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Resumé en Français

Les données en grappes apparaissent lorsque les observations sont collectées dans plusieurs

groupes différents (grappes) et que les observations de la même grappe sont plus sem-

blables que les observations d’une autre grappe en raison de plusieurs facteurs. Ce type

de données sont souvent recueillies dans la recherche biomédicale. La méta-analyse est

un exemple populaire qui combine observations provenant de plusieurs essais cliniques

randomisés portant sur la même question médicale. Il s’agit d’une procédure typique

qui permet une analyse plus précise des données mais soulève de nouveaux problèmes

statistique. D’autres exemples sont les données longitudinales où de multiples mesures

sont prises au fil du temps sur chaque individu; ou les données familiales où les facteurs

génétiques sont partagés par les membres d’une même famille.

L’étude IMENEO est une méta-analyse sur données individuelles (IPD) sur des pa-

tientes avec un cancer du sein non métastatique et traitées par chimiothérapie néoadjuvante.

L’objectif principal était d’étudier la capacité pronostique des cellules tumorales cir-

culantes (CTC). Ce biomarqueur s’est avéré être pronostique dans les cas de cancer

métastatique, et cette méta-analyse a voulu l’étudier également dans le cadre non métastatique.

Les données ont été recueillies dans plusieurs centres et il est légitime de suspecter diverses

sources d’hétérogénéité. Cela pourrait conduire à une corrélation entre les observations

appartenant à un même groupe. Il n’était pas clair comment aborder le problème de la

corrélation dans l’analyse discriminatoire d’un biomarqueur candidat. Nous avons pro-

posé une méthode pour estimer la courbe ROC dépendante du temps en traitant les

temps d’événement corrélés censurés à droite. De plus, un grand nombre de CTC sont

détectés dans les cancers métastatiques et, dans un contexte non métastatique, ils sont

plus fréquents dans les tumeurs inflammatoires. Les cliniciens étaient donc interessés

d’évaluer la performance des CTC en discriminant les patients qui ont un profil de risque

similaire, à savoir un stade de tumeur similaire. La courbe ROC cumulative/dynamique

spécifique aux covariables et sa AUC ont été estimées en modélisant l’effet des covariables

et des biomarqueurs sur le résultat par un modèle de fragilité partagée et un modèle de

régression paramétrique pour la distribution des biomarqueurs conditionnée par les co-
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variables. L’introduction de la fragilité permet de saisir la corrélation des observations

à l’intérieur des groupes. Dans l’exemple motivant, un modèle de régression binomiale

négative pour les CTC s’est montré approprié.

Une étude de simulation a été réalisée et a montré un biais négligeable pour l’estimateur

proposé et pour un estimateur non paramétrique fondé sur la pondération par la proba-

bilité inverse d’être censuré (IPCW), tandis qu’un estimateur semi-paramétrique, ignorant

la structure en grappe est nettement biaisé. En outre, nous avons illustré la robustesse

de la méthode en cas de mauvaise spécification de la distribution de la fragilité.

Dans l’ application aux données sur le cancer du sein, l’estimation des AUC spécifiques

au stade de tumeur a permis d’évaluer que les CTC discriminent mieux les patients atteints

d’une tumeur inflammatoire que ceux atteints d’une tumeur non inflammatoire, en ce qui

concerne leur risque de décès.

Par construction du modèle, on a supposé l’existence d’un biomarqueur homogène en-

tre grappes. Cela dépend directement du fait que dans un modèle mixte, l’effet aléatoire

doit être indépendant des covariables. L’hypothèse d’un biomarqueur homogène est

raisonnable lorsque la technologie de mesure du biomarqueur est soit standardisée entre

les groupes, soit centralisée. Une autre hypothèse est la taille non informative des grappes

(NICS), qui est nécessaire pour éviter des résultats biaisés. La taille des grappes est dite

informative lorsque la variable réponse dépend de la taille de grappe conditionnellement

à un ensemble de variables explicatives. De plus, nous avons discuté de l’interprétation

des résultats en présence de données en grappes et nous avons souligné quelles quantités

peuvent être estimées sous quelles hypothèses. Pour les données en grappes, nous pouvons

distinguer deux analyses marginales : la première a une interprétation pour la population

de tous les membres observés (AOM) où des poids égaux sont donnés à chaque mem-

bre de la population observée. La seconde, a une interprétation pour la population d’un

membre typique d’une grappe typique (TOM) et des poids égaux sont donnés à chaque

grappe observée et les sujets au sein de la grappe sont pondérés de manière égale. Nous

apportons la preuve que, dans le cadre du NICS, les deux estimations de la courbe ROC

pour TOM et AOM cöıncident, alors qu’elles diffèrent dans le contexte de ICS.

L’hypothèse d’une taille de grappe non informative n’est pas trop restrictive pour

une méta-analyse, où, intuitivement, on ne s’attendrait pas à ce que le résultat varie en

fonction de la taille des grappes. Toutefois, cette hypothèse est fausse dans certaines sit-

uations et ICS est souvent ignorée lors de l’analyse de données en grappes. Par exemple,

prenons le cas où le temps de perte des dents chez un individu est consideré. Les sujets

souffrant d’une maladie dentaire peuvent avoir déjà perdu des dents à cause de celle-ci.

Ainsi, le temps de perte d’une dent chez un individu (grappe) est lié au nombre de dents
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(taille de la grappe) de ce même individu. Dans le cas de la taille des grappes infor-

matives, les méthodes statistiques standard pour les données en grappes produisent des

résultats biaisés. Les estimations seront surpondérées en faveur de grappes plus grandes.

L’idée de ICS a été initialement introduite par Hoffman qui a proposé la méthode de

rééchantillonnage intra-groupe où plusieurs bases de données indépendants sont créés en

échantillonnant aléatoirement une observation de chaque grappe. D’autres approches ont

été successivement étudiées dans l’analyse de survie. Cependant, ces méthodes reposent

sur l’hypothèse de ICS et celle-ci n’a jamais été formellement testée. À notre connaissance,

il n’y a pas eu de méthode pour vérifier l’existence de ICS avec des données corrélées de

survie. Pour cette raison, nous avons proposé un test qui pourrait vérifier cette hypothèse

dans des données en grappes censurées à droite. Le test repose sur la propriété selon laque-

lle les résultats pour AOM et TOM cöıncident dans le cadre du NICS et il tient compte

de la différence de l’estimateur de Nelson-Aalen pour les deux analyses marginales. La

statistique du test converge faiblement vers un processus gaussien avec une moyenne nulle

et nous avons dérivé la matrice de covariance. Une étude de simulation a suggéré une

bonne performance du test pour les données fortement groupées et pour le scenario avec

quelques grands grappes. Cependant, une faible puissance a été détectée pour un petit

nombre de grappes.

Quelques exemples ont été fournis dans plusieurs contextes. Nous avons appliqué le test

à l’étude IMENEO et l’hypothèse nulle n’a pas été rejeté. En outre, une étude sur les mal-

adies parodontales a été envisagée et, comme prévu, un fort ICS a été détecté. Un autre

exemple illustratif était une étude multicentrique de patients avec une cirrhose billariale

primaire due à une maladie du foie. Ici, de manière moins intuitive, nous avons découvert

que les patients traités dans des centres plus petits avaient des temps d’événement plus

longs, où le résultat d’intérêt était l’échec du traitement. Enfin, nous avons montré une

limitation de la méthode pour petites tailles des grappes différentes dans une étude de pa-

tients atteints de cancer métastatique traités par immunothérapie. L’individu représente

la grappe et le nombre de métastases les tailles de la grappe ; la progression de la tumeur a

été suivie pour chaque métastase afin de détecter les réponses dissociées qui sont typiques

avec l’immunothérapie. Les patients présentant un maximum de 5 métastases ont été in-

clus dans l’étude. Même si les fonctions de survie estimées pour les patients regroupés par

nombre de métastases ont montré une nette différence sur la progression de la maladie,

le test n’a pas rejeté l’hypothèse nulle.

Nous avons ensuite examiné une méta-analyse sur données individuels avec des risques

concurrents. L’objectif était d’évaluer le bénéfice de l’adjonction de la chimiothérapie à

la radiothérapie dans le carcinome du nasopharynx. Ce type de cancer est souvent diag-
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nostiqué à un stade localement avancé, mais il est très sensible à la radiothérapie et à la

chimiothérapie. Précédemment, l’effet du traitement sur la survie globale et sur la survie

sans progression étaient analysés. Nous voulions évaluer le bénéfice de la chimiothérapie

sur la rechute loco-régionale et la rechute à distance, d’où la nécessité d’un modèle de

régression avec risques concurrents. L’analyse de la méta-analyse avec risques concurrents

a été discutée en utilisant des données agrégées. Cependant, la disponibilité de données

individuelles sur les patients entrâıne divers avantages dans l’analyse. Étonnamment, au-

cune directive officielle n’a encore été proposée pour mener une méta-analyse IPD avec des

risques concurrents. Pour combler cette lacune, nous avons détaillé : (i) comment gérer

l’hétérogénéité entre les essais par un modèle de régression stratifié pour les risques concur-

rents et (ii) que les mesures habituelles d’hétérogénéité pour évaluer l’incohérence peuvent

être facilement utilisées. Nous nous sommes principalement concentrés sur l’extension

stratifiée des modèles de risques cause-spécifiques et de sous-distribution, qui sont les

modèles de régression les plus populaires pour les risques concurrents. Une méthode de

landmark a été introduite pour vérifier l’hypothèse de proportionnalité..

Une méta-analyse combine souvent les résultats d’études qui n’ont pas suivi un pro-

tocole commun, impliquant une population différente. La question de l’hétérogénéité est

d’une grande importance pour évaluer s’il est raisonnable de résumer l’effet du traitement

par une seule estimation globale qui s’applique à toutes les études. La statistique I2

peut être utilisée pour quantifier l’hétérogénéité entre les essais. Lorsque elle est détectée,

des analyses de sous-groupes peuvent être effectuées en utilisant des caractéristiques de

niveau individuel. En outre, le temps de suivi (follow up, FUP) pourrait également avoir

un impact sur les résultats. On peut se demander si des études avec différentes FUP don-

neront lieu à des estimations différentes de l’effet du traitement. Nous avons proposé une

approche landmark de la fonction d’incidence cumulative. En outre, les caractéristiques

individuelles pourraient être utilisées pour étudier les interactions possibles traitement -

covariable.

Une légère hétérogénéité a été détectée pour les rechutes à distance, mais pas pour

les rechutes locorégionales. L’ajout de la chimiothérapie à la radiothérapie améliore

l’incidence cumulative pour les rechutes locorégionales et les rechutes à distance. Nous

avons vérifié l’interaction statistique entre l’effet du traitement et l’âge et il n’y avait pas

de preuve significative d’interaction pour tous les risques concurrents.

Dans cette thèse, nous avons abordé le problème des données en grappes dans différents

contextes. Les exemples étaient les deux des meta-analyse sur données individuels, mais

nous avons abordé la structure en grappes des données de différentes manières, en fonction

de l’objectif principal de l’analyse. En évaluant la performance d’un biomarqueur sur la
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survie globale, nous avons proposé une estimation de la courbe ROC dépendant du temps

spécifique à la covariable en traitant la corrélation entre les observations. Cette méthode

n’est pas spécifique à la méta-analyse, mais à un cadre plus général où les observations

au sein d’un groupe sont corrélées en raison d’un facteur non mesuré. L’autre méta-

analyse IPD visait à définir l’effet de l’ajout de la chimiothérapie à la radiothérapie sur

la rechute locoréginale et la rechute à distance pour les patients atteints d’un carcinome

du nasopharynx. Nous reconnaissons qu’il y a des problèmes d’interprétation pour les

risques de sous-distribution. L’utilisation d’un modèle additif pour l’incidence cumulative

pourrait fournir des informations qui ne sont pas saisies par le modèle des risques de

sous-distribution.

Enfin, la question de la taille des grappes non informatifs a été discutée. Cette hy-

pothèse est souvent ignorée ou prise en compte sans une évaluation formelle. Nous avons

proposé un test pour la taille des grappes informatives avec des données de survie cen-

surées. Aucune covariable n’est introduite pour le moment, mais l’utilisation d’un esti-

mateur de Breslow est une extension possible de la méthode. Le test proposé est utile

pour identifier ICS avec des données censurées à droite. Nous pensons qu’un indice pour

la quantification de l’ICS pourrait également être défini. La différence entre les résultats

obtenus pour TOM et AOM est une idée mais, intuitivement, elle ne résoudra pas le

problème de la faible puissance pour quelques clusters. La détermination d’un indice

défini par la variabilité entre les groupes et à l’intérieur des groupes, où les grappes sont

regroupées en fonction de la taille de l’échantillon, pourrait être une autre solution.
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Chapter 1

Introduction

Clustered data are frequently used in biomedical research. They arise when observations

are collected into a number of different groups, referred to as clusters. Observations

within a cluster are more alike than observations from different cluster because of genetic

factors, persistent environmental characteristics or other determinants. Thus, observa-

tions within a cluster are correlated and clusters are considered independent. There are

many examples of clustered data in biomedical research: longitudinal data where multi-

ple measurements are taken over time on each individual; family data where observations

from members of the same family are considered. Multicenter clinical trials are also com-

mon, where observations of the same center (hospital/city) belong to the same cluster.

Moreover, meta-analyses combine observations from several randomized clinical trials fo-

cused on the same medical question which aims to generate a quantitative estimate of

the studied phenomenon, for example, the treatment effect. This is an essential tool for

gaining evidence on results but it can be challenging for statistical methodology. In fact

meta-analysis may have potential misleading results, particularly if specific study designs,

within-study biases, variation across studies, and reporting biases are not carefully con-

sidered [2]. However, it leads improvement in precision and it allows to answer question

which cannot be addressed by individual studies.

Statistical methods for clustered data take into account the correlation between ob-

servations within clusters. There are two main classes of methods: marginal models and

random effect models. The former estimate the population-average effect and no specifi-

cation on the dependence structure is made. The latter estimate the cluster-specific effect

and assumptions on the distribution of the dependence between observations are made.

These two classes differ both in statistical definitions and interpretations of results. In the

first part of this work we mostly discuss random effect models, in particular shared frailty

models. The inclusion of frailties in survival models either models the dependence in clus-
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tered data or explains the lack of fit of univariate survival models, like deviation from the

proportional hazards assumption. The former case is considered, where the frailty repre-

sents the unobserved factors that are specific to the clusters and acts multiplicatively on

the hazard function. Failure times within cluster are assumed to be independent given

the frailty. One challenging point of frailty model is the choice of the frailty distribution.

Most theoretical results have focused on the gamma distribution for the frailty. However,

other distributions have been proposed [3, 4, 5].

Here we consider clustered survival data, and we mainly focus on individual patient

data meta-analysis. Specifically, motivated by the IMENEO study, we explore the problem

of biomarker validation by meta-analysis estimating covariate-specific ROC curve and

AUC. It is an IPD meta-analysis conducted to validate the prognostic performance of

circulating tumor cells in nonmetastatic breast cancer on overall survival. We point out

some differences in results interpretation that arises with clustered data, and we discuss

the problem of informative cluster size that is characterized by the dependence between

the cluster size and the outcome. We underline the issues linked to this setting and we

propose the first test for informative cluster size with survival data.

An other motivating data consists in an IPD meta-analysis conducted to assess the

effect of adding chemotherapy to radiotherapy to patients with nasopharyngeal carcinoma

on multiple endpoints. We consider the competing risks framework and we discuss the

methods that can be employed in the analysis of individual patient data meta-analysis. We

address the problem of heterogeneity and interpretation of results obtained by competing

risks regression models extended to clustered data.

1.1 Meta-analysis in breast cancer

The International MEta-analysis of breast cancer NEOadjuvant CTC (IMENEO) study is

an individual patient meta-analysis whose aim was to evaluate the prognostic detection of

circulating tumor cells (CTCs) at different time points on overall survival in nonmetastatic

breast cancer [6]. Data of 2156 women were collected in 16 different center, conducting

21 studies. Patients were treated with 4 to 12 cycles of neoadjuvant chemoterapy and

CTCs were measured at different time points. IMENEO data provide information about

center, patients, tumor subgroups, lymph nodes status, tumor stage, chemotherapy and

surgery. After a preliminary analysis about CTCs and possible correlated variables, the

main interest was restricted to tumor stage which affects both the outcome (survival) and

the number of CTCs.

The number of circulating tumor cells appeared to be a promising biomarker for
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metastatic breast cancer [7]. However, metastatic patients are a minority in breast can-

cer, thus study the performance of CTCs in non-metastatic context was of interest . Our

objective was to assess the ability of CTCs in distinguishing patients who experienced a

specific event (e.g. death) up to time t from patients who did not experience the event.

In particular, clinicians agreed that it is more relevant to validate the biomarker in the

subgroup of patients with same tumor stage. Therefore, we estimate the covariate-specific

time dependent ROC curve and its AUC. We consider the CTCs count at baseline since

no difference was detected when analysing the CTCs at several time points.

1.1.1 Statistical issues

The ROC curve is a mandatory tool to determine the performance of a biomarker. When

a covariate that affects the outcome and the biomarker the covariate-specific ROC curve

is of fundamental importance [8]. It considers covariate-specific threshold to discriminate

individuals and thus it assesses the performance of the biomarker in sub-population of

patients with similar risk based on the covariate values.

Numerous statistical methods have been developed in the literature to estimate the

time dependent ROC curve. Nevertheless, these methods cannot assess the performance

of a biomarker with clustered survival data. The semiparametric approach introduced

by Song and Zoung jointly modeled the Cox regression model for the survival times and

a location model for the biomarker distribution [9]. It estimated the covariate-specific

time dependent ROC curve for continuous covariates, but it did not consider a possible

correlations between observations. When data are clustered, the model assumptions do

not hold and the estimated ROC curve is biased (Chapter 3). We extend the method

to clustered survival data introducing a frailty term in the Cox model [10] to model the

within cluster correlation.

There are several definition of the time-dependent ROC curve depending on the defi-

nition of cases and controls [11]. We refer to the cumulative-dynamic ROC curve because

it is more appropriate for clinical decision making.

The proposed method assumes an homogeneous biomarker among clusters and non

informative cluster size. These assumptions seem to be reasonable in the IMENEO data

and, more in general, in the context of a meta-analysis where the outcome is likely to be

independent to the cluster sample size.
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1.2 Informative cluster size

A challenging issue that is often ignored in clustered data is informative cluster size,

namely the conditional expected value of the outcome given the covariates depends on

the cluster sample size. An example of clustered data with a survival outcome is found

in a lymphatic filariasis which is often characterized by one or more nests of adult filarial

worms in the scrotum [12]. The outcome of interest is the nest-specific time from treatment

administration to clearance of the worms, knowing that a treatment is effective when it

kills the worms in all of the nests. The cluster is the individual and the cluster size is the

number of nests in each patient. Clearing a nest of worms in patients with multiple nests

was longer than in patients with one nest, indicating the presence of informative cluster

size.

Standard methodologies for clustered data do not take into account the informativeness

of cluster sample size, thus appropriate methods have been introduced in these decades.

Hoffman first mentioned about informative cluster size and proposed the within cluster

resampling (WCR) approach[13]. Successively, this method was studied in the context of

correlated survival data and in addition of its computational cost, it might be unstable

under heavy censoring [14]. Moreover, for survival data, Williamson et al. described a

weighted proportional hazard model [12] .

Williamson et al. suggested that there are two marginal analyses of interest in this

setting: one for the population of all observed members and one for a typical member of

a typical cluster [15]. Inference for the population of all observed member is obtained by

GEE with independence working matrix, whereas for the typical member of the typical

cluster, the WCR methods or cluster-specific models need to be employed. Under non

informative cluster size results for the two populations coincide [16]. Under informative

cluster size they differ in general and, for the population of all observed member it is

challenging to generalize the results because they are specific to the collection design

of the data. Moreover, improperly assuming informative cluster size results in loss of

efficiency [17]. Thus, detection of informative cluster size plays an important role in the

choice of the method. We propose a test for informative cluster size with right censored

survival data. To our knowledge, this is the first test in survival for ICS. Nonetheless,

Benhin et al. [17] and Nevailenen et al. [18] proposed two different tests in the context

of logistic and linear regressions.

The proposed test is applied to some illustrative data set on periodontal disease,

multicentric study of patients with liver disease and clustered data of individuals with

metastatic cancer treated by immunotherapy.
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1.3 Meta-analysis with competing events

Patients with nasopharyngeal carcinoma are often diagnosed with locally advanced stage

because of the difficulty detection of this tumour. Moreover, surgery is limited to biopsy

for histologic confirmation because of anatomical proximity to critical structures. Hope-

fully, this cancer is highly radiosensitive and chemosensitive. Radiotherapy is the standard

treatment and chemotherapy has been proposed for further improvement for patients with

advanced locoregional disease.

An individual patient data meta-analysis on nasopharyngeal carcinoma was considered

to assess the benefit of addition of adjuvant chemotherapy to radiotherapy[19]. A total

of 4940 patients were collected in 23 trials with median follow-up of 11.8 years (ranging

from 5 to 22 years). Baseline characteristics of patients are provided in the data, such

as the age of patients at diagnosis. A previous analysis on the chemotherapy benefit

on overall survival and progression free survival was conducted. Here, we consider the

effect of chemotherapy addition on locoregional relapse, distant relapse and death without

relapse. Thus, competing risks models are needed for the analysis.

1.3.1 Statistical issue

Meta-analysis are increasingly popular in medical research where information on efficacy

of a treatment is available from a number of clinical trials with similar treatment proto-

cols. Standard meta-analysis consider aggregated data because it combines results from

published works. However, individual patient data meta-analysis has several advantages

for heterogeneity detection and investigating possible treatment interactions.

The analysis of a meta-analysis with competing risks has been already discussed using

aggregated data [20]. One principal issue of meta-analysis is heterogeneity because of

the inclusion of studies that could have been conducted under different conditions. The

availability of individual patient data allows to perform subgroup analyses which are useful

for investigating various sources of heterogeneity and check for treatment interactions.

IPD meta-analysis was considered in [21] and [22] with survival outcomes. Here, we

propose a guideline for the analysis of IPD meta-analysis with competing endpoints. We

detail (i) how to handle the heterogeneity between trials via a stratified regression model

for competing risks and (ii) that the usual metrics of inconsistency to assess heterogeneity

can readily be employed.

Unlike aggregated data meta-analysis, the choice of the possible models lies in fixed

or random effect and one- or two-stages approach. Burke et al. pointed out differences

and similarities between these methods [23]. A previous analysis of the data employed
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a two-stage fixed effect-model for the progression free survival and overall survival [19].

A stratified Cox model is usually used for individual patient meta-analysis with survival

endpoints when applying a one-stage approach [23]. Both stratified Fine-Gray model

[24] and cause-specific model are described more in details and methods to check pro-

portionality assumptions across trials are provided. Finally, heterogeneity detection and

treatment interactions investigations are discussed introducing a landmark method to

analyse time-dependent treatment effect.

1.4 Structure of the manuscript

In biomedical research, the use of clustered data and, in particular of individual pa-

tient data meta-analysis is constantly increasing. We extended classic methodologies to

clustered data. We discuss interpretation of results underling which quantities can be

estimated and under which conditions.

The thesis is organised as follows. Chapter 2 introduces principal definitions and

methods for analysing clustered survival data. The model families and the corresponding

estimation methods are presented. The method of shared frailty models is considered in

detail. In Chapter 3, we introduce the covariate-specific time dependent ROC curve and

we propose a new method to estimate the cumulative/dynamic ROC curve and its AUC.

We illustrate the application to non metastatic breast cancer to assess the discriminatory

capability of circulating tumor cells. In Chapter 4 we consider the problem of informative

cluster size and we propose a new test for ICS with right censored clustered survival data.

A simulation study and illustrative data examples are described.

In Chapter 5 we provide a guideline for the analysis of individual patient data meta-

analysis with competing risks. We describe the most common regression models for com-

peting endpoints and we refer to methods for quantifying heterogeneity and determining

treatment interactions with patient-level covariates.

Chapter 6 concludes with a discussion about the proposed methodologies and limita-

tions and areas for further work.

All the developments are implemented in R, with ready-to-use functions that can be

found on the link: https://github.com/AMeddis.
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Chapter 2

Analysis for correlated survival data

2.1 Survival analysis

Survival analysis is a collection of statistical methods to analyse data where the outcome

of interest is a time-to-event. Although more than one event may be considered in the

same analysis, we assume that only one event is of interest. When more than one event

is considered, the statistical problem can be characterized as a competing risk problem

that is discussed in Chapter 5.

