
HAL Id: tel-03106105
https://theses.hal.science/tel-03106105

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent modulation in coupled electro-optomechanical
photonic crystal resonators : Floquet dynamics and

chaos
Guilhem Madiot

To cite this version:
Guilhem Madiot. Coherent modulation in coupled electro-optomechanical photonic crystal resonators :
Floquet dynamics and chaos. Optics / Photonic. Université Paris-Saclay, 2020. English. �NNT :
2020UPASP076�. �tel-03106105�

https://theses.hal.science/tel-03106105
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
P
0
7
6

Coherent modulation in coupled
electro-optomechanical

photonic crystal resonators:
Floquet dynamics and chaos

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 572, Ondes et Matière (EDOM)
Spécialité de doctorat: Nanophysique

Unité de recherche: Université Paris-Saclay, CNRS, Centre de
Nanosciences et de Nanotechnologies, 91120, Palaiseau, France

Référent: Faculté des sciences d’Orsay,

Thèse présentée et soutenue à Palaiseau le 10/12/2020, par

Guilhem Madiot

Composition du jury:

Emmanuelle Deleporte Présidente
Professeur, ENS Paris-Saclay
Sébastien Hentz Rapporteur & examinateur
Directeur de recherche, CEA LETI, Grenoble
Kien Phan Huy Rapporteur & examinateur
Maître de conférences, FEMTO-ST, Univ.
Franche Comté
Lukas Novotny Examinateur
Professeur, ETH Zurich

Ariel Levenson Directeur de thèse
Directeur de recherche, C2N / CNRS
Rémy Braive Invité
Maître de conférences, C2N / Univ. de Paris







Remerciements

Je remercie chaleureusement mon encadrant Rémy Braive de m’avoir fait confiance en

2015 pour effectuer un stage au LPN, et de m’avoir renouvelé cette confiance pour pour-
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Un grand merci à Franck Correia qui a débarqué en post-doc à mi-parcours de ma
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rapports amicaux qui l’animent.
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Chapter 1

General introduction

1.1 From single to coupled resonators

A resonator is an oscillating system whose response exhibits an enhancement when pe-

riodically excited close to a particular frequency: the resonant frequency. From the

description of tidal forces involved in the Earth/Sun/Moon system [Garrett, 1972] to nu-

clear magnetic resonance [Rabi et al., 1938], through musical instruments, resonance is

omnipresent in nature. This ubiquity is extremely fruitful when it comes to making

analogies between very different systems. At this point all we need to know about a

resonator is that, in its simplest picture, it can be described with two quantities. The

first is the resonance frequency, or natural frequency, Ω, and the second its quality fac-

tor, or Q-factor, Q. The latter is a dimension-less quantity defined by the ratio of total

energy stored in the system by energy loss per oscillation cycle. Alternatively, one can

write Q = Ω/Γ with Γ the spectral linewidth of the resonance. The Q-factor gives an

important indication on the dissipative aspects of a resonator: the more isolated from

the environment, the higher its Q-factor. If by any physical process two resonators are

capable of influencing each other, they are said to be coupled. In this preliminary dis-

cussion, we specifically focus on the case of a pair of coupled resonators with the same

nature.

1.1.1 Normal modes

The simplest model for coupled resonators uses driven harmonic oscillators acting on

each other via a restoring force. Two well-known examples for which this model applies

are given in fig. 1.1: a pair of masses linked by a spring, or two capacitively coupled RLC

circuits. The schematics feature the subsystem properties: mass and spring constant

in the first system, and resistance, capacitance and inductance in the second. In both

examples the coupled resonators share their intrinsic properties into new resonances

1



Chapter 1. General introduction

Figure 1.1 – Two examples of driven coupled harmonic oscillators: spring-coupled masses

(left) and capacitively coupled RLC circuits (right). Schematics taken from [Satpathy et al.,

2012].

called the normal modes. Thus even if the subsystems have exactly the same natural

frequency, the whole generally displays two distinct resonances with spectral positions

and linewidths given by the subsystems frequencies, dissipation rates and by the coupling

strength. Each normal mode is a mixture, or hybridization, of the original uncoupled

eigenmodes. This phenomenon can be visualized with two simple pendula whose masses

are linked by a spring (see fig. 1.2). Here, the system normal modes correspond to an in-

phase or an out-of-phase motion of the masses, respectively referred as the symmetrical

and the anti-symmetrical modes.

Figure 1.2 – Normal modes of two pendula coupled with a spring.

This model will be the corner stone of our experiments. Expressed in the appropriate

formalism, depending on whether optical or mechanical resonators are used, the eigen-

mode analysis of the systems can always be interpreted with this simple approach for

sufficiently weak driving force. For higher driving force, the system enters into nonlinear

regimes inherent to all physical systems.

1.1.2 Nonlinear resonators

A resonator can display a nonlinear response when strongly excited or when highly inter-

acting with its environment. Among the typical effects produced by nonlinear resonance,
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1.1. From single to coupled resonators

bistability is quite emblematic. This refers to the situation where there exist two sta-

ble states at which the system can find an equilibrium. Bistability is often caused by

a dependence of the resonator’s natural frequency on its response amplitude, as com-

monly described in optics through the Kerr-type nonlinearities [Braginsky et al., 1989] or

equivalently in mechanics and electronics with the Duffing model [Lifshitz and Cross, 2009].

Chaos is another possible dynamical regime emerging in a driven oscillator. It appears

when the oscillation becomes fully unstable and somehow never finds an equilibrium. In

these circumstances, the dynamics is simultaneously deterministic and completely unpre-

dictable beyond a certain temporal horizon. These kind of regimes persist and generalize

when several oscillating systems are coupled. All these aspects are encored in the study

of nonlinear dynamical systems. This large field of mathematics finds applications in all

fields of science. Coupled nonlinear oscillations are studied to understand and, possibly,

to take advantage of their complex dynamics, as testified by the large theoretical corpus

covering the topic (see for example [Koz lowski et al., 1995; Wirkus and Rand, 2002; Kenfack,

2003]).

To experimentally explore these systems, it is necessary to conceive reproducible

resonant systems displaying reasonably fast dynamics. Moreover they must be sufficiently

nonlinear and accurately controllable. All these conditions are fulfilled at the nanometer

scale. Additionally, and although this mays sound obvious, nanoresonators are small.

This implies that they can be assembled in arrays gathering a lot a structures all coupled

to each other. This is a great advantage for the study of collective behaviors, like

synchronization [Acebrón et al., 2005] or pattern formation [Acebrón et al., 2005; Abrams and

Strogatz, 2004]. However, as for any kind of experimental system, the growth of complexity

must be progressive. Thus it seems essential to focus on the coupling mechanisms

dictating the dynamics of a pair of resonators before considering larger arrays.

1.1.3 Other motivations

The use of coupled resonators presents other multiple interests. For example, in the last

years, the study of exceptional points has pointed out the rich potential of coupled linear

resonators whose properties are correctly related [Miri and Alù, 2019]. Such phenomenon

nonetheless requires a fine control of the subsystem properties. Indeed the subsystems

do not necessarily have the exact same intrinsic natural frequencies and Q-factors, which

can lead to many configurations leading to behaviors ranging from subtly to considerably

different. These behaviors spark many classical analogies with quantum effects studied

in atomic physics, like Rabi oscillations [Spreeuw et al., 1990; O’Connell et al., 2010], Fano

resonances [Satpathy et al., 2012] or electromagnetically induced transparency [Liu et al.,

2016].

Interestingly a resonator can be put in interaction with additional degrees of freedom,
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Chapter 1. General introduction

in which information can be stored or modified. For example a mechanical or optical

resonator can be used to mediate the state of a quantum dot [Yeo et al., 2014; Najer

et al., 2019]. Permitting several of these resonators to couple can add another level

of complexity by enabling the quantum information to be coherently transferred. The

strong coupling regime, in which the energy is transferred between the resonators faster

than it is dissipated, is ideal for such operation [Niemczyk et al., 2010; Okamoto et al., 2013;

Pernpeintner et al., 2018].

1.2 Nanomechanical resonators

The mechanical properties of nanometer scale systems are the object of intense research

anchored in the field of nanomechanics. With the technological progresses in micro and

nano-fabrication within the last two decades, it is now possible to realize nanomechanical

resonators sustaining frequencies ranging from the kHz to several tens of GHz, and

displaying very high quality factors. These aspects offer a unique opportunity to study the

motion at the mesoscale, halfway between the classical and quantum worlds. Moreover,

the elastic properties of a material are often intrinsically related to its thermal, optical

and electrical properties. Therefore, nanomechanical resonators are generally useful in

metrology, allowing high sensitivity measurements of motion [Mason et al., 2019], mass

[Chaste et al., 2012], force [Rugar et al., 2004], torque [Wu et al., 2017], and so on. This also

explains the transdisciplinarity of nanomechanics from physics to other fields, like biology

[Tamayo et al., 2013].

1.2.1 Electromechanical systems

The integration of electrostatically actuated mechanical devices has enabled the prolif-

eration of micro and nano electromechanical systems (MEMS and NEMS) in on-board

technologies, mostly for sensing operations. Thus a smartphone typically uses about ten

MEMS enabling continuous accelerometry, magnetometry or gyroscopic motion mea-

surement. More importantly, nanomechanical resonators are subject to many intrinsic

nonlinearities due to their high aspect-ratio. Finally, they are tunable, i.e. there exist

a panel of methods enabling fine control of the resonator properties [Zhang et al., 2015].

Beside this wide field of technological applications, the NEMS are also very useful for the

examination of nonlinear dynamics. They are also easily integrable with magnetomotive,

piezoelectric or electrostatic actuation. These aspects simply permit to realize nonlinear

dynamics experiment in an acceptable timescale, with high accuracy and reproducibility.

The stiffness of a resonator – its ability to resist at an elastic deformation – is very

likely to be nonlinear in a nanomechanical system. This implies that a sufficiently high

displacement is likely to modify the resonance frequency. In consequence, the amplitude
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1.2. Nanomechanical resonators

response of the strongly-driven system can exhibit bistability [Antoni et al., 2012]. While

this kind of effect is generally undesired in the NEMS industry, it also present numerous

interests for sensing [Venstra et al., 2014], memory [Bagheri et al., 2011], or amplification

applications [Chowdhury et al., 2017, 2020], for example.

1.2.2 Optomechanical systems

The momentum carried by light can displace matter. This radiation pressure force can

be exploited, for example, to trap and cool atoms in an optical tweezer [Ashkin, 1970;

Ashkin et al., 1986]. On larger objects however, this effect is mostly negligible, thus a

hiker’s speed is usually not modified whether he or she is facing the sun or not. It is

possible to enhance this effect using optical cavities such that the mechanical eigenmodes

of macroscopic objects can be driven [Dorsel et al., 1983] or cooled [Cohadon et al., 1999].

These two examples rely on a Fabry-Pérot cavity made of two mirrors of which one is

fixed while the other is free to move, as schematized in fig. 1.3. Here, the intracavity field,

fed by a laser, pushes the movable mirror via the radiation pressure force. The frequency

difference between the laser and the cavity resonance – the laser detuning – is modified

if the cavity length is altered which results in a change of the force. Thus with this

simple mechanism, the optical and mechanical resonators are coupled, as they mutually

influence each other. This representation is commonly used to depict an optomechanical

cavity and the associated coupling mechanisms [Aspelmeyer et al., 2014]. Note that we do

not refer an optomechanical cavity as a matter of“coupled resonators”as it involves two

resonators that do not have the same nature and operate in very different frequency

domains. Dynamical backaction occurs in an optomechanical cavity when the photon

lifetime κ−1 in the cavity is of the order of the mechanical oscillation period Ω−1
m [Braginski

and Manukin, 1967]. This condition enables a delay dynamics to take place between the

motion and the intracavity intensity. It can be exploited to coherently remove or add

energy to the mechanical resonator, depending on the laser detuning. In electromagnetic

micro-resonators, the high photon lifetime and the small mode-volume enable highly

nonlinear physics to be studied. In particular, the strong co-localization of photon and

phonon modes permits to reach highly efficient optomechanical interactions. Thus the

quick development of micro-resonators in the 2000’s has brought a huge contribution

to optomechanics as many of the proposed photonic devices are also the center of

phononic modes. We show some typical devices in fig. 1.4: i) a micro-torroidal resonator

[Verhagen et al., 2012] operating in the near-infrared domain; ii) a superconducting LC

circuit operating in the microwave domain [Teufel et al., 2011]; iii) a single-crystal diamond

microdisk where NV color centers quantum states can be manipulated trough the spin-

strain interaction [Mitchell et al., 2016]; iv) a levitated liquid Helium drop enabling ultra-

strong optomechanical coupling regime [Childress et al., 2017] or v) a Bragg micropillar
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Chapter 1. General introduction

Figure 1.3 – schematic of an optomechanical cavity. A laser (orange) injects an optical

cavity formed by two mirror whose one is fixed (left) while the other is movable (right).

The intracavity field (blue) can thus mechanically act of the latter

resonator sustaining 300 GHz phononic modes [Esmann et al., 2019]. These system are

very different but nonetheless share the same feature of enabling a high Q/V1 optical

mode to be strongly confined to the vibrational eigenmodes of the system. It turns out

that photonic crystals are particularly well adapted in this purpose.

Figure 1.4 – Few examples of optomechanical systems: i) [Verhagen et al., 2012], ii) [Teufel

et al., 2011], iii) [Mitchell et al., 2016], iv) [Childress et al., 2017] and v) [Esmann et al., 2019].

1.2.3 Photonic crystals for NOEMS

A photonic crystal (PhC) is a periodic dielectric structure in which the electromagnetic

waves can not propagate at some particular frequency ranges. These forbidden spectral

bands, or photonic band gaps, are extremely useful to control the electromagnetic radi-

ation propagation in materials [Joannopoulos et al., 2008]. Dielectric periodicity along one,

two or three spatial directions are commonly refereed as 1D, 2D and 3D PhC. While the

latter case remains barely studied due to fabrication constraints, 1D and 2D PhC are

nowadays commonly used for a large panel of applications including photonic waveguides

1Q/V: Q-factor to mode volume ratio
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[Johnson et al., 2000], optical fibers [Russell, 2003], microcavities [Vahala, 2003] and mirrors

[Lousse et al., 2004]. The latter two items are particularly interesting for the following

discussion.

Suspended photonic crystals use the total internal reflexion along at least one dimen-

sion (two for the nanobeams) in order to confine light. The high index contrast between

the material and the surrounding air guarantees the spatial confinement over this axis,

the other two being imposed by the photonic crystal. This configuration is particularly

useful for realizing NOEMS devices as the suspension introduce the needed mechanical

degree of freedom. One strategy for realizing PhC microcavities consist in the insertion

of defects in a well defined PhC structure. The crystal must be designed such that the

desired resonance frequency lies in the photonic band gap. Then, by artificially inserting

a defect in the crystal definition, one locally allows the light to propagate in the material

at a frequency originally forbidden. By engineering the photonic crystal design as well as

the defect, it possible to create extremely localized photonic modes showing high Q/V

ratio. This strong confinement is at origin of many nonlinear light-matter interactions,

including radiation pressure forces used for cavity optomechanics experiments.

Figure 1.5 – Optomechanics systems using specifically photonic crystal microcavities i)

[Chan et al., 2012a], ii) [Ghorbel et al., 2019], iii) [Navarro-Urrios et al., 2014], iv) [Ren et al., 2020]

and v) [Safavi-Naeini et al., 2010]. vi) Adopted design for the following study.

Among the very rich literature dealing with photonic crystal optomechanics, we show

few designs in fig. 1.5. In 1D photonic crystal nanobeams, the optical field is confined

by total internal reflexion along two directions. The defect can be introduced via the

apodization of the design alone the third direction. This is consist in smoothly changing

the hole shapes, the crystal spacing or the hole sizes towards the center of the micro-

cavity. Respective examples are shown in i) a silicon nitride nanobeam mechanically

isolated by a phononic crystal shield [Chan et al., 2012a]; ii) a GHz piezoelectric nanobeam

resonator showing low phase noise self-sustained oscillations regime [Ghorbel et al., 2019];

iii) a phoXonic crystal nanobeam [Navarro-Urrios et al., 2014]. This novel approach con-

sists in gathering the concept of photonic crystal and phononic crystal in a same device.

The phoXonic crystals can trap phonons and photons in a very small volume, such that
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the electromagnetic field and mechanical distributions efficiently overlap. The 2D pho-

tonic crystals are less commonly used in optomechanics experiments. Two examples are

shown here with iv) a 2D crystal combining photonic and phononic bandgaps thanks to

the snowflake lattice [Ren et al., 2020], v) a high-optical Q optomechanical cavity using a

triangular lattice of holes [Safavi-Naeini et al., 2010], vi) L3 defect cavities used in hybrid

optomechanical devices [Gavartin et al., 2011; Tsvirkun et al., 2015].

Figure 1.6 – Optomechanics with suspended photonic crystal reflectors: i) [Yang et al.,

2015]; ii) [Stambaugh et al., 2015]; iii) [Norte et al., 2016] and iv) [Antoni et al., 2011]

Photonic crystals can also be used for the realization of highly reflective micro-mirrors.

Suspended membranes equipped with a 2D photonic crystal fill both mechanical and

optical requirements for achieving optomechanical and electromechanical experiments.

For example in fig. 1.6 we show examples where suspended photonic crystal membranes

are used for building i) an optomechanical laser [Yang et al., 2015], ii) a“membrane-in-the-

middle” experiment [Stambaugh et al., 2015] or iii) achieving optomechanical cooling of a

trampoline resonator [Norte et al., 2016]. iv) An engineered square lattice of holes enables

both out-of-plane reflectivity enhancement – the surface is structured to act as a mirror

in a specific spectral range – and mass reduction of the membrane [Antoni et al., 2011;

Makles et al., 2015].

1.2.4 Coupled nanoresonators in the literature

This is a large topic, here we show several examples of experimental realizations in

which resonators are coupled, for either applicative or fundamental research purposes

in the frame of NOEMS. In the optical domain, coupling is usually achieved using the

exponentially decaying intensity field leaking off the resonators, or evanescent field. in

fig. 1.7a, we show i) two waveguide-coupled enclosed micro-ring resonators enabling

optical filtering operations [Hryniewicz et al., 2000]; ii) two 1D PhC nanobeams separated

by a thin air-gap [Deotare et al., 2009]; and iii) A 2D photonic crystal molecule made of two

engineered defect cavities for coupled nanolasers investigation [Hamel et al., 2015]. The
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last example involves iv) three to five coupled micro-disks enabling the synchronization

of micromechanical oscillators [Zhang et al., 2012].

Figure 1.7 – Few examples of coupled optical cavities a.i) [Hryniewicz et al., 2000], ii)

[Deotare et al., 2009], iii) [Hamel et al., 2015] or coupled mechanical resonators b.i) [Shim

et al., 2007], ii) [Karabalin et al., 2009], iii) [Eichler et al., 2012] , iv) [Doster et al., 2019] and v)

[Colombano et al., 2019]

In the mechanical domain, there also several realizations of coupled nanoresonators.

Few examples are show in fig. 1.7b. The most common approach consists in coupling

suspended nanobeams, either using i) a physical junction [Shim et al., 2007] or ii) strain

coupling at the clamping regions [Karabalin et al., 2009]. Under certain condition it is

also possible to perform internal mode coupling within a unique resonator. For example

in iii) two eigenmodes belonging to the same carbon nanotube interact via internal

nonlinearities [Eichler et al., 2012]. Internal coupling can also be caused by internal strain

[Faust et al., 2012]. Strain coupling can be used in other geometries such as iv) nano-

pillars [Doster et al., 2019]. Finally, we show v) two mechanically coupled photonic crystal

nanobeams [Colombano et al., 2019]. The engineering mechanical coupling permits two

optomechanical cavities to synchronize. Here we exclusively showed situations where the

coupling is caused by purposely connecting two nanomechanical systems.

Ultimately in [Lin et al., 2010] the concepts of mechanical and optical coupling are

gathered on the same structure between two optomechanical cells, enabling profound

analogies with atomic physics. More generally, bi-dimensional optomechanical crystals

are structures combining phononic and photonic band gaps to manipulate a large number

of optomechanical degrees of freedom [Safavi-Naeini and Painter, 2010].
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1.3 Our systems of study

In this thesis, we use coupled optomechanical or electromechanical resonators in the

study of nonlinear dynamical regimes. We focus on suspended bi-dimensional photonic

crystal rectangular membranes, in line with previous doctoral researches focusing either

on optomechanics [Tsvirkun, 2015] and on electromechanics [Chowdhury, 2016]. With the

novel design adopted in each case, coupling is obtained respectively in the optical domain

or in the mechanical domain.

1.3.1 Design

Figure 1.8 – Designs of a) the optomechanical and b) of the electromechanical integrated

platforms.

To be more concrete, the first system consists in an hybrid optomechanical system

made of a suspended InP nano-membrane with an integrated SOI waveguide underneath.

Here we propose to use photonic crystal molecules instead of a single defect-cavity, in

order to read-out the Brownian motion of the membrane (see fig. 1.8a). Here the

concept of coupled resonator is thus introduced in the optical domain, between at least

two micro-resonators. The system is probed by injecting light at the waveguide input

and analyzing the waveguide transmission. The circulating field evanescently couples

to the defect cavities such that mechanical noise, optomechanically transduced in the

optics, can be measured.

The second system is based on a very similar nano-mechanical resonator. However,

the InP nano-membrane is now electro-capacitively driven by a pair of gold interdigitated

electrodes on which a voltage is applied. In opposition with first system, the motion is

now resonantly driven. Thus it reaches much higher amplitudes, up to a nonlinear regime.

Here we want to duplicate the system and add a junction between the resonators (see
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fig. 1.8b). The coupling therefore operates in the mechanical regime. The mechanical

motion is accessed by optomechanically probing the Fabry-Pérot cavity defined between

the substrate and the photonic crystal membrane (see fig. 1.6 image iv.).

Beside numerous conceptual similarities, including in their design and fabrication

developments, these systems rely on distinct physical processes, which is why they are

mostly treated independently in this manuscript.

1.3.2 Clean-room fabrication process

The fabrication of our nano integrated platforms is described in this section. The elec-

tromechanical (EM) and the optomechanical (OM) platforms are based on the same

process. When necessary, the specifications of one design will be pointed out. The

entire process can be summarized in three important steps : the BCB heterogeneous

bonding, the electron-beam lithography of the photonic crystal and the InP etching

using ICP2 technique.

1.3.2.1 Choice of indium Phosphide

Indium phosphide is a III-V semiconductor. This material is commonly used for the

fabrication of integrated telecom-wavelength active photonic devices, taking advantage

of its direct band-gap for embedding quantum wells or quantum dots in the InP layer.

Already used for the realization of photonic crystal nanolasers in our clean-room facilities

[Halioua et al., 2010; Marconi et al., 2016], this material was chosen for the conception of

optomechanical photonic crystal membranes regarding the well mastered technological

aspects involving this material. In the optomechanical experiments, we actually take

benefits from an InGaAs quantum dots layer for technical purposes, like the optical

fiber alignment procedure. Although we do not investigate this aspect in the following

work, the quantum dots can also be at the center of interesting dynamics involving the

optomechanical aspects of our system [Tsvirkun et al., 2016].

1.3.2.2 Improvements of the clean room process

The optimization of most of the stages in the following process was realized during the

previous PhD projects in our group. Although the general picture stays unchanged, the

process has been consequently improved by combining two e-beam lithography steps

into a single one. The photonic crystal (PhC) pattern was indeed defined in a first place

using a PMMA positive resist. This implied to transfer the PhC pattern to an additional

SiN sacrificial layer. Then, the PhC pattern was transferred to the III-V layer using ICP

etching. A second e-beam lithography was achieved to define the mechanical structures

2ICP : Inductively Coupled Plasma
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followed by a second ICP etching. Gathering these two step offers several advantages.

First, because the PhC and the mechanical support are defined at one, any misalignment

of these elements is rejected because only one e-beam lithography alignment procedure

is now necessary. The current design is also time saving and therefore less expensive.

Furthermore, the structures release was obtained using wet chemical under-etching

combined with critical point drying technique. We have optimized a dry etching tech-

nique using an isotropic plasma allowing to overcome the critical step of suspended

structure in liquid medium.

1.3.2.3 IDEs fabrication

Figure 1.9 – fabrication of the gold interdigitated electrodes

The main difference between the OM and EM fabrication processes is the platforms’

basis. The SOI waveguides used for the optical access of the OM cavities are designed

and fabricated by LETI. However, the interdigitated electrodes (IDEs) that we require

for the coupled NEMS actuation are designed and fabricated in our group. The IDEs

process (see fig. 1.9) relies on an electron beam lithography of a PMMA positive resist.

The silicon substrate is preliminary cleaned with acetone in an ultrasound bath. A few

microns thin SiO2 layer is deposited by PECVD3 to electrically isolate the IDEs from the

substrate. A A7-PMMA positive resist is spin coated on the chip and insolated with the

electron beam. The mask is generated with a 1 nm resolution, which is enough given the

mask requirements. Indeed the minimum separation between the pair of IDEs is 1 µm.

The insolated resist is chemically removed in a MIBK/IPA4 (1:3) solution. The remaining

resist that might have stayed in the tight area, typically at the IDEs regions, is removed

in a 02 plasma. The chip surface is metallized with 20 nm of titanium and 200 nm of

Gold. The titanium allows a better adherence of the electrodes on the SiO2 surface.

Finally, the remaining (not insolated) PMMA resist is removed with thrichloroethylene.

3PECVD : Plasma-Enhanced Chemical Vapor Deposition
4IPA : Isopropanol
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1.3.2.4 Heterogeneous integration: InP membrane on SOI

The epitaxial InP layer transfer onto the SOI waveguides circuit is an essential part

of the process. Both EM and OM devices require a fine control of the gap between

the InP membrane and the substrate. In the first case, this gap directly tunes the

electromechanical coupling, i.e. the efficiency of the electro-capacitive force exerted by

the IDEs of the membranes. In the second case, the external coupling between the

defect cavities and the waveguide is extremely dependent on this distance, making its

control even more critical. One NEMS chip contains many structure, about 10 systems

for the NEMS samples, and up to 320 for the SOI waveguides based OM systems. These

structures are spread out over basically 1 cm2. It is therefore necessary for the bonded

III-V substrate to be perfectly parallel to the bottom plane.

The III-V substrate consists in an epitaxial InP layer (265 nm) grown on top of an

thin etch-stop InGaAs layer (1 µm). This last is encapsuled between the layer of interest

and a thick InP substrate. In order to allow suspension of the InP structures, and to

control the air gap depth, a SiN sacrificial layer is deposited by PECVD.

Figure 1.10 – III-V BDB bonding on top of SOI waveguides

The heterogeneous integration of our III-V substrate on top of the SOI waveg-

uides can be achieved by employing divinylsiloxane-disbenzocyclobutene (DVS-BCB) (see

fig. 1.10). Diluted in mesitylene, this polymer provides an adhesive that matches with

our high degree of planarization condition. It is also convenient for its high resistance

to chemical/physical etchings that will be performed in the next steps of the process.

Finally, DVS-BCB is transparent in the telecommunication wavelengths, which is essen-

tial for the SOI waveguides refractive indexes contrast requirements. The solution of

BCB-T1100 (4:3) is spin coated on the SOI chip and annealed at 80oC.
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The III-V substrate is carefully positioned on the region of in interest of the SOI. The

whole is placed in the bonder, between the bottom metallic plate and a top plexiglass

press. After the vacuum is obtained in the machine, the sample is brought to 320oC

for the BCB to melt. Then a 250 mbar/cm2 force is applied on the chip for about two

hours. Finally, the temperature and pressure are both slowly ramped back to ambient

conditions. After the bonding, the BCB layer is as small as 30 nm. This value should

be added to the SiN layer thickness in order to obtain the air gap height.

The III-V substrate is removed by HCl chemical etching. The InP crystalline planes

can be anisotropically etched by using a HCl/H3PO4 (3:1) solution. Eventually, this can

be helped by using convective agitation of the solution. It takes approximately 2h30 for

the full substrate etching to be done. Once the InP substrate is removed, the etch-stop

InGaAs layer is etched with a H2SO4/H2O2/H2O (3:1:1) solution.

1.3.2.5 Photonic crystal drawing

The e-beam lithography of the mechanical resonators is done with hydrogen silsesquiox-

ane (HSQ) as a negative resist. For the resist adherence on the InP surface to be

improved, a 5 nm thick SiO2 layer is deposited with PECVD. The sample is thermalized

at 160◦C before the spin coating. The HSQ XR-1541 6% resist is spin-coated on the

sample. The obtained HSQ film thickness is theoretically of the order of 100 nm after

annealing.

Figure 1.11 – Single e-beam lithography step using negative HSQ resist

The quality of the photonic crystal is critical for the photonic properties. The cylin-

drical holes are treated by the lithograph as a serie of successive rings. Another crucial

point is the alignment of the structure with either the waveguides or the electrodes. A

resolution of about 40 nm is possible thanks to markers previously drawn on the sample.

Once aligned, the sample is exposed to the electron beam. A solution of diluted AZ400K
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(1:4) is used for the revelation. The surface is observed with a SEM5 to check the PhC

holes quality and the alignment.

The HSQ mask is transferred to InP by ICP etching (see fig. 1.12). This step is

achieved with a 600 W HBr/O2/He (8/0.4/40) plasma. Here again, we ensure the

quality of the mask transfer by observing the sample in the SEM. The remaining HSQ

and SiO2 is removed by chemical etching into a 10% AF solution for 2 minutes. This

etching time is critical since a longer time might allow the AF solution to etch the SiN

layer and therefore initiate the under-etching of the mechanical structures.

Figure 1.12 – InP etching using ICP and dry under-etching

1.3.2.6 Membrane release

The final clean-room process to be achieved is the release of the micro membranes. The

very short air-gap (≈ 300 nm) under the micro-membranes leads to important surface

effects during the evaporation of any liquid phase surrounding the mechanical system.

Ambient conditions evaporation would lead the membranes to be brought to the un-

derneath plane and sticked to it by van der Waals interactions. To overcome this and

as discussed above, the previous samples were submitted to a 10% AF solution for 15

minutes in order to remove the SiO2/HSQ layers and to underetch the mechanical mem-

branes. The chip was transferred into an IPA solution and then placed in a supercritical

dryer. A dry underetching technique has been preferred for this work. We use a SF6/Ar

(50 sccm:10 sccm) plasma generated at 500W. At this point, the mechanical structures

must be underetched and the clean room process is ended. For each system of study, the

final configuration is shown with a schematic on figs. 1.13a and 1.13b with an example

of colorized SEM image.

5SEM : Scanning Electron Microscope
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Figure 1.13 – Colorized SEM images a) Suspended PhC molecules with two defect

cavities (blue) and integrated SOI waveguide (red) b) Pair of suspended PhC membranes

mechanically coupled with a rectangular junction (blue) and underneath independent pair

of IDEs (yellow).

1.3.3 Manuscript organization

The experiments realized on the fabricated devices are detailed in the following five

chapters. They are embedded in two parts, one focusing on the optomechanical photonic

molecule platform (part I), the other being dedicated to the coupled electromechanical

membranes system (part II).

The photonic aspects of the optomechanical platform are described in chapter 2. On

top of the details concerning the photonic crystal design, we provide a model for the opti-

cal modes description based on Coupled Mode Theory (CMT). The integrated waveguide

transmission spectrum is theoretically predicted as a function of the system parameters.

The different coupling geometrical configurations are discussed with regards to the exper-

imental results. The major nonlinearity arising in the system is the thermo-optic effect is

also described theoretically and experimentally in this chapter. The mechanical aspects

of the system are discussed in chapter 3. We first focus on the mechanical eigenmodes of

the structure. The experimental observation of the mechanical noise spectra compared

with the FDTD simulations performed on the structure. The optomechanical interac-

tion, which permits this characterization, is discussed via two different approaches. The

first uses a very simplistic model assuming purely dispersive optomechanical processes

in the system, thus enabling the single photon optomechanical coupling strength to be

measured. Secondly, we model in a more reasonable way the system by introducing the

dissipative mechanisms through which the mechanical noise in imprinted in the optics.

This way the role for the different contribution can be estimated experimentally. Finally
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a toy-model is introduce to account for the thermo-mechanics effects that manifests

via a frequency shift of the mechanical modes when the optical modes are resonantly

injected. All the optomechanical aspects treated in this chapter show significant dis-

crepancies depending on the probed optical mode. The third and last chapter on this

first part treats the nonlinear dynamics experiments performed on this system. Using

a periodic modulation of the input laser, we observe Floquet dynamics revealed by the

emergence of mechanical sidebands in the noise spectrum. These sidebands becomes

more ample and tend to desymmetrize when the input power is increased. Using a the-

oretical model developed by our collaborators at University of Malta, Karl Pelka and

André Xuereb, the phenomenon is understood as a non-trivial multi-timescales dynamics

involving the mechanical resonator and a thermo-optic nonlinear photonic mode. In the

last experiment, we propose to demonstrate vibrational resonance amplification using

the bistability generated by such thermo-optic resonator.

The structure of the second part is comparable to the first. We start by describing

fully the system of interest design in chapter 5. This includes the mechanical resonators

but also the electro-capacitive actuation and the optomechanical readout description.

The theoretical model starts with a pair of driven-coupled-damped harmonic oscillators.

The important notions are added to the discussion when needed. The experimental

characterization lingers on the measurement of the mechanical properties: frequencies,

damping rates and coupling. The latter can be measured by crossing the natural frequen-

cies of the resonators, which we attempt electro-statically and thermo-mechanically. The

displacement and force calibrations of the system are performed on a particular device

that we re-use exclusively in the nonlinear dynamics experiment. The use of stronger

drive leads to mechanical saturation lead by a shift of the mechanical frequency. This

nonlinear effect is the cornerstone of this last experimental chapter (chapter 6). Using

the Duffing model, that we adapt to suit the coupled resonators, the device is carefully

characterized and calibrated in its nonlinear regime. The use of periodic low-frequency

modulation of the applied force, we observe a period-doubling cascade route-to-chaos

dynamics, in good agreement with the model. The study is realized with the use of

adapted tools for the data analysis. In particular, the employment of bifurcation di-

agrams and the numerical computations of the largest Lyapunov exponent permits to

drive these conclusions. The investigation is mainly led via the use of two experimental

buttons which are the modulation amplitude and the modulation frequency. This second

parameter interestingly reveals the origin of the dynamics to lie in the resonator dissi-

pation rate, which we verify by tuning the pressure of the vacuum chamber, in which

the sample is placed. Using a two-drive actuation scheme, the two normal modes of the

systems are simultaneously activated. We show, still with help of our Duffing model,

that the modes are actually nonlinearly coupled to each other. This orthogonality break-

ing concretely permits the synchronization of the normal modes amplitude all along the
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bifurcation structure. In the chaotic regime, we attentively describe the imperfect phase

synchronization of the normal modes via a statistical approach. The final experiment

consists in an attempt to characterize the randomness of the binary sequences that one

can generate from a chaotic time trace. The details as well the key-aspects of this

protocol are examined.

We finally summarize these results and conclude in chapter 7. We also give few per-

spective that seem interesting with regards to their potential. Supplemental information

are shown in the appendix section. Each part ends with a table summarizing all the key

notations involved.
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Part I

Optomechanics with photonic crystal

molecules
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Hybrid integrated optomechanical platform

The hybrid integrated op-

tomechanical platform is studied

in this first part. We will first fo-

cus on the optical properties of

the system in chapter 2. This

includes the design of the 2D

photonic crystal molecules, made

by arranging several defect cavi-

ties in clusters allowing them to

evanescently couple. The addi-

tion of the integrated waveguide

to the system permits to drive these localized optical modes which can be modeled

though the coupled mode theory. Several geometries are then experimentally observed

and discussed. Finally we focus on the thermo-optic nonlinearity which we observe to be

the dominating nonlinear effect in this system. In chapter 3 the mechanical properties are

investigated via the optomechanical interactions. The simulated and experimental me-

chanical frequencies are compared. The vacuum optomechanical coupling is estimated

for different coupled optical/mechanical mode using a phase-modulation technique. This

discussion is deepened to an evaluation of the dispersive and dissipative contributions to

the optomechanical coupling. This is possible by scanning the optical resonance while

measuring the mechanical mode, which goes with a shift of the mechanical frequency.

This shift is discussed using a thermo-mechanics toy-model.

The nonlinear dynamics resulting from the modulation of the input laser field is studied

in chapter 4. We experimentally demonstrate how such excitation leads to the transfer

of the modulation sidebands from the optical domain to the mechanical domain. The

number of sidebands can be increased by driving the system in a thermo-optic nonlin-

ear regime. These unbalanced sidebands amplitudes are sustained with a theoretical

framework encompassing these different aspects, namely the optomechanical interac-

tions and the thermo-optic effect. The latter allows to the reach optical bistabilities that

are imprinted into the mechanical resonator frequencies through the thermo-mechanic

process. Relying on this, we use the mechanical frequency for the characterization of the

bistability in preparation of an experiment of vibrational resonance. In this process, a

weak-amplitude low-frequency square signal is amplified using a high frequency periodic

signal.



Chapter 2

Nanophotonic platform description

In this chapter, we describe the optical properties of the integrated platform. We in-

troduce different configurations for two defect-cavities to couple within a suspended

photonic-crystal (PhC). We give a theoretical background for the description of cou-

pled cavities accessed via a waveguide through the coupled mode theory. The photonic

molecules are then experimentally characterized. Finally we give a description of the

thermo-optic effect which is the dominant nonlinear process standing in this system.

2.1 Photonic platform design

Most of the optimization for the photonic crystal geometry is learned from previous

research in the lab [Tsvirkun, 2015]. The key-elements are given at first, followed by an

extension towards photonic molecules made of several defect cavities enclosed in the

same crystal.

2.1.1 Single L3-defect cavity

The periodic arrangement of the refractive index in a dielectric material leads to a band

structure of the material dispersion diagram. In particular this concept can be exploited

for manipulating the light at the nanoscale. A 2D photonic crystal (PhC) corresponds

to a periodicity over two spatial directions while the dimension of the material in the 3rd

direction is reduced below the optical wavelength thus allowing total internal reflection

in the membrane. The latter is made of a 260 nm thick indium phosphide (InP) layer

with refractive n0 = 3.16 [Pettit and Turner, 1965] thus enabling a high index contrast.

In our system, a triangular lattice of cylindrical holes allows the insertion of an optical

band-gap in the near-infrared domain.

Several types of defect can be inserted in the PhC lattice allowing an optical state

to exist in the optical band-gap. The line defects are achieved by removing consecutive
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Figure 2.1 – a) Single cavity design with hole radius r and crystal parameter a. The

cavity neighboring hole positions are shifted with 0.2a. b) Distribution of the electrical

field intensity in the defect. c) Distribution of the y component the electrical field Ey

holes over a given line in the crystal. A full line missing permits the light to be guided

along the defect axis, therefore constituting a waveguide. However if the line has a finite

length, the light is confined in the 3 spatial directions, giving rise to an optical cavity.

It has been shown that the L3 defects [Akahane et al., 2003], obtained by removing three

consecutive holes over a line, can achieve high optical quality factors. We adopt this

strategy for designing the photonic molecules on our suspended InP membrane.

The triangular lattice PhC is characterized by a lattice constant a = 420 nm and

a hole radius r (see fig. 2.1a). The lattice parameter is optimized for an optical band-

gap centered at 1550 nm. The PhC defect cavities must sustain a fundamental optical

resonance around 1550 nm which is achieved for r = 100 nm. A change in the hole

radius of the order of 10 nm shifts the L3 microcavity resonance wavelength by about 20

nm. The quality factor of a L3 defect-cavity can be improved by engineering the crystal.

In particular, the positions of the holes at the extremities of the defect can be shifted

along the cavity axis [Sauvan et al., 2005]. The optimum shift is given by 0.2×a where a is

the crystal lattice constant. The 260 nm thick PhC slab is modeled with Finite Element

Method software such that the electrical field distribution is simulated in the single

defect cavity. The magnitude of the electrical field |
−→
E | in the defect is represented

at the fundamental resonance in fig. 2.1b. The field is dominated by the transverse

electrical field component Ey whose distribution is represented in Figure 2.1c. While the

field intensity is maximum inside the defect, it exponentially leaks out the cavity. This

evanescent field in the PhC plane is exploited for coupling several L3-defects to each

other.

