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« Failure is only the opportunity to begin again more intelligently. »

Henry Ford

« I dettagli fanno la perfezione e la perfezione non é un dettaglio. »

Leonardo Da Vinci
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Préface

De nos jours, I’exploitation des matériaux plastiques (PP, PE, PVC, ...) s’est imposée dans tous

les secteurs industriels et de la vie courante. Leur faible cofit associé a leurs propriétés physico-
chimiques (1égereté, durabilité, transparence, ...) leur conférent de nombreux avantages en comparaison
des autres types de matériaux (verre, bois, métal,...) et les ont rendu indispensables. La production
mondiale n’a, en conséquence, pas cessé de progresser ces dernieres décennies et a atteint le niveau
record de 359 millions de tonnes en 2018 soit 1’équivalent de 11,38 tonnes produites par seconde. A
I’heure ou la préservation de I’Environnement est une problématique mondiale prioritaire, la production
et la fin de vie de ces matériaux soulévent de nombreuses controverses, leur persistance dans le milieu
naturel s’étendant sur des dizaines d’années. Bien que des moyens de préventions et de traitements aient
été développés pour limiter la pollution liée a 1’utilisation de plastiques (2 usage unique), leur
accumulation dans la nature, y compris dans les océans, est alarmante. De plus, la majeure partie des
plastiques conventionnels étant issus de l’industrie pétrochimique, I’amenuisement des réserves
prétrolieres pose la question de la pérennité de la production.
La recherche de solutions alternatives, durables et respectueuses de I’Environnement s’est donc
intensifiée ces dernieres années conduisant au développement des biopolymeres et notamment de ceux
étant a la fois biosourcés (issus de ressources naturelles renouvelables) et biodégradables tels que les
PolyHydroxyAlcanoates (PHA).

Dans le méme temps, 1’intérét porté au milieu marin, a orienté naturellement les recherches vers
cet environnement, véritable gisement de molécules et/ou de substances aux propriétés spécifiques :
lipides, antioxydants ou encore biopolymeres dont les exopolysaccharides (EPS) ou les
polyhydroxyalcanoates (PHA), produits notamment par des (micro)organismes halophiles.

Fort de ces constats, I’Institut de Recherche Dupuy de Lome (IRDL) et le Laboratoire de
Biotechnologies Marines (LBCM) de I’Université Bretagne Sud, ont développé conjointement des

compétences permettant 1’exploitation et la valorisation de ressources naturelles, y compris issues du
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milieu marin, pour répondre a la problématique du remplacement des plastiques conventionnels par des

matériaux biosourcés.

Les travaux présentés dans ce manuscrit se situent a 1’interface de ces deux domaines et
s’intégrent totalement dans la thématique de recherche de I’équipe « Ingénierie des biopolymeres » de
I’IRDL dont I’activité se concentre, en particulier, sur la production 2 fagon de PHA. A travers la mise
en ceuvre de différentes techniques d’étude, allant de la biologie moléculaire jusqu’aux procédés
d’extraction, les polymeéres produits répondent a des critéres précis. L’étude menée, ici, vise a
caractériser la bactérie marine, Halomonas sp. SF2003, isolée de molusques pé€chés sur les cotes
bretonnes, en vue d’exploiter son potentiel biotechnologique, et notamment, sa capacité de production
de PHA. Des précédents travaux développés au Laboratoire dans le cadre de projets collaboratifs
(BIOCOMBA, PHAPACK et BLUECOPHA) axés sur une montée en échelle de la production de PHA,

avaient laissé présager du caractere prometteur de cette souche bactérienne.

Le premier chapitre de cette étude dresse un état des lieux de la diversité des (micro-)organismes
marins et de leur potentiel pour le secteur des biotechnologies au regard de leurs capacités d’adaptation
et de production de composés d’intéréts. Dans un second temps, 1’accent est mis sur le potentiel d’une
famille de composés, les polyhydroxyalcanoates, qui s’imposent comme une alternative aux matériaux
plastiques conventionnels.

Le second chapitre introduit la partie expérimentale en décrivant I’ensemble des techniques mises en
ceuvre pour la réalisation de cette étude.

La section « Résultats » est présentée en trois chapitres. Le chapitre III relate la caractérisation génétique
et métabolique de la souche Halomonas sp. SF2003, le séquengage du génome et son annotation nous
ayant permis de classer la souche et de cibler certains phénotypes. Cette partie sert de base a la
caractérisation de la souche et de son métabolisme. Le chapitre IV se focalise sur 1’étude de la versatilité
de la souche vis-a-vis des sources de carbone afin d’identifier les substrats les plus adaptés a sa
croissance et a la production de PHA. La compréhension de la biosynthese des PHA chez Halomonas
sp. SF2003 est également approfondie par 1’étude des enzymes clés des voies métaboliques empruntées :

les PHA synthases PhaCl et PhaC2. Finalement, le chapitre V étudie I’impact de différents facteurs
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(sources de carbone et salinité) sur la production de PHA, et plus spécialement sur la productivité de la
souche. Cette partie a également permis d’initier la mise au point d’une méthode de suivi, en temps réel,
de la production de PHA.

A termes, I’ensemble des résultats obtenus permettront d’optimiser la production de PHA par

Halomonas sp. SF2003 afin d’exploiter en totalité le potentiel biotechnologique de cette souche.

Une partie des travaux ayant été réalisée en collaboration avec 1’équipe du Pr. Kumar SUDESH,
de I’EcoBiomaterial Research Lab de 1’Université Sains Malaysia (School of Biological Sciences) et un
des chapitres ayant déja été publié, I’intégralité de la partie résultat de ce manuscrit est présentée sous

le format « article », en anglais.

Review of biotechnological interest of halophilic
microorganisms

Materials and Methods

'l , Complete genome sequence of the halophilic PHA-producing
/'t W u /u bacterium Halomonas sp. SF2003:insights
I/ 7

/7'“ into its biotechnological potential

Characterization of Halomonas sp. SF2003’s
PHA production

Figure 1: Représentation schématique du contenu de la these.
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Chapter 1 State of the art
Halotolerant/Halophilic microorganisms and their

biotechnological potential
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Introduction

Halophiles and halotolerants are organisms living in saline or hypersaline environment, sometimes
considered as extreme environments, and are encountered in the three domain of life: Archaea, Bacteria
and Eukarya. Because they produce a diversity of valuable compounds and expose a strong adaptabilty
in front of harsh environmental conditions, they are ardently studied for their use in various fields. This
report discusses the interest of using halophilic and halotolerant microorganisms in biotechnological
process. In a first part, microbial communities and their natural environment will be presented, then
some examples of biotechnological applications using halophiles or halotolerant will be exposed.
Finally, and based on data descibed in the previous part, a particular interest will be given to
PolyHydroxyAlkanoates (PHA). Usually, several studies are still carried out in order to demonstrate that
the use of halophile/halotolerant bacteria could be an interesting and promising way for a sustainable
production of these eco-friendly bioplastics. It will be demonstrated that an important effort is given to
find new strains, exploit different by-products, optimize systems and increase yield of production in

order to reduce cost of production and facilitate PHA extraction and purification steps.

I. Microbial communities
1.1 Habitats and characteristics

Hypersaline environments are characterized by a concentration of salts higher than 10-12%,
caused by dissolution of minerals. These environments are widely distributed and include saline soils,
inland salterns and aquatic habitats like saline lakes, salty marshy places, seas or marine salterns 2,
They are considered as representative of extreme environments because normal cell physiology cannot
withstand the strong salt concentrations leading to considerate (micro-)organisms leaving inside, also,
as representative of the primitive (microbial) population **. Indeed saline environments represent a
source of (micro-)organisms, named halophiles or halotolerants, that can belong to the three domain of
life: Archaea, BacterialProkarya and Eukarya and expose interesting properties . Organisms living in
hypersaline environments are qualified of extremophilic because of their adaptibility in front of
constraining living conditions like high/low temperature, low oxygen availability, alkaline pH, or
presence of heavy metals/toxic compounds *-8. Therefore, populations found in these environments are
of great interest and are strongly studied for biotechnological applications. In this review, we will only
discuss only about halotolerant and halophilic microorganisms belonging to Archaea and Bacteria

domains.

18

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



Isolation and identification of microorganisms from these environments require special
enrichment technics, physiological and biochemical characterization but also special genotyping®.
Numerous studies have been conducted to understand metabolic adaptation of halophilic
microorganisms in front of these environments and, consequently, different classifications have been
proposed. The most widely used is based on the optimal growth of microorganisms according to salt
concentration >*6.7 |
Accordingly, four categories of microorganisms have been defined depending on their salt

concentration tolerance:

“Non-halophiles bacteria”, which have the best growth in media with salt concentration lower
than, or equal to, 0.2 M (1% (w/v)) of NaCl. Several bacteria of this category can also tolerate
higher salt concentrations and are named halotolerant,

- “Slight halophiles”, for marine bacteria, which have best growth with salt concentration between
0.2 and 0.5 M (1% to 3% (w/v)) of NaCl,

- “Moderate halophiles” with optimal growing rate for salt concentrations from 0.5 to 2.5 M of
NaCl (3% to 15% (w/v)),

- “Extreme halophiles” showing best growth for salt concentration from 2.5 to 5.2 M of NaCl

(15%-30%(w/v)) S°.

Maintenance of the osmotic pressure on either side of the cell is function of two principal
mechanisms depending on the category of the microorganism. Aerobic and halophilic Archaea and
anaerobic halophilic bacteria accumulate inorganic ions, like KClI, to obtain a high salt concentration in
order to balance the osmotic pressure. This mechanism is also known as « salt-in strategy ». This
strategy requires an adaptation of the intracellular chemistry and proteins, including enzymes, to
preserve their functionnalities “!®!'. In comparison, the « salt-out strategy » is used by halophilic or
halotolerant Eubacteria, Eukarya and by some methanogenic Archaea. This second mechanism consists
in increasing the intracellular concentration of soluble organic solutes (or osmolytes) like amino acids
and/or their derivatives, nitrogen-containing compounds, polyols and sugars and/or to expulse salts out
of the cell. Organic solutes are non-ionic and show a high water solubility. Consequently, they do not
disturb the cell metabolism. Accumulation of these compounds results from an uptake from the
environment or de novo synthesis. The accumulated osmolytes also act for cell adaptation to cold,
freezing conditions, heat or dessication and help for stabilization of biomolecules like DNA, enzymes
or membranes. These molecules have low molecular weight and are classified into zwitterionic, non
charged or anionic solutes. Zwitterionic solutes include amino acids and their derivatives (e.g. glycine
betaine, ectoine or hydroxyectoine) whereas non charged solutes involve amino acids or carbohydrates
such as N-acetylglutaminylglutamine amide, trehalose or sucrose. Finally, anionic solutes include L-o-
glutamate, hydroxubutyrate (HB) and its polymerized form: poly-B-hydroxybutyrate (PHB) which is the

main representative of the polyhydroxyalkanoates (PHA) family *!%!!, Interestingly, a number of these
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compounds are used in biotechnological fields for various applications. Examples of such applications,

and particularly production of PHA, will be discussed later in this manuscript.

For a long time, only two groups have been differentiated: the moderately halophilic Bacteria and
the extremely aerobic halophilic Archaea but recent studies allow isolation and identification of new

species, genera or higher taxa ’.

.2 Taxonomy

1.2.1 Haloarchaea

At the present time and based on data available in the second edition of the Bergey’s Manual
of Systematic Bacteriology and on LPSN database '?, Archaea includes a total of 5 phyla, 12 classes and
22 orders. Only the Euryarchaeota phylum includes halophilic Archaea grouped within different orders
(Table 1) #67-13.14,

Halophilic Archaea, also named haloarchaea, are included within the Halobacteria class
(formely designated Halomebacteria). They belong to the Halobacteriaceae family within the
Halobacteriales order. Identification and classification of haloarchaea is based on the description of
typical features obtained by the study of phylogenetic characteritics (comparison of 16S rRNA gene
sequences), genotypic and phenotypic characteristics (growth using different media and growth
conditions) and/or polar lipid analysis. Indeed, haloarchaea produce ether-linked lipids which are
typically used as key characteristics for differenciation of the members, especialy at the genus level. The
most revelant characteristics of halophilic Archaea are their requirement for high salt concentrations (up
to 20-25% of NaCl) and their inability to grow in freshwater media, which result in cells lysis 7. They
are considered as the best adapted prokaryotes to hypersaline environments ® as they can easily grow
aerobically in media containing 20 to 25 % of NaCl. Additionally, some of them can optimally grow in
alkaline medium and are consequently named haloalkaliphilic. Moreover, recent studies of hypersaline

environments allow identification of halophilic methanogenic species.

Even if a majority of haloarchaea can grow in presence of oxygen, some of them are strictly
anaerobic and obtained their energy by the formation of methane by dismutation of methyl compounds
(methyl amines, methyl sulfides or methanol). This group of microorganisms, named methanogenic
haloarchaea, is essential in hypersaline environment but only few species have been isolated, or are well
described. For the moment, methanogenic Archaea are classified within the class Methanomicrobia of
the Euryarchaeaota phylum. They have been described in seven orders (Table 1), but only
Methanosarcinales and Methanomicrobiales orders include halophilic species. Four genera included
methanogenic  haloarchaea:  Methanohalobium,  Methanohalophylus, — Methanosalsum  and

Methanocalcus.
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Table 1: Haloarchaea and Methanogenic Haloarchaea classification.
Based on data of de la Haba et al., 2011 and completed with data from other studies.

Phylum  Class Orders Family Genus/Species
Haloarcula
Haloarculaceae Halomicrobium
Halorhabdus
Halosimplex
S
= Haladaptatus
= Halalkalicoccus
% Halarchaeum
S Halobacteriaceae Halobacterium
S Halorussus
S Natronoarchaeum
— S Natronomonas
g Salarchaeum
X
S Halococcaceae Halococcus
<
Sé Haloferax
S Halogeometricum
S 3 Halosarcina
S
E = Haloferaceceae Haloplanus
) X
o S S Halopelagius
= 3 N Haloquadratum
9] -3 2
s 5 ) Halobaculum
s g é Halogranum
5 N Halorubraceae Halonoti
= S alonotius
= Halorubrum
) S
LT:J' T Halobiforma
Halopiger
N Halostagnicola
“ S :
S N Haloterrigena
N Q Halovi
= N alovivax
~ ) .
S ~ Natrialba
g S .
3 N Natrinema
= g Natronobacterium
Natronococcus
Natronolimnobius
Natronorubrum
:§ Methanohalobium
N
'E . .
= Methanosarcinales Methanosarcinaceae Methanohalophylus
S
§
<= Methanosalsum
S
= Methanomicrobiales Unassigned Methanocalcus

[.2.2  Halophilic and halotolerant bacteria

Until now, domain of Bacteria groups 34 phyla which include 77 classes, but only the following
phyla include halophilic bacteria: Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes,
Proteobacteria, Spirochaetes, Tenericutes and Thermotogae. These phyla regroup moderately or
extremely halophilic bacteria in contrast to halophilic Archaea which are mainly extremely halophilic

species.
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Halophilic Bacteria include a large number of heterogeneous species including Gram positive
and Gram negative cocci or rods which are aerobic or anaerobic with a heterotrophic or phototrophic
metabolism. The height phyla (Table 2, 3, 4 and 5) not only include halophilic genera/species but also

halotolerant genera/species.

Actinobacteria phylum is divided in 6 classes and 48 families for a total of 218 species
representing one of a major phylum of the domain. Among the different classes, only Actinomycetales
order, from Actinobacteria class, contains halophilic species inside the following suborders:
Actinopolysporinae, Corynebacterineae, Glycomycineae, Micrococcineae, Pseudonocardineae and

Streptoporangineae.

Comparatively, three classes inside the Bacteroidetes phylum contain halophilic species:
Bacteroidia, Flavobacteriia and Sphingobacteriia. For all these classes, only one family containing
halophilic species is described: Marinilabiaceae (Bacteroidia class), Flavobacteriaceae family

(Flavobacteriia class) and Rhodothermaceae (Sphingobacteriia class).

Cyanobacteria phylum (also nammed blue-green algae or blue-green bacteria or Cyanophyta)
has a taxonomy not clearly defined yet, depending on the followed rules (bacteriological or botanical).
Species inside this phylum expose interesting properties and are essential for photosynthesis of their
natural environment of origin. Slightly halophilic bacterial species are only described in the

Oscillatoriales order.

Traditionally three classes are described in the Firmicutes phylum: Bacilli, Clostridia and Mollicutes
but recently the last one, Mollicutes class, was moved to the Tenericutes phylum (described bellow).
Two new classes were added to the phylum: Erysipelotrichi and Thermolithobacteria. This phylum

groups heterogenous microorganisms in morphologic and physiologic point of view.
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Table 2: Taxonomy of Halobacteria (Part1).

Phylum Class

Order

Family

Genus or
Species

Actinobacteria

Actinobacteria

Actinomycetales

Actinopolysporaceae
Corynebacterineae

Glycomycetaceae

Jiangellaceae

Nocardiopsaceae

Pseudonocardiaceae

Actinopolyspora
Corynebacterium
Haloglycomyces

Haloactinopolyspora

Haloactinospora
Nocardiopsis
Streptomonospora
Amycolatopsis
Haloechinothrix

Micrococcales

Bogoriellaceae
Micrococcaceae

Promicromonosporaceae

Ruaniaceae

Georgenia

Nesterenkonia
Isoptericola
Prauserella

Saccharomonospora
Saccharopolyspora

Haloactinobacterium

Bacteroidia

Flavobacteriia

Bacteroidetes

Sphingobacteriia

Bacteroidales

Flavobacteriales

Rhodothermales (or
Sphingobacteriales)

Marinilabiliaceae

Flavobacteriaceae

Rhodothermaceae (or
Salinibacteraceae)

Anaerophaga

Gramella
Psychroflexus

Salinibacter
Salisaeta

Unassigned

Cyanobacteria

Chroococcales

Oscillatoriales

Prochlorales

Unassigned
« Prochlorococcaceae »

Unassigned

Rubidibacter

Halospirulina

Prochlorococcus

tes
Bacilli

irmicu

F

Bacillales

Bacillaceae

Planococcaceae
Staphylococcaceae

Alkalibacillus
Agquisalibacillus
Bacillus
Filobacillus
Gracilibacillus
Halalkalibacillus
Halolactibacillus
Halobacillus
Lentibacillus
Oceanobacillus
Ornithinibacillus
Paraliobacillus
Pontibacillus
Salimicrobium
Salinibacillus
Salirhabdus
Salsuginibacillus
Sediminibacillus
Tenuibacillus
Thalassobacillus
Virgibacillus
Jeotgalibacillus

Salinicoccus

Clostridia

Halanaerobiales

Halanaerobiaceae

Halanaerobium
Halocella
Halothermothrix
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Table 3: Taxonomy of Halobacteria (Part2).

Phylum

Class

Order

Family

Genus or
Species

irmicutes

F

Clostridia

Halanaerobiales

Halanaerobiaceae

Halobacteroidaceae

Halanaerobium
Halocella
Halothermothrix

Acetohalobium
Halanaerobacter
Halobacteroides

Natrionella
Orenia
Selenihalanaerobacter
Sporohalobacter

Proteobacteria

Alphaproteobacteria

Caulobacterales

Rhizobiales

Rhodobacterales

Rhodospirillales

Hyphomonadaceae

Hyphomicrobiaceae
Rhodobiaceae

Rhodobacteraceae

Rhodospirillaceae

Hyphomonas
Maribaculum
Maricaulis
Woodsholea

Dichotomicrobium

Rhodobium

Antarctobacter
Citreimonas
Hwanghaeicola
Jannaschia
Maribius
Marivita
Methylarcula
Oceanibulbus
Oceanicola
Palleronia
Paracoccus
Ponticoccus
Rhodothalassium
Rhodovulum
Roseicitreum
Roseinatronobacter
Roseisalinus
Roseovarius
Salinihabitans

Salipiger
Sediminimonas
Shimia
Sulfitobacter
Tropicibacter
Yangia
Fodinicurvata
Marispirillum
Rhodovibrio
Roseospira

Deltaproteobacteria

Desulfobacterales

Desulfovibrionales

Desulfobacteraceae
Desulfobulbaceae

Desulfohalobiaceae
Desulfovibrionaceae

Desulfocella
Desulfurivibrio

Desulfohalobium
Desulfovibrio
Desulfonatronospira
Desulfovermiculus

Epsilonproteobacteria

Campylobacterales

Campylobacteraceae

Helicobacteraceae

Arcobacter halophilus

Sulfurovum
lithotrophicum
Sulfurimonas
autotrophica
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Table 4: Taxonomy of Halobacteria (Part3).

Phylum Class Order Family Genus or Species
Aeromonadales Aeromonadaceae Aeromonas
Alteromonas
Aestuariibacter
Glaciecola
Alteromonadaceae Marinobacter
Marinobacterium
Alteromonadales Melitea
. . Idiomarina
Idiomarinaceae o .
Pseudidiomarina
Pseudoalteromonadaceae Pseudoalteromonas
Psychromonadaceae Psychromonas
Cellvibrionaceae Gilvimarinus
Cellvibrionales Halieceae Haliea
Microbulbiferaceae Microbulbifer
Halochromatium
Chromatiaceae Marichromatium
Thiohalocapsa
Alkalilimnicola
Aquisalimonas
Arhodomonas
3 . . Ectothiorhodospira
= Ectothiorhodospiraceae Eetothiorhodosinis
g 2 Chromatiales Halorhodospira
3 _g Thioalkalivibrio
g 8 Thiohalospira
A
§ N Hahellaceae Halospina
° S Halothiobacillaceae H alothiobacillus
e S . . . . .
A § Thioalkalibacteriaceae Thioalkalibacter
© Thioalkalispiraceae Thiohalophilus
Alcanivoracaceae Alcanivorax
Aidingimonas
Carnimonas
Chromohalobacter
Cobeti
Halomonadaceae oveta
Halomonas
) Kushneria
ceanospirillales
0 P Modicisalibacter
Salinicola
Oceanospirillaceae Nitrincola
14 Oleispira

« Saccharospirillaceae »

Unassigned

Saccharospirillum

Salicola

« Nevskiales »

«Salinisphaeraceae»

Salinisphaera

Pseudomonadales Pseudomonadaceae Pseudomonas
Vibrionales Vibrionaceae Salinivibrio
Thiotrichales Piscirickettsiaceae Thiomicrospira
Methylohalomonas
. . Thiohalobacter
Unassigned Unassigned Thiohalomonds

Thiohalorhabdus
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Table 5: Taxonomy of Halobacteria (Part4).

Phylum Class Order Family Genus or Species
Spirochaetes Spirochaetes Spirochaetales Spirochaetaceae Spirochaeta
Tenericutes Mollicutes Haloplasmatales ~ Haloplasmataceae Haloplasma contractile

Kosmotogales Kosmotogaceae Kosmotoga
Thermotogae | Thermotogae Petrotogales Petrotogaceae Aﬁi%gﬁa
Thermotogales Thermotogaceae %eerznojtf:ao

Inside the Bacilli class (or Bacillales order) various halophilic species have been described in
Bacillaceae, Planococcaceae and Staphylococcaceae families but the Bacillaceae family contains the

highest number of halophilic species.

Proteobacteria represents the most important and phenotypically diverse phylum of the Bacteria
domain and contains an important number of halophilic or halotolerant genera or species. This phylum
is strictly composed of Gram-negative species and is divided in 5 classes (Zeta-, Alpha-, Beta-, Delta-,
Gamma- and Epsilonproteobacteria) which are ubiquitous and physiological heterogenous. All the
classes include halophilic species except Betaproteobacteria.

Rhodobacterales, Rhizobiales and Rhodospirillales are composed of moderately halophilic species in
the Alphaproteobacteria class. Halophilic bacteria of Deltaproteobacteria (also nammed Deltabacteria)
are described as strictly anaerobic = chemoorganotrophic, chemolithoautotrophic  or
chemolithoheterotrophic sulfate-reducing organisms with respiratory metabolism and are classed in
different families. Comparatively, inside the Epsilonproteobacteria class only three moderately
halophilic species, isolated from hydrothermal environments, have been described: Arcobacter
halophilus, Sulfurovum lithotrophicum and Sulfurimonas autotrophica.

Finally, Gammaproteobacteria phylum contains the largest number of genera, approximately 250,
including 51 moderately halophilic species .

The Oceanospirillales order contains the family with the most important number of halophilic species

described until now: Halomonadaceae ''°.

This family is composed of species exposing different
phenotypic characteristic making classification quite difficult in some case. Moreover, the nine genera
composing this family are phylogenetically close except the Halomonas genus which is polyphyletic.
Hence Halomonadaceae family exposes interesting features, and numerous research have been
conducted for its study as well as its members leading to a reconsideration and a reorganization of the

family in the 1990’s 18,
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In comparison with previous phyla, Spirochaetes and Tenericutes phyla contain only few
halophilic species: Spirochaeta halophila, S. africana, S. alkalica and S. asiatica and Haloplasma
contractile.

Finally, several moderate, slight or marine species, have been described in Thermotogae phylum. All
belonging to Kosmotogaceae, Petrotogaceae or Thermotogaceae families. But actually, Petrotoga

halophila is the only moderately halophilic species clearly identified 2.

This part depicted taxonomy of halophilic archaea and bacteria and demonstrated their important
representation in different phyla and at the same time represented as an important variety of (micro-
Jorganisms which can be studied. Molecular mechanisms of their adaptation to hypersaline conditions
have only recently been studied. Moreover, identification of genes conferring salt resistance, along with
the presence in halophiles of novel and stables biomolecules, explain the growing interest of both
scientists and industry to study more deeply and to exploit these species. The next section will expose
the specific characteristics and properties of these microorganisms and how they provide significant

opportunities for biotechnology.

II. Biotechnological applications

The use of biotechnologies in our way of life is inescapable. They are employed for production of
added value compounds by bioprocessing from sustainable (co-)products provided by agriculture,
environment or industries, used in various domains '°. Even if the most famous known applications are
the production of biopolymers and biofuels, biotechnologies are also exploited for applicatons including
production of detergents, food and drink. Research and exploitation of halophiles already started during
last century. Regarding physiological features, adaptability and characteristics of halophiles in front of
extreme environments (alkalic/acidic, hot/cold or extremely salty) their employment in biotechnology
industry seems to be an advantageous solution to overcome important energy and water consumptions

that are required by some biotechnological processes *°.
II.1 Pigments

Among the important variety of compounds produced by halophiles, including
biosurfactants/detergents, biopolymers, enzymes, compatible solutes, some are more studied and yet

produced at a large industrial scale.

Since the end of the 19" century and the beginning of the 20™ century, haloarchaea have been
identified as responsible for the pink to red coloration of saline lakes and/or highlty salt concentrated
ponds of salterns °. This coloration, observed in animals, plants, algae or microorganisms, is due to
production of yellow-red or orange-red liposoluble pigments called carotenoids. There is more than 750
carotenoids, some of natural origin and others obtained by chemical synthesis, including cathaxanthin,

phytoene, phytofluene, lycopene, lycopersene, P-carotene, Cso-bacterioruberin and its derivatives
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(isopentenyldehydrorhodopin, anhydrobacterioruberin, bisanhydrobacterioruberin or
monoanhydrobacterioruberin) 22!, Bacterioruberin is the main carotenoids produced by haloarchaea. It
is composed of 50 atoms of carbon and can be found as trans or cis isomer as its derivatives '* (Figure
1). Bacterioruberin have different biological roles in haloarchaea. It acts for protection of DNA and
consequently cells, against ionizing by UV-radiation or hydrogen peroxide (antioxidant activity)
demonstrated in Halococcus morrhuae and Halobacterium salinarium’s extracts. Bacterioruberin acts
also for cellular membrane reinforcement, by limiting water permeability and increasing rigidity 2.
Different species of haloarchaea have been identified as natural producers of carotenoids like Haloferax
alexandrinus that produces canthaxanthin or the green algae Dunaliella salina and D. bardawil which

are already exploited for production of B-carotene **. But usually, only few are cultivated for viable

commercialisation of carotenoids due to the high production costs.

OH

Figure 1: Bacterioruberin.

Another pigment of interest produced by halophiles is the membrane-bound retinal pigment
named bacteriorhodopsin *. This coumpound is a light-driven proton pump which is involved in a
photocycle, initiated by light excitation, leading to proton release outside the cell. This release creates a
proton gradient usable for adenosine triphosphate (ATP) generation . Bacteriorhodopsin was discovered
in the 1970s in Halobacterium salinarium’s proteome and is qualified as an unusual protein due to its
characteristics. Indeed this protein, of approximately 25kDa, tolerates a large range of temperature and
does not need high salt concentration, in contrast to other proteins of H. salinarium, to keep its structural
stability and activity. Yet bacteriorhodopsin is sold as purple membrane patches but there is no true
commercial applications even if use of bacteriorhodopsin seems to be adapted to many different

2 or for desalination of seawater 2*. The

applications like spatial light modulators, artificial retinas
pigment could be used for conversion of light energy into chemical energy (and also electricity) * or for
back conversion of ADP to ATP, allowing production of ATP which is highly necessary for some
biotechnological process 2*. But one of the most interesting and promising applications is the use of
bacteriorhodopsin as erasable and photosensitive material for optical information recording and

processing in holography especially !!.

Carotenoids are produced by numerous halophiles : haloarchaea or halobacteria and count a large

variety of pigments exposing interesting properties (strong immune boosting and antioxidant properties
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but also protective action against premature ageing) . They can be used as additives in baking process
or emulsions, or in cosmetic industry 22, Even if the yield of production and downstream process are
very interesting they must be improved to optimize production costs at their maximum. Solutions can
be to increase production yield, use of by-product such as nutritive source or transgenic systems (as well
as production of P-carotene by Halomonas elongata expressing production genes of Pantoea
agglomerans) **. Usually the use of these pigments have been poorly studied however in view of the
high demand of carotenoids in cosmetic, food or pharmaceutical industries new studies should be

conducted.
II.2 Enzymes and Compatible solutes

Among the important variety of compounds produced by halophiles, a special attention is given
to enzymes and compatible solutes. Indeed, enzymes are referred as polyextremophilic and unusual
stable proteins due to their intrinsically stability and activity under harsh conditions #°~*’. Compatible

solutes, then, could be used for stabilization of (bio-)molecules.

Halophilic microorganisms secrete halophilic hydrolases (proteases, lipases, amylases, esterases
or nucleases) able to catalyze reactions under high salt concentrations 2. Currently, glycosyl hydrolase,
protease and lipase represent 70% of sold enzyme. Proteases alone are the most used enzymes, especially
in detergents formulations, pharmaceuticals, food processing or waste management '°. Different
halophilic species have been identified as protease producer such as Halobacillus karajensis strain MA-

2, Pseudoalteromonas sp., Halobacillus sp. or Chromohalobacter sp. '*%

. Lipase represents also an
important industrial enzyme exploited in detergent formulation or organic synthesis and has been
reported to be produced by the moderately halophilic species Salinivibrio sp. **. Finally, halophilic
amylases, which are commonly cyclomaltrodextrinases, are produced by various halobacteria
(Halomonas meridiana, Halobacillus spp., Halothermotrix orenii, Haloarchula sp.S-1 or Micrococcus
halobius) and can also be used in detergent formulation or for waste water treatment '°. But even if a
large variety of halophilic enzymes are produced by different halobacteria there is only few which have
found industrial application due to limited requirement for salt-tolerant enzymes. Currently, nuclease H

of Micrococcus varians subsp. halophilus is used for production of flavoring agent is one of the few

enzymes with industrial applications 2.

In comparison, demand for compatible solutes is quiet more developped. The term compatible
solutes refers to zwitterionic, non charged or anionic, low molecular mass compounds allowing
adaptation, maintenance and survival of organisms under harsh conditions by providing an osmotic

2

balance #°. These compounds avoid or limit detrimental action of high salt concentration, high

temperature, freezing or dessication on (bio-)molecules (DNA, proteins, ...). Additionnaly, some of

them expose ability to counteract UV-A effects.
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Figure 2: Ectoine. Figure 3: Hydroxyectoine.

This mechanism is considered as one of the main defense of halophiles '°. This class of molecules
includes amino acids (alanine, glycine, proline), sugars (trehalose and sucrose), polyols (glycerol,
mannitol, sorbitol), betaine, ectoine and its derivative hydroxyectoine (Figures 2 and 3). Both last ones
are the most produced by halophiles in front of high salt concentrations. Degree of halotolerance seems
to be linked to type of compatible solutes accumuluted by cells: low salt-tolerant strains, frequently,
accumulated sucrose and/or trehalose, moderately salt-tolerant glucosylglycerol while ectoine and
quaternary ammonium compounds are found in highly salt-tolerant species. Ectoine was first observed
in Ectothiorhodospira halochloris (a haloalkaliphilic photosynthetic sulfur bacterium) before being
found, as its derivative hydroxyectoine, in a large variety of species such as Halomonas elongata, H.
salina, H. boliviensis, H. ventosa, Chromohalobacter salexigens, Virgibacillus halodenitrificans or
Marinococcus M52. Industrial productions of ectoine and hydroxyectoine are developped using
Halomonas elongata and Marinococcus M52, respectively. One biotechnological process, called
« bacterial milking », was developped for production of ectoine with H. elongata and consists to induce
excretion of ectoine, to maintain osmotic balance, by transferring bacterial biomass alternatively into
low and high osmolarity medium >?°. Studies have demonstrated that optimization of medium
composition, significantly impacts yield of production **. Employment of halophilic strain, engineered
or not, could allow production of compatible solutes and their use as proteins stabilizers, dessication

protector in medical applications or for skin care protection in cosmetic formulations *%%,

II.3 Biopolymers

Microorganisms, including halophiles, are responsible for production of various biopolymers like
polyamides, polyanhydrides, polyesters or polysaccharides, whose majority are extracellular products.
They are mainly synthesized to protect cells in front of stressful conditions 3!, In natural environment,
biopolymers are completely degraded by depolymerases and hydrolase action making them good
candidates for replacement of recalcitrant oil-based polymers. Consequently, bacterial polymers are
exploitable in diverse application fields (food industry, pharmaceuticals technology, packaging,
bioremediation,...) *. In this section we will present and describe some of them in order to underlign

their biotechnological potential.
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II.3.1 Polysaccharides

There are already many studies looking for discovery and exploitation of marine
polysaccharides such as agar, agarose, carrageenans and alginates, that are extracted from seaweeds
(macroalgaea) 3. But marine bacteria can also produced an important variety of polysaccharides:
structural, intracellular or extracellular polysaccharides also named exopolysaccharides (EPS). This last
type of polysaccharides represents another important source of marine polymers with promising or
actual applications. Numerous bacterial species have been reported to produce EPS in large amounts >,
nevertheless only few of these polysaccharides have been yet fully studied **. They are water soluble
molecules, which may be ionic or non-ionic, literally extracellularly produced by halophilic
microorganisms. EPS are composed of very regular units of repeat (branched or not) * that can be
sugars including amino sugars (D-Glucosamine and D-Galactosamine), pentoses (D-Arabinose, D-
Ribose, D-Xylose), hexoses (D-Allose, L-Fucose, D-Galactose, D-Glucose, D-Mannose, L-Rhamnose)
or uronic acids (D-Glucuronic acids, D-Galacturonic acids). They can also contain various organic or
inorganic compounds (acetic, phosphoric, pyruvic, sulfuric or succinic acids, phosphate or sulfate) >34,
EPS can be considered as protective compounds against adverse conditions and many halophilic species
have been described to possess an EPS capsule surrounding cell to protect it. But they are also involved
in different processes in marine environment such as bacterial attachment on surfaces, biochemical
interaction between cells and absorption of dissolved organic materials 333, EPS production has been
described in various halophilic microorganisms like Halobacteria and especially Halomonas species (H.
alkaliantartica, H. anticariensis strain FP36, H. eurihalina, H. maura, Halomonas sp. AAD6, H.