Let T represents the time-to-event, the survival function S(t) is the probability of

not experiencing the event prior to time t, S(t) = 1 − F (t) , where F (t) = P(T ≤ t) is

the cumulative distribution function of T . We introduce the hazard function α(t) which

represents the instantaneous probability that the event occurs conditional on not having

experienced the event by time t:

α(t) = lim
δt→0

P(T ∈ [t, t+ δt)|T > t)

δt
=
f(t)

S(t)

with f(t) density function of T . We also define the cumulative hazard function A(t) =∫ t
0
α(s)ds =

∫ t
0
dF (s)
S(s)

= − ln(S(t)).

In survival data, it is likely to have censored information, notably the outcome of

interest, for some individuals, is not observed. Here, we always refer to right censoring.

Let C be the censoring time (e.g. time of drop-out of the study, time of end of follow-up),

a subject j is censored when Cj < Tj. In particular, we define T̃j = min(Tj, Cj), the

observed failure time, and the censoring indicator ∆j = I(Tj ≤ Cj). We assume that Tj

and Cj are independent.

For estimation of the cumulative hazard and the survival function, appropriate (semi)parametric

or nonparametric model are available. For parametric inference, one needs to make some
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assumptions on the time-to-event distribution; on the other hand, nonparametric meth-

ods need larger sample size to obtain reliable results and estimating the hazard function

is challenging.

Given N individuals, we consider the counting process N(t) =
N∑
j=1

I(T̃j ≤ t,∆j = 1)

with intensity λ(t), in particular:

λ(t)δt = E[j : Tj ∈ [t, t+ δt),∆j = 1|Tj > t] = Y (t)α(t)δt

where Y (t) =
N∑
j=1

I(T̃j > t) is the at-risk process which represents the number of subjects

that are still at risk before t. The quantity N(t) corresponds to the number of events

observed before time t, and ∆N(t) = N(t)−N(t−) is the number of events that occurred

at instant t. We introduce the counting process martingale M(t) = N(t) − Λ(t) or,

equivalently

dN(t) = dΛ(t) + dM(t) = α(t)Y (t)dt+ dM(t)

where Λ(t) =
∫ t

0
λ(s)ds is the cumulative intensity process.

The nonparametric Nelson-Aalen estimator of the cumulative hazard function is de-

fined as:

Â(t) =

∫ t

0

dN(s)

Y (s)
=

N∑
j=1

∆N(Tj)

Y (Tj)
I(Tj ≤ t)

Moreover, for right censored data, a nonparametric estimator of the survival function

is given by the Kaplan-Meier estimator [25]:

Ŝ(t) =
∏
Tj≤t

(
1− ∆N(Tj)

Y (Tj)

)

This is a step-wise decreasing function that jumps at the event times.

Proportional hazard models are widely used (semi)parametric models in survival anal-

ysis. Let X be a vector of p covariates, the hazard is expressed as:

α(t) = α0(t)exp(β
′
X)

where α0(t) is the baseline hazard function and β is the vector of regression coefficients.

The covariates act multiplicatively on the baseline hazard and the quantity exp(β) is

referred to as hazard ratio. Common choices for the baseline hazard are Weibull, ex-

ponential or Gompertz distribution, but the model allows for any specification of the

baseline. When the baseline is unspecified, the Cox proportional hazard is considered and
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partial likelihood methods are used for the estimation of the β, and the Breslow estimator

for the baseline hazard.

These quantities describe the aspects of survival data which build the basis for specific

parts in the next chapters where we focus on modeling clustered right censored failure

times data in different framework. In section 2.2 we give useful insights on the approaches

exploitable on survival for clustered data and in section 2.3 we describe more in details

the shared frailty models considering model definitions and estimation. Finally, in section

2.4 we point out some differences in the interpretation of results.

2.2 Inference for correlated survival data

Correlated survival data arise from many contexts due to recurrent events experienced

by an individual or when observations are clustered into groups. For instance, studies on

survival of a specific disease with familial data, or the assessment of a treatment strat-

egy effect where data are collected from different centers (multi-centric data). An other

example of clustered data is the meta-analysis which gains evidence for clinical interpre-

tation combining results of multiple studies (clusters). Alternatively, the response may be

repeatedly measured on each subject at several time occasions (repeated measurements).

For example, in a clinical trial a measure of health outcome is recorded for each patient

(cluster) at each visit, creating a vector of responses with natural time ordering among

the measurements. In the latter scenario we specifically refer to longitudinal data. In this

work we do not focus on longitudinal data. We assume that observations are grouped

into clusters.

Observations which belong to the same cluster tend to be correlated because of some

common shared features. Analysis of such data is challenging and ignoring the intracluster

correlation leads to biased results. The estimation methods for analysing clustered data

and the interpretation of regression estimates tend to be more complicated than in the

independent setting. There are two broad classes of models that have been developed to

handle clustered data: i) marginal or population-averaged models and ii) random effects

or frailty models. These two approaches differ in both statistical approach and interpre-

tation. Marginal models make inference on the population average effect addressing the

correlation between failure times, but they do not model the correlation, thus no infor-

mation on the relationship among failure times is provided [26, 27, 28]. On the contrary,

frailty models include a random effect to account for the dependence between failure times

and they make inference on cluster-specific effects [10].

Let (G1, G2, ..., GK) be a sample of K independent observations where each Gk repre-
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sents the observed within each cluster k and consisting of(
Nk, (T̃k1,∆k1, Xk1), ..., (T̃kNk

,∆kNk
, XkNk

))

with Nk the cluster sample size. Let Xkj denote the vector of covariates for the j-th

subject in the k-th cluster. Let Tkj be the failure time and Ckj the censoring time,

we observe T̃kj = min(Tkj, Ckj), the observed failure time, and the censoring indicator

∆kj = I(Tkj ≤ Ckj) for individual j in cluster k. We assume that Tkj and Ckj are

independent for all k, j and that in each cluster k (Tk1, Tk2, ..., TkNk
) can be correlated

conditionally on (Xk1, Xk2, ..., XkNk
).

In the following sections we describe more in details the two classes of methods, re-

calling that it is fundamental to choose the method to use depending on the question we

want to address and not on statistical considerations.

2.2.1 Marginal models

Marginal modeling estimates the effect of explanatory covariates considering the marginal

distribution of the outcome of interest. This type of models focus on the population av-

erage effect, and the correlation is often treated as a nuisance parameter to reduce the

dependence of the marginal models on the specification of the unobserved correlation

structure of the data. In fact, the dependence is not the interesting aspect and is not

considered in detail. The regression coefficients estimates are found assuming indepen-

dence between the observations. Afterwords, the uncertainty of the regression coefficient

estimates is evaluated by means of an estimator that accounts for the dependence (a

”sandwich estimator”). This approach is called ”Independence Working Model (IWM)

approach” and is closely related to the generalized estimating equations (GEEs). The

correlation is properly modeled in order to assign weight to the data from each cluster

specifying a working correlation matrix. The working correlation is assumed to be the

same for all individuals, reflecting average dependence among the correlated observations

within the cluster. Many working correlation structures can be specified: independent

working correlation assumes no correlations between observations; an exchangeable work-

ing correlation assumes uniform correlations. An autoregressive working correlation as-

sumes that observations are only related to their own past values through first or higher

order autoregressive (AR) process.

This marginal method has been applied to the proportional hazards model where the

baseline hazard function is common for all the failure times [26], or a stratified approach

with different baseline hazard functions among cluster [27]. The regression parameters are
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obtained by the partial likelihood function considering the observations to be independent

(IWM assumption) and the corresponding variance-covariance estimators are properly

corrected to account for the dependence structure. Moreover, Cai and Prentice proposed

weighted procedures to estimate regression parameters under stratified and unstratified

marginal proportional hazards model, respectively [28, 29].

Marginal modeling does not need any condition or assumption for the dependence

distribution, but, on the other hand, this leads to uncertainty on the good specification

of the model in practice. Therefore, this approach is advantageous to determine the

covariates effect, but it is not useful for goodness-of-fit or for prediction. A complementary

approach is the concept of copulas whose main aim is to study the dependence by assuming

that the marginal distributions are known and a uniform distribution on the unit interval

is considered. The dependence is then evaluated by specifying a family of distributions for

the bivariate observations (correlated failure times). This approach is not important from

a statistical point of view since the marginal distributions are rarely known in practice.

Typically, there will be some parameters also in the marginal distributions and then we

need a larger model for the analysis. This approach can be used for assessment of the

dependence and for evaluating the goodness-of-fit of specific models [10].

2.2.2 Random effect models/frailty models

A frailty model is a random effects model for survival data. It is a conditional hazard

model with a multiplicative factor, the so-called frailty, which models the correlation

between observations. This model was introduced by Clayton in a study on chronic

disease incidence in families [30], but the term frailty was introduced by Vaupel [31]. This

approach aims to account for heterogeneity, caused by unmeasured covariates. It can be

applied to describe the influence of unobserved factors in a proportional hazard model

for univariate (independent) data. However, it is mostly used in case of multivariate

(dependent) survival data to account for the dependence in clustered event times (e.g.

multicentric clinical trials, recurrent events). For clustered data, the estimated variance

of the frailty term summarizes unobserved heterogeneity between clusters; for recurrent

events, the variance describes unobserved heterogeneity between individuals, as in the

univariate case. The idea is to consider the variability in failure times as coming from

two separate sources. One source is described by a hazard function (simple randomness),

and the second one is described by a random effect which is either an individual variable

(univariate), or a variable common to several individuals (multivariate).

One challenging point of frailty models is the definition of the frailty distribution.

Several choices have been studied in detail in [4], underlying which distributions generate
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specific type of dependence between observations within clusters. One other difficult point

is the estimation of the regression coefficients when the baseline hazard is not specified.

In case of parametric models, the hazard function is specified and the marginal function

is obtained integrating out the frailty terms. Meanwhile, for semiparametric models, the

EM algorithm and penalized likelihood techniques are needed to estimate the regression

coefficients.

The basic probability results are shared between the multivariate and the univariate

model, since the first includes the second. However, the statistical aspects, including

interpretation, identifiability of parameters and estimation, are clearly different. It is

than natural to consider the two cases separately. Clustered data are the main focus of

this work, thus in the next section we give an insight on the shared frailty model: model

and estimations methods, and we refer to [4] for a detailed description of univariate

frailty models. We then highlight the properties and difference between the possible

frailty distributions.

2.3 Shared Frailty models

Shared frailty models account for unobserved cluster characteristics introducing a frailty

term shared among observations within the same cluster. The introduction of a random

effect is a natural way to take into account of the dependence between observations.

Conditional on the frailty, the failure times within a cluster are assumed to be independent.

Note that, in case of univariate data the individuals are a random sample from a larger

population, meanwhile in clustered data the clusters are a random sample of a population

of clusters.

This method is more complex compared to the standard random effect model, since

the basic variation is described by the hazard function instead of a random variable. In

fact, two source of variation are distinguished: the groups variation which is described

by the random effect variability, and the individual variation described by the hazard

function. The model has the form:

α(t|X,Uk) = Ukα0(t) exp(β
′
X)

where Uk > 0 is the frailty term with density distribution fUk
(t). We refer to α(t|X,Uk)

as the conditional hazard and when X is a categorical variable with x ∈ {0, 1}, the quantity

exp(βT ) is the hazard ratio between individuals with the same frailty. The marginal

effect of X can be constructed by the ratio of the two marginal hazards α(t|x = 0) and

α(t|x = 1).
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The marginal survival function is obtained integrating out the frailty from the condi-

tional function S(t|X,Uk) = exp(−UkA(t|X)) :

S(t|X) =

∫ ∞
0

S(T |X,Uk)fUk
(u)du =

∫ U

0

exp(−UkA(t|X))fUk
(u)du = E[exp(−UkA(t|X)].

This integration is the same as used in the Laplace transformation for the distribution

of Uk. The Laplace transform is L(s) = E[exp(−sUk)]. Thus, we can rewrite the survival

function as the Laplace transform of the frailty distribution:

S(t|X) = L(A(t|X))

The gamma distribution is widely used in frailty model since the Laplace transform

is computationally easier. However, in general, a family of distributions with tractable

Laplace transform are considered for the choice of the frailty distribution [3].

The conditional likelihood for all the individuals is given by the product over the

clusters of the likelihood contribution for each cluster k:

Lk(β, α0|Uk) =
∏
j

α(tkj, xkj|Uk)∆kj exp(−UkA(tkj, xkj))

=
∏
j

α(tkj, xkj|Uk)∆kj × exp(−UkAk.(xkj))

where Ak. =
∑
j

A(tkj, xkj) is the sum of the conditional cumulative hazards of cluster

k. Let Nk. be the total number of events for cluster k, the marginal likelihood is obtained

integrating out the frailty term with fUk
(uk; θ) and it is of the form:

L(β, α0, θ) =
∏
k

∏
j

∫ ∞
0

[ukα(tkj, xkj)]
∆kj × exp(−ukA(tkj, xkj))× fU(uk)du

=
∏
k

∏
j

α(tkj, xkj)
∆kj × E[UNk.

k exp(−UkAk.)]

Using the Laplace trasform and its derivatives, the term E[UNk.
k exp(−UkAk.)] is easily

calculated for U ∼ Gamma(θ), but it can be challenging for others frailty distributions.

In the next section we provide a brief description of the different estimating methods that

can be employed in case of frailty models.
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2.3.1 Inference for shared frailty models

Several approaches have been proposed to estimate the parameters from a shared frailty

model because some formula are complicated and iterations can be time consuming. The

most obvious way would be to integrate out the frailty, but this is not the only method.

Above all, we need to distinguish between parametric and semiparametric models, de-

pending on the definition of the baseline hazards α0(t). For parametric models, standard

methods can be used maximizing the log-likelihood to estimate the regression coefficients.

As described before, the likelihood can be obtained by the Laplace transform and we

might need numerical differentiation methods to calculate the derivatives of the Laplace

transform. For semiparametric models, the baseline hazards α0(t) is estimated per time

point with observed events, thus there is one parameter for each observed failure time.

The Expectation-Maximization (EM) algorithm has been proposed for semiparametric

models with both gamma and power variance function (PVF) distributions [32, 33]. This

method alternates between the Expectation step (E-step) and the Maximisation step

(M-step) until convergence of estimates. During the E-step the expected log-likelihood∑
k

E[logLk(β, α0|Uk)] is calculated, and in the (M-step) β, α0, θ are obtained maximizing

the log-likelihood. This last step is the same problem as for a Cox model, considering

the frailty term as exp(ψklog(Uk)) with ψk = 1. The EM-algorithm is simple but it can

require a very large number of iterations. To obtain the standard errors of the estimates,

the Louis’ formula can be used [34].

A modified EM-algorithm, the ”profile EM”, is an alternative approach, where the EM

algorithm is performed for fixed values of θ using a two-stage maximization procedures:

max
θ,β,α0

L(θ, β, α0) = max
θ
{max
β,α0

L(β, α0|θ)}

Therefore, in the E-step the likelihood for fixed θ is calculated where the estimates

for the frailty ûk are obtained considering the expectation with respect to the posteriori

distribution of the random effect (ûk = E[Uk|data]). Afterwords, in the M-step the like-

lihood is maximized as for a Cox model with log(ûk) as offset term in each cluster. A

second M-step is needed to maximize the profile likelihood L̂(θ) = maxβ,α0 L(β, α0|θ) over

θ. The standard error for β and α0 are calculates with the Louis formula, considering

that θ is fixed. Than, these are adjusted considering the variability of θ [35].

Penalized likelihood methods as described in [36, 37] are also used for semiparametric

gamma or log-normal frailty models. It is based on a modification of the Cox partial

likelihood where the frailty terms Uk are treated as regular parameters for fixed θ. The

likelihood is a product of the partial likelihood and a penalization term which is introduced
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to avoid large differences between the frailties for the different groups. In other words,

it is fitted by first setting the frailty values to 1 (θ = ∞). Then, an iterative procedure

is used with a first step of optimizing the partial likelihood, treating the frailties as fixed

and known parameters. In the second step, the frailties are evaluated as the conditional

means given their observations, like the EM-algorithm. This is repeated until convergence.

These methods are fast, but it is hard to generalize them for others frailty distributions.

2.3.2 Frailty distribution

As mentioned above, several options for the frailty distribution are possible. There is no

single family which have all the desirable properties, thus the choice of the distribution

depends on the actual problem in consideration. In particular, besides the theoretical

properties, it is important how dependence between time variables is translated.

The standard assumption is to use the gamma distribution justifying this choice based

on its analytic simplicity and its variety of forms as the parameters vary. The gamma

model was considered by Clayton [30] and in [38], and generalized to include covariates by

Clayton and Cuzick [39]. From a computational point of view, it fits very well to survival

models, because it is easy to derive the marginal quantities. The density of the gamma

model is:

g(u) = θδuδ−1 exp(−θu)/Γ(δ) θ, δ > 0

Because of identifiabiliy of the model, we fix E[U ] = 1 → δ = θ and thus V ar[U ] = 1/θ.

The conditional distribution of the frailty among survivors is still a gamma distribution

with a different scale parameter. However, for frailty distributions belonging to the natural

exponential family, the conditional distribution of the frailty is still within the same family.

The inverse Gaussian distribution belongs to the natural exponential family, but it gives

different results compared to gamma frailty. It was considered in [40].

The positive stable model was introduced by Hougaard [3] and further studied in

Oakes [41]. This distribution is characterized by infinite mean and it is usually defined

by the Laplace transform: L(s) = exp(−δsα/α) where δ = α. When the conditional

hazards are proportional, so are the marginal distributions. Moreover, if associated to

a Weibull hazard, also the marginal distribution is in the Weibull family. Hougaard

[3] introduced a group of distributions which include intermediate cases between the

gamma and the Inverse Gaussian distributions: the power variance function (PVF). This

was successively studied by Crowder [42]. It is a three-parameter distribution family

which also includes the positive stable distribution, its Laplace transform is of the form:

L(s) = (−δ((θ+s)α−θα)/α]. When α < 0 some people do not experience the event, thus
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a negative estimated parameter reflects that we have very little information on the risk

at late time points. A further important frailty distribution is the lognormal distribution.

It is a one-parameter model (the mean is fixed to 0), whose Laplace transform does not

have a closed form but several packages proposed numerical methods to integrate out the

frailty.

One important aspect in the definition of the frailty distribution is the type of depen-

dence of the observed failure times. One consideration is whether the dependence is early

or late. In Hougaard [4] the dependence type is described by an example of nine artificial

pairs of twins. We consider late dependence when if one twin dies old, we are sure the

other will also die old, whereas if one twin dies young, we do not know the actual age

class of death of the other one. As an alternative, short dependence when one twin dies

young leads that the other will also die young, whereas if one twin dies middle-aged or

old, we do not know the actual age class of death of the other one. The positive stable

model lead to early strong dependence, meanwhile, the gamma model to stronger late

dependence because of the tails of the frailty distributions. The positive stable has a

right tail, so we have a strong dependence initially, whereas the gamma distribution has

a left tail corresponding to late dependence. However, intermediate case are usually more

realistic and are represented by PVF and lognormal model.

Another consideration is the duration of dependence, which we split into three time

frames - instantaneous, short-term, and long-term dependence. Instantaneous dependence

occurs when two events happen at the same time. Short-term dependence is when the

dependence is most pronounced immediately after other individuals in the group have

experienced an event, and long-term dependence is when an event implies that the risk

among group members is increased forever. Most standard models give long-term depen-

dence and a few give instantaneous dependence.

Indeed, in practice mainly the gamma distribution and the lognormal distribution are

used to model the frailty term and most of the software limits the choice of the frailty

distribution to these cases. The choice of the frailty distribution is a challenging point.

Shih and Louis proposed a graphical method for assessing the gamma distribution as-

sumption when the basic functions are parametric and do not depend on covariates [43].

Glidden developed a test for the gamma frailty model without specifying the basic hazard

functions when covariates are not involved [44]. Cui and Sun provided a graphical as

well as a numerical method for checking the adequacy of the gamma under the marginal

proportional hazards [45]. We refer to those papers for general discussions on this topic,

more simulation results and advice about related model checking that we believe are

also relevant in our context. Misspecification is then an important issue for the defini-
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tion of the frailty distribution. In Chapter 3, in the specification of a new method for

covariate-specific time dependent ROC curve, this problem is addressed by conducting

a simulation study generating data with frailty distributions that do not belong to the

natural exponential family.

2.3.3 Software available

Support for frailty model exists in several packages in R. The most popular fitting method

for shared frailty models is via the penalized likelihood method [37]. This is implemented

in the survival package [46]. Lognormal frailty models is estimated in R via Laplace

approximation in coxme [47], h-likelihood in frailtyHL [48] or Monte Carlo Expectation-

Maximization phmm [49]. Parametric and spline based shared frailty models are imple-

mented for the gamma and log-normal distributions in the frailtypack package [50].

The frailtySurv package [51] implements the PVF distributions except the positive

stable via a pseudo full likelihood approach. The parfm package [52] estimates fully

parametric gamma, Inverse Gaussian, Positive stable and log-normal frailty models. In our

work, we use the frailtyEM package [53] which provides maximum likelihood estimation of

semiparametric shared frailty models using the Expectation-Maximization algorithm. In

this package, a general full-likelihood estimation procedure is implemented for the gamma,

positive stable and PVF frailty models, using a semi-parametric Breslow estimator for the

baseline intensity.

2.4 Target population

Methods available for clustered data can be classified in two main classes: population-

averaged and unit-specific approach. The marginal models, which relies on the GEE,

provide results for population averaged effects, whereas the random effect models (frailty)

estimate the individual-specific effect. Thus, we can define two marginal analyses that

might be of interest in the context of clustered data, as mentioned in [13, 15]. One makes

inference for the population of all observed members (AOM), where equal weights are

given to each member of the observed population, and larger clusters are weighted more

than smaller ones. The second one, makes inference for the population of typical observed

members of a typical cluster (TOM), where equal weights are given to units within cluster

and clusters equally contribute to inference since they have same weights. For the former,

the parameters will have an interpretation for a unit randomly sampled from the overall

observed populations. The latter will have a cluster-based interpretation, namely for a

randomly selected unit sampled from a randomly selected cluster. Asymptotically the two
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Figure 2.1: Difference of Survival function estimates for the two target population under ICS
and NICS. Simulation results over 500 replications.

marginal analyses will reach the same conclusion if cluster size is unrelated to the outcome

[16]. However, they differ in presence of informative cluster size, i.e. when the outcome

measured among cluster members is related to the size of the cluster. In Figure 2.1 the

difference of survival function estimates for the two target population is provided. Under

NICS, the results obtained from the two marginal analyses coincide. On the other hand,

under ICS, the two estimates are quite different. Hoffman first described the problem

of informative cluster size proposing the within-cluster resampling (WCR) method [13].

Others approaches have been presented in these years.

Williamson et al. provided a guideline as to which population should be selected

for inference according to the aim of the analysis [15]. A periodontal disease example

is considered, where data on the disease status of the tooth (unit) from a sample if

individuals (clusters) are analyzed. We expect that observations from the same individual

are correlated and that subjects with fewer teeth are more likely to have worse dental

health. Therefore, the cluster size is informative. If the goal is to assess how many teeth

among the observed patients require a costly intervention, the population of all members

analysis is privileged, since clustering by patient may not be of direct relevance. On the

other hand, if we are interested in determining patient factors linked to the disease status
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of teeth, the population of typical cluster members might be preferred.

A formal definition of informative cluster size is given in Chapter 4 where we detail

the methods that can be employed in this setting and we introduce a test for informative

cluster size with survival data.
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Chapter 3

A covariate-specific time dependent

ROC curve for correlated survival

data

3.1 Introduction

Considerable research has focused on the development of new biomarkers to improve

patient management in disease like cancer. An essential step in developing a clinically

useful biomarker is to identify its ability in discriminating subjects at high or low risk

of an event within the coming years. In survival studies, the time dependent receiver

operating characteristic (ROC) curve is a popular tool to assess the performance of a

candidate biomarker. It is the plot of time dependent True Positive Rate (TPR), or

sensitivity (probability of the biomarker being above a given threshold in the diseased

subjects) against time dependent False Positive Rate (FPR), or 1-specificity (probability

of the biomarker being above the given threshold in the non diseased subjects) among

all the possible thresholds used to classify individuals. Several definitions of the time-

dependent ROC curve were proposed by Heagerty et al. [54] depending on the definition

of cases and controls. In this work, we refer to the so called cumulative/dynamic ROC

curve where, at time t, a patient is defined a case if he experiences the event in [0; t], and

a control if he experiences the event after time t. Furthermore, it has been advocated that

adjusting for well established prognostic variables is important in the clinical interpreta-

tion of the results [8, 55] . Therefore, in addition to the time dependent ROC curve, the

covariate-specific ROC curves are of prime interest in the study of the discrimination of a

biomarker. For a discrete covariate, the most obvious option is to use a nonparametric ap-

proach. Uno et al. [56] proposed a nonparametric method based on the inverse probability
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censoring weighting (IPCW) estimates, where the covariate-specific time dependent ROC

curves can be obtained by stratifying on the covariate values. While, for a continuous

covariate, Song and Zhou employed a semiparametric approach for the covariate-specific

time dependent ROC curves [9]. They assumed a proportional hazards model for the

hazard given the biomarker and covariates, and a semiparametic location model for the

conditional distribution of the biomarker given the covariates.