2.1.2 Photonic crystal molecule

By analogy with the ability of atoms to bind into chemical molecules, a cluster of optical

microcavities exchanging energy is sometimes refereed as a ”photonic molecule” [Bayer

et al., 1998; Mukaiyama et al., 1999]. The spatial confinement of the optical modes as well
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as energy-splitting resulting from such coupling motivate this terminology. As discussed

with the single L3-defect, the evanescent field intensity distribution is anisotropic around

the cavity. Interestingly, the strength of this coupling not only depends on the distance

between the cavities but also on their orientation regarding the crystal lattice. Indeed, it

appears that the evanescent field reaches a maximum intensity in the diagonal directions,

while it is weak in the longitudinal x and y directions [Atlasov et al., 2011]. Thus a higher

coupling is expected in these directions for a given separation between two cavities. In

order to evidence this feature, several designs of photonic molecules are considered. Here

we focus on ”diatomic” photonic molecules, i.e. involving only two defects. However,

more complex molecules can be designed and propose alternative coupling considerations.

This point is the object of a discussion in appendix A. These different configurations are

shown in figs. 2.2a to 2.2c (left) with the associated distribution of the electrical field

component Ey for the anti-symmetrical (middle) and symmetrical (right) normal modes.

Figure 2.2 – SEM image of the PhC molecule (left) and associated distribution of Ey for

the anti-symmetrical (center) and symmetrical modes (right) in the a) horizontal (2H2),

b) vertical 2V3 and c) diagonal (2D2) configurations.

In addition to the coupling orientation, the distance between the cavities can be used

for tuning the coupling. In the vertical configuration, two cavities must be separated by

an odd number of rows in order for their centers to remain aligned in the y direction.

We introduce a nomenclature to categorize the photonic molecules. n cavities separated

by p holes (or rows of holes) constitute a nXp photonic molecule where X refers to the

coupling orientation and can be V,H or D respectively for ‘vertical’ (along y), ‘horizontal’

(along x) and ‘diagonal’ (along x ans y). Moreover, the simulations of the electrical

field distributions come with the resonant frequencies, which permits to estimate the

couplings in each configuration. These simulated couplings are provided together with

the experimental data (see section 2.3.2).
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In the next section, we will investigate on the coupled mode theory of the coupled-

waveguide photonic molecules. Although the energy splitting will still be dominated by

the direct coupling between the cavities, we will discuss how an indirect mechanism,

allowing the cavities to couple through the waveguide, can play a role in the normal

mode spectral positions and linewidth.

2.1.3 SOI waveguide integration

The PhC membrane is suspended over a SOI waveguide enabling an integrated access to

the photonic molecule. The ridge waveguide can be injected on either side through the

available grating couplers. The traveling wave is localized in the guide and exponentially

decays around it such that it can couple to the PhC cavities. This evanescent coupling is

given both by the waveguide cross-section dimensions and by the distance between the

guide and the membrane. This gap is fixed by the fabrication process, which is common

to an entire chip. In practice it is given by the cumulative thickness of the deposited

SiN and SiO2 layers (resp. 180 nm and 20 nm), that are further removed for at the

under-etching step. Therefore the waveguide and the cavity are separated by 200 nm.

Different waveguide geometries are available on a chip such that several configurations

can be explored. In the case of two PhC cavities, all waveguides are provided with

identical height h = 220 nm but their width can vary from 250 nm to 550 nm.

2.2 Coupled mode theory

This section describes how several optical cavities can be coupled together with a waveg-

uide. The formalism used to describe such systems is the time-domain Coupled Mode

Theory (CMT) [Miller, 1954; Fan et al., 2003; Haus, 1984]. When one optical cavity exchange

energy with a waveguide, we observe the input propagating mode couples with the cavity

at the resonance frequency. However, when a second cavity is coupled to the waveg-

uide and/or to the first one, both direct and indirect coupling between the cavities can

lead to a mode splitting. The influence of the different couplings is investigated here in

order to ideally modelize our systems. The aim of this part is to derive an expression

for the amplitude transmitted through an optical waveguide on the one hand. On the

other hand, we want to rewrite the coupled master equations for the cavity amplitudes

in terms of normal modes. This we help to simplify the calculations a lot when we will

consider an optomechanical coupling.
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Figure 2.3 – Schematic of a waveguide-coupled bi-directional optical cavity.

2.2.1 Single cavity

We preliminary study the simple case of a single Standing-Wave (SW) cavity coupled

to a non-dissipative waveguide. The cavity with resonance frequency ω0 (or wavelength

λ0 = 2πc/ω0) is coupled both to an optical waveguide with an external decay rate κw and

to the environment through an intrinsic decay rate κi as described in fig. 2.3. The total

dissipation loss rate of the cavity κ is the sum of these two contributions: κ = κi + κw.

The optical linewidth of this resonator is given by 2κ. The excitation of the cavity occurs

through the external coupling with the waveguide in which an incident wave of amplitude

si and frequency ωL travels. The input power launched to the cavity writes Pin = |si|2

so the corresponding photon flux is Pin/~ω. The analysis of this single-port system

can be done either using the reflected wave or the transmitted wave carrying respective

amplitudes sr and st. In the experiments, we will measure the waveguide transmission

T = |st/si|2.

The master equation for the cavity amplitude a is given by:

da
dt = −(jω0 + κi + κw)a+√κwsi(t) (2.1)

By choice, we place ourselves in the rotating frame e−jωt. The steady state solution

of the resonator amplitude is

a(t) =
√
κwsi(t)

κi + κw − j(ωL − ω0) (2.2)

The energy stored in the optical resonator is therefore |a|2. Note that the energy

conservation implies that |si|2 = |st|2 + |sr|2 + 2κi|a|2.

The transmitted amplitude reads st = e−jK∆z[si−
√
κwa(t)] with K the propagation

constant in the waveguide and ∆z the distance between the input and the output1. We

can deduce the complex transmission τ = st/si expressed in terms of quality factors

1The reflected amplitude reads sr = st − si
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Figure 2.4 – Transmission spectrum of a single cavity coupled to a waveguide with

resonance centered at 1550 nm. a) The influence of Qi is studied for Qw=2000. b) The

influence of Qw is studied for Qi=2000.

Qi = ω0/2κi, Qw = ω0/2κw and normalized detuning δ = ωL−ω0
ω0

:

τ = e−jK∆z

1−
1
Qw

−2jδ + ( 1
Qi

+ 1
Qw

)

 (2.3)

Finally we deduce the transmission T = |τ |2:

T =
4δ2 + 1

Q2
i

4δ2 + ( 1
Qi

+ 1
Qw

)2 (2.4)

Both dissipative components affects the depth and the linewidth of the resonance dip

in the transmission spectrum as shown in figs. 2.4a and 2.4b. The spectral linewidth is

given by the total dissipation rate κ so both components similarly influence this property.

However only the external losses determines the amount of optical power injected to the

cavity. At resonance, the transmission writes T0 = (Qw/Qt)2 with Qt = (Q−1
i +Q−1

w )−1

the total quality factor of the cavity. Therefore the condition Qi � Qw is required

for maximizing the resonance depth, so that the resonance linewidth is limited by the

external losses. Such situation is refereed as over-coupling regime.

2.2.2 Two coupled cavities

The problem is now extended to a pair a SW cavities coupled to each other both directly

and indirectly through the waveguide. Several configurations can be discussed but this

study is first approached in a general frame. In order to simplify the problem, we consider

two cavities (1) and (2) with identical resonance frequencies ω0 and internal decay rate
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Figure 2.5 – Two cavities coupled to a waveguide with a direct coupling µ and an indirect

coupling through the waveguide.

κi. This assumption relies on the design of the photonic crystal (PhC). Indeed the PhC

defects, that constitute the optical resonators, are never placed close enough to the

crystal edge such that their properties are different to each other. The cavities are also

both coupled to the waveguide with external decay rates κw,1 and κw,2. We introduce

a direct coupling rate between the cavities µ. Finally, the parameter φ designates the

phase shift in the waveguide between the cavities. Assuming a distance L between the

cavities and an effective refractive index in the waveguide neff , this phase shift writes

φ = 2πneff
L
λ

. The problem is schematically described in fig. 2.5.

The dynamics of the cavity amplitudes a1 and a2 are given by the following set of

coupled equations.

ȧ1 = −(jω0 + κ1)a1 + (jµ+ e−jφ
√
κw,1κw,2)a2 +√κw,1si

ȧ2 = −(jω0 + κ2)a2 + (jµ+ e−jφ
√
κw,1κw,2)a1 + e−jφ

√
κw,2si

(2.5)

where κ1 = κi + κw,1 and κ2 = κi + κw,2 are respectively the total loss rates of

the cavity 1 and 2. In this system, both cavities are driven at the same frequency but

with different forcing amplitudes due to the unbalanced external losses κw,1 6= κw,2.

These forces are also out of phase by the phase shift φ. Note also that the direct

coupling µ appears in the imaginary part of these equations because it constitute a

coherent process. The indirect coupling occurring through the waveguide involve a

complex number indicating that this coupling is both coherent and dissipative. We

discuss this point by studying the normal mode properties.

2.2.2.1 Normal mode properties

The introduction of a coupling between two nearly identical resonators leads to a splitting

in the spectrum. It is usually rather easy to obtain the eigenfrequencies of a system of

coupled linear resonators. Here, we need to pay attention to the coupling terms in the
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equation of motion (2.5). Indeed these terms are not imaginary valued but own a real

part that contributes to the dissipation processes. We introduce an energy-coupling µ′

and a loss-coupling κ′ such that κ′ + jµ′ = e−jφ
√
κw,1κw,2 + jµ. We deduce:

µ′ = µ− sinφ√κw,1κw,2

κ′ = cosφ√κw,1κw,2
(2.6)

For an exact treatment of this problem, one can diagonalize the matrix M obtained from

eq. (2.5):

M =
κ1 + jω0 κ′ + jµ′

κ′ + jµ′ κ2 + jω0

 (2.7)

This matrix has complex eigenvalues whose real part give the normal modes decay rates

while their imaginary part give the eigenfrequencies. As the analytic expressions for

these eigenvalues are quite complicated, we assume identical external couplings κw,1 =
κw,2 = κw such that the expressions for the energy-splitting ∆ω and loss-splitting can

be simplified and interpreted.

∆ω = 2|µ+ κw sin(φ)|
∆κ = 2|κw cos(φ)|

(2.8)

This complex coupling therefore results in a level repulsion, given by ∆ω (or equiv-

alently ∆λ = ∆ω × 2πc
ω2

0
). This can be interpreted by identifying a symmetrical and

an anti-symmetrical normal mode. This spectral splitting is made of two contributions

that can interestingly counter-balance when sinφ = −µ/κw. Since sinφ is bounded, it

can occur only if κw ≥ µ which implies that the normal modes overlap (assuming the

overcoupling regime κi � κw şmalliteChutinan). In order to take advantage of such

situation, one must be able to finely control the phase shift such that this singular point

can be evidenced. The indirect coupling also leads to an imbalance between the normal

modes linewidths as soon as φ 6= ±π/2. Moreover, depending on the sign of cos(φ),

the broader normal mode is not always the same. Interestingly, the phase shift φ plays

an important role in the dissipative properties of this system. For example, one can

set this phase to any multiple of π in order to reduce the linewidth of a given normal

mode down to 2κi. This linewidth is then limited by the cavities internal loss κi and in

such configuration, the normal mode does not couple to the waveguide such that it can

not be neither injected nor observed. In an indirect observation of the system spectral

response, this invisible resonance is called a dark mode, or dark state.

As it will be shown when discussing the transmission spectra, the introduction of a

contrast in the cavities external couplings (κw,1 6= κw,2) forbids the existence of a dark

mode.
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2.2.2.2 Transmission spectra

The stationary solutions are found by taking an amplitude of the form ak = Ake
−jωt

where Ak is the complex amplitude of the cavity k in the rotating frame. This calcu-

lation is almost exactly performed in [Li et al., 2010] but assuming Qw,1 = Qw,2. As this

assumption is not desired, we adapt the calculation and find that the expression for the

complex transmission stays the same with the substitution Qw →
√
Qw,1Qw,2:

τ = e−jφ


1 + γ1 + γ2 + γ1γ2

(
ejφ + j

√
Qw,1Qw,2

Qc

)(
e−jφ − j

√
Qw,1Qw,2

Qc

)
1− γ1γ2

(
e−jφ − j

√
Qw,1Qw,2

Qc

)2

 (2.9)

Where γk = −1/Qw,k
1/Qi+1/Qw,k−2jδ is the transfer function of a single cavity coupled to

a guide with parameters Qi,k and Qw,k as seen above. Qc = ω0/2µ is the quality

factor associated to the direct coupling. This expression is complicated and involve

many parameters. It is not very useful to explicit an expression for the transmission

T = |τ |. We plot the transmission spectrum from eq. (2.9) assuming several geometrical

configurations.

Let’s first consider a simple case where only the cavity 1 is coupled to the waveguide.

In practice this configuration is obtained when one cavity is placed far from the inte-

grated waveguide but still couples to the other cavity. The resulting transmission can be

computed by setting κw,2 = 0 or similarly by taking Qw,2 →∞. The phase shift in the

waveguide is not defined anymore and can be arbitrarily set to zero (see fig. 2.6a). The

transmission spectrum displays two resonance dips separated by a splitting proportional

to Q−1
c . When the direct coupling is set to zero, the situation is analog to the single

cavity treated previously.

Another case to describe is the horizontal configuration where both cavities equally

couple to the waveguide (κw,1 = κw,2, see fig. 2.6b). In our experiments we encounter

this situation when both cavities are aligned in the waveguide direction so they are equally

spaced from it. We have seen in section 2.2.2.1 that the complex coupling results in

a splitting both the normal mode frequencies and loss rates. In the transmission plot,

the resonance dips periodically appear and disappear with the phase shift φ. When

φ = 0 [2π], the cavities are excited in-phase such that only the symmetrical normal

mode can be driven. Similarly, when φ = π [2π], the cavities are excited out-of-phase

such that only the anti-symmetrical mode can be excited. In intermediate values of

the phase shift, the positions and linewidths of the normal modes vary as described by

eq. (2.8).

The most general configuration is obtained when the cavities are coupled diagonally

in the slab. Then the cavities unequally couple to the waveguide and the phase shift

can be arbitrary valued. The description of the transmission spectrum does not differ
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Figure 2.6 – a) Vertical configuration: only one cavity coupled to the waveguide. A mode

splitting is observed. b) Horizontal configuration: both cavities couple to the waveguide

with the same decay rate. The phase shift φ determines the balance in the normal mode

external loss rates. All data are plotted with Qi = Qw,1 = Qw,2 = 2000.

much from the previous case. The fact that the external loss rates are different only

forbid the normal mode to become dark when the proper phase shift is established. This

comes from the fact that the system is now driven in an unbalanced way since more

power is injected in a cavity than in the other. As an illustration, we show in figs. 2.7a

and 2.7b the transmission spectrum in color scale as a function of the phase shift. In

both situations, the product
√
Qw,1Qw,2 is fixed such that the colormaps looks extremely

similar. However in one case, the external loss rates are equal (Qw,1 = Qw,2) while in

the other we introduce a contrast (Qw,1 = 5Qw,2 ). The subtle difference between these

plots can be seen when φ is a multiple of π. In the first case one normal mode becomes

dark (its depth vanishes) while in the other, both couple to the waveguide. In both cases,

the total linewidth (indicated with the black dashed lines) are limited by the intrinsic

losses are do not reach zero.

To go further, it can be verified that it is possible to recover a dark mode despite

unbalanced external couplings by breaking the frequency matching between the cavities.

By doing so, the energy injection is balanced back for one of the normal modes such

that it can become dark at the appropriate phase shift. However the injection imbalance

is enhanced for the other normal mode.
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Figure 2.7 – Transmission spectrum plotted as a function of the phase shift with Qi =
2000, Qc = 200 and

√
Qw,1Qw,2 = 894. a) Qw1 = Qw2 : the contrast between the

normal mode amplitudes is maximum such that every π, one normal mode becomes

dark. b) Qw1 = 5Qw2 the contrast between the amplitudes is limited.

2.3 Complete optical characterization of the investi-

gated structures

The optical setup and the alignment procedure enabling the characterization of the op-

tical transmission through the waveguide are presented here. We introduce a method

to distinguish the optical resonance belonging to several integrated photonic molecules.

Finally, we discuss the influence of the system geometry on the measured optical cou-

plings.

2.3.1 Optical setup

The chip is placed on a vertical holder that is itself fixed on a 3D motorized stage.

The whole is put into a vacuum chamber. The pressure does not influence the optical

properties so the alignment of the optical setup can be performed at room pressure. A

window available at a chamber feed-through is used for imaging the sample with a white

light source focused at the sample with an objective and reflected towards a CCD camera

(see fig. 2.8b). The same optical path is used for pumping the quantum dots with a

820 nm diode laser. It results in a photoluminescent emission around 1550 nm that is

scattered in all direction (see fig. 2.8a). In particular, a part of this light couples to the
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SOI waveguide and scatters out of the grating couplers. These bright spots – at each

grating coupler and at the PhC position – can also be imaged with an infrared camera

placed behind the sample, the Silicon substrate being transparent at this wavelength. A

hole in the sample holder and another window in the chamber are meant for this purpose.

This method facilitates the alignment of the optical fibers on the grating couplers for

injecting and collecting the integrated system.

Figure 2.8 – a) Procedure for the fiber alignment. A 820 nm laser pumps the quantum

wells in the InP layer resulting in a photoluminescent emission around 1550 nm. An

infrared camera images the emission spots at both grating couplers and at the PhC

position. b) SOI waveguide transmission characterization setup. A SLD broadband

source is injected in the system and analyzed at the output with a monochromator

coupled to an InGaAs camera.

The alignment procedure starts by placing a single-mode optical fiber above each

side of the waveguide. The injection is optimized for a proper angle between the fiber

and the grating coupler. In principle this angle depends on the injected wavelength

although the optimization is always performed at 1550 nm and this dependence is not

critical within the spectral band we are working on. In practice the optimal angle is

around 80◦ and can be adjusted on the fiber holders for each side. Next the position of

each fiber needs to be precisely adjusted. For this purpose each fiber holder is fixed on

a remotely controlled 3D positioning stage. The fibers are independently displaced for

maximizing the output power while the quantum wells are pumped with the free-space

diode laser. Once that both optical fibers are positioned, the waveguide can be injected

on one side with a superluminescent diode source (SLD). The light is collected on the

other side and sent to an infrared monochromator coupled to an InGaAs camera cooled
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with liquid Nitrogen. Thus the transmission spectrum can be characterized in the SLD

spectral band, i.e. from 1500 nm to 1600 nm roughly.

Note that the photoluminescence process can be used for the characterization of the

photonic crystal molecules. In this case the light back-scattered towards the pumping

laser is collected with a dichroic mirror and sent to the monochromator.

2.3.2 Transmission spectrum interpretation

Three PhC membranes are suspended over each waveguide in order to increase the

number of available structures on a chip. The radii of the holes in the photonic crystals

are respectively set to 90, 100 and 110 nm so their resonances are properly separated.

Indeed, the resonance wavelength of a L3 defect cavity tends to increase when the holes

radii decrease. However, it is still not always straightforward to associate a resonance dip

to a given structure, in particular under strong coupling where the spectral splitting is so

high that the resulting span overlaps with the one of another structure. To accurately

identify the normal modes to a PhC membrane, the 820 nm diode laser is successively

focused on all the structures on a chip. By changing the power of this laser, a thermo-

optic shift of the resonance dip positions occurs in the transmission spectrum. In fig. 2.9,

this effect is illustrated with a waveguide coupling to three 2V3 photonic molecules with

different hole radii. The transmission spectrum displays several dips among which only

two shift when the diode laser is turned on. After repeating this measurement with the

diode laser focused on the other two PhC membranes, the three pairs of resonance dips

are finally identified. From the central wavelength at each photonic molecule – obtained

by taking the mean value of both normal modes positions – we find that a change of

+10 nm in the PhC holes radii leads to a shift of -20 nm of the cavity natural resonance.

2.3.3 Experimental analysis of the photonic molecules

The physical properties of the photonic molecules can now be accessed from the ex-

perimental characterization of the waveguide transmission by taking advantage of the

theoretical description of the system provided by the coupled mode theory. From the

measurement presented in fig. 2.9, it appears that the spectrum has not a flat intensity

in the typical range 1550-1600 nm. Although the SLD source does have a quite flat

intensity in this range, this evidence the pass-band behavior of the SOI grating couplers.

Importantly the normalization of the spectrum, which is an essential prerequisite for

fitting the data, must account for this filter. For this purpose, a Gaussian is adjusted

on the data such that only the resonance dips significantly discard from this Gaussian.

Dividing the spectrum with this latter provides the transmission, i.e. a quantity nor-

malized such that it dwells between 0 and 1 and is close to 1 off an optical resonance.
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Figure 2.9 – Effect of the 820 nm diode laser on a typical transmission spectrum in a

2V3 photonic molecule. Only the resonances dips associated to the heated membrane

shift by about 5 nm (see arrows). Finally each pair of normal modes (contained in a

given yellow stripe) is associated to a photonic crystal hole radius r (indicated on top).

A typical waveguide transmission generally displays three pairs of dips – one for each

crystal that it couples to – and we focus here and the central doublet, i.e. associated

to a hole radius of 100 nm. The transmission is plotted for three different geometries

in fig. 2.10a: 2H3, 2V3 and 2D2. These photonic crystal molecules are all coupled to

a 300 nm wide waveguide such that their resonance linewidths compare. The data are

fitted using eq. (2.9). The set of fitting parameters depends on the configuration. In

particular the phase shift φ and the external coupling quality factor Qw,1 and Qw,2 can

be constrained by the geometry as discussed in section 2.2. With 7 fitting parameters, it

can not be guaranteed that the set on which the fit converges is accurate. However, as

soon as the fit agrees on the dip positions, it indicates that the natural cavity resonance

wavelength and the direct coupling quality factor are relevant for discussion. The other

returned parameters are convenient for a general discussion about the system losses but

should considered as uncertain. Thus we focus here on the doublets spectral separation

for each system, i.e. the mode splitting. As expected, it is found that the diagonal con-

figuration offers a larger spectral separation. The splitting in the 2H3 structure presented

here actually barely overcomes the resonance linewidth.

More generally, the splittings are evaluated in several other structures suspended over

waveguides of different dimensions, which should not affect so much the result, and over

two different sample. They are plotted as a function of the cavity separation distance

(in unit of number of holes or lines) for each geometry in fig. 2.10b. We distinct the two

sample with the orientation of the symbols. In complement, the splittings are evaluated
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Figure 2.10 – a) Measured normalized transmission (colored dots) with fits (black lines)

for three different configurations. b) Measured mode splitting for several structures

studies on two samples (difference of symbol orientations) as a function of the spacing

between the defects. The simulated splittings (black) are obtained only considering the

photonic crystal.

using FDTD simulations for each geometry. The general tendency for the experimental

data agrees with the intuition and the simulations: a higher separation between the

cavities leads to a lower coupling. This evolution is clear for the horizontal and diagonal

geometries. However for the vertical one, it seems that some structures display a coupling

significantly higher than in the simulations. Note that for low couplings, typically in

the 2H4 and 2V7 configurations, the indirect coupling occurring though the waveguide

and involving the phase shift φ might become the dominant coupling process. As the

waveguide is not taken into account in the simulations, one must have this in mind when

comparing with the experiments as this might explain discrepancies. Note that a splitting

of about 30 nm is numerically evaluated in a 2D1 structure, which is not very convenient

for the experiments as the equipment are mainly restricted to an operating spectral range

centered at 1550 nm and typically limited with a 50 nm span. A small deviation to 1550

nm for the cavity resonance wavelength would therefore quickly lead a resonance of

the photonic molecule to be unattainable. In consequence, as this simulation precedes

the sample fabrication, the diagonally coupled molecules are always designed with a
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separation higher than 2 lines.

The optical quality factors are extremely variable from one structure to another. On

the few spectra that could be correctly fitted, it comes out that the average intrinsic

quality factor is about 103 and never overcomes 104 which is quite low compared to

the state of the art for optical microcavities. The external quality factor depends on

the distance between the cavity and the waveguide as well as on the width of the SOI

waveguide. Importantly in the vertically coupled cavities, two resonance dips are always

observed. This indicates that both cavities couple to the waveguide with unbalanced

couplings. In the theoretical description, we assume that in this configuration the further

cavity has an external quality factor Qw,2 = +∞. We conclude that this is incorrect.

Therefore the corresponding spectra (e.g. with the central plot in fig. 2.10a), are fitted

with the unique constraint φ = 0 as the cavities are notwithstanding coupled in-phase

with the waveguide.

2.4 Thermo-optic nonlinearity

In a photonic device, the strong confinement of light is responsible for several types of

nonlinearities that can be exploited for a large variety of applications. Here we focus

on the thermo-optic effect where the temperature growth in the material induced by

light absorption is responsible for a significant shift of the dielectric index. In an optical

cavity, this effect is enhanced such that it can red-shift the cavity resonance frequency.

If the input field intensity passes a certain threshold, the resonance lineshape becomes

bistable. Such behavior can be evidenced by scanning forward and backward the laser

frequency over the resonance, or equivalently, by sweeping up and down the input laser

intensity.

This effect can be modeled using nonlinear time-domain CMT [Uesugi et al., 2006; Gao

et al., 2017]. Given an optical cavity with resonance frequency ω0, intrinsic and external

loss rates κi and κw, the cavity energy in the stationary regime reads |a|2 with a the

cavity amplitude given by eq. (2.2). As κi refers to the total intrinsic loss rate, it includes

the thermal absorption process that is relevant here. We introduce the linear absorption

rate in the cavity κabs such that the power absorbed by the driven cavity is κabs|a|2. The

resulting temperature growth in the cavity related to the absorbed power through the

material thermal resistance Rth (in units of K.W−1). It leads to a temperature shift in

the cavity ∆θ = Rthκabs|a|2. Finally, this temperature shift induces a red-shift of the

cavity wavelength frequency given by

∆λ = λ0

n0

dn
dθ∆θ (2.10)

with λ0 = 2πc/ω0 and n0 respectively the resonance wavelength and the refractive index
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Figure 2.11 – Theoretical nonlinear single port transmission of a waveguide coupled to

a cavity submitted to thermo-optic effect. Higher input power leads to a linear shift

of the resonance position. The resonance evidence bistable regime at sufficiently high

input power Pin. The stable (unstable) solutions are plotted with straight (dashed) lines.

Parameter used: λ0 = 1550 nm, Qi = 104, Qw = 5000.

at room-temperature (θ0 = 293 K). Injecting the input-power dependent resonance

frequency ω′0 = 2πc(λ0 + ∆λ)−1 in the coupled-waveguide single cavity amplitude yields

a new shape for the transmission dip. In fig. 2.11, we plot the nonlinear transmission

for values of the input power. Beside the linear shift of the resonance wavelength which

constitutes the corner stone of this model, the resonance dip clearly bends with increasing

input power. Over a certain threshold, the transmission – in coherence with the cavity

energy solution – displays up to three solutions, one being unstable (dashed lines), while

the other two are stable. The span of this bistability window grows with the input power.

In order to experimentally observe this hysteretic behavior, the transmission must be

characterized by scanning the resonance in both directions. This is not possible with

the SLD source that was used so far. We rather use a tunable laser instead and inject

the waveguide through the aligned injection fibers. The output laser field is sent to a

low-power photodetector and the DC response is checked on an oscilloscope. Therefore,

the waveguide transmission is now triggered in real-time, provided that the transmission

can be re-normalized. The input power is estimated by measuring the off-resonance

transmission ζ of the integrated waveguide and assuming the injection and the collection

efficiency to be equal. Therefore, with Pinj the optical power sent in the injection fiber,

the input power writes Pin =
√
ζPinj. In fig. 2.12a, the resonance wavelengths of

an optical mode is plotted as a function of the calibrated input power. This mode is

actually the (+) normal mode of a 2V3 photonic molecule. The associated transmission

response is measured for several input power values such that the wavelength associated

to minimum transmission is reported with an experimental uncertainty. The resonance
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wavelength can be fitted using eq. (2.10). Taking a value dn
dθ ≈ 1.9892 × 10−4 K−1

from [Della Corte et al., 2000] and with the InP refractive index n0 ≈ 3.16 [Pettit and Turner,

1965], we can estimate the cavity temperature change ∆θ ≈ 4 K at the maximum

injected power Pin ≈ 1.6 mW. For low power the observed transmission dip can be fitted

with the linear transmission expression such that the internal and external Q-factors are

determined. In fig. 2.12b, with Pin ≈ 325 µW, we find Qi ≈ 4400 and Qw ≈ 9500.

Injecting these Q-factors as well as the power-dependent resonance wavelength into the

transmission expression, the similar fit can be performed on the data collected for higher

injected power. For example, with Pin ≈ 1.3 mW and using Mathematica to estimate

the multivalued solution, we fit the data using the nonlinearity R = λ0
n0

dn
dθRthκabs and

find R ≈ 1.6 × 1014 nm/W. Finally we can estimate the product Rthκabs ≈ 1.62
K.fJ−1. Although the fit accurately matches with the width of the observed dip, and

also retrieves the presence of a bistable region, we note a disagreement in the size of

the bistability. This discrepancy is probably the result of a too high scan-speed of the

laser wavelength [Rodriguez et al., 2017]. In practice, this later is set at 10 nm/s in order to

prevent oscillations in the laser output power, which would have corrupted the measured

transmission. This results in an averaging effect of the transmission near the bistability

edges. In the experimental data, the jumps of the optical states are not abrupt as it

should, but follow the photodetector response lifetime (≈ 6 ms).

Figure 2.12 – a) Thermo-optic shift of the (+) optical mode of a 2V3 photonic molecule.

The power dependence of the shift is fitted with a line (red). b) Measured waveguide

transmission at Pin = 325 µW and 1.3 mW. Higher input power leads to thermo-optic

bistability (transparent stripe) evidenced by scanning the resonance forward (straight)

and backward (dashed) at 10 nm/s. The resonance dips are fitted with the transmission

including the thermo-optic nonlinearity.
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Chapter 2. Nanophotonic platform description

In [Brunstein et al., 2009], a study of the thermal properties of a similar InP suspended

photonic-crystal membrane provides an estimation for the thermal resistance Rth ≈
1.7 × 104 K.W−1. Relying on this value, we deduce the linear absorption rate in the

system κabs ≈ 95 GHz.

In this section, we have modeled and quantified the thermo-optic nonlinearity in a

typical coupled-waveguide optical cavity. The extension of this model to coupled optical

cavities, achievable by adapting the linear coupled mode theory described in section 2.2,

is not of interest here. Overall the thermo-optic effect has an important impact in the

following experiments as it manifests itself at the typical input powers used for probing the

mechanical noise spectra of the suspended membranes. Coupled to thermo-mechanical

processes, it will allow us to model the mechanical frequency shifts induced by the power

absorbed in the microcavity.

2.5 Conclusion on the optical aspects

In this chapter, the waveguide-coupled photonic crystal molecules are investigated theo-

retically and experimentally. We have detailed the optical setup with which the structures

can be characterized. As expected with the numerical simulations, the optical coupling

decreases when the cavities are distanced from each other. The horizontal and verti-

cal configurations provide similar couplings while the diagonal configuration enables a

higher coupling. The effect of the relative positions of the cavities over the integrated

waveguide is clearly visible in the balance of the normal modes spectral linewidth as their

external Q-factors are basically determined by this geometry. Finally we focus on the

thermo-optic effect which is presumably the dominant nonlinearity is this system. The

phenomenon is described for a unique optical mode which appears to be successful while

the extension of the thermo-optic model to coupled resonators would imply a much more

complicated theoretical frame.

It comes out that this system, conceptually quite simple, carries a very rich physics.

In particular, the existence of both a direct coupling – within the crystal – and an

indirect coupling – through the waveguide in which the circulating light experiences a

phase shift φ – gives rise to various lineshapes for the resonance dips in the transmission

spectrum. One spectacular example is the existence of dark modes, that do not couple

with the waveguide when φ is a multiple of π. The mechanism of this behavior can

be understood as a destructive interference of the transmitted wave at the dark mode

frequency, disabling the injection coupling. Alternatively, it can been seen as the result of

an out-of-phase excitation scheme, where the dephasing between the optical resonators

applied drives (given by φ) is in conflict with the photonic mode symmetry. Therefore,

it seems extremely interesting to have a fine control of φ for several reasons. First, the
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Figure 2.13 – Transmission spectrum plotted with λ0 = 1550 nm, Qi = 106, Qw,1 =
Qw,2 = 2 × 103 a) with direct coupling Qc = 600 or b) without direct coupling (Qc =
+∞). The phase shift φ = π (black dashed) leads to a dark mode while a small shift

to φ = 1.04π (red) leads to a high Q resonance (a) or antiresonance (b).

evidence of a dark mode paradoxically implies not to observe a resonance dip. Obviously,

the evidence of the dark mode presence is conditioned to the ability of changing the

system coupling parameters such that it becomes observable. This systems offers a

parameter, φ, whose control permits exactly this. In optomechanics, the optical linewidth

plays a very import role as it dictates the sensitivity to mechanical displacement. One

could imagine a system in which the normal modes linewidths can modified by finely

controlling the phase shift. At a value of φ leading to a dark mode, a tiny change

permits the mode to couple back with a high quality factor . This is illustrated in

fig. 2.13a with realistic values Qi = 106 and Qw = 2× 103. The mode can reach a total

Q higher than 105 which corresponds to a linewidth of about 3 GHz. This corresponds to

the typical mechanical frequency confined in the L3 defect which opens the way for a very

rich configuration for cavity optomechanics experiments in the resolved sideband regime

– i.e. when the mechanical frequency overcomes the optical linewidth. An equivalent

result can be obtained without the direct coupling between the cavities as shown is

fig. 2.13b. In this system, the cavities would only communicate through the waveguide

and could therefore be arbitrarily far from each other.
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Optomechanical characterization

The optomechanical properties of the suspended photonic crystal are investigated here.

After an analysis of the mechanical eigenmodes of the structure using finite-element

method (FEM) simulations, the system is experimentally characterized through the op-

tomechanical interactions. The total optomechanical couplings are measured and dis-

cussed. A thermo-mechanical effect is finally evidenced and discussed through a toy-

model.

3.1 Mechanical properties

We now focus on the mechanical properties of the suspended photonic crystal. After an

overview of the membrane mechanical eigenmodes in the MHz domain, the noise spec-

trum of the structure is experimentally observed through the optomechanical interaction.

We compare the observed eigenfrequencies with the FEM simulations.

3.1.1 Eigenfrequency analysis

The InP photonic crystal is defined over a 10× 20 rectangular surface. This membrane

is partially clamped on two opposite sides as shown in fig. 3.1. The free-standing part

of this structure is limited to this rectangle since the under-etching process is achieved

through the crystal holes.

As any solid state object, the PhC slab can vibrate at some particular discrete eigen-

frequencies [Kittel, 2005; Cleland, 2013]. These vibrations are favored by the mechanical

degree of freedom introduced when suspending the membrane. The eigenfrequency

analysis of a mechanical structure can be performed analytically in the case of simple

geometries, e.g. for a singly or doubly clamped nanobeam or for unclamped rectangular

membranes [Hauer et al., 2013]. In order to obtain the eigenfrequencies and associated

displacement field distributions in more complex structure, we use the Finite-Element
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3.1. Mechanical properties

Figure 3.1 – Schematic of the optomechanical hybrid platform. The InP layer (blue) is

suspended over a 20 × 10 µm2 area thus defining the mechanical resonator. The SiN

layer (brown) thickness is very exaggerated here. The SOI waveguide (red) lies below

the membrane.

Method (FEM) software COMSOL Multiphysics [COMSOL, 2018]. The model inputs the

membrane geometry, but do not integrate the array of holes since it considerably in-

creases the simulation time. It is verified that the presence of the photonic crystal in the

model does not change the shapes of the mechanical modes. The mechanical properties

of InP used for the simulation include an effective Young’s modulus Yeff = 17 GPa, the

Poisson’s ratio (0.36) and the density (4810 kg.m−3). Note that the Young modulus

of bulk InP is significantly higher (60 GPa). Here the use of lower value is justified by

the presence of the holes [Cepkauskas and Jianfeng, 2005], the use of thin layers and also by

the presence of a InGaAs quantum well layer in the middle, which are all expected to

impact the elastic and thermal properties of the material. Comparable value (20 GPa)

was used with a similar device in [Gavartin et al., 2011]. In fig. 3.2a, the total displacement

fields of the first 10 mechanical eigenmodes are shown. These modes involve most of

the suspended material such that the effective mass of these modes compare with the

actual mass of the suspended membrane. These ”drum modes”yield in the MHz domain

but higher order modes can be found up to few GHz. In particular, the mechanical

modes confined in the L3-defect micro-cavity constitute an interesting ground for cavity

optomechanics experiments, as the higher mechanical frequency is efficiently coupled to

the optics [Gavartin et al., 2011]. Additionally, the clustered defect cavities are expected to

house not only coupled optical modes but also coupled phononic normal modes, enabling

the study of multimode cavity optomechanics. However, these GHz modes could not be

observed in this work and we therefore focus on the drum modes of the membranes in

this discussion. From the displacement field of the eigenmodes, we identify the mode

indexes (m, n) where m (n) refers to the number of antinodes in the x (y) direction.

This categorization of the modes is particularly well adapted for the description of a free

rectangular membrane whose eigenfrequencies and associated displacement fields can
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analytically expressed as a function of m and n.

Figure 3.2 – a) First 10 mechanical eigenmodes displacement component (z) distributions

fields. Each mode is labeled with its mode indexes (m, n). The constrains imposed in

the simulations are indicated on the fundamental mode (1, 1). b) Simulation total

displacement in response with imposed frequency. From top to bottom : maximum

response in the membrane, response in the central L3 cavity and then response in the

2nd cavity for the 2H2, 2V3 and 2D2 photonic molecules.

By imposing an harmonic excitation to the system, the fft-domain response of the

membrane can also be simulated. As the displacement fields display some nodes, we

plot the maximum total displacement of the membrane in fig. 3.2b (black line). Each

displacement peak is labeled with the corresponding mode indexes. Interestingly, some

modes have very low amplitude, e.g. the second mode (2, 1) or the 10th mode (4,2).

Starting with this observation, it seems rightful to wonder which of these modes will

a priori be observable in the experiments. Indeed, the coupling strength between the

mechanics and the optics, i.e. the optomechanical coupling basically depends on the

strength of the overlap function between the
−→
E field and the displacement field distribu-

tions [Johnson et al., 2002]. If the displacement is weak, this coupling might be too low for

the mode to be observed. More precisely, the displacement field must display significantly

high amplitude where the photonic modes are confined. A qualitative approach therefore

consist in checking the local displacement at the optical cavity positions. As described

in section 2.1.2, the cavity positions depends the photonic molecule configuration. How-
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ever, there is always a cavity placed at the membrane center. The fft-domain total

displacement response at the center of this cavity is plotted with a red line in fig. 3.2b.

As a matter of fact some eigenmodes yield zero amplitude at this point, suggesting

that they will poorly couple with the photonic mode confined in this cavity. Similarly,

the displacement field in the 2nd cavity for the 2H2, 2V3 and 2D2 configurations are

plotted below with respectively orange, blue and green lines. The 2nd cavity of the 2H2

configuration, which is slightly shifted along the x axis from the central cavity, is sub-

mitted to a very similar displacement than this latter. However, when the second cavity

is shifted along the (y) axis as in the 2V3 configuration, the eigenmodes arising in the

displacement spectrum (blue line) are not the same. For example the modes (4, 1) and

(6, 1) are visible in the 2H2 configuration but not in the 2V3, and the opposite in true

for the modes (1, 2) and (3, 2). Finally, in the diagonal configuration 2D2, where the

cavity in shifted both along the x and the y axis, the displacement spectrum (green line)

displays all the eigenmodes of the membrane indicating that this configuration might be

a good candidate for sensing as many mechanical modes as possible.

3.1.2 Mechanical noise spectrum measurement

Figure 3.3 – Experimental setup implemented for the optomechanical characterization

of the membranes.

As the system is put at finite-temperature, the mechanical eigenmodes of the sus-

pended membrane are driven by thermal noise. The system naturally vibrates in a super-

position of all its eigenmodes. The displacement associated to this displacement is very

weak as the mechanical is not resonantly driven. However, this motion can still modulate

the light field injected in the optical cavity through the optomechanical interaction.

After aligning the fiber at the waveguide grating couplers as indicated in section 2.3.1,

the vacuum chamber is pumped below 10−5 mbar. A tunable laser is used to inject the
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photonic crystal molecule (see fig. 3.3). The laser field is preliminary polarized with a

fiber polarization controller (FPC) and amplified in an Erbium-Doped Fiber Amplifier

(EDFA). The output signal is filtered and amplified in a low-noise amplifier (LNA). A

photodetector converts the optical signal into a RF wave that is studied with an electrical

spectrum analyzer (ESA). The ESA returns a noise spectrum P (ω) in units of dBm. The

power spectral density (PSD in units of mW/Hz) is given by SP (ω) = 10P (ω)/10/RBW
with RBW the resolution bandwidth of the ESA.

Figure 3.4 – Noise spectrum of a 2V3 PhC membrane obtained by resonantly driving: a)

the anti-symmetrical optical mode with λ = 1556 nm b) the symmetrical optical mode

with λ = 1566 nm. The arrows point at the modes belonging to the probed membrane.

Each peaks is labeled with the corresponding mode indexes. c) Fit on the associated

transmission spectrum characterized with a SLD source with the laser positions for each

mode (dashed lines).

A typical noise spectrum is shown over a large frequency range by driving resonantly

either the symmetrical (fig. 3.4a) or anti-symmetrical (fig. 3.4b) photonic mode. The

transmission spectrum associated to this 2V3 structure is indicated in fig. 3.4c as a

landmark. Both photonic modes being coupled to the same mechanical structure, the

spectra are strongly correlated in terms of peak positions. However, these peaks have

different amplitudes since the corresponding mechanical modes do not couple equally

with the photonic modes. Some of the mechanical modes do not belong to the probed

structure but the other two PhC membranes suspended over this waveguide. Although

the laser does not probe resonantly these photonic molecules, it is still modulated by the

mechanical noise. This is a signature of a dissipative optomechanical coupling of certain

mechanical modes with the waveguide.

Each mechanical mode can then be identified to a displacement field distribution by
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Figure 3.5 – Comparison between the measured (blue crosses) and simulated (red disks)

mechanical eigenfrequencies. The data are provided by the 2V3 structure. The FEM

simulation uses an effective Young modulus of the pierced InP nano layer Yeff = 17 GPa.

comparing the experimentally measured frequencies with the eigenfrequencies found in

FEM simulation. Here we assume that, among the eigenmodes found in the simulations,

only those with a significant displacement amplitude at the cavity positions are coupled

into the optics. According to what was discussed in section 3.1.1, we assume that

modes (2, 1), (4, 1), (2, 2) and (4, 2) dot not coupled – or at least inefficiently couple –

to the optics in the 2V3 configuration. By sorting the first 10 eigenmodes by ascending

frequencies, the observed and simulated mechanical frequencies are compared in fig. 3.5.

There is a consistent match between these two. As discussed previously, the simulation

uses the effective Young modulus of the pierced nano-membrane Yeff = 17 GPa to

match the frequencies. There are still some small discrepancies between the observed

and simulated eigenfrequencies. This can also come from the geometry simplifications in

the simulation, as the absence of the photonic crystal holes, but it can also be explained

by the misevaluation of the free-standing InP volume. Indeed the under-etched area can

be slightly different than the defined 10 × 20 µm2 mechanical membrane, e.g. if the

under-etching step is prolonged a little too much.

In order to distinguish the mechanical modes sustained by the probed membrane

from the others, it is also possible to shine the 820 nm diode-laser at the membranes

and observe a thermal shift of the resonances. The thermal load of the laser of the

mechanical structure induces a change of the material density which shifts the internal

stress in the mechanical resonator. This photothermal effect displaces the mechanical

resonances towards low or high frequencies depending on the initial stress in the structure.

In figs. 3.6a to 3.6c, we show the mechanical spectrum obtained when heating either

of the three membranes. These latter are refereed as A, B or C with respective hole

radius 90 nm, 100 nm and 110 nm. Let’s recall that the larger the hole radius, the
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Figure 3.6 – Mechanical noise spectrum measured by driving membrane B optical mode,

with λ = 1564 nm (grey lines). Identical measurement performed when using the 820

nm laser for heating (purple lines): a) the membrane A, b) the membrane B and c)

the membrane C. The mechanical frequency shifts (black arrows) belong to the heated

membrane.

larger the photonic mode resonance wavelength. In each case, the injected tunable

laser wavelength is set to 1564 nm such that it resonantly probes the anti-symmetrical

photonic mode of the structure B when the diode laser is off. The mechanical spectrum

thus obtained is shown with grey lines is each configuration. This measurement shows 4

mechanical peaks. When heating the membrane A, two of these mechanical frequencies

shift towards lower frequencies. We therefore identify these peaks as sustained by the

membrane A. Moreover the corresponding optical modes drifts such that it is resonantly

driven by the tunable laser. This leads to an enhancement of the mechanical peaks

amplitudes. The amplitude of the 1st peak, that is hidden by the figure scale, increases

up to 2.84 pW/Hz. This consequent amplification of the mechanical noise might also be

the result of more complicated interactions involving the quantum dots that are pumped

by the diode laser [Tsvirkun et al., 2016]. Such dynamics is not further investigated in this

work. Heating the membrane B or C both lead to the shift of one of the remaining

mechanical frequency such that all the modes that ultimately be identified to a given

membrane. Note that, when heating the membrane B, the optical resonance is shifted

toward lower wavelengths. Thus the tunable laser no longer drives resonantly the optical

resonance dip and the resulting increase in the transmission explains the higher noise

floor in the spectrum.
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3.2 Optomechanical couplings

The lecture of the mechanical is enabled by the optomechanical interactions standing in

the system. A basic description of an optomechanical cavity is based of the frequency

modulation of the optical cavity by the mechanical motion. In this frame the coupling

can be measured using a phase modulation of the input laser field. At first, we apply this

method to calibrate several mechanical resonances read either through the symmetrical

or the anti-symmetrical optical resonances. Then we propose a more advanced model

that now also includes the dissipative optomechanical contributions. In order to quantify

these contributions, we scan a laser on the optical resonances. This experiment evidence

a thermo-mechanical shift of the mechanical frequencies which is understood in the frame

of a toy-model.

3.2.1 Calibration of the single-photon coupling strength

The optomechanical single-photon coupling strength g0 [Aspelmeyer et al., 2014] is at center

of the interactions occurring in an optomechanical cavity where only the optical resonance

frequency is affected by the mechanical motion. It can be estimated experimentally by

comparing the mechanical mode amplitude with the amplitude of a calibrated near-

resonant phase modulation signal [Gorodetksy et al., 2010; Schliesser et al., 2008]. The optical

field injected in the integrated waveguide is preliminary modulated with a phase Electro-

Optic Modulator (EOM) in which a sinusoidal signal is sent with amplitude Vmod and

frequency fmod (see fig. 3.3). The induced phase modulation of the optical field reaches

a phase shift given by β = πVmod/Vπ where Vπ = 3.5 V is the voltage at which the device

provides a phase-shift of π. The modulation frequency is set close to the mechanical

resonance to be calibrated. In these conditions, the optomechanical coupling is given by

g0 ≈

√√√√ 1
2n

β2Ω2
mod

2
Γm

4RBW
SP (Ωm)
SP (Ωmod) (3.1)

where n = kBθ0/~Ωm is the mean phonon number in the mechanical oscillator

at temperature θ0 (293K in our experiment). The power spectral density is measured

with a resolution bandwidth RBW. The mechanical resonance is fitted with a Lorentzian

lineshape allowing to extract the mechanical resonance frequency Ωm and the mechanical

linewidth Γm. The modulation peak is fitted with a Gaussian function. For each fit

the peak power is also obtained such that the ratio SP (Ωm)/SP (Ωmod) is accurately

determined.

This technique is applied to a 2V3 structure to measure the coupling between the

optical modes and five mechanical eigenmodes. The fitted PSD measured with RBW =
20 Hz at the fundamental mode is shown in fig. 3.7a and fig. 3.7b respectively for the
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Figure 3.7 – Experimental calibration of the optomechanical coupling g0 between the

fundamental mechanical mode and either a) the (−) optical resonance or b) the (+)

optical resonance. In each case, the resonance is fitted with a Lorentzian lineshape (left)

and the modulation signal is fitted with a Gaussian peak (right).

(−) photonic mode (λ = 1555.50 nm) and the (+) photonic mode (λ = 1565.54 nm).

The modulation frequency is set to fmod = 4.281 MHz and the modulation amplitude

to Vmod = 6 mV. The fitted modulation peak is shown over a different frequency scale.

The optomechanical couplings are evaluated using the experimental parameters. This

protocol is reproduced for the next 4 mechanical modes and the results are presented

in table 3.1. The 3rd and 4th mechanical modes were not measurable through the

optical mode (+). This experimental calibration provides an order of magnitude for

the optomechanical coupling rate reached in our system. In our system the coupling

mechanism in our system can not be reduced to a simple modulation of the cavity

frequency by the mechanics. The dissipation rates are also affected by the motion. In

the following the relative weights of the dissipative and dispersive contributions will be

modeled and estimated.

3.2.2 Dispersive and dissipative optomechanical couplings

Here we describe how the mechanical displacement modulates the optical field propagat-

ing in the waveguide, through the photonic molecule. It involves several contributions

whose nature, either dispersive or dissipative, is discussed. In order to experimentally ac-

cess the mechanical noise spectrum, we exploit the optomechanical interactions standing

in the waveguide/PhC system. In section 2.2, the coupled mode analysis of the inte-

grated photonic system enables a complete description of the waveguide transmission
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Mech. mode Ωm/2π Γm/2π Qm g0/2π [Hz] g0/2π [Hz]

index [MHz] [kHz] MODE (−) MODE (+)

(1, 1) 4.34 5.56 778 485.0 174.6

(3, 1) 6.15 7.61 1237 514.1 227.7

(5, 1) 12.18 17.63 691 1420.8 ?
(1, 2) 14.13 23.49 601 985.3 ?
(6, 1) 15.74 16.25 969 1843.5 380.2

Table 3.1 – Experimentally measured frequency Ωm, linewidth Γm, quality factor Qm =
Ωm/Γm for 5 mechanical resonances. The calibrated optomechanical coupling g0 is

obtained either through the (−) or the (+) photonic resonances in this 2V3 photonic

molecule.

and the influence of the coupling parameters. Now we need to describe how a tiny per-

turbation for each of these parameters, caused by the mechanical displacement of the

suspended PhC, can affect the transmitted signal [Wu et al., 2014; Tsvirkun et al., 2015]. We

write down an expression for the transmission derivative involving several optomechanical

contributions:

dT
dx =

[∑
k

Gωk

∂T

∂ωk
+Gµ

∂T

∂µ
+
∑
k

Gκi,k

∂T

∂κi,k
+
∑
k

Gκw,k

∂T

∂κw,k
+Gφ

∂T

∂φ

]
(3.2)

with Gωk
, Gµ, Gκi,k

, Gκw,k
and Gφ the derivatives d · /dx where · refers respectively

to the frequency of cavity k, the coupling rate, the internal dissipation rate of cavity

k, the external dissipation rate of cavity k and the phase. At this stage already, we

can glimpse how complicated this descriptions is going to be. Indeed, the number of

optomechanical contributions is too important for an efficient analysis of the data on

the one hand, and for a rigorous and rational interpretation on the other hand.

In fact, it is not necessary to take into account a 2-cavity model for the transmission as

soon as i) the optical drive frequency is set near an optical resonance and ii) the optical

modes are well resolved in the optical spectrum. In particular this second condition

implies that the Fano interferences resulting from low-Q cavities or low coupling rate

should not be significant enough to prevent the description of each optical normal mode

with a Lorentzian lineshape.

By assuming that each normal mode behaves as the result of a single waveguide-

coupled cavity, we simplify the model by using a new expression for the transmission

derivative:
dT
dx ≈ Gω0

∂T

∂∆ +Gκi

∂T

∂κi
+Gκw

∂T

∂κw
(3.3)

with ∆ = ωL − ω0, κi and κw respectively the laser detuning, the internal loss rate and

page 51



Chapter 3. Optomechanical characterization

the external loss rate of the single optical resonator. Here the transmission is given by

eq. (2.4) but can be rewritten in terms of the relative detuning ∆/2κt where κt = κi+κw

is the total amplitude decay rate of the mode:

T = (∆/2κt)2 + (κi/2κt)2

(∆/2κt)2 + 1/4 (3.4)

In practice in the experiments, we will consider either the (−) or the (+) photonic mode

with their respective resonance frequency and linewidth ω± and 2κ±.

Now the global optomechanical interaction involves only three contributions Gω0 ,

Gκi
and Gκw . The first one reflects how the mechanical displacement affects the optical

frequency and therefore form the dispersive part of the coupling. In opposition the two

other contributions participate to the dissipative part of the interaction. Under a small

modification of the cavity properties, the resonance dip in the transmission spectrum is

modified as shown in fig. 3.8 (top). At a given detuning ∆, the intensity changes by

an amount given by the partial derivative associated to the changing parameter. These

partial derivatives are plotted in fig. 3.8 (bottom) as a function of the detuning, assuming

a critical coupling regime κi = κw
1.

Figure 3.8 – Impact of a variation of the resonant frequency (a), the intrinsic loss rate (b)

and the external loss rate (c) on the transmission spectrum (top). The associated partial

derivatives (bottom) correspond to the respective contributions to the optomechanical

coupling. Plot realized at the critical coupling (κi = κw).

1The influence of the coupling efficiency κw/κt on these sensitivity functions is studied in details in

[Tsvirkun, 2015] , Sec.2.3
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3.3 Influence of the detuning

As the transduction of mechanical motion into the optical field is enhanced by the cavity,

it is interesting to scan the optical resonance to investigate on the interactions between

the cavity and the mechanics. In this experiment we scan the optical modes around

the resonance and record the mechanical noise spectrum for a given eigenmode. From

the data we can extract the amplitude of the mechanical peak amplitude and position

as a function of the detuning for each optical mode. The first permits to evaluate the

dissipative and dispersive contributions to the optomechanical coupling. The frequency

shift is discussed through a toy-model based on a thermo-mechanical process.

3.3.1 Optomechanical contributions

The optomechanical interactions can not be reduced to the single-photon coupling

strength g0 calibrated in the previous section. Actually, as discussed in section 3.2.2, the

transduction of a mechanical signal into the transmitted optical wave occurs through

a dispersive process – in which the cavity frequency is perturbed by the motion – but

also through a dissipative process, where the cavity loss rates are perturbed. In order

to evaluate the balance between these contributions, only the optical frequency can be

experimentally played with. Indeed our modeling relies on the linear coupled mode anal-

ysis of the photonic platform and the laser intensity must therefore be set sufficiently

low so that no nonlinear regime is reached. In practice, the thermo-optic nonlinearity

described in section 2.4 tends to distort the optical resonance dip and provokes hysteretic

behaviors. The goal in the following experiment is therefore to measure the mechanical

mode while scanning either the (−) or the (+) optical resonances with the laser. The

evolution of the mechanical peak amplitude as a function of the detuning thus enables

an evaluation of the optomechanical couplings.

The measured power spectral density relates to the mechanical oscillator PSD Sxx

(in units of m2/Hz) with [Bunch et al., 2007] :

SP (ω) = S
(n)
P + η2Sxx(ω) (3.5)

where the constant offset S
(n)
P is the white noise of the detectors. The parameter η

reflects how well the mechanical signal is converted in the electrical signal detected by

the ESA2. Here we split this conversion coefficient with

η = χ× dT
dx (3.6)

where χ involves several parameters such as the photodetector conversion efficiency, the

optical and electrical power losses or the ESA load impedance. The optomechanical cou-

2s0
x =

√
S

(n)
P /η2 is the displacement sensitivity of the experimental setup (in units of nm/

√
Hz)
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Figure 3.9 – Influence of the detuning on the fundamental mechanical mode lineshape

with Pin = 480 µW. a) The laser scans the optical mode (−) and the noise spectrum is

accessed through this same laser. b) Similarly with the optical mode (+).

pling is given by dT/dx which can be expanded in partial derivatives of the transmission

(see eq. (3.3)).

Additionally, the mechanical oscillator PSD is given by the equipartition theorem

[Albrecht et al., 1991]:

Sxx(ω) ∝ Γm
(ω2 − Ω2

m)2 + (ωΓm)2 (3.7)

with Ωm the oscillator frequency and Γm its mechanical linewidth. Note that the exact

formulation permits to calibrate the mechanical displacement by assuming the effective

mass meff of the mechanical mode. However in this section we only give a qualitative de-

scription of the optomechanical contributions. This can be done without the calibration

of the detection scheme (χ) and of the mechanical displacement, given by evaluating

the effective mass (meff).

This experiment is performed on a 2V3 photonic molecule sustaining two optical

resonances at λ− = 1557.27 nm and λ+ = 1565.55 nm. The internal Q of the cavities

is estimated above Qi = 104 and their respective external Q are Q−w = 470 and Q+
w =

6680. We measure the mechanical noise spectrum around the fundamental resonance

centered at Ωm = 2π × 4.34 MHz. The ESA averages 50 spectra with a resolution

bandwidth RBW = 50 Hz. This measurement is automatized to be reproduced while

the laser frequency scans the optical resonance (−). For each spectrum, the noise

floor S
(n)
P is estimated by averaging the PSD away from the mechanical resonance.

The net mechanical noise PSD SP (ω) − S(n)
P is presented as a function of the relative
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Figure 3.10 – Net amplitude of the mechanical peak obtained by fitting a) the data

presented in fig. 3.9a and b) the data presented in fig. 3.9b. The fit considers a weighted

sum of the partial derivatives of the transmission with the weights as fitting parameters.

These three weighted functions are plotted below for reference.

detuning ∆−/2κ− in fig. 3.9a. This measurement is reproduced while scanning the other

optical resonance. The mechanical mode transduction in the optics clearly depends on

the detuning as its peak amplitude varies. We also note a pronounced shift of the

mechanical frequency near the optical resonances. This is more manifest for the mode

(+) as discussed further on.

For each value of the detuning, the PSD SP (ω) is fitted using eq. (3.5) returning the

mechanical frequency Ωm, the mechanical linewidth Γm and resonant PSD amplitude

SP (Ωm). We focus on the latter to obtain the different optomechanical contributions.

The net mechanical peak amplitude is indeed directly proportional to the transduction

constant η2. We show the net amplitude obtained from figs. 3.9a and 3.9b respectively

in figs. 3.10a and 3.10b. It is therefore possible to fit this quantity, plotted as a function

of the relative detuning, with (dT/dx)2 (given by eq. (3.3)) since no other parame-

ter included in η is expected to vary with the detuning. Again, as the experimental

calibration parameter χ is not known, a quantitative evaluation of the optomechanical

couplings is not possible. Only the relative strengths of the different contributions can

be obtained here. The net amplitude is fitted using the uncalibrated optomechanical

coupling strengths χGω0 , χGκi
and χGκw . The three partial derivatives are plotted

below, weighted by the corresponding strength. The total dissipative contribution, de-

fined by Gκw
∂T
∂κw

+Gκi
∂T
∂κi

, is also plotted (gray line) to be compared with the dispersive

contribution Gω0
∂T
∂∆ . The fit yields a satisfactory agreement with the experimental data.
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The fit evidence a clear imbalance between the dispersive and dissipative contribu-

tions to the optomechanical coupling. For the optical mode (−), that carries a total

optical quality factor Q− ≈ 470, the coupling is dominated by the two dissipative com-

ponents. From the fit, we estimate Gκi,−/Gω− ≈ 4.38 and Gκw,−/Gω− ≈ −4.61.

However for the optical mode (+), for which we evaluate Q+ ≈ 6680, the dispersive

contribution gω+ dominates the optomechanical coupling and the dissipative compo-

nents Gκi,+/Gω+ ≈ 0.12 and Gκw,+/Gω+ ≈ 0.09 are weak. This shows that the balance

between the dispersive and dissipative processes participating to the optomechanical in-

teraction does not only depend on the displacement field distribution of the mechanical

mode, but also on the optical resonance properties. Nonetheless, the signs of the dis-

sipative contributions are such that the total dissipative component (gray line) remains

comparable to the dispersive component. Thus for both modes the total dissipative

component compares with the dispersive contribution.

3.3.2 Thermo-mechanics effect

The mechanical frequency shift observed when scanning the optical modes is now in-

vestigated through a simple thermo-mechanics model. We plot the frequency shift δΩm

as function of the relative detuning ∆−/2κ− and ∆+/2κ+ respectively in figs. 3.11a

and 3.11b. The reference frequency (when δΩm = 0) is given by the fit as discussed in

the following.

Preliminary, it seems necessary to comment on the fact that this shift can not be

described via the optical spring effect (OSE) as introduced in the theory of cavity op-

tomechanics [Aspelmeyer et al., 2014]. Injecting our system parameters, including the optical

linewidths, the mechanical frequency and the dispersive optomechanical coupling, the

theory indeed predicts a shift below 1Hz, namely 3 to 4 order of magnitudes below the

shift actually observed in our experiments. Additionally the mechanical linewidth Γm
extracted for the fits is constant with the detuning. This is an additional indication

that dynamical backaction is negligible in this optomechanical system. It seems more

reasonable, given the importance of thermal effects in the optics, that this frequency

shift finds its origin in a thermo-mechanical effect.

Temperature growth in the bulk is expected to create material dilatation which mod-

ifies the mechanical properties of the structure. We derive a model based on a 1D

mechanical resonator characterized by the membrane effective Young’s modulus Yeff and

submitted to an internal stress σ0 at ambient temperature [St-Gelais et al., 2019]. When

submitted to a temperature effective variation ∆θmech, the resonator equilibrium posi-

tion (originally x0 = σ0/Y ) is shifted by an amount |∆x/x0| = α∆θmech with α the

thermal expansion coefficient of the material. The sign of this shift depends on whether

the material is initially submitted to a compression internal stress (∆x/x0 < 0) or to a
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tensile internal stress (∆x/x0 > 0). As this model will be applied to a structure in which

the mechanical frequency decreases with the temperature, we will assume σ0 to be com-

pressive in the following. The new internal stress is then given by σ = σ0 − Y α∆θmech.

As the mechanical frequency is proportional to
√
σ, it can be expressed as a function of

the temperature effective growth with

Ωm = Ωm,0

√
1− Y

σ0
α∆θmech (3.8)

with Ωm,0/2π the mechanical frequency at room temperature.

In order to relate the effective temperature shift to the photothermal processes in-

volved in the experiment, we suppose that this quantity is proportional to the power

dissipated in the optical cavity. In the description of the thermo-optic nonlinearity (see

section 2.4), the temperature shift inside the cavity is related to the cavity energy |a|2

through the linear absorption rate κabs of the cavity and the material thermal resistance

Rth such that ∆θcav = Rthκabs|a|2.

However, contrary to the thermo-optic effect in which only the temperature of the

micro-cavity matters, our thermo-mechanical model involves the temperature shift of

the entire membrane. As the photonic modes are localized in the defect cavities, the

temperature distribution in the membrane should be inhomogeneous. Moreover, the

temperature influence on the mechanical frequency should also depend on the overlap

between the mechanical displacement field and the temperature distribution such that a

heat source placed close to the clamping regions should influence less on the mechanics

than the same source placed at a displacement antinode. With these few considerations,

it appears that the temperature shift in the cavity is different from the effective temper-

ature on the membrane. We introduce a constant ξ = ∆θmech/∆θcav depending a priori

both on the system geometry (photonic molecule orientation and position) and on the

considered mechanical eigenmode.

The mechanical frequency extracted from the fits of the mechanical spectra (see

figs. 3.9a and 3.9b) is plotted as a function of the relative detuning for each optical

mode in figs. 3.11a and 3.11b. The data points are fitted with the expression Ωm =
Ωm,0

√
1− A|a|2 with using the free parameters Ωm,0 and A = Y αξκabsRth

σ0
. The cavity

energy |a|2 is given by eq. (2.2). The fit accurately describes the mechanical frequency

shift. The ambient temperature frequency Ωm,0 ≈ 2π × 4.35 MHz is subtracted to the

data in order to represent the frequency shift δΩm = Ωm − Ωm,0.

To comment of the validity on this model, it is interesting to extract a value for the

parameter ξ. We use the effective Young’s modulus of the InP membrane Y ≈ 17 GPa

(see simulations in section 3.1.1) and its thermal expansion α = 4.6× 10−6K−1 [Glazov

et al., 1977]3. The values for the linear absorption rate and the thermal resistance are

3See http://www.ioffe.ru/SVA/NSM/Semicond/InP/ for more details on InP constants.
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Figure 3.11 – Fundamental mechanical mode frequency shift when scanning a) the (−)

optical mode or b) the (−) optical mode. The data (dots) are obtained by fitting the

mechanical peak and are fitted (red lines) with the scaled cavity internal power.

taken from the study of thermo-optic effect with the same structure, where the fit of

the nonlinear transmission gives the product κabsRth ≈ 1.62 K.fJ−1. Finally, the internal

compressive stress in the membrane can be estimated from the mechanical frequency

and the material density (ρ = 4810 kg.m−3 for InP), relying on the analytic expression of

the fundamental eigenfrequency (using the general expression given in [Hauer et al., 2013]

with m = n = 1) in a rectangular membrane with dimensions Lx × Ly :

Ω0,0/2π = 1
2

√√√√σ0

ρ

[ 1
L2
x

+ 1
L2
y

]
(3.9)

For our fundamental eigenmode of the 10 × 20 µm2 membrane, we find σ0 ≈ 29.0
MPa. Finally, one can evaluate the cavity-to-membrane temperature shift ratio for the

fitting parameter A. The values ξ− ≈ 0.61 and ξ+ ≈ 0.98 are respectively found for the

(−) and the (+) optical modes. It can be interpreted that the mode (+) heats more

efficiently the mechanics than the mode (−). As the temperature in the cavity is higher

than the mean membrane temperature, this parameter is expected to be lower than one.

It can be numerically estimated by simulating the thermal equilibrium in the structure

with Comsol. The cavity volume is set at a temperature θ0 + ∆θ by inserting a heat

source inside. The bottom of the SiN layer, that are in contact with the Silicon substrate

in our chip, is constrained to ambient temperature θ0. At the thermal equilibrium, the

simulation provides the temperature distribution on the structure (see fig. 3.12a). The

dissipated power (heat source) is swept such that the mean temperature shift of the

membrane can be plotted as a function of the mean cavity temperature (see fig. 3.12b).

The slope gives the cavity-to-membrane temperature shift ratio ξ = 0.22. We also verify

that the temperature in the cavity is linear with the dissipated power in the heat source,

which is important to confirm that ξ is constant in our model. The simulation inputs the
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thermal conductivity of InP and of SiN (resp. σInP
th = 0.68 W.cm−1.K−1 and σSiN

th = 0.1
W.cm−1.K−1) [Glazov et al., 1977].

Figure 3.12 – a) Temperature distribution at equilibrium. The ambient temperature

θ0 is imposed on the membrane clamps. b) The mean temperature shift ∆θmech in

the membrane is evaluated as a function of the mean temperature shift ∆θcav in the

L3 defects with Comsol. The simulated membrane-to-cavity temperature shift ratio

ξ = 0.22 is given by the slope.

There are many sources of uncertainty in this toy-model, starting with all the material

constants that do not consider the InGaAs quantum well layer present in the membrane,

as well as the geometrical approximations – e.g. the expression used to calculate the

compressive stress is valid for an unclamped rectangular membrane. As the values that

are found for the temperature shift ratio yields below 1 with a coherent order of magni-

tude, we conclude that the model agrees qualitatively with the observed physics4.

With this model it is clear that the distortion of the optical lineshape under thermo-

optic effect would transduce directly in the mechanical frequencies. In particular, by

injecting higher input power, a bistability can emerge in the system near the resonance

wavelength (see section 2.4). Thus by scanning the optical resonance with an input

power enabling such hysteretic behavior to occur, it is expected that the mechanical

modes also experience hysteretic shift of their frequency. We perform this experimental

test with an input laser power Pin = 1.3 mW. The resulting noise spectrum is plotted

as a function of the laser detuning regarding the resonance of optical mode (−) in

fig. 3.13a and mode (+) in fig. 3.13b. The optical mode (−) has low optical Q and

is not distorted enough to become bistable at this input power. The frequency shifts

slightly to lower frequency and the mode amplitude evolves similarly to the low input

power situation shown previously. However, when the optical mode (+) in scanned, the

frequency of the fundamental mechanical mode clearly displays an abrupt jump around

4It could be interesting to enrich the toy model with temperature dependent elastic constants, which

is not the case here, see e.g. [Branicio et al., 2009]

page 59



Chapter 3. Optomechanical characterization

Figure 3.13 – Influence of the detuning on the fundamental mechanical mode lineshape

with Pin = 1.3 mW. a) The tunable laser scans the optical mode (−) and the noise

spectrum is accessed either through this same laser. b) Similarly by scanning the optical

mode (+). The thermo-optic nonlinear response is imprinted in the mechanical frequency

through the photo-thermal process.

∆+/2κ+ ≈ 1.25. Note that here the measurement is performed with increasing laser

wavelength (∆+/2κ+ is swept from 1 to -1.5) 5. Here again the contrast between the

observations made on the two optical modes is very pronounced. This is only caused by

the difference of external quality factors

With the experiments shown in this section, the mechanical properties are accessed

through the same laser used for driving a given optical mode. In appendix B, we show

additional measurements in which a first laser is used to scan an optical mode – possibly

inducing thermo-mechanical shifts due to its power – while a second ”passive” tunable

laser drives the other optical mode at constant wavelength and low power. This way,

the mechanical mode frequency shift and the variation of its amplitude are accessed in

an alternative way.

5The reverse sweep is not shown but realizable. However, as a time-lapse of few seconds is required

to record each mechanical spectrum, it is not possible to continuously sweep the laser wavelength. In

addition our laser shows a better intensity stability when scanning forward than backward. Thus the

backward scan induces perturbations that provoke jumps of the optical state.
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3.4 Conclusion on the optomechanical properties

In this chapter, the mechanical properties of a suspended photonic crystal molecule are

studied through the optomechanical interaction. The mechanical eigenmodes are inves-

tigated via the optical noise spectrum readout. This transduction process act unequally

on the different eigenmodes depending on the considered photonic molecule geometry.

This can be qualitatively understood and verified. A more rigorous approach would

consist in the FEM simulation of the optomechanical couplings involved in all these ge-

ometries. Such simulations rely on the estimation of the overlap between the electrical

field distribution associated to a given photonic mode and the displacement field at a

given mechanical resonance. Two main contributions can be estimated. The ”moving

boundaries”contribution evaluates the change in the dielectric properties of the material

when the dielectric boundaries are altered, e.g. when the holes’ edges are distorted. The

”photoelastic constribution” uses the photoelastic properties of the material to account

for a change in the bulk permittivity. These two contributions can be estimated with

analytical expressions [Eichenfield et al., 2009] and numerically evaluated to engineer the

optomechanical coupling in photonic crystal microcavities [Chan et al., 2012b]. However

such simulations are resource and time consuming because the whole mechanical mem-

brane must be modeled with a fine mesh in order to realistically take the photonic crystal

into account. They are more adapted to optimize the optomechanical coupling in co-

localized photonic and phononic modes. Indeed, in such case the simulation can usually

be performed using only the cavity and neglecting most of the suspended structure (or

using a fine mesh only in the cavity).

In this system, the mechanical motion can influence both on the dissipative and

dispersive features of the optical resonator. Interestingly with coupled optical modes, the

dominant contribution involved in the coupling between the normal modes and on given

mechanical mode is not necessarily the same. Although hardly exploitable in our system

due to low optical quality factors, this aspect could be of great interest for multimode

optomechanics experiments. As an example it has been shown that for a given optical

linewidth to mechanical frequency ratio, there is an optimum dissipative to dispersive

optomechanical couplings ratio in the frame of mechanical cooling experiments. With

coupled optical modes, it is therefore possible to explore several optomechanical regimes

experienced by the same mechanical mode. Multiple theoretical proposals exploit the

balance between these two contributions for the realization of quantum operations such

as cooling [Weiss and Nunnenkamp, 2013] or squeezing [Tagantsev et al., 2018]. However, in our

structures, the optical quality factor does not permit to approach the resolved sideband

regime, in which the quantum experiments can be performed.

Thermal effects are also found to play an important role in this system. In parallel

with the thermo-optic effect discussed in section 2.4, we observe that the mechanical
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frequencies are also affected by the photothermal absorption in the cavity. Relying on a

toy-model, this effect is described as a non negligible thermal shift of the full membrane

when the loaded-cavity temperature increases.
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Nonlinear dynamics

In this last chapter of this first part, we describe two experiments exploiting the nonlinear

properties of the system. First we use the optomechanical interaction to transfer send

modulation tones, generated by intensity modulation of the input field, to the mechan-

ical domain. This interaction is understood in the frame of a theoretical model using

Floquet dynamics approach. In presence of a Kerr-type optical nonlinearity1, this effect

is enhanced and altered such that the mechanical noise spectrum sideband peaks now

show imbalance amplitudes. In practice we use thermo-optic nonlinearity to achieve this

effect, in a bistable regime. Secondly, we rely on the latter for the demonstration of

vibrational resonance amplification of a weak signal.

4.1 Sideband generation via input field modulation

In the following we study the effect of modulated optical drive on the optomechanical

system. We first describe the spectral properties of the modulated input laser field. The

theoretical frame for the optomechanics description is then established via a Floquet

approach. The experimental results follow, from the low optical power regime – where

only optomechanical features are observed – to thermo-optical regime. We finally present

experimental results whose understanding goes beyond the frame of our model, and give

an intuitive explanation of the physics involved.

4.1.1 Input field modulation

The following dynamics is induced by modulating the input field with a Mach-Zender

intensity electro-optical modulator (EOM). The function transfer of such device can be

expressed in the laser frequency rotating frame as a function of the modulation frequency

1A linearity that leads the resonant frequency of the cavity to be shifted by the intra-cavity field.
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Ωmod and modulation amplitude Vmod:

T = ejφ0

2

[
1 + e

j

(
−π/2+β cos(Ωmodt)

)]
with β = π

Vmod

Vπ
(4.1)

The half-wave voltage Vπ is a specificity of the modulator, it corresponds to the voltage

to apply such that the Mach-Zender output changes from constructive to destructive

interference. The modulator transfer function can alternatively be written in terms of

Bessel functions Jk(β) using the Jacobi-Anger expansion:

T = ejφ0

[1− jJ0(β)
2 +

+∞∑
n=1

jn+1Jn(β) cos(n× Ωmodt)
]

(4.2)

Thus the input field carries all harmonics of the modulation tone with amplitudes

given by the above expression.

4.1.2 Theoretical model: a Floquet dynamics approach

In sideband resolved optomechanical system, quantum manipulations of photons and

phonons can be performed via a modulation of the input laser field [Farace and Giovannetti,

2012; Clerk et al., 2008; Mari and Eisert, 2009]. In particular it was shown recently that input

modulation in a resolved sideband optomechanical system can be used to achieve quan-

tum measurements [Qiu et al., 2019] or to reach new types of optomechanical instabilities

[Shomroni et al., 2019]. Here we study the effect of driving laser modulation in an unre-

solved sideband optomechanical system. The following theoretical developments have

been driven by Karl Pelka and André Xuereb, from University of Malta, in the frame of a

collaboration dedicated to the understanding of the following experimental results. The

model describes one mechanical mode coupled to one optical mode. Here we only write

the linearized optomechanical equations describing the optical (resp. mechanical) mean

field a (b) and fluctuating component δâ (δb̂):

ȧ =
[
j(∆− g0[b+ b

∗])− κt
]
a+ E0T e−jφ0

ḃ = −
(
jΩm + Γm

2

)
b− jg0|a|2

δ̇â =
(
j∆− κt

)
δâ− jg0

(
a[δb̂+ δb̂†] + δâ[b+ b

∗]
)

+√κwδâin

δ̇b̂ = −
(
jΩm + Γm

2

)
δb̂− jg0(a∗δâ+ aδâ†) +

√
Γmδb̂in

The optical cavity is driven with a laser of amplitude E0 and carrying fluctuation

given by δâin. The mechanical resonator is driven by the thermal fluctuations δb̂in. The

laser frequency ωL is detuned from the optical resonance frequency ω0 by an amount

∆ = ωL − ω0. The optical cavity total decay rate is κt while the external decay rate is
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κw. The mechanical mode has frequency Ωm and damping rate Γm

2 . Finally, g0 is the

single-photon coupling strength, i.e. the dispersive optomechanical coupling. The next

development of the model consists in applying Floquet techniques [Malz and Nunnenkamp,

2016] in order to obtain an expression for the cavity fluctuation power spectral density

(PSD of δâ), which is the quantity we investigate experimentally by measuring the noise

spectrum of the output optical field. The model predicts the presence of mechanical

sidebands resulting from the coupling between the added modulation tone and associated

harmonics with the mechanical degree of freedom, via the optomechanical interaction

(see fig. 4.1).

Figure 4.1 – The modulation tone present in the input optical field (left) is transferred to

the mechanical domain where several mechanical resonances yield with their respective

displacement amplitude. The resulting optical noise spectrum shows the optomechan-

ically transduced mechanical peaks, each with its respective optomechanical coupling.

Each peak is surrounded by the modulation harmonics.

4.1.3 Low laser power: optomechanical sidebands

The input field modulation is obtained with an intensity EOM placed before of the vac-

uum chamber optical insertion (see fig. 4.2). The injection in the EOM is optimized with

a fibered polarization controller (FPC). The other FPC is kept before the amplification in

the EDFA in order to properly couple the circulating laser field with the photonic modes.

The modulation is given by sending a periodic RF signal to the EOM via a function

generator. This latter outputs the signal Vmod cos(Ωmodt) where Vmod and Ωmod are the

modulation amplitude and frequency. The half-wave voltage of the EOM is calibrated

to Vπ = 7.5 V. Together with the tunable laser wavelength λ and output power, it

gives to the user four parameters to play with in the following experiments. In practice,

concerning the laser power, we will continue to refer to the estimated circulating power
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Pin.

Figure 4.2 – The setup now includes a fibered intensity modulator placed before the

waveguide input.

We focus on the 2V3 photonic molecule that was already extensively studied so far2.

In the first place we try to avoid the prevalence of thermal effects by using a relatively

low circulating power Pin = 325 µW. We set the modulation with Vmod = 2 V and

Ωmod = 2π × 50 kHz. The noise spectrum measurements shown in the following focus

on the fundamental mechanical resonance (mode index (1,1)). Its central frequency, at

room temperature, is estimated to Ωm,0 = 2π × 4.34 MHz. The mode has mechanical

quality factor Qm = Ωm/Γm ≈ 778. The first measurement consists in measuring the

noise spectrum of the output field as a function of the laser wavelength, for each optical

mode. The resolution bandwidth is set to 50 Hz. The laser wavelength is swept upward

on each mode in order to cover the same spectral range that in the measurements shown

in section 3.3.

The results are shown in figs. 4.3a and 4.3b. Here we use directly the net amplitude,

obtained by removing the noise level from each spectrum. For both optical modes, the

mechanical resonance amplitude and frequency evolve as described previously. However,

this main peak (”order 0”) is followed by small replica equidistantly positioned from

the order 0 position. In the following we will refer to these replica as sidebands. The

frequency difference is given exactly by Ωmod (order ±1 at Ωm±Ωmod). In the case of the

mode (+), in fig. 4.3b, for which the thermo-mechanic shift of Ωm is more pronounced,

we clearly see that the sideband frequencies experience the same shift. Still in the case of

this particular mode, we observe the order 2 sidebands (at Ωm±2Ωmod) but only for a very

restricted range of wavelength 1565.57 to 1565.62 nm. These second order sidebands are

not visible when the optical mode (−) is driven. The model indicates that the sidebands

2see thermo-optic effect in section 2.4, and all the measurements shown in chapter 3
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Figure 4.3 – Noise power spectrum signal-to-noise ratio measured as a function of the

laser wavelength for the optical mode (−) (a) and for mode (+) (b). The modulation

uses Vmod = 2V and Ωmod/2π = 50 kHz. Measured with input power Pin ≈ 0.3 mW.

amplitude depends to the optomechanical coupling. In the meantime, we have shown in

the previous measurements that, in this structure, the optomechanical coupling between

this mechanical mode and the optical mode (−) is dominated by dissipative processes.

As the present model accounts only for a dispersive optomechanical process, it is possible

that this explains why there are fewer sidebands with lower amplitude when the mode (−)

is driven. However, this intuitive explanation has not yet been confirmed by the theory.

For this purpose, the model should be adapted in order to account for the dissipative

optomechanical contribution. In the following, we will focus on mode (+), which mainly

couples dispersively with the mechanics.

Figure 4.4 – Peak net amplitudes obtained from fig. 4.3b. Mechanical peak (order 0) in

black, sidebands of order +1 (red) and -1 (blue).

For each spectrum (i.e. each value of λ), we fit the peaks with Lorentzian lineshapes
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such that the noise floor and the amplitudes, frequency and linewidth or the sidebands

and of the order 0 can be extracted. In absence of thermo-optic effect, the model

predicts balanced sidebands, which we want to verify as a function of the detuning.

For this purpose, we show the amplitudes of the mechanical mode and the first order

sidebands in fig. 4.4. These data can be collected only when the fit is successful, i.e.

only when the amplitude is high enough. The sidebands have indeed the same amplitude,

according to this measurement.

Figure 4.5 – Noise power spectrum measured as a function of a) the modulation frequency

and b) the modulation amplitude. Right side: typical averaged mechanical spectra.

Measured with λ = 1565.75 nm and Pin = 0.36 mW.

We now set the laser wavelength to λ = 1565.63 nm, such that the order 0 peak

amplitude is maximum, in order to check the influence of both modulation parameters,

Ωmod and Vmod. In fig. 4.5a, the modulation amplitude is set to Vmod = 2 V. The

color scale is set tight enough to visualize the first order sidebands. Note that at this

particular wavelength, the second order sidebands are not visible as discussed with the

previous figure. This measurement permits to verify the sidebands relative position from

the order 0 is given by the modulation frequency. From 75 kHz to the top of the

heat map, a sideband belonging to another mechanical mode can be observed. This

mode is sustained by a different photonic molecule structure – suspended over the same
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4.1. Sideband generation via input field modulation

waveguide – displaying a resonance is the same spectral region. This is verified with the

experimental techniques detailed in sections 2.3.2 and 3.1.2.

A complementary measurement is done with Ωmod = 2π × 50 kHz while Vmod is

swept. The resulting heat map is shown in fig. 4.5b. In the present regime, as illustrated

with the typical spectra on the right, the order 0 and clearly dominant compared to the

sidebands. Actually these latter are hardly visible for Vmod < 1.5 V. One method, in

order to increase there amplitude, consists in using higher laser input power sent to the

system.

4.1.4 Thermo-optic regime: sideband imbalance

The thermo-optic nonlinearity in the system is added to the theoretical description. For

this purpose we introduce the cavity temperature variation ∆θ(t) which follows the

following dynamics:

d∆θ(t)
dt

= κth

[
Rthκabs|a|2(t)−∆θ(t)

]
(4.3)

with Rth the thermal resistance, κabs the absorption rate of the cavity and κth the

thermalization rate. The first constant depends on the photo-absorptive properties of

the system while the second relies on the thermal diffusion processes, which is why they

are expected to be different. Beside, the optical resonance frequency is now modeled as

a function of this temperature offset and of the resonance frequency ωcav in absence of

laser drive:

ω0 = ωcav
(
1 + 1

n0

dn

dθ
∆θ(t)

)
(4.4)

This implies that the laser detuning is modulated by the cavity temperature. Moreover,

although the modulation signal is a sinus, the thermal response is ruled by a competition

between absorption and relaxation. In consequence, this nonlinear oscillation will lead

to imbalance sideband amplitudes, e.g. the amplitude of sidebands −1 and +1 are not

the same anymore, generally speaking (see fig. 4.6).

We inject the system such that the circulating power is Pin = 1.3 mW. In these

conditions, the optical mode (+) becomes bistable between 1565.7 nm and 1566.8

nm. This is verified manually by scanning the mode in both directions and evaluating

the hysteresis edge positions, in absence of intensity modulation. The modulation is

set with Ωmod = 2π × 50 kHz and Vmod = 2 V. We scan the optical mode (+) in

two configurations. The first consists in using a first low-intensity laser, with intensity

modulation, for the scan, and a second laser driving the optical mode (−) with λ− =
1554.7 nm for a passive readout of the mechanical resonance. The probe laser is also

filtered in order to get rid of the cross-talks. More details about this two-lasers driving

scheme are given in appendix B. The resulting heat map in shown in fig. 4.7a. The laser
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Figure 4.6 – In the linear regime of the optical resonator, the modulation harmonics are

directly transferred in the mechanical rotating frame with balanced sideband amplitudes

(left). The Kerr-type nonlinearity di-symmetrize the sidebands (right).

probing the other mode do not see this additional tone. This indicates that there is no

optomechanical process that couples the optical modes together, through the mechanics.

It also simply confirm that, as soon as the probing laser has sufficiently low intensity, the

optical normal modes are orthogonal and therefore uncoupled.

The second configuration is the standard direct readout using only one laser, that

was used so far. The measurement can be seen in fig. 4.7b. In both cases, the order

zero peak experiences a similar frequency shift. The modulation sidebands however only

appear in the laser field sent to the mode (+), i.e. that is initially modulated.

Figure 4.7 – Noise power spectrum measured a) indirectly using a probe laser with

wavelength λ− = 1554.7 nm and b) directly with the scanning laser at power Pin = 1.3
mW.
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4.1. Sideband generation via input field modulation

Now we specifically focus on fig. 4.7b for which there are several interesting features

to discuss. Firstly, all the peaks experience an abrupt jump of their respective central

frequency around 1565.8 nm. This is related to the optical bistability. The mechanical

frequency jump is well understood from our preliminary measurements in the previous

chapter. As all the sidebands’ positions are constrained by the mechanical frequency and

the modulation frequency, they display the exact same hysteretic behavior. Secondly, we

note that now up to three sidebands are observed on each side of the order 0. Finally, as

particularly visible with the first order sidebands (±1), their amplitudes are not balanced

anymore. Near the bistability edge, highlighted with the horizontal dash-dotted line at

λ = 1565.8 nm, the noise level quickly grows above the peak amplitudes. This feature

is not understood from the theoretical model and will be the object of a discussion later

on. For now, we focus at the center of the bistable region, at λ = 1565.75 nm (dashed

horizontal line).

4.1.4.1 At the bistability center

Figure 4.8 – Noise power spectrum measured as a function of a) the modulation frequency

and b) the modulation amplitude. c)-d): averaged mechanical spectra. Measured with

λ = 1565.75 nm and Pin = 1.3 mW. e)-f) Numerical simulations.

We map the noise spectrum near the fundamental mechanical resonance as a func-
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tion of the modulation frequency (for Vmod = 2 V) in fig. 4.8a and as a function of

the amplitude depth (for Ωmod = 2π× = 50 kHz) in fig. 4.8b. These measurements

emphasize the imbalance between the sidebands amplitude. We note that the effect of

more modulation depth seems to be equivalent to slower modulation as both tend to

balance the sidebands’ amplitudes back. We also remark that the sidebands of order -1

dominates the order +1 when Vmod is sufficiently high and Ωmod sufficiently low (see

averaged spectra in figs. 4.8c and 4.8d). In this case, we finally see a diminution of the

order 0 amplitude. For example for Vmod = 2 V and Ωmod = 2π×14 kHz, the amplitude

of the mechanical peak is lower than the -1 order sideband.

By imputing the calibrated physical quantities in the model, the power density spec-

trum can be evaluated as a function of the experimental variables. These quantities

include the optical and mechanical modes frequencies and linewidths, the estimated

circulating power and the thermo-optic properties of the mode. Several parameters are

kept free, as the modulation depth calibration, the thermal absorption and thermalization

rates and the single-photon optomechanical coupling g0. The latter is actually estimated

in section 3.2.1 but, as discussed earlier, this calibration is not perfectly reliable since it is

valid only for purely dispersive optomechanical coupling. The numerous free parameters

as well as the complexity of the solutions did not enable a quantitative modelization

of the experiment. However the main features are present in the theoretical heat maps

shown in figs. 4.8e and 4.8f. Here we plot the decimal logarithm of the power spectral

density. The relative sideband amplitudes is well captured by the model, except for the

order 0 which is not found as low as in the experiments for Ωmod < 2π × 50 kHz (or

equivalently for Vmod > 2 V).

Figure 4.9 – Peak amplitudes obtained from figs. 4.8a and 4.8b.

The peak amplitudes are extracted from the data by fitting the spectra one by one.

The evolution of these amplitudes, shown in figs. 4.9a and 4.9b confirm the opposite
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4.1. Sideband generation via input field modulation

tendency observed as a function of the modulation parameters. Note that for Ωmod <

Γm, highlighted by a transparent stripe in fig. 4.9a, the fits are not successful as the

sidebands can not be resolved. The confidence intervals associated to these amplitudes,

and given by the fit of each peak, are lower than the symbol sizes. This imbalance is

therefore a significant effect.

According to the model, the different timescales involved in the thermal absorption

and thermalization operations are responsible for these features. In fact, the second

process is presumably much slower than the first one. As a result, the detuning is not

sinusoidally modulated which tends to favor some particular harmonics of the modulation

frequency in the output optical field. As these harmonics are captured by the mechanics

through the optomechanical interaction, it comes out that the optomechanical sidebands

have unbalanced amplitudes for a given order. When the modulation frequency increases,

it becomes harder for the cavities to thermalize. Thus, after some threshold, the thermal

effects becomes weak. As a result, the sidebands tend to balance as observed in fig. 4.9a

around Ωmod/2π = 25 kHz. This threshold frequency basically corresponds to the cut-

off frequency of the thermo-optic bistability as discussed in the context of vibrational

resonance, using a similar structure, in section 4.2. The cut-off frequency is basically

given by the thermalization times in the cavity.

symbol meaning typical value

Γ−1
m mechanical damping time 200 µs

Ω−1
m mechanical displacement period 4 µs

κ−1
th thermalization time in the material (fits from fig. 4.17) 3− 4 µs

κ−1
abs cavity linear absorption time3 (fit from fig. 2.12b) 10 ps

κ−1 cavity lifetime 5 ps

Table 4.1 – typical time constants involved in the experiment

Beyond the frame of the present experimental characteristics, the model suggests

the use of multimode optomechanics. For this, one would require a system sustaining

several mechanical modes with a reasonably low intermodal frequency ∆Ω. Then the

modes must be strongly coupled to the optical cavity mode, such that parametric am-

plification of the mechanical motion can be achieved, with the presence of radiation

pressure induced mechanical bistabilities [Bagheri et al., 2011]. In this configuration, one

3This value is the most uncertain in this table as it is not provided by a direct measurement but

deduced after assuming the thermal resistance Rth ≈ 1.7×104 K.W−1 that was estimated in [Brunstein

et al., 2009]
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can use a modulation of the input field with a modulation frequency precisely matching

∆Ω, and with the laser frequency driving the optomechanical system in the blue-detuned

regime. It becomes therefore possible to address both mechanical modes at the same

time thanks to the multiple tones generated in the optical field. This configuration be-

comes particularly interesting in presence of optical Kerr-type nonlinearity as the mod-

ulation sidebands transferred to the mechanical domain are now imbalanced such that

the mechanical modes can be asymmetrically addressed. In particular, as we have seen

from the experimental results, the modulation depth constitutes a control parameter to

chose which sideband dominate. With this parameter, one could control which mechan-

ical mode is bistable or not. This conceptual scheme, that naturally emerges from our

Floquet dynamics theoretical model can be adapted to a ”many-mode” optomechanical

system. It thus opens the way towards the realization of logic gates using multimode

optomechanical system.

4.1.4.2 At the bistability edge

Figure 4.10 – Noise spectrum measured as a function of the modulation frequency (a)

and amplitude (b). Right side: typical averaged mechanical spectra. Obtained with

λ = 1565.85 nm and Pin = 1.3 mW.
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When the intensity-modulated laser is positioned at the edge of the thermo-optic

bistability, the noise floor increases by about 10 dB. This effect was sighted in fig. 4.7b.

We now take a closer look to this peculiar regime. The noise power density spectrum

is measured one more time as a function of the modulation parameters. This time the

laser wavelength is placed at λ = 1565.80 nm. The results are presented in figs. 4.10a

and 4.10b. Firstly, one can verify that the noisy region is recovered at the set of pa-

rameters used for the laser wavelength scan: at Ωmod = 2π × 50 kHz and Vmod = 2
V. However the measurements show that this regime appears only for sufficiently high

modulation depth (typically Vmod > 1.75 V here) and only in a restricted range of mod-

ulation frequency. From Vmod = 1 to 2 V, the optical state tends to switch stability.

As the mechanical frequency is thermo-mechanically shifted by the intracavity field, it

shows several abrupt changes from the low-power value Ωm − Ωm,0 = 0 to the shifted

value Ωm − Ωm,0 ≈= −21 kHz. As the measurement of a single spectrum is averaged

several seconds, if the switching occurs during the measurement, it leads to an averaging

effect such that the spectrum displays several times the same peaks at different positions.

This is the case for example of the reported spectrum measured at Vmod = 1.5 V. This

observation motivates the real-time investigation of the optical cavity under modulated

drive that is the object of the next section.

Figure 4.11 – Schematic of the response of a nonlinear optical resonator as a function

of the applied force (dark blue). The system displays a bistable regime (red transparent

stripe).

The averaged spectra extracted from the map (on the right side) seem to indicate

that the mechanical peaks, including the sidebands, do not add up to this high noise

level. These peaks are indeed drowned into the noise. The noise floor, at the maximum

noise level, is oscillating with a period given by Ωmod and also decreases slowly by

approximately 1.2 dB over the 350 kHz spectral span. These elements conduct to the

conclusion that this high noise level is the consequence of an optical dynamics that do
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not relate to the optomechanical features of the system. In seems more probable that the

modulation near the thermo-optic bistability edge leads to non trivial oscillations of the

optical state. Such oscillations are also more likely to occur when the modulation depth

is increased, as the system explore a wider range in the parametric response space. This

is illustrated with a schematic in fig. 4.11. The dark blue curve schematically represent

the response of the nonlinear system as a function of the applied force. Here the intensity

modulation of the input laser corresponds to a modulation of the applied force and the

modulation depth is represented by the black arrow size. If the depth is small enough,

the system trajectory (orange arrows) lies on a stable branch (left situation) while it

starts switching is the depth passes a certain threshold. This representation is slightly

simplistic as it does not account for the modulation of the detuning that comes with the

force modulation. In other words with this schematic, the shape of the response itself

should be modulated. Moreover, the dynamical evolution of this response depends on

the heating and cooling duration.

Figure 4.12 – detected noise floor obtained from fig. 4.10a.

In fig. 4.10a, the noisy region is limited to a specific range. By extracting the noise

level for each line, that we report in fig. 4.12, this frequency range is more precisely

determined. It appears that the noise floor follows a Gaussian distribution centered

around 30 kHz with a width of about 25 kHz. At high frequencies, the absence of

oscillations probably signifies that the modulation is too fast for the optical resonator

to reply, such that the trajectory do not reach the opposite edge of the bistability and,

therefore, lies on the same stable state. For low modulation frequency however, the

response adiabatically follows the excitation. The noise level at the mechanical frequency

is probably not impacted by the dynamics of the optical resonator that occurs at low

frequency. Because of the complex evolution of the bistable response curve, due to these

different time scales involved in the modulation process, it is not simple to apprehend

the effect of the modulation frequency on the oscillation regime.

This phenomenon has been observed on other structures on which it was possible

to performed further measurements. For example in figs. 4.13a and 4.13b we show

respectively the optical noise spectrum for different modulation amplitude (with fixed
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Figure 4.13 – Frequency-domain response of the optical field in a 2D4 photonic molecule.

The system is driven near an optical resonance with intensity modulation. a) The mod-

ulation amplitude is varied with Ωmod = 50 kHz. b) The modulation frequency is varied

with Vmod = 2 V. The mechanical modes (shown with arrows) are quickly hidden by the

modulation peaks. inset: the frequency pattern for Vmod = 2 V and Ωmod = 50 echoes

to the observation in the previous results (see fig. 4.10b inset at 2.5 V).

modulation frequency 100 kHz) and for different modulation frequency (with fixed mod-

ulation amplitude 3 V). In this system4, several mechanical modes can be observed

between 7 MHz and 9 MHz, as indicated with the arrows, but are quickly hidden by

the modulation peaks resulting from the periodic jumps of the system. In particular for

Vmod = 2 V and Ωmod = 50 kHz, the optical spectrum shows a periodic pattern very

similar to the one discussed in fig. 4.10b (inset at 2.5 V), as emphasized with the inset

in red in fig. 4.13b.

4.2 Vibrational resonance in thermo-optic bistability

Vibrational resonance has been introduced in [Landa and McClintock, 2000] as an analogy

with stochastic resonance [Dykman et al., 1995], in which noise is added to a bistable

system enabling the amplification of a weak signal. In vibrational resonance however,

the amplification is achieved and controlled by replacing the noise with a high frequency

4This system correspond to a 4D4 photonic molecule that we further investigate in the vibrational

resonance experiment, in the following section.
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(HF) periodic signal as soon as the amplitude of the latter passes a certain threshold.

Nevertheless the mechanisms involved in these two phenomena leads to the same result.

The added signal (either noise of a HF signal) permits to distort the nonlinear response

lineshape of the system. This way, the system can freely switch from one stable state to

the other. Originally unable to flip the resonator state, the weak signal can experience

amplification if the amplitude difference between the two stable states overcomes the

amplitude of the weak signal.

Vibrational resonance has been theoretically studied in different type of nonlinear

systems, e.g. in neural network [Deng et al., 2010], in excitable systems [Zaikin et al., 2002]

or in biological networks [Rajasekar et al., 2012]. Several experimental demonstration have

also been conducted in electronic circuits [Ullner et al., 2003], macroscopic bistable laser

[Chizhevsky et al., 2003] or electro-mechanical Duffing resonator [Chowdhury et al., 2020] for

example. In the following, we focus on a thermo-optic bistability for realizing the vi-

brational resonance amplification of a weak low-frequency signal. Several conditions are

required for amplifying a signal with this method. First, it only operates for sufficiently

weak signals. If the modulation amplitude is initially already high enough to induce

switches in the bistability, this method is not adapted to perform amplification. The

threshold modulation amplitude Vt separates the regime in which the system state ac-

curately follows the modulation (Vmod > Vt) from the regime where the system state

stays unchanged – or hardly flips – under modulation (Vmod < Vt). This second situation

is required for performing the amplification. Secondly, as it all relies on the faculty for

the system to switch stable state, the weak signal frequency must be low enough for

this switching to occur, i.e. lower than a cut-off frequency Ωc. Finally, the frequency

of the HF signal must be high compared to the modulation frequency Ωhf � Ωmod but

smaller than the resonator frequency. Here since we consider an optical resonator with a

resonance frequency of the order of 1014 Hz, the range in which the HF signal frequency

must be picked is basically limited by the equipment. Both the cut-off frequency and the

threshold amplitude must be estimated before proceeding to the vibrational resonance

experiment. Interestingly in our system, this characterization can be performed both by

measuring the transmitted optical field or with the mechanical frequency in which the

optical state is encoded.

4.2.1 Bistability characterization

We focus on a 4D4 photonic molecule (4 defect-cavities diagonally separated by four

lines of holes). More details about the 3 or 4 cavities photonic molecules are given in

appendix A. A scanning electron micrograph of the molecule is shown in fig. 4.14a. In

the associated spectrum shown in fig. 4.14b, four resonance dips are identified, with

unbalanced optical linewidths. When driven with an estimated input power Pin = 240
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Figure 4.14 – a) SEM image of a 4D4 photonic molecule. b) Transmission spectrum of

the system. The four dips correspond to the optical eigenmodes of the system.

µW, the molecule response displays a strong thermo-optic shift of the resonances, more

pronounced for the 2nd and 3rd dips. The thermo-optic bistability could not be directly

characterized due to the strong instabilities of the input optical fiber under high laser

power. However, by measuring the mechanical noise spectrum as a function of the

laser wavelength, the thermo-mechanical shift of the mechanical frequencies enable to

visualize the optical state. Scanning the laser wavelength forward provides the map

presented in fig. 4.15. In this measurement, the scan is realized over the 2nd and 3rd

optical resonances while the 1st resonance, much broader and therefore barely nonlinear,

is ignored. It appears clearly that both the 2nd and 3rd resonances are bistable as

evidenced by the jumps in the mechanical frequency. By manually scanning downward

the laser wavelength, we access the jump-up positions of the optical states. This way

the hysteretic trajectory of the mechanical frequency is recovered and indicated with

oriented black dashed lines.

4.2.2 Thermo-optic switching time

When the optical resonator state flips, it requires a certain time to reach its new stability.

Under modulation, the optical state is asked to flip twice a modulation cycle, which

is possible only is the switching time τs is short enough. Therefore, the maximum

modulation frequency allowing the system to accurately flip twice a period is given by

Ωc/2π ∼ 2τ−1
s . It is possible to estimate the cut-off modulation frequency by measuring

the typical switching time of the system. The idea is to modulate the input input slowly

enough such that the transitory regime, in which the system leaves a stable state to

reach the other one, can be measured. For this purpose, the laser wavelength is set at

the center of the bistability (λ = 1566.75 nm) and modulated in the EOM with a square
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Figure 4.15 – Mechanical noise spectrum mapped while the laser wavelength is scanned

upward in the 4D4 photonic molecule. The hysteretic mechanical frequency shift is

indicated with dashed black arrows. The frequency corresponding to each optical state

(green and blue disks resp. for the cold and hot states) are identified at wavelength

λ = 1566.75 nm (blue dashed).

signal carrying amplitude Vmod and frequency Ωmod. In principle, there is no fundamental

difference between a sine or a square signal in this experiment. However, the second

allows abrupt jumps of the optical state under modulation, which simplifies the data

analysis. At the waveguide output, a fiber splitter allows to trigger the transmitted

signal via a fW sensitivity photodetector in parallel of the broad band detection used so

far for the noise spectrum analysis. This new detector returns an electrical voltage Vout

that is triggered in the oscilloscope, together with the reference modulation signal.

With a modulation amplitude Vmod = 2 V and frequency Ωmod = 10 kHz, the system

response is recorded over several hundred of modulation cycles. The data are averaged

cycle by cycle are plotted in fig. 4.17. During one cycle, the resonator, initially set in

the cold state (high transmission), transits towards the hot state and then returns back

to the cold state at half a cycle. This transitory regime manifests as an exponential

decay from one state to the other. When the resonator is stabilized in a state, we should

observe a plateau: a constant value of the transmission. Instead, we observe a slowly

decaying value because the photodetector we use filters out the DC component of the

signal. Fitting the averaged data with a function f(t) = A exp(−t/τs) +B provides the

switching time 4.4 µs and 3.4 µs respectively for the heating time and the cooling times.

The significance of the difference between these two values is not established but both

values are clearly coherent with previous estimations (1 µs. in [Brunstein et al., 2009]).
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Figure 4.16 – The experimental setup now includes a fW sensitivity photodiode whose DC

outputs is sent to an oscilloscope. An electrical power splitter now allows a simultaneous

read out of the noise spectrum in the ESA and a two-channels FM-demodulation after

amplification of the signal. The demodulation amplitudes are sent to the oscilloscope.

Finally, the latter also inputs the modulation signal for reference.

The corresponding cut-off frequency, as discussed above, is of the order of 125 kHz. In

the literature similar measurements have been performed in various systems. Depending

of the type of optical resonator (micro-rings, Fabry-Pérot, 1D or 2D photonic crystal

resonators), on the material and of the type of nonlinearity, this decay time can be of

several milliseconds [Jang and Chen, 2003], or as low a few hundred of nanoseconds [Qiu et al.,

2017]. Note also that this cut-off frequency corresponds to the maximum modulation

frequency allowing sideband imbalance in the previous experiments. Indeed, Above this

frequency, the thermo-optic effect becomes negligible as the thermal variations of the

cavities remain week. This is indeed what we have observed in fig. 4.9a; where the first

order sidebands amplitudes tend to balance around 125 kHz.

In this characterization, the trace of the optical state in the mechanical frequency is

possible only because the modulation frequency is way below the mechanical linewidth

(Ωmod � Γm). Therefore the optomechanical sidebands, that we describe in the previous

section, are all gathered at the mechanical frequency such that there is enough noise

amplitude for the signal to be analyzed. At higher modulation frequency, the same study

would be possible only through the optical transmission output, as soon as it lies below

the cut-off frequency.

4.2.3 Threshold amplitude

The switching between optical stable states can be driven by the field modulation only if

the modulation amplitude passes a certain threshold. Vibrational resonance amplification
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Figure 4.17 – Thermo-optic bistability switching time characterization. The data are

obtained by averaging one hundred traces with 1 modulation period duration. The fit

(red lines) inputs an exponential decay (dashed) or growth (straight) respectively. The

reference modulation signal is shown for indication.

can be demonstrated on modulation signal with amplitude set below this threshold, and

therefore we need to calibrate it. The method used for this purpose is straightforward:

increase the modulation amplitude and check the optical response. When the amplitude

is high enough, the optical state should flip at the modulation frequency. The latter

must be lower than the cut-off frequency.

In our case, the optical state can be accessed both though the transmission signal or

through the position of the mechanical mode in the noise spectrum. Here we focus on the

two aspects. On one side, we record the transmission response in the oscilloscope. On

the other side, the output signal is analyzed in the ESA via a fast photodetector. From

the spectrum, we determine the two positions of the mechanical peak Ωc
m = 2π×6.0572

MHz and Ωh
m = 2π × 6.0164 MHz respectively for the cold and hot optical states (see

fig. 4.15). The RF signal is therefore amplified and demodulated using a lock-in amplifier.

Two demodulation channels are used at frequencies Ωc
m and Ωh

m and with passband filter

width of 1 kHz. The two corresponding demodulation signal amplitudes V h
m and V h

m are

recorded in the oscilloscope.

The resulting time traces are shown for three values of the modulation amplitudes in

fig. 4.18a. In each case, we show from top to bottom the reference modulation signal,

the transmission signal and the demodulation amplitudes. Below Vmod = 950 mV, the

output signal show a square modulation following the drive. However, the amplitude of

this signal does not correspond to optical switching in the bistability. In fact the optical

state remains in its initial state. This is confirmed by the constant high noise amplitude at
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Figure 4.18 – a) For Vmod = 900, 980 and 1200 mV, from top to bottom: reference

modulation signal, transmitted signal Vout and demodulated noise amplitude at the hot

(cold) state mechanical frequency Ωh
m (Ωc

m). b) Probability for the optical state to be

in the hot (blue) or cold (green) state. Measurement performed for Ωmod = 2π × 10
Hz. The probability evaluation uses the time-trace V h

m of length 20 s. The voltage is

compared to an arbitrarily defined threshold to determine whether the system lies in the

cold or in the hot state.

the cold mechanical frequency. Meanwhile the noise amplitude at the other mechanical

frequency stays constant low. Around Vmod = 980 mV, the optical state starts to flip. It

is however not perfectly mastered by the modulation. The jumps are perfectly correlated

whether the optical output or the mechanical frequency position is checked. Finally, over

Vmod = 1 V, the optical state switches are perfectly synchronous with the modulation

reference signal.

For a given time trace, one can calculate the residence probability of the optical

state. It simply consists in measuring the amount of time spent by the system in the

cold (or hot) optical state. To do so, a threshold line is arbitrarily chosen in between

the two corresponding amplitude levels. The probability for the system to set in the

cold state is 100% for low modulation amplitudes (see fig. 4.18b). It quickly go down

to 50% around the threshold amplitude Vt = 980 mV. The threshold amplitude Vt is

clearly characterized with this measurement. Note that the evaluation of the residence

probability can be equivalently performed using Vout or V h
m while V c

m is too noisy to obtain

such a clear threshold curve. The statistical error associated to the residence probability

is not plotted but verified to be significantly low, i.e. typically lower than 10%.
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Chapter 4. Nonlinear dynamics

4.2.4 Amplification via high frequency modulation

Now that the cut-off frequency and the threshold modulation amplitude are calibrated, we

investigate the amplification of a weak signal via a high-frequency intensity modulation.

The input modulating signal writes:

Vref = VmodSQ(Ωmodt) + Vhf cos(Ωhft) (4.5)

where SQ(x) = sign(sin(x)) is the square function. With this electro-optical modulating

signal, the optical field carries both signals.

Figure 4.19 – a) Time-domain and b) frequency-domain transmitted signal Vout for

three values of the high frequency signal amplitude Vhf = 800, 1280 and 1500 mV.

Ωhf = 2π × 80 kHz

When Vmod < Vt and Vhf = 0, we know that the square signal can not flip the optical

state. However, the increase of Vhf comes with a significant distortion of the bistability

until the switching process can be re-activated. First, we try with Vmod = 500 mV. We

also chose a frequency Ωhf = 2π × 80 kHz and record the output optical response for

increasing value of Vhf . The results are show in fig. 4.19a through three examples. While

at 400 mV the system stays on the hot state and no flip occur, we observe a transition

around 640 mV. Here the state inaccurately flips. The maximum fidelity – i.e. correlation

between the flips and the reference square signal – is obtained around Vhf = 750 mV.

In each case, we plot the fft spectrum of the time trace. At frequency Ωmod, a peak

testifies the presence of the low-frequency square modulation. Its amplitude increases
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when the switching process starts. In parallel of these measurements, the noise amplitude

at the mechanical resonance frequency have also been recorded in order to compare its

dynamics with the output optical field. However, because of the HF signal injection, the

mechanical peak share its amplitude with the surrounding optomechanical sidebands. As

a result, this amplitude is too low to be accurately analyzed.

The amplification factor GVmod is given by the ratio of the peak amplitude at Vhf by

its value when Vhf = 0:

GVmod = Ṽout(ω = Ωmod, Vhf)
Ṽout(ω = Ωmod, Vhf = 0)

(4.6)

For a given low-frequency signal amplitude Vmod, this factor is evaluated as a function

of the high-frequency signal amplitude Vhf . This measurement is reproduced for several

values of Vmod. The resulting amplification curves of shown in fig. 4.20. By definition,

amplification occurs when GVmod > 0. It is the case for modulation amplitudes higher

than 50 mV. This value set a threshold under which the weak signal can not be amplified.

In fact, at this value, an amplification is observed but only in a very limited range of

HF signal amplitudes and the corresponding amplification factor is below 2. For higher

values of Vmod, we observe an clear amplification up to 10. The range of Vhf in which

this occurs is basically centered around 650 mV, except for the case Vmod = 100 mV.

Moreover, the width of this amplitude range yields a maximum for Vmod = 200 mV. At

this value, we find an amplification higher than 7 between Vhf = 500 and Vhf = 750 mV.

Figure 4.20 – Amplification factor as the function of the high-frequency signal amplitude

for different modulation signal amplitudes. The amplification factor is given by the

amplitude of the fft-domain signal peak at Vhf divided by its equivalent at Vhf = 0. HF

signal has frequency Ωhf = 2π × 80 kHz

In summary, we have demonstrated amplification of a weak signal using vibrational
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resonance in a waveguide-coupled thermo-optic microresonator. The preliminary char-

acterization of the bistable system is possible both through the waveguide transmission

optical field and through the thermo-mechanical effect induced in the optomechanical

cavity. This experimental results are not backed-up theoretically, although the mecha-

nism of vibrational resonance is well understood in the literature. In complement of this

experimental demonstration, it would be appreciable to draw a quantitative theoretical

analysis of the phenomenon, based on the thermo-optic model. It would also be inter-

esting to reproduce the experiment in an higher quality factor optical resonator, such

that the mechanical resonances would get actively involved in the dynamics which would

be a suitable basis for nonlinear optomechanics experiments.

4.3 Conclusion on the nonlinear dynamics experiments

All along this chapter, the effect of an intensity modulated drive on a thermo-optic op-

tomechanical cavity is investigated through different aspects. First, using low intensity

input laser, we describe and observe optomechanical sidebands surrounding the mechan-

ical resonances. This effect results from the optomechanical interaction which enable

a transfer of the modulation tones from the optical domain to the mechanical domain.

The qualitative result yield in the apparition of sidebands surrounding the mechanical

resonances in the noise spectrum of the output laser field. At higher input power, the

effect of thermo-optic nonlinearity in the optical resonator leads to an asymetrization of

these sidebands, as soon as the modulation frequency stands below a certain value. The

phenomenon is understood as the result of asymmetrical heating and cooling processes

occurring in the bistable resonator but is generally obtainable with other Kerr-type opti-

cal nonlinearities. The laser frequency happens to play an important role in the dynamics

of the system. At the edge of the bistability, a new regime occurs for particular ranges

of modulation depth and frequency. It manifests through an important elevation of the

noise floor, which seem to derive from non-trivial oscillations in the optical domain. The

lack of experimental data do not permit to properly understand this nonlinear dynamics

yet. Thus it seems reasonable that these high amplitude oscillations are driven by mod-

ulation of the hysteresis cycle. In the second run of experiments, we focus on another

optomechanical system in which the thermo-optic bistability in now exploited for the

amplification of a weak low-frequency modulating signal. The effect, that occurs under

the influence of a high-frequency period signal, is known as vibrational resonance.
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Table of variables for Part I

Symbol : Meaning Typical value (Units)

General

~ : reduced Planck constant 1.055× 1034 (J.s)

kB : Boltzman constant 1.381×10−23 (J.K−1)

c : speed of light in vacuum 2.99× 108 (m.s−1)

θ0 : ambient temperature in the lab 293 (K)

Material constants of indium phosphide

n0 : refractive index [Pettit and Turner, 1965] 3.16
dn
dθ : thermo-optic coefficient [Della Corte et al., 2000] 1.9892×10−4 (K−1)

α : thermal expansion [Glazov et al., 1977] 4.6× 10−6 (K−1)

σInP
th : thermal conductivity [Glazov et al., 1977] 0.68 (W.cm−1.K−1)

ν : Poisson’s ratio [Dargys and Kundrotas, 1994] 0.36

Y : Young’s modulus [Dargys and Kundrotas, 1994] 60 (GPa)

Yeff : Effective Young’s modulus in the PhC membrane (guess) 17 (GPa)

ρ : density [Dargys and Kundrotas, 1994] 4810 (kg.m−3)

Coupled mode theory

si, st : resp. waveguide complex incident and transmitted amplitude

τ = st/si : normalized waveguide transmission complex amplitude

T = |τ |2 : normalized waveguide transmission intensity

Pin = |si|2 : waveguide incident power < 1 (mW)

a• : complex amplitude of cavity • with |a•|2 its stored energy

ω0 : cavity resonance frequency 2π × 193 (THz)

κi : internal amplitude loss rate

κw : external amplitude loss rate

κt : total amplitude loss rate with κt = κi + κw

Qi : internal Q-factor with Qi = ω0/2κi 1500
Qw : external Q-factor with Qw = ω0/2κw 102 − 104

Qt : total Q-factor with Q−1
t = Q−1

i +Q−1
w

µ : cavity direct coupling rate 2π × 0.1− 1 (THz)

Qc = ω0/2µ : cavity direct coupling Q-factor Qc ≈ 102 − 103

φ : phase shift in the WG between the cavities 0 – 2π

δ = ω−ω0
ω0

: normalized detuning ±1/Qopt
Nonlinear CMT: thermo-optic effect

κabs : linear absorption rate [fit figs. 2.12a and 2.12b] 95 (GHz)

Rth : thermal resistance of the cavity [fit figs. 2.12a and 2.12b] 1.7 ×104 (K.W−1)

∆θ = θ − θ0 : temperature elevation in the cavity up to 10 K



Symbol : Meaning Typical value (Units)

Nanophotonic platform geometry

r : photonic crystal hole radius 90 - 110 (nm)

a : photonic crystal lattice constant 420 (nm)

h : SOI waveguide height 220 (nm)

w : SOI waveguide width 250 to 550 (nm)

Mechanics

Ωm/2π : mechanical resonance frequency 1-10 (MHz)

Γm/2π : mechanical damping 1-10 (kHz)

meff : resonance effective mass 186 (pg)

σ0, σ : internal stress at room temperature and at θ, respectively. ∼ 30 (MPa)

Optomechanics - experimental

ωL/2π, λ : Driving laser frequency and wavelength, respectively

Gω0 : dispersive optomechanical coupling ∼ 1 (GHz/nm)

Gκi
, Gκw

: resp. internal and external dissipative optomechanical

couplings

∼ 1 (GHz/nm)

g0/2π : vacuum single photon optomechanical coupling rate 102 − 103 (Hz)

Ωmod/2π : modulation frequency 0-200 (kHz)

Vmod : modulation amplitude 0-3 (V)

χ : calibration constant (not determined)
√
ζ : waveguide injection/collection efficiency ≈ 10 %

Vπ: half voltage of the intensity (or phase) EOM phase-EOM 3.5 (V) int-EOM 7.5 (V)

β = Vmod/Vπ: EOM modulation depth

Optomechanics - theory

∆i

2κi
= ωL−ωi

2κi
: reduced laser detuning to resonance with ωi and 2κi

resp. the resonance frequency and linewidth

a, δâ : resp. optical mean field and fluctuating components

b, δb̂ : resp. mechanical mean field and fluctuating components

Vibrational resonance experiment

Ωc
m, Ωh

m : mechanical freq. at the cold or hot optical state, respec-

tively

V c
m, V h

m : amplitude of the noise spectrum at Ωc
m and Ωh

m, respectively

Vhf , Ωhf : resp. high-frequency input signal amplitude and freq.

Vout : transmitted power, directly measured at the waveguide output

GVmod : amplification gain





Part II

Chaotic dynamics of coupled

electro-optomechanical

nanoresonators
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Coupled electro-optomechanical resonators

This second part is dedi-

cated to the study of the nonlin-

ear dynamics in coupled electro-

optomechanical resonators. The

system involves two mechanical

resonators that are coupled me-

chanically with a small junc-

tion. Each resonator is excitable

with a pair of interdigitated elec-

trodes. Their respective displace-

ment can also both be accessed

independently using an optomechanical readout. In chapter 5, we describe the system

and introduce the basic concepts required in the study of coupled resonators in the linear

regime. Relying of this basis, a calibration of the mechanical properties, including the

natural frequencies, the damping rates and the spring coupling, is established. It is also

possible to calibrate the displacement and the applied electrocapacitive force.

Under strong excitation, the systems enters in a nonlinear regime. This is studied in

chapter 6. The stationary response of the system is first modeled with a model of cou-

pled driven Duffing oscillators. We demonstrate how the modulation of the force leads

to chaos and investigate both the influences of the driving frequency, the modulation

amplitude and of the modulation frequency. Several experimental bifurcation diagrams,

that highlight this nonlinear dynamics, reproduced numerically thanks to the Duffing-

Duffing model. Then, using a double-drive excitation on the system eigenmodes, several

synchronization regimes are investigated. In particular in the chaotic regime, the phase

dynamics experience a particular type of dynamics, refereed as imperfect phase synchro-

nization, that we characterize statistically. Relying on our system chaotic dynamics, we

apply a random number generation (RNG) protocol to our experimental time traces.