..) 211243637 or in Cyanobacteria species (Aphanothece halophytica or Cyanospira

ventosae sp. NOV.,.
capsulate) **3¥ but also in haloarchaea (Haloferax mediterranei, Haloferax gibbonsii, Haloarcula strain
T5). Their production can be induced by various environmental factors: salinity, pH, temperature, light
intensity, competition for nutriments or for adaptation in front of extreme inhabitats. Consequently their

biological functions depend on microorganisms’s environment *°.

EPS produced by Halomonas species are polyanionic with an elevated sulphate content and
glucuronic acid * giving them good gellifying properties. Comparatively, EPS from the haloarchaea,
Haloferax mediterranei, are anionic sulfated acidic heteropolysaccharides exposing good rheological
properties, high viscosity at low concentration and resistance against harsh conditions (temperature and
pH) *!12¢ EPS also expose immunomodulation properties (sulfated EPS can limit virus penetration in
host cells like EPS of A. halophytica which inhibit pneumonia caused by influenza virus HIN1 2* or
those produced by H. mauran*), anticancer activy (EPS from Pseudomonas sp. exposing cytotoxic

effects on cancer cell lines MT-4) or bone-healing properties (EPS produced by Vibrio diabolicus)

5,31,33,38
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These properties allow marine EPS to have applications such as surfacting, emulsifying, gellifying,
thickening agent in various industries. They can be used in food or pharmaceutical applications but also
for oil recovery and bioremediation of heavy metals.

EPS expose interesting properties, as well as those produced by Halomonas almeriensis (emulsification
of hydrophobic compounds ; bio-detoxifier, emulsifier or biological agent) *°. Consequently, studies for
optimization of their production and recovery are conducting. Actually, production and recovery process
are key points. Indeed, in some cases production yields are low and production of EPS using
fermentation process leads to the obtention of a final growth medium revealing a high viscosity.
Consequently, recovery of biopolymer is difficult and can be too expensive for the final quantity of EPS.
Different approaches are studied, i.e. the use of genetically modified strains or optimization of
production parameters. Several studies have been conducted to determine impact of temperature on EPS
production by marine strains (members of Colwellia, Hallela and Pseudoalteromonas genera) and
demonstrated its key function for increasing production yields *. Influence of media composition on
biopolymer production was also investigated for different bacterial species (belonging to

Pseudoalteromonas, Pantoea, Halomonas genera) and highlights the importance of this parameter and

the necessity to adapt it to microorganism’s metabolisms.
I1.3.2 Polyesters/Polyhydroxyalkanoates

Among biopolymers, microbial polyesters named polyhydroxyalkanoates (PHA) (Figure 4),

probably represent the heterogeneous biopolymers of greatest interest.

R

0

Figure 4: PolyHydroxyAlkanoates general structure.

PHA are biodegradable and biocompatible storage polymers naturally accumulated by different
organisms: Prokaryotes, Bacteria and Archaea. PHA are stored as insoluble inclusions of 0.1-0.5 pum in
diameter in cytoplasm *2. PHA granules are carbon and energy reserves, but their composition suggests

a multifunctional role and leads to another way to call them: “carbonosomes” *!.

An important structural diversity has been described for these biopolymers. Indeed, more than
150 different monomers have been reported (Table 6) confering to PHA a wide range of properties '°.
Because they are biodegradable, thermoplastic and elastomeric materials, they are considered as good

alternatives for replacement of conventional plastics 424,
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Table 6: Common monomer units of PHA.

Class Pendant R group Name Abbreviations

é CHs Methyl Poly(3-Hydroxybutyrate) P-3HB

[a¥

é CH:CH3 Ethyl Poly(3-Hydroxyvalerate) P-3HV
CH2CH2CH3 Propyl Poly(3-Hydroxyhexanoate) P-3HHx

% (CH2)s-CHs Butyl Poly(3-Hydroxyheptanoate) P-3HHp

—g (CH2)4-CH; Pentyl Poly(3-Hydroxyoctanoate) P-3HO
(CH2)s-CH3 Nonyl Poly(3-Hydroxydodecanoate) P-3HDD

Due to these interesting characteristics, their use can be considered in various field such as
plastics processing industry (extruded or moulded products and packing or mulching films) for food
packaging, consumer goods * or for medical applications (cardiovascular products, surgical sutures,
wound dressing, tissue scaffolds, artifacts/implants, bone replacement, ...) 32447 They can also be
used as biodegradable carriers of valuable compounds (hormones, drugs or biocides) *34°. Exploitation
of PHA in agricultural/environmental fields, as in situ bioremediation of contaminated sites or treatment
of municipal wastewater, can also be considered **°'. Finally, PHA-producing bacteria have been

recently used for the enhancement of crop productivity by improvement of nitrogen fixation 2.

Currently, only few companies worldwide can furnish large amount of PHA such as Biomer
(Germany) >***, Bio-on (Italy) 3, Imperial Chemical Industry (U.K), Metabolix,Inc. (U.S.A) 3 or Telles
LLC (U.S.A) %. The main restriction for development of their marketing is their final cost. Indeed,
production of PHA still requires high-priced carbon substrates as well as expensive downstream
processing leading to an overall production cost 5 to 10 times more expensive (7 to 10 €/kg) than those

of conventionnal plastics 132,

One of the tracks studied in order to reduce final cost of PHA is the use of halophilic/halotolerant strains

since '%;

- Seawater can be exploited as producing medium, limiting freshwater consumption,

- Hight salt concentration limits external contamination,

- Simple carbon substrates can be used,

- Limited downstream processes are required as osmotic shock may be sufficient to lyse bacteria,
depending on the species,

- PHA biosynthesis can be coupled with other valuable compounds production (such as EPS)
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All these characteristics allow reduction of production costs but still demonstrate some limitations. For
example, high salt concentrations can be harmful for equipment (leading to corrosion) or coupled

productions can complicate downstream process.

First description of PHA-producing Haloarchaea was reported in 1972 and 1986, in Haloferax

mediterranei and Haloarcula marismortui , before being reported in different Haloarchaeal and
Halobacterial species such as Haloaquadratum walsbyi, Halogeometricum borinquense, Natrinema
altinense *S, Cobetia marina, Halomonas boliviensis LC1 , H. elongata DSM 2581, H. salina,
Halomonas sp. TDO1 31,
Production by Haloarcula and Haloferax species are the most studied and efficient haloarchaea to
procuce various PHA 3. Indeed, Haloferax mediterranei has demonstrated ability to produce both poly-
3-hydroxybutyrate (homopolymer, P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-
co-3HV) and production of terpolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-
hydroxybutyrate (P-3HB-co-3HV-co-4HB) has also been reported .

Additionnaly to haloarchaea species, halobacteria are also deeply studied for PHA production and
especially Halomonadaceae. In this family, numerous PHA-producers were identified as well as
Halomas aquamarina ATCC 14400, H. boliviensis DSM 15516, H. cupida CECT 5001, H. elongata
CECT 4279, H. eurihalina ATCC 49336, H. meridiana DSM 4225, H. pantelleriensis DSM 9661, H.
variabilis DSM 3051 or H. ventosae DSM15911. Like haloarchaea, halobacteria are able to produce

different type of PHA (P-3HB, P-3HB-co-3HV,...).

III. Generalities about Polyhydroxyalkanoates

Polyhydroxyalkanoates are biopolyesters detected in various eukaryotic (plants, animals,...) and
prokaryotic organisms (bacteria and archaea) which show thermal, mechanical and physicochemical
properties similar to those of conventional pretroleum-based plastics ***4%3, This part will only deals

with generalities about bacterial PHA (production, characteristics, properties and applications).

First osbservation was reported in 1926 by Lemoigne in Bacillus megaterium, a Gram positive
bacterium, before being observed in various Gram positive (like Bacillus sp., Clostridium sp.,
Actinomycetes sp., Corynebacterium sp., Staphylococcus sp. or Streptomyces sp.) and Gram negative
(Acinetobacter sp., Alcaligenes sp., Chromobacterium sp., Haemophilus sp., Nitrococcus sp.,
Pseudomonas sp.,...) species including halobacteria and haloarchaea species (Haloferax mediterranei,
Halomonas boliviensis, Halomonas elongata,...). To date more than 300 species are able to produce

these biopolymers °.
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PHA are water insoluble compounds accumulated into the bacterial cytoplasm as one to ten
granules (Figure 5) 4%, PHA production occurs during bacterial growth between end of exponential
growth phase and beginning of stationary phase under nutrionnal imbalance (excess of carbon and a

limitation of another essential nutrients like nitrogen, oxygen or phosphorus) ® or in response to an

) 32,67—69.

environmental stress (harsh physical conditions

Figure 5: Transmission Electron Micrograph of P-3HB-co-3-HV granules in Cupriavidus necator H16.
(http://www.ecobiomaterial.com)

PHA granules serve mainly as carbon and energy reserve but others biological functions have
been described *!. For instance, it has been reported that PHA can limit alteration of cellular components
as protein or RNA and can enhance resistance against dessication, thermal or osmotic shock, UV
irradiation...*!. Others studies have demonstrated horizontal transfert of PHA metabolism related genes
by bacterial species in order to resist to stressful environment °. In Bacillus cereus, Clostridium
botulinum or Azotobacter vinelandii *'*°, PHA production has been reported to be linked to various
cellular mechanisms like spore or cyst formation, synthetic nitrogen fixation or to prevent production of

acidic compounds of cellular metabolisms #6471,

In Methylarcula marina, M. terricola and
Photobacterium profundum, B-hydroxybutyrate accumulations have been reported when extracellular
concentration of NaCl increases, suggesting a potential osmolytic role of B-hydroxybutyrate or its
polymer 2. PHA in the form of oligomer, meaning 100 to 200 units of monomer, and more precisely as
oligo-PHB, have been detected complexed with polyphosphate and calcium ions (PHB-Ca-
polyphosphate complexes) in cellular membrane of different PHA-producing species or not as Bacillus
subtilis or Escherichia coli. Additional research have demonstrated that PHB-Ca-polyphosphate
complexes are linked to competence of bacterial cells ®. Actually, it is clear that biological functions
of PHA can not be limited to simple storage compounds and need to be deeply studied to demonstrate
their importance in various species. Indeed, considering PHA granules’s composition, it is suggested

49,64

that they can have other different biological functions and consequently PHA granules are also

named« carbonosomes » to illustrate the multifunctionnal functions of these structures.
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III.1 Structure and properties of PHA

II.1.1 Structure

Polyhydroxyalkanoates are linear polyesters composed of R-hydroxy fatty acids monomer (-
HA) with a side chain wearing alkyl, branched alkyl or substituted alkyl groups which are saturated or
not. Monomers are connected together by an ester bond which appears when a carboxylic group of a
monomer is connected to hydroxyl group of the adjacent monomer 73, Due to the stereospecificity of
the key enzyme involved in the biosynthesis: PHA synthase (PhaC), all monomer units of R group are
in R(-) configuration *7*, Nature of pendent group is directly linked to the carbon substrates assimilated
for biosynthesis. A wide variety of carbon substrates such as sugars (glucose, fructose, sucrose,
cellulose,...), triacylglycerols, hydrocarbons, fatty acids or acids (4-hydroxybutyric acid, propionic
acid,...) are frequently employed for PHA biosynthesis. In addition to conventionnal sugars or complex
mix used for production, there is an important variety of atypical carbon sources, as industrial co-
products or wastes, which have been tested or are still exploited ">, This important variety of potential
substrates, in conjunction with the diversity of producing species, leads to a wide structural range of
PHA. To date, there are more than 150 structures referenced in the literature ', some of them are
illustrated in Figure 6. Bacterial PHA expose a molecular weight (My,) generally ranging from 5.0x10°
to 3.0x10° g/mol with a polydispersity ranging from 1.6 to 2.2 ®-77-78, Bacterial strain and composition

of pendent group R influence value of n which is generally ranging from 100 to 30000.

H, n

General structure of PolyHydroxyAlkanoates

R group PHA
< Methyl CH3 Poly-3-Hydroxybutyrate
% Ethyl CH,-CH, Poly-3-Hydroxyvalerate
Propyl (CH,),-CH; Poly-3-Hydroxyhexanoate
Butyl (CH,);-CH,4 Poly-3-Hydroxyheptanoate
Pentyl (CH,),-CH,4 Poly-3-Hydroxyoctanoate
Hexyl (CH,)s-CHj, Poly-3-Hydroxynonanoate
< Heptyl (CH,)-CH,4 Poly-3-Hydroxydecanoate
E Octyl (CH,),-CH,4 Poly-3-Hydroxyundecanoate
g Nonyl (CH,)-CHj, Poly-3-Hydroxydodecanoate
Decyl (CH,)s-CH, Poly-3-Hydroxytridecanoate
Undecyl (CH,),,-CH,4 Poly-3-Hydroxytetradecanoate
Dodecyl (CH,),,-CH, Poly-3-Hydroxypentadecanoate
Tridecyl (CH,),,-CH,4 Poly-3-Hydroxyhexadecanoate

Figure 6: General nomenclature of main PHA.
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A classification based on the number of carbon atoms in the alkyl chain gives two groups of
PHA: short-chain length PHA (scl-PHA), with monomers composed of 3 to 5 carbon atoms, and
medium-chain length PHA (mcl-PHA) composed by monomers with 6 to 14 carbon atoms (Figures 6
and 7). Based on polymer composition, homo- and heteropolymers (such as P-3HB-co-P-4HB or P-

3HB-co-3HV) can be distinguished.

0 o 0 0 0 0
{\OWO o o o o
HB HV HHx HO HD HDD

! J \ )

| |
scl-PHA mcl-PHA

Figure 7: Common monomers of PHA.

Production of scl- or mcl-PHA is dependent on PHA synthase (PhaC) specifity, i.e. its class
(described below), and substrates used. Futhermore, monomers with functionnalized monomers such

as cyano, halogen and hydroxy carboxyl groups, have already been described in mcl-PHA ¢7,

Beside homopolymers, heteropolymers expose a great interest. Their production occurs when
carbon substrates mix are used during production step or if there is an alternation of carbon sources .
For example, production medium composed of glucose and valerate leads to the biosynthesis of P-3HB-
co-3-HV. Proportions of each monomer composing the heteropolymers are dependent on conditions,
including bacterial strains and carbon substrates used. The employment of carbon substrates mix does
not allow to perfectly control PHA composition and produces random heteropolymers. Heteropolymers
consisting of copolymers of scl- and mcl-PHA expose better mechanical properties than scl-PHA (see

below) and hence focused main of the research 7>7.

In addition, diverse chemical modifications have been envisaged to obtain new functionalized
polymers after their biosynthesis. For example, Bassas-Galia et al., have used epoxidation of PHA in
order to obtain biomaterials allowing conjugation of biological molecules *°. Others chemical reactions
which can be applied to functionnalize PHA are chlorination, hydroxylation, carboxylation, thiolation

or esterification to obtain grafted polymers like cellulose-g-P-3HB-co-3HV or P-3HB-co-3HV-g-chitin

81,82
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III.1.2 Properties

PHA are biopolymers exhibiting numerous advantageous properties. They are entirely
biodegradable, non toxic, biocompatible, and expose a wide range of physicochemical, thermal and
mechanical properties. Their thermomechanical properties are closely dependent of their own
composition. General data in literature gives an overview of the range of these different characteristics

like cristalinities ranging from 30% to 70% and melting temperatures ranging from 50°C to 180°C 773,

Table 7: Mechanical and thermal properties of PHA.
Based on data of Taguchi ef al.,2012 and Rudnik, 2008 and completed with data from other studies.

Glass

Molecular i .re i .
Copolymer ! ML transition UGG Elongation
PHA content weight temperature ¢ t strenght (%)
(g/mol) C) emf:fg‘ ure (MPa)

PP - n.i 170 -10 35 400
P-3HB - 0.6x10° 177 4 43 5
P-4HB - n.i 60 -50 1000

P-3HB-co-4HB 3mol% 4HB n.i 159 n.i 24 242
P-3HB-co-4HB 16mol% 4HB n.i 150 -7 26 444
P-3HB-co-3HV 8mol% HV 1.0x10° 165 1 19 35
Palipcon SmOlTHEX g gyipe 160 2 3 260
P-3HO n.i n.i 61 n.a 6-10 300-450
8mol% HHx
P'3§I§é'°°' and 92 mol% n.i 61 33 10 300
HO

Scl-PHA are generally stereoregular polymers with a degree of cristallinity ranging from 55 to
80%. They have glass transition temperatures arround 5-10°C and melting temperatures ranging from
170°C to 180°C (Table 7). These characteristics make them stiff and brittle materials. However, scl-
PHA with a high molecular weight, that can be produced by recombinant strains, expose improved
physical properties . An exception can be notified in scl-PHA as P-4HB is a highly flexible polymer
due to incorporation of a comonomer into backbone of the polymer. Compared to scl-PHA, mcl-PHA
expose a lower degree of cristallinity, arround 25%. They also have glass transition temperatures and
melting temperatures lower than those of scl-PHA, which are ranging from -40 to -25°C and 39°C to
61°C, respectively (Table 7) ¢’ Mcl-PHA are consequently more elastic and flexible. This difference

of properties determines final use of each class of PHA.
III.2 Metabolism of PHA

Currently, numerous studies are available or are still conducting, for a better understanding and/or
modification of metabolic pathways of PHA biosynthesis. Final objectives remain to tailor-make these
biopolymers and also to increase yields of production according to an optimal exploitation of different

metabolisms *%.
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[II.2.1 Molecular organisation

There are numerous molecular data concerning PHA metabolism available in literature but the
most studied organization is Cupriavidus necator (formerly Ralstonia eutropha). The three main genes
coding for key enzymes of PHA biosynthesis: phaC, phaA and phaB, coding for PHA synthase, -
ketothiolase and acetoacetyl-Coa reductase respectively, are usually organized in one operon: phaCAB,
such as in C. necator ® or Pseudomonas sp. **%’. However, different organizations have been evidenced
% in other bacterial species. Indeed, there is a high number of genes coding for enzymes directly or
indirectly involved in PHA biosynthesis. For example, Meng et al. have identified about 44 enzymes
involving in one of the different patwhays (discussed below) for PHA biosynthesis, suggesting the high
number and the diversity of genes involved in these mechanisms 3. Organization of the biosynthesis

operons depends on bacterial species and also on the PHA synthase class (Figure 8) *.

PHAsynthase Class | Cupriavidus necator (Ralstonia eutropha)
(1770 pb) (1182 pb) (741 pb) (678 pb) (1260 pb)
PHAsynthase Class Il Pseudomonas aeruginosa
(1680 pb) (858 pb) (1683 pb)

PHAsynthase Class Il Allochromatiumvinosum
phaC phaE - phaP phaB
(1068 pb) (1074 pb) (1185 pb) (462 pb) (363 pb) (741 pb)

PHAsynthase Class IV Bacillus megaterium

(513 pb) (441 pb) (609 pb) (744 pb) (1089 pb)

Figure 8: PHA biosynthesis operon organisation in representative bacterial species.

Indeed, there are four classes of PHA synthases which have their own features. Synthases of
class I and class II are only composed by one phaC gene while those of classes III and IV are constituted
by two genes. Both phaC and phaE genes are required for PHA synthesis by class III PHA synthases
while for the class IV enzymes, phaC and phaR genes are necessary (Figure 8). Consequently,

biosynthesis operon organization is dependent of synthases classes.
III.2.2 Metabolic pathways

Three main metabolic pathways (I, II and III) are generally used to describe PHA biosynthesis
but a total of 14, natural or engineered, pathways have been yet described *%. Pathways use by
microorganisms depend on both PHA synthase (PhaC) specificity and nature of the carbon source, the

latter including a wide variety of compounds ranging from usual carbohydrates to complex mix or co-
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products. Metabolism of PHA is regulated at enzymatic and transcriptionnal level. Indeed it has been
shown that intracellular concentrations of free Coenzyme A, acetyl-CoA, of NADPH and ratio of
NADPH/NADP can act to regulate PHA biosynthesis *'.

The three main and natural pathways (Figure 9) include acetyl-CoA or acyl-CoA as intermediate.
Pathway I leading to the production of P-3HB, it starts with condensation of two acetyl-CoA, obtained
after glycolysis of sugars (i.e. glucose), by acetyl-CoA acetyltransferase (PhaA), to produce acetoacetyl-
CoA. Acetoacetyl-CoA reductase (PhaB) reduced acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA
which is finally converted to P-3HB by polyhydroxyalkanoate synthase (PhaC).

Pathway |

Carbon sources: Sugars Pathway Il
Carbon sources: Sugars

Sugar
N Acetyl-CoA —— Malonyl-CoA ———— Malonyl-ACP —— Acyl-ACP

Phaa \
~+ Acetoacetyl-CoA

PhaB \

Enoyl-ACP Fat

. R-(3)-Hydroxybutyryl-CoA G "f‘( 3- Ketoacyl-ACP

PhaC
(scl PHA synthase) l
Enoyl-CoA POLYHYDROXYALKANOATES  g(3)- Hydroxyacyl-ACP

Phay &)

PhaC w‘o
| ESER S (mcl PHA synthase) ?\(\a(a\
Acyl-CoA il S-(3)-hydroxyacyl-CoA R-(3)-Hydroxyacyl-CoA
Zoc

3-Ketoacyl-CoA

Carbon sources: Fatty acids

Pathway I

Figure 9: Metabolic pathways for PHA biosynthesis.
Adapted from Nomoto and Yano, 2009; Sudesh et al.,2000 and Verlinden et al., 2007.

Pathway Il is a derivative of B-oxydation of fatty acids and involves production of 3-hydroxyacyl-CoA
from 2,3-dehydroacyl-CoA, 3-hydroxyacyl-CoA or 3-ketoacyl-CoA, by (R)-enoyl-CoA hydratase, 3-
hydroxyacyl-CoA epimerase or ketoacyl-CoA reductase, respectively. Then 3-hydroacyl-CoA is used
by PhaC for PHA synthesis (Figure 9).

Finally, pathway III, involves the conversion of 3-hydroxyacyl-Acyl carrier protein (ACP) derived from
the fatty acid synthesis from sugars, to 3-hydroxyacyl by 3-hydroxyacyl-ACP-CoA transferase followed
by a synthesis of PHA by PhaC %7 Complementarly to these pathways, a fourth one is more and
more described, pathway IV, and involves conversion of butyric acids to S-hydroxyacyl-CoA and then

in acetoacetyl-CoA, whithout entering in B-oxydation cycle * (Figure 9).

The need to control biopolymer structure has led to futher studies using genetic engineering and
deep knowledges of these main metabolic pathways. These research have allowed the development of
ten additional pathways that can be exprimed simultaneously to “natural” pathways in PHA-producing
strains or in non PHA-producing strains such as E. coli ®. But all metabolic pathways include enzyme

PhaC, demonstrating its key function in PHA synthesis.
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II1.2.3 Granules of PHA

Granules of PHA, recently renamed carbonosomes because of their composition, are spherical
inclusions with a size ranging from 0.1 to 0.5um °'. These structures naturally refract light allowing their
observation using phase contrast microscope but also with staining technics using Sudan Black or
fluorescent stains such as Nile Blue or Nile Red 2. Granules characteristics are functions of the

bacterial strain and mode of production/culture conditions 6364

. Composition and formation of PHA
granules are studied for a long time and different models have been proposed. In 1968 Griebel et. al
described chemical composition of PHA granules in B. megaterium and highlighted influence of harvest,
preparation and observation technics on composition **. Consequently, terms of native PHA granules
and denaturated PHA granules were proposed, the first one being closer to in vivo PHA granules and
wearing PHA synthase enzyme, and can partially explain the difference of point of view. In this study
chemical composition was determined such as 98% of PHA (and especially P-3HB), 2% of proteins and
trace of lipids leading to the proposal that, in vivo, PHA granules are surrounding by lipidic (mono-
)layer with anchored proteins *3. Since this work, numerous research have been conducted and are still
ongoing to elucidate biogenesis and PHA granule composition. To date, and based on data obtained with

C. necator, three models of PHA granules formations have been proposed: micelle model, scaffolds

model and budding model (Figure 10).

Scaffold molecule r \

. PHA synthase

= AN PHA polymer
PhaP
W PhaZ
& C PhaR

@ PhaM
@ Additional PhaPs
Phospholipids

Figure 10: Schematic representation of PHA granules formation, a. Micelle model, b. Budding model and c. Scaffold model.
Adapted from Jendrossek and Pfeiffer, 2014 and Williams and Patricia, 2018 %473,

The micelle model suggests that PHA synthase (PhaC), key enzyme of PHA metabolism
(described below), is free in bacterial cytoplasm with a random localisation. Once a sufficient quantity
of substrate is detected, polymerisation is engaged and the neo-formed polymer chains start to be

grouped together and form a micelle-like structure, due to the insolubility of PHA. PhaC, which is

41

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



partially hydrophile, stays on the micelle-like structure surface. Later, other proteins in relation with
PHA metabolism (called PHA granule-associated proteins (PGAP)), will attach to the micelle-like
structure (Figure 10). This model can explain that PHA granules are randomly distributed in bacterial

cells 56,64,91,94

In budding model, in contrary to the previous model, PHA synthase is suppposed to be attached
to the inner face of plasma membrane possibly in response to detection of appropriate substrates (such
as 3HB oligomer or a part of a long chain fatty acids). Synthesis of polymer is initiated in the membrane
bilayer conducting to bud a vesicle when PHA chains reach a specific size. Finally, PHA granules
formation started, the structures (which could be surrounded by a (mono-)layer of lipids) are released in
cytoplasm before to be complete by PGAP and phasin Figure 10) 366+°! Location of PHA synthase,

PhaC, near to plasma membrane is unusual, consequently a third model was proposed.

The scaffold model proposes the creation of a link between PHA synthase and a scaffold
molecule within the cell (still not identified/unknown at the time of writing) during formation of PHA
granules. With this model, location of PHA granules is necessarly dependent of the scaffold molecule
location. Some studies conducted with observations performed by transmission electron microscopy
(TEM) or cryotomography advance the hypothesis that the scaffold molecule could be a mediation
element localized in nucleoid region %, Usually there is no clear differenciation between micelle and

scaffold models but replacement of the first one by the second one is frequent 3%,

Presence of phospholipids at surface of PHA granules is still hardly discussed. All proposed
models since the 1960’s include a monolayer of phospholipids at the surface of the granules based on
data obtained by TEM analysis which determined a membrane size of 4nm (half of cytoplasmic
membrane composed of a phospholipidic bilayer). But recently, Jendrossek et al. conducted a study on
different bacterial species with expression of fusion proteins which have led to exclude (phospho-)lipids
of PHA granules composition. It was proposed that detection of (phospho-)lipids is linked to isolation
technic of PHA granules %7, Even if conclusions of this study lead to exclude the presence of
(phospho-)lipids at PHA granules surface, newest research (including this one within the scope of this
PhD) are still using Nile Red or Nile Blue, which are fluorescent lipophilic stains. These technics allow

to obtain results, leaving in suspension question of PHA granules composition %1%,

In contrast to phospholipid, the presence of proteins surrounding PHA granules has long been
accepted and are commonly called PHA granule-associated proteins (PGAP). Studies for identification
and analysis of PHA granules surface, and protein composition, are performed using different technics
such as atomic force microscopy (AFM), transmission electron microscopy (TEM), fluorescent
microscopy, liquid chromatography coupled with mass spectrometry (LC-MS), sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) or trypsin digestion. Diversity of PGAP have been
highlighted at the PHA granules surface, for example Jendrossek et al., 2009, have identified a high
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number of polypeptides by proteomic analysis in C. necator, some of which are not essential for PHA
metabolism **, Usually PGAP, which can be detected in different microorganisms, are classified in four

groups : PHA synthases, PHA depolymerases, regulatory proteins and phasins °'.

PHA synthases are key enzymes of PHA biosynthesis and are responsible for conversion of (R)-
3-hydroxyacyl CoA in PHA simultaneously to liberation of Coenzyme A. Similarly to other proteins of
PHA metabolism, first studies and description were performed with C. necator (formerly Ralstonia
eutropha) and now approximately 90 PHA synthases have been identifed and characterized. PHA
synthases are classified in four classes, depending on their structures and their substrates specificity .
PHA synthases of class I are constituted of one PhaC sub-unit, encoded by phaC genes, and have a
molecular weight ranging from 60 to 70 kiloDalton (kDa). They use substrates with 3 to 5 carbon atoms
for synthesis of scl-PHA. PHA synthases belonging to class I have been described in numerous bacterial
species including C. necator. Class II regroups PHA synthases consisting of one PhaC sub-unit,
similarly to PHA synthases of class I, with a molecular weight also ranging from 60 to 70 kDa. But this
class of synthases are responsible of synthesis of mcl-PHA from substrates constituted of 6 to 14 carbon
atoms. They are mainly described in Pseudomonas species. Members of class I1II PHA synthases,
synthesize also scl-PHA from substrates with 3 to 5 carbon atoms but also from substrates with 6 to 8
carbon atoms, such as PHA synthase of Thiocapsa pfenningii. They have been identified in
Allochromatium vinosum or Archaea and are composed of two sub-units: PhaC and PhaE with both a
molecular weight of approximately 40 kDa. PHA synthases composing class [V are also formed by two
sub-units: PhaC and PhaR with a molecular weight of approximately 40 kDa and 20 kDa, respectively.
This class of synthases, which are mainly responsible for scl-PHA synthesis, are for now exclusively

found in Bacillus genus (B. megaterium, B. cereus,...) >%87101,

PHA depolymerases, named PhaZ, are responsible for PHA depolymerisation (« degradation »)
and were the first time identified in P. putida (P. oleovorans) **'2. Two type of depolymerases can be
reported: intracellular depolymerases (i-PHA depolymerases or i-PhaZ) and extracellular depolymerases
(e-PHA depolymerases or e-PhaZ). PhaZ have been identified in PHA producing strains themselves,

41, Additionnally to these two main classes, a third class has been described in

algae and fungi
Rhodospirillum rubrum and corresponds to PHA depolymerases with a periplasmic location (p-PHA
depolymerases or P-PhaZ). PHA depolymerases expose a « specifity to substrates » in the sense that
103

there are specific PHA depolymerases for scl-PHA or for mcl-PHA '*°. Usually PHA depolymerases are
considering as hydrolases and/or esterases which are potentially not only involved in PHA metabolism.
They start their activity when bacteria are stressed, under a carbon limitation, and hydrolyze polymers
in 3-hydroxyalkanoic acid, the monomeric unit of PHA. Then a dehydrogenase oxidizes 3-

hydroxyalkanoic acid to form acetoacetyl-CoA which will be convert in acetyl-CoA by B-ketothiolase

104
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Phasins (commonly called PhaP) are members of an important group of PGAP. They were
identified for the first time in 1994 in Rhodococcus ruber, before being detected in other numerous
PHA-producing bacteria (C. necator, B. megaterium, Pseudomonas putida,...) and also some Archaea
(Haloferax mediterranei) %1%, They constitute the most important and widespread group of PGAP
and are classified in four families, depending on a characteristic domain, and bacterial species where
they have been identified '®. Phasins PhaP1 of C. necator, PhaF and Phal of P. putida are the most well
studied. Phasins are amphiphilic oligomers, mainly found in a tetramer conformation in solution, with a
molecular weight ranging fromm 11 to 25 kDa and play different role linked to PHA metabolism and
characteristic of PHA granules. Indeed, they are suggested to be essential for PHA-granule formation
and to bring them a structural role. It seems that PhaP regulate surface, size and number of granules,
determine the surface-to-volume ratio and help the stabilization of these structures *°. Additionally, some
phasins seems to have a role in the level expression and activity of PHA synthase and in activation of
PHA depolymerase. Expression of PhaP, and consequently their activities, are regulated by the
regulatory protein PhaR, which is found at the surface of PHA-granules but also bound to DNA (region
upstream to phaP and phaR genes) °+1%. Another phasin, PhaF, has been identified in P. putida KT2440
and described to play the role of stabilizers of PHA granules 7.

The transcriptionnal regulator PhaR of C. necator is a repressor of PhaP phasin. Based on data
obtained from studies conducted with C. necator, different hypothesis have been proposed concerning
the mode of action of PhaR. PhaR binds PHA-granules as soon as polymerisation is started by PHA
synthase, leading to a decrease of the free-PhaR cytoplasmic concentration and consequently stopping
repression of phasin PhaP by PhaR. Synthesis of PhaP is possible and the phasin can attach the PHA
granules leading to a decrease number of available site for PhaR. Cytoplasmic concentration of PhaR
therefore increases and the protein can bind to DNA on promoter region of phaP gene (coding for PhaP
protein) inhibiting its transcription, but also its own transcription (autoregulation of PhaR). Inhibition
of PhaP also occurs when there are no optimal conditions for PHA accumulation/production. Due to its
capacity to bind irreversibly PHA-granules and reversibly DNA, regulatory protein PhaR exposes a

bifonctionnal character %2194,

Some multifunctionnal proteins have also been described to have a multifunctionnal role. For
example, PhaM protein of C. necator H16 is able to bind PHA granules and DNA (in vitro) and nucleoid
region (in vivo). Moreover this proteins seems to expose phasin-like properties and capacity to assist

distribution of PHA-granules 7.