To ensure reliable evidence of the biomarker prognostic capability, large multi-center

trials or individual patient data meta-analysis are often conducted. An example is IME-

NEO, a meta-analysis on individual patient data assessing the clinical usefulness of CTCs

(Circulating Tumor Cells) count in a context of non metastatic breast cancer [6]. The

CTCs, the candidate biomarker, were collected from multiple centers, thus it is legiti-

mate to suspect various sources of heterogeneity. This might lead to correlation between

observations coming from the same cluster. Thus, the natural question arises as to how

to consider the cluster effect in the discriminatory analysis for a candidate biomarker.

It is not clear yet how to address this problem and, which quantities can be estimated

and under which assumptions, has not really been discussed so far. Common strategy to

evaluate the discriminatory ability of the biomarker is to ignore heterogeneity, discard-

ing any possible cluster effects, but it may lead to an incorrect evaluation. We propose

an estimator of the covariate-specific time dependent ROC curve for correlated censored

survival data which can simultaneously address all the challenges of our motivating data:

adjusting for clinically useful covariates and allowing for clustered data. We compare

the proposed method to the nonparametric one and we discuss the interpretation of the

estimates and their consistency under different scenario.

In the next section the covariate-specific time dependent ROC curves and the respec-

tive area under the curve (AUC) are introduced. We recall the several definitions due

to the time-varying framework and we detail existing method used to estimate covariate-

specific time dependent ROC curves. In Section 3.4 a new estimator is described. We

detail the simulation study conducted to evaluate the performance of the proposed method

comparing it with the existing ones. The method is then applied in Section 3.5 to non-

metastatic breast cancer data to assess the discriminatory ability of CTCs on overall

survival. Some remarks are made in Section 3.6.
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3.2 Motivating data

3.2.1 Biomarker of interest: CTCs

Breast cancer leads the incidence and mortality tables for cancers among women in 2018,

it was responsible for an estimated 2.1 million cancers accounting for the fifth leading

cause of cancer deaths worldwide.

The Circulating Tumor Cells (CTCs) detection proved to be a prognostic factor in

metastatic breast cancer [7]. These are tumor cells deriving from primary and secondary

sites that were discovered in 1869 by Thomas Ashworth, and started gaining interest

in 1990s with the demonstration that CTCs exists prematurely in the course of cancer.

A pros in the use of CTCs is that their detection is a non invasive technique because

measured in the sample of patients blood (liquid biopsy). Different methods for isolating

CTCs have been proposed but CellSearch was the only one approved by FDA (Food and

Drug Administration). This method consists in counting the epithelial cells separated

from the blood by magnetic technology using ferrofluids. However, interreader variability

is often present in the counting step of CTC, which involves image recognition by a

trained technician. An image analysis algorithm has been developed to fully automatize

CTC counting and to improve interreader reproducibility [57].

CTCs detection is correlated with the tumor stage [58], thus large number of CTCs

are detected in metastatic cancer, and in the non-metastatic setting, they are more fre-

quent in inflammatory tumors. CTCs count facilitates the prognosis and improve cancer

treatment . Originally CTCs studies focused on metastatic settings, but in breast cancer

metastatic patients are a minority and so groups of research started to study CTCs prog-

nostic significance in non-metastiatic context. As CTCs are rare in early breast cancer,

technical and statistical concerns were initially raised about their validity as biomarkers.

These initial theoretical concerns have been largely invalidated in several large studies

that established CTC detection as a reliable and valuable biomarker of the metastatic

process. Since 2004 several studies for the clinical validity of CTCs in metastatic breast

cancer patients were conducted with the result that it is a prognostic biomarker, both at

baseline (moment of diagnosis) and during treatment.

3.2.2 IMENEO data set

Neoadjuvant chemotherapy is a standard treatment for patients with non-metastatic

breast cancer before surgery. It has two main actions: shrinkage of the primary tumor

and eradication of blood-borne tumor cell dissemination. Here, we consider the Interna-

tional MEta-analysis of breast cancer Neoadjuvant CTC (IMENEO): a meta-analysis of
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Center Nk events mean(CTCs) IT nonIT

Brussels 44 3 1.00 1 43

Cremona 45 4 7.73 0 45

Gunma 112 14 1.92 0 112

Hamburg 602 72 2.25 41 561

Houston 161 39 1.53 55 106

Kyoto 72 5 2.40 0 72

London 16 0 2.06 0 16

Madrid 69 16 3.77 1 68

Oslo 120 13 1.82 0 120

Paris 286 54 4.10 155 131

Rotterdam 45 2 1.22 0 45

San Francisco 142 16 2.08 9 133

Santagio 9 0 0.00 0 9

Täbingen 61 8 0.75 3 58

U. Mich. 25 4 1.32 0 25

Valencia 102 17 0.68 1 101

Table 3.1: Desctiption of the IMENEO data.
Nk: number of observations in center k.
CTCs, circulating tumor cells; IT, inflammatory tumor; nonIT, noninfammatory tumor.

individuals with non-metastatic breast cancer treated by neoadjuvant chemotherapy [6].

The main aim of the study was to investigate the prognostic ability of CTCs on overall

survival. Data of 2156 women from United States, Japan and Europe were included;

inclusion criteria were studies with patients enrolled between 2005 and 2016 with CTCs

collected at least once before surgery by the Cellsearch system. Patients were treated with

4 to 12 cycles of neoadjuvant chemotherapy and CTCs were measured at different time

points: five of fewer weeks before neoadjuvant treatment, one to eight weeks after the

treatment and five or fewer weeks prior surgery (Figure 3.1). The blood sample screened

was of 7.5 mL in 19 studies, 15 mL in one study and 30 mL in one study. The CTCs

count was normalized on the volume sampled. However, having a count of zero CTCs in

the sampled blood does not necessarily imply that no CTCs are in the body.

Information about age, tumor stage, lymph nodes, tumor grade and tumor subgroup at

diagnosis were provided. A previous analysis of the IMENEO study showed a statistically
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Figure 3.1: Timeline of CTCs collection in the IMENEO study. In the analysis, we consider
CTCs before chemotherapy (at baseline).

significant association between between CTCs and tumor stage. In particular high CTC

counts were observed in T4d tumors, thus in this work, we distinguish from inflammatory

(IT) and noninflammatory tumor (nonIT). No other statistically significant association

with any baseline clinical or pathological characteristics have been observed.

The aim of this work is to assess the ability of Circulating Tumor Cells in discrimi-

nating patients with non metastatic breast cancer on overall survival. The CTCs count

at baseline (before treatment) was taken into consideration, since a prior investigation

indicated that CTCs detection during neoadjuvant chemotherapy does not increase sur-

vival prognostication [6]. Moreover, because of its particular distribution, in a context of

non-metastatic breast cancer, CTCs changes between measurement may not be due to

treatment effect [58].

The number of CTCs is characterized by 80% of null values (Figure 3.3). Thus,

we consider zero inflated model, in particular, a negative binomial regression model.

Moreover we provide the estimated survival function stratifying on biomarker values to

show that CTCs count is prognostic for overall survival (Figure 3.2).

3.3 Time dependent ROC curve

ROC curve analysis is extensively used in biomedical studies for evaluating the discrimi-

nant capability (power) of a continuous diagnostic test or marker. Given a marker Y, we

are interested in its ability in discriminating individuals that experienced a specific event

(cases) from the event-free individuals (controls). Let D be a binary outcome which is

1 if the event occurred, and 0 otherwise, the ROC curve is the plot of the true positive

rate, or sensitivity, TPR(c) = P(Y > c|D = 1) and false positive rate, or 1-specificity,

FPR(c) = P(Y > c|D = 0) among all the possible threshold values c. We assume that

higher values of Y leads to greater risk of event. The higher the ROC curve is in the

quadrant [0,1] x [0,1], the better the marker discriminates subjects. Moreover, the Area

Under this Curve (AUC) is a summary measure for the performance of the biomarker.

However, with survival data, where the performance of prognostic marker is of interest,
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Figure 3.2: Estimated survival function for different value of CTCs.

Figure 3.3: CTCs distribution observed in the IMENEO data set.

the outcome status changes over time. Therefore, sensitivity, specificity and ROC curves

are functions of time as well and, several definitions have been introduced [11]. We denote

by Dj(t) the time-dependent outcome status for a subject j at time t, Dj(t) = 1 if subject

j is considered as a case and Dj(t) = 0 if subject j is considered as a control at time t.

At a given time t, we define the time-dependent ROC curve and its AUC:

ROC(t) = {
(
FPR(c, t), TPR(c, t)

)
, c ∈ R}

AUC(t) =

∫ ∞
−∞

TPR(t, y)|δFPR(t, y)

δy
|dy

Thus, the definitions of ROC(t) and AUC(t) rely on those of time-dependent TPR

and FPR and thus on how the cases and controls are defined.

Following Heagerty and Zheng, cases are said to be incident when Tj = t is used to

define cases at time t, and cumulative if Tj ≤ t is used instead. Similarly, controls are

said to be static or dynamic depending on whether Tj > τ for a time τ > t or Tj > t is

used for defining controls at time t. Thus, we can define the cumulative-dynamic ROC

36



curve as the plot of the cumulative TPR and dynamic FPR

TPRC(c, t) = P(Y > c|T ≤ t)

FPRD(c, t) = P(Y > c|T > t)

and the incident-static ROC(t) which is the plot of incident TPR and static FPR

TPRI(c, t) = P(Y > c|T = t)

FPRS(c, t) = P(Y > c|T > τ)

The cumulative-dynamic definition may be more appropriate for clinical decisions mak-

ing while the incident-static definition may be more appropriate when trends over time

of AUCs are of interest [59]. In this work we focus on the cumulative-dynamic definition

since we believe it is more clinically relevant in our settings.

Several approaches have been proposed to estimate the cumulative-dynamic ROC(t)

and its AUC(t) dealing with right censoring. Heagerty et al. [60] proposed estimators

based on Bayes’ theorem and the Kaplan–Meier estimator. They also developed an other

method based on the nearest neighbor estimator of the bivariate distribution of the marker

and the time-to-event to handle dependent censoring. Chambless and Diao [61] detailed

a Kaplan–Meier-like estimator method conditioning on observed event times. These ap-

proaches do not include covariates in the definition of the ROC curve, which may be

important in assisting classification. On this purpose, a semiparametric approach was in-

troduced by Song and Zhou [9] which models the conditional survival probability of failure

times given the marker Y. Finally, Uno et al. [56] proposed a nonparametric estimators

employing inverse probability of censoring weighting method. We explore more in details

the last two methods, and we refer to [62] for a more accurate illustration of the different

proposed methodologies.

Furthermore, other measures can be employed to assess the ability of a prognostic

marker in discrimination. The concordance index, also known as c-index or c-statistic

[63, 64] is very popular. It is the probability that, between two randomly chosen patients,

the one who first occurs the event has an higher predicted risk (higher marker value). The

time-dependent AUC is interpreted as the probability that a case has a higher biomarker

value than a control subject. To explain the main difference between the two discrim-

ination measures for survival analysis, let consider two individuals i, j with observed

failure times Ti and Tj and biomarker values Yi, Yj. The concordance index is defined by

CI = P(Yi(t) > Yj(t)|Ti < Tj), and the AUC(t) = P(Yi(t) > Yj(t)|Di(t) = 1, Dj(t) = 0).

Unlike the time-dependent AUC, the c-index does not depend on the horizon time t, thus
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it cannot be used when a specific time t is of interest, but it provides a summary measure

over all the times. In [65] it has been shown that the c-index is not a proper scoring rule

to evaluate t-year predicted risks.

3.4 Methods for covariate-specific time dependent ROC curve

The time-dependent ROC curve is useful in assessing the discriminatory ability of a

biomarker with survival data. When marker observations depend on a set of covari-

ate X, it is needed to take into account for these [8]. Therefore, the covariate-specific

time dependent ROC curve is of interest in this setting. It calibrates the marker respect

to the covariates. However, covariate adjustment is also necessary when the covariate is

associated with both the biomarker and the time-to-event. Following Janes and Pepe, we

define the pooled ROC curve which considers all the individuals regardless their covariates

values, and it quantifies the discrimination including the portion of discriminatory abil-

ity due to covariates. The covariate-specific ROC curve is evaluated in a sub-population

with fixed values of covariates. Moreover, the pooled ROC classifies individuals using a

common threshold which is independent of their covariate value. Whereas, the covarate-

specific ROC considers covariate-specific thresholds for classification. When a covariate

affects either the marker observations or the outcome, the pooled ROC curve is biased

respect to the covariate-specific ones [8]. The difference between the two curves reveals

the increased accuracy that can be achieved when covariate-specific thresholds are used.

The covariate-adjusted ROC curve (AROC(t)) is a covariate-adjusted summary of clas-

sification accuracy. It is the overall true positive rate at a specific FPR value, where

thresholds are covariate-specific. It describes the performance of the marker in a popu-

lation with a fixed covariate value. It can also be interpreted as a weighted average of

covariate-specific ROC curves with weights corresponding to the proportion of cases in

each covariate group:

AROC(t) =

∫
ROC(t|x)fX(x)dx = E[ROC(t|X)]

with the expectation taken with respect to X.

The main objective is to determine how well a marker can discriminate individuals.

When the marker depends on the covariates but the discriminatory ability is not impacted

by X, than the adjusted ROC curve is more of interest; meanwhile, when the covariates

affects both outcome and marker, the covariate-sepcific ROC curve is preferred since it

quantifies the discriminatory ability for subjects that are considered as having similar
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risk profiles based on X. However, if we want to compare several markers, the covariate-

adjusted ROC curve can be employed to have a summary measure of covariate-adjusted

accuracy.

We focus on the covariate-specific time dependent ROC curve because we think that

it is more relevant for the motivating example. The tumor stage represents the covariate

taken into account, and it affects both the biomarker (individuals with higher tumor

stage have larger number of CTCs) and the outcome (individuals with higher tumor

stage are likely to die before). In the next sections we introduce two methods available

to estimate covariate-specific ROC curve in presence of time-to-event data: i) a non

parametric method [56] based on the Inverse Censoring Probability Weighting method; ii)

a semiparametric method [9] based on the assumption of proportional hazards. The former

allows to adjust for discrete covariates, meanwhile the latter can also handle continuous

covariates. Other methods have been proposed [66, 67] but we refer to the references for

more details.

Note that the methods mentioned above do not refer to the clustered data settings.

In Section 3.5 we propose a new method, motivated by the IMENEO data set, to assess

the discriminatory accuracy of the biomarker estimating the covariate-specific ROC curve

and its AUC taking into account for the correlation between observations. We compare

the results to the ones obtained by the Song and Zhou method and the nonparametric

method by IPCW.

3.4.1 Inverse Probability Censoring Weighting

Uno et al. [56] introduced a nonparametric estimator for time-dependent ROC curve and

AUC by using Inverse Probability Censoring Weighting (IPCW). The cumulative/dynamic

definition was presented:

T̂PR
C

(t, y) =

N∑
j=1

∆jI(Yj > y, T̃j ≤ t)/ŜC(T̃j)

N∑
j=1

∆jI(T̃j ≤ t)/ŜC(T̃j)

F̂PR
D

(t, y) =

N∑
j=1

I(Yj > y, T̃j > t)

N∑
j=1

I(T̃j > t)

ŜC(T̃j) is the Kaplan-Meier estimator for the survival function of the censoring time.
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To estimate the covariate-specific time dependent ROC curve, when the covariate X

is categorical, it is possible to stratify over the covariate values. However, Le Borgne et

al [68] extended the IPCW method to account for covariates correcting the weights by

standardizing the marker according to the covariates among the controls.

An estimator of the AUC(t) is given by

ÂUC(t) =

N∑
i=1

N∑
j=1

I(T̃i ≤ t)I(T̃j > t)I(Yi > Yj)
∆i

ŜC(T̃i)ŜC(t)

N2Ŝ(t) (1− Ŝ(t))

The method is implemented in R in the package timeROC [69].

3.4.2 Semiparametric method

A semiparametric approach to estimate time-dependent ROC curves adjusting for covari-

ates [9]. The Cox proportional hazards model is considered to model the effect of covariates

on survival times and the biomarker depends on covariates through a semiparametric lo-

cation model. Estimates for cumulative/dynamic and incident/dynamic covariate-specific

ROC curves are proposed. The former is useful in distinguishing individuals experiencing

the event by a given time t and those experiencing it after t, while the latter discriminates

subjects experiencing the event at a given time t and those experiencing it after t.

Using some algebra we can rewrite the TPR and FPR as follows:

TPRC(t, y, x) =

∫∞
y

(1− S(t|z, x))P(Y = z|X = x)dz∫∞
−∞(1− S(t|z, x))P(Y = z|X = x)dz

TPRI(t, y, x) =

∫∞
y
f(t|z, x)P(Y = z|X = x)dz∫∞

−∞ f(t|z, x)P(Y = z|X = x)dz

FPRD(t, y, x) =

∫∞
y
S(t|z, x)P(Y = z|X = x)dz∫∞

−∞ S(t|z, x)P(Y = z|X = x)dz

where S(t|z, x) = P(T > t|Y = z,X = x) is the conditional survival distribution function

and f(t|z, x) = dS(t|z, x)/dt is the corresponding conditional survival density.

To estimate these quantities a proportional hazards model is considered:

α(t) = α0(t) exp(βY + γ
′
X)

where α0(·) is an unspecified baseline hazard function, and a semiparametric location
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model:

P (Y ≤ y|X) = H(y − ψ′
X)

H(·) is the unspecified biomarker distribution function which can be estimated by:

Ĥ(y; ψ̂) =
1

N

N∑
j=1

(Yj − ψ̂TXj ≤ y)

with ψ̂ obtained by solving
N∑
j=1

(Yj − ψ̂TXj)Xj = 0. The survival function is estimated by

maximizing the partial likelihood of the proportional hazards model. Thus the estimators

for TPRI , TPRC and FPRD are:

T̂PR
C

(t, y, x) =

N∑
j=1

(
1− Ŝ(t|Yj − ψ̂T (Xj − x), x)

)
I(Yj − ψ̂T (Xj − x) ≥ y)

N∑
j=1

(
1− Ŝ(t|Yj − ψ̂T (Xj − x), x)

)
T̂PR

I
(t, y, x) =

∑N
j=1 exp(β̂Yj − ψ̂T (Xj − x)) Ŝ(t|Yj − ψ̂T (Xj − x), x)I(Yj − ψ̂T (Xj − x) ≥ y)

N∑
j=1

exp(β̂Yj − ψ̂T (Xj − x)) Ŝ(t|Yj − ψ̂T (Xj − x), x)

F̂PR
D

(t, y, x) =

N∑
j=1

Ŝ(t|Yj − ψ̂T (Xj − x), x)I(Yj − ψ̂T (Xj − x) ≥ y)

N∑
j=1

Ŝ(t|Yj − ψ̂T (Xj − x), x)

The estimate for the covariate-specific time dependent ROC curve is straightforward.

The consistency of the estimators depends on the correct specification of the models but,

this method has the the advantage of simple computation. It is implemented in R in the

packages condtimeROC [66] and survAUC [70].

3.5 A covariate-specific ROC(t) curve for correlated survival

data

So far, characterization for different time-dependent ROC curve have been provided, to-

gether with the definition in the covariate-specific setting. However no precision has been

made on the estimation of the covariate-specific time dependent ROC curve and its AUC
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in presence of correlated survival data. In this chapter we propose a new method to

address this problem and we argue which quantities can be estimated and under which

assumptions. We compare the new method to the nonparametric one (IPCW) and we

discuss the interpretation of the estimates and their consistency under different scenarios.

3.5.1 Two marginal parameters

For each cluster k, let rk be the index of a randomly selected member of the observed

cluster. As discussed in the previous Chapter, in presence of clustered data two kind

of marginal parameters might be of interest to estimate [16] [15]. The first one has an

interpretation for the population of all observed members (aom), e.g. equal weights are

given to each member of the observed population. The second one has an interpretation

for the population of typical observed members of a typical cluster (tom), e.g. equal

weights are given to each observed cluster and subjects within each observed cluster have

equal weights. Considering the time-dependent true positive rate, we can define:

TPRaom(t, y) =
E[NkI(Yrk ≥ y)|Drk(t) = 1]

E[Nk|Drk(t) = 1]

TPRtom(t, y) = E[I(Yrk ≥ y)|Drk(t) = 1],

where TPRaom(t, y) corresponds to the probability for a random subject in the popula-

tion of all observed subjects. It provides information about the predictive accuracy of the

biomarker in the population of all the observed members of all the clusters. On the other

hand, the TPRtom(t, y) corresponds to the probability for a random subject belonging

to a random cluster. Similarly, we can distinguish the False Positive Rate (FPR), which

is the probability of the biomarker’s value being above the threshold y in the control

population (Drk(t) = 0):

FPRaom(t, y) =
E[NkI(Yrk ≥ y)|Drk(t) = 0]

E[Nk|Drk(t) = 0]

FPRtom(t, y) = E[I(Yrk ≥ y)|Drk(t) = 0]

In presence of clustered data, we can distinguish two settings depending on the associ-

ation between the cluster sample sizes and the outcome. Hoffman et al [13], Williamson et

al [15] and Benhin at al [17] define non informative cluster size (NICS) when P(Drk(t) =

1|Yrk = y,Nk) = P(Drk(t) = 1|Yrk = y), otherwise the cluster size is said to be informa-

42



tive (ICS). Interestingly, under NICS, when the biomarker does not depend on the cluster

size (Yrk ⊥⊥ Nk), the two parameters are equal (TPRtom(t, y) = TPRaom(t, y) ∀y), while

under ICS they differ in general (proof in the Appendix). Thus, for the interpretation of

results, it might be important to underline the quantity of interest.

Note that, under ICS, the TPRaom and FPRaom depend on the study design to collect

the data through the sample sizes Nk, k = 1, . . . , K. Therefore a challenge for the

interpretation arises when these sample sizes might not be representative of any underling,

well-defined, population of interest. In that case any conclusion based on TPRaom and

FPRaom and their estimates would be difficult to generalize to such population of interest,

from which random sampling would lead to different cluster sizes. For the IMENEO

data, as in most of meta-analysis, the sample size in each cluster is arbitrary and not

representative of any underlying well-defined population of interest. For instance, the

cluster sample sizes are not necessarily representative of the size of the population treated

in the hospitals. Hence, the estimates for the population of all members could be difficult

to generalize in case of ICS. However, in the motivating IMENEO data example there is

no reason to suspect ICS and an explanatory analysis did not suggest ICS (see Appendix).

In this chapter we assume NICS and we discuss more in details ICS in Chapter 4.

As assuming NICS implies TPRaom = TPRtom and FPRaom = FPRtom, we now

discard the subscripts aom/tom and we write:

TPR(t, y) = E[I(Ykj ≥ y)|Dkj(t) = 1] = P(Ykj ≥ y|Dkj(t) = 1) (3.1)

FPR(t, y) = E[I(Ykj ≥ y)|Dkj(t) = 0] = P(Ykj ≥ y|Dkj(t) = 0) (3.2)

We define the pooled time dependent ROC curve as the plot of TPR(t, y) and FPR(t, y)

for different thresholds y used to classify individuals at time t. The term pooled refers

to the fact that we marginalize over X, by contrast to the covariate-specific ROC curve

defined in the next section.

3.5.2 Definition of the method

In the assessment of the performance of a biomarker, the presence of a covariate associated

with both the outcome and the biomarker may lead to results that are challenging to

interpret and that can be misleading [8]. Recalling that Ykj represents the biomarker

value for individual j in cluster k and Xkj is a vector of covariates. Let Tkj, Ckj be the

failure time and censoring time respectively. We assume that Tkj and Ckj are independent

for all k, j and that in each cluster k (Tk1, Tk2, ..., TkNk
) can be correlated conditionally

on (Xk1, Xk2, ..., XkNk
). For this scenario we propose an estimator for the covariate-
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specific cumulative dynamic ROC curve, ROC(t, x) = {(FPR(t, y, x), TPR(t, y, x)), y ∈
V } where TPR(t, y, x) = P(Ykj ≥ y|Tkj ≤ t,Xkj = x) and FPR(t, y, x) = P(Ykj ≥
y|Tkj > t,Xkj = x) are the covariate-specific cumulative true positive rate and dynamic

false positive rate respectively.

In short, the pooled ROC(t) describes the accuracy of Y in classifying individuals

using a common threshold independent of the subject’s covariate values. By contrast,

the covariate-specific ROC curve describes the accuracy of Y in classifying subjects with

specific covariate values using covariate-specific thresholds. In other words, it naturally

quantifies how well the new biomarker discriminates between subjects that are considered

as having similar risk profiles based on the covariate X.

