be more
specific, whenever preoccupied with time reversal for the active source, different distances
D from the center of the structure to the observation point are used, including the 7.2λ

which is the same as with the configuration for the investigation about the localization
of missing rods, and also 20λ which is the original setting. Size of the radius of rod c has
an influence on the performance of localization of the active source, that is, when c is as
small as λ/20, which is the original setting of the configuration, the localization accuracy
is high enough, while when c becomes larger, the accuracy of the localization reduces,

—to be mentioned, all the discussion is under the assumption of an operating frequency
as of 3 GHz.
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