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Abstract

We study a type theoretic definition of weak !-categories originally introduced by Finster and
Mimram, inspired both from ideas coming from homotopy type theory and from a definition of
weak !-category due to Grothendieck and Maltsiniotis. The advantages of such an approach are
multiple: The language of type theory allows for a definition restricted to only a few rules, it also
provides an explicit syntax on which one can perform inductive reasoning, and gives an algorithm
for implementing a proof-assistant dedicated to exploring weak !-categories. The work we present
about this type theory is organized along two main axes: We investigate the theoretical grounds
for this definition and relate it to an other known definition of weak !-categories, and we present
the proof-assistant based on this theory together with practical considerations to improve its use.
We also consider a generalization of this approach to other related higher structures.

We start with an introduction to the language of dependent type theory that we rely on to
introduce our definitions, presenting both the syntax and the semantics that we study by means
of categorical tools. We then present weak !-categories and a type theory that defines them.
We detail the categorical semantics of this theory and our main contribution in this direction
establishes an equivalence between its models and the prior definition of weak !-categories due
to Grothendieck and Maltsiniotis. This definition has enabled us to implement a proof-assistant
capable of checking whether a given morphism is well-defined in the theory of weak !-category,
and we present this implementation together with a few examples demonstrating both the ca-
pabilities of such a tool, and its tediousness in the vanilla version. To improve this issue, we
present two main additional features allowing to partially automating its use: The suspension
and the functorialization. These two operations are defined by similar techniques of induction
on the syntax of the type theory. We then generalize this definition of weak !-categories and
present a type theoretic framework that is both modular enough to allow for defining higher
structures, and constrained enough to precisely understand its semantics. This enables us to
sketch a connection with the theory of monads with arities. Using this framework, we introduce
and study two other definitions of higher structures: Monoidal weak !-categories and cubical
weak !-categories. By using syntactic reasoning we are able to define translations back and
forth between the type theory defining weak !-categories and the one describing monoidal weak
!-categories. One of our main result is to show that these translations imply an equivalence at
the level of models: It shows that the monoidal !-categories are equivalent to the !-categories
with a single object thus justifying the correctness of the appellation monoidal. We then give an
alternate presentation of the type theory defining monoidal weak !-categories, which diverges
from our framework but is more standalone, and prove it to be equivalent to the previous pre-
sentation. We finally introduce in our framework a definition of cubical weak !-categories and
study its semantics, our main result along these lines is to characterize the models of this type
theory and extract a mathematical definition equivalent to them.
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Introduction

Type theory and type theories

Along the developments of computer science and the theory of formal languages, type theory has
revealed itself to play an important role on a theoretical levels in various topics. It was first used
to extend �-calculus, a formalism introduced by Church to model computation [26], to typed
�-calculus, and thus eliminate from the syntax some terms that were problematic because they
could not be normalized. A complete overview of this topic can be found at [10].

Martin-Löf type theory. It was then noticed that the rules for constructing and computing
with these types were very similar to the rules for intuitionistic logic, a result known as the
Curry-Howard correspondence. This presents type theory as a natural place to do construc-
tive mathematics, this idea was further developed by Martin-Löf [55], and then Coquand and
Huet [30] (calculus of constructions), leading to the development of the Coq proof-assistant 1,
and ultimately of other type-theory based proof-assistants (such as Agda 2, Lean 3). These
systems introduce the notion of inductive types, among which in particular is the identity type,
which expresses the equality between two elements. The construction of this identity is generic
and makes it possible to “stack” them, i.e., to consider identity types between two terms which
are themselves in an identity type, and so on. The structure generated by the interaction of
these identity is very rich and lead in particular to homotopy type theory (that we present in
more details later).

Constructive mathematics in Coq. One of the main successes of type theory is to provide
a language suited to formalize mathematical proofs and software verification, that can be later
computer-checked. This is the principle behind the proof-assistant Coq, in which important
results have been developed. Most notably, in mathematics, it has been used by Gonthier and
Werner [36] to formalize the demonstration of the four-color theorem: A famous question which
had stayed open for a long time and was resolved shortly before. Later, Gonthier and al. [37]
also formalized the Feit-Thomson theorem in Coq, which is a fundamental result in group theory,
upon which relies the classification of finite groups. On a more computational side, Coq has been
used by a team lead by Leroy to implement a completely certified compiler for the language C
called CompCert [49]. Other proof assistants are also getting used on a wider scale, such as
for instance Lean, with which Buzzard has recently started a project [22] to formalize algebraic
geometry. The present document is itself accompanied with a formalization of some of the results,
in the proof-assistant Agda [12], our choice for using this particular proof assistant is motivated

1https://coq.inria.fr/
2https://hackage.haskell.org/package/Agda
3https://leanprover.github.io/
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in the fundamental groupoid, as an extra structure instead of quotienting them. In doing so, we
make the paths non-associative. Moreover the homotopies themselves can be composed and this
composition is associative only up to a continuous deformation (a 2-homotopy). One can once
again quotient these 2-homotopies to define the fundamental 2-groupoid of a space. Algebraically,
this is an instance of a weak 2-groupoid. We can also iterate this process by taking in account
the 2-homotopies, which require 3-homotopies and so on, and we finally obtain a structure with
infinitely many levels, each of which is equipped with a composition that is associative only up to
the next level. We call this structure the fundamental !-groupoid of a space, and it is the subject
of study of homotopy theory. The usual way of constructing the fundamental !-groupoids of all
spaces is to endow the category of spaces with a model structure and to compute the homotopy
category of this model structure: It is the category obtained by forcing all the weak equivalences
to become isomorphisms. This formalizes the idea of considering the object of the category up
to an appropriate notion of equivalence. For the category of spaces, the space up to equivalence
are called the homotopy types.

Homotopy hypothesis. The homotopy hypothesis states that weak !-groupoids are Quillen
equivalent to the category of homotopy types. Depending on the chosen definition for weak
!-groupoids, it is either a conjecture or a theorem, and it should rather be understood as a
guideline for a satisfactory definition of weak !-groupoid than a theorem: it prescribes that weak
!-groupoids should be a description of the homotopy types. Moreover, most people interested
in providing such a description often require it to be algebraic in a sense that is not fully formal
but generally means that not only cells do compose, but there is also a chosen witness for their
composition. There is at the moment no definition of weak !-groupoid that is known to satisfy
the homotopy hypothesis and recognized as enjoying algebraicity. However, it is mostly admitted
that Grothendieck’s definition of weak !-groupoids (that is algebraic) satisfy this hypothesis. We
admit this result as well, for the sake of giving the motivation of our work, even though it plays
a minor role in this thesis.

Homotopy type theory

One of the major recent development of type theory is homotopy type theory, and it comes from
a subtle observation of the role played by the identity types in Martin-Löf type theory.

Identity types. In Martin-Löf type theory, given two terms t, u of the same type A, one can
construct the type t = u, whose inhabitants are proofs that t and u are equal. If t and u are
not equal then the type t = u is not inhabited, and we refer the reader to [63] for a complete
presentation of these types, and of other inductive types. The terms of these types have a very
interesting properties: they can be composed. Given a term p of type t = u and a term q of
type u = v, one can define a term p · q of type t = v, this property is usually referred to as
the transitivity of equality, but since we are working in a constructive setting we prefer see this
as a way to compose two proofs in order to produce a new proof. A natural question to ask is
whether this composition is associative, and it turns out that it is not: if one compute (p · q) · r
and p · (q · t) completely, they define different terms, however, both these terms are of the same
type, and as it turns out, the type (p · q) · r = p · (q · r) is inhabited. Hence the composition
of equality proofs is associative up to an equality proof. This is reminiscent of our description
of the fundamental !-groupoid of a space. Moreover this argument can be repeated for identity
types over identity types, and identity types over identity types over identity types and so on.
Making these arguments formal [52, 64, 2] was one of they key progress of homotopy type theory.
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It showed that the iterated identity types naturally endow each type with a structure of weak
!-groupoids.

Homotopy type theory and univalent foundations. The idea of making use of Martin-
Löf type theory in order to study homotopy theory is originally due to Awodey [8], who is at
the origin of the term homotopy type theory. This idea was then backed up by the formal proof
that the identity types carry a structure of weak !-groupoid, which was the original motivation
behind this correspondence. Independently, Voevodsky introduced the univalence axiom [7],
which provides a way to characterize the identity types between types themselves, and studied
the models of the type theory with univalence within simplicial sets. This initiated the study of
the connection between type theory and homotopy theory as an independent and active field of
research. Since the special year at the IAS about univalent foundations [63], the term homotopy
type theory generally designates a type theory which has both the univalence axioms and higher
inductive types: a generalization of inductive that allows to introduce generators for the identity
types.

Synthetic homotopy theory. Martin-Löf type theory was initially introduced as a setting
to perform constructive mathematics, and homotopy type theory takes this approach further
and provides a setting for synthetic homotopy theory : The types with their iterated identities
are identified with weak !-groupoids, which under the homotopy hypothesis are equivalent to
homotopy types. It then becomes possible to translate a result about the structure of the
identities of a type to a result about the fundamental !-groupoid of a space. Along these
lines various results of homotopy theory have been formalized in one of the implementations of
homotopy type theory, such as the universal cover of the circle [51], some of the homotopy groups
of the spheres [20] and the Blackers-Massey theorem [3]. Usual constructive mathematics can be
seen as a special case of synthetic homotopy theory manipulating only types that are 1-truncated
(i.e., types that correspond to groupoids with no non trivial (> 1)-cells).

Models of homotopy type theory. Homotopy type theory still has a lot of open problems,
among which we are particularly interested in the question of its models. As we have mentioned,
a type theory is a generalized algebraic theory, and so is the case for homotopy type theory.
A legitimate question for an algebraic theory is then to understand its models: all object of a
given category that satisfy the axioms defined by the theory. This line of study is often called
categorical semantics. In the case of homotopy type theory, one is not simply interested by any
model, but specifically by the ones that interpret the identity types as homotopies.

A type theory for the theory of weak !-groupoids. From the rules that generate the
identity types in homotopy type theory, Brunerie [20] has extracted a minimal setting of a
type theory that describe weak !-groupoids. This type theory does not have the type formers
of homotopy type theory, and is less powerful than it, as it does not allow for a developing
constructive mathematics in general. However it pinpoints exactly the process that spans weak
!-groupoids. He has proved that the algebraic theory corresponding to this theory is the theory
of weak !-groupoids, as defined by Grothendieck [39]. Our work is heavily influenced by this
idea, and generalize it to weak !-categories.
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Higher categories

We are interested in a generalization of the structure of weak !-groupoid which adds a preferred
direction to each of the cells of the groupoid. These are called weak !-categories. By default,
all our structures are weak, so unless stated otherwise, when we refer to !-categories, we always
mean weak !-categories. Similarly to !-groupoids, !-categories are higher structures, which
make them very difficult to define, and allow for a lot of different definitions. For instance, one
can chose the cells to look like higher dimensional disks, higher dimensional triangles, higher
dimensional cubes, or to have more exotic shapes like the opetopes. As a result, the literature
on !-categories consists mainly in a lot of definitions, along with various proofs of equivalence
between some of these definitions. We refer the reader to the surveys [47] and [25] for a complete
overview of this literature, and we focus on giving an intuitive introduction to a particular
approach to !-categories. This approach was proposed by Maltsiniotis [54], as a variation on the
definition of !-groupoid defined by Grothendieck. We give here a intuitive approach to motivate
our work, and present a formal definition in Section 2.1. This definition was studied extensively
by Ara [4] who has in particular proven it to be equivalent to a definition introduced by by
Batanin [11] and Leinster [48].

Cells and compositions. A weak !-category is a structure that contains n-cells, for each
n 2 N, that we represent graphically as filling discs in higher dimensions as follows

n typical n-cell
0 •

1 • •

2 • •+

3 • •+V+

In addition, the cells are also required to be able to be composed, when adequate requirements
are met, as is the case for instance for two 1-cells in the following situation

• • •

or for a pair of 2-cells in one of the following situations, that we call respectively the vertical
composition and the horizontal composition.

• •
+

+
• • •+ +

In the second case the composition of the 2-cells relies on the composition of the one cells, as
for composing such a diagram, we first compose the two 1-cells on the top together and the two
bottom 1-cells together. Cells in higher dimension have more and more ways to be composed:
3-cells can be composed in 3 ways, 4-cells in 4 ways, and so on.

Associativity and exchange. These compositions are required to satisfy axioms that gener-
alize the usual axioms of composition in a category, most notably they must be associative. In
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the case of the 1-cells, this is the usual associativity, which is usually expressed by the equation
h � (g � f) = (h � g) � f . Our preferred way of stating this result is by saying that the diagram

• • • •

defines a composition which is unambiguous. Indeed, one could chose to first compose together
the two cells on the left and compose the result with the cell on the right, or the other way
around, one could compose the two cells on the right and compose the result with the cell on
the left. The associativity requires these two compositions to be equal. Similarly, we require
the associativity for the two compositions of 2-cells, that we can state by the fact that the two
following diagrams define an unambiguous operation.

• •
+

+
+ • • • •+ + +

We also require an additional condition imposing that the two compositions that we have de-
fined on the two cells interact nicely. This condition is called the exchange law, and can also
be expressed in the same way with diagrams. It states that the following diagram defines an
unambiguous operation

• • •
+

+

+

+

Intuitively, there are two strategies to compose this diagram: either one can compose horizontally
the two 2-cells on the top together, and the two 2-cells on the bottom together, and then compose
the results vertically, or the other way around, one can compose vertically the two 2-cells on the
left together and the two 2-cells on the right together, and then compose the results horizontally.
The exchange law states that these two ways should be equal. The conditions and associativity
requirements become harder to express as the dimension increases, but can still be fully expressed.

Weak axioms. The presentation that we have sketched until now gives rise to strict !-
categories. Indeed, for every axiom like associativity, we have required an equality between
two composition. Although these are important structure in their own right, our objective is
to study the weak variant of this structure, since it is the right setting to describe situations
arising from homotopy theory or from type theory. Intuitively, to obtain a weak structure, we
need to shift perspective for what it means for a diagram to compose unambiguously: From the
strict point of view that we have adopted until now, it means that there is only one operation
that compose the diagram. In a weaker setting, like from the point of view of homotopy theory,
one would typically only require that there is a contractible space of ways of composing these
diagrams. From our more algebraic perspective, we use a variant of this requirement to be con-
tractible, that we express as follows. We require any two ways of composing such a diagram to
be related by a higher cell that we call a witness. For instance in the case of the associativity,
we require that for any two ways f and g of composing the following diagram

• • • •

there exists a 2-cell that relates f to g as follows (and since this is for any two ways of composing,
we can switch f and g to get a witness the other way around)

• •

f

g

+ • •

f

g

*
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Weak !-categories are obtained by relaxing all the conditions that we have expressed about
diagrams defining a composition in an unambiguous way the same way as we have just illustrated
for the associativity. Note that the new witnesses that are obtained by these relaxed compositions
are now cells in the categories, and as such, they must compose like any other cell, and these
composition have to themselves satisfy (weak) axioms and so on.

Unbiased categories. This discussion about weak !-categories illustrates how intricate they
are, and shows how defining them with a list of axiom can quickly get out of hands, hence the
necessity to find a more homogeneous way to describe them. One solution is to work with an
unbiased version of weak !-categories, that is, for instance, instead of requiring the existence
of a composition of two 1-cells, we require the existence of such a composition for arbitrarily
long sequences of composable 1-cells. Since one can apply successively the composition of 1-cells
several times, there was already a way to compose such arbitrarily long sequence. Hence requiring
a new way of composing them should lead to equivalent (in a informal weak sense) structures, if
we also require this new composition and the ones that were already there to be equal (again in a
weak sense). Unbiased weak !-categories are obtained by applying this line of thinking to every
dimension and every operation, and defining as primitive any composition of previously defined
operations. It may seem that doing so we add a lot of unnecessary data, but it also allows for
a more homogeneous description of weak !-categories. In fact the !-categories we manipulate
both in type theory and in our corresponding mathematical description are always unbiased.

A type theory for weak !-categories. The definition of weak !-categories due to Maltsin-
iotis [54] is a variation on Grothendieck’s approach to define weak !-groupoids [39]. Using a
type-theoretic approaches, Brunerie has given [20] a reformulation of Grothendieck’s definition
of weak !-categories. Combining both of these approach, Finster and Mimram have carried
over [33] Maltsiniotis’ variation in a type theoretic style similar to Brunerie’s work. This is the
starting point of our approach to weak !-categories, using this type-theoretic definition as a tool.
In their article [33], Finster and Mimram have left several points about this approach unanswered,
most notably about the models of this theory. One of our goals is to answer these questions.
We also discuss about the practical implications of such a theory and the implementation of a
proof-assistant based on it, as well as generalization to other variations of weak !-categories.

Directed type theory. A very common approach in type theory is to use a type theory as
an axiomatic framework in which one can perform mathematics internally. This is the approach
of Martin-Löf type theory and its variants, in which one encounters various constructions such
as the Σ-types, and the Π-types, or the identity types, whose behaviour turn out to define the
structure of !-groupoids. There have been several attempts to define a similar type theory where
the identity types carry a direction [50, 58, 56] however none of these achieve at the moment a
structure that adding a direction in all the dimension, that would encompass every type with
the structure of a weak !-category. Our approach is orthogonal to this one, we introduce a type
theory in order to encode the combinatorics of weak !-categories within its rules. This theory
does not have the usual Σ-types and Π-types, and does not intend to be a suitable framework to
perform mathematics or replace set theory.

Structure of the thesis

We first introduce the generic background about type theory, in order to recall the common
notations and conventions of this field. Along with this introduction, we present a fairly generic
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and modular framework we rely on to introduce and study type theories. We also specify the
tools from categorical semantics that we use all along the thesis. In the second chapter, we give
a formal definition of weak !-categories, and present the type theory CaTT that describes these
!-categories and upon which most of our work relies. We then use our categorical semantics
tools to prove the equivalence between the mathematical definition and the type theory we have
introduced. In the third chapter, we study the practical implications of CaTT, and in particular
how it can be used to implement a proof-assistant. We then study two features that allow for
partially automating the usage of this proof assistant. In the fourth chapter we briefly describe
a much more general framework to present higher dimensional theories, using type theory, and
establish connections with similar notions from categorical logic. Finally, in the last two chapters,
we use this general framework to introduce and study two new type theories describing variations
of weak !-categories: monoidal weak !-categories (chapter 5) and cubical weak !-categories
(chapter 6).
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Chapter 1

Introduction to type theory

1.1 Introduction to type theories

We first present the notion of type theory that we extensively use to describe all our theories.
There are many variations and flavors of type theory, as it is more a generic guideline and style for
introducing a theory than a fully defined notion. For our purposes, we are interested in dependent
type theories with weakening, exchange and contraction, and we only present a framework that
implements these features as is usually the case for dependent types. We present two ways for
introducing type theories, as they both provide a different insight, and both have their respective
drawbacks. Our presentation of type theory is heavily influenced by Shulman [59].

1.1.1 Conventions and notations

For our purposes, a type theory is a framework that manipulates four kind of objects, that we
introduce here together with the respective notation conventions we adopt.

– Types : A,B, . . .

– Terms : t, u, . . .

– Contexts : Γ,∆, . . .

– Substitutions : �, �, . . .

In the different styles, these objects will not be implemented in the same way, hence we do not
provide yet a specific implementation for them.

Judgments. These objects are related to each other by the means of judgments, which can be
thought of as the statements that are expressible in the theory. These judgments also come in
four kinds, one for each kind of object the theory manipulates.

Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in the context Γ

Γ ` t : A t is a term of type A in the context Γ

Γ ` � : ∆ � is a substitution from Γ to ∆

The intuition is that in type theory, the objects we study do not make sense on their own, they
only make sense in relation to one another, and these judgments are our way to express the
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relations: Their are too many expressions and the judgments are a way to select only some
of them. The primary concept that we want to study are types, they can be thought of as
describing the kind of things that a term can be. For instance mathematicians often consider
the type of natural numbers, or the types of real-valued functions. Types are allowed to depend
on arguments, as for example does the type of square real matrices of size n, however this only
makes sense under the assumption that n is a natural number (which we state in type theory as n
is of the type of natural numbers). It is the role of the contexts to encode those assumed types of
the variables used in the types and in the terms. Thus the judgment Γ ` expresses the fact that
Γ defines a valid set of such assumptions, the judgment Γ ` A expresses the fact that under the
assumptions defined by the context Γ, A defines a valid type, the judgment Γ ` t : A expresses
the fact that under the assumptions defined by Γ the term t is of type A. Finally substitutions
can be thought of as ways to relate these assumptions: The judgment ∆ ` � : Γ expresses the
fact that the assumptions ∆ and Γ are related in such a way that for everything happening under
the assumptions Γ there is a corresponding thing happening under the assumptions ∆.

Derivations. Type theories are usually formulated in terms of inference rules, these are ex-
pressions of the form

J1 · · · Jn

J

where J ,J1, . . . ,Jn are all judgments of the theory. The judgment J is called the conclusion of
the rule, while the judgments J1, . . . ,Jn are called its premises. These rules can be assembled
into derivation trees, by plugging in, for each premise a rule whose conclusion match this premise.
We write these trees as indicated in the following example

J1 J2 J3

J4 J5

J

A derivation tree whose leaves are all rules with no premises and whose conclusion is J is called
a derivation of J , and a judgment in a type theory which has a derivation using only the rules
of the type theory is called derivable, they are the judgments we are interested in. In a given
type theory, a rule

J1 · · · Jn

J

that is not part of the theory is said to be derivable if there exists a derivation tree whose
premises are J1, . . . ,Jn and whose conclusion is J . The rule is said to be admissible if provided
a derivation of each of the judgments J1, . . . ,Jn, there is a derivation of J .

1.1.2 Cut-full type theory

We present our first formulation of the rule of a type theory, following [32], that we call a cut-
full type theory. This style is the closest to the categorical semantics we provide but present
drawbacks for the practical use and implementation of a type theory. It is an intrinsic approach,
in the sense that there is no syntax independently from the rules, and the rules both define the
syntax and specify its behavior at the same time.
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Structural rules. Among the rules that define a theory, we distinguish between the structural
rules and the rules associated to types and terms constructors: The structural rules are shared
by all the type theories we consider, and indicate how the theory is structured around the types
and the terms, in particular they allow for constructing the contexts and substitutions. On the
contrary, the rules for types and terms are specific to each type theory. The term ‘structural rule”
is usually used to designate only some of these rules, along with contractions and weakening; we
use this terminology here which diverges slightly from the norm as these rules are the ones that
generate all the structure of a dependent type theory.

For contexts:

? `

Γ ` A

Γ, A `

For types:
∆ ` A Γ ` � : ∆

Γ ` A[�]

For terms:
Γ, A `

Γ, A ` pΓ,A : A[⇡Γ,A]

∆ ` t : A Γ ` � : ∆

Γ ` t[�] : B[�]

For substitutions:
Γ `

Γ ` hi : ?

Γ, A `

Γ, A ` ⇡Γ,A : Γ
Γ `

Γ ` idΓ : Γ

Ξ ` � : ∆ ∆ ` � : Γ

Ξ ` � � � : Γ
Γ ` � : ∆ ∆, A ` Γ ` t : A[�]

Γ ` h�, ti : (∆, A)

The entities introduced in these rules have to interact with each other and satisfy some axioms,
called definitional equalities. We express these axioms in the form of inference rules, and they
have to be understood as, under the conditions in the premise of the rules, the equality between
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the two entities in the conclusion of the rule must hold.

Ψ ` ⇠ : Ξ Ξ ` � : ∆ ∆ ` � : Γ

Ψ ` (� � �) � ⇠ ⌘ � � (� � ⇠) : Γ

∆ ` � : Γ

∆ ` � � id∆ ⌘ � : Γ

∆ ` � : Γ

∆ ` idΓ �� ⌘ � : Γ

Ξ ` � : ∆ ∆ ` � : Γ Γ ` A

Ξ ` A[� � �] ⌘ A[�][�]

Γ ` A

Γ ` A[idΓ] ⌘ A

Ξ ` � : ∆ ∆ ` � : Γ Γ ` t : A

Ξ ` t[� � �] ⌘ t[�][�] : A[� � �]

Γ ` t : A

Γ ` t[idΓ] ⌘ t : A

Γ ` � : ?

Γ ` � ⌘ hi : ?

Γ, A `

Γ, A ` idΓ,A ⌘ h⇡Γ,A, pΓ,Ai

∆ ` h�, ti : (Γ, t)

∆ ` ⇡Γ,A � h�, ti ⌘ � : Γ

∆ ` h�, ti : (Γ, A)

∆ ` pΓ,A[h�, ti] ⌘ t : A[�]

∆ ` h�, ti : (Γ, A) Ξ ` � : ∆

Ξ ` h�, ti � � ⌘ h� � �, t[�]i : (Γ, A)

We denote wkΓ,A(B) the type B[⇡Γ,A], and think of it as a weakening : Given a type B in a
context Γ it produces a corresponding type in the context Γ, A. With this notation, a type
theory as presented above supports the weakening, that is the following rule is derivable

Γ ` A Γ ` B

Γ, A ` wkΓ,A(B)

These structural rules for type theory are very close to the categorical semantics that we present
in Section 1.2. However, from a computational standpoint they have some drawbacks: Since
we introduce definitional equalities, a same judgment may be derived in various ways. Hence it
is unclear how a type checker could be defined for this system. Indeed, checking the equality
between two expressions, which is essential for type checking, relies on the previously introduced
definitional equalities and requires an algorithm two determine whether two expressions belong
to the same equivalence class, for the equivalence relation generated by those equalities. The
problem of finding such an algorithm is known as a word, and it is known in the general case to
be undecidable. It is complicated, when providing a type theory in this style , to show that its
associated word problem and hence its type checking is decidable.

Type and term constructors. We add new features to introduce types and terms in the
theory that we call type constructor and term constructor. Both of them come with an associated
introduction rules, which explains under which premises it should be used. We illustrate this
concept by defining the introduction for the unique type in a simple type theory with only one
type (by “simple type theory” we mean that the type constructors do not depend on the terms,).
This theory has only one type constructor, that we denote ?. Intuitively, we want to describe
a system in which there is exactly one type in each valid context. Our first intuition is then to
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give the following rule
Γ `

Γ ` ?

However, this rule is problematic, as it clashes with the presentation we have given. For instance,
there are now two derivable types in the context (x : ?), namely

? ` ? and ? ` wk?(?)

This comes from the fact that the rule we have given has “built-in” weakening, while the structural
rule also has weakening, hence in order to perform a weakening, one has the choice to either use
the structural rule for weakening applied to the introduction rule, or to immediately use the
introduction rule with the appropriate context, thus skipping the explicit weakening altogether.
In order to correct this problem, a solution is to modify the introduction rule in order to allow
it only in the “minimal context” in which it applies, shaving off the built-in weakening of it. In
our example, the correct rule is

? ` ?

Taking this example into the more complicated territory of dependent type theory makes us
realize that a general pattern for the introduction rules for types of a theory presented in this
form is

Γ ` C

where Γ is a specific context of the theory, and C is a type constructor. For instance, consider
the theory with the constructor ? as above, and a constructor !, which given two terms t, u of
type ? in a context produces a type t ! u, then the introduction rule for this constructor is

(x : ?, y : ?) ` x ! y

Since types then depend on these “minimal contexts”, which themselves depend on types, this
forces us to define these “minimal contexts” mutually inductively with the rules of the theory and
thus each theory has to be defined and studied separately, as one needs to show every time that
these mutually inductive definition are well-formed. We call a cut-full type theory any theory
implemented in this style, which has all the structural rules as well as introduction rules for types
and terms.

1.1.3 Cut-free type theory

We give a more tractable presentation of type theory. This presentation is closer to the syntactic
aspects, and makes explicit use of the variables (not just as convenience for writing). Moreover,
this setting can be seen as less theoretically robust as the previous one, for reasons we shall explain
after with the presentation of the structural rules. However, it also makes the introduction rules
for types and terms a lot more easier to describe, and matches more the intuition of arity of
operations. We present here an introduction for this style of type theory, and state many of its
properties, without proofs. In Section 4.1, we introduce a precise framework for manipulating
a large number of type theories that we study in a cut-free style, and we have formalized this
framework along with all the properties we state here in the proof-assistant Agda [12]. We thus
postpone the proofs to Section 4.1, where we present our formal proofs for the aforementioned
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framework. This is an extrinsic presentation of a type theory: the syntax exists in its own right
and the rules only allow to specify which of the preexisting syntactic expression have to be taken
as valid from the point of view of the theory.

Signature. In this style of presentation, we make a more heavy use of the syntactic aspect of
type theory, and consider that the contexts, types, terms, and substitutions all have an underlying
expression, which has an existence in its own right. We call pre-contexts (resp. pre-types, pre-
terms and pre-substitutions) the set of all expressions of all contexts (resp. types, terms and
substitutions). We axiomatize these sets, and understand the judgments in a slightly different
way, for instance, we conceive the judgment Γ ` as statement that makes sense for every pre-
context Γ, but that is only derivable for the pre-contexts Γ that are in fact contexts.

In order to present this style of theory, we start with a infinitely countable set of variables V
(whose elements we denote x, y, . . .). We also assume type constructors and term constructors,
each of them being equipped with an arity that is a natural number. We then define by induction

– Pre-contexts to be lists of couples (x : A) where x is a variable and A a pre-type. The
empty list is denoted ?, and concatenation is denoted (Γ, x : A)

– Pre-types to be the expressions formed by C(t1, . . . , tn) where C is a type constructor of
arity n and t1, . . . , tn are pre-terms.

– Pre-terms to be either variables or expressions of the form T (t1, . . . , tn) where T is a term
constructor of arity n and t1, . . . , tn are pre-terms

– Pre-substitutions to be lists of couples (x 7! t) where x is a variable and t is a pre-term.
The empty list is denoted hi and concatenation is denoted h�, x 7! ti

Given a syntactical expression, we define its set of variables, by induction on the syntax as follows

Var(?) = ; Var(Γ, x : A) = Var(Γ) [ {x}

Var(C(t1, . . . , tn)) =

n[

i=1

Var(t)i

Var(x) = {x} Var(T (t1, . . . , tn)) =

n[

i=1

Var(t)i

Var(hi) = {} Var(�, x 7! t) = Var(�) [Var(t)

Intuitively, they are all the variables needed to write the corresponding expression. For a type
or a term, this set is often referred to as the set of free variables. For substitutions, we do not
consider the variables appearing on the left of the mappings x 7! t as they are merely placeholders
for defining the action.

We say that x appears with type A in Γ and write (x : A) 2 Γ if either Γ = (Γ0, x : A) or
Γ = (Γ0, y : B) with (x : A) 2 Γ and y 6= x. Similarly, we say that the mapping (x 7! t) appears
in � or that � sends x to t and write (x 7! t) 2 � if either � = h�0, x 7! ti or � = h�0, y 7! ui
with (x 7! t) 2 �0 and x 6= y.

Action of substitution. In this style of presentation, we can combine together syntactic
entities to get another syntactic entity, which gives a computation directly on the syntax of the
theory, regardless of the derivation rules. More precisely, the pre-substitutions act on the pre-
types and on the pre-terms: Given a pre-substitution � and a pre-type A (resp. a pre-term t),
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we define the pre-type A[�] (resp. the pre-term t[�]). This action can be defined by induction on
the syntax with the following formulas

– For each type constructor C of arity n:

C(t1, . . . , tn)[�] = C(t1[�], . . . , tn[�])

– For each variable x:

x[hi] = x x[h�, y 7! ti] =

⇢
t if y = x
x[�] otherwise

– For each term constructor T of arity n:

T (u1, . . . , un)[�] = T (u1[�], . . . , un[�])

This action also lets us define a composition of pre-substitutions: Given two pre-substitutions �
and �, it produces a new pre-substitution � � �, that we define inductively as follows.

hi � � = hi h�, x 7! ti = h� � �, x 7! t[�]i

It is sometimes convenient to think of this composition as the pre-substitution � acting on the
right on the pre-substitution �, by analogy with how it acts on types and terms. These actions
are compatible in the following sense

Proposition 1. Given two pre-substitution �, �, for any pre-type A, we have A[� � �] = A[�][�]
and for any pre-term t we have t[� � �] = t[�][�]

We also define a particular pre-substitution idΓ associated to a context Γ that we call the identity
substitution of Γ by induction as follows

id∅ = hi idΓ,x:A = hidΓ, x 7! xi

By definition of the action of substitutions, this substitution satisfies for all pre-type A, A[idΓ] = A
and for all pre-term t, t[idΓ] = t, and thus for all substitution �, � � idΓ = �.

Structural rules. In a cut-free type theory, the judgments are subject to the following struc-
tural rules.

For contexts:

? `
(ec)

Γ ` A

Γ, x : A `
(ce) Where x /2 Var(Γ)

For terms:
Γ ` (x : A) 2 Γ

Γ ` x : A
(var)

For substitutions:
∆ `

∆ ` hi : ?
(es)

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)
(se)

In this presentation, most of the rules that were primitive in the previous one become computable
operations on the objects of the syntax. We thus define the substitutions ⇡Γ,A and idΓ, as well
as the composition of substitutions � and the action of substitutions on terms A[�] and t[�] from
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the rules that we have presented here, and then show that these definitions satisfy on the nose
the definitional equalities that we have previously introduced. Hence this presentation enjoys
the uniqueness of derivations: Each derivable judgment has only one derivation. However, note
that the rule (var) allows for the derivation of the judgment Γ ` x : A without ensuring that the
judgment Γ ` A is also derivable. It relies on the fact that weakening for types can be derived
from the introduction rules for types and terms. So in this presentation, not all introduction
rules give a valid type theory, only the ones that allow for derivability of the rule of weakening for
types in order to ensure the important properties that we want type theories to satisfy, presented
in Proposition 2.

Types and term constructors. In practice, in order to ensure that weakening for types is
valid, and hence that the whole theory enjoys the properties of Proposition 2, we only allow for
introduction rules for types and terms that have “built-in” cut. Considering again our example
of a simple type theory with only one type ?, in this style, the introduction rule for ? is now

Γ `

Γ ` ?

In general, in this setting, a type constructor C or arity n obeys a rule of the form

Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` C(t1, . . . , tn)

whereas a term constructor T of arity n obeys a rule of the form

Γ ` t1 : A1 · · · Γ ` tn : An Γ ` B

Γ ` T (t1, . . . , tn) : B

The reader familiar with variations of Martin-Löf type theory may notice that this particular
form for the rules does not capture Σ-types and Π-types - In fact we do not allow for any variable
bindings: All the variables in a term are free. The rules allowing for variable bindings are also
expressible in a way that builds-in the cuts, and we need not restrict ourselves here to rules
that disallow them for the rest of our presentation of cut-free type theories. However, since we
only use rules that prevent variable bindings, we have proved and formalized all our results in a
framework that only allows these rules.

Proposition 2. In a cut-free type theory, all the entities that appear in a derivable judgment
are also derivable, and these theories support the weakening. Moreover, valid expression only use
variables declared in the context. More precisely, the following hold

– For every derivable judgment ∆ ` A, the judgment ∆ ` is also derivable.

– For every derivable judgment ∆ ` t : A, the judgments ∆ ` and ∆ ` A are also derivable.

– For every derivable judgments ∆ ` � : Γ, the judgments ∆ ` and Γ ` are also derivable.

– For every derivable judgment (∆, x : A) `, if the judgment ∆ ` B is derivable then so is
(∆, x : A) ` B.

– For every derivable judgment (∆, x : A) `, if the judgment ∆ ` t : B is derivable then so is
(∆, x : A) ` t : B.
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– For every derivable judgment (∆, x : A), if the judgment ∆ ` � : Γ is derivable then so is
(∆, x : A) ` � : Γ.

– For every derivable judgment ∆ ` A, we have Var(A) ⇢ Var(∆).

– For every derivable judgment ∆ ` t : A, we have Var(t) ⇢ Var(∆).

– For every derivable judgment ∆ ` � : Γ, we have Var(�) ⇢ Var(∆), and moreover writing
� = hxi 7! tii0in and Γ = (yi : Ai)0im we necessarily have n = m and for all i,
xi = yi.

Cut admissibility. The action of pre-substitution that we have defined is compatible with the
rule and hence lifts on substitutions.

Proposition 3. The following rules are admissible

∆ ` � : Γ Γ ` A

∆ ` A[�]

∆ ` � : Γ Γ ` t : A

∆ ` t[�] : A[�]

Composition, identity and projections. The composition of substitution and the identity
substitution that we have defined on the pre-syntax is also compatible with the structural rules
of the theory

Proposition 4. The following rules are admissible

∆ ` � : Γ Γ ` � : Ξ

Ξ ` � � � : ∆

Γ `

Γ ` idΓ : Γ

Note that Proposition 2 combined with this result also shows the admissibility of the rule

Γ, x : A `

Γ, x : A ` idΓ : Γ

In order to distinguish between the two, we denote ⇡Γ,A the identity pre-substitution seen in the
judgment as above. Hence all the structural rules of the cut-full style type theory are valid in
the cut-free style type theory, either as structural rules or only as admissible rules.

Equalities. All the definitional equalities that we have introduced in the cut-full version also
hold our the cut-free presentation computationally. We have already mentioned some of these
that hold regardless of the derivability:

A[idΓ] = A t[id� ] = t � � idΓ = �

A[� � �] = A[�][�] t[� � �] = t[�][�]

h�, x 7! ti � � = h� � �, x 7! t[�]i

Others only hold under the assumption that they are derivable, and we have:

– Given three substitutions Ψ ` ⇠ : Ξ, Ξ ` � : ∆ and ∆ ` � : Γ, the following equality holds

� � (� � ⇠) = (� � �) � ⇠
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– For any substitution ∆ ` � : Γ, the following equality holds (Note that we have already
proved the other unit, as it holds directly on the syntax)

idΓ �� = �

– For any substitution ∆ ` h�, x 7! ti : (Γ, x : A), the following equalities hold

⇡Γ,A � h�, x 7! ti = � x[h�, x 7! ti] = t

– For any substitution ∆ ` � : ?, we have � = hi

– For any context (Γ, x : A) `, we have idΓ,x:A = h⇡Γ,A, x 7! xi

Hence a cut-free type theory implements completely a cut-full one, but enjoys better computa-
tional properties: Whereas the equalities were assumed in the cut-full type theory, they simply
hold on the syntax in the cut-free type theory. More precisely, the following result holds

Proposition 5. For any cut-free type theory T , there exists a cut-full type theory T 0 such that T
every (derivable) context (resp. type, term, substitution) in the theory T translates to a context
(resp. type, term, substitution) in the theory T 0, and conversely. The composition of the two
translations gives the identity on the theory T and produces on the theory T 0 an expression which,
while not necessarily syntactically equal, is always definitionally equal to the one we started with.

This proposition relies on the particular form of the types and terms constructors, and proving
completely such a result is beyond the scope of this thesis, however we can provide an intuition
of how this correspondence works, in particular for substitutions: a non-empty substitution is
always of the form ∆ ` h�, x 7! ti : (Γ, x : A) in the theory T , thus we can send it, in the
theory T 0 onto the substitution obtained by h�0, t0i, where �0 is the translation of � and t0, the
translation of t. A substitution in T 0 however may be of several forms: If it is of the form idΓ0 ,
we can send it on the substitution idΓ, where Γ is the translation in T of Γ0, this is allowed
since idΓ is defined in the theory T . Similarly, if it is of the form �0 � �0, we can send it on
the substitution � � � where � is the translation of �0 and � the translation of �0, and similarly
for all the other possible forms for a substitution in T 0. From these associations, we can see
that taking a substitution from T into T 0 and then back to T yields the same substitution we
started with. Conversely, starting from a substitution of T 0 and taking it into T and then back
to T 0, we may change the term: If for example the original term of T 0 is of the form �0 � �0,
then it gets translated as a composite in T , which is an operation on the syntax and thus can be
computed to yield a substitution of the form hxi 7! tii; this substitution is translated in T onto a
substitution obtained by iterating the h_,_i construction. Since the definitional equalities in T 0

are also satisfied in T , the new substitution that we get is definitionally equal to the substitution
we started with, but has been reduced in the process. In fact this two ways translations between
the two theories gives a normalization procedure on the theory T 0: Any expression of T 0 can be
written in a unique way as an expression from T , thus defining a preferred orientation for the
definitional equalities. This entire discussion holds for cut-free type theory that do not assume
any definitional equality. In the case of cut-free type theories that assume definitional equalities,
the equalities may interact in complicated ways, and there may not exist a normal form, hence
there may not exists a unique expression of T corresponding to an expression of T 0. However,
the structural part of the theory T 0 can still be reduced, and while not presenting a normal form,
the theory T still presents a reduced version of the theory T 0: It has less assumed definitional
equalities.
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Substitution extensionality. All the cut-free type theories also satisfy the following result,
that is not theoretically very meaningful, but very important for reasoning

Lemma 6. Given two substitutions ∆ ` � : Γ and ∆ ` �0 : Γ such that for all variable x in Γ,
we have the equality x[�] = x[�0], then � = �0.

Proof. We prove this by induction on the context Γ

– For the context ?, we necessarily have � = �0 = hi.

– For a context of the form Γ = (Γ0, x : A), we necessarily have � = h�0, x 7! ti and
�0 = h�00, x 7! ui, with ∆ ` �0 : Γ and ∆ ` �00 : Γ. Then for all variable y in Γ, either y = x,
or y is a variable of Γ0. Hence our assumption shows that x[h�0, x 7! ti] = x[h�00, x 7! ui]
which translates to t = u, and for all variable y in Γ0, y[�0] = y[�00]. By induction this
shows that �0 = �00.

Uniqueness of derivation. Cut-free type theories provide a setting which may enjoy unique-
ness of derivations i.e., every derivable judgment has exactly one derivation, when this was
impossible for cut-full type theory. Indeed, the structural rules of the type theory do not clash
with each other: Every syntactic construction corresponds to a unique rule. This property may
however depend on the type and term constructors along with the assumed definitional equali-
ties between them. We prove and formalize that this property holds for a specific framework in
Section 4.1 and Section 4.3, and admit for now that it holds for the theory we introduce.

1.1.4 Categorical structure of a type theory

The general framework that we have given both in a cut-free and in cut-full style for type theories
ensures that, no matter what the terms and type constructors are, the theories expressed by this
framework satisfy some properties and are endowed with a general structure. The aim of the
categorical semantics that we introduce in Section 1.2 is to characterize precisely this structure,
but we motivate it by the notion of syntactic category.

Syntactic category In both styles of type theory, the existence of identity substitutions and of
composition of substitutions, as well as the associativity of the composition, and its left and right
unitality show that the contexts and the substitutions can be assembled into a category. Given
a type theory T , we call its syntactic category, and we denote ST the category whose objects
are the (well-formed) contexts Γ ` in T , and whose morphisms ∆ ! Γ are the (well-formed)
substitutions ∆ ` � : Γ in T . Since both styles of presentations also satisfy other properties, such
as existence of types and terms, together with an action of substitutions on both, the syntactic
category of a type theory actually carries more structure than a mere category, characterizing
precisely this structure is the aim of Section 1.2

Our convention. For our purpose, we always present type theories in a cut-free style. We also
implicitly work at the level of the syntax on a theory, and sometimes emphasize that we work on
the pre-syntax by using the words “expression” or “syntactical”. In Section 1.2, we introduce the
categorical semantics of a type theory in a formalism closer to the cut-full version of the type
theory, and use our previous discussion showing that the cut-free type theories also implement
the structure of a cut-full type theory to ensure that this formalism encompasses the explicit
type theories we work with.
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Variables in the syntactic category. When constructing the syntactic category of a type
theory presented in a cut-free style, we consider all the judgments of the theory up to ↵-
equivalence, that is we identify two judgments that differ only by the names of their variables,
but have the same inductive structure. For instance, given a type constructor ? as above, the
contexts (x : ?, y : ?) and (y : ?, z : ?) define the same objects in the category. There are various
ways of achieving this. Firstly, we can replace in the type theory “contexts” by “equivalence
classes of contexts” and “substitutions” by “equivalence classes of substitutions”. This has the
drawback that the entities in the syntactic category do not correspond to syntactical entities,
but to equivalence classes of them. Another solution is to add conditions on the variables that a
context is allowed to use, to ensure that only one of the possible order is allowed. This amounts
to choosing a syntax that gives a specific representative for each of the aforementioned equiv-
alence classes. Examples of such conditions are the de Bruijn indices or the de Bruijn levels,
which both require the variables of a context to be consecutive natural numbers starting from 0.
The drawback of this approach is that one is that one cannot for instance consider the context
(0 : ?, 1 : ?, 2 : ?) and remove the middle variable to obtain the context (0 : ?, 2 : ?), as the latter
is ill-formed, and forces us to carry the identifications of variables with substitution, instead of
having simply the same name. In our presentation, we extensively rely on the names of variables
for the sake of readability. However, we assume that there is an equivalent formulation of the
theory using de Bruijn levels, and implicitly rely on it to keep a correspondence between the
entities in the syntactic category and the syntax.

1.2 Semantics of type theory

We study additional structure that the syntactic category of a type theory is endowed with, and
use this to give a framework for defining the notion of model of a type theory. We also give a
connection with other notions of theory formulated in categorical logic, hence justifying partially
the fact that a type theory indeed corresponds to a notion of theory.

1.2.1 Categories with families

We now give a categorical description of the type theories that we use to interpret a type theory in
a category (especially in the category of sets). This gives the semantics of the theory. Interpreting
the theory can be thought of as giving an incarnation of its axioms in the category, and thus
corresponds to the notion of model of a theory. We work specifically in the formalism of categories
with families, introduced by Dybjer[32], but other categorical models have been considered for
type theory, such as categories with attributes [23], comprehension categories [42], display maps
categories [62], and natural models [6], we refer the reader to [41] for a survey on these notions.
We use categories with families to describe our specific case of type theory, but it is a much
more general formalism and can encompass a lot of other features one may require a type theory
to have, like Σ-types or Π-types, and they have been studied extensively by Clairembault and
Dybjer [28, 27, 24].

Categories with families. We write Fam for the category of families, where an object is a
family (Ai)i2I of sets Ai indexed in a set I and a morphism f : (Ai)i2I ! (Bj)j2J is a pair
consisting of a function f : I ! J and a family of functions (fi : Ai ! Bf(i))i2I .

Suppose given a category C equipped with a functor T : Cop ! Fam. Given an object Γ of
C, its image will be denoted

TΓ =
�
TmΓ

A

�
A2TyΓ

23



i.e., we write TyΓ for the index set and TmΓ

A for the elements of the family. By analogy with a
type theory, for a morphism � : ∆ ! Γ an element A 2 TyΓ and an element t 2 TmΓ

A, we write
A[�] = T�(A) the image of A in Ty∆, and t[�] = TA�(t) the image of t in Tm∆

A[�]. With those
notations, the functoriality of T can be written as

A[� � �] = A[�][�] t[� � �] = t[�][�]

A[id] = A t[id] = t

for composable morphisms of C.
A category with families (or CwF ) consists of a category C equipped with a functor as above

T : Cop ! Fam, such that C has a terminal object, denoted ?, and that there is a context
comprehension operation: given a context Γ and type A 2 TyΓ, there is a context (Γ, A),
together with a projection morphism ⇡ : (Γ, A) ! Γ and a term p 2 Tm

(Γ,A)
A[⇡] , such that for every

morphism � : ∆ ! Γ in C together with a term t 2 Tm∆

A[�], there exists a unique morphism
h�, ti : ∆ ! (Γ, A) such that p[h�, ti] = t:

(Γ, A)

∆ Γ

⇡
h�,ti

�

In a category with families, the class of display maps is the smallest class of morphisms containing
the projection morphisms ⇡ : (Γ, A) ! Γ and closed under composition and identities.

Proposition 7. The syntactic category of a type theory is endowed with a structure of category
with families, where for every context Γ, TyΓ is the set of derivable types in Γ and TmΓ

A is the
set of derivable terms of type A in Γ

Proof. For a cut-full type theory, this is a direct translation of the structural rules of the the-
ory, together with the equation it satisfies. Since we have asserted that a cut-free type theory
completely implements a cut-full type theory, and satisfies the same equations, it gives the same
structure to the syntactic category of a cut-free type theory.

Given a category with families C, we define its presheaf of types Ty : Cop ! Set which associates
to each object Γ the set TyΓ, as well as its presheaf of terms Tm : Cop ! Set which associates
to each object Γ the set

F
A2TyΓ Tm

Γ

A. There is a natural transformation Tm ) Ty associating

for each term in TmΓ

A the type A 2 TyΓ. The axioms of category with families can be expressed
in terms of representability of this natural transformation (c.f. [6]).

Models. A morphism between two categories with families (C, T ) and (C0, T 0), is a functor
F : C ! C0 together with a natural transformation � : T ! T 0 � F , such that F preserves
the terminal object and the context comprehension operation. A 2-morphism ✓ between two
morphisms (F,�) : T ! T 0 and (F 0,�0) : T ! T 0 is a natural transformation ✓ : F1 ! F2 such
that T✓ � � = �0.

We define a large category with families in a similar way, as a large category equipped with a
functor into families of large sets indexed by a large set, and satisfying the exact same properties.
Note that a category with families can be seen as a large category with families. There is a
structure of category with large families on the category Set, where, given a set X, TyX is the
(large) set of all function f : Y ! X with codomain X and given such a function f : Y ! X,
TmX

f is the (large) set of all sections of f . We define the (large) category of models of a category
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with families C to be the category whose objects are the morphisms of categories with families
from C to Set, and whose morphisms are the 2-morphisms of categories with families. We denote
Mod(C) the category of models associated to a category with families C.

Pullbacks along display maps. The structure of category with families encompasses a com-
patibility condition between context comprehension and the action of morphisms on the type,
expressed by the following lemma. In particular, it states that all pullbacks along display maps
exist and that they can be explicitly computed from the given structure.

Lemma 8. In a category with families C, for every morphism f : ∆ ! Γ in C and A 2 TyΓ, the
square

(∆, A[f ]) (Γ, A)

∆ Γ

⇡0

hf�⇡0,p0i

⇡

f

is a pullback, where ⇡0 : (∆, A[f ]) ! ∆ and p0 2 Tm
(∆,A[f ])
A[f ][⇡0] are obtained by context comprehen-

sion.

Proof.

Θ

(∆, A[f ]) (Γ, A)

∆ Γ

�

�

⇡0

hf�⇡0,p0i

⇡

f

Consider the term p 2 Tm
(Γ,A)
A[⇡] , then p[�] 2 TmΘ

A[⇡][�] = TmΘ

A[f ][�]. By context extension, we
get a map h�, p[�]i : Θ ! (∆, A[f ]) such that ⇡0 � h�, p[�]i = � and p0[h�, p[�]i] = p[�]. Since
moreover p0 = p[hf � ⇡0, p0i], the term equality gives in fact p[�] = p[hf � ⇡0, p0i � h�, p[�]i],
which is a necessary condition for the upper triangle to commute, thus proving uniqueness of
the map. We just have to show that this map makes the upper triangle commute. Notice that
⇡ � hf � ⇡0, p0i � h�, p[�]i = ⇡ � �, and p[�] = p[hf � ⇡0, p0i � h�, p[�]i], by universal property of the
extension for morphisms, this implies the commutativity of upper triangle.

Lemma 9. Let C and D be two categories with families, together with a morphism (F,�) : C ! D,
then for any object Γ in C together with an element A 2 TyΓ and for any morphism � : ∆ ! Γ

in C, the following equation is satisfied

F (∆, A[�]) = (F∆, (�ΓA)[F�])

Proof. By definition of a morphism of category with families, we have

F (∆, A[�]) = (F (∆), (�∆(A[�])))

Moreover by naturality of �, the following square commutes

TyΓ TyF (Γ)

Ty∆ TyF (∆)

�Γ

_[f ] _[F�]

�∆
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thus �∆(A[�]) = (�ΓA)[F�].

Note that Lemma 8 allows to understand this result as the fact that F preserves the pullbacks
along the display maps. In fact one can understand the formalism of category with families
as a way to define a category with a choice of pullbacks along a certain class of maps, while
also ensuring that this choice of pullback is split: the composition of two pullbacks is not only
isomorphic to the pullback of the composition, but is equal on the nose. Syntactically, this
translates into the equality (∆, A[� � �]) = (∆, A[�][�]).

A characterization of the models. The pullbacks along the display give a nice characteri-
zation of the models of a category with families

Lemma 10. The category of models of a category with families C is isomorphic to category of
functors C ! Set that preserve the terminal object and the morphisms along the display maps.

Proof. Lemma 9, the underlying functor of a morphism of category with families preserves the
pullbacks along the display maps, and by definition, such functor has to preserve the initial object
as well. So it suffices to prove that a functor F : C ! Set preserving the initial object and the
pullbacks along display maps gives rise to a unique model. Consider such a functor F , together
with an object Γ in C and a type A 2 TyΓ. Suppose defined � such that (F,�) is a model of
C, then necessarily F (Γ, A) = (FΓ,�ΓA) = �ΓA by definition of the context comprehension in
Set. Thus necessarily �Γ(A) = F (Γ, A). Consider a term t 2 TmΓ

A, then there is a morphism
hidΓ, ti : Γ ! (Γ, A), and by definition of the category with families structure of Set, we then have
F (hidΓ, ti) = hidFΓ,�Γ,A(t)i = t, which proves that necessarily �Γ,A(t) = F (hidΓ, ti). Conversely,
these assignments define a natural transformation �, which make (F,�) into a model of F .

This condition relies on the specific structure of category with families of Set: It may not be true
in general that the morphisms of categories with families between two arbitrary categories with
families C and D are isomorphic to the functors preserving the display maps and the pullbacks
along them. It also justifies retrospectively not to be too precise about the size issues with Set,
as one may as well ignore the structure of category with families on Set altogether, and define
a model as a functor C ! Set that preserves the terminal object and the pullback along the
display maps.

Contextual categories. In order to carry some inductive constructions that we can perform
on the syntax on a theory, and treat them in full generality, we introduce the notion of contextual
category. These are precisely the categories with families with extra structure making those
inductive construction possible, they were introduced by Cartmell [23] and studied later on by
Streicher [61] and Voevodsky [65] under the name of C-system.

Definition 11. A contextual category is a category with families C together with a map `

associating to each object Γ of C a natural number `(Γ) called its length, such that

– the terminal object ? is the unique object such that `(?) = 0,

– for every object Γ and type A 2 TyΓ, `(Γ, A) = `(Γ) + 1,

– for every object Γ such that `(Γ) > 0, there is a unique object Γ0 together with a type
A 2 TyΓ

0

such that Γ = (Γ0, A).
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Note that a contextual category is usually defined to be a category with attributes satisfy-
ing such properties. However, since categories with families and categories with attributes are
equivalent, we will also refer to these as contextual categories. Also note that, the notion of
contextual category is not invariant by equivalence of categories. Their use is justified by the
following proposition

Proposition 12. The syntactic category of a type theory is naturally endowed with a structure
of contextual category.

Proof. In both the cut-full and the cut-free styles, the objects of the syntactic category are
contexts, that are formally lists. Hence they are naturally equipped with a notion of length,
which by definition satisfies all the expected properties.

Given a contextual category C, an object Γ whose length is strictly positive is obtained in
a unique way as Γ0, A, and we simply write ⇡Γ : Γ ! (Γ0, A) (or even ⇡) instead of ⇡Γ0,A. We
also write xΓ for the term pΓ0,A in TmΓ

A[⇡], thought of as a variable. More generally, we declare
that a term is a variable when it is of the form xΓ[⇡] where ⇡ is a display map. Note that in a
contextual category, if ⇡ : ∆ ! Γ is a display map, then necessarily l(∆) > l(Γ). This implies
that the variables of a non-empty context (Γ, A) are either x(Γ,A), or of the form x[⇡(Γ,A)] where
x is a variable of Γ.

The following lemma shows that a map in a contextual category is entirely characterized by
its action on variables in its target context, it is a categorical analogue of Lemma 6 that we have
stated on the syntax.

Lemma 13. Consider two maps �, � : ∆ ! Γ, in a contextual category, such that for every
variable x in Γ, x[�] = x[�]. Then � = �.

Proof. We will prove this result by induction on the length of the context Γ :

– If Γ is of length 0, then necessarily, Γ = ? is the terminal object, and thus � = �.

– If Γ is of length l+ 1, then it is of the form (Γ0, A), and there is a substitution ⇡ : Γ ! Γ0.
Suppose that there are two substitutions �, � : ∆ ! Γ, such that for all variables x of Γ,
we have x[�] = x[�]. Note that we necessarily have � = h⇡ � �, xΓ[�]i and � = h⇡ � �, xΓ[�]i,
as it is the case for every substitutions. Then for the variable xΓ, we have xΓ[�] = xΓ[�].
Moreover, for every variable x of Γ0, x[⇡] is a variable of Γ, and thus x[⇡][�] = x[⇡][�],
which proves x[⇡ � �] = x[⇡ � �], and y induction hypothesis, ⇡ � � = ⇡ � �. We thus have
proved that h⇡ � �, xΓ[�]i = h⇡ � �, xΓ[�]i, i.e., � = �.

Looking back at the cut-full versus cut-free. This discussion gives more insight about
the different presentations of the cut-full and the cut-free type theories. Both can be seen as
describing a universal category with families: Roughly speaking the syntactic category of a type
theory is the initial category with families that satisfy all the rules for types and terms of the
theory (i.e., the non-structural rules). This a bold claim, as in most cases, it is just a conjecture
(known as the initiality conjecture), whose quest for a proof is still a very active project [66, 5].
However, in the cases we are interested in, this claim is fairly reasonable to check, and for the
sake of this discussion, we assume that it is the case, if not strictly at least up to some technical
details that do not hamper the main idea. The two styles of type theory can be understood as
two presentations of this universal category with family (and moreover, both these presentations
enjoy a notion of length for object and hence give a structure of contextual category). The

27



cut-full type theory is then akin to a standard presentation, where all the structure is in the
generators, and all the relations between them are required as relations, whereas the cut-free
type theory is comparable to a reduced presentation.

1.2.2 Most general unifiers

Let C be a category with families and Γ an object of C. Given a type A 2 TyΓ and two terms
t, u 2 TmΓ

A of the same type A, we call a most general unifier of t and u an object Γ/t=u

together with a map " : Γ/t=u ! Γ such that t["] = u["] and every map � : ∆ ! Γ in C such
that t[�] = u[�] factors uniquely as � = "�̃:

∆ Γ

Γ/t=u

�

�̃
"

Given two morphisms ∆ Γ
f

g
we also denote ∆/f=g the equalizer of f and g in ∆, to emphasize

the similitude between the two universal properties.

Theorem 14. A contextual category C which has most general unifiers for every pair of terms
of the same type has all finite limits.

Proof. By definition of a category with families, C has a terminal element, so it suffices to prove
that it has all pullbacks. Consider a cospan in C

Θ

∆ Γ

✓

�

We prove by induction on the length of Γ that this cospan has a pullback.

– If Γ is of length 0, then it is the terminal object, and by uniqueness, ✓ = ⇡`(Θ). Since the
successive pullbacks exist along all the display maps ⇡, this cospan admits a pullback.