We characterize this protocol in the frame of our particular system. A regime of perfect

phase synchronization, that we can predict numerically, presents an immediate interest

for performing synchronized bichromatic RNG.
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Chapter 5

Design and characterization of the

system

The main steps of the clean-room fabrication of the opto-electromechanical platform

has been studied in the introduction. In this chapter we detail the geometry of the

structures. The single-membrane design has been previously optimized within our group

so the focus is on the coupling properties. We describe the optical readout as well as the

electro-capacitive actuation before starting the mechanical characterization in the linear

regime. In this context, the theoretical concepts are introduced when necessary. Finally

we perform a calibration of the mechanical displacement and of the applied force which

will be of great use in the next chapter for the modeling of the nonlinear dynamics.

5.1 Coupled NEMS platform design

To introduce the coupled membrane system, we first go back to the single membrane

design with which the previous experiment have been performed. Relying on a simple

linear model of coupled harmonic resonators, the strategy adopted for coupling the

membranes is discussed. The resulting system mechanical eigenmodes are obtained using

Finite Element Method simulations. The geometry of the interdigitated electrodes, which

enable a capacitive actuation of the resonators, is finally precised.

5.1.1 Nanomembranes geometry

The mechanical resonators are extremely similar to those used in the optomechanics

experiments. They consist in 20× 10 µm2 rectangular membranes with a thickness 260

nm given by the InP epitaxial layer (see fig. 5.1). The membranes are suspended over

a 380 nm air-gap and are attached to the rest of the InP layer through two pairs of 1

µm wide and 2 µm long bridges positioned of each side of the membrane longer edge.
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5.1. Coupled NEMS platform design

The clamping positions of these bridges are chosen to maximize the internal mechanical

quality factor of the membrane fundamental resonance. One may also want to use longer

or thinner bridges in order to increase the Q-factor but this comes with a higher risk of

mechanical failure under strong excitation.

Figure 5.1 – a) Geometry of a single membrane. The dimensions are given in units of

µm. The mesa structure (lighter blue) maintains the suspended resonator (darker blue).

b) Total displacement of the single membrane at its fundamental mode simulated with

finite element method.

In the past works [Chowdhury, 2016], the nonlinear regime of this structure has been

the object of several studies. These latter include superharmonic resonance [Chowdhury

et al., 2016] or weak signal enhancement using stochastic resonance [Chowdhury et al., 2017]

or vibrational resonance [Chowdhury et al., 2020]. All these demonstrations are based on

the Duffing oscillator model. In the next, we start from this geometry to obtain a system

of two coupled nanomembranes. At each step of this study from the design to the study

of complex nonlinear dynamics, we will attempt to identify the effect of the coupling on

the physics.

5.1.2 Mechanical coupling

Conceptually, the straightforward way to couple two mechanical resonators is to attach

a spring between them. It is necessary to go through the basic description of two

coupled resonators before discussing the chosen design. Although it would be adequate

to consider two identical resonators for a basic approach of the physics, the fabricated

nano-components always slightly differ to each other which induces a natural frequency

mismatch between the coupled membranes. In order to stay general, we consider two

non identical harmonic oscillators A and B with natural frequencies ΩA and ΩB, damping

rates ΓA and ΓB and identical mass m. This assumption relies on the fact that the two

membranes are nearly identical and should have the same mass. Later on we will note

that the natural frequencies of the resonators are different. As the natural frequency
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is given by Ω2
A,B = kA,B/mA,B with kA,B the resonator’s spring constant, it indicates

that this latter is different from a membrane to another. In fact, it is probable that both

parameters kA,B and m can vary but assuming that only the spring constant is responsible

for the natural frequency mismatch does not change the following results. The resonators

are coupled through a bi-linear interaction potential Vint = −1
2mG(xA − xB)2 and no

external force act on the system. Therefore the master equations for this system can be

written: mẍA(t) +mΓAẋA(t) +mΩ2
AxA(t) +mG [xA(t)− xB(t)] = 0

mẍB(t) +mΓBẋB(t) +mΩ2
BxB(t) +mG [xB(t)− xA(t)] = 0

The identical masses assumption implies a symmetrical coupling GA = GB = G. It

is convenient to consider the self-coupled frequencies ω2
A,B = Ω2

A,B + G. For a better

readability, we stop writing the time dependence of the variables xA,B and ẋA,B: ẍA + ΓAẋA + ω2
AxA −GxB = 0

ẍB + ΓBẋB + ω2
BxB −GxA = 0

(5.1)

The first objective is to describe the eigenfrequencies of this system. These are the

frequencies at which the system naturally responds, when relaxing after a perturbation

for example. When submitted to a periodic excitation, the response amplitude of the

system is also maximum at the resonance frequency. When two identical resonators are

coupled, the mechanical system displays two resonances often refereed as symmetrical

and anti-symmetrical modes (or bonding and anti-bonding, depending on the context).

A matricial approach is helpful for obtaining the frequencies ω± and damping rates

Γ± of the normal modes. We can assume ΓA,B � ωA,B since we expect mechanical

quality-factors of the order of Qm ≈ 500−1000 from the previous work based on a single

membrane. The values of ω± and Γ± obtained by the diagonalization of the Jacobian

of eq. (5.1) as described in [Zanette, 2018]:

J =


0 0 1 0
0 0 0 1
−ω2

A G −ΓA 0
G −ω2

B 0 −ΓB

 (5.2)

The eigenvalues of J can be written λ± = −Γ±+ iω±. A simple analytic expression

for ω± can be given by neglecting the dissipation:

ω2
± = ω2

A + ω2
B

2 ± 1
2

√
(ω2

A − ω2
B)2 + 4G2 (5.3)

By simplifying the problem with identical natural frequencies (ωA = ωB = ω0, and

as soon as G < ω2
0), one would find the expression ω2

± = ω2
0 ± G. Coupling two
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5.1. Coupled NEMS platform design

Figure 5.2 – Eigenfrequencies (straight lines) and associated spectral linewidth (dashed

lines delimited transparent stripes) resulting from coupled undamped resonators as a

function of the natural frequency difference. Computed using ΓA = ΓB = ωA/200 and

a) G/ωA = 0, b) G/ωA = 0.4 and c) G/ωA = 0.8.

resonators leads to a level repulsion as soon as these resonators natural frequencies are

close enough to each other. In fig. 5.2, the eigenfrequencies deduced from eq. (5.3)

are represented as a function of the natural frequency difference (ωB − ωA)/ωA. For

a non-zero spring coupling G, an avoided-crossing is observed in the spectrum and the

splitting at ωA = ωB = ω0 is given by G/ω0.

However, this does not guarantee the two normal modes to be resolved in the mechan-

ical spectrum. The dissipation rates Γ± has to be taken into account. Their general

expression are quite complicated bu they can be numerically deduced from the Jaco-

bian diagonalization in order to know whether or not the spectral resolution criterion

G/ω0 > Γ± is satisfied.If the mechanical modes overlap near the avoided-crossing point,

the resonators are weakly coupled, while the opposite situation is refereed as strong

coupling [Zanotto, 2018].

In order to produce a pair of coupled mechanical membranes, the geometry described

above is simply duplicated and a coupling element is added between the membranes. In

practice, we will use a rectangular nanobeam clamped on each membrane. Its geometry

must maximize coherent energy transfer between the two mechanical modes. In particu-

lar, we will perform this optimization for the fundamental resonances. The displacement

field of the single membrane fundamental mode has a maximum displacement at the

center of its width as shown in fig. 5.1. We note ` and w respectively the length and

the width of this coupling beam(see fig. 5.3a). These two geometrical parameters have

a strong influence on the mechanical coupling. The dimensions are tuned to maximize

the coupling between the fundamental modes although coupling might still occur for

higher order modes. This optimization is done by computing the system mechanical
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Figure 5.3 – a) schematic of the coupled membranes with the introduction of a ` × w
coupling beam. b) Simulated frequency splitting of fundamental mechanical mode as

a function of the coupling beam dimensions c) SEM image of the ensemble. d) SEM

image of a 1, 5× 1, 0 µm2 coupling beam.

eigenfrequencies with COMSOL Multiphysics. The frequency difference between the

fundamental symmetrical mode and the fundamental anti-symmetrical mode is checked

while the dimensions are tuned. The resulting colormap in fig. 5.3b shows that a max-

imum coupling occurs whenever ` = 1.5 µm. All the structures are designed using this

coupling length while the width is changed from 0.5 to 2 µm in order to try exploring

several coupling regimes. SEM micrographs of the structure is shown in fig. 5.3c and a

zoom on the coupling junction in fig. 5.3d. The mechanical ensemble geometry including

two membranes coupled with a 2× 1 µm2 is now tested with Comsol simulations. The

mechanical modes displacement fields are obtained and compared with the equivalent

results for a single membrane. In fig. 5.4, the first 10 mechanical modes are illustrated

by mean of their normal displacement fields and sorted by increasing frequency. For each

of these mode, the decomposition into a symmetrical and an anti-symmetrical modes is

shown. The displacement color scale is not common to all images as we want here to

point at the relative displacement within a given deformation mode.
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Figure 5.4 – Simulated out-of-plane displacement fields for 10 mechanical eigenfrequen-

cies. The mechanical coupling induces a level repulsion leading each mode to decompose

into an anti-symmetrical mode (top) and a symmetrical mode (bottom).

5.1.3 Interdigitated electrodes

Each membrane is suspended over a pair a gold interdigitated electrodes (IDEs). This

actuator is schematically represented in fig. 5.5a. By applying a difference of electrical

potential between these electrodes, an electrical field is produced around the IDEs. In

particular the electrical field distribution shows significant normal component to the

membranes plane. Although the InP layer is not doped, residual carriers can thus be

driven by this electrical field. This strategy is particularly efficient at the membrane

fundamental resonance as the electrical field normal component distribution overlaps

particularly well with the corresponding out-of-plane displacement field.

The optimization of the IDEs geometry is performed by maximizing the force applied

on the membranes for a given applied voltage. The description of this force will be the

object of a discussion in section 5.2.2.2 but basically, it is proportional to the derivative

of the capacitance with the membrane position ∂C/∂x. This quantity can be expressed

as a function of the material constants as well as the IDEs geometry. Such approach, as

detailed in [Makles, 2015], permits to map ∂C/∂x as a function of the interdigit separation

a and the air-gap height as shown in fig. 5.6. The capacitive force increases as the air-

gap height is reduced. In practice, each membrane is suspended over a pair of IDEs so it

is possible to drive the system from either side. As shown in the SEM images figs. 5.5b

and 5.5c, the shortest distance between the two sets of IDEs is given by the length of the

coupling beam. As a function of the digit-separation a, the force displays a maximum

(see fig. 5.6). Finally the electrodes width is chosen as half the digit-separation (i.e.

a/2) since this value also maximizes the quantity ∂C/∂x, and therefore the force.
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Figure 5.5 – a) Full schematic of the system including two coupled membranes suspended

over their respective pair of IDEs. The IDEs dimension are indicated in units of µm. b)

SEM image of a pair of IDEs before the BCB bonding. c) colorized SEM image of the

ensemble. Each InP membrane (blue) are suspended over a pair of IDEs (yellow).

Figure 5.6 – The quantity ∂C/∂x is mapped as a function of the IDEs digit separation

and the air gap dimension. The projection are shown for a gap fixed to 380 nm, 200 nm

and 100 nm (resp. blue straight, dashed and dash-dotted) and with the digit separation

fixed to 1.5 µm, 3 µm and 0.5 µm (resp. black straight, dashed and dash-dotted). The

straight lines correspond to the chosen design.
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5.2 Experimental setup

The mechanical resonator displacement optical readout and electro-capacitive actuation

schemes are detailed in this section. The Fabry-Pérot cavity formed by the IDEs and

the associated suspended membrane, which acts as a deformable mirror, is spectrally

characterized. Secondly, we introduce a model of the force exerted by the IDEs on the

membrane.

Figure 5.7 – Optomechanical characterization setup. The supercontinuum laser (green)

is used to characterize the Fabry-Pérot cavity made by the IDE/membrane system. The

Helium-Neon laser (red) is used for the mechanical displacement readout. A white light

collimated source (orange) is used to image the structures.

5.2.1 Optical readouts

For the optical properties The system membrane/IDE constitutes an optical cavity

we can probe for measuring the mechanical displacement (see schematic in fig. 5.8a).

In order to characterize this cavity we use a supercontinuum laser preliminary filtered

with a 500-770 nm band pass filter (BPF). The laser field initially circulates in an optical

fiber at the output of which the beam is collimated back in free-space. The spot size is

reduced using a telescope made of 2 converging lenses. The laser beam is then identically

focused on the membrane center giving rise to a beam waist of approximately 5 µm.

The white light beam is focused on the sample thanks to a ×20-microscope objective

so the light spot shines an area containing more than an ensemble of membranes. The

reflected light is sent to a CCD camera whose output can be acquired in real time on

our computer. The reflected beam is analyzed with a visible spectrometer (see setup in

fig. 5.7). The sample holder is loaded on a 3D nano-positioning stage that we remotely

control. In order to image the sample and place correctly the laser on the membrane,
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we aligned a collimated white light source parallel to the laser beam. We normalize

the resulting reflectance spectrum with a reference measurement obtained by pointing

the laser at a gold planar surface available on the chip. The normalized reflectance

(see fig. 5.8b) shows an absorption dip typical from Fabry-Pérot cavity resonance and

centered around 630 nm with an optical Q-factor of about 10. Despite this low Q-factor

∼ 10 this dip matches with the Helium-Neon (He-Ne) wavelength λ = 633 nm which is

used to optically readout the membranes displacements.

For the mechanical properties The intensity stabilized He-Ne laser is isolated from

the setup to avoid any reflection to disturb the cavity. We coupled the free-space laser

beam to an optical fiber in order to limit the beam divergence along the setup. The

reflected beam is sent to a 10Hz-100MHz broadband photodetector for further signal

analysis on the output electrical signal using the lock-in amplifier.

Note that the mechanical readout could also be performed with a Michelson interfer-

ometer by using a local oscillator to the optical setup, allowing a higher optical power in

the photodetector. The drawback of this approach is the decorrelation of the mechanical

noise between the reference arm and the system of interest due to their distance on the

experimental table. Thus the mechanical response is read with a higher amplitude but

the noise at low frequency (i.e at the measurement timescale 1-100 Hz) perturbs the

measurement.

Figure 5.8 – Reflectance spectra obtained on the membranes. A resonance dip is visible

near the He-Ne laser wavelength (red dashed line).
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Optomechanical coupling This system constitutes an optomechanical Fabry-Pérot

cavity whose optical frequency shift per displacement is given by [Aspelmeyer et al., 2014]:

G = |∂ωc
∂x
| = ωc

L
(5.4)

where ωc = π×c/L is the fundamental resonance frequency of a Fabry-Pérot cavity

of length L. Assuming an homogeneous refractive index of the air-gap volume – which is

not perfectly true given the presence of a BCB layer – and using ωc = 2π×c/λ0 and L =
380 nm, we obtain G ≈ 2π×1230 GHz/nm. The corresponding optomechanical coupling

between this optical cavity and the fundamental mode of our mechanical resonator is

g0 = Gxzpf with xzpf =
√
~/2meffΩm is the zero point fluctuation amplitude of this

mechanical mode and Ωm its angular frequency. For a resonance frequency Ωm =
2π × 2.2 MHz and a simulated effective mass meff = 186 pg, we find g0 ≈ 2π × 170
MHz.

Of course the extremely low optical quality factor (Qopt ≈ 10) of this cavity prevents

any significant dynamical backaction to be observed as the resolved sideband regime can

be achieved for Ωm > γopt while we obtain Ωm ≈ 10−8 × γopt !

5.2.2 Electromechanical actuation

We have discussed the experimental setup used for the mechanical displacement readout.

Now we will describe how our electromechanical structures can be driven. After the

technical description of the electrical connections from the chip to the lock-in amplifier,

we can model the capacitive force exerted by the set of interdigitated electrodes.

5.2.2.1 Electrical connections

The chip is stuck on a ceramic chip-receiver using silver paste. The electrical connections

between the sample and this receiver are done with wire bonding connections. We use

25 µm diameter Aluminium wires bonded on the gold pads. The chip-receiver is then

encapsulated into a PLCC-to-DIP adapter. This last only has 44 electrical pins which

limits the number of structures on the sample. We use 40 pins which fits with 20 pairs of

IDEs, or 10 systems of 2 coupled membranes. 40 electrical wires are then tin-welded on

these pins in the back on the sample holder. The welds are isolated to each other using

heat-shrink sheath. The wires are then contacted to the sub-D 50 plug available at the

chamber feed-through. The sub-D 50 output is connected to an electrical board outside

the vacuum chamber where 40 independent BNC connections are available with their

respective switch in order to excite or ground a desired electrode. Given the mechanical

frequency we expect to handle in the following experiments (in the MHz domain), the

use of BNC cable is appropriate.
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5.2.2.2 Force modeling

We consider that the membrane/IDE system behaves as a position dependent capac-

itance C(x). By applying total voltage Vtot on a set of interdigitated electrodes, the

total potential energy stored in the capacitance writes E(x) = 1
2C(x)× V 2

tot. The force

exerted on the membrane derives 1 from this potential energy [Galayko, 2018]:

F = 1
2
∂C

∂x
× V 2

tot (5.5)

In order to drive the system at frequency ωd, a static voltage and a AC voltage are

applied to the IDEs. The total voltage writes Vtot = Vdc +Vac cos(ωdt) and the resulting

force is:

F (x) = 1
2
∂C

∂x
×
(
V 2
dc + 1

2V
2
ac + 2VdcVac cos(ωdt) + 1

2V
2
ac cos(2ωdt)

)
(5.6)

Note that this force is not only resonant but also owns a static component and an

off-resonant force that excites the resonator at twice the resonant frequency. In order

to understand how this static force influence the mechanical response, we can solve

our coupled resonators model with a constant external mass-normalized force FDC =
1
2
∂C
∂x
×
(
V 2
dc + 1

2V
2
ac) applied on one of the resonators. Let’s say A. Intuitively, we know

that this static forced exerted on the resonator will displace it. Any additional time

dependent force will put it in motion around a new equilibrium position. From this point

of view, it is coherent to introduce an position offset xA,0 = FDC/ω
2
A. Then the master

equation for the resonator A becomes:

ẍA + ΓAẋA + ω2
A(xA − xA,0)−GxB = 0

In our experiments, FDC could either finds its origin in a residual stress in the ma-

terial, or be an external force imposed by the user. It is interesting to remark that the

displacement induced by a static force is Qm times smaller than the resonant displace-

ment with Qm the mechanical quality factor. Similarly, the off-resonant forcing term at

frequency 2ωd is not expected to significantly drive the displacement and this will be

experimentally confirmed later. Thus the electro-capacitive force can be simplified to its

resonant term:

F (x) ≈ |∂C
∂x
| × VdcVac cos(ωdt) (5.7)

This expression also relies on the assumption of a linear capacitance. Under high

mechanical displacements one might require do consider a nonlinear capacitance:

∂C

∂x
= C0 + C1x+ C2x

2 + C3x
3 + ... (5.8)

1This partial derivative must importantly be computed at constant charge.
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In general only C0 will be considered but the higher order terms are interesting to

keep in mind. The 1st order term C1 is responsible of a mechanical frequency shift

of the resonator which can be useful for tuning the resonator frequency. This effect

is often called the ”dielectric tuning” of the resonance frequency [Unterreithmeier et al.,

2009]. Note that this effect is often exploited in order to generate a force component

that act as a modulation of the natural frequency. This leads to a parametric oscillator

ẍ+ Γẋ+ ω2
0

(
1 + 1

4C1V
2
ac cos(2ωdt)

)
x = f cos(ωdt).

The higher terms C2 and C3 introduce anharmonic terms in the mechanical potential.

In particular, the 3rd order term can shift the mechanical Duffing nonlinearity which

could be interesting for further experiments.

5.3 Mechanical characterization

Having set an optical detection mean and discussed the basic principles of the electro-

capacitive actuation, we can now characterize our mechanical system. First, we can

measure the mechanical response over a large range of the driving frequency and try

to identify the different resonances to a given displacement field. We will then focus

on the fundamental mechanical resonances and go through the theory of two driven

non identical and coupled harmonic oscillators to describe the spectrum shape. We can

extract the key-parameters of the membranes from this fit.

5.3.1 Mechanical response spectrum

The mechanical characterization of the system starts with a measurement of its spectral

response over a large frequency span. The chip is placed in a vacuum chamber pumped

below 10−5 mbar. We focus on two membranes connected with a 0.5×1.5 µm2 coupling

beam. The IDEs have interdigit separation of 3 µm and digit width of 1.5 µm. The

He-Ne laser beam is focused on the center of the membrane while this same membrane is

excited with Vdc = 0.5 V and Vac = 2.5 V. The converted optical signal is demodulated

in the lock-in amplifier with a bandpass filter centered at the driving frequency ωd. The

demodulation bandwidth is reduced down to 100 Hz around this reference. The driving

frequency is swept from 1 MHz to 20 MHz.

The resulting response amplitude, shown in fig. 5.9, displays a large number of

resonance peaks. The fundamental resonance of the system is found around 2.2 MHz

and the finite element method (FEM) simulations predict this first resonance to be the

symmetrical normal mode resulting from the coupling between the membranes. The

second resonance, found at 2.4 MHz here, should therefore be the associated anti-

symmetrical resonance although the splitting between these peaks is larger than expected

in the simulation. This disagreement occurs because the membrane do not have identical

page 103



Chapter 5. Design and characterization of the system

natural frequencies as assumed in the FEM simulations. For this reason the following

peaks can not easily be associated to a given displacement field distribution.

Figure 5.9 – Mechanical response spectrum of the coupled membrane system over a

large span. Several resonance peaks are found including the fundamental eigenmodes

highlighted in the transparent stripe. Demodulation bandwidth set to BW = 100 Hz.

Coupling beam dimension: 0.5× 1.5 µm2.

The amplitude of the mechanical peaks is strongly dependent on the position of the

laser spot on the membrane. Indeed, as shown in the expected eigenmode displacement

fields in fig. 5.4, the maximum displacement is not necessarily reached at the membrane

center. This is less true for the fundamental resonance, for which the displacement

does reach a maximum of the membranes centers, but is still quite homogeneous around

these points. This mode therefore presents an experimental advantage as its readout

does not require a particular attention on the laser spot position: we will simply try to

maximize the response signal. Similarly the mechanical linewidths are not all equal as

the clamping beam positions are chosen to enhance the mechanical quality factor at the

fundamental resonance. The coupling beam dimensions have also been optimized for

this particular mode. Consequently in the following work we will always focus on the

fundamental eigenmodes (transparent stripe in fig. 5.9) and the laser spot will be placed

at the membrane center.

5.3.2 Theoretical response of two coupled resonators in linear

regime

The eigenvalues analysis is a very useful and strong method to obtain the exact normal

mode frequencies and damping rates. However, in order to fit our experimental data. It

is necessary to derive the expressions of the resonators amplitude and phase responses
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in the presence of one or two driving forces. We consider two driving harmonic forces at

frequency ωd of respective strength fA and fB and delayed with regard to each other with

a phase φ. The resulting external forces FA = fA cos(ωdt) and FB = fB cos(ωdt + φ)
are added on the right hand sides in eq. (5.1). The master equations system can be

solved by assuming the solutions xA,B(t) = Re
(
rA,Be

iωdt

)
where rA,B = rA,Be

iϑA,B .

We choose rA,B > 0 and write the following equations in the rotating frame eiωdt. We

also choose the external drive fA as the reference of phase. At the stationary regime,

ṙA,B(t) = 0:

 iΓAωdrA + (ω2
A − ω2

d)rA +GrB =fA
iΓBωdrB + (ω2

B − ω2
d)rB +GrA =fBeiφ

i Normalization:

The number of relevant parameters is reduced by normalizing the problem. We

replace all the parameters by their equivalent dimensionless quantities. More importantly

the driving frequency ωd, that is used as unit of time, is now expressed in terms of

detuning δ.

ωdt → t′ time

(ωB − ωA)/ωd → ∆ω natural frequency mismatch

(ωB − ωd)/ωd → δ detuning from resonator B

(ωA − ωd)/ωd → δ −∆ω detuning from resonator A

ΓA,B/ωd → γA,B damping rates

G/ω2
d → g spring coupling

fA,B/ω
2
d → f̃A,B driving amplitudes

Thus our driving frequency ωd is fully replaced by only one quantity δ. The choice of

ωB as a detuning reference rather than ωA is due to the fact that, in our experiments,

the resonator B is almost always the one we drive.

Furthermore, if ωd ≈ ωA, ωB then ω2
B − ω2

d ≈ 2ωd(ωB − ωd) = 2δω2
d:

iγArA + 2(δ −∆ω)rA + grB = f̃A

iγBrB + 2δrB + grA = fBe
iφ

which directly gives the complex amplitudes:

rA = f̃A − grB
2(δ −∆ω) + iγA

and rB = f̃Be
iφ − grA

2δ + iγB
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Isolating rA and rB gives:

rA =
gf̃Be

iφ +
[
2δ − iγB

]
f̃A

g2 −
[
2(δ −∆ω)− iγA

][
2δ − iγB

]

rB =
gf̃A +

[
2(δ −∆ω)− iγA

]
f̃Be

iφ

g2 −
[
2(δ −∆ω)− iγA

][
2δ − iγB

]
(5.9)

The displacement amplitude is then given by rA,B = |rA,B| and the resonators phases

are given by ϑA,B = arg(rA,B).

Here again, we won’t explicitly write the expressions for rA, rB, ϑA and ϑB since

it would not be so relevant and quite complicated without any simplification. These

expressions can be computed numerically from eq. (5.9) for any fit purpose. Note also

that |rA| and |rB| yield maxima when ωd = ω±. In terms of normalized detuning δ, it

corresponds to δ± = (ωB − ω±)/ω±.

5.3.3 Determination of coupling

Now we can start to present the experimental measurements of the mechanical motion

in the linear regime. Here the objective is the measurement of coupling. We propose

two methods. The first relies on the stationary response of the system as a function of

the driving frequency. The resulting spectral response amplitude and phase can be fitted

using the linear model. This fit interestingly returns all the intrinsic properties of the

system, including the frequencies, damping and the coupling. However, due to this large

number of fitting parameters, the accuracy on the coupling evaluation is not optimal.

We therefore propose a second method based on the direct measurement of an avoided

crossing between the system eigenmodes. This can be achieved by shifting a natural

frequency regarding the other one, either via a photothermal absorption process or using

a DC induced dielectric tuning of the material.

5.3.3.1 Measurement of the mechanical response

We consider here another2 system of two coupled membranes, refereed as A and B, and

coupled with a 0.5× 1.5 µm2 junction. The membrane B is driven by applying Vdc = 0
V and Vac = 0.5 V on its set of IDEs. With these low values, the mechanical motion

is restricted to a linear regime. The membrane A and B are successively read while the

driving frequency ωd is swept over the fundamental resonances preliminary found around

2i.e. different from the one presented in fig. 5.9
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2.6 MHz. The response amplitude and phase of membrane A (resp. of membrane B)

are shown with green dots (resp. blue dots) in fig. 5.10. Both measured amplitudes

display two peaks located at ω− = 2π × 2.58 MHz and ω+ = 2π × 2.63 MHz while

the measured phases execute a phase shift at each resonance. Below 2.55 MHz, the

membrane A response amplitude nears the detection noise floor which affects the fit

quality and this is particularly visible with the phase response.

Figure 5.10 – Measurement of the mechanical amplitude and phase responses when

membrane B is driven and either membrane A (blue) or membrane B (green) is read.

Both the amplitude (top) and the phase (bottom) responses are plotted are fitted.

BW = 100 Hz. Coupling beam dimension: 0.5× 1.5 µm2.

Two important pieces of information can be deduced from these responses, and will

be confirmed by fitting the data with the theoretical model. The first information comes

from the comparison of the amplitude level whether the membrane A or B is read. The

membrane B has a higher amplitude because it is the membrane that we excite. A part of

the injected power contributes to the mechanical motion, especially when the resonance

frequencies are reached. Another part of this power is dissipated which will be discussed

further on. By reading A only a small part of the injected power in coherently transferred

to membrane A through the coupling beam. The membrane A is somehow driven by

the membrane B that is itself driven by the electro-capacitive force. The inefficiency of

this indirect process explains why there is less energy stored in the membrane A than in

membrane B.

The second observation concerns the relative amplitude of the eigenmodes (−) and (+)

in each case. When the membrane A is read, the mode (+) has a higher amplitude than
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mode (−) and vice-versa when the membrane B is read. This is the signature of a natural

frequency mismatch between the resonators. Indeed, when ωA = ωB, the eigenmodes

resulting from strong coupling are perfectly sharing the injected energy: each membrane

contributes equally to the symmetrical and to the anti-symmetrical resonances. However,

when ωA 6= ωB, each eigenmode still consists in a collective motion of both resonators –

at least if G 6= 0 – but this time in an unbalanced way. For example here the eigenmode

(−) is clearly dominated by the motion of membrane B while (+) is dominated by

the motion of A. Interestingly these conclusions about the imbalance both in terms of

injected energy and of structural properties can be drawn without an advanced analysis

of the data. The presence of coupling is further attested by the presence of a destructive

interference dip in the membrane A response (resp. B response) around 2.59 MHz

(resp. 2.64 MHz) which is typical of a Fano resonance [Joe et al., 2006; Limonov et al., 2017;

Stassi et al., 2017] between the non identical resonators. This effect takes the form of a

supplementary shift of the phase response.

The amplitude RA,B and phase θA,B are fitted at once in each case with the fitting

parameters ωA, ωB, ΓA, ΓB, G and f̃B and using the theoretical expression eq. (5.9).

We use the signal quadratures XA,B = RA,B cos(θA,B) and YA,B = RA,B sin(θA,B) for

the fit optimization since these quantities are homogeneous and continuous. Whether A

or B is read, the fitting parameters are exactly the same except f̃B that stands for the

excitation strength but also for the readout conversion which is not exactly the same

whether A or B is read. We find ωB = 2π × 2.583 MHz, ωA = 2π × 2.633 MHz,

ΓA = 2π × 2.9 kHz, ΓB = 2π × 2.8 kHz and G = 4π2 × 0.021 MHz2. Overall the

fit is successful and finely recover the experimental data. The eigenfrequency difference

ωB − ωA = 2π × 50 kHz is therefore dominated by the natural frequency mismatch.

The level repulsion, i.e. the frequency difference caused by the spring coupling is indeed

of the order of 1 kHz while it would be equal to G/ωA ≈ 2π × 8.3 kHz with identical

resonators.

5.3.3.2 Direct measurement of the coupling via spectral avoided-crossing

The natural frequency mismatch in the coupled nanomechanical resonators is a conse-

quence of the fabrication imperfections and can not be intrinsically set to zero although

a consequent effort in the nanofabrication technique might allow to reduce it. In the

meantime, a certain number of techniques can be used to tune one resonator frequency

regarding the other one [Zhang et al., 2015]. In the following, we attempt two methods for

compensating the intrinsic mismatch. The first relies on the photothermal absorption

effect and the second on the effect of an electric field on the material.
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i Using the photothermal absorption The frequency of a nanomechanical res-

onator can be altered by a change in the bulk temperature [St-Gelais et al., 2019]. Indeed,

the temperature change locally modifies the material density which leads to an additional

stress and therefore modifies the resonance frequency. Depending on the initial residual

stress in the structure – i.e. at room temperature – the frequency shift can be negative

or positive.

Figure 5.11 – a) Measured eigenfrequencies as a function of the He-Ne laser power

sent on membrane A. When the natural frequency of membrane A crosses the one of

B (black arrow position), an avoided crossing is observed such that the coupling is

directly read from the eigenfrequency difference G/ωA = ω+−ω−. b) Example of fitted

amplitude response of membrane B under Vac = 0.5V and BW = 100 Hz. Coupling

beam dimension: 0.5× 1.5 µm2.

In order to exploit this effect, we use an optical density filter wheel to control the He-

Ne laser input power on the sample. This experiment is performed on a pair of membranes

coupled with a 0.5×1.5 µm2 junction. This system was not described so far. We heat the

shone membrane by photothermal absorption and observe a change in the normal mode

frequencies. In fig. 5.11a, the experimental mechanical eigenfrequencies ω± are shown for

increasing value of the input laser power while the system is driven by applying Vdc = 0
V and Vac = 0.5 V. These frequencies are extracted for the spectral responses obtained

by sweeping the driving frequency. We observe an avoided-crossing of the fundamental

eigenfrequencies due to strong coupling level repulsion (see section 5.1.2). From our

experimental work with the optomechanical structures, made of the same material, we

expect a linear shift of the mechanical frequency with the optical power as soon as the

shift is small compared to the frequency itself. We assume ωA,B = ω0
A,B + αA,B × Pin

with Pin the He-Ne laser input power, ω0
A,B the resonator frequencies when Pin = 0 and
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αA,B the linear photothermal shift coefficients. The eigenfrequencies are therefore fitted

with the imaginary part of the eigenvalues of eq. (5.2). The fitting parameters are the

coefficients αA,B and the spring coupling G while the dampings are set to zero (high

mechanical quality factor assumption). The fit returns a coupling G/ωA = 2π×12.9±1.1
kHz which is coherent with the value 12.2 kHz obtained previously obtained by fitting

the spectral response in fig. 5.11b. Note that this latter is measured at an optical

power of about 74 µW such that the natural frequencies are slightly different. Indeed

the fit, obtained by following the method detailed in section 5.3.3.1, gives ωB − ωA =
−2π × 5.2 kHz. The values obtained for the coefficients αA,B are also coherent as the

heated membrane (A) has a frequency shift of approximately 224 Hz/µW while the other

membrane (B) shifts much less (<17 Hz/µW). It still does probably because of the laser

spot size and of the thermal diffusion in the structure. The mechanical modes amplitude

being very weak for low probe power, the eigenfrequencies estimation is uncertain. This

explains the deviation between data and fit around 25 µW.

ii Using a dielectric tuning The dielectric tuning method has already been men-

tioned in section 5.2.2.2 and relies on the effect of an applied electric field on the mechan-

ical properties of the material. We focus on the structure whose 1-20 MHz range spectral

response was described in fig. 5.9. Here we try to cross the natural frequencies of two non-

identical resonators where a frequency mismatch ωA(Vdc = 0)−ωB(Vdc = 0) ≈ 2π×200
kHz is initially measured. The use of photothermal effect is prescribed for such important

frequency difference because of the irreversible drifts that this would entail. We rather

apply a DC voltage on the IDEs of membrane B and check the eigenfrequencies ω− and

ω+. In order to identify the eigenmodes, a driving voltage Vac = 0.1� Vdc is applied so

we ensure that the drift is not caused by mechanical nonlinearity.

A static voltage Vdc is expected to shift the natural frequency by δω = C1V
2
dc where

C1 is the 1st order coefficient in the Taylor expansion of the capacitance derivative

(see eq. (5.8)). Therefore we expect the natural frequency of the resonator to shift

parabolically ωB(Vdc) = ωB(Vdc = 0) + CB1 V
2
dc. The eigenfrequencies ω− and ω+ are

fitted using the natural frequencies as an input of eq. (5.2). The fit inputs the free

parameters CB1 , ωA(Vdc = 0) and ωB(Vdc = 0). In fig. 5.12a, the data are shown

in terms of frequency shift δωA,B = ωA,B(Vdc) − ωA,B(0). The parabolic fits properly

capture the observations. As expected the cross effect of the static voltage on membrane

A is small but significant. We obtain CB
1 = −28.1 Hz/V2 and the frequency mismatch

ωB − ωA = 2π × 168 kHz. In order to compensate the natural frequency mismatch,

we need to apply Vdc = 74 V. This is illustrated in fig. 5.12b where the measured

eigenfrequencies are shown and the fits are plotted up to 140 V. Such a voltage can not

be applied on the structure which makes this technique fruitless for the observation of

an avoided crossing and a direct measurement of the coupling. However, this teaches us
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Figure 5.12 – a) Measurement of the eigenfrequencies shift δωA,B = ωA,B(Vdc)−ωA,B(0)
under static voltage Vdc applied on membrane B. b) The fits consider a parabolic shift

of the self-coupled frequencies ωA and ωB (black dashed) that we use to solve the

eigenmodes frequencies ω− and ω+ (respect. blue and green lines) resulting from the

given coupling G. An avoided crossing is predicted at Vdc = 88 V when natural frequencies

cross. Coupling beam dimension: 1.0× 1.5 µm2.

that the dielectric effect can easily be neglected in the force modeling.

5.3.4 Internal and external mechanical damping rates

The spectral linewidth of a resonator is given by its total damping rate. This latter can

be the result of several dissipative processes. For the mechanical systems we consider,

the damping rate can be split in an internal and an external component respectively Γint
A,B

and Γext
A,B. The internal losses result from the inelastic processes in the material. During

the motion, the potential energy loaded in the mechanical resonator is not fully converted

in kinetic energy but partially absorbed by the substrate. A part of this energy can also

be converted in heat due to local frictions caused by the fabrication imperfections. This

internal component can be optimized by working on the geometrical design, in particular

on the dimensions of the clamping bridges, and on the nano-fabrication techniques. The

external losses are caused by the interactions of our system with the environment. It

mainly includes the effect of friction of the surrounding air molecules with the mechanical

resonator. This effect can be limited by decreasing the pressure in the vacuum chamber.

The total damping rate is the sum of these two terms ΓA,B = Γint
A,B + Γext

A,B. In the case

of two coupled resonators, each eigenmode has its own damping rate Γ− and Γ+. These

damping rates are generally not equal in particular for non identical resonators. However

they are equal as soon as ΓA = ΓB which we find is the case here.

In order to estimate the internal damping rates of the resonators, we perform a study
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Figure 5.13 – a) Measured spectral response amplitude of the system at different pressure

condition in the vacuum chamber. The amplitude is normalized by the maximum. Each

curve is fitted using the coupled resonators model. b) The mechanical damping rates

are extracted from the fit in a) and plotted as a function of the pressure. A power law

fits the data in the drag-limited regime. BW = 100 Hz. Coupling beam dimension:

1.0× 1.5 µm2.

of the system mechanical properties as a function of the pressure vacuum chamber. The

experiment is performed with the same structure studied in the previous experiment. The

system is driven with Vdc = 2V and Vac = 0.5 V. These settings guarantee an excitation

of the mechanical displacement in its linear regime. The fundamental resonances are

spotted around 2.2 MHz and are observed by placing the He-Ne laser on the membrane

on which the drive is applied.

Initially the pressure P is stabilized to its lowest value after several weeks of pumping:

P ≈ 15 µbar. The chamber is then isolated from the pump using a valve and the pump is

switched off. Starting from this point, the valve is briefly opened in order to progressively

increase the pressure in the chamber. The valve is closed and the mechanical spectral

response of the fundamental resonances is recorded after few minutes of stabilization.

The pressure is given by a vacuum probe placed on the chamber side. This operation is

repeated for increasing pressure in the chamber until the chamber is set at atmospheric

pressure.

All the measured mechanical responses are fitted using both the amplitude and the

phase response so the natural frequencies, damping rates and couplings are obtained

for each value of the pressure. In fig. 5.13a, the amplitudes are shown in several cases

with the associated fit. A significant broadening of the resonances occurs with higher

pressure while their position remains constant. The natural damping rates are plotted as
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a function of the pressure P in fig. 5.13b. We observe a regime in which the damping

rates exponentially grow with the pressure as shown with the fit performed using a

power-law (red line). This illustrates the friction-limited regime of the damping rates

where most of the mechanical losses are due to the presence of air molecules around the

structure. However, below P = 10−3 mbar, a plateau is observed. This corresponds to a

regime where the total damping rates are dominated by their internal component. From

these results we find that below 10−3 mbar, the quality factor can not be significantly

improved. The internal damping rates are found to be around 3 kHz. This technique

of damping-control through the vacuum chamber pressure is exploited in the following

chapter to check the influence of dissipation on the nonlinear dynamics.

5.3.5 Displacement calibration

It has been shown that a simple model of coupled harmonic resonator efficiently describes

the stationary response of the driven coupled membranes. It allows the calibration of

all the temporal parameters: the frequencies, the damping rates and the coupling rate.

However the amplitudes |rA,B| are measured in mV and require a displacement calibration

to be converted in nm.

Figure 5.14 – Experimental Michelson setup used for the displacement calibration. A

local oscillator is introduced.

We perform a calibration by comparing the electrical signal oscillations amplitude

resulting from a given mechanical displacement and from the displacement of a calibrated

piezo positioning motorized stage. The first step consists in the calibration of this piezo

stage. We point the He-Ne laser at one membrane and optimize the spot position

for maximizing the mechanical response of a given mechanical mode. We establish a

local oscillator on the optical table in order to achieve a Michelson interferometer (see

fig. 5.14). The photodetector now inputs an interfering signal whose intensity writes

Id ∝ 1 + cos(∆Φ) where ∆Φ = 2π/λ0×d is the phase difference induced by the optical

path difference d between the interferometer arms.
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Displacing the piezo motorized stage by δd along the optical axis direction induces

a change δV in the photodetector output signal. So by displacing the stage at constant

speed, the output electrical signal is recorded in an oscilloscope and shown in fig. 5.15a.

The maximum sensitivity to a small displacement is reached whenever d = pλ/4. At

such operating point, the slope α = δV/δd ≈ 0.005 mV/nm can be estimated from the

data. We can now set the stage at λ/4 and resonantly drive the probed membrane with a

AC voltage Vac. It results in an resonant oscillations of the membrane that modulates the

phase difference ∆Φ. If the excitation is strong enough, this oscillation of amplitude δVx

is measurable in the oscilloscope although one should make sure not to nonlinearly drive

the mechanical system since this calibration relies on a linear model. The corresponding

displacement is given by δVx×α. The curve obtained by plotting the displacement as a

function of Vac is linear and the slope gives the electromechanical coupling GVdc=0 = 5.7
nm/V (see fig. 5.15b). This quantity can be kept as a feature of the structure. Of course

if the IDEs or the membranes are somehow damaged, GVdc=0 will probably decrease but

its value does not depend on the way the membrane is probed. In particular, a change

in the laser power or the spot position on the membrane does not influence this feature.

Afterwards, the local oscillator is removed and the new signal amplitude is observed in

the oscilloscope. Its value can be converted to a displacement by comparing with the

previous result. The output voltage converts the displacement with a conversion factor

η = 0.5 mV/nm. At this point, the displacement is calibrated in the persistent optical

setup.

Figure 5.15 – a) Averaged photodetector output voltage as a function of the piezo stage

position. The sensitivity is given by the slope at λ/4. b) Mechanical displacement mea-

sured for different value of applied resonant signal Vac (black dots). The measurement is

performed for Vdc = 0 V and the linear fit (red) provides the electromechanical coupling

GVdc=0 = 5.7 nm/V.

As soon as the optical setup is modified, it is possible to quickly recover a displace-

ment calibration of a structure for which this protocol has been applied. The laser spot

must be placed such that the mechanical response is maximum. It is then simply nec-

essary to resonantly drive the mechanical mode with Vdc = 0 V and sweep Vac over
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few volts and measure the response. The curve should be linear and the slope gives

the electromechanical coupling GmV
Vdc=0 in units of mV/V. The conversion from electrical

signal to mechanical displacement is immediately given by the ratio GVdc=0/G
mV
Vdc=0.

The calibration is performed on a pair of membranes coupled with a 1.5 × 1.0
µm2 beam. Their fundamental resonances decompose into a symmetrical and an anti-

symmetrical mode with respective frequencies ω− = 2π × 2.163 MHz and ω+ =
2π × 2.374 MHz and mechanical damping rate Γ ≈ 5 kHz. This normal mode (+)

is dominated by the motion of the membrane B due to an important natural frequency

mismatch. A typical amplitude response obtained with Vdc = 0.5 V and Vac = 1 V applied

on membrane B is shown in fig. 5.16a. The response is fitted with eq. (5.9) so the mem-

branes parameters are determined. We find the self-coupled frequencies ωA = 2π×2.187
MHz and ωA = 2π × 2.345 MHz and a normalized coupling G/ωA ≈ 2π × 130 kHz.

Finally, the displacement calibration has allowed to determine η = 0.5 mV.nm−1.

5.3.6 Force calibration

The displacement being calibrated it is now possible to calibrate the force exerted by

the IDEs on a membrane. For simplicity we consider a single membrane and discuss this

choice later. The force exerted by the set of IDEs on the membrane is given by eq. (5.7).

The general response amplitude of a driven single harmonic resonator is:

Aωd
= F/m√

Γ2ω2
d + (ω2

d − ω2
m)2

with m, ωm and Γ respectively the mass, natural frequency and damping rate of

the resonator. It is driven with a strength F at frequency ωd. At resonance, i.e when

ωd = ωm, the response is Aωm = F/m
Γωm

. We can identify the expressions and obtain:

Aωm ≈
VdcVac
mΓωm

∂C

∂x
(5.10)

The mass of the resonator can be obtain with a COMSOL simulation. It requires

to identify the proper displacement field and calculate the associated effective mass

meff =
∫∫∫

V ρr(M)dV (M) where ρ is the material density, dV (M) the volume element

centered a point M and r(M) its out-of-plane relative displacement. Technically the size

of dV is given by the mesh resolution that we choose for the simulation. The remaining

unknown parameter |∂C
∂x
| is precisely giving the force calibration. It can be obtained by

evaluating the linear dependence of Aωm with respect to VdcVac.

Since the force calibration is based on the linear description of the system, it is

not necessary to scan the driving frequency ωd when mapping the parameter space

(Vdc,Vac) because the resonance frequency does not depend of the amplitude in this

regime. The mechanical displacement at ωd = ω+ is measured as a function of these
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two parameters and plotted in fig. 5.16c. The demodulation bandwidth is set to measured

with BW = 100 Hz and each point is averaged 30 times. As expected, the amplitude

increases with |Vdc| and with Vac. We note that when Vac < 0.1 V, the zero displacement

line (yellow line) does not occur at Vdc = 0 V but around -0.11 V. This shift is related

to the intrinsic stress into the membrane due the epitaxial layer properties as well as

the fabrication technique that was used. Moreover this internal stress that is equivalent

to an applied static voltage Vint parabolically shifts as a function of Vac because of the

contribution 1
2V

2
ac in the static component of the electro-capacitive force discussed in

section 5.2.2.2. Therefore the mechanical mode amplitude is expected to be linear with

V eff
dc Vac where V eff

dc = Vdc + Vint is the effective DC voltage. The zero displacement

line therefore corresponds to a zero value of the effective DC voltage so the applied DC

voltage Vdc compensates exactly the intrinsic one.

Figure 5.16 – a) Fundamental mode response of the calibrated system with excitation

Vdc = 0.5 V and Vac = 1 V. b) The mechanical displacement as a function of Vac(Vdc−
Vint) c) Membrane B experimental resonant response amplitude in (Vac, Vdc) parameter

space for ωd = ω+. Horizontal and vertical slices are represented for respectively Vac = 3
V and Vdc = 2 V with a linear fit (red line) in the non saturated regime. The iso-V eff

dc Vac

curves (black dashed) separate the linear and Duffing-Duffing regimes. BW = 100 Hz.

Coupling beam dimension: 1.0× 1.5 µm2.
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In fig. 5.16b the displacement is plotted as a function of the product V eff
dc Vac. A linear

tendency is followed by a saturation starting from V eff
dc Vac ≈ 1.3 V2. Above this threshold

the system enters in a Duffing regime which will be described further on. We fit the

linear regime (red line) and the force calibration can be estimated from the slope using

eq. (5.10). For this structure the FEM simulation give an effective mass m
ω+
eff ≈ 186

pg so we obtain a force calibration |∂C
∂x
| ≈ 2.2 µN.V−2. The experimental uncertainty

on this value is hard to estimate especially because of the effective mass that is given

by simulations. However, relying only on the experimental measurement, the relative

uncertainty is found to be of the order of 50%.

Figure 5.17 – Measured mechanical displacement at 2ω+ (a) and at 3ω+ (b) relative to

the displacement at ω+ as a function of Vdc and Vac. The iso-V eff
dc Vac straight black lines

delimit the linear and the nonlinear regime.

i 2nd order demodulation: verification of the Force model While the me-

chanical response at ω+ is measured as a function of Vdc and Vac, we simultaneously

demodulate the signal at 2ω+ and at 3ω+. Each filter has a demodulation bandwidth

set to BW = 100 Hz. We show the 2nd order relative to the 1st order demodulation

response R(2ω+)/R(ω+) in fig. 5.17a. As discussed in section 5.2.2.2, the force model

predict an off-resonant excitation component, at frequency 2ωd, that was considered

as negligible but this was not justified so far. This strength component is proportional

to V 2
ac and its ratio to the resonant strength component writes F2ωd

/Fωd
= Vac

4Vdc
. We

observe that for low value of VdcVac and due to noise, R(2ω+)/R(ω+) can be of the

order of 1. This just indicates that there is no mechanical displacement. The interest-

ing property of this plot is the fact that R(2ω+)/R(ω+) decreases when the membrane

displacement becomes significant. In fact, the mean value is estimated to be lower than
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3% over this map. This confirms the weak impact of the off-resonant component of the

electro-capacitive force.

ii 3rd order demodulation: indications towards a Duffing nonlinearity The 3rd

order demodulation response of the membrane as a function of the excitation parameters

is plotted in fig. 5.17b. This time there is no expectation whatsoever of any response

at 3 times the resonance frequency since no excitation component oscillates at this

frequency. However, it is well known that a Duffing-type nonlinearity involves 3rd order

generation. With this map we observe a sudden emergence of this effect when V eff
dc Vac

get over a certain threshold, i.e. when the applied strength is big enough. Moreover this

threshold seems to coincide with the saturation threshold discussed in this section. This

measurement pushes us towards the use of the Duffing resonator for the description of

these nonlinear effects.
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Chapter 6

Nonlinear dynamics with force

modulation

In the previous chapter, we have described the design of the mechanical system and

of actuation scheme. We have established an optical setup allowing the calibration of

the system relying in particular on the theoretical modeling of driven coupled harmonic

resonators. We have voluntarily maintained the system in the linear regime by applying

relatively small voltages on the system IDEs. However, it has been observed that dis-

placement saturation occurs when these excitation parameters are increased. The rest

of this part relies on the study of this nonlinear regime.

Using the Duffing resonator model, a theoretical model of coupled nonlinear res-

onators is expanded and applied it to our experimental data. We introduce a low-

frequency modulation of the force and discuss the chaotic dynamics that it implies. By

taking advantage of this regime, we will describe how the nonlinear coupling between two

normal modes can allow them to synchronize in chaos. Several phase synchronization

regime can then occur. Finally we apply a protocol of random bit generation from a

chaotic signal to our experimental data.

6.1 Duffing-Duffing model

The Duffing model is broadly used for the description of nonlinear mechanical systems.

It also has applications in many fields in physics [Korsch et al., 2008], e.g superconduct-

ing Josephson amplifier [Roy and Devoret, 2016], ionization plasma [Hsuan et al., 1967] and

chimera sates [Clerc et al., 2018]. In our mechanical system, the Duffing nonlinearity emerge

from a deviation to the Hooke’s law when the mechanical displacement and the structure

thickness have comparable order of magnitude. Interestingly in nanomechanical systems

this kind of nonlinear regime is easily reached due to the use of thin layers. The Duffing

regime leads to bistable states of the mechanical motion. This can be exploited for

119



Chapter 6. Nonlinear dynamics with force modulation

several applications and is at the center of the following work. The theoretical descrip-

tion of a single Duffing mechanical resonator has been deeply studied in the literature

as well as in the previous works within our research group [Chowdhury, 2016]. We extend

this model to linearly coupled resonators. The first step consist in the main derivations

of the stationary solutions of a driven ensemble of coupled Duffing resonators. We will

discuss the impact of the driving strength and the natural frequency mismatch of these

solutions.

6.1.1 Theoretical model

An harmonic oscillator is described through the Hooke’s law which stands that the

spring force exerted on the mass in motion m is proportional to its displacement from

equilibrium position x. F (x) = k0 × x with k0 the spring constant. This gives the

resonance frequency ω2
0 = k0/m. The Taylor expansion of the spring constant k(x) =

k0 +k1x+k2x
2 + ... allows a deviation to this linear model and the resulting anharmonic

oscillator description complexity grows with increasing order of this expansion. The

Duffing model considers a spring constant k(x) = k0+k2x
2 and we introduce the Duffing

nonlinearity β = k2/m. The physical origin of this nonlinearity can be understood

by applying the Euler-Bernoulli equation to a doubly-clamped beam with a position-

dependent length [Lifshitz and Cross, 2009].

In our model, we will assume identical Duffing intrinsic nonlinearities in both res-

onators βA = βB = β. We adapt eq. (5.1) by adding the nonlinear terms in each

resonator master equation. In order both to simplify the calculations and suit the fol-

lowing experiments, we consider only one forced resonator and set fA = 0: ẍA + ΓAẋA + ω2
AxA + βx3

A −GxB =0
ẍB + ΓBẋB + ω2

BxB + βx3
B −GxA =fB cos(ωdt)

We start from the ansatz xA = vA cos(ωdt) + wA sin(ωdt) and xB = vB cos(ωdt) +
wB sin(ωdt) where the quadratures relate to the response amplitude and phase with

r2
A = v2

A + w2
A and ϑA = atan2(vA, wA) (and similarly for rB and ϑB)1.

Before injecting the assumed solutions in the master equations, it is useful to prelim-

inary calculate x3
A in order to reveal the off-resonant terms oscillating at 3ωd that can

be neglected in the following. It was indeed experimentally verified in eq. (5.10) that the

motion at 3ωd emerges in the nonlinear regime but stays very weak compared to the res-

onant oscillation. We also expand the expression for the derivatives ẋA and ẍA. As the

resonant amplitude is expected to vary much slower than resonant oscillations timescale,

we can neglect the quadratures second derivatives by assuming v̈A,ẅA � ω2
dvA,ω2

dwA.

1Although the use of complex expressions turned out to be extremely practical for the derivation of

the linear solutions, we now promote the use of real quantities in the nonlinear regime.
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6.1. Duffing-Duffing model

These preliminary results are injected in the master equations and all quantities are

normalized as detailed previously (see section 5.3.2):

v̇A =1
2wA

[
2(δ −∆ω) + 3

4 β̃(v2
A + w2

A)
]
− 1

2γAvA −
1
2gwB (S.1a)

ẇA =−1
2 vA

[
2(δ −∆ω) + 3

4 β̃(v2
A + w2

A)
]
− 1

2γAwA + 1
2gvB (S.1b)

v̇B =1
2wB

[
2δ + 3

4 β̃(v2
B + w2

B)
]
− 1

2γBvB −
1
2gwA (S.2a)

ẇB =−1
2 vB

[
2δ + 3

4 β̃(v2
B + w2

B)
]
− 1

2γBwB + 1
2gvA + 1

2 f̃B (S.1b)

with the normalized Duffing nonlinearity β̃ = β̃/ω2
d.

This system of equations describes the evolution of our system in terms of quadratures

vA, wA, vB and wB. It presents an interest for the numerical simulations since these

quantities are homogeneous to each other. In order to express these solutions in terms

of the amplitudes and phases, we perform the reverse transformations vA = rA cos(ϑA),

wA = rA sin(ϑA), vB = rB cos(ϑB) and wB = rB sin(ϑB) and take:

(S.1a)× cos(ϑA) + (S.2a)× sin(ϑA)

(S.1b)× cos(ϑB) + (S.2b)× sin(ϑB)

−(S.1a)× sin(ϑA) + (S.2a)× cos(ϑA)

−(S.1b)× sin(ϑB) + (S.2b)× cos(ϑB)

The stationary solutions of the amplitudes (rA,rB) and phases (ϑA,ϑB) are given by:

ṙA =−γA2 rA + g

2rB sin(ϑA − ϑB)

ṙB =−γB2 rB −
g

2rA sin(ϑA − ϑB) + f̃B
2 sin(ϑB)

rAϑ̇A =−rA2

[
2(δ −∆ω) + 3

4 β̃r
2
A

]
+ g

2rB cos(ϑA − ϑB)

rBϑ̇B =−rB2

[
2δ + 3

4 β̃r
2
B

]
+ g

2rA cos(ϑA − ϑB) + f̃B
2 cos(ϑB)

(6.1)

In order to visualize the amplitude responses as a function of the detuning δ, this

system is solved using Mathematica for a given set of parameters and in the permanent

regime (ṙA = ṙB = ϑ̇A = ϑ̇B = 0). In fig. 6.1a, the response of the resonator A is

plotted with parameters γA = 0.0004, γB = 0.0005, β̃ = 2 × 10−7 and g = 0.0345.

These normalized parameters, although representative of the typical structures we study,

do not correspond to any of them. The response of resonator B is not plotted but the

differences have always been discussed in the linear regime (see section 5.3.3.1) and

these considerations are still valid here. These solutions show a strong saturation of

the displacement as well as a shift in the resonance frequency toward higher frequencies
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Figure 6.1 – Displacement of the resonator A as function of the detuning δ. We use

γA = 0.0004, γB = 0.0005, β̃ = 2× 10−7 and g = 0.0345. a) stable (straight line) and

unstable (dashed) solutions. Log plot showing the system trajectory when δ is swept

up (red) or down (blue). b) Displacement for different strength values. c) for different

frequency mismatch values. d) At ∆ω = −0.0095 we find a solution isolated from the

resonances.

(hardening). Note that a negative Duffing constant leads to a shift towards lower fre-

quencies (softening). The deformation of the resonances also comes with a multivalued

solution. Some solutions are stable (straight lines) and some are unstable (dashed). By

sweeping the detuning up or down, a hysteretic behavior is observed so the system is

maintained on the stable solutions. The bistability regions have frequency spans that

depends on the nonlinearity βf 2
B as shown in fig. 6.1b where the same plot is shown but

with several value of fB. For decreasing values of the driving strength, the curve profile

tends to the linear case.

The detuning and the driving strengths are experimentally controlled by the user

while the coupling g, the dampings γA,B and the frequency mismatch ∆ω are intrinsic
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6.1. Duffing-Duffing model

to the geometry and the fabrication quality. It is however interesting to observe the

effect of the displacement response for different values of ∆ω as plotted in fig. 6.1c.

Contrary to the single Duffing response, the saturation can get so important that the

displacement becomes flat (∆ω = 0.08) and even decreases before the bistability edge

(∆ω = 0.04). The flattening only occurs for one of the eigenmodes. If ∆ω 6= 0, one

can associate each eigenmode to a given resonator. Here we plot the displacement of

resonator A and the flattening can be seen on the eigenmode dominated by the motion

of B although this imbalance tends to disappear when ∆ω vanishes. Despite the fact

that a better tuning of the natural frequencies balance the normal mode responses, a

qualitative change of these responses is observed when the bistability windows start to

overlap. At some particular values of the detuning, more than 2 stable states can be

found and the model predicts exotic solutions. An example is show in fig. 6.1d where

an isolated loop is presented for ∆ω = −0.0095. Such basin of attraction have been

discussed in similar systems [Kirkendall and Kwon, 2016; Dong et al., 2018].

In this discussion, we have described the important features to be observed in our

system but also noted peculiar regimes that can only be achieved with peculiar arrange-

ment of the membranes frequencies and coupling. Although not necessarily observed in

the following, these peculiar regimes are not found for unrealistic parameters and could

be of great interest in future experiments.

6.1.2 Experimental response plots

The theoretical description of two coupled Duffing resonators was motivated by the ob-

servation of a saturation of the mechanical displacement when VdcVac is increased (see

fig. 5.16c). So far, no frequency sweep under such regime has been shown but only

the response at the linear resonance frequency ωd = ω+. We focus on the system that

was preliminary calibrated and discussed in section 5.3.5. The laser spot is focused on

membrane B while the total voltage Vtot is applied on the associated IDEs. As the

strength applied on the resonator goes as fB ∝ VdcVac, we are free to play with both

voltage component to reach the nonlinear regime. We set Vac = 2.5 V and sweep the

drive frequency ωd over the resonances for three different values of Vdc. The resulting

displacement is shown in fig. 6.2a. For Vdc = 1 V, the resonances are slightly distorted

since the system already set in the nonlinear regime as indicated by the calibration map in

fig. 5.16c. For Vdc = 3 V, the resonances are now both bistable. Depending on whether

the frequency is swept up or down different solutions are explored and hysteretic jumps

are observed at the bistabilities edges. At this point each resonance taken separately

qualitatively looks like a single Duffing response. However when Vdc = 5 V, the displace-

ment response clearly decreases on the upper branch on the anti-symmetrical resonance

(+) before jumping to the lower stable state. The bistability frequency spans grow with
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the applied strength as predicted by our nonlinear model.

Figure 6.2 – a) Experimental measurement of membrane B displacement while the driving

frequency is swept up (dashed) or down (straight). B is driven with Vac = 2.5 V and Vdc

is set to 1 V, 3 V and 6 V (resp. from top to bottom). b) With Vdc = 2 V and Vac = 3
V, the experimental data (blue) are manually fitted with theoretical model (red) by using

the linear parameters established previously and using only the Duffing parameter β for

the fit.

In fig. 6.2b, the displacement response is measured with Vdc = 2 V and Vac =
3 V. Thanks to the fit performed in linear regime and shown in fig. 5.16a, most of

the mechanical properties of this system are already known. The experimental data

can be approached with a numerical solution of the Duffing-Duffing model by playing

with the nonlinearity β which is the remaining unknown parameter. In practice the

knowledge of this parameter relies on the force calibration. By adjusting the value of β

in order to get the closest match of the theoretical and experimental bistability edges,

we find β ≈ (2π)2 × 6.71 × 10−6 MHz2.nm−2. The theoretical solutions fits quite

well with the experimental points. The peak positions and the frequency spans of the

bistabilities are properly reproduced as well as the Fano resonance dip at 2.18 MHz.

However, the anti-symmetrical resonance (+) amplitude saturation is not recovered and

a significant discard occur in this region. This is also the case to a lesser extent for the

other eigenmode (−) but this time the experimental mode displace more than in the

theory. This disagreement could be explained by many sources starting with an imprecise

calibration of the systems parameters. If the natural frequencies and damping are believed

to be consistently evaluated, the coupling G could not be directly measured – i.e the
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avoided crossing was not observed (see section 5.3.3.2) – for this structure and result

from a multi-parameters fit. Thus this parameter is known to critically influence the

balance between the eigenmode amplitudes. Moreover the force calibration relies on an

imprecise experimental protocol as well as on a finite-element simulation – to determine

meff – that is also source of uncertainty. Of course it can not be excluded that the

Duffing-Duffing model is incomplete and can not better describe the experimental data,

although it still accurately predict the following nonlinear dynamics experiments.

All the resonator properties are given in table 6.1 as well as the effective mass and

calibrated electro-capacitive force. The associated normalized quantities are also given

by using a typical driving frequency ωd ∼ 2π × 2.3 MHz. These values are going to be

profusely used for modeling the following experiments.

Physical quantities Normalized quantities

symbol value units expression

ωA 2π × 2.187 MHz ∆ω = ωB−ωA

ωd

ωB 2π × 2.345 MHz δ = ωB−ωd

ωd

ΓA 2π × 2.4 kHz γA = ΓA/ωd
ΓB 2π × 4.3 kHz γB = ΓB/ωd
G/ωA 2π × 130 kHz g = G/ω2

d

β (2π)2 × 6.71× 10−6 MHz2.nm−2 β̃ = β/ω2
d

m
ω+
eff 186 pg (computed with finite element simulations)

FB 2.2× VdcVac µN f̃B = FB

m
ω+
eff ω2

d

Table 6.1 – List of physical quantities experimentally calibrated (except the effective

mass meff given by Comsol for the coupled membranes anti-symmetrical fundamental

eigenmode). Associated normalized quantities used in the numerical simulations. The

structure has the coupling beam dimension: 1.0× 1.5 µm2.

6.2 Period-doubling route to chaos with strength mod-

ulation

In this section we will study the chaotic dynamics of the coupled nonlinear resonators

that occur when the applied force is modulated in amplitude at a low frequency. What

”low”means will be discussed later on but basically means that this frequency lies at the

dissipative frequency scale ΓA,B. We first explain how this modulation is experimentally

performed and give some key-concept that are required for understanding the resulting

dynamics. Then the experimental results are presented starting with the effect of the
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modulation on the spectral response amplitude. This measurement, associated with

the experimental diagram drawn as a function of the driving frequency ωd, permits

to qualitatively determine how this latter should be set in order to observe chaos. The

experimental bifurcation diagrams plotted as a function of the modulation amplitude and

frequency are finally performed. The data are compared with the numerical simulations.

6.2.1 Modulation technique

The force amplitude modulation requires a new oscillating component in the applied total

voltage Vtot = Vdc + Vac cos(ωdt) + Vp cos(ωpt). The expansion of the electro-capacitive

force expression eq. (5.5) with this new total voltage writes:

F (t) = 1
2
∂C

∂x
×
[
V 2
dc + 1

2V
2
ac + 1

2V
2
p

+ 2Vac
(
Vdc + Vp cos(ωpt)

)
cos(ωdt)

+ 1
2V

2
ac cos(2ωdt) + 1

2V
2
p cos(2ωpt)

] (6.2)

The static component (1st line) can be neglected as justified in section 5.2.2.2.

The off-resonant terms (3rd line) can also be ignored (see section 5.3.5). Finally, the

remaining resonant term gives a strength fB ∝ Vac(Vdc + Vp cos(ωpt)) with respectively

the modulation amplitude and frequency Vp and ωp. As the Fourier transform of such

modulated signal shows one component at the carrier frequency and two sidebands

located at ωd ± ωp, we expect to be able to excite the system by using these sidebands.

This feature is used in multimode lasers mode-locking operations [Hargrove et al., 1964;

Yariv, 1965] for example. Here we can verify the presence of these additional tones is

the electro-capacitive force by measuring the system response at different values of

the modulation frequency. When this latter is such that ωd± ωp is near one mechanical

normal mode, this latter must be driven and therefore respond. The measurement is first

performed in the linear regime with Vdc = 3 V, Vac = 0.5 V and Vp = 2 V. We plot the

response of membrane B, demodulated through a 200 kHz passband filter, as a function

of the modulation frequency. As expected, the system is not only driven when the carrier

frequency passes the mechanical modes, but also when the modulation sidebands do.

Note that nothing happens at the particular modulation frequencies ωp = p
n
×(ω+−ω−),

with p and n two integers, i.e. when the peaks cross each other, because the modes

are orthogonal here and are not expected to couple. Thus the present type modulation

should not be confused with parametric excitation, e.g. in [Okamoto et al., 2013] where the

natural frequency of one resonator is slowly modulated while the system is resonantly

driven.
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6.2. Period-doubling route to chaos with strength modulation

Figure 6.3 – Measured mechanical displacement of membrane B under forward driving

frequency sweep, as a function of the modulation frequency. Importantly here we use

BW = 200 kHz a) in linear regime: Vdc = 3 V, Vac = 0.5 V and Vp = 2 V b) in nonlinear

regime: Vdc = 3 V, Vac = 1.75 V and Vp = 3.5 V.

When the Duffing regime is reached, a nonlinear interaction occurs between the added

modulation tone and the mechanical resonator. As a result, more replica of the main

mechanical normal modes are expected. We verify this by using higher driving voltages:

Vdc = 3 V, Vac = 1.75 V and Vp = 3.5 V. The resulting map, shown in fig. 6.3b,

indeed reveals several additional replica (four additional orders). More importantly, as

the mechanical modes are nonlinearly driven, they are a priori not orthogonal anymore.

In consequence, it is expected that some energy transits from the driven mode to the

other such that they can couple. This aspect is more carefully discussed later on. For

now we simply note the presence of new features at the intersection between the first

order replica and the mechanical modes, as pointed out with the zoom inset (i), or when

the first orders provided by each mode cross each other (ii). At these crossing positions,

it clearly appears that the peaks do not simply overlap but also distort themselves.

It should be emphasized that all these considerations are reminiscent of the op-

tomechanical sidebands described and observed in the first part of the manuscript (see

section 4.1). Despite the crucial differences – here the resonantly driven response is

read while the Brownian noise is detected in the optomechanical system, we consider

here a mechanical bistability whereas the optomechanical system sustains a thermo optic

bistability, and so on – both systems can be described with bistable resonators forced

with a modulated drive, and responding through a nonlinear process which leads to the

presence of replica in the mechanical domain.a

With these clarifications, it is now possible to investigate the dynamics of the system

under such modulation by playing with the voltages Vdc, Vac and Vp or with the frequen-
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cies ωd and ωp. In order to reduce this list, we will restrict ourselves by using Vdc = 2 V

and Vac = 3 V (which gives the response seen in fig. 6.2b).

6.2.2 Influence of the driving frequency

Before discussing the mechanism through which the bifurcation dynamics arises, let’s

check the effect of the modulation on the amplitude spectral response. In order to make

sure that the probed displacement is spectrally localized at the driving frequency, contrary

to the measurements presented in figs. 6.3a and 6.3b, the demodulation bandwidth is

reset to 100 Hz such that the sidebands are not visible anymore in the spectral response2.

In fig. 6.4a, the displacement of membrane B is plotted with the forwardly and backwardly

swept driving frequency. As the modulation amplitude is increased from 0 to 3 V, the

resonances seem to be distorted and the bistability disappears. This last feature is more

visible for the mode (+). Here it is not possible to observe the dynamics that typically

takes place at the modulation frequency ωp = 2π × 7 kHz. It is therefore necessary to

use another method for understanding the present physics.

Figure 6.4 – a) For Vp = 0,2 and 3 V, displacement response of membrane B under

upward (dashed) and downward (straight) sweeps of ωd. BW = 100 Hz. b) Experimental

bifurcation diagram with parameter ωd at Vp = 3 V using BW = 40 kHz. Other

parameters: Vdc = 2 V, Vac = 3 V and ωp = 2π × 7 kHz.

2The choice of 100 Hz is arbitrary. The important point is that this value is much below the

dynamical features occurring at the modulation frequency (BW� ωp).
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6.2. Period-doubling route to chaos with strength modulation

To quantify the nonlinear dynamics of a system, the bifurcation diagram is a par-

ticularly useful tool. A bifurcation corresponds to a qualitative change of a nonlinear

system dynamics under a tiny change of one parameter. As this latter, the bifurcation

parameter, is swept over certain range, the system dynamics is evaluated via a figure of

merit. In nonlinear sciences, the use of the Poincaré section is often adapted for this pur-

pose. In appendix C, a technical note provides several tools for the time trace analysis.

In particular, the Poincaré section construction is explained. Here, it seems interesting

to attempt building a bifurcation diagram as a function of the driving frequency ωd.

Using ωp = 2π × 7 kHz and Vp = 3 V, the demodulated amplitude and phase signals

provided by the readout of membrane B is recorded while ωd is swept from 2.1 to 2.5
MHz. In order to access the dynamical effects we seek at typical frequency given by

ωp, the demodulation bandwidth is widened to BW = 40 kHz. It is important both to

record data with enough resolution and time-length. We set the sampling frequency to

400 kHz (≈65 points per modulation period) and the acquisition duration to 100 ms

(700 modulation periods). Each measurement includes the time vector and the signal

quadratures XA,B = RA,B cos(θA,B) and YA,B = RA,B sin(θA,B) where A or B refers to

the resonator that is probed. The Poincaré section is extracted from each trace using

the local maxima of YB(t). Plotted as a function of ωd/2π, we obtain the bifurcation

diagram presented in fig. 6.4b.

On this diagram, the points found in a given column (i.e. at a given value of

the bifurcation parameter) correspond to the projection of the Poincaré section on 1

dimension. If all the points are gathered a given value, it indicates that the time trace

maxima always reach the same value. This period-1 dynamics is found generally off the

mechanical resonances. However when the driving frequency is close to the resonances,

more complicated regimes are found. When the points are spread over a large range

of amplitude, it means that the response does not oscillate regularly and never reach

the same maximum. This is a feature of chaos as it will be more deeply discussed

later. In the following, we want to experimentally investigate this nonlinear dynamics

by using the modulation amplitude Vp and frequency ωp as the bifurcation parameters.

This preliminary result indicates how the driving frequency should be set. It appears

indeed that the more complex dynamics, highlighted in the blue transparent stripes, is

obtained at resonance. More precisely, the low frequency bistability edges seem to be at

the center of each of these windows. In the following, we use this position as a reference

for the construction of the bifurcation diagrams. This allows the different normal mode

dynamics to be compared to each other and permits also a better reproducibility.
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6.2.3 Modulation mechanism on the bistable response

It is possible to build oneself an intuition of the mechanism enabling this complex dynam-

ics to occur. So far, the bistable regime has been shown in the spectral response of the

system, i.e. when the driving frequency is swept forward and downward. The theoretical

displacement obtained for the fixed settings Vdc = 2 V and Vac = 3 V is recalled in

fig. 6.5a. For a given eigenmode, the bistable regime is highlighted in red. However, the

force amplitude modulation can not be easily imaged with this representation. Instead,

the theoretical displacement can be plotted as a function of the applied strength. For

this purpose the driving frequency is fixed at the low bistability edge of the normal mode

that is investigated. Then the stationary solutions are numerically resolved as a function

of the force fb.

Figure 6.5 – a) Theoretical displacement of resonator B for Vdc = 2 V and Vac = 3V as

a function of the driving frequency. b) Theoretical displacement of resonator A (blue)

and B (green) for ωd = 2π × 2.164 MHz as a function of the force amplitude fB. c)

idem for ωd = 2π × 2.379 MHz.

In fig. 6.5b (resp. in fig. 6.5c), the displacement of resonator A is shown in blue and

the displacement of B is shown in green when driving the symmetrical eigenmode (−)

with ωd = 2π×2.164 MHz (resp. anti-symmetrical eigenmode (+) with ωd = 2π×2.379
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MHz).

As shown with the black arrows, the strength modulation implies an horizontal dis-

placement on the stable states. The higher Vp the more susceptible for the system to

read the other bistability edge and jump to the lower state. Additionally, the modulation

frequency plays an important role in the capacity of the system to respond to the drive.

If the change in the applied strength is too fast, the system won’t be able to respond

and maybe will be blind tho the modulation. Therefore it is possible at this point to

anticipate that the frequency modulation must not be too large compared to the typical

dissipation rate given by Γ± ≈ ΓA,B ≈ 5 kHz.

6.2.4 Experimental bifurcation diagrams

We start the study with the strength modulation amplitude Vp. We recall here that

Vdc = 2 V and Vac = 3 V for this study. The modulation frequency is set to ωp = 2π×7
kHz. The objective is to evaluate the effects of this modulation on each normal mode

and to compare them. We also wish to compare the system dynamics whether the

membrane A or B is read which makes 4 different scenarii to explore.

First, the laser spot is focused on membrane A and the driving frequency matches

with the symmetrical eigenmode bistability edge ωd = 2π× 2.164 MHz. A time trace is

recorded for each value of Vp between 0 and 3 V. The same experiment is then realized by

focusing the laser on membrane B. The bifurcation diagrams are built from the Poincaré

section made of the local maxima of YA(t) as a function of Vp as shown in (fig. 6.6a).

Using YA(t) rather than XA(t) is an arbitrary choice motivated by the higher amplitude

of the phase portraits along the Y axis. Then the same experiment is reproduced by

probing the membrane B. The corresponding diagram is is shown in fig. 6.6b and each

time trace is used to compute the largest Lyapunov exponents (LLEs) shown in red below

the corresponding diagrams. The computation of the LLE is discussed in appendix C. For

low value of the modulation voltage injected into the normal mode (−), a single branch

in the Poincaré section in results from the closed single loop oscillations. In this limit-

cycle regime the membranes MHz oscillations envelopes are modulated at ωp. As the

strength is modulated stronger, we observe two consecutive period-doubling bifurcations

at Vp ≈ 1.75 V and Vp ≈ 2.5 V prior to a window of chaotic dynamics for Vp > 2.8 V

that we highlight with transparent blue stripes. The presence of chaos is confirmed by

the positive LLEs while it is zero for limit cycle oscillations.

Similar measurements are conducted driving the other normal mode (+). The driving

frequency is now set to the low-frequency edge of the bistability at ωd = 2π × 2.379
MHz. We construct the bifurcation diagrams still reading the motion of membrane A

(fig. 6.6e) and then membrane B (fig. 6.6f). The phase portraits associated to this

case are shown in fig. 6.6g. The bifurcation diagrams of eigenmode (+) also display
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Figure 6.6 – Experimental and numerical bifurcation diagrams under single driving. Mea-

surement and simulations are performed by driving either the symmetrical (left column

ωd = 2π × 2.164 MHz) or anti-symmetrical resonance (right column ωd = 2π × 2.379
MHz) with Vdc = 2 V, Vac = 3 V and ωp = 2π × 7 kHz. a)-e) experimental bifurcation

diagrams built by sweeping Vp and reading membrane A. b)-f) idem by reading B and

with the associated largest Lyapunov exponents (LLE). c)/f) Phase portraits at differ-

ent dynamical regimes. d)/f) Numerical simulation of bifurcation diagrams built from

membrane B response. Note the broken axis.
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a period-doubling route to chaos structure [Lee et al., 1985] although the chaotic regime

now occurs around Vp ≈ 2V. We observe several chaotic regions that are separated by

small windows of periodic or quasiperiodic regimes as captured by the zero values of

the associated LLE. An example of such regime is show in fig. 6.6g at value Vp = 2.6V

with a period-4 motion. All experimental diagrams share a common dynamics but the

bifurcation points significantly differ whether the eigenmode (−) to (+) is driven. This

quantitative differences between the eigenmodes dynamics result from the imbalanced

energy injection in the normal modes since we advantage the eigenmode (+) by driving

the membrane B.

Although the bifurcation diagrams are very similar whether A or B is read, a small

shift in the bifurcation points positions can be observed and even a regime of periodic

oscillations is present around Vp =2.3V in fig. 6.6f that is not present in fig. 6.6e. This

is a consequence of the photothermal shift induced by the laser on the eigenfrequency

dominated by the probed membrane [Gao et al., 2019]. This shift is lower than 3 kHz

but leads to a significant modification of the bifurcation diagram. When driving a given

normal mode, we expect the membrane responses to be perfectly correlated. The normal

modes result from the strong coupling interaction between the membranes and the fact

that they both are identically affected by the dynamics of a normal mode should not

be understood as synchronization. This can not be confirmed without a simultaneous

lecture of both membranes although it was corroborated by our numerical simulations.

The Duffing-Duffing model developed previously is used to reproduce the bifurcation

diagrams for both the (−) and the (+) mechanical mode using the driving frequencies

ωd = 2π×2.167380 MHz and ωd = 2π×2.37940 MHz (see resp. fig. 6.6d and fig. 6.6h).

The simulations implement an adaptative step-size RK4 method to solve the ordinary

differential equations (ODEs) shown in eq. (6.1) by including the time dependent strength

and inject the experimentally determined parameters.

f̃B(t)→ f̃B

[
1 + Vp

Vdc
cos(ωpt)

]
(6.3)

The resulting time traces are analyzed with the same protocol used for our experimen-

tal data. In particular, the effect of the 40 kHz bandwidth demodulation is reproduced

by applying an identical low-pass filter on the time traces. The route to chaos by pe-

riod doubling cascade is well captured by our model. The quantitative comparison with

experiments yields a satisfactory agreement given all the experimental parameter uncer-

tainties. Thanks to the model, it is possible to track the origin of the chaotic dynamics

in the force modulation and not in the coupling: indeed uncoupled membranes should

also display chaos under modulation [Miles, 1984; Houri et al., 2020].
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6.2.5 Modulation frequency domain

The modulation frequency plays an important role in the dynamics. It seems indeed

intuitive, in the framework of the theoretical model, that this frequency should not exceed

the damping rate of the system for the stationary equation to remain valid. Somehow

the mechanical system would not be able to react with a very fast modulation. In order

to experimentally check this consideration, a bifurcation diagram is built with parameter

ωp ranging from 2 to 20kHz. The previous experiment has shown that the eigenmode

(+) has a higher amplitude for a given set of excitation parameters. Therefore this study

focuses on this eigenmode. The static and resonant voltages stay unchanged: Vdc = 2 V

and Vac = 3 V. The modulation amplitude Vp is set at 2.5 V which clearly permit chaos

to emerge as shown at this particular value in fig. 6.6f. The time traces sampling rate is

adapted to the modulation frequency along the measurement so a satisfactory number

of points is recorded per modulation period.

The experimental bifurcation diagram (see fig. 6.7a) evidence a large frequency win-

dow of chaotic dynamics as pointed out by the largest Lyapunov exponents. At low

modulation frequency, the dynamics is generally periodic with small frequency windows

of chaos. A large windows including chaotic intermittency starts around 6.7 kHz and

stops at 17.5 kHz. At this value, a reverse cascade period-doubling leads to a single loop

limit cycle oscillation whose amplitude decays as the modulation frequency increases.

This effect is partly due to the passband demodulation bandwidth that is set to 40 kHz.

Nevertheless, it is experimentally verified that for a high frequency (e.g 80kHz) and with

an adapted bandwidth (200 kHz), the amplitude still decreases. Anyway no particular

dynamics is observed after this reverse period-doubling.

The chaotic dynamics is clearly confined to a range of frequency neighboring the

damping rate Γ+ = 2π×5 kHz. The observed reverse cascade suggests that an increase

ωd acts as a decrease of Vp. As the system does not have the time to react to fast

force modulation, it reduces its travels through a shorter range of response amplitude.

The resulting dynamics therefore compares with what is obtained for lower modulation

amplitude.

A numerical simulation is performed in the same modulation frequency range (see

fig. 6.7b). The qualitative dynamics evolution is well captured by the model. In particular,

the chaotic intermittency and the reverse period-doubling route to chaos clearly appears

in the diagram. However, a quantitative difference is found as the system does not show

anymore peculiar dynamics as soon as the modulation frequency gets over 12 kHz. The

reason for this discrepancy is not perfectly clear but it might be that the force is not

well scaled as already suspected with the previous simulation on eigenmode (+) with

parameter Vp. In both cases, it looks like the parameters injected in the model leads to

underestimated driving force.
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Figure 6.7 – a) Experimental bifurcation diagram with parameter ωp. Settings: ωd =
2π × 2.379 MHz, Vdc = 2 V, Vac = 3 V and Vp = 2.5 V. Associated largest Lyapunov

exponent (red). Measurement performed at ambient pressure. b) numerical simulation

using identical settings. BW = 40 kHz

Another way to check the influence of the dissipative timescale on the dynamics of

the system consist in checking the bifurcation diagram at different pressure conditions in

the vacuum chamber. It has been discussed in section 5.3.4 that the mechanical damping

rate exponentially grows with the pressure and is limited to its internal component at low

pressure (below 10−3 mbar). For 3 different pressure values, the mechanical hysteretic

response of eigenmode (+) is obtained by applying Vdc = 2 V and Vac = 3 V on

membrane B and by reading B (see fig. 6.8a). The bifurcation diagrams associated to

these measurement are shown in fig. 6.8b. It appears clearly that the dynamics is getting

poorer as the pressure is increased. In fact, a chaotic region is still found at 15 µbar

but this is not the case for lower pressure. By comparing this particular diagram with

fig. 6.7a, one finds that the chaotic region still starts at 6.7 kHz but now ends at lower

modulation frequency, around 16.5 kHz. For higher pressure, no chaos is diagnosed in the

diagrams but a reverse period doubling occurs and the position ωPD of this bifurcation

(red dot in each diagram) can be used as a key-criterion in this discussion.

Increasing the mechanical damping rate dramatically deteriorates the displacement

amplitude and therefore leads to a lower mechanical saturation. In other words, the

hysteresis frequency span is degraded with lower mechanical quality factor. In the mean-

time, the bifurcation dynamics that is discussed in this chapter relies on the mechanical

nonlinearity. Therefore it seems natural that this dynamics vanishes when the bistability

disappear. The direct conclusion of this reasoning is that the cut-off frequency ωPD
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Figure 6.8 – For 3 different pressure in the vacuum chamber : a) Normalized mechanical

displacement with forward (brown) and backward (orange) sweep of the driving frequency

on eigenmode (+) centered at ω+ = 2π × 2.327 MHz. The linear response is indicated

for reference (back dashed). b) Experimental bifurcation diagram with parameter ωp.

The period-doubling bifurcation position is highlighted with a red dot.

should be anti-correlated with the damping rate Γ+, which could seem in conflict with

the previous discussion. In fact there is a competition between the system nonlinearity

and the dissipation rate. Overall, it turns out that the impact of an higher damping rate

on the hysteresis span is so important that it dominates the dynamics of the system.

6.3 Imperfect synchronization with two-drive excita-

tion

The chaotic dynamics emerging from the force modulation has been observed in the

coupled Duffing system. However this peculiar dynamics does not rely on the coupling

between the membranes and could be observed in a single Duffing nanomechanical sys-

tem. Moreover the period-doubling route to chaos has been observed independently on

each eigenmode. Although the bifurcation diagrams have the same structure, we observe

a significant difference in the position of the bifurcation points and in the response am-

plitude. This contrast is caused by the strong natural frequency mismatch which limits

the energy enabled to transit from membrane B to membrane A and leads to imbalanced

amplitudes of the eigenmodes.

In this section we show that the eigenmodes can couple and synchronize when si-
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multaneously driven. The orthogonality breaking that allows this coupling is preliminary

explained and described in the frame of the Duffing-Duffing model. Then we experimen-

tally investigate the different synchronization regimes standing in periodic and in chaotic

dynamics.

6.3.1 Orthogonality breaking

In the linear regime, the normal modes resulting from the spring coupling between the

nano-membranes have properties given by the eigenvalues of the Jacobian J that has

been extensively used in the previous chapter chapter 5. As soon as the system enters

in the Duffing regime, this diagonalization can not be performed and the eigenmodes

are no longer orthogonal to each other. In consequence an energy transfer is expected

between the eigenmodes as soon as they are driven in a nonlinear regime. Here we will

use the coupled Duffing resonators model to evidence this coupling.

The notation (−) and (+) respectively refer to the symmetrical and anti-symmetrical

eigenmodes. We assume here that the eigenmodes are driven with strengths f+
B and f−B

and driving frequencies ω−d and ω+
d applied on membrane B. The master equations of

the system now reads: ẍA + ΓAẋA + ω2
A(1 + βx2

A)xA −GxB =0
ẍB + ΓBẋB + ω2

B(1 + βx2
B)xB −GxA =f−B cos(ω−d t) + f+

B cos(ω+
d t)

Solving these coupled nonlinear equations does not require additional technique than

what is shown in section 6.1.1. However, since the system is now expected to respond

both at ω−d and ω+
d , we modify the ansatz :

xA = v−A cos(ω−d t) + w−A sin(ω−d t)
+ v+

A cos(ω+
d t) + w+

A(ω+
d t)

The rest of the calculations are essentially the same. The nonlinear coupling between

r−A,B and r+
A,B comes from the development of the cubic terms x3

A and x3
B. We neglect

all off-resonant terms including the ones oscillating at 2ω± − ω∓. Following the exact

same procedure than before, we derive a system of 8 equations for the normal modes

(−) and (+) amplitudes and phases accessed either through the membrane A (r−A , r+
A ,

ϑ−A and ϑ+
A) or B (r−B , r+

B , ϑ−B and ϑ+
B). It writes :

ṙ−A =−γA2 r−A + g

2r
−
B sin(ϑ−A − ϑ−B)

ṙ−B =−γB2 r−B −
g

2r
−
A sin(ϑ−A − ϑ−B) + f̃−B

2 sin(ϑ−B)

r−A ϑ̇
−
A =−r

−
A

2

[
2(δ− −∆ω) + 3

4 β̃(r−2

A + 2r+2

A )
]

+ g

2r
−
B cos(ϑ−A − ϑ−B)

r−B ϑ̇
−
B =−r

−
B

2

[
2δ− + 3

4 β̃(r−2

B + 2r+2

B )
]

+ g

2rA cos(ϑ−A − ϑ−B) + f̃−B
2 cos(ϑ−B)

page 137



Chapter 6. Nonlinear dynamics with force modulation



ṙ+
A =−γA2 r+

A + g

2r
+
B sin(ϑ+

A − ϑ+
B)

ṙ+
B =−γB2 r+

B −
g

2r
+
A sin(ϑ+

A − ϑ+
B) + f̃+

B

2 sin(ϑ+
B)

r+
A ϑ̇

+
A =−r

+
A

2

[
2(δ+ −∆ω) + 3

4 β̃(r+2

A + 2r−2

A )
]

+ g

2r
+
B cos(ϑ+

A − ϑ+
B)

r+
B ϑ̇

+
B =−r

+
B

2

[
2δ+ + 3

4 β̃(r+2

B + 2r−2

B )
]

+ g

2r
+
A cos(ϑ+

A − ϑ+
B) + f̃+

B

2 cos(ϑ+
B)

With the detunings δ± = (ωB − ω±d )/ω±d and the strengths f̃±B = f±B /ω
±
d .

These two systems of 4 equations contains new terms that allow the eigenmode

response amplitudes r+
A,B and r−A,B to couple. By developing the 4 expressions of the

phases derivatives (r±A ϑ̇
±
A and r±B ϑ̇

±
B) we note that this coupling is of the form β̃r±r∓

2
.

Interestingly we recover an nonlinear coupling that goes like a cubic displacement. This

form of nonlinear coupling is sometime used in the description of nonlinearly coupled

resonators, additionally to the Duffing nonlinearity [Truitt et al., 2013].

Figure 6.9 – The imbalance in each eigenmode displacement field distribution is caused

by the intrinsic natural frequency mismatch ωB−ωA. The energy injected in each normal

mode is balanced by choosing f−B > f+
B . Additionally the Duffing nonlinearity β breaks

the orthogonality between the eigenmodes and allows them to couple.

6.3.2 Correlated bifurcation diagrams

A measurement of the bifurcation diagrams is performed with Vdc = 2V , V −ac = 3.5V ,

ω−d = 2π × 2.177 MHZ, V +
ac = 0.5V , ω+

d = 2π × 2.410 MHz and ωp = 2π × 5 kHz.

We choose V +
ac < V −ac in order to compensate the response amplitudes imbalance that
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results from the membranes frequency mismatch (see fig. 6.9). We place the laser spot

on membrane B and use two independent demodulators to simultaneously access the

signal amplitude and phase at ω−d (R−B and θ−B) and at ω+
d (R+

B and θ+
B). By sweeping

the bifurcation parameter Vp, a new diagram is built from the local maxima of signal

quadratures Y −B = R−B sin(θ−B) and Y +
B = R+

B sin(θ+
B) that we record with demodulation

bandwidth of 40 kHz. This allows a reduction of the crosstalk between the channels below

-20 dB. We note that the diagram branches are broader than in the single-excitation case.

This is caused by the remaining crosstalk between the two demodulation channels. In

fig. 6.10a the qualitative comparison of the bifurcation diagrams shows a clear match

of the dynamical regimes in which the normal modes (−) and (+) settle, and more

importantly the bifurcation points are the same. After a limit-cycle region, both display

identical period-doubling route to chaos structure confirmed by the LLE computed for

each diagram. The chaotic regions are highlighted with blue stripes.

Figure 6.10 – Experimental (a) and simulated (b) bifurcation diagrams made from the

Poincaré section of the eigenmode (−) (top) and (+) (bottom) amplitudes under double-

excitation. The bifurcation parameter is the modulation amplitude while the modulation

frequency is set to 5 kHz. The simulation inputs ω−d = 2.168500 MHz and ω+
d =

2.370280 MHz

A numerical simulation is performed from the model using our experimental param-

eters and reproduce a bifurcation diagram with the amplitude response of both normal

modes (see fig. 6.10b). The period-doubling structure followed by chaotic intermittency

is recovered. The period doubling occurs for Vp = 2.176 V which compares accurately

with the experimental period doubling at VPD = 2.140 V. However the response am-

plitude of mode (−) is higher than the response of mode (+) contrary to what was
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observed experimentally. This can be explained by a limitation in the several experimen-

tal calibrations we have performed due to a degradation of some of the electromechanical

properties with time. Indeed we have noted that the quality factor tend to decrease when

using too high input laser power3, or irreversible mechanical frequency modification when

stopping and restarting the vacuum pump.

6.3.3 Amplitude synchronization

The typical dynamical regimes are illustrated with the phase portraits of eigenmode (−)

infig. 6.11a and eigenmode (+) in fig. 6.11b as well as with the Fourier spectra of their

respective amplitudes in fig. 6.11c. At low modulation amplitude (top: Vp = 1.5 V), a

period-1 limit-cycle oscillation regime is established and the spectra display a main peak

at the modulation frequency as well as low-intensity sub and super-harmonics. In the

route to chaos (center: Vp = 2.425 V), the eigenmode (−) clearly displays a period-4

motion while it is less obvious for the eigenmode (+) due to its low amplitude. However

both the Fourier spectra display more peaks, and with higher amplitude, than in the

period-1 motion. However the noise floor is still quite flat between the peaks. Finally in

the chaotic regime (bottom: Vp = 2.750 V), it is not so relevant to compare the phase

portraits. However, the Fourier spectra appearance qualitatively change compared to

the previous regimes. Their look noisier as well as lightened from most of the dominant

peaks. Nonetheless both Fourier spectra are strongly correlated between the eigenmode

amplitudes.

In fig. 6.11d (top), the phase portraits showing the eigenmodes normalized amplitudes

relative dynamics are shown for three singular dynamical regimes. The normalization is

meant to get rid of the unbalanced amplitudes still present despite the compensation.

We show R̃± = (R±B − 〈R±B〉)/σ± with 〈R±B〉 and σ± respectively the mean value and

the standard deviation of R±B(t) calculated over the entire time trace. The dashed black

lines correspond to the synchronization regime where both normalized amplitudes are

equal. Below the period-doubling bifurcation, for Vp < VPD, a master-slave relation

is established between the drive and each resonance so these two inescapably move in

synchrony. For Vp > VPD the responses are now driven in a high-order synchronization

regime. Nevertheless the amplitudes are clearly correlated to each other. This is even

more manifest in the chaotic regime where the amplitudes are still correlated despite

their asynchronous behavior with the drive. This regime corresponds to the chaotic

synchronization of the nonlinearly coupled eigenmodes.

3The membrane degradation was particularly pronounced when using a 800 nm laser, which we did

when attempting to photothermally tune the membranes’ natural frequencies.
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Figure 6.11 – In a period-1 (top), period-2 (middle) and a chaotic regime (bottom),

a)-b) the respective phase portraits of the modes (−) and (+), c) the fft power spectra

computed from their amplitude responses, d) the relative amplitude dynamics with the

exact synchronization reference (black dashed). Note the color code in this figure: brown

for eigenmode (−) and dark blue for eigenmode (+). The Fourier spectra noise floor

are shifted for an easier comparison.

6.3.3.1 Lag synchronization

In chaotic synchronization regime, it is often interesting to take a look at the lag synchro-

nization properties [Boccaletti et al., 2002]. A lag synchronization between two dynamical

variables x(t) and y(t) is established whenever x(t) = y(t− τ) with τ the lag. In order

to check such feature in the experimental data, one can plot a phase portrait showing

the normalized amplitudes with a lag e.g R̃+(t− n× dt) as a function of R̃−(t) with dt

the experimental time step and n an integer. Then the distance between the points and

the diagonal given by
√∑

t |R̃+(t− n× dt)− R̃−(t)|2 is estimated for several values of

n. The lag is given by the delay which minimizes this distance. In practice, in order not

to be limited by the experimental time step, we interpolate this distance with a sub-pixel

precision.

This procedure is applied for each trace processed in fig. 6.10a. The lag is shown as

a function of the modulation amplitude in fig. 6.12a in units of modulation period. As

Vp is increased, the lag tends to reduce which indicates that the synchronization regime

is set by this parameter. After the period-doubling, the lag essentially stay close to zero.

Some small but sudden jumps occur at the edges of the bistable regions. Generally
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Figure 6.12 – Lag between the normal mode amplitudes as a function of the modulation

amplitude. The chaotic regions found in fig. 6.10a are reported here for reference.

speaking the lag is never found to be very high as the maximum value in this study is

below 30% of one modulation period. We conclude that this feature is not central in

the present dynamics.

6.3.4 Phase dynamics

Figure 6.13 – a) Phase portraits showing the normal modes relative response normalized

phase with phase synchronization references (black dashed lines). b) Measurement of

θ+
B − θ−B over 80 modulation periods (16 µs). We identify phase synchronization at

Vp = 1.5V (green), phase desynchronization at Vp = 2.425V (red) and imperfect phase

synchronization at Vp = 2.75V (blue).
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We now focus on the phase responses correlations shown in fig. 6.13a. In each case,

we fit the data with an unit-slope line (black-dashed) corresponding to the synchroniza-

tion regime d
dt

(θ+
B − θ−B) = 0. These plots show a tendency of synchronous evolution

of θ−B and θ+
B under force modulation for Vp < VPD. Contrary to the amplitudes, the

synchronization of the phases is not maintained for Vp > VPD as the trajectory does not

only lie on a unit-slope line.

By studying the real-time dynamics of the phase difference in fig. 6.13b, we find

that 2π phase slips occur when Vp > VPD while the resonators are phase synchronized

for Vp < VPD (green trace). When high-order synchronization is established between

each mode and the drive [Pikovsky et al., 2001], phase slips resulting from desynchroniza-

tion can come up even if the amplitudes stay correlated. This process leads to phase

slips occurring regularly (red trace) – in this situation, the phases periodically execute

one more (or one less) cycle regarding the drive – or chaotically (blue trace). In the

latter case, the resonators stay phase synchronized over several modulation periods and

this regime is interrupted by occasional phase slips. This corresponds to the imperfect

phase synchronization scenario [Boccaletti et al., 2002]. In the general case of non-identical

chaotic oscillators, complete synchronization of the amplitudes and phases is expected

only for strongly coupled systems. For smaller coupling strength, either phase synchro-

nization (PS) or imperfect phase synchronization (IPS) [Park et al., 1999] is observed. This

phenomenon has received a large theoretical interest [Zaks et al., 1999; Blackburn et al., 2000;

Lifshitz and Cross, 2003] with few experimental demonstrations only at the macroscopic

scale, in electronic circuits [Pujol-Peré et al., 2003; Pisarchik et al., 2008] or Nd:YAG lasers

[Volodchenko et al., 2001].

The different phase synchronization regimes can be described through a statistical

study of the durations between two successive phase slips. For a given time trace, we

list all the phase synchronization durations τ and calculate both the mean value 〈τ〉 as

well as the standard deviation στ. In fig. 6.14a, the mean duration is plotted together

with the standard deviation as a function of Vp while the scaled mean duration 〈τ〉/στ is

shown in fig. 6.14b. No value can be estimated below the bifurcation to chaotic regime

at Vp = 2.3 V since phase synchronization is established and therefore we do not observe

any phase slip in the data. The durations found to be lower than 2π/ωp are ignored

because it can not be qualified as synchronization.

The desynchronization regime is identified by the regularity of the phase slips which

implies that στ nears zero and leads to a peak in the scaled mean duration that can

be seen around Vp = 2.425 V. The traces corresponding to this situation (included in

the red stripe) are used to built an histogram in fig. 6.15 (left) showing the distribution

of the phase synchronization durations probabilities with the associated 95% confidence

interval. In order to compare the statistics of τ between the different traces, i.e. for

different Vp, we normalize all the durations found in a given trace by the mean duration
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value for this trace. By construction, the mean value of this histogram is 1 and here

the probability is concentrated around this value. The corresponding mean duration is

〈τ〉 = 3.6 modulation periods. The histogram displays a 63% probability for the phases

to synchronize during 4 modulation periods (see bar at position τ/〈τ〉 = 1.2) because

this desynchronization occurs while the systems sets in a period-4 motion dynamics.

Figure 6.14 – a) Phase synchronization (PS) duration mean value τ and standard duration

στ, in units of modulation periods, as a function of the modulation amplitude. b) Scaled

mean PS duration 〈τ〉/στ.

In the chaotic regime (blue stripe in fig. 6.10a) we find that the scaled mean duration

remains constant and slightly over 1 which tends to indicate an exponential decay of the

probability distribution of τ/〈τ〉 shown in fig. 6.15 (right). In this regime the mean phase

synchronization duration is 〈τ〉 = 26 modulation periods. The probability indeed decays

exponentially but we find that the probability for short phase synchronization durations

is higher than predicted with such distribution. We conclude that the phase slips occur

in a non-Poissonian process due to the chaotic dynamics and do not result from noise.

The experimental histogram is reproduced using a numerical simulation realized from

the new non-autonomous system of equations. We recover a similar bifurcation diagram

with a robust scaling of the modulated force as shown in fig. 6.10b. We observe 2π slips

of the phase difference when the system dynamics is chaotic. From these simulations,

we reproduce a histogram of the phase synchronization durations in fig. 6.15. We find

a good agreement with the experimental distribution.
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Figure 6.15 – Experimental probability distributions of the PS durations within the phase

desynchronization (PDS) regime (red) or the imperfect phase synchronization (IPS)

regime (blue). Distribution given by numerical simulation in the chaotic regime (orange

circles). The exponential distribution (black dashed) is shown for comparison.

6.3.5 Perfect synchronization

In the previous results, the synchronization dynamics has been deeply investigated. It

comes out that in the chaotic regime the oscillators experience imperfect phase synchro-

nization. The mean phase synchronization (PS) duration is a statistical signature of this

regime. The data show that this feature is quite constant with Vp in the chaotic regime

(see fig. 6.14a). However, it has been noticed in the numerical simulations that the mean

PS duration is extremely sensitive to the driving frequencies ω−d and ω+
d . In particular,

when the system is set close to a bifurcation point, it happens that the PS durations

increase up to perfect synchronization, where chaos and phase synchronization cohabit.

In fig. 6.16a, we simulate the mean PS duration in a small region of the parameter

space {ω−d , ω+
d } and with the modulation amplitude locked to Vp = 3 V. The study is

centered around the values {ω−,ref
d = 2.168500, ω+,ref

d = 2.370280} which were kept for

the simulated bifurcation diagram shown in fig. 6.10b. Thus this point matches with

the dynamics we experimentally observe. For each trace, the phase slip are recorded

such that the PS durations can be recorded. The mean value can not be estimated

when no phase slip is recorded: this the phase synchronization regime spotted in the

top-left quarter of the contour plot. Ideally, we would like highlight the chaotic regions of

this map using the largest Lyapunov exponent. Unfortunately, an accurate computation

enabling the delimitation of a precise frontier between periodic and chaotic motion would

be extremely long. Instead, we point at three typical dynamical regimes that illustrate
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the present discussion. These three regimes set at the positions A, B and C highlighted

by colored cross on the map. For each of them, the dynamics of mode (+) and the

phase dynamics ϑ+
B − ϑ−B are both shown in figs. 6.16a and 6.16b. Note that we only

show the dynamics of mode (+) but it is verified that the mode (−) experiences the

same dynamics: amplitude synchronization is maintained.

Figure 6.16 – Numerical simulation: a) estimation of the mean PS duration in the param-

eter space {ω−d , ω+
d }. The center position (black cross) corresponds to the experimental

conditions {ω−,ref
d = 2.168500, ω+,ref

d = 2.370280} MHz (blue cross). No phase slip are

found in the grey region and we deduce that phase synchronization is established. At

three particular positions, we plot a) the normal mode (+) dynamical phase portrait and

b) the phase dynamics.

At point A (black), we recover the experimental regime when Vp = 3 V. Indeed the

normal modes set in chaotic regimes and the phase difference experience phase slips

such that the mean PS duration is around 26 modulations periods. Observing how

the mean PS duration evolves in the transition towards the PS regime, it appears that

it can be either brutal (see position {0.5, 0.75}) or smooth with a quick increase the

mean PS duration (e.g. between points A and B). The first situation corresponds to

a transition through a phase desynchronization (PDS) non-chaotic regime. The second

enables phase synchronization despite the presence of chaos. This is the case in point B

(magenta). The mode (+) dynamics is chaotic but the phase difference stays bound. The

simulation shows that no phase slip occur in several thousands of modulation periods.

Finally, when moving deeper into the map’s top-left quarter at point C (green), the PS
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is maintained but the dynamics turns to periodic motion. As not PDS regime is spotted

in this transition, it has be involve a brutal bifurcation, or crisis.

With this numerical exploration of the subspace {ω−d , ω+
d }, we have noted a very rich

dynamics. Surprisingly, the dynamical regime can evolve very quickly when shifting these

parameters by less than 1 kHz. More importantly, our model predict a small region in

which the chaotic regime is compatible with phase synchronization. With an experimental

precision of the order of 10 Hz on each driving frequency, which is achievable, one could

observe such behavior.

6.4 Chaos-aided generation of random bit sequences

The generation of random numbers is essential in many computing applications and

communication encryption protocols. Therefore Random Number Generators (RNG)

have been widely studied both on the hardware (True RNG) and software (Pseudo RNG)

sides.

Here we apply a procedure enabling to extract a random binary sequence from our

experimental chaotic time traces. We study the influence of two key parameters involved

in this procedure – the sampling frequency and the delay – on the sequence random-

ness. Finally we discuss the integration of this method on our two synchronized chaotic

oscillators for the implementation of a secure communication protocol.

6.4.1 Principles

The procedure enabling the generation of random bits from a chaotic time trace is

explained in [Sciamanna and Shore, 2015]. To illustrate each step of the procedure, we

focus on the normalized experimental trace shown in fig. 6.17a. These data are obtained

in the 2 modulated-driven Duffing-Duffing configuration discussed in section 6.3. We

apply Vdc = 2 V, V −ac = 3.5, V +
ac = 0.5, ω−d = 2π × 2.177 MHz, ω+

d = 2π × 2.410,

Vp = 2.5 V and ωp = 2π× 3.77 kHz. The normal modes experience an imperfect phase

synchronization dynamics although this does not matter as we focus on the chaotic

amplitude response of mode (−). The interest of synchronization regarding the RNG

will be discussed further on. The trace is normalized with X(t) = (R−B(t)− 〈R−B〉)/σ−

with 〈R−B〉 and σ− respectively the mean and standard deviation of R−B(t) calculated

over the whole trace.

i Delayed time trace The trace is delayed by an amount τ and can be compared

to the original trace. In fig. 6.17b, both traces X(t) and X(t− τ) are plotted together.
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Figure 6.17 – a) Experimental chaotic time trace. b) The trace X(t) is compared to

its delayed self X(t − τ). c) The XOR logical gate is periodically applied to the traces

relative sign. It results in a binary sequence.

ii Periodic XOR logical gate At any time, the traces sign are either equal or

opposite. Applying an exclusive-OR (XOR) logical gate therefore permits to generate

respectively either a 0 or a 1. The binary sequence is then obtained by periodically

sampling the data and applying the XOR function. It results in a binary sequence

generated at rate fs (see fig. 6.17c).

Using this method, the bits can be generated at frequency fs. However, the ran-

domness is not guaranteed for all values of the delay and of the sampling frequency. We

study the influence of these two parameters.

6.4.2 Randomness characterization

The randomness of a binary sequence can be verified by applying a certain number

of statistical tests. The NIST Statistical Test Suite [Bassham et al., 2010] provides 14

randomness tests, each focusing on one particular statistical property of randomness. E.g

one test checks the longest run of ones (or zeros), another test measured the entropy

of the sequence, another focuses on the cumulative sum of the sequence, etc. Each

test returns a p-value that can be interpreted as the probability for the sequence to be

random according to the corresponding test. The p-value validates the test if it value is
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above 0.1. In the following we simply apply all these algorithms on our binary sequence

and check the p-values. If all the p-values valid the sequence as random, we consider

that this sequence passes the randomness test. On the contrary, if at least one test fails,

we consider the sequence as not random. In principle, this series of tests is statistically

valid for a large number of bits in the sequence (‘at least 1000’ according to [Bassham

et al., 2010]).

Figure 6.18 – Randomness test suite result as a function of the delay τ and the sampling

frequency fs applied to the trace presented in fig. 6.17a. Both quantities are shown in

units of modulation period.

Now the objective is to characterize the randomness test success as a function of the

delay τ and the sampling frequency fs. By generating a binary sequence for several values

of τ and fs, we plot a matrix showing the randomness test result in fig. 6.18. The white

(resp. black) pixels correspond to a successful (resp. unsuccessful) test. We observe an

increase of the randomness quality toward low sampling frequencies (towards the left side

of the map). This is related to trace typical frequency which is the modulation frequency

ωp in the present case. Indeed at high sampling frequencies, the trace does not have

enough time to evolve between to samples. This favors the apparition of runs of ones

and zeros (’00’,’11’,’000’,’111’,etc.) and break the sequence randomness. Moreover the

randomness quality shows oscillations with the delay, and also increases for higher values.

Overall, low sampling frequency and high delay improve the randomness of the sequence.

This involves the Lyapunov time (invert Largest Lyapunov Exponent) of the trace. It

corresponds to the time required for the dynamical system to lose its memory and can

also be understood as the typical decay time of the trace auto correlation function.
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Figure 6.19 – Correlation between the normal mode amplitudes (black) or phases (red) as

a function of the modulation amplitude Vp. Chaos (blue transparent stripes) comes with

imperfect phase synchronization which results in a degradation of the phases correlation.

The dashed line indicate 90% correlation.

In summary our coupled-membrane system enables the generation of random bits at

a rate limited to the force modulation frequency. A delay of few periods of modulation

is enough for sequence to pass all the randomness tests. Interestingly in our system,

the bits are encrypted in the optical field which is used for the readout. The signal has

a carrier given by the driving frequency at which a demodulation operation permits to

access the random binary sequence. Moreover, we only use one quadrature of the signal

here: the response amplitude. It could be advantageous to use both X and Y signal

quadratures in order to multiply the bit-rate by two.

The use of two coupled membranes submitted to two modulated forces permits to

reach chaotic regimes of both resonators. It implies they can both be exploited for

the generation of random numbers. Moreover the synchronization dynamics that the

normal mode responses experience lead to strong correlations between the two binary

sequences. Such situation is of great interest for secure communication based on RNG

[Liao et al., 2019]. In our data, we have observed up to 90% correlations between the

sequences generated identically from mode (−) and mode (+) responses, i.e. with the

same delay and sampling frequency. Unfortunately the too short experimental times

traces do not permit to perform a robust statistical demonstration of randomness with

our sequences. Nonetheless, we believe that the correlation is limited by imperfect phase

synchronization and could be improved by setting the system in a perfect synchronization

regime as numerically predicted (see section 6.3.5).
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6.5 Conclusion

The experiments presented in this chapter all rely on the intrinsic nonlinearities of the

two-coupled micromechanical nanomembranes. This phenomenon can be accurately

modeled in the framework on the Duffing model. Using an amplitude modulation of the

driving force, we show that a complex dynamics can be activated. The experimental

bifurcation diagrams evidence period-doubling cascade route to chaos. Thanks to the

calibrations developed in chapter 5, the dynamics is qualitatively and quantitatively re-

produced numerically. The following experiment consist in driving both normal modes

near their respective resonances. Thus the balanced energy injection enables the normal

modes to couple via the Duffing nonlinearity. A simultaneous amplitude modulation of

both forces highlight this orthogonality breaking mechanism. We investigate the syn-

chronization of the normal modes amplitude and phase quadratures. In the chaotic

regimes, the phase are imperfectly synchronize, which is subject of a statistical analysis.

Finally we focus on the random number generation enabled by the observed chaotic

dynamics. The synchronization of several random number generators in a key-aspect in

several encryption protocols and the conciliation of chaos and synchronization, perfect

synchronization predicted by our model, seems an interesting path towards this kind of

applications. Overall this physical system is demonstrative of the ability of nano-systems

to explore fundamental and ubiquitous concepts of nonlinear sciences.
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Table of variables for Part II

Symbol : Meaning Typical value (Units)

Electro-optomechanics platform geometry

` : coupling junction length 1.5 (µm)

w : coupling junction width 0.5-2 (µm)

a : IDE digit separation 3 (µm)

? : IDE digit width 1.5 (µm)

? : PhC membrane dimensions 10× 20 (µm2)

Coupled Duffing oscillators model

xA,B : displacement of membrane A,B

rA,B : response amplitude of membrane A,B

ϑA,B : response phase of membrane A,B

ΩA,B/2π : natural frequency of membrane A,B ∼ 2 (MHz)

ωA,B/2π : self-coupled frequency of membrane A,B

ΓA,B/2π : damping rate of membrane A,B ∼ 4 (kHz)

G : bidirectionnal spring coupling between the resonators

FA,B : force applied on A,B 1
2
∂C
∂x V

2
tot

fA,B : amplitude of force applied on A,B

ω±/2π : center frequency of normal mode ±
Γ±/2π : damping rate of normal mode ±
β : Duffing mechanical nonlinearity (2π)2 × 6.71× 10−6 (MHz2.nm−2)

for the normalized parameters, see table 6.1

Experimental parameters

electromechanical actuation

C(x) : position-dependent electromechanical capacitance |∂C∂x | ≈ 2.2 (µN.V−2)

Vdc : DC voltage < 5 (V)

Vac : AC voltage < 5 (V)

ωd/2π : static voltage ∼ ωA,B/2π
Vp : modulation voltage < 3 (V)

ωp/2π : modulation frequency < 20 (kHz)

Vtot = Vdc + Vac cos(ωdt) + Vp cos(ωpt) : total applied voltage

Vint : internal stress equivalent voltage 0.07 (V)

V eff
dc = Vdc + Vint : effective DC voltage

optomechanical readout

λ : helium neon laser wavelength 633 (nm)

Pin : incident laser intensity ∼ 100 (µW)

L : Fabry-Pérot cavity length 380 (nm)

G/2π : Fabry Pérot optomechanical coupling (theory) 1230 (GHz)

Qopt : Fabry Pérot optical quality factor (10)



Symbol : Meaning Typical value (Units)

signal demodulation scheme

RA,B : detected mechanical response amplitude of membrane A,B

θA,B : detected mechanical response phase of membrane A,B

η = RB/rB : calibration constant 0.5 (mV.nm−1)

BW : demodulation bandwidth

Bichromatic excitation scheme

ω±
d : driving frequency near the resonance of mode ±
V ±
ac : AC voltage associated to ω±

d

R±
B : amplitude response of membrane B demodulated at ω±

d

θ±
B : phase response of membrane B demodulated at ω±

d

X±
B , Y ±

B : quadratures’ response of membrane B demodulated at ω±
d

τ : phase synchronization duration

〈τ〉 : mean phase synchronization duration

στ : standard deviation of the phase synchronization duration

RNG discussion

fs : bit sampling frequency

τ : lag between the compared traces



Chapter 7

Conclusion and perspectives

This research aimed to study the behaviors of coupled resonators, at the nanoscale, and

using optomechanical or electromechanical systems. Relying on the knowledge acquired

thanks to previous doctoral works for both cases, a new design has been proposed,

fabricated and experimentally studied. In this conclusion, we summarized the main

results of this work. Focusing on the benefits and limits offered on each side, we will

extend the discussion with two perspectives interesting to explore. The first is the

investigation of an integrated opto-electromechanical system. The second concerns the

conception of arrays of nanomechanical resonators. In line with these novel systems of

study, we conclude on few examples of experiments that could be carried out in the short

to medium term.

7.1 Summary of the optomechanics experiments

In the first part of this thesis, the mechanical properties of a micro-membrane are in-

vestigated through a waveguide-coupled 2D photonic crystal molecule. In chapter 2, we

describe how the optical resonances result from a coupling between two defect cavities.

Thus, each mode corresponds to a specific electromagnetic field distribution spread over

both defects. The respective cavity amplitude can not be experimentally observed as

only the transmission waveguide is measured. It constitutes as indirect readout of the

optical system. Using the coupled mode theory, a theoretical analysis of the system

enables a full characterization of the waveguide transmission. This way, the frequency

splittings are compared with FDTD simulations in the case of different geometries which

yield a correct agreement.

By resonantly driving given optical mode, the mechanical noise spectrum of the sus-

pended photonic crystal are characterized in chapter 3. The mechanical peaks have

frequency and amplitude that depend on the detuning between the driving laser and the

resonance spectral position. We find that the mechanical frequency shift is not strictly
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speaking an optomechanical feature but a thermo-mechanical effect related to the cavity

temperature increase caused by photo-thermal absorption. However, the mode amplitude

is given by the dispersive and dissipative optomechanical couplings whose relative con-

tribution are experimentally determined. Interestingly in this multimode optomechanical

system, we show that a given mechanical mode can be dissipatively coupled to a first

optical mode, but dispersively coupled to the second. Such configuration is presumably

not exploitable in our system without a consequent improvement on the optical quality

factors. Generally speaking this aspect constitutes the main limit to the study of singular

optomechanical effects. It also probably explains why the L3-defect confined mechanical

modes, expected in the GHz domain, could not be observed in this thesis.

Despite these limitations, the system provides an engaging platform for nonlinear

dynamics experiments. By using a periodic modulation on the input laser field, we

observe replica of the mechanical resonance in the noise spectrum (chapter 4). The

optomechanical sidebands have balanced low-amplitudes for weak input power, as pre-

dicted by the theory. For higher input power, the thermo-optic nonlinearity comes with

higher-imbalanced sidebands amplitudes. The experimental results are qualitatively un-

derstood from the adapted model. As the thermo-optic effect also leads to bistability of

the optical resonance, we finally perform an experimental demonstration of vibrational

resonance amplification. Here, the mechanical domain is only exploited for the bistable

system characterization.

7.2 Summary of the electromechanics experiments

The second part of the thesis focuses on a pair of coupled electro-optomechanical cav-

ities. This system turns out to be an ideal platform for the study of driven coupled

resonators. The motion of these latter can be independently measured by probing the

optical Fabry-Pérot cavity available under each membrane. The optical properties of

these optomechanical cavities are far from providing the displacement sensitivity enabled

by the 2D photonic crystal cavities studied in the first part. Nonetheless, it enables an

efficient read-out of the membranes displacement under resonant excitation. In addition,

this cavity offers a straightforward mean to transfer mechanical features to the optical

domain. Here, contrary to the study of the waveguide-coupled photonic molecules, the

mechanical normal modes are studied through a direct observation. In chapter 5, the

mechanical properties, including the frequencies, the dissipative damping and the me-

chanical coupling, are experimentally characterized via a simple model of driven coupled

harmonic oscillators. We highlight the importance of the natural frequency mismatch

on the coupling. Contrary to the photonic molecule where the cavities can be consid-

ered as identical, the disorder in the mechanical frequencies must be taken into account
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and can not necessarily be artificially compensated if the mismatch is too important.

With reasonable mismatch (typically of 5% or less), it is often possible to use either a

photothermal absorption technique or a dielectric tuning technique to tune the natural

frequencies. The characterization in the linear regime is achieved by the calibration of

the membranes’ displacement and the applied force.

The chapter 6 focuses on the nonlinear dynamics arising from a strong electrocapaci-

tive drive. Relying on the Duffing model, we model the nonlinear response of the system.

As an echo to the optomechanics experiment, we show the effect of amplitude modu-

lation applied to the driving resonant force. Here the system displays a period-doubling

route to chaos structure with both the modulation amplitude and frequency. Thanks

to the force calibration, the model numerical resolution yields a very good agreement.

This dynamics can be generated by driving one of the two mechanical normal modes.

By injecting a modes in its nonlinear regime, the initial orthogonality is broken such that

the other mode can be excited. We use a bichromatic scheme to drive both modes such

that a bidirectional nonlinear coupling is established between the modes. Through this

mechanism, their responses synchronize. The synchronization of chaotic systems is a

really peculiar phenomenon gathering two fundamental concepts. Most of the experi-

mental demonstrations have been performed on electrical circuits or macroscopic lasers.

Our work therefore constitutes the first study of chaos synchronization at the nanoscale.

Finally, in order to exploit this dynamics, we apply a protocol of random bit generation

to the experimental chaotic time traces. For this purpose, the exploration of perfect

phase synchronization regime, that are predicted by the numerical simulations, might be

relevant.

7.3 New generation of devices

This thesis deals with two systems that share at the same time many similarities and

important conceptual differences. Now the idea is to propose novel systems based on

the present designs, such that it would not imply an important effort on the nano-

fabrication. At first, we focus on an electro-optomechanical system enclosing both the

integrated SOI waveguide and the IDEs. Secondly, we discuss the generalization from

two coupled resonators to larger arrays. In both cases, the designs have been established

and fabricated.

7.3.1 Nano-opto-electromechanical platform

The association of a sensitive optomechanical cavity with an electro-capacitive transducer

on the same micromechanical resonator is a stimulating choice for the next generation of

designs [Midolo et al., 2018]. Indeed, the introduction of the waveguide-accessed photonic
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Figure 7.1 – a) SEM image of the gold IDE surrounding the SOI waveguide before the

BCB bonding of the InP layer. b) colorized SEM image of the fully integrated electro-

optomechanical platform.

crystal cavity enables a much lower displacement sensitivity. In fact, it would allow

not only to probe the mechanical displacement under resonant electrostatic excitation,

but also the Brownian noise of the membrane. On the other side, the motion can

be resonantly driven with the electro-capacitive actuation. New nonlinear regimes are

expected when the strongly driven mechanics couples with the optical cavity field [Olga,

2017; Jin et al., 2017; Wang et al., 2016].

In terms of fabrication, the main challenge to be answered is the compatibility of

the SOI waveguide and the gold electrical lines below the same micro-membrane. In

particular, the need of a straight SOI waveguide below the photonic crystal implies a

change of design for the interdigitated electrodes. The chosen solution consists in the

use of two pairs of IDE on both sides of the waveguide (see fig. 7.1a). In the course

of this thesis, we have converged towards a reproducible fabrication protocol for the

nano-opto-electro-mechanical system. We show a colorized SEM image in fig. 7.1b.

Nonetheless the structure has not been investigated yet because the gold electrical line

have been designed too close from the optical waveguide. Therefore the injected laser

field is completely absorbed such that no transmission is observed. This problem can be

easily overcome by increasing the electrical line to optical waveguide distance over 4 µm.

If, the meantime, the optical quality factors of the L3 defect cavities can be improved, the

resulting device would provide an extremely versatile testbed for electro-optomechanics

experiments.
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Figure 7.2 – SEM images of the coupled nanomechanical resonator arrays proposed

for future collective dynamics experiments. As schematized on the left, each resonator

(colored disk) is coupled (arrow) to its closest neighbors. Thus the 1D array can be a

chain (a) or a loop (b).

7.3.2 Array of coupled resonators

The transfer from macro to nano-scaled resonators is very convenient at many levels. Ob-

viously nano-devices present numerous interests for technological applications: compact-

ness, low energy-consumption, high frequency operations, etc. But they also naturally

provide a large variety of properties through which fundamental physics can be tested.

The case of optomechanics is particularly indicative since the coupling mechanism itself

relies on the low mass of the nanomechanical resonators. Another extraordinary advan-

tage of working at the micro or nanoscale is the possibility to reproduce a large number

of nearly-identical elements in a small area. As soon as these elements are designed in

order to interact with each other, it becomes possible to study the collective dynamics

of the overall system. Interestingly, this field can be studied at different levels of natural

sciences e.g. in sociology [Strogatz et al., 2005; Moussaid et al., 2009] or biology [Coffey, 1998].

In the particular case of oscillators array, the collective dynamics can be modeled with

the Kuramoto model. This latter was introduced in the context of chemical oscillations

[Kuramoto and Yamada, 1976] but was found fruitful in many other contexts [Acebrón et al.,

2005] including with nanomechanical systems [Matheny et al., 2019]. In these systems, the

topological aspect of the coupling distribution strongly influence on the synchronization

dynamics of the array.

As a continuation of this work, we design new geometries where 3 to 10 nanomem-

branes are mechanically coupled into an array. In these 1D arrays, the membranes can
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communicate with their nearest neighbors in two topological configurations. In fig. 7.2a,

the array is a chain where both extremities are possibly driven with integrated electrodes.

Such chains of driven Duffing oscillators have recently been proposed as interesting candi-

dates for the observation of chimera states [Clerc et al., 2018]. In fig. 7.2b, the membranes

are coupled in a loop and only few of them can be driven. These small arrays might

be an ideal platform of study halfway between two coupled resonators and large arrays,

where individual properties are fully statistically diluted.

7.4 Physics in perspective

Now that novel designs are proposed, what physics could be interesting to study ? We

end this thesis with few perspectives that lie in the continuity of the present research. We

gather these suggestions in two groups. One contains applications of signal processing or

metrology using chaos in bistable resonators. The second concerns the study of coupled

resonators – possibly in large arrays – in which the coupling itself might be controlled.

7.4.1 Taking advantage of chaos

The perspective of a fully integrated electro-optomechanical platform opens the way to

efficient transduction from an electrical signal to the optical field via the mechanical

motion. Moreover the resonance of both the photonic crystal microcavity and of the

mechanical membrane can be driven in bistable regimes. For these two reasons among

others this novel system is versatile and can probably help to perform a given operation

in several manners. As an example, we have seen that vibrational resonance amplification

can be achieved optically in a photonic molecule, but similar results were also obtained

using an electrically driven mechanical resonator [Chowdhury et al., 2020]. Similarly we could

expect chaos to emerge from a nonlinear optical resonator under an amplitude modulation

of the drive, as it was described with our electromechanical systems. Actually the Duffing

model that set the frame of this dynamics has an equivalent in photonics, generally

refereed as the Kerr model. Interestingly, if the mechanism behind chaotic dynamics in

a modulated Kerr resonator would be the same, the dynamics timescale would however

be much lower. Beside the interest of this electro-optomechanical system for the novel

physics mentioned previously, it also gives the opportunity to perform different type

of signal processing operation within the same system. A basic example is given in

fig. 7.3a. Here, a first nonlinear resonator is used to generate random bits by modulating

its input field, and a second is exploited to amplify the random bit sequence. Assuming

that the first operation is obtained by electro-capacitive modulation, the mechanical

displacement is therefore encrypted in the optical microcavity and can be amplified by

vibrational (or stochastic) resonance via a Kerr-type nonlinearity. Generalizing such chain
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Figure 7.3 – a) Bistabilities have proven useful for several applications e.g. here vi-

brational resonance (VR) amplification or random number generation (RNG). Here we

propose to perform several operations in a row on nonlinear resonators of possibly differ-

ent nature. b) Set near a crisis, the system experience a sudden change of its dynamics

under small external perturbation, thus enabling sensing experiments to be performed.

of operation in multimode systems, such as coupled or array of oscillators, opens the

path to multispectral encryption protocols [Argyris et al., 2005; Annovazzi-Lodi et al., 1996;

Mirasso et al., 1996; Cuomo et al., 1993].

In our electromechanical system, the chaotic dynamics emerge via a period doubling

cascade. However the following bifurcations can also separate a chaotic dynamics from

a simple limit cycle regime. These abrupt bifurcations, or crisis, are very sensitive to any

perturbation of the system. Relying on this observation, the perspective of chaos based

sensing emerges. In such experiment, depicted in fig. 7.3b, the system is preliminary

stabilized in a given regime, e.g. chaotic in this schematic, and then submitted to

external perturbation. For example we have notice that a tiny modification of the probe

laser intensity – inducing a mechanical frequency shift of only few Hertz – is enough

to pass a bifurcation point and dive the system in a different dynamics. This proposal

therefore consists in using chaos in an electro-optomechanical system for metrology

applications [Fiderer and Braun, 2018].

7.4.2 Control of the coupling

In coupled oscillators, the experimental control of the subsystems intrinsic properties can

be extremely useful. Unfortunately it is generally hard to achieve as these parameters

are usually set by the material properties or by the geometry. In the electromechanical

systems, we have shown how the membranes natural frequencies can be controlled by

induced an additional internal stress either with a photo-thermal absorption process or

via an applied electrical field. Such control reveals extremely useful in the exploration

of exceptional points [Miri and Alù, 2019]. These singularities of the parameter space of

coupled oscillator, are found when the system eigenvalues coalesce. Physically, this oc-

curs when the loss and the gain of the system equalize. Several interesting features are
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expected near these exceptional points, e.g. in metrology [Wiersig, 2014], chiral mode

conversion [Peng et al., 2016] or multimode laser cavities [Miri et al., 2012]. As the charac-

terization and exploitation of an exceptional point relies on the fine control of either loss

or gain in the system, we propose two mechanisms through which the coupling between

two resonators can be continuously modified. They are both schematically represented

in fig. 7.4a. First (i) we consider two electromechanical membranes A and B simultane-

ously probed with independent laser beams. Each converted optical response can then

be amplified and injected in the opposite structure electromechanical actuator. Thus

the resonators and both driven by the opposite subsystem. Here the coupling – which

not necessarily balanced – can be fully controlled through the amplification gain (ηA,B

and ηB,A). The second proposal (ii) has already been discussed in section 2.5. We have

indeed described how the phase shift experienced by the circulating light between two

optical resonators leads to both energy and loss splitting. This phase shift is not easily

tunable in integrated photonic circuits. The control of the phase shift could be obtained

through a phase modulator placed between the resonators.

Figure 7.4 – a) Coupling control examples: i) In coupled electromechanical systems,each

resonator is forced with the response of the other. The amplification gains ηA,B and

ηB,A respectively determine the influence from A to B and from B to A. ii) The optical

coupling between two optomechanical oscillators is controlled via a phase shifter. b)

The coupling control (G) between two arrays of identical resonators (yellow disks) has

a strong impact on the subsystems dynamics.

The control of coupling can also be useful in the context of the oscillator arrays that

were discussed previously. For example in the investigation of synchronization patterns

formation [Lauter et al., 2015] or chimera states [Pelka et al., 2020] using optomechanical sys-

tems, the Kuramoto dynamics strongly depends on the coupling. The previous examples
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for coupling control could be applied not between resonators but between two arrays as

depicted with the schematic in fig. 7.4b. Here the oscillators could be either optical,

mechanical or optomechanical objects.
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Appendix A

Larger 2D photonic crystal molecules

The photonic molecules presented in section 2.1.2 are made of two L3 defects inserted in

a 2D photonic crystal (PhC) membrane. Such bi-directional arrangement of the refractive

index is conductive to the study of coupled resonators in different coupling topologies.

By using only two cavities, different geometries can be studied as soon as the integrated

waveguide is added to the system, since the positions of the cavities regarding this latter

can result in asymmetrical designs. Then the indirect coupling processes happening

through the waveguide can be exploited. Considering only the direct couplings1, the

full potential of 2D PhC is however not fully exploited with only cavities. Indeed, with

more than two cavities, it is possible to set a more complex topology of coupling in

which the cavities are not only coupled to their nearest neighbors. For examples the

cavities can be coupled in a circle such that each cavity couples to two others. They

can also be coupled in a row, such that the ends cavities couple only with one cavity.

This difference results in the degeneracy of several eigenmodes. For example, in a

four-cavities molecule, the normal mode frequencies are given by the eigenvalues of the

following matrices, respectively for the “row” and the “loop” configurations:

M (4)
row =


ω0 µ 0 0
µ ω0 µ 0
0 µ ω0 µ

0 0 µ ω0

 M
(4)
loop =


ω0 µ 0 µ

µ ω0 µ 0
0 µ ω0 µ

µ 0 µ ω0

 (A.1)

The cavities have identical frequency ω0 and are coupled to their neighbors with

a strength µ. Here the matrix M (4)
row has four distinct eigenvalues ω1 = ω0 −

√
5+1
2 µ,

ω2 = ω0 −
√

5−1
2 µ, ω3 = ω0 +

√
5−1
2 µ and ω4 = ω0 +

√
5+1
2 µ while the matrix M

(4)
loop has

only three ω1 = ω0 − 2µ, ω2 = ω3 = ω0 and ω4 = ω0 + 2µ. Considering now the fact

that a cavity might be able to couple also with the non-neighboring cavities of adding

1The “direct coupling” refers to the evanescent coupling occuring within the PhC, between the

cavities.
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the indirect coupling introduced by the integrated waveguide to the model, one can see

how these new configurations are more complex to model.

Figure A.1 – a) 4D4 photonic molecules: four cavities are coupled diagonally in a row

configuration, schematically described on the left. b) 4R4 photonic molecules: four

cavities are coupled diagonally in a loop configuration. For each case on the right:

FDTD simulation of the photonic eigenmodes electric field y component distribution.

These bigger photonic molecules are designed in line with the diatomic molecules

presented previously. We show two examples corresponding respectively to the “row”

configuration in fig. A.1a with the SEM image of a 4D4 structure. Here, the four

cavities are diagonally spaced by 4 lines of holes. On the right, we show the electric

field y component distribution corresponding to the four photonic eigenmodes found with

FDTD simulations. Each mode has its own symmetry. The“loop”configuration is shown

in fig. A.1b with four cavities diagonally coupled to their neighbors such that the direct

coupling between two adjacent cavities are presumably equal. Only three eigenmodes

are found in the FDTD simulations are discussed above and here again, each mode has

its own symmetry. More designs have been fabricated, introducing three or four cavities

in the molecules, with different coupling geometries: vertical, horizontal, diagonal or

circular, and different cavity-to-cavity separations.
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Indirect optomechanical readout

Figure B.1 – Experimental setup including a second tunable laser (TL). The TL1 is used

for scanning a given optical mode while the TL2 probes the mechanical mode at fixed

wavelength near the other optical mode resonance. The TL1 is filtered out as only the

TL2 is used for the readout of the mechanical noise spectrum.

The following measurement are made in the continuation of the experiments detailed

in section 3.3. In this section we discuss the influence of the laser frequency, or detuning

on the noise power at the mechanical resonance. By relating the evolution of this ampli-

tude to the partial derivative of the optical transmission as a function of the frequency,

we extract the dissipative and dispersive optomechanical contributions. To do so only

one optical mode was used for a given measurement of the mechanical noise spectrum.

Here we propose to use a first tunable laser to scan an optical resonance while a second

laser has a fixed detuning near the second optical resonance. Thus the mechanical mode

is read through the second laser but is submitted to the influence of the change in the 1st

laser detuning. The second laser (TL2) in added to the experimental setup and amplified

with a second EDFA (see fig. B.1. The laser field are both injected in the waveguide

using the inection fiber and 50/50 fiber coupler. At the output, both fields are collected
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Figure B.2 – Mechanical noise spectrum at fundamental resonance as a function of

the relative detuning a) from the (−) optical resonance and b) from the (+) optical

resonance. The readout is performed through a second laser probing the opposite normal

mode in each configuration. In the probe laser has a wavelength a) λ = 1554.7 nm and

b) λ = 1564.7 nm

but only the TL2-field is kept for the the photodetector by filtering out the TL1-field.

At first, the TL1 is used to scan the optical mode (−) while the TL2 has fixed

wavelength λ2 = 1564.7 nm such that the fundamental mechanical mode has an max-

imum amplitude. The reduced noise amplitude is plotted in a colormap in fig. B.2a.

The mechanical peak amplitude is determined by the relative detuning of the probe laser

(TL1) that is fixed here. Therefore, the amplitude is quite constant along the map. The

mechanical frequency is shifted from the zero-power resonance frequency by an offset

but stays also constant. This indicates that the thermo-mechanical shift is dominated by

the field stored at the probe wavelength λ2. On the other hand in the opposite situation

- when the TL1 scans the optical mode (+) while the noise spectrum is recorded via the

TL2 with λ = 1664.7 nm (see fig. B.2b)- the mechanical frequency follows a shift that

is proportional to the cavity energy as the thermo-mechanical effect is now dominated

by the load in the optical mode being scanned.

These types of measurement, although interesting for the exploration of many con-

cepts in multi-mode optomechanics [Malz and Nunnenkamp, 2016], have revealed to be

particularly complicated to achieve. The main experimental issue is the overload at the

waveguide input fiber that tends to twist when the input power passes a certain thresh-

old. It is probable that a stabilization of these fibers could help for performing stable
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and reproducible mechanical characterization via a 2-laser drive method.
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Appendix C

Chaotic traces analysis: technical

tools

This part is meant to introduce some tools that will be useful to deal with our exper-

imental time traces and investigate the dynamical regimes in which our system settles.

We discuss the representation of the system trajectories in the phase space and how a

Poincaré crossection can be built from a time trace, and how chaos can be identified

with the largest Lyapunov exponents.

i Measured data The lockin-amplifier outputs the phase quadratures of the demod-

ulated signal X(t) and Y (t) as well as the time vector t. Physically, let’s recall here

that X(t) = R(t) cos θ(t) and Y (t) = R(t) sin θ(t) where R(t) refer to the amplitude

of the detected signal, which is proportional to the probed resonator amplitude. θ(t) is

the phase between the probed resonator and a reference clock that is set by the driving

force, i.e. by the lockin-amplifier.

Figure C.1 – example of experimental time trace X(t) recorded over 2 ms.

Since we dispose a discrete flow of data, it will be more convenient in this section to

use the time vector in units of the time resolution dt rather than in physical units.
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ii Delay embedding phase space reconstruction It is possible, under certain

conditions, to reconstruct the full phase space of a d dimensions deterministic dynamical

system from the observation of a single component of this phase space. This is the

Takens’s theorem and this method is the time-embedding phase space reconstruction

[Packard et al., 1980]. The method is the following: with one time trace (line-vector) X(t)
that is measured, the following matrix can be built:

−→
S (t) =


x0(t)
x1(t)
...

xd−1(t)

 with xk(t) = X(t+ kτ) (C.1)

The embedding delay τ choice is described later.
−→
S (t) is the delay-embedding the

signal X(t). Experimentally, we only have a limited number of uniformly time distributed

samples. The reconstruction of the delay-embedding will cost at least (d − 1)τ data

points so that all traces sk(t) have the same length. Note also that it is necessary for

the observed component to be coupled with the other components in order to apply the

Takens’s theorem.

iii Phase portrait and choice of τ It is convenient to plot a projection of trajectory

on 2 or 3 dimensions. It often gives a qualitative feeling of the dynamics of the system.

After proceeding the reconstruction of the phase space, one can easily draw a parametric

plot {x1(t), x2(t), x3(t)}. The choice of τ is not submitted to a general method. It is

often found in the literature that the optimal τ corresponds to the first zero of the auto-

correlation function of the signal X(t). It is also interesting to plot the phase portrait for

different values of τ and to observe the trajectory amplitude getting distorted. Increasing

τ, the trajectory is first appearing with a wider angle, which makes its reading easier.

Then the distortion gets too important and the trajectory becomes messy, even for a

simple limit cycle. In fig. C.2, the 3D phase portrait of the time trace plotted before in

fig. C.1 is given for different delay τ.

iv Poincaré section By observing a single component of a d dimensional dynamical

system, the full phase-space can be reconstructed using time embedding. A phase

portrait is a representation of the trajectory of a system in the phase space. for d > 3,

the phase portrait has to be projected on 2 or 3 dimensions but the flow of data will be

fully observed with such a plot. In the case of chaotic behavior, the time flow data are

not the best suited for graphical representation. Indeed, one might have to plot data

over large time to illustrate the dynamics, which will unavoidably overload the figure.

Another representation mean is the Poincaré section. It consists in the intersection

of a (d − 1)-dimensional hyperplane with the in-time trajectory in the d-dimensional
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Figure C.2 – 3D phase portrait plotted using x1(t), x2(t) and x3(t) (blue) and its

projections over the (xy), (xz) and (yz) planes (gray dashed).

embedding space. The choice of this hyperplane is arbitrary, but in practice one need

to choose wisely both the intersection and the orientation of the trajectory in order to

obtain a useful Poincaré section. In the context of chaotic systems, the mathematical

limit of the Poincaré section for an infinite number of points is called an attractor.

Figure C.3 – Poincaré section in 3d (blue) and its projections in 2D on the (xy), (xz) and

(yz) planes (gray dots). a) using the maxima of X(t). b) using a stroboscopic picture

at ωp = 8 kHz.

v Contruction from extrema Usually, our Poincaré section will be built by taking

the maxima of X(t) (see fig. C.3). This means that we choose the plane (Ẋ=0). The

minima are not kept. This method is very sensitive to noise which can generate additional

extrema in the signal. In some cases, the obtained plot can be unsatisfying, because

the points are accumulated in a narrow surface of the subspace. This can be fixed by

changing the orientation of the phase space. For example, if 2 time traces x(t) and y(t)
are used to evaluate the Poincaré section of a system based on the maxima of x(t), the

following transformation can be tried:

xr(t) = x cos(φ) + y sin(φ)
yr(t) = −x sin(φ) + y cos(φ) (C.2)
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Maybe for a properly picked angle φ ∈ [0, 2π], it is possible to maximize the occupied

surface in the Poincaré map. A Poincarré section can also be built from the delays

separating periodic pulses in the context of biology for example [Hegger and Kantz, 1997].

vi Contruction from a stroboscopic poll It is also current, in the context of pe-

riodically driven non autonomous oscillators, to built a Poincaré section from a strobo-

scopic picture of the phase space. In principle, it is quite straight forward: the Poincaré

map is built from all points {x1(t0 +p∆t, x2(t0 +p∆t, ...}. Here ∆t is the driving period

and p in an integer that can be as large as possible. t0 can be chosen arbitrarily but, here

again, it must be carefully chosen for a better readability. In analogy with the orientation

of the phase space when the extrema are picked to draw a map, the instant t0 must

be chosen so that the variance of the Poincaré section along the different axis of the

subspace is maximized.

vii Lyapunov exponent and neighbor trajectories The Lyapunov exponent quan-

tifies the divergence rate between two close trajectories of a dynamical system [Mawhin,

2005]. It is a straightforward mean of diagnosing chaos. Chaos emerge from deterministic

dynamical systems whose high sensitivity to initial conditions makes unpredictable with

a finite computing memory. In a chaotic regime, two close trajectories will exponentially

diverge with time. Let’s consider two trajectories
−→
S (t) and

−→
S ′(t) in a d-dimensionnal

phase space. The error function is defined as1:

δ(t) = ||
−→
S ′(t)−−→S (t)|| (C.3)

Assuming that initially
−→
S ′(0)−−→S (0) is an infinitesimal d-sphere, the error function

will grow exponentially in the ith dimension as 10λit leading to a d-ellipsoid at instant

t > 0. The λi are the Lyapunov exponents ordered in descending order and can be

interpreted as the divergence rate of the ith component. Therefore the largest Lyapunov

exponent is λ1 and and is given by:

λ1 = lim
t→∞

1
t

log10

(
||δ(t)||
||δ(0)||

)
(C.4)

The positivity of λ1 implies a chaotic dynamics. This expression relies two mathe-

matical limits: t→∞ and δ0 → 0. Therefore, this formula can not be applied to finite

experimental data. However, this problem has been widely discussed in the literature

and several algorithms have been presented [Wolf et al., 1985; Rosenstein et al., 1993; Eckmann

et al., 1986; Sano and Sawada, 1985].

1|| · || is the 2-norm: ||−→r || = (
∑d
i=1 r

2
i )1/2
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Figure C.4 – After finding t0 so that X(t0) is the closest neighbor of X(0) in a 3D

reconstructed phase space. X(t) (red) and X(t0 + t) (blue) are plotted as well as the

associated exponentially growing error function.

viii Numerical computation of the Largest Lyapunov Exponent (LLE) We use

the TISEAN package [Hegger et al., 1999] which is a software project based on C/FORTRAN

routines allowing time series analysis. Basically, this routine finds the closest neighbors

of each point and outputs the delay and the associated logarithm of the averaged error

functions. After a transient time, the trajectories are oriented in the most unstable di-

rections, and this logarithm shows a linear variation. The slope is the LLE. The detailed

method for Lyapunov exponent estimations using this package is presented in [Kantz,

1994].

ix Find closest neighbors Given an instant t0 and the trajectory
−→
S in the d-

dimensional phase space, one seeks for all the instant tk such as ||
−→
S (tk)−

−→
S (t0)|| < ε.

ε is chosen arbitrarily and defines a small hypersphere centered in
−→
S (t0) and containing

all its closest neighbors
−→
S (tk). The error function δk(t) = ||−→S (t0 + t)−−→S (tk + t)|| can

be plotted for t > 0. An exponential growth of δk can be checked as shown in fig. C.4.

This trace is therefore chaotic.
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Résumé en français

L’optomécanique traite de l’interaction entre un résonateur mécanique et une cavité op-

tique. L’utilisation de ces deux composantes à l’échelle nanométrique permet d’exalter

les interactions lumière-matière qui s’y manifestent. Les résonateurs optomécaniques

permettent, entre autres, d’accéder avec une grande sensbilité aux modes de vibra-

tions de la structure mécanique. Il est également possible de manipuler un résonateur

nanomécanique en le couplant à un dispositif d’actuation électrique. Cette approche,

l’électromécanique, est d’ores et déjà largement exploitée dans l’industrie des MEMS

(Micro Electro-Mechanical Systems), notamment pour des fonctions de métrologie dans

des systèmes embarqués, smartphones, etc. Ce domaine de recherche reste néanmoins

très actif avec le développement de systèmes à complexité croissante.

Parmi les nombreux défis émergeant dans la communauté ces dernières années,

l’intégration d’un grand nombre de systèmes opto-électromécanique couplés les uns aux

autres en réseaux est prometteuse. Dans cette optique, il s’agit d’abord de bien com-

prendre les mécanismes sous-jacents à l’interaction entre deux systèmes couplés. C’est

dans ce cadre que s’incrit ce travail de thèse. Deux approches sont étudiées. Dans

les deux cas, nous bénéficieront de la versatilité des cristaux photoniques. Ces struc-

turations périodiques de l’indice de réfraction d’un matériau permettent de guider la

lumière à l’échelle nanométrique avec une grande précision. La première approche con-

siste en l’étude d’une plateforme optomécanique d’InP (phosphure d’indium) à cristal

photonique (voir fig. 7.6a). Ce dernier comporte deux microcavités optiques dont les

modes photoniques localisés peuvent être sondés à l’aide d’un laser injecté dans un guide

de silicium intégré sous la membrane, permettant ainsi d’accéder au mouvement brownien

du cristal photonique suspendu (voir fig. 7.8a). La deuxième approche consiste à cou-

pler mécaniquement deux nano-membranes électromécaniques par l’intermédiaire d’une

jonction nanométrique (voir fig. 7.6b). Chaque membrane peut être excitée électro-

capacitivement de façon indépendante par l’intermédiaire de deux paires d’électrodes

inter-digitées placées sous les membranes.

Pour chacun de ces systèmes, il est possible d’en étudier la dynamique sous l’effet

d’une excitation modulée par un signal harmonique. Dans le cas du système optomé-

canique, le laser incident est modulé à l’aide d’un modulateur électro-optique en intensité.
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Figure 7.5 – Images de microscopie électronique à balayage des deux systèmes étudiés.

a) plateforme optomécanique comportant le cristal photonique suspendu et le guide de

silicium intégré passant sous la structure. La géométrie des microcavités optiques est

montrée à doite. b) Les deux membranes couplées par une jonction mécanique (voir le

zoom). On distingue les paires d’électrodes inter-digitées.

L’interaction entre le laser modulé et le résonateur mécanique peut être modélisée par

une dynamique de Floquet. Le modèle prédit alors le transfert du peigne de modulation

depuis le domaine optique vers les fréquences des modes mécaniques. Des bandes de

modulation sont ainsi observées autour de chaque mode mécanique (voir fig. 7.8b). La

présence de nonlinéarités thermo-optiques dans le matériau complexifie cette intérac-

tion lorsque la puissance du laser incident est augmentée. En particulier, les bandes

de modulation se retrouvent dissymmétrisées (voir fig. 7.8c). La gamme de fréquences

de modulation permettant d’observer cet effet est limitée par les propriétés photother-

males de l’InP. En effet une modulation trop rapide ne laisse pas le temps à la cavité

optique de thermalisée, ce qui tend à détruire l’effet thermo-optique. En perspective,

cette dynamique de Floquet suggère l’utilisation d’un système optomécanique compor-

tant plusieurs modes mécaniques. L’utilisation d’une fréquence de modulation égale à

la séparation spectrale de ces modes permettrait, en régime de fort couplage optomé-

canique, de réaliser l’amplification paramétrique de plusieurs modes mécaniques à la fois.

Cette configuration serait utile à la réalisation de portes logiques. Nous démontrons

également, indépendamment des modes mécaniques du système, que la réponse bistable

du résonateur optique peut être utilisée pour amplifier un signal de faible amplitude. Il
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Figure 7.7 – Mesures du spectre de bruit du champ optique en sortie du dispositif

optomécanique. Le mode mécanique fondamental, de fréquence Ωm ≈ 4.34 MHz, est

observé a) sans modulation du champ incident et à puissance optique faible, b) avec

une modulation de fréquence Ωmod; le peigne de modulation est transféré du domaine

optique vers les modes mécaniques; et c) avec une modulation et une puissance incidente

plus élevée, menant à la dyssymétrisation du peigne de modulation.

s’agit du phénomène de résonance vibrationnelle.

La seconde série d’expériences réalisées dans ce travail de thèse est basée sur la

paire de membrane électromécaniques couplées mécaniquement. Ce couplage mène à

une hybridization des modes de déplacement des membranes, avec deux modes nor-

maux : un mode symétrique – les membranes se déplacent en phase – et un mode

anti-symétrique – les membranes se déplacent en opposition de phase. Nous réalisons

différentes calibrations du système dans son régime linéaire, permettant de déterminer

efficacement les fréquences des structures, leur couplage, les mécanismes de pertes et

la force électro-capacitive. Lorsque cette dernière passe un certain seuil, la réponse mé-

canique des membrane devient nonlinéaire, ce qui peut être décrit théoriquement par

un modèle d’oscillateurs de Duffing couplés. L’utilisation d’une modulation cohérente

de l’excitation électrique permet ici de générer une dynamique chaotique pour chacun

des modes normaux. L’excitation simultanée, ou bichromatique, des deux modes nor-

maux permet de synchroniser leurs réponses chaotiques. Alors que la synchronisation

chaotique est bien maintenue en amplitude, les réponses en phases sont, quant à elles,

imparfaitement synchronisées. On observe effectivement, on jouant avec un paramètre

de contrôle (l’amplitude de la modulation) une transition d’un régime de “blocage en

phase”(fig. 7.10a) vers un régime de“désynchronisation”(voir fig. 7.10a). Enfin, en dy-
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Figure 7.9 – Mesures de trois régimes dynamiques observés sur les modes normaux (-) et

(+) des membranes couplées sous excitation bichromatiques (excitation simultanée des

modes). Le paramètre de contrôle, l’amplitude de la modulation Vp, est augmenté de

a) à c). À gauche, les portraits de phases montrant la réponse en phase du mode (+),

θ+ en fonction de celle du mode (-), θ−. À droite: la trace temporelle de la différence

de phase θ+− θ−. a) régime de phase lockée, les modes sont synchronisés en phase. b)

régime de désynchronisation, les modes évoluent chacun dans un régime quasipériodique.

c) régime de synchronisation imparfaite, avec des dynamiques chaotiques pour chaque

mode.

namique chaotique, les phases sont“ imparfaitement synchronisées”, c’est-à-dire qu’elles

se désynchronisent de temps en temps mais irrégulièrement (fig. 7.10c). Les durées de

synchronisation en phase font l’objet d’une analyse statistique permettant de prouver que

ces“sauts”résultent du chaos et non du bruit présent dans les dispositifs expérimentaux:

la dynamique observée est bien déterministe et non stochastique! Le chaos permet par

ailleurs de générer du désordre, de l’aléatoire. Nous discutons ainsi de l’exploitation de

notre dynamique de chaos bichromatique synchronisé pour généner des nombres aléa-

toires. Cette possibilité ouvre, en perspective, l’exploitation du mécanisme décrit ici pour

de nouveaux protocoles de communication multi-spectrale.
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Chowdhury, A., Barbay, S., Clerc, M. G., Robert-Philip, I., and Braive, R. (2017). Phase

Stochastic Resonance in a Forced Nanoelectromechanical Membrane. Phys. Rev. Lett.,

119(23):234101. 5, 93

Chowdhury, A., Clerc, M. G., Barbay, S., Robert-Philip, I., and Braive, R. (2020). Weak

signal enhancement by nonlinear resonance control in a forced nano-electromechanical

resonator. Nature Communications, 11(1):2400. 5, 78, 93, 159

page 179



Bibliography

Chowdhury, A., Yeo, I., Tsvirkun, V., Raineri, F., Beaudoin, G., Sagnes, I., Raj,

R., Robert-Philip, I., and Braive, R. (2016). Superharmonic resonances in a two-

dimensional non-linear photonic-crystal nano-electro-mechanical oscillator. Applied

Physics Letters, 108(16):163102. 93

Cleland, A. N. (2013). Foundations of Nanomechanics: From Solid-State Theory to

Device Applications. Advanced Texts in Physics. Springer Berlin Heidelberg. 42
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Gratiet, L., Galopin, E., Lemâıtre, A., Amo, A., Ciuti, C., and Bloch, J. (2017).

Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis. Phys. Rev.

Lett., 118(24):247402. 39

page 188



Bibliography

Rosenstein, M. T., Collins, J. J., and De Luca, C. J. (1993). A practical method for

calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear

Phenomena, 65(1-2):117–134. 171

Roy, A. and Devoret, M. (2016). Introduction to parametric amplification of quantum

signals with Josephson circuits. Comptes Rendus Physique, 17(7):740–755. 119

Rugar, D., Budakian, R., Mamin, H. J., and Chui, B. W. (2004). Single spin detection

by magnetic resonance force microscopy. Nature, 430(6997):329–332. 4

Russell, P. (2003). Photonic Crystal Fibers. Science, 299(5605):358–362. 7

Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M., and Painter, O. (2010). Optome-

chanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics

Letters, 97(18):181106. 7, 8

Safavi-Naeini, A. H. and Painter, O. (2010). Design of optomechanical cavities and

waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express,

18(14):14926–14943. 9

Sano, M. and Sawada, Y. (1985). Measurement of the Lyapunov Spectrum from a

Chaotic Time Series. Phys. Rev. Lett., 55(10):1082–1085. 171

Satpathy, S., Roy, A., and Mohapatra, A. (2012). Fano interference in classical oscilla-

tors. European Journal of Physics, 33(4):863–871. 2, 3

Sauvan, C., Lalanne, P., and Hugonin, J. P. (2005). Slow-wave effect and mode-profile

matching in photonic crystal microcavities. Phys. Rev. B, 71(16):165118. 23

Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O., and Kippenberg, T. J. (2008).

Resolved-sideband cooling of a micromechanical oscillator. Nature Physics, 4(5):415–

419. 49

Sciamanna, M. and Shore, K. A. (2015). Physics and applications of laser diode chaos.

Nature Photonics, 9:151–162. 147

Shim, S.-B., Imboden, M., and Mohanty, P. (2007). Synchronized Oscillation in Coupled

Nanomechanical Oscillators. Science, 316(5821):95–99. 9

Shomroni, I., Youssefi, A., Sauerwein, N., Qiu, L., Seidler, P., Malz, D., Nunnenkamp, A.,

and Kippenberg, T. J. (2019). Two-Tone Optomechanical Instability and Its Funda-

mental Implications for Backaction-Evading Measurements. Phys. Rev. X, 9(4):41022.

64

page 189



Bibliography

Spreeuw, R. J. C., van Druten, N. J., Beijersbergen, M. W., Eliel, E. R., and Woerdman,

J. P. (1990). Classical realization of a strongly driven two-level system. Phys. Rev.

Lett., 65(21):2642–2645. 3

St-Gelais, R., Bernard, S., Reinhardt, C., and Sankey, J. C. (2019). Swept-Frequency

Drumhead Optomechanical Resonators. ACS Photonics, 6(2):525–530. 56, 109

Stambaugh, C., Xu, H., Kemiktarak, U., Taylor, J., and Lawall, J. (2015).

From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-

wavelength grating. Annalen der Physik, 527(1-2):81–88. 8
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Title: Coherent modulation in coupled electro-optomechanical photonic crystal res-

onators: Floquet dynamics and chaos

Keywords: optomechanics, nanophotonics, photonic crystals, nonlinear dynamics

Abstract: Nanomechanical systems are use-

ful to inspect some fundamental aspects of

physics such as the relations between the elas-

tic, thermal and electromagnetic properties of

solid-state objects. When interacting with an

optical cavity or coupled to an electrostatic ac-

tuator, these systems can be studied in the

wide topic of electro-optomechanics. This

work takes advantage of photonic crystal ver-

satility to investigate the nonlinear optical and

mechanical dynamics of such electro- or op-

tomechanical systems under coherent modula-

tion.

The first experiment uses a nanophotonic

platform combining a suspended InP mem-

brane and an integrated underneath silicon

waveguide. The membrane is etched with a

2D photonic molecule whose electromagnetic

eigenmodes can be driven with a laser thus

enabling a sensitive access to the mechanical

noise spectrum of the membrane. Using a co-

herent modulation of the input laser field, we

show how the input modulation comb is trans-

ferred to the mechanical frequency domain via

the optomechanical interactions. The presence

of thermo-optic nonlinearities further leads to

a desymmetrization of this modulation comb,

thus suggesting the use of modulation to para-

metrically amplify and even synchronize sev-

eral mechanical modes. The experiment is de-

scribed theoretically via Floquet theory. Rely-

ing on thermo-optic bistability, a bistable pho-

tonic mode is finally used to amplify a small

signal by vibrational resonance.

In a second part, we study two mechani-

cally coupled electro-optomechanical nanocav-

ities. The bistable mechanical responses evi-

dence the strong intrinsic Duffing nonlinearities

of the material. In this context, the use of co-

herent modulation of the input force interest-

ingly reveals a period-doubling cascade route

to chaos. The simultaneous excitation of both

normal modes in their nonlinear regime allows

them to couple such that their responses, al-

though chaotic, can synchronize. As chaotic

systems can be used to generate random num-

bers, this bichromatic synchronized chaotic dy-

namics could be exploited in novel multispec-

tral data encryption protocols.

This work open the way toward the explo-

ration of large optomechanical arrays, in which

collective dynamics could be studied.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



Titre: Modulation cohérente dans des résonateurs couplés électro-optomécaniques à

cristal photonique: dynamique de Floquet et chaos

Mots clés: optomécanique, nano-photonique, cristaux photoniques, dynamique non-linéaire

Abstract: Les systèmes nanomécaniques

permettent d’explorer les relations physiques

fondamentales entre les propriétés élastiques,

thermiques et électromagnétiques des solides.

Mis en interaction avec une cavité optique ou

couplés à des actuations électrostatiques, ils

peuvent être étudiées dans le cadre de l’électro-

optomécanique. Dans ce travail de thèse nous

mettons à profit la versatilité des cristaux pho-

toniques pour étudier la dynamique non linéaire

optique et mécanique induite par la modulation

cohérente de l’excitation appliquée à des sys-

tèmes électromécaniques ou optomécaniques.

Dans un premier temps nous utilisons une

plateforme nanophotonique combinant une

membrane d’InP suspendue au-dessus d’un

guide de silicium intégré. La membrane com-

prend une molécule à cristal photonique dont

les modes électromagnétiques peuvent être

sondés par un laser, permettant ainsi d’accéder

au spectre de bruit mécanique de la membrane.

Nous démontrons, via l’utilisation d’une modu-

lation cohérente du champ optique, le transfert

des bandes de modulations depuis le domaine

optique vers le domaine fréquentiel mécanique.

La présence de nonlinéarités thermo-optiques

dans le système mène à une désymétrisation du

peigne de modulation, suggérant l’utilisation

de la modulation pour amplifier, voire syn-

chroniser, plusieurs modes mécaniques. Fi-

nalement, en se plaçant dans un régime de

bistabilité thermo-optique, nous démontrons

l’amplification d’un signal de faible amplitude

dans un mode photonique par résonance vibra-

tionnelle.

Dans une seconde partie, nous étudions deux

membranes couplées entre elles mécanique-

ment. Les fortes nonlinéarités Duffing du

matériau se manifestent par de larges bista-

bilités dans la réponse mécanique. Dans ce

cas l’utilisation d’une modulation cohérente

de l’excitation induit une dynamique de route

vers le chaos par doublement de périodes.

L’excitation simultanée de deux modes mé-

caniques dans leur régime non linéaire leur

permet de se coupler de telle sortes que leurs

réponses, bien que chaotiques, se synchro-

nisent. Le chaos pouvant être exploiter pour

générer des nombres aléatoires, cette syn-

chronisation chaotique bichromatique pourrait

servir à développer de nouveaux protocoles de

communication multi-spectrale.

En perspective, ce travail ouvre notamment

la voie à l’étude de la dynamique collective

dans de plus larges réseaux de systèmes op-

tomécaniques.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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