To estimate the covariate-specific time dependent ROC curve with clustered failure

times we extend the semiparametric method proposed by Song and Zhou[9]. Their ap-

proach assumes a proportional hazard model for the conditional distribution of T given

(Y,X) and a semiparametric location model for the conditional distribution of Y given

X. To accommodate clustered failure times the shared frailty model is used instead of the

proportional hazards model. The introduction of a random effect (frailty term) Uk ≥ 0

captures the correlation of within-clusters observations. The frailty can be thought as a

proxy for the unmeasured covariates which are common to all members of the same cluster

and associated to the time-to-event. For each cluster k, Ukj = Ukj′ ∀j, j′ = 1, .., Nk, i.e.

subjects belonging to the same cluster k have same random effect Uk.

We propose the following model : α(t|ykj, xkj, uk) = ukα0(t) exp(βykj + γ
′
xkj)

P(Ykj ≤ y|xkj) = H(y|xkj;ψ)
(3.3)

with the additional assumption Uk ⊥⊥ (Ykj, Xkj) ∀k, j.
Let H(·) be the conditional cumulative distribution function of the biomarker with ψ

vector of parameters. In the following sections we define H(·) as the cumulative distribu-

tion function of a negative binomial, as this distribution has been shown to be appropriate

for our motivating IMENEO data (see supplementary material of Bidard et al.[6]). Details

on the negative binomial distribution are provided in Appendix. Of note, an interaction

term can be further added to the survival model.

Seaman et al.[16] pointed out that in a general context of mixed models the assumption

Uk ⊥⊥ (Ykj, Xkj) implies Uk ⊥⊥ Nk and, under this assumption, the random effect model

provides a consistent estimator for the typical observed members interpretation. Since in

(3.3) Ykj is a covariate in the shared frailty model (mixed effect model), the assumption

44



Uk ⊥⊥ Ykj is needed. This is consistent with the usual case-mix setting [71], where the

cluster affects the outcome but it does not affect the biomarker’s value (as illustrated

in Figure 3.4). Considering an heterogeneous biomarker would require another approach

and it is beyond the scope of this work.

Using some algebra from (3.1) and (3.2), for a continuous biomarker, we obtain:

TPR(t, y, x) =

∫∞
y

(1− S(t|z, x))P(Yrk = z|Xrk = x)dz∫∞
−∞(1− S(t|z, x))P(Yrk = z|Xrk = x)dz

(3.4)

FPR(t, y, x) =

∫∞
y
S(t|z, x)P(Yrk = z|Xrk = x)dz∫∞

∞ S(t|z, x)P(Yrk = z|Xrk = x)dz
(3.5)

The conditional survival function S(t|z, x, u) = P(Trk > t|Xrk = x, Yrk = z, Uk =

u) is linked to the cumulative hazard function A(t|z, x, u) =
∫ t

0
α(s|z, x, u)ds through

S(t|z, x, u) = exp{−uA(t|z, x)}. The marginal survival function (relative to the random

effect) S(t|z, x) is obtained by integrating over the frailty:

S(t|z, x) =

∫ ∞
0

exp
{
− uk

∫ t

0

α(s|z, x)ds
}
fU(uk)duk =

∫ ∞
0

exp{−ukA(t|z, x)}fU(uk)duk

where fU denotes the density of Uk. We can rewrite it as S(t|z, x) = E[exp{−UkA(t|z, x)}] =

L(A(t|z, x)). For analytic reason, it is often preferred to consider a random effect with

distribution belonging to the natural exponential family (gamma, power variance, positive

stable and lognormal function) as the Laplace transform is easier to compute in this case.

The possible choices are discussed in details by Hougaard [4]. In our working example we

consider Uk ∼ Gamma(θ, δ) which is computationally easier since L(s) = (θδ)/(θ + s)δ,

with θ, δ > 0. In particular, for a shared frailty model we address the problem of iden-

tifiability by imposing the restriction E[Uk] = 1. Therefore, for the gamma distribution,

θ = δ and V ar(Uk) = 1/θ.

The likelihood of the data given X is L = LT |Y,X×LY |X , where LT |Y,X is the likelihood

of the failure times given Y and X and LY |X is the likelihood of the biomarker given X.

Here LT |Y,X is the following product over the clusters:

LT |Y,X(θ, β, γ, α0) =
K∏
k=1

Nk∏
j=1

∫ ∞
0

[ukα(tkj, ykj, xkj)]
∆kj×exp(−ukA(tkj, ykj, xkj))×fU(uk)du

Maximizing the marginal likelihood L is equivalent to maximizing the two likelihood

LT |Y,X and LY |X separately. The plug-in estimates of the time dependent covariate-specific

TPR and FPR are derived from the maximum likelihood estimation of the conditional
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hazard A(t|y, x) and the distribution function of the biomarker Y given X, by substituting

the corresponding estimates into equations (3.4) and (3.5). Methods based on maximum

likelihood and the EM-algorithm, as implemented in the R package frailtyEM [72], are

used to estimate the marginal hazard function and the frailty parameter.

Finally, the estimated time dependent covariate-specific ROC curve for population

with a fixed value of the covariate X = x is:

R̂OC(t, x) = {(F̂PR(t, y, x), T̂PR(t, y, x)), y ∈ V }

.

For a discrete biomarker the integral becomes a finite sum; e.g. the numerator of

T̂PR(t, y, x) becomes
∑
z≥y
{1− Ŝ(t|z, x)}P̂(Yrk = z|Xrk = x)

Moreover, from the R̂OC(t, x), we can estimate an overall measure of discrimination

up to time t with the covariate-specific time dependent Area Under the ROC Curve

(ÂUC(t, x)). It can be interpreted as the probability that a typical case of a typical

cluster has a higher biomarker value that of a typical control of a typical cluster. Typical

subject of a typical cluster means that a cluster is firstly randomly sampled and then a

subject of that cluster is randomly sampled.

Under NICS, we assume:

1. Tkj ⊥⊥ Tkj′ |Uk for all j 6= j′, that is, in each cluster k, the times Tkj, j = 1, . . . , Nk,

are correlated but they are independent conditionally on the frailty Uk,

2. Uk ⊥⊥ (Ykj, Xkj) for all j, which implies Ykj ⊥⊥ Nk

it can be shown that the AUC estimated by the proposed method is an unbiased

estimator of the discriminatory accuracy for the interpretation in terms of a typical ob-

served member of a typical cluster. At the same time, for the nonparametric estimator

of AUC based on IPCW [56], the weights are given at the member level, and it provides

the discriminatory ability for the interpretation with respect to the all observed members

population. For similar reason, as explained in [16], the nonparametric approach provides

a consistent estimator for AUCaom.

3.5.3 Bootstrap method

A parametric bootstrap method is implemented for the confidence interval of the covariate-

specific time dependent AUC. Given the original data set, we generate the bootstrap data

from the estimated parameters β̂, γ̂, ψ̂ and θ̂.
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Tkj

Uk
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Ykj

Figure 3.4: DAG for the case-mix assumption: the random effect Uk at the cluster level is
independent on the biomarker Ykj and covariate Xkj , but Uk affects the failure time Tkj .

For each bootstrap replication b = 1, ..., B:

1. we randomly sample, with replacement, K clusters sample sizes N
(b)
k among the K

clusters sample sizes of the original data. This step defines the sample size of the

bootstrap data set, which is N (b) =
K∑
k=1

N
(b)
k

2. we randomly generate K frailty terms U
(b)
k , k = 1, ..., K from the distribution Gamma(θ̂)

3. we randomly sample, with replacement, N (b) covariate valuesX
(b)
kj , j = 1, ..., N

(b)
k , k =

1, ..., K, from the values observed in the original data

4. we generate N (b) biomarker values Y
(b)
kj , j = 1, ..., N

(b)
k , k = 1, ..., K given X

(b)
kj from

the estimated conditional distribution H(·|X(b)
kj ; ψ̂)

5. for each cluster k = 1, ..., K, we generate the time-to-event T
(b)
kj , j = 1, ..., N

(b)
k , given

Y
(b)
kj , X

(b)
kj , U

(b)
k from the estimated cumulative distribution of Tkj|Ykj, Xkj, Uk:

F̂ (t|Y (b)
kj , X

(b)
kj , U

(b)
k ) = 1− exp(−U (b)

k Λ̂0(t) exp(β̂Y
(b)
kj + γ̂X

(b)
kj ))

We invert the cumulative distribution function and we obtain the failure times as

T
(b)
kj = F̂−1(Zkj|Y (b)

kj , X
(b)
kj , U

(b)
k ) with Zkj ∼ Unif(0, 1)

6. let ŜC(·) be the Kaplan-Meier estimator of the censoring distribution, estimated

from {(Tkj, 1 − ∆kj), k = 1, ..., K j = 1, ..., Nk}, we generate the censoring times

C
(b)
kj j = 1, ..., N

(b)
k , k = 1, ..., K by sampling, with replacement, among the censoring

times of the original data with probability equal to the jump of the Kaplan-Meier

estimator
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7. we compute ÂUC
(b)

(t, x) by applying the proposed method to the bootstrap data

set.

We compute the 95% percentile confidence interval of AUC(t,x) where the upper and

lower values are given respectively by the 2.5% and 97.5% quantiles of {ÂUC
(b)

(t, x), b =

1, ..., B}.
The regular bootstrap method cannot be employed for clustered data because it as-

sumes exchangeability between patients being resampled and than underestimates the

errors [73]. Xiao [74] proposed two alternative procedure to bootstrap clustered data: the

cluster bootstrap where clusters are resampled with replacement and then all patients of

the selected clusters are included; the two-step bootstrap which first samples clusters with

replacement and than resmaple with replacement observations in the cluster. The two-

step procedure considers between and within cluster variability and best represent real

life scenario, but in introduces too much variability and produces overestimated results

[73].

We consider a parametric cluster bootstrap approach which randomly samples with

replacement K clusters (with their sample sizes) having an overall sample size N (b). For

each resampled cluster the frailty term is generated from a Gamma distribution with

the estimated parameter θ̂. We assume an homogeneous biomarker and covariates across

clusters, thus we than resample, with replacement, N (b) covariates, independently on

the cluster and we generate the biomarker values from the estimated biomarker model.

For each resampled cluster, we generate the time-to-events and censoring time by their

estimated distributions.

3.5.4 Simulation study

We conducted a simulation study to assess the performance of the proposed method. We

mimicked the settings of the IMENEO data for the biomarker and covariate distribu-

tion. We generated a biomarker Y following a negative binomial distribution with set

of parameter ψ = (d, ξ) where d = 0.5 is the dispersion parameter and µX = 0.2 + ξX.

Here, X is a categorical covariate with 2 levels: P (X = 1) = 2
3

and P (X = 2) = 1
3
.

The failure times were generated from a frailty model, i.e from the conditional cumula-

tive distribution function P (T ≤ t|Y,X, U) = 1 − exp(−UA0(t) exp(βY + γX)) with

the frailty term U ∼ Gamma(θ = 1) and the cumulative baseline hazard function

A0(t) = stω(s = 6.31e−6, ω = 4.6). The censoring times were generated from an ex-

ponential distribution in order to reach 80% of censoring as in the motivating example.

We fixed β = 0.8, γ = 0.5 which define respectively the dependence on the failure times

48



0.7

0.8

0.9

t=30 t=55 t=70

 

target (t)

AUC

AUC_IPCW

AUC_SZ

Figure 3.5: Simulation results for 1000 replications with 100 clusters and 80% of censoring:
boxplot at different time points(t=30,55,70) for the estimated covariate-specific AUC(t|X = 2)
with the proposed method (AUC), the semiparametric method of Song and Zhou (AUCSZ) and
the nonparametric method (AUCIPCW). The dotted horizontal lines represent the true values
at each time.

of the biomarker Y and the covariate X. We set ξ = 0.4 to control the correlation between

Y and X. Since we do not allow the biomarker’s distribution to vary across center, we did

not introduce any dependence between the biomarker and the cluster. A total of 1000

data sets were drawn with 100 clusters of cluster’s sample sizes randomly chosen with

uniform distribution in the interval [10, 210] assuming NICS.

We compared the proposed method with the Song and Zhou’s approach and the non-

parametric method of Inverse Probability of Censoring Weighting (IPCW) [56]. Note

that, to estimate the covariate-specific ROC(t), a stratified analysis is necessary for the

IPCW method, while the full data set is used for the others approaches.

The Figure 3.5 summarizes the results of the simulation for the three methods at

time t = 30, 55, 70 with marginal probability of event P(T̃kj ≤ t) = 0.03, 0.21, 0.40 and

proportion of censored observations during the follow-up of 49.5%, 69.3%, 75.2% respec-

tively. Results of the three methods for all time are presented in the Appendix. The

proposed approach and the nonparametric one (IPCW) present negligible bias, but the

IPCW estimator shows larger variability at each time. The Song and Zhou’s method, on

the other hand, is biased in this setting of correlated failure times because of the viola-

tion of the hypothesis of proportionality of the marginal hazards. We further investigate
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Figure 3.6: Simulations results for 1000 replications with 100 clusters and 80% censoring under
ICS. Boxplot at different time points(t=30,55,70) for the estimated covariate-specific AUC(t|X =
2) with the proposed method (AUC) and the nonparametric method (AUCIPCW). The dotted
horizontal lines represent the true values at each time.

the variability of the two eligible methods in terms of bias. The clustered parametric

bootstrap method described above was implemented for the confidence intervals of the

AUCs’ estimates, and the nonparametric cluster bootstrap [75] for the ÂUCIPCW with

B=2000 resamplings. Table 3.2 presents the results at time t = 30, 55, 70 for the estimated

covariate-specific time dependent AUCs for X = 2. Bias and coverage probability are

illustrated. We observe small bias and rather good coverage probability for both methods,

but the ÂUCIPCW presents wider confidence interval (Lci) as compared to the proposed

estimator (ÂUCPM). The ÂUCIPCW is a consistent estimator of the discriminatory ac-

curacy of the biomarker in sense of the all observed members population (AUCaom). The

ÂUCPM is consistent in sense of the typical members population (AUCtom). As we pre-

viously underlined, under NICS AUCtom = AUCaom. This is in line with our simulation

results where both methods produce nearly unbiased estimators. Further results on the

estimated parameters are provided in the Appendix.

Moreover, we conducted a simulation study assuming informative cluster size. The

data were generated as above, with the difference that the sample size of cluster k is

defined considering the frailty term associated to k. In particular, we order the Uk and we

split them in 5 levels, clusters with Uk belonging to the same level have similar sample size,

and we assign smaller sample sizes to smaller values of frailty. Figure 3.6 confirms that,
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Figure 3.7: Simulations for a misspecified frailty distribution: data were generated with Uk ∼
[0, 10] and Uk ∼ χ2(2), and the covariate-specific AUC(t) was estimated by a shared gamma
frailty model. Results of bias at t = 30, 55, 70 are provided.

under ICS, the estimates for typical observed members and for all observed members differ.

Additionally, both approaches produce biased estimators, thus appropriate methods that

take into account ICS should be employed.

Furthermore, we were interested in illustrating the robustness of the method in case

of misspecification of the frailty distribution. The frailty is a latent variable, and the

definition of its distribution is a challenging point. We simulated data with Uk ∼ χ2(2) and

Uk ∼ U [0, 10] and estimated the survival function with a shared gamma frailty model. The

results show a limited impact on the consistency of the AUC estimator when Uk ∼ χ2(2).

Bias is detected in case of strong misspecification, when Uk ∼ U [0, 10] (Figure 3.7).

3.6 Application to breast cancer

We applied the proposed method to the IMENEO data. The goal was to evaluate the

capability of CTCs count measured at the time of diagnosis (baseline) to discriminate

patients who die prior a time t from those who survive up to time t. Data on CTCs

count at baseline of 1911 women were collected from 2005 to 2016 in 16 different centers,

conducting 21 trials. The detection of CTCs was performed by the CELLSEARCH System

(the only one FDA approved in 2014) in all the trials. We observed the death of 14%

of the patients, with failure times ranging from 0.2 to 9.7 years (median 30 months).
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t AUC Method Bias cp Lci

PM 1e-04 0.941 0.0330
30 0.8773

IPCW 6e-04 0.939 0.0816

PM 7e-04 0.928 0.0328
55 0.7544

IPCW 3e-04 0.934 0.0662

PM 8e-04 0.938 0.0295
70 0.7064

IPCW 5e-04 0.948 0.0663

Table 3.2: Simulation results of the proposed method (PM) and the nonparametric method
(IPCW) for 1000 replications with 100 cluster and β=0.8, d=0.5, ξ = 0.5. The estimators and
the respective bias are provided at t = 30, 55, 70; the coverage probability (CP) and the average
length of the bootstrap confidence intervals (Lci) are obtained with 2000 bootstrap samples.
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Figure 3.8: Covariate-specific time dependent ROC curves at t=30 months and time dependent
AUC of CTCs count at baseline adjusted for tumor stage. We provide the 95% confidence
interval at t=30 months.
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Figure 3.9: Covariate-specific time dependent AUC of CTCs count per tumor stage. We provide
the estimates obtained with the proposed method (black) and the nonparametric one (IPCW in
gray).

The clinicians were particularly interested in assessing the performance of CTCs counts

within each tumor stage group since patients with inflammatory tumor (T4d) have more

aggressive tumor and larger number of CTCs. In fact, the probability of death within 30

months is 0.06 (95% CI (0.05,0.07)) for patients with noninflammatory tumor and 0.19

(95% CI (0.15, 0.22)) for the group of patients with inflammatory tumor. As such, the

discriminatory capability irrespective of the tumor stage is not of clinical interest.

We estimated the covariate-specific time dependent ROC curves and AUCs for the

two groups using the proposed method. To assess the validity of these estimators we

checked the assumption of the model (3.3). We first tested for the homogeneity of the

failure times distribution implementing the Commenges-Andersen score test [76] with

Uk ∼ Gamma(θ). The null hypothesis H0 : V ar(Uk) = 0 was rejected with a p-value of

0.01, supporting the shared frailty model. Of note, this test can be employed with all

kind of distribution of the frailty. To check for the adequacy of the gamma distribution,

we compare the estimated marginal survival function by a shared frailty model with its

non parametric counter part (Kaplan-Meier estimator). This analysis did not indicate a
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suspicion of misspecification (see Appendix).

Next, we test for the homogeneity of the biomarker at the center level (U ⊥⊥ Y ). The

CTCs count did not appear heterogeneous in a subset of the IMENEO data of 15 centers

which will be our working data set (see supplementary material of Bidard et al.[6] for an

in depth study of the homogeneity of the CTCs).

We estimated the covariate-specific ROC(t, x) for subgroups of patients with same tu-

mor stage (inflammatory tumor/noninflammatory tumor). The estimated regression co-

efficients for the shared gamma frailty model were exp(β̂) = 1.067 and exp(γ̂) = 2.552; for

the biomarker model, using a negative bionomial regression, we estimated the dispersion

parameter d̂ = 0.091 and the regression coefficient ξ̂ = 0.966. In Figure 3.8, we provide

the estimation of ROC(t∗, x) at t∗=30 months and the time dependent AUC(t, x). The

biomarker showed an estimated AUC of 0.667 with 95% confidence interval (0.614, 0.710)

at 30 months after the diagnosis for patients with inflammatory tumor, and an estimated

AUC of 0.597 with confidence interval (0.557, 0.623) among noninflammatory tumor. The

confidence intervals of ÂUC(t, x) were computed via parametric bootstrap. Similar re-

sults were obtained when estimating the AUC by IPCW (Figure 3.9). At t∗ = 30 months

ÂUCIPCW = 0.603 with confidence interval (0.513, 0.693) among noninflammatory tumor

patients and an estimated AUC of 0.691 (0.567, 0.815) for patients with inflammatory

tumor.

3.7 Discussion

In this section we have proposed a method to determine how well a biomarker discriminate

patients in a context of clustered failure times. We have discussed which quantities can be

estimated and their interpretations. We have introduced an estimator for the covariate-

specific time dependent ROC curve which takes into account the dependence of failure

times between members of the same cluster. More specifically, we have extended the Song

and Zhou[9] approach assuming a shared frailty model instead of a proportional hazards

model for the hazard of failure. Our contribution was based on the cumulative dynamic

time dependent ROC curve and AUC. In many contexts, including that of our motivating

example, we believe that this definition is more clinically relevant than alternatives [11].

This is because at each time t, it illustrates the ability of a biomarker to discriminate

patients who experience a specific event in the time interval [0,t] from ones who do not

experience the event after the time t. Moreover, we assume a case-mix context where

the biomarker’s distribution does not change across clusters. This assumption is often

reasonable. In fact, it is coherent with the usual setting in meta-analysis for individual
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patients data when inclusion criteria are similar in all the trials and the measurement of

the biomarker is robust between trials.

When clustered data arises, two quantities for the performance of a biomarker can

be estimated: (i) for all observed members population which assesses the discriminatory

ability of the biomarker in the overall observed population, (ii) for typical observed mem-

bers population which assesses the discriminatory ability for a typical member in a typical

cluster of the observed population. The proposed method provides an estimator of the

covariate-specific ROC(t) for a typical member setting (ROCtom(t, x)). While, the non-

parametric method of IPCW provides an estimator of the covariate-specific ROC(t) in

the sense of all observed members population (ROCaom(t, x)).

Moreover, in this context of clustered data, two scenarios can be distinguished based on

the dependence of the outcome (Tkj) on the clusters sample sizes (Nk). Under informative

cluster sizes (ICS), the outcome depends on the cluster sample sizes and caution is required

in the interpretation of the estimated quantities since the observed population is generally

not representative of a well-defined population of interest. Several approaches have been

proposed to handle ICS in survival analysis [77, 12], we explore this issue in details in the

next chapter. However, The assumption of NICS was not straightforward. Initially, for

the simulation study we decided to generate the cluster sample sizes conditioned to the

frailty term, namely assuming informative cluster size. As result, the proposed method

provided unexpected biased results. We than wondered on the generation algorithm and

we found out about the problem of informative cluster size.

Under NICS the outcome is independent to the sample sizes and we proved that the

two quantities coincide (ROCaom(t, x) = ROCtom(t, x)). Therefore, our contribution was

also to point out that the nonparametric method is an other eligible method to assess

the performance of a biomarker in case of clustered survival data under NICS. In fact,

as highlighted within our simulation study, both the proposed estimator and the IPCW

estimator have negligible bias, in contrast to the semiparametric estimator obtained by

Song and Zhou, where the assumption of proportional hazards was violated. Note that

for the nonparametric method, the covariate-specific ROC(t) is obtained by stratification

on the covariate values. Thus, for the estimation of ROC(t, x), it is required to have

enough data in each strata X = x. With a discrete covariate, we recommend to employ

the nonparametric method since no assumption is needed either on the biomarker nor

on the frailty distribution. However, the proposed method displays narrower confidence

interval and can address the problem of correlated censored survival data adjusting on

both continuous and discrete covariates.

We have considered a parametric model for the biomarker distribution but the ap-

55



proach can accommodate other models. Motivated by the CTCs count and its particular

distribution, we have employed a parametric model to estimate the conditional distri-

bution of Y given X, instead of the semi parametric location model used by Song and

Zhou. We agree that a more flexible model could make the method more versatile, but

we also think that a reasonable model check will generally prevent significant bias. For

completeness, we further provide the code which implements the direct extension of the

Song and Zhou method with a location model for the biomarker in the supplementary

material.

The method is first presented for an arbitrary frailty distribution, but the gamma dis-

tribution is then used in both the application and the simulation study. In the application,

we performed one ad hoc analysis to check for the adequacy of the gamma distribution.

It is a graphical approach which compares the estimated marginal survival function with

the Kaplan-Meier curve and it did not raise suspicion of misspecification. We illustrated

the impact of the frailty’s misspecification on the estimation of the AUC in the simulation

section. The results suggest that the choice of the frailty might have a limited effect on

the AUC but, in case of strong misspecification, the method provide biased estimators.

The choice of the frailty distribution is a challenging topic. The various possibilities are

discussed in [10]. Several approaches have been proposed to check the gamma distribution

assumption [44, 43, 45]. We refer to these papers for details on related model checking

aspects.

The usefulness of the proposed method was illustrated in our application on non

metastatic breast cancer where data are characterized by heterogeneity of failure times

and homogeneity of biomarker’s distribution among centers (case-mix setting). The dis-

criminatory ability of CTCs count was assessed for patients with inflammatory tumor and

noninflammatory tumor estimating the covariate-specific time dependent AUC. The im-

plementation in R of the proposed method is provided at https://github.com/AMeddis/

AUCtime.
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Chapter 4

Informative cluster size

4.1 Introduction

Several methods have been proposed to handle clustered data, such as frailty model or

marginal models, but they assume that the outcome is unrelated to the clusters sample

sizes. This assumption is not always satisfied, and in this case, the cluster size is said

to be informative. For instance, the time to tooth loss in one individual is of interest.

Subjects with a dental disease may already have lost some teeth due to the disease. Thus,

time to loss in one individual (cluster) is linked to the number of teeth (cluster sizes) of

the same. An other example can be found in studies of men with lymphatic filariasis,

which is characterized by one or more nests of adult filarial worms in the scrotum [12].

Ideally, effective treatment would kill the worms in all of the nests. The nest-specific time

to clearance the worm is longer in men with multiple nests than in men with one nest.

Under informative cluster size (ICS), the standard statistical methods produce biased

results, since the estimates will be over-weighted in favor of bigger clusters. Various

approaches have been introduced to take into account for ICS: Hoffman [77] proposed

the within-cluster resampling method where multiple independent data sets are created

randomly sampling one observation from each cluster, with replacement; Williamson [15]

considered a GEE method inversely weighted by clusters sample sizes. Cong et al [14] in-

vestigated the WCR method for clustered survival data with ICS analyzing the resampled

data sets using a Cox model. They also generalize the marginal models by incorporating

the inverse of cluster sizes as weights into the score function. Williamson et al[12] explored

the estimation of the marginal distribution for multivariate survival data with informative

cluster size using cluster-weighted Weibull and Cox models. For all these methods, they

rely on the assumption of ICS, without testing it in the application study. It is possible

to check for ICS comparing the marginal distributions between strata defined by cluster
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size. This is an ad-hoc approach, but our scope is to provide a more general method to

test for ICS for right censored survival data. Benhin [78] employed a Wald-type test for

ignorability of cluster size in the estimating equations framework for linear and logistic

regression models. Nevalainen [18] proposed a test for ICS using a balanced bootstrap

to estimate the null distribution. To our knowledge, no other test for clustered survival

data is available. We propose a method to test for ICS considering the Nelson-Aalen esti-

mator for the cumulative hazard function for the two target population. The asymptotic

distribution of the test statistic is obtained using standard martingale results.

The chapter is organized as follows. In Section 4.2, we illustrate the problem of ICS

and we provide some more in deep description for possible target populations in clustered

data. We briefly mention the method that can be employed to handle informative cluster

size and we describe the tests previously proposed for iCS in linear regression model. In

Section 4.3 we describe a new method to test for ICS in right censored survival data and

we provide the asymptotic distribution. Simulation studies were conducted to assess the

power of the test. In Section 4.4, we illustrate the usefulness of the method by several

applications. We provide some discussion in Section 4.5.

4.2 Informative cluster size

A challenging problem of clustered data which is often ignored is the possibility of infor-

mative cluster size (ICS). In this setting, the outcome of interest is related to the clusters

sample sizes. Examples of informative cluster size can be found in volume-outcome stud-

ies, where surgeons treating a larger number of patients may have better outcomes. The

typical example of ICS is in periodontal studies [15] where the number of teeth affects

the prognosis of patients. More examples on toxicity with longitudinal data on litters

born can be provided [12]. The reasons of ICS are usually unknown because some latent

variable could affect the baseline hazard for each cluster. The variability of sample size,

which is now a random variable, can also be due to missing data, thus observed clusters

are incomplete [79]. In this case, if the association between outcomes and covariates in

complete cluster is of interest, than assumption about missing data need to be made. In

this work, we do not focus on this particular context. We assume that either there are no

missing data or that we want to do inference on the observed members.

Hoffman et al [13] defined informative cluster size any violation of the condition

P(Tkj ≤ t|Nk = n) = P(Tkj ≤ t) ∀n, therefore the distribution of failure times is in-

dependent on the cluster sample sizes. Chen et al [80] defined ICS when the mechanism

that generate cluster size is not independent on the mechanism that generates the out-
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come. Standard approaches, marginal models and random effect models, provide biased

results in presence of ICS because they fail to account for the information carried by the

cluster sizes. For marginal models the individuals equally contribute to the likelihood and

larger cluster are overweighted, meanwhile in random effect models, the random effect is

linked to the the mechanism of cluster sizes which is ignored. For correlated survival

data, this issue is even more complicated because of censoring and the unknown hazard

function.

Furthermore, adjusting for the cluster sample size in the model including Nk as a

covariate is not appropriate. Firstly, introducing Nk in the model we will have information

on the outcome conditional on the cluster sample sizes. We are not interested in the effect

of Nk, but we want to take into account its information within the inference model to have

unbiased results. Nonetheless, the sample size may be a mediator in the causal pathway

from the covariates X and the outcome T . Additionally, if there is a latent variable

that affects both sample size and outcome, introducing Nk as a covariate may produce

collider-stratification bias.

An important point is that when ICS is absent, methods that unnecessarily allow

for ICS lead to substantial loss of efficiency [81]. Thus, the analyst should first test the

assumption of ICS and than decide the method to choose. Furthermore, as introduced in

Chapter 2, two target population can be defined. One makes inference for the population

of all observed members (AOM), and the second one, makes inference for the population

of typical observed members of a typical cluster (TOM). For each cluster k, let rk be the

index of a randomly selected member of the observed cluster. As in Seaman [16] we define

eAOM =
E[NkTrk |Nrk ≥ 1]

E[Nrk |Nrk ≥ 1]

eTOM = E[Trk |Nrk ≥ 1].

Under non informative cluster size (NICS) the two marginal analyses coincide eAOM =

eTOM , while they differ under ICS. Thus, it is important to detect if cluster sample

size is informative for inference because the parameters of interest are not the same for

alternative target populations under ICS and their estimation needs correctly specified

estimators. We will rely on this property to construct the test described in the next

section.
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4.2.1 Methods for clustered data with Informative Cluster Size

Many methods, marginal models and random effect models, have been extended to address

the problem of ICS. Hoffman [13] proposed the within-cluster resampling (WCR) method

where a series of data sets are constructed by randomly sampling one observation from

each cluster. The resulting resampled data sets can be analysed by any marginal analysis

since the observations are independent. The parameters obtained by the resampled data

are then averaged. A variation of this method was described by Chiang and Lee [82]

where m members are sampled in each cluster, with m the minimum sample size (m > 1),

and the GEE are then employed with realistic working correlation to each resampled data

set. Williamson [15] introduced a weighted GEE method with an independence working

correlation matrix, where the weights are the inverse of the cluster sample sizes. This is

asymptotically equivalent to the WCR method. Benhin [17] discussed mean estimating

equation approach to handle ICS. Huang and Leroux [83] proposed double weighted GEE

with categorical covariates, where the member is inversely weighted by the total number

of member in the same cluster with X = x. Alternatively, Chen et al. [80] proposed a

joint model approach with random effect model for the outcome and the link between

outcome and cluster size models is established by a shared random effect. Neuhaus and

McCulloch [84] address the analysis of informative cluster size data from a cluster-specific

approach through the use of generalized linear mixed models. They demonstrate that

maximum likelihood method that ignores informative cluster sizes exhibits little bias in

estimating covariate effects that are uncorrelated with the random effects associated with

cluster sizes. Alternatively, estimates of covariate effects may be biased if the covariate

effects are associated with the random effects.

Cong et al. [14] investigated WCR for correlated survival data and they generalize

the marginal models introducing the inverse of cluster sample sizes as weights into the

score function. The WCR method is computationally intensive and also, since it considers

one member in each cluster, the estimated parameters from a simple resampling might

be unstable under heavy censoring. Furthermore, Williamson [12] introduced a cluster

weighted Weibull and Cox proportional hazard model to estimate marginal distribution

incorporating cluster size weighting to the independence working models. More in general,

for correlated survival data, Datta et al [85, 86] generalized a runk-sum and signed-

rank test to account for ICS . Fen and Datta [87] used inverse cluster size weighting in

accelerated failure times models.

Marginal models are more attractive because no assumptions are made on the correla-

tion between outcome and cluster sample size, but they can be less efficient than random

effect model. The last should be used if the correlation between Y and Nk is of interest
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but random effect models are subjected to missspecifications.

4.2.2 Existing test for ICS

So far, we discussed the importance of taking into account informative cluster size and we

briefly described some methods that can be used in this setting. However, the assumption

of ICS(NICS) has to be verified since methods that consider ICS when it is not needed

may lead to a loss of efficiency [81, 17]. An empirical method, ad-hoc approach, consists

in the plot of the marginal distribution between strata defined by cluster size (Figure

A.2). In this example, we provide the Kaplan-Meier estimator of the survival function at

t = 30 for each cluster sample size. In the IMENEO study, the analysis suggests NICS

because no trend of survival can be identified at varying of the sample size.

Benhin et al. (2005) [17] employed a test for ICS in the estimating equations framework

for linear regression model. A Wald-test on the difference of the estimated coefficient from

independence and mean estimating equation is considered. Nevalainen et al (2017) [18]

introduced a test for the presence of ICS using a novel bootstrap method to estimate the

test statistic distribution. The null hypothesis of the test is that the marginal distribution

does not depend on the cluster size. Let Ykj be the outcome value for individual j in cluster

k, the test statistic is defined as TF = supy |F̂ (y)− F̃ (y)| with

F̂ (y) =
1

N

K∑
k=1

Nk∑
j=1

(Ykj ≤ y)

F̃ (y) =
1

k

K∑
k=1

1

Nk

Nk∑
j=1

(Ykj ≤ y)

Under ICS the two estimators are consistent of the same population cumulative dis-

tribution function. An approximation for the test statistic distribution is obtained by a

bootstrap procedure where K clusters are sampled from the data set obtained by per-

muting members within each cluster. At each bootstrap, a matching method based on

the definition of distance between clusters is considered to preserve the cluster sample

sizes. Given B bootstrap data sets, the null distribution is approximated by the obtained

test statistic T
(1)
F , ..., T

(B)
F and the p value is computed as (1/B)

∑
b(T

(b)
F ≥ TF ). Other

versions of the statistics grouping the cluster by sample sizes are presented and extensions

to the regression setting (GLM) using the model residuals are considered.

The Nevaleinen test is computationally intensive because of the bootstrap procedure,

especially since, for the matching, the distance has to be computed at each resampling.

Both the methods can be extended to the survival data, but no formal test has been
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presented in the context of correlated survival data. In the next section, we propose

a novel test for ICS with right censoring clustered survival data where the asymptotic

distribution is theoretically obtained by using martingale theory.

4.3 Test for ICS with survival data

In this section we propose a new method to test for ICS with right censored survival

data. The definition of the test and the asymptotic distribution for the test statistics are

provided. In Section 3 we describe the simulation study conducted to determine the power

of the test for different scenarios. In Section 4 some illustrative examples are described

in different contexts and some conclusions are made in Section 5.

4.3.1 Definition of the test

Let T̃kj be the observed failure time for individual j in cluster k with sample size Nk and a

maximum number of cluster K such that N =
K∑
k=1

Nk. The quantity Nkj(t) =
∑
k

I(T̃kj ≤

t,∆kj = 1) is the counting process at time t, with intensity λkj(t) = αkj(t)Ykj(t), where

Ykj(t) = I(T̃ik ≥ t) represents the at-risk process. The quantity Mkj(t) = Nkj(t)− Λkj(t)

is not a martingale with respect to the joint filtration generated by all the times, because

of the correlation within clusters. It is a martingale with respect to filtration Fkj(t) =

σ{Nkj(u), Ykj(u) : 0 ≤ u ≤ t). We extend the definition of the Nelson-Aalen estimator for

the two marginal analyses:

Âtom(t) =

∫ t

0

dNtom(s)

Ytom(s)

Âaom(t) =

∫ t

0

dNaom(s)

Yaom(s)

Âtom(t) estimates the number of events for a typical observed member and Âaom(t)

estimates the number of events in the sense of all observed member populations. In fact,

the weighted counting process and at risk process are defined as:

Ntom(t) =
1

K

∑
k

1

Nk

∑
j

Nkj(t)

Ytom(t) =
1

K

∑
k

1

Nk

∑
j

Ykj(t)
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where units within cluster are equally weighted by the inverse of the cluster sample size,

and

Naom(t) =
1

N

∑
k

∑
j

Nkj(t)

Yaom(t) =
1

N

∑
k

∑
j

Ykj(t)

where equal weights are given to each unit, regardless the cluster they belong to. Ying

and Wei [88] stated that even though data are clustered and observations are dependent

in each cluster, the above estimators are consistent estimators for the cumulative hazard

functions.

To define the null hypothesis of the test, we rely on the fact that under NICS the two

marginal analyses coincide:

H0 : αtom(t) = αaom(t) ∀t ∈ [0, τ ]

H1 : αtom(t) 6= αaom(t) in t∗ ∈ [0, τ ]

The test statistic

Z(τ) =

∫ T

0

L(t)(dÂtom − dÂaom)

with L(t) = Yaom(t)Ytom(t)
K

. Under the null hypothesis Z(τ)/
√
K is asymptotically equiv-

alent to a Gaussian with mean 0 and covariance matrix V.

4.3.2 Asymptotic distribution

We obtain the asymptotic distribution of the test statistic under the null hypothesis of

NICS.

By definition of dÂ.:

Z(τ) =

∫ T

0

L(t)
(dNtom(t)

Ytom(t)
− dNaom(t)

Yaom(t)

)
where dNh(t) = dMh(t) + αh(t)Yh(t)
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therefore

Z(τ) =

∫ τ

0

L(t)
(dMtom(t) + αtom(t)Ytom(t)

Ytom(t)

)
−
(dMaom(t) + αaom(t)Yaom(t)

Yaom(t)

)
=

∫ τ

0

L(T )
(dMtom(t)

Ytom(t)
− dMaom(t)

Yaom(t)

)
+

∫ τ

0

L(t)
(
αtom(t)− αaom(t)

)
dt

Under the null hypothesis αtom(t) = αaom(t) ∀t ∈ [0, τ ] and by definition of Nh(t),

dMtom(t) =
∑
k

1
Nk

∑
j

dMkj(t) and dMaom(t) =
∑
k

∑
j

dMkj(t).

We specify L(t) = Yaom(t)Ytom(t)
K

, and we obtain:

Z(τ) =

∫ τ

0

L(t)

Ytom(t)

∑
k

1

Nk

∑
j

dMkj(t)−
∫ τ

0

L(t)

Yaom(t)

∑
k

∑
j

dMkj(t)

=

∫ τ

0

Yaom(t)

K

∑
k

1

Nk

∑
j

dMkj(t)−
∫ τ

0

Ytom(t)

K

∑
k

∑
j

dMkj(t)

Because Nk’s are bounded we can interchange sums and integral:

Z(τ) =
∑
k

1

Nk

∑
j

∫ τ

0

Yaom(t)

K
dMkj(t) −

∑
k

∑
j

∫ τ

0

Ytom(t)

K
dMkj(t)

=
∑
k

1

Nk

∫ τ

0

Yaom(t)

K
dMk(t) −

∑
k

∫ τ

0

Ytom(t)

K
dMk(t)

where Mk(t) =
Nk∑
j

Mkj(t). Thus, the statistic can be rewritten as

Z(τ)
1√
K

=
1√
K

∑
k

∫ τ

0

(Yaom(t)

NkK
− Ytom(t)

K

)
dMk(t)

The quantity 1√
K

∑
kMik(t) converges weakly to a Gaussian process UZ(t) [88]. Define

yaom(t), ytom(t) such that for N → ∞ Yaom/NkK → yaom(t) and Ytom/K → ytom(t), the

quantity
∫ τ

0
|Yaom(t)
NkK

− Ytom(t)
K
| is bounded away from infinity in N , and as in [89]

Z(τ)
1√
K

=
1√
K

∑
k

∫ τ

0

( Yaom
NkK

− Ytom
K

)
dMk(t)

and

Z∗(τ)
1√
K

=
1√
K

∑
k

∫ τ

0

(
yaom(t)− ytom(t)

)
dMk(t)

converge almost surely to the same limit
∫ τ

0
(yaom(t)− ytom(t))dUZ(t) and the statistic is
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Figure 4.1: Power of the test at varying of the correlation ρ for both scenarios considering
different values of θ, γ and censoring. Each framework is based on 1000 replications, fixing
α = 0.05. Scenario A: highly clustered data (K = 100, λ = 5), scenario B: few big clusters
(K = 25, λ = 20).

asymptotically equivalent to a Gaussian with mean 0 and covariance matrix V which is

asymptotically equivalent to V ∗ = 1
K

∑
k

∑
j

∑
j′ εkjεkj′

with εkj =
∫ τ

0
ωk(t)dMkj(t) where ωk(t) = (yaom(t) − ytom(t)). We can estimate the

covariance with

ε̂kj = ∆kjω̂k(Tkj)−
∑
i

∑
l

∆liω̂k(Tli)Ykj(Tli)∑
m

∑
f Ymf (Tli)

, ω̂k =
(Yaom(t)

KNk

− Ytom(t)

K

)
4.3.3 Simulation Study

We conducted a simulation study to assess the performance of the test for a fixed I

type error of 5% also evaluating the power of the test under different scenarios. The

correlated failure times were generated from a frailty model, i.e from the conditional
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Sample Size 0% censoring 30% censoring

N K λ γ θ ρ = 0 K λ γ θ ρ = 0

100 5 40 10 0.020 100 5 40 10 0.043
100 5 20 5 0.057 100 5 20 5 0.0561500
100 5 20 10 0.060 100 5 20 10 0.049
50 5 20 10 0.049 50 5 20 10 0.047

100 2 20 10 0.056 100 2 20 10 0.052
50 5 20 5 0.045 50 5 20 5 0.041

700

100 2 20 5 0.055 100 2 20 5 0.048

Table 4.1: Scenario A: highly clustered data. Nominal power of the test for 1000 replications
(power under NICS, ρ = 0).

cumulative distribution function P (T ≤ t|Uk) = 1 − exp(−UkA0(t)) with the frailty

term Uk ∼ Gamma(θ) and the cumulative baseline hazard function A0(t) = stω(s =

6.31e−6, ω = 4.6). To obtain informative cluster size, we generate K clusters with sample

size Nk ∼ Pois(λ exp(Vk)) where λ, common between clusters, represents the expected

number of observations in each cluster and Vk defines the cluster-specific sample size. To

create the dependence between the sample size Nk and the failure times Tkj, we generate

(Uk, Vk) from a multivariate Gamma with unit mean and covariance matrix

Σ =

(
σ2
U ρσV σU

ρσV σU σ2
V

)

The variance σ2
U = 1/θ defines the variability of time-to-event among clusters. The

variance σ2
V = 1/γ represents the variability between clusters sample sizes. The parameter

ρ ∈ [0, 1] is the correlation between the two random effects, and thus it defines the

dependence between Tik and Nk, when ρ = 0 there is NICS. The strength of ICS depends

on θ, ρ, γ: it decreases with larger values of θ, since the difference in time-to-event across

clusters decreases. With larger values of γ, the range of cluster sample sizes is more

narrow and, for fixed θ, it translates in higher ICS.

Let us consider two parameters γa and γb, and for each γ. value, we examine two

clusters with sample sizes n.1, n
.
2 and the respective mean time of event T n.

1
, T n.

2
. For

γb < γa, to T n1 , T n2 will correspond the sample sizes nb1, n
b
2, with nb1 > na1 and nb2 < na2.

Therefore, with increasing γ, for a fixed difference in sample sizes |n.1−n.2|, the difference

in failure times |T n.
1
− T n.

2
| is larger (see Appendix). When γ increases, the variability

decreases and so does ICS. Therefore, there is a trade-off between variability of clusters

sample sizes and the magnitude of difference in time-to-event, which also depends on θ.
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Figure 4.2: Power of the test at varying of the correlation ρ for both scenarios considering
different values of K,λ and censoring. Each framework is based on 1000 replications, fixing
α = 0.05.
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Sample Size 0% censoring 30% censoring

N K λ γ θ ρ = 0 K λ γ θ ρ = 0

25 20 10 10 0.057 25 20 10 10 0.052
25 20 3 5 0.059 25 20 3 5 0.0531500
25 20 3 10 0.052 25 20 3 10 0.045
10 20 3 10 0.066 10 20 3 10 0.064

25 8 3 10 0.069 25 8 3 10 0.056
10 20 3 5 0.067 10 20 3 5 0.058

700

25 8 3 5 0.065 25 8 3 5 0.059

Table 4.2: Scenario B: few big clusters. Nominal power of the test for 1000 replications (power
under NICS, ρ = 0).

We simulate two settings: a) highly clustered data with K = 100, λ = 5, γ = 3 and b)

few big clusters with K = 25, λ = 20, γ = 20 (e.g., in meta-analysis). For both scenarios,

the overall sample size N = 1500. We let θ, γ vary to determine the behaviour of the test

in different frameworks. Moreover, we decrease the overall sample size N either varying the

number of cluster (K=50, K=10) or the clusters sample sizes (λ = 2, λ = 8). We generate

1000 replications for each combination of parameters and we consider both uncensored and

30% right censoring (uniform distribution). In Figure 4.1 we provide the empirical power

of the test at varying of the correlation ρ. The simulations suggested a good performance

of the test reaching a power of 80% in most scenarios. The results confirmed that θ is

inversely proportional to ICS, showing higher power for θ = 5. A decrease in the sample

size (N=700) does not seem to result in a worse performance overall (Figure 4.2). In case

of λ = 2 a lower θ is needed to detect ICS since the clusters sample sizes are smaller

and the the between-clusters variability is not enough strong. However, for K = 10, even

decreasing θ, low power is detected, thus a sufficient number of clusters is necessary for

the validity of the test. This result was expected, since the asymptotic distribution is

valid for K →∞. Simulations results also suggested that censoring is not degrading the

performance of the test. The nominal level of the test (power under NICS) for scenario

A and B are provided in Table 4.1 and 4.2 respectively.

4.4 Application

In this section we apply the test for ICS in different settings. Note that we are not

interested in the analysis of the data, but this is in support to the theoretical findings and

simulations.
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4.4.1 IMENEO data set

Individual patient data meta-analysis in breast cancer to validate the performance of the

circulating tumor cell counts as biomarker for overall survival. A total of 1911 patients

with non metastatic breast cancer are collected in 16 centers and 21 studies. These are

treated by neoadjuvant chemotherapy and the number of CTCs measured at baseline is

considered. The 14% of the patients die with a median failure time of 30 months ranging

from 0.2 to 9.7 years. In Chapter 3 we applied the proposed method to estimate the

covariate-specific time dependent ROC curve for the CTCs. The method assumed NICS

and the Kaplan-Meier estimator at different cluster sample sizes was plotted to check for

this assumption A.2. The test confirmed NICS with a test statistic of -0.48 (pvalue=0.67).

4.4.2 Dental data

We consider data of patients treated at the Creighton University School of Dentistry

from August 2007 to March 2013. A total of 5336 patients with periodontal disease were

collected with a total of 65228 teeth. We excluded from the analysis individuals with only

one tooth resulting in a sample size of 65034. The average age was 58 years, with 51%

women, 9% had Diabetes Mellitus, and 23% were smokers. The number of tooth that fall

is 4334 with a median tooth loss time of 0.556 [0.003, 5.594] years.

The data are available in the MST package in R as Teeth [90]. The principal aim of

the analysis was to construct multivariate survival trees to predict tooth loss. Several

teeth and individual characteristics are also provided in the data set but we do not take

them into consideration. We are interested in performing the proposed test to check for

informative cluster size on the time-to-loss of each tooth. We would suspect ICS because

the number of teeth (cluster size) in each individual (cluster) is linked to the disease and

thus, a tooth is more likely to fall in one individual with smaller cluster size. The test

confirms a strong ICS with a test statistic of 8.932 (pvalue=0). Figure 4.3 indicates as well

ICS. The estimator of the survival function at the median time for each cluster sample

size are illustrated: the tooth loss time is longer in individuals with more teeth (bigger

cluster size).

4.4.3 Multicentric data

We consider a multicentric study of patients with liver disease primary biliary cirrhosis

(PBC). It is a randomized clinical trial conducted in six European hospitals between 1983

and 1987. A total of 349 patients were randomized to either treatment with Cyclosporin A

( 176 patients) or placebo (173 patients). The effect of treatment on the survival time was
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Figure 4.3: Estimated survival function at time t = 0.556 at changes of cluster sample size.

the primary outcome of interest. Successively, because of an increment success of liver

transplantation for patients with this disease made, the composite outcome “failure of

medical treatment” was considered. It was defined as either death or liver transplantation.

Data are characterised by 75% of censoring where 61 patients died with a median time of

21 [0.8, 62] months and 29 had liver transplantation with a median time of 23 [3.27, 48]

months.

The data are provided in the pec package in R as Pbc3 [91]. We employed the pro-

posed test that detected slight informative cluster size with a test statistic equal to −1.98

(pvalue=0.04). We observed longer time-to-event in smaller clusters (Figure 4.4). There

is not a strong difference between the estimated survival for successive sample sizes, but

a clear difference is illustrated between small and big clusters.

4.4.4 Cancer data: Immunotherapy

Immunotherapy is a type of cancer treatment that helps the immune system fight cancer.

This type of treatment has become widely used in the last few decades. However, it is

more effective for some types of cancer than for others. It is used by itself for some of these

cancers, but for others it seems to work better when used with other types of treatment.

We consider a data set of 100 patients with metastatic cancer treated by immunotherapy

at the Institute Curie in Paris. The metastasis are evaluated singularly in each subject
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Figure 4.4: Estimated survival function at time t = 21 months for different cluster sample sizes.

since the treatment may have different effect on each of it. A total of 272 metastases

are examined and each individual has from 2 to 4 metastases (subjects with more than 5

metastases were not included in the study). The primary cancer was of different nature:

breast cancer, head neck cancer, lung cancer, urological cancer and others. The principal

objective of the study was to have some insight on dissociate response that are typical of

immunotherapy, notably in the same individual, the response to treatment might be of

different nature among metastases.

The individual represents the cluster and the number of metastases is the cluster

sample size. The outcome of interest is the time to progression which depends on the

tumor growth. Intuitively, the number of metastasis should affect the outcome. However,

this idea was not confirmed by the test that did not reject the null hypothesis of NICS

with a test statistic of −0.85 (pvalue=0.39). This illustrative example shows a limitation

of the proposed test when the cluster sample sizes are small and similar and the number of

clusters is not sufficient to detect ICS. We agree that if we could follow an higher number

of metastases in each individual or more individuals, we would have had different results.

In fact, as shown in Figure 4.5, there is an impact of the cluster size on the survival

function for metastasis disease progression.
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Figure 4.5: Estimated survival function for different number of metastases.

4.5 Discussion

In presence of clustered data, standard statistical methods implicitly assume that the size

of the clusters is unrelated to the outcome of interest. This assumption is not always

verified and we define the cluster size to be informative. Several approaches have been

proposed to handle the issue of ICS with survival clustered data, but, to our knowledge,

no test has been introduced to explore ICS. Standard methods for clustered data analysis

may result biased estimates with ICS, and ICS methods can lead to a loss of efficiency

with NICS [78]. In this work, we propose a test for the assumption of NICS with right

censored survival data. The test statistic relies on the fact that under NICS the two

marginal analyses for typical observed member and all observed member coincide. The

asymptotic distribution of the statistic under the null hypothesis is provided. A simulation

study for different settings of clustered data shows a good performance of the test with

an estimated power being greater than 80% and a nominal power around 5%. Censoring

does not seem to affect the performance of the test, but simulations results suggest that

a sufficient number of cluster K is needed.

In section 2 we mention that the variability in sample sizes can be a result of missing

data. Hoffman [77] and Williamson [15] vaguely stated that missing completely at random

(MCAR) mechanism is equivalent to non-informative cluster size. Pavlou [79] associated

NICS to missing data mechanism, of which MCAR is special case, and they proved the
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equality of results for the target populations in three cases (tom,aom,missing data). In

our work, we assume that the observed clusters are complete, and thus uninformative and

independent censoring, discarding the problem of missing data.

No covariate X is introduced in the test. In this case, the definition of NICS can be

extended to P(Tik ≤ t|Xik, Nk = n) = P(Tik ≤ t|Xik) ∀n and the Breslow estimator

can be employed instead of the Neslon-Aalen estimator. However, we believe that if

the outcome is related to cluster sample sizes, conditionally on the covariate, and not

marginally, than the covariates might be size-unbalanced (their distribution is dependent

of the cluster sizes) and informative covariate structure may arise. This could be an

interesting point for future work and possible extensions of the proposed method.

A test for ICS has been already proposed for clustered data by a balanced bootstrap

method, since the distribution of the statistic under the null is analytically intractable

[18]. An adaptation of this method to survival data could be an other proposition to

check for ICS, but it is characterized by high computational cost.
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Chapter 5

IPD meta-analysis with competing

endpoints

5.1 Introduction

Competing risks data are inherent to medical researches where subjects may experience

different type of events. To gather strength of evidence, the usual idea is to combine results

across studies. A traditional meta-analysis focuses on the combination of aggregated data

obtained from study publications. An alternative approach is the IPD meta-analysis where

the raw data from each study are considered. It is a powerful tool that allows clinicians to

reach conclusions based on independently performed studies with the possibility to explore

heterogeneity across trials and whether particular individual patient characteristics (such

as the age of the patient) or trial characteristics (such as particular treatment modalities)

may explain some of the observed treatment heterogeneity.

This work was motivated by an IPD meta-analysis of chemotherapy in nasopharyngeal

carcinoma [19], a cancer which is very frequent in South-East Asia. In this meta-analysis,

the addition of chemotherapy to a standard radiotherapy regimen was associated with

a significant improvement in: i) a composite endpoint, progression-free survival defined

as the time from randomization to first progression (either locoregional or distant) or

death from any cause (Hazard Ratio (HR) = 0.75, 95%CI[0.69; 0.81]), ii) overall survival

(HR= 0.79 [0.73; 0.86]), defined as the time from randomization until death of any cause.

Using cause-specific hazard regression, the authors also identified a treatment effect on

time-to-locoregional relapse (CSHR = 0.73[0.64; 0.83]) and time-to-distant relapse (CSHR

=0.67[0.59; 0.75]). To assess the effect on cancer-related mortality, a logrank subtraction

method originally proposed by Peto [92] was used which provides an estimate of CSHR

=0.76[0.69; 0.84]. This logrank subtraction method imputes a cancer death whenever the
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cause is unknown or when death occurs subsequent to recurrence, whatever the recorded

cause. It calculates cause-specific mortality as the difference between overall mortality

and that attributable to other causes.

In order to quantify the effect of the combination of chemotherapy and radiotherapy

on time to locoregional relapse, time to distant relapse or time to death without relapse, it

is appropriate to employ a competing risks approach to provide unbiased estimation of the

corresponding cumulative probability of event over time (e.g. the cumulative incidence

function up to a given time horizon). Such cumulative probabilities are particularly useful

for quantifying the absolute benefits of treatment on particular event types, which may be

more meaningful in meta-analyses than the cause-specific hazard functions, which provide

relative measures of treatment benefit.

Meta-analysis of a survival endpoint is typically performed using a one-stage model

using a Cox model stratified by trial or with random effects [23], or by a two-stage approach

with a logrank test by trial. When individuals are exposed to competing events the

analysis is much more complicated. Standard methods for data without competing risks

are not applicable if there is interest in understanding the different effects of treatment on

the different event types. In the competing risks framework, considerable care is needed

to understand the treatment effect, with the use of competing risk endpoints like the

cause-specific hazard and cumulative incidence function are necessary. The application of

competing risks models has already been proposed in the context of meta-analysis using

aggregated or summary data [20] where the cumulative incidence is reconstructed from

available published data. However, individual-level data offers distinct advantages over

aggregated data. When patient-level covariates are available, it is possible to analyze how

these covariates are associated to the treatment effect. For multivariate IPD meta-analysis

with survival outcomes, [21] and [22] considered estimating the correlation between event

specific treatment effects to assess a potential surrogacy. Yet, no formal recommendations

have been proposed for an IPD meta-analysis with competing endpoints. In this chapter,

we propose and illustrate a framework for IPD meta-analysis with competing endpoints.

The first step is to establish the consistency of the included studies, otherwise it is not

possible to determine a general result of the included studies. We employ a one-step

approach where all the individual participant data are modelled simultaneously taking

into account the potential inconsistency of the included studies [93]. Both the cumulative

incidence function and cause-specific hazards are considered to quantify the benefit of the

treatment on different endpoints. A possible time-varying treatment effect is investigated

via a landmark approach on the subdistribution hazard.

In the next Section we recall basic definitions in competing risks and the most popular
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Figure 5.1: Representation of the allowed transition in the competing risks setting with m
possible events.

regression model. In Section 5.3 we discuss about individual patient data meta-analysis

characteristics and we describe the statistical tools that can be used in this framework.

We propose a Landmark approach to understand if a the FUPs impact the estimated

treatment effect. In section 5.5 we illustrate the presented methodology in our motivating

example. Some discussions are made in Section 5.6.

5.2 Competing risks

Competing risks is an extension of survival analysis from a single endpoint to multiple

types of events. So far, we have considered the time T as the observed time of a specific

event (e.g. death); in competing risks, T represents the time until some first event. For

instance, if we consider cancer data, we might be interested in multiple events, such as

local relapse, or death without relapse. Usually, the survival analysis is seen as a two-state

models, where patients are in the initial state 0 at time origin and at time T move to the

absorbing state 1, meaning that once in state 1 the individual cannot move. In competing

risks, several competing absorbing states (possible events) are introduced (Figure 5.1) and

the possible transition is from the initial state to one of the competing absorbing state.

In case of censoring, it may prevent the observation of the event.

Let Tj and Cj be the failure and censoring times for individual j and εj ∈ {1, 2, ...m}
the failure type with m possible different types of failure. We observe the failure time

T̃j = min{Tj, Cj} and the status indicator ∆j = I(Tj ≤ Cj) × εj. We define the cause-

specific hazard for each competing event i :

αi(t) = lim
δt→0

P(t ≤ T < t+ δt, ε = i|T ≥ t)

δt

it represents the transition intensity from the initial state 0 to state i, namely the instanta-
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neous risk that event i occurs at time t, knowing that no other event has happened before

t. The cause specific hazards completely define the stochastic behavior of the process,

and their sum defines the all-cause hazard α.(t) =
∑
i

αi(t). The cumulative cause-specific

hazard Ai(t) =
∫ t

0
αi(s)ds and the survival function of time T is

S(t) = P(T > t) = exp(−
∫ t

0

α.(s)ds)

thus, it is a function of all the cause-specific hazards αi(·). The cumulative incidence

function of cause i is

Fi(t) = P(T ≤ t, ε = i) =

∫ t

0

P(T > s−)αi(s)ds

where the probability of being in the initial state just before time s is S(s−) = P(T > s−).

Summing over all the cause-specific cumulative incidence functions, we obtain the all-cause

distribution function F (t) =
∑
i

Fi(t) and the survival function can also be expressed as

S(t) = 1−
∑
i

Fi(t).

We define the counting process Ni(t) =
N∑
j=1

I(T̃j ≤ t, εj = i), i = 1, 2, ..,m and the

at-risk process Y (t) =
N∑
j=1

I(T̃j > t), where one individual is considered at risk as long as

he is in the initial state just before time t. The number of transitions out of the initial

state in [0, t] is N(t) =
∑
i

Ni(t) and the number of transitions at time t is ∆N(t) =∑
i

Ni(t)−Ni(t−). The nonparametric estimator for the cause-specific cumulative hazard

is the Nelson-Aalen estimator:

Âi(t) =
N∑
j=1

∆Ni(T̃j)

Y (T̃j)
I(T̃j ≤ t)

which can be generalized to the all-cause cumulative hazard Â(t) =
∑
i

Âi(t). Moreover,

the Kaplan-Meier estimator of the survival function is obtained by

Ŝ(t) =
∏
T̃j≤t

(
1− ∆N(T̃j)

Y (T̃j)

)
In the absence of competing risks, one minus the Kaplan-Meier provides an estimate of

the cumulative incidence of events over time. However, using the Kaplan-Meier estimate
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to estimate the incidence function in the presence of competing risks generally results in

biased results [94].

5.2.1 Regression model

In this section, we recall the popular regression models for competing endpoints discussing

both cause-specific hazard and subdistribution hazard. Let Xj be a vector of baseline

covariates for individual j = 1, 2, .., N , proportional cause-specific hazards (CSH) models

assume a Cox model for each cause:

αi(t|Xj) = αi0(t) exp(βCSi Xj), i = 1, 2, ...,m

where αi0(t) is an unspecified baseline hazard function and βCSi the regression coefficient

specific to cause i. The estimation of βCSi , i = 1, 2, ...,m is based on maximizing the

partial likelihood:

L(βCS) =
∏
t

N∏
j=1

m∏
i=1

( exp(βCSi Xj)∑N
j=1 exp(βCSi Xj)Yj(t)

)∆Nij(t)

Given β̂CSi , the cumulative cause-specific hazards are estimated by the Breslow esti-

mator.

The cumulative incidence for event i is

Fi(t;Xj) =

∫ t

0

exp(−
∫ v

0

α.(u|Xj)du)αi(v|Xj)dv

the cumulative incidence Fi(t;Xj) depends on the all-cause hazard in addition to the

cause-specific hazard αi(t;Xj). Thus, interpretations of βCSi on the cumulative incidence

scale are challenging because the one-to-one relation between all-cause and survival func-

tion is lost, and the effect of a covariate on the CSHs for a specific event can be different

from its effect on the cumulative incidence function (CIF) for the same event. To tackle

this problem, the subdistribution hazard has been proposed. It reestablishes the one-to-

one relation with the cumulative incidence function, in fact the subdistribution hazard

for event i is obtained by hi(t) = dFi(t;X)
(1−Fi(t,X))

. It denotes the instantaneous risk of failure

from the i-th event in subjects who have not yet experienced an event of type i. Thus,

in this case, the risk set includes individuals who are event free at time t as well as those

who have previously experienced a competing event. This differs from the risk set for the

cause-specific hazard function, which only includes individuals who are currently event

free.
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The Fine and Gray model [95] is a popular approach to model competing risks, where

a semiparametric proportional subdistribution hazards specification is considered:

hi(t;Xj) = hi0(t) exp(βSHi Xj)

with hi0(t) an unspecified baseline subdistribution hazard function and βSHi the regression

coefficients vector with βSHi 6= βCSi , i = 1, 2, ..m,in general. Thus, the results obtained by

the two models, do not necessarily coincide and when the proportional CSH model holds,

the SH model is misspecified and vice versa. However, Hjort discussed that a misspecified

model still provides a consistent estimate in terms of the least false parameter, a time-

averaged hazard ratio [96].

It is common to report the two analyses side-by-side without clearly distinguishing

between the interpretations. The subdistribution hazard analysis only allows for a direct

probability interpretation, but the absolute value of the regression coefficients are difficult

to interpret. In fact, the positive regression coefficient has a qualitative meaning but

interpretation on the quantitative meaning of the regression coefficient is not simple [97].

In addition, all the cause-specific hazards completely describe the data, whereas the aim

of the subdistribution hazard is the analysis for one single event. The idea is to define the

subdistribution time T ? until occurrence of the event of interest, with T ? = T if the event

of interest has happened, otherwise, if one of the competing events occurred, T ∗ = ∞.

Estimation for the Fine-Gray model is analogous to the one presented for the proportional

CSH, where the subdistirbution time T ∗ is considered instead of T . Nowadays, the Fine-

Gray model is fitted for several competing events, but it is needed to recall that it cannot

generally hold simultaneously for all causes. In fact, SH model specifies the cumulative

incidence function for the event of interests but not for the competing events.

Proportional hazards regression model are the most popular regression methods for

competing risks. However, other models exist for both cause-specific hazards and for the

cumulative incidence function. Aalen [98] introduced an additive regression model for

cause-specific hazards:

αi(t;Xj) = βi0(t) + βCSi (t)Xj

the βCSi (t) is the vector of regression coefficients, thus the model allows for time-varying

covariates effects. It is a nonparametric model, since regression functions are unspecified.

The additive model can also be employed for the subdistribution hazards. We refer to

[99] and [100] for more details.

A regression model for the cumulative incidence function Fj(·) have been described
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in [97], where quantitative interpretation can be made on the regression coefficients. Let

Fi0(·) be an unspecified function which represents the cumulative incidence for individuals

with X = 0, the Absolute Risk Regression (ARR) model is of the form:

Fi(t|Xj) = Fi0(t) exp(γiXj)

and the probability of event during the next t years is exp(γi) times as high for a

patient with Xj = 1 than for a patient with Xj = 0.

In terms of individual predictions and prediction error, no substantial differences be-

tween the two standard competing risks regression models and ARR model were identified.

However, when it comes to parameter interpretation, some of the fitted models are more

attractive than others. For the cause-specific hazards models, exp(βCSi ) parameters have

standard rate ratio interpretations, but in competing risks, they do not directly trans-

late to relationships between risks (cumulative incidences). For the Fine-Gray regression

model exp(βSHi ) parameters are subdistribution hazard ratios and they have a quite in-

direct interpretation, but this model establishes a useful direct link between covariates

and cumulative incidence. For the ARR model, exp(γi) are the ratios between cumulative

incidences.

However, a problem possessed by all direct regression models for cumulative incidences

is that the sum of all predicted cumulative incidences may exceed 1. If focus is on a single

cause then one might argue that this is a minor problem but for a thorough competing

risks analysis, all causes should be studied and the problem does become relevant. This

problem does not occur for cause-specific hazard models[97].

5.2.2 Goodness of fit

Both the regression model previously discussed rely on the assumption of proportionality

of hazards. Goodness-of-fit methods can be employed to check for this assumption. Pop-

ular methods to check, formally and graphically, for the proportionality of the CSH have

been adapted to subdistribution hazard model [101]. For binary covariate, the cumula-

tive hazards plot is a popular method for this scope. The estimated cumulative hazards

within one level of covariate are plotted against the respective estimate within the other

covariate level. Moreover, plotting the Schoenfeld’s residuals, we would expect a null

mean across time and, a non constant average would be related to a misspecification of

the proportional hazards.

A formal test of the PSH assumption was proposed by [102]. It is based on the

assumption that non proportionality is a result of time-varying covariates effect. A score
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Figure 5.2: Representation of the allowed transitions for multistate setting (illness-death model).

test which employs Schoenfeld’s residuals adapted to competing risks data is considered.

A parametric time-varying covariate effect is considered as βSH(t) = βSH + D(t)θ with

βSH = (β1, β2, ..., βp)
′

, θ = (θ1, θ2, ..., θb)
′

and D(t) p × b matrix of pre-specified time

functions with non null values for the components of Xi being tested for time-varying

effects. The null hypothesis of the test is H0 : θ = 0. When it is rejected the assumption

of proportionality of subdistribution hazards is not satisfied. It is important to correctly

specify the time functions in D(t) in order to detect the non-proportionality. This test

can be performed via the function PSH.test in the crrSC package in R [103].

Furthermore, the landmark method can also be applied for evidence of non proportion-

ality since a time-varying covariate effect is a clear indication of violation of the propor-

tionality assumption. We consider a landmark sequence of times and, at each landmark

time LM s, the Fine-Gray model is fitted considering the individuals who are still at risk

(T̃i > LMS). If the estimated treatment effects vary with the landmark times, then this

provide evidence for a time-varying effect (non proportionality).

5.2.3 Multistate model

Competing risks model time until some first event and the type of event, but do not take

into analysis subsequent events, in fact only absorbing states are considered. In multistate

model, events can be modelled as transitions between different states. In Figure 5.2 the

illness-death model without recovery is presented where the disease process of a patient

will also consist of intermediate event that can neither be classified as initial state nor as

absorbing state. It is a multistate model since an individual that starts in the healthy

state will have either one or two event times, in fact it could make either a healthy-dead

transition or a healthy-diseased transition and successively a diseased-death transition.

This model is time-inhomogeneous Markov and it satisfies the Markov property where the

future course of an individual depends only on its current time and state. We can define

the transition probabilities Pli(s, t) = P(ε(t) = i|ε(s) = l), where ε(t) indicates the state
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occupied by the individual at time t and the transition hazard for l→ i

αli(t) = lim
δt→0

P(ε(t+ δt) = i|ε(t) = l)

δt

and the cumulative hazard for transition l→ i : Ali(t) =
∫ t

0
αli(s)ds.

In this Chapter we do not consider multistate model, but we refer to some extensions

of cause-specific and subdistribution hazards regression model that can be employed when

analysing IPD meta-analyses.

5.3 IPD Meta-analysis

Meta-analysis is a formal evaluation of the quantitative evidence from two or more trials

addressing the same question. The rapid increase in the number of meta-analyses is mainly

due to a greater emphasis on evidence-based medicine and the need for reliable summaries

of the expanding volume of clinical research. Meta-analysis is often used to assess the

effect of a new treatment compared to the standard one and it is useful to obtain a

more precise estimate of the overall treatment effect. A traditional meta-analysis involves

synthesis of aggregate data (AD) obtained from study publications. The aggregated data

usually include the mean treatment difference and its variance; a weighted average across

studies is than calculated to give an overall measure of treatment effect. A more powerful

approach is individual patient data (IPD) meta-analysis, where the raw data from each

study are obtained. Having information at the individual level has many advantages over

the aggregated data, such as the possibility to assess interaction between covariates and

treatment. An other benefit of IPD is the possibility to perform subgroup analyses and

to investigate different sources of heterogeneity, which is one of the principal issue in

meta-analyses. For AD meta-analysis, meta-regression methods have been proposed to

identify significant relationships between the treatment effect and covariates of interest

[23]. However, meta-regression has low power to detect treatment–covariate interactions

as it assesses across-trials relationships between study-level summaries (e.g. mean age)

and treatment effect, rather than within-trial relationships between patient-level values

and treatment effect.

Meta-analyses often combines results from studies which have not followed a common

protocol, involving different patient populations. Thus, the main concern in the analysis

is the determination of heterogeneity in the treatment difference across trials. Deciding

whether or not the amount of heterogeneity is of matter and, how to deal with it is not

straightforward. Test statistics and other measures for heterogeneity are discussed in
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section 5.5. These would also help in the choice between fixed or random effects model.

However, heterogeneity is not the only criteria to base on the model decision. For instance,

the number of trials and the distribution of the study estimates of treatment effects should

also be considered. Many have argued that the model decision should be based on whether

the intervention effects are expected to be truly identical [104]; others have argued that a

fixed-effect analysis can be interpreted in the presence of heterogeneity, and that it makes

fewer assumptions than a random-effects meta-analysis [105]. Moreover, in presence of

IPD, two main approaches have been proposed: one-stage and two-stage. Meta-analysis

of a survival endpoint is typically performed using a one-stage model using a Cox model

stratified by trial or with random effects [23], or by a two-stage approach with a logrank

test by trial. For multivariate IPD meta-analysis with survival outcomes, [21] and [22]

considered estimating the correlation between event specific treatment effects to assess

a potential surrogacy. When individuals are exposed to competing events the analysis

is much more complicated since considerable care is needed to understand the treatment

effect. The application of competing risks models has already been proposed in the context

of meta-analysis using aggregated or summary data [20] where the cumulative incidence

is reconstructed from available published data. However, no formal recommendations

have been proposed for an IPD meta-analysis with competing endpoints. In the next

sections we provide some insights for IPD meta-analysis with competing risks underling:

i) how to evaluate heterogeneity, ii) how to assess covariate-treatment interactions, iii)

interpretation of results for competing risks.

5.3.1 One vs two stage approach

Individual patient data meta-analysis allows to use raw data to synthesise results on the

quantity of interest. It is becoming increasingly popular and two main approaches can

be employed to analyse this kind of data: one-stage approach and two-stage approach.

The former consider all individuals from all trials together using appropriate models that

can take into account the clustering. The latter, initially analyses separately individual

in each trials, and than, combines the obtained results using standard meta-analysis

methods. Fixed-effect and random-effect model can be chosen for both one and two-stage

approaches.

Let k = 1, ...K be the trial indicator and the treatment effect is of interest. For the

two-stage approach, in the setting of competing risks, a possible choice is the proportional

hazards model (cause-specific and Fine-Gray) to estimate the treatment effect β.k and its

variance σ2
k in each trial k. These quantities are than combined in the second stage to

obtain the overall treatment effect β.. A fixed-effect or a random-effect model is employed
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depending on the assumption made on the treatment effect among trials. If the treatment

effect is assumed to be the same across trials, than the fixed-effect model is used and

β̂.k ∼ N (β., σ̂2
k). The pooled treatment effect β and its variance are than estimated.

The most common method is the inverse variance method [2]. If the treatment effect

is assumed to vary across trials, a random-effect model is used and the between-studies

variance τ 2 need also to be estimated [106, 107]. In this case, the summary estimate β̂. is

interpreted as the average estimate of the true treatment effects.

One-stage and two-stage approaches often provide similar results. Theoretical equiv-

alence have been discussed in [108]. Nonetheless, attention is needed, because differences

may arise. When small trials are included in the study or, more precisely, study with

low number of events, the assumption of normality in the second stage of the two-stage

approach may be inappropriate. Instead, the one-stage method does not need any assump-

tion on the treatment effect distribution among trials. Moreover, introducing adjusting

covariates may produce different results between the two analyses, especially when the

covariates are heterogeneous across trials. More in general, most differences between one-

stage and two-stage approaches are due to different modelling assumptions. However,

when the same assumptions are made, the results obtained by the two approaches are

very similar [23].

5.3.2 Competing risks regression for clustered data

In the context of meta-analysis, for the one-stage approach, standard methods for com-

peting risks cannot be employed since the dependence between observations in the same

trials need to be taken into consideration. More in general, in many other applications

of competing risks data can be correlated within clusters, such as multicentric data, or

family studies and models that can handle clustered competing risks are necessary. In the

analysis of cause-specific hazards functions, a proportional hazards model with common

covariate effects but different baseline hazard for each cluster as proposed by Wei et al

[26] can be employed. Marginal proportional hazards approach [27, 109] with both the

regression coefficients and the baseline hazards having population average interpretations

can also be used for cause-specific hazards. These methods are not generally appropriate

for the cumulative incidence function. For subdistribution hazards, a random-effect Fine-

gray model was proposed by Katsahian [110] fitting Gamma and Gaussian frailty models,

and [111] introduced modifications of the nonparametric Gray’s test , which is applicable

with categorical covariates. Zhou et al. [112] extended the Fine–Gray model to the clus-

tered data setting constructing a marginal proportional subdistribution hazards model

under an independence working assumption. Moreover, Zhou et al [24] considered strati-
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fied Fine-Gray model with common covariate effects but different baseline hazard for each

cluster. We describe the latter more in details, because we think it is more relevant for

our motivating example. In fact, in an IPD meta-analysis, postulating a common baseline

hazard across trials is not tenable due to varying patient populations and treatment.

Let Tkj and Ckj be the failure and right censoring time for the j-th subject in the k-th

study with j = 1, 2, ..., Nk and k = 1, 2, ..., K; εkj ∈ {1, 2, ..,m} the failure type with m

possible different type of failure and Xkj a p× 1 vector of time-fixed covariates measured

at baseline (e.g. randomization). The observed data consists of the i.i.d. observations

{T̃kj = min{Tkj, Ckj},∆kj = I(Tkj ≤ Ckj),∆kjεkj,Xkj}. We assume that (Tkj, εkj) and

Ckj are independent given Xkj. For the cause-specific hazard function, we consider the

following stratified version of the proportional hazards model:

αik(t; Xkj) = αik0(t) exp{βCSi Xkj} i = 1, 2, ...,m k = 1, 2, ...K

where αik0(t) is the baseline cause specific hazard function for cause i in the stratum

(e.g. trial) k and βCSi is the vector of regression coefficients specific for the cause i, assumed

constant across study. The assumption of constant covariate effects can be explored by

fitting models separately to either individual studies or group of studies. This model can

be implemented in R via the coxph function in the survival package considering the

strata option in order to stratify by study [46].

We define the cumulative incidence for event i in the stratum k as

Fik(t; X) = P (T ≤ t, ε = i|X, k) =

∫ t

0

exp
(
−
∫ v

0

αk(u|X)du
)
αik(v|X)dv

where αk(t|X) =
∑m

i=1 αik(t|X) is the all-cause hazard in the stratum k. The cumulative

incidence for event i depends on the all-cause hazard in addition to the cause-specific haz-

ard for event i. Therefore, the effect of a covariate on the CSHs for a specific event can be

different from its effect on the CIF for the corresponding event. The key idea is to con-

sider the subdistribution hazard to recover this one-to one relation. The subdistribution

hazard for event i in the stratum k is defined as hik(t; X) = dFik(t; X)/(1− Fik(t; X)).

Similarly to the CSHs, the baseline subdistribution hazard may vary across studies.

A stratified extension of the Fine and Gray model was proposed in [24]. For event i, the

model may be expressed as

hik(t; Xkj) = hik0(t) exp{βSHi Xkj}

where hik0(·) is the baseline subdistribution specific for the stratum k and βSHi are the
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regression coefficients vector specific to the event i. As with the cause-specific hazard

models, the coefficient is fixed across studies, thus we derive one overall covariate effect

for all the studies but different baseline function may be estimated for either individual

studies or groups of studies. The estimate for βSHi is obtained maximizing the partial

likelihood of the subdistribution hazards

L(βSHi ) =
K∏
k=1

Nk∏
j=1

( exp(βSHi Xkj)
Nk∑
l=1

Y ∗kl(T̃kj exp(βSHi Xkl)

)∆kjI(εkj=i)

When right censoring is present, the likelihood is weighted by the inverse censoring

weighting technique, where the survival function for the censoring is estimated by Kaplan

Meier estimator. The stratigied Fine-Gray method is implemented in R in the package

crrSC via the crrs function ( [103]).

In each study k, we distinguish the treatment group, where an experimental treat-

ment is tested (e.g. chemo plus radio), and a control group where subjects are treated

with the standard treatment (e.g. radiotherapy alone). Let zkj be the binary treatment

covariate with zkj = 1 in the treatment group and zkj = 0 in the control group and

β·i its correspondent regression coefficient. The quantity exp(β·i) refers to cause-specific

hazard ratio (CSHR) or subdistribution hazard ratio (SHR) depending on the stratified

regression model employed. However, only exp(βSHi ) quantifies the effect of the treatment

on the cumulative incidence scale. Both cause specific hazards and cumulative incidence

are useful for a complete understanding of the results. As suggested by [101] the two

estimates are best presented side by side.

5.3.3 Treatment interaction

Clinicians are interested in assessing how patients characteristics may be associated with

variation in the magnitude of the treatment effect which is the estimation of the inter-

action between a covariate and treatment. For aggregated data meta-analysis, the usual

unavailability of individual data has led to the application of meta-regression for predict-

ing summary treatment effects [113, 114]. Meta-regression is a subgroup analysis that

allows to investigate the effect of multiple factors to be investigated simultaneously [115].

The trial is the unit of analysis and the outcome variable is the treatment effect. The

explanatory variables are factors of trials that might influence the size of treatment effect.

A significant correlation with these factors suggests treatment interaction. The covari-

ates are either true trial-level covariates which are equals to all patients in a trial, or

individual-level covariates that have different values for each patient, but are then aggre-
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gated into a summary trial statistic. Thus, meta-regression has some limitations in case

of individual-level covariates. In fact, it is not always able to capture within-trial treat-

ment variation across a covariate. These issues are not existent when IPD are accessible.

Moreover, meta-regression should generally not be considered when there are fewer than

ten studies in a meta-analysis [2].

When an IPD meta-analysis is performed, patient- and trial-level characteristics are

available to explore potential heterogeneity and assess treatment effects in subgroups. In

our illustrative example, we want to explore a possible interaction between treatment and

age. Given the stratified Fine-Gray model, we include the information on age with xkj

and an interaction term with the treatment:

hik(t; Zkj) = hik0(t) exp{βizkj + ψixkj + γizkj × xkj}

where exp(γi) is the SHR over the trials for the change in treatment effect for a one-unit

increase in xkj. The interaction term is given by the sum of the within-study interactions

(difference in treatment effect among the levels of xkj in the study k) and of the across-

studies interaction (difference in mean treatment effect between studies for different values

of xkj).

Furthermore, the individual data allow us to perform some subgroup analyses, where

the subgroup is defined considering the individuals with same level of covariate (e.g. group

of age, sex). We may be also interested on how a trial-level covariate (e.g. chemotherapy

modality) affects the treatment effect or interacts with others individual-level covariates.

Considering a stratified model (trial is a stratum), as described in the previous section,

does not allow to simply add the trial-level covariate in the model.

Let gkj be a trial-level covariate such that gkj = gk for all subjects j in the trial k.

When a stratified approach (at the trial level) is employed, gkj cannot be introduced in

the model since in each stratum k all the individuals are associated to the same value

gk. For this reason, we first stratify on the different levels s = 1, 2, ..., S of gk and we

apply the stratified Fine-Gray model for a second stratification on the trial. We assume

S < K, namely several clusters share the same covariate value. In the following section

we consider the chemotherapy type as the trial-level covariate (S = 4, K = 23).

For each level s of gk we define:

hiks(t; zkjs) = λiks0(t) exp{βi,szkjs}

where exp(βi,s) is the SHR for gk = s versus the reference stratum for cause i (i.e.

the treatment effect for the specific chemotherapy modality). Differences of SHRs across
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levels of gk are related to an interaction between the treatment effect and the trial-level

covariate. In order to check for the interaction (differences of SHRs) a χ2 test with S − 1

degree of freedom can be implemented to test the null hypothesis of homogeneity among

groups. We can also extend the model introducing others individual-level covariates xkj

in order to test for an interaction between the trial-level covariate and others patient-

level covariates. In section 5.5 we present the results of this model where the interaction

treatment-age is tested for the four chemotherapy modalities.

5.4 Heterogeneity

A meta-analysis attempts to gain objectivity and generalization by combining studies

that may be conducted under different conditions, involving different patient populations,

different disease definitions, and different treatment regimens. We can distinguish different

types of heterogeneity [116]: clinical heterogeneity due to variability in the participants,

treatments and outcomes studied; methodological heterogeneity due to variability in study

design and outcome measurement tools. We are interested into statistical heterogeneity,

which can be a consequence of clinical and/or methodological inconsistency, and leads

to variability in the treatment effects evaluated in the different trials. We will refer to

statistical heterogeneity simply as heterogeneity.

A careful assessment of heterogeneity is critically important in meta-analysis in as-

sessing whether it is reasonable to summarize the treatment effect with a single overall

estimate which applies to all studies. Of course, the conclusions will be less clear when

there is substantial heterogeneity and it is thus important to quantify the extent of het-

erogeneity when reporting the results.

A standard test for the heterogeneity is the Cochran’s Q statistic test. It is a weighted

sum of the squared deviation of each study’s estimate (e.g. treatment effect) from the

overall estimate. This test is known to have low statistical power to detect heterogeneity

when the number of studies is small and, on the contrary, excessive power when the meta-

analysis includes many studies [117]. Higgins pointed out that heterogeneity is likely to be

expected in a meta-analysis thus, rather than testing for heterogeneity, it is more relevant

to quantify the inconsistency and its impact on the analysis [118]. Several statistics have

been developed and the most commonly used is the I2 [115]. This statistic is easily

interpretable and, unlike the Cochran’s test does not depend on the number of trials in

the meta-analysis.

Let β̂k estimate the overall cause-specific treatment effect in the study k with precision

wk = 1/σ2
k, obtained by the regression model for the individual study k. We define
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the between-studies heterogeneity τ 2 = Var(βk) and the within-study variance σ2 as a

summary statistic of the σ2
k:

σ2 =

∑
k wk(df − 1)

(
∑

k wk)
2 −

∑
k w

2
k

df = K−1 is the degrees of freedom of the Cochran’s Q statistic. We recall the I2 statistic

which describes the percentage of total variation between the results of the studies that

is due to heterogeneity :

I2 =
τ 2

τ 2 + σ2
× 100 =

Q− df
Q

× 100

The I2 measures the impact of heterogeneity rather than its quantification, as with σ2

and τ 2. It ranges from 0 to 100 and is typically labelled as low (0 − 40%), moderate

(30 − 60%), substantial (50 − 90%) and considerable (75 − 100%) [2]. However, it is

necessary to consider the magnitude and the direction of the treatment effect since the

interpretation of heterogeneity will depend on these as well as clinical diversity between

the studies. When heterogeneity is found, it is of interest to explore its causes. A subgroup

analysis may be one strategy. The forest plot can also be helpful in identifying the source

of the heterogeneity. When considerable inconsistency is detected, we might question if

it is appropriate to proceed with the analysis and consider one overall estimate for the

treatment effect.

To quantify the heterogeneity with the I2 statistic we consider a two-stage approach

where a stratification on the trials is needed. The two-stage approach allows for the

estimation of the within-trials and between-trials variability. This is the first step in a

meta-analysis, but when the heterogeneity is quantified we can proceed with a one-stage

approach to estimate the cause-specific treatment effect. To our knowledge, tools are not

available to quantify the heterogeneity considering a one-stage approach in this context.

5.4.1 Effect of follow-up

In a meta-analysis where many trials are included, there may be concerns that studies

with different FUP will yield different treatment effect estimates [20]. We might inspect

whether having shorter (longer) FUP would impact on the estimation of the SHRs. Fol-

lowing [119], we suggest to landmark the CIF analyses to investigate the impact of FUP

on the treatment effect. These landmark analyses directly reflect the effect of treatment

on prediction of the cumulative incidence for the event of interest. Let LMk be the FUP

for the k-th study, we consider as landmark times the ordered sequence of the study-
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Figure 5.3: Landmark approach of the SHR defining the FUP of each study as landmark times.

specific FUP LM∗ = {0 < ... < LM (1) < ... < LM (K)}. At each landmark time LM (j) we

fit the stratified Fine-Gray model based on subjects who have not yet experienced any of

competing risks and are still under observation (T̃ik > LM (j)). If the estimated treatment

effects vary with the landmark times, then this provide evidence for a time-varying effect.

In such cases, care is needed when reporting the results because different conclusions on

the treatment efficacy can be made for different follow up times. An example of this

Landmark approach is presented in Figure 5.3 where the FUP seems to not impacting the

SHR.

5.5 Application

5.5.1 Data description

Nasopharyngeal carcinoma is a cancer that occurs in the nasopharynx which is much

more frequent in Southeast Asia. It is difficult to detect early, probably because the

nasopharynx is not easy to examine and symptoms of nasopharyngeal carcinoma mimic

those of other, more-common conditions. Thus, most of the patients with this type

of cancer present locally advanced stage. Treatment is difficult because of anatomical
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proximity to critical structures; and the role of surgery is limited to biopsy for histologic

confirmation and salvage of persistent or recurrent disease. Fortunately, this cancer is

highly radiosensitive and chemosensitive; radiotherapy is the standard treatment and

excellent control can be achieved for patients with early disease, chemotherapy has been

proposed for further improvement for the majority of patients presenting with advanced

locoregional disease. Chemotherapy has been used in three ways: as induction treatment,

concomitant with radiotherapy and adjuvant therapy after radiotherapy.

An individual patient data meta-analysis of clinical trials that included patients with

nasopharyngeal carcinoma was conducted to investigate the benefit of the addition of

chemotherapy to a standard radiotherapy regimen (Ref Blanchar). A total of 4940 pa-

tients collected in 23 trials are analysed. Four trials investigated the addition of adjuvant

chemotherapy to radiotherapy, seven trials the addition of concomitant chemotherapy,

six trials the addition of concomitant plus adjuvant chemotherapy and six trials the ad-

dition of induction chemotherapy. The median follow-up (FUP) in the meta-analysis is

estimated to be 11.8 years (ranging from 5.01 to 21.68). In this study, we are interested

in the competing endpoints locoregional relapse, distant relapse and death without re-

lapse (neither locoregional nor distant). Of the 4940 subjects 2529 (51%) were censored,

843 (17%) had a locoregional relapse, 1112 (23%) had a distant relapse and 456 (9%)

died without relapse. In addition to the chemotherapy modality, which is a trial-level

covariate, the age of the patient will be used as patient-level covariate in the proposed

meta-regression approach.

The trials are characterized by different FUP times ranging from about 5 years to

almost 22 years. No events are observed after 15 years, except deaths without relapse.

We note that while the FUP are different among studies, the median of failure times are

similar among studies for both locoregional relapse (1-3 years) and distant relapse (1-3

years). Thus, one wouldn’t expect that the treatment effect estimates for these endpoints

would be sensitive to FUP.

The original analysis combining the trials results employed a two-stage fixed effect-

model for the PFS and the OS [19]. As mentioned in the introduction, the competing

endpoints were addressed with proportional cause-specific hazard models for locoregional

and distant relapse.

5.5.2 Statistical analysis and results

The reported analyses are stratified by trial (23 in total) and CSHRs and CIFs are pro-

vided for a complete understanding of the results. The I2 statistic is used to investigate

the impact of heterogeneity that we may observe in the meta-analysis with the inclusion
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Figure 5.4: Stacked plot of the cumulative incidence functions for all individuals for all the
competing time-to-event: time to local relapse (black), time to distant relapse (grey), time to
death without relapse (light grey)

of different studies. We test for the assumption of proportionality in each trial (PSH

test) and we look for time-varying treatment effect using a landmark approach on the

subdistribution hazards. Finally, we check for an interaction between the treatment effect

and age employing the stratified Fine-Gray model.

In Figure 5.4 we provide a stacked plot with the cumulative incidence functions for

all the competing endpoints. We observe most of the locoregional and distant relapses at

earlier times, even in studies with long FUP. The stacked plot for each arm is shown in

Figure 5.5. A similar plot of the cumulative incidence for each treatment subgroup can

be found in the appendix. Forest plot of the estimated treatment effects are provided in

Figures 5.8 and 5.9, respectively for locoregional relapse and distant relapse.

The addition of chemotherapy to radiotherapy improves the cumulative incidence for

both locoregional relapse (SHR of 0.77 [0.67, 0.88]) and distant relapse (SHR of 0.70

[0.63, 0.79]). We observe coherent results in the cause specific analysis, where CSHR for

locoregional and distant relapse are 0.71 [0.62, 0.82] and 0.67 [0.60, 0.70] respectively. For

locoregional relapse, the addition of adjuvant chemotherapy leads to stronger treatment

effect with SHRs of 0.60 [0.39, 0.92] for adjuvant alone and 0.63 [0.47, 0.83] for concomitant

plus adjuvant. The remaining two treatment subgroups present SHRs of 0.85 [0.69, 1.05]

for the concomitant and 0.86 [0.65, 1.13] for induction, showing a non significant effect

on the cumulative incidence. On the other hand, the treatment effect is significant for

the cause specific hazards. The addition of adjuvant chemotherapy alone, does not show

a significant improvement on distant relapse (SHR and CSHR of 0.8 [0.58,1.10]). When

the adjuvant therapy is used together with a concomitant treatment we observe a strong
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Figure 5.5: Stacked plot of the cumulative incidence functions in the two different arms
(chemotherapy and chemotherapy plus radiotherapy) for all the competing time-to-event: time
to local relapse (black), time to distant relapse (grey), time to death without relapse (light grey)

improvement for distant relapse (SHR of 0.62 [0.49, 0.77] and CSHR of 0.57 [0.45, 0.71]).

However, we implemented the test for interaction between the treatment effects according

to the four treatment modalities. The results show no significant interaction for both

local and distant relapse with a p-value of 0.17 and 0.32 respectively.

Regarding treatment effects across trials, there is evidence of mild heterogeneity across

trial-specific SHRs for distant relapse (I2 = 34%), but not for locoregional relapse (I2 =

0%). The forest plot in Figure 5.9 shows that mainly the adjuvant and induction treatment

subgroups are characterized by strong heterogeneity. In the former, heterogeneity is likely

due to trials with small sample sizes (trial 16-17) where the adjuvant chemotherapy does

not strongly improve the outcome (time to distant relapse). In the latter, it may be driven

by trial 14 (77 observations) which is characterized by a less efficacious treatment effect

as compared to others.

For the death without relapse endpoint, the additional chemotherapy reveals a ben-

eficial treatment effect on the CSHR (CSHR=0.72 [0.62, 0.82]). However, the addition

of chemotherapy has a deleterious effect on the cumulative incidence of death without

relapse with a SHR=1.30 [1.08, 1.58]. These results may be explained by an indirect ef-

fect of the treatment on this endpoint e.g. the increased of the CIF of the experimental

group is a consequence of a simultaneous decrease of the two others CIFs of locoregional

and distant failure. The complete results (forest plots, goodness of fit analysis) for these

endpoints are given in the appendix. Finally a mild heterogeneity is detected with an

I2 = 29%.

In each trial, the PSH test is implemented considering the time functions log(t), t, t2

for evaluating the potentially non-proportionality treatment effect. In two trials, for
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Figure 5.6: Landmark of the Fine-Gray model for local relapse in the studies where non-
proportionality was detected by PSH.test. The landmark times are chosen in the interval be-
tween the minimum time of relapse and the third quartile of the failure times in the study. A
time-varying SHR is linked to non proportionality of hazards. The SHRs (red dots) and the
confidence interval are provided for each landmark time.

locoregional relapse, we reject the null hypothesis of proportionality: trial 22 (76 events)

and 8 (42 events). In trial 22 the two cumulative incidence curves are crossing, there is

a plateau in the cumulative incidence in the radiotherapy alone group and an increase

in the chemotherapy plus radiotherapy group. Therefore, the treatment effect, detected

during the first years of follow-up, becomes less strong for longer follow-up. In trial 8 the

non proportionality could be due to the high number of events in the control arm during

the first year. For distant relapse, the null hypothesis of proportionality is rejected in

trial 4 (112 events) where we observe a delayed treatment effect.

These indications of non-proportionality are confirmed by the landmark analysis of

the subdistribution hazards. We consider as study-specific landmark times a sequence in

between the minimum and the third quartile of the observed failure times in the study.

Figure 5.6 shows increasing SHR for both trial 8 and 22. At earlier landmark times,

the treatment effect is detected (exp(β̂SH ) < 1) , but for later times, it becomes non-

significant (exp(β̂SH) ' 1) in trial 8 and exp(β̂SH) > 1 (radiotherapy alone is more

efficacious) in trial 22. The landmark for trial 4 (Figure 5.7) shows decreasing SHR,

e.g. a significant benefit of chemotherapy is observed at longer landmark times. The

Schoenfeld’s residuals plot and the cumulative subdistribution plot for these trials are

provided in the appendix for evidence of non-proportionality.

We test for a statistical interaction between the treatment effect and age in the strat-

ified model, i.e. we employ the model in Section 3.4 where xkj is the age of subject j in

study k. We first consider age as a continuous variable and, in a second model, we split it
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Figure 5.7: Landmark of Fine-Gray model for distant relapse in the studies where non-
proportionality was detected by PSH.test. The landmark times are chosen in the interval be-
tween the minimum time of relapse and the third quartile of the failure times in the study. A
time-varying SHR is linked to non proportionality of hazards. The SHRs (red dots) and the
confidence interval are provided for each landmark time.

in 3 categories: < 50 years old, [50, 59] years old and ≥ 60 years old. In both cases there

is no significant evidence of interaction for all the competing endpoints. We further ex-

plore the interaction treatment-age according to the four chemotherapy modality groups

to understand whether being younger has an impact on the treatment effect. Referring

to Section 3, we consider the chemotherapy modality as the trial-level covariate (gk with

S=4). Therefore we stratify on the possible levels (adjuvant, concomitant etc.) and in

each subgroup we fit the stratified Fine-Gray model where an interaction term treatment-

age is introduced. A beneficial effect of the addition of the induction chemotherapy is

observed for subjects in the middle category (50 − 59 years old) on the time-to-distant

relapse with an estimated SHR for the interaction term of 2.11 [1.13, 3.94].

5.5.3 Software

Several package have been developed in R useful for IPD meta-analysis with compet-

ing risks. The comprsk package [120] implements methods for regression modeling of

subdistribution functions as described in Gray 1988 [95], the crr function models the

subdistribution hazard and provide estimation for the SHR. The package survival [46]

can also be adapted to the proportional cause-specific hazards, using the coxph function

specifying the event as the one of interest. Employing these two packages the CSHR and

the SHR are obtained and through the package meta [1] the forest plot can be constructed.

Concerning the proportionality assumption, the cumulative hazards plots can be ob-

tained by using the package etm [121]. The latter is usually used for multistate model,

and to obtain the cumulative subdistribution hazards, we consider the competing risks
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as a special example of multistate model, where the possible transitions are from initial

state to the absorbing competing events states. The Aalen-Johansen estimators for the

cumulative incidence functions are obtained and than the cumulative subdistribution haz-

ards are derived. Finally, the package crrSC [103] fits the stratified Fine-Gray method

for subdistirbution hazards with clustered data, and the PSH.test is also implemented to

check the proportionality assumption.

An example code for an IPD meta-analysis as described for the nasopharyngeal carci-

noma can be found at https://github.com/AMeddis/Meta-analysis-for-competing-risk.

5.6 Discussion

In this chapter, we have proposed a guideline to analyse IPD meta-analysis in presence of

competing risks. An IPD meta-analysis is the gold standard for synthesizing evidence for

clinical interpretation based on multiple studies. Patient-level and trial-level covariates are

provided and this improves power for subgroup analysis and to detect possible treatment-

by-covariate interactions. A major issue is the consistency of studies that are included,

and quantifying the impact of heterogeneity in the estimation of treatment effect should

be the starting point of the analysis. On the basis of this quantification either a fixed

effect or a random effects statistical model is usually employed. The former assumes that

all studies share the same treatment effect, whereas a random effects model allows that

the observed estimates of treatment effect vary across studies. Moreover, one or two-stage

approaches can be employed in IPD meta-analysis. The one-stage approach consider all

individuals simultaneously considering the clustering in the data; the two-stage approach

firstly analyses individuals in each trials and than estimate an overall measure combining

the trial-specific results. The two methods provide similar results when same assumptions

are made in [23].

Note that we proceed with a one-stage approach to estimate the overall treatment

effect across studies but a two-stage approach is necessary to quantify the heterogeneity,

i.e. to calculate the I2 statistic. In the presence of heterogeneity, the availability of IPD

offers opportunities to explore and adjust for heterogeneity in the model. Heterogeneity

in treatment effect may also be caused by follow-up length. This issue can be exam-

ined in sensitivity analyses, where one either artificially restricts follow-up or landmarks

the analysis, both of which were done for analyses of the subdistribution hazards. The

approach allowed us to detect possible time-varying treatment effect and thus whether

different FUP impacts the estimated treatment effects. How to interpret heterogeneity

across different competing risk endpoints is not straightforward, and no tools has been
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proposed yet to understand the partition of the heterogeneity across such competing end-

points. We do not discuss about this aspect in our work but we think that it may be a

topic of interest for further works.

Another advantage of IPD data is the ability to check for interaction between treatment

effect and individual-level variables (age in our example). These analyses may be useful

in identifying patient subgroups for which treatment is beneficial that can play a key role

in the planning of new studies.

The primary focus of this chapter has been issues faced when individuals may experi-

ence competing events. In this framework, the interpretation of results needs considerable

care; in fact, both the CSHRs and SHRs are necessary for a overall understanding of the

treatment effect on the competing endpoints. The CSHRs alone are not sufficient since

they do not provide information on the cumulative incidence scale, i.e. about the proba-

bility of a specific event. Andersen et al. discuss issues related to interpretation of CSHR

and SHR and review alternative regression models for SHR [122]. Moreover, Klein states

in favor of the additive model for the cumulative incidence functions where the covariates

effect is partitioned into its comoeting parts [123]. For IPD meta-analysis, we have em-

phasized use of the proportional subdistribution hazard regression model, which is widely

used and the default in practice.

The methods were illustrated by the re-analysis of an IPD meta-analysis in nasopha-

ryngeal carcinoma. As in [19], a benefit of the addition of chemotherapy to radiotherapy

was detected for both local and distant failure. No evidence of severe heterogeneity was

identified, and we did not identify a strong treatment by age interaction. We do not allow

observations within studies to be clustered because of unobserved factors shared between

individuals. Such factors are assumed to be captured by stratifying the baseline hazard

function by study, inducing conditional independence among individuals within studies.

One might consider approaches that accommodate clustered competing risks data [112],

where robust variance estimates for treatment effect estimates adjust for within study

correlations.

In the application, we consider one-stage fixed-effect meta-analysis using stratified re-

gression models with a trial-specific baseline hazard. For random effect meta-analysis,

with IPD, one may separately estimate treatment effects for each trial and then sum-

marize the distribution of the random treatment effects using the estimated fixed effect

parameters, as in a standard meta-regression. Alternatively, one might consider fitting a

random effects model directly using data from all trials, using, for example, the method

of [110]. In such IPD analyses, one may not have a simple study-specific estimate of

treatment effect, which may complicate the interpretation and the resulting inferences
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are complex relative to the fixed effects models.
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Chapter 6

General discussion

In this dissertation we have been developed methods for clustered data in different con-

texts. The motivating examples were both individual patient data meta-analyses which

are the gold standard to gain evidence on results in biomedical research. However, we

considered the clustered structure of the data in different way depending on the main

objective of the analysis. In Chapter 3 the performance of a biomarker on overall survival

was of interest; meanwhile, in Chapter 5 we estimated the treatment effect on several

competing events. In the former, the proposed method was not specific to meta-analysis,

but to a more general setting where observations within cluster are assumed to be cor-

related because of unmeasured factors. The use of shared frailty model instead of a Cox

model resulted in unbiased results for the estimation of the covariate-specific time depen-

dent ROC curve with clustered survival data. Simulation results showed that the method

introduced by Song and Zhou [9] was inappropriate in presence of clustered data for both

continuous and discrete biomarker. On the contrary, the nonparametric estimator by

IPCW [56] was unbiased with clustered survival and coincide with the proposed one un-

der non informative cluster size. Moreover, the simulations showed biased results under

strong misspecification of the frailty distribution. The definition of the frailty distribution

is a challenging point that has to be addressed when employing frailty models. We refer to

[10] for a more in dept discussion. The misspecification problem has not been explored for

the biomarker model because we agree that since the biomarker is an observable variable,

we should be confident in choosing a parametric model. In fact, a more general model

could be employed for the biomarker but various sources of bias may be avoided with a

more detailed study of its distribution.

By construction of the model, the assumption of a homogeneous biomarker across clus-

ters has been considered. This directly follows from the fact that in a mixed effect model

the random effect must be independent on the covariates [71]. Assuming the biomarker to
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be homogeneous is reasonable when the technology for biomarker’s measurement is either

standardized among clusters or centralized.

Furthermore, we discussed about interpretations of results in case of clustered data

underlying that the target population has to be specified in advance and a careful choice

of the model is needed. In the assessment of biomarker performance in clustered data,

when the biomarker is homogeneous, inference for all observed member and for typical

observed member population produces same results under non informative cluster size.

In the Appendix, the proof for equivalence of the two definitions of time dependent TPR

is provided. This was confirmed by simulations showing same results for the proposed

method and IPCW method. Still, the assumption of non informative cluster size was

not initially discussed. A previous simulation generating the clusters sample sizes by

depending on the frailty was conducted providing incorrect results for both methods;

successively, the issue of informative cluster size was analysed.

Both the assumptions of NICS and homogeneous biomarker were met by the IMENEO

study. This is an IPD meta-analysis of patients with non metastatic breast cancer and

the biomarker in analysis was the circulating tumor cells (CTCs) count. The tumor-stage

specific time dependent ROC curve and AUC were of interest since the tumor stage was

both related to CTCs counts and overall survival.

In Chapter 5 an other individual patient data meta-analysis was considered. Pa-

tients with nasopharyngeal carcinoma were followed to assess the benefit of addition of

chemotherapy to radiotherapy. In particular, we were interested in the treatment effect

on locoregional relapse and distant relapse. The availability of individual characteristics

leads to big advantages in the analysis. It allows to explore the possible source of het-

erogeneity and to detect treatment interactions. Moreover, the one-stage approach where

all the observations are considered at once can be employed instead of combining results

obtained by each group to have an overall treatment effect.

In meta-analyses it is essential to consider the extent to which the results of stud-

ies are consistent with each other. In fact, the presence of heterogeneity defines how

much conclusions can be generalizable. It is clearly of interest to investigate the causes

of heterogeneity among results of trials. This is problematic since there are often many

characteristics that vary across trials from which one may choose. When considerable

variation in results is detected, and particularly if there is inconsistency in the direc-

tion of effect, it may be misleading to use an average value for the intervention effect.

Heterogeneity may be explored by conducting subgroup analyses. Moreover, the follow

up (FUP) time usually differs among trials and a landmark on the cumulative incidence

function can be used to determine whether FUP impacts the treatment effect.
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In competing risks, interpretation of results is not trivial. Extension of the cause spe-

cific hazards model and Fine-Gray model for clustered data were discussed. The stratified

extensions of the two methods were used for the analysis, where a different baseline for

each trial is considered. We acknowledge that some issues for the interpretation of the

subdistribution hazards were mentioned in [122] with a focus on alternatives to the pro-

portional subdistribution hazard regression models. The use of additive risks models or

transformation models could provide insights not captured by the subdistribution hazard

model. Our focus is on the most commonly used models in order to provide a guideline

on how to handle IPD meta-analysis with competing risks.

The assumption of (non) informative cluster size is often considered without further

formal evaluation. However, informative cluster sizes may arise with clustered data and

appropriate methods are needed to obtain unbiased results. Moreover, methods that

handle ICS when it is not needed lead to loss of efficiency [81]. An other contribution is

the definition of a test for informative cluster size with clustered survival data. The test

performs well for both highly clustered data and few big clusters (meta-analysis). Low

power was detected for a not sufficient enough number of clusters. By contrast to the test

introduced in [18] for linear regression, the asymptotic distribution is provided and the

test is fast to compute.

No covariates are introduced at the moment, but employing the Breslow-estimator is

a possible extension of the method. In presence of covariate, the effect of the covariate

might differ between clusters of different sizes. In this case, Pavlou [79] defined informative

covariate structure when the conditional expectation of the outcome for a member given

covariates for that member and the cluster size depends on the covariate values of other

members in the cluster where the member in question belongs. This is an other issue

that can occur simultaneously with informative cluster size and standard methods are

considered inappropriate.

The proposed test is useful to identify ICS with right censored survival data. Yet, we

think that it can also be of interest the formulation of an index to quantify the information

carried by sample size. The difference between the results obtained by the two marginal

analyses could be an idea. Still, intuitively, the problem of low power for a small number

of clusters will not be solved. The determination of an index considering the between-

groups and the within-group variability regrouping clusters by the sample size could be

an other solution.
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Further projects

During the last two years of the PhD I have been working in Servier, Paris as a consultant(”

Doctorat conseil”) in the biomarker team. In the first year together, we have worked on

several short projects mostly based on modelisation of clustered data (not necessarily

time-to-event). The common question to address was: Which model does fit best this

specific data set? My role consisted in examining more in details the structure of the

data and conducting some simulations to determine the best model to employ in that

particular situation.

The last year we have been working on a bigger project on the assessment of sample

size for future experiments in the context of omics data. These, are characterized by

the problem of multiple testing and thus some methods to correct the pvalues have been

proposed. The scope of the project was not to develop a new methodology, but to do a

review on all the existing ones and create some standard functions in R that can be used

from the team for the analysis of pilot data to determine the sample sizes by defining the

desired power and controlling the false discovery rate.

Furthermore, during this year, I had the possibility to start a project in collabora-

tion with Stephen R. Cole, Professor of Epidemiology in the University of North Car-

olina (UNC). The aim of this work is to estimate the per treatment effect by parametric

g-formula in randomized clinical trials with time varying outcome. We consider a ran-

domized clinical trial conducted to compare epirubicin, cisplatin, and capecitabine (ECX)

with fluorouracil, leucovorin, and irinotecan (FOLFIRI) as treatments in patients with

advanced gastric cancer, where more than 30% of patients discontinued protocol.
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Appendix A

ROC(t,x) curve with clustered

survival data

Equivalence between TPRaom and TPRtom

Under non informative cluster size (NICS), if Yrk ⊥⊥ Nk

TPRtom(t, y) = TPRaom(t, y) ∀y

while under ICS they differ in general. As defined in section 2.2

TPRaom(t, y) =
E[NkI(Yrk ≥ y)|Drk(t) = 1]

E[Nk|Drk(t) = 1]

=
E
[
E[NkI(Yrk ≥ y)|Drk(t) = 1, Nk]|Drk(t) = 1

]
E[Nk|Drk(t) = 1]

=
E
[
NkE[I(Yrk ≥ y)|Drk(t) = 1, Nk]|Drk(t) = 1

]
E[Nk|Drk(t) = 1]

=
E
[
NkP(Yrk ≥ y|Drk(t) = 1, Nk)|Drk(t) = 1

]
E
[
Nk|Drk(t) = 1

]
Considering that P(Yrk ≥ y|Drk(t) = 1, Nk) =

∫∞
y

P(Yrk = z|Drk(t) = 1, Nk)dz and

using the Bayes theorem we can rewrite

P(Yrk ≥ y|Drk(t) = 1, Nk) =

∫ ∞
y

P(Drk(t) = 1|Yrk = z,Nk)P(Yrk = z|Nk)

P(Drk(t) = 1|Nk)
dz (A.1)
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For the denominator

P(Drk(t) = 1|Nk) =

∫ ∞
−∞

P(Drk(t) = 1|Yrk = z,Nk)P(Yrk = z|Nk)dz

Assuming NICS and Ykj ⊥⊥ Nk

P(Drk(t) = 1|Nk) =

∫ ∞
−∞

P(Drk(t) = 1|Yrk = z)P(Yrk = z)dz = P(Drk(t) = 1)

Substituting in (A.1)

P(Yrk ≥ y|Drk(t) = 1, Nk) =

∫ ∞
y

P(Drk(t) = 1|Yrk = z,Nk)P(Yrk = z|Nk)

P(Drk(t) = 1)
dz

Assuming NICS and Ykj ⊥⊥ Nk

=

∫ ∞
y

P(Drk(t) = 1|Yrk = z)P(Yrk = z)

P(Drk(t) = 1)
dz

=

∫ ∞
y

P(Yrk = z|Drk(t) = 1)dz

= P(Yrk ≥ y|Drk(t) = 1)

Finally, we obtain

TPRaom(t, y) =
E
[
NkP(Yrk ≥ y|Drk(t) = 1)|Drk(t) = 1

]
E
[
Nk|Drk(t) = 1

]
=

P(Yrk ≥ y|Drk(t) = 1)E
[
Nk|Drk(t) = 1

]
E
[
Nk|Drk(t) = 1

]
= P(Yrk ≥ y|Drk(t) = 1)

= E
[
I(Yrk ≥ y)|Drk(t) = 1

]
= TPRtom(t, y)

Negative binomial distribution

Let Y |X be a random variable following a negative binomial distribution, we define

P(Y = y|X) = (Γ(y + d))/(d+ µX)× (d/(d+ µx))
d × (µX/(µx + d))y
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Figure A.1: AUc for all the methods in all the time, instead of just the three times, it shoes
that SZ is biased and the others are not (under NICS)

with µX = E(Y |X) and V ar(Y |X) = µX(1 + µX/d). Γ(s) =
∫∞

0
zs−1 exp−z dz is the

gamma function and d is the dispersion parameter.

Simulation results

The estimated AUC by the proposed method, by the nonparametric one using IPCW and

by the Song and Zhou method for each time. Data were generated assuming a negative

binomial biomarker and a shared frailty model, as described in the simulation section.

Results on the estimated parameters

We provide the coefficients estimated in the simulation study in the Table A.1. As in the

manuscript, β and γ are the coefficients of the shared frailty model with a Gamma frailty

distribution with parameter θ; the biomarker Y |X follows a negative binomial distribution

with set of parameter ψ = (d, ξ) where d is the dispersion parameter and ξ the regression

coefficient for the covariate X.
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tvalue estimate (sd)

β 0.8 0.799 (0.017)
γ 0.5 0.501 (0.051)
θ 1 1.028 (0.145)
d 0.5 0.501 (0.016)
ξ 0.4 0.399 (0.012)

Table A.1: Results of simulation: parameters.

Assumptions for IMENEO data

We propose some visualization to check the assumptions of the proposed method: non

informative cluster size, an homogeneous biomarker among clusters and the gamma frailty

distribution for the shared frailty model.

Non informative cluster size

We provide the Kaplan-Meier estimator of the survival function at time t∗=30 months for

each cluster in order to study the relationship between the cluster sample sizes Nk and

the outcome. The figure A.2 does not suggest informative cluster size as no trend can be

defined for increasing (decreasing) sample sizes.

Homogeneous biomarker

To understand whether the marker varies among center in Figure is proposed the boxplot

of the CTCs count in different trials. Cremona showed a different distributions where the

CTCs count has higher values, 20% of women presents a number of CTCs greater than

5. This is a geriatric hospital with 4 number of events over 45 observations. We agreed

to discard this center for the analysis.

To strengthen the homogeneity of CTCs a loglikelihood ratio test (LRT) for the null

variance of the random effect was employed. A random intercept model was considered

and the null hypothesis is that the variance of the random effect is null. The statistic

is a 50:50 mixture of χ2(1) and χ2(0) and the corresponding p-value is half of the p-

value obtained if considering incorrectly the asymptotic distribution χ2(1) [124]. The test

confirmed the assumption of an homogeneous distribution of CTCs count rejecting the

null hypothesis with a pvalue=0.33.
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Figure A.2: Kaplan-Meier estimator of the survival function at time t=30 months in each cluster
for subjects with noninflammatory breast cancer.

Gamma frailty distribution in the IMENEO

In the motivating example for non metastatic breast cancer, we assume a gamma frailty

distribution. To check for the adequacy of this assumption, we compare the estimated

marginal survival function by a shared frailty model with the Kaplan-Meier estimator

(Figure A.4).
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Figure A.3: Boxplot of the observed CTCs in different center.

Figure A.4: Marginal survival function estimated by the shared gamma frailty model (in black)
and by the Kaplan-Meier estimator (in red). We also provide the estimated conditional survival
functions for each cluster S(t|Uk) (in gray).
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Appendix B

Informative cluster size

Impact of γ on ICS

To obtain informative cluster size, we generateK clusters with sample sizeNk ∼ Pois(λ exp(Vk))

where λ, common between clusters, represents the expected number of observations in

each cluster and Vk defines the cluster-specific sample size. Let Uk be the frailty term

for the shared frailty model employed to generate the failure times. To create the depen-

dence between the sample size Nk and the failure times Tkjs, we generate (Uk, Vk) from

a multivariate Gamma with unit mean and covariance matrix Σ. The variance σ2
U = 1/θ

defines the variability of failure times among clusters. The variance σ2
V = 1/γ represents

the variability between clusters sample sizes. The parameter ρ is the correlation between

the two random effects. The strength of ICS depends on θ, ρ, γ.

In this section we explore how ICS changes with γ. We generate (Uk, Vk) for 100

clusters with γ ∈ {3, 10, 40}. Figure B.1 shows that Uk increases faster for higher γ,

because the range of Vk (sample size) becomes narrower but θ is fixed, and thus the range

of Uk (failure times) does not change. This translates in higher informative cluster size.

In Figure B.2 we provide the mean failure times T k for each cluster sample sizes: for

small values of Vk (sample sizes) the Uk will be lower for increasing γ and so failure times

will be larger when γ = 40; bigger values of Vk are associated to bigger Uk and thus to

shorter failure times. Therefore, for two fixed sample sizes, the difference of the associated

failure times will be larger with an increasing value of γ and informative cluster size is

stronger. However, this difference is not visible anymore when the mean clusters sample

size decreases (λ = 5) because, the cluster sample sizes are similar when γ = 40.
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Figure B.1: Representation of the two random effects Uk and Vk generated for 100 clusters with
different values of γ.

Figure B.2: Plot of median failure times Tk and the cluster sample sizes Nk (logarithm scale)
associated to the random effects (Uk, Vk). Data for 100 clustered are generated by a shared
frailty model and a Poisson distribution as described in the simulation section in Chapter 4.
The parameter λ of the Poisson distribution represents the mean sample size of clusters if no
variability is present in the sample sizes distribution (γ =∞).
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Appendix C

IPD meta-analysis with competing

risks

Cumulative incidence function

In Figure C.1 we provide the cumulative incidence functions for each of the chemother-

apy modalities. The proportion of event in the population treated by concomitant plus

adjuvant chemotherapy is likely to be higher compared to the other groups.

Forest plot for distant without relapse

Results for the competing event of death without failure are shown in Figure C.2. The

subdistribution hazard ratios and cause specific hazard ratios are provided to examine

the treatment effect (addition of chemotherapy to radiotherapy) and the I2 statistics

quantifies the impact of heterogeneity on the results.

Additional results for non proportionality

The Schoenfeld’s residuals plot and the cumulative subdistribution plot are graphical

methods to study the proportionality of the subdistribution hazards. The plots for studies

where non-proportionality was detected by PSH.test are illustrated in Figures C.3 and

C.4.
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Figure C.1: Stacked plot of the cumulative incidence functions in each treatment subgroup for
all the competing time-to-event: time to local relapse (black), time to distant relapse (grey),time
to death without relapse (light grey)
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Figure C.3: Schoenfeld’s residuals plot and cumulative subdistribution hazards plot for the
studies where non-proportionality was detected by PSH.test (local relapse).

Figure C.4: Schoenfeld’s residuals plot and cumulative subdistribution hazards plot for the
studiy where non-proportionality was detected by PSH.test (distant relapse).
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Titre: Inférence et validation d’un marqueur pronostique pour des données de survie corrélées avec l’application au cancer

Mots clés: Donnèes en grappes, curbe ROC, meta-analyse, survie, effet centre, taille informative de grappes

Résumé: Les données de survie en grappes sont carac-
térisées par des corrélations entre des observations appar-
tenant à un même groupe. Ici, nous discutons des exten-
sions a des données en grappes dans différents contextes.
Nous avons envisagé une méta-analyse pour le cancer du
sein afin d’évaluer dans quelle mesure les cellules tumorales
circulantes discriminent les patients ayant le même stade de
la tumeur. Bien que la courbe ROC dépendante du temps
ait été largement utilisée pour la discrimination des biomar-
queurs, il n’existe pas de méthodologie permettant de traiter
des données en grappes censurées. Nous avons proposè un
estimateur pour les courbes ROC dépendantes du temps et
pour l’AUC lorsque les temps d’évènements sont correlés.
Nous avons employé un modèle de fragilité partagée afin
de tenir compte de l’effet de la grappe. Une étude de sim-
ulation a été réalisée et a montré un biais négligeable pour
l’estimateur proposé et pour un estimateur non paramétrique
fondé sur la pondération par la probabilité inverse d’être cen-
suré (IPCW), tandis qu’un estimateur semi-paramétrique, ig-
norant la structure en grappe est nettement biaisé.
Nous avons également considéré une méta-analyse sur don-
nées individuels (IPD) pour quantifier le bénéfice de l’ajout
de la chimiothérapie à la radiothérapie sur chaque risque
concurrent pour les patients avec un carcinome nasopharyn-
gien. Les recommandations pour l’analyse des risques con-
currents dans le cadre d’essais cliniques randomisés sont
bien établies. Étonnamment, aucune recommendation n’a
encore été proposée pour l’anlayse d’une méta-analyse IPD

avec les risque concurrents. Pour combler cette lacune, ce
travail a détaillé la manière de traiter l’hétérogénéité en-
tre les essais par un modèle de régression stratifié pour les
risques concurrents et il souligne que les mesures standardes
d’hétérogénéité pour évaluer l’incohérence peuvent facile-
ment être utilisées. Nous avons aussi proposé une approche
landmark pour la fonction d’incidence cumulée pour étudier
l’impact du temps de suivi sur l’effet du traitement.
L’hypothèse d’une taille de grappe non informative était faite
dans les deux analyses. On dit que la taille de grappe est
informative lorsque la variable réponse dépend de la taille
de grappe conditionnellement à un ensemble de variables
explicatives. Intuitivement, une méta-analyse répondrait à
cette hypothèse. Cependant, la taille de grappe non infor-
mative est généralement supposée, même si elle peut être
fausse dans certaines situations, ce qui conduit à des ré-
sultats incorrects. La taille des grappes informatives (ICS)
est un problème difficile et sa présence a un impact sur
le choix de la méthodologie. Nous avons discuté plus en
détail de l’interprétation des résultats et des quantités qui
peuvent être estimées et dans quelles conditions. Nous
avons proposé un test pour l’ICS avec des données en
grappes censurées. À notre connaissance, il s’agit du pre-
mier test sur le contexte de l’analyse de survie. Une étude
de simulation a été réalisée pour évaluer la puissance du
test et quelques exemples sont fournis à titre d’illustration.
L’implémentation de chacun de ces développements est
disponible sur https://github.com/AMeddis.

Title: Inference and validation of prognostic marker for correlated survival data with application to cancer

Keywords: clustered survival data, ROC curve, meta-analysis, center effect, informative cluster size

Abstract: Clustered data are characterized by correlations
between observations belonging to the same cluster. Here,
we discuss some extension to clustered data in different con-
texts. Initially, we considered a meta-analysis for breast can-
cer to assess how well the circulating tumor cells discriminate
patients with same tumor stage regarding the risk of death.
Although the time dependent ROC curve has been widely
used for biomarker’s discrimination, there is no methodology
that can handle clustered censored data. We proposed an es-
timator for the covariate-specific time dependent ROC curve
and AUC when clustered failure times are detected consider-
ing a shared frailty model to account for the cluster effect. A
simulation study was conducted showing negligible bias for
the proposed estimator and a nonparametric one based on
inverse probability censoring weighting, while a semipara-
metric estimator, ignoring the clustering, is markedly biased.
We further considered an IPD meta-analysis with competing
risks to assess the benefit of the addition of chemotherapy to
radiotherapy on each competing endpoint for patients with
nasopharyngeal carcinoma. Recommendations for the anal-
ysis of competing risks in the context of randomized clinical
trials are well established. Surprisingly, no formal guidelines
have been yet proposed to conduct an IPD meta-analysis with
competing risks. To fill this gap, this work detailed: how to

handle the heterogeneity between trials via a stratified re-
gression model for competing risks and it highlights that the
usual metrics of inconsistency to assess heterogeneity can
readily be employed. We further proposed a landmark ap-
proach for the cumulative incidence function to investigate
the impact of follow up on the treatment effect.
The assumption of non informative cluster size was made in
both the analyses. The cluster size is said to be informative
when the outcome depends on the size of the cluster con-
ditional on a set of covariates. Intuitively, a meta-analysis
would meet this assumption. However, non informative clus-
ter size is commonly assumed even though it may be not true
in some situations. Informative cluster size (ICS) is a chal-
lenging problem and its presence has an impact on the choice
of the correct methodology. We discussed more in details in-
terpretation of results and which quantities can be estimated
under which conditions. We proposed a test for ICS with cen-
sored clustered data. To our knowledge, this is the first test
on the context of survival analysis. A simulation study was
conducted to assess the power of the test and some illustra-
tive examples were provided.
The implementation of each of these developments are avail-
able at https://github.com/AMeddis.
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