– If Γ is of length l+1, then it is of the form (Γ0, A) with Γ0 of length l, and A 2 TyΓ
0

. Then
by induction, the following cospan has a pullback, denoted Σ

Σ Θ

∆ Γ0

�1

�2

y
⇡
Γ0,A✓

⇡
Γ0,A�

(1.1)

From this pullback, we will construct the pullback of the original cospan, the following way.
Take the universal term p = pΓ0,A 2 TmΓ

0

A[⇡
Γ0,A], it gives rise to two terms in Σ, t = p[✓�1]

and u = p[��2]. These two terms have respective types A[✓�1⇡Γ0,A] and A[��2⇡Γ0,A], thus
by commutation of the diagram (1.1), these two terms have the same type. Thus we can
construct their most general unifier e : Σ/t=u ! Σ, and we will now check that the following
diagram is a pullback

Σ/t=u Θ

∆ Γ

�1e

�2e ✓

�
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First we will show that this square commutes. First note that by commutation of the
diagram (1.1) we have the equality

⇡(✓�1e) = ⇡(��2e)

Moreover, by definition of the most general unifier, we have that t[e] = u[e], which rewrites
as vΓ[✓�1e] = vΓ[��2e], so by Lemma 13, it follows that the above square commutes. Now
take another commutative square of the form

Ξ

Θ

∆ Γ

⇠1

⇠2
✓

�

Then composing with ⇡, and using the property of the pullback we get a unique map

Ξ

Σ Θ

∆ Γ0

⇠1

⇠2

9!⇠

y

�1

�2 ⇡✓

⇡�

Moreover, by commutation of this diagram, t[⇠] = vΓ[✓�1⇠] = vΓ[✓⇠1] and u[⇠] = vΓ[�⇠2].
By commutation of the initial diagram, this proves that t[⇠] = u[⇠]. By definition of the
most general unifier, this implies that ⇠ factors as ⇠ = e⇠̃. This gives a unique factorization
as

Ξ

Σ/t=u Θ

∆ Γ

⇠1

⇠2

⇠̃

�1e

�2e ✓

�

Most general unifiers and equalizers. Consider a category with families C, two morphisms
in the following form

∆ (Γ, A)
h�,ti

h�0,t0i

Proposition 15. Suppose that the equalizer e : ∆/�=�0 ! ∆ exists. Then the equalizer
∆/h�,ti=h�0,t0i exists if and only if the most general unifier of t[e] and t0[e] exists in ∆/�=�0 ,
and if so, they are isomorphic.

Proof. Suppose that the equalizer e+ : ∆/h�,ti=h�0,t0i ! ∆ exists, then by definition, we always
have that h�, tie+ = h�0, t0ie+, so composing both sides by the projection ⇡ : (Γ, A) ! Γ yields
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the equality �e+ = �0e+. This proves by universal property of e that e+ factors in a unique
way as e+ = eu, with u : ∆/h�,ti=h�0,t0i ! ∆/�=�0 . We show that u satisfies the universal
property of the most general unifier of t[e] and t0[e]. Consider a map f : X ! ∆/�=�0 such that
t[e][f ] = t0[e][f ], then we have by definition of e, the equality �ef = �0ef , and by definition of f ,
t[ef ] = t0[ef ], hence by universality of the operation h_,_i, this shows that h�, tief = h�0, t0ief ,
so by definition of e+, there exists a unique map f̃ such that ef = e+f̃ . Using our decomposition
of e+, we have ef = euf̃ , and since e is an equalizer, this shows f = uf̃ . Thus we have proved
that u satisfies the universal property of the most general unifier. Conversely, consider the
most general unifier of t[e] and t0[e] in ∆/�=�0 , in order to simplify the notations we denote it
u : U ! ∆/�=�0 . We show that the map eu is the equalizer of h�, ti and h�0, t0i. Consider a
map f : X ! ∆ such that h�, tif = h�0, t0if , then composing with the projection on the two
sides yields �f = �0f , and hence, since e is the equalizer f factors in a unique way in f = ef̄ .
Moreover, we have t[f ] = t0[f ], which now translates to t[e][f̄ ] = t0[e][f̄ ], and since u is the most
general unifier of t[e] and t0[e] there is a unique factorization of f̄ into uf̃ , which gives a unique
factorization of f in f = euf̃ . Hence U is the equalizer of h�, ti and h�0, t0i.

Under the assumption that enough equalizers exist, we can iterate this result and express any
equalizer as a sequence of most general unifiers. A sufficient condition for this would be that
whenever the equalizer of h�, ti and h�0, t0i exists, so does the equalizer of � and �0, and we
conjecture that this is the case in all the type theories we consider. Under this assumption, the
most general unifiers can be seen as the generators of the equalizers of the category.

Primitive most general unifiers. We now define a class of most general unifiers that we
call primitive: these are the ones that have to exist because of the structure of category with
family. Let C be a category with families (it needs not be a contextual category), and consider
an object of the form (Γ, A), and a term u 2 Tm

(Γ,A)
A[⇡Γ,A] the most general unifier (Γ, A)/pΓ,A=u

always exists and is given by
hidΓ, ui : Γ ! (Γ, A)

Indeed, consider a map f : ∆ ! (Γ, A) such that u[f ] = pΓ,A[f ], then f factors uniquely through
hidΓ, ui as

Γ (Γ, A)

∆

hidΓ,ui

f
⇡Γ,Af

Suppose that Γ is an object and t and u are two terms with the same type A, such that the
most general unifier Γ/t=u ! Γ exists. Consider ∆ to be a sequence of context comprehensions,
such that Γ,∆ is a well defined object, and ⇡∆ be the corresponding display map obtained by
composing all the projection maps. Then the most general unifier of t[⇡∆] and u[∆] in the context
Γ exists, and it is computed as the following pullback (which exists since ⇡∆ is a display map)

Γ,∆/t[⇡∆]=u[⇡∆] Γ,∆

Γ/t=u Γ

e

y
⇡∆

e

Consider an object Γ and a term t in Γ along with two maps f, g : ∆ ! Γ. Then the most
general unifier of t[f ] and t[g] exists if and only the most general unifier of f and g exists, and
when this is the case, they are equal.
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Define a primitive most general unifier to be a most general unifier of one of the following
form

– (Γ, A)/pΓ,A=u where u is a term of type A[⇡Γ,A] in (Γ, A)

– Γ,∆/t[⇡∆]=u[⇡∆] where Γ/t=u is a primitive most general unifier

– Γ/t[f ]=t[g] where Γ/f=g is a primitive most general unifier

And for substitutions a primitive most general unifier is one of either of the following form

– Γ/hi=hi

– Γ/hf,ti=hg,ui where both ∆ = Γ/f=g and ∆/t[f ]=u[g] are primitive most general unifiers

Lemma 16. Any category with families has all primitive most general unifiers.

Proof. By construction, we have defined the primitive most general unifiers from the pullbacks
along the display maps, which exist in any category with families.

Models preserve primitive most general unifiers.

Theorem 17. If F is a model of a contextual category C, then F preserves the primitive most
general unifiers.

Proof. Since all the primitive most general unifiers are constructed only with context compre-
hension and morphism extension constructions, and that a model preserves these on the nose, it
has to preserve all the primitive most general unifiers.

Corollary 18. If F is a model of a contextual category C such that all most general unifiers are
primitive, and such that whenever the most general unifier of h�, ti and of h�0, t0i exists, so does
the most general unifier of � and �0, then F preserves all the finite limits that exist in C.

Proof. Since F is a model, it preserves all the pullbacks along display maps, and in particular
it preserves the products (since for any object Γ, the map Γ ! ? is a display map). Moreover,
any equalizer e can be written as a series of most general unifiers, that are all preserved by F ,
and hence can be iterated in Set and define F (e) as the image equalizer. Hence F preserves the
products and the equalizers, so it preserves all the finite limits in C.

In particular, in a type theory that does not postulate definitional equality, all the most general
unifiers are primitive. This will be the case for our theories where the definitional equality of
terms will correspond to their syntactic equality.

1.2.3 Categorical notions of theories

We now introduce tools from categorical logic that formalize the notion of a theory, and of models
of a theory by the means of categories. This gives comparisons with the tools we have introduced
to study type theory, and allows us to understand a type theory as a language to manipulate
axioms of a theory.
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Lawvere theories. Category theory provides a framework in which it is possible to formulate
some axiomatic theories in a very elegant way, with the notion of product only. Indeed, consider
a category C whose objects are the natural numbers 0, 1, . . ., and such that n+m is always the
categorical product of n and m (with 0 the terminal object), together with a functor F that
preserves the finite products. Then F defines a set X = F (1), and for all other n, we have
F (n) = Xn, the morphisms of C then give operations, and in particular a morphism µ : 2 ! 1 in
C provides an binary operation m = F (µ) : X2 ! X. Finally the equalities between morphisms
in C provide equalities between operations, in particular, from a commutative square

3 2

2 1

µ⇥1

1⇥µ µ

µ

we get an equation written as 8a, b, c 2 X,µ(a, µ(b, c)) = µ(µ(a, b), c). Other equalities could give
other equations, but the functor F always corresponds to a set equipped with a specific structure.
Conversely, given an axiomatic theory, and under appropriate restriction, there exists a category
C as above such that the functors C ! Set preserving the finite products are exactly the sets
equipped with these axioms. This lets us interpret such a category C as being an axiomatic
theory, and with this interpretation, the functors preserving the finite products are exactly the
models of the theory. This construction has been introduced by Lawvere [45] and is now known as
a Lawvere theory, the axiomatic theories that correspond to a Lawvere theory are called algebraic
theories.

Gabriel-Ülmer duality. A more powerful notion of theory expressed in a categorical language
is given by the small finitely complete categories. These are the categories that have not only all
the finite products, but also all the finite limits. Such a category C defines an essentially algebraic
theory, i.e., a notion of theory similar to the algebraic theories, but allowing partially defined
operations, and its models are the functors C ! Set that preserve the finite limits. Gabriel and
Ülmer [35] have showed that these categories assemble into a bicategory, and the functor which
associates its models to each essentially algebraic theory is a bi-equivalence. This characterizes
exactly the structures that can be expressed by an essentially algebraic theory, which are called
the locally finitely presentable categories.

Generalized algebraic theories. As motivated by the two previous examples, the notion of
a theory can be presented categorically by the existence and preservation of finite limits. The
case of Lawvere theory restricts only to finite products, whereas Gabriel-Ülmer duality requires
all finite limits. Contextual categories can be seen as a sort of intermediate between these two,
where the limits required are the pullbacks along display maps. In contextual categories all the
unique maps to the terminal object ! : Γ ! ? are display maps, thus a contextual category has
all products, but it does not necessarily have all limits. Hence the intuition is that contextual
categories lie in between Lawvere theories and finitely complete categories. This justifies the use
of the terminology generalized algebraic theory introduced by Cartmell [23] to denote a theory
that is categorically expressed as a contextual category. This comparison can even be taken a step
further: multi-sorted Lawvere theories need to have objects freely generated by a finite set. One
can understand the types and the length of objects in a contextual category as a convenient way
to express a condition of the set of objects being freely generated, and the terms as a convenient
way to express the existence of additional morphisms between two objects, that don’t come from
the limit structure. We illustrate how contextual categories can be understood as generalizations
of Lawvere theories with the following results
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Proposition 19. Contextual categories which only have a single type associated to each object
are equivalent to Lawvere theories.

Proof. Consider a contextual category C which has only one type associated to every context, to
simplify the notations, we denote ? the unique type in any object, and note that any two objects
Γ and ∆ of the same length are necessarily equal. Indeed, the only object of length n in the
category is given by (?, . . . , ?). We thus simply denote n this object. Using this notation, we see
that 0 is the terminal object, and the map n ! 0 is a display map by definition of a contextual
category. Thus we can consider the pullback of 1 ! 0 along this map, which computes the
categorical product n ⇥ 1 as the object (n + 1). By iterating this construction, we prove that
the categorical product n ⇥ m is given by the object (n + m), hence C is a Lawvere theory.
Conversely, given a Lawvere theory C, we ca define the length of the object n to be n for every
object, and define the set of type associated to each object to be a singleton. We then define
the set of terms of the unique type associated to the object n to be C(n, 1), so that a morphism
f : m ! n naturally acts on a term t : n ! 1 as t � f : m ! 1. We can check that this defines a
contextual category.

Morita equivalence. Thinking of contextual categories as a generalization of Lawvere theo-
ries, allows us to interpret our notion of type theory: it provides a syntax to work internally to
a contextual category. Note that it would be wrong to conceive a type theory as a generalized
algebraic theory, because different syntaxes may yield the same contextual category (this is com-
monly referred to as a Morita equivalence). Rather we think of a type theory as a particular
presentation of a generalized algebraic theory, the same way a set of axioms gives a presentation
of a theory but different sets of axioms may define the same theory.
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Chapter 2

A type theory for globular

!-categories

2.1 The Grothendieck-Maltsiniotis definition of !-categories

This entire section is a quick presentation of the definition of weak !-categories given by Maltsin-
iotis [54], relying on the ideas for defining weak !-groupoids introduced by Grothendieck [39].
The aim is to introduce the notions that the type theory CaTT relies on, as well as the notations
we will use for these notions. For a more in-depth study of this definition, one can refer to the
original article by Maltsiniotis [54] or by a full account of this definition by Ara [4]

2.1.1 The category of globes and globular sets.

Similar to how the regular categories are supported by graphs, !-categories are supported by a
structure called globular sets. These are generalization of graphs that do not only include vertices
and arrows, but also arrows between the arrows (2-cells), arrows between the 2-cells (3-cells)
and so on. A convenient way to define the category of globular set is as a presheaf category.

The category of globes. We denote G the category whose objects are the natural numbers
0, 1, . . . and whose morphisms are generated by the graph

0 1 2 · · ·
�0

⌧0

�1

⌧1

�2

⌧2

subject to following coglobular relations:

�i+1 � �i = ⌧i+1 � �i �i+1 � ⌧i = ⌧i+1 � ⌧i

The category of globular sets GSet = bG is the presheaf category over the category G. Given
a globular set G, we write Gn instead of Gn. Equivalently, a globular set is a family of sets
(Gn)n2N

equipped with maps @�i , @+i : Gi+1 ! Gi satisfying the globular relations, dual to the
coglobular relations

@�i � @�i+1 = @�i � @+i+1 @+i � @�i+1 = @+i � @+i+1

When it is non-ambiguous, we only write @� and @+, leaving the dimension implicit. Globular
sets may also be characterized by coinduction: a globular set is a set X equipped with, for all
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pairs x, y 2 X, a globular set. Given an object n, the associated representable Y(n) is called the
n-disk and is usually written Dn. It can be explicitly described by

(Dn)i =

8
<
:

{•�, •+} if i < n
{•} if i = n
; if i > n

with @�(_) = •� and @+(_) = •+. We also denote �n : Dn ! Dn+1 the image of the map �n
by the Yoneda embedding. Explicitly, this map is the identity in all the dimensions i < n, and
it is characterized in dimension n by �n(•) = •�. Similarly, we denote ⌧n : Dn ! Dn+1 the
image of ⌧ by the Yoneda embedding, and it characterized by its action in dimension n given by
⌧n(•) = •+. As is the case for any presheaf category, the Yoneda embedding G ! GSet realizes
GSet as the free cocompletion of G.

The n-sphere. Given n 2 N, the n-sphere Sn is the globular set, equipped with an inclusion
◆n : Sn ,! Dn, defined by

– S�1 = ; is the initial object, and ; ,! D1 is the unique arrow,

– Sn+1 and ◆n+1 are obtained by the pushout

Sn Dn

Dn Sn+1

Dn+1

◆n

◆n
p �n

⌧n

◆n+1

Finite globular sets. A globular set G is finite if it can be obtained as a finite colimit of
representable objects. It can be shown that this is the case precisely when the set

F
i2N

Gi is

finite, because all representables themselves satisfy this property. We write FinGSet for the full
subcategory of GSet whose objects are the finite presheaves. We sometimes call a finite globular
set a diagram, and describe it using a diagrammatic notation. For instance, the diagram

x y z

f

g

+↵
h

denotes the finite globular set G, whose only non-empty cell sets are

G0 = {x, y, z} G1 = {f, g, h} G2 = {↵}

and whose the sources and targets are defined by

@�(f) = x
@�(g) = x
@�(h) = y
@�(↵) = f

@+(f) = y
@+(g) = y
@+(h) = z
@+(↵) = g
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Disks and spheres are finite globular sets. In small dimensions, they can be depicted as

D0 = •

D1 = • •

D2 = • •+

D3 = • •+V+

S0 = • •

S1 = • •

S2 = • •+ +

FinGSet is the free cocompletion of G by all finite colimits since all the representables have
a finite number of elements. This means that FinGSet has all the finite limits, the Yoneda
embedding corestricts to Y : G ! FinGSet, and for all category C with all finite limits equipped
with a functor F : G ! C, there is an essentially unique functor F̃ : FinGSet ! C preserving
the finite limits such that F̃ Y = F .

FinGSet C

G

F̃

Y
F

2.1.2 Globular extensions

In the following, we consider a category C equipped with a functor F : G ! C, such a functor is
called a globular structure on C. In this case, we denote Dn the object F (n) of C, and we still
denote �n and ⌧n the images by F of the morphisms �n and ⌧n. When there is no ambiguity,
we may write � and ⌧ , leaving the index implicit, moreover, we write also � (resp. ⌧) to indicate
a composite of maps of the form � (resp. ⌧). Dually, for a category C, a functor F : Gop ! C
is called a coglobular structure, and we denote respectively by Dn, @+n and @+n the images by
F of [n], �n and ⌧n. We thus always denote � and ⌧ families of maps satisfying the coglobular
relations and @� and @+ families of maps satisfying the globular relations.

Globular sums. In the category C equipped with a globular structure, a globular sum is a
colimit of a diagram of the form

Di1 Di2 Dik

Dj1 Dj2 Djk�1

· · ·�⌧ ⌧ �

It will be useful to encode such a colimit by its table of dimensions
✓

i1 i2 · · · ik
j1 j2 · · · jk�1

◆

We give a few examples in the category FinGSet of finite globular sets that can be described as
a globular sum, using the diagrammatic notation, together with their associated dimension table

globular set dimension table

• • •

✓
1 1

0

◆

• • •
+

+

✓
2 2 1

1 0

◆
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Intuitively, the globular sets that can be written as a globular sum are the ones that are well
ordered and that do not have a hole. We sometimes write Di1

`
Dj1 D

i2
`

Dj2 . . .
`

D
jk�1 D

ik the
globular sum with a dimension table as above, leaving implicit that the coproduct is taken with
the iterated source and iterated target maps. Similarly, in a category equipped with a coglobular
structure, a globular product is a limit of the diagram of the form

Di1 Di2 Dik

Dj1 Dj2 Djk�1

t
s

t · · · s

It will also be convenient to denote it by its table of dimensions, we use the same notation and
distinguish between the two by the variance of the globular structure.

✓
i1 i2 · · · ik

j1 j2 · · · jk�1

◆

If C has a globular structure and D has a contravariant globular structure, we will say that a
globular sum in C and a globular product in D are dual to each other if they share the same
table of dimensions.

Globular extensions. A category C with a globular structure F is called a globular extension
when all the globular sums exist in C. Given two globular extensions F : G ! C and G : G ! D,
a morphism of globular extensions is a functor H : C ! D such that H � F = G, and preserving
globular sums. Dually, a category with a contravariant globular structure that has all globular
products is called a coglobular extension, and the opposite notion of morphisms defines morphisms
of coglobular extensions.

The category Θ0. There is a universal globular extension Θ0, which is called a globular
completion. It is the initial object in the category of globular extensions, or equivalently it is
characterized by the fact that for any globular extension G ! C, there is a unique morphism
of globular extensions Θ0 ! C. Note that if Θ0 is a globular completion, then Θ

op
0 is a glob-

ular cocompletion, that is for every coglobular extension Gop ! C, there is a unique morphism
Θ

op
0 ! C. The objects of the category Θ0 are called pasting schemes, and it can be characterized

as the full subcategory of GSet whose objects are globular sums. Note that globular sums are
always finite globular sets, and thus, using our diagrammatic notation, we give a few examples
of pasting schemes, together with the dimension table of the corresponding globular sum.

pasting scheme globular sum

• • •

✓
1 1

0

◆

• • •
+

+

✓
2 2 1

1 0

◆

Combinatorial description of Θ0. The pasting schemes can be defined inductively. For this
we need an operation Σ which given a globular set X produces the globular set ΣX defined by
(ΣX)0 = {•�, •+} and (ΣX)n+1 = Xn, with for all x 2 X0, @�(x) = •� and @+(x) = •+ in
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ΣX. This operation is to be compared with the topological notion of suspension. Given two
globular sets of the form ΣX and ΣY , we define the globular set ΣX on ΣY as the disjoint union
of ΣX and ΣY , where we have identified the object •+ from ΣX with the object •� from ΣY .
Categorically, it is a pushout of the following form

D0 ΣX

ΣY ΣX on ΣY

•+

•�

p

This lets us formulate the following equivalent characterization of the objects of Θ0:

Lemma 20. A pasting scheme is either the globular set D0, or is obtained in a unique way as a
sequence of the form ΣX1 on ΣX2 on . . . on ΣXn, where X1, . . . , Xn is a list of pasting schemes,
and every such sequence defines a valid pasting scheme.

Proof. We sketch an idea of the proof, and mainly show how to unravel this correspondence. First
note that for all i, ΣDi = Di+1, so an expression of the form Σi1D0 on Σi2D0 on . . . on ΣinD0 is
by definition the globular sum whose dimension table is

✓
i1 i2 . . . in

0 . . . 0

◆

It now suffices to show that for a pasting scheme X the globular set ΣX is again a pasting
scheme, whose dimension table is obtained from the dimension table of X by adding one to
every number.

In practice, we can switch in between two notations as follows: the top row in the dimension
table indicates the total number of Σ that are applied to every of the D0 whereas the bottom row
indicates the total number of Σ that are applied to every on operation. The previous example
can now be completed with this additional notation

pasting scheme globular sum decomposition

• • •

✓
1 1

0

◆
ΣD0 on ΣD0

• • •
+

+

✓
2 2 1

1 0

◆
Σ(ΣD0 on ΣD0) on ΣD0

There are a lot of equivalent combinatorial characterizations of the pasting schemes, among which
we distinguish

– Dyck word:: They are words on the alphabet {(, )} which correspond to good parenthesizing
of an expression, for instance (() is not a Dyck work since there is a mismatch, whereas
(()(())) is a Dyck word. To use this representation in practice, we associate to D0 the empty
word, to the globular set ΣX, the word (w) where w is the Dyck word associated to X, and
we associate to ΣX on ΣY the concatenation of w and w0, where w is the word associated
to ΣX and w0 is the word associated to ΣY . This provides the following correspondence

pasting scheme Dyck word

• • • ()()

• • •
+

+
(()())()
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– Batanin Trees: [11] There is a bijection between the object of Θ0 and the trees. This
essentially comes down to the fact that trees satisfy the same inductive definition as pasting
schemes : a tree is either a leaf or a list of trees. The correspondence between trees
and pasting schemes is well known, and stronger results than a mere bijection have been
proved [4, 18, 43]. In practice, we associate a leaf to the globular set D0, and we associate
to the globular set ΣX the tree obtained by adding a single vertex as the new root, and
a single edge from this vertex to the root associated to ΣX. Similarly, we associate to
ΣX on ΣY the tree obtained by adding a single vertex as the new root and by adding two
new edges from this vertex, one that goes to the root of the tree associated to X and the
other one to the tree associated to Y . With our previous example, this gives the following
correspondence

pasting scheme Batanin tree

• • •

• • •
+

+

– Non decreasing parking functions: These are non decreasing functions over an integer
interval f : {0, . . . , n} ! {0, . . . , n} such that f(0) = 0, f(n) = n and for all i, f(i) � i.
We can picture these as diagrams like the following, plotting only the over diagonal part
of the function.

This is our preferred description as it is visual and makes the dimension table easily read-
able: the successive heights of the peaks give the first row of the dimension table, whereas
the height of the valleys in between the peaks gives its second row. The example we have
given thus corresponds to the dimension table

✓
3 2 1 2 2

1 0 0 1

◆

and out previous examples give the following correspondence

pasting scheme Non-decreasing parking function

• • •

• • •
+

+

In fact, pasting schemes entertain close relation with Catalan numbers, which are one of the
most ubiquitous sequence of numbers, and thus have a lot of equivalent definitions.
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Source and target of pasting schemes. A pasting scheme X naturally comes equipped with
a source and a target, that are two distinguished globular subsets of X which are also pasting
schemes. Since the source and target are isomorphic globular sets, we will define a unique object
@X along with the two inclusions which identify @X as a subobject of X

�X , ⌧X : @X ! X

For a pasting scheme X defined by a table as above, we first define the pasting scheme @X
obtained from X by lowering all the cells of maximal dimension by one dimension. It is thus
given by the table

✓
i1 i2 · · · ik

j1 j2 · · · jk�1

◆
where ik =

⇢
ik if im < i
i� 1 if im = i

Note that this definition may produce tables that do not strictly fall under the scope of globular
sums, as presented before, since it is possible to have the equality

im = jm = im+1 = i� 1

However when it is the case we will choose the corresponding iterated sources and target to be
the identity maps (i.e., the map iterated 0 times). We can then introduce the following rewriting
rule, that does not change the colimit and thus exhibits @X as a pasting scheme

✓
· · · i� 1 i� 1 · · ·
· · · i� 1 · · ·

◆
 

✓
· · · i� 1 · · ·
· · · · · ·

◆

We illustrate this notions with our running examples, combining all the six equivalent repre-
sentations of pasting schemes we have given. In both of these examples, we indicate first the
wrong dimension table, with possibly repeating numbers, and then simplify them to the actual
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dimension tables.

pasting scheme X border @X

✓
1 1

0

◆ ✓
0 0

0

◆
 

✓
0
◆

• • • •

ΣD0 on ΣD0 D0

()() .

✓
2 2 1

1 0

◆ ✓
1 1 1

1 0

◆
 

✓
1 1

0

◆

• • •
+

+
• • •

Σ(ΣD0 on ΣD0) on ΣD0 ΣD0 on ΣD0

(()())() ()()

Now we can define the two inclusion maps �X and ⌧X to induced by the families

�im : Dim
�! Dim

�im =

⇢
idDim

if im < i
� : Di�1 ! Di if im = i

⌧im : Dim
�! Dim

⌧im =

⇢
idDim

if im < i
⌧ : Di�1 ! Di if im = i

We provide a visualization of the inclusions maps �X and ⌧X for our two running examples, using
the diagrammatic representation of pasting schemes

• • • •

�

⌧

• • • • • •

�

⌧

+

+
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Globular theories. Let G ! C be a globular extension, then by universality of the globular
completion, there exists a unique morphism of globular extension F : Θ0 ! C. The globular
extension G ! C is called a globular theory if the functor induced by F is faithful and is an
isomorphism on the isomorphism classes of objects. Whenever it is the case, we can up to
equivalence identify Θ0 as a (in general non-full) subcategory of C, all the objects of C are
equivalent to an object of this subcategory. Up to equivalence, the globular theories are thus the
categories obtained by adding morphisms to Θ0, without adding isomorphisms: It is a category
whose objects can be described as the pasting schemes. A morphism of globular theories is a
morphism of the underlying globular extensions. A morphism f of a globular theory C is said
to be globular if it is in the image of Θ0. Dually a coglobular extension Gop ! C is called a
coglobular theory if Cop is a globular theory.

2.1.3 Weak !-categories

The notion of a globular theory formalizes a theory in the globular sets, for which the operations
we introduce may have generalized arities that have all the shapes allowed by the pasting schemes.
For instance, consider the following pasting scheme C that we describe as a diagram and as a
globular sum

• • •

D1 D1

D0

together with a globular theory C in which there is a morphism µ : C ! D1. Then a functor
F : Cop ! Set induces a coglobular structure on Set, which is the same as a globular set X;
suppose that F preserves the globular products of Cop for this coglobular structure. The functor
F then sends the morphism µ onto an operation m : X(1) ⇥X(0) X(1) ! X(1), that is given
two 1-cells f, g 2 X(1) such that @+(f) = @�(g), the operation m gives a 1-cell m(f, g) 2 X(1).
Moreover, the interaction of µ with � and ⌧ in C specify the source and target of the cell obtained
by applying m. This shows that a globular theory expresses a notion of theory allowing the inputs
to have shapes specified by the pasting schemes. This situation is analogue to Lawvere theories:
The objects are freely generated by a class of colimits (sums for Lawvere theories, globular sums
for globular theories), the additional morphisms define operations, and the equality between
the morphisms give axioms. Weak !-categories fall precisely under this scope, and thus can be
defined as a particular globular theory.

Admissible pairs of arrows. Let G ! C be a globular extension, two arrows f, g : Di ! X
in C are said to be parallel when

f � �i = g � �i f � ⌧i = g � ⌧i

If C is a globular theory, then a morphism f of C is said to be algebraic, when for every de-
composition f = gf 0, with g globular, then g is an identity. Intuitively, an algebraic morphism
is a morphism f : Di ! X of C that is “full” on its source, i.e., it cannot be decomposed as
f 0 : Di ! X 0 followed by an inclusion X 0 ,! X They are the primitive morphisms of the form
Di ! X, in the sense all the other morphisms of this form are obtained as an inclusion of an
algebraic morphism. A pair of parallel arrows f, g : Di ! X is called an admissible pair if either
both f and g are algebraic, or there exists a decomposition f = �Xf 0 and g = ⌧Xg0, with f 0 and
g0 algebraic. A lift for an admissible pair f, g : Di ! X is a morphism h : Di+1 ! X such that
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h� = f and h⌧ = g

Di+1

Di X

h

g

f

� ⌧

Dually, in a coglobular theory C, an arrow is said to be coalgebraic if its opposite is algebraic in
the globular theory Cop, and a pair of arrows is called a coadmissible pair if the opposite pair is
admissible in Cop.

Cat-coherator. The definition of weak !-categories relies on the notion of cat-coherator. In-
tuitively a cat-coherator defines a globular theory obtained by freely adding lifts to Θ0 until
every pair of admissible arrows has a lift. The definition is a bit technical since every lift added
creates new pairs of admissible arrows, for which there needs to be lift, and hence requires taking
the limit of an iterative construction. We refer the reader to [54] for the formal definition of a
cat-coherator and only introduce the Batanin-Leinster cat-coherator Θ1. Since it is the only
one that we use, we usually refer to the Batanin-Leintser Cat-coherator as “the cat-coherator”;
it is defined to be the colimit

Θ1 ' colim(Θ0 ! Θ1 ! Θ2 ! · · · ! Θn ! · · · )

Where Θn is given by induction on n. Define En to be the set of all pairs of admissible arrows
of Θn that are not in E0

n for any n0 < n. Then we can define Θn+1 to be the universal globular
extension of Θn obtained by formally adding a lift for each pairs in En. In other words, for each
globular extension f : Θn ! C such that the image by f of all pairs of arrows in En has a lift in
C, there is an essentially unique globular extension f̃ , which preserves the chosen lifts and makes
the following triangle commute

Θn Θn+1

C
f

f̃

Weak !-categories. We define a weak !-category to be functor F : Θop
1 ! Set which pre-

serves the globular products in Θop
1 , for the globular structure on Set induced by F . The cate-

gory of weak !-categories is the full subcategory of dΘ1 whose objects are exactly the presheaves
that are weak !-categories. Under a mild conjecture, Ara has proved [4] this definition to be
equivalent to a definition originally proposed by Batanin [11] and reformulated by Leinster [48].

2.1.4 Identities and compositions

We work out the definition of the identity 1-cells and the composition of 1-cells in weak !-
categories. They are the most basic constructions and we reserve more advanced examples
for Section 2.4.2 where they are given in a type theoretic style. We refer the reader to [54, 4] for
more examples in this style.

– Identity of a 0-cell: The pair of maps (idD0 , idD0) is an admissible pair of arrows D0 ! D0,
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hence there exists a lift
D1

D0 D0

◆

idD0

idD0

For every weak !-category F : Θop
1 ! Set together with an element x 2 F(D0), this allows

us to define its identity 1-cell i(x) 2 F(D1) to be i(x) = F(◆)(x). Moreover, by definition,
@�(i(x)) = @+(i(x)) = x as expected for the identity 1-cell on x.

– Composition of 1-cells: We consider the globular sum given as D1
`

D0 D1. Then there
are two canonical maps ◆1, ◆2 : D1 ! D1

`
D0 D1, and we consider the following admissible

pair (◆1�, ◆2⌧) : D
0 ! D1

`
D0 D1. This provides the lift

D1

D0 D1
`

D0 D1

c

◆1�

◆2⌧

For every weak !-category F : Θop
1 ! Set, a pair of composable 1-cells is the same as an

element (f, g) : F(D1
`

D0 D1), and the element f · g := F(c)(f, g) 2 F(D1) defines its
composition. By definition, @�(f · g) = @�(f) and @+(f · g) = @+(g), as expected for the
composition.

2.2 A type theory for globular sets

We first introduce and study a type theory to study globular sets. We later on build the type
theory for weak !-categories on top of this theory.

2.2.1 The type theory GSeTT

We call our type theory to work with globular sets GSeTT and introduce it in a cut-free style.
After studying its properties, we discuss briefly on how to describe the same theory in a cut-full
style.

Type constructors and introduction rules. Since we have already introduced the struc-
tural rules for type theories in a cut-free style, we only need to specify the type and term
constructors, along with their introduction rules. This theory has no term constructors, hence
the only terms are variables, and we introduce infinitely countably many type constructors: the
constructor ? of arity 0, and for all n 2 N\ {0}, the constructor !n of arity 2. These are subject
to the following introduction rules

Γ `

Γ ` ?
(?-intro)

Γ ` t : ? Γ ` u : ?

Γ ` t !1 u
(!1-intro)

Γ ` t : x !n y Γ ` u : x !n y

Γ ` t !n+1 u
(!n+1-intro)

This theory can be presented in a much more efficient way, taking advantage of the uniformity
of all the rules (!n-intro), to encompass all of them in one and only rule. For this we replace
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all the type constructors !n by a single type constructor ! which takes as arguments one type
and two terms, subject to the following introduction rule

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t �!
A

u
(!-intro)

Note that this constructor does not strictly correspond to the framework given in Section 1.1, as
it takes a type as an argument. However, it can be viewed as a short-hand for the previous family
of constructors !n, which does correspond to this framework. For this reason, we still consider
this theory as part of the framework. In order to relate these two formulations, we introduce the
notion of dimension of a type, that we define as follows

dim ? = �1 dim(t �!
A

u) = 1 + dimA

We also define the dimension of a term Γ ` t : A in a context to be 1+dimA, and the dimension

of a context to be the maximal dimension among its variables. Then, replacing the type t �!
A

u

by the type t !n u where n = dimA + 1 everywhere it appears shows the equivalence between
the two theories. Formally, it defines an equivalence of categories with families between their
syntactic categories. Under this correspondence, the action of substitutions on types in the theory

with the constructor ! is given by (t �!
A

u)[�] = (t[�]) ���!
A[�]

(u[�]). This ensures automatically

that all the properties that we checked in Section 1.1 are also satisfied by this type theory. From
now on, are only interested about the formulation with only two type constructors ? and !,
and we call the resulting type theory, with no term constructors GSeTT. We refer the reader to
Appendix A.1 for a complete description of all the rules of this theory in a single place.

2.2.2 Formalization

We have fully implemented this type theory in our Agda formalization1 as well as proved most
of its properties. More specifically, we have proved all the syntactic properties that we have
mentioned, but we have not proved the categorical facts, to avoid the use of categories with
Agda which is not straightforward. We refer the reader to Appendix B for a summary of all the
result we have formalized.

Conventions and structure. For the formalization we have chosen to use de Bruijn levels to
encode the variables, so it slightly differ with the presentation we give here. All the formalization
relative to the type theory GSeTT is located in the folder called GSeTT/. We define the syntactic
expressions corresponding to contexts, types, terms and substitutions in the file Syntax.agda,
along with the syntactic properties: variables of an expression, action of substitutions. In the
file Rules.agda we state all the rules of the theory, and prove that they satisfy the Proposition 2
that we have stated for all type theories. In the file CwF-structure.agda we have formalized all
the properties showing that this theory satisfies the defining equations of a cut-full type theory,
and in the file Uniqueness-Derivations.agda we have proved that every derivable judgment is
derivable in a unique way. Additionally, we have also proved in the file Dec-Type-Checking.agda
that the derivability for all the judgments of the theory is decidable. We present a part of our
formalization here, in particular the definition and the statements of the results that we prove.

1https://github.com/ThiBen/catt-formalization/
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Definition of the syntax. The pre-syntax, where we define the expressions for contexts, types
terms and substitutions is declared in the file Syntax.agda as follows

data Pre-Ty : Set

data Pre-Tm : Set

data Pre-Ty where

⇤ : Pre-Ty

) : Pre-Ty ! Pre-Tm ! Pre-Tm ! Pre-Ty

data Pre-Tm where

Var : N ! Pre-Tm

Pre-Ctx : Set1
Pre-Ctx = list (N ⇥ Pre-Ty)

Pre-Sub : Set1
Pre-Sub = list (N ⇥ Pre-Tm)

and we define the action of substitutions on types and terms

_[_]Pre-Ty : Pre-Ty ! Pre-Sub ! Pre-Ty

_[_]Pre-Tm : Pre-Tm ! Pre-Sub ! Pre-Tm

⇤ [ � ]Pre-Ty = ⇤
) A t u [ � ]Pre-Ty = ) (A [ � ]Pre-Ty) (t [ � ]Pre-Tm) (u [ � ]Pre-Tm)

Var x [ nil ]Pre-Tm = Var x

Var x [ � :: (v , t) ]Pre-Tm = if x ⌘ v then t else ((Var x) [ � ]Pre-Tm)

_�_ : Pre-Sub ! Pre-Sub ! Pre-Sub

nil � � = nil

(� :: (x , t)) � � = (� � �) :: (x , (t [ � ]Pre-Tm))

Judgments and rules of the theory. We then define the judgments in the file Rules.agda,
as inductive inductive types, following, where the inference rules give the generators

data _`C : Pre-Ctx ! Set

data _`T_ : Pre-Ctx ! Pre-Ty ! Set

data _`t_#_ : Pre-Ctx ! Pre-Tm ! Pre-Ty ! Set

data _`S_>_ : Pre-Ctx ! Pre-Sub ! Pre-Ctx ! Set

data _`C where

ec : nil `C
cc : 8 {� A} ! � `C ! � `T A ! (� :: ((length �) , A)) `C

data _`T_ where

ob : 8 {�} ! � `C ! � `T ⇤
ar : 8 {� A t u} ! � `t t # A ! � `t u # A ! � `T ) A t u

data _`t_#_ where

var : 8 {� x A} ! � `C ! x # A 2 � ! � `t (Var x) # A
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data _`S_>_ where

es : 8 {�} ! � `C ! � `S nil > nil

sc : 8 {� � � x A t} ! � `S � > � ! (� :: (x , A)) `C
! � `t t # (A [ � ]Pre-Ty)

! � `S (� :: (x , t)) > (� :: (x , A))

Note that in this theory, the judgment _`S_>_ is not mutually inductive with the others and could
be defined separately, however in more complicated theories, we define it by mutual induction
and thus proceed the same way here. We then prove in this file the easier properties satisfied by
these rules, and particular we prove cut admissibility

[]T : 8 {� A � �} ! � `T A

! � `S � > �

! � `T (A [ � ]Pre-Ty)

[]t : 8 {� A t � �} ! � `t t # A

! � `S � > �

! � `t (t [ � ]Pre-Tm) # (A [ � ]Pre-Ty)

Structure of category with families. In the file CwF-Structure.agda, we proceed with
showing all the equalities that define the syntactic category and endow it with a structure of
category with families. We have already proved cut admissibility, we now prove in particular
the functoriality of the application of substitutions and the associativity and unitality of the
composition

[�]T : 8 {� � ⇥ A � �} ! � `T A

! � `S � > �

! ⇥ `S � > �

! ((A [ � ]Pre-Ty) [ � ]Pre-Ty) == (A [ � � � ]Pre-Ty)

[�]t : 8 {� � ⇥ A t � �} ! � `t t # A

! � `S � > �

! ⇥ `S � > �

! ((t [ � ]Pre-Tm) [ � ]Pre-Tm) == (t [ � � � ]Pre-Tm)

�-admissibility : 8 {� � ⇥ � �} ! � `S � > �

! ⇥ `S � > �

! ⇥ `S (� � �) > �

�-associativity : 8 {� � ⇥ ⌅ � � ✓} ! � `S � > �

! ⇥ `S � > �

! ⌅ `S ✓ > ⇥

! ((� � �) � ✓) == (� � (� � ✓))

�-left-unit : 8{� � �} ! � `S � > �

! (Pre-id � � �) == �

�-right-unit : 8 {� �} ! (� � Pre-id �) == �

Uniqueness of derivations. In the file Uniqueness-Derivations.agda we prove by mutual
induction that every derivable judgment is derivable in a unique way, by showing that the type
of derivations of this judgment is contractible [63], using a terminology from homotopy type
theory. We can simplify the statement even further by showing that every judgment defines a
proposition, again in the sense of homotopy type theory
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is-prop-`C : 8 � ! is-prop (� `C)
is-prop-`T : 8 � A ! is-prop (� `T A)

is-prop-`t : 8 � A t ! is-prop (� `t t # A)

is-prop-`S : 8 � � � ! is-prop (� `S � > �)

Decidability of type checking. We show that every judgment defines a decidable type in
the file Dec-Type-Checking.agda

dec-`C : 8 � ! dec (� `C)
dec-`T : 8 � A ! dec (� `T A)

dec-`t : 8 � A t ! dec (� `t t # A)

dec-`S : 8 � � � ! dec (� `S � > �)

These are the most involved proofs and they in particular give a certified implementation of a
type checker for this theory. Since the theory GSeTT is not very relevant in practice, this is
not so important here, however for more complicated theories formally proving the decidability
in Agda gives a certified implementation of the theory, of which one could extract a code that
computes.

2.2.3 Yoneda embedding and nerve functor

We now study a construction that is very useful, and specific to the theories whose type construc-
tors are the same as GSeTT: They have particular contexts, the disks and the sphere contexts
which classify the types and the terms of the theory.

Disks and sphere contexts. Our objective is now to introduce specific contexts in this theory
and show that they play an important role. We have completely defined them and proved their
properties in the file Disks.agda of our formalization. We define two families of contexts, that
we call the disks (denoted Dn, n 2 N) and the spheres (denoted Sn, n 2 N [ {�1}). We start
by choosing once and for all a family of distinct variables (xn)n2N, and define a family of types
An by induction with the following formulas

A�1 = ?

An+1 = x2n ��!
An

x2n+1

In such a way that dimAn = n. This lets us define the disks and sphere contexts by induction
as follows.

S�1 = ?

Sn = (Dn, x2n+1 : An�1)
Dn = (Sn�1, x2n : An�1)

For instance, in low dimensions, the disks and sphere contexts are the following

S�1 = ?

D0 = (x0 : ?) S0 = (x0 : ?, x1 : ?)

D1 = (x0 : ?, x1 : ?, x2 : x0 �!
?

x1) S1 = (x0 : ?, x1 : ?, x2 : x0 �!
?

x1, x3 : x0 �!
?

x1)

The Agda definition of the disks and sphere contexts that we give follows exactly these definitions.
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S : N ! Pre-Ctx

D : N ! Pre-Ctx

S O = nil

S (S n) = (D n) :: (length (D n) , n) n)

D n = (S n) :: (length (S n) , n) n)

Lemma 21. The following rules are derivable

Sn ` Sn ` An

Dn ` Dn ` x2n : An�1

Proof. We construct a derivation for each of these judgments by induction on n.

– For n = �1, the context D�1 is not defined, the context S�1 = ? is derivable by the
rule (ec), and the judgment ? ` ? is derivable by the rule (?-intro).

– Suppose these judgments derivable for n, then the rule (ce) applies from Sn ` An to
give a derivation of Dn+1 `,and the rule (var) then applies to show Dn+1 ` x2n+2 : An.
By weakening (c.f. Proposition 2) this gives a derivation of Dn+1 ` An which allows for
applying the rule (ce) to get a derivation of Sn+1 `. Since we now have (x2n+2 : An) 2 Sn+1

and (x2n+3 : An) 2 Sn+1, the rule (var) gives a derivation of Sn+1 ` x2n+2 : An and of
Sn+1 ` x2n+3 : An. We can then construct a derivation of Sn+1 ` An+1 as follows

Sn+1 ` x2n+2 : An Sn+1 ` x2n+3 : An

Sn+1 ` x2n+2 ��!
An

x2n+3

(!-intro)

Although we have formalized this proof in the file Disks.agda we still present here as it is the
first proof by mutual induction on the syntax that we show, and is very typical of the kind of
proofs we use when working syntactically on a type theory.

In the Agda formalization, the statements corresponding to this result are the following (where
we denote n) the type An).

S` : 8 n ! S n `C
D` : 8 n ! D n `C
n) : N ! Pre-Ty

Familial representability of the type functor. The particular importance of the disks and
sphere contexts is justified by the following property, which is the central structural fact about
the category with families SGSeTT.

Theorem 22. For every n 2 N�1, the canonical map

SGSeTT(Γ, S
n) ! TyΓ

� 7! An[Γ]

induces a bijection between the substitutions Γ ! Sn and the types in Γ of dimension n.
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Intuitively a type distinct from ? in Γ is of the form t ! u and hence is given by a pair of terms
of the same types, such pairs correspond to substitutions to a sphere context.

Proof. This can be proved by induction on the derivation trees, and we have formalized the
argument in the file Disks.agda. In our argument this is proved by mutual induction together
with Corollary 23. The induction essentially combines the inductive characterization of the
sphere as a pullback

Sn Dn

Dn Sn�1

�x2n+1

�x2n

y
⇡

⇡

with the property defining the extension of substitutions h_,_i.

By aggregating all these dimension wise bijections together, this result may be restated as a
natural isomorphism between two functors

Ty '
[

n2N�1

SGSeTT(_, Sn)

The category SGSeTT is a category with families whose Ty is familially representable and the
sphere contexts and the family that represents this presheaf.

Corollary 23. For every n 2 N, the canonical map

SGSeTT(Γ, D
n) ! TmΓ

� 7! x2n[Γ]

induces a bijection between the substitutions � : Γ ! Dn and the terms of type classified by ⇡ � �
in Γ.

Intuitively, a term in Γ is of the form Γ ` t : u ! v with u and v two parallel terms. Thus u and
v define a substitution to a sphere, and the term defines a substitution to the disk that fills this
sphere.

Proof. This can be proved by mutual induction together with Theorem 22, and we have formal-
ized it in the file Disks.agda.

We give the second result the status of a corollary as it is merely a consequence of the theorem
together with the structure of category with families: Any category with families whose presheaf
of type is familially representable automatically inherits of a familial representation of its presheaf
of terms. In our Agda formalization, we do not formulate this correspondence using diagrams,
but we are able to define the function that associates a type to each substitution to a sphere and
show that it defines an equivalence of types

Ty-n : 8 {�} ! ⌃ (N ⇥ Pre-Sub) (� {(n , �) ! � `S � > S n})

! ⌃ Pre-Ty (� A ! (� `T A))

Ty-classifier : 8 � ! is-equiv (Ty-n {�})
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Generating display maps. In order to highlight the idea of seeing the sphere contexts as a
family of type classifiers and the disks contexts as a family of term classifiers, we denote �A the
substitution Γ ` �A : SdimA associated to a type A, and �t the substitution Γ ` �t : Ddim t

associated to a term t. The typing judgment Γ ` t : A can then be interpreted directly on the
arrows of the syntactic category, as the commutation of the following triangle.

Γ DdimA +1

SdimA

�t

�A
⇡

Moreover, the structure of category with families implies that for a context extension (Γ, x : A),
with A of dimension n� 1, the following square is always a pullback

(Γ, x : A) Dn

Γ Sn�1

�x

⇡
y

⇡

�A

And any context can be obtained as a finite succession of such pullbacks. We draw many
important consequences from this fact. It allows us to understand contexts in the theory as a
formal analogue to finite CW-complexes (see for instance [40] for a definition of those), which
are one of the central object of algebraic topology.
We call generating display map a display map of the form Dn ! Sn�1, and the display maps
are the closure by pullback and composition of the generating display maps. In practice the
properties we work with all respect pullbacks and composition, thus in order to check a property
for all display maps, it suffices to show it only for generating display maps.

The cut-full style GSeTT. This theorem also gives an interesting insight for a cut-full for-
mulation of the type theory GSeTT. We just sketch here the construction, and do not check
that it is well-formed. Such a proof could be done by mutual induction, however formalizing
this construction in a language such as Agda leads to a coherence problem: For instance, for a
term Γ ` t : A proving that t[�][�] = t[� � �] is not straightforward, as both of these terms do
not have the same type, so one needs to transport along a proof that Γ ` A[�][�] = A[� � �],
but this proof itself depends inductively on the proof that t[�][�] = t[� � �]. This minimalist
example illustrates how in such a formulation all the properties depend on each other, in a way
that Agda’s termination checking cannot handle.
We introduce the type constructors !n, which now do not carry any argument, and give the
following introduction rules for these type constructors

Sn `!n

Of course, the context Sn cannot be defined beforehand and has to be defined together with
these introduction rules, by the following formulas

S�1 = ? Sn+1 = (Sn,!n,!n [⇡])

This highlights why this style of presentation is not our preferred one to work with type theory
in practice. The sphere contexts are defined using types, which are themselves introduce by a
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rule using the sphere contexts, and this kind of mutually inductive situations make proofs very
complicated on paper as well as in a proof-assistant like Agda. Altenkirch and Kaposi [1] have
proposed a framework to introduce type theories in this style in Agda, using quotient inductive
inductive types, but those are not yet a native feature of Agda and have to defined completely
manually, hence although this method gives an important theoretical insight, it is still hard to
use in practice. Lafont [44] has also introduced a method using heterogeneous equality to handle
the problem, but it requires deactivating Agda’s termination checker.

2.2.4 The syntactic category SGSeTT

As we have already illustrated with the familial representability of the Ty and Tm presheaves,
some properties of our type theory that are syntactic directly translate as categorical properties
on its syntactic category. Our goal is now to completely characterize the syntactic property of
this theory.

Coglobular extension. In the category SGSeTT we have introduced specific objects Dn for
each n 2 N. Moreover, Corollary 23 shows that a morphism Dn ! Dm corresponds to a term of
dimension m in Dn. Since all terms are variables, we can list explicitly all these morphisms

SGSeTT(D
n, Dm) =

8
<
:

�
�x2m

,�x2m+1

 
if m < n

{�x2n
} if m = n

; if m > n

Moreover, we can check that these substitutions satisfy the globular relations, and hence this
explicit description exhibits Gop as the full subcategory of SGSeTT whose objects are the disk con-
texts. We denote D : Gop ! SGSeTT this inclusion functor. This gives in particular a coglobular
extension on the category SGSeTT, and we denote @� : Dn+1 ! Dn and @� : Dn+1 ! Dn the
maps exhibited from this extension. For a term Γ ` t : u ! v of dimension non-zero classified by
the substitution Γ ` �t, we have @� ��t = �u and @+ ��t = �v. With a slight abuse of notation,
we also denote @�(t) = u and @+(t) = v in this case.

The nerve functor We denote ⌫ the nerve functor associated to the functor D

⌫ : Sop
GSeTT ! GSet ⌫(Γ) = SGSeTT(Γ, D

_)

Explicitly, an element of the set ⌫(Γ)n is the same as a term in Γ of dimension n. Since the only
terms are variables, and each context has only finitely many variables, the functor ⌫ factors as
⌫ : Sop

GSeTT ! FinGSet, and for simplicity, we also denote ⌫ : SGSeTT ! FinGSet
op the opposite

functor. We denote ⌫ this functor, by opposition to Tm the presheaf of terms, to emphasize that
⌫ equips the set of terms with a structure of globular sets, whereas in an arbitrary category with
families, the set of terms has no extra structure. The explicit description of ⌫(Dk) shows that it
is equivalent to the representable Y (k), or in other words, ⌫ fits into the following commutative
triangle

FinGSet
op SGSeTT

Gop

⌫

Y
D_

This is equivalent to the fact that the functor D_ is fully faithful. By continuity of the hom-
functor with respect to its first variable, and the pointwise computation of colimits in FinGSet,
⌫ : Sop

GSeTT ! FinGSet sends limits in SGSeTT to colimits in FinGSet. With our abuse of
notation, this shows that ⌫ : SGSeTT ! FinGSet

op preserves the limits.
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Lemma 24. For all context ∆, and all n 2 N, there are two natural isomorphisms

SGSeTT(∆, Dn) ' GSet(⌫(Dn), ⌫(∆))

SGSeTT(∆, Sn) ' GSet(⌫(Sn), ⌫(∆))

Proof. First note that in the case of a context Dn, by definition of ⌫, we have ⌫(Dn) = Y(n),
hence, for any context ∆, by the Yoneda lemma,

GSet(⌫(Dn), ⌫(∆)) ' ⌫(∆)n = SGSeTT(∆, Dn)

We check the second bijection by induction: for n = �1 it is satisfied since S�1 is the empty
context which is terminal, and ⌫(S�1) is the empty globular set which is initial. Suppose that
the equality holds for a given n 2 N [ {�1}, then the context Sn+1 is obtained as the following
pullback which by continuity of the hom-functor gives the following pullback in Set

Sn+1 Dn

Dn Sn

y

SGSeTT(∆, Sn+1) SGSeTT(∆, Dn)

SGSeTT(∆, Dn) SGSeTT(∆, Sn)

y

Moreover, since ⌫ sends the limits to the colimits, we have the following pushout in FinGSet,
which by continuity of the hom-functor gives the pullback in Set.

⌫(Sn) Y(n)

Y(n) ⌫(Sn+1)
p

GSet(⌫(Sn+1), ⌫(∆)) ⌫(∆)n

⌫(∆)n GSet(⌫(Sn), ⌫(∆))

y

The induction hypothesis exhibits SGSeTT(∆, Sn+1) and GSet(⌫(Sn+1), ⌫(∆)) as pullbacks over
the same diagram in Set, hence they are isomorphic.

Lemma 25. The inclusion functor D_ : G ! SGSeTT is codense, or equivalently the associated
nerve ⌫ is fully faithful

Proof. Consider two contexts ∆ and Γ, we prove by induction on the context Γ the bijection

SGSeTT(∆,Γ) ' FinGSet(⌫(Γ), ⌫(∆))

The proof is very similar to the second part of Lemma 24. If Γ is is the empty context ? which
is terminal, since no term is derivable in ? , ⌫(?) is the empty globular set, which is initial,
this proves the bijection. Suppose Γ = (Γ0, x : A) with the bijection holding for Γ0, then by
construction Γ is obtained as the following pullback, which by continuity of the hom-functor
gives the following pullback in Set

⌫(Sn�1) ⌫(Γ0)

Y(n) ⌫(Γ)
p

SGSeTT(∆,Γ) SGSeTT(∆, Dn)

SGSeTT(∆,Γ0) SGSeTT(∆, Sn)

y

Moreover since ⌫ sends limits to colimits, we have the following pushout, which by continuity of
the hom-functor yields the following pullback in Set.

Γ Dn

Γ0 Sn�1

y

A

GSet(⌫(Γ), ⌫(∆)) GSet(⌫(∆)n)

GSet(⌫(Γ0), ⌫(∆)) GSet(⌫(Sn�1), ⌫(∆))

y

53



and the induction hypothesis together with Lemma 24 then exhibits the sets SGSeTT(∆,Γ) and
GSet(⌫(Γ), ⌫(∆)) as pullbacks over the same diagram, hence they are isomorphic.

Although the above lemma is expressed in a categorical language, it has a very clear type theoretic
translation, indeed, a natural transformation between ⌫(Γ) and ⌫(∆) can be described as the
data of, for each term of ∆, a term of Γ such that this association respects source and target.
Since terms and variables are the same in this theory, this can be understood as associating a
term tx of ∆ for each variable x of Γ, such that if x is of type y ! z in Γ, tx is of type ty ! tz
in ∆. This lemma states that such a data is equivalent to a substitution ∆ ! Γ, which is simply
a reformulation of the rules that generate substitutions.

Finite globular sets. The nerve functor closely connects the syntactic category of the theory
GSeTT to the category of finite globular sets.

Lemma 26. The syntactic category SGSeTT has all finite limits and its models are equivalent to
the functors SGSeTT ! Set preserving the finite limits.

Proof. This is a consequence of the fact that all the terms in this theory are variables, which
immediately implies that SGSeTT as all most general unifiers, and they are all primitive. An
equivalent way to state this is to notice that since all the terms are variables, all the maps in
SGSeTT are display maps, and hence SGSeTT has all pullbacks. As it also has a terminal object,
this shows that it has all finite limits. Models are then equivalent to the functor preserving the
terminal object and the pullbacks, which are the functors preserving all finite limits.

Since the category SGSeTT has all finite limits, the universal property of the free completion gives
a lift of the inclusion functor G ! SGSeTT as a functor F : FinGSet

op ! SGSeTT which preserves
finite limits.

Theorem 27. The pair of functors ⌫ : SGSeTT FinGSet
op : F is an equivalence of cat-

egories.

Proof. We have already proved in Lemma 25 that ⌫ is fully faithful, in order to prove that
equivalence is adjoint, it suffices to prove that it is essentially surjective, and in fact we show
that ⌫ � F ' id. The functors that we have defined fit into the following diagram

FinGSet
op SGSeTT

Gop

F

⌫

Y
D_

Note that ⌫F Y = ⌫D_ = Y, and since both ⌫ and F preserve finite limits, so does ⌫F . By
essentially uniqueness in the free completion by finite limits, this proves that ⌫F ' id.

One could give more explicit characterizations of the functors F and ⌫, as in this simple case they
are easy to describe, and a proof of the equivalence can be derived from this concrete description.
However we still prefer the more categorical proof as it gives a more general view and generalizes
better to more involved cases, where explicit definitions tend to become quickly intractable. We
refer the reader to [33, 16] for the complete combinatorial description along with a proof of the
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equivalence in this style, and simply give examples of correspondence between contexts and finite
globular sets using diagrammatic notations

Finite globular set Context

• (x : ?, f : x �!
?

x)

• • (x : ?, y : ?, f : x �!
?

y, g : y �!
?

x)

• • •+ (x : ?, y : ?, z : ?, f1 : x �!
?

y, f2 : x �!
?

y, g : z �!
?

y,↵ : f1 ���!
x�!

?
y

f2)

The choice of names for the variables in a context and of a particular order among the valid ones
are arbitrary. This reflect the fact that the functor F was defined up to isomorphism, by setting
its values on limits.

2.2.5 Models of SGSeTT

Our characterization of the syntactic category SGSeTT enables us to compute its category of
models. The characterization is simple in our theory without term constructors, but generalizes
in a very useful way for theories that have term constructors.