44

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



III.3 Production of PolyHydroxyAlkanoates

PHA production involves several steps ranging from optimization of bacterial culture to
extraction and purification of the polymer (Figure 11). Most of the steps can be performed using
different methods and the choice of these methods must result in an optimal balance between quality of

PHA and final cost. Next section will expose some of methods which can be used in the different steps.
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Figure 11: Schematic representation of general mode of production of PHA.

III.3.1 Operational modes of Production

Usually three modes of PHA production are used: batch, fed-batch and continuous modes
(Figures 11 and 12). Pure or mixed cultures can be used, the second solution allowing exploitation of
open-unsterile processes. All modes are still deeply investigated in order to optimize PHA yield and
productivity, indeed production of PHA can be non-growth associated to some species.

For efficient large-scale production, PHA-producing organisms have to be cultivated under stable
physical and chemical parameters (pH-value, temperature, oxygen supply, substrate concentration) and

under aseptic conditions to exclud microbial competition phenomena.

As exhaustively described in literature, PHA production encompasses two easily distinguishable
steps for majority of PHA producing strains. First one aims to produce a maximal active cell density in
a nutritionally balanced growth medium and the second one leads to PHA accumulation by producing a
nutrient stress inducing deviation of the carbon flux from biomass production towards PHA synthesis.
Even if there is a separation between two phases, a PHA production can be observed during biomass

accumulation step, but is negligible as compared to that occurring during bacterial growth 319,
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Although even efforts for solid-state PHA production are reported, these processes result in modest
productivity. The two-step process characteristic for PHA production can only be efficiently performed

in planktonic cultures non-immobilized cells.
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Figure 12: Three main modes of PHA production.

Batch cultures are frequently used to study PHA production. With this process bacteria are
growing in a medium exposing an excess of carbon and a limitation of essential nutrient (oxygen,
nitrogen or phosphorus). During this process, bacteria cells are subjected to a gradual change of nutrient
concentration in medium. Optimally, bacterial growth is pushed to its maximum (end of exponential
phase/beginning of stationnary phase), but it is necessary to stop the fermentation at the right time to
prevent the use of neo-synthesized PHA (depolymerization) and death phase. Usually, batch production
is running for 24 to 72h. Cell harvest occurs only at the end of the cultivation batch (Figure 12). This
process has already been employed with different bacterial species/strains like Cupriavidus sp., Bacillus

sp. or Chelatococcus sp. '

Discontinuous fed-batch strategies are most widely used at pilot- and industrial-scale such as
with Methylobacterium sp. ZP24 or Bacillus megaterium %>'°-1%_Here, the culture is supplemented
with selected nutrients until the working volume of the reactor is reached (Figure 12). This mode allows
obtention of higher cell density than during batch cultivation and is generally well reliable and
reproductible. Nonetheless, addition of some substrates, especially those used for mcl-PHA biosynthesis
(i.e. fatty acids), can lead to a growth-inhibiting effect of the bacterial cells and consequently reduce
productivity levels. Moreover, product quality (i.e. molecular weight and polydispersity) can fluctuate

between different batches. Even if fed-batch culture exposes some disadvantages, it is the most common

46

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



used technic. Table 8 exposes comparative data between batch and fed-batch process and illustrates

difference of results between both using same strains and carbon substrates.

Table 8: Comparison of PHA production using different process.

. Carbon PHA/CDW  Production
Strain Process PHA Ref.
sources (Wt%) (g/L)
Cupriavidus Residual Batch P_3HB 20 1.24 109
necator H16 oil Fed-Batch 41 6.36
Pseudomonas Residual Batch P-3HHx-co-3HO-co- 17 0.87 109
oleovorans oil Fed-Batch 3HD-co-3HDD 39 6.38
Bacillus
Batch 27 8.75
megaterium Sugarcane P-3HB 108
BA-019 molasses  geq Batch 46 41.58
Continuous,
Bacter}al Sugarcan Feast _and P-3HB-co-3HV 17 ~0.43 10
consortium molasses Famine
Batch

Continuous culture, chemostat, is also employed for PHA biosynthesis. This method consists in
replacing culture broth with sterile medium in order to extend production period and maintain specific
growth rate with adjustment of dilution rate. This technic allows to obtain the highest productivities with
a constant product quality. However, longer production time with this technic increases risk of
contamination and consequently sterility must be better controlled during production period. In
comparaison to batch and fed-batch cultures, harvesting occurs continuously in continuous process
(Figure 12) 6319107 This method has already been used with different species such as C. necator DSM
545, Haloferax mediterannei DSM 1411, Pseudomonas putida (also known as P. oleovorans) GPol or

P. putida KT244() 63106.107
II1.3.2 Bacterial cultures

Additionally to the mode of production, different bacterial cultures can be used: pure cultures,
mixed cultures or recombinant strains cultures. For a long time, pure cultures were only used and
allowed commercialisation of heteropolymers (by Monsanto, Imperial Chemical Industries Ltd.). Pure
cultures are still used for production of functionnalized PHA but also for exploitation of genetically
engineered strains. With this technic, PHA composition is dependent of carbon substrates used and
usually lead to production of one type of polymer. In contrast, mixed cultures/consortium of bacteria
has been developped in order to reduce production cost. Indeed, this mode of production does not require
sterilization of reactor and allows the use of atypical « cheap » carbon substrates (fermented cheese
whey, municipal solid waste, sugar cane molasses,...) due to the high diversity of metabolisms presents
=113 This mode of production is based on ecological selection pressure during feast and famine cycles
leading to select high capacity PHA-producing strains. PHA production with mixed cultures is also
deeply investigated in case of halophilic PHA-producing strains. Indeed halophilic strains expose a high

5

and similar capacity to uptake different substrates . Moreover, use of halophilic strains eases
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exploitation of open and unsterile systems which can highly participate to decrease the production cost
114 Even if mixed culture production presents interesting advantages, rate of production and structural

homogeneity of polymer are still limiting and require to be deeply investigated.

In addition to wild type strain which can be found in common pure or mixed cultures,
recombinant strains are also widely used.
The oldest strategy is the use of genetic engineered non-producing strain, such as Escherichia coli,
which frequently expose a faster growth rate and have low substrates specificity . Other option is to
promote PHA metabolisms by weakening competitive pathways: TCA cycle for improve P-3HB
production or methyl citrate cycle (MCC) for improve P-3HB-co-3HV production !>, Modifications
of bacterial cell sizes can also be considered. Indeed, different studies using genetically engineered E.
coli (CRISPRi), have demonstrated that larger cells allow a higher PHA accumulation. Futhermore,
higher bacterial cell size can influence conversion of substrates into PHA and facilitate biomass
harvesting by the use of gravity ''°. Many studies have already been conducted during the last decades
for production of scl- and mcl-PHA using genes of various PHA-producing strains such as C. necator

or Pseudomonas species for example 73107-117.118,

Modification of PHA genes expression levels, designing of ribosome binding site (RBS) or
modification of promoters are other strategies which already gave good results 6. However, expression
of additional copies of PHA genes is sometimes not sufficient to improve polymer production * and

consequently other strategies must be employed.

Genetic engineering of a wide variety of PHA-producing bacteria can be performed using well-
known and applied molecular biology technics. However, they expose a low success rate and are time-
consumming. Futhermore, it seems very difficult to apply these technics to large gene clusters like those
involved in PHA production. Consequently, additional technics have been developped like
CRISPR/Cas9, CRISPRI, single-strand overlapping annealing (SSOA) or Nickling Endonucleases for
DNA ligation-independant cloning (NE-LIC). SSOA consists of a digestion of gene cluster and to anneal
and covalently attach single-strand DNA (ssDNA) to a circular and linear vector and NE-LIC to produce
ssDNA overlaps with 3’-end and 5°-end 7. These technics allow to express more easily PHA-production

119

pathway by non-producing species, as well as E. coli ', or to increase co-production of hydrogen and

P-3HB simultaneously '%°.

II1.3.3 Carbon substrates
A major parameter of PHA production is the selection of appropriate carbon substrates. In

addition to their impact on polymer structures, they can also negatively affect final cost of materials.

Carbon substrates used for PHA production can be divided into three groups: simple carbohydrates

(sugars), triacylglycerol and hydrocarbons. The first one being the most widely and easily assimilated
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by bacteria. In comparison, exploitation and conversion of triacylglycerol and hydrocarbons is only

observed in some species 712!,

Monosaccharides and oligosaccharides can directly be incorporated and use by bacteria (i.e.
glucose, fructose, sucrose, lactose,...) while polysaccharides, (i.e. cellulose, hemicellulose, starch...)
must be hydolyzed before their assimilation.

Triacylglycerol can be used as carbon substrates in PHA production systems exploiting adapted bacteria,
meaning lipase-producing and secreting strains: Pseudomonas sp., Aeromonas caviae,
Chromobacterium sp.,.. For example, Sharma et. al have shown that the use of canola oil with P.
chlororaphis PA23 can lead to PHA production "2, Moreover, production of mcl-PHA with
Pseudomonas putida strains CA-3 has also been performed using mixture of volatile fatty acids (VFA)

composed of acetic acid, propionic acid, butyric acid and valeric acid ',

Among the wide variety of bacterial species with hydrocarbons related metabolism only some
of them are able to use them for PHA production. For example, Sphingobium scionense sp. WPO1" 124,
Bacillus sp. CYR1 ' or C. necator '*° have already demonstrated their ability to synthesize PHA using
different hydrocarbons. Sphingobium scionense sp. WP01" is able to convert biphenyl and naphthalene
into P-3HB '**, while Bacillus sp. CYRI1 can use phenolic compounds or naphthalene for P-3HB
synthesis '?. In the case of C. necator, benzaldehyde allows PHA productions and presence of other
different toxic compounds, such as benzene dimethanol, represent an efficient stress to improve PHA

production %,

Unfortunatly even if the use of carbohydrates, triacylglycerol or hydrocarbons is easy, these
substrates can be expensive and/or can require costly and time-consumming pre-treatment. Moreover,
they are derived of food crops creating a competition with food provisions. Consequently, numerous
studies are conducting for valorisation of inexpensives carbon substrates as found in agroindustrial,

51,121,127

municipal wastes or petrochemical plastic waste 5.

II1.3.4 Downstream processing

Final steps of PHA production consist of harvesting biomass, polymers extraction and purifion
(Figure 11). All these steps can significantly impact the PHA yield, the PHA structure and the overall
production cost. Moreover, these steps can have a negative environmental impact. Numerous researches
are conducted for the replacement of conventionnal methods by eco-friendly or bio-based technics

accordingly to the principles of green-chemistry.

Biomass harvesting can be performed by different easy/common chemical or physical methods
such as (ultra-) centrifugation, gravity sedimentation, (micro-)filtration or floculation and has the
objective of separating biomass from culture broth and potential extracellular compounds **!%,

Depending on final volume of production, these traditional harvesting methods can be tedious and

49

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



constraining. Consequently, various strategies have been developped to modify cell morphology using
genetic engineering on genes/proteins related to cell division processus (FtsZ) or cytoskeleteal protein
expression %, These modifications lead to higher PHA accumulation, formation of filamentous cells

and aggregates and easier/faster gravimetric separations.

Extraction step commonly requires the use of high quantity of chemicals, solvents, water and
energy which negatively impact environment '*°. Several methods have been tested and extractions can
be performed by the use of solvents (halogen-free or halogenated), by digestion (biological agents,
enzymes, chemicals or surfactants) or by supercritical fluids. Additionally to chemicals technics,
mechanical methods such as high pressure, ultrasonication or bead milling can also be applied for PHA
recovery. Sometimes, pre-treatment steps (i.e. drying, grinding, (bio-)chemical treatments,..) can be
applied and allow a better extraction efficiency. Among extraction technics, a particular interest is given
to biological agents (i.e. laboratory rats or mealworms) during the last few years according to results of
several research teams which have demonstrated viability of coupling breeding worms and PHA
recovery. It has been shown that dried bacterial biomass of PHA-producing strains (C. necator) can be
used as an effective nutrient source for mealworm. They will then digest biomass without use of PHA
which are recovered from fecal pellets '*!. This method allows the recovery of PHA without the
alteration of PHA granules and consequently represents a promising solution, which could be integrated
to a circular economy concept and contribute to reduction of production costs '*>. Each method exposes
advantages and disadvantages and selected method must expose best balance between all parameters
and must consider final use of PHA (for example biomedical applications require obtention of PHA
exposing a high purity). For a long time, solvents have been the most used but cost and environmental
impact led to increase the research for alternative solutions that are more eco-responsible/eco-friendly

and less expensive 4.
II1.4 PHA production employing halophilic microorganisms

Previously, capacity of halophilic microorganisms to produce various compounds of interest has
been exposed. Among the examples, production of PHA by halophilic microorganisms exposes several
advantages, as well as the use of high salt concentrations or simplified extraction processes which allow

the reduction of production cost.
III.4.1 Haloarchaea

PHA production by haloarchaea can be achieved unsing different modes of production can be
used exploiting typical (sugars or starch %) or atypical carbon substrates (by-product of ethanol
industry ', olive mill wastewater '**, cheese whey '*° or macroalgal co-products '*®). For example, P-
3HB-co-3HV production has been reported with Hfx. mediterranei when by-products are added in

production medium which was also the case without the addition of precursors 2. Similarly, P-3HB-co-
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3HV-co-4HB production has been performed with a mix of y-butyrolactone, valerate and whey (Table
9) 46,62‘

Table 9: Comparative data of PHA production in haloarchaea species.

c - Carbon PHA/CDW  Production
Bacterial strain PHA Ref.
substrates (wt%) (g/L)
P-3HB-co-3HV 62
Whey sugars (6mol% 3HV) 73 12.2
. P-3HB-co-3HV 133
Pretreated vinasse (12.4mol% 3HV) 70 19.7
Ulva sp. derivated P-3HB-co-3HV 58 29 136
carbohydrates (8.0mol% 3HV) ’
Haloferax Olive mill P-3HB-co-3HV 3 02 134
mediterranei wastewater (6.5mol% 3HV) ’
P-3HB-co-3HV 135
Cheese whey (1.5mol% 3HV) 53 7.9
P-3HB-co-3HV-co-
y-butyrolactone, 4HB 38 147 46,62
valerate and whey (21.8mol% 3HV and ’
5.8mol% 4HB)
Haloferax gibbonsii Glucose P-3HB 1 n.i 137,138
Haloferax volcanii Glucose P-3HB 7 n.i 137,138
Haloarcula sp. IRU1 Glucose P-3HB 63 n.i 139
quoarcjula Glucose P-3HB 2 n.i 13,138
hispanica
Haloarcula . 13.140
. . Glucose P-3HB 21 n.i ’
marismortui
Halogeometricum
. . . P-3HB-co-3HV - 137
bormqu?;e strain Glucose (21.5mol% 3HV) 74 4.0
Natrinema altunense P-3HB-co-3HV 141
RM-GI0 Glucose (13.9mol% 3HV) 61 14.8

In addition to Hfx. mediterranei, other Haloarchaea can be exploited such as Hfx. volcanii 3713

137 or

or Haloarcula sp. IRU1 '* for P-3HB production and Halogeometricum borinquense strain E3
Natrinema altunense strain RM-G10 '*! for P-3HB-co-3HV production (Table 9).

Haloarchaea strains have already shown their ability to produce homo- or copolymer of PHA (Table 9),
which can be less expensive than using recombinant strains '*>. Furthermore, the use of these strains

allows easy downstream processing as osmotic shock can be employed 2+
II1.4.2 Halobacteria

Among Halobacteria, Halomonas boliviensis LC1 has been used in different studies with
various carbonaceous substrates as typical sugars (glucose, sucrose or xylose) and also agricultural by-
products or hydolysates of starch. For example, production of P-3HB was achieved using sucrose under
oxygen limitation and led to 54% of PHA in cdw (7.7 g/L of PHA) '*31% Production of copolymer such
as P-3HB-co-3-HV can also be achieve with halobacteria as well as Halomonas campisalis MCM B-

1027 (Table 10) “6:145.146,
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Table 10: Comparative data of PHA production in Halobacteria species.

. . Carbon PHA/CDW  Production
Bacterial strain PHA Ref.
substrates (wt%) (g/L)
Halomonas 143,144
boliviensis LC1 Sucrose P-3HB 54 7.7
Halomonas
. . . _ P-3HB-co-3HV 145,146
campisalis MCM B Maltose (36.8mol% 3HV) 81 4.5
1027
Vibrio harveyi 148
MCCRB 284 Glycerol P-3HB 72 23
Bacillus sp. KSN5 Molasses P-3HB 72 10.8 149
Yangia sp. CCB P-3HB-co-3HV . . 151
MM3 Glycerol (7.0mol% 3HV) n.i n.i
Fructose P-3HB 62 2.7
Fructose and sodium P-3HB-co-3HV 56 15
Yangia sp. ND 199 heptanoate (4.9mo0l% 3HV) : 150
Fructose and 1,4 P-3HB-co-4HB 55 13
butanediol (5.7mol% 4HB) ’
. . P-3HB-co-3HHx
Aeromonas halophila Lauric acid (23.6mol% 3-HHx) 20 L5 152,153
4AK4 . . P-3HB-co-3HHx
Oleic acid (25.1mol% 3HHx) 6 0.3

In addition to Halomonas species, different other halophilic bacteria have been reported to be
efficient PHA-producing '¥7. For example, Vibrio species have already been identified as potential PHA-
producing bacteria since the 1990’s and new studies continue to identify new producing strains. Recently
Vibrio harveyi MCCB 284 '“® and Bacillus sp. KSN5, a bacterium from marine soil 77, have
demonstrated their ability to produce P-3HB from different carbon substrates (Table 10). In the same
way, two species of Yangia genus have also been identified as PHA producing strains: Yangia sp. CCB
MM3, isolated from Malaysian Mangrove, and Yangia sp. ND199, isolated from Vietnamese mangrove.
Interestingly, both of them are able to produce copolymers using various pure or mix of substrates
(Table 10) 150151,

Halophilic species produce mainly short chain length PHA (scl-PHA), but some members of
Aeromonadales order have been described as efficient producers of medium chain length PHA (mcl-
PHA), which are elastomeric materials. Indeed, Aeromonas halophila 4AK4 have been used for P-3HB-

co-3HHx production from lauric and oleic acid in shake flasks and 20,000-L fermentor (Table 10) 5133,

II1.4.3 Genetically engineered halophilic bacteria

As mentioned before, complementary to the study of halophilic wild type strains, various
engineered strains have been developed and studied in order to increase production yields, by managing
different metabolisms, with the final objective of reducing production costs or obtaining new types of
PHA '3*, One of the most studied is the halophilic strain Halomonas bluephagenesis TDO1 (also named
Halomonas TDO1), which was initially isolated from a Chinese lake '*°. The strain was exploited for P-
3HB production on glucose with a fed-batch process productions reach 80% of PHA in cdw (64.0 g/L.
of PHA) (Table 11).
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Table 11: Comparative data of PHA production in genetically engineered Halomonas species.

Halomonas bluephagenesis TD0O1%: Production performed with a fed-batch process, Halomonas bluephagenesis TDO1P:
Production performed with an open unsterile and continuous process, Halomonas bluephagenesis TDO1¢: Strain engineered
with CRISPR/Cas9 technic and Halomonas bluephagenesis TD01¢: Strain engineered with CRISPRi technic.

. . Carbon PHA/CDW  Production
Bacterial strain PHA Ref.
substrates (Wt%) (g/L)
Halomonas
bluephagenesis Glucose P-3HB 80 64.0
TDO1? 155
Halomonas
bluephagenesis Glucose P-3HB 60 24.0
TDO1b
Halomonas Glucose P-3HB-co-3HV 61 3.5
bluephagenesis (;1.3111;;)1% 3;1{1\3 156
- _CO_
TDOS Glycerol (6.1mol% 3HV) 67 4.5
Halomonas
. P-3HB-co-4HB 157
blueq‘}]z;lgle:zeszs Glucose (16.1mol% 4HB) 61 50.1
b lHal;m(mas . Glucose and P-3HB-co-3HV 80 79 115
ue{JFDagle f ests propionic acid (11.8mol% 3HV) ’
Halomonas
bluephagenesis Glucose P-3HB 72 9.7 61
TDO1¢

Comparatively, an open unsterile and continuous process with same species and carbon
substrates allows the production of 60% of PHA in cdw (24.0 g/L of PHA) '*>. In order to tailor-make
PHA or to manage production, several genetic modifications have been studied. The recombinant strain
Halomonas bluephagenesis TD08, with a 2-methyl citrate synthase gene and three depolymerase genes
deleted, was able to produce P-3HB-co-3HV '*°, Production of P-3HB-co-4HB was also achieved using
a Halomonas bluephagenesis TDO1 (Table 11) with a controlled expression of the 4HB-CoA transferase
(responsible of conversion of 4-HB to 4HB-CoA) !’ Traditionnal molecular technics; such as plasmid
transformation, gene deletion or plasmid expression systems; allowed to obtain interesting results.
However, they are time consuming with low yield of success. Consequently, studies have been
conducted to apply new technics of genome editing on PHA-producing strains, on both halophilic and

non-halophilic bacteria 1%,

Indeed, systems such as Clustered Regularly Interspaced Short
Palindromic Repeats associated protein 9 (CRISPR/Cas9) or Clustered Regularly Interspaced Short
Palindromic Repeats Interference (CRISPRi), initially developped in other bacterial species, have been
tested and effectively exploited with halophilic species. CRISPR/Cas9 was used with Halomonas
bluephagenesis TDO1 that can naturally produce P-3HB-co-3HV but with a low of 3-HV units content
(<0.73mol%). Repression of prpC gene, responsible for expression of 2-methyl citrate synthase, was
performed and leads to blocking the methyl citrate cycle (MCC). Consequently, the use of glucose and
propionic acid mix in addition to inhibition of MCC allow to increase molar ration of 3-HV up to
11.8mol% (Table 11) ''>. CRISPRi system was also exploited with Halomonas bluephagenesis TDO1

for repression gltA, coding for citrate synthase allowing to use more acetyl-CoA (initially provided for

tricarboxylic acid cycle) for P-3HB synthesis. Genetically enginnered strain obtained, Halomonas
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bluephagenesis TD-gltA2, exposes a stronger P-3HB production up to 9.7 g/L. of PHA (71.8 % of PHA
in cdw) while the wild type strain, Halomonas bluephagenesis TDO1 produces 7.4 g/L of PHA (77.7%
of PHA) (Table 11) °'. In addition to experiments on (un-)related PHA-metabolisms, other studies were
conducted to manage the size of PHA granules by working on ftsZ, minC and minD genes, which are
coding for bacterial fission ring protein (Z rings) involved in cell division. Experiments allow to manage
bacterial cell size, in order to increase PHA granule size by deleting phaP genes which code for phasins
and are involved in granules formation 6!:158,

To sum up, there is a huge numbers of possibilities to genetically engineered halophilic strains. Different
metabolic pathways can be exploited to increase production yield and productivity or to reduce costs of

production but difficulties with genetic engineering of halophilic strains are often encountered making

management of bioprocess essential.

Conclusion

This report gives an overview of the wide variety of halophilic and halotolerant (micro-
Jorganisms existing in the three domains of life and demonstrates their importance.
Halophilic/halotolerant (micro-)organisms have very interesting and promising properties making them
unavoidable candidates for biotechnological applications in a near future. Indeed, they can be used for
productions of different valuable compounds usable in various fields ranging from agri-food industries
to biomedical applications. In this report we first described, in the most efficient way, the taxonomic
diversity of halophile and halotolerant (micro-)organisms. In a second part the potential of
halophile/halotolerant as biotechnological tools for industry and the need to continue research for the
optimization of their use have been discussed. Finally, we focused on PolyHydroxyAlkanoates (PHA)
for their high potential as new bio-based and biodegradable materials. In this last section structure,
molecular basis, metabolisms and production related to the biopolymers have been presented, non-

exhaustively in some cases, due to the importance of this research field.

Accordingly, there is a wide variety of PHA available or which can be produced. Numerous
studies are still running to elaborate the best way to produce and obtain tailor made PHA. Indeed,
bacterial strain used, monomeric composition, length of the side chain, range of molecular weight and
potential physical and/or chemical modification of PHA have a crucial impact on material properties
and determine its final potential application. Consequently, it seems obvious that production of PHA
using halophile or halotolerant (micro-)organisms could be a promising solution in a near future to
produce tailor-made/valuable biopolymers, reduce cost of production and finally enhance use of PHA

in everyday life.
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Matériels et Méthodes
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I  Souches bactériennes et conditions de culture

1.1 Souches et milieux étudiés

I.L1.1  Souches bactériennes
L’ensemble des especes bactériennes utilisées dans cette étude est listé dans le Tableau 1. Pour
chaque souche, une cryobanque a été réalisée en utilisant 25% de glycérol puis les tubes ont été stockés

a -80°C jusqu’a leur utilisation.

Tableau 1: Souches bactériennes utilisées dans cette étude.

Souche

Caractéristiques

Origine

Halomonas sp. SF2003
ID CNCM - 1-4786

Cupriavidus necator H16 (DSM
428)

C. necator H16 PHB* (DSM 541)

C. necator H16 PHB*
pBBRMCS-2 phaCl

C. necator H16 PHB*
pBBRMCS-2 phaC2

Souche sauvage productrice de P-3HB
et de P-3HB-co-3HV

Souche sauvage productrice de PHA

Souche mutée non productrice de PHA

Souche mutée/recombinante avec le plasmide

pBBRMCS2 portant le géne phaCl de Halomonas sp.

SF2003, identifié par annotation automatique.
Etude du role du géne phaCl. KmR

Souche mutée/recombinante avec le plasmide

pBBRMCS2 portant le géne phaC2 de Halomonas sp.

SF2003, identifié par annotation automatique. Etude

Mer d’Iroise, Collection
IRDL, UBS

Collection DSMZ

Collection DSMZ

Cette étude
USM, Penang, Malaisie

Cette étude,
USM, Penang, Malaisie

du role du géne phaC2. KmR

E. cloni® 10G cells Cellules (électro/chimio) compétentes USM, Penang, Malaisie

Escherichia coli S17-1 Cellules (électro/chimio) compétentes USM, Penang, Malaisie

DSMZ : Leibiz Institute DSMZ-German Collection of

KmR : résistance a la Kanamycine.

Microorganisms and Cell Cultures.

1.1.2 Milieux

Différents milieux, adaptés a la culture de chaque espece ou la production de PHA, ont été

préparés a partir de réactifs sous forme déshydratés.

1.1.2.1 Croissance

- Halomonas sp. SF2003

La souche est cultivée en milieu Zobell (en g/L : Bacto Tryptone (Difco, BD) 4, extraits de levures
(Fisher BioReagents) 1, sea salts (Instant Ocean, Aquarium systems) 30, pH 7,5). La culture est réalisée
a 30°C, sous agitation (200rpm). Le milieu est complémenté de glucose (Labogros), a une concentration

finale de 10 g/L, pour les pré-cultures dédiées aux productions.
- Cupriavidus necator

Les souches de Cupriavidus necator H16, C. necator H16 PHB™, C. necator H16 PHB*
pBBRMCS-2 phaCl et C. necator H16 PHB* pBBRMCS-2 phaC2 sont cultivées sur milieu riche en

nutriment (Nutrient rich medium, NR medium) (en g/L : extraits de viande (Sigma-Aldrich) 10, extraits
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de levures (Fisher BioReagents) 2, peptone de gélatine, digestion enzymatique 10). Les cultures sont
réalisées a 30°C et sous agitation (200 rpm). Le pH du milieu est ajusté a 7.

Les milieux utilisés pour les souches transformantes sont supplémentés en kanamycine (Km) a une
concentration finale de 50 ug/mL a partir d’une solution mere a 100 mg/mL. L’ antibiotique est ajouté

apres stérilisation du milieu.

[.L1.2.2  Tests de croissance en conditions de stress toxique

Pour I’étude de la croissance de Halomonas sp. SF2003 en présence de composés toxiques un
milieu T (en g/L: Glucose 10 ; Bacto Tryptone (BD, Difco) 0,5 ; extraits de levures (Fisher
BioReagents) 0,25 et sea salts (Instant Ocean, Aquarium systems 1, pH 7,5) est utilisé. Les pré-cultures
sont réalisées dans le milieu classique et la composition est modifiée pour les tests de croissance en
remplacant le glucose par les hydrocarbures aromatiques polycycliques sélectionnés a des

concentrations finales de 5, 50 or 250 ppm.

I.L1.2.3  Tests de production

Pour la production de PHA, deux milieux sont utilisés : le milieu Référence 1, favorisant la
production de biomasse avec un rapport C/N de 24,6, et le milieu Référence 2, présentant un rapport
C/N de 187,2 favorable a I’accumulation de PHA.
Milieu Référence 1, en g/L : sucres/carbohydrates/substrats carbonés 10 ; Bacto Tryptone (Difco, BD)
1 ; extraits de levures (Fisher BioReagents) 0,5 ; sea salts (Instant Ocean, Aquarium systems) 11, pH
7,5.
Milieu Référence 2, en g/L: sucres/carbohydrates/substrats carbonés 20 ; extraits de levures (Fisher

BioReagents) 0,4 ; sea salts (Instant Ocean, Aquarium systems) 11, pH 7.

Le milieu Référence 2 est également utilisé pour les tests de criblage des sources de carbone. Pour ces
tests du Nile Red est ajouté, a une concentration finale de 0,5%, aprés autoclavage. Pour cela une
solution mere de Nile Red a 25% en DMSO (DiMethylSulfOxide) est préparée et stérilisée sur filtre de
0,2 um de porosité. Les milieux Référence 1 et Référence 2 sont supplémentés de kanamycine a une
concentration finale de 50 pg/mL pour les souches transformants/transformées C. necator H16 PHB*

pBBRMCS-2 phaCl et C. necator H16 PHB* pBBRMCS-2 phaC2.

Tous les milieux sont stérilisés 20 minutes a 121°C et a une pression de 1,2 Bar.

[.2  Cinétique de croissance des souches bactériennes

Les cinétiques de croissance des souches utilisées dans cette étude ont été établies en milieu
liquide dans différentes conditions de culture (Tableau 2). Pour 1’étude de la croissance le milieu
Référence 1 a été utilisé pour I’ensemble des souches (Halomonas sp. SF2003, C. necator H16, C.
necator H16 PHB*, C. necator H16 PHB* pBBRMCS-2 phaCl et C. necator H16 PHB* pPBBRMCS-

2 phaC2). La composition du milieu est modifiée selon les conditions et les substrats carbonés testés.
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Tableau 2: Conditions étudiées pour les cinétiques de croissance dans cette étude.

Conditions étudiées

Température (°C)  Salinité (% m/v) Substrats
Halomonas sp. SF2003 6, 20,25, 30 et 37 0,5:3:5:10et20 Aldoses, Cétoses et diholosides
Meélanges oses/acides
C. necator H16 / / Aldoses et Cétoses
C. necator H16 PHB* / / Aldoses et Cétoses
C. necator H16 PHB* .
pPBBRMCS-2 phaCl / / Aldoses et Cétoses
4
C. necator H16 PHB / / Aldoses et Cétoses

pBBRMCS-2 phaC2

Les milieux sont ensemencés a partir de pré-cultures d’une nuit (15h-16h) a 30°C en milieu Zobell
pour Halomonas sp. SF2003, en milieu NR pour C. necator H16, C. necator H16 PHB-4 et en milieu
NR supplémenté de kanamycine pour C. necator H16 PHB* pBBRMCS-2 phaCl et C. necator H16
PHB* pBBRMCS-2 phaC2 ; puis incubés sous agitation (200 rpm pendant 24h a 30h a 30°C).

La croissance est suivie par la mesure de la densité optique a 600nm a 1’aide d’un spectrophotometre de
paillasse (Cell Density Meter Model 40, FisherScientific). Les mesures sont réalisées toutes les demi-

heures pendant les 7 premieres heures puis toutes les heures par la suite.

I Caractérisation bio-informatique de Halomonas sp. SF2003

II.1 Séquencage et annotation du génome de Halomonas sp. SF2003

L’ADN génomique d’Halomonas sp. SF2003 a été extrait et séquencé par 1’entreprise GATC
Biotech (Cologne, Allemagne). Le séquencgage a été réalisé a I’aide d’un séquenceur RS II d’une
plateforme de séquencage Pacific Biosciences (Pacbio). Pour I’assemblage des données, le logiciel
Hierarchical Genome Assembly Process (HGAP), de Pacific Biosciences, a été utilisé avec une librairie
de séquences unique.
L’annotation du génome a été réalisée a I’aide des plateformes de données MicroScope Microbial
Genome Annotation & Analysis Platform (MaGe, Genoscope, Evry, France) et National Center for
Biotechnology Information (NCBI). L’étude des voies métaboliques a été réalisée a I’aide des bases de

données MaGe et Kyoto Encyclopedia of Genes and Genomes (KeGG).

La séquence complete du génome d’Halomonas sp. SF2003 a été déposée sur GenBank sous le

numéro d’accession CP028367.
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II.2 Etude phylogénétique d’Halomonas sp. SF 20003

L’identification de la souche a été réalisée par étude et comparaison des génes codant I’ ARNr 16S.
La construction de 1’arbre et le replacement de Halomonas sp. SF2003 ont été réalisés avec le logiciel
MEGAY7 en utilisant la méthode NJ (Neighbor Joining). Les séquences d’ARNr 16S de trente-trois
souches, représentatives ou non de la famille des Halomonadaceae, ont été utilisées pour la réalisation

de cette étude. Toutes les séquences utilisées pour 1’étude sont en acces libre sur NCBI.

Les distances d’évolution ont été calculées avec la méthode Maximum Composite Likelihood et
sont exprimées dans [’unité du nombre de substitutions de bases par sites. Toutes les positions avec un

écart ou des données manquantes ont été éliminées permettant une analyse sur un total de 821 positions.

1.3 Etude bio-informatique des PHA synthases

L’analyse bio-informatique des enzymes PhaCl et PhaC2 a été réalisée par comparaison des
séquences en acides aminés des PHA synthases. L’alignement et la détection des domaines similaires
aux lipases (lipase box-like sequence), aussi appelés séquence consensus des PhaC, ont été réalisés avec

le logiciel BioEdit. L’ensemble des séquences analysées sont en libre acceés sur NCBI.

I.4 Etude phénotypique d’ Halomonas sp. SF2003

II.4.1 Croissance de Halomonas sp. SF2003 en conditions de stress osmotique et toxique

I1.4.1.1 Salinité

Des précultures d’une nuit (15h a 16h) en milieux Zobell a 25°C sous agitation sont préparées. La
réponse de Halomonas sp. SF2003 face au stress salin a été étudiée en milieu Luria Bertani (en g/L :
Bacto Tryptone (Difco, BD) 10 ; extraits de levures (Fisher BioReagents) 5). Les milieux sont
complémentés de NaCl (LaboGros) pour des concentrations finales (m/v) de 0,5% ; 3% ; 5% ; 10% et
20%. Les milieux sont ensemencés a partir des pré-cultures pour une concentration finale de 5% (v/v)

et sont incubés pendant 24h a 27°C sous agitation. Chaque condition est testée en triplicat.

I1.4.1.2 Composés toxiques : Hydrocarbures Aromatiques Polycycliques

Cing Hydrocarbures Aromatiques Polycycliques (HAP) ont été testés individuellement :
naphthaléne 99 + % (Janssen Chemica), benzeéne 99.5 % (Janssen Chemica), tolue¢ne (Carlo Erba),
phénanthréne 98 + % (Janssen Chemica) et le pyréne (Merck). Pour tester la réponse de la souche face
a différentes concentrations en HAP, des solutions meéres en éthanol ou méthanol absolu, ont été

préparées.

Des pré-cultures d’une nuit (15h a 16h) a 25°C (200 rpm) sont réalisées en milieu T puis
transférées dans des milieux T modifiés, en remplacant le glucose par un des HAP a des concentrations
finales de 5, 50 or 250 ppm. Les erlenmeyers sont scellés a 1’aide de coton cardé, d’aluminium et de

parafilm pour limiter 1’évaporation des HAP puis incubés 24h a 30°C sous agitation. Des contrdles
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positifs et négatifs sont réalisés avec ou sans glucose (10g/L), d’éthanol ou de méthanol. Chaque
condition est testée en triplicat.
I1.4.1.3 Tests d’antibiorésistance

L’antibiorésistance de Halomonas sp. SF2003 est étudiée par la technique de 1’antibiogramme
(diffusion sur disque en milieu gélosé).
Des géloses Zobell sont ensemencées par inclusion a partir de pré-cultures d’une nuit de Halomonas sp.
SF2003. Des disques de papiers stériles sont déposés a I’aide d’une pince sur les géloses puis 10 uL de
solution d’antibiotique sont déposées dessus, un témoin négatif avec de I’eau ultra-pure stérile est réalisé
en parallele. Les géloses sont incubées entre 24h et 48h a 30°C puis la présence de halos d’inhibition est
évaluée et s’ils sont détectés leurs diameétres est mesuré. La sensibilité de Halomonas sp. SF2003 est
testée pour des concentrations de 1 et 5 mg/mL d’ampicilline, de gentamycine, de kanamycine, de

pénicilline et la streptomycine.

III Techniques de biologie moléculaire

III.1 Extraction d’ADN

L’ADN génomique d’Halomonas sp. SF2003 est extrait, & partir d’une culture d’une nuit de 10
mL, a I’aide du kit QIAamp DNA Mini Kit (Qiagen) selon les instructions du fournisseur. Pour la
réalisation des PCR, ’ADN chromosomique de la souche peut également €tre extrait a partir d’une

colonie isolée sur gélose.

Les extractions d’ADN plasmidiques sont réalisées en utilisant le kit GeneJET Plasmid Miniprep
Kit (ThermoFisher Scientific), selon les instructions du fournisseur. Pour obtenir des concentrations en
ADN plasmidique suffisantes, les extractions sont réalisées sur un volume de pré-culture de 10 mL. Les

deux plasmides construits lors de cette étude sont répertoriés dans le Tableau 3.

Tableau 3: Plasmides utilisés dans cette étude.

Plasmide Caractéristiques Provenance
pBBRMCS-2 Plasmide d’expression chez les bactéries a Gram négatif. EcoBioMaterial Lab, UMT,
KmR Malaisie
pBBRMCS-2 phaCl Plasmide d’expression portant le géne phaCl de Cette étude
Halomonas sp. SF2003
pBBRMCS-2 phaC2 Plasmide d’expression portant le géne phaC2 de Cette étude

Halomonas sp. SF2003

KmR : Résistance a la kanamycine

II1.2 Réaction de polymérisation en chaine (PCR)
Les amorces utilisées pour I’amplification des fragments d’intéréts sont designés a 1’aide des
logiciels A Plasmid Editor (ApE), BioEdit ou SerialCloner et les Tm sont déterminés avec les outils

« NEB Tm Calculator » (www.tmcalculator.neb.com/#!/main) ou « Thermo Scientific Tm Calculator »

(www.thermoscientificbio.com/webtools/tmc/) ou « IDT Oligo Analyzer »
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(https://eu.idtdna.com/pages/tools/oligoanalyzer). L’ensemble des amorces utilisées dans cette étude

est listé dans le Tableau 4.

Tableau 4: Amorces oligonucléotidiques utilisées dans cette étude.

Amorces Séquences (5’ — 3°) Cible
PhaCl-F  AGTAAGCTTAGGAGGAGGCGCATGCAGTCGCCAGCCCA
PhaC1-R AGTAGCATTTAAATTCAGGTTTGCTTCACGTAGGTG phaCl
PhaC2-F  AGTAAGCTTAGGAGGAGGCGCATGGACTCAGCCCAGCA
PhaC2-R AGTAGCATTTAAATTCAACTCTTGTCGCTATCCTTGG phaC2
F phaCl A AATGGTGGCAACAGGCGGTG phaCl (112)
F phaCl B TGCCATCCAGGCAATCACAG phaCl (2/12)
F phaC2 A TTCCGCCGAAGGCATCAATGTC phaC2 (1/3)
F phaC2 B GCAGGACGGCTATCTGGATG phaC2 (2/3)
F phaC2 C AGAGCGTGCCGGAAGAGATC phaC2 (3/3)

Les PCR de routines pour les génes phaCl et phaC2 sont réalisées dans un volume réactionnel
final de 50 puL contenant du mélange 2X KAPA HiFi HotStart ReadyMix (KAPABIOSYSTEMS,
Wilmington, MA, Etats-Unis), 10 uM de chaque amorce (IDT Integrated DNA technologies, Singapour,
République de Singapour) et environ 200 ng d’ADN matrice. Le mélange KAPA HiFI HotStart
ReadyMix contient déja I’ADN polymerase KAPA HiFi HotStart, le tampon, le MgCl, et les dNTPs

nécessaires aux réactions d’amplification.

Les PCR de controles des clonages et des transconjugaisons sont réalisées dans un volume
réactionnel de 10 pL contenant du mélange 2X EconoTaq Master Mix (Lucigen, Middleton, W1, Etats-
Unis) et 1 uM de chaque amorce (IDT Integrated DNA technologies, Singapour, République de
Singapour). Le mélange EconoTaq Master Mix contient déja I’ ADN polymerase EconoTagq, le tampon,
le MgCl; et les ANTPs nécessaires aux réactions d’amplification. Une colonie, prélevée de fagon stérile,

est incorporée et diluée dans le mélange réactionnel.

Les réactions de PCR sont réalisées dans un MJ Mini™ Personal Thermal Cycler (Biorad,
Hercules, CA, Etats-Unis). Les cycles de dénaturation primaire, de dénaturation, d’appariement,
d’élongation et d’¢longation finale (température et durée) utilisés lors de cette étude sont décrits dans le
Tableau 5. Pour ’ensemble des PCR les cycles d’amplification ; comprenant les étapes de dénaturation,

d’appariement et d’élongation ; sont répétés 30 fois.
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Tableau 5: Cycles de PCR utilisés dans cette étude.

PCR de routine PCR de controle
Etape Température (°C) Durée Température (°C) Durée
Dénaturation primaire 95 3 minutes 94 10 minutes
Dénaturation 98 0,33 minute 94 0,5 minute
Appariement 53-55 0,25 minute 55-56 0,5 minute
Elongation 72 0,67 minute 72 2,5 minutes
Extension finale 72 2 minutes 72 10 minutes

L’amplification des fragments d’ADN est contrdlée par électrophorese en gel d’agarose 1%
(Invitrogen) dans un tampon TAE 1X (Tris HCI 40 mM, acétate de sodium 20 mM, EDTA 10 mM pH
7,9) (Biosolve). La migration des échantillons est réalisée dans un systéme d’¢électrophorése RunOne
(Embi Tec) pendant 35 minutes a 100V. Les échantillons sont observés apres fixation de I’ADN par du
RedSafe™ (iNtRON) et les gels sont passés sous lumiéres UV a ’aide d’un transilluminateur Gel Doc™
XR + System (Bio-Rad, Hercules, CA, Etats—Unis). Le marqueur de taille moléculaire (1 kb Plus DNA

Ladder, ThermoFisher Scientific) permet de déterminer la taille des fragments de 0,1 a 20 kb.

Les fragments séparés par électrophorese peuvent étre purifiés a partir du gel a I’aide du kit « QIAquick
Gel Extraction » (QIAGEN). La concentration et la pureté des échantillons sont contr6lés par calcul du

rapport DO260nm/DO28onm.

1.3 Double digestion

Les doubles digestions, préparant le clonage, sont réalisées dans un volume réactionnel de 30 uLL
contenant du tampon de digestion FastDigest (ThermoFisher Scientific, Waltham, MA, Etats-Unis), les
enzymes de digestion Swal et HindIll (ThermoFisher Scientific, Waltham, MA, Etats-Unis), 0,2 ug
d’ADN et de I’eau ultra-pure stérile. Le mélange réactionnel est incubé pendant 50 minutes a 37°C avant
d’étre inactivé par choc thermique de 15 minutes a 80°C. La pureté des fragments d’ADN digérés est
controlée par électrophorése d’apres la technique décrite dans la section 111.2 Réaction de polymérisation

en chaine (PCR).

III.4 Clonage/ligation

Les produits de digestion sont récupérés sur le gel et purifiés a I’aide du kit MY gengel and PCR
purification system (Gene Xpress, Selangor, Malaysia), d’aprés les instructions du fournisseur. Le
milieu réactionnel contient le plasmide pBBRMCS-2 et les produits PCR digérés et purifiés ainsi que de

la solution de ligation 1 (TaKaRa Bio Inc., Kusatsu, Shiga, Japon).
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Kanamycin resistance 6805...7599

lacz(1) 6223...6290

Swal 6215...6222

pBBRMCS-2 phaC1

phaC2 Halomonas sp. SF2003 4250...7114

4244...4249 Hindlll

3211..3418lacZ

Figure 1: Carte du plasmide pPBBRMCS-2 phaCl.

Les ligations sont réalisées en utilisant une concentration en vecteur de 40 ng et un ratio molaire insert :
vecteur de 3 :1. Une fois complété le milieu est incubé pendant 1h & 16°C avant d’étre utilisé pour la
transformation des cellules compétentes. Les plasmides, pPBBRMCS-2 phaCl (Figure 1) et pPBBRMCS-
2 phaC2 (Figure 2) sont obtenus par cette technique.

Kanamycin resistance 7705...8499

lacz(1) 7123..7190

Swal 7115...7122

pBBRMCS-2 phaC2

phaC2 Halomonas sp. SF2003 4250...7114

3211..3418lacZ
4244...4249 Hindlll

Figure 2 : Carte du plasmide pBBRMCS-2 phaC2.
III.5 Conjugaison/transformation

III.5.1 Transformation des cellules E. cloni® et Escherichia coli S17-1
La transformation des cellules compétentes E. cloni® (Lucigen, Parmenter St, Middleton, WI,

Etats-Unis) et Escherichia coli S17-1 est réalisée par choc thermique.

Dans un premier temps, les cellules E. cloni® sont placées 10 minutes sur de la glace avant d’étre
mise en contact avec 4 uL du produit de clonage/ligation. L’ensemble est homogénéisé avant d’étre
placé de nouveau 30 minutes sur glace. Un choc thermique de 45 secondes a 42°C est appliqué puis les
cellules sont de nouveau placées sur de la glace pendant, au moins, 2 minutes. Les cellules sont reprises
avec 960 uL de Recovery medium et la suspension est mise a incuber pendant 1h a 37°C. Les cellules

sont étalées sur gélose LB supplémentée de kanamycine (50 pg/mL) avant d’étre incubées a 37°C
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pendant 24h pour sélectionner les transformées. Les colonies observées apres 24h sont prélevées et des
PCR de contrdle sont réalisées, pour vérifier le clonage et le sens d’insertion du fragment d’ADN,
directement a partir des colonies par introduction et homogénéisation de ces dernieres dans le milieu
réactionnel. Les parametres d’amplification et le controle sur gel d’électrophorése sont réalisés avec les

techniques décrites précédemment (III.2 Réaction de polymérisation en chaine (PCR)).

Les colonies de E. cloni® ayant correctement intégré les plasmides sont cultivées une nuit en
milieu LB supplémenté de kanamycine (50 pg/mL) pour réaliser des extractions plasmidiques a I’aide
du kit GeneJet Plasmid MiniPrep (ThermoFisher Scientific, Waltham, MA, Etats-Unis) selon les
instructions du fabricant. Les plasmides extraits et purifiés sont utilisés pour réaliser la transformation
des cellules compétentes E. coli S17-1 en utilisant le méme protocole que pour les cellules E. cloni,
décrit précédemment. Apres transformation les cellules sont sélectionnées sur des géloses LB
supplémentées de kanamycine (50 pg/mL) et des PCR de controle sont réalisées selon le méme protocole

que pour les cellules E. cloni®.

I1.5.2 Transconjugaison E. coli S17-1/Cupriavidus necator H16 PHB™

Pour réaliser la transconjugaison, la souche Cupriavidus necator H16 PHB* est mise en contact
avec des cellules E. coli S17-1 portant les plasmides d’intérét. Des précultures d’une nuit sont réalisées
pour les deux souches, en milieu LB supplémenté de kanamycine (50 pg/mL) a 37°C pour les cellules
E. coli S17-1 et en milieu NR a 30°C pour la souche C. necator H16 PHB™. Les deux précultures sont
centrifugées a 14000 rpm pendant 2 minutes puis les culots de E. coli S17-1 et C. necator H16 PHB™
sont repris respectivement avec 300 pL. de milieu NR et de milieu LB (sans addition de kanamycine).
Cent microlitres de chaque suspension cellulaire sont prélevés avant d’étre mis en contact dans un tube
stérile. Aprés homogénéisation, 100 puL sont prélevés et déposés au centre d’une gélose NR qui est mise
a incuber 2 30°C pendant 8h. A la fin de la période d’incubation, la culture est prélevée stérilement et
déposée dans 5 mL de milieu NR avant d’étre homogénéisée et étalée sur des géloses citrate de
Simmons. Deux géloses sont ensemencées avec 100 et 20 uL. de suspension bactérienne avant d’étre
incubées a 30°C pendant 48h. Apres incubation, des PCR de contrdle sont réalisées sur les colonies
bleues en utilisant les mémes parametres décrits précédemment (III.2 Réaction de polymérisation en

chaine (PCR)).

Des extractions plasmidiques sont réalisées a partir de précultures des colonies de transconjugants
positives a I’aide du kit GeneJet Plasmid MiniPrep (ThermoFisher Scientific, Waltham, MA, Etats-
Unis). Les plasmides sont dosés avant d’étre préparés, avec les amorces correspondantes, pour le

séquencage.

Le séquencage des produits clonés est réalisé par la société 1st BASE Sdn. Bhd. (Malaysia).

L’analyse des séquences est effectuée par comparaison avec les séquences des bases de données MaGe

80

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



et NCBI a I’aide des logiciel SerialCloner (©Franck Perez [Serial Basics]) et BioEdit (©Tom Hall [Ibis

Therapeutics]).

IV Production de PHA

IV.1 Criblage de sources de carbone assimilables

IV.1.1 Source de carbone

Différents glucides et mélanges de glucides/acides organiques ont été sélectionnés selon qu’ils

étaient retrouvés a 1’état naturel dans la biomasse végétale ou dans des gisements de co-produits ou

d’effluents industriels. Les mélanges glucides/acides organiques sont réalisés en proportion 95/5

mol/mol % (Tableau 6).

Tableau 6: Substrats carbonés testés dans cette étude.

Substrats carbonés Fournisseur
Fructose Sigma
Galactose Acros Organic
Glucose Labogros
% Mannose Acros Organic
o=
é Maltose Acros Organic
Melibiose Acros Organic
Rhamnose Acros Organic
Saccharose Acros Organic

Substrats carbonés

Fournisseur

Acide trans-2-pentenoique
Acide 1évulinique
Acide malique
Acide heptanoique
Acide hexanoique

Acide dodécanoique

Mélange
Glucide/Acide organique

Acide palmitique

Acros Organic
Acros Organic
Acros Organic
Acros Organic
Acros Organic
Alfa aesar

Alfa aesar

IV.1.2 Marquage des granules de PHA au Nile Red

IV.1.2.1 Géloses au Nile Red

Le Nile Red (NR) est un marqueur de fluorescence a la phenoxazine (Aexcitaion= 530nm et

Aemission=035nm) (Figure 3). Il est utilisé pour la détection des lipides intracellulaires et des domaines
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hydrophobes protéiques. Son utilisation pour la détection des granules de PHA est largement répandue
depuis la mise au point d’une technique par Spiekermann et al., en 1999 ! permettant d’observer les

granules de PHA.
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Figure 3: Spectre d'absorption et d’émission de fluorescence du Nile Red.

L’accumulation de PHA dans les cellules bactériennes est visualisée par ajout d’une solution de
Nile Red (Sigma) a 0,5% (m/v) dans du DMSO dans les milieux gélosés (Référence 2). Les géloses sont
ensemencées, a partir d’une pré-culture d’une nuit et incubées 3 jours a 30°C. La fluorescence des
colonies est observée sous lampe UV au transilluminateur.
Les souches C. necator H16 (DSM 428) et C. necator H16 PHB* (DSM 541) sont utilisées

respectivement comme témoin positif (PHA*) et négatif (PHA").

IV.1.2.2 Microscopie confocale a balayage laser

Le screening des substrats de biosyntheése en milieu gélosé est complété par des observations
sur des cultures liquides par microscopie confocale a balayage laser (MCBL, Zeiss LSM 710). Le
marquage au Nile Red est complété par un marquage au Syto9 qui est un marqueur de fluorescence des
acides nucléiques (ARN et ADN) permettant d’observer les cellules procaryotes (Aexcition= 488nm et

}\,emission: 493—543111’[1) (Figlll'e 4)
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Figure 4: Spectre d'absorption et d’émission de fluorescence du Syto9.

Pour ces observations, le Nile Red est incorporé dans le milieu Référence 2 au début de la phase

de biosynthese de PHA a une concentration finale de 0,4% (v/v). Des prélevements de 2 mL sont réalisés
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a intervalles de temps réguliers durant 72h. Les échantillons prélevés sont lavés a deux reprises avec du
tampon phosphate salin (PBS) a 1X a pH 7.4 (en g/L : NaCl 8 ; KCI 0,2 ; Na,HPO4 1,44 et KH,PO4
0,24) puis centrifugés 10 minutes a 7500 rpm a température ambiante. Dix microlitres de suspension
cellulaire sont prélevés et déposés sur lame puis 8 pL. de Syto9 a 5 uM sont ajoutés. Les états-frais sont

incubés 15-20 minutes a température ambiante et a 1’obscurité avant observation.

IV.1.3 Taux de recouvrement
Les observations qualitatives effectuées au microscope confocale a balayage laser sont analysées
a I’aide du logiciel ImageJ. Le taux de recouvrement des clichés des lames est déterminé apres traitement

des images en noir et blanc.

IV.2 Production

IV.2.1 Production en erlenmeyers
Des productions en erlenmeyers sont réalisées, notamment pour le screening de 1’utilisation et
I’assimilation de sources de carbone pour la production de PHA. Les productions sont réalisées selon

un protocole en 2 phases.

Dans la premiere phase, I’obtention d’une quantité importante de biomasse est recherchée. Le
milieu Référence 1 est inoculé a 10% (v/v) partir de pré-culture de 7h, en milieu Zobell additionné de
glucose pour Halomonas sp. SF2003, Nutrient Rich (NR) pour C. necator H16 (DSM 428) ou NR +
kanamycine (50 pg/mL) pour C. necator H16 PHB* phaCl et C. necator H16 PHB™* phaC2.

La quantité de biomasse est suivie par mesure de la DO a 600 nm pendant 17h en incubateur orbital
(30°C, 200 rpm). Lorsque la quantité de biomasse atteinte est maximale, les cellules sont culotées par
centrifugation a 7500 rpm pendant 10 minutes a 4°C. Le culot cellulaire est lavé a deux reprises avec de
I’eau saline (en g/L : Seasalts 11) suivi d’une centrifugation de 7500 rpm pendant 10 minutes a 4°C. A

la suite des lavages, le culot est repris dans un volume minimum d’eau saline.

La seconde phase est initiée en transférant le culot de 1’étape précédente dans le milieu référence
2, pauvre en azote pour induire la production de biopolymere. La culture est poursuivie pendant 72h a
30°C et 200 rpm. A la fin de 1’étape de production, la culture bactérienne est culotée par centrifugation

puis le culot cellulaire est lavé avec de 1’eau distillée stérile avant d’étre surgelé a -80°C puis lyophilisé.

Les productions sont réalisées de fagon a n’occuper qu’un cinquiéme ou un quart du volume
maximal du contenant, de cette manicre une surface de contact avec I’air de proportion convenable est

conservée, permettant une oxygénation.

1V.2.2 Production en bio-réacteurs
Les productions sont réalisées dans un fermenteur de paillasse (modele BioStatB+, Sartorius,

France) équipé de 2 cuves agitées (version twin) en verre borosilicaté d’un volume utile de 3L.
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Les productions sont réalisées en suivant un protocole en 2 étapes. Une pré-culture de 7h est
réalisée dans 300 mL de milieu Zobell additionné de glucose pour Halomonas sp. SF2003, Nutrient
Rich (NR) pour C. necator H16 (DSM 428) ou NR + kanamycine (50 pg/mL) pour les souches C.
necator H16 PHB™ phaCl et C. necator PHB™ phaC2.

L’intégralité des pré-cultures est transférée stérilement dans les cuves du fermenteur contenant
2,7 L de milieu Référence 1. Pendant la phase d’accumulation de biomasse, la température est maintenue
a 30°C avec une agitation de 400 rpm et une concentration en oxygene dissous de 50%. Le pH des
milieux est ajusté a 7,5 a I’aide du pilote et de solutions de soude (NaOH) et d’acide chloridrique (HCI)
a IM. Apres 17h, la culture est stoppée et centrifugée a 7500 rpm pendant 10 minutes a 4°C. Le culot
cellulaire est lavé a deux reprises avec de I’eau saline (en g/L : Seasalts 11) suivi d’une centrifugation
de 7500 rpm pendant 10 minutes 2 4°C. A la suite des lavages, le culot est repris dans un volume

minimum d’eau saline.

La phase de production de PHA est initiée en transférant le culot dans les cuves du réacteur
contenant 2L. de milieu référence 2, pauvre en azote. La culture est poursuivie pendant 72h a 30°C et
400 rpm avec une concentration en oxygene dissous de 50%. Le pH est maintenu a 7,0 a I’aide du pilote

et de solutions de soude (NaOH) et d’acide chloridrique (HCI) a 1M.

A la fin de I’étape de production, la culture bactérienne est culotée par centrifugation puis le culot

cellulaire est lavé avec de 1’eau distillée stérile avant d’étre surgelé a -80°C puis lyophilisé.

IV.3 Extraction et purification des PHA

Les PHA sont extraits dans le chloroforme 2 partir du culot cellulaire lyophilisé et broyé. A 1 g
de masse cellulaire seche (MCS), 25 mL de chloroforme sont ajoutés dans un ballon puis chauffés une
nuit a 60°C sous agitation. La suspension est lavée avec ajout d’eau distillée puis centrifugée pendant 7

minutes a 5000 rpm.

La phase organique est récupérée puis filtrée a I’aide de filtres d’acétate de cellulose 0,2 pm
(Clear Line). Le filtrat est distribu¢ dans des boites de Pétri en verre jusqu’a évaporation totale du

chloroforme a température ambiante.
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Chapter 3
Complete genome sequence of the halophilic PHA-
producing bacterium Halomonas sp. SF2003: insights

into its biotechnological potential.
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Contexte

Le travail réalisé dans cette partie se concentre sur I’é¢tude du génome et du métabolisme de la
bactérie marine Halomonas sp. SF2003. Cette souche marine est naturellement productrice de
PolyHydroxyAlkanoates (PHA) et présente une grande capacité d’adaptation face a des conditions
variées. L’¢étude de son génome vise a identifier les génes directement reliés, ou non, au métabolisme
des PHA ainsi que ceux liés a son adaptation. L’annotation du génome, couplée a des études
phénotypiques, sert de base a ce travail afin de définir les meilleurs parametres de croissance de la
souche mais également de production dans le but de mieux controller et d’améliorer la production de

PHA par Halomonas sp. SF2003.

Les résultats de cette étude ont été publiés en Mars 2019 dans World Journal of Microbiology and
Biotechnology:
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Highlights:

- Halomonas sp. SF2003 exposes interesting versatility in front of growth conditions
- The strain possess carbohydrates and fatty acids metabolisms linked to PHA metabolism
- PHA biosynthesis pathway exhibits an atypical organization with involvement of two PhaC
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Abstract

A halophilic Gram-negative bacterium was isolated from the Iroise Sea and identified as an efficient
producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the
Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests
indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions
which sometimes can be constraining for marine strains. This versatility could be of great interest for
biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo
assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process
(HGAP) software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes

involved in PHA production and stress tolerance.

This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a
circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA
metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a
comparison was made with metabolisms of relative species. Genes annotation highlighted the presence
of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary
analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid
metabolisms were also identified which provided helpful insights into both a better knowledge of the

intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility
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of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be

exploited for industrial applications such as PHA production.

Introduction

Halomonas sp. SF2003 is a non-pathogenic Gram-negative bacterium isolated from the Iroise
Sea (Brittany, France), deposited with the National Collection of Microorganisms Cultures (CNCM) of
the Pasteur Institute (Paris, France). Based on a 16S rRNA sequence analysis, this bacterium belongs to
the Halomonadaceae family which regroups a total of 90 species, mainly halophilic, divided into 10
genera. The most important genus of this bacterial family is the Halomonas genus . An important
taxonomic reorganization among these species was started in the 1990’s and was responsible for a
review of Halomonadaceae phylogeny and phenotypic features. To-date the classification of bacteria
within the Halomonas genus is still not totally clarified and some bacteria are currently being
reclassified, such as Cobetia or Halomonas 3. Aside from their biological importance, marine bacteria
belonging to the Halomonadaceae family have promising applications in biotechnology *° as a source
of compatible solutes stabilizers of biomolecules and cells, salt-tolerant enzymes,
biosurfactants, biopolymers (exopolysaccharides (EPS) and PHA) and also for bioremediation
applications ®. To understand and exploit the features of these bacteria, different genomic projects have
been carried out or are in progress '°12. In a previous work, we have reported the potential of Halomonas
sp. SF2003 to produce short chain length PHA (scl-PHA) up to 78% of the cell dry weight >4,

PHA are bacterial polyesters naturally synthesized by numerous bacterial species, belonging to
more than 90 genera, including Gram-negative and Gram-positive organisms such as Bacillus spp.,
Alcaligenes spp., Pseudomonas spp., and Azotobacter spp. For these bacteria, PHA serves as carbon and
energy reserves that are accumulated as inclusions of 0.2-0.5 mm in diameter in response to unbalanced
nutrient conditions such as a depletion of phosphorous, oxygen or nitrogen, whilst carbon is plentiful '3~
17 Owing to the diversity of monomers from different carbon sources that can be incorporated into PHA,
and in turn change the polymer properties, a wide range of new polymeric materials are potentially
available. Besides their renewable nature, PHA are readily biodegradable in the natural ecosystem 719,
and have shown mechanical, physicochemical and thermal properties close to those of conventional
plastics ° making them great sustainable alternatives for end-user applications such as food packaging,
consumer goods, adhesives or 3D-printing for the plastics processing industry ?'. Due to their
biocompatibility and ability to support cell growth and adhesion, PHA have been also utilized in the
biomedical field for the development of different medical materials (cardiovascular products, suture,
wound dressing, tissue scaffolds) *. In addition, PHA can be also very beneficial for biotechnological
processes and increasing potential applications are emerging. For instance, PHA-producers and
members of the genera Cupriavidus and Pseudomonas have been found to be efficient for in situ

bioremediation of contaminated sites 2. Recently, Bengtsson et al., 2017 have demonstrated the
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performance of PHA-enriching mixed microbial consortia for the treatment of municipal wastewater.
Other applications include the controlled release of herbicides in PHA-carriers or the enhancement of
crop productivity using a PHA-rich bacterial inoculant to improve nitrogen fixation 232,

Currently, numerous studies are being conducted in order to understand, exploit and/or to modify

metabolic pathways and structures of these biopolymers and also to increase yields of production 2?7,

Results of previous works on Halomonas sp. SF2003 PHA production 31428

prompts us to continue its
study to understand and to control its production. Consequently, sequencing of its genome should enable
the identification of genes involved in the biopolymer metabolism. In the literature, numerous bacterial
strains belonging to the Halomonas or Cobetia genera such as C. marina, H. boliviensis LC1 , H.
elongata DSM 2581, H. salina, Halomonas sp.TD01 *? or to other genus, have already been described
as PHA producers. PHA metabolisms have also been studied enabling us to compare them with
Halomonas sp. SF2003 PHA metabolism.

Until now, three different metabolic pathways of PHA biosynthesis, involving acetyl-CoA or

acyl-CoA as intermediate, have been described. The pathway depends on both the nature of the carbon
source and the PHA synthase (PhaC) specificity of the microorganism.
Pathway I, for PHB production, starts with condensation of two acetyl-CoA, obtained after glycolysis
of sugars (i.e. glucose), by acetyl-CoA acetyltransferase (PhaA), also named 3-ketoacyl-CoA thiolase
or B-ketothiolase to produce acetoacetyl-CoA. Acetoacetyl-CoA reductase (PhaB) reduced acetoacetyl-
CoA to (R)-3-hydroxybutyryl-CoA which is converted to PHA, and especially to PHB, by
polyhydroxyalkanoate synthase (PhaC). Pathway II, derivative of f-oxydation of fatty acids, included
production of 3-hydroxyacyl-CoA from 2,3-dehydroacyl-CoA, 3-hydroxyacyl-CoA or 3-ketoacyl-CoA
by (R)-enoyl-CoA hydratase, 3-hydroxyacyl-CoA epimerase or ketoacyl-CoA reductase, respectively.
Then 3-hydroacyl-CoA is used by PHA synthase for PHA synthesis. Finally, pathway III, involved the
conversion of 3-hydroxyacyl-Acyl carrier protein (ACP), derived from the fatty acid synthesis from
sugars (i.e. glucose), to 3-hydroxyacyl by 3-hydroxyacyl-ACP-CoA transferase followed by a synthesis
of PHA by PHA synthase '7#-34, These three pathways are represented in Figure 1.

The objectives of this study were to sequence the Halomonas sp. SF2003 genome and to identify
genes involved in PHA, carbohydrates, fatty acids and stress metabolisms for a more thorough
understanding and utilization of the strain. Results will enable a better understanding of the strain itself

and its potential industrial uses.
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Figure 1: Schematic representation of the three metabolic pathways of PHA production identified in representative bacterial
species.
Adapted from Nomoto and Yano, 2009; Sudesh et al.,2000 and Verlinden et al., 2007.

I. Results

1.1. Genome features

Sequencing of Halomonas sp. SF2003 whole-genome produced 73,337 raw reads. It is composed
of only one 4,358,421-bp circular chromosome, with a high GC content of 62.5%. A total of 4013 genes,
including 3,408 protein-coding genes, 21rRNA, 72 tRNA and 21 ncRNA were identified. All the

information is summarized in Figure 2, Table 1 and Table 2.
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Figure 2: Circular map of Halomonas sp. SF2003 genome.
Legend: tRNA (green), rRNA (blue), misc_RNA (orange), Transposable elements (pink) and pseudogenes (grey).

Comparisons were made with closely related species. Data concerning their genome size and
GC% are summarized in Table 3 ':1235# and are also available on NCBI. These comparisons show the
genome size in the average size of other genomes but the number of genes and the GC% is higher than
their respective averages. Some of the Halomonas species used for comparison also possess a plasmid
unlike Halomonas sp. SF2003. A comparison of the percentage of associated genes shows that there are
a higher number of genes involved in cell cycle control, cell division, chromosome partitioning, amino
acid transport and metabolism in Halomonas sp. SF2003 than in the other species. Regarding these

results Halomonas sp. SF2003 has similar genomic characteristics to other Halomonas species.
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Table 1: Genome features of Halomonas sp. SF2003.

Attribute Values
Genome size (bp) 4,358,421
DNA G+C (%) 62.49
Plasmid 0
DNA scaffolds 1
rRNA genes 21
tRNA genes 72
Other ncRNA genes 4
Protein 3,408
Predicted genes 3,598
Pseudo genes 93

Table 2: Number of genes associated with general COG functional categories.

Code Value Yoage Description
J 185 4.6 Translation, ribosomal structure and biogenesis
A 1 0 RNA processing and modification
K 278 6.9 Transcription
L 137 34 Replication, recombination and repair
B 2 0 Chromatin structure and dynamics
D 42 1.1 Cell cycle control, Cell division, chromosome partitioning
v 39 1 Defense mechanisms
T 157 3.9 Signal transduction mechanisms
M 232 5.8 Cell wall/membrane biogenesis
N 74 1.8 Cell motility
U 89 22 Intracellular trafficking and secretion
(6] 146 3.6 Posttranslational modification, protein turnover, chaperones
C 256 6.4 Energy production and conversion
G 251 6.3 Carbohydrate transport and metabolism
E 438 10.9 Amino acid transport and metabolism
F 85 2.1 Nucleotide transport and metabolism
H 148 3.7 Coenzyme transport and metabolism
I 126 3.1 Lipid transport and metabolism
P 223 5.6 Inorganic ion transport and metabolism
Q 108 27 S:;(;I;cifsrr}; metabolites  biosynthesis, transport and
R 473 11.8 General function prediction only
S 284 7.1 Function unknown
- 862 215 Not in COGs
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Table 3: Comparison of genome statistics of different Halomonas species.
Based on the data of Gao et al., 2015 and completed with data from other studies.

Genome  GC content Gene

Species size (MMb) (%) count
H. anticarriensis FP35 5.07 58.5 4,817
H. aquamarina 558 3.50 56.7 3,470
H. boliviensis LC1 4.14 54.5 3,915
H. campaniensis 1L.S21 4.07 52.7 3,665
H. elongata DSM 2581 4.06 63.6 3,556
H. elongata K4 3.47 63.4 4,726
H. halocynthiae DSM 14573 2.88 53.8 2,773
H. halodenitrificans DSM 735 3.47 64.0 3,256
H. hydrothermalis MTCC 5445 3.93 60.2 3,637
H. jeotgali Hwa 2.85 62.9 2,636
H. lutea DSM 23508 4.53 59.1 4,368
H. meridiana R1t3 3.51 56.6 3,526
H. salina CIFRI1 4.26 64.2 3,882
H. smyrnensis AAD6 3.56 67.9 3,326
H. stevensii S18214 3.69 60.3 3,523
H. sulfidaeris 4.44 54.0 4,143
H. titanicae BH1 5.34 54.6 2,908
H. zhanjiangensis DSM 21076 4.06 54.5 3,739
H. zincidurans B6 3.55 66.4 3,392
Halomonas sp. R5-57 5.03 55.6 4,677
Halomonas sp. KM-1 4.99 63.9 4,220

I.2. Identification and phylogenetic study for the classification of Halomonas sp.

SF2003

Genome of Halomonas sp. SF2003 contains seven copies of the conserved 23S rRNA genes and
16S rRNA genes. Studies of the seven copies of each, revealed the existence of nine differences between
the seven copies of the 23S rRNA genes and the existence of only one difference between the seven
copies of 16S rRNA (a cytosine in 2 copies at the position 454 and a thymine in the other 5 copies). It
was decided to use only 16S rRNA genes for the phylogenetic classification of Halomonas sp. SF2003.
In order to limit disparate results, a consensus sequence was generated using 16S rRNA. Figure 3
illustrates the optimal phylogenetic tree of strain obtained using a Neighbour-joining method (MEGA7),
with a sum of branch length equal to 0.33835159. The analysis involved 23 nucleotide sequences. All
positions containing gaps and missing data were disregarded. There were a total of 821 positions in the

final dataset.
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This analysis shows that Halomonas sp. SF2003 is closely related to Cobetia amphilecti strain 46-
2, Cobetia litoralis strain KMM 3880, Cobetia sp. MACLO02 and Halomonas sp. KMM 3550 species
without a precise differentiation between Cobetia or Halomonas. These results are in accordance with
other data in the literature and confirm that classification of Halomonadaceae members is still difficult
to clarify '*#2, In fact, de La Haba et al., 2010, highlighted that the Halomonas genus is the only one
atypical genus within the family Halomonadaceae. This genus is described as polyphyletic and is
divided in two clusters. Some species are clustered with other species like Chromohalobacter salarius,
as represented in Figure 3, or are still not classified into one of the two main clusters but cannot form

another cluster within the genus.

9000 1 4F928354.1 Halomonas titanicae strain BAD1 165 ribosomal RMA, gene partial sequence

0.000
@A\Q%Mgn Halomanas baliviensis strain LC1 165 ribosomal RMA gene partial sequence
0.002 0005 KF313361 .1 Halomonas sp. RS-57 165 ribosomal RMA gene partial sequence

o013 0.008 JF340230.1 Halomonas sp. TDO1 165 ribosomal RNA gene partial sequence
T@MSDEBBB 1 Halomonas aguarnarina partial 165 rRNA gene strain DS 30161
oos oms EF144145.1 Halornonas subterranea strain ZG16 165 ribosomal RNA gene partial sequence
0.007 0019 AF054286.1 Halomonas campisalis 163 ribosomal RNA gene partial sequence
0.008 AM229317 .1 Halomonas denitrificans partial 165 rRMA gene type strain M23T
T 0'0040015 EU373088.1 Halomonas pacifica 165 ribosomal RMA gene partial sequence
T . M93355.1 Halomonas elongata (ATCC 33173) 165 ribosomal RNA (165 rRMA) gene
oot 0.009 AF211860.1 Halomonas alimentaria 165 ribosomal RMA gene partial sequence
ni8 000z 0.005 AJBT1E910.1 Halomonas organivorans partial 165 rRMA gene type strain G-16.1T
oot L2210 wp 1169451 Halomanas halophila strain D3k 4770 163 ribosomal RRA gene partial sequence
0010 ,&AMZ?BZB.W Chromohalobacter salarius partial 165 rRMNA gene type strain CG4.1T
L90 ap229316.1 Halomonas salaria partial 165 rRMA gene type strain M27T
0000 MR 113402.1 Cobetia pacifica strain KMM 3879 165 ribosoral RNA gene partial seguence

0,000
.00s L'E MR 042065.1 Cobetia marina strain DSM 4741 185 ribosomal RNA gene partial saquence
o000 FM257743 2 Halomonas halodurans partial 165 rRNA gene strain DSM 5160

0.000

0035 ————————————————— AF316143.1 Halomonas sp. K 3550 165 ribosomal RMNA gene partial segquence
— o000 MR 113403.1 Cobetia litaralis strain KMM 3850 165 ribosomal RNA gene partial sequence
0.000 ,ﬂ MR 113404 .1 Cobetia amphilecti strain 46-2 165 ribosomal RMNA gene partial sequence
0.000 |—|U'UUU Halomanas sp. SF 2DDS|
] ¥0BE54.1 Pseudomonas aeruginosa DNA for 165 rRNA

Figure 3: Neighbour-joining phylogenetic tree, based on 16S rRNA gene sequence comparison, showing the evolutionary
distance of Halomonas sp. SF2003 (framed in red) to a selection of Halomonadaceae family members and types strains.
Halomonas alimentaria (AF211860), Halomonas sp. TDO1 (JF340230), Halomonas sp. R5-57 (KF313361), Halomonas sp.
KMM 3550 (AF316143), Halomonas sp. SF 2003, H. organivorans (G-16) (AJ616910), H. halophila (DSM4770) (NR
042064), H. elongata (ATCC 33173) (M93355), H. pacifica (EU373088), H. denitrificans (M29T) (AM229317), H. campisalis
(AF054286), H. salaria (M27T) (AM229316), H. subterranea (ZG16) (EF144148), H. titanicae (BQO1) (MF928354), H.
boliviensis (LC1) (AY245449), H. aquamarina (DSM30161) (AJ306888), H. halodurans (DSM5160) (FN257743),
Chromohalobacter salarius (CG4) (AJ427626), Cobetia pacifica (KMM3879) (NR113402), Cobetia marina (DSM4741)
(NR042065), Cobetia litoralis (KMM3880) (NR113403), Cobetia amphilecti (46-22) (NR113404), Cobetia sp. MACLO02
(EF198244) and Pseudomonas aeruginosa (X06684). The tree is drawn to scale, with branch lengths in the same units as those
of the evolutionary distances used to collate the phylogenetic tree. The Phylogenetic tree was obtained using a Neighbour-
joining method from MEGA?7 software.
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1.3. Metabolism

[.3.1.Carbohydrates metabolism

Analysis of the carbohydrate metabolism of Halomonas sp. SF2003 revealed a total of 91 genes
coding for biosynthesis or degradation pathways. The strain has genes responsible for fructose, lactose
(IIT), melibiose and sucrose (IV) assimilation and some of the genes involved in galactose (I and II),
glucose, glucose-1-phosphate, glycogen (I and II), L-arabinose (IIT), L-rhamnose (II), lactose (II), ribose
and xylose (I and IV) degradation. The presence of fructose, lactose and melibiose degradation pathways

is unexpected in a marine bacterium +%

, yet it has been reported in different Halomonas species like
Halomonas sp. strain C2SS100 ¢, Halomonas halmophila, H. aquamarina, H. variabilis, H. marina, H.

magadiensis or H. halodurans *', demonstrating the flexibility and adaptation of Halomonas strains.

These results are in accordance with other reports on Halomonas or Cobetia genus phenotypic
features 346° They also confirm experimental findings that have demonstrated PHA production from
agro-industrial processing waters, rich in vegetable proteins and reducing sugars, including mainly
fructose *. Such capacity to use different carbon sources found in various environment suggested a
potential variability of PHA products and a great biotechnological tool. We have for now tested eight
carbohydrates and the subsequent PHA production is promising in term of quantity and variability

(personal data).
1.3.2.Polyhydroxyalkanoates production

Genes coding for key enzymes of PHA biosynthesis (PhaA, PhaB and PhaC) are frequently
organized in one operon, such as Cupriavidus necator (formerly Ralstonia eutropha) " or Pseudomonas
sp. (Luengo et al., 2003; Babel and Ackerman, 2001). Organization of the biosynthesis operons depends
on bacterial species and also on the PHA synthase class 3 as represented in Figure 4. Four classes of
PHA synthases are described: Synthase class I and class II are both composed of one phaC gene but
class I synthases specifically use substrates composed of 3 to 5 carbon atoms and class II substrates with
6 to 14 carbon atoms. Class I synthases are responsible for the production of scl-PHA and can be found
in species like C. necator while class II synthases produce medium chain length PHA (mcl-PHA) and
are described in Pseudomonas species. Class III PHA synthases is composed of two genes, phaC and
phaE, and possess specificity for substrates with 3 to 5 carbon atoms like class I but can also synthetize
PHA with 6 to 8 carbon atoms. Finally, class IV PHA synthases are also composed of two genes: phaC

and phaR but synthesized mainly scl-PHA and are found in bacteria of the Bacillus genus '7-%31:33,

Genome annotation, using the platforms MaGe and NCBI, enabled the identification of different genes

involved in PHA metabolism such as phaA, phaB, phaCl/phaC2 and phaR coding for acetyl-CoA

acetyltransferase (PhaA), acetoacetyl-CoA reductase (PhaB), poly-beta-hydroxybutyrate polymerase
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(PhaC1 and PhaC2) and polyhydroxyalkanoate synthesis repressor (PhaR) respectively. All the data are

shown in Table 4.

These results orientate classification of the PHA synthase of Halomonas sp. SF2003 to class L.
The strain belongs to the Halomonas genus, produces scl-PHA and does not have gene phaFE, so the
PHA synthase clearly does not belong to class II and III. Results also show that genes coding for the
three key enzymes of the PHA synthesis pathway are not clustered in one operon but are clearly distant
from each other. To our knowledge, this kind of organization has never been reported elsewhere.
Classically, these genes are organized in one operon, or not, with a different order or orientation

depending on the bacterial species genes related to PHA biosynthesis, as represented in Figure 4 >4,

PHAsynthase Class | Cupriavidus necator (Ralstonia eutropha)
(1770 pb) (1182 pb) (741 pb) (678 pb) (1260 pb)
PHAsynthase Class I Pseudomonas aeruginosa
(1680 pb) (858 pb) (1683 pb)
PHAsynthase Class Il Allochromatium vinosum
: r [ |

(1068 pb) (1074 pb) (1185 pb) (462pb) (363 pb) (741 pb)

PHAsynthase Class IV Bacillus megaterium
phaP phaQ phaR phaB phaC
(513 pb) (441 pb) (609 pb) (744 pb) (1089 pb)

Figure 4: Schematic representation of a PHA cluster for different representative bacterial species.
Based on data from previous papers '-35,

Studies of PhaCl and PhaC2 proteins were carried out, using server Rapid Annotation and
Subsystem Technology (RAST). MaGe, NCBI and UniProt databases provided additional information.
Protein PhaCl, being the size of 71.5 kDa, is involved in butanoate and PHA metabolisms. Sequence
alignments showed the presence of functional domains of PHA synthase and identity, of about 60-70%,
with PHA synthases of other bacterial species like Cobetia marina, Halomonas boliviensis LCI,
Halomonas sp. RS57-5, Sulfitobacter guttiformis KCTC 32187, Puniceibacterium sediminis or
Halocynthiibacter arcticus. These data are in accordance with first results of the bioinformatics analysis
and production tests. Like PhaCl, the study of PhaC2 revealed its implication in PHA metabolism and
the presence of a functional domain of PHA synthase (in N-term) with an identity, ranging from 65% to

96%, with other bacterial species such as Cobetia amphilecti, Cobetia marina, Halomonas anticariensis
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DSM 16096, Halomonas denitrificans or Halomonas boliviensis LC1. Results of sequence alignments,
exposing conserved domains of proteins PhaCl and PhaC2, are available in Figure 5. However,
bioinformatics analysis also revealed atypical characteristics of protein PhaC2: the protein being the size
of 101.7 kDa and is potentially involved in the metabolism of aromatic compounds. Usually, PhaC
proteins have a molecular mass of between 40 to 70 kDa, depending on PHA synthase classes 2. The
implication of PHA synthase in aromatic compounds metabolism has, to our knowledge, never been
described. This characteristic of protein PhaC2 can be linked to the adaptability of Halomonas sp. SF

2003 to polycyclic aromatic compounds, (see below in the stress-related proteins section).

Query seq,

Specific hits
Non-specific PHA_synth_I
PhaC1 "* e
Superfanilies HEC_N su l Phgcm @Pgrfami ly

PhaC_N superfamily

Query seq,

gbeciticinits ===
 Phat N
Phac2 Non-specific : PHA_sunth_T
hits
Superfanilies PhaC superfamily

PhaC_N superfanily

Figure 5: Conserved domains of PHA synthases PhaC1 and PhaC2 of Halomonas sp. SF2003 using NCBI database.

First results of the automatic annotation of the Halomonas sp. SF2003 genome also included
fabG in the pathway of PHA production (MaGe Database). This gene codes as for a 3-oxoacyl-ACP
reductase involved in fatty acid metabolism and especially in their biosynthesis, as described in Figure
1 557, These results suggested that PHA and fatty acid metabolism are closely related. More relevant
research was thus conducted to identify potential genes involved in fatty acid metabolism to determine
if Halomonas sp. SF2003 can deviate the B-oxidation cycle for PHA production. Genome analysis
revealed the presence of characteristic genes encoding enzymes of fatty acid metabolisms: accB (acetyl-
CoA carboxylase), fabl (enoyl-ACP reductase), yngl/fadD (acyl-CoA synthetase), acdA/fadE (acyl-CoA
dehydrogenase). A selection of identified genes is summarized in Table 4. These data are in accordance
with results of preliminary experiments of PHA production using fatty acids, oleic and undecenoic acids

which enabled the production of 0.082 and 0.152g/L of PHA, respectively (unpublished data).
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Table 4: Genes from Halomonas sp. SF2003 predicted to be involved in PHA and fatty acid biosynthesis and in fatty acid

biodegradation.

Metabolic Protein Protein Function Locus tag
MW (kDa)
pathway (MaGe) (NCBI) (MaGe and/or NCBI) (NCBI)
PhaA / Acetyl-CoA C-acyltransferase C8233_08335 424
'% PhaA / Acetyl-CoA C-acyltransferase C8233_10360 40.6
é § PhaB / Beta-ketoacyl-ACP reductase C8233_12530 27.0
> - -
g PhaCl / Poly-beta-hydroxybutyrate C8233_00780 715
& polymerase
PhaC2 / Poly-beta-hydroxybutyrate C8233_06040 101.8
polymerase (modular protein)
PhaR PhaR Polyhydroxyalkanoate C8233_09450 19.9
synthesis repressor
. COBI473_v1_3625
Yngl Putative acyl-CoA synthetase (MaGe) 64.0
Acetyl-coa carboxylase
@ AccB / carboxyl transferase subunit C8233_13005 349
8 alpha
= Acetyl-coa carboxylase
i / carboxyl transferase C8233_05995 37.2
8 Subunit beta
= FabD FabD [Acyl-carrier-protein] S- C8233_06630 342
= malonyltransferase
Q . .
& AceC AccC Acetyl-coa carboxylase.blotln 823307040 486
z carboxylase subunit
é FabG FabG 3-oxoacyl-ACP reductase C8233_15110 27.5
FabG 3-oxo0acyl-ACP reductase C8233_06625 259
Fabl / Enoyl-[acyl-carrier-protein] C8233_00775 29.1
reductase
s = FadA FadA Acetyl-coa C-acyltransferase C8233_08120 41.1
= 3 id oxidati
g £ = FadB Fagp Aty acid oxidation complex - g,33 ggyps 774
8 8 = subunit alpha
2 Fg = Long-chain fatty acid--coa
s & K FadD / . C8233_02555 614
é o 9 .llgase .
s = Long-cham_ fatty acid--coa 823308395 643
ligase
FadB Fatty acid ox1(_1at10n complex 823308125 774
subunit alpha
E » CaiD / Enoyl-CoA hydratase C8233_00770 52.1
E=J7
g é / Enoyl-CoA hydratase C8233_16045 30.3
Q
": % / Enoyl-CoA hydratase C8233_16135 29.1
=)
-g =) / Enoyl-CoA hydratase C8233_16140 434
"g < Crotonase/enoyl-coa
- / N loy’-coa C8233_13655 29.2
5 A ydratase family protein
= Enoyl-coa
/ hydratase/isomerase family C8233_03930 313
protein
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[.4. Stress regulation-related proteins

As mentioned above, Halomonas sp. SF2003 can grow under high salt concentrations and
temperatures, as well as in the presence of toxic compounds like polycyclic aromatic hydrocarbons
(PAH) 8. Results of the pre-tests are illustrated in Tables 5 and 6 and described below. Adaptability of
the strain can be the consequence of the expression of numerous stress-related proteins. The presence of

genes involved in such a response was thus researched. Main results are illustrated in Table 7.

Like other halotolerant species such as Halomonas sp. R5-57 or H. elongata DSM 2581, Halomonas
sp. SF2003 produces the compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid,
also named ectoine, as an osmoprotectant '>#!, This cyclic amino acid is synthesized by three enzymes
i.e. EctA, EctB and EctC, identified in the genome of Halomonas sp. SF2003 and respectively encoded
by ectA, ectB and ectC. These genes are localized in a same gene cluster as in many others species *'.
Furthermore, as described by Schwibbert in 2011, ectoine hydroxylase encoded by ectD, is responsible
for ectoine derivative synthesis, hydroxyectoine was also identified in another gene cluster. This protein
is found in metabolisms of microorganisms as an adaption tool for resistance to extreme salinity %,

Presence of these enzymes can explain part of the adaptation of Halomonas sp. SF2003 to high salinity

in the order of 10% to 20% (w/v), data are shown in Tables 5 and 7.

Table 5: ODmax (600nm) of growing tests of Halomonas sp. SF2003 under stressful conditions (salinity and polycyclic aromatic
compounds).

*: OD value significantly different from OD of other percentage of salinity (Kruskal-Wallis, significance level of 0.05), ': OD
value significantly different from OD of control media (Kruskal-Wallis, significance level of 0.05) and 2: OD value significantly
different from OD value of control media + glucose (Kruskal-Wallis, significance level of 0.05).

Stressful conditions ODrmax (600nm)
0.5% (wlv) 2.00 +£0.16"
3% (w/v) 3.87 £0.04"
z 5% (wlv) 7.02+0.21"
;E:s 10% (w/v) 8.83 +£0.32°
15% (w/v) 5.97 £0.42"
20% (w/v) 0.53 +0.08"
Benzene (250 ppm) 0.53+£0.08 12
2 Naphthalene (50 ppm) 0.64 +£0.07 2
g é Phenanthrene (50 ppm) 0.54 +0.07 12
;f § Pyrene (50 ppm) 0.54 £0.02 '
E: g Toluene (125 ppm) 0.73 £0.08 2
£ Control media 0.70 £ 0.09
Control media + glucose 1.75 £0.05
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Halomonas sp. SF2003 is able to grow at 20°C, 25°C, 30°C and 37°C with ODmax600nm) Of 1.24,
1.90, 1.57 and 1.62 respectively, suggesting the existence of general stress proteins (GSP) enabling such
adaptability. Exploitation of genome data revealed the existence of different heat-shock and cold-shock
proteins like GroEL, GroES or CspC. These proteins were already identified in other bacterial species

as necessary systems for resistance to temperature variations %062

. Considering the results of
bioinformatics analysis and data from other studies, growing tests at 6°C were conducted, ODmax (600nm):
1.56, and confirmed the adaptability of Halomonas sp. SF 2003 to temperatures below 10 °C and could

suggest the presence of genes coding for cold shock proteins (CSP)%.

Halomonas sp. SF2003 is able to grow in the presence of a PAH such as; benzene, naphthalene,
pyrene, phenanthrene and toluene when used as the main carbon source at different concentrations
ranging from 5 to 250 ppm. The tested concentrations depend on PAH solubility and the medium used.
The maximal ODmax00nm), 0f 0.73, was observed with toluene (125 ppm) and is significantly lower when
compared to a medium containing glucose, such as a carbon source, suggesting the capacity of
Halomonas sp. SF2003 to tolerate, in part, the presence of PAH in its environment. Results are illustrated
in Table 5 and show that growth of the strain changes depending on the PAH. These results suggest the

presence of gene encoding PAH tolerance enzymes.

Antibiotic susceptibility did not allow to highlight a resistance of Halomonas sp. SF2003 against
tested antibiotics, results are exposed in Table 6. Previous studies have already investigated antibiotic
susceptibility of various Halomonas strains and have demonstrated the important variability inside the
genera. Indeed, even if some species expose resistance against tested antibiotics data in literature expose

also susceptibility of different species to various antibiotics.

Table 6: Results of antibiotic susceptibility of Halomonas sp. SF2003.

Antibiotic Inhibition diameter (cm)
Ampicillin lpg/ul 2,0
5 ug/uL 2,6
Gentamycin 1 pg/uL 1,6
5 pg/ul 2.4
Kanamycin 1 pg/uL 1,0
5 pg/ul 1,8
Penicillin 1 pg/uL 1,8
5 pg/pl 2,0
Streptomycin lpug/uL 1,0
5 ng/uL 1.8

For example, susceptibility to antibiotics of beta-lactam family, as ampicillin and penicillin, has
been observed for Halomonas elongata, H. eurihalina, H. hamiltonii sp. nov. (DSM 21196"), H.

saccharevitans sp. nov., H. salina, H. stevensii sp. nov. (DSM 21198") or H. subglaciescola #7464,
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Same results have been reported for antibiotics belonging to aminoglycosides as susceptibility of
Halomonas alkaliphila sp. nov. (DSM 163547), H. campaniensis sp. nov. (Strain 5AGT), H. maura and
H. salina to gentamycin or susceptibility of Halomonas hydrothermalis (DSM 15725), H. meridiana
(DSM 5425) and H. stevensii sp. nov. (DSM 211987) to kanamycin *"¢+%", The last one, H. meridiana
(DSM 5425), exposes also a susceptibility to streptomycin similarly to H. aquamarina (DSM 30161) or
H. salina. At the time of writing (August 2018), Halomonas sp. SF2003 does not expose a resistance
against tested antibiotics probably due to absence gene coding for antibiotics resistance mechanisms .
Additional tests, with different antibiotics and different concentrations, are required to complete data

but usually tested antibiotics could be used for production of recombinant strains is currently feasible.

Tolerance and the degradation of toxic compounds have already been described in (marine) bacteria
like Pseudomonas ®, Halomonas ™ or Neptunomonas "'. Results of automatic annotation on MaGe and
NCBI databases show the presence of proteins annotated differently on both databases but possibly
involved in a tolerance to toxic compounds: YrbD, Ttg2B and Ttg2A (MaGe) and MlaD, MlaF and an
unnamed protein (NCBI). Results are illustrated in Table 7.

PAH-catabolic pathways usually contain a multicomponent dioxygenase enzyme system, responsible
for the dioxygenation of an aromatic nucleus. These pathways are described thoroughly for naphthalene,
phenanthrene and anthracene metabolism in the Pseudomonas species. Genes coding for these enzymes
are found in the same group and are named nah-like genes. This group contains classical genes of these
pathways like ndo (naphthalene dioxygenase), nah (naphthalene degradation), dox (dibenzothiophene
oxidation), pah (polycyclic aromatic hydrocarbon (phenanthrene) degradation). New studies, conducted
on different Gram negative and positive bacteria, have also revealed the existence of other genes coding
for PAH catabolism enzymes ; including nag (naphthalene dioxygenase genes), phd (phenanthrene
degradation), nid (dioxygenase systems), nar, phn, dbf/pln, tod, ipb, bed, tcb, bph ; with the same

7274 Not one of these genes is

functions as nah-like genes but showing a low homology to those genes
present in the Halomonas sp. SF2003 genome. However, a toluene tolerance pathway involving 3 genes
(yrbD, ttg2b and ttg2A encoded for a toluene transporter subunit and 2 toluene tolerance efflux
transporters, respectively) involved in PAH tolerance is present according to bioinformatics data
available on the MaGe database. These genes encode toluene efflux pumps responsible for the expulsion
of the toxic compounds. Tolerance to solvents by Gram-negative bacteria was already described in the
literature as being the result of an expulsion of toxic compounds using the efflux system belonging to

the RND (resistance, nodulation, cell division) family 777,
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Table 7: Stress-related proteins of Halomonas sp. SF2003.

Protein Protein . Locus tag MW
Role Function
(MaGe)  (NCBI) (NCBI) (kDa)
‘g EctA EctA Diaminobutyrate acetyltransferase C8233_02170 21.3
i3]
E_,o) EctB EctB Diaminobutyrate--2-oxoglutarate transaminase C8233_02175 46.3
=
g EctC / L-ectoine synthase C8233_02180 14.8
j7e]
o EctD Thpd Ectoine hydroxylase C8233_10080 40.5
HtpX HsIU ATP-dependent protease ATPase subunit (C8233_13125 492
HslU
HslV / ATP-dependent protease subunit HslV C8233_13130 18.6
HslO / Hsp33 family molecular chaperone HslO C8233_15780 33.8
° GroEL GroL Chaperonin GroEL C8233_15260 57.7
=
=]
‘5 GroES GroES Co-chaperone GroES C8233_15265 10.5
)
g GrpE / Nucleotide exchange factor C8233_10485 22.5
)
F
/ / Cold-shock protein C8233_12885 16.8
CspC / Cold-shock protein C8233_09345 7.2
CspE / Cold-shock protein C8233_05185 7.4
CspE / Cold-shock protein C8233_06225 7.2
YrbD / Toluene transporter subunit: membrane COBI473_v1_1746 16.6
component of ABC superfamily (MaGe) ’
2]
—g Ttg2B / Toluene tolerance _efﬂux transporter (ABC COBI473_v1_1747 279
5 superfamily, membrane) (MaGe)
2 / Toluene tolerance efflux transporter (ABC COBI473_v1_1748
o P _vi_
g Ttg2A superfamily, atp_bind) (MaGe) 33.1
8 / MlaD Outer mer_nbrane lipid asymmetry €8233.07605 16.6
2 maintenance Protein
ﬁ / / ABC transporter permease C8233_07610 279
/ MlaF Phospholipid ABC transporter ATP-binding C8233 07615 375

protein

Growth of Halomonas sp. SF2003 in the presence of PAH can then be explained by the presence

of this efflux pump rather than the presence of a degradation system, including a multicomponent

dioxygenase enzyme system. Comparison of these results with data available on NCBI, identified other

proteins at the same position as these identified by the MaGe database. In the NCBI we identified 3

proteins: MlaD, MlaF and an unnamed protein, whereas they were respectively named YrbD, Ttg2A

and Ttg2B in MaGe. The function of these proteins was studied using NCBI and UniProt BLAST tools.

Protein MlaD, found in place of YrbD, of Halomonas sp. SF2003 showed an identity with MlaD proteins

of other Halomonas species ranging from 65% to 94%. This protein also contains a domain with an

identity ranging from 71.7% to 74% with the organic solvent ABC transporter substrate-binding proteins

of Halomonas sp. KHS3, Halomonas meridiana, Halomonas sp. SUBGO004 and Halomonas
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campaniensis. The protein also presents an identity, around 70%, with a toluene transporter subunit:
membrane component of ABC superfamily of Halomonas sp. R57-5 and Halomonas sp. A3H3. These
data suggest, in part, the implication of these proteins in tolerance to PAH. The unnamed protein,
identified instead of Ttg2B, demonstrated an identity ranging from 70.0% to 100% with ABC transporter
permease MIaE of different bacterial species like Cobetia sp. UCD-24C, Halomonas sp. 1513 or
Chromohalobacter japonicas. Protein MIaE is involved in the maintenance of the asymmetry of the
outer membrane %, Finally, protein MlaF, found in place of Ttg2A, shows an identity, ranging from
72.0% to 99.6%, with proteins MIaF of different bacterial species such as Halomonas salina or Cobetia
amphilecti. This protein participates, like MlaE, in the maintenance of the asymmetry of the outer
membrane. Regarding the results of both databases, even if identification differs from one to another,
both predict a potential implication of proteins encoded by this part of the genome in a transport/efflux
pump system for organic solvents (or especially toluene) which can explain the growth of Halomonas

sp. SF2003 in the presence of PAH.

Discussion

The marine bacterium Halomonas sp. SF2003, showed promising capabilities for the production
of PHA in addition to a high adaptability faced with atypical growth conditions. This report enlarges the
knowledge of the genomic characteristics of such a PHA-producer and the central role of PHA synthesis
in cellular metabolism. Likewise, the results of the genomic analysis emphasize the relationship between
the capability of accumulating PHA, and the enhancement of the stress resistance of producing micro-
organisms as recently pointed out in some studies *?%7, Resistance to starvation or non-optimal
environmental conditions can be the result of the expression of various stress-related proteins. Indeed,
genes might be responsible for the resistance of Halomonas sp. SF2003 against salinity, temperature or
polycyclic aromatic hydrocarbons which were identified in the strain’s genome. Nevertheless, the
phasins associated to PHA granules as well as some hydroxyl acyl monomers have been reported to
exhibit a chaperone-like activity, and might also be involved in the protective mechanism . Conversely,
Obruca et al. (2018) also stated that the application of certain amounts of a stress factor (osmotic
pressure, heavy metals, hydrogen peroxide) supports PHA accumulation in Cupriavidus necator and
can thus be used as an effective and innovative strategy to improve PHA production. In the particular
case of Halomonas sp. SF2003 it can thus be hypothesized that PHA production may be boosted in a
fermentation medium supplemented with appropriate amounts of naphtalene or phenanthrene as it

possesses unusual genes resistant to these compounds.

Biotechnological PHA production processes can be further enhanced by an appropriate feeding
strategy deduced from the knowledge of PHA biosynthesis pathways of the producing microorganism.
Hence, analysis of the carbohydrate metabolism of Halomonas sp. SF2003 revealed the presence of

numerous genes involved in carbohydrate biosynthesis or degradation metabolism suggesting that the
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strain has the capability to convert various carbonaceous sources into PHA. Owing to its robustness,
many industrial waste streams can be considered as potential cheap substrates to support PHA
biosynthesis. Indeed, scaling-up the PHA production with inexpensive and readily available feedstocks
is the main current challenge for the development of a sustainable and economically competitive

production of these biopolymers.

Fatty acids, including those that originate from waste lipids, may also be supplied as substrate
for PHA production from Halomonas sp. SF2003, as in the in silico study conducted here, which
revealed the existence of a close relation between the PHA and fatty acid metabolisms. Production of
oleic acid and undecenoic acids has already been found to be effective however the quantity of PHA
produced by Halomonas sp. SF2003 is limited (unpublished data). These results open up the path for
new tests to enhance production, testing other fatty acids like hexanoic acid to study expression rates of
the different genes involved, as well as the associated enzymatic activities. Utilization of exotic fatty
acids with, for instance, terminal carbon rings, side chains or rings as side chains has also to be

considered as a potential way to produce PHA with specific characteristics as reported elsewhere 882,

The most adopted approach to overproduce PHA is genetic metabolism modification of
producer strains. Not only specific production (g PHA/g biomass) but also volumetric production can
be increased up to several fold in comparison with wild type strains. Unusual PHA with attractive
properties from the end-user application point of view can be synthetized, such as co-polymers
composed of both short chain length (SCL) and medium chain length (MCL) monomers as recently

reported in the literature 3.

Deletions or weakening of PHA unrelated pathways, mainly deletions of genes fadA and fadB,
has been largely well-tried. The deletion of theses enzymes in the [(-oxidation pathway of the
Pseudomonas species, enables most fatty acids to channel to PHA synthesis, thus significantly
improving substrates to product PHA ratios %%,

Regarding the atypical results of PHA biosynthesis operon and PHA synthases (PhaC1 and PhaC?2), the
implication of each of these enzymes together or separately on PHA biosynthesis has to be investigated.
New arrangements of the PHA biosynthesis operon of Halomonas SP2003 can probably provide a better

rate of production or cell content as previously reported by Hiroe et al.(2012).

Consequently, the strain genome sequencing and analysis opens the door to future developments that

will enable a better use of Halomonas sp. SF2003 in biotechnological applications.
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Chapter 4
PHA production and PHA synthases of the halophilic

bacterium Halomonas sp. SF2003.
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Graphical abstract

Among the different tools which can be studied and managed to tailor-make
PolyHydroxyAlkanoates and enhance their production, bacterial strain and carbon substrates are
essential. Assimilation of carbon sources is dependant of strain’s metabolism and consequently cannot

be dissociated. Both must wisely be studied and well selected to ensure the highest production yield.

Modification

Bacteria

[ * Process ]

« Bacterial Culture
PHA synthases’s performance
Growth parameters

Tailor-made ——

PolyHydroxyAlkanoates Life cycle
assessment

® Carbon substrates

Bacterial growth "‘& :;7'

- . . PHA production - =
Characterization

W i 2(e@®

Optimization )

Production of Polyhydroxyalkanoates

3

Introduction

PolyHydroxyAlkanoates (PHA) are valuable bio-based and biodegradable polymers produced by
numerous bacterial species 2. Because their properties are close to those of conventional petroleum-
based plastics, in addition to their biocompatibility, they are considered as materials with high potential
3. Actually they can be used in various fields ranging from packaging 2 to biomedical applications 4,
but one of the main locks to their commercialization and exploitation is the overall cost of production.
Currently, several tools can be managed to reduce final cost of PHA production, including
characterization of selected microorganisms coupled with optimal selection of carbon substrates 6.
Indeed, better understanding of strain metabolisms and response in front of different growth and/or
production conditions participate to tailor-make PHA and enhance production yield. To date, there is an
important diversity of carbon sources (monomers) which can be exploited for PHA synthesis and as a
result, a wide range of (co-)polymer which can be synthesized ¢. PHA properties are closely linked to
their bacterial producer strain, carbon substrates and production mode %7, meaning that an accurate
study of each parameter is required. On the other hand, the PHA production cost is still limiting their

more widespread use. Over the last decade, research have notably focused on the use of low-value
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substrates like industrial co-products (from agri-food, waste treatment,...) 657

as they can represent up
to 50% of the production cost. But with these carbon substrates, a perfect control of PHA’s structure,
molecular weight and properties could be difficult. Therefore, complete studies of carbon substrates
utilization and PHA synthesis are required to soundly select the most adapted carbon sources, whether
it is pure carbohydrates or co-products. Another way to reduce production costs is to study the strain
genome using bioinformatic and genetic engineering. These tools are also exploiting for expression of
PHA synthesis operon in non-producing strains exposing less restrictive growth and production

conditions >'°.

Halomonas sp. SF2003 is a halophilic bacterium identified as a PHA-producing strain !'. Previous
studies have shown its capacity to produce polymer up to 78% of cell dry weight (CDW), using
conventional carbon sources but also carbonaceous by-products from food wastes '2. Bioinformatic and
phenotypic studies of Halomonas sp. SF2003 have demonstrated its versatility under various atypical
growth conditions making it an adaptable bacterium. Additionally, genomic annotation also allows to
identify various metabolic pathways directly involved, or not, in synthesis of PHA which can be studied
for a stronger understanding of Halomonas sp. SF2003 PHA metabolism. Our previous study
highlighted atypical characteristics and organisation of PHA biosynthesis genes (phaA, phaB, phaCl,
phaC2 and phaR) . Regarding its original properties, Halomonas sp. SF2003 is an excellent candidate

for innovative development of biotechnological production of PHA.

The objectives of this work are to go further into the unravelling/understanding of PHA biosynthesis
capability and metabolism of Halomonas sp. SF2003 and to identify potential carbon substrates, and in
later stage potential industrial co-products, which can be exploited for PHA production. Our work will
also contribute to better understand the activity of both PHA synthases of Halomonas sp. SF2003 in

order to later optimize its PHA production.
I. Results

I.1. In silico study of PHA synthases PhaCl and PhaC2 of Halomonas sp. SF2003

In a previous work, the whole genome of Halomonas sp. SF2003 was sequenced and annotated
leading to the identification of two genes potentially encoding two distinct PHA synthase proteins PhaCl
and PhaC2; belonging to class I (based on gene organization and biosynthesized PHA) '*. To further
characterize this first analysis, the consensus lipase box-like sequence of both PHA synthase has been

studied.

Lipase box-like sequences are highly conserved patterns present in PHA synthase sequences
and are considered as active sites of the enzymes %', These domains expose similarities with those of

lipase but difference is in the replacement of the essential active site of lipase, a serine, by a cysteine in
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lipase box-like domain of PHA synthase !, leading to rename these sequences as PhaC box consensus
sequences '8, In this pattern, similarly to lipase, Cysteine (Cys or C) represents the catalytic amino acid
and is involved in a catalytic triad (C-H-D) participating, supposedly, in elongation step of PHA polymer
18, The most common described pattern is Glycine-X-Cysteine-X-Glycine (G-X-C-X-G), including
Glycine-Tyrosine-Cysteine-Methionine-Glycine sequence (G-Y-C-M-G) detected in Bacillus cereus
(ATCC 14579) or Haloferax mediterranei (ATCC 33500), Glycine-Tyrosine-Cysteine-Leucine-Glycine
sequence (G-Y-C-L-G) found in Cupriavidus metallidurans strain CH34 or Halomonas boliviensis LC1
(DSM15516), or Glycine-Alanine-Cysteine-Serine-Glycine sequence (G-A-C-S-G) in Cupriavidus
necator strain N-1 or Pseudomonas fulva strain 12-X %71 However, variations in amino acids

composition have also been described in various bacterial species like with Halomonas elongata (DSM

2581) or Halomonas sp. KM-1 for which sequences have been described (Figure 1) !4,

Bacillus anthracis strain Ames 1' CM :
Bacillus cereus (ATCC 14579) 4G YCMG}
Bacillus megaterium (ATCC 14581) 1GYCMG)
Haloferax mediterranei (ATCC 33500) 1GYCMGI
Hualoplanus sp. CBA112 JI 'CM :
Alcaligenes faecalis strain ZD02 : CL :
Bradyrhizobium diazoefficiens strain USDA 110 j é LG
Cupriavidus metallidurans strain CH34 IGYCLA
Halomonas boliviensis LC1 rs14850 (DSM 15516) ) LGk
Halomonas boliviensis LC1 rs16055 (DSM 15516) } LG
Halomonas sp. SF2003 (PhaC1) /; & :
Legionella pneumophila subsp. pneumophila e prisdsiphia 1) 4GYCLG
Ralstonia solanacearum strain CFBP2957 JGYCLG{

I I
Cupriavidus necator strain N-1 IGACSGL
Pseudomonas cremoricolorata strain NDO7 J: CS :
Pseudomonas fulva strain 12-X 1 CSG;
Pseudomonas sp. (ATCC 13867) 1GACSG

I 1
Halomonas boliviensis LC1 (DSM 15516) ASYCVGL
Halomonas campaniensis LS21 lsycval
Halomonas stevensii $18214 (DSM 21198) isycva!
Halomonas sp. GAFJ-1 USYCVG]

| |
Halomonas sp. SF2003 (PhaC2) ISYCIGI

Figure 1: Multiple alignment of partial amino acids sequences of PHA synthase exposing lipase box-like patterns from different
bacterial species.

All the sequences are available on NCBI database. Highlighted sequences correspond to PHA synthases PhaC1l and PhaC2 of
Halomonas sp. SF2003.

Amino acids sequences of PHA synthases PhaC1 and PhaC2 of Halomonas sp. SF2003 have been
analyzed and allowed the identification of two distinct lipase box-like patterns in both enzymes,
beginning at position 384 for PhaC1 and position 343 for PhaC2. In PhaC1 sequence pattern is composed
of Glycine-Tyrosine-Cysteine-Leucine-Glycine (G-Y-C-L-G) and pattern in PhaC2 is Serine-Tyrosine-
Cysteine-Isoleucine-Glycine (S-Y-C-I-G) (Figure 1). Results obtained for PHA synthases of
Halomonas sp. SF2003 still demonstrated distinction of both enzymes, additionally to their size and
location in genome '°. Indeed, two different patterns have been reported: G-Y-C-L-G for PhaCl and S-
Y-C-I-G for PhaC2. The G-Y-C-L-G pattern detected in PhaC1 amino acids sequence has already been
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reported in different halotolerant/halophiles (or not) PHA/PHB-producing strains as C. metallidurans
strain CH34 % or Halomonas boliviensis LC1 (DSM 15516) 2!. The second pattern, S-Y-C-I-G, founds
in PhaC2 amino acids sequence has also been reported in sequence of other halotolerant/halophiles
PHA/PHB-producing strains as Chromohalobacter salexigens (DSM 3043) and Halomonas sp. KM-1
142223 Additionally, to this difference of pattern in PhaC box consensus sequences, analysis of amino
acids sequences framing these active sites suggests a difference in final structure of proteins. The
existence of different PHA synthase enzymes in a same bacterial strain has already been observed, as
well as several lipase box-like sequences, like for Halomonas boliviensis LC1 (DSM 15516). This strain
has several PHA synthases in which different lipase box-like pattern have been detected, as illustrated

in Figure 1.

Differences between both PHA synthases of Halomonas sp. SF2003 could generate a difference in
catalytic activity and potentially, at the end, impact yield of polymer production. Further research must
be performed to elucidate impact of each pattern on enzymes’s substrates specificity and selectivity and
also to validate identification of catalytic core of both. Indeed, studies on domain of PhaC box consensus
sequences of Halomonas sp. O-1 have been conducted and demonstrated that modifications of sequence
have an impact on synthesis of PHA ', Same kind of experiments would be one of the prospects to

deeply characterize PHA synthases, PhaC1 and PhaC2, of Halomonas sp. SF2003.
I.2. Screening of carbon substrates for PHA production by Halomonas sp. SF2003

To investigate the ability of Halomonas sp. SF2003 to produce different PHA, various carbon
substrates and mix have been screened for growth and biopolymer accumulation (See section IV.I
“Criblage de sources de carbone assimilables” in Chapter 2 Matériels et Méthodes). Bacterial growth
and PHA accumulation were first checked using visual examination of Nile Red agar plates (shake flasks
or bioreactor). Nile Red is a fluorescent stain of intracellular lipids and hydrophobic domain frequently
used to detect PHA ?*. Indeed, Nile Red represents an easy and fast detection tool for PHA biosynthesis
using various technic as agar plates or epifluorescence microscopy %', Work has been mainly
focused on “pure” carbon substrates, as carbohydrates, for a better understanding of PHA synthase
activity and specificity. Height pure carbohydrates, including 5 monosaccharides (glucose, fructose,
galactose, rhamnose, mannose) and 3 disaccharides (maltose, melibiose, sucrose) found in food or
natural (co-) products including fruits, vegetables, milk or red algae, have been tested based on data

available in literature and results of previous studies on Halomonas sp. SF2003 12-14.28.29,

Visual examinations of Nile Red agar plates allow to detect colonies and bacterial growth and
PHA production has been screened by detection of Nile Red florescence under UV-lights. Halomonas
sp. SF2003 was able to use all the tested carbohydrates as substrates for both bacterial growth and PHA
accumulation: (D)-Glucose (Figure 2a), (D)-Fructose (Figure 2b), (D)-Galactose (Figure 2c¢), (D)-

Mannose (Figure 2d), (D)-Maltose (Figure 2e) and (D)-Sucrose (Figure 2h), only (L)-Rhamnose and (D)-
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Melibiose were not used (Figure 2f, Figure 2g and Table 1). On Nile Red agar plates, number of UFC
as well as the size of the colonies vary from one carbohydrate to another. Qualitatively, growth of
Halomonas sp. SF2003 seems to be more important on (D)-Glucose, (D)-Mannose and (D)-Maltose but,
comparatively, PHA production looks to be more efficient on (D)-Glucose, (D)-Galactose and (D)-

Maltose, based on fluorescence intensity.

Figure 2: Nile Red agar plates screening with Halomonas sp. SF2003 using 2% (w/v) of different carbon substrates.
The positive control (medium without addition of carbon substrates) is the upper plate on Figure 2a to Figure 2h. a. (D)-Glucose,

b. (D)-Fructose, c. (D)-Galactose, d. (D)-Mannose, e. (D)-Maltose, f. (D)-Melibiose, g. (L)-Rhamnose and h. (D)-Sucrose.

Observations under UV-lights performed with transillumination.

Only one carbohydrate in a (L) configuration has been tested: (L)-Rhamnose, and it does not
allow both bacterial growth and PHA accumulation by Halomonas sp. SF2003. At this time and to our
knowledge, there is not yet reports of PHA production with (L)-rhamnose using Halomonas species. In
contrast, ability to use this sugar as carbon source and substrate for PHA production is variable since

3931 or other species as C. necator or

Halomonas species as H. cupida, H. elongata, or H. maura
Pseudomonas oleovorans ** are capable of doing so while Halomonas species as H. aquamarina, H.
hamiltonii (DSM 21196") or H. subterranea (JCM 14608T) are not, in accordance to results obtained

with Halomonas sp. SF2003.

Table 1: Growth and PHA accumulation in Halomonas sp. SF2003 using different carbon sources.

Carbon source Growth PHA accumulation
(D)-Glucose + +
(D)-Fructose + +

(D)-Galactose + +
(D)-Mannose + +
(D)-Maltose + +
(D)-Melibiose - -
(L)-Rhamnose - -
(D)-Sucrose + +
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Results of screening tests suggest that the inability of use (L)-Rhamnose for bacterial growth or
PHA production by Halomonas sp. SF2003 is a result of a lack in part or in totality, of required metabolic
tools. This hypothesis is in accordance with results of a previous study, which showed the presence of
only few genes responsible for rhamnose (II) degradation in the Halomonas sp. SF2003 genome (Table
2) 8.

Table 2: Listing of common carbohydrates used for PHA production.
*: Tested in this study for PHA accumulation, n.i: not identified in Halomonas sp. SF2003 genome yet.

Shribria o e Identification of pathway for

assimilation

Fructose* Fruits, Honey Total

Galactose* Milk, Honey, Red algae Partial

Glucose™ Food, Metabol.lms of living Partial

organisms

Lactose Dairy products Total
Maltose* Starch degradation (barley) n.i
Mannose* Fruits, Plants, Mannitol n.i

Melibiose* Plants, Fruits Total

Ribose RNA Partial

Rhamnose* Plants Partial

Sucrose* Plants Total

Xylose Plants Partial

Within all tested pure carbohydrate, (D)-Melibiose is the second one which does not allow
bacterial growth. Results of screening tests performed suggest that Halomonas sp. SF2003 does not or
only possesses a part of enzymes require for (D)-Melibiose degradation contrary to results suggested by
our previous in silico study . A limited number of studies deal with use of (D)-Melibiose for bacterial
growth and only sometimes for PHA production as Burkholderia sacchari sp. nov. **. Halomonas cupida
is also able to use (D)-Melibiose for its growth 3! like Bacillus sp. (Strain SKM11) **, Bacillus subtilis
(Strain PHA 012), Aeromonas sp. (Strain PHA 046) or Alcaligenes sp. (Strain PHA 047) .
Comparatively, and similarly to Halomonas sp. SF2003, numerous PHA-producing species have also
been reported for their disability to exploit (D)-Melibiose for growth as Pandoraea sp. (Strain MA 03)

36 or Bacillus cereus (Strain FC11) ¥,

As described previously and illustrated in Table 1, Halomonas sp. SF2003 is able to grow in
medium with (D)-Glucose, (D)-Fructose, (D)-Galactose, (D)-Mannose, (D)-Maltose and (D)-Sucrose. The
strain seems also able to use these carbohydrates for PHA production in accordance with genomic
analysis . Indeed, study of Halomonas sp. SF2003 genome highlighted the presence a various genes
coding for enzymes responsible for carbohydrates assimilation as fructose or sucrose. However, some
of the tested carbohydrates have also been used by Halomonas sp. SF2003 even if preliminary study of

its genome only identified a part of genes required for their total assimilation (Table 2). These results
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suggest the interest of performing a re-examination and annotation of Halomonas sp. SF2003 genome
but also open the door for new studies/productions using these pure carbohydrates which can easily be

found in various food or agri-food (co-)products.

Use of these carbohydrates for PHA production has already been reported in different bacterial
species including, or not, Halomonas species. In literature, numerous studies have been conducted to
evaluate the use of various carbon sources, including pure carbohydrates, for PHA production. For
example, glucose has been used with Bacillus cereus UW85 (2.9 g/L of P-3HB) ¥, Pseudomonas species
3 but also with some Halomonas species such as Halomonas sp. TDO1 (64.0 g/L of P-3HB) * or
Halomonas profundus (0.3 g/L of P-3HB) *°. Use of glucose has also been evaluated with C. necator,
the most studied PHA producing strains, as well as employment of fructose or sucrose **. Fructose is
also exploited by Bacillus aryabhattai PHB10 (2.18 g/L of P-3HB)* or halophiles strains such as
recombinant strain Halomonas sp. TD08 (2.02 g/L of P-3HB-co-3HV) **, H. halophila (2.31 g/L of P-
3HB), H. organivorans (2.57 g/L of P-3HB) and H. salina (0.17 g/L of P-3HB)*. PHA production using
sucrose has been successfully achieved with Azorobacter vinelandii (0.70 g/L of P-3HB) ®* or
Burkholderia sacchari DSM 17165 (36.50 g/L of P-3HB) *. Similarly to fructose, PHA productions
have been observed when sucrose is used with halophile strains: Natrinema sp. 5TL6 (0.11 g/L of P-
3HB-co-3HV) “°, H. halophila (4.85 g/L of P-3HB), H. organivorans (2.57 g/L of P-3HB) and H. salina
(0.14 g/L of P-3HB)*. Similarly to Halomonas sp. SF2003, various Halomonas species such as H.
halophila (3.41 g/L of P-3HB) or H. salina (0.12 g/L of P-3HB) have successfully employed galactose
PHA production *.

Even if numerous Halomonas species such as H. elongata, H. pacifica or H. halodurans * can
use mannose as growth substrate, only some studies report a possible conversion into PHA. Indeed,
Pernicova et al., and Kucera et al., have demonstrated capacity of H. halophila, H. organivorans and H.
salina to produce PHA from mannose, up to 0.96, 3.87 and 0.13 g/L of P-3HB, respectively ***’. Finally,
among already cited strains some of them are also able to produce PHA from maltose as well as B.
aryabhattai PHB10 (1.47 g/L of P-3HB) *! or Geobacillus sp. AY946034 (0.15 g/L of P-3HB) . In
addition to these strains, PHA production from maltose has also been investigated with additional
species such as Halomonas sp. TD08 (1.56 g/L of P-3HB-co-3HV)*, H. boliviensis LC1 (0.55 g/L of
P-3HB) *** or H. campisalis MCM B-365 *° (Table 3).
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Table 3: Listing (not exhaustive) of various bacterial strains using the different tested carbohydrates for PHA production.
Based on data of Verlinden et al., 2007 and completed with data from other studies. Strains in bold expose highest PHA
concentrations.

Carbohydrates Bacterial strains/species
Glucose Bacillus cereus UW85, Halomonas profundus, Halomonas sp.
TDO01, Halomonas sp. SF2003
Fructose Bacillus aryabhattai PHB10, C. necator, Halomonas TDOS,
Halomonas sp. SF2003, H. halophila, H. organivorans, H. salina
Galactose Halomonas halophila, H. salina, Halomonas sp. SF2003
Mannose Halomonas halophila, H. organivorans, H. salina
B. aryabhattai PHB10, Halomonas sp. TDO08, H. boliviensis L.C1
Maltose S
and H. campisalis
Melibiose Burkholderia sacchari sp. nov.
Rhamnose C. necator, P. oleovorans
Sucrose Azotobacter vinelandii, Burkholderia sacchari DSM 17165, C.

necator, Natrinema sp. STL6

Results of production show that the employed bioprocess (meaning strain, carbon sources and
production systems) significantly impacts production yields and composition of the polymer. Because
there is a plenty of systems which can be used, it is difficult to designate which one is the most effective.
However, data described previously and in Table 3 show importance of a deep study and judicious
choose of employed bioprocess. Data also demonstrate capacity of Halomonas species to use a wide
variety of carbohydrates for PHA production, in accordance to results obtained with Halomonas sp.
SF2003, and are sometimes more efficient than non-halophilic strains. To complete data about
Halomonas sp. SF2003 carbohydrates metabolisms, additional tests have been conducted on one simple
sugars: fructose, galactose and glucose or mixed with one fatty or organic acids, in the proportion 95:5%
(mol/mol). Such acids have already been reported as precursor for biosynthesis of copolymers when
simple sugars were used as the main substrate. The following acids, which are components of plants,
fruits or different industrial effluents (agri-food, chemical, cosmetic, pharmaceutical) were tested:
dodecanoic, heptanoic, hexanoic, levulinic, malic, palmitic and trans-2-pentenoic. In the same way than
for screening tests with pure carbohydrates, bacterial growth has been evaluated by visual examination

and PHA production by detection of fluorescence under UV-lights.
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Figure 3: Nile Red agar plates screening with Halomonas sp. SF2003 using carbohydrates/acid mix with molar ratio 95/5%,
final concentration 2% (w/v).

The positive control (Glucose only) is the upper plate on Figure 3a to Figure 3i. a. Mix Glucose-Malic acid, b. Mix Glucose-
Levulinic acid, c. Mix Glucose-Palmitic acid, d. Mix Galactose-Malic acid, e. Mix Galactose-Levulinic acid, f. Mix Galactose-
Palmitic acid, g. Mix Fructose-Malic acid, h. Mix Fructose-Levulinic acid and i. Mix Fructose-Palmitic. Observations under
UV-lights performed with transillumination.

Halomonas sp. SF2003 can grow on majority mix composed of glucose or galactose and organic
acids except the following: glucose-dodecanoic acid and galactose-dodecanoic/heptanoic/hexanoic
acids. Mix of fructose and acids cannot be used for bacterial growth nor PHA production whatever the
acid (Table 4). This finding suggests an inhibitory effect of acids depending on the sugar used as co-
substrate. Among the mix allowing growth, only five produce fluorescence under UV-lights, suggesting
PHA production: glucose-malic acid (Figure 3a), glucose-levulinic acid (Figure 3b), glucose-palmitic
acid (Figure 3c¢), galactose-malic acid (Figure 3d) and galactose-palmitic acid (Figure 3f and Table
4).
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Table 4: Growth and PHA accumulation in Halomonas sp. SF2003 using different mix of carbohydrates and acids.

Carbon source Growth PHA accumulation
Dodecanoic acid - -
Heptanoic acid
Hexanoic acid
Levulinic acid
Malic acid
Palmitic acid
Trans-2-pentenoic acid
Dodecanoic acid - -
Heptanoic acid - -
Hexanoic acid - -
Levulinic acid +
Malic acid +
Palmitic acid +
+
i

Glucose
++ + + + +
+

Galactose

+ +

Trans-2-pentenoic acid
Dodecanoic acid

Heptanoic acid -
Hexanoic acid - -
Levulinic acid - -
Malic acid - -
Palmitic acid - -
Trans-2-pentenoic acid - -

H+

Fructose

Levulinic, malic and palmitic acids can easily be found in plant co-products and have already
been tested in mix with different carbon substrates for PHA production by different bacterial strains.
Levulinic acid has been employed in a mix with xylose to perform PHA production with Burkholderia
cepacia > or combined to glucose/fructose with C. necator 3. Quantities of acid employed vary to those
tested here and lead to production of P-3HB-co-3HV up to 2.40 g/L. with B. cepacia *' and P-3HB
synthesis up to 2.41 g/L for C. necator *. Alongside, previous studies for assimilation of levulinic acid
has also been evaluated with Halomonas hydrothermalis using seaweed-derived crude levulinic acid
and lead to accumulation of P-3HB-co-3-HV up to 1.07 g/L 3. The second acid, malic acid, has been
used as co-substrates for PHA production with different bacterial species such as Burkholderia sacchari
which accumulates P-3HB up to 2.80 g/L from mix of glucose and malic acid >*. By-products composed
of malic acid from fruit pomace have successfully been exploited by Pseudomonas resinovorans for P-
3-HydroxyHexanoates-co-3-Hydroxyoctanoate-co-3-HydroxyDecanoate-co-3-HydroxyDodecanoate-
co-3-HydroxyTetradecenoate (P-3HHx-co-3HO-co-3HD-co-3HDD-co-3HTD) production reaching
1.27 g/ %. Other papers reported that addition of malic acid in production medium of Methylobacterium
trichosporium can promote production of P-3HB up to 1.94 g/L 3°. Finally, palmitic acid is also
frequently exploited for PHA production and with various bacterial species. Cruz et al., have tested

several by-products and wastes as carbon substrates for PHA production including olive oil, cooking oil
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or biodiesel fatty acids by-products. All these products contain more or less important quantities of
various fatty acids including palmitic acid. PHA production has been estimated with different species
as Pseudomonas citronellolis, P. oleovorans, P. resinovorans, Cupriavidus necator H16 and C. necator
NRRL B-4383 and demonstrated viability of use waste and by-products *’. Another study exploited oil
of spent coffee ground, which contains palmitic acid, for P-3HB production with C. necator H16 and
led to productions reaching up 10.0 g/L 3. Additionally, to Pseudomonas and Cupriavidus species, tests
have been conducted on Burkholderia sp. USM (JCM15050) to evaluate the exploitation of
representative quantities of palmitic acid, alone or in different by-products. Results of this study
demonstrated a higher production of P-3HB, up to 1.25 g/L, using palm oil product rather than pure
palmitic acid (0.14 g/L of P-3HB) ¥.

According to data reported here and in the literature, it appears that numerous bacterial species,
including Halomonas sp. SF2003, can use several pure carbohydrates for growth but also for PHA
production.

In the case of Halomonas sp. SF2003, and based on results of screening tests, it makes more senses to
use (D)-Glucose, (D)-Galactose and (D)-Maltose, which shows to qualitatively allow a stronger PHA
production. To complete these results, it is necessary to test a mix of these sugars with different ratio of
each of them in order to evaluate if PHA production is stronger when exploiting them alone or combined.
Moreover, evaluation of PHA production with a mix of carbohydrates will allow to identify potential
co-products usable with Halomonas sp. SF2003. Indeed, bacterial growth and PHA production of
various strains using pure carbohydrates is frequently tested and well reported 3%, However, because
of their high cost, their use at the industrial scale cannot be reasonably considered and exploitation of
by-products is privileged °. A majority of pure carbohydrates tested for bacterial growth and PHA
production in this study can be found in industrial or natural products (Table 2) allowing to test

assimilation/exploitation of different (co-)products by Halomonas sp. SF2003.

This ability to exploit various carbon substrates, in addition to its capacity to grow in front of
atypical/stressfull conditions make Halomonas sp. SF2003 a versatile strain with a high potential for
biotechnological application/use '*%. Results of this study identify several potential carbon substrates

allowing PHA production and open the door for future tests studying exploitation of each one.
I.3. Study of PHA synthases

PHA biosynthesis activity of Halomonas sp. SF2003 is due to the presence of genes coding for
enzymes linked to PHA metabolism (i.e phaA, phaB, phaCl, phaC2 and phaR). Interestingly, genes
coding for Acetyl-CoA C-acyltransferase (phaA), Beta-ketoacyl-ACP reductase (phaB) and PHA
synthases (phaCl and phaC2) are not organized in one operon but are distant from each other on
Halomonas sp. SF2003 genome sequence. Moreover, phaCl and phaC2 genes expose atypical sizes

(1965 pb and 2865 pb, respectively) and conserved domain which led to further study both genes.
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[.3.1.Cloning of PHA synthases phaCl and phaC2 of Halomonas sp. SF2003

To better understand the role of each PHA synthase (PhaC1 and PhaC2), their respective genes
were cloned in pPBBRMCS-2 plasmid before expression in mutant strain C. necator H16 PHB* a non
PHA-producing bacterium. Gene phaC1 has been amplified using PhaC1-F and PhaC1-R primers and
phaC2 gene using PhaC2-F and PhaC2-R (See section Il “Techniques de biologie moléculaire” in
Chapter 2 Matériels et Méthodes). PCR allowed amplicons production of approximatively 2000 and
3000 pb, respectively, corresponding to phaCl and phaC2 size (1965 pb and 2865 pb, respectively).
Each amplicon has been digested using Swal and HindIII enzymes before to be cloned in pPBBRMCS-2
plasmid allowing production of pPBBRMCS-2 phaC1l and pPBBRMCS-2 phaC2 plasmids. Both plasmids
have been used for transformation of E. cloni® and E. coli S17-1 cells before transconjugaison with
mutant strain C. necator H16 PHB*, a non PHA-producing strain. Results of control PCR and
sequencing confirm correct insertion and total identity between gene sequences of wild type Halomonas

sp. SF2003 and recombinant C. necator H16 PHB* phaCl or phaC2.
[.3.2.Characterization of PHA production by transformant strains C. necator H16 PHB"
4 phaC1 and C. necator H16 PHB™ phaC2

To evaluate activity of PHA synthases PhaC1 and PhaC2 of Halomonas sp. SF2003, screening
for bacterial growth and PHA production have been performed (See section IV.I “Criblage de sources
de carbon assimilabless” in Matériels et Méthodes section). Likewise, with wild type Halomonas sp.
SF2003, a total of height carbohydrates and twenty-one mix have been tested. Bacterial growth and PHA
production were qualitatively checked using Nile Red agar plates technic with white light and UV-light
evaluation (Figure 4a to 4h and 5a to Sh). Objectives of this part were to evaluate synthesis activity and
to start characterization of PHA synthases PhaCl and PhaC2. This part also allowed to compare

production of wild type and transformant strains.
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Figure 4: Nile Red agar plates screening with C. necator H16 PHB* phaCl using 2% (w/v) of different carbon substrates.
The positive control (Fructose only) is the upper plate on Figure 4a to Figure 4h. a. Control negative, b. Glucose, c. Galactose,
d. Mannose, e. Maltose, f. Melibiose, g. Rhamnose and h. Sucrose. Observations performed under UV-lights with
transillumination.

C. necator H16 PHB™ phaCl is able to exploit all pure carbohydrates and a majority of mix
carbohydrates/acids tested for bacterial growth (Table 5) excepted following mix: glucose —
heptanoic/hexanoic/trans-2-pentenoic acids, galactose — heptanoic/hexanoic/palmitic/trans-2-pentenoic
(data not shown). In comparison, results obtained with C. necator H16 PHB* phaC2 are similar, for
pure carbohydrates and mix, except for mix galactose-palmitic acid for which a growth is recorded.
Some results do not appear clearly positive and have been noted as “+” making interpretation of

substrates use and PHA production difficult.

132

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



Figure 5: Nile Red agar plates screening with C. necator H16 PHB* phaC2 using 2% (w/v) of different carbon substrates.
The positive control (Fructose only) is the upper plate on Figure 5a to Figure 5h. a. Control negative, b. Glucose, c. Galactose,
d. Mannose, e. Maltose, f. Melibiose, g. Rhamnose and h. Sucrose. Observations performed under UV-lights with
transillumination.

PHA production has been detected with both transformant strains demonstrating the success of
cloning experiments and functionalities of both PHA synthase genes, phaCl and phaC2. Screening tests
have allowed the confirmation of correct annotation of phaCl and phaC2 genes and attest to existence
of difference between both PHA synthases of Halomonas sp. SF2003. Indeed, qualitative analysis of
PHA accumulation, by detection of fluorescence under UV-light highlithed several differences between
both transformant strains. Indeed, among all carbon substrates tested only three seem to allow PHA
accumulation in C. necator H16 PHB* phaCl (Fructose, Glucose-dodecanoic/palmitic acid) and nine
for C. necator H16 PHB* phaC2 (Fructose, Mannose, Sucrose, Glucose-dodecanoic/palmitic acids,

Glucose-levulinic/malic acids, Galactose-levulic/malic acids).
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Table 5: Growth and PHA accumulation in transformant strains C. necator H16 PHB* phaC1 and C. necator H16 PHB* phaC2
using different carbon sources.
Legend for growth +/-: Positive/Negative, PHA accumulation P/N: Positive/Negative.

C. necator H16 PHB* C. necator H16 PHB*
phaCl phaC2
PHA PHA

Growth . Growth )
accumulation accumulation

+ +

Carbon source

(D)-Fructose
(D)-Galactose
(D)-Glucose
(D)-Maltose
(D)-Mannose
(D)-Melibiose
(L)-Rhamnose
(D)-Sucrose
Dodecanoic acid
Heptanoic acid
Hexanoic acid
Levulinic acid
Malic acid
Palmitic acid
Trans-2-pentenoic acid - - - -
Dodecanoic acid + - + -
Heptanoic acid - - - -
Hexanoic acid - - - -
Levulinic acid + - +
Malic acid + - +
Palmitic acid - - +
Trans-2-pentenoic acid - - - -
Dodecanoic acid - - - _
Heptanoic acid - - - -
Hexanoic acid - - - -
Levulinic acid - - - _
Malic acid - - - -
Palmitic acid - - - _
Trans-2-pentenoic acid - - - -

+
+

+l+ 4+ 4+ + +++
+l+ 4+ 4+ + + ++

+

Glucose +
+ + + 1o
1 1
+ + + 0o
+ W

Galactose +

Fructose +

These results suggest that synthase PhaCl is less active or more selective than PhaC2. Indeed,
qualitatively, there are more carbon substrates (pure or in mix) that generate a fluorescence under UV-
light when C. necator H16 PHB™ phaC2 is used than C. necator H16 PHB* phaCl. Previous study of
Halomonas sp. SF2003 genome and metabolisms demonstrated several difference between both
synthases '*. Actually PhaC1 and PhaC2 expose an identity of 60-70% and 65-96%, respectively, with
different PHA synthases '>. Results of both studies are in accordance. Even if PhaC2 exposes some
atypical characteristics (size and structure of conserved domains), it seems to be the main PHA synthase

responsible of HA polymerization.
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To confirm this result, production tests must be conducted and new genetic constructions could
be tested. These tests will allow to definitively evaluate the activity of PHA synthases. Moreover, in this
study a pPBBRMCS-2 plasmid with C. necator H16 PHA biosynthesis operon has been used. This
construction, could be responsible, in part, of weak activity of PhaCl. Indeed, it could be possible that
PhaCl specifically requires proteins (PhaC2, PhaA, PhaB, ...) or promoter of Halomonas sp. SF2003
metabolisms to ensure polymer synthesis despite that it has been identified to belong to class I of
synthase (meaning that PhaC are constituted of only one subunit and does not require any additional
protein to be active). To confirm this hypothesis, several different constructions might be designed,
using Halomonas sp. SF2003 promoter and PHA biosynthesis genes simultaneaously, and evaluated for
PHA production %2, Among all the different constructions which could be tested, plasmid harboring
both phaCl and phaC2 genes, together, must be design like it has been done with PHA synthases of
Halomonas sp. O-1'*. This construction will allow to control the influence of each one on the other and
to check if PHA synthase PhaCl requires PhaC2 to be active. It could also be necessary to test activity
of each PHA synthase by designing plasmid harboring also phaA and phaB genes of Halomonas sp.
SF2003, coding for 3-ketoacyl-CoA thiolase (or B-ketothiolase) and Acetoacetyl-CoA reductase,
respectively. Testing different constructions will allow a better understanding of genes activity and to

identify best combination to optimize production.
1.3.3.Polyhydroxyalkanoates production in shake flasks

Results of screening tests demonstrated that several carbohydrates can be used for PHA
production. To evaluate and compare synthesis activity in function of strains and sugars exploited
production tests in flask have been performed (See section IV.2.1 “Production en erlenmeyers (non-
contrdlées)” in Chapter 2 Matériels et Méthodes). In accordance to results of screening tests, and
focusing on PHA synthase activity, only three pure carbohydrates have been tested: glucose, fructose
and galactose, with Halomonas sp. SF2003, C. necator H16, C. necator H16 PHB* phaCl and C.
necator HI16 PHB™ phaC2.

For Halomonas sp. SF2003, glucose was the favorite carbohydrate to produce PHA production
(2.25 g/L) followed by galactose (1.23 g/L.) and then fructose (1.02 g/L) (Table 6). Comparatively C.
necator H16 produces more PHA when fructose is used as main carbon source in medium (2.25 g/L)
rather than glucose (2.05 g/L). Production using galactose cannot be estimated due to low cell dry weight

obtained.
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Table 6: Comparative PHA productions in flasks with glucose, fructose or galactose.
N.D : Not determined.

. Carbon Dry cell weight PHA content

Strain Source (/L) PHA (g/L) (%)
Halomonas sp. SF2003 2.63 2.25 86
C. necator H16 Glucose 2.89 2.05 71

C. necator H16 PHB* phaCl 1.05 0.32 30
C. necator H16 PHB* phaC2 2.63 1.38 52
Halomonas sp. SF2003 2.63 1.02 39
C. necator H16 Fruct 3.16 2.25 71
C. necator H16 PHB™ phaC] ~ + 1UCtOS€ 0.79 0.26 33
C. necator H16 PHB* phaC2 342 1.83 54
Halomonas sp. SF2003 3.16 1.23 39

C. necator H16 Galact 0.79 N.D N.D

C. necator H16 PHB™ phaC] - 2actose 1.06 N.D N.D
C. necator H16 PHB* phaC2 0.79 N.D N.D

Expression of pPBBRMCS-2 phaCl and pBBRMCS-2 phaC?2 plasmids allow PHA accumulation
in mutant strain C. necator H16 PHB* (a non PHA-producing strain), confirming the synthesis activity
of PhaC1 and PhaC2. Similarly to C. necator H16, C. necator H16 PHB* phaC2 uses more efficiently
glucose for PHA production (1.38 g/L) than fructose (1.83 g/L). Interestingly, inverse results are
observed with C. necator H16 PHB* phaC1l which exposed a production of 0.32 g/L with glucose and
0.26 g/L. with fructose. Likewise with C. necator H16, PHA production tests using galactose did not
allow to determine production yield for both C. necator H16 PHB™* phaCl and C. necator H16 PHB*
phaC2.

It was also highlighted that galactose is more adapted for growth of Halomonas sp. SF2003 than
for PHA synthesis since only 39% of PHA content was estimated whereas 86% when glucose was used
(Table 6). With C. necator H16, fructose seems to be more exploited for bacterial growth than for PHA
production, PHA content was the same as in glucose condition (71%). C. necator H16 PHB™ phaCl
showed a stronger growth with galactose, very close to those obtained with glucose, rather than with
fructose. However, PHA content was quite similar using fructose or glucose: 33% and 30%, respectively
(Table 6). Finally, C. necator H16 PHB* phaC2 uses more efficiency fructose for bacterial growth and
PHA production than glucose even if PHA contents are again quite similar (54% for fructose and 52%
for glucose). The results also confirmed that transformant C. necator H16 PHB* phaC2 is a better PHA-
producer than C. necator H16 PHB* phaCl whatever the used carbonaceous substrate. However,
expression of both phaCl or phaC2 genes using pPBBRMCS-2 system did not allow to obtain more
efficient PHA-producers than the wild type strain C. necator H16, suggesting to test different
construction to induce an overproduction. Composition of production medium and production
parameters used for these tests can be responsible in part of the low production yields. Indeed, same

medium and parameters have been used for all the strains. However, Halomonas sp. SF2003 and C.
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necator’s wild and transformant strains do not exhibit same origin and metabolisms. Consequently, new

production medium and different production parameters must be tested.

Discussion

Lipase box-like sequences are highly conserved domain which have been identified to play a
crucial role in elongation of the polymer '® and are identified in several PHA-producing species. In
silico study of PHA synthases allowed to identify two different lipase box-like sequences: Glycine-
Tyrosine-Cysteine-Leucine-Glycine (G-Y-C-L-G) for PhaC1 and Serine-Tyrosine-Cysteine-Isoleucine-
Glycine (S-Y-C-1-G) for PhaC2. Both lipase box-like sequences of Halomonas sp. SF2003 PHA
synthases have a tyrosine, a cysteine and a glycine (Y-S-G) suggesting that these residues can potentially
have a crucial role in catalytic activity of the enzymes. To complete data, structural study of enzymes
exploiting X-ray crystallography and/or molecular biology could be performed to confirm, or not, that
the identified lipase box-like sequences play a key role in synthesis of PHA by Halomonas sp. SF2003.
Alterations/modifications of PHA synthase sequences will lead to change proteins tertiary structures and
potentially synthesis activity. Other studies have already been performed to elucidate tertiary structure
of different PHA synthases and to identify active sites. For example, [lham et al., (2014) have studied
PHA synthases of Halomonas sp. O-1 by performing site-directed mutagenesis on different residues and
studying production of the strain. They determinated that appropriated changes can, positively or
negatively, affect synthesis activity, bacterial growth or molecular weight of polymers. Indeed,
substitution of alanine for Cys329 or Cys331 in Halomonas sp. O-1 or H. elongata DSM 2581 PHA
synthase sequence leads to a total inhibition of PHA synthesis while substituting glycine for serine
impacts polymer molecular weight. These results allowed identification of catalytic sites in enzymes
and to imagine modifications in strain genes to enhance production '*. Studies exploiting X-ray
crystallography will allow to apprehend structure of catalytic site and to confirm the role of each
residues'’. Similar studies have already been performed and reported with different species such as

Chromobacterium sp. USM2 ¢, C. necator ® or Pseudomonas sp. 61-3 %.

Results obtained with Halomonas sp. SF2003 confirmed substrate versatility of this species for
both growth and PHA production. Among tested carbohydrates, positive results have been recorded with
glucose, fructose, galactose, mannose, maltose and sucrose. Interestingly, the higher content of polymer
was achieved using glucose rather than fructose or galactose even if the last one seems to allow a
stronger bacterial growth. Indeed, production cost on pure carbohydrates is still a major lock to a larger
commercialization of PHA and exploitation of co-products are deeply studying. For example,
production of PHA is rarely tested with “pure” galactose but rather using products constituted by itself
such as lactose sources (lactose or cheese whey and milk) or in its polymeric form such as agar in red
algae in order to promote use of various co-products. Indeed, PHA productions have successfully been

66-68

performed with Haloferax mediterranei and Pseudomonas hydrogenovora on whey lactose or with
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Bacillus megaterium ® using acid-treated red algae. Actually, there is an important number of studies
using this group of carbon substrates. However, without more precise analyzes it is difficult to know
which carbohydrates is preferentially used for PHA accumulation. Moreover, the use of these products
in their original forms by bacterial strains is difficult and consequently some pre-treatments (hydrolysis)
are required, leading sometimes to an increase of the cost and time of production 3. Similar experiments
of PHA production have also been performed using (pre-treated) co-products composed of mannose
such as spent coffee ground °, sugar maple hemicellulosic hydrolysate ”' or ensiled grass press juice 7.
Based on results of screening tests performed with Halomonas sp. SF2003, and using mix of
carbohydrates and acids, production tests might be achieved. In fact, mix exposing positive results are
composed by carbohydrates and acids which are easily found in various natural products or by-products.
As described, levulinic acid can be found in seaweed 3 or paper industry co-products ”* ; malic acid, as
a component of fruits and vegetables, is easily found in natural products or agri-food co-products *.
Finally palmitic acid, due to its important representation in vegetal and animal kingdom as well as

component of cooking waste, also represents a co-substrate with high potential >

. To evaluate viability
of exploiting these co-products, screening tests must be performed. Furthermore, previous tests could
also be completed using more or less important different carbohydrates/acids ratio, as performed in
different studies. However, nile red agar plates’s tests are only used as screening tool and must be
completed with production tests to evaluate the impact of each mix or pure carbon substrates on

production yield and polymer composition.

Consequently, additional tests exploiting different by-products derivated of dairy, waste
treatment or agri-food industries might be performed in order to optimize PHA production by
Halomonas sp. SF2003. This kind of production has already been done with different bacterial species,
including Halomonas species, as well as other ones, as described previoulsy. Indeed, Pernicova et al.,
2019, have studied viability of several Halomonas strains to produce PHA from waste cooking oil. They
demonstrated that Halomonas hydrothermalis exposes the highest production yield (0.38 g/L) but also
influence of NaCl concentration on production 74, These results demonstrate that production medium

must be wisely studied and elaborated.

The efficiency of two transformed strains harboring phaC1 and phaC2 genes was estimated and
compared to those of the wide bacteria through lab scale production. Data of this study confirm their
polymerase activity and existence of differences between them including their size, sequences, location
on genome and synthesis activity. Indeed, a stronger synthesis activity has been observed for PHA
synthase PhaC2 with a polymer content reaching up to 54% as compared to 33% for transformant strain
expressing PhaCl. This is in accordance with previous results demonstrating a higher percent of identity
of PhaC2 with PHA synthases of other bacterial species than PhaCl 3. However, both synthase enzymes
cannot induce an increase in PHA production as compared to wild type strain C. necator H16. For a

better understanding of respective activities, a monitoring of bacterial growth and production kinetics
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for each wild type and transformant strains might be performed. Following production of each strains
in different conditions will allow to more precisely understand activity of each strain/PHA synthase and

to adjust more precisely the production step.

Finally, a better characterization of polymerase activity of PhaC1 and PhaC2 can participate to
confirm higher synthesis activity of PhaC2. In addition, these results will potentially allow to design
new constructions, harbouring phaCl and/or phaC2 genes, to increase PHA production by Halomonas

sp. SF2003.

Conclusion

This study has demonstrated the functionality of both PHA synthases, PhaCl and PhaC2,
confirming annotation of Halomonas sp. SF2003 genome performed in our in silico study. Results also
highlighted stronger PHA biosynthesis activity of PHA synthase PhaC2 as compared to PhaCl.
Performed screening tests allowed identification of several carbon substrates, pure carbohydrates or mix
of sugars and acids, potentially usable for PHA production by Halomonas sp. SF2003. Substrate
versatility of this bacterium opens the door for new tests in order to optimize production and also confirm
its high biotechnological potential. Preliminary biosynthesis tests expose a better PHA production using
glucose with Halomonas sp. SF2003 while C. necator wild type and transformant strains preferably
exploit fructose. Additional research, such as kinetics of bacterial growth and PHA production, should

optimize production step.
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Chapter 5
Characterization of the Halomonas sp. SF2003 PHA

production
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Graphical abstract

Several parameters influencing bacterial PHA production must be considered such as carbon
sources, oxygenation, temperature or salinity.... The influence of each one must be studied to optimize
bacterial growth simultaneously to PHA production. Among different available analytical tools to
characterize production depending on selected parameters combination, fluorescence microscopy

monitoring can represent an easy and fast method of real time study.
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Introduction

1

Polyhydroxyalkanoates are biobased and biodegradable polymers ' produced by numerous
microorganisms from various carbon substrates ranging from pure carbohydrates to different by-
products . However, even if they can easily be produced and exposed similar properties to those of
conventional plastics, their production cost is still too high to reasonably consider replacement of usual
plastic materials ®>. Numerous research are conducted to reduce production cost by considering all
production modes and parameters. In fact, the production cost can be impacted at all production steps
ranging from bacterial strains selected to the process. Because PHA features are closely linked to the
used bacterial strain and carbon sources , their selection is under particular attention to tailor-make
polymer 7. Depending on the systems exploited, the production cost can become an insurmountable
brake. A perfect knowledge and management of production parameters are required to optimize
bioprocess and PHA productions. PHA production can be quantified by performing extraction followed
by analysis of production parameters (dry cell weight, PHA concentration and content). But PHA

extraction can sometimes require several days before the acquisition of exploitable results. Quantitative

technics coupled with qualitative technics (i.e microscopy and/or staining) can hence be employed.
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Halomonas sp. SF2003 is a marine bacterium which has already demonstrated its biotechnological
potential 8. Indeed, the strain can grow in front of various conditions/environments and is able to
synthesize polyhydroxyalkanoates (PHA) using various carbon sources 3°. Studies of its genome and its
metabolisms allowed identification of genes related to different metabolisms including PHA
biosynthesis 8. Among them, two PHA synthases (PhaCl and PhaC2) exposing atypical size and
genomic environment have been identified. Results of screening tests for carbon substrates and PHA
batch productions demonstrated activity of both synthases and also highlighted difference between them

in term of PHA yields.

The objectives of this work were to design production bioprocess for each combination of
Halomonas sp. SF2003 and carbon substrates and to confirm the biosynthetic activity of PHA synthases
PhaC1 and PhaC2 in these conditions. Results will enable adaptation and optimization of production
process in order to limit time consumption and production cost. This work will also contribute to the
development of PHA production monitoring method, based on an image analysis method exploiting
confocal laser scanning microscopy (CLSM). This method can be applied for faster monitoring and

characterization of PHA production.
I. Results

I.1. Optimization of PHA production process

I.1.1.Response of Halomonas sp. SF2003 growth in function of carbohydrates

Genome analysis of Halomonas sp. SF2003 revealed the presence of two PHA synthases and
many genes for metabolisms of several carbohydrates, both potentially involved in the ability of the
bacterium to exploit them for growth and PHA production ®. Indeed, among the different tested sugars,
fructose, galactose, glucose, maltose, mannose and sucrose led to qualitatively positive results for PHA
production (See Chapter IV). As previously described, these carbohydrates can be found in different
ratios in by-products which suggests potential feedstocks for PHA production using these products. To
design the most efficient PHA production process and to complete our previous study ®, Halomonas sp.
SF2003 growth kinetic using biomass accumulation medium (Reference 1) complemented with these
different carbohydrates has been performed (See section 1.2 “Cinétique de croissance des souches

bactériennes” in Chapter 2 Matériels et Méthodes).

For all production media, including negative control (meaning a production media without
addition of any supplementary carbon sources), a growth was recorded, confirming the ability of the
bacterium to use them as sole carbon sources (Figure 1). Exponential phases began after 1h and ended
after 5h of growth for all conditions. Then, a slow-down of growth led to the stationary growth phase

which started at around 7-8h for all carbohydrates.
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Figure 1: Halomonas sp. SF2003 growth kinetics as a function of carbohydrates source.

Considering specific growth rates (1) and generation time (G) obtained for each tested sugars
(Table 1), Halomonas sp. SF2003 seems to have a similar use of all of them. Highest specific growth
rate was obtained with maltose (0.591 h!), followed by sucrose (0.536 h''), mannose (0.533 h') and
fructose (0.532 h''). Main differences were observed regarding on the ODsgonm max. Indeed, an ODsoonm
value of 2.50 was recorded for mannose while sucrose allowed to reach 7.35 (Figure 1).

These results also showed that no addition of any supplementary carbon sources (i.e.
carbohydrates, acids, ...) is sufficient to obtain bacterial growth. However, this growth is limited and
complementation of one of the tested carbohydrate extends the growth. Indeed, maximal ODsgonm
reached 1.17 in the negative control whereas it reached a maximum of 7.35 when sucrose was added.
Regarding results, maltose and sucrose allowed a faster growth of Halomonas sp. SF2003. However,
except for mannose, results obtained for all carbohydrates are very close to each other and demonstrated

versatility of Halomonas sp. SF2003 towards various carbon sources.

Table 1: Growth parameter of Halomonas sp. SF2003 using different carbohydrates.

Carbohydrates Specific growth rate (u) (h) Generation time (G) (h)
Fructose 0.532 1.5
Galactose 0.503 1.5
Glucose 0.512 2.0
Maltose 0.591 1.5
Mannose 0.533 1.5
Sucrose 0.536 1.5
Negative control 0.502 2.5

Recorded data give a better framing of Halomonas sp. SF2003 growth phases during biomass
accumulation step and allow to adapt production process for each carbohydrate. Actually, batch process

used for PHA production consists in two main phases: biomass accumulation and PHA biosynthesis.
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The objective of biomass accumulation phase is to obtain the highest cell concentration in order to have
an important quantity of viable cells, in optimal physiologic and metabolic state, producing PHA '°,
Bacteria growth must consequently be studied and controlled to stop biomass accumulation phase at the
most suitable time. The growth kinetic curves obtained for Halomonas sp. SF2003 with the different
tested carbohydrates suggest to stop biomass accumulation between 5h and 10h. However, bacterial
growth monitoring has been performed using shake-flask systems without any control of pH or
oxygenation. Hence, different results may potentially be observed at the bioreactor scale meaning that
some readjustements could be required. To complete these data, PHA production kinetics depending on
the used carbohydrates and growth phase duration could be performed for better process optimization

and biopolymer yields.

The study of Halomonas sp. SF2003 growth has been conducted to complete screening tests.
Recorded results allow a better characterization of bacterial strain growth conditions and optimization
production systems for each carbohydrate. To complete ODso0.m measures, counting of viable cells could

enable to more precise monitoring for systems applied at a superior scale (i.e. SL-bioreactor).
[.1.2.Impact of carbon source and salinity on PHA production by Halomonas sp.
SF2003

Halomonas sp. SF2003 exhibits an interesting versatility in front of carbon substrates as well as
salinity. Consequently, the influence of both parameters on PHA production has been evaluated by
confronting, first, different carbohydrates (Galactose, Fructose and Glucose) as sole carbon substrate

and then different medium salt concentrations (11, 30 and 50 g/L).
1.1.2.1.Carbon sources

We previously showed, using Nile Red agar plates tests, the versatility of Halomonas sp.
SF2003 to use different carbohydrates (fructose, galactose, glucose, mannose, maltose) for its growth
and PHA production (See Chapter IV « PHA production and PHA synthases of halophile bacterium
Halomonas sp. SF2003. »). Nile red agar plate is an experimental set-up designed to quickly screen
conditions allowing bacterial PHA production. However, this technic does not lead to any quantitative
results. Therefore, we quantified PHA production using fructose, galactose and glucose (with a fixed

salinity of 11 g/L) to evaluate the impact of each one on both growth and polymer synthesis.

153

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



Table 2: Comparison of Halomonas sp. SF2003 PHA production depending on carbon sources and/or salinity, n: 3.

Carbon source Salinity (g/L) Dry cell weight (g/L.) PHA (g/L) PHA content (%)

Galactose 11 1.80 £ 0.00 1.02 £0.05 5727
Fructose 11 2.24 +£0.56 0.86 £0.22 39+0.1
Glucose 11 3.00£ 091 1.70 £ 0.56 59 +£19.8

30 4.10 2.31 56
50 1.60 £ 0.08 0.66 = 0.00 41 +£2.3

PHA production tests using fructose, galactose or glucose demonstrate that the highest dry cell
weight (DCW) (3.00 g/L), PHA concentration (1.70 g/L) and content (59%) were obtained with glucose
as the main carbon source (Table 2). In comparison, the use of galactose and fructose allows obtaining
a DCW of only 1.80 and 2.24 g/L., PHA concentrations of 1.02 and 0.86 g/L. and PHA contents of 57%
and 39%, respectively (Table 2).

Coupling results of bacterial growth kinetics and PHA production, under tested parameters,
show that glucose allows a highest PHA production (1.70 g/L) even if Halomonas sp. SF2003 does not
expose its better specific growth rate (0.512 h') and generation time (2.0 h) (Table 1). Production results
with galactose and fructose show a highest PHA content and production using galactose (1.02 g/L and
57%, respectively) rather than fructose (0.86 g/L an 39%, respectively) (Table 2). The results suggest a
better employment of galactose even if bacterial growth kinetics suggest a faster assimilation of fructose

with a specific growth rate of 0.532 h™! against 0.503 h'! with galactose (Figure 1 and Table 1).

Similar results have already been described with other Halomonas species. Indeed, PHA
production of H. halophila and H. salina was better with glucose rather than fructose or galactose. In
the same way, Halomonas sp. SF2003, H. halophila and H. organivorans preferentially use galactose
rather than fructose for polymer synthesis while H. salina exposes opposite tendancy, with very low

PHA concentration (0.17 g/L for fructose and 0.12 g/L for galactose) .

[.1.2.2. Salinity

Previous work on Halomonas sp. SF2003 genome and metabolism has demonstrated the
capacity of the strain to grow at various NaCl concentrations, ranging from 0.5% to 20% (w/v) %. Also,
PHA production using various carbohydrates demonstrated better PHA concentration and content using
glucose. Hence, in order to evaluate if modification of salinity alters PHA biosynthesis, comparative
productions have been conducted using different salt concentrations: 1.1%, 3.0% and 5.0% (w/v), i.e.

11, 30 and 50 g/L respectively, with the same main carbon source: glucose.

As already observed, salinity seems to impact bacterial growth ®. Salt concentration of 30 g/L
allows to obtain the highest DCW (4.10 g/L) simultaneously to the highest PHA concentration (2.31
g/L) (Table 2). Comparatively, salt concentration of 11 g/L allows reaching the highest PHA content
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(59%) but exposes lower DCW and PHA concentration values: 3.00 g/L. and 1.70 g/L, respectively.
Finally, salt concentration of 50 g/L exposes lowest productivity values (PHA concentration and content:
0.66 g/L and 41%, respectively) demonstrating that using a too high salinity with Halomonas sp. SF2003
can inhibit PHA production (Table 2).

High salt concentrations can be considered as a stressful condition potentially responsible for a
stimulation or an inhibition of the PHA biosynthesis. Consequently, influence of salinity on PHA
production is frequently studied with various bacterial species including halophiles. For example, three
salt concentrations have been tested with Bacillus megaterium uyuni S29 and showed that 45 g/L. of
NaCl allows reaching a PHA content higher than 5 or 100 g/L '2. In Halomonas hydrothermalis and H.
neptunia, the highest PHA contents were reached with a salt concentration of 40 g/LL and 60 g/L,
respectively 3. Finally, similar study has been conducted with the haloarchaea Haloferax mediterraneai
and showed that salt concentration of 250 g/L. enhanced PHA content, reaching the highest value, even
if it the salt concentration was not the optimal for growth !*. Results obtained with Halomonas sp.
SF2003 expose the same tendancy and are in accordance with these data demonstrating the crucial role

of salinity on PHA biosynthesis.
[.2. Development of a fluorescence based monitoring method

Nile Red agar plates and extraction methods allow to characterize and study PHA production
depending on employed strain and carbon substrate. The first one is easy and fast to perform but can
only be used as a qualitative tool while extraction gives quantitative data but requires time and could be
arduous to execute. Therefore, a fluorescence based monitoring method has been developed using Syto
9 and Nile Red dyes which stains bacterial cells and PHA granules, respectively (See sections “Cinétique
de croissance des souches bactériennes” and “Microscopie confocale a balayage laser” in Matériels et
Meéthodes chapter). This simple method can be quickly achieved and provides quantitative data. Indeed,
by determination of the coverage percent of both Nile Red and Syto 9 fluorescence, a Nile Red/Syto9
ratio can be calculated providing informations about the production and the PHA content. For a better
understanding of PHA biosynthesis systems of each wild type and transformant strains, PHA production
monitorings have been perfomed exploiting this fluorescence method. Simultaneously, bacterial growth
kinetics have been followed. Tests were conducted using shake flask production systems with
production medium complemented by glucose or fructose since positive results were recorded with both

of them for nile red agar plates screening tests and based on data available in literature *!>1°,

[.2.1.PHA production kinetics monitoring using fluorescence staining

Nile Red is a fluorescent stain used for screening of PHA production and PHA granules
observation '>!""!Y, ' We have used Nile Red in a coupled staining method with Syto 9, which allows

bacterial cell observations. Syto 9 stains in green bacterial cells (Figures 2a.1, 2a.3, 2b, 2¢ and 2d),
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Nile Red stains in red PHA granules and/or cells (Figures 2a.2, 2a.3, 2b, 2¢ and 2d), bacterial cells
stained by both markers appear in yellow (Figures 2a.3, 2b, 2¢ and 2d). During production step,
samplings have been performed every twelve hours and bacterial cells were spread on slides and
observed using confocal laser scanning microscopy (CLSM). CLSM pictures were analysed and
coverage percent of fluorescence emitted from Syto9 (green) and Nile Red (red) on slides were

determined using image processing software ImageJ.

Figure 2: Confocal Laser Scanning Microscopy observations of cells stained by Nile Red and Syto 9.

Legend: a.: Halomonas sp. SF2003, a.1 Detection of Syto9 staining, a.2 Detection of Nile Red staining, a.3 Simultaneous
detection of Syto9 and Nile Red stainings, b. C. necator H16 PHB* phaC2 simultaneous detection of Syto9 and Nile Red
stainings, c. C. necator H16 PHB* phaC1 simultaneous detection of Syto9 and Nile Red stainings and d. C. necator H16 PHB-
4 phaC2 simultaneous detection of Syto9 and Nile Red stainings.

[.2.1.1.PHA Production using fructose

For Halomonas sp. SF2003, red fluorescence increases from Oh to 72h (Figures 3a to 3f) with
a maximal intensity at 72h (Figure 3f). Red fluorescence (Nile Red) appears between 24h and 36h
(Figures 3c and 3d), suggesting a beginning of PHA production and accumulation step around these
times. Coverage percent of the slides are in accordance with these observations and show a maximal
Nile Red/Syto9 ratio reached at 72h (4.90) (Table 3). Data of PHA production kinetics are in accordance
with bacterial growth monitoring which demonstrates an increase of Log(ODsoonm) values until 12h and
a stabilization around 0.80 even if fluctuations are recorded from 12h to the end of the kinetic (Table
3). These results show a PHA production step starting at around 12h with a maximum reached at 72h.
CLSM observations show cell cluster organization (Figure 3d to 3f). Similar observations were
observed during sample preparation step, even after several resuspension steps. It must be notified that

this cell organization could partially disturb image processing and distort fluorescence values.
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Figure 3: Confocal Laser Scanning Microscope observations of PHA production kinetic from Halomonas sp. SF2003 using
fructose as the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 3: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with Halomonas sp. SF2003 using
fructose as the mains carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODsopnm)  Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell

0 0.25 231 1.17 0.51
12 1.06 6.59 3.85 0.58
24 0.81 1.62 0.72 0.44
36 0.81 0.59 0.04 0.07
48 0.78 0.81 0.76 0.93
60 0.85 2.89 8.74 3.02
72 0.78 0.51 2.52 4.90*

Same monitorings have been conducted with C. necator H16, C. necator H16 PHB™* phaCl and
C. necator H16 PHB™ phaC2. Results expose different trends with important variations. For C. necator
H16, fluorescences from both staining appear from 24h and are detected until the end, 72h (Figures 4a
to 4f). The maximal Nile Red/Syto9 ratio value (0.36) is recorded after 24h, before a stabilization around
0.25-0.30 until 72h (Table 4). These results suggest a beginning and maximum of PHA production
starting from 24h. Results of PHA production kinetics are in accordance with bacterial growth kinetics
which exposes an increase of Log(ODsoonm) values from Oh to 24h, before stabilization around 1.20-1.30

until 72h (Table 4).
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Figure 4: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 using fructose as the main
carbon source.

Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 4: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 using fructose as
the mains carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODs9onm) Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell
0 0.29 0.54 0.11 0.20
12 0.99 8.04 0.87 0.11
24 1.08 0.32 0.12 0.36%
36 1.18 1.16 0.15 0.13
48 1.16 0.14 0.04 0.27
60 1.27 1.09 0.24 0.22
72 1.22 0.30 0.10 0.33

Results of C. necator H16 PHB* phaCl are quite similar to those of C. necator H16 with
detection of yellow fluorescence (Syto9 and Nile Red fluorescences) starting from from 24h (Figures
5a to 5f). Then, red fluorescence (Nile Red) is more intensively observed starting from 60h (Figure Se)
suggesting a beginning of PHA production at around 24h. Similarly, Nile Red/Syto9 ratio reaches its
maximum (0.41) at 60h (Table 5), demonstrating a higher PHA production at this time. Bacterial growth
kinetic confirms beginning of PHA production at around 24h. Indeed, Log(ODsoonm) values are
stabilized, around 0.30, from 24h to the end (Table 5) demonstrating that the strain reaches stationary

growth phase from this time.
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Figure 5: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 PHB* phaCl using
fructose as the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 5: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 PHB* phaCl
using fructose as the mains carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODsyonm)  Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell

0 0.00 1.45 0.36 0.25

12 0.00 1.83 0.53 0.29
24 0.30 1.62 0.18 0.11

36 0.18 1.72 0.23 0.13
48 0.00 4.65 1.17 0.25
60 0.30 0.10 0.04 0.41*
72 0.30 0.25 0.10 0.39

CLSM observations obtained with C. necator H16 PHB* phaC2 using fructose show a yellow
fluorescence already at the beginning of the monitoring until the end (72h) (Figures 6a to 6f). Then,
starting from 24h, Nile Red fluorescence appears more intense (Figure 6c¢) until the end of the
monitoring. At the same time, Nile Red/Syto9 ratio values expose a maximum of 1.08 and Log(ODs90am)
values show a stabilization of bacterial growth at 36h. These data suggest a beginning of PHA

production from Oh with a maximum reached at 36h (Table 6).
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Figure 6: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 PHB* phaC2 using
fructose as the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 6: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 PHB* phaC2
using fructose as the main carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODs90nm) Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell

0 0.28 3.98 1.23 0.31

12 0.58 3.16 0.89 0.28
24 0.95 1.04 0.56 0.55

36 1.11 0.14 0.15 1.08*
48 1.11 0.27 0.13 0.47
60 1.23 1.72 0.55 0.32
72 1.20 1.66 0.47 0.28

Differently to CLSM observations of Halomonas sp. SF2003, cell cluster organizations are not
detected. However, C.necator wild type and transformant strain cells look like to change their

morphology by increasing their length (Figures 6c¢ to 6f, 7c to 7e and 8a to 8f).
1.2.1.2. Production using glucose

Similar monitorings have been conducted using production medium complemented with
glucose. For Halomonas sp. SF2003 yellow (Syto9 and Nile Red fluorescences) and red (Nile Red)
fluorescences are already detected on CLSM observations from 12h (Figures 7a to 7f). Then, a steady
increase of Nile Red fluorescence is observed from 24h to 60h before a decrease at 72h (Figures 7¢ to
7f). Same observations can be done exploiting Nile Red/Syto9 ratio values. Indeed, an improvement is
observed from Oh to a maximum of 4.85 at 36h (Table 7) in accordance with bacterial growth results

which show an increase of Log(ODsoonm) values from Oh to 24h followed by a stabilization (Table 7).
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These data suggest a beginning of PHA production by the strain from Oh with a reinforcement from 24h
and a maximum reached at around 36h, once the stationary growth phase is reached. Then, the ratio
decreases and at 72h yellow-orange fluorescences are again observed (Figure 7f).

Similarly to monitoring performed with fructose, cell clusters are observed from 24h to 72h (Figure 7b
to 7f). This cells organization could also be responsible of an image processing disturbed/distorted
resulting in an artefactual rise of fluorescences at 72h. Comparatively to production tests using fructose,
Halomonas sp. SF2003 begins its PHA biosynthesis at around 12h with glucose, based on CLSM

observations (Figure 7b).

R/G; 2.08-

F

R/G:3.71

Figure 7: Confocal Laser Scanning Microscope observations of kinetics tests with Halomonas sp. SF2003 using glucose as
the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 7: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with Halomonas sp. SF2003 using
glucose as the main carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODs9onm) Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell

0 0.30 3.83 0.48 0.13
12 0.81 3.11 3.79 1.22
24 1.10 2.33 4.86 2.08
36 1.10 0.51 2.45 4.85%
48 1.06 1.77 3.36 1.89
60 1.10 0.81 3.01 3.71
72 1.06 2.58 6.25 242

With C. necator H16, red fluorescence (Nile Red) is clearly detected from 60h (Figures 8a to
8f). Maximal Nile Red/Syto9 ratio, 0.28, is recorded at 72h, but all ratios are very similar during the
monitoring. These results show a beginning of PHA production between 24h and 36h (based on CLSM

161

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



observations Figures 8c and 8d), at the same time as stationary growth phase of the strain (Table 8),

and highest PHA production around 60h.

R/G: 0.22

Figure 8: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 using glucose as the main
carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 8: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 using glucose as
the main carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODs90nm) Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell

0 0.30 0.77 0.17 0.22
12 0.93 4.12 0.87 0.21
24 1.09 1.89 0.29 0.16
36 1.16 3.19 0.60 0.19
48 1.19 0.13 0.03 0.26
60 1.22 1.98 0.11 0.05
72 1.18 0.28 0.08 0.28*

Yellow fluorescence (Syto9 and Nile Red fluorescences) is detected from Oh for C. necator H16
PHB* phaCl, but red fluorescence is only clearly observed at 60h (Figures 9a to 9f). Nile red/Syto9
ratio values expose the same trends with maximal values, 0.30 and 0.38, recorded at 60h and 72h,
respectively (Table 9). Similarly to fructose, C. necator H16 PHB* phaCl growth using glucose

exposes the smallest values with a maximal Log(ODsgonm) of 0.48 at 72h.
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R/G: 0.31

Figure 9: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 PHB* phaCl using

glucose as the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 9: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 PHB* phaCl

using glucose as the main carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODs90nm) Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell
0 0.08 5.25 1.74 0.33
12 0.18 241 0.19 0.08
24 0.18 0.19 0.06 0.31
36 0.18 1.04 0.11 0.11
48 0.18 4.08 0.24 0.06
60 0.48 1.05 0.31 0.30
72 0.48 0.42 0.16 0.38*

Finally, data recorded with C. necator H16 PHB™* phaC2 show a yellow fluorescence (Syto9

and Nile Red fluorescences) already from Oh and a red fluorescence from 12h. Then, both fluorescences

increase with a reinforcement of Nile Red fluorescence from 24h (Figures 10a to 10f). Maximal Nile

Red/Syto9 ratio value (0.81) is recorded at 60h but an increase is already recorded from 36h (Table 10).

Similarly, bacterial growth is stabilized in stationary phase from 36h with Log(ODs9onm) values around

1.00 (Table 10) demonstrating beginning of PHA production around 36h.
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R/G:0.81

Figure 10: Confocal Laser Scanning Microscope observations of kinetics tests with C. necator H16 PHB* phaC2 using
glucose as the main carbon source.
Legend: a. Oh, b. 12h, c. 24h, d. 36h, e. 60h and f. 72h.

Table 10: Coverage percent of slides and Nile Red/Syto9 ratio of PHA production kinetic with C. necator H16 PHB* phaC2
using fructose as the main carbon source.
*: Highest Nile Red/Syto9 ratio value.

Time (h) Log(ODsgonm)  Cells (Syto 9) (%) PHA (Nile Red) (%) PHA/Cell
0 0.28 2.27 0.47 0.21
12 0.78 6.47 2.19 0.34
24 0.78 8.21 3.63 0.44
36 0.98 4.87 0.91 0.19
48 1.00 0.50 0.22 0.44
60 1.06 0.10 0.08 0.81*
72 1.04 0.90 0.28 0.31

Observations performed with CLSM with PHA production kinetics using glucose also show a change
of bacteria cell length for C. necator wild type and transformant strains (Figure 8a to 8f, 9a to 9f and

10a to 10f).
[.2.2.PHA production

To complete monitoring tests, PHA production were estimated at the end of PHA production
kinetics, after 72h of production. Using fructose, the highest DCW and PHA concentration were
recorded for C. necator H16 PHB™ phaC2 and C. necator H16 (DCW: 3.16 g/L and 3.42 g/L. and PHA
concentrations: 2.25 g/L and 1.83 g/L). PHA content observed suggests that productivity of C. necator
H16 PHB™* phaC2 is limited. Indeed, even if the strain exposes the second highest PHA concentration,
its PHA content (34%) is quite similar to those of Halomonas sp. SF2003 and C. necator PHB™* phaCl
with 39% and 33%, respectively (Table 11). Finally, despite its capacity to produce PHA, C. necator
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H16 PHB™ phaCl exposes the lowest results for DCW, PHA concentration and content 0.79 g/L of
DCW, 0.26 g/L. of PHA and 33% of PHA content.

Table 11: Comparative PHA productions of kinetic monitoring using fructose and glucose.

. Carbon Dry cell weight PHA content
Strain source (/L) PHA (g/L) (%)

Halomonas sp. SF2003 2.63 1.02 39

C. necator H16 Fructose 3.16 2.25 71

C. necator H16 PHB* phaCl 0.79 0.26 33
C. necator H16 PHB* phaC2 342 1.83 34
Halomonas sp. SF2003 2.63 2.25 86

C. necator H16 Gl 2.89 2.05 71

C. necator H16 PHB™ phaCl ucose 1.05 0.32 30
C. necator H16 PHB* phaC2 2.63 1.38 52

Comparatively, for PHA production tests with glucose highest values were recorded with
Halomonas sp. SF2003 and C. necator H16. For both strains dry cell weight of 2.63 and 2.89 g/L, PHA
concentrations of 2.25 and 2.05 g/L and PHA contents of 86 and 71% are recorded, respectively (Table
11). Production with C. necator H16 PHB™* phaC2 allows reaching similar DCW (2.63 g/L) than those
of Halomonas sp. SF2003. However, PHA concentration (1.38 g/L) and content (52%) are lower (Table
11). These results demonstrate the ability of transformant strain C. necator H16 PHB* phaC2 to produce
PHA and activity of PHA synthase PhaC2. Similarly to the production tests performed with fructose,
here, C. necator H16 PHB™ phaCl still exposes lowest results for DCW (1.05 g/L), PHA concentration
(0.38 g/L) and content (30%).

For Halomonas sp. SF2003 and C. necator H16, results of PHA production tests using both
fructose and glucose are in accordance with Nile Red/Syto9 ratio obtained with the fluorescence based
monitoring method. Indeed, results expose highest Nile Red/Syto9 values and PHA production/content
values for C. necator H16 using fructose while for Halomonas sp. SF2003 highest values are recorded
when glucose is employed. For transformant strains, results of both extraction and fluorescence
monitoring do not expose same trends. However, based on Nile Red/Syto9 ratio values and CLSM
observations, it appears that the quantities of PHA decreased at 72h, potentially caused by the polymer
use or degradation, meaning that extractions performed at this time does not exactly represent the “true”
productivity of the strains. These results demonstrate that PHA metabolism of each strain is different
and suggest to perform extraction at different time, depending on the strain, in order to avoid PHA
degradation and to obtain the highest quantities of polymer. Like previously described with screening
tests (See Chapter IV), transformant strains C. necator H16 PHB* phaCl and C. necator H16 PHB*
phaC2 can produce PHA but less effectively than wild type strains Halomonas sp. SF2003 or C. necator
H16.
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Discussion

The impact of medium composition on Halomonas sp. SF2003 growth and PHA production has
been investigated. Study of sugar use by Halomonas sp. SF2003 allowed to frame optimal growing and
stationary phases depending on each used carbohydrates. Recorded data demonstrated a quite similar
assimilation of fructose, galactose, glucose, maltose, mannose and sucrose by the strain. However,
Halomonas sp. SF2003 seems to assimilate maltose, fructose and mannose faster than the other
carbohydrates. Lowest generation times (1.5 h) are also recorded with these sugars and highest value is
obtained with glucose (2.0 h). At the same time, highest ODsoonm values are not observed with maltose
and fructose but with sucrose (7.35) and galactose (7.00) suggesting a higher cell, cellular debris or
bacterial compounds concentration in culture supernatant. An in silico study could be run to predict
potential production of extracellular compounds of interest, and supernatant composition could also be
determined to confirm synthesis of additional compounds of interest by Halomonas sp. SF2003.
Bacterial growth kinetics showed that stationary phase is reached for all tested carbohydrates at around
7-8h, meaning that biomass accumulation step must be stopped before this time. Indeed, in order to
preserve the highest viable/active cells concentration and for an optimal beginning of PHA production
step, biomass accumulation phase must be stopped before stationary phase. Exploiting these results,
designing and testing of production system could be performed in order to optimize Halomonas sp.
SF2003 PHA production. Previous studies have also reported PHA productions employing fructose,
galactose, glucose, mannose and sucrose with Halomonas species. Indeed, Pernicova et al., have
compared the use of various carbohydrates with H. halophila, H. organivorans and H. salina. Results
highlighted a stronger productivity of H. halophila (4.85 g/L of PHA) and H. organivorans (3.87 g/L)
using sucrose and mannose, respectively ''. Results of this work coupled with data of the literature
demonstrated that an accurate study of bacteria and carbon sources combination participates to optimally

manage and improve PHA production.

At the same time, influence of salinity on Halomonas sp. SF2003 PHA production was
investigated. Indeed, salinity is an external parameter which can stimulate PHA production and
consequently different studies are conducting in order to evaluate the impact of salt concentration on
PHA synthesis **?!. Production tests were conducted with Halomonas sp. SF2003 testing different
salinities. Data from previous work coupled to results obtained in this work here demonstrated that high
salt concentration in medium does not significantly influence bacterial growth but seems to impact PHA
production. Indeed, Halomonas sp. SF2003 can grow at various salt concentrations ranging from 5g/L
to 200 g/L ®. However, comparison of PHA production yields demonstrates a highest productivity for
salinity of 30 g/L. These results are in accordance with data of other studies performed with different
PHA producing strains such as Bacillus megaterium '*, Halomonas hydrothermalis, H. neptunia ", H.
organivorans '' or Haloferax mediterranei '*. Actually, results of these different studies demonstrate

that salinity differently influences strain growth and PHA production. Results report that a too important
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salt concentration can inhibit PHA production !, To deeply study and understand the impact of salinity
on Halomonas sp. SF2003 metabolisms, additional experiments like production tests or transcriptomic
analysis could be run using different salt concentrations. Coupling all data will allow a better

characterization and management of Halomonas sp. SF2003 PHA production.

A coupling method, based ODs9onm monitoring and CLSM observations, was developed for
monitoring and studying PHA production kinetics in real time. Bacteria cells have been stained by Syto9
and PHA granules using Nile Red. The use of fluorescent stains to observe and study PHA granules with
different species is frequently reported in literature. Among the different usable markers, Nile Red

152223 Usually these technics

allows to obtain good observations of PHA granules and consistent results
are mostly exploited to study PHA granules location in cell cytoplasm even if today, they are also used
to elucidate granules formation mechanisms or production kinetics. Recently, Mravec et al., have
developed a confocal fluorescence microscopy analysis with C. necator H16, using DiD® fluorescent

probe and Nile Red 2!.

Results obtained for production tests using both fructose or glucose as main carbon source
expose different trends and important fluctuations depending on bacterial strains tested. However,
recorded data allow the identification of the beginning of PHA production as well as stabilization and/or
fall of cellular density (Table 12). Consequently, to increase production yield and limit decrease of
viable cells concentration, PHA production process could be designed more wisely. Moreover,
adjustement of used production method could allow to improve quantities of produced PHA. Indeed, it
could be conceived to start harvesting as soon as PHA production begins or to change batch process to
fed-batch in order to extend production phase and maintain synthesis activity of cells.

Table 12: Summary of highest Nile Red / Syto9 ratio values and PHA production obtained from fluorescence based monitoring

method.
*: PHA production after 72h of production step

Fructose Glucose
q Highest Highest
Strain Nile Red zC/:’ySyto9 ratio R (L Nile Red %Syto9 ratio R (L
Halomonas sp. SF2003 4.90 (72h) 1.02 4.85 (36h) 2.25
C. necator H16 0.36 (24h) 2.25 0.28 (72h) 2.05
C. necator H16 PHB™ phaCl 0.41 (60h) 0.26 0.38 (72h) 0.32
C. necator H16 PHB* phaC2 1.08 (36h) 1.83 0.81 (60h) 1.38

To complete results and for a better management of PHA synthesis mechanism by each strain,
polymer extraction and production analysis could be performed simultaneously to kinetics monitoring.
By coupling all data, the method developed in this work could allow a better understanding and control

of production process for each bacterial strain, carbon substrates and process combination selected.
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Additionally, important variations in results have been recorded with C. necator wild type and
transformant strains at the same time as changes of cell morphology. During monitoring Syto 9
fluorescence intensity results does not follow the same tendancy as compared to results of ODsoonm.
Some results expose stabilization or small decrease of cellular density/ODsoonm While at the same time
Syto 9 fluorescence seems to increase or to be stabilized. Simultaneously, the morphology of C.
necator’s cells changes with an increase of their length. Previous study using confocal laser scanning
microscope has highlighted an increase of cell length at the same time as volume fraction of PHA
granules under nutrient limitation '®. Modifications of cell morphology and/or organization have also
been reported and described during PHA biosynthesis in other studies '%!%242. Morphology changes
detected on CLSM observations are in accordance with these data and could, partially, be responsible
for important variations recorded with wild type and transformant strains of C. necator. In comparison,
results recorded for Halomonas sp. SF2003 show less variations at the same time as preservation of cells
morphology. However, cell cluster organization is detected. Based on literature and CLSM observations,
it is possible that the increase of cell length interferes with cell counting and fluorescence measurements
meaning that fluorescence recorded does not really reflects evolution of cellular density and PHA
production. Finally, use of Nile Red stain leads to pink PHA films production. To limit this repercussion
extraction and careful purification process must be developed.

Results obtained with this monitoring method suggest that improvements of data processing software
are required in order to take in consideration potential cell’s morphology evolutions. However, this
method represents an interesting additional/alternative quantitative tool allowing a faster monitoring and

understanding of PHA production in real time.

Conclusion

This work has demonstrated the influence of various parameters, such as carbon sources or
salinity, on Halomonas sp. SF2003 growth and PHA production. Results of PHA production idepending
on used carbon sources demonstrate a higher production employing glucose. At the same time, study of
salinity has highlighted an increase in production using salt concentration of 30 g/L rather than 11 or 50
g/L, confirming the crucial role of both these parameters on halophile strain’s metabolisms. Results
obtained in this part allow designing of different biosynthesis systems and open the door to new assays
to compare strain’s productivity depending on used carbohydrates used. PHA production monitoring
method, based on CLSM observation and bacterial growth, began to be developed and tested. Even if
improvements are required, it represents an interesting and rapid tool for studying and monitoring the

PHA production.
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General conclusion and perspectives

The work presented in this study investigates PHA synthesis by the marine bacterium
Halomonas sp. SF2003. The bacterial strain characterization, using biotechnological tools, participates
to understand, manage and optimize PHA production.

Sequencing and exploitation of Halomonas sp. SF2003 genome allowed the identification of
genes and metabolisms related to strain versatility in front of various growth conditions. Bioinformatic
analysis demonstrates the presence of genes coding for various stress-related proteins that are probably
involved in strain resistance against temperature, salinity or toxic compounds. Analysis of carbohydrates
metabolism highlights presence of numerous genes suggesting the strain capability to employ and
convert various carbon substrates into PHA. In addition, in silico analysis of PHA metabolisms identifies
several key genes of PHA biosynthesis exposing atypical organization and characteristics. At the same
time, a close connection between Halomonas sp. SF2003 PHA and fatty acid metabolisms has been
highlighted, demonstrating all the complexicity of strain metabolism. Bioinformatic study, coupled with
phenotypic tests, allows framing of production conditions to test in order to optimize PHA synthesis.

PHA production capacity of the strain depending on used carbon substrates has been evaluated.
Screening tests confirmed results of bioinformatic analysis and demonstrated capacity of Halomonas
sp. SF2003 to use various pure or mix carbohydrates for PHA synthesis. Production of transformant
strains C. necator H16 PHB™ phaCl and C. necator H16 PHB™ phaC2, combined with production tests,
proved the synthesis activy of both PHA synthase PhaCl and PhaC2, and confirmed results of
bioinformatic analysis. Results also showed a preferential employment of glucose by Halomonas sp.
SF2003 for PHA production. However, polymer has also been obtained with fructose and galactose. In
comparison C. necator wild type and transformant strains prefer fructose, rather than glucose. At the
same time, in silico study attests of difference between both synthases demonstrating the necessity to go

further into genetic work of Halomonas sp. SF2003 PHA metabolism.

Adaptative character of the strain was assessed confronting influence of various growth and production
conditions. Even if the strain exposes a versatility of great interest for future industrial exploitation,
results also highlight the importance of a perfect knowledge of growth and PHA production used with
this bacterium in order to optimize at its maxium its biotechnological potential. Production kinetics have
been investigated by the development of a PHA production fluorescence based monitoring method in
real time. Study of kinetics shows difference of PHA biosynthesis depending on tested carbon substrates
and allows the optimization of the bioprocess. First assays of PHA production demonstrate easy and fast
implementation of the designed monitoring method, giving interesting and favorable results,

encouraging us to persist the technic development in order to improve it.
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All results obtained in this study confirm the biotechnological potential of Halomonas sp. SF2003 and
can also be used for designing new production bioprocess with this strains. Combined data obtained
from genome analysis and production tests open the door to a variety of perspectives in order to optimize

Halomonas sp. SF2003 PHA production.

Because of its atypical organization in addition to an incomplete identification of genes related
to Halomonas sp. SF2003 PHA metabolism, investigations must continue. Re-examination of strain’s
genome could allow (i) to identify new genes directly, or not, linked to PHA metabolism and (ii) to
deeply elucidate its organization/functioning. Moreover, because all genes already identified are far
from each other on genome sequence, their transcription should be dependent from different promoters
which are activated by different stimuli. The identification of each promoter could participate to find
activation signals and use them to promote or inhibit the promoter activity. They will also help to identify
factors activating PHA biosynthesis. The production and testing of new different transformant strains,
harbouring different constructions of PHA biosynthesis operon, might also participate to elucidate
influence of each identified genes (phaA, phaB, phaCl, phaC2, phaR, ...) and operon organization on
PHA production. In the long term, production of new transformant strains could allow obtention of PHA
overproduction by Halomonas sp. SF2003 or by other bacterial host. Actually, analysis of Halomonas
sp. SF2003 genome highlights the presence of genes related to various metabolism and in agreement
with versatility of the strain. Indeed, adaptability of Halomonas sp. SF2003 in front of carbon sources
and/or stressfull conditions is, clearly, an attractive feature for its biotechnological exploitation.
Capacity to grow at different temperature or salinity, and in the presence of toxic compounds, using
various carbohydrates enable to imagine its use in harsh environment (i.e., cold/hot, hypersaline or
polluted). Results of genome analysis, screening and PHA production tests identify different carbon
substrates wich can be encountered in various (by-)products. From these knowledges, and starting from
observation that carbon substrates represent up to 50-60% of overall production cost, suggest to evaluate
viability of the employment of such “cheap” and sustainable carbon feedstocks for PHA production.
Among tested carbon substrates exposing positive results for PHA production, several are found in
various (by-)products such as lactose sources (lactose or cheese whey and milk), red algae, spent coffee
ground, sugar maple hemicellulosic hydrolysate, ensiled grass press juice, paper industry co-products
or cooking waste, opening the field to a large number of new productions possibilities. Actually, owing
to the strain’s robustness, many industrial products can be considered as potential carbon substrates.
Some previous experiments, conducted in other projects (data not shown), using Halomonas sp. SF2003
demonstrate the possibility to convert wastewaters from agro-industries, as well as oleic and undecenoic
acids, into PHA confirming the existence of a close relation between PHA and fatty acid metabolisms.
In addition to a potential cost reduction, use of atypical carbon sources could allow to obtain different

homopolymers or heteropolymers (exposing different mol% of monomer). Moreover, the use of unusual
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carbon substrates with terminal carbon rings, side chains, or rings as side chains must also be considered

as a potential way to produce PHA with specific characteristics or to increase production yields.

Impact of salinity on PHA production has been investigated. Results show a highest productivity
of the strain using a salt concentration of 30 g/L.. To complete the study and for a better characterization
of Halomonas sp. SF2003, RNA sequencing analysis are engaged to elucidate impact of salinity on
proteins expression level.

In the case of this study, productions have only been performed by a two-step batch process. Based on
results obtained from screening, production and monitoring tests adjustement of production bioprocess
could be considered. Duration of biomass accumulation and PHA production stages might be adapted
to reach a maximal biomass quantity and to stop the fermentation course before depolymerization of the
PHA stock by the bacteria themselves for carbon reuse. Extension of PHA production stage could also
be tested in a fed-batch bioprocess. The fluorescence method developed to monitor PHA production

would be a helpful tool for this purpose.

Finally, recovery method is another part of future prospects which could be investigated in order
to improve extraction yield and reduce the ecological footprint of the PHA value chain. Currently, PHA
extractions are performed using organic solvents, mainly hot chloroform (as in this work). Different
other extraction methods might be tested as ultra high pressure or osmotic shock as pre-treatment, once

determination of the critical salinity done.

Actually, there are plenty of perspectives, ranging from molecular work to extraction process,
which can be suggested to wholly develop biotechnological potential of Halomonas sp. SF2003. This
wide variety of perspectives demonstrate all the complexicity and all the interest to characterize PHA

production depending on the employed bioprocess.

175

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



176

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



Contributions scientifiques

Articles publiés

Tatiana Thomas, Alexis Bazire, Anne Elain, Stéphane Bruzaud, Complete genome sequence of the
halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological
potential. World J Microbiol Biotechnol (2019) 35: 50.

https://doi.org/10.1007/s11274-019-2627-8

Communication internationale

Tatiana Thomas, Alexis Bazire, Anne Elain, Stéphane Bruzaud, Development of genetic tools for an
optimized production of polyhydroxyalkanoates (PHASs), 9" European Symposium on Biopolymers,

Toulouse, 2016

Tatiana Thomas, Alexis Bazire, Anne Elain, Stéphane Bruzaud, Characterization and exploitation of
the marine bacterium Halomonas sp. SF2003 for optimization of PHA production, 10" European

Symposium on Biopolymers, Straubing (Allemagne), 2019

Communication nationale

Tatiana Thomas, Alexis Bazire, Anne Elain, Stéphane Bruzaud, Characterization and exploitation of
the marine bacterium Halomonas sp. SF2003 for optimization of PHA production. Poymerix, Rennes

(France), 2019

177

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019


https://doi.org/10.1007/s11274-019-2627-8

9 European Symposium on Biopolymers 2017, Toulouse (France)

Development of genetic tools for an optimized production of
polyhydroxyalkanoates (PHAS)

Tatiana Thomas!®, Alexis Bazire?, Anne Elain!, Stéphane Bruzaud!*

nstitut de Recherche Dupuy de Lome, CNRS FRE 3744, Université de Bretagne Sud, Rue de Saint Maudé,
Université de Bretagne Sud, Lorient, France
?Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne-Sud (UBL), Lorient, France
*Email : tatiana.thomas @univ-ubs.fr et stephane.bruzaud @univ-ubs.fr

Halomonas SF 2003, a marine bacterium isolated from sea of Iroise, is a polyhydroxyalkanoates (PHAs)
producer. Productions can reach 1.6 g/L. depending in the culture conditions . Because of their
properties these biopolymers present environmentally and economically interests in order to replace
conventional plastics. The aim of our study is to enhance and to control production of biopolymers using

genetic tools and especially genetic materials of Halomonas SF 2003.

Sequencing of Halomonas SF 2003 allowed study and characterization of its genome. The strain has a
genome of approximatively 4,3kpb with a GC content of 62,5%. Analysis revealed the presence of
resistance genes against bacteriocin, antibiotics (beta-lactams and fluoroquinolons) and toxic
compounds (arsenic, mercury and zinc). Genome annotation enabled also the identification of genes
involved in PHAs production including phaA, phaB, phaZ, etc. Two polyhydroxyalcanoates synthases
were identified and named phaCl and phaC2 with a size of approximatively 2000 pb and 3000 pb,
respectively. Previous studies already reported presence of different polyhydroxyalcanoates synthases
in different bacterial strains **. The second polyhydroxyalcanoates synthase identified in Halomonas SF
2003 and named phaC2 presents particularities including its size and its involvement in biochemical
pathways of aromatic compounds degradation. Using these data, it is possible to study PHAs production

of Halomonas SF 2003 and to use its genes in order to enhance production.

To obtain an overproduction of PHAs we have used two strategies: the first one consisted to overproduce
PHAs in Escherichia coli and the second one to enhance production of PHAs directly in Halomonas SF

2003.

For the first part plasmid pGEM*’ AB(phaCcy), furnished by Pr. Kumar SUDESH’s team (Universiti of
Sains Malaysia, School of Biological Sciences), was used. This plasmid is a high copy number plasmid

composed by phaA and phaB genes from Cupriavidus necator and phaC gene of Chromobacterium sp.
USM2 5.
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In order to enhance production, the plasmid was introduced in Escherichia coli and manipulated to

replace the phaC gene from Chromobacterium by phaCl and/or phaC2 genes from Halomonas SF 2003.

In order to modify production of PHAs by Halomonas SF 2003, pBBRMCSS5 plasmid was used. The
phaA, phaB and phaC genes were cloned separately or together into pPBBRMCSS5 and Halomonas SF
2003 was transformed. These manipulations allowed us to study influence of each gene for PHAs

production by Halomonas SF 2003 but also to control its production of PHAs.

1. Elain, A. et al Valorisation of local agro-industrial processing waters as growth media for
polyhydroxyalkanoates (PHA) production. Ind. Crops Prod. 80, 1-5 (2016).

2. Elain, A. et al. Rapid and qualitative fluorescence-based method for the assessment of PHA production in
marine bacteria during batch culture. World J. Microbiol. Biotechnol. 31, 1555-1563 (2015).

3. Han, J. et al. Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV
copolymer biosyntheses in <i>Haloarcula hispanica<i/>. Saline Syst. 6, 9 (2010).

4. Quelas, J. 1., Mongiardini, E. J., Perez-Gimenez, J., Parisi, G. & Lodeiro, A. R. Analysis of Two
Polyhydroxyalkanoate Synthases in Bradyrhizobium japonicum USDA 110. J. Bacteriol. 195, 3145-3155
(2013).

5. Bhubalan, K. et al. Characterization of the Highly Active Polyhydroxyalkanoate Synthase of Chromobacterium
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Halomonas sp. SF2003 is a halophilic Gram-negative eubacterium isolated from sea of iroise (Brittany,
France) which already demonstrated its capacity to produce and accumulate polyhydroxyalkanoates
(PHA) up to 78% of the cell dry weight 2. PHA are biocompatible and completely biodegradable
bacterial polyesters exposing thermal, mechanical and physicochemical properties close to petroleum

34 Because of their environmental and economic interests, numerous studies are

based plastics
conducting to identify and exploit new bacteria capable of accumulating these biopolymers >°.
Interestingly, Halomonas sp. SF2003 can naturally produce P3-HB, the most studied PHA, and the co-
polymer P3HB-3HV, using different carbon substrates even those originate from industrial wastes. This
strain also exposes a strong versatility to various temperature and salinity conditions making it a good
candidate for a production of PHA at an industrial.

The aim of our work is to study and manage Halomonas sp. SF2003 metabolism, using genetic,

microbiology and bioprocess tools, in order to enhance and to manage production of PHA.

First part of our work consisted to identify and start characterization of the key enzymes involved in the
PHA biosynthesis: PHA synthases, and genes belonging to PHA metabolism of Halomonas sp. SF2003
using bioinformatics tools and MaGe and NCBI databases. Sequencing and annotation of Halomonas
sp. SF2003 genome allowed identification of different genes including two potential PHA synthases
named phaC1l and phaC2 with a size of 1965bp and 2865bp, respectively and distant from each other in
the sequence. Because of the atypical organization and size of genes presumably involved in PHA
biosynthesis, experiments were conducted to isolate and study them. Thus, phaCl and phaC2 genes
were individually cloned in a plasmid pBBRMCS2. Figure 1A exposes new recombinant plasmid
pBBRMCS2 Hindlll phaC1 Swal and Figure 1B new recombinant plasmid pPBBRMCS2 HindIll phaC2

Swal. Recombinant plasmids were then express in Cupriavidus necator H16 PHB* (DSM541), a non-
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producing PHA strain. These manipulations allowed us to study the influence of each gene required for

PHA production by Halomonas sp. SF2003 but also to manage the bioproduction.

|} (1) 7423...7190]
Swal 7115..7122f
IacZ(1) 6223._6290)]
Swal 6215...6222f

pEBRMCS2_HindllI_C2_Swal xdna - 8758 nt

pBBRMCS2_HingllI_C1_Swal.xdna - 7858 ni

1 (Halomo sp. SF2003) 4250..6214]

22113418 1acZ]
Hindll_4244...4243) T o [T [3419...4243_Promoter [C.necator H1G]
4244...4249 Hindll

B.

Figure 1: Plasmid constructrions for recombinant strains of C. necator H16 PHB*, A. pBBRMCS2 HindIII phaCI Swal
and B. pBBRMCS2 HindIII phaC2 Swal.

Second part of our work was focused on screening of optimal carbon substrates to optimize bacterial
growth and PHA production at same time. A selection of several carbohydrates that can be found in
agri-food or marine products was test for PHA production. Screening was conducted using Nile Red
agar plates method 7. Figure 2 exposes some typical results. Assimilation of the carbon sources,
bacterial growth and batch PHA production were recorded to compare the performances of native and
recombinant strains using gas chromatography GCFID and confocal Laser Scanning Microscopy
(CLSM) allowed to determine the structural characteristics of the biopolymers that were synthetized in

each condition.

A. B. C. D.

Figure 2: Nile red agar plates for PHA production screening tests with Halomonas sp. SF2003, A. Control
negative/Glucose 2% (w/v), B. Control negative/Galactose 2% (w/v), C. Control negative/Fructose 2% (w/v) and D.
Control negative/Saccharose 2% (w/v). Observations performed with transillumination.

181

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



1. Elain, A. et al. Rapid and qualitative fluorescence-based method for the assessment of PHA production in
marine bacteria during batch culture. World J. Microbiol. Biotechnol. 31, 1555-1563 (2015).

2. Elain, A. et al. Valorisation of local agro-industrial processing waters as growth media for
polyhydroxyalkanoates (PHA) production. Ind. Crops Prod. 80, 1-5 (2016).

3. Deroiné, M. et al. Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
in distilled water. Polym. Test. 39, 70-78 (2014).

4. Deroiné, M. et al. Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym.
Degrad. Stab. 105, 237-247 (2014).

5. Kourmentza, C. et al. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA)
Production. Bioengineering 4, 55 (2017).

6. Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological
polyesters. Prog. Polym. Sci. 25, 1503—-1555 (2000).

7. Spiekermann, P., Rehm, B. H. A., Kalscheuer, R., Baumeister, D. & Steinbiichel, A. A sensitive, viable-colony
staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and
other lipid storage compounds. Arch. Microbiol. 171, 73-80 (1999).

182

Etude du potentiel biotechnologique de Halomonas sp. SF2003 : application & la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019



10" European Symposium on Biopolymers 2019, Straubing (Allemagne)

Characterization and exploitation of the marine bacterium
Halomonas sp. SF2003 for optimization of PHA production

Tatiana Thomas!, Alexis Bazire?, Anne Elain®, Stéphane Bruzaud!

!Université de Bretagne-Sud, Institut de Recherche Dupuy de Lome, UMR CNRS 6027, Lorient, France
2Université de Bretagne-Sud, Laboratoire de Biotechnologie et Chimie Marines, EA3884, Lorient, France
3Université de Bretagne-Sud, Institut de Recherche Dupuy de Lome, UMR CNRS 6027, Pontivy, France

Halomonas sp. SF2003 is a halophilic Gram-negative eubacterium isolated from the Iroise sea (Brittany,
France) which already demonstrated its capacity to produce and accumulate polyhydroxyalkanoates
(PHA) up to 78% of the cell dry weight . Because of their properties, these biopolymers present
environmentally and economically interests in order to replace conventional plastics **. Consequently
numerous studies are conducting to identify and exploit new bacteria capable of accumulating these
biopolymers >,

Interestingly, Halomonas sp. SF2003 can naturally produce P3-HB and the co-polymer P3HB-3HV,
using different carbon substrates even those originate from industrial wastes. This strain also exposes a
strong versatility to various temperature and salinity conditions making it a good candidate for
biotechnological applications.

The aim of our work is to study and manage Halomonas sp. SF2003 metabolism, using genetic,

microbiology and bioprocess tools, in order to enhance and to manage its production of PHA.

First part of our work consisted to identify and start characterization of the key enzymes involved in the
PHA metabolism of Halomonas sp. SF2003 using bioinformatics tools. Sequencing and annotation of
Halomonas sp. SF2003 genome allowed identification of different genes including two potential PHA
synthases named phaCl and phaC2 with a size of 1965bp and 2865bp, respectively and distant from
each other in the sequence 7. Because of the atypical organization and size of genes presumably involved
in PHA biosynthesis, experiments were conducted to isolate and study them. Thus, phaCI and phaC2
genes were individually cloned in a plasmid pBBRMCS2. Recombinant plasmids were express in
Cupriavidus necator H16 PHB* (DSM541), a non-producing PHA strain to study the influence of each
gene on PHA production by Halomonas sp. SF2003.

Second part of our work was focused on screening of carbon substrates to optimize bacterial growth and
PHA production at same time. A selection of several carbohydrates and mix of carbohydrates/acids was

test for PHA production. Screening was conducted using Nile Red agar plates method '¥. Assimilation
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of the carbon sources, bacterial growth and batch PHA production were recorded to compare the
performances of wild type and recombinant strains using confocal Laser Scanning Microscopy (CLSM)
and gas chromatography GCFID allowed to study and determine characteristics of each

condition/production.
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Résumé : L’amenuisement des ressources
pétrochimiques couplé a la pollution engendrée
par [I'exploitation des plastiques posent de
nombreuses questions et conduisent a un besoin
urgent de solutions alternatives. Les
polyhydroxyalcanoates (PHA) sont des polyméres
qui ont su se démarquer et naturellement
s’imposer comme matériaux de remplacement,
étant donné leurs caractéres a la fois biosourcé et
biodégradable. Leur synthése par un grand
nombre d’organismes procaryotes et eucaryotes, a
partir d’'une large gamme de substrats carbonés,
rend leur production quasi illimitée et conduit a
I'obtention de polyméres aux propriétés allant de
celles dun thermoplastique a un élastomere.
Malgré cela, les colits de production représentent
toujours le principal verrou au développement de
leur utilisation. Parmi les solutions envisagées,
I'exploitation de ressources marines, telles que

les bactéries halophiles, suscite un fort intérét
tant les capacités d’adaptation de ces souches
sont étendues et avantageuses. Halomonas sp.
SF2003 est une souche marine naturellement
productrice de PHA possédant une grande
capacité d’adaptation face a de nombreux
substrats et conditions environnementales.
L’étude et I'optimisation de sa production de PHA
font 'objet de ce travail. Le séquencgage de son
génome a permis I'étude de différents génes et
voies métaboliques confirmant son caractére
adaptatif. Dans le méme temps, linfluence de
différents paramétres sur la production de PHA a
été étudiée. Ces travaux, faisant appel a des
techniques de biologie moléculaire et des
bioprocédés, contribueront au développement du
potentiel  biotechnologique de la souche
Halomonas sp. SF2003.

Study of Halomonas sp. SF2003 biotechnological potential: Application to

PolyHydroxyAlkanoates (PHA) production.

Keywords : Biopolymers, Polyhydroxyalkanoates (PHA), Halophilic bacteria, Halomonas sp.

SF2003, PHA synthases.

Abstract : Depletion of oil ressources coupled to
pollution caused by over-exploitation of plastics
generate a plentiful of issues and lead to an urgent
need for alternatives. PolyHydroxyAlkanoates
(PHA) are biopolymers which have distinguished
and naturally imposed themselves due to their
biosourcing and biodegradability features. Their
synthesis by a wide variety of eukaryotic and
prokaryotic organisms, from various carbon
substrates, makes their production almost
unlimited and allows obtaining polymers exposing
thermoplastic to elastomeric properties properties.
Despite that, production cost is still the main lock
to development of their employment. Among
possibilities  studied, exploitation of marine
ressources, like halophilic bacteria, arouse a
strong interest since adaptability of these strains

is extensive and attractive. Halomonas sp.
SF2003 is a PHA producing marine bacterium
which naturally exposes a considerable versatility
in front of carbon substrates and environmental
conditions. Characterization and optimization of
its PHA production are the main subjects of the
presented study. Genome sequencing and
annotation, in addition to phenotypic tests,
allowed characterization of various genes and
metabolic pathways attesting of the adaptative
strain character. In the same time, impact of
various parameters on Halomonas sp. SF2003
PHA production has been investigated. This

work, employing molecular biology and
bioprocess tools, will contribute to future
development of biotechnological potential of

Halomonas sp. SF2003.
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