Theorem 28. The category Mod(SGSeTT) of models of SGSeTT is equivalent to the category of
globular sets GSet

Proof. By Lemma 10, the models of GSeTT are equivalent to the functors SGSeTT ! Set pre-
serving the pullbacks along the display maps, and since all the maps are display maps, those are
the functors that preserve finite limits. Under the equivalence given by Theorem 27 these are
equivalent to the functors FinGSet

op ! Set that preserve finite limits. Since FinGSet
op is the

free completion of Gop by finite limits, these are equivalent to the functors Gop ! Set, which are
exactly the globular sets.

2.2.6 Coglobular structure on categories with families

The syntactic category SGSeTT is equipped with a functor D_ : Gop ! SGSeTT, such functors
constitute a coglobular structure on the category. Moreover, in this case all the morphisms of
GSeTT are sent onto display maps in the category SGSeTT (since all its maps are display maps).
We thus call a coglobular structure on a category with family C a coglobular structure on its
underlying category which sends all maps onto display maps. We call a coglobular structured
category with families a category with families equipped with a coglobular structure.

Globular limits. Given a category with a coglobular structure F : Gop ! C, we call a globular
diagram a diagram that factors through F as I ! Gop ! C, and we call globular limits the limits
of the globular diagrams.

Lemma 29. A coglobular structured category with families has all the finite globular limits.

Proof. All the maps in G are sent onto display maps, and by assumption C has pullbacks along
those. Hence C has a terminal object and the pullbacks long the images of the maps in G, so it
has all the finite globular limits.
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Morphisms of coglobular structures category with families. Given two coglobular struc-
tured categories with families, a morphism between them is a morphism of the underlying cate-
gories with families that commutes with the globular structures.

Lemma 30. A morphism of coglobular structured categories with families preserve the finite
globular limits.

Proof. By definition a morphism of category with families preserves the terminal objects and
the pullback along display maps. Since the morphism commutes with the coglobular structures,
it then sends a pullback along a globular map onto a pullback along a globular map, and hence
preserve all finite globular limits.

Induced coglobular structure. Given a coglobular structure on a category with families C,
and a morphism of categories with families F : C ! D, F induces a unique coglobular structure on
D such that it is a morphism of coglobular structured category with families, since as a morphism
of categories with families, F preserves the display maps. In particular D_ : Gop ! SGSeTT is
a coglobular structured category with families, and any morphism of categories with families
F : SGSeTT ! D induces a coglobular structure on the category with families D.

2.3 Pasting schemes as contexts

In Section 2.1 we have presented a definition of weak !-categories that heavily relies on some
specific finite globular sets that we call pasting schemes. In order to reproduce this construction,
we give a characterization of the pasting schemes, seen as contexts in the theory GSeTT as
allowed by Theorem 27.

2.3.1 Ps-contexts

We introduce a new judgment Γ `ps that we understand as “Γ is a normalized context represen-
tation of a pasting scheme”. We also introduce an auxiliary judgment Γ `ps x : A, whose meaning
we infer from the inference rules. These two judgments are subject to the following rules

x : ? `ps x : ?
(pss)

Γ `ps x : A

Γ, y : A, f : x �!
A

y `ps f : x �!
A

y
(pse)

Γ `ps f : x �!
A

y

Γ `ps y : A
(psd)

Γ `ps x : ?

Γ `ps

(ps)

We call a context that satisfies Γ `ps a ps-context.

Computation on an example. In order to understand how a derivation of this judgment
works, we give a graphical representation of its run: We derive the judgment asserting that the
following context Γw satisfies Γw `ps.

Γw = (x : ?, y : ?, f1 : x ! y, f2 : x ! y,↵ : f1 ! f2, z : ?, g : y ! z)

This context describes the globular set

x y z

f1

f2

+↵
g
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We give a graphical representation using the description of pasting schemes as non-decreasing
parking functions, in which the dangling variable is circled, together with the corresponding
judgments, and applications of the rules, describing the entire derivation tree.
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x

x : ? `ps x : ?

x

f1

y
(x : ?, y : ?, f1 : x ! y) `ps f1 : x ! y

x

f1

↵

f2

y
(x : ?, y : ?, f1 : x ! y,
f2 : x ! y,↵ : f1 ! f2) `ps ↵ : f1 ! f2

x

f1

↵

f2

y
(x : ?, y : ?, f1 : x ! y,
f2 : x ! y,↵ : f1 ! f2) `ps f2 : x ! y

x

f1

↵

f2

y

(x : ?, y : ?, f1 : x ! y,
f2 : x ! y,↵ : f1 ! f2) `ps y : ?

x

f1

↵

f2

y

g

z (x : ?, y : ?, f1 : x ! y,
f2 : x ! y,↵ : f1 ! f2
z : ?, g : y ! z) `ps g : y ! z

x

f1

↵

f2

y

g

z (x : ?, y : ?, f1 : x ! y,
f2 : x ! y,↵ : f1 ! f2
z : ?, g : y ! z) `ps z : ?

x

f1

↵

f2

y

g

z

Γw `ps

(pss)

(pse)

(pse)

(psd)

(psd)

(pse)

(psd)

(ps)
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Ps-contexts are well-formed The following property shows that any ps-context is in fact
firstly a well-formed context. Hence our judgment Γ `ps only characterizes a sub class of contexts.

Proposition 31. Any pre-context that is a ps-context is also a context. In other words, the
following rule is admissible

Γ `ps

Γ `

Proof. We prove by induction on the derivation tree that given a derivation of Γ `ps x : A, we
can construct a derivation of Γ ` x : A. We give a sketch of the argument here, as we have
proved it in the file CaTT/Ps-contexts.agda of our Agda formalization2

– For a tree that is a single application of the rule (pss), necessarily, the derived judgment is
f the form x : ? `ps x : ?, and we can construct a derivation of the judgment x : ? ` x : ?.

– For a tree whose last rule is (pse), the corresponding judgment is necessarily of the form
(Γ, y : A, f : x ! y) `ps f : x ! y. Then we have a derivation of Γ `ps x : A, which by
induction lets us construct a derivation of Γ ` x : A. Since moreover, y, f /2 Var(Γ), we
successively derive that (Γ, y : A) `, that (Γ, y : A) ` x ! y and that (Γ, y : A, f : x ! y).
Using the rule (var), it follows that (Γ, y : A, f : x ! y) ` f : x ! y.

– For a tree whose last rule is (psd), necessarily the corresponding judgment is of the form

Γ ` y : A, and we have derivation of the judgment Γ `ps f : x �!
A

y, which gives by

induction a derivation of Γ ` x �!
A

y, from which we can extract a derivation of Γ ` y : A.

We now apply this inductive result to the ps-context Γ `ps : there necessarily exists a variable
x such that Γ `ps x : ?, so we extract a derivation of Γ ` x : ?. Using Proposition 2, we get a
derivation of Γ `.

Decidability. For all the syntactic contexts Γ, the derivability of the the judgment Γ `ps is
a decidable problem. In fact we can show that the derivability of the judgment Γ `ps x : A
for any variable x and any type A is a decidable problem. Indeed, if Γ is of the form (x : ?),
the only derivable judgment of this form is x : ? `ps x : ?. Otherwise, if it is of the form
(Γ, y : A , f : x ! y), the judgment Γ, y : A, f : x ! y `ps z : B is derivable if and only if
Γ `ps x : A is derivable and (z : B) 2 (Γ, y : A, f : x ! y) is an iterated target of the variable
f . Since the second statement is decidable, and by induction the derivability of Γ `ps x : A is
also decidable, so is the derivability of Γ, y : A, f : x ! y `ps z : B. Since all the contexts are
finite, this shows that for every context, the judgment Γ `ps x : A is decidable. Moreover, given
a context Γ, the only possible candidate for a variable x such that Γ `ps x : ? is the last variable
to appear with type ? in Γ, which shows that the existence of x such that Γ `ps x : ? is decidable,
hence the derivability of Γ `ps is decidable.

Uniqueness of derivations. For any context Γ, there is at most one derivation of the judg-
ment Γ `ps. Indeed, we can show by induction that there is at most one variable x in each
dimension dimension such that Γ `ps x : A is derivable, together with a unique derivation for
tree for this judgment. This is again done by induction on Γ.

– For a context of the form (x : ?), there is only one variable y such that x : ? `ps y : A.
Indeed, the only possible derivation is an application of the rule (pss) which implies that
y = x.

2https://github.com/ThiBen/catt-formalization
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– For a context of the form (Γ, y : A, f : x ! y), there is by induction a unique derivation of
Γ `ps x : A, which yields a unique derivation of Γ, y : A, f : x ! y `ps f : x ! y by applica-
tion of (pse). All the other derivations of judgments of the form Γ, y : A, f : x ! y `ps z : B
are obtained from this derivation by successive applications of the rule (psd), which de-
creases the dimension by 1 every time, hence the uniqueness of the variable, together with
the uniqueness of its derivation.

Applying this result for a context Γ such that Γ `ps, there is a unique variable x such that
Γ `ps x : ?, and a unique derivation of Γ `ps x : ?, hence the derivation of Γ `ps is unique as
well. Although we have not formalized the decidability and the uniqueness of derivation for these
judgments, we keep it for future work and expect it to be straightforward.

Ps-contexts are not invariant by isomorphism. Note that the judgment Γ `ps is not
derivable for certain contexts that do correspond to pasting schemes, but only for ones that are
normalized. Consider the following example

(x : ?, y : ?, f : x ! y, z : ?, g : y ! z) is a ps-context
(x : ?, y : ?, z : ?, f : x ! y, g : y ! z) is a not ps-context

even though these two contexts are isomorphic in the category SGSeTT. This is not much of an
issue, since we show in the next section that every pasting scheme corresponds exactly to one
ps-context, but it is an important point to keep in mind. Moreover, we could have chosen a
different normalization for the contexts that correspond to pasting schemes, which would lead
to a different notion of ps-context, but this would not change the theory for weak !-categories.
This shows that we are interested in a bijection between the set of ps-contexts and between the
set of pasting schemes, and not just an equivalence of categories between these.

2.3.2 Ps-contexts are normalized pasting schemes

The description and explicit example that we have shown for the ps-contexts shows that this
new judgment entertain a close connection with the notion of pasting schemes. We now explore
this connection and characterize exactly the relation between these two notions.

Double context extension. The main difficulty while working with ps-context is that in all
the inductions, we perform a succession of two context comprehension operations, which has a
rather sketchy interpretation in terms of limits in the category. In order to simplify the proof,
we give a much cleaner categorical interpretation of the double context comprehension that we
use.

Lemma 32. If Γ is a context with a well defined variable Γ ` x : A, then (Γ, y : A, f : x ! y)
realizes the following pullback

(Γ, y : A, f : x ! y) Ddim x+1

Γ Ddim x

�f

y
�

�x

Proof. There are two approaches to show this result. We can prove the dual statement holds for
the nerves of the contexts, which can be done by giving an explicit description of the nerves and
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computing colimits in Set. We can also show that it holds directly on SGSeTT, by exhibiting the
following diagram

(Γ, y : A, f : x ! y)

Ddim x+1

(Γ, y : A)

Sdim x Ddim x

Γ Ddim x Sdim x�1

�f

⇡

�x

�

where the two horizontal squares and the vertical square are all pullbacks, and showing by
diagram chasing techniques that the expected square, which appears in the figure is a pullback
square

Partial globular product cone. Although proving that ps-contexts are globular products is
not conceptually very complicated, it is a bit tricky to formulate precisely the good loop invariant
without introducing an ad-hoc categorical notion to describe it. For this reason, we introduce
here partial globular product cones, whose only purpose is to be a categorical invariant for the
induction proof.

Definition 33. A partial globular product cone is a limiting cone over a globular product
diagram

Γ

Di1 Di2 · · · Dim

Dj1 Dj2 · · · Djm�1

fm

⌧ l1 �k2 ⌧ l2 �km

together with a map u : Γ ! Dn for n  jm such that ⌧ jm�n � fm = u.

This notion aims to encode categorically the information included in the judgment Γ `ps x : A,
as expressed by the following lemma.

Lemma 34. A derivation of the judgment Γ `ps yields a partial globular product cone of apex
Γ, whose additional specified map is �x : Γ ! Ddim x

Proof. We prove this lemma by induction on the structure of the derivation of Γ `ps x : A

– If the derivation is a single application of the rule (pss), then necessarily A = ? and Γ = D0,
and the identity substitution Γ ` idΓ : Γ is the classifying substitution �x = idΓ
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– If the derivation ends with an application of the rule (pse) , then necessarily Γ is of the form
(Γ0, y : B, x : y ! z), and A = y ! z, and we have a derivation of Γ0 `ps y : B obtained by
removing the last application of the rule (pse). By induction, this gives a partial globular
product cone of apex Γ and with distinguished map �y. Since moreover Γ is obtained as
the pullback

Γ Ddim x

Γ0 Ddim y

�x

�

�y

The commutation of �y in the partial globular product diagram shows that we can glue
both diagrams in order to exhibit Γ as a globular product. We then chose the distinguished
map �x which is the map of cone itself, so satisfy the commutation condition tautologically.
We can be a bit more explicit in how we compute this diagram, by looking at the dimension
tables, and denoting n = dim y

dimension table of Γ0 dimension table of Γ

✓
i1 · · · im

j1 · · · jm�1

◆ if n = im:✓
i1 · · · im + 1

j1 · · · jm�1

◆

if n  im:✓
i1 · · · im n+ 1

j1 · · · jm�1 n

◆

– If the derivation of Γ `ps x : A ends with an application of (psd), then by removing this
last rule, we get a derivation of a judgment of the form Γ `ps f : y ! x, and the induction
hypothesis exhibits Γ gives a partial globular product cone whose distinguished map is
�f : Γ ! Ddim x+1. Since x is the target term of f in Γ, we have the equality ⌧�f = �x,
hence replacing the distinguished map �f by �x yields another partial globular product
cone.

Computation of globular product. Given a ps-context Γ, applying the previous lemma to
a derivation of Γ `ps yields exhibits straightforwardly Γ as a globular product, thus proving the
following result.

Proposition 35. A ps-context Γ is a globular product in the category SGSeTT.

A careful observation of the proof shows the computation that construct the globular product
diagram associated to the derivation of Γ `ps. Indeed, suppose that the derivation of Γ `ps is of
the form

Γ `ps= (pss)(pse)
k1 (psd)

l1 (pse)
k2 · · · (pse)

km (psd)
lm (ps)

then necessarily, for dimension reasons,
mP

n=1
kn =

mP
n=1

ln. We denote i1, . . . , im and j1, . . . , jm the

families of numbers solutions of the systems of equations
⇢

i1 = k1
in+1 = kn+1 + jn

jn = in � ln

then the Proposition 35 exhibits Γ as the globular product whose dimension table is
✓

i1 i2 · · · im
j1 j2 · · · jm�1

◆
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Globular products are isomorphic to ps-contexts. We prove a partial converse to the pre-
vious result, showing the precise nature of the correspondence between ps-contexts and globular
products.

Proposition 36. Any globular product in the category SGSeTT is isomorphic to exactly one
ps-context (up to renaming).

Proof. Given a context ∆ which is a globular product with dimension table
✓

i1 i2 · · · im
j1 j2 · · · jm�1

◆

It suffices to inverse the previous system of equations and define the numbers k1, . . . , km and
l1, . . . , lm as solutions of

⇢
k1 =i1
kn+1=in+1 � jn+1

8
<
:

ln =in � jn+1

lm=
mP

n=1
kn �

m�1P
n=1

ln

to consider the ps-context Γ, whose derivation Γ `ps is obtained as

Γ `ps= (pss)(pse)
k1 (psd)

l1 (pse)
k2 · · · (pse)

km (psd)
lm (ps)

which is a valid derivation of a ps-context. By the previous lemma, the context Γ is also a globular
product in SGSeTT with the same dimension table as ∆, hence Γ and ∆ are isomorphic.

Locally maximal variables. Given a ps-context Γ we define its locally maximal variables to
be the variables xn defining the maps �xn

: Γ ! Din in the cone exhibiting Γ as a globular
product i.e., the map corresponding to the upper line of the dimension table. The following
result follows immediately from the decomposition of Γ as a globular product, but is useful for
implementation purposes.

Lemma 37. Given two substitutions ∆ ` � : Γ and ∆ ` �0 : Γ where Γ is a ps-context such that
for all locally maximal variable x in Γ, x[�] = x[�0], necessarily � = �0.

There are various syntactic ways of characterizing locally maximal variables in a ps-context Γ.
For instance, they are the variables such that both the variables just before it and just after it
are of lower dimension. Equivalently, they are also the variables such that Γ `ps x : A is obtained
by an application of (pse), and followed by an application of (psd) in the derivation of Γ `ps.
For instance in the following ps-context

x y z

f0

f1

f2

+↵

+�

g
x

f1

↵

f2

�

f2

y

g

z

(x : ?, y : ?, f0 : x ! y, f1 : x ! y,↵ : f0 ! f1, f2 : x ! y,� : f1 ! f2, z : ?, g : y ! z)

the locally maximal variables are ↵,� and g, they are the ones at the peaks in the representation
as non-decreasing parking functions.
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The category SPS,0 We denote SPS,0 the full subcategory of SGSeTT whose objects are the
contexts Γ such that Γ `ps holds. For most categorical constructions, we could equivalently
consider SPS,0 to be the full subcategory whose objects are contexts that are isomorphic to ps-
contexts, as by definition these two categories are equivalent, however it is more convenient for
our purpose to use only ps-contexts.

Proposition 38. There is an equivalence of categories

SPS,0 ' Θ
op
0

Proof. The nerve functor ⌫ sends limits in SGSeTT onto colimits in FinGSet
op, hence it induces

a functor SPS,0 ! Θ
op
0 which is fully faithful since ⌫ is fully faithful. Moreover, Proposition 35

shows that this induced functor is essentially surjective.

In fact SPS,0 is even isomorphic to the category Θ0, as it is constituted only in globular sums in
the category SGSeTT that are in normal form.

Subcontexts and epimorphisms. Ps-contexts correspond to pasting schemes, and the latter
are equipped with notions of source and target, which are maps �X , ⌧X in the category Θ0. We
provide a direct characterization of the maps corresponding map in the category SPS under the
correspondence given by Proposition 38. Instead of providing the substitutions explicitly, we
use the fact that �X , ⌧X are monomorphisms of presheaves and hence epimorphisms in SGSeTT,
and rely on the variable names to present these substitutions in an efficient way. For instance,
given the context Γ = (x : ?, y : ?, f : x ! y), we have the following correspondence between
subcontexts of Γ and epimorphisms in SGSeTT

subcontext epimorphism
(x : ?) Γ ` ha 7! xi(a : ?)
(y : ?) Γ ` ha 7! yi(a : ?)

In both cases, the subcontext define a substitution from Γ to (a : ?) which identifies (a : ?)
as a subcontext of Γ. The substitution is given by the identical variable name in Γ and in its
subcontext, in our first example, it is the variable x, and thus the defined substitution is ha 7! xi.

Source and targets. We define for all i 2 N>0 the i-source of a ps-context Γ induction on
the length of Γ, by setting @�i (x : ?) = (x : ?) and

@�i (Γ, y : A, f : x ! y) =

⇢
@�i Γ if dimA � i� 1
@�i Γ, y : A, f : x ! y otherwise

and similarly the i-target of Γ is defined by @+i (x : ?) = (x : ?), and

@+i (Γ, y : A, f : x ! y) =

8
<
:

@+i Γ if dimA � i
drop(@+i Γ), y : A if dimA = i� 1
@+i Γ, y : A, f : x ! y otherwise

where drop(Γ) is the context Γ with its last variable removed. One can check by induction on the
derivation of the judgment Γ `ps that whenever Γ is a ps-context which is of dimension nonzero,
both @�i Γ and @+i Γ are also ps-contexts. It is straightforward in the case of the i-source, and for
the i-target, it relies on the fact that whenever the drop operator is used, immediately afterwards
a variable of the same type that the one that was removed is added.
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We denote @�(Γ) = @�dimΓ�1Γ and @+(Γ) = @+dimΓ�1Γ and call these the source and target of
Γ. Carrying explicitly the computations one can check that whenever a ps-context Γ define the
pasting scheme X, the ps-contexts @�(Γ) and @+(Γ) are isomorphic, and they both define the
pasting scheme @X. Moreover the “inclusion” substitution that identify a variable in @�(Γ) (resp.
in @+(Γ)) with the same variable in Γ corresponds to the map �x : @X ! X (resp. ⌧x : @X ! X).
Note that in the case of the ps-context (x : ?) which is the only ps-context of dimension 0, the
source and target are not defined.

2.3.3 The relation /

Following Finster and Mimram [33] we introduce a relation / between the variables of a context
in GSeTT, by imposing the condition that for all variable f such that Γ ` f : x ! y, we have
x / f / y. We then consider the transitive closure of this relation.

/ in ps-contexts. This relation is particularly well behaved in the case of ps-contexts, as the
following lemma shows.

Lemma 39. The relation / defines a total order on the variables of a ps-context Γ.

Proof. We prove by induction that whenever the judgment Γ `ps x : A is derivable, then / defines
a total order on Γ, and for all y, z such that x / y / z, we have dimx > dim y > dim z.

– This condition holds for judgment (x : ?) `ps x : ? obtained by (pss), as x is then the only
variable.

– For a judgment of the form (Γ, y : A, f : x ! y) `ps f : x ! y, by induction / defines a
total order on the variable of Γ. Note that the variables x, f, y satisfy x/f /y, hence for any
variable z/x, we also have z/f /y. Suppose that x is not the greater variable in Γ (otherwise
we have already proved the result) and consider the smallest variable z such that x / z.
Since all the variables greater than x are of dimension greater than x, we necessarily have
that z = @+(x). But since x and y have the same type, we also have z = @+(y), and hence
f / y / z. This proves that / defines a total order on the variables of (Γ, y : A, f : x ! y).
Moreover, the variables greater than f are y and all the variables greater than x in Γ. For
all the variables x / z / z0 in Γ, we have dim z0 < dim z < dim y < dim f .

– For a judgment Γ `ps y : A obtained by (psd), the judgment Γ `ps f : x �!
A

y is necessarily

derivable, hence by induction / defines a total order on Γ, and for all variable y / z / z0, we
have dim z0 < dim z < dim y < dim f . the variables

Now considering a derivation of the judgment Γ `, it necessarily ends with an application of (ps),
to a derivation of Γ `ps x : ?, hence / defines a total order on the variables of Γ.

Substitution are order preserving. Consider a substitution ∆ ` � : Γ in the category SPS,0,
then it preserves the typing: For any variable Γ ` f : x ! y, we have ∆ ` f [�] : x[�] ! y[�].
This shows that for two variables x / y in the context Γ, we have the relation x[�] / y[�] in the
context ∆. This proves shows the following

Proposition 40. For a substitution ∆ ` � : Γ, and two distinct variables x, y in Γ the variables
x[�] and y[�] are necessarily distinct in ∆. Moreover, a substitution ∆ ` � : Γ that uses all the
variables of Γ is necessarily an identity.
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Proof. Consider two distinct variables x, y in Var(Γ), then either x / y, in which case x[�] / y[�],
or y / x, in which case y[�] / x[�]. In both cases, x[�] and y[�] are distinct. If the substitution
∆ ` � : Γ uses all the variables of ∆, then necessarily Γ has at least as many variables as ∆, and
since there can be no repetition, ∆ and Γ have the same number of variables. Then since the
substitution � preserves the typing, its only action is to change the name of the variables of Γ
by the names of the variables in ∆. Up to ↵-equivalence, this is an identity.

Totally ordered contexts. Finster and Mimram also show [33] this total order on the cell is
a characterization of the pasting schemes, and hence every context for which / defines a total
order is isomorphic to a ps-context. We state this fact here as it is helps understanding the
ps-contexts, but we do not prove it, as we do not use it in any way.

2.4 A type theory for globular weak !-categories

We now present our type theory to work with weak !-categories. This theory is originally due
to Finster and Mimram [33] and our presentation is very similar. We then study the syntactic
category of this theory and its models, an extended version of [16].

2.4.1 Type theory

In order to describe a type theory suitable to work with !-category, we extend the type theory
for globular sets with new term constructors that mirror the lifting that are formally added in
the Grothendieck-Maltsiniotis definition of weak !-categories (see Section 2.1). We add one term
constructor for each lift that is added in the construction of Θ1. Since there are infinitely many
such lifts, we need a way to index these, in order to give a scheme for the induction rules.

First attempt to a description. The most immediate way to obtain this construction, is to
introduce a term constructor for each pasting scheme equipped with a pair of admissible arrows.
For each pasting scheme ✓ together with a pair of admissible arrows (f, g) in ✓, we introduce a
constructor T✓,f,g. The arity of T✓,f,g is the number of elements of the globular set ✓, and the
introduction rule is the following

Γ ` t1 : A1 · · · Γ ` tn : An Γ ` B

Γ ` T✓,f,g(t1, . . . , tn) : B

where t1, . . . , tn is a list of terms in Γ whose type “are prescribed by ✓”, and B is a type is Γ

corresponding to the admissible pair of arrows (f, g). This description is intentionally left vague,
as this is not our final description, but it gives a good intuition towards it. In fact this approach is
very self referencing and a proper definition of it would require to proceed level by level and take
some sort of a limiting process. Another problem with this formulation is we do not provide here
a computable way of enumerating the term constructors, which prevents for any implementation
of this theory.

Encoding this data in a computable way. A first step towards a computable enumera-
tion of the terms is to use the ps-contexts. Indeed we have proved that these are in bijective
correspondence with the pasting schemes, hence we can reformulate by introducing a term con-
structor TΓ,f,g for all ps-context Γ, and (f, g) a pair of admissible substitutions in the pasting
scheme corresponding to Γ. One can notice that a pair of admissible arrows (f, g) as mentioned
previously can be encoded into a type in Γ, and the trick is to give a characterization of those
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types in Γ which correspond to pairs of admissible arrows. Recall that there are two situations in
which a pair of arrows is admissible: either both are algebraic, or they factor through the source
and target of the ps-context into algebraic arrows. Correspondingly, the types characterizing the
admissible pairs of arrows are one of the two following form

(Cop) Γ ` t �!
A

u with

⇢
Var(@�(Γ)) = Var(t) [Var(A)
Var(@+(Γ)) = Var(u) [Var(A)

(Ccoh) Γ ` t �!
A

u with

⇢
Var(Γ) = Var(t) [Var(A)
Var(Γ) = Var(u) [Var(A)

We thus introduce two families of term constructors opΓ,B , where Γ is a ps-context and B is a type
satisfying (Cop), and cohΓ,B where Γ is a ps-context and B is a type satisfying (Ccoh). Moreover
a list of terms in a context ∆ that are “as prescribed by Γ” can be formulated elegantly as a
substitution ∆ ` � : Γ, and the type in ∆ corresponding to the admissible pair of substitution
and the substitution � is none other than the type B[�]. We show in Section 2.5 that these
conditions correspond to the admissibility condition in the Grothendieck-Maltsiniotis definition.

Introduction rules for terms. This lets us reformulate the previous rule, for instance for
the family of rules op as

∆ ` � : Γ ∆ ` B[�]

∆ ` opΓ,B [�] : B[�]
for all ps-context Γ and type Γ ` B satisfying (Cop)

Note that the premise ∆ ` B[�] is in fact redundant, as it follows from the fact that substitution
transport well-formed types onto well-formed types. Hence, in order to get the rule we actually
use, we leave this condition out. Moreover, we chose to write most of the indexing of the term
family in the premises of the rules instead of as a side condition, we only keep as a side condition
the conditions on variables. This leads to the definitive form of the rule for the family of term
constructors op

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` opΓ,A : A[�]
(op) where Γ ` A satisfies (Cop)

Written in a similar fashion, the introduction rule for the family of term constructors coh gives

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` cohΓ,A : A[�]
(coh) where Γ ` A satisfies (Ccoh)

We show in Section 3.5 that this rule can be rewritten in a simpler way, by slightly changing
the condition (Ccoh) in (C0

coh). We say that a type Γ ` A satisfies (C0
coh) if and only if we have

Var(Γ) = Var(A), and we denote (coh’) the introduction rule obtained by changing the condition
(Ccoh) to (Ccoh)

0 in the rule (coh). We admit in a first time that these two rules give equivalent
theories, and postpone the proof to Section 3.5 as it is surprisingly involved and requires some
syntactic tools that we have not yet introduced. For now we freely use either of these rules
depending on which one is best suited to our needs.

In this formulation, it appears as if Γ and A are arguments of the term constructors op

and coh, and from now on, we may treat them as such. But formally they are rather indexes
for term constructor families, which allow us to understand this presentation as included in the
framework we presented to study a type theory in a cut-free style. We denote CaTT the resulting
type theory, which we present completely in Appendix A.2.
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Interpretation. Recall that the Grothendieck-Maltsiniotis definition of weak !-categories de-
fines a lift for every admissible pair of morphisms, and that there are two ways for a pair to be
admissible: Either both morphisms are algebraic, or they factor through the source and target
to give algebraic morphisms. In the theory CaTT we will show that the term constructor op

corresponds to the lift of an admissible pair where the morphisms factor through the source and
target, and the term constructor coh corresponds to a lift where both morphisms are algebraic. In
particular, the side conditions on variables can be understood as a translation of the algebraicity
condition.

We can also formulate a high-level interpretation of these rules, justifying their status as a
definition of weak !-categories. In this theory, it will turn out that a term Γ ` t : A corresponds
to a composition of the cells described by Γ, and the condition Var(Γ) = Var(t)[Var(A) ensures
that this composition uses all the cells available. With this interpretation of the terms of the
theory, we can understand the rule (op) as producing, for any ps-context, a way of composing
it completely down to a single cell. This operation requires to specify a way of composing
the source and a way of composing the target of the ps-context to explicit the borders of the
composition, this specification is ensured by the variables t and u. The rule (coh) can then be
understood as stating that given a ps-context and two ways of composing it, there necessarily
exists a cell relating these two ways, and we will see that in this case, this cell necessarily is an
equivalence. Contrarily to the rule (op), the rule (coh) also applies to higher cells and thus fills
in higher dimensional gaps. Together, the rules (op) and (coh) enforce all ps-context to have a
contractible space of ways to be composed. Note that this is informal, in particular we have not
given a precise definition of contractible in this setting and use it as a way to express existence
and uniqueness up to higher cells.

In Theorem 66, we show that CaTT is closely related to the Grothendieck-Maltsiniotis def-
inition of weak !-categories, and thus our high-level interpretation transfers to this definition,
which can be understood as saying that a weak !-category is a globular set in which every past-
ing scheme has a contractible space worth of composition. This is a weakened version of strict
!-categories in which every pasting scheme has a unique composition, and that justifies these
definitions as indeed describing weak !-categories.

2.4.2 Some examples of derivations

We provide some examples of derivations that one may compute in CaTT, using an actual syntax
that we have implemented in [15]. A new coherence is introduced with the keyword coh and is
followed by a name to identify it. Then comes a list of arguments which is the description of a
ps-context followed by a colon and a type. For instance the following line

coh id (x:*) : x -> x

defines a coherence called “id”, which correspond to the construction coh(x:?):x!x. Further refer-
ences to this coherence in order to produce a term have to include a substitution to the context
(x : ?), that is expressed as a list of arguments, for instance one may write id y. Note that in
the implementation, we only use the keyword coh to introduce both term constructors coh and
op. As we explain in details in Section 3.1, we only specify the term in the substitution that
correspond to locally maximal variable of the ps-context, for instance, considering the following
operation

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z) : x -> z

one needs to write only comp f g instead of comp x y f z g when applying it. Other examples
of operations and coherences one may define in CaTT include
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– left unitality and its inverse

coh unitl (x:*)(y:*)(f:x->y) : comp (id x) f -> f

coh unitl- (x:*)(y:*)(f:x->y) : f -> comp (id x) f

– right unitality and its inverse

coh unitr (x:*)(y:*)(f:x->y) : comp f (id y) -> f

coh unitr- (x:*)(y:*)(f:x->y) : f -> comp f (id y)

– associativity and its inverse

coh assoc (x:*)(y:*)(f:x->y)(z:*)(g:y->z)(w:*)(h:z->w) :

comp f (comp g h) -> comp (comp f g) h

coh assoc- (x:*)(y:*)(f:x->y)(z:*)(g:y->z)(w:*)(h:z->w) :

comp (comp f g) h -> comp f (comp g h)

– vertical composition of 2-cells

coh vcomp (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)(h:x->y)(b:g->h) :

f -> h

– horizontal composition of 2-cells

coh hcomp (x:*)(y:*)(f:x->y)(f’:x->y)(a:f->f’)

(z:*)(g:y->z)(g’:y->z)(b:g->g’) :

comp f g -> comp f’ g’

– left whiskering

coh whiskl (x:*)(y:*)(f:x->y)(z:*)(g:y->z)(g’:y->z)(b:g->g’) :

comp f g -> comp f g’

– right whiskering

coh whiskr (x:*)(y:*)(f:x->y)(f’:x->y)(a:f->f’)(z:*)(g:y->z) :

comp f g -> comp f’ g

We also provide a syntax to define terms in an arbitrary context, and not only coherences. The
corresponding keyword is let followed with an identifier and a context, and equal and a full
definition of the term in terms of previously defined term and coherences. For instance, the
following term defines the squaring of an endomorphism

let sq (x:*)(f:x->x) = comp f f

We refer the reader to Section 3.1 where we provide a more in-depth presentation or our imple-
mentation, the corresponding syntax and more examples of expressions that we have implemented
and checked.
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2.4.3 Syntactic properties

With the tools we have introduced, we can show directly a lot of properties satisfied by the type
theory CaTT. Firstly, as for any cut-free type theory, it satisfies Proposition 2, and implements
all the structure of a cut-full type theory. Moreover, since every term corresponds only to a
unique introduction rule and the theory has no definitional equality, it enjoys the uniqueness of
derivations.

Embedding of SGSeTT. Since all the rules of GSeTT are also valid in CaTT, it follows that
any judgment in the theory GSeTT is also derivable in the theory CaTT. On a categorical level,
this translates by the existence of a morphism of categories with families SGSeTT ! SCaTT.
The uniqueness of derivations then implies that this morphism is faithful. Since SGSeTT has a
coglobular structured, this morphism transports this structure and endows SCaTT with a natural
coglobular structure.

Globular products. By definition of the coglobular structure on the category SCaTT, the
embedding I : SGSeTT ! SCaTT preserves all the finite globular limits, hence it preserves the
globular products. In particular, the ps-contexts in the category SCaTT are again the globular
products. We denote SPS,1 the full subcategory of SCaTT whose objects are ps-contexts, note
that SPS,1 has exactly the same objects as SPS, but its morphisms are not the same. More
specifically, there is a strict inclusion SPS ,! SPS,1 which is the identity on the objects.

Familial representability of Ty. The embedding I : SGSeTT ! SCaTT also provides the
contexts Sn and Dn in the theory CaTT, which enjoy a similar property that the one they have
in the theory GSeTT

Theorem 41. For every n 2 N�1, the canonical map

SGSeTT(Γ, S
n) ! TyΓ

� 7! An[Γ]

induces a bijection between the substitutions Γ ! Sn and the types in Γ of dimension n.

Corollary 42. For every n 2 N, the canonical map

SGSeTT(Γ, D
n) ! TmΓ

� 7! x2n[Γ]

induces a bijection between the substitutions � : Γ ! Dn and the terms of type classified by ⇡ � �
in Γ.

Proof. As in the case of GSeTT we can prove these two result by mutual induction, and the
proof is essentially the same. Indeed, since the embedding I preserves the globular limits, the
sphere contexts enjoy the same inductive definition as successive pullbacks, and the substitution
extension h_,_i also enjoys the same universal property, as in any category with families. We
have also formalized this result in Agda for a more general framework, we refer the reader to
Section 4.1 for an introduction to this framework and a discussion of the formal proof.
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Globular contexts, globular substitutions. Note that a context in GSeTT is a fortiori a
context in CaTT, let us call globular context a context in CaTT which is also a context in GSeTT.
Syntactically, a globular context is a context whose types do not contain any cohrences. For
instance, any ps-context is a globular context. Similarly, we define a globular substitution to
be a substitution whose defining terms do not contain any coherences. Note that a globular
substitution between two globular contexts is exactly a substitution in GSeTT, but there are also
globular substitutions that do not come from substitutions in GSeTT, since their contexts source
and target are not globular. For instance, the following substitution is globular

∆ ` hy 7! x, z 7! x, g 7! f, h 7! f, b 7! ai : Γ

with

⇢
∆ = (x : ?)(f : x ! x)(a : comp f f ! idx)
Γ = (y : ?)(z : ?)(g : y ! z)(h : z ! y)(b : comp g h ! idy)

The variables of dimension n of a context Γ are exactly the globular substitutions Γ ` � : Dn

Decidability of type checking. In order to use induction on the syntax, we introduce the
notion of depth of a term, that we define as follows

depth(v) = 0 depth(opΓ,A[�]) = 1 + max
u2�

depth(u)

depth(cohΓ,A[�]) = 1 + max
u2�

depth(u)

This notion expresses exactly how many nested coherences are needed to write a given term.

Proposition 43. The derivability of a judgment is a decidable problem for the type theory CaTT.

Sketch of the proof. The demonstration is a lot more complicated than it seems, a mere mutual
induction does not suffice here as it is not well-formed. To circumvent this problem, we proceed
in three steps.

1. We prove by mutual induction that these judgments are valid in a subset of the theory
considering only the ps-contexts, that, we prove that for all ps-contexts Γ,∆, the judgments
Γ ` A, Γ ` t : A and ∆ ` � : Γ are decidable. The fact that this induction is well-defined
is ensured by a careful observation of both the dimension and the depth of the different
objects involved, and relies on the fact that any type that uses all the variables in a context
is necessarily of dimension at least the dimension of the context.

2. We prove that for all context ∆, the judgments ∆ `, ∆ ` A, ∆ ` t : A and ∆ ` � : Γ are
decidable, in the case where Γ is a ps-context. This works by mutual induction, using the
previous result, without extra argument.

3. We finally prove that the judgment ∆ ` � : Γ is decidable without any assumption, using
the decidability of the other judgments. This is a simple induction

We have formalized this proof in Agda as well, for the framework we present in Section 4.1

2.5 The syntactic category of CaTT

We now study and characterize completely the syntactic category SCaTT. This is our main
contribution to the theoretical understanding of the theory CaTT as well as the key result to
characterize its models.
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2.5.1 The category of ps-contexts with coherences

The first step towards relating the models of the theory CaTT with the Grothendieck-Maltsiniotis
definition of weak !-categories is to study the category SPS,1, which is the full subcategory of
SCaTT whose objects are exactly the ps-contexts. The precise study of this category is subtle,
and requires a good understanding of the syntactic properties satisfied by the expressions that
are derivable, along with appropriate tools to study these properties. A full presentation of these
tools would take us too far from the goal of understanding the syntactic category and the models
of the theory CaTT. For this reason, we state here the result that we are using, and refer the
reader to Section 3.5 where we introduce all the required tools and prove the theorem

Theorem 44. There is an equivalence of categories SPS,1 ' Θop
1

We can still give a general idea of the proof: We start by introducing the notion of coherence
depth that exhibits the category SPS,1 as the colimit of an iterative sequence

SPS,1 = colim (SPS,0 ! SPS,1 ! SPS,2 ! . . .)

and we show that each of the category SPS,i is equivalent to Θ
op
i since they satisfy the dual

universal property: The category SPS,i+1 is obtained from the category SPS,i by formally adding
the lifts to the appropriate coadmissible pairs. In order to prove this, we characterize the types
Γ `ps A satisfying (Cop) or (Ccoh) as classifying the coadmissible pairs, and the term introduction
rules as providing a lift for the corresponding coadmissible pair.

2.5.2 Kan extensions and density

In the following, we make a heavy use of right Kan extensions and related constructions like
density. The Kan extensions that we consider are sometimes called “pointwise”, since all our
Kan extensions are pointwise, we leave this adjective implicit. Moreover, we only use right Kan
extensions and specific results about those, and thus only give a narrow exposition of the tools
we need to [53, 57] for a more complete presentation of these notions.

Nerve associated to a functor. Given a functor F : C ! D, we define its associated nerve
functor (or associated Yoneda embedding)

⌫F : Dop ! bC
d 7! D(d, F_)

To understand the significance of this functor, it is useful to think of the particular case where
D as the opposite of the presheaf category over C, i.e., D = bCop and F is the Yoneda embedding.
In this case D(d, F_) rewrites as Dop(F_, d), which by the Yoneda lemma is exactly d. Hence in
this particular case, the nerve associated to F is the identity. We can also consider the slightly
more complicated case where D is the opposite of a presheaf category bA, and F defines the
inclusion of a full subcategory C into bA. Then every object c in C can interpreted as a presheaf in
bA and thus can be decomposed as a colimit of representable objects in A, we denote this colimit
c = colima Y(a). The Yoneda lemma and the continuity of the hom-functor then shows

bA(colima Y(a), d) = colima
bA(a, d)

= colima d(a)

hence ⌫F (d) characterizes the colimits of the elements of the presheaf d as prescribed by the
category C. Equivalently, it characterizes the limits of the co-elements of d in the category D.
In the more general case, the nerve functors ⌫F (d) characterizes the elements in the image of F
that sit above d in the category D.
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Comma category. For a functor F : C ! D as above and an object d of the category D, we
define the comma category of d over F , denoted (d # F ) to be the category whose objects are
the pairs (c, f) where c is an object of C and f : d ! Fc is an arrow in D. The set of morphisms
(d # F )((c, f), (c0, f 0)) is by definition the set of arrows g in C such that (Fg)f = f 0

d Fc

Fc0

f

f 0
Fg

In the case of F is the inclusion of a subcategory, we denote (d # C) instead of (d # F ), leaving
the inclusion functor implicit. There is a canonical forgetful functor Πd : (d # F ) ! C sending
a pair (c, f) onto the object c and a morphism g onto g itself. This induce a canonical diagram
associated to every object d in D, defined as the composite

(d # F ) C D
Πd F

Intuitively, this diagram witnesses the objects of C that, seen through F sit above d in the
category D.

Nerve and comma category. The intuitions behind the nerve functor ⌫F (d) and behind the
canonical diagram over d are closely related: Both quantify the objects of C which seen through
F sit above d in D. Indeed, these notions carry similar information and are closely related. We
relate them by considering a pair of functor

D E

C

F
G

and constructing the diagram

(d # F ) C E
Πd G

Lemma 45. Under the hypotheses as above, the category of cones of apex e in E over the diagram
G �Πd is equivalent to the category of natural transformations bC(⌫G(e), ⌫F (d))

Proof. The proof of this result can be found in [53, Lemma on p. 245] and [57, Lemma 6.3.8 on
p. 202].

In the case where E = D and G = F , and choosing the object d as the apex of the cone, this gives
an isomorphism between the cones of apex d over the canonical diagram of d and the natural
transformations bC(⌫F (d), ⌫F (d)). The identity natural transformation id⌫F (d) then defines a cone
of apex d over the canonical diagram of d, that we call the canonical cone of d.

Right Kan extensions. The notion of Kan extension is very general and can be characterized
in different ways. We here give the definition that is best suited to the situation we want
to describe. This is not the usual definition of the Kan extensions, but rather an equivalent
characterization (see [53, Corollary 4, p. 245]). Consider two functors D C E

F G
as

above, and a functor R : D ! E together with a natural transformation ✏ : RF ) G. Then
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a morphism f : e ! Rd in E induces a natural transformation ⌫F (d) ) ⌫G(e), defined on any
object c of C as the composite

D(d, Fc) E(Rd,RFc) E(e,Gc)R E(f,✏c)

Definition 46. With the notations as above, (R, ✏) is the (pointwise) right Kan extension of G
along F if for all objects d of D and e of E , the map E(e,Rd) ! bC(⌫F (d), ⌫G(e)) described above
is a bijection. When it is the case, we denote R = RanF (G).

Another characterization of right Kan extension [53, 57] is the following: R is the right Kan
extension of G along F , if and only if for every object d of D, we can compute Rd as the colimit

Rd = lim
⇣
(d # F )

Πd! C
G
! E

⌘

Indeed, Lemma 45 characterizes the natural transformations between the nerves as the cones,
the canonical cone is a cone in D that factors through F , so G defines the image of the canonical
cone over d in E . The definition of Kan extension states exactly the universal property for this
cone to be a limiting cone. Intuitively, the right Kan extension of an object d is the object of E
that gives the best over-approximation for d in E using only objects from C.

Codensity. A particularly important case of Kan extension is given when the functor R is
the identity functor and the functors G and F are equal, i.e., when idD = RanF (F ). When
this is satisfied, we say that the functor F is codense, and the previous characterization of Kan
extensions as limits shows that in this case, every object d in the category D is obtained as the
limit

d = lim
⇣
(d # F )

Πd! C
F
! D

⌘

We then call this limit the canonical limit of the object d. The intuition is that the functor F
is codense if for every object d of the category D the best over-approximation of d using only
objects for the image of F is d itself. Equivalently, the functor F is codense if every object of D
is canonically a limit of objects in the image of F .

Lemma 47. For a codense functor F : C ! D together with a functor G : D ! E. Then G
preserves the canonical limits if and only if it is the right Kan extension

G = RanF (GF )

Proof. This is exactly the second characterization that we have given for the right Kan extension.

Free completions. Kan extensions behave nicely with fully faithful functors, as shown by the
following result (c.f. [57, Corollary 6.3.9, p.203] or [53, Corollary 3, p.239] for a proof).

Proposition 48. If F is fully faithful and R = RanF (G), then RF is naturally isomorphic to
G.

Using this proposition, we can show that a functor F : C ! D that is both codense and fully
faithful realizes the free completion of C by finite limits.

Theorem 49. For any category E together with a functor G : C ! E such that the G-images of
the canonical diagrams of all the objects of D have a limit in E, there exists an essentially unique
functor G̃ : D ! E which preserves canonical limits and such that G̃F = G.
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Proof. If such a functor G̃ exists, since it preserves the canonical limits, it has to be defined as the
Kan extension G̃ = RanF (G), hence it is essentially unique. Conversely, our assumption about
the existence of the limits shows the existence of the Kan extension RanF (G), then Lemma 47
shows that it preserves canonical limits and Proposition 48 shows that it satisfies RanF (G)F = G.

We apply this particular in the particular case where E is the category Set, which is complete.
In this case, the condition of the existence of limits is automatically satisfied, and this theorem
can be reformulated as follows

Corollary 50. There is an equivalence of categories between the category of functors [C,Set]
and the functors D ! Set preserving the canonical limits, that we denote [C,Set]canlim.

This result can be seen as a refinement (and dual version) of the fact that the presheaf category
is the free cocompletion of a category: Instead of completing with all the limits, we only complete
by a sub-class of limits.

Free completions limit-preserving. Suppose that we have a functor FC ! D which is
codense and fully faithful, and that moreover C has a class of limits L, and that the functor F
preserves those limits. Then a functor G̃ : D ! Set preserves the limits L if and only if G̃ � F
preserves the limits L. This shows that the preservation of limits in L can be required in the
previous corollary, to get the following result

Corollary 51. There is an equivalence of categories between the category of functors [C,Set]L
preserving the limits in L and the category of functors [C,Set]L,canlim preserving the limits in L
and the canonical limits.

2.5.3 A characterization of substitutions

In the theory CaTT as in any contextual category, a substitution is completely determined by
its action on variables of a context, our goal is now to study the converse problem: Given a
function sending variables of a context to terms of another contexts, does there exist a substi-
tution whose action on variables is given by the specified function? Since substitution have to
respect typing, the action on type cannot be completely free, it has to satisfy some conditions.
For instance, there is no substitution (x : ?, f : x ! x) ` � : (x : ?) that sends the term
x : ? ` coh(x:?,x!x)[hx 7! xi] : x ! x onto f , since by definition of the action of a substitution,
we have (coh(x:?),x!x[hx 7! xi])[�] = coh(x:?),x!x[hx 7! x[�]i]. Our objective is now to describe
all the possible ways of associating a term of a context ∆ to each term of a context Γ while
ensuring that it corresponds to a substitution ∆ ` � : Γ.

The various nerve functors. In the case of the theory CaTT, the categories and functors
that we consider and the associated nerves are the following

– The functor I : SGSeTT ! SCaTT, which is the inclusion allowing to interpret a context
with only variables (i.e., a globular context) as a context in the theory CaTT.

– The functor D : Gop ! SGlob, which is given by the characterization of the disk contexts
in the theory GSeTT. We denote its nerve functor V = ⌫D (this is the functor that we had
simply denoted ⌫ in Section 2.2). Corollary 23 shows that an element of (V Γ)n is exactly
a term of Γ of dimension n in the theory GSeTT, that is a variable in Γ, thus we call V Γ

the presheaf of variables of Γ.
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– The functor ID : Gop ! SCaTT which is given by the disks contexts in the theory CaTT.
We denote its associated nerve functor T = ⌫ID, and Corollary 42 shows that an element
of (TΓ)n is exactly a term in Γ of dimension n. We call TΓ the presheaf of terms of Γ.

– The functor P0 : SPS,0 ! CaTT, which is the inclusion allowing to consider ps-contexts as
a particular contexts of CaTT, and the globular substitutions between those as particular
cases of substitutions of CaTT. We denote the nerve associated to this functor ⌫0 = ⌫P0

.

– The functor P1 : SPS,1 ! CaTT which is the inclusion allowing to consider ps-contexts as
contexts in CaTT, and substitutions between those as substitutions in CaTT. We denote
the nerve associated to this functor ⌫1 = ⌫P1 .

The situation can be visualized on the following diagram.

dGop [SPS,0
\SPS,1

SGSeTT SCaTT

Gop SPS,0 SPS,1

I

V T ⌫0

⌫1

D ID P0

P1

In a globular contexts the source and target of a variable is again a variable which is not the
case in arbitrary contexts, so V is only definable as globular set on globular contexts, for
a general context, we can only define a set of variables. Consider for instance the context
Γ = (x : *, a : id x -> id x), then the set of variables is {x, a} but we cannot see it as a
globular set: the source of a is the term id x which is not a variable.

Action on terms. We use these nerve functors to encode an action, which for every term of
a context associates a term in another context. Indeed, a natural transformation TΓ ) T∆
associates to each term of Γ a term of ∆ of the same dimension, while also respecting the source
and target. This in particular implies that it preserves the typing, which is required if we want
the action to define a substitution. We start by treating the case where we describe actions of
substitutions ∆ ` � : Γ with Γ a globular context, as in this case, it suffices to specify the image
of all the variables of Γ, encoded as a natural transformation V Γ ) T∆. In the general case
however, we cannot do this, since we do not have access to a presheaf of variables. For this
reason, we consider natural transformations TΓ ) T∆ instead, but we have to add an extra
condition that we call algebraicity, to make sure that those indeed define a substitution. The
nerves ⌫0 and ⌫1 play a role in defining and understanding this algebraicity condition.

Substitutions to a globular context. We first give a characterization of all the substitutions
whose target is a globular context. Since the set of variables of such a context is naturally a
globular sets, these substitutions are easier to characterize.

Lemma 52. Let ∆ ` be a context and Γ ` a globular context. Then there is an isomorphism

SCaTT(∆, I(Γ)) ' dGop(V Γ, T∆)

Proof. To any substitution ∆ ` � : Γ, we associate a natural transformation � : V Γ ) T∆
defined as follows : For any dimension n, we define

�n : (V Γ)n ! (T∆)n
x 7! x[�]
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In order to check that this defines a natural transformation, it suffices to check that it is com-
patible with the source and target inclusion of disks, i.e., that it respects the types. If x, y, z are
variables in ∆ such that ∆ ` x : y ! z, this amounts to saying that Γ ` x[�] : y[�] ! z[�]. This
comes from Proposition 3, and hence � is a natural transformation. This allows us to define the
map

: SCaTT(∆,Γ) ! Nat(V Γ, T∆)

Lemma 6 states exactly that this map is injective, and we prove that it is surjective, by con-
structing for any natural transformation ⌘ : V Γ ) T∆, a substitution � such that � = ⌘. We
construct this substitution by induction on Γ.

– For the empty context ?, we pose � = hi and since V Γ is the empty presheaf, it is initial
and hence hi = ⌘.

– For a context of the form Γ = (Γ0, x : A), the natural transformation ⌘ : V Γ ) T∆ induces
a natural transformation ⌘0 : V Γ0 ) T∆. Let ∆ ` �0 : �0 be the preimage substitution of
⌘0, define � to be the substitution ∆ ` h�0, x 7! ⌘(x)i : Γ. Since both judgments ∆ ` �0 : Γ0

and (Γ0, x : A) ` are derivable, and the naturality of ⌘ implies that ∆ ` t : A[�0] is also
derivable, an application of the rule (se) shows that this definition yields a valid substitution
∆ ` � : Γ. We now check that � = ⌘. For a variable y in ∆, either y is a variable of ∆0,
and then y[�] = y[�0] = ⌘0(y) = ⌘(y), or y is the variable x and then x[�] = ⌘(x)

This result shows exactly that I is in fact the pointwise right Kan extension

I = RanD(ID)

Explicitly, a natural transformation ⌘ : V Γ ) T∆ is the data of, for each variable x of Γ, a term
⌘(x) in ∆ of the same dimension as x, such that if Γ ` x : y ! z, then ∆ ` ⌘(x) : ⌘(y) ! ⌘(z).
By Lemma 45 such a natural transformation is equivalent to a cone of apex ∆ in the category
SCaTT over the diagram (Γ # V ) ! Gop ,! SCaTT. Lemma 52 shows that this cone is colimiting,
which is an equivalent characterization of the Kan extension.

Algebraic natural transformations TΓ ) T∆. We now study the more general case of
substitutions whose targets are generic contexts, and not necessarily globular ones. Note that
the same exact result does not make sense anymore, since V Γ is not defined in general. For
instance, for the context

Γ = (x : *) (f : id x -> id x)

we would like to define (V Γ)2 = {f}, but then its source and target are the term id x which is
not a variable, and hence not an element of (V Γ)1. In order to express the condition, we change
the point of view, and consider natural transformations TΓ ) T∆ instead of V Γ ) T∆, to
establish a correspondence between the substitutions ∆ ` � : Γ. However, by switching from
the presheaf of variables to the presheaf of terms, we have added too much freedom, and there
are now such natural transformations that are ill-defined substitutions; for instance, consider the
contexts

∆ = (x:*)(f:x->x) Γ = (x:*)

together with a natural transformation ⌘ : TΓ ) T∆ such that ⌘(id x) = f. This can never
be the action of a substitution, since, (id x)[�] = id (x[�]). To account for this, we express a
compatibility condition of the natural transformations with the term constructors op and coh,
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and show that it is the only obstruction to correspond to a well-defined substitution. We call this
compatibility condition algebraicity, and is defined inductively on the depth of the substitution
we consider.

We first define a function _⇤ : dGop(TΓ, T∆) ! [SPS,0(⌫0Γ, ⌫0∆). Suppose given the natural
transformation ⌘ : TΓ ) T∆, and consider a ps-context Ξ, together with a substitution Γ ` ⇠ : Ξ
(i.e., ⇠ is an element of (⌫0Γ)Ξ). By Lemma 52, ⇠ induces a natural transformation ⇠ : V Ξ ) TΓ.
By vertically composing this natural transformation with ⌘, we get a natural transformation
⌘ � ⇠ : V Ξ ) T∆. We define the substitution ∆ ` ⌘⇤(⇠) : Ξ to be the substitution associated to
this natural transformation by Lemma 52, it is thus characterized by the equation ⌘⇤(⇠) = ⌘ � ⇠.
The following lemma ensures that this definition is natural in ⌘.

Lemma 53. For any natural transformation ⌘ 2 dGop(TΓ, T∆), the family of functions ⌘⇤ defines

a natural transformation in [SPS,0(⌫0Γ, ⌫0∆)

Proof. Consider a substitution Ξ `  : Ψ in the category Sps,0, we want to show that the
following square commutes

(⌫0Γ)Ξ (⌫0∆)Ξ

(⌫0Γ)Ψ (⌫0∆)Ψ

⌘⇤

 �_  �_

⌘⇤

Consider a substitution Γ ` ⇠ : Ξ and a variable x in Ψ, on one hand we have

⌘⇤( � ⇠)(x) = ⌘ � ( � ⇠)(x)

= ⌘(x[ � ⇠])

= ⌘(x[ ][⇠])

= ⌘ � ⇠ �  (x)

where the first line is by definition of ⌘⇤ and the last line holds since x[ ] is a variable in Ξ (since
 is a map in SPS,0), which is a ps-context hence a globular context. And on the other hand,

 � ⌘⇤(⇠)(x) = x[ � ⌘⇤(⇠)]

= x[ ][⌘⇤(⇠)]

= ⌘⇤(⇠) �  (x)

= ⌘ � ⇠ �  (x)

where the third line holds since x[ ] is a variable of Ξ, and the last line holds by definition of ⌘⇤.
This proves that for all x in Ψ we have ⌘⇤( � ⇠)(x) =  � ⌘⇤(⇠)(x), and hence ⌘⇤( �⇠) =  �⌘⇤(⇠)

We can understand this result in terms of canonical diagrams: Lemma 45 shows that a
natural transformation ⌫0(Γ) ) ⌫0(∆) is equivalent to a cone of apex Γ over the diagram
(Γ # S0,1) ! S0,1 ! SCaTT. Lemma 45 also shows that a natural transformation TΓ ) T∆ is
equivalent to a cone of apex ∆ over the diagram (Γ # Gop) ! Gop ! SCaTT. The first diagram has
the ps-contexts as objects, whereas the second diagram has only the disks. But the ps-contexts
are themselves globular products, that are limits of disks. So Lemma 53 can be understood as a
procedure to develop the globular products in the former diagram to obtain the latter.
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Definition 54. A natural transformation ⌘ : TΓ ) T∆ is said to be algebraic if for every
ps-context Ξ together with a term t derivable in Ξ and a substitution Γ ` ⇠ : Ξ, one has the
equality

⌘(t[⇠]) = t[⌘⇤(⇠)]

The following lemma, aside from being technically relevant shows that restricting ourselves to
algebraic natural transformation removes the additional unwanted freedom that we added when
we switched from the presheaf of variables to the presheaf of terms. Indeed, it gives an equivalent
of Lemma 6 for algebraic natural transformations.

Lemma 55. Two algebraic natural transformations ⌘, ⌘0 : TΓ ) T∆ are equal if and only if
they coincide on all variables of Γ.

Proof. Suppose that ⌘, ⌘0 : TΓ ) T∆ are two algebraic natural transformations that coincide on
all variables of Γ. We prove that for any term t derivable in Γ, ⌘(t) = ⌘0(t), by induction on the
depth of t.

– For a variable x, we have by hypothesis ⌘(x) = ⌘0(x).

– For a term t of the form Γ ` opΞ,A[⇠] : A[⇠], since ⌘ and ⌘0 are algebraic we have
⌘(t) = opΞ,A[⌘

⇤(⇠)] and ⌘0(t) = opΞ,A[⌘
0⇤(⇠)], so it suffices to prove that ⌘⇤(⇠) = ⌘0⇤(⇠).

Moreover, for every variable x in Ξ, the term x[⇠] is of depth strictly less than t hence by
induction we have ⌘(x[⇠]) = ⌘0(x[�]), which translates to ⌘⇤(⇠)(x) = ⌘0⇤(⇠)(x). Since this
holds for all x, it shows that we have ⌘⇤(⇠) = ⌘0⇤(⇠).

Algebraic natural transformations and nerves. We have defined algebraic natural trans-
formations as morphisms in the category of globular sets, between two presheaves of terms. It
turns out that these correspond exactly to natural transformations in the category of presheaves
over SPS,1 between two nerves.

Lemma 56. If a natural transformation ⌘ 2 dGop(TΓ, T∆) is algebraic, then ⌘⇤ defines a natural

transformation in \SPS,1(⌫Γ, ⌫∆).

Proof. We have already proved in Lemma 53 that ⌘⇤ defines a natural transformation ⌫0Γ ) ⌫0∆

and since for any ps-context Ξ, we have the equality of sets (⌫0Γ)Ξ = (⌫Γ)Ξ, ⌘⇤
Ξ

defines a function
(⌫Γ)Ξ ! (⌫∆)Ξ. It suffices to check that this family is a natural transformation, that is for all
substitution Ξ `  : Ψ between two ps-contexts, the following square commutes

(⌫Γ)Ξ (⌫∆)Ξ

(⌫Γ)Ψ (⌫∆)Ψ

⌘⇤

 ⇤  ⇤

⌘⇤

Consider a substitution Γ ` ⇠ : Ξ in SPS,1, then for any variable x 2 V Ξ we have on one hand

 � ⌘⇤(⇠)(x) = x[ � ⌘⇤(⇠)]

= x[ ][⌘⇤(⇠)]

and on the other hand

⌘⇤( � ⇠)(x) = ⌘ � ( � ⇠)(x)

= ⌘(x[ � ⇠])

= ⌘(x[ ][⇠])
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Since ⌘ is algebraic, this shows that  � ⌘⇤(⇠)(x) = ⌘⇤( � ⇠)(x) and this being true for all the
variables x 2 V Ξ, it shows the equality ✓ � ⌘⇤(�) = ⌘⇤(✓ � �).

This proof sheds a new light on the algebraicity condition: It is exactly the condition required
for a natural transformation between the presheaves of terms to lift to a transformation between
the nerves which is still natural. Once again this result can be understood in terms of canonical
diagrams: By Lemma 45, a natural transformation TΓ ) T∆ is equivalent to a cone of apex
∆ over the diagram (Γ # Gop) ! Gop ! SCaTT, and a natural transformation ⌫(∆) ) ⌫(Γ)
is equivalent to a cone of apex ∆ over the diagram (Γ # SPS,1) ! SPS,1 ! SCaTT. The
algebraicity condition provides a condition in which a cone over the disks can be factored as a
cone over the ps-contexts.

Lemma 57. There is a natural isomorphism between the set of algebraic natural transformations
TΓ ) T∆ and the set of natural transformations ⌫(Γ) ) ⌫(∆)

Proof. We have already proved in Lemma 56 that an algebraic natural transformation ⌘TΓ ) T∆
defines a natural transformation ⌘⇤ : ⌫(Γ) ) ⌫(∆). Conversely, given a natural transformation
⌘ : ⌫(Γ) ) ⌫(∆), it restricts along the inclusion functor G ,! SPS,1 to a natural transformation
⌘0 : TΓ ) T∆. We first show that ⌘0 is an algebraic natural transformation: Given a ps-context
Ξ and a term t in Ξ, together with a substitution Γ ` ⇠ : Ξ, the naturality of ⌘ shows the
commutation of the following square

(⌫Γ)Ξ (⌫∆)Dn

(⌫Γ)Ξ (⌫∆)Dn

⌘

t[_] t[_]

⌘

which gives the equation t[⌘(⇠)] = ⌘(t[⇠]). Since t[⇠] is a term, ⌘0(t[⇠]) is well defined as
⌘0(t[⇠]) = ⌘(t[⇠]), so in order to show that ⌘0 is algebraic, it suffices to show that t[⌘(⇠)] = t[⌘0⇤(⇠)].
We show that ⌘0⇤(⇠) = ⌘(⇠): For any variable x in Ξ, we have that

⌘(⇠)(x) = x[⌘(⇠)]

= ⌘(x[⇠])

= ⌘0(x[⇠])

= (⌘0 � ⇠)(x)

So this proves the equality of natural transformations ⌘(⇠) = ⌘0 � ⇠. Since this equation charac-
terizes ⌘0⇤(⇠), it follows that ⌘(⇠) = ⌘0⇤(⇠), and hence the algebraicity of ⌘0.

We now show that the restriction ⌘ 7! ⌘0 is inverse to the extension ⌘ 7! ⌘⇤. We have
already proved that for all transformation ⌘ : ⌫(Γ) ) ⌫(∆), and all element ⇠ of ⌫(Γ)Ξ, we
have ⌘(⇠) = ⌘0⇤(⇠), so this proves that ⌘0⇤ = ⌘. Conversely, consider an algebraic natural
transformation ⌘ : TΓ ) T∆, we show that (⌘⇤)0 = ⌘, that is, for all term t of dimension n in Γ,
we have ⌘(t) = ⌘⇤(t). It suffices to show that ⌘(t) = ⌘⇤(t). Consider a variable x in Dn, then we
have on one hand

⌘(t)(x) = x[⌘(t)]

and on the other hand,
⌘⇤(t)(x) = ⌘ � t(x) = ⌘(x[t])

The naturality of ⌘ gives the equality between these two expressions, proving that (⌘⇤)0 = ⌘.
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In terms of canonical diagrams, this can be understood as showing that the algebraicity condition
characterizes exactly the diagrams over the disks that can be factored as a cone over the ps-
contexts.

Substitutions to arbitrary contexts. These results let us characterize all the morphisms in
the category SCaTT and exhibit SPS,1 as a codense subcategory of this category.

Theorem 58. The category SPS,1 is a codense subcategory of SCaTT, or equivalently, the nerve
functor ⌫ is fully faithful

Proof. We define a natural isomorphism SCaTT(∆,Γ) ' Nat(⌫(Γ), ⌫(∆)) for any two contexts ∆

and Γ in SCaTT. By Lemma 57, it suffices to prove that the substitutions ∆ ` � : Γ are naturally
in bijection with the algebraic natural transformations TΓ ) T∆.

To any substitution ∆ ` � : Γ, we associate the natural transformation � defined for all
terms t in TΓ by �(t) = t[�]. This family of functions defines a natural transformation, since
the morphisms in G are the source and target, and the application of � preserves the typing,
i.e., if ∆ ` t : u ! v, then Γ ` t[�] : u[�] ! v[�]. Moreover we show that this natural
transformation is algebraic: Consider a ps-context Ξ together with a term t derivable in Ξ and
a substitution Γ ` ⇠ : Ξ. Then we have �(t[⇠]) = t[⇠][�] = t[⇠ � �]. Moreover for all variable x,
⇠ � �(x) = x[⇠ � �] = (� � ⇠)(x), which is the defining equation for �⇤(⇠), hence ⇠ � � = �⇤(⇠), and
�(t[⇠]) = t[�⇤(⇠)]. This proves that � is a algebraic natural transformation.

Conversely, given an algebraic natural transformation ⌘ : TΓ ) T∆, we define a substitution
∆ ` �⌘ : Γ such that �⌘ = ⌘ by induction over the length of Γ.

– If Γ is of length 0, then it is the terminal context ?, and we define �⌘ to be the unique
substitution ∆ ` hi : ?.

– If Γ is of length n + 1, then Γ = (Γ0, x : A), and the projection Γ ` ⇡ : Γ0 induces a
“restriction” natural transformation TΓ0 ) TΓ. By composing this transformation with ⌘,
we get ⌘0 : TΓ0 ) T∆, and since ⌘0 is a restriction of ⌘ it is also algebraic. By induction this
gives a substitution Γ0 ` �⌘0 : ∆. We then define �⌘h�⌘0 , ⌘(x)i, and check that an application
of the rule (es) shows that �⌘ is well defined. Since we have by induction ∆ ` �⌘0 : Γ

0, and
by hypothesis Γ0, x : A `, it suffices to check that ∆ ` ⌘(x) : A[�⌘0 ]. This is immediate
if A = ?, and if A = y ! z, the naturality of ⌘ shows that ∆ ` ⌘(x) = ⌘(y) ! ⌘(z),
and by definition of �⌘0 , we have that A[�⌘0 ] = ⌘0(y) ! ⌘0(z) = ⌘(y) ! ⌘(z). Hence the
substitution is well defined.

It now suffices to check that �⌘ = ⌘, and since it is an equality between two algebraic
natural transformation, it suffices by Lemma 55 to check that they have the same actions
on variables. Let y be a variable in Γ, then either y = x, and then by definition of �⌘, we
have x[�⌘] = ⌘(x), or y is a variable in Γ0, and then y[�⌘] = y[�⌘0 ] and by induction, we
have that y[�⌘0 ] = ⌘0(y) = ⌘(y).

We then prove that these two maps are inverse to one another. We have already proved during
the induction that �⌘ = ⌘ for all algebraic natural transformation, so it suffices to show that for
all substitution ∆ ` � : Γ, we have �� = �. By Lemma 6, it suffices to prove that for all variable
x in Γ, we have x[�� ] = x[�], which holds by the following argument

x[�� ] = ��(x)

= �(x)

= x[�]
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2.5.4 SCaTT as a free completion

Theorem 58 shows that SPS,1 is a codense full subcategory of SCaTT, so Corollary 50 shows that
the inclusion SPS,1 ! SCaTT exhibits SCaTT as the free completion of SPS,1 by the canonical
limits.

Canonical limits. Apply the definition of canonical limits to our specific case of the codense
subcategory SPS,1 shows that every object Γ in the category SCaTT is obtained as a limit of the
following form, which is the canonical limit

Γ = lim ((Γ # SPS,1) ! SPS,1 ! SCaTT)

Preservation of globular products. Since P1 : SPS,1 ,! SCaTT is fully faithful and SCaTT

has the globular products, P1 preserves the globular products. Corollary 51 apply to show the
following

Corollary 59. The category SCaTT is the free completion of the category SPS,1 by the canonical
limits preserving the globular products. Equivalently for any complete category C, the functor
P1 : SPS,1 ,! SCaTT induces an equivalence of categories

[SPS,1, C]gprod ' [SCaTT, C]gprod,canlim

2.5.5 Functors preserving globular products

We now suppose given a category C equipped with a functor F : SCaTT ! C which preserves the
globular products, and we reproduce the previous results for the category C seeing the objects
as generalization of contexts, as allowed by the functor F .

Morphism to the image of ps-contexts.

Lemma 60. If Γ is a ps-context, and X is an object of C, then there is a bijection

Set(X,FΓ) ' Nat(V Γ, ⌫FX)

Proof. Consider a ps-context Γ, then it can be written as a globular product. Since F preserves
the globular products FΓ is also a globular product, and a natural transformation V Γ ) ⌫FX
is exactly a cone of apex X over a diagram which is equivalent to the globular product diagram
of FΓ, hence the equality, by definition of a limit.

This lemma can also be formulated in terms of Kan extensions. Note that we have the
following induced functors

SPS,0 SPS,1

Gop

Ip

Dp
IpDp

and the previous lemmas restricted to this functor state that Ip = RanDp
(IpDp). Lemma 60

states that a functor F : SCaTT ! C preserving the globular products necessarily preserves this
right Kan extension, i.e., that we have FIp = RanDp(FIpDp).
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Algebraic natural transformations TΓ ) TFX. Given a functor F : SCaTT ! Set, pre-
serving the globular products, we denote TF the nerve functor associated to the composite
Gop ! SCaTT ! Set. Similarly to the previous section, a natural transformation ⌫Γ ) ⌫FX is
redundant, and can be reduced to a natural transformation TΓ ) TFX, satisfying a particular
algebraicity condition.

Lemma 61. A natural transformation ⌘ : TΓ ) TFX induces a natural transformation between
the nerves ⌘⇤ : ⌫(Γ) ) ⌫F (X).

Proof. For a natural transformation ⌘ : TΓ ) TFX, given a ps-context Ξ together with a
substitution Γ ` ⇠ : Ξ, we have the natural transformation � : V (Ξ) ) ⌫(Γ), by vertically
composing with ⌘ we get the natural transformation ⌘ � � : V (Ξ) ) ⌫F (X), and we define ⌘⇤(�)
to be the unique map such that ⌘⇤(�) = ⌘��. The fact that this defines a natural transformation
is analogous to Lemma 53

Definition 62. A natural transformation ⌘ : TΓ ) TFX is algebraic if for all ps-context Ξ and
for all term t in Ξ, along with a substitution Γ ` � : Ξ, the following equality is satisfied

⌘(t[�]) = F (t) � (⌘⇤�)

The term algebraicity comes from an analogy with the monads, and has no direct connection
with the algebraicity of a morphism that we have introduced to present Grothendieck-Maltsiniotis
definition of weak !-categories.

Lemma 63. Two algebraic natural transformation TΓ ) TFX are equal if and only if they
coincide on all variables.

Proof. The proof is the same as the one of Lemma 55

Lemma 64. The set of algebraic natural transformations TΓ ) TFX is naturally isomorphic
to the set of natural transformations ⌫Γ ) ⌫FX.

Proof. Again, the proof is essentially the same as the one of Lemma 57.

2.6 Models of CaTT

The characterization of the syntactic category that we have given enables us to compute the mod-
els of the theory CaTT. In particular we show here that they are equivalent to the Grothendieck-
Maltsiniotis definition of weak !-categories [54] that we have presented in Section 2.1. The
idea behind this proof is that the canonical limits together with the globular product define
the same class of limits as the pullbacks along the display maps and the terminal object. Thus
the models, which are the functors preserving the terminal object and the canonical limits, are
equivalently described as the functors preserving the canonical limits and the globular products.
The latter are equivalent to the Grothendieck-Maltsiniotis definition, by the characterization of
the syntactic category as a free completion that we have presented in the previous section.

Lemma 65. If F : SCaTT ! Set is a functor that preserves globular products, then F preserves
canonical limits if and only if F preserves the pullbacks along display maps and the terminal
object.
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Proof. Consider a functor F : SCaTT ! Set that preserves globular products. We first refor-
mulate our goal by applying Lemma 47 together with Lemma 64, and show that F preserves
pullbacks along display maps if and only if for every context Γ and every set X, the associa-
tion f 7! f induces a bijection between Set(X,FΓ) and the algebraic natural transformations
TΓ ) TFX.

First we assume that F preserves the pullbacks along the display maps and the terminal
object, and show that the desired map is an bijection, this by induction on the context Γ

– For the empty context ?, it is the terminal object in the category SCaTT and F preserves
terminal object, hence F? is the terminal object in Set, and hence for all X, Set(X,F?)
is a singleton. Moreover, by construction (TΓ)n is the set of terms of dimension n in
the empty context. Since in the theory CaTT no term is derivable in the empty context,
T? is the empty presheaf which is initial, hence there is a unique natural transformation
T? ) TFX, and it is vacuously algebraic. Hence the map is a map between two singleton
sets, so it is a bijection.

– Consider a context Γ = (Γ0, x : A), and assume the bijection holds for Γ. Then Γ writes
as the following pullback (on the left) and since F preserves pullbacks along display maps,
taking image by F yields the following pullback square (on the right)

Γ Dn

Γ0 Sn�1

x

y

A

F (Γ) F (Dn)

F (Γ0) F (Sn�1)

y

For any set X, the continuity of the hom-functor with respect to its second variable shows
that the following square is a pullback

Set(X,F (Γ)) Set(X,F (Dn))

Set(X,F (Γ0)) Set(X,F (Sn�1))

y

An algebraic natural transformation ⌘ : TΓ ) TFX restricts as a natural transformation
⌘0 : TΓ0 ) TFX which is again algebraic, and by induction this gives a map �⌘ : X ! FΓ0.
Applying the last variable to ⌘ also gives a specific element ⌘(x) 2 (TFX)n = Set(X,FDn).
Moreover, the naturality of ⌘ shows that these two constructions fit into the following
commutative triangle, which by the property of the pullback gives a unique map �_

Natalg(TΓ, TFX)

Set(X,F (Γ)) Set(X,F (Dn))

Set(X,F (Γ0)) Set(X,F (Sn�1))

�_

y

Where Natalg(TΓ, TFX) is the set of algebraic natural transformations. By precomposing
with the map : Set(X,FΓ) ! Natalg(TΓ, TFX), we have that for all map � : X ! FΓ,
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by induction hypothesis ��0 = F (⇡)�, and �(x) = x[�], and hence by universal property of
the pullback, this implies that �_ � = idSet(X,FΓ). Conversely, for all natural algebraic
transformation ⌘ : TΓ ) TFX and all variable y in Γ, we have that �⌘(y) = Fy � �⌘,
then either y is a variable Γ0 and by induction Fy � �⌘ = ⌘0(y) = ⌘(y), or y = x and then
Fy � �⌘ = ⌘(x) by definition of �⌘. Hence for all variable y of Γ, ⌘(y) = �⌘(y), and by
Lemma 63 this shows ⌘ = �⌘ Hence �_ is an inverse to the map , and thus the map is a
bijection.

Conversely, we suppose that the map is a bijection, and show that then it also preserves
pullback along display maps and terminal object. First note that for the terminal object ?,
we have already proved that there is exactly one natural transformation T? ) TFX for all set
X, and the assumed bijection then ensures that F? is terminal in Set. So we are left proving
that F preserves pullbacks along display maps, and for this it suffices to prove that it preserves
pullbacks along generating display maps. Consider such a pullback, which is of the following
form (on the left), and we consider a commutative on the following form (on the right) for an
arbitrary set X.

(Γ, x : A) Dn

Γ Sn�1

x

y

A

X F (Dn)

FΓ F (Sn�1)

t

g

By the assumed bijection, the map g : X ! FΓ corresponds exactly to an algebraic natural
transformation g : T (Γ, x : A) ) TFX. Under this bijection, the fact that F (Γ, x : A) is the
preserved pullback is equivalent to saying that there exists a unique algebraic natural transfor-
mation ⌘ : T (Γ, x : A) ) TFX which coincide with g for all terms that are definable in Γ, and
such that ⌘(x) = t. By Lemma 63 the uniqueness is clear, since the requirement specifies the
values on all variables of (Γ, x : A), so it suffices to show that such a natural transformation
exists. We define this natural transformation by first setting ⌘(t) = g(t) for all terms in Γ, and
extend it by induction on the depth of the term that are not definable in Γ.

– For a term of depth 0, it is necessarily the variable x, and we set ⌘(x) = t. The fact that
this is natural for x is equivalent to the fact that the initial square we consider commutes.

– Suppose that we have constructed ⌘ which is natural for all terms of depth at most d,
and consider a term t of depth d + 1 derivable in (Γ, x : A). Then t is necessarily a
coherence oh the form t = coh∆,B [�] with � being a substitution of depth d. We then set
⌘(t) = F (coh∆,B [id∆])� (⌘

⇤�). We now check that this is natural for t : consider the source
substitution � : Dn ! Dn�1, we have that

F� � ⌘(t) = F� � F (coh∆,B [id∆]) � (⌘
⇤�)

= F (� � coh∆,B [id∆])(⌘
⇤�)

= ⌘(� � t)

and similarly for the target substitution. This proves the naturality of ⌘ on the term t we
constructed.

This natural transformation is algebraic by construction, hence we have proved the existence of
a unique algebraic natural transformation that meets the requirements, and hence F preserves
the pullbacks along the generating display maps. This shows that F preserves pullbacks along
all display maps.
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Theorem 66. The models of CaTT are equivalent to the weak !-categories.

Proof. The models of CaTT are the functors SCaTT ! Set preserving the terminal object and
the pullbacks along display map as stated in Lemma 10. Moreover, those induce a morphism of
coglobular structured categories with families from SCaTT ! Set, hence by Lemma 30, they also
preserve the globular products, so it follows by Lemma 65 that these are exactly the functors
SCaTT ! Set preserving the globular products and the canonical limits. Such functors are
equivalent to weak !-categories by Corollary 59

Following Ara’s result [4], under a mild conjecture [4, Conjecture 4.1.7, p.55] this proves that the
models of CaTT are also equivalent to the definition of weak !-categories due to Batanin [11]
and Leinster [48]. In fact we believe that CaTT is a good framework to explore the connection
between the Grothendieck-Maltsiniotis definition of weak !-categories and the Batanin-Leinster
definition of weak !-categories, but we have not pushed research in this direction yet.

Equalizers in the category SCaTT. We present a second characterization of the models of
SCaTT, based on Corollary 18. Indeed, given that our contextual category comes from an actual
syntax, all the most general unifiers that it has are primitive. Moreover, we assume the following

Conjecture 67. For any two substitutions of the form ∆ ` h�, x 7! ti : (Γ, x : A) and
∆ ` h�0, x 7! t0i : (Γ, x : A) that have an equalizer in SCaTT, the substitutions ∆ ` � : Γ

and ∆ ` �0 : Γ also have an equalizer in SCaTT.

Under this conjecture, Corollary 18 gives another characterization of the models of CaTT.

Corollary 68. The category of models Mod(SCaTT) is equivalent to the category of functors
SCaTT ! Set that preserves all the finite limits that are in SCaTT.

This gives an important connection with categorical notion of models of an algebraic theory.

2.6.1 The syntactic category

In the light of Theorem 66, we understand the syntactic category SCaTT as describing an appro-
priate notion of finite presentation for weak !-categories. The traditional notion of presentation
for higher structure is the notion of polygraphs [21, 60], which is well-known in the strict and
truncated cases. Intuitively, polygraphs allow for presenting the cells that generate a higher cat-
egory, these cells may have sources and targets which are not themselves generators, but rather
composite of generators. The situation is analogous to the example we have presented, of the
context Γ = (x : *, a : id x -> id x), where the variable a has a source id x, which is not
itself a variable, but a term which represents a certain composite of variables. This observation
supports our intuition that the contexts define a notion of polygraph for the weak !-categories.
Moreover, since the contexts necessarily have finitely many variables, we believe that they in fact
define finite polygraphs. For any context ∆ of the theory CaTT, we can construct the functor
SCaTT(∆,_) : SCaTT ! Set. By continuity of the hom-functor, this functor preserves the limits,
so in particular it preserves the terminal objects and the pullbacks along the display maps, hence
Lemma 10 shows that it is a model of CaTT. The association ∆ 7! SCaTT(∆,_) thus defines a
functor F : Sop

CaTT ! Mod(SCaTT), and since it is a coYoneda embedding this functor is fully
faithful. The functor F hence exhibits the syntactic category Sop

CaTT as a full subcategory of the
category of models Mod(SCaTT). Our intuition from categorical logic is that this full subcate-
gory is defined by the fact that its objects are exactly the weak !-categories freely generated by
a finite polygraph.
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2.6.2 Towards a structure with weak functors

Even though the category of models of CaTT is equivalent to the Grothendieck-Maltsiniotis cat-
egory of weak !-categories, we claim that this category is not completely satisfying. The objects
in these category correspond indeed to our intuition of weak !-categories, but the morphisms
are not the expected ones: We expect the weak !-categories to be equipped with a notion of
weak functors, that satisfy all the axioms of functors up to invertible higher cells, whereas the
morphisms of models are a strict variant satisfying all these axioms on the nose. In fact we could
not have obtained our expected notion of functors as morphisms in the categories of models, since
those do not compose in a strictly associative way, hence they do not define a category, but rather
an (1, 1)-category. We believe that the category of models of the theory CaTT could equipped
with a model structure, or a variation of it, that presents this (1, 1)-category. In particular
we believe that the weak !-categories should be equipped with an appropriate notion of weak
equivalence, and that the properties that make sense for weak !-categories are the ones that
are invariant under this notion of weak equivalence. Moreover, this discussion can be repeated
for natural transformations, and all the higher cells, and we believe that the weak !-categories
in fact naturally define a weak !-category, even though we do not know a way to present or
manipulate it.
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Chapter 3

Practical use and partial automation

Now that we have presented and analyzed the type theory CaTT from a theoretical standpoint
and justified its correctness, we study practical aspects and in particular explain how such a
theory can be used to prove results about weak 1-categories.

3.1 Implementation

Along with the formal description of the type theory, we provide an implementation of a proof-
assistant for weak !-categories that functions as a type checker, for this theory. Our implemen-
tation, realized in the programming language OCaml is available at [15], and we discuss the
choices that were factored in during the implementation in order to make this proof-assistant
into a practical tool, along with its syntax.

3.1.1 Syntax

The type ? is written in CaTT as the constant *, and the type t �!
A

u is written A | t -> u,

moreover a context is simply a sequence of variables together with their types, denoted with
parentheses and colons as follows

(x : *) (y : *) (f : * | x -> y)

(f’ : * | x -> y) (a : * | x -> y | f -> f’)

(z : *) (g : * | y -> z)

Term constructors. Since our implementation was performed at the early stage of the thesis,
it has only one family of type constructor called coh that is meant to encompass both the
type constructors op and coh that we have presented. To this end, this type constructor has
two introduction rules, one corresponding to the constructor op and one corresponding to the
constructor coh. This is just a choice of implementation, and does not change the theory at
all since there is no occurrence where both rules can apply simultaneously. Since there are
two introduction rules for this type constructors that lead to terms having different syntactic
properties, we have chosen since then to separate this into the two term families op and coh,
and keep this distinction as much as possible in our discussion, even if our implementation, and
hence the syntax that we use hide this distinction.
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Type inference. As noticed previously, whenever there is an arrow type t �!
A

u, the argument

A can always be omitted since it is recovered as the common type of the terms t and u, and this
justifies to denote this type t ! u. The same principle is implemented in the proof assistant.
This requires the proof assistant to work with type inference and not only type checking. Since
there is only one derivation that leads to a well-typed term, type inference is not more difficult
than type checking and this strategy is fully implemented.

(x : *) (y : *) (f : x -> y)

(f’ : x -> y) (a : f -> f’)

(z : *) (g : y -> z)

3.1.2 Declaration

In order to manipulate terms in the theory without having to write them completely explicitly,
we define declarations introduce intermediate terms, that we can then substitute. So if we have
already defined a term t, simply providing a substitution � lets us access the term t[�] without
writing it out explicitly entirely. Using this technique we decompose complicated terms into
successive applications of simpler terms that are easier to handle.

Declarations of operations. A particular case of this instance that is very important for us
is the introduction of a operation: We call an operation a term of the form t = opΓ,A[idΓ], and
we think of it as the primitive definition of the operation. Any other instance of a term opΓ,A[�]
can then be obtained by simply applying the substitution � to the term t. In order to introduce a
term of this form, we only need to specify the ps-context Γ and the type A, and thus we provide
a dedicated syntax to introduce the declaration of an operation.

coh name G : T

where name is a string denoting the name we give to the declaration, G is the CaTT translation
of the ps-context Γ and T is the CaTT translation of the type A. For instance, we can use a
declared operation to define the composition of 1-cells in a weak !-category as follows

coh comp (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z) : x -> z

And we can later on refer to the constructed term using only the name comp, followed by a list
of term that we call the arguments, but that are formally understood as defining a substitution.
For instance in a context that defines terms a, b, c of type *, a term ab of type a -> b and a
term bc of type b -> c, one can freely refer to the term

comp a b ab c bc

which is understood as the composition of ab and bc, and reduces internally to a term of the
form

op(x:?,y:?,f :x!y,z:?,g:y!z),x!z[hx 7! a, y 7! b, f 7! ab, z 7! c, g 7! bci]

Declaration of coherences. Similarly to the declarations of operation, we introduce the
declarations of coherence to define terms of the form t = cohΓ,A[idΓ]. The syntax is in fact
exactly the same, due to our implementation not differentiating between the terms constructors
coh and op.

coh name G : T
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where name is a string denoting the name we give to the declaration, G is the CaTT translation
of the ps-context Γ and T is the CaTT translation of the type A. For instance, the identity 1-cell
of a 0-cell can be defined as a declared coherence as follows

coh id (x : *) : x -> x

As in the previous case, in any context defining a term a of type *, we can refer to the identity
of a by constructing the term

id a

which internally reduces to
coh(x:?),x!x[hx 7! ai]

General declarations. We also provide a syntax to introduce a term in an arbitrary context,
regardless of whether it is a ps-context or not. This can be seen as a general declaration, in the
sense that we allow for applying substitutions to these new terms as well. We think of these
terms as operations or coherences in a weak !-categories but that are not primitive and can be
decomposed into simpler operations and coherences. Our dedicated syntax to introduce such
terms is the following

let name G = t

where name is a string denoting the name we give to the declaration, G is an arbitrary context,
and t is a term in CaTT. For instance, using the coherence comp previously defined, one can
define the square of an endo-1-cell as follows

let sq (x : *) (f : x -> x) = comp x x f x f

internally, this term reduces to the expression

op(x:?,y:?,f :x!y,z:?,g:y!z),x!z[hx 7! x, y 7! x, f 7! f, z 7! x, g 7! fi]

Moreover, we can also use this term as a basis of a declaration, for instance provided a context
where a is a term of type * and aa is a term of type a->a, we can freely refer the term

sq a aa

which internally is understood as sq[hx 7! a, f 7! aai], which then computes to the following
expression

op(x:?,y:?,f :x!y,z:?,g:y!z),x!z[hx 7! a, y 7! a, f 7! aa, z 7! a, g 7! aai]

Declarations and cuts. Formally, the fact that we can define declarations can be modeled
with cut rules, and using a declaration then becomes an application of cut admissibility. Indeed,
for instance for the coherence id, the declaration of the coherence

coh id (x : *) : x -> x

amounts to giving a derivation for the term (x : ?) ` coh(x:?),x!x[id(x:?)]. Using this coherence
later on, with for instance

let (x : *) (y : *) (f : x -> y) = id y

amounts to defining the substitution (x : ?, y : ?, f : x ! y) ` hx 7! yi : (x : ?), and
then using the cut admissibility for showing that these two derivations yields a derivation of
(x : ?, y : ?, f : x ! y) ` coh(x:?),x!x[hx 7! yi] : y ! y.
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Kernel and meta-operations. In our OCaml implementation of CaTT, we have chosen to
restrict as much as possible the meta-theoretic properties we rely on, and thus we have imple-
mented the bare bone theory without any additional feature in what we call the kernel of the
program. Every term that is fed to the kernel of the program is then checked to be valid. The
cut admissibility is a meta-theoretic statement, and as such is not a feature of the kernel, but
an external operation that computes on the syntax. This is a choice we have made to stay as
close as possible to the theoretical description of CaTT, but it has consequences: when apply-
ing a declaration, the program starts by computing the entire term, and then checks that it is
well-formed. For complicated terms, this can become computationally heavy. An implemen-
tation more focused on heavy use should incorporate the cut admissibility as a feature of the
kernel, in order to stop on an already checked declarations, and simply check the validity of the
substitution, instead of checking only completely reduced terms.

3.1.3 Implicit arguments

The syntax that we have introduced until now for the type theory is very heavy, and although it
is theoretically usable, the length of terms we need to write, together with a heavy redundancy
makes this implementation not usable in practice. So we add to the system implicit arguments,
which are by far the most useful feature to have in order to make CaTT usable in practice. We
can already see the need for having implicit arguments in the following example, which computes
the succession of two binary composition to make a ternary composition associated on the left

let comp3-left (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : z -> w) =

comp x z (comp x y f z g) w h

Not only this term is complicated to parse for a human reader, it also does not match the usual
mathematical notation (f · g) · h in diagrammatic order (or more commonly h � (g � f)), where
only the arrows f, g, h are denoted. The implicit arguments will let us write this term instead as

let comp3-left (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : z -> w) =

comp (comp f g) h

which matches the usual mathematical practice. On this simple example it does not seem to make
that big a difference, but example quickly become much more involved, and each of the term
that we could omit may be, in more complicated scenarios, not only variables, but complicated
terms themselves, and being able to omit them ends up having a very important impact on the
usability of CaTT.

Unification algorithm. In order to implement the implicit arguments, we need a unification
algorithm, which matches an implicit term with a known list of constraints in order to recover
the unknown term. We keep this algorithm to its simplest form, as it is implemented outside of
the kernel, and produce terms that are later on checked by the kernel. This algorithm simply
guesses what an unknown term can be, and stops as soon as it finds an answer. In particular
it does not check that the various constraints are compatible, incompatibility errors are caught
later on by the kernel, as they produce invalid terms.
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Implicit arguments for declarations operation and coherence. In order to make the
syntax as light as possible, the software performs an inference to determine which arguments
should be left implicit and which are the ones that need to be entered by the user. In the
special case of the declaration of an operation or a coherence, we have a very efficient algorithm
to sort out the variables. Only the locally maximal variables should be left explicit, and all
the other variables should be understood as implicit. This can be understood categorically:
the ps-contexts are globular products in the category SCaTT, and given a ps-context Γ and a
substitution ∆ ` � : Γ, the image of the locally maximal variables of � define the maps ∆ ! Dn

of the cone induced by Γ to the top row of the diagram of globular product. This shows that two
substitutions sending the locally maximal variables onto the same image define the same cone,
and thus are equal. For instance, when declaring the composition

coh comp (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z) : x -> z

the software computes the locally maximal variables to be f and g, and hence only these variables
should be left explicit, and one can then write, for the definition of comp3-left, the term

comp (comp f g) h

which is refined outside of the kernel as

comp x z (comp x y f z g) w h

and then fed to the kernel to be checked. If the user makes a mistake and write for instance

comp (comp f g) f

the term would still be refined as the first possible guess that the refinement algorithm finds. In
this example, such a guess could be

comp x z (comp x y f z g) y f

But when sent to the kernel, this term does not typecheck since the variable f does not have
type z -> y.

Implicit arguments for generic declarations. For generic declarations, we again have a
way to decide whether an argument should be left implicit or not, but since the context is not
necessarily a ps-context, the algorithm is a bit more complicated. It consists in, for each variable,
looking up if this variable appears in the type of the other variables in the context. If it does,
it can be kept implicit, and its associated term can be recovered by computing the type of the
term associated to the variable in whose type our variable appears. For instance when defining
the square term

let sq (x : *) (f : x -> x) = comp f f

the software determines that the variables x does appear in the type of the variable f, and hence
can be left implicit, whereas the variable f does not appear in any type, and should be kept
explicit. Thus the user can define

let sq-id (x : *) = sq (id x)

which is refined as sq x (id x) and computed to be then checked by the kernel. Again, if the
user makes a mistake and tries to define

let bad-sq (x : *) (y : *) (f : x -> y) = sq f

the term would still be refined, for example to sq x f, but when sent to the kernel, it would not
type-check since f is not of type x -> x.
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Towards more implicit arguments. The cases we have identified reduce a lot the redun-
dancy in the arguments that are provided when defining a term in CaTT, and they are the only
ones that are implemented as of now. However, they do not cover all the cases. Consider for
instance the following definition

let idf (x : *) (y : *) (f : x -> y) = comp (id x) f

One can notice that following our description, we need to specify the argument x, whereas in
this specific term, it could have been inferred. One could imagine, in order to cover this kind
of cases, to introduce an Agda-like syntax to tell the system that a particular argument can be
inferred and should not be specified. With this syntax, one could write

let idf (x : *) (y : *) (f : x -> y) = comp (id _) f

We have not implemented this feature yet, and in fact in practice this case does not come up too
often.

Towards a syntax with holes. The unification algorithm that we have provided is really
weak as it just makes an educated guess on what a term should be, and lazily stops as long
as it gets an answer without checking against the other constraints. In mathematical terms, it
provides a necessary condition, which may not be sufficient. Having a more powerful unification
algorithm could allow us to add holes in the syntax, like one could do in Agda. This is a feature
that would be useful to add for practical purposes, but that our current implementation is pretty
far from as of now.

3.1.4 An extensive example: the Eckmann-Hilton morphism

Our running example of a result that we prove for weak !-categories is the Eckmann-Hilton
morphism. We start by explaining the result before explaining how we proceed to formalize
it. The Eckmann-Hilton morphism can be described in a !-category that has one 0-cell x,
and two 2-cells a and b whose source and target are the 1-cell idx. In this situation, one can
compose vertically the 2-cells a and b in two ways, and construct a · b and b · a. The Eckmann-
Hilton morphism eh(a, b) is a 3-cell that performs a braiding and relates these two 2-cell (i.e.,
@�(eh(a, b)) = a · b and @+(eh(a, b)) = b · a).

The exchange rule. The main idea behind the Eckmann-Hilton morphism is the existence
of an exchange rule for !-categories. This exchange rule is a primitive operation, and can be
described pictorially as follows

x y z
f2

f1

+↵ g1

g2

+�
x y z

f1

f2

+↵
g2

g1

+�

In this diagrammatic representation, a part of the diagram of the following shape symbolizes the
right whiskering

x y z

f1

f2

+↵
g
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an operation which, given a 2-cell ↵ and a 1-cell g produces a 2-cell rw(↵, f) such that

@�(rw(↵, f)) = @�(↵) · f

@+(rw(↵, f)) = @+(↵) · f

Formally, the right whiskering can be defined in CaTT as

coh rw (x : *) (y : *) (f1 : x -> y)

(f2 : x -> y) (a : f1 -> f2)

(z : *) (g : y -> z)

: comp f1 g -> comp f2 g

Symmetrically, a part of the diagram of the following form represents a left whiskering

x y z
f

g1

g2

+�

which can be formally defined in CaTT as the following

coh lw (x : *) (y : *) (f : x -> y)

(z : *) (g1 : y -> z)

(g2 : y -> z) (b : g1 -> g2)

: comp f g1 -> comp f g2

The following diagram, obtained by superposition of the two previous diagrams, is meant to
denote the vertical composition of their result.

x y z
f2

f1

+↵ g1

g2

+�

and similarly, the target diagram of the exchange represents the vertical composition of the results
of the two whiskerings the other way around. We can formally define the vertical composition
of 2-cells in CaTT as follows

coh vcomp (x : *) (y : *) (f1 : x -> y)

(f2 : x -> y) (a : f1 -> f2)

(f3 : x -> y) (b : f2 -> f3)

: comp f1 g1 -> comp f2 g2

which lets us give a completely formal definition of the exchange rule

coh exch (x : *) (y : *) (f1 : x -> y)

(f2 : x -> y) (a : f1 -> f2)

(z : *) (g1 : y -> z)

(g2 : y -> z) (b : g1 -> g2)

: vcomp (rw a g1) (lw f2 b) -> vcomp (lw f1 b) (rw a g2)
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A pictorial proof. We now give a pictorial definition for the Eckmann-Hilton morphism, that
we then explain how to formalize inside our implementation of CaTT. In this diagram, all the
objects are denoted • and denote the same 0-cell x, and all the 1-dimensional arrows simply
denoted ! are the identity on this object

• •
+↵

+�

• •
+�

+↵

• • •
+↵

+�

• • •
+↵

+�

Although this picture conveys the correct intuition, it represents operations that are actually
ill-defined in weak !-categories. Instead, it is the correct proof for the Eckmann-Hilton in strict
!-categories. Indeed, for instance the two diagrams

• •
+↵

+�
and • • •

+↵

+�

represent two 2-cells whose respective source and target are idx and idx · idx. These two 2-cells
are thus not parallel, and hence there cannot exist a 3-cell between them.

Pictorial proof for the weak case. We can correct the previous picture, in order to obtain
a definition of the Eckmann-Hilton morphism in weak !-categories. To achieve this, we compose
our cells with a correction term, that cancels idx · idx into idx and conversely. We use two
definable 3-cells defined as in the following picture

x y

f

g

+↵ x y y

f

g

f

g

+↵

+

+

idy

Using these arrows and their analogue for the left whiskering, together with cancellation of the
corrective 3-cells that we have introduced, we construct the following graphical proof for the
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Eckmann-Hilton morphism in weak !-categories

• •
+↵

+�

•

• •

•

+↵ +

+

+

+

+�

• • •
+↵

+

+
+�

• • •
+↵

+

+

+�

•

• •

•

+�

+↵

+

+

+

+

• •
+�

+↵

Formal definition in CaTT. We have formalized the definition suggested by this diagram
in CaTT, and we present here some of the steps towards it. We start be defining the 3-cells
witnessing that a 2-cell whiskered with an identity 1-cell is equivalent to the original 2-cell
(again, we need to compose with corrective terms to ensure the cells we mention are parallel)

coh rw-unit (x : *) (y : *) (f : x -> y) (g : x -> y) (a : f -> g)

: a -> 3vcomp (unitr- f) (rw a (id y)) (unitr f)

where 3vcomp is the ternary vertical composition on 2-cells and unitr- is the inverse of the unitor:
Given a cell it relates it to its composition with the identity. Similarly, we denote rw-unit- the
“opposite coherence” obtained by switching the source and target of rw�unit, and also lw-unit

and lw-unit- the analogue coherences for the operation lw instead of rw. Assuming that we
also have defined a horizontal composition for 3-cells denoted hcomp3, we can express the first
step of our diagram as

let 1 (x : *) (a : id x -> id x) (b : id x -> id x)

= hcomp3 (rw-unit a) (lw-unit b)

as well as the last step of the diagram

let 5 (x : *) (a : id x -> id x) (b : id x -> id x)

= hcomp3 (lw-unit- b) (rw-unit- a)

Using the following coherences stating that left unitality of identity and right unitality of the
identity 1-cell are inverse to each other

coh unit(rl-) (x : *) :

vcomp (unitr (id x)) (unitl- (id x)) -> id2 (comp (id x) (id x))

coh unit(lr-)- (x : *) :

id2 (comp (id x) (id x)) -> vcomp (unitl (id x)) (unitr- (id x))
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where id2 is the identity 2-cell of a 1-cell, we can define the second and fourth steps of the
diagram as follows

let 2 (x : *) (a : id x -> id x) (b : id x -> id x) =

5hcomp3 (id2 (unitr- (id x)))

(id2 (rw a (id x)))

(unit(rl-) x)

(id2 (lw (id x) b))

(id2 (unitl (id x)))

let 4 (x : *) (a : id x -> id x) (b : id x -> id x) =

5hcomp3 (id2 (unitl- (id x)))

(id2 (lw b (id x)))

(unit(lr-)- x)

(id2 (rw (id x) a))

(id2 (unitr (id x)))

where 5hcomp3 is the 5-ary horizontal composition of 3-cells. Finally, using the previously defined
exch, as well as the following coherence which let us interchange left and right unitality for the
identity

coh unit(l->r) (x : *) : unitl (id x) -> unitr (id x)

coh unit-(r->l) (x : *) : unitr- (id x) -> unitl- (id x)

we can define the third step of our graphical proof as

let 3 (x : *) (a : id x -> id x) (b : id x -> id x) =

3hcomp 3 (unit-(r->l) x)

(exch a b)

(unit(l->r) x)

where 3hcomp3 is the ternary horizontal composition on 3-cells. We have now defined all the
steps, of the proof, and we just need to assemble them into one big term. However, they do
not assemble on the nose, because of associativity and identity cancellation issues. So we need
to associate and cancel the identities that appear in between each steps. We do not explain in
details how we do that here, as it is merely a technical difficulty. The fully formalized definition
is accessible online1, and it uses a total of 93 different definitions, spread over 531 lines of code.

3.2 Suspension

Using the proof assistant CaTT to prove any non-immediate result about weak !-categories
tends to be extremely cumbersome and time consuming, for various reasons. A good reason for
this observation is simply that the theory of weak !-categories is complicated, a lot of intuitive
reasoning that one performs implicitly while working in informal mathematics has to be made
explicit, and induces coherence problems that tend to grow with the dimension. We view this
as a good reason for CaTT to be complicated to use, as it factors all the verification that were
very hard to carry by hand into computer checked ones, and justifies the importance of having a
computer aided implementation of the theory such as CaTT. But there is also a bad reason why
the usage of CaTT tends to be complicated, which is the fact that a lot of developments have
to be repeated many times, with very slight changes, to express things that intuitively feel the

1https://github.com/ThiBen/catt/blob/master/examples/eckmann-hilton-versions/

eh-no-susp-no-func.catt
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same, but that are described in different ways in the theory. In order to address this problem,
we propose two ways to partially automate proofs in CaTT, that we call the suspension and
the functorialization. These operation have been defined in [17], and we give here an updated
version.

3.2.1 Example of suspensions

We start by presenting the suspension and how it can be used to reunite terms that intuitively
describe “the same coherence in different dimensions”, but whose formal descriptions as terms
in the theory are not related in an obvious way. We chose to present the suspension first as it
is simpler to describe, more general and more powerful than the functorialization. In order to
motivate our definition, we start by an informal discussion where the phenomenon of suspension
appears naturally.

Identity cells. The first natural occurrence of the suspension is in the definition of the identity
cells. For every cell x of dimension n is an !-category C, there is a cell idx of dimension n + 1
such that @�(idx) = @+(idx) = x. We can define these operations formally in CaTT using the
disk contexts: A cell of dimension n defines a term, which can be interpreted as a substitution
Γ ` �t : D

n the identity for this cell t is obtained as the term

Γ ` cohDn,x2n!x2n
[�t] : t ! t

On this example, we see that even though the identities for the terms of the same dimensions
are expressed by the same coherence, applied to a different substitution, the identities for terms
of different dimensions are not very related, except from the relation between the disk contexts.
The fact that we call all these cells identities, and thus perceive them as “the same thing in
different dimensions” is not at all reflected by the theory.

Composition of 1-cells and vertical composition. Another instance of two definitions that
intuitively are very close, but whose connection is not immediate from their definition in CaTT

is the composition of the 1-cell and the vertical composition of the 2-cells. Graphically these are
given by the two following diagrams.

•

•

•

• •
+

+

Intuitively, both of these operations correspond to the same idea of gluing the end of a cell to
the beginning of another one, but in different dimensions. The terms defining these are

coh comp (x:*)(y:*)(f:x->y)(z:*)(g:y->z):x->z

coh vcomp (x:*)(y:*)(f:x->y)(g:x->y)(a:f->g)(h:x->y)(b:g->h):f->h

The intuition of these terms defining the same idea is lost without the diagrams. On the diagrams,
we see that the diagram describing the vertical composition of the 2-cells is obtained from the
diagram describing the composition of the 1-cells by adding two new 0-cells, and then replacing
all the previous 0-cells by 1-cells between those, and all the previous 1-cells by 2-cells. This
operation reminds us of the topological notion of suspension, our goal is to describe formally this
operation for the entire syntax, we call it suspension by analogy.
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Coherences. This remark does not only apply to these operations: It also applies to many
other operations, but also to their coherences. For instance there is an associativity witness for
the composition of 1-cells and an associativity witness for the vertical composition of 2-cells, and
both express the same idea about two operations that we had noticed to be similar. Similarly,
there are unitality witnesses for the identity 1-cell with respect to the composition of 1-cells as
well as for the identity 2-cells with respect to the vertical composition. Both of these also express
similar ideas. Iterating this argument shows that a lot of terms that we can define for the 2-cells
are in fact just the same of terms that we defined for 1-cells, but in another dimension. Without
any automation, one has to define all of these both for 1-cells and for 2-cells, and it becomes
worse while working on higher dimensional cells, as the same ideas have to be developed in each
dimension. Our goal is to propose a framework to avoid this issue, by defining the terms once
and for all in a dimension, and allowing to transport from one dimension to another.

Interpretation in terms of enrichment. A way to understand what it means for two oper-
ation to “be the same in different dimensions” is to look at it from an enrichment point of view.
Intuitively, !-categories can be defined coinductively as categories enriched in !-categories. Al-
though this is true, it yields to a notion of strict !-category, and describing weak !-categories
would require a notion of weak enrichment that is extremely hard to define, so we keep this
discussion on an informal level, and use the word enriched assuming a weak enough notion of
enrichment, and building up on intuition from the strict case. Taking as a starting point that
an !-category is a category enriched in !-categories shows that the operations and coherences of
dimension n + 1 are either operations and coherences in dimensions n that were transferred by
enrichment, or a coherence coming from the composition in dimension n + 1, or characterizing
an interaction between these types. For two operations or coherence, to “be the same in different
dimension” in fact means that one can be deduced from the other by a series of enrichment.

3.2.2 Suspension of ps-contexts

Our objective is now to make formal the notion of sameness that we have described, in the type
theory CaTT. More precisely, we will describe the notion of suspension, that corresponds to
deducing an operation or a coherence in dimension n + 1 from its analogous of dimension n by
enrichment.

Definition. In order to describe the suspension, we need to first chose two variable names that
are not used in the theory, that we denote •� and •+. We can simply do this by adding two
new elements to the set of variable names. If we work with de Bruijn levels, we can introduce
the levels �1 and �2 as an auxiliary step for computation and then renormalize so that all the
contexts start at 0. With these two variables, we define the suspension of a context Γ, denoted
ΣA by induction on the context, together with the suspension of a type A in GSeTT, denoted
ΣA

Σ? = (•� : ?, •+ : ?) Σ(Γ, x : A) = (ΣΓ, x : ΣA)

Σ? = •� �!
?

•+ Σ(x �!
A

y) = x ��!
ΣA

y

Correctness. We have given an algorithm that, given a certain context generates a new con-
text, by induction. This is for now a purely syntactic description, so in order to check that this
operation can be used safely in practice, we need to prove a correctness result, showing that it
only yields well-formed contexts when the original context is well-formed.
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Lemma 69. The suspension of a ps-context is again a ps-context, the following rule is admissible

Γ `ps

ΣΓ `ps

Proof. We prove by induction on the derivation that for all variable x such that Γ `ps x : A, we
also have ΣΓ `ps x : ΣA.

– If the derivation of Γ `ps x : A is a single application of the rule (pss), then necessar-
ily Γ = (x : ?) and A = ?. In that case, we can compute explicitly the suspensions
ΣΓ = (•� : ?, •+ : ?, x : •� ! •+) and ΣA = •� ! •+, and a successive application of
the rules (pss) and (pse) yields a derivation of the judgment ΣΓ `ps x : ΣA.

– If the derivation of Γ `ps x : A ends with an application of the rule (pse), then necessarily,
Γ is of the form (Γ0, z : B, x : y ! z), and A = y ! z, and we have a derivation of
Γ0 `ps y : B. In that case, ΣΓ = (ΣΓ0, z : ΣB, x : y ! z), and ΣA = y ! z, then
by induction we get a derivation of ΣΓ0 `ps y : ΣB, and applying the rule (pse) to this
derivation yields a derivation of ΣΓ `ps x : ΣA.

– If the derivation of Γ `ps x : A ends with an application of the rule (psd), then we have

a derivation of the form Γ `ps f : y �!
A

x. Then by induction, we get a derivation of

ΣΓ `ps y ��!
ΣA

x, and by applying (psd), we get a derivation of Γ `ps x : ΣA.

Now consider a derivation of Γ `ps, it necessarily comes from a derivation of Γ `ps x : ?, and
applying the result we just proved yields a derivation of ΣΓ ` x : •� �!

?
•+. Applying successively

the rules (psd) and (ps) gives then a derivation of ΣΓ `ps

Example. We give a few examples of computing the suspension for some ps-contexts, and in
particular we pay close attention to the action of this operation on our combinatorial description
of the ps-contexts. An immediate induction shows that for the disk context Dn, the suspension
computes to ΣDn = Dn+1. If we consider for instance the following ps-context

Γ = (x : ?, y : ?, f : x ! y, z : ?, g : y ! z)

its suspension computes to the following ps-context

ΣΓ = (•� : ?, •+ : ?, x : •� ! •+, y : •� ! •+, f : x ! y, z : •� ! •+, g : y ! z)

As a globular set, the new context ΣΓ is obtained from Γ by adding two new 0-cells •� and •+,
and shifting all the other variable by one dimension: the variable x of dimension 0 in Γ becomes
of dimension 1 in ΣΓ (and of type •� ! •+), the variable f of dimension 1 in Γ becomes of
dimension 2 in ΣΓ. In general, following our proof of correctness shows that for a ps-context
Γ `ps, such that the derivation of the context Γ `ps is obtained as

Γ `ps= (pss)(pse)
k1 (psd)

l1 . . . (pse)
km (psd)

lm (ps)

then the derivation of the judgment ΣΓ `ps is obtained by the derivation

ΣΓ `ps= (pss)(pse)
k1+1

(psd)
l1 . . . (pse)

km (psd)
lm+1

(ps)
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Note that the equality
P

kn =
P

ln is preserved by this transformation. Visually, this transfor-
mation of the derivation can be represented on our graphical representation on the combinatorial
structure that underlies the ps-contexts.

 

 

 

Pictorially, this operation can be understood as “lifting” a ps-context by one dimension. It has
also a very simple description using Dyck words: representing the structure of a ps-context Γ by
a Dyck word w, the structure of ΣΓ is represented by the word (w).

Source and target of suspension. We can compute the source and the target of a suspended
ps-context, and show that the suspension is compatible with these notions.

Lemma 70. Given a ps-context Γ `ps, we have the equalities

@�(ΣΓ) = Σ(@�(Γ))

@+(ΣΓ) = Σ(@+(Γ))

Proof. We show by induction that for all i 2 N, we have @�i+1(ΣΓ) = Σ(@�i (Γ)).

– For the context Γ = (x : ?), we have @�i (x : ?) = (x : ?), hence

Σ(@�i (x : ?)) = (•� : ?, •+ : ?, x : •� ! •+)

On the other hand ΣΓ = (•� : ?, •+ : ?, x : •� ! •+) and since i+ 1 � 1, we have

@�i (ΣΓ) = (•� : ?, •+ : ?, x : •� ! •+)

– For a context of the form Γ = (Γ0, y : A, f : x ! y) with dimA � i � 1, we have
@�i (Γ) = @�i (Γ0), so

Σ(@�i (Γ)) = Σ(@�i (Γ)0)

Moreover ΣΓ = (ΣΓ0, y : ΣA, f : x ! y), and since dim(ΣA) = dimA + 1, we also have
dim(ΣA) � i, hence

@�i+1(ΣΓ) = @�i+1(Σ(Γ0))

We thus have the equality by induction.

– For a context of the form Γ = (Γ0, y : A, f : x ! y) with dimA < i � 1, we have
@�i (Γ) = (@�i (Γ0), y : A, f : x ! y), so

Σ(@�i (Γ)) = (Σ(@�i (Γ)0), y : ΣA, f : x ! y)
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Moreover ΣΓ = (ΣΓ0, y : ΣA, f : x ! y), and since dim(ΣA) = dimA + 1, we also have
dim(ΣA) < i, hence

@�i+1(ΣΓ) = (@�i+1(Σ(Γ0)), y : ΣA, f : x ! y)

The induction hypothesis then gives the equality.

Applying this inductive result to the case i = dimΓ � 1, we get for all ps-contexts the equality
Σ(@�(Γ)) = @�dimΓ

(ΣΓ), and since dimΣΓ = dimΓ + 1, this rewrites as Σ(@�(Γ)) = @�(ΣΓ).
The case of the target of a ps-context is analogous.

Note that in the case of the ps-context (x : ?), the source and targets are not defined, and we
can check explicitly that @�(Σ(x : ?)) = (•� : ?) and @+(Σ(x : ?)) = (•+ : ?).

3.2.3 Suspension for the theory CaTT

Using the suspension for ps-contexts, we can extend this operation to all the terms in the theory,
and express formally the intuition that two terms are “the same operation in different dimensions”.

Definition. Even though we are interested in the suspension of terms of CaTT, we have to
define this operation also for contexts, types and substitutions, in order to use mutual induction.
We again denote •� and •+ two fresh variables.

Σ? = (•� : ?, •+ : ?) Σ(Γ, x : A) = (ΣΓ, x : ΣA)

Σ? = •� �!
?

•+ Σ(t �!
A

u) = Σt ��!
ΣA

Σu

Σx = x Σ(opΓ,A[�]) = opΣΓ,ΣA[Σ�]

Σ(cohΓ,A[�]) = cohΣΓ,ΣA[Σ�]

Σhi = h•� 7! •�, •+ 7! •+i Σ(�, x 7! t) = hΣ�, x 7! Σti

Note that for a ps-context Γ, this operation coincide with the suspension that we have previously
defined, hence there is no ambiguity in denoting ΣΓ. It is immediate from the definition that we
have for all type A, Var(ΣA) = Var(A) [ {•�, •+}, and for all term t, Var(Σt) = Var(t) if t is a
variable, or Var(Σt) = Var(t) [ {•�, •+} otherwise.

Application of substitution and suspension. In order to show the correctness of our gen-
eral version of the suspension, we need a result about the computational interaction of this
suspension with the application of the substitution.

Lemma 71. Suppose given a substitution ∆ ` � : Γ, then for any type Γ ` A, we have
Σ(A[�]) = ΣA [Σ�], for any term Γ ` t : A, we have Σ(t[�]) = Σt[Σ�] and for any substi-
tution Γ ` ⇠ : Ξ, we have Σ(⇠ � �) = Σ⇠ � Σ�.

Proof. We prove these results by mutual inductions on the structure of the type, term or substi-
tution.

Induction for types:

– For the type ?, we have ?[�] = ?, hence Σ(?[�]) = •� �!
?

•+. On the other hand,

Σ? [Σ�] = •�[Σ�] �!
?

•+[Σ�], and since •� 7! •� 2 Σ�, we have •�[�] = •�, and similarly,

•+[�] = •+. This proves that Σ ? [Σ�] = •� �!
?

•+, and hence Σ(?[�]) = Σ ? [Σ�].
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– For a type of the form ∆ ` t �!
A

u, we have the equalities

Σ((t �!
A

u)[�]) = Σ(t[�]) �����!
Σ(A[�])

Σ(u[�])

Σ(t �!
A

u)[Σ�] = Σt[Σ�] �����!
ΣA[Σ�]

Σu[Σ�]

The induction for types and terms then shows Σ((t �!
A

u)[�]) = Σ(t �!
A

u)[�].

Induction for terms:

– For a variable term, on the one hand we have Σx = x, hence Σx[Σ�] = x[Σ�]

– For a term of the form opΞ,A[⇠], we have

Σ(opΞ,A[⇠][�]) = opΣΞ,ΣA[Σ(⇠ � �)]

Σ(opΞ,A[⇠])[Σ�] = opΣΞ,ΣA[Σ⇠ � Σ�]

and then induction case for substitutions gives the result.

– Similarly, for a term of the form cohΓ,A[�],

Σ(cohΞ,A[⇠][�]) = cohΣΞ,ΣA[Σ(⇠ � �)]

Σ(cohΞ,A[⇠])[Σ�] = cohΣΞ,ΣA[Σ⇠ � Σ�]

and the result comes from the induction case for substitutions.

Induction for substitutions:

– For the empty substitution hi, we have

Σ(hi � �) = h•� 7! •�, •+ 7! •+i

Σ(hi) � Σ� = h•� 7! •�[Σ�], •+ 7! •+[Σ�]i

but since we have the associations •� 7! •� and •+ 7! •+ in Σ�, this shows that
•�[Σ�] = •� and •+[Σ�] = •+.

– For a substitution of the form h⇠, x 7! ti, we have

Σ(h⇠, x 7! ti � �) = hΣ(⇠ � �), x 7! Σ(t[�])i

Σ(h⇠, x 7! ti) � Σ� = hΣ⇠ � Σ�, x 7! Σt[Σ�]i

The induction cases for substitutions and for terms then gives Σ(⇠ � �) = Σ⇠ � Σ� and
Σ(t[�]) = Σt[Σ�].

Correctness. Again, we have defined this operation as a purely syntactic operation, so we
need to provide a guarantee that it only yields to well-defined objects of the theory, in order to
use it freely.

Lemma 72. The following rules are admissible

Γ `

ΣΓ `

Γ ` A

ΣΓ ` ΣA

Γ ` t : A

ΣΓ ` Σt : ΣA

∆ ` � : Γ

Σ∆ ` Σ� : ΣΓ
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Proof. We prove all these properties by mutual induction on the derivation trees.

Induction for contexts:

– For the empty context ?, we have Σ? = (•� : ?, •+ : ?), and we can construct explicitly
a derivation tree for the judgment Σ? as follows

? `
(ec)

? ` ?
(?-intro)

•� : ? `
(ce)

•� : ? ` ?
(?-intro)

•� : ?, •+ : ? `
(ce)

– For a context of the form (Γ, x : A), a derivation of (Γ, x : A) ` induces a derivation of
Γ ` A. By the inductive case for types, this gives a derivation of ΣΓ ` ΣA, and applying
the rule (ce) gives a derivation of (ΣΓ, x : ΣA) `.

Induction for types:

– For the type ?, a derivation of Γ ` ? induces a derivation of Γ `, which by induction gives
a derivation of ΣΓ `. Since Σ? = •� �!

?
•+, and (•� : ?) 2 ΣΓ and (•+ : ?) 2 ΣΓ, this

gives the following derivation for the judgment ΣΓ ` Σ?

ΣΓ ` (•� : ?) 2 ΣΓ

ΣΓ ` •� : ?
(var)

ΣΓ ` (•+ : ?) 2 ΣΓ

ΣΓ ` •+ : ?
(var)

ΣΓ ` •� �!
?

•+
(!-intro)

– For a type of the form t �!
A

u, a derivation of the judgment Γ ` t �!
A

u induces a derivation

of Γ ` A, of Γ ` t : A and of Γ ` u : A. By the induction cases for types and for terms,
these give derivations for ΣΓ ` ΣA, for ΣΓ ` Σt : ΣA and for ΣΓ ` Σt : ΣA, which by an

application of the rule (!-intro) gives a derivation of the judgment ΣΓ ` Σt ��!
ΣA

Σu.

Induction for terms:

– For a variable term x, a derivation of the form Γ ` x : A is necessarily obtained from the
rule (var), and thus induces a derivation of Γ `, and we necessarily have (x : A) 2 Γ. Then,
we also necessarily have (x : ΣA) 2 ΣΓ, and by induction on the case for contexts, we get
a derivation of ΣΓ `. Hence, applying the rule (var) yields a derivation of ΣΓ ` x : ΣA.

– For a term of the form ∆ ` coh
Γ,t�!

A
u
[�] : (t �!

A
u)[�], we have a derivation of Γ `ps, which

by Lemma 69 gives a derivation of ΣΓ `ps. Moreover, the condition (Cop) imply that Γ is
not the ps-context (x : ?) and hence Lemma 70 along with the variable for suspension and
the conditions (Cop), shows

Var(@�(ΣΓ)) = Var(@�(Γ)) [ {•�, •+}

Var(@+(ΣΓ)) = Var(@+(Γ)) [ {•�, •+}
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hence we have the equalities

Var(Σt) [Var(ΣA) = Var(@�(ΣΓ))

Var(Σu) [Var(ΣA) = Var(@+(ΣΓ))

so the condition (Cop) are satisfied by the suspended term. Finally by the induction

hypotheses for types and for terms, we have that ΣΓ ` Σ(t �!
A

u) and Σ∆ ` Σ� : ΣΓ.

Thus an application of the rule (op) gives a derivation of the judgment

Σ∆ ` op
ΣΓ,Σ(t�!

A
u)
[Σ�] : Σt[Σ�] �����!

ΣA [Σ�]
Σu[Σ�]

By Lemma 71, this shows that we have obtained a derivation of

Σ∆ ` Σ(op
Γ,t�!

A
u
[�]) : Σ((t �!

A
u)[�])

– Similarly, for a term of the form ∆ ` cohΓ,A[�] : A[�] we have a derivation of Γ `ps, a
derivation of Γ ` A and a derivation of ∆ ` � : Γ. Lemma 69 gives a derivation of Γ `ps,
and the induction cases for types and substitutions give a derivation of ΣΓ ` ΣA and
Σ∆ ` Σ� : ΣΓ. Moreover, the condition (C0

coh) with the variables of a suspension show
that

Var(ΣA) = Var(A) [ {•�, •+} = Var(ΣΓ)

and hence ΣΓ satisfies (C0
coh). Applying (coh’), we get a derivation of

Σ∆ ` cohΣΓ,ΣA[Σ�] : (ΣA)[Σ�]

Lemma 71 shows that we have a derivation of

Σ∆ ` Σ(cohΓ,A[�]) : Σ(A[�])

Induction for substitutions:

– For the empty substitution ∆ ` hi : ?, we necessarily have a derivation of the judgment
∆ `, which by the induction case for contexts gives a derivation of Σ∆ `. Since moreover
Σ? = (•� : ?, •+ : ?), and Σhi = h•� 7! •�, •+ 7! •+i, we can construct first construct
derivation of Σ∆ ` h•� 7! •�i : (•� : ?) as follows

Σ∆ `

Σ∆ ` hi : ?
(es)

? `

? ` ?
(?-intro)

Σ∆ ` •� : ? 2 Σ∆

Σ∆ ` •� : ?
(var)

Σ∆ ` h•� 7! •�i : (•� : ?)
(se)

and using this derivation, we can construct a derivation of the judgment

Σ∆ ` h•� 7! •�, •+ 7! •+i : (•� : ?, •+ : ?)

as follows

Σ∆ ` h•� 7! •�i : (•� : ?) ? ` ?
Σ∆ ` •+ : ? 2 Σ∆

Σ∆ ` •+ : ?
(var)

Σ∆ ` h•� 7! •�, •+ 7! •+i : (•� : ?, •+ : ?)
(se)
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– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A), we have a derivation of
∆ ` � : Γ, a derivation of Γ ` A and a derivation of ∆ ` t : A[�]. By the induction cases
for substitutions, types and terms, these give a derivation for the judgment Σ∆ ` Σ� : ΣΓ,
the judgment ΣΓ ` ΣA and the judgment Σ∆ ` Σt : Σ(A[�]). By Lemma 71, this last
judgment is equal to Σ∆ ` Σt : (ΣA)[Σ�], hence we can apply the rule (se) and get a
derivation of Σ∆ ` hΣ�, x 7! Σti : (ΣΓ, x : ΣA).

Note that in order to prove that this induction is well-founded, we need to perform factor both
the dimension and the depth of the terms in the proof, similar to an argument that we explain in
43. We have formalized a version of this argument for proving the decidability of type checking
of a theory in Section 4.1.

3.2.4 Implementation of the suspension

Since we have defined the suspension operation for the terms of the type theory, we can add this
operation as a feature of our OCaml implementation of CaTT.

First examples. In order to respect the philosophy of introducing coherences and then apply-
ing them to get terms, we chose to add the possibility of computing suspensions for coherences
and for terms. For instance, if we define the identity of a 0-cell

coh id (x:*) : x -> x

and later on want to access to the identity of a one cell, we can simply apply the suspension of
id, as shown in the following example, where we denote S id the suspension of id (The notation
S id is not the actual syntax, as we explain in the next paragraph).

let id1 (x:*) (y:*) (f:x->y) = (S id) f

Note that we now define this term with the keyword let, indicating that it can be constructed
from the coherence previously defined, and in this case, it is constructed from the suspension of
the coherence id. Similarly, when we define a term, for instance the square of an endomorphism

let sq (x:*) (f:x->x) = comp f f

we can later on refer to the square of an endo-2-cell, that is vertically composing this 2-cell with
itself, by using the suspension of the term sq as follows

let sq2 (x:*) (y:*) (f:x->y) (a:f->f) = (S sq) a

Implicit suspensions. For our first examples, we have introduced the notations S id and
S sq in order to indicate that we need to use the suspension of a previously defined term. This
is still a little heavy syntax, so for the actual implementation, we opted for a syntactically lighter
method. Indeed, if we define a coherence c = cohΓ,A, and apply it to a substitution �, the
dimensions of the various terms in the substitution � are determined by the dimensions of the
variables in Γ. Since now Σc = cohΣΓ,ΣA, when we apply the coherence Σc to a substitution
�0, the dimensions of the terms in �0 are determined by the dimensions of the variables in ΣΓ,
which are all one more than the dimensions of variables in Γ. A consequence is that we can leave
implicit the suspension, and simply guess if a coherence or term needs to be suspended and if so
how many times simply by looking at the dimension of its arguments. In practice, this means
that we can define apply the declared identity to any cell, or the declared composition to any
pair of composable cells of the same dimension, and the appropriate suspension is automatically
generated by the system. For instance, with our two previous examples, the actual terms in our
implementation of CaTT are
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let id1 (x:*) (y:*) (f:x->y) = id f

let sq2 (x:*) (y:*) (f:x->y) (a:f->f) = sq a

From now on, all the expression that we write in CaTT are assumed to have implicit suspension.

Kernel syntax and meta-theory. The kernel of our implementation of bare type theory
CaTT corresponds in the strictest sense to the theory we have described in Section 2.4, and
thus does not recognize the suspension operation. Instead we have chosen to implement it
as a meta-operation, that takes a term in our syntax and refines it to produce a syntactic
expression in CaTT, that is then fed to the kernel to be checked. The suspension happens at
this refinement, and a consequence of this is that every time a new suspension is generated it is
checked formally by the kernel as if it was a new term. Together with our proof of admissibility of
suspensions, this check is redundant, and hence this choice is not computationally efficient, but at
the time of the implementation, we did not have a formal proof for correctness of the suspension.
Moreover, we introduce also another operation, the functorialization, whose correctness is more
case specific, and this choice helped us realize it. A future implementation of CaTT designed
with more extensive usage in mind should incorporate the suspension in the kernel of the theory,
for maximal computational efficiency.

Eckmann-Hilton morphism revisited We can use our implementation of the suspension to
simplify the formalization of the Eckmann-Hilton morphism that we have presented in Section 3.1.
Out of the 93 definitions that were introduced in the version without suspension, 58 of them can
be simplified by using a suspension. This does not necessarily mean that all 58 definition could be
removed, but all of them rely of a definition that could be removed and made implicit. We have
formalized the same result using the suspension, and the resulting file2 contains 85 definition,
and is 476 lines long so 10% shorter. Another measure of the impact is given by the size of the
files, corresponding to the number of characters needed, and without suspension, the file weighs
29k, whereas with the suspension, it weighs 22k, which corresponds to a reduction of 24%. This
shows how implementing the suspension goes a long towards having extensive developments like
the definition of Eckmann-Hilton morphism more accessible in practice. It also spare the user
from needing to find different names for suspended morphisms, which forces to adopt awkward
convention, like the name id2 and 5hcomp3 that we have introduced before. Instead, the user
can now define the 5-ary horizontal composition on 2-cells, as 5hcomp, and the identity 1-cells
id, and use these simpler names for the suspended coherence.

Interpretation. The fact that the suspension is well defined on the syntax of the theory gives
additional structure to its syntactic category: It endows it with an endofunctor Σ, which as-
sociates to each context Γ ` its substitution ΣΓ ` and to each substitution ∆ ` � : Γ the
substitution Σ∆ ` Σ� : ΣΓ. Moreover, the fact that we can also suspend types and terms, and
that the suspension respects the typing and the application of substitution shows that the end-
ofunctor Σ is an endomorphism of categories with families. Under our assumed correspondence
between the syntactic category of CaTT and a adequate notion of finite polygraphs for weak
!-categories, the definition of the suspension gives an endofunctor for these polygraphs.

2https://github.com/ThiBen/catt/blob/master/examples/eckmann-hilton-versions/eh-susp-no-func.

catt

107

https://github.com/ThiBen/catt/blob/master/examples/eckmann-hilton-versions/eh-susp-no-func.catt
https://github.com/ThiBen/catt/blob/master/examples/eckmann-hilton-versions/eh-susp-no-func.catt


3.3 Degree of a term

Before introducing our other meta-operation similar to the suspension and that we call the
functorialization, we introduce the notion of degree of a term in out theory, which gives the
necessary keys to understand the functorialization. The notion of degree is closely related to the
one of invertibility, that we define coinductively as follows

Definition 73. A term Γ ` a : t ! u is invertible if there exists a term Γ ` b : u ! t together
with two invertible terms

Γ ` can(a, b) : comp a b ! id t
Γ ` can(b, a) : comp b a ! id u

As we show with the notion of degree, the invertibility of a term is completely conditioned by
its syntactic properties.

3.3.1 Definition of the degree

The notion of degree of a term emerges naturally while carrying extensive developments in the
type theory CaTT. Intuitively, this notion characterizes how much invertibility information the
term carries. Terms of degree 0 are non-invertible, whereas terms of strictly positive degree are
invertible. Moreover, a term of degree k + 1 has sources and target of degree k, thus the degree
expresses how many layers of invertible cells are stacked.

Definition 74. We define the internal dimension dimi(t) of a term t in the context Γ as follows

On variables : dimi(x) = dim(x)

On operations : dimi(opΓ,A[�]) = max
x2Var(Γ)

{dimi(x[�])}

On coherences : dimi(cohΓ,A[�]) = max
x2Var(Γ)

{dimi(x[�])}

and the degree of a term t to be

deg(t) = dim(t)� dimi(t)

The internal dimension of a term t is simply the maximal dimension among all the dimensions of
the variables that appear in t, and hence the degree of t is the difference between its dimension
and the variable of maximal dimension in t. Note that since the term constructors op and coh

only produce terms of type constructed with !, the only terms of type ? are variables, which
are necessarily of degree 0.

Internal degree of a variable. We can also understand the dimension more globally, by
considering the entire term and looking the contribution of each variable. Each of the contribution
is called the internal degree of the variable x in the term t, denoted degt(x). Formally, the internal
degree of a variable is defined as

degt(x) = dim t� dimx

The degree of the term t is then the minimal among all the internal degrees of the variables
appearing in t. Intuitively, there are two phenomena that contribute to the dimension of a term,
one is the dimension of the variables in the terms, and the other one is the term constructor
coh. The internal degree quantifies how much each variable contributes to the dimension of the
term, and the degree of the term removes the contribution of the variable and quantifies the
contribution of the term constructor coh. When there is no confusion possible, we sometimes
refer to the internal degree more simply as the degree of a variable in a term.
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Example of degree. In order to get a better grasp of the notion, we introduce some example of
terms, along with their degrees. Our first recurring example is the composition of two morphisms

coh comp (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

: x -> z

We compute the type of this term to be of dimension 1, since its type is x ! z which is of
dimension 0, and its variables of maximal dimension are f and g which are of dimension 1 as
well. Hence the composition is a term of degree 0. Considering the identity

coh id (x : *) : x -> x

the dimension of the result is 1, and its only variable is of dimension 0, hence the resulting term
is of degree 1. Similarly, the associativity

coh assoc (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : z -> w)

: comp (comp f g) h -> comp f (comp g h)

defines a term of degree 1, since the term itself is of dimension 2, and its variables of maximal
dimension are f , g and h that are of dimension 1. Finally the cancellation of associativity with
its inverse

coh assoc-can (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : z -> w)

: comp (assoc f g h) (assoc- f g h) -> id (comp (comp f g) h)

defines a term of degree 2. Up to this point it might seem that the degree quantifies how many
term constructor coh are stacked on top of each other to construct the term, however, it is more
subtle than this. Indeed, consider the term

let comp-id (x : *) = comp (id x) (id x)

Even though this term is constructed by the term constructor op, its degree is still 1, as both
arguments are themselves of degree 1. Moreover, considering the two following terms

let id-rw (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

= rw (id f) g

let rw-id (x : *) (y : *) (f1 : x -> y)

(f2 : x -> y) (a : f1 -> f2)

= rw a (id y)

Even though both these terms are constructed with one the constructor op and have one argument
of degree 0 and one argument of degree 1, the degree of id-rw is 1 and the degree of rw-id is
0. In fact the degree captures an interaction between the degree of the arguments and their
dimension.

3.3.2 Terms of degree 0

The notion of degree of a variable interacts very strongly with the typing rules, to give very
useful conditions relating the variables of a term with the variables of its type.
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Variables of degree 0. First note that self evidently, if we have a type ∆ ` t : A together
with a variable x of degree 0 in t, then x is of the same dimension as t, hence x is of dimension
strictly greater than the dimension of A. This implies that x /2 Var(A). The converse also holds,
and gives a characterization of the variables of degree 0 in a term. It is however harder to prove,
and is given by the two following result, that we prove by mutual induction.

Lemma 75. Consider a term ∆ ` t : A with a variable x 2 Var(t) which is not in Var(A), then
x is of degree 0 in t.

Proof. We prove this result by mutual induction on the coherence depth with Lemma 76, each
step of the induction is itself an induction on the depth of the terms.

– For a term of coherence depth 0 or of depth 0, it is a variable, and then its only variable
is itself, which is of internal degree 0.

– For a term of the form ∆ ` opΓ,B [�] : B[�], since we have a variable x 2 Var(t), there is a
v 2 Var(Γ) such that x 2 Var(v[�]), but because x /2 Var(B[�]), we necessarily have that
v /2 Var(B). The condition (Cop) implies that Var(B) = Var(@�(Γ)) [ Var(@+(Γ)), and a
variable in Γ that is not in Var(B) is then a variable of maximal dimension in Γ, hence
dim v = dimΓ. Moreover, all the variables in the type of v appear in B, hence all the
variables in the type of v[�] appear in A, and since x does not appear in A by hypothesis, x
does not appear in the type of v[�], hence by induction x is of degree 0 in v[�]. This implies
dimx  dim v[�] = dim v = dimΓ. Moreover, Lemma 76 shows that dimB = dimΓ� 1,
and hence dim t = dimΓ. So in the end, we have proved that dimx = dim t, hence x is of
degree 0 in Γ.

– For a term ∆ ` cohΓ,B [�], the condition (Ccoh) implies that all variables of � are also in
B[�], and hence there is no variable to check.

Lemma 76. Suppose that the type Γ ` A is derivable and satisfies (Cop), then dimA = dimΓ�1.

Proof. From the condition (Cop), we necessarily have

A = t �!
B

u with

⇢
Var(t) [Var(B) = Var(@�(Γ))
Var(u) [Var(B) = Var(@+(Γ))

Then there necessarily exists a variable x of maximal dimension in @�(Γ) that does not appear
in @+(Γ), and since @+(Γ) ` u : B is also derivable, x cannot appear in B. Hence by mutual
induction, Lemma 75 shows that x is of degree 0 in t, and hence dim t = dimx = dim @�(Γ), or
in other words, dimA = dimΓ� 1.

We thus have proved the following result

Proposition 77. Given a term ∆ ` t : A, a variable x 2 Var(t) is of degree 0 in t if and only
if it appears in Var(A)

Terms of degree 0. With the help of this characterization of the variables of degree 0 in a
term, we can give an inductive description of the class of terms that are of degree 0 in our theory
as follows
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Proposition 78. A term ∆ ` t : A is of degree 0 if and only if it is a variable or it is of the
form opΓ,A[�], where � is a substitution which has at least one argument of maximal dimension
of degree 0

Proof. First note that a variable is always of degree 0, since its only variable is itself, and it is
of internal degree 0, and for a term of the form ∆ ` cohΓ,A[�] : A[�], for every variable x in this
term, there is a variable v in Γ such that x 2 Var(v[Γ]). The condition (Ccoh) then implies that
v 2 Var(A), and hence x 2 Var(A[�]). Hence x appears both in the term and in its type, so it
is of internal degree non-zero, and since it is the case for all the variables, the term cohΓ,A[�]
is necessarily of internal degree non-zero. Consider a term t of the form ∆ ` opΓ,A[�] : A[�],
we necessarily have, by Lemma 76 that dim t = dimΓ. This term is of degree 0 if and only if
it contains a variable x of dimension dimΓ. Such a variable can only appear in Var(v[�]) for v
a maximal variable of �, and the term v[�] is of dimension 0 if and only if it contains such a
variable, hence t is of dimension 0 if and only if at least one argument of � is of degree 0.

3.3.3 Degree and invertibility

We now explore the connection between the the degree of a term and its invertibility. As we have
not implemented this as a feature in CaTT, we keep this part less formal and only give sketches
of proofs. We keep the formalization and the proof of this construction for future work, as it is
very involved and does not work well with the inductive structure of the theory.

Inversion of a ps-context. In order to prove associativity, we construct a term associated to
any given term, that we then prove to be an inverse. In order to construct this term, we define
given a ps-context Γ its inversion that we denote Γ�. We can describe this operation using the
ordering on ps-contexts as follows, and it corresponds intuitively to reversing the direction of the
cells of maximal dimension. For each sequence of consecutive variables

y0 / f1 / y1 / f2 / . . . / fn / yn

with dim yi = dimΓ� 1 and dim fi = dimΓ that is of maximal length, we replace this sequence
by its reverse in Γ�

yn / fn / yn�1 / fn�1 / . . . / f1 / y0

We give a few instance of computation of inversion of ps-contexts, using diagrammatic notations

Γ Γ�

x y z
f g

z y x
g f

x y z

f0

f1

f2

+↵

+�

g
x y z

f2

f1

f0

+�

+↵

g

By definition, the inversion of a ps-context is constructed from a linear order on its variables,
hence it is a ps-context. Moreover, one can check that @�(Γ�) = @+(Γ) and @+(Γ�) = @�(Γ).

Inversion of a term. We start by associating to each term t of strictly positive degree a term
that we denote t�, and that we define by induction

111



– For a term of the form t = opΓ,A[�], suppose the maximal arguments of � are (u0, . . . , un),
then they are all of degree strictly positive, then we pose t� = opΓ�,A� [��], where �� is
obtained from � by posing for each variable x in Γ, x[��] = x[�]� if x is of dimension
maximal in Γ and x[��] = x[�] otherwise.

– For a term of the form t = cohΓ,A[�], we pose t� = cohΓ,A� [�].

– For a type of the form A = t �!
B

u, we define A� to be the type u �!
B

t

We illustrate this construction in particular the first case with an example, as the description we
have given of it is not completely formal: Consider the term

(x : ?) ` id x : x ! x

its inverse is given by itself. consider the an associativity witness

coh assoc (x : *)(y : *)(f : x -> y)

(z : *)(g : y -> z)

(w : *)(h : z -> w)

: comp (comp f g) h -> comp f (comp g h)

then its inverse is given by the term

coh assoc- (x : *)(y : *)(f : x -> y)

(z : *)(g : y -> z)

(w : *)(h : z -> w)

: comp f (comp g h) -> comp (comp f g) h

In a generic context, if we consider for instance the following term

let ex (x : *) (f : x -> x)

= comp (assoc (id x) f f ) (id (comp (id x) (comp f f)))

its inverse is given by

let ex- (x : *) (f : x -> x)

= comp (id (comp (id x) (comp f f))) (assoc- (id x) f f )

Lemma 79. For any term Γ ` t : A derivable in CaTT, the term Γ ` t� : A� is also derivable.

Proof. We prove this by induction on the term of degree non-zero t.

– For a term ∆ ` cohΓ,A[�] : A[�], by the rule (coh), we have A = t �!
B

u, and Γ ` A with

Var(t) [ Var(B) = Var(Γ) and Var(u) [ Var(B) = Var(Γ). Hence the type Γ ` A� is also
derivable and also satisfies (Ccoh), so the type ∆ ` cohΓ,A� [�] : A[�]� is derivable.

– For a term of the form ∆ ` op
Γ,t�!

A
u
[�], first note that the condition (Cop) imply than we

have @�(Γ�) ` t : A and @+(Γ�) ` u : A with the condition of using all the variables. Since

Γ� has inverted sources and target with respect to Γ, we also have Γ� ` u �!
A

t satisfying

(Cop). Moreover, for all variable in Γ� ` x : B, we also have Γ ` x : B, unless x is of
maximal dimension, in which case Γ ` x : B�. These match exactly the type of x[��], and
hence we have ∆ ` �� : Γ�. Moreover, since neither t or u contain variables of maximal

dimensions, we have t[�] = t[��] and u[�] = u[��], hence (u �!
A

t)[��] = (t �!
A

u[�])�.

This shows that the term ∆ ` op
Γ�,u�!

A
t
[��] : ((t �!

A
u)[�])�.
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One can also check that operation of taking the inverse is an involution, that is for all term of
strictly positive degree, we have (t�)� = t.

Cancellation witnesses. We claim that given a term t of degree non-zero, we can define a
cancellation witness associated to t, that we denote c(t). This term is easy to define for a term
of the form ∆ ` cohΓ,A[�], by posing c(t) to be the following term

cohΓ,comp (cohΓ,A[idΓ]) (coh
Γ,A� [idΓ])!id (@�(A))[�]

we then have a derivation of ∆ ` c(t) : comp t t� ! id@�(t). We conjecture that such a term c(t)
is also definable by induction for a term t of strictly positive degree , although explicit example
even in simple cases hint that this requires heavier automation and meta-operations that we
have as of now. This is a problem that we reserve for future work, as defining this automation
and proving its correctness may have drastic consequences on the practical use of CaTT. Our
complete conjecture is the following:

Conjecture 80. For any term Γ ` t : A of strictly positive degree, we can define a term c(t)
which has the same variables as t, and such that Γ ` c(t) : comp t t� ! id (@�(t)).

Under this conjecture, we have a reinterpretation of the degree of a term, as a way to quantify
the invertibility of a term.

Proposition 81. A term Γ ` t : A of degree strictly positive is invertible.

Proof. We prove this result by using coinduction, indeed, we have proven that for any term
Γ ` t : A, there exists a term Γ ` t� : A�, along with a term Γ ` c(t) : comp t t� ! @�(A), and
this term is of degree strictly positive, hence by coinduction, it is invertible. Moreover, t� is also of
degree strictly positive, hence it defines a cancellation witness Γ ` c(t�) : comp t� (t�)� ! @�(A�)
which is invertible. By simplification, we can simplify the type of this cancellation witness as
follows Γ ` c(t�) : comp t� t ! @+(A), which then proves that the term is invertible.

Non-invertible terms. We claim that the terms of degree zero are necessarily non-invertible.
Even though we do not provide a full proof of this fact, we give the general sketch of one. First
consider the case of a variable Γ ` x : t ! u, there is no derivation that allows us to derive a term
of type u ! t from x, but there might be a variable y in our context which is of the type u ! t,
or which allows for a derivation of a term of this type. If there is such a variable, there is still
no derivation of the cancellation witness, unless the context contains yet another variable that
allows to derive it. By iterating this argument, in order to make x invertible, the context would
need to contain infinitely many variables, which is impossible, hence x cannot be invertible. The
intuition is similar for other terms of degree 0, and making such a term invertible would require
infinitely many variables in the context. This proof does not formalize well, due to the arbitrary
nature of the variables that can be in a context. However, we do not make use of this result, and
only present it to help building up our intuition, so we limit ourselves to this informal proof.

Source and target.

Lemma 82. Consider a term ∆ ` t : A of degree strictly positive, then we necessarily have
deg(@�(t)) = deg(@+(t)) = deg(t)� 1.
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Proof. Consider the variable of dimension maximal x in t, since it is of degree strictly positive,
it has to appear also in @�(t) and @+(t), in which it is necessarily maximal. Since moreover
dim @�(t) = dim @+(t) = dim t� 1, we conclude that deg(@�(t)) = deg(@+(t)) = deg(t)� 1.

This gives a clearer picture on the nature of the terms in the theory CaTT. A term of degree
n has necessarily its source and target of degree n � 1, which themselves necessarily have their
source and target of degree n � 2 and so on, until hitting the degree 0. Necessarily, all these
intermediate degrees are invertible terms, and moreover an invertible term (i.e., of degree strictly
positive) is always between two terms of the same degree. Note that we do not provide any
restrictions on the source and the target of a term of degree 0, since one can have variables of
arbitrary types. For instance, we may consider the context

Γ = (x : ?, f : x ! x, a : id x ! f)

In this context, the term a is of degree 0 but its source is of degree 1 and its target is of degree
0. We can nevertheless give a restriction if we only consider contexts with only variables whose
source and target are of degree 0, then a term of degree 0 in such a context has its source and
target of degree 0.

3.3.4 Degree for automation

We describe here a feature that we wish to add to CaTT for in a foreseeable future, but that we
have not implemented yet, using the notion of degree. We expect to add a feature to compute
the degree of a term. As it is not very hard for the user to read the degree of the expression of
the term, this computation could be completely internal, or it could be made accessible by the
user via a syntax like

deg G |- t

where G is the context in which the term is defined and t is the expression defining the term. If
our Conjecture 80 holds, we could implement our algorithm that given a term of degree strictly
positive, computes its inverse and all the higher cells witnessing that the term is invertible. Of
course since there are infinitely many such cells, the algorithm would be able to compute any
given one of them, but not all at once. A good syntactic convention to manage such a feature is
also not completely clear at the moment, our first instinct is that it should have new keywords
to introduce the inverse such as for instance

let assoc- (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : y -> z)

= inv (assoc f g h)

in order to define the inverse term of the term assoc. The issue with such an approach is that
we then need to provide a syntax for the invertible terms of type

comp (assoc f g h) (assoc- f g h) -> id (comp (comp f g) h)

which is part of the invertibility condition. Let us assume that we introduce also a dedicated
syntax for these witnesses, for instance

let can-assoc (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : y -> z)

= can (assoc f g h)
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Then the invertible term of type

comp (assoc- f g h) (assoc f g h) -> id (comp f (comp g h))

part of the invertibility condition could be obtained as can (inv (assoc f g h)) Then for ex-
tensive developments, one would typically need to access the inverses of these terms, using for
instance inv (can (inv (assoc f g h))), and their cancellation witnesses, generating expres-
sions of the form can (can (inv (assoc a b c))), that would be very difficult to parse for a
human reader. Another option is to introduce a meta-theoretic tactic, that generates the right
cell when it is called. For instance, one could imagine writing an expression like

let example (x : *) (y : *) (f : x -> y)

(f- : y -> x) (a : comp f- f -> id y)

(z : *) (g : y -> z)

: comp f- (comp f g) -> g

= comp3 (invertibility (assoc f- f g))

(rw a g)

(unitl g)

where comp3 is the ternary composition. In this example, the first of 2-cell that we compose
is expressed as invertibility (assoc f- f g), which would be understood by the system
as a term automatically generated from the fact that assoc f- f g is invertible. Then us-
ing the environment, and in particular in our example, the type of the term that has to be
comp f- (comp f g) -> comp (comp f- f) g, the system would generated the appropriate
term - here assoc- f- f g. This however raises other questions, that we have not addressed,
and leave for future improvements of our implementation of CaTT. It is unclear for instance,
how to guarantee enough information for the system to be able to determine uniquely a cell from
an expression of the form invertibility t.

3.4 Functorialization

We now introduce the second meta-operation that we have implemented in the theory CaTT.
This meta-operation is much more constrained than the suspension, and only yields valid terms
under some conditions, that are well-expressed using the notion of internal degree of a variable.
This has been introduced briefly in [17], but we extend and complete the study of this operation.

Intuition and example. The intuition behind this operation is that all the operations that
are introduced in the theory of weak !-category act on the cells similarly to how functors act on
a category. A functor not only acts on the objects of a category, but on the morphisms as well;
in our case each operation not only acts on the cells it is defined, but on higher cells as well.
Consider for instance the composition

coh comp (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

: x -> z

this operation is functorial with respect to both of its arguments f and g. What we mean by this
statement is that for instance fixing g, and replacing f by a two cell a : f -> f’, we can define
an operation that sends a onto a 2-cell of type comp f g -> comp f’ g. We have already met
this operation, and called it the right whiskering rw.
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coh rw (x : *) (y : *) (f : x -> y)

(f’ : x -> y) (a : f -> f’)

(z : *) (g : y -> z)

: comp f g -> comp f’ g

The functorialization thus provides us with a new way to understand the right whiskering as the
action of the composition with a fixed morphism on the right on a 2-cell by functoriality. We
describe formally the operation that generates the term rw from the term comp. The idea is to
duplicate the variable f into f and f’, and add an higher cell that relates the original variable f

to its duplicate f’. The return type is computed by applying the original term (in our example
comp), once to the original variable f, and once to the duplicate f’, while keeping the other
arguments the same. This idea generalizes to duplicating several variables at once which is in
fact the operation we formally describe. For a variable x, we always denote x+ its duplicate and
~x the higher dimensional cell that relates x and x+.

3.4.1 Functorialization of contexts

We start by defining an operation on contexts, which given a context Γ and set of variables
X ⇢ Var(Γ), produces a new context Γ ~X that we call the functorialization of the context Γ with
respect to X. Intuitively, this operation duplicates all the variables x that are in X into a variable
x+, and add a higher cell ~x of type x ! x+ to the context. When X = {x} is a singleton, we
only denote Γ~x the functorialized context. We give a visual example, where we only represent a
context by the finite globular set it corresponds to, that emphasizes our example of composition
and right whiskering.

Γ Γ
~f

x y z
f g

x y z

f

f+

+~f
g

At this point we have defined the functorialization of a context with respect to any of its variables.
In the particular case of the ps-context that we study later, we add the condition that the variables
are of dimension maximal for reasons that have to do with the typing of the term constructors.

Definition. We proceed with defining this operation by induction on the context. For the rest
of this section, we assume that we have fixed two variables, that we call x0 and f , and that are
completely fresh. This can be done by extending the alphabet. If we work in de Bruijn indices,
we just use x0 and f to denote two integers, and renormalize the context to ensure that the
variables conditions are still met.

?
~X = ?

(Γ, x : A)
~X
=

(
(Γ

~X , x : A, x+ : A, ~x : x ! x0) if x 2 X

(Γ
~X , x : A) otherwise

In addition, we define a substitution that we denote ◆X(Γ), or simply ◆ which has the same
syntactic expression as idΓ, i.e., ◆X(Γ) = hy 7! yiy2Var(Γ). We pick a different name than idΓ in
order to suggest that ◆X(Γ) is not destined to be typed as going from Γ to Γ. Since the action
of a substitution on types and terms is purely syntactical, and ◆X(Γ) has the same expression as
idΓ, it follows, that it acts the same way on types and terms, and thus for all type A, we have
A[◆X(Γ)] = A.
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Lemma 83. Functorialization can be performed successively in any order. For any partition

X = X0 tX1, we have Γ
~X1

~X0

= Γ
~X

Proof. We can prove this by induction on the context Γ

– For the empty context ?, we have ?
~X1

~X0

= ? and ?
~X = ?.

– For a context of the form (Γ, x : A) where x /2 X, we have (Γ, x : A)
~X1

~X0

= (Γ
~X1

~X0

, x : A)

and (Γ, x : A)
~X
= (Γ

~X , x : A). By induction, the equality Γ
~X1

~X0

= Γ
~X gives the result.

– For a context of the form (Γ, x : A) where x 2 X, then either x 2 X0 or x 2 X1. If x 2 X0

then since X0 and X1 are disjoint, x /2 X1 and hence (Γ, x : A)
~X1 = (Γ

~X1 , x : A). This lets
us compute

(Γ, x : A)
~X1

~X0

= (Γ
~X1

~X0

, x : A, x+ : A, ~x : x ! x+)

And the equality Γ
~X1

~X0

= Γ
~X obtained by induction allow us to conclude. If x 2 X1, then

(Γ, x : A)
~X1 = (Γ

~X1 , x : A, x+ : A, ~x : x ! x+). Since neither of x, x+ of ~x are in X, this
lets us again compute that

(Γ, x : A)
~X1

~X0

= (Γ
~X1

~X0

, x : A, x+ : A, ~x : x ! x+)

which gives the expected result.

Correctness. We have defined the operation of functorialization of a context purely syntacti-
cally and we need to ensure that it only ever produces valid contexts.

Lemma 84. The functorialized of a well-defined context with respect to any of its variable is a
well-defined contexts. The following rule is admissible

Γ `

Γ
~X `

(X ⇢ Var(Γ))

Moreover, in this case, the substitution ◆X(Γ) is a well defined substitution Γ
~X ` ◆X(Γ) : Γ

Proof. We prove these two results mutually, by induction on the context, by first assuming that
X = {x} is a singleton

– For a context of the form (Γ, x : A), an explicit computation shows

(Γ, x : A)
~x
= (Γ, x : A, x0 : A, f : x �!

A
x0)

Denote Γx0 = (Γ, x : A, x0A), then the derivation of Γ, x : A ` gives a derivation of Γ ` A,
which by weakening, gives a derivation of Γ, x : A ` A. By applying the rule (ce) to
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this derivation, we construct a derivation of Γx0 `. Using this derivation, we can give a
derivation of Γ~x `

Γx0 ` x : A 2 Γx0

Γx0 ` x : A
(var)

Γx0 ` x0 : A 2 Γx0

Γx0 ` x0 : A
(var)

Γx0 ` x �!
A

x0
(hom)

Γ
~x `

(ce)

Moreover, the substitution Γ, x : A ` id(Γ,x:A) : Γ, x : A can be weakened on the left twice,
yielding the valid substitution Γ~x ` ◆x(Γ) : Γ.

– For a context of the form (Γ, y : A) where y 6= x, we have (Γ, y : A)
~x
= (Γ~x , y : A). By the

induction cases, we have derivations for the judgments, Γ~x ` and Γ~x ` ◆x(Γ) : Γ. From the
derivation of Γ, y : A `, we extract a derivation of Γ ` A, and since A[◆x(Γ)] = A, applying
the substitution ◆x(Γ) gives a derivation of Γ~x ` A. A single application of the rule (ce)

then gives a derivation for Γ, y : A~x ` as follows

Γ
~x ` A

Γ
~x , y : A `

(ce)

Moreover, by weakening of the derivation of the substitution, we get a derivation of
(Γ, y : A)

~x ` ◆x(Γ) : Γ, which lets us get a derivation of (Γ, y : A)
~x ` ◆x(Γ, y : A) : Γ, y : A

as follows
(Γ, y : A)

~x ` ◆x : Γ Γ, y : A ` (Γ, y : A)
~x ` y : A

(Γ, y : A)
~x ` h◆x(Γ), y 7! yi : Γ, y : A

(se)

By Lemma 83, it suffices to apply the singleton case successively for all elements of X to prove
the result for an arbitrary finite set of variable. We only consider finite sets, since by assumption
X ⇢ Var(Γ) which is finite.

Target context of the functorialized. Additionally, we define a second substitution associ-
ated to a functorialization of a context, that we denote ◆X(Γ), or simply ◆, and that fixes every
variable but the ones in X, each variable x 2 X being sent to x+. We can give an inductive
definition for this substitution as follows

◆X(?) = hi

◆X(Γ, x : A) =

⇢
h ◆X(Γ), x 7! x+i if x 2 X
h ◆X(Γ), x 7! xi otherwise

This definition also yields a well-defined substitution of the same type as ◆X(Γ).

Lemma 85. For all context Γ ` and all set of variables X ⇢ Var(Γ), the judgment Γ
~X ` ◆X(Γ) : Γ

is derivable.

Proof. We proceed by induction over the context Γ, following the definition of ◆X(Γ).

– For the empty context ?, we have ◆X(?) = hi, and since ?
~X = ?, the rule (ec) give ?

~X `,
and the rule (es) then gives ?

~X ` ◆X(?) : ?.
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– For a context of the form (Γ, x : A) where x 2 X, by induction we have a derivation of

Γ
~X ` ◆X(Γ) : Γ. Lemma 84 ensures that (Γ, x : A)

~X `, thus by weakening this substitution

(c.f. Proposition 2) we get a derivation of (Γ, x : A)
~X ` ◆X(Γ) : Γ. We can then apply the

rule (se) in order to get the following derivation

(Γ, x : A)
~X ` ◆X(Γ) : Γ (Γ, x : A) `

(Γ, x : A)
~X ` x+ : A 2 (Γ, x : A)

~X

(Γ, x : A)
~X ` x+ : A

(var)

(Γ, x : A)
~X ` h ◆X(Γ), x 7! x+i : (Γ, x : A)

(se)

– For a context of the form (Γ, x : A) with x /2 X, we have by induction a derivation of

Γ
~X ` ◆X(Γ) : Γ, which gives by weakening a derivation of Γ, y : A

~X ` ◆X(Γ) : Γ. This lets
us construct the following derivation

(Γ, x : A)
~X ` ◆X(Γ) : Γ (Γ, x : A) `

(Γ, x : A)
~X ` ⇥ : A 2 (Γ, x : A)

~X

(Γ, x : A)
~X ` ⇥ : A

(var)

(Γ, x : A)
~X ` h ◆X(Γ), x 7! ⇥i : (Γ, x : A)

(se)

3.4.2 Functorialization of a maximal variable in a ps-context

In order to define the functorialization of an operation, we are particularly interested in the case
of the functorialization of a ps-context with respect to one of its variables of maximal dimension.

Functorialization preserves ps-contexts. The process of functorializing a context is very
reminiscent of the algorithm checking that a given context is a ps-context, and in particular of
the rule (pse), in that it introduces a new variable which is a copy of a known variable, and a
variable from the known variable to the new copy. This analogy can be exploited to show the
following lemma

Lemma 86. Let Γ `ps be a ps-context and x 2 Var(Γ) be a locally maximal variable in Γ, then
Γ~x `ps is again a ps-context.

Proof. We first treat separately the case of the context D0, whose functorialization with respect
to its unique variable is D1, which is a ps-context. So from now on, we may assume that Γ is
not the ps-context D0, and hence all its locally maximal variables are of dimension at least 1. In
this case, the derivation of Γ `ps necessarily is of the form

DΓ0

Γ
0 `ps y : A

Γ
0, z : A, x : y �!

A
z `ps x : y �!

A
z

(pse)

Γ
0, z : A, x : y �!

A
z `ps z : A

(psd)

D
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where DΓ0 is a derivation of the judgment Γ0 `ps y : A, and D is a derivation tree that finishes,
from a derivation of Γ0, z : A, x : y ! z `ps z : A to a derivation of Γ `ps. We can then obtain a
derivation of Γ0, z : A, x : y ! z

~x `ps z : A as follows

DΓ0

Γ
0 `ps y : A

Γ
0, z : A, x : y �!

A
z `ps x : y �!

A
z

(pse)

Γ
0, z : A, x : y �!

A
z
~x

` f : x ! x0

(pse)

Γ
0, z : A, x : y ! z

~x
`ps x

0 : y �!
A

z
(psd)

Γ
0, z : A, x : y ! z

~x
`ps z : A

(psd)

We can then finish this derivation into a derivation of Γ
~X `ps by following the structure of

derivation tree D.

Combinatorial interpretation. As we had done in the case of the suspension, we can provide
an interpretation on the combinatorial structure of the ps-contexts. Ge give a few examples of
ps-contexts graphically represented by their structure, and since we always functorialize with
respect to a given variable of dimension locally maximal, we specify this variable by circling a
position on our diagram.

 

 

 

Graphically, this operation can be understood as selecting one peek and pulling this peek alone
one dimension higher. In terms of the underlying globular sets, we give another visualization for
the last example

• • •
+

+
 • • •

+

+V+

Functorialization with respect to a set of variables. We can generalize our result to
functorialize ps-contexts with respect to a set of variables, instead of a single variable. Indeed,
consider a set of variables X such that all variables in X are locally maximal, and consider a

variable x 2 X, by Lemma 86, we know that Γ~x is again a ps-context. But Γ
~X = Γ~x

~X�{x}
, and

now all the variables in X�{x} are locally maximal in Γ~x . We can thus iterate this construction,
which proves the following result

Lemma 87. For all ps-contexts Γ `ps and all set X of locally maximal variables in Γ, the context

Γ
~X is again a ps-context.
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Source and target of the functorialized. In the particular case of functorializing with
respect to a set of maximal variables, we can compute explicitly the source and target of the
functorialized context.

Lemma 88. If Γ `ps is a ps-context and X ⇢ Var(Γ) is a set of variables of dimension max-

imal in Γ, then @�(Γ
~X) = Γ, and the substitution Γ

~X ` ◆X(Γ) : Γ is the source substitution

@�. Moreover, the substitution ◆X(Γ) defines an isomorphism between Γ and @+(Γ
~X), which

commutes with the substitution @+

Γ
~X @+(Γ

~X)

Γ

@+

◆X(Γ)

⇠ ◆X(Γ)

Proof. We handle separately the case Γ = (x : ?), where Γ~x = (x : ?, x+ : ?, ~x : x ! x+), and
we can compute explicitly that @�(Γ~x) = Γ, @+(Γ~x) = (x+ : ?), and ◆= hx 7! x+i defines an
isomorphism hx 7! x+i. In the other cases, we follow the inductive definitions:

– If Γ = (Γ0, z : A, x : y ! z) with x 2 X, denote X 0 = X � {x}. Since x is of max-
imal dimension in Γ, it follows that ~x is of maximal dimension in Γ

~X , and hence the

rule for computing source gives @�(Γ
~X) = (@�(Γ0 ~X0

), z : A, x : y ! z). By induc-

tion @�(Γ0 ~X0

) = Γ0, which shows the equality. Similarly, the target is computed by

@+(Γ
~X) = (@�(Γ0 ~X0

), z : A, x+ : y ! z), and by induction @+([)Γ0 ~X0

] ` ◆X0(Γ0) : Γ0

induces an isomorphism. By completing this, we get the isomorphism

@+(Γ
~X) ` h ◆X0(Γ0), z 7! z, x 7! x+i : Γ

– If Γ = (Γ0, z : A;x : y ! z) with x /2 X, since dimΓ
~X = dimΓ + 1, x is not of dimension

maximal in Γ
~X , hence, @�(Γ ~X) = (@�(Γ0 ~X), z : A, x : y ! z), and the induction gives

@�(Γ
~X) = Γ. Similarly for the target, we have @+(Γ ~X) = (@+(Γ0 ~X), z : A, x : y ! z), and

completing the isomorphism ◆X(Γ0) yields an isomorphism

@+(Γ
~X) ` h ◆X(Γ0), z 7! z, x 7! xi : Γ

3.4.3 Functorialization of a term

We can use our definition of the functorialization of a ps-context in order to define the functo-
rialization of any term, and thus generate new terms from previously defined ones, as we have
already presented for the suspension. This operation is a bit more complicated to define, so we
split its definition into different cases, depending on the term we are computing with. In all the
cases, we always functorialize a term with respect to a list of variables of internal degree 0 in
this term.

Functorialization of a variable. The definition of the functorialization of a variable is
straightforward, we simply require that x~x = ~x. Note that this is the only possible case, since
we require the variable with respect to which we functorialize to appear in the term.
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Lemma 89. Given a variable x in a context such that Γ ` x : A, we also have Γ~x ` x~x : x �!
A

x+.

Proof. Since we have proved that we always have a derivation of Γ~x `, and that moreover

f : x �!
A

x0 2 Γ~x by definition, we can apply the rule (var) in order to get a derivation of

Γ~x ` ~x : x �!
A

x+.

Functorialization of the declaration of operation. In order to define the functorialization
for a general term, we first study the case of the declaration of an operation.

Lemma 90. Suppose that we have a ps-context Γ `ps, together with a type Γ ` A such that Γ, A
declares a valid operation, then for all set X of maximal variables in Γ, the functorialized pair

Γ
~X , opΓ,A[idΓ] ! opΓ,A[ ◆] also declares a valid operation.

Proof. We have already proved by Lemma 86 that the context Γ
~X is a ps-context, so we have

Γ
~X `ps. We denote t the term t = opΓ,A[idΓ], since the pair (Γ, A) declares a valid operation,

we have a derivation of the judgment Γ ` t : A. Moreover, the variables of t are specified by
the identity morphism of Γ: It contains all the variables of Γ, hence Var(t) = Var(Γ). Since
Γ = @�(Γ

~X), this proves that we have @�(Γ ~X) ` t : A, with Var(t)[Var(A) = Var(Γ). Since we
have a substitution @+(Γ

~X) ` ◆: Γ, we can as well build the term @+(Γ) ` t[ ◆] : A[ ◆]. Note that
(Γ, A) satisfying the conditions for declaring an operation operation forces A not to contain any
variable of maximal dimension of Γ, which are the only variables that can be in X. Since A does
not contain any variable in X, we have A[ ◆] = A, hence the derivation @+(Γ ~X) ` t[ ◆] : A. Finally,
Var(t[ ◆]) = Var( ◆), and since ◆is an isomoprhism, it contains all the variables of @+(Γ ~X), which
proves the equality Var(t[ ◆]) [ Var(A) = Var(@+(Γ

~X)). We thus have verified all the conditions

shows that the pair (Γ
~X , opΓ,A[idΓ] �!

A
opΓ,A[ ◆]) declares a valid operation.

In order to simplify the notations, given the declaration of an operation defined by the pair Γ `ps

and Γ ` A satisfying the side condition, we denote (Γ, A)
~X the declaration of the operation

defined in Lemma 90.

Functorialization of a general term. We now define the functorialization of a general term,
with respect to a set X of variables of internal degree 0 in this term. Note that having variables
of internal degree 0 forces the term to be of degree 0, and hence this eliminates terms constructed
with the term constructor coh which are all of degree strictly positive. We define by induction
the functorialization for terms as follows

opΓ,A[�]
~X
= op

(Γ,A)
~X�
[�
~X ]

where X� is the set of variables y in Γ such that Var(y[�]) \X 6= ;, and the functorialization is

defined on substitution by induction with hi
~X
= hi and we pose h�, x 7! ti

~X to be
(

h�
~X , x 7! ti if x 2 X�

h�
~X , x 7! t, x0 7! t[ ◆Var(t)\X(Γ)], f 7! t

~Var(t)\X i otherwise

Lemma 91. Given a substitution ∆ ` � : Γ and an arbitrary set of variables X ⇢ Var(∆), for

all variable x in Var(Γ), we have x[�] = x[X
~X�]

122



Proof. This result is immediate from the definition of X ~X� : it only associates to a variable x
the term x[�], if x already has an image by �. We can prove this by induction.

– For the substitution ∆ ` hi : ?, the result is vacuously true since there is no variable in ?.

– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) where x /2 X� , we have for

the variable x, x[h�, x 7! ti] = t, and since h�, x 7! ti
~X

= h�
~X , x 7! ti, we also have

x[h�, x 7! ti
~X
] = t. For any other variable variable y in (Γ, x : A), y is actually a variable

in Γ and y[h�, x 7! ti
~X
] = y[�

~X ], which by induction is equal to y[�].

– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) where x 2 X� , the proof is very
similar: we have for the variable x, x[h�, x 7! ti] = t, and since

h�, x 7! ti
~X
= h�

~X , x 7! t, x+ 7! t[ ◆], ~x : x ! x+i

we also have x[h�, x 7! ti
~X
] = t. For any other variable variable y in (Γ, x : A), y is actually

a variable in Γ and y[h�, x 7! ti
~X
] = y[�

~X ], which by induction is equal to y[�].

Correctness. Under the assumption that we functorialize a term with respect to variables of
internal degree 0, the definition of functorialization only produces valid terms.

Theorem 92. Given a term ∆ ` t : B and a set of variables X of internal degree 0 in t, the
following judgment is derivable

∆
~X ` t

~X : t �!
B

t[ ◆]

We prove this result by induction, but it is a bit technical to perform, so in order to simplify it,
we state and prove the following lemma, on which relies each of the induction steps

Lemma 93. Assuming that Theorem 92 holds for all terms of depth at most t, for any substi-

tution ∆ ` � : Γ and any set of variables X the judgment Γ
~X ` �

~X : Γ
~X� is derivable.

Proof. We prove this result by induction on the derivation of the substitution ∆ ` � : Γ.

– For a substitution of the form ∆ ` hi : ?, we have both hi
~X
= hi and ?

~XΓ = ?, giving a
derivation of the judgment ∆

~X ` hi : ?.

– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) with x /2 Xh�,x 7!ti, we have by in-

duction that ∆ ~X ` �
~X : Γ

~X� , and since x /2 Xh�,x 7!ti, we have the equality Xh�,x 7!ti = X� .
Moreover, from the derivation of ∆ ` t : A[�], we extract by weakening a derivation of
∆
~X ` t : A[�]. Moreover, since all the variables of A are in Γ, we have A[�] = A[�

~X ]. This
lets us apply the rule (se) in order to obtain a derivation as follows

∆
~X ` �

~X : Γ
~X� Γ

~X� , x : A ` ∆
~X ` t : A[�

~X ]

∆
~X ` h�

~X , x 7! ti : Γ
~X� , x : A

(se)

The judgment proved by this derivation can in fact be rewritten as

∆
~X ` �

~X : (Γ, x : A)
~Xh�,x 7!ti
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– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) with x 2 X� , then by induction,

we have a derivation of ∆ ~X ` �
~X : Γ

~X� . Moreover, we have a derivation of ∆ ` t : A[�],
and since A only uses variables in Γ, the equality A[�] = A[X

~X�] lets us use the rule (se)

as follows
∆
~X ` �

~X : Γ
~X� Γ

~X� , x : A ` ∆
~X ` t : A[�

~X ]

∆
~X ` h�

~X , x 7! ti : Γ
~X� , x : A

(se)

Moreover, Lemma 84 ensures that (Γ, x : A)
~Xh�,x 7!ti ` is derivable, and since the variable

x is not in Γ, we have that Γ
~X� = Γ

~Xh�,x 7!ti , which gives the equality

(Γ, x : A)
~Xh�,x 7!ti = (Γ

~X� , x : A, x+ : A, ~x : x ! x+)

Moreover, Theorem 92 for the term t of depth at most d ensures that ∆ ~X ` t
~X : t ���!

A[�]
t[ ◆].

With the help of these two judgment and our previous derivation, we can construct the
derivation tree indicated in Figure 3.1. All the leaves of this tree being derivable, this gives

a derivation for the judgment ∆
~X ` h�, x 7! ti

~X
: (Γ, x : A)

~Xh�,x 7!ti

124



∆
~X ` h�

~X , x 7! ti : Γ
~X� , x : A Γ

~X� , x : A, x+ : A ` ∆
~X ` t[ ◆] : A[�

~X ]

∆
~X ` h�

~X , x 7! t, x+ 7! t[ ◆]i : Γ
~X� , x : A, x+ : A

(se) (Γ, x : A)
~Xh�,x 7!ti ` ∆

~X ` t
~X : t ����!

A[� ~X ]
t[ ◆]

∆
~X ` h�, x 7! ti

~X
: (Γ, x : A)

~Xh�,x 7!ti

(se)

Figure 3.1: Derivation tree for the judgment ∆
~X ` h�, x 7! ti

~X
: (Γ, x : A)

~Xh�,x 7!ti
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With this lemma, we are equipped to prove our Theorem 92

Proof of Theorem 92. We prove this result by induction on the depth of the term t. Lemma 84
already proves it for the terms of depth 0 (i.e., the variables), so it suffices to assume the result
for all terms of depth at most d, and prove it for a term of depth d+1. Consider a term ∆ ` t : B
of degree d + 1, together with a (non-empty) set X of variables of internal degree 0 in t. Then
as discussed previously, necessarily t is of the form t = opΓ,A[�].First note that any variable in
XΓ is necessarily of maximal dimension in Γ. Indeed, suppose that we have a variable y 2 XΓ,
then there exists x 2 Var(y[�]) \X, and being in X implies that x is of internal degree 0, hence
dimx = dimΓ. On the other hand since x 2 Var(y[�]), we have that dimx  dim y[�] = dim y.

This implies that dim y = dimΓ. By Lemma 86, this proves that (Γ, A)
~X� is declares a valid

operation. We then apply Lemma 93, which we can apply thanks to the induction hypothesis,
and shows that ∆

~X ` �
~X : Γ

~X� . This lets us use the introduction rule for op to conclude.

3.4.4 Implementation and restrictions

We now discuss the practical applications of our definition of functorialization and show how
it can be used to reduce proofs, and then focus, using the notations that we introduce, on the
technical condition that lead us define only functorializations with respect to lists of variables of
internal degree 0, as opposed to any variable.

Implementation as a meta-operation. We have implemented in our software for CaTT

the algorithm that we have presented to compute functorializations of general terms. As for the
suspension, we chose to implement it as a meta-operation, outside of the kernel, in such a way that
any computation of a functorialization produces an expression, that is then checked to be a valid
expression in the bare theory CaTT. In particular, our meta operation computes an expression
without bothering to check the condition on the internal degree of the term, as whenever the
condition fails, the expression will simply fail to type check in the kernel. Although this is a
safety guard against our proof that this operation is valid, it again costs a lot computationally
as it forces the system to check terms that are known for meta-theoretical reasons to type check.
A future more application focused implementation of CaTT should then use the functorialization
as a primitive operation to create new terms directly in the kernel, without having to check them
first. This replace the problem of type checking an entire term by simply verifying out condition
that a list of variables is of internal degree 0, which is computationally much lighter.

Notations. In the case of the suspensions, we had chosen to make it completely implicit as
it can be easily guessed by the system by looking at the dimension of the arguments. As a
consequence, we cannot use the same trick for the functorialization, indeed writing for instance

let example (x : *) (a : id x -> id x) (b : id x -> id x)

= comp a b

would then yield a ambiguous expression: There would be no way of telling if it designates the
suspension of comp applied to the arguments a and b which defines the vertical composition
of a and b, or the functorialization of comp applied to the arguments a and b, which is their
horizontal composition. Thus, we keep an explicit syntax to indicate when a term should be
functorialized, and specifically, we chose to write between square brackets [] the places where
a functorialization happens. So in our previous ambiguous example, the way it was written
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without brackets indicates that the operation to perform is a suspension, and for defining the
version where comp is functorialized with respect to both its variables, one would write instead

let example (x : *) (a : id x -> id x) (b : id x -> ud x)

= comp [a] [b]

Similarly, one can define for instance the right whiskering by functorializing comp as follows

let rw (x : *) (y : *) (f : x -> y) (f’ : x -> y) (a : f -> f’)

(z : *) (g : y -> z)

= comp [a] g

but one could also define directly the right whiskering of an identity 2-cell as follows

let id-rw (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

= comp [(id f)] g

In practice, we do not even need to define the right whiskering anymore, as we can simply write
comp [a] g in place of rw a g every time we use a right whiskering, thus saving extra definitions.

Examples of functorializations. We provide now a few examples of definitions that can be
avoided using functorializations. First, note that the left whiskering is obtained by functorializing
the term comp with respect to the second variable, and the horizontal composition is obtained
by functorializing the term comp with respect to both the variables as follows

let lw (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z) (g’ : y -> z) (b : g -> g’)

= comp f [b]

let hcomp (x : *) (y : *) (f : x -> y) (f’ : y -> z) (a : f -> f’)

(z : *) (g : y -> z) (g’ : y -> z) (b : g -> g’)

= comp [a] [b]

We also suggest adding the possibility of performing two functorializations successively, even
though we have not implemented it yet, allowing to define for instance the “right whiskering” of
a 3-cell composed with a 1-cell along a 0-cell

let comp3,1,0 (x : *) (y : *) (f : x -> y)

(f’ : x -> y) (a : f -> f’)

(a’ : f -> f’) (A : a -> a’)

(z : *) (g : y -> z)

= comp [[A]] g

Note that the right whiskering of a 3-cell composed with a 2-cell along 0-cell can also be defined
using two successive functorializations as follows

let comp3,2,0 (x : *) (y : *) (f : x -> y)

(f’ : x -> y) (a : f -> f’)

(a’ : f -> f’) (A : a -> a’)

(z : *) (g : y -> z)

(g’ : y -> z) (b : g -> g’)

= comp [[A]] [b]
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In this case, we functorialize all the inner brackets at once first, then all the outer brackets and
so on. We can also define the composition of two 3-cells along a 0-cell

let comp3,3,0 (x : *) (y : *) (f : x -> y)

(f’ : x -> y) (a : f -> f’)

(a’ : f -> f’) (A : a -> a’)

(z : *) (g : y -> z)

(g’ : y -> z) (b : g -> g’)

(b’ : g -> g’) (B : b -> b’)

= comp [[A]] [[B]]

Combining the suspension and the functorialization, we can also access the right whiskering of a
three cell with a 3-cell along a 1-cell as follows

let comp3,2,1 (x : *) (y : *) (f : x -> y)

(g : x -> y) (a : f -> g)

(a’ : f -> g) (A : a -> a’)

(h : x -> y) (b : g -> h)

= comp [A] b

In this case, the functorialization is computed first, and then our dimension analysis shows how
many times the term has to be suspended. We can access as well the composition of two 3-cells
along a 1-cell

let comp3,3,1 (x : *) (y : *) (f : x -> y)

(g : x -> y) (a : f -> g)

(a’ : f -> g) (A : a -> a’)

(h : x -> y) (b : g -> h)

(b’ : g -> h) (B : b -> b’)

= comp [A] [B]

and finally, using only the suspension, we can define the composition of two 3-cells along a 2-cell

let comp3,3,1 (x : *) (y : *) (f : x -> y)

(g : x -> y) (a : f -> g)

(b : f -> g) (A : a -> b)

(c : f -> g) (B : b -> c)

= comp A B

All these examples show how by combining suspensions and functorializations we can define all
the six possible compositions of a 3-cell with another cell, using only the operation comp.

Our final version of the Eckmann-Hilton morphism. We have formalized the Eckmann-
Hilton morphism, that we have presented in Section 3.1 using functorializations as well as sus-
pensions (but without the possibility to add successive functorializations). This is the third
implementation of this term, with various degrees of automation, as we have also defined it us-
ing the suspension only in Section 3.2. The resulting file3 contains 76 definitions, compared to
the 85 of the file using only the suspension, and the number of lines reduced from 476 to 422,
corresponding to a gain of 11%. The size of the file however dropped from 22k to 20k, which
corresponds also to 10%, indicating that even though it let us avoid some definitions, it did not
contribute a lot to simplify the other definitions, contrarily to the suspension.

3https://github.com/ThiBen/catt/blob/master/examples/eckmann-hilton-versions/eh-susp-no-func.

catt
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Towards a more general functorialization. It is a little frustrating to only define the
functorialization for variables of internal degree 0, as it implies for instance that even though
we can functorialize the composition with respect to both its variables to define the horizontal
composition of 2-cells, we cannot functorialize the coherences associated to the composition like
the associator, to higher coherences like the associator for the horizontal composition of 2-cells.
Indeed, the associator is defined by

coh assoc (x : *) (y : *) (f : x -> y)

(z : *) (g : y -> z)

(w : *) (h : z -> w)

: comp (comp f g) h -> comp f (comp g h)

which is of dimension 2 and the variable of highest dimension are f, g and h, which are of
dimension 1. Hence we still have to define the associator for the horizontal composition manually.
It also does not match our intuition very well. We believe that it is possible to generalize the
functorialization to arbitrary variables, or at least to the variables such that no other variable
in the context depends on them (i.e., the variables that we have chosen to be explicit), but we
now explain why this problem has to be hard. We consider the simplest example of a term with
a variable of internal degree 1, the identity 1-cell.

coh id (x : *) : x -> x

If we give a meaning to the functorialization of this term, we should then be able to write

let id[] (x : *) (y : *) (f : x -> y) = id [f]

and we expect the type of this term to be id x -> id y. But this type is ill-formed, since id x

and id y are not parallel. Instead, the situation can be described as in the following square
diagram

x x

f y

id x

f f

id y

So the only way to define the functorialized version of id is to encode this square diagram in a
globular setting and define the functorialization such that id[] reduces to the term

coh(x:?,y:?,f :x!y),comp (id x) f!comp f (id y)[hx 7! x, y 7! y, f 7! fi]

The situation gets even more complicated if we define the composition of two identities

let compid (x : *) = comp (id x) (id x)

Now functorializing this simple term yields the situation described by the following diagram

x x x

f y y

id x

f f

id x

f

id y id y

and defining this functorialization requires encoding this diagram in a globular setting, and in
particular it requires encoding the composition of two squares in a globular setting. Already
on these two very simple examples, with only argument of dimension 0, the functorialization
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is difficult to define, and it goes increasingly complicated as the dimension and the depth of
the terms increases, requiring to encode harder and harder cubical composition in a globular
setting. We present in Section 6.2 a type theory for working with a cubical variant of the weak
!-categories; we believe that an approach close to the one would be better suited to compute
functorializations.

3.5 The category SPS,1

Our goal is to prove Theorem 44 that we have claimed in Section 2.5. For this we introduce tools
to understand subtle syntactic conditions relating the variables of a term and the variables of its
type. The main idea is to exhibit SPS,1 as a colimit of the form

SPS,1 = colim (SPS,0 ! SPS,1 ! SPS,2 ! . . .)

that reproduces the iterative construction of Θn in the Grothendieck-Maltsiniotis definition of
weak !-categories.

Coherence depth. We introduce the notion of coherence depth of a term, type or substitution
in order to relate our definition of the type theory CaTT with the Grothendieck-Maltsiniotis
definition of weak !-groupoids. Note that this definition is distinct from the one of depth, we
use for syntactic reasoning.

cd(v) = 0 cd(opΓ,A[�]) = max(cd(A) + 1, cd(�))

cd(opΓ,A[�]) = max(cd(A) + 1, cd(�))

cd(?) = 0 cd(t �!
A

u) = max(cd(A), cd(t), cd(u))

cd(hi) = 0 cd(h�, x 7! ti) = max(cd(�), cd(t))

We consider the subcategory SCaTT,n, whose objects are the objects are the same as SCaTT,
but whose morphisms are substitutions whose all terms are of depth at most n, and the full
subcategory SPS,n of SCaTT,n whose objects are the contexts Γ such that Γ `ps holds. To
emphasize this construction, we sometimes denote SCaTT,1 the syntactic category of CaTT. We
then have the following inclusions.

SGSeTT = SCaTT,0 SCaTT,1 SCaTT,2 · · · SCaTT,1

SPS = SPS,0 SPS,1 SPS,2 · · · SPS,1

Gop

The rules (coh) and (coh’) We now want to prove that each of the category SPS,n is equiv-
alent to Θop

n , and to do so, we characterize the term introduction rules as a formalism to add lifts
for some coadmissible pairs of morphisms in the category SPS,n. For the rules (op) and (coh’) this
turns out to be fairly straightforward, however, for the rule (coh), this correspondence is more
involved. Recall that when introducing the theory CaTT, we have defined two versions (coh)

and (coh’) for the same rule

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` cohΓ,A[�] : A[�]
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The difference between these two is that it does not apply under the same conditions: We require
the rule (coh) to apply only under the condition

(Ccoh) A is of the form t �!
B

u with

⇢
Var(t) [Var(B) = Var(Γ)
Var(u) [Var(B) = Var(Γ)

whereas for applying the rule (coh’) we require the condition

(C0
coh) Var(A) = Var(Γ).

We have claimed these two rules to be equivalent, and thus we reason mostly with the rule (coh),
whereas in the implementation, we use the rule (coh’). We now show that these two rules are
indeed equivalent, to ensure that the theory CaTT that we study theoretically is indeed the same
as the one we have implemented.

3.5.1 Equivalence between the rules (coh) and (coh’)

Our goal is now to show that the rules (coh) and (coh’) can be used interchangeably, so that we
can prove Theorem 44 using the rule (coh’). It is immediate from the rule that any application
of (coh) is a particular case of application of (coh’), thus changing the rule (coh) for the
rule (coh’) may only create new terms. Our goal is to show the converse: Any application of the
rule (coh’) can in fact be proved to satisfy (C0

coh). We first remark that a ps-context Γ is never
empty, hence the condition Var(A) = Var(Γ) implies that A cannot be the type ?, so it has to

be of the form t �!
B

u. The rest of this section is dedicated to showing that in this case, we have

both the equalities Var(t) [ Var(B) = Var(Γ) and Var(u) [ Var(B) = Var(Γ), and to achieve
this, we introduce tools that let us analyze precisely how the variables in a term and in its type
are related. Precisely, we show that whenever the type of a term contains two parallel variables,
the term has to contain a path between them, and in the case of locally maximal variables, their
is only one path. Hence whenever the common type of two terms contain two parallel variables
delimiting a path of maximal variables, both of the terms have to contain the same path, which
forces them to contain the same variables.

Path of variables. Given a context Γ in the theory GSeTT and two variables x, y of same
type in Γ, we call a path from x to y in Γ a family of variables of the form f1, . . . , fn such that
we have a family xi, with x0 = x and xn = y, satisfying Γ ` fi : xi�1 ! xi. We give an visual
interpretation of various contexts with two marked variables and a path between them, in the
form of finite globular sets.

• x • y • • •

x

y

⇓ *

⇓

To simplify our vocabulary, we say that (f1, . . . , fn) is a path between x and y in order to say
that it is either a path from x to y or a path from y to x. We also denote a path x  y to
express that it is a path from x to y. By convention, the empty path defines a path x  x for
every variable x, and we say that a term t contains the empty path from x to x if the variable x
appears both in the source and in the target of t.
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Paths in ps-contexts. In a ps-context, if there is a non-empty path (f1, . . . , fn) from x to y,
then we have by definition of / that x / f1 / x1 / f2 / . . . / fn / y, and hence by transitivity, we
necessarily have x / y.

Lemma 94. For any two variables x, y of the same type in a ps-context, with x / y, there exists
a path x y.

Proof. We prove this result by induction over the number of variables f such that x/ f / y. Note
that since x and y have the same type, they cannot be of locally maximal dimension, hence there
exists a variable f whose source is x, and this is necessarily the smallest variable greater than x,
thus it is between x and y.

– If there is only one variable f between x and y, then we necessarily have Γ ` f : x ! y,
and hence (f) defines a path x y.

– If there are n > 1 variables between x and y, then consider the smallest variable f such
that x / f , then we necessarily have Γ ` f : x ! z, with z / y, and there are strictly less
than n variables between z and y. Hence by induction we have a path (f1, . . . , fn) from z
to y, and by appending f , we construct the path (f, f1, . . . , fn) from x to z.

Paths of locally maximal variables in a ps-context. In a ps-context Γ there can be at
most one path x  y if dimx = dim y = dimΓ � 1. Indeed, consider two paths (f0, . . . , fn)
and (g0, . . . , gm), since f0 and g0 are of dimension maximal and share the same source, they are
necessarily equal, and we can rewrite the second path as (f0, g1, . . . , gm). Doing this successively
on all variables of the second path, we show that it necessarily use the variables fi. Moreover,
since the variables all increase along a path, a same path cannot reach twice the variable y, hence
we have m = n, and the two paths are equal. This proves the following result

Lemma 95. In a ps-context Γ, given two variables x and y with the same type and such that
dimx = dim y = dimΓ� 1, there exists exactly one path x y in Γ.

Variables of degree 0 in the type of a term. The variables of degree 0 in the source of
a term are particularly important in our study, as they constraint the variables that the terms
must have. Namely, they must span a path from it inside the term.

Lemma 96. For a context ∆ of the theory GSeTT, consider a term ∆ ` t : A in the theory CaTT,
together with a variable x 2 Var(@�(t)) which is of degree 0 in @�(t), then either x 2 Var(@+(t))
or there exists a variable y 2 Var(@+(t)) together with a path of variables from x to y in ∆.

Proof. We prove this result by induction

– For a variable term ∆ ` z : t �!
A

u. Since ∆ is a context of GSeTT, t and u are necessarily

variables, and we thus have t = x, posing y = u, the variable z defines a path x y.

– For a term of the form ∆ ` op
Γ,t�!

A
u
[�] : t[�] ���!

A[�]
u[�]. Consider a variable x 2 Var(t[�])

of degree 0. Then there exists a variable v in @�(Γ) such that x 2 v[�], hence we have
dim v � dimx and since x is of degree 0 in @�(t) we have, dimx = dim t[�] � dimΓ� 1.
Since v 2 Var(@�(Γ)), this implies dim v = dimΓ� 1. If v is locally maximal in Γ, then we
also have v 2 @+(Γ), in which case Var(v[�]) ⇢ Var(u[�]), and in particular x 2 Var(u[�]).
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If v is not locally maximal in Γ, then there exists a variable w in Var(@+(Γ)) of the same type
as v, and by Lemma 94, there exists a path (f1, . . . , fn) of variables of dimension maximal
in Γ, from v to w. We can now apply the induction to each of the terms f0[�], . . . , fn[�].
There is a variable x1 2 @+(f1[�]), together with a path from x to x1 in f1[�], then there
exists a variable x2 in Var(@+(f2[�])) such that f2[�] contains a path from x1 to x2, and
so on. In the end we get a variable xn 2 Var(w[�]), together with a family of paths. By
concatenating these paths, we create a path from x to xn. Moreover, since w 2 @+(Γ), we
have w 2 Var(u), and hence xn 2 Var(u[�]).

– For a term of the for ∆ ` coh
Γ,t�!

A
u
[�] : t[�] ���!

A[�]
u[�], and consider a variable x of degree 0

in t[�]. This implies that we have a variable v in Var(t) such that x 2 Var(v[�]). Moreover,
since x is of degree 0 in t[�], the term t[�] itself is of degree 0, hence the term cohΓ,t!u[�] is
of degree 1 (since it is necessarily of degree strictly positive) so it is of dimension dimΓ+1,
and x is of degree 1 in it. Thus dimx = dimΓ and v is of dimension maximal in Γ, so
this shows that v /2 Var(A). By the rule (coh’), we necessarily have v 2 Var(u) [ Var(A),
which implies v 2 Var(u), and hence x 2 Var(u[�]). Hence the empty path defines a path
x x in out term.

We have a symmetric result concerning the variables that are of degree 0 in the target of a term.
We do not repeat the proof as it is completely symmetric.

Lemma 97. For a context ∆ of the theory GSeTT, consider a term ∆ ` t : A in the theory
CaTT, together with a variable y 2 Var(@+(t)) of degree 0 in @+(t), then either y 2 Var(@�(t))
or there exists a variable x 2 Var(@�(t)) together with a path of variables from x to y in Γ.

Variables of degree 0. We present a converse to the previous remark: every variable of degree
0 in a term must be part of a path from a variable of its source to a variable of its target.

Lemma 98. For a context ∆ in the theory GSeTT, consider a term ∆ ` t : A of dimension
non-zero, in the theory CaTT, together with a variable x 2 Var(t) of degree 0. Then there exist
two variables x� 2 Var(@�(t)) and x+ 2 Var(@+(t)) such that t contains a path from x� to x+

that goes through x.

Proof. We prove this result by induction on the depth of the term.

– For a variable term ∆ ` x : t ! u, since the context ∆ is derivable in the theory GSeTT,
necessarily t and u are variables, and we chose x� = t, x+ = u.

– For a term of the form ∆ ` op
�,t�!

A
u
[�] : t[�] ���!

A[�]
u[�], consider a variable x of degree 0 in

this term, then there exists v such that x 2 Var(v[�]), and since dim v � dimx = dimΓ, v
is necessarily of dimension maximal in Γ. Hence there exists two variables v� 2 Var(@�(Γ))
and v+ 2 Var(@+(Γ)) such that there is a path from v� to v+ which goes through v in Γ.
Applying the induction on the term v[�], we get two variables x�

0 and x+
0 such that v[�]

contains the path from x�
0 to x+

0 that goes through x. Then applying the lemma 97 to
all the variables before v in the path from v� to v+ and the lemma 96 to all the variables
after v in the same path, we get families of paths

x�  x�
n�1, x

�
n�1  x�

n�2, . . . , x
�
1  x�

0

x+  x+
n�1, x

+
n�1  x+

n�2, . . . , x
+
1  x+

0
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concatenating all these paths with the path x�
0  x+

0 , we get a path x�  x+ containing
x. Moreover, Since v� 2 @�(Γ), we have v� 2 Var(t), and hence x� 2 Var(t[�]), and
similarly v+ 2 @+(Γ) hence x+ 2 Var(u[�]).

– For a term of the form ∆ ` cohΓ,A[�], then it is of degree strictly positive, and do not
contain any variable of degree 0, thus the result is vacuously true.

Uniqueness. We now prove the key lemma to show that the rules (coh) and (coh’) are
equivalent. The structure of the proof is a little involved, since it requires an induction on
the depth of the terms, whose induction case uses a lemma which depends on the induction
hypothesis and that is itself proved by induction on the dimension. In order to present it in a
clearer way, we present these as two separate lemmas that we prove by mutual induction.

Lemma 99. Consider a term ∆ ` t : A in a ps-context Γ, and two variables x, y 2 Var(t) of
degree 0 and of the same type. Then x = y.

Proof. We prove this result by mutual induction with Lemma 100. This part is by induction on
the depth of the term.

– For a variable term Γ ` x : A, the only variable is can ever contain is x itself.

– For a term of the form ∆ ` opΓ,t!u[�] : t[�] ! u[�], we necessarily have two variables
v, w 2 Var(Γ) with x 2 Var(v[�]) and y 2 Var(w[�]). Lemma 100 then applies by mutual
induction and shows that v and w necessarily have the same type. Since x and y are
of degree 0, necessarily v and w are of dimension maximal in Γ. Since they are also in
the same type, this implies that v = w. We thus have exhibited the term v[�] such that
x, y 2 Var(v[�]), so by induction, this proves x = y.

– A term ∆ ` cohΓ,A[�] : A[�] is of degree strictly positive, hence do not contain variables of
degree 0, so the result is vacuously true.

Lemma 100. Given a substitution ∆ ` � : Γ between two ps-contexts Γ and ∆, and two variables
v, w 2 Var(Γ). Suppose we have x 2 Var(v[�]) and y 2 Var(w[�]) of degree 0 and of the same
type, then v and w are of the same type.

Proof. We prove this lemma by induction on the dimension of the variables v, w Note that the
condition that x and y are of the same type and both of degree 0 imply that dim v[�] = dimw[�],
and hence dim v = dimw.

– If v, w are of dimension 0, then they are necessarily of the same type ?.

– If v, w are of dimension n + 1, then by applying Lemma 98 we get a path x�  x+ in
v[�] which goes through x with x� 2 Var(@�(v)[�]) and x+ 2 Var(@+(v)[�]), and a path
y�  y+ in w[�] which goes through y with y� 2 Var(@�(w)[�]) and y+ 2 Var(@+(w)[�])
We then have the following inequalities, with x�, x+, y� and y+ all sharing the same type
that we denote A.

x� E @�(x) / @+(x) E x+

= =

y� E @�(y) / @+(y) E y+
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Note that for all variable @+(v) / v+ of the same type as @+(v), we necessarily have by
Lemma 94 a path @+(v)  v+ in Γ, hence Lemma 96 gives a variable z 2 Var(v+[�])
of type A and such that x+ E z. Moreover, Lemma 99 by mutual induction shows that,
it is the only variable type A in v+. Consider now the variable @�(w): since @�(w)[�]
contains the variable y� of type A and of degree 0 and @+(v)[�] contains the variable x+

of type A and of degree 0, we have by induction that @�(w) and @+(v) have the same
type. Since y� 2 Var(@�(w)[�]) and y� / x+, we necessarily have @�(w) / @+(v), hence
@�(w) E @�(v). A symmetric argument shows that @�(v) E @�(w), hence @�(v) = @�(w).
Moreover, the same argument on the targets shows also that @+(v) = @+(w), and hence v
and w necessarily have the same type.

Paths in terms. The terms that are derivable in a ps-context satisfy a very strong property
regarding the variables they must contain. This condition can be expressed using the notion of
path of variables.

Lemma 101. Consider a term ∆ ` t : A derivable in a ps-context ∆, together with two variables
x, y 2 Var(A) that are of the same type in ∆, then there exists a path f1, . . . , fn between x and
y in Var(t) [Var(A).

Proof. We prove this result by induction on the terms. In order to ensure that the induction is
well-formed, we keep track of both the depth and the dimension of the terms we manipulate.

– For a term of depth 0, it is necessarily a variable term ∆ ` f : A, and we proceed by
induction on its dimension, note that the term cannot be of dimension 0, or its type
would not contain variables. If it is of dimension 1, then necessarily A = z �!

?
w with

{z, w} = {x, y}, and {f} defines a path form z to w. For a term of dimension at least 2,
since ∆ is derivable in GSeTT, A necessarily contains only variables, so it is of the form

z �!
B

w. If {z, w} = {x, y}, then f is a path from z to w. Otherwise, the dimension shows

that we necessarily have {x, y} \ {z, x} = ;, and hence x, y 2 Var(B). Then by induction
Var(B) [ z contains a path from x to y or from y to x, hence so does Var(A).

– For a term of the form ∆ ` op
Γ,t�!

A
u
[�] : t[�] ���!

A[�]
u[�] or ∆ ` coh

Γ,t�!
A

u
[�] : t[�] ���!

A[�]
u[�],

consider two variables x, y 2 Var(u[�]) [ Var(t[�]) [ Var(A[�]). If x 2 Var(A[�]), then
dimx < dim t, and hence dim y < dim t. Hence if y appears in t[�] or in u[�], it is of degree
strictly positive, and also appears in A[�]. In this case, we have x, y 2 Var(A[�]), hence by
induction t[�] contains a path between x and y. So we suppose that x /2 Var(A[�]), which
implies that dimx = dim t. In this case since we also have dim y = dim t, we also have
y /2 Var(A[�]), hence x, y 2 Var(t[�]) [ Var(u[�]). Moreover, by Lemma 99, both of these
variables have to be in different sets. We assume that x 2 Var(t[�]) and y 2 Var(u[�]), then
we have v, w 2 Var(Γ) such that x 2 Var(v[�]) and y 2 Var(w[�]). Moreover, x and y are of
degree 0 in v[�] and w[�], which implies by Lemma 100 that v and w are of the same type.
Lemma 94 then applies to give a path (g1, . . . , gn) from v to w in Γ. Applying Lemma 96
successively to g1[�], . . . , gn[�] gives a family of paths x x1, x1  x2, . . . , xn�1  xn with
xn 2 Var(w[�]), and by concatenation, we get a path x xn in Var(�). By Lemma 99, we
necessarily have xn = y, so we have indeed defined a path x y.
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The equivalence. Our careful analysis of the interaction of the variables of degree 0 in a term
with the existence of a total order in the ps-contexts lets us prove the equivalence between the
two versions of the side condition that we have given for the rule (coh).

Proposition 102. Given a type Γ ` A in a ps-context satisfying (C0
coh), then it also satisfies

(Ccoh).

Proof. Consider a variable x 2 Var(t)[Var(u), which is not in Var(A) (if no such variable exists,
the result is trivial). This implies in particular that x is of dimension maximal in Γ, and of degree
0 in t or u. Suppose that x 2 Var(t), then Lemma 98 shows that there exists a path x�  x+

in t which goes through x, with x� 2 @�(t) and x+ 2 @+(t). Since t and u have the same type
A, we also have x� 2 @�(u) an x+ 2 @+(u), and hence by Lemma 101, u must contain a path
x�  x+, but the condition on dimension imply that this path is of maximal dimension, hence
it is unique. But since we already have a path x�  x+ in t which goes through x, the path
in u has to be the same, and hence it also goes through u. Hence x 2 Var(u). If we suppose
x 2 Var(u), a symmetric argument shows that x 2 Var(t).

Corollary 103. The rules (coh) and (coh’) are equivalent.

Proof. Although this might seem immediate from our previous proposition, there is a subtlety
to take into account. We have proved that, in the theory using the rule (coh), every type Γ ` A
satisfying (C0

coh) also satisfies (Ccoh), but we have not proved that it is the case in the theory using
the rule (coh’). In order to solve this, we replace successively the rule (coh) by the rule (coh’)

for each depth of term, and prove the result by induction.

– For a term of depth 0, the rules (coh) and (coh’) are equivalent, hence we can freely
replace (coh) by (coh’) to derive terms of depth 1.

– Suppose that the rules (coh) and (coh’) are equivalent for all terms of depth at most d,
and consider a type Γ ` A of depth d derivable in the theory using the rule (coh’) and
satisfying (C0

coh), then by induction hypothesis, the type Γ ` A is also derivable in the
theory using the rule (coh), and since it satisfies (C0

coh) in this theory, by Proposition 102,
it also satisfies (Ccoh), hence the rules (coh) and (coh’) are also equivalent for all terms of
depth d+ 1.

Since these rules are equivalent, we use either one of them, depending on our purpose. For the
implementation, we prefer the rule (coh’), which gives a computationally lighter side condition
to check, whereas for reasoning we tend to prefer (coh) since it provides better guarantees on
the terms.

3.5.2 The category SPS,1 and the cat-coherator

We now prove the equivalence between the subcategory SPS,1 of the syntactic category and
the opposite of the cat-coherator Θ1. We proceed in an iterative way, showing that there is
an equivalence in each step, and for this, we start by characterizing the coadmissible pairs of
substitutions in the category SPS,n. Using Corollary 103, we chose to reason with the rule (coh),
as it fits better with the definition of coadmissible pair.
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Coadmissible pairs substitutions. We work in the category SPS,n, for n 2 N[{1}, which is
a coglobular theory, and we consider a morphism ⇠ : ∆ ! Dn in this category. Such a morphism
is a substitution to a disk context, so by Corollary 42, it can be written as ⇠ = �t for a term t.
Using the notations that we introduced in Section 2.2 for defining the disk and sphere contexts,
the term t in ∆ can be recovered as t = x2n[⇠] and the type of t in ∆ can be computed to be
An[⇠]. Then note that An contains all the variables of Dn, except for the variable x2n, hence
Var(x2n) [ {An} = Var(Dn). This equality shows

Var(⇠) = Var(x2n[⇠]) [Var(An[⇠])

= Var(t) [Var(A)

Lemma 104. A term ∆ ` t : A defines a coalgebraic morphism �t in SPS,n if and only if
Var(t) [Var(A) = Var(∆)

Proof. First suppose that Var(t) [ Var(A) = Var(∆) and consider a factorization of the form
�t = ⇠0 � �, for a globular substitution ∆ ` �Γ. Since Var(⇠) = Var(∆), we also necessarily
have Var(�) = Var(∆). Since � is a globular substitution, Proposition 40 shows that � is an
identity, hence �t is coalgebraic. Conversely, suppose that there exists a variable f of dimension
locally maximal in ∆ such that f does not appear in Var(t) [Var(A). Then there is necessarily
at least one among the source and the target of f in ∆ is not in Var(t) [ Var(A). Indeed,
by contraposition: if both the source and the target of f appear in Var(t) [ Var(A), then by
Lemma 101, Var(t) [ Var(A) contains a path between these, and since f is of dimension locally
maximal, this path is necessarily (f). Suppose that the target @+(f) of f does not appear in
Var(t) [ Var(A), then consider the context Γ obtained by removing the variables f and @+(f)
from ∆: This context is again a ps-context (this can be checked by induction on the structure
of ps-contexts and is very similar to checking the correctness of the source and target of a ps-
context). There is a substitution ∆ ` ⇡2 : Γ obtained by associating to each variable in Γ the
same variable seen in ∆, and since Γ and ∆ are not isomorphic, this map is globular but is not
an identity. Moreover, the judgment Γ ` t : A is necessarily derivable (in fact it is exactly the
same derivation than the derivation of ∆ ` t : A since neither t nor A uses the variables f and
@+(f)) and we denote �0

t the substitution Γ ` �0
t : D

n that classifies this term seen in the context
Γ. We then have the equality t = t[⇡2] since ⇡2 acts trivially on the variables, which provides
the non trivial factorization

∆ Dn

Γ

�t

⇡2 �0
t

This shows that in this condition the substitution �t is not coalgebraic, and the same proof also
holds if the target of f appears in Var(t) [ Var(A), it which case its source cannot appear. In
general, given any variable x of ∆ which does not appear in Var(t) [Var(A), there is a variable
f of dimension maximal in ∆ whose type contains x, thus f cannot appear in Var(t) [ Var(A),
and the previous example shows that �t is not coalgebraic.

Lemma 105. The pairs of coadmissible morphisms in Γ are classified by the types Γ ` A
satisfying either (Cop) or (Ccoh). For such a type Γ ` A, the terms Γ ` t : A classify exactly the
lifts of the corresponding coadmissible pair.

Proof. Note that the types Γ ` A of dimension nonzero of the form t �!
B

u classify the pairs of

terms (t, u) of same type B, which are exactly the pairs of parallel maps (�t,�u). Moreover,
these pair is coadmissible whenever:
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– Either both �t and �u are coalgebraic, which by Lemma 104 translates to the conditions
Var(t) [ Var(B) = Var(Γ) and Var(u) [ Var(B) = Var(Γ): This is exactly the condition
(Ccoh).

– Or �t factors through the source inclusion of Γ as a coalgebraic morphism and �u factors
through the target as a coalgebraic morphism. Again by Lemma 104, these conditions
translate into @�(Γ) ` t : B with Var(t) [ Var(B) = Var(@�(Γ)) and @+(Γ) ` u : B with
Var(u) [Var(B) = Var(@+(Γ)): This is the condition (Cop).

A lift for such a coadmissible is a map ⇠ : Γ ! DdimA+1, such that we have both @�(⇠) = �t

and @+(⇠) = �u. In the category SCaTT,n we can encode this data into a substitution towards
the sphere context

Γ

SdimA DdimA

DdimA SdimA�1

�A

�t

�u
@�

@+
y

A lift thus becomes equivalent to a morphism ⇠ : Γ ! DdimA+1 in SCaTT,n which makes the
following triangle commute

Γ DdimA+1

SdimA

⇠

�A
⇡

By Corollary 42, these are classified by the terms Γ ` t : A in the theory CaTTn

Tower of definition. We define the set En to be the set of all types Γ ` t �!
A

u of coherence

depth n in a ps-context Γ, satisfying (Cop) or (Ccoh). With our previous discussion, the family
En can be defined inductively as the set of all pair of coadmissible maps in SPS,n that do not
belong to any En0 for n < n0.

Lemma 106. The inclusion SPS,n ! SPS,n+1 exhibits SPS,n+1 as the universal coglobular ex-
tension of SPS,n which has a lift for all pair of morphisms in En.

Proof. As we have already proved, this map commutes with the coglobular structure, and both
these categories have all the globular products, hence it defines a coglobular extension. Moreover
consider a coadmissible pair (f, g) : Γ ! Dn in En, then by Lemma 105, corresponds to a type
Γ ` A in the ps-context Γ, which satisfies (Cop) or (Ccoh) and which is of depth n. Hence we
can derive a term t by Γ ` opΓ,A[idΓ] : A if A satisfies (Cop), or Γ ` cohΓ,A[idΓ] : A if A satisfies
(Ccoh), which is of depth n + 1. This term defines a map �t in the category SPS,n+1, which by
Lemma 105 is a lift for the coadmissible pair (f, g). Hence SPS,n+1 is a coglobular extension
which contains a lift for all pairs in En. We now show that this extension is universal: consider
another extension F : SPS,n ! C that defines a lift for all the pairs in En, we show that there
exists a unique F̃ that preserves the chosen lifts which makes the following diagram commute

SPS,n SPS,n+1

C
F

F̃
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Indeed, the map F̃ is already defined on all objects of SPS,n+1, and all maps of coherence depth
less than n, to coincide with F , so it suffices that there is a unique extension to the maps of
coherence depth n+ 1. Since all the object in SPS,n+1 are globular products, it suffices to show
it for the maps of the form Γ ! Dn. We can thus reformulate by saying that it suffices to show
that there is a unique map F̃ on terms, with the condition that F̃ (t[�]) = F̃ t�F̃�. We proceed by
induction on the depth, noticing that a term of coherence depth n+1 cannot be a variable, hence
we have already defined a unique value for F̃ on terms of depth 0, by our previous condition,
and thus the induction is already initialized

– For a term ∆ ` opΓ,A[�] : A[�] of depth d + 1, the value of F is uniquely determined by

F̃ (opΓ,A[�]) = F̃ (opΓ,A[idΓ])F̃�, and since � is of depth d, by induction F̃ (�) is defined,

and F̃ (opΓ,A[idΓ]) is uniquely defined by the condition of preserving the lifts for the pairs
in En

– Similarly for a term ∆ ` cohΓ,A[�] : A[�] of depth d + 1, the value of F is uniquely
determined by F̃ (opΓ,A[�]) = F̃ (opΓ,A[idΓ])F̃�, and since � is of depth d, by induction

F̃ (�) is defined, and F̃ (cohΓ,A[idΓ]) is uniquely defined by the condition of preserving the
lifts for the pairs in En

This proves that there exists a unique F̃ satisfying the condition, and hence SPS,n+1 is the
universal coglobular extension obtained by adding a lift for all arrows in En to SPS,n

This relates very strongly the categories SPS,n to the categories Θn and lets us prove the following
theorem.

Theorem 44. There is an equivalence of categories SPS,1 ' Θop
1

Proof. By construction SPS,1 is obtained as the colimit of the inclusions of categories

Gop ! SPS,0 ! SPS,1 ! · · · ! SPS,n ! · · · ! SPS,1 = colimn SPS,n

so it suffices to prove that Sps,n is equivalent to Θop
n , which we do by induction.

– We have already proved the SPS,0 is equivalent to Θ
op
0 : this is Proposition 38.

– Suppose that SPS,k is equivalent to Θ
op
k for all k until n. Note that Lemma 106 shows that

SPS,n+1 is the universal coglobular extension that adds a lift for each pair in the set En.
Moreover, the set Fn coincide with the set En and by definition, Θn+1 is the exact dual.
Hence SPS,n+1 and Θ

op
n+1 satisfy the same universal property, hence they are equivalent.
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Chapter 4

A type theoretic framework for

monads with arities

4.1 A framework for globular type theories

The type theory CaTT that we have presented is obtained from the type theory GSeTT by adding
some term constructors, and in this sense, one can think about it as a globular type theory. We
now propose a general framework for introducing and studying other globular type theories, of
which CaTT is a particular case. We later on generalize this even further to encompass type
theories with various shapes, and not necessarily just globular, but the process is similar, and
building up this framework in the globular case helps gaining intuition about the general case.
Additionally, we provide a fully formalized account for globular type theories implemented in
Agda [12].

4.1.1 Presentation of the framework

Our framework for globular type theories is meant to encompass a class of type theories, in a
cut-free style, whose type constructors are the same as those of GSeTT and CaTT. We thus
assume a cut-free theory with type constructors ? and ! satisfying the same introduction as
CaTT.

Indexes for term constructors. Such a theory is completely defined by its term constructors
and term introduction rules. In order to keep track of these term constructors, we suppose that
they are indexed by a set J . We denote for every j 2 J , Tj the corresponding term constructor.
To handle the arities in a uniform way, we chose to use the same trick as in the case of CaTT,
and represent a family of terms in a given configuration as a substitution to a specific globular
context. Thus we define a term to be either a variable, of an expression of the form Ti[�] where
� is a substitution.

Introduction rules. Each term constructor has to come with a specific introduction rule, as
explained earlier one of the data we need to express the rules for constructors, are a specific
globular contexts that encode the arities and their dependency of each term constructor. We
thus assume that for each j 2 J we have a given globular context Γj . Moreover, produces a
term, which needs to be of a given type, we thus assume that for each j 2 J , we have a specified
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type Aj . With this data, we can express the term construction rule for each term constructor as

Γi ` Ai ∆ ` � : Γi

∆ ` Ti[�] : Ai[�]
for i 2 J

It is important in order for the theory to be well-founded to require that Γi is always a globular
context, hence the theory GSeTT needs to be defined and studied separately, so that globular
type theories can rely on it. Additionally, we require that whenever Γi ` Ai holds, we have
dimAi � dimΓi � 1: It is a technical condition to ensure that the type checking is decidable
in all these theories. Intuitively it means that any information about a dimension can only be
encoded into higher dimensions.

GSeTT and CaTT. By definition, choosing JGSeTT = ; exhibits GSeTT as a specific case of a
globular type theory. We show how CaTT is also obtained as a globular type theory. We now
chose JCaTT to be the set of pairs (Γ, A), where Γ `ps is a ps-context, and A is a type satisfying
either (Cop) or (Ccoh). We define the context associated to the pair (Γ, A) to be Γ, and the
type associated to be A, and we recover exactly the theory CaTT in this way. In Section 5.2 we
introduce another type theory MCaTT which has the same indexing set J as the theory CaTT,
but different introduction rules, since we chose the specified globular contexts and types to be
different from those of CaTT.

Restriction. Our framework for globular type theory is more restricted than it may appear:
it does not allow for instance, rules of the form

Γ ` A Γ, x : A ` u : B

Γ ` T (u) : C

Such rules are common in type theory in general, but are not required for our purposes and
restricting ourselves to the framework we introduce allow for studying both in-depth and with
enough generality the theories that we study.

Formalization. In order to study this general framework for globular type theories along with
their properties, we have formalized it in Agda [12], using de Bruijn levels for variables. This
construction is found in the directory Globular-TT/ of the project and follows the same structure
as the one of the folder GSeTT that we have presented in Section 2.2. The folder CaTT is dedicated
to the work in progress of formalizing the type theory CaTT as a particular case of a globular
type theory (which is slightly more difficult in a constructive and proof relevant setup, that what
we have presented here). We define in particular the syntax of a globular type theory in the
file Syntax.agda as follows, and define the action of substitutions on types and terms as well as
their composition

module Globular-TT.Syntax {l} (index : Set l) where

data Pre-Ty : Set (lsuc l)

data Pre-Tm : Set (lsuc l)

data Pre-Sub : Set (lsuc l)

data Pre-Ctx : Set (lsuc l)

data Pre-Ty where

⇤ : Pre-Ty
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) : Pre-Ty ! Pre-Tm ! Pre-Tm ! Pre-Ty

data Pre-Tm where

Var : N ! Pre-Tm

Tm-constructor : 8 (i : index) ! Pre-Sub ! Pre-Tm

data Pre-Sub where

<> : Pre-Sub

<_,_7!_> : Pre-Sub ! N ! Pre-Tm ! Pre-Sub

data Pre-Ctx where

? : Pre-Ctx

_·_#_ : Pre-Ctx ! N ! Pre-Ty ! Pre-Ctx

_[_]Pre-Ty : Pre-Ty ! Pre-Sub ! Pre-Ty

_[_]Pre-Tm : Pre-Tm ! Pre-Sub ! Pre-Tm

_�_ : Pre-Sub ! Pre-Sub ! Pre-Sub

We then define the judgments as inductive inductive types whose generators are the inference
rules of the theory, they are indexed over typed contexts in the theory GSeTT, which we include
as an argument of the module.

module Globular-TT.Rules {l} (index : Set l)

(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

where

open import Globular-TT.Syntax index

{- Notational shortcuts : the context corresponding to an index -}

Ci : index ! Pre-Ctx

Ci i = GPre-Ctx (fst (fst (rule i)))

Ti : index ! Pre-Ty

Ti i = snd (rule i)

data _`C : Pre-Ctx ! Set (lsuc l)

data _`T_ : Pre-Ctx ! Pre-Ty ! Set (lsuc l)

data _`t_#_ : Pre-Ctx ! Pre-Tm ! Pre-Ty ! Set (lsuc l)

data _`S_>_ : Pre-Ctx ! Pre-Sub ! Pre-Ctx ! Set (lsuc l)

data _`C where

ec : ? `C
cc : 8 {� A} ! � `C ! � `T A ! (� · (C-length �) # A) `C

data _`T_ where

ob : 8 {�} ! � `C ! � `T ⇤
ar : 8 {� A t u} ! � `T A ! � `t t # A ! � `t u # A ! � `T ) A t u

data _`t_#_ where

var : 8 {� x A} ! � `C ! x # A 2 � ! � `t (Var x) # A

tm : 8 {� �} ! (i : index)
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! Ci i `T Ti i

! � `S � > Ci i

! � `t Tm-constructor i � # (Ti i [ � ]Pre-Ty)

data _`S_>_ where

es : 8 {�} ! � `C ! � `S <> > ?

sc : 8 {� � � x A t} ! � `S � > �

! (� · x # A) `C
! (� `t t # (A [ � ]Pre-Ty))

! � `S < � , x 7! t > > (� · x # A)

4.1.2 Properties

Most of the properties that we have stated or proved for the theory CaTT are in fact non-specific,
and the vast majority of results can be verified for any globular type theory, the exact same way
we have verified them for CaTT. We present here all of these results, along with, when we have
one it, its formalization.

Syntactic properties. We can first check by mutual induction that all the properties of
Proposition 2 hold in any globular type theory. Our formalization shows all these properties in
the file Rules.agda. Note that in this framework, term constructors depend mutually inductively
on substitution, which makes some of these properties harder to prove - If we are not careful,
some of the inductions become ill-formed. For this reason, some of the properties stated here are
proved in the file CwF-Structure.agda, although the corresponding properties for GSeTT are in
the file Rules.agda. The statements corresponding to these properties are similar to the ones
we have presented for the theory GSeTT in Section 2.2.

Structure of category with families. We have defined all the structure of a cut-full cat-
egory as we have presented in Section 1.1, and proved that all the defining equations of a
cut-full type theory hold for globular type theories. The corresponding proofs are in the file
CwF-Structure.agda. The fact that term constructors depend on substitution also makes this
fact a little bit harder to prove, and most of the results are mutually inductive together. This
makes the proof very hard to check by hand, and illustrates the use of having a proof-assistant
as Agda to manipulate type theories in our case.

Decidability of type checking. The existence of a derivation for any judgment in a globular
type theory is decidable, and we have proved this by induction. For this proof, we follow the
structure described in Proposition 43, and it requires a subtle argument keeping track both of the
depth and the dimension of the terms to ensure that the induction is well-formed. In particular,
it is this property that motivates us to assume that dimAi � dimΓi � 1. We have formalized
this argument in the file Dec-Type-Checking.agda.

module Globular-TT.Dec-Type-Checking {l} (index : Set l)

(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

(assumption : Globular-TT.Rules.well-founded index rule)

(eqdec-index : eqdec index)

where

dec-G`T : 8 (� : GSeTT.Typed-Syntax.Ctx) n A
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! dim A  n

! dec (GPre-Ctx (fst �) `T A)

dec-G`t : 8 (� : GSeTT.Typed-Syntax.Ctx) n d A t

! dim A  n ! depth t  d

! dec (GPre-Ctx (fst �) `t t # A)

dec-G`S : 8 (� � : GSeTT.Typed-Syntax.Ctx) n d �

! dimC (GPre-Ctx (fst �))  n

! depthS �  d

! dec (GPre-Ctx (fst �) `S � > GPre-Ctx (fst �))

dec-`C : 8 � ! dec (� `C)
dec-`T : 8 � A ! dec (� `T A)

dec-`t : 8 � A t ! dec (� `t t # A)

dec-`S:G : 8 � (� : GSeTT.Typed-Syntax.Ctx) �

! dec (� `S � > GPre-Ctx (fst �))

dec-`S : 8 � � � ! dec (� `S � > �)

The statements separate in three groups, corresponding to the three steps of the proof that
we have sketch for CaTT (Proposition 43). We first prove the decidability for derivability of
judgments in a context that is in the theory GSeTT. We then prove the derivability for the
regular judgments, restricting the substitution to those whose target is in the theory GSeTT. We
then can prove it for every substitution. The first part of this proof is a bit subtle, as it requires
keeping track both of the dimension and the depth of the objects we manipulate, and relies on
the assumption (which is denoted by the argument assumption of the module) that for all j 2 J ,
we have the inequality dimΓj  dimAj + 1, we have formalized this by the type well-founded
defined as follows

well-founded : Set (lsuc l)

well-founded = 8 (i : index) ! Ci i `T Ti i ! dimC (Ci i)  dim (Ti i)

We also rely on the fact that our indexing set for the term constructors have decidable equality.

Uniqueness of derivation. Every judgment is derivable in at most one way in a globular type
theory: This is a straightforward mutual induction, and can be seen by the fact that the syntactic
expression of a context, type, term or substitution completely encodes its possible derivation.
We have proved this property in the file Uniqueness-Derivations.agda of our formalization.
The formulation is similar to the one presented in Section 2.2

module Globular-TT.Uniqueness-Derivations {l} (index : Set l)

(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

where

is-prop-`C : 8 � ! is-prop (� `C)
is-prop-`T : 8 � A ! is-prop (� `T A)

is-prop-`t : 8 � A t ! is-prop (� `t t # A)

is-prop-`S : 8 � � � ! is-prop (� `S � > �)

Familial representability of Ty. The sphere contexts Sn and the disk contexts Dn that
we have defined in GSeTT are also valid contexts in any globular type theory, and they satisfy
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the same universal properties: The substitution towards the context Sn classify the types of
dimension n. As a consequence, the terms of type A in a context Γ are classified by the triangles

Dn

Γ Sn�1

⇡�t

�A

This can be proved in the exact same way we have proved it in the case of GSeTT (Theorem 22
and Corollary 23) or of CaTT (Theorem 41 and Corollary 42), we have formalized a reformulation
without diagrams of this properties for all globular type theories in the file Disks.agda. Again
the formalization is very close to the case of GSeTT presented in Section 2.2.

S : N ! Pre-Ctx

D : N ! Pre-Ctx

n) : N ! Pre-Ty

S` : 8 n ! S n `C
D` : 8 n ! D n `C
S`) : 8 n ! S n `T n) n

Ty-n : 8 {�} ! ⌃ (N ⇥ Pre-Sub) (� {(n , �) ! � `S � > S n})

! ⌃ Pre-Ty (� A ! (� `T A))

Ty-classifier : 8 � ! is-equiv (Ty-n {�})

Characterization of the syntactic category. Given a globular type theory GTT, we define
its coherator to be the category ΘGTT obtained as the opposite of the full subcategory of SGTT

whose objects are the contexts Γj , for j 2 J . Since all the contexts Γi are globular contexts,
they can be written as canonical limits of disks in the category SGSeTT, and since the embedding
SGSeTT ! SGTT induces a coglobular structure on SGTT for which it is a morphism of coglobular
structured categories with families, it preserves these limits. Hence every context Γi is canonically
a limit of disks contexts in SGTT and in ΘGTT since it is a full subcategory. We call these limits
the arity limits of the theory.

Theorem 107. The inclusion ΘGTT ! SGTT defines a free completion of ΘGTT preserving the
arity limits, or equivalently, ΘGTT is a dense and full subcategory of SGTT

exhibiting all objects of SGTT as canonical limits of objects of ΘGTT. Although we have not
formalized this result, it can be proved by following the exact same construction we have presented
for CaTT in Section 2.5. In fact our proof of this result for CaTT never uses the specific term
constructors or the notion of ps-contexts, but only the fact that they are of a specific form.

Models of a globular type theory. Following once again our proof for CaTT presented in
Section 2.6, we have a complete characterization of the models of any globular theory

Theorem 108. The models of the theory GTT are equivalent to the presheaves ΘGTT ! Set

preserving the arity limits and the canonical limits.

This construction gives a new understanding of our study of CaTT: Most of the properties are
in reality properties of a globular type theory, and only our computation of the arity limits as
globular products and our characterization of the coherator as the cat-coherator Θ1 are specific
to CaTT.
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4.1.3 Non-free globular type theories

In our examples, all the theory we consider are free, that is, they do not have congruence for
terms. One may also add congruence for terms, but it may break the properties listed above. In
particular decidability of type checking amounts to the decidability of the word problem. Since
this problem is known to be undecidable in general, it has to be treated individually for each
system of congruence. Since this is somewhat tangential to the appplications we are interested
in, where all the type theories are free, we do not study these here.

4.2 Free category with families over a direct category

We now generalize the framework of globular type theories to other kinds of dependent type
theories. This construction is based on ideas due to Leena Subramaniam and LeFanu Lums-
daine [46], and adapt it slightly in order to give a more syntactic presentation. The intuition
is to replace the category G by another category thus changing the globes by other shapes. We
restrict our study to the case where we replace G by another direct category I, the intuition being
that I encodes the dependencies of type constructors, and requiring it to be direct eliminates
any circular dependency.

Definition 109. A direct category is a category C in which every object c is equipped with a
dimension dim c 2 N, and such that for all morphism f : c ! d in C, f is either an identity of
dim c < dim d

We also assume that I is finitely branching, i.e., for any object i of I, the presheaf I(_, i) is
finite, to encode that any type constructor may only depend on a finite amount of data.

4.2.1 Type theory associated to a direct category

We construct a type theory TI whose only terms are variable to the direct category I. To present
such a type theory, it suffices to define its type constructors along with the introduction rules.
To each object i of I, we associate a type constructor Ci, whose arity are the element of the
presheaf I(_, i): If the presheaf I(_, i) has n elements, and t1, . . . , tn are n term expressions in
the theory, then Ci(t1, . . . , tn) defines a type expression. In particular, we chose an enumeration
of all the elements of the presheaves I(_, i), for all i, such that the level of the target of the
element is always increasing. These type constructors are subject to the following introduction
rules, that are well defined by induction on the level of the object i

– For an object i of level 0, the constructor Ci has the introduction rule

Γ `

Γ ` Ci

(Ci-intro)

– For an object i of level n, writing the given enumeration of the elements of the presheaf
I(_, i) as f1 : j1 ! i, . . . , fn : jn ! i (with j1, . . . , jn ordered by increasing levels) the
constructor Ci has for introduction rule

Γ ` t1 : A1 . . . Γ ` tn : An

Γ ` Ci(t1, . . . , tn)
(Ci-intro)

where the type Ak is constructed with the type constructor Ck, and we require also the
following condition : for all functions g : jk ! jl such that gfk = fl such that g is the
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m-th element in the chosen enumeration of the presheaf I(_, jl), then the m-th argument
of the constructor Cl in the type Al is the term tk. Note that since necessarily the level
of jk is strictly less that the level of jl (as witnessed by the existence of the map g), this
implies that the premise Γ ` tk : Ak comes before the premise Γ ` tl : Al in the rule, thus
proving that the type Al is well-formed.

The type theory GSeTT. The theory GSeTT is a particular case of this definition, taking as
index category the category G. Indeed, following this definition, there is a type ? along with a
type !n for each n in N�1, with the following introduction rules

Γ `

Γ ` ?

Γ ` t : ? Γ ` u : ?

Γ ` t !1 u

Γ ` t0 : ? Γ ` u0 : ? Γ ` t1 : t0 !1 u0 Γ ` u1 : t0 !1 u0

Γ ` t1 !2 u1

...

The rule for the constructor !2 can then reformulated: Since the derivability of Γ ` t1 : t0 !1 u0

implies the derivability of Γ ` t0 : ? and of Γ ` u0 : ?, these premises are superfluous, and the
rule rewrites simply as

Γ ` t1 : t0 !1 u0 Γ ` u1 : t0 !1 u0

Γ ` t1 !2 u1

Performing the same kind of simplification for all the other rules yields the theory that we have
proved to be equivalent to GSeTT in Section 2.2

4.2.2 The syntactic category STI

We study the properties that the syntactic category STI
enjoys. Since TI is a generalization

of GSeTT, the properties are very similar to the ones of the theory GSeTT, and we follow a
presentation that is parallel to the one of Section 2.2.

Limits in STI
. Since all the terms in TI are variables, all the maps in STI

are display maps,
and hence STI

has all pullbacks. Given that, as a category with families it also has a terminal
object, it follows that STI

has all finite limits, this is similar to Lemma 26.

Familial representability of Ty. We construct two families of contexts that we denote Y(i)
and @Y(i), and that we call respectively the representable context and the boundary context
associated to an object i of I. These contexts play the role respectively of the disks and sphere
context of the theory GSeTT. We define them by induction on the dimension of i, proving along
the way that they satisfy the following property

In any context Γ, the types definable in Γ built from the constructor Ci are
naturally isomorphic to the substitutions in STI

(Γ, @Y(i)), the terms in Γ

whose type is built from the constructor Ci are naturally isomorphic to the
substitutions in STI

(Γ,Y(i)), and their type corresponds to the substitution
obtained by composing with ⇡.
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The contexts @Y(i) and Y(i) are built by induction on the level of i.

– For i of dimension 0, we chose @Y(i) = ? to be the empty context, and Y(i) to be the
context (x : Ci).

– For i of dimension n > 0, we consider the introduction rule (Ci-intro). This rule provides
with a family of terms Γ ` tk : Ak, which by the above correspondence defines a family
of substitutions STI

(Γ,Y(jk)). This family of substitution defines a cone over a certain
diagram. We chose the context @Y(i) to be the limit of this diagram. The property for
the type is then tautological. Moreover, we chose Y(i) to be the context (@Y(i), A), where
A is the type in @Y(i) defined by the identity substitution id@ Y(i) 2 STI

(@Y(i), @Y(i)).
The condition for the terms is again tautologically respected.

Note that the context @Y(i) being defined as a limit, and we can express its diagram as

@Y(i) = lim(I # i ! I
Y
! STI

) = lim
j!i

Y(j)

it naturally comes equipped with a morphism af : @Y(i) ! Y(jk) for each morphism f : jk ! i
in the category I.

Proposition 110. The functor Ty : STi
! Set is familially represented by the family of objects

@Y(i).

Proof. This is the property proved by induction, in the definition of @Y(i). Note however that
the same context may be the classifier of different type constructors. This is the case for instance
if there are two object i0 and i00 of dimension 0 in I, in this case, the types in Γ constructed
with Ci0 and the types in Γ constructed with Ci00

are both classified by a substitution STI
(Γ,?)

(i.e., there is only one of them). But the unique substitution Γ ` hi : ? constructs the type Ci0

when viewed as a classifying the constructor Ci0 , and the type Ci00
when viewed as classifying

the constructor Ci00

To each type Γ ` A constructed by Ci, we associate the substitution �A : Γ ! Y(i), the terms
Γ ` t : A are then classified by the commutative triangles

Γ Y(i)

@Y(i)

�t

�A
⇡

From here onward, the study of this category generalizes effortlessly from the study of SGSeTT.
This is because we have studied most properties of SGSeTT via categorical arguments, that do
not rely on the exact syntax of the theory, and that are again applicable to our case.

Yoneda embedding. The assignment Y : i ! Y(i) defines a contravariant functor I ! STI
.

Indeed, given a morphism f : i ! j in the category I, one has the substitution af : @Y(j) ! Y(i)
obtained canonically and we define Y(f) to be the composite of af with the display map ⇡

Y(f) : Y(j)
⇡
! @Y(j)

af
! Y(i)

Note that this definition is not valid in the case of the identity morphism idi : i ! i, in which
case we define Y(idi). to be the identity substitution of Y(i). We now check that this assignment
is functorial, indeed, consider two maps f : i ! j and g : j ! k that are not identities, then we
have Y(gf) = agf⇡. Note that ⇡ag defines a map @Y(k) ! @Y(j), hence it commutes with the
legs of the cone defining @Y(j), which in particular contain the map af , so we have agf = af⇡ag,
and hence Y(gf) = Y(f)Y(g). Hence Y defines a contravariant functor I ! STI

.
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Nerve functor. We introduce the a nerve functor similar ⌫ : STI
! bIop to the one we have

studied for GSeTT, by posing ⌫(Γ)i = STI
(Γ,Y(i)). In fact, since I has finite branchings, the

finite presheaves on I are exactly those which have a finite number of elements, we denote Fin(I)
the category of finite presheaves over I. The elements of ⌫(Γ) are exactly the terms in Γ, which
are the variables in Γ, so there are only finitely many of them. Hence ⌫ corestricts as a functor
STI

! Fin(I)op.

Lemma 111. For all context ∆, and all n 2 N, there are two bijections

STI
(∆,Y(i)) ' bI(⌫(Y(i)), ⌫(∆)) and STI

(∆, @Y(i)) ' bI(⌫(@Y(i)), ⌫(∆))

Proof. First note that we have ⌫(Y(i)) = Y(i), hence for any context ∆, we have, by the Yoneda
lemma

bI(⌫(Y(i)), ⌫(∆)) ' ⌫(∆)i = STI
(∆,Y(i))

Moreover, since the context @Y(i) is defined as the limit @Y(i) = limj!i Y(jk). Hence by
continuity of the nerve and hom functors, we have

bI(⌫(@Y(i)), ⌫(∆)) ' bI(colimj!i(⌫(Y(j))), ⌫(∆))

' colimi!j
bI(⌫(Y(j)), ⌫(∆))

' colimi!j STI
(∆,Y(j))

' STI
(∆, lim

j!i
Y(j))

' STI
(∆, @Y(i))

Lemma 112. The inclusion functor Y : I ! STI
is codense, or equivalently the associated nerve

⌫ is fully faithful.

Proof. Consider two contexts ∆ and Γ, we prove by induction on the context Γ the bijection

STI
(∆,Γ) ' bI(⌫(Γ), ⌫(∆))

If Γ is is the empty context ? which is terminal, since no term is derivable in ? , ⌫(?) is the
empty globular set, which is initial, this proves the bijection. Suppose Γ = (Γ0, x : A) with
the bijection holding for Γ0, then by construction Γ is obtained as the following pullback, whose
image by ⌫ yields the following pushout in bI

Γ Y(i)

Γ0 @Y(i)

y

�A

⌫(@Y(i)) ⌫(Γ0)

Y(n) ⌫(Γ)
p

These two diagrams yield, for any context ∆, the following pullbacks in Set

STI
(∆,Γ) STI

(∆,Y(i))

STI
(∆,Γ0) STI

(∆, @Y(i))

y

bI(⌫(Γ), ⌫(∆)) bI(⌫(∆)n)

bI(⌫(Γ0), ⌫(∆)) bI(⌫(Sn�1), ⌫(∆))

y

By induction and Lemma 111, STI
(∆,Γ) and bI(⌫(Γ), ⌫(∆)) are thus pullbacks over the same

span, hence they are isomorphic.
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STI
and finite presheaves. We now characterize the syntactic category STI

in the same
way we have characterized the category SGSeTT, that is as the opposite of the category of finite
presheaves over the category that encodes the dependencies. Note that since TI has only variables
as terms, all the maps of STI

are display maps, and hence STI
has all finite limits, then the functor

Y : Iop ! STI
extends in an essentially unique functor F : Fin(I)op ! STI

preserving the finite
limits.

Theorem 113. The functors ⌫ and F define an equivalence of categories between STI
and

Fin(I)op

Proof. Since Lemma 112 proves that ⌫ is fully faithful, it suffices to show that ⌫ � F ' id. The
functors that we have defined fit into the following diagram

Fin(I)op SGSeTT

Iop

F

⌫

Y
Y

Note that ⌫F Y = ⌫ Y = Y, and since both ⌫ and F preserve finite limits, so does ⌫F . By
essentially uniqueness in the free completion by finite limits, this proves that ⌫F ' id.

This allows us to understand this construction of the theory TI as the syntactic theory describing
a structure of contextual category on a category that is equivalent to Fin(I)op. Since the notion
of contextual category is not invariant by equivalence of categories, there may well not exist a
structure of contextual category on Fin(I)op itself, but this is as close as one can get to such a
structure.

Models of STI
. We can now use our characterization of the syntactic category STI

to compute
the models of the theory TI , similarly to what we have presented for GSeTT.

Theorem 114. The category of models of STI
is equivalent to the presheaf category bI.

Proof. By Lemma 10, the models of TI are equivalent to the functors STI
! Set that pre-

serve finite limits. Under the equivalence of Theorem 113 these are equivalent to the functors
FinGSet

op ! Set that preserve finite limits. Since FinGSet
op is the free completion of Gop

by finite limits, these are equivalent to the functors Gop ! Set, which are exactly the globular
sets.

This terminates our study of the type theory TI and shows that in all aspects it plays the exact
same role than the theory GSeTT in the case of a base category G.

4.2.3 Examples

This construction gives a syntactic theory associated to the presheaf category over any direct
category I. There are a lot of examples of such presheaves that appear naturally in various areas
in mathematics, so we present only few of them that are of particular interest to us, aside from
our motivating example of the type theory GSeTT.
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Sets. When the direct category is the terminal category 1 (the one-point category), then the
associated type theory T1 is the theory obtained by adding one type constructor ?, together with
the introduction rule

Γ `

Γ ` ?

The syntactic category associated to this theory is equivalent to FinSet
op, and the models are

equivalent to the category Set. This is a toy example, in which we retrieve naturally the usual
one-sorted algebraic theories (Lawvere theories).

Product of sets. When the direct category k is the discrete category on k objects, then the
associated type theory Tk is the type theory obtained by adding k type constructors ?1, . . . , ?k,
subject to all the same introduction rule

Γ `

Γ ` ?i
(1i k)

The syntactic category is equivalent to (FinSetk)op and the models are equivalent to Setk. This
is again a toy example as the types do not include any dependency, but it allows for retrieving
the notion of multi-sorted Lawvere theory.

Graphs. If the direct category is the category G0 freely generated by the graph

0 1
�

⌧

Then the associated theory TG0 is the type theory with two type constructors ? and ! subject
to the following introduction rules

Γ `

Γ ` ?

Γ ` t : ? Γ ` u : ?

Γ ` t ! u

The syntactic category associated to this theory is equivalent to the opposite of the category of
finite graphs, and its models are equivalent to the category of graphs.

Semi-simplicial sets. We denote ∆+ the semi-simplicial category, whose objects are the nat-
ural numbers and whose morphisms are generated by

0 1 2 · · ·
�0

�1

�0

�2

�1

�0
�1

�2
�3

satisfying the relations, for all i < j,

�j � �i = �i � �j�1

It is a direct finitely branching category, whose presheaves are called semi-simplicial sets. We
can describe the theory T∆+

, using the same sort of simplification that we have presented for
GSeTT. We denote 4i its type constructor for all i 2 N, in such a way that 4i is of arity i+ 1,
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for i 6= 0, and 40 is of arity 0. We give a description of the first few introduction rules of the
theory T∆+

.
Γ `

Γ ` 40

Γ ` t : 40 Γ ` u : 40

Γ ` 41(t, u)

Γ ` t : 41(x, y) Γ ` u : 41(x, z) Γ ` v : 41(y, z)

Γ ` 42(t, u, v)
...

We do not provide a full description of this theory here, but this framework shows that it defines
a type theory whose syntactic category is the opposite of the finite semi-simplicial sets, and
whose models are the semi-simplicial sets.

4.3 I-type theories

We generalize our framework for globular type theories to I type theories, by changing the basic
theory GSeTT for the theory TI . This yields our final framework, which may encompass different
theories based on different shapes. Although it is important from a theoretical standpoint, as
it establishes a connection with existing notions of algebraic theories, our main focus relies on
our application of this framework, through an example of a type theory for cubical weak !-
categories that we give in Section 6.2. As in the case of globular theory, we start by adding term
constructors.

Indexes for term constructors. As for globular type theories, I-type theories are cut-free
type theories, whose type constructors and type introduction are always the same: They are the
ones given by the type theory TI . In order to keep track of the term constructors, we start by
assuming an indexing set J , and a term constructor Tj for every j 2 J , and we define a term to
by either a variable or of the form Tj [�], where j 2 J and � is a substitution.

Introduction rules We encode the introduction rules as a pair of a context Γj in TI and a
type Aj for each j 2 J , and we assume an introduction rule of the form

Γj ` Aj ∆ ` � : Γj

∆ ` Tj [�] : Aj [�]
for j 2 J

We also need to assume (for the type checking to be decidable), that whenever Γj ` Aj holds,
we have that dimAj � dimΓj . The dimension of a type is defined using the dimension in the
direct category I: If a type A is constructed by Ci, then we pose dimA = dim i. We denote TI,J

the I-type theory obtained this way.

4.3.1 Properties

All the properties that we have proved for globular type theories still hold when changing the
constructors. Here we assume all the following properties, as their proof is no different than
the proof for globular type theories. Our formalization still focuses on globular type theories,
and does not include generic I-type theories for practical reasons: It lets us avoid manipulating
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the category I. However, there is no fundamental obstacle in doing so, and the proofs can be
transferred, to any I-type theory.

Syntax and cut-full type theory. All the properties listed in Proposition 2 still hold for any
I-type theory, and an I-type theory encompasses the structure of a cut-full type theory satisfying
all its defining equations. Hence the syntactic category of a cut-full type theory is a category
with families.

Decidability of type checking. The existence of a derivation for any judgment in a I-
type theory is decidable. This we can again prove by induction with a subtlety to prove the
termination, by manipulating both the dimension and the depth. Note that the dimension of a
type is induced by the dimension of the objects in the direct category I.

Uniqueness of derivation. Every judgment is derivable in at most one way in a I-type theory

Familial representability of Ty. The border contexts @Y(i) and the representable contexts
Y(i) that we have defined in TI are also valid contexts in any I-type theory, and they satisfy
the same universal properties: The substitution towards the context @Y(i) classify the types
constructed by Ci. As a consequence, the terms of type A in a context Γ are classified by the
triangles

Y(i)

Γ @Y i

⇡
�t

�A

In fact the proof of this fact given for the theory TI does not depend in any way on the term
constructors, and applies exactly to the theory TI,J as well.

Characterization of the syntactic category. Denote ΘI,J the opposite of the full subcat-
egory STI,J

whose objects are the contexts Γj for j 2 J , we call this category the coherator of
the theory. Then all the objects of ΘI,J are canonically limits of the objects Y(i), we call these
limits the arity limits.

Theorem 115. The inclusion ΘI,J ! STI,J
defines a free completion of ΘI,J preserving the

arity limits, or equivalently, ΘI,J is a dense and full subcategory of SI,J

As the consequence, every object of STI,J
is a canonical limit of objects of ΘI,J .

Models of a globular type theory. This gives a full characterization of the models of the
theory as follows.

Theorem 116. The models of the theory TI,J are equivalent to the presheaves ΘTI,J
! Set

preserving the arity limits and the canonical limits.

These results that we assume are non-trivial and important results, however, they can be proved
following the exact same method that we have introduced in the case of CaTT, and for globular
type theories.

Non-free I-type theories As before, we have introduced only free theory. We do not consider
non-free ones, that is theory where we explicitly add congruences between terms, as they might
break the properties we have shown and our applications of interest are free.
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4.4 I-contextual categories

We now introduce a construction due to Leena Subramaniam and LeFanu Lumsdaine [46] that
sheds a new light on our construction.

4.4.1 I-contextual categories

Following the construction due to Leena Subramaniam and LeFanu Lumsdaine, we introduce
the notion of an I-contextual category. Intuitively, it is the syntactic category of a theory that
has only the types as described in I. In order to express this notion we introduce the contextual
completion of a category.

Contextual completion. Consider a category C, we call the contextual completion of C a
contextual category D equipped with a functor F : C ! D which is universal. Explicitly,
it satisfies the following universal property: For every contextual category D0 together with a
functor G : C ! D0 there is a unique factorization G = G0 �F , with G0 a morphism of contextual
categories.

D D0

C

G0

F
G

In the theory CaTT, the inclusion functor SPS,1 ! SCaTT is an example of such a completion.

I-contextual categories. A I-contextual category is a contextual category C equipped with
a morphism of contextual categories F : STI

! C which factors as

STI
CI C

F1

F

F2

with F1 an identity on objects functor and F2 a fully faithful functor which exhibits C as the
contextual completion of CI .

I-type theories. We claim that the notion of I-type theories that we have presented gives an
important example of I-contextual categories, and that in particular

Conjecture 117. The syntactic category of an I-type theory is an I-contextual category.

Note though that the I-type theories and the I-contextual categories are not equivalent: two
different type theories may have the same syntactic category; in this case, the type theories are
often said to be Morita equivalence. So a type theory is more of a presentation of a contextual
category than an actual contextual category. Moreover, since we have only presented free I-type
theories, our framework may not be able to present any monad with arities. We leave for future
work a general description of I-type theory that includes rewriting rules while ensuring that the
expected properties of a type theory are still satisfied, and we expect such a framework to present
a wider range of I-contextual categories.
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4.4.2 Monads with arities

We introduce the notion of monad with arities, that has been primarily studied by Berger, Mellies
and Weber [19]. This notion, along with the theorem 116 due to Leena Subramaniam and LeFanu
Lumsdaine [46] gives an interpretation of our framework for I-categories in terms of categorical
logic.

Definition. Consider a category C equipped with a subcategory A, denote ⌫A : C ! [Aop,Set]
the nerve functor associated to the inclusion of A in C. For every object X of C, we define its
canonical A-cocone, to be the cocone over the forgetful functor (A # X) ! C. Then a monad T
in C is said to have arities A if T � ⌫A sends the canonical A-cocones to colimitng cocones. This
definition is very reminiscent of our study of the syntactic category SCaTT, and more generally
of the category STI,J

. Our aim is now to give a sketch on how they are related.

The nerve theorem. In the case where the subcategory A is a dense subcategory of C, we
have the following nerve theorem. We refer the reader to [19] for a proof

Theorem 118. Consider a monad T with arities A in a category C, with A dense, then the
following holds

– The free T -algebras on the objects of A define a dense subcategory ΘT of the category CT

of algebras of T

– A presheaf P : Θop
T ! Set is in the essential image of ⌫Θ if and only if P � j : Aop ! Set

is in the essential image of ⌫A, where j : A ! ΘT is the free algebra functor.

The first part of this theorem shows that ⌫Θ is fully faithful, and hence it allows us to embed CT

into the category of presheaves cΘT . The second statement gives a complete characterization of
CT in this category. This proves in particular that the algebras for the monad T are equivalent
to the presheaves over ΘT whose restriction to A is in ⌫A.

4.4.3 Equivalence

In an ongoing work, Leena Subramaniam and LeFanu Lumsdaine have proved that the notion of
I-contextual categories coincide exactly with the existing notion of monads with arities. As of
the time of writing this document, this work has not yet been published, and thus the proof is
not available, but we refer the reader to the support of a presentation given by one of the authors
for reference [46], in which the following theorem is claimed.

Theorem 119. The category of I-contextual categories is equivalent to the category of monads
with arities on the category bI.

Even though this is still unpublished work, we only rely on this result to build up our intuition
and establish a satisfying interpretation of our construction in the world of categorical logic.
None of our result do depend on this theorem, and the reader should not depend on the proof of
this result to tackle our work. However, this is very important theorem in that it gives a really
powerful interpretation for our type theory CaTT, and unifies it strongly with the other type
theories we introduce in Section 5.2 and Section 6.2.
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The monad with arities associated to CaTT. We can illustrate this equivalence in the
case of the theory CaTT. Recall our discussion in Section 2.5, in which we have exhibited a fully
faithful functor F : Sop

CaTT ! Mod(SCaTT) that we believe to characterize the syntactic category
of CaTT as the opposite of the full subcategory of the category of Mod(SCaTT) whose objects are
the !-category freely generated by finite polygraphs. Composing this functor with the inclusion
I : SGSeTT ! SCaTT yields the functor FI : opSGSeTT ! Mod(SCaTT). Our intuition is that this
functor sends an object of Sop

GSeTT, that is a finite globular set onto the weak !-category freely
generated by it. By precomposing a model of CaTT with the functor ID : Gop ! SCaTT gives
a globular set, that we call its underlying globular set, so we can make this functor act on the
previous functor, to construct

(ID)⇤FI : Sop
GSeTT ! bG

Intuitively, given a finite globular set X, this functor gives the underlying globular set of the
free weak !-category on X. We can now generalize this functor to all the globular sets using a
Kan extension: There is a canonical functor ◆ : Sop

GSeTT ! bG: since Sop
GSeTT is equivalent to the

opposite of the finite globular set, this is the inclusion of the finite globular sets in the globular
sets. We can then consider, since bG is cocomplete, the (pointwise) left Kan extension

bG bG

SGSeTT

Lan◆((ID)⇤FI)

◆
(ID)⇤FI

We denote TCaTT the functor Lan◆((ID)⇤FI), intuitively, this functor produces, given a globular
set X, the underlying globular set of the free weak !-categories generated by X. The universal
property of the left Kan extension shows that this functor is a monad. We conjecture the following
result, which we believe is the key point of Theorem 119.

Conjecture 120. The monad Lan◆((ID)⇤FI) is a monad with arities the category Sop
PS,0.

We believe that research in this direction is a good approach to understand the connection
between CaTT and the definition of weak !-category due to Batanin [11] and Leinster [48],
and that in particular this monad entertains a deep connection with the initial globular operad
with contraction defined by Leinster [48]. This program would be complementary to the result
proved by Ara [4] stating that the Grothendieck-Maltsiniotis definition of weak !-categories, is
equivalent to the Batanin-Leinster definition.

The monad with arities associated to any I-type theory. This construction that we have
presented is not specific to CaTT, and we could have performed it following the same process
for any I-type theory. We conjecture that this construction associates a monad with arities to
any I-type theory. We start by defining the functor F : Sop

TI,J
! Mod(STI,J

) by imposing for
every context Γ, FΓ = STI,J

(Γ,_). By composing this functor with the inclusion STI
! STI,J

and pulling it back along the functor I ! STI,J
, this defines a functor T op

I ! bI. By computing

the left Kan extension of this functor along the inclusion T op
I ! bI given by the inclusion of the

finite presheaves in the presheaves, this defines an endofunctor T on the category bI, which by
the universal property of the Kan extension can be shown to be a monad. We claim that this is
a monad with arities, whose arities are exactly given by the opposite of arity limits of the theory
in the category Sop

TI
:

Conjecture 121. The monad T defined this way has as arities the opposite of the full subcategory
of STI

whose objects are the contexts Γj for all j 2 J
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I-contextual categories. The theorem claims an equivalence between the monads with arities
and the I-contextual categories, we have only illustrated one side of the equivalence in the special
case of the I-contextual category is given by an I-type theory. We do not illustrate the generic
case of an I-contextual category nor do we show do we explain the other side of the equivalence,
as we are mostly interested in I-type theories, which provide an actual syntax to work with.

4.4.4 Interpretation of our work

Conjecture 117, together with Theorem 119 gives a new interpretation of I-type theory. As we
have explained with Conjecture 117, we can think of an I-type theory as a presentation of certain
I-contextual category, even though not all the I-contextual category may be presented in this
way. Theorem 119 then shows that one can think of an I-type theory as a presentation of a
certain monad with arities on the category bI, even though not all monads with arities may be
presented in such a way.

Nerve theorem. We can also interpret Theorem 116 which characterizes the models of an
I-type theory as an analogous to the nerve theorem (Theorem 118) in the light of the correspon-
dence given by Theorem 119. We illustrate this in the case of the theory CaTT, but it is similar
for a general I-type theory. In the case of CaTT, Theorem 66 shows that the models of CaTT are
equivalent to the presheaves over the category Θ1 that preserves the globular sums. We have
showed that Θop

1 is equivalent to SPS,1, which through the functor F : Sop
CaTT ! Mod(SCaTT)

can be seen as a full subcategory of the category of weak !-categories. Our intuition is that
it is the full subcategory whose objects the weak !-categories freely generated by the pasting
schemes. This intuition motivates the following conjecture

Conjecture 122. We conjecture that the category SPS,1 is equivalent to the opposite of the

category ΘTCaTT
, where TCaTT is the monad with arities on bG associated to CaTT as above.

Following this intuition in the general case, we also state the following conjecture

Conjecture 123. We conjecture that the category ThetaT , where T is the monad with arities
associated to a theory TI,J as above is equivalent to the opposite of the full subcategory of STI,J

whose objects are the contexts Γi for all j 2 J .

The nerve Theorem 118, together with Conjectures 120 and 122 in the case of CaTT, or together
with Conjectures 121 and 123 in the case of an I-type theory show the following

Corollary 124. The models of the category CaTT are equivalent to the algebras of the monad
TCaTT, the models of the theory TI,J are equivalent to the algebras of the monad T , where T is

the monad with arities on bI associated to TI,J by Theorem 119.

We have presented various conjectures in this section as it contains the later developments of
the thesis. However, we believe most of these conjectures to be fairly accessible with the tools
we have developed and that developing this approach further is fruitful from a theoretical point
of view.
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Chapter 5

Monoidal weak !-categories

5.1 Monoidal and multiply monoidal weak !-categories

We now present different variations of the type theory CaTT in order to work with coherent
monoidal categories, and we start with a brief overview of the notion of monoidal weak !-category.
In category theory, one usually defines a monoidal category to be a category C equipped with a
bifunctor _⌦_ : C ⇥ C ! C together with natural transformations called left and right unitors,
and associator, satisfying various coherence axioms that can be chosen more or less strict [53].
Such an approach generalizes poorly to higher categories, since the number of coherence axioms
one has to introduce becomes very quickly too big to handle, and is even infinite for any notion
of !-category.

5.1.1 Delooping of a monoidal category

We present a key observation for understanding monoidal structure on higher categories, start-
ing from decategorified structures, and building up towards higher structures by categorifying
successively the result. This is folklore result in category theory.

Monoids. The definition of category is closely related to that of a monoid

Definition 125. A monoid is a set equipped with a binary product which is associative and
unital

For any category C together with an object c, the axiom of category ensure that the set
C(c, c) is equipped with a composition, defining an associative and unital product, hence it is a
monoid. A category with a single object thus amounts exactly to a monoid: The hom-set of the
unique object. Conversely, a monoid M defines uniquely a category with a single object that we
call the delooping of the monoid, denoted BM . Denoting • the unique object of BM , we have
BM(•, •) = M , with the composition in BM(•, •) is given by the product in M .

Proposition 126. The delooping is a functor between the category of monoids and the category
of categories with a single object. It defines an isomorphism of categories.

Proof. By definition the monoid BM(•, •) is equal to M , so it suffices to check that for any
category with a single object C, the category B(C(•, •)) is isomorphic to C. The functor sending
the unique object of B(C(•, •)) onto the unique object of C and defined as the identity on C(•, •)
realizes this isomorphism.
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Monoidal categories. Categorifying our previous remark yields a more interesting result: The
monoidal categories are equivalent to the 2-categories with a single object. This statement holds
for various strictness for the axioms of monoidal category and 2-categories, and we illustrate it
in the weakest possible case, so our monoidal categories are here implicitly lax. Explicitly, this
equivalence is induced by a functor B from the category of monoidal categories to the category
of bicategories called the delooping. For a monoidal category C we describe the bicategory BC
as follows

– BC has a single object •.

– The morphisms in BC from • to • are the objects of the category C.

– The 2-cells in BC between two morphisms f, g are the morphisms in C between the objects
f and g.

– The composition of morphisms f · g in BC is given by the monoidal product f ⌦ g in the
objects of C.

– The vertical composition on the 2 cells ↵ ⇤1 � in BC is given by the composition of the
morphisms ↵ · � in C.

– The horizontal composition ↵ ⇤0 � in BC is given by functoriality of the monoidal product
in C with respect to both its variables as ↵⌦ �.

As illustrated by this example, the delooping induces a change in the dimension, sending every
n-cell to an n+ 1-cells, and the axioms of monoidal category translates exactly to the fact that
this data assembles into a bicategory, thus the axioms for monoidal categories are subsumed by
the ones of bicategories.

Later categorifications. These results can again be categorified, and gives an equivalence
between the monoidal bicategories and the tricategories with a single object, and then an equiv-
alence between monoidal categories and quadricategories, and so on. We quickly reach a point
where no definition of monoidal weak n-categories has been proposed, except by taking this
equivalence as primitive and declaring a monoidal weak n-category to be a weak n+ 1 category
with a single object.

Monoidal weak !-categories. We can now define the notion of monoidal weak !-categories
that we describe: They are the weak !-categories with a single object. With our definition of
!-categories as models of CaTT, this gives the following characterization: For a model F in
Mod(SCaTT), its set of 0-cells is the image of the 0-th dimensional disk F (D0), and we thus
denote Mod

•
(SCaTT) the full subcategory of Mod(SCaTT) whose objects are exactly the models

F of CaTT, such that F (D0) = {•}. The category Mod
•
(SCaTT) is thus the category of monoidal

weak !-categories that we are trying to describe. In what follows, we reserve the term monoidal
weak !-categories for the model of the new type theory MCaTT that we introduce, and call the
objects of Mod

•
(SCaTT) the models of CaTT with a single object before proving that they are

equivalent. After proving the equivalence we use the same term for these notions interchangeably.

5.1.2 k-tuply monoidal categories

The construction we have presented here can be iterated, and instead of considering !-categories
with a single object, one can consider a monoidal category with a single object, which corresponds
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to the intuition of adding a second monoidal product to a monoidal category. These are known
under the name of twice monoidal categories, and an Eckmann-Hilton argument shows that
corresponds to adding a braiding a⌦b ! b⌦a to the monoidal product. Iterating this construction
we get k-tuply monoidal categories as (k � 1)-tuply monoidal categories with a single object,
and they correspond to categories with a monoidal product which is more and more coherently
symmetric. The structure that we get as a limit by iterating this construction infinitely many
times is called symmetric monoidal categories. These notions are tangential to our work, so we
briefly mention them and refer the reader to [9] where they are introduced.

5.2 Type theory for monoidal weak !-category

We now focus on monoidal categories and define a theory that we call MCaTT. The idea here
is to adapt the type theory for weak !-categories, in order to enforce the constraint that our
categories should always have exactly one 0-cell. To this end, we simulate the existence of “a
virtual object of dimension �1” in our monoidal categories. There is no formal way in the theory
for considering this object, but all the rules act as if it existed. For presenting this theory, we
follow the work we have presented in [14] but with a slight modification: We first introduce a
globular type theory, that we prove to be correct, and then present a second theory, which is the
one presented in the aforementioned article, and that we prove to be equivalent to our globular
type theory.

The subcategory of context with one objects. The first candidate for describing the weak
!-categories with only one objects is the full subcategory of SCaTT whose objects are the context
that define only one object, we denote it SCaTT,•. It is not clear however that there is a structure
of categories with families on this category, nor how to find a type theory the present it. The
type theory that we introduce now can be understood as a solution to these questions.

5.2.1 The theory MCaTT

We present a globular type theory whose models are monoidal weak !-categories as an application
of our framework from globular type theories. We start by considering our index set JMCaTT to
be the same as for CaTT, i.e., it is the set of pairs (Γ, A), where Γ is a ps-context, and A is a
type from CaTT satisfying (Cop) or (Ccoh). The difference with the type theory CaTT relies in
the way we associate a context and a type to such a pair.

The desuspension operation. We start by describing an operation in the theory GSeTT

only, which, given a non-empty context Γ, associates a context
?yΓ. We call this the desuspension

of Γ and it is defined together with the corresponding operation on types of GSeTT, by induction

?y? = ?
?y(Γ, x : A) =

⇢ ?yΓ if A = ??yΓ, x :
?yA otherwise

?y? = ? x �!
A

y =

8
><
>:

? if A = ?

x ��!?yA
y otherwise

Proposition 127. The desuspension respects the judgments in GSeTT, more exactly:

– For any context Γ ` the judgment
?yΓ ` is derivable
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– For any type Γ ` A the judgment
?yΓ `

?yA is derivable

– For any term Γ ` x : A of dimension non-zero, the judgment
?yΓ ` x :

?yA is derivable.

Proof. We prove this result by mutual induction

Induction case for contexts:

– For the context ? `, the rule (ec) gives a derivation of
?y?

– For a context of the form (Γ, x : ?), we have
?y(Γ, x : ?) =

?yΓ and the induction case for
contexts gives directly that

?y(Γ, x : A) `

– For a context of the form (Γ, x : A), and A distinct from ?, by induction case on types we
have

?yΓ `
?yA, and applying the rule (ce) yields a derivation for

?yΓ, x :
?yA `.

Induction for types:

– For the type of the form Γ ` ?, we necessarily have Γ `, and by the induction case for
contexts, it implies

?yΓ `, hence we can apply the rule (?-intro) to get a derivation for?yΓ ` ?.

– For a type of the form Γ ` t �!
?

u, we necessarily have Γ ` by Proposition 2, and the

rule (!-into) applies to give a derivation of
?yΓ `

?y(t �!
?

u).

– For a type of the form Γ ` t �!
A

u with A 6= ?, by the induction cases for types and

variables, we have derivations for the judgments
?yΓ `,

?yΓ ` t :
?yA and

?yΓ ` u :
?yA. This

lets us apply the rule (!-intro) in order to get a derivation for the judgment
?yΓ ` t ��!?yA

u

Induction for variables: For any variable Γ ` x : A, of dimension non-zero, A is distinct from
?, necessarily we have Γ `, which by induction for contexts implies

?yΓ `, and (x : A) 2 Γ,
which implies (x :

?yA) 2
?yΓ. Thus applying the rule (var) lets us construct a derivation for?yΓ ` x :

?yA.

Interpretation of the desuspension. Intuitively, the desuspension operation on ps-contexts
corresponds to a shift in dimensions, by decreasing all the dimensions by 1, and forgetting the
information that lies in the dimension 0. Visually considering a ps-context with the following
combinatorial structure

performing the desuspension yields the following structure, that describes a context that is not
a ps-context anymore. In order to visualize, we have kept the dimension 0 as dashed in the
diagram, even though there is no such information in the syntax of the theory.
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The general desuspension operation. In the theory we are presenting, we denote mop and
mcoh the families of term constructors corresponding to op and coh, in such a way that the
terms of the theory are either variables or of the form mopΓ,A[�] with Γ a ps-context, A a type
satisfying (Cop) and � a substitution, or mcohΓ,A[�] with Γ a ps-context, A a type satisfying
(Ccoh) and � a substitution. The conditions (Cop) and (Ccoh) were introduced in Section 2.4, we
recall the definition here

(Cop) A is of the form t �!
B

u with

⇢
Var(t) [Var(B) = Var(@�(Γ))
Var(u) [Var(B) = Var(@+(Γ))

(Ccoh)
Var(A) = Var(Γ) or equivalently

A is of the form t �!
B

u with

⇢
Var(t) [Var(B) = Var(Γ)
Var(u) [Var(B) = Var(Γ)

We generalize the desuspension operation to well-defined contexts, types, terms and substitutions
of the theory CaTT, with the following definition

For the context ? ` For the context (Γ, x : A) `
?y? = ?

?y(Γ, x : A) =

⇢ ?yΓ if A = ??yΓ, x :
?yA otherwise

For the type Γ ` ? For the type Γ ` t �!
A

u

?y? = ?
?y(t �!

A
u) =

8
><
>:

? if A = ?

?yt ��!?yA
?yu otherwise

For a variable Γ ` x : A For the term ∆ ` opΓ,A[�] : A[�]?yx = x
?yopΓ,A[�] = mopΓ,A[

?y�]

For the term ∆ ` cohΓ,A[�] : A[�]?ycohΓ,A[�] = mcohΓ,A[
?y�]

For ∆ ` hi : ? For ∆ ` h�, x 7! ti : (Γ, x : A)
?yhi = hi

?yh�, x 7! ti =

⇢ ?y� if A = ?

h
?y�, x 7!

?yti otherwise

The theory MCaTT. We consider the type theory MCaTT obtained by associating to all
couple (Γ, A) in JCaTT the context

?yΓ and the type
?yA. Note that if (Γ, A) is a couple in JCaTT,

then A cannot be the type ?. The introduction rules of the theory are thus the following

Γ `ps Γ ` A ∆ ` � :
?yΓ

∆ ` mopΓ,A : (
?yA)[�]

whenever Γ ` A satisfies (Cop)

Γ `ps Γ ` A ∆ ` � :
?yΓ

∆ ` mcohΓ,A : (
?yA)[�]

whenever Γ ` A satisfies (Ccoh). Note that in order to strictly respect the framework of globular
type theory, we should replace the premise Γ ` A by

?yΓ `
?yA. We justify with Proposition 129
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that these two premises are equivalent. Importantly, the premise Γ ` A is a judgment of CaTT,
even though we use it to introduce terms in MCaTT, and we thus define a type theory indexed
over CaTT. We have compiled and presented all the rules defining MCaTT in Appendix A.3

Properties of this type theory. Since MCaTT is a globular type theory, it enjoys all the
properties that we have proved for this framework in Section 4.1, in particular, it has the disks
and sphere contexts, which characterize types and terms respectively. Moreover, denoting Θmon

the coherator for this theory, we admit that we can compute the arity limits to be obtained as
products of globular products. Theorem 108 then characterizes the models of MCaTT to be the
presheaves over Θmon sending the globular sums to globular products and the sums to products.

Examples. Even though we do not provide an implementation for this theory, we can check
by hand a few examples of derivations that are possible

– Monoidal product: We consider the ps-context for the composition of 1-cells,

Γ = (x : ?, y : ?, f : x ! y, z : ?, g : y ! z)

and denote
prod := mopΓ,x!z

We have
?yΓ = (f : ?, g : ?), thus for any context ∆ in the theory, a substitution ∆ ` � :

?yΓ
is just a pair of terms t, u of type ?. Suppose that ∆ ` t : ? and ∆ ` u : ?, then the
rule (mop) gives a derivation of the product of t and u:

∆ ` prod t u : ?

– Associativity of monoidal product: similarly, we consider the ps-context

Γ = (x : ?, y : ?, f : x ! y, z : ?, g : y ! z, w : ?, h : z ! w)

and denote
assoc := mcohΓ,comp (comp f g) h!comp f (comp g h)

A substitution ∆ ` � :
?yΓ is now a triple of terms t, u, v of type ? in ∆, given such a triple,

the rule (mcoh) gives a derivation of

Γ ` assoc t u v : prod t (prod u v) �!
?
prod (prod t u) v

– Neutral element: Consider the ps-context Γ = (x : ?), and pose

e := mcohΓ,x!x

A substitution Γ ` � :
?yΓ is necessarily the empty substitution, which lets us define by the

rule (mcoh) the term
∆ ` ehi : ?

We refer the reader to Section 5.3 for a presentation of the theory MCaTT with a lighter syntax,
and more examples of derivations along these lines, expressed in that syntax.
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5.2.2 Properties of the desuspension

While defining the theory MCaTT we have introduced an operation that we called the desus-
pension, and that we freely used. We now study this operation more precisely and show some
of its properties. Understanding this operation in details is the key step to relating the theories
MCaTT and CaTT, in a similar way that monoidal categories and categories are related.

Lemma 128. Given a substitution ∆ ` � : Γ, for any type Γ ` A, we have
?y(A[�]) =

?yA[
?y�],

for any term Γ ` t : A of dimension non-zero, we have
?y(t[�]) =

?yt[
?y�] and for any substitution

Γ ` ⇠ : Ξ, we have
?y(⇠ � �) =

?y⇠ �
?y�.

Proof. We prove this by mutual induction

Induction for types:

– In the case of the type ?, we have
?y(?[�]) = ? and

?y?[
?y�] = ?.

– In the case of a type of the form A = t �!
?

u, we have A[�] = t[�] �!
?

u[�], hence
?y(A[�]) = ?.

But also
?yA = ?, hence

?yA[
?y�] = ?.

– In the case of a type of the form t �!
A

u with A distinct from ?, we have the following

equalities

?y((t �!
A

u)[�]) =
?y(t[�]) �����!?y(A[�])

?y(u[�])

?y(t �!
A

u)[
?y�] =

?yt[
?y�] �����!?yA[

?y�]
?yu[

?y�]

The induction case for types shows that
?y(A[�]) =

?yA[
?y�]. Moreover, since the type

t �!
A

u and the type A is not ?, necessarily t and u are of dimension non-zero in Γ,

hence the induction case for terms applies, showing the equalities
?y(t[�]) =

?yt[
?y�] and?y(u[�]) =

?yu[
?y�]. These prove the equality between the two above expressions.

Induction for terms of dimension non-zero:

– In the case of a variable Γ ` x : A, denote t = x[�]. Since x is of dimension non-zero, A is
not the type ?, and hence the mapping x 7!

?yt appears in
?y�. Hence x[

?y�] =
?y(x[�]).

– In the case of a term of the form opΓ,A[�], the following equalities hold
?y(opΓ,A[�][�]) = mopΓ,A[

?y(� � �)]
?yopΓ,A[�][

?y�] = mopΓ,A[
?y� �

?y�]

The induction case for substitution then provides the equality between these two expres-
sions.

– Similarly in the case of a term of the form cohΓ,A[�], we have the equalities
?y(cohΓ,A[�][�]) = mcohΓ,A[

?y(� � �)]?ycohΓ,A[�][
?y�] = mcohΓ,A[

?y� �
?y�]

The induction case for substitution then provides the equality between these two expres-
sions.
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Induction for substitutions:

– In the case of the empty substitution hi, we have hi � � = hi, and hence
?y(hi � �) = hi. But

we also have
?yhi � � = hi.

– In the case of a substitution of the form h⇠, x 7! ti with x of dimension 0 in Ξ then we
have the following equalities

?yh⇠, x 7! ti � � =
?y(⇠ � �)?yh⇠, x 7! ti �

?y� =
?y⇠ �

?y�

The induction case for substitution then proves the equality between these two expressions.

– In the case of a substitution of the form h⇠, x 7! ti, with x of dimension non-zero, we have
the following equalities

?yh⇠, x 7! ti � � = h
?y(⇠ � �), x 7!

?y(t[�])i?yh⇠, x 7! ti �
?y� = h

?y⇠ �
?y�, x 7!

?yt[
?y�]i

Then the induction case for substitutions proves that
?y(⇠ � �) =

?y⇠ �
?y�, and moreover

since the term t is of dimension non-zero, the induction case for terms applies and shows
that

?y(t[�]) =
?yt[

?y�]. This proves the equality between the two above expressions.

Correctness of the desuspension. We have defined the desuspension as a syntactic operation
between the theories CaTT and MCaTT. This operation actually preserves most of the structure
of the theory, and in particular it preserves the derivability of most of the judgments.

Proposition 129. The following statements hold

– For every context Γ ` in CaTT, the judgment
?yΓ ` is derivable in MCaTT.

– For every type Γ ` A in CaTT, the judgment
?yΓ `

?yA is derivable in MCaTT.

– For every term, Γ ` t : A of dimension non-zero, the judgment
?yΓ `

?yt :
?yA is derivable

in MCaTT

– For every substitution ∆ ` � : Γ in CaTT, the judgment
?y∆ `

?y� :
?yΓ is derivable in

MCaTT.

Proof. We prove this result by mutual induction

Induction for contexts:

– For the empty context ?, we have
?y? = ? and the rule (ec) gives a derivation of

?y? `

– For a context of the form (Γ, x : ?) `, we have necessarily Γ ` which gives by induction
case for the contexts

?yΓ `. Moreover,
?y(Γ, x : ?) =

?yΓ, hence
?y(Γ, x : ?) `.

– For a context of the form (Γ, x : A) ` where A is distinct from ?, we necessarily have
Γ ` A, so the induction case for types shows that

?yΓ `
?yA, and hence the rule (ce) applies

to give a derivation for (
?yΓ, x :

?yA) `. Since we also have
?y(Γ, x : A) = (

?yΓ, x :
?yA), this

lets us conclude that
?y(Γ, x : A) `.
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Induction for types:

– For the type Γ ` ?, we necessarily have Γ `, hence the induction case for contexts shows
that

?yΓ `, and applying the rule (?-intro) gives a derivation for
?yΓ `

?y?.
– For a type of the form Γ ` t �!

?
u, by Proposition 2, we necessarily have Γ `, which

by the induction case for contexts gives a derivation for
?yΓ `. This lets us apply the

rule (?-intro) to obtain a derivation of
?yΓ `

?y(t �!
?

u).

– For a type of the form Γ ` t �!
A

u where A is distinct from ?, we necessarily have a

derivation of Γ ` A, which gives by the induction case for the types a derivation of?yΓ `
?yA. Moreover, we necessarily have two derivations Γ ` t : A and Γ ` u : A, and

since A is not ?, both terms t and u have dimension non-zero, hence the induction case
for terms gives derivations of

?yΓ `
?yt :

?yA and
?yΓ `

?yu :
?yA. These derivations assemble

with the rule (!-intro) to provide a derivation of
?yΓ `

?yt ��!?yA
?yu.

Induction for terms:

– For a variable Γ ` x : A of dimension non-zero, we necessarily have Γ ` which by the
induction case for contexts provides a derivation of

?yΓ `. Moreover, we have the condition
(x : A) 2 Γ, and since x is of dimension non-zero, A is not the type ?, hence (x :

?yA) 2
?yΓ.

This lets us apply the rule (var) in order to prove
?yΓ ` x :

?yA.

– For a term of the form ∆ ` opΓ,A[�] : A[�], necessarily (Γ, A) defines a valid operation
cut, and we have a derivation for ∆ ` � : Γ which by the induction case for substitutions
provides a derivation for

?y∆ `
?y� :

?yΓ. This lets us apply the rule (mop) to construct
the term

?y∆ ` mopΓ,A[
?y�] :

?yA[
?y�]. Lemma 128 then shows that it is a derivation of?y∆ `

?y(opΓ,A[
?y�]) :

?y(A[�]).

– Similarly, for a term of the form ∆ ` cohΓ,A[�] : A[�], necessarily (Γ, A) defines a valid
coherence cut, and we have a derivation for ∆ ` � : Γ which by the induction case for
substitutions provides a derivation for

?y∆ `
?y� :

?yΓ. This lets us apply the rule (mcoh) to
construct the term

?y∆ ` mcohΓ,A[
?y�]. Again Lemma 128 shows that this is a derivation

of
?y∆ `

?y(cohΓ,A[�]) :
?y(A[�]).

Induction for substitutions:

– For the empty substitution ∆ ` hi : ?, we necessarily have a derivation of ∆ `, and
hence by induction case for the context, this produces a derivation of

?y∆ `. Applying the
rule (es), we get a derivation of

?y∆ ` hi : ?.

– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : ?), we necessarily have a derivation
of ∆ ` � : Γ, which by the induction case for the substitutions gives a derivation of?y∆ `

?y� :
?yΓ. Since

?yh�, x : 7! ti =
?y� and

?y(Γ, x : A) =
?yΓ, this is in fact a derivation of?y∆ `

?yh�, x 7! ti :
?y(Γ, x : A).

– For a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) with A distinct from ?, we
necessarily have a derivation of ∆ ` � : Γ, which by the induction case for the substitutions
gives a derivation of

?y∆ `
?y� :

?yΓ. Moreover, we have a derivation of (Γ, x : A) ` which
provides, by the induction rule for contexts a derivation of

?y(Γ, x : A) `, which reduces to
(
?yΓ, x :

?yA) since A is distinct from ?. Finally, the substitution also gives derivation of
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∆ ` t : A[�], and since A is not ?, this term is of dimension non-zero and the induction
case for terms applies to give a derivation of

?y∆ `
?yt :

?y(A[�]). Since the term t is of
dimension non-zero, Lemma 128 applies and this judgment rewrites as

?y∆ `
?yt :

?yA[
?y�].

We can then apply the rule (se) in order to get a derivation of
?y∆ `

?yh�, x 7! ti : (Γ, x : A)
as follows ?y∆ `

?y� :
?yΓ

?yΓ, x :
?yA `

?y∆ `
?yt :

?yA[
?y�]?y∆ ` h

?y�, x 7!
?yti : (

?yΓ, x :
?yA) (se)

This proposition allows to replace the premise
?yΓ `

?yA in the rules (mop) and (mcoh), by the
premise Γ ` A. This premise is simpler, but it takes place in the theory CaTT, thus making
MCaTT indexed over CaTT.

The desuspension as a functor. We have proved in Proposition 129 that the desuspension
operation sends a well-defined context in the theory CaTT onto a well-defined context in the
theory MCaTT, and sends a well-defined substitution in CaTT onto a well-defined substitution
in MCaTT. Moreover Lemma 128 shows that the desuspension respects the composition of
substitutions, and we can verify by induction that it also respect identity substitutions. This
shows the desuspension defines a functor SCaTT ! SMCaTT. This categorical reformulation
concerns only some of the results stated as Lemmas 128 and Proposition 129, and the other stated
results which adds additional structure to the desuspension functor. For starters, Proposition 129
shows that the desuspension acts on types and associate to every well-defined type in a context,
a well defined type in the its desuspension, and similarly for terms of type distinct from ?, while
also respecting the typing and Lemma 128 ensures that this association is functorial whenever
it is defined. This shows that in fact the desuspension almost lifts as a morphism in Cat/Fam,
where we see SCaTT and SMCaTT as elements of Cat/Fam with the functor induced by the
structure of categories with families. It does not quite define such a morphism, as it fails to give
an image for the terms of type ?, but it gives an image for the types and all the other terms.
Moreover, we have

?y? = ? so
?y preserves the terminal object, and for all type A distinct from

?, we have
?y(Γ, x : A) = (

?yΓ, x :
?yA) so it also preserves these context extensions on the nose.

This shows that
?y almost defines a morphism of categories with families, the only obstruction is

that it fails to provides an image for the terms of type ?

5.2.3 Reduced suspension

We define another translation related to the desuspension that goes in the other direction: From
an expression in the theory MCaTT, it associates an expression in the theory CaTT. We call this
translation the reduced suspension and the intuition is that it exhibits MCaTT as the theory of
the judgments in CaTT concerned with context that only have one object. It is closely related
to the operation of suspension, that we have introduced in Section 3.2.

The reduced suspension operation. We assume that there is a variable •0 that is free (say
we extend the set of variable of MCaTT by adding the variable •0), and define the reduced
suspension

x? by induction on the syntax. Note that contrarily to the desuspension, the reduced
suspension is defined purely syntactically and does not require any judgment to be derivable in

167



the type theory MCaTT.
x?? = (•0 : ?)

x?(Γ, x : A) = (
x?Γ, x :

x?A)
x?? = •0 �!

?
•0

x?
⇣
t �!

A
u
⌘
=
x?t ��!x?A

x?u
x?x = x

x?mopΓ,A[�] = opΓ,A[•Γ �
x?�]

x?mcohΓ,A[�] = cohΓ,A[•Γ �
x?�]x?hi = h•0 7! •0i

x?h�, x 7! ti = h
x?�, x 7!

x?ti

Where the substitution •Γ is defined by induction on the context Γ as follows

•∅ = hi •(Γ,x:A) =

⇢
h•Γ, x 7! •0i if A = ?

h•Γ, x 7! xi Otherwise

Before showing that this operation respects the derivability of judgments, we first show some
useful syntactic properties.

Lemma 130. For all substitution �, we always have •0[
x?�] = •0.

Proof. By definition of
x?�, the mapping •0 7! •0 appears in

x?�. Moreover, by assumption •0
is a fresh variable, so it cannot appear in �, and hence it cannot appear anywhere else in

x?�,
hence we necessarily have •0[

x?�] = •0. Note that we prove this result for all substitutions, even
the potentially ill-formed ones, this is why we need to check that •0 can only be mapped on one
term.

Lemma 131. Given a substitution � in the theory MCaTT, For any type A we have the equalityx?(A[�]) =
x?A[

x?�], for any term t, we have the equality
x?(t[�]) =

x?t[
x?�] and for any substitution

�, we have the equality
x?(� � �) =

x?� �
x?�.

Proof. We suppose given a substitution � and prove these three results by mutual induction

Induction for types:

– For the type ?, we have ?[�] = ?, hence
x?(?[�]) = •0 �!

?
•0. Since we have the equality

x??[
x?�] = •0[

x?�] �!
?

•0[
x?�], and using Lemma 130, this implies

x?A [
x?�] = •0 �!

?
•0.

– For the type t �!
A

u, we have the two following equalities

x?((t �!
A

u)[�]) =
x?(t[�]) �����!x?(A[�])

x?(u[�])

(
x?(t �!

A
u))[

x?�] = (
x?t)[

x?�] ������!
(
x?A)[

x?�]
(
x?u)[

x?�]

The induction case for type shows that
x?(A[�]) = (

x?A)[
x?�] and the induction case for terms

proves the equalities
x?(t[�]) = (

x?t)[
x?�] and

x?(u[�]) = (
x?u)[

x?�]. These three equalities show
the equality between the two previous expressions.

Induction for terms:
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– For a variable x, such that the mapping x 7! t appears in �, we have x[�] = t, and hencex?(x[�]) =
x?t. Moreover the mapping x 7!

x?t appears in
x?�, and hence x[

x?�] =
x?t.

– For a term of the form mopΓ,A[�] we have the two following equalities

x?(mopΓ,A[�][�]) = opΓ,A[•Γ �
x?(� � �)]

(
x?mopΓ,A[�])[

x?�] = opΓ,A[(•Γ �
x?�) �

x?�]

and the induction case for substitutions together with the associativity of composition for
substitution show that these two terms are equal.

– Similarly for a term of the form mcohΓ,A[�] we have the two following equalities
x?(mcohΓ,A[�][�]) = cohΓ,A[•Γ �

x?(� � �)]
(
x?mcohΓ,A[�])[

x?�] = cohΓ,A[(•Γ �
x?�) �

x?�]

and by induction and associativity these two expressions are equal.

Induction for contexts:

– In the case of the empty substitutions, we have hi�� = hi, and hence
x?(hi � �) = h•0 7! •0i.

Moreover,
x?hi �

x?� = h•0 7! •0[
x?�]i. By Lemma 130 this shows that

x?hi �
x?� = h•0 7! •0i.

– In the case of a substitution of the form h�, x 7! ti, we have the following equalities
x?(h�, x 7! ti � �) = h

x?(� � �), x 7!
x?(t[�])ix?h�, x 7! ti �

x?� = h
x?� �

x?�, x 7! (
x?t)[

x?�]i

and the induction cases for substitutions and terms provide the result.

Reduced suspension on the theory GSeTT. Our definition of the reduced suspension can
be restricted to the theory GSeTT, since this theory is included in MCaTT. Since the term
constructors op and coh are only used as images for term constructors, computing the reduced
suspension of an expression in the theory GSeTT yields again an expression which is in the
theory GSeTT and hence the reduced suspension can be understood as an operation from the
theory GSeTT to itself. Understanding this operation first is key in studying the general reduced
suspension between MCaTT and CaTT, since general terms are introduced by substitutions to a
ps-contexts, that are special cases of contexts in GSeTT.

Lemma 132. In the theory GSeTT, the following properties are satisfied

– For any well-defined context Γ `, the judgment
x?Γ is derivable.

– For any type Γ ` A, the judgment
x?Γ `

x?A is derivable.

– For any term Γ ` t : A, the judgment
x?Γ `

x?t :
x?A is derivable.

– For any substitution ∆ ` � : Γ, the judgment
x?∆ `

x?� :
x?Γ is derivable.

Proof. We prove this result by mutual induction on contexts, types, terms and substitutions

Induction for contexts:
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– In the case of the empty context ?, we have
x?? = (•0 : ?), and the following derivation

shows that
x?? `

? `
(ec)

? ` ?
(?-intro)

•0 : ? `
(ce)

– In the case of a context of the form (Γ, x : A) `, we can extract a derivation of Γ ` A
and by the induction case for types, it gives a derivation for

x?Γ `
x?A. by applying the

rule (ce), we get a derivation for (
x?Γ, x :

x?A) `

Induction for types:

– In the case of the type Γ ` ?, we can extract a derivation of Γ `, which by the induction
rule for contexts shows

x?Γ `. Since moreover (•0 : ?) 2
x?Γ, we can construct a derivation

of
x?Γ `

x?? as follows

x?Γ `x?Γ ` ?
(?-intro)

x?Γ ` (•0 : ?) 2
x?Γx?Γ ` •0 : ?

x?Γ ` •0 : ?
(var)

x?Γ ` •0 �!
?

•0
(!-intro)

– In the case of a type of the form Γ ` t �!
A

u, we have a derivation for Γ ` A, which by the

induction case for types gives a derivation for
x?Γ `

x?A and two derivations for Γ ` t : A

and Γ ` u : A, which by the induction case for terms gives
x?Γ `

x?t :
x?A and

x?Γ `
x?u :

x?A.
These three derivations assemble with the rule (!-intro) in order to produce a derivation

for the judgment
x?Γ `

x?t ��!x?A
x?u.

Induction for terms: A term is necessarily a variable Γ ` x : A. Since we have Γ `, by the
induction case for contexts we also get

x?Γ `. Moreover, the condition (x : A) 2 Γ is also
necessarily satisfied, which implies that (x :

x?A) 2
x?Γ. Hence, applying the rule (var) yields a

derivation for
x?Γ ` x :

x?A.

Induction for substitutions:

– In the case of the empty substitution ∆ ` hi : ?, we necessarily have a derivation of ∆ `,
which by the induction case for contexts gives a derivation of

x?∆ `. Moreover, we also
have by definition that (•0 : ?) 2

x?∆. This lets us construct a derivation for
x?∆ `

x?hi :
x??

as follows
x?∆ `x?∆ ` hi : ?

(es) •0 : ? `

x?∆ ` (•0 : ?) 2
x?∆x?∆ ` •0 : ?

(var)

x?∆ ` h•0 7! •0i : (•0 : ?)
(se)

– In the case of a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A), we necessarily have
∆ ` � : Γ, which gives by the induction case for substitutions,

x?∆ `
x?� :

x?Γ. Moreover, we
have a derivation of (Γ, x : A) `, which gives by the induction case for contexts a derivation
of

x?Γ, x :
x?A `, and a derivation of ∆ ` t : A[�], which gives by the induction case for
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terms a derivation of
x?∆ `

x?t :
x?A[�]. Lemma 131 allows to rewrite this into a derivation

for
x?∆ `

x?t :
x?A[

x?�]. Thus these derivations can be assembled using the rule (se) into a
derivation of

x?∆ `
x?h�, x 7! ti :

x?(Γ, x : A) as follows
x?∆ `

x?� :
x?Γ

x?Γ, x :
x?A `

x?∆ `
x?t :

x?A[
x?�]x?∆ ` h

x?�, x 7!
x?ti : (

x?Γ, x :
x?A) (se)

Properties of the substitution •∆. In order to study the reduced suspension operation, we
also need to give the properties of the substitution •∆ for a ps-context ∆, on which the reduced
suspension relies.

Lemma 133. We have the following result for the action of the substitution •∆ on terms, types
and substitutions.

– For any type ∆ ` A distinct from ?, A[•∆] =
x??yA

– For any term ∆ ` t : A with A distinct from ?, t[•∆] =
x??yt.

– For any substitution ∆ ` � : Γ, � � •∆ = •Γ �
x??y�.

Proof. We prove these equalities by mutual induction

Induction on types:

– For a type of the form A = t �!
?

u, we have
x??yA = •0 �!

?
•0. Moreover, we necessarily have

∆ ` t : ? and ∆ ` u : ? and the only possible terms of type ? in CaTT are the variables,
hence t and u are variables of type ? in Γ. This implies that the associations t 7! •0 and
u 7! •0 appear in •∆, and hence t[•∆] = •0 and u[•∆] = •0. Since we also have ?[•∆] = ?,
this proves the equality.

– For a type of the form t �!
A

u with A distinct from ?, we have the following equalities

(t �!
A

u)[•∆] = t[•∆] ����!
A[•∆]

u[•∆]

x??y(t �!
A

u) =
x??yt ���!x??yA

x??yu

By the induction case on types A[•∆] =
x??yA, and by the induction case on terms

t[•∆] =
x??yt and u[•∆] =

x??yu. This proves the equality (t �!
A

u)[•∆] =
x??y(t �!

A
u).

Induction on terms:

– In the case of a variable ∆ ` x : A, with A distinct from ?, by definition of the substitution
•∆, the association x 7! x appears in •∆, hence x[•∆] = x. Moreover, by definition,x??yx = x, hence the equality.

– In the case of a term of the form ∆ ` opΓ,A[�] : A[�], we have the following equations

opΓ,A[�][•∆] = opΓ,A[� � •∆]x??yopΓ,A[�] = opΓ,A[•Γ �
x??y�]

and the induction case for substitutions then gives the equality.
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– Similarly, in the case of a term of the form ∆ ` cohΓ,A[�] we have

cohΓ,A[�][•∆] = cohΓ,A[� � •∆]x??ycohΓ,A[�] = cohΓ,A[•Γ �
x??y�]

and we conclude by the induction case for substitutions.

Induction case for substitutions:

– In the case of the empty substitution ∆ ` hi : ?, since •∅ = hi, we have the two following
equalities

hi � •∆ = hi

•∅ �
x??yhi = hi

– In the case of a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : ?), since
x??yh�, x 7! ti =

x??y�,
we have the following equalities

h�, x 7! ti � •∆ = h� � •∆, x 7! t[•∆]i

h•Γ, x 7! •0i �
x??y� = h•Γ �

x??y�, x 7! •0[
x??y�]i

By the induction case for substitutions, we have � �•∆ = •Γ �
x??y�, by Lemma 130, we have

the equality •0[
x??y�] = •0, and finally since t is a term of dimension 0 in the theory CaTT,

it is necessarily a variable of type ? in ∆, and by definition of •∆, the mapping t 7! •0
appears in •∆, hence t[•∆] = •0. this proves that h�, x 7! ti � •∆ = •Γ �

x??yh�, x 7! ti.

– In the case of a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A) with A distinct of ?,
we have the following equalities

h�, x 7! ti � •∆ = h� � •∆, x 7! t[•∆]i

h•Γ, x 7! xi � h
x??y�, x 7!

x??yti = h•Γ � h
x??y�, x 7!

x??yti, x 7! x[h
x??y�, x 7!

x??yti]i

Since the substitution •Γ has source
x??yΓ that do not use the variable x, we have

•Γ � h
x??y�, x 7!

x??yti = •Γ �
x??yt

Moreover the expression x[h
x??y�, x 7!

x??yti] simplifies to
x??yt. Hence we have the equality

h•Γ, x 7! xi � h
x??y�, x 7!

x??yti = h•Γ �
x??y�, x 7!

x??yti

the induction case for substitutions then shows that � � •∆ = •Γ �
x??y�, and the induction

case for terms shows, since t is of dimension non-zero, that t[•∆] =
x??yt, which proves the

equality
h�, x 7! ti � •∆ = h•Γ, x 7! xi � h

x??y�, x 7!
x??yti

Lemma 134. For any context Γ ` in GSeTT, there is a well defined substitution
x??yΓ ` •Γ : Γ.

Proof. This result is proved by induction on the context Γ.

– For the empty context ?, we have already proven that
x??y? `. Hence the rule (es) proves

that
x??yΓ ` hi : ?.
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– For a context of the form (Γ, x : ?) `, we have
x??y(Γ, x : ?) =

x??yΓ, thus the induction shows
that we have

x??y(Γ, x : ?) ` •Γ : Γ. Moreover, we have
x??y(Γ, x : ?) `, and the association

(•0 : ?) appears in
x??yΓ, x : ?, hence the rule (var) applies and provides a derivation ofx??y(Γ, x : ?) ` •0 : ?. This lets us apply the rule (se)to build the following derivation of the

judgment
x??y(Γ, x : ?) ` •(Γ,x:?) : (Γ, x : ?):

x??y(Γ, x : ?) ` •Γ : Γ (Γ, x : ?) `
x??yΓ, x : ? ` •0 : ?x??y(Γ, x : ?) ` h•Γ, x : 7! •0i : (Γ, x : ?)

(se)

– For a context of the form (Γ, x : A) ` with A distinct from ?, we have by induction
that

x??yΓ ` •Γ, and hence by weakening (c.f. Proposition 2) this shows that we also havex??y(Γ, x : A) ` •Γ : Γ. Moreover, by Lemma 132, we have that
x??y(Γ, x : A) ` x :

x??yA, and
since A is distinct from ?, Lemma 133 then shows that we have

x??y(Γ, x : A) ` x : A[•Γ].
This lets us apply the rule (se) to construct a derivation of

x??y(Γ, x : A) ` •(Γ,x:A) : (Γ, x : A)
as follows x??y(Γ, x : A) ` •Γ : Γ (Γ, x : A) `

x??y(Γ, x : A) ` x : A[•Γ]x??y(Γ, x : A) ` h•(Γ,x:A), x 7! xi : (Γ, x : A)
(se)

Correctness of the reduced suspension. We are now equipped to study the reduced sus-
pension operation in its full generality, as an operation from the theory MCaTT to the theory
CaTT. In particular we prove the following correctness result showing that this operation is a
well defined translation between these two theories.

Proposition 135. The reduced suspension operation preserves derivability. More precisely, we
have

– For any context ∆ ` derivable in the theory MCaTT,
x?∆ ` is derivable in the theory CaTT.

– For any type ∆ ` A derivable in the theory MCaTT,
x?∆ `

x?A is derivable in the theory
CaTT.

– For any term ∆ ` t : A derivable in the theory MCaTT,
x?∆ `

x?t :
x?A is derivable in the

theory CaTT.

– For any substitution ∆ ` � : Γ derivable in the theory MCaTT,
x?∆ `

x?� :
x?Γ is derivable

in the theory CaTT.

Proof. The proof of this result is essentially the same than the proof of Lemma 132 by mutual
induction, and adding additional cases for the term constructors we added. For the sake of
completeness and to avoid the reader to constantly refer to the previous proof, we still give the
entire proof here, by mutual induction on contexts, types, terms and substitutions.

Induction for contexts:

– In the case of the empty context ?, we have
x?? = (•0 : ?), and the following derivation

shows that
x?? `

? `
(ec)

? ` ?
(?-intro)

•0 : ? `
(ce)
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– In the case of a context of the form (Γ, x : A) `, we can extract a derivation of Γ ` A
and by the induction case for types, it gives a derivation for

x?Γ `
x?A. by applying the

rule (ce), we get a derivation for (
x?Γ, x :

x?A) `

Induction for types:

– In the case of the type Γ ` ?, we can extract a derivation of Γ `, which by the induction
rule for contexts shows

x?Γ `. Since moreover (•0 : ?) 2
x?Γ, we can construct a derivation

of
x?Γ `

x?? as follows
x?Γ `x?Γ ` ?

(?-intro)

x?Γ ` (•0 : ?) 2
x?Γx?Γ ` •0 : ?

x?Γ ` •0 : ?
(var)

x?Γ ` •0 �!
?

•0
(!-intro)

– In the case of a type of the form Γ ` t �!
A

u, we have a derivation for Γ ` A, which by the

induction case for types gives a derivation for
x?Γ `

x?A and two derivations for Γ ` t : A

and Γ ` u : A, which by the induction case for terms gives
x?Γ `

x?t :
x?A and

x?Γ `
x?u :

x?A.
These three derivations assemble with the rule (!-intro) in order to produce a derivation

for the judgment
x?Γ `

x?t ��!x?A
x?u.

Induction for terms:

– For a variable Γ ` x : A, we necessarily have Γ ` which gives by the induction case
for contexts

x?Γ `. Moreover, the condition (x : A) 2 Γ is also necessarily satisfied,
which implies that (x :

x?A) 2
x?Γ. Hence, applying the rule (var) yields a derivation forx?Γ ` x :

x?A.

– For a term of the form mopΓ,A[�] (resp. mcohΓ,A[�]), the pair (Γ, A) declares a valid
operation (resp. declares a valid coherence cut), and we necessarily have a derivation
of ∆ ` � :

?yΓ. By the induction case for substitutions, this gives a derivation forx?∆ `
x?� :

x??yΓ. Moreover, Lemma 134 ensures that we have
x??yΓ ` •Γ : Γ, hence we

have a substitution
x?∆ ` •Γ �

x?� : Γ. By applying the rule (op) (resp. the rule (coh)),
this provides a derivation for the judgment

x?∆ ` opΓ,A[•Γ �
x?�] : A[•Γ �

x?�] (resp. for
the judgment

x?∆ ` cohΓ,A[•Γ �
x?�] : A[•Γ �

x?�]). We then have the following equalities,
proving that the type is the reduced suspension of (

?yA)[�]

A[•Γ �
x?�] = A[•Γ �

x?�]
=
x??yA[

x?�] By Lemma 133

=
x?((

?yA)[�]) By Lemma 131

Induction for substitutions:

– In the case of the empty substitution ∆ ` hi : ?, we necessarily have a derivation of ∆ `,
which by the induction case for contexts gives a derivation of

x?∆ `. Moreover, we also
have by definition that (•0 : ?) 2

x?∆. This lets us construct a derivation for
x?∆ `

x?hi :
x??

as follows x?∆ `x?∆ ` hi : ?
(es) •0 : ? `

x?∆ ` (•0 : ?) 2
x?∆x?∆ ` •0 : ?

(var)

x?∆ ` h•0 7! •0i : (•0 : ?)
(se)
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– In the case of a substitution of the form ∆ ` h�, x 7! ti : (Γ, x : A), we necessarily have
∆ ` � : Γ, which gives by the induction case for substitutions,

x?∆ `
x?� :

x?Γ. Moreover, we
have a derivation of (Γ, x : A) `, which gives by the induction case for contexts a derivation
of

x?Γ, x :
x?A `, and a derivation of ∆ ` t : A[�], which gives by the induction case for

terms a derivation of
x?∆ `

x?t :
x?A[�]. Lemma 131 allows to rewrite this into a derivation

for
x?∆ `

x?t :
x?A[

x?�]. Thus these derivations can be assembled using the rule (se) into a
derivation of

x?∆ `
x?h�, x 7! ti :

x?(Γ, x : A) as follows

x?∆ `
x?� :

x?Γ
x?Γ, x :

x?A `
x?∆ `

x?t :
x?A[

x?�]x?∆ ` h
x?�, x 7!

x?ti : (
x?Γ, x :

x?A) (se)

Reduced suspension as a functor. By combining the syntactic aspects with the correctness
properties of the reduced suspension, we can reformulate our construction in more categorical
terms. First note that the reduced suspension sends well-defined contexts onto well-defined con-
texts, well-defined substitutions onto well-defined substitutions and preserves the composition of
substitutions (as well as the identity substitutions, which we can prove immediately by induc-
tion). This exactly means that we have defined a functor

x? : SMCaTT ! SCaTT. But we have
also proved that the reduced suspension sends valid types and terms onto valid types and terms,
while respecting the action of the substitutions on those. This can be reformulated as saying thatx? actually define a morphism SMCaTT ! SCaTT in the slice category Cat/Fam. Moreover, this
morphism by definition preserves context extensions on the nose, that is

x?(Γ, x : A) = (
x?Γ, x :

x?A)
and

x?h�, x 7! ti = h
x?�, x 7!

x?ti, so at this point it might seem like
x? defines a morphism of cat-

egories with families. This is in fact not quite the case, since it fails to preserve the terminal
object. Indeed, the terminal object in MCaTT is the empty context ?, which is mapped by

x?
onto the context (•0 : ?) which is not terminal in CaTT. This is the only obstruction for

x? to be
a morphism of categories with families, this functor preserves all the structure but the terminal
object.

5.2.4 Interaction between desuspension and reduced suspension

We have defined two translations between the theories MCaTT and CaTT, that define functors
between their syntactic categories. We now study how these two translation relate to each other
syntactically and translate it as a categorical result about the aforementioned functors. In order
to understand the interaction between the desuspension and the reduced suspension, we first
show the following result, describing the action of the desuspension on the substitution •Γ.

Lemma 136. For every context Γ ` in the theory CaTT, we have
?y•Γ = id?yΓ

Proof. We prove this by induction on the context Γ

– For the empty context ?, we have
?y•Γ = hi and moreover

?y? = ?, hence id?y
∅
= hi.

– For a context of the form (Γ, x : ?), we have •(Γ,x:?) = h•Γ, x 7! •0i,and
?y•Γ,x:? =

?y•Γ. On
the other hand, we have that

?y(Γ, x : ?) =
?yΓ, hence id?y(Γ,x:?) = id?yΓ. We then conclude

by induction, using the fact that
?y•Γ = id?yΓ.
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– For a context of the form (Γ, x : A) where A 6= ?, we have •(Γ,x:A) = h•Γ, x 7! xi,
and thus

?y•(Γ,x:A) = h
?y•Γ, x 7! xi. Moreover,

?y(Γ, x : A) = (
?yΓ, x :

?yA), and thus
id?y(Γ,x:A)

= hidΓ, x 7! xi. We again conclude by induction using the fact that
?y•Γ = id?yΓ.

Desuspension of the reduced suspension. We have the following result

Proposition 137. The equality between functors
?y�

x?= idSMCaTT
holds.

Proof. We show by mutual induction the following properties of the theory MCaTT

– For all context Γ `,
?yx?Γ = Γ

– For all type Γ ` A,
?yx?A = A

– For all term Γ ` t : A,
?yx?t = t

– For all substitution ∆ ` � : Γ,
?yx?� = �

Induction for contexts:

– For the empty context ?, we have
x?? = (•0 : ?), and thus

?yx?? = ?.

– For a context of the form (Γ, A), we have
x?(Γ, x : A) = (

x?Γ, x :
x?A). Since

x?A is necessarily
distinct from ?, we have

?yx?(Γ, x : A) = (
?yx?Γ, x :

?yx?A), and the induction case for context
shows that

?yx?Γ = Γ and the induction case for types shows
?yx?A = A. This proves that?yx?(Γ, x : A) = (Γ, x : A).

Induction for types:

– For the type ?, we have
x?? = •0 �!

?
•0, and thus

?yx?? = ?.

– For a type of the form t �!
A

u, we have
x?t �!

A
u =

x?t ��!x?A
x?u, and since

x?A is distinct from

?, this implies that
?yx?t �!

A
u =

?yx?t ���!?yx?A
?yx?u. The induction case for types then shows

that
?yx?A = A, and the induction case for terms shows

?yx?t = t and
?yx?u = u, which lets us

conclude.

Induction for terms:

– For a variable x, we have
x?x = x and thus

?yx?x = x.

– For a term of the form mopΓ,A[�], we have
x?mopΓ,A[�] = opΓ,A[•Γ �

x?�], and thus we have
the following equalities

?yx?mopΓ,A[�] = mopΓ,A[
?y(•Γ �

x?�)]
= mopΓ,A[

?y•Γ �
?yx?�] by Lemma 128

= mopΓ,A[
?yx?�] by Lemma 136

= mopΓ,A[�] by the induction case for substitution
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– The case for a term of the form mopΓ,A[�] follows the exact same steps.

Induction for substitutions:

– For the empty substitution hi, we have
x?hi = h•0 7! •0i, and thus

?yx?hi = hi.

– For a substitution of the form h�, x 7! ti, we have
x?h�, x 7! ti = h

x?�, x 7!
x?ti. Necessarilyx?t is a well defined term of dimension non-zero, hence

?yx?h�, x 7! ti = h
?yx?�, x 7!

?yx?ti.
Then the induction case for substitutions gives the equality

?yx?� = � and the induction
case for terms gives

?yx?t = t, which lets us conclude.

A natural transformation. In order to study the reduced suspension, we have introduced
the family of substitutions •Γ for all contexts Γ, and we have proved in Lemma 134, that it
defines a family of morphisms •Γ :

x??yΓ ! Γ. Moreover, the equality � � •∆ = •Γ �
x??y� that we

proved for all substitution � in Lemma 133 can be expressed by the commutation of the following
diagram x??y∆ ∆

x??yΓ Γ

•∆

x??
??y� �

•Γ

So we have in fact already proven the following proposition, which is simply a categorical refor-
mulation of our previous fact

Proposition 138. The family of morphisms •Γ :
x??yΓ ! Γ define a natural transformationx?�

?y) idSCaTT
.

Adjunction between desuspension and reduced suspension. Combining these two pre-
vious theorems, we have in fact proved the following result, which is very important categorically

Theorem 139. The functor
x? is left adjoint to

?y, the counit is given by the family •Γ.

This adjunction is to be understood as an analogue in the world of categories of the topolog-
ical adjunction between the reduced suspension and the loop space. In our terminology, the
desuspension corresponds to the loop space, and the reduced suspension corresponds to the re-
duced suspension. This is also analogous to the relation between the loop space and the reduced
suspension in topology.

Remark 140. In fact we even have a more precise result: Since the unit of the adjunction is the
identity, it exhibits SMCaTT as a coreflective subcategory of SCaTT. Moreover the essential image
of
x? is exactly the category SCaTT,•. So a way to understand our type theory MCaTT is that it

achieves a structure of category with families on SCaTT,•, which coincide with the structure on
SCaTT for all the operation that are defined in both structures.

5.2.5 Models of the type theory MCaTT.

The definition of the desuspension and reduced suspension operations that we have defined relate
very tightly the models of the theory MCaTT and the models of the theory CaTT.
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Reduced suspension acting on the models of CaTT. Given a model F : CaTT ! Set,
we define a functor

x?⇤F : MCaTT ! Set by precomposing with the functor
x?, hence we havex?⇤F (Γ) = F (

x?Γ) and
x?⇤F (�) = F (

x?�). Since both
x? and F preserve the context comprehension

on the nose, so does
x?⇤F , so

x?⇤F is a model of SMCaTT if and only if it preserves the terminal
object. But

x?⇤F (?) = F (D0), hence
x?⇤F is a model of SMCaTT if and only if F (D0) = {•},

that is if F 2 Mod
•
(SCaTT). This shows that the reduced suspension translation from MCaTT

to CaTT induces a functor
x?⇤ : Mod

•
(SCaTT) ! Mod(SMCaTT). Importantly, the reduced

suspension induces on the models an operation akin to the loop category.

Desuspension on the models of MCaTT. Similarly, for a model (F,�) : MCaTT ! Set,
and define the functor

?y⇤F : CaTT ! Set by precomposing with the functor
?y. Note that we

necessarily have
?y⇤F (D0) = F (

?yD0)

= F (?)

= {•}

so if
?y⇤F can be completed into a model of CaTT, this model is in Mod

•
(SCaTT). Consider a

pullback along a generating display map in the category SCaTT, it is then of the form

(Γ, x : A) Dn

Γ Sn�1

y

�A

If n > 0, then we have
?y⇤F (Γ, x : A) = F (

?y(Γ, x : A))

= F (
?yΓ, x :

?yA)
= (F (

?yΓ), x : �Γ(
?yA))

?y⇤F of the previous pullback square is the following square, that is again a pullback

(
?y⇤F (Γ), x : �Γ(

?yA))
?y⇤F (Dn)

?y⇤F (Γ)
?y⇤F (Sn�1)

y

??y⇤F (�A)

In the case of n = 0, the image of the previous square is the following square, that is again a
pullback ?y⇤F (Γ) {•}

?y⇤F (Γ) {•}

y

This shows that
?y⇤F preserves all pullback along display maps, and thus it defines a unique

model of CaTT. Note however that by composing the
?y and �, we get a natural transformation
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?y⇤� associating to each type Γ ` A in CaTT an element of Ty
?y⇤F (Γ), and to each term Γ ` t : A,

an element of Tm

?y⇤FΓ?y⇤�Γ(A)
. This natural transformation is not the one that makes

?y⇤F into a

model, but is isomorphic to it. Indeed, equipped with this natural transformation, the preser-
vation of context comprehension may not be strict for contexts of the form (Γ, x : ?). However,
since it makes the context comprehension strict for all other contexts,

?y⇤� coincide with the
transformation that makes

?y⇤F into a model on all types distinct from ? and all terms of type
distinct from ?. For the sake of simplicity, we just denote

?y⇤F the induced model of CaTT that
is necessarily in Mod

•
(SCaTT). This then defines a functor

?y⇤ : SMCaTT ! Mod
•
(SCaTT). The

desuspension induces on the models an operation similar to the looping.

Models of the category SMCaTT. We have now defined a pair of functors
?y⇤ and

x?⇤ between
the categories Mod(SMCaTT) and Mod

•
(SCaTT).

Theorem 141. The functors
?y⇤ and

x?⇤ define an equivalence of categories between Mod(SMCaTT)
and Mod

•
(SCaTT)

Proof. First, Proposition 137 implies that
x?⇤ �

?y⇤ =
�?y�

x?�⇤ = idSMCaTT

and proposition 138 shows that there is a natural transformation, obtained by whiskering
?y⇤ �

x?⇤ =
�x?�

?y�⇤ ) idMod
•
(SCaTT)

So it suffices to show that this natural transformation is a natural isomorphism, that is for any
F 2 Mod

•
(SCaTT) and all context Γ in CaTT

F (•Γ) : F (
x??yΓ) ! F (Γ)

is an isomorphism. We prove this property by induction on the context Γ.

– For the empty context ?, we necessarily have that F (?) = {•}, and since
x??y? = D0 and

F 2 Mod
•
(SCaTT), we also have that F (

x??y?) = {•}. Hence F (•∅) is the unique map
between the singleton to itself, which is an isomorphism.

– For a context of the form (Γ, x : ?), it is obtained as a (trivial) pullback, and the map
•(Γ,x:?) is obtained by universal property of the pullback, as follows

x??y(Γ, x : ?)

(Γ, x : A) D0

Γ ?

•Γ

x0

•(Γ,x:?)

⇡

x

y
⇡

?

Taking the image by F on this pullback yields another pullback in Set (since F is a model
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of CaTT), as follows

F
�x??y(Γ, x : ?)

�

F (Γ, x : A) {•}

FΓ {•}

F•Γ

!

F•(Γ,x:?)

F⇡

!

y
!

!

Since the square is a pullback, F⇡ is an isomorphism, and since by induction F•Γ is also
an isomorphism, necessarily F•Γ,x:? is an isomorphism.

– For a context of the form (Γ, x : A) where A is a type distinct from ?, the context is obtained
as a pullback, the context

x??y(Γ, x : A) is also a pullback and the substitution •(Γ,x:A) is
obtained by universal property as described in the following diagram which has the shape
of a cube whose faces are commutative and whose front and back face are pullbacks

x??y(Γ, x : A) Dn+1

(Γ, x : A) Dn+1

x??yΓ Sn

Γ Sn

x

⇡

•(Γ,x:A)

y

⇡

x

y

⇡

x??
??yA

•Γ

A

⇡

Taking the image by F of this diagram yields another cube whose faces are all commutative
square, and whose front and back square are again pullback squares, since as a model, F
preserves the pullbacks along the display maps (in the following figure, we have left implicit
most of the arrows, they are simply the image by F of the ones of the previous figure).

F (
x??y(Γ, x : A)) FDn+1

F (Γ, x : A) FDn+1

F (
x??yΓ) FSn

FΓ FSn

x

F•(Γ,x:A)

y

y

F•Γ

⇠

FA

By induction, the map F (•Γ) is an isomorphism, making the span defining F (Γ, x : A) and
the span defining F (

x??y(Γ, x : A)) isomorphic. This proves that the map F (•(Γ,x:A)) is also
an isomorphism, by uniqueness of the pullback up to isomorphism.
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A correspondence for free. Note that our general framework for globular theories shows that
the models of MCaTT are equivalent to the presheaves on Θmon preserving the sums and the
globular sums, and our syntactic translation using the desuspension and reduced suspension show
that the models of MCaTT are equivalent to Mod

•
(SCaTT). Composing these two equivalence

yields the following correspondence

Theorem 142. The category of sum and globular sum preserving presheaves on Θmon is equiv-
alent to the category of globular sum preserving presheaves on Θ1 which send Y(0) onto the
terminal object.

5.2.6 Interpretation

The way we have stated the equivalence may seem a bit surprising, to the reader familiar with
homotopy type theory, since having a single object is not a property that is expected to by
invariant by any good notion of equivalence of weak !-categories. However, we expect the stated
equivalence to lift to an equivalence between the monoidal weak !-categories and the weak !-
categories that are weakly equivalent to a weak !-category with only one object, when considering
all these up to weak equivalence, in their appropriate higher structure. Our intuition is that our
speculative notion of weak equivalence should let us characterize the weak !-categories that are
weakly equivalent to a weak !-categories with only one object as the weak !-categories whose
groupoidal core is 0-connected.

5.3 An alternative presentation of MCaTT

We have introduced the type theory MCaTT in the framework of a globular type theory. However,
relies on types in the theory CaTT together with the looping operation. We present here a more
standalone version, in which we give a direct combinatorial description of the introduction rules
for the terms. In order to achieve this, we provide a calculus for the contexts of the form

?yΓ,
with Γ a ps-context, together with an appropriate notion of types, terms and substitutions.

Intuitive description. In order to describe this new kind of contexts, we use the structure
of a list of contexts. Intuitively, starting with a ps-context such as the one represented on the
following picture

We compute its looping, as follows
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and remove the (�1)-cells in order to finally obtain the following list of ps-contexts

This operation is closely related to computing
?yΓ, the difference is that it does not produce

a single context, but a list of them, which we think of as encoding a product. This lets us
axiomatize directly which are the lists of contexts that are obtained in this way.

5.3.1 A framework for type theories with local exchange

Our aim is to present a type theory to compute the coherator for monoidal weak !-categories.
Contrary to the coherator for weak !-categories, this coherator has objects which admit auto-
morphisms, such as the globular set composed by only two 0-cells, as in the following diagram

• •

As a consequence, we need to change the structural rules for this type theory to eliminate these
automorphisms.

Lists of contexts. Our new structural rules for this type theory require us to change the
syntax and define new notions of contexts and substitutions, supported respectively by lists of
contexts and lists of substitutions. As we only use this syntax to describe the coherator for
monoidal categories, we call these new contexts and substitution respectively monoidal contexts
and monoidal substitutions. In the following, we always denote with an over lined character a
the lists and [] the empty list. We also respect our previous conventions, so that Γ denotes a
list of contexts, and � denotes a list of substitutions. We denote [a; b] for the list whose tail is
a and whose head is b. Moreover, given two lists a and b, we denote a@b the concatenation of
these two lists, and given a list a, we denote `(a) its length. Finally, given a non-empty list of
contexts Γ, we denote (Γ, x : A) the list of context whose tail is the tail of Γ, and whose head
is Γ, x : A where Γ is the head of Γ, and similarly, given a non empty list of substitutions �, we
denote h�, x 7! ti the substitution whose tail is the tail of � and whose head is h�, x 7! ti, where
� is the head of �.

Monoidal judgments. The type theory that we present has the regular notion of contexts,
types, terms and substitutions, to which we add an additional notion of contexts, types, terms and
substitutions. To distinguish the two kinds, we call the new ones with the adjective “monoidal”
as we use them to describe monoidal categories. Monoidal contexts are supported by lists of
regular contexts, and monoidal substitutions are supported by lists of regular substitutions,
whereas monoidal types and terms are supported by the same syntactic expression as regular
types and terms. We introduce four new kinds of judgments, that we call monoidal judgments
and are analogous to the regular judgment, but for the monoidal part of the theory

Γ ` Γ is a valid monoidal context
Γ ` A A is a valid monoidal type in Γ

Γ ` t : A t is a valid monoidal term of type A in Γ

∆ ` � : Γ � is a valid monoidal substitution from ∆ to Γ

We use similar notations for these judgments and for regular judgments, but they are distinct
judgments, we rely in the notation in the fact that the we can disambiguate by looking at the left-
hand side: a regular context indicates a regular judgment while a monoidal context indicates a
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monoidal judgment. We also introduce two kinds of substitutions that connect the monoidal part
of the theory to the regular part, one of them is supported by regular substitution expressions,
and the other one by a list of regular substitution expressions. We again give the associated
judgments for these new kinds of substitutions

∆ ` � : Γ � is a valid substitution from ∆ to Γ

∆ ` � : Γ � is a valid substitution from ∆ to Γ

Concatenation and action of substitutions. We define the operation of concatenation and
that we denote Π as a translation from the monoidal part of the theory to the regular part of
the theory: It consists in, given a list of contexts (resp. a list of substitutions), concatenate all
of its components to produce a single context (resp. a single substitution), and can be defined
inductively as follows

Π[] = ? Π[Γ;?] = ΠΓ Π[Γ; (Γ, x : A)] = (Π[Γ;Γ], x : A)

Π[] = hi Π[�; hi] = Π� Π[�; h�, x 7! ti] = hΠ[�; �], x 7! txi

Using this operation, we can define an action of the monoidal substitution on the types, terms
and regular substitutions by reducing it to the action of a regular substitutions

A[�] = A[Π�] t[�] = t[Π�] � � � = � �Π�

We also define the notation (x : A) 2 Γ as a shorthand for (x : A) 2 ΠΓ, and (x 7! t) 2 � as a
shorthand for (x 7! t) 2 Π�

Structural rules. To define our type theory, we have added an extra part on top of our theory,
that we call the monoidal part. This part is subject to structural rules similar to the structural
rules for the regular judgments. Since we are only interested in a type theory describing globular
sets with extra structure, we present here the type introduction rules together with the structural
rules. Our theory MCaTT satisfies, in addition to the structural rules of a cut-free type theory
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for the regular judgments, the following rules:

For monoidal judgments:

[] `
(mec)

Γ `

[Γ;?] `
(mc+)

[Γ;Γ] ` [Γ;Γ] ` A

[Γ, (Γ, x : A)] `
(mce)

where in the rule (mc+) we assume that x /2 Var([Γ;Γ])

Γ `

Γ ` ?

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t �!
A

u

Γ ` (x : A) 2 Γ

Γ ` x : A

[] ` [] : []
(ems)

∆ ` � : Γ ∆
0
`

∆@∆
0
` [�;

∆
hi] : [Γ;?]

(ms+)

∆@∆
0
` [�;

∆
�] : [Γ;Γ] [Γ

0
; (Γ, x : A)] ` ∆

0
` t : A[�;

∆
�]

∆@∆
0
` [�0;

∆
h�, x 7! ti] : [Γ; (Γ, x : A)]

(mse)

For substitutions between monoidal and regular contexts:
∆ `

∆ ` [] : []

∆ ` � : Γ ∆ ` � : Γ

∆ ` [�; �] : [Γ;Γ]

∆ `

∆ ` hi : ?

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)

Assumptions on term constructors. In this presentation, we have not given the introduc-
tion rules for term constructors, as these rules are not easy to state and we need some preparatory
work. However, the properties that we are going to study are independent of the term construc-
tors, and can thus be defined independently. However, we still require for the theory to be
well-behaved that the term constructors satisfy some properties, in particular, they must make
the following rule admissible

∆ ` � : Γ Γ ` t : A

∆ ` t[�] : A[�]

We also require that the term constructors are such that for all term t, we have t[id
Γ
] = t, where

id
Γ

is the monoidal substitution defined inductively as follows

id[] = [] id[Γ;Γ] = [id
Γ
; idΓ]

This condition implies that we also have for any type A the equality A[id
Γ
] = A.

Interpretation. We interpret the monoidal contexts along with their structural rules, as usual
contexts with extra structure added. A way to understand them is to picture them as contexts
that have two extension operation. The usual extension, that we still denote (Γ, x : A) still
behaves like the context extension, but we have added another extension that comes from the
“cons” operation of the lists. For instance [Γ; (x : ?)] defines a monoidal contexts, that is the
monoidal context Γ, extended by the variable x of type ? with the second extension operation.
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This extension has different properties, and in particular the order fundamentally matters, even
for non-dependent types. For instance there is no non-trivial isomorphism of the monoidal
context [(x : ?); (y : ?)], even though there is a non-trivial isomorphism of the context (x : ?, y : ?)
obtained by taking the substitution that exchanges x and y as follows

(x : ?, y : ?) ` hx 7! y, y 7! xi : (x : ?, y : ?)

Uniqueness of derivations. In this theory, every derivable judgment is derivable in a unique
way. Indeed, every rule corresponds to exactly one syntactic entity. There is however a rule that
could be applied in different ways: The rule (mse). Indeed given a list, it might decompose in
many ways into a concatenation of lists, and without further assumptions, several decompositions
may satisfy the premises of the rule. This is why we annotate the lists with the contexts in the
case of substitutions.

Categorical structure. Like for usual type theories, the contexts, together with the substi-
tutions form a category, for an appropriate notion of composition of substitutions, and identity
substitution. More precisely, we have introduced a formula to compose regular substitutions
expressions, and proved that the second of the two following rules is admissible. We admit that
the second one is also admissible.

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

This composition lets us also define the composition of a regular substitution expression with a
monoidal substitution expression on the left as follows

[] � � = [] [�, �] � � = [� � �; � � �]

and we admit that this definition makes the following rules admissible, as is the case in a regular
type theory

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

In this theory, monoidal substitutions also act on term expressions, and thus we can define a com-
position of a monoidal substitution expression with a regular substitution expression expression
on the left as follows

hi � � = hi h�, x 7! ti � � = h� � �, x 7! t[�]i

This composition yields well-defined expressions and we admit that the following rules are ad-
missible

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

Moreover, this composition also lets us define the composition of two monoidal substitutions
together, with the following formula

[] � � = [] [�; �] � � = [� � �; � � �]

Similarly, we admit that these definitions make the following rules admissible

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

∆ ` � : Γ Γ ` ⇠ : Ξ

∆ ` ⇠ � � : Ξ

185



Importantly, we have not given the index for a composition of two monoidal substitutions. In
fact, we can only state for now that there exists a correct indexing, without making it explicit.
However, we are introducing this theory to study monoidal ps-contexts that we introduce later
on and, which have only one possible indexing, so this definition becomes unambiguous.

Correctness of the concatenation. We have introduced the concatenation as an operation
on the syntax of the theory, we now show that it respects the derivability of the judgments.

Lemma 143. In the theory that we present the following results hold

– For any monoidal context Γ `, the judgment ΠΓ ` is also derivable.

– For any monoidal type Γ ` A, the judgment ΠΓ ` A is derivable.

– For any monoidal term Γ ` t : A, the judgment ΠΓ ` t : A is derivable.

– For any monoidal substitution ∆ ` � : Γ, the judgment Π∆ ` Π� : ΠΓ is also derivable.

– For any monoidal context Γ `, the substitution ΠΓ ` id
Γ
: Γ is a derivable substitution

from a regular context to a monoidal context.

Proof. We prove these results by mutual induction

Induction for monoidal contexts:

– For the monoidal context [], we have by definition Π[] = ?, and the rule (ec) gives a
derivation of ? `.

– For a monoidal context of the form [Γ;?], we have Π[Γ;?] = ΠΓ, and the induction case
for context gives a derivation of ΠΓ `.

– For a monoidal context of the form [Γ; (Γ, x : A)], by the induction case for context we
have a derivation of Π[Γ;Γ]. Moreover, we necessarily have a derivation of Γ ` A, hence
this provides a derivation of [Γ;Γ] ` A, and by the induction case for types, this proves
that Π[Γ;Γ] ` A. Applying the rule (ce) then gives a derivation of (Π[Γ;Γ], x : A) `.

Induction for monoidal types:

– For the type Γ ` ?, we necessarily have Γ `, which by the induction case for contexts gives
a derivation of ΠΓ `. Applying the rule (?-intro) then provides a derivation of ΠΓ ` ?.

– For the type Γ ` t �!
A

u, we necessarily have a derivation of Γ ` A, which by the induction

case for types provides a derivation of ΠΓ ` A. Moreover, we also have a derivation of
Γ ` t : A and of Γ ` u : A, which by the induction case for terms provides a derivation for
ΠΓ ` t : A and ΠΓ ` u : A. By applying the rule (!-intro), we then get a derivation of

ΠΓ ` t �!
A

u.

Induction for monoidal terms:

– For a variable term Γ ` x : A, we necessarily have Γ `, which by the induction case for
contexts shows that ΠΓ ` x : A. Moreover, we also have (x : A) 2 Γ, which implies
(x : A) 2 ΠΓ, hence by the rule (var), we have a derivation of ΠΓ ` x : A.

– For a generic term Γ ` t : A, by induction, we have a derivation of ΠΓ ` id
Γ
: Γ, and

our assumptions on terms constructors certifies that we have ΠΓ ` t[id
Γ
] : A[id

Γ
], hence

ΠΓ ` t : A
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Induction case for monoidal substitutions:

– For the monoidal substitution ∆ ` [] : [], we necessarily have a derivation of ∆ `, which
by the induction case for contexts gives a derivation of Π∆ `. Applying the rule (es) then
gives a derivation of Π∆ ` hi : ?.

– For a monoidal substitution of the form ∆ ` [�; hi] : [Γ;?], the induction case for substi-
tution gives a derivation of ∆ ` � : Γ.

– For a monoidal substitution of the form ∆ ` [�; h�, x 7! ti] : [Γ; (Γ, x : A)], we necessarily
have ∆ ` t : A, hence by the induction case for terms, this gives a derivation of Π∆ ` t : A.
Moreover, we have a derivation of ∆ ` � : Γ, and the induction case for substitution
provides a derivation of Π∆ ` Π� : ΠΓ. The rule (se) then applies and provides a
derivation of Π∆ ` hΠ�, x 7! ti : (ΠΓ, x : A)

For the identity monoidal substitution:

– For the monoidal context [], we have id[] = [], and the rule (ems) gives a derivation of
? ` [] : [].

– For a monoidal context of the form [Γ;?], we have id[Γ;∅] = [id
Γ
; hi]. Since [Γ;?] `, we

have derivation of Γ `, which by the induction case for contexts gives a derivation of ΠΓ `.
Moreover, the rule (es) applies to give a derivation of ΠΓ ` hi : ?. By the induction case
for the identity monoidal substitution, we also have a derivation of ΠΓ ` id

Γ
: Γ, hence

the rule (ms+) applies and gives a derivation of ΠΓ ` [id
Γ
; hi] : [Γ;?].

– For a monoidal context of the form [Γ; (Γ, x : A)], the induction case for the identity
monoidal substitution gives a derivation of the judgment Π[Γ;Γ] ` id[Γ;Γ] : [Γ;Γ], which

by weakening provides a derivation of (Π[Γ;Γ], x : A) ` id[Γ;Γ] : [Γ;Γ]. Moreover, we have

a derivation of (Π[Γ;Γ], x : A) ` x : A obtained by application of the rule (var). This lets
us build a derivation for the judgment

(Π[Γ;Γ], x : A) ` [id
Γ
; hidΓ, x 7! ti] : [Γ; (Γ, x : A)]

This proposition formalizes the fact that monoidal contexts are regular contexts with extra
structure, in the sense that it defines a way to forget this extra structure, and take any monoidal
judgment to a regular judgment.

The unit. Conversely, we define an associated operation to the concatenation, that we call
the unit (as it is the operation induced by the unit of the lists monad) and denote ⌘. It takes a
regular context (resp. a regular substitution) and produces a monoidal context (resp. monoidal
substitution) by associating the one-element list whose element is the argument.

⌘(Γ) = [Γ] ⌘� = [�]

We can also give an inductive definition of ⌘, that is useful for the proofs by induction

⌘(?) = [?] ⌘(Γ, x : A) = (⌘(Γ), x : A)

⌘(hi) = [hi] ⌘(h�, x 7! ti) = h⌘(�), x 7! ti

Lemma 144. This operation on the syntax respects the derivability:
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– for any context Γ `, the judgment ⌘(Γ) ` is derivable

– for any type Γ ` A, the judgment ⌘(Γ) ` A is derivable

– for any terms Γ ` t : A, the judgment ⌘(Γ) ` t : A is derivable

– for any substitution ∆ ` � : Γ, the judgment ⌘(∆) ` ⌘(�) : ⌘(Γ) is derivable

– the expression idΓ defines a substitution ⌘(Γ) ` idΓ

Proof. We prove these result by mutual induction

Induction for contexts:

– For the empty context ?, we have a derivation of ⌘(?) as follows

[] `
(mec)

[?] `
(mc+)

– For a context (Γ, x : A) `, we necessarily have a derivation of Γ ` A, which by the
induction case for types gives a derivation of ⌘(Γ) ` A, and since x /2 Var(Γ), we also have
x /2 Var(⌘(Γ)), which lets us apply the rule (mce) to get a derivation of (⌘(Γ), x : A) `.

Induction for types:

– For the type Γ ` ?, we have a derivation of Γ `, which gives by the induction case for
contexts a derivation of ⌘(Γ) `, and hence the rule (?-mintro) applies to give a derivation
of ⌘(Γ) ` ?.

– For the type Γ ` t �!
A

u, we necessarily have a derivation of Γ ` A, of Γ ` t : A and

of Γ ` u : A. By the induction cases for types and terms, these provide derivations of
⌘(Γ) ` A, of ⌘(Γ) ` t : A and of ⌘(Γ) ` u : A. The rule (!-mintro) then applies and gives

a derivation of ⌘(Γ) ` t �!
A

u.

Induction for terms:

– For a variable term Γ ` x : A, we have a derivation of Γ `, which by the induction case
for contexts gives a derivation of ⌘(Γ) `. Moreover, the condition (x : A) 2 Γ implies that
(x : A) 2 ⌘(Γ), and then by the rule (mvar), we have a derivation of ⌘(Γ) ` x : A.

– For a generic term Γ ` t : A, then we have the substitution ⌘(Γ) ` idΓ : Γ, and by our
assumption on term constructors, this ensures that we have ⌘(Γ) ` t[idΓ] : A[idΓ], hence
⌘(Γ) ` t : A.

Induction for substitutions:

– For the substitution ∆ ` hi : ?, we have a derivation of ∆ `, which by induction provides
a derivation of ⌘(∆) `. This lets us build a derivation of ⌘(∆) ` ⌘(hi) : ⌘(?) as follows

[] ` [] : []
(mes) ⌘(∆) `

⌘(∆) ` [[];[] hi] : [?]
(ms+)
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– For the substitution ∆ ` h�, x 7! ti : (Γ, x : A), we have a derivation of ∆ ` � : Γ, which
by the induction case for substitution gives a derivation of ⌘(∆) ` ⌘(�) : ⌘(Γ). Moreover,
we also have a derivation of ∆ ` t : A[�], which by the induction case for terms gives a
derivation of ⌘(∆) ` t : A[�], and since A[�] = A[⌘(�)] this lets us apply the rule (mse) in
order to get a derivation as follows

⌘(∆) ` [[];[] �] : ⌘(Γ) (⌘(Γ), x : A) ` ⌘(∆) ` t : A[⌘(�)]

∆ ` [[];[] h�, x 7! ti] : (⌘(Γ), x : A)
(mse)

Induction for the identity :

– For the context ?, we have by the induction case on context a derivation of ⌘(?) `, and
thus we have a derivation of ⌘(?) ` hi : ?

– For the context (Γ, x : A), we necessarily have a derivation of Γ `, so the induction case
for the identity gives a derivation of ⌘(Γ) ` idΓ : Γ, and since we also have a derivation of
⌘(Γ, x : A) ` by the induction case for contexts, we get by weakening (which we assume
to hold in this framework as well) a derivation of ⌘(Γ, x : A) ` idΓ : Γ. Moreover, we have
a derivation of ⌘(Γ, x : A) ` x : A by the induction case for terms, which lets us build a
derivation as follows

⌘(Γ, x : A) ` idΓ : Γ (Γ, x : A) ` ⌘(Γ, x : A) ` x : A

⌘(Γ, x : A) ` hidΓ, x 7! xi : (Γ, x : A)

It is immediate from the definition that the unit and the concatenation interact nicely, in the
sense that for all context Γ, we have Π(⌘(Γ)) = Γ.

5.3.2 Monoidal ps-contexts

Inference rules for monoidal ps-contexts. We call monoidal ps-contexts the lists of con-
texts that are obtained from a ps-context by the operation we just described, and we introduce
a new judgment in order to characterize them, as well as a judgment for partially constructed
monoidal ps-contexts as before.

Γ `ps Γ is a well-formed monoidal ps-context
Γ `ps x : A Γ is a monoidal ps-context with dangling variable x of type A

The derivation rules for the monoidal ps-contexts are reminiscent of the derivation rules of the
judgment for regular ps-contexts, but allow for more derivations.

[] `ps

(mpsnil)

Γ `ps

[Γ; (x : ?)] `ps x : ?
(mpss)

Γ `ps x : A

(Γ, y : A, f : x �!
A

y) `ps f : x �!
A

y
(mpse)

Γ `ps f : x �!
A

y

Γ `ps y : A
(mpsd)

Γ `ps x : ?

Γ `ps

(mps)

where in the rule (mpss) we assume that x is not a variable in Γ, and in the rule (mpse) we
assume that neither y nor f are variables in Γ. Intuitively, these rules simply describe lists of
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ps-contexts, indeed a derivation of Γ `ps can only be a succession of application of rule (mpss)

followed by (mps) with in between a proof that a component of Γ is a ps-context. The only added
constraint is that these ps-contexts have non-clashing variable names.

Source and target of a monoidal ps-context. We define operations of i-source and i-target
suited for monoidal ps-contexts. In this operation, we need to treat the case i = 0 separately, we
define in this case @�0 (Γ) = [] and @+0 (Γ) = [], and consider a number i > 0. Then we pose

@�i ([]) = [] @�i ([Γ; (x : ?)]) = [@�i (Γ); (x : ?)]

@�i (Γ, y : A, f : x �!
A

y) =

(
@�i (Γ) if dim y � i

(@�i (Γ), y : A, f : x �!
A

y) otherwise

For the i-source, and for the i-target, we pose

@+i ([]) = [] @+i ([Γ; (x : ?)]) = [@+i (Γ); (x : ?)]

@+i (Γ, y : A, f : x �!
A

y) =

8
><
>:

@+i (Γ) if dim y > i
(drop(@+i (Γ)), y : A) if dim y = i

(@+i (Γ), y : A, f : x �!
A

y) otherwise

where dropΓ is the operator drop applied to the last context in Γ

This lets us define the general notion of source for monoidal ps-contexts, which are useful for
defining the introduction rules for coherences

@�Γ = @�
dimΓ

Γ @+Γ = @+
dimΓ

Γ

Note that in the case of a monoidal ps-context of dimension 0, (i.e., a list of ps-contexts all
isomorphic to D0), this definition does not make sense and we then use the convention that
@�Γ = []. In general the case of the monoidal ps-context of dimension 0 is a limit case, and it
will appear in various places. Similarly, monoidal ps-contexts come equipped with a notion of
target @+Γ, defined the same way as the source from the corresponding notion on ps-contexts.
The following lemma is immediate by definition of the source and the target,

Lemma 145. Any monoidal ps-context Γ of dimension non-zero has the same length than its
source and its target `(Γ) = `(@�(Γ)) = `(@+(Γ)).

Term constructors. With the help of the monoidal ps-contexts, we can define new term
constructors, analogous to mop and mcoh, and that we denote mop0 and mcoh

0. Formally, we
define terms to be of the form mop0

Γ,A
[�], where Γ is a monoidal ps-context, A is a monoidal

type is Γ and � is a list of regular substitutions. Additionally, we require as a side condition

that either dimΓ = 0 and A = ?, or A is of the form t �!
B

u with Var(t) [ Var(B) = @�(Γ)

and Var(u) [ Var(B) = @+(Γ). When these conditions are met, we say that A and Γ satisfy
(Cmop0). Similarly, we add terms of the form mcoh

0
Γ,A

[�], where Γ is a monoidal ps-context, A
is a type expression, and � is a list of regular substitution expressions. Additionally, we also

require as a side condition that either Γ = [] and A = ?, or A is of the form t �!
B

u with
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Var(B)[Var(t) = Var(Γ) and Var(B)[Var(u) = Var(Γ), and when these condition are met, we
say that A and Γ satisfy (Cmcoh0). In addition to these term constructors, we have to define the
action of substitution and lists of substitutions, that we pose as follows

mop0
Γ,A

[�][�] = mop0
Γ,A

[� � �] mop0
Γ,A

[�][�] = mop0
Γ,A

[� � �]

mcoh
0
Γ,A

[�][�] = mcoh
0
Γ,A

[� � �] mcoh
0
Γ,A

[�][�] = mcoh
0
Γ,A

[� � �]

Note that these definition rely on the compositions, which themselves rely on the application of
the substitution on terms, hence making these two definitions mutually inductive. For the sake
of simplicity, and to present our motivation, we have chosen to present them separated, and we
admit that the properties that we have proved still hold when these definitions become mutually
inductive.

Term introduction rules. These new term constructors come with associated introduction
rules in order to create new monoidal terms, and hence new monoidal terms. This gives the
recursive structure of the theory. Formally, these rules mirror the term introduction rules of
CaTT, but in the monoidal fragment of the theory. These rules are the following

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mop0
Γ,A

[�]

whenever Γ and A satisfy (Cmop0), and

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mcoh
0
Γ,A

[�]

whenever Γ and A satisfy (Cmcoh0). Additionally, we add introduction rules for regular terms in
the theory, that are intuitively nothing else than a monoidal term that has been transferred to
a regular context. Formally these rules are the following

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mop0
Γ,A

[�]
(mop’)

whenever Γ and A satisfy (Cmop0), and

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mcoh
0
Γ,A

[�]
(mcoh’)

whenever Γ and A satisfy (Cmcoh0). We refer the reader to Appendix A.4 for a complete presen-
tation of all the rules of MCaTT0.

Substitutions satisfying the side conditions. Consider a monoidal substitution ∆ ` � ` Γ,
between two monoidal ps-contexts ∆ and Γ, such that the variables of � are either Var(∆), or
Var(@�(Γ)) or Var(@+(∆)). We admit that in this case, there is a unique way annotate the list
� such that ∆ ` � : Γ, so in this case we can forget the annotation and a monoidal substitution
is completely determined by a list of substitutions.
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5.3.3 Folding and flattening

Our objective is now to prove that theory MCaTT0 that we have defined is the same as the
theory MCaTT. More precisely, we consider the syntactic category of MCaTT0, that is the
category whose objects are regular contexts and whose morphisms are regular substitutions, and
show that there is an equivalence of category with families with the syntactic category of the
theory MCaTT. For this we consider syntactic operations on the theory MCaTT0.

Folding of a ps-context. We define translations between the monoidal ps-contexts and the
regular contexts, that relate our ad-hoc notion of monoidal ps-context with the notion of ps-
contexts that we have used in CaTT. We start by defining the operation of folding, that takes
any regular context to a monoidal context. Although this operation is well defined for any
context, we only study it in the case of a monoidal ps-contexts, as it does not have a clear
interpretation in a regular context. Intuitively it forgets the variables of dimension 0 in the
context and remove them, like the desuspension, but it also remembers their position by cutting
the context into a list of context in every place of a variable of dimension 0. We define this
operation inductively as follows

?] = [] (Γ, x : A)] =

⇢ ⇥
Γ];?

⇤
if A = ?

(Γ], x :
?yA) otherwise

Proposition 146. The association _] is well-defined, for every ps-context Γ `ps, the list Γ] is
a monoidal ps-context. In other words, the following rule is admissible

Γ `ps

Γ
] `ps

Proof. We prove by mutual induction that a derivation of the judgment Γ `ps x : ? induces a
derivation of Γ] `ps, and a derivation of the judgment Γ `ps x : A with A distinct from ?, induces
a derivation of Γ] `ps x :

?yA.

– Induction for Γ `ps x : ?:

– For the derivation of (x : ?) `ps obtained by the rule (pss), we have (x : ?)] = [], and
the rule (mpsnil) then gives a derivation of [] `ps.

– For a derivation of Γ `ps y : ? obtained by application of the rule (psd), we necessarily
have a derivation of the judgment Γ `ps f : x �!

?
y, which by the other induction case

gives a derivation of Γ] `ps f : ?. We can then apply the rule (mps) to get a derivation
of Γ] `ps as follows

Γ
] ` f : ?

Γ
] `ps

(mpss)

– Induction for Γ ` x : A:

– For a derivation of (Γ, y : ?, f : x �!
?

y) `ps f : x �!
?

y obtained by applying the

rule (pse), we necessarily have a derivation of Γ `ps x : ?, which by induction gives a
derivation of Γ] `ps. This lets us build a derivation of (Γ, y : ?, f : x �!

?
y)] `ps f : ?

by applying the rule (mpss) as follows

Γ
] `ps

[Γ], (f : ?)] `ps f : ?
(mpss)
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– For a derivation of (Γ, y : A, f : x �!
A

y) `ps f : x �!
A

y obtained by an application of

the rule (pse), with A distinct from ?, we necessarily have a derivation of Γ `ps x : A,
which by induction gives a derivation of Γ] `ps x :

?yA. This lets us build a derivation

of (Γ, y : A, f : x �!
A

y) `ps f :
?yx �!

A
y as follows

Γ
] `ps x :

?yA

(Γ], y :
?yA, f : x ��!?yA

y) `ps f : x ��!?yA
y

(mpse)

– For a derivation of Γ ` y : A obtained by the rule (psd), we necessarily have a

derivation of the judgment Γ `ps f : x �!
A

y, which by induction gives a derivation of

the judgment Γ] `ps f : x ��!?yA
y. We can then construct a derivation of the judgment

Γ] ` y :
?yA as follows

Γ
] ` f : x ��!?yA

y

Γ
] ` y :

?yA
(mpsd)

Flattening of a monoidal ps-context. We define an operation acting as the opposite of
the folding on ps-contexts , and which associate to each monoidal ps-context, a regular context
obtained by suspending all the components of the ps-context and gluing them together along
the new objects introduced by the suspension. We call this operation the flattening, and given

a monoidal ps-context Γ, we denote Γ
[

the result of the flattening on Γ. In order to define this
operation, we assume that have a countable list of fresh variables •0, •1, •2, . . ., that we can add to
the signature of the theory, to ensure their freshness. We then define by induction the flattening
of a generic monoidal context, but are only interested in the case of monoidal ps-context where
this operation has good properties.

[][ = (•0 : ?) [Γ;?][ = (Γ
[
, •l+1 : ?)

[Γ; (Γ, y : A)][ = ([Γ;Γ][, y : Σl,l+1A)

Where l is a shorthand for `(Γ), and the operation Σi,jA is defined of types as follows

Σ
i,j? = •i �!

?
•j Σ

i,j(x �!
A

y) = x ����!
Σi,jA

y

To simplify the notations, we simply write ΣiA instead of Σi,i+1A.

Proposition 147. For any monoidal ps-context Γ `ps, the context Γ
[

obtained this way is a
ps-context. In other words, the following rule is admissible

Γ `ps

Γ
[
`ps
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Proof. We prove by induction that a derivation of the judgment Γ `ps induces a derivation

of Γ
[
`ps •`(Γ) : ?, and a derivation of the judgment Γ

[
`ps x : A induces a derivation of

Γ
[
` x : Σ`(Γ)�1A.

Induction for the judgment Γ `ps:

– For the derivation [] `ps obtained by the rule (mpsnil), we have the following derivation
of [][ `ps •0 : ?

•0 : ? `ps •0 : ?
(pss)

– For the a derivation Γ `ps obtained by the rule (mps), we necessarily have a derivation
of the judgment Γ `ps x : ? and by the induction case for this judgment, this provides a

derivation of Γ
[
`ps x : •`(Γ)�1 �!

?
•`(Γ). This lets us build a derivation of Γ

[
`ps •`(Γ) : ?

by applying the rule (psd) as follows

Γ
[
`ps x : •`(Γ)�1 �!

?
•`(Γ)

Γ
[
`ps •`(Γ) : ?

(psd)

Induction for the judgment Γ `ps x : A:

– For a derivation [Γ, (x : ?)] ` x : ? obtained by application of the rule (mpss), we necessarily
have a derivation of Γ `ps, which by the induction case for this judgment gives a derivation

of Γ
[
`ps •`(Γ) : ?. We then construct a derivation of [Γ; (x : ?)][ `ps x : Σ`(Γ)? as follows

Γ
[
`ps •`(Γ)

Γ
[
, •`(Γ)+1 : ?, x : •`(Γ) �!?

•`(Γ)+1 `ps x : •`(Γ) �!?
•`(Γ)+1

(pse)

– For a derivation [Γ, (Γ, y : A, f : x �!
A

y)] `ps f : x �!
A

y obtained by applying the

rule (mpse), we necessarily have a derivation of [Γ;Γ] `ps x : A, which by induction
provides a derivation for [Γ;Γ][ `ps x : Σ`(Γ)A. This lets us construct a derivation of

[Γ; (Γ, y : A, f : x �!
A

y)][ `ps f : Σ`(Γ)(x �!
A

y) as follows

[Γ;Γ][ `ps x : Σ`(Γ)A

([Γ;Γ][, y : Σ`(Γ)A, f : x ����!
Σ`(Γ)A

y) `ps f : x ����!
Σ`(Γ)A

y

(pse)

– For a derivation Γ `ps y : A obtained by application of the rule (mpsd), we necessarily

have a derivation of a judgment on the form Γ `ps f : x �!
A

y. By induction, this provides

a derivation of the judgment Γ
[
`ps f : x ������!

Σ`(Γ)�1A

y. This lets us build a derivation of

Γ
[
`ps y : Σ`(Γ)�1A as follows

Γ
[
`ps f : x ������!

Σ`(Γ)�1A

y

Γ
[
`ps y : Σ`(Γ)�1A

(psd)
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We then apply this result to our derivation of Γ `ps, which gives a derivation of Γ
[
`ps •`(Γ) : ?.

Applying the rule (ps) gives a derivation of Γ
[
`ps

Monoidal ps-contexts vs. ps-contexts. The two operations of folding and flattening show
that the structure of monoidal ps-context is closely related to the one of ps-context, and in fact
we have the following result

Lemma 148. The folding and the flattening define a bijection between monoidal ps-contexts and
ps-contexts (up to ↵-equivalence).

This can by proved by following the proofs of Lemmas 146 and 147 and show that starting
from a derivation of Γ `ps x : A the induced derivation of Γ `ps y : B by applying folding and
then flattening has the same structure as the original derivation, and the other way around. We
admit this result here, as it is apparent on the combinatorial structure. An efficient way to follow
the derivations would be to give a system of equation computing a derivation of Γ] `ps from a

derivation Γ `ps as well as system of equation computing Γ
[
`ps from a derivation of Γ `ps, and

show that these systems are inverse to each other.

Concatenation of a monoidal ps-context.

Lemma 149. For every ps-context Γ the equality Π(Γ]) =
?yΓ.

Proof. We prove this by induction on the structure of the ps-contexts

– For the ps-context (x : ?), we have
?y(x : ?) = ? and (x : ?)[ = [], hence Π((x : ?)[) = ?.

– For a ps-context of the form (Γ, y : ?, f : x �!
?

y) with Γ a ps-context, we have

?y(Γ, y : ?, f : x �!
?

y) = (
?yΓ, f : ?)

(Γ, y : ?, f : x �!
?

y)[ = [Γ[; (f : ?)]

hence Π(Γ, y : ?, f : x �!
?

y)[ = (Π(Γ[), f : ?), and the induction shows that Π(Γ[) =
?yΓ,

hence the equality.

– For a ps-context of the form (Γ, y : A, f : x �!
A

y) with A distinct from ?, we have

?y(Γ, y : A, f : x �!
A

y) =
?yΓ, y :

?yA, f : x ! y

(Γ, y : A, f : x �!
A

y)[ = (Γ[, y :
?yA, f : x ! y)

thus Π((Γ, y : A, f : x �!
A

y)[) = Π(Γ[), y :
?yA, f : x ! y. Moreover, by induction we have

Π(Γ[), hence the equality.
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Source and target. These definition are just the induced notions of source and target from
the regular ps-context to the monoidal ps-contexts, under the bijection defined by folding and
flattening. More formally, we have the following lemma

Lemma 150. For every ps-context Γ and every i  dimΓ, the following equalities hold

(@�i (Γ))] = @�i (Γ])

(@+i (Γ))] = @+i (Γ])

Proof. We first treat separately the case i = 0, which is a special case.

– In this case the contexts @�0 (Γ) and @+0 (Γ) are both of dimension 0, and hence we have

(@�0 (Γ))] = [] (@+0 (Γ))] = []

on the other hand, we have by definition

@�0 (Γ]) = [] @+0 (Γ]) = []

We now assume that i > 0 and prove this result by induction on the structure of the ps-context
Γ.

– For the ps-context (x : ?), we have the following equalities

(@�i (x : ?))[ = ?[ (@+i (x : ?))[ = ?[

= [] = []

and on the other hand

@�i ((x : ?)[) = @�i ([]) @+i ((x : ?)[) = @+i ([])

= [] = []

– For a context of the form (Γ, y : ?, f : x �!
?

y), we have the equalities

(@�i (Γ, y : ?, f : x �!
?

y))] = (@�i (Γ), y : ?, f : x �!
?

y)]

= [(@�i (Γ))]; (f : ?)]

and

(@+i (Γ, y : ?, f : x �!
?

y))] = (@+i (Γ), y : ?, f : x �!
?

y)]

= [(@+i (Γ))]; (f : ?)]

and on the other hand

@�i ((Γ, y : ?, f : x �!
?

y)]) = @�i ([Γ]; (f : ?)])

= [@�i (Γ]); (f : ?)]

and

@+i ((Γ, y : ?, f : x �!
?

y)]) = @+i ([Γ]; (f : ?)])

= [@+i (Γ]); (f : ?)]

By induction, we have (@�i (Γ))] = @�i (Γ]) and (@+i (Γ))] = @+i (Γ]) which prove the desired
equalities
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– For a context of the form (Γ, y : A, f : x �!
A

y), we separate into three different cases

– If i  dim y, we have the following equalities

(@�i (Γ, y : A, f : x �!
A

y))] = (@�i (Γ))]

(@+i (Γ, y : A, f : x �!
A

y))] = (@+i (Γ))]

and on the other hand

@�i ((Γ, y : A, f : x �!
A

y)]) = @�i (Γ], y : A, f : x �!
A

y)

= @�i (Γ])

and

@+i ((Γ, y : A, f : x �!
A

y)]) = @+i (Γ], y : A, f : x �!
A

y)

= @+i (Γ])

By induction we then have (@�i (Γ))] = @�i (Γ]) and (@+i (Γ))] = @+i (Γ])

– If i = dim y, we have the following equalities

(@�i (Γ, y : A, f : x �!
A

y))] = (@�i (Γ))]

and

(@+i (Γ, y : A, f : x �!
A

y))] = (drop(@+i (Γ)), y : A)]

= (drop(@+i (Γ))], y :
?yA)

and on the other hand

@�i ((Γ, y : A, f : x �!
A

y)]) = @�i (Γ], y :
?yA, f : x ��!?yA

y)

= @�i (Γ])

and

@+i ((Γ, y : A, f : x �!
A

y)]) = @+i (Γ], y :
?yA, f : x ��!?yA

y)

= (drop(@+i (Γ])), y :
?yA)

By induction we have (@�i (Γ))] = @�i (Γ]) and (@+i (Γ))] = @+i (Γ]), and moreover an
induction shows that drop(∆)] = drop(∆]).
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– If i > dim y, we have

(@�i (Γ, y : A, f : x �!
A

y))] = (@�i (Γ), y : A, f : x �!
A

y)]

= ((@�i (Γ))], y :
?yA, f : x ��!?yA

y)

and

(@+i (Γ, y : A, f : x �!
A

y))] = (@+i (Γ), y : A, f : x �!
A

y)]

= ((@+i (Γ))], y :
?yA, f : x ��!?yA

y)

and on the other hand

@�i ((Γ, y : A, f : x �!
A

y)]) = @�i (Γ], y :
?yA, f : x ��!?yA

y)

= (@�i (Γ]), y :
?yA, f : x ��!?yA

y)

and

@+i ((Γ, y : A, f : x �!
A

y)]) = @+i (Γ], y :
?yA, f : x ��!?yA

y)

= (@+i (Γ]), y :
?yA, f : x ��!?yA

y)

By induction we have (@�i (Γ))] = @�i (Γ]) and (@+i (Γ))] = @+i (Γ]), which prove the
equalities.

Flattening of a monoidal judgment. In the particular case of a monoidal judgment in a
monoidal ps-context, we can extend the operation of flattening. In order to define this operation
in general, we need to provide two extra arguments, i and j that are natural number, and we
always assume that i < j. We denote A[i,j (resp. t[i,j , �

[
i,j) the result of a monoidal type A (resp.

monoidal term t, monoidal substitution �) by this operation, and we define it by induction as
follows

?[i,j = •i �!
?

•j (t �!
A

u)[i,j = t[i,j ��!
A[

i,j

u[i,j

x[i,j = x mop0
Γ,A

[�] = op
Γ
[
,A[ [�

[
n,m]

mcoh
0
Γ,A

[�] = coh
Γ
[
,A[ [�

[
n,m]

[][i,j = h•0 7! •ii [�;
∆
hi] = h�[

i,i+`(∆)
, •`(�) 7! •ji

[�;
∆
h�, x 7! ti][i,j = h[�;

∆
�][i,j , t

[
i+`(∆)+1,j

i
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Where for a type Γ ` A satisfying (Cmop0) or (Cmcoh0) we denote A[ for A[
0,`(Γ)

In order to prove the correctness of the flattening operation, we introduce the notion of (i, j)-
fullness of a monoidal type, a monoidal term or a monoidal substitution. We define this notion
by mutual induction for types and terms:

– A monoidal type ∆ ` A is (i, j)-full if it is either the type ?, or of the form t �!
B

u with

both the terms ∆ ` t : B and ∆ ` u : B that are (i, j)-full.

– A monoidal term ∆ ` t : A is (i, j)-full if Var(t) [ Var(A) contains variables from all the
contexts at the indices i, i+ 1, . . . , j � 1 in ∆, and only from those.

A substitution ∆ ` � : Γ is said to be (i, j)-full if the terms composing it contain all variables
from the contexts at the indices i, i+ 1, . . . , j � 1 in ∆, and only from those.

Lemma 151. The notion of (i, j)-fullness is well-behaved in ps-contexts, to allow for inductive
proofs

– The type ∆ ` t �!
A

u is (i, j)-full in a monoidal context ∆ if and only if the type A and the

terms t and u are (i, j)-full

– Given two monoidal ps-contexts ∆ and [Γ; (x : ?)], the monoidal substitution

∆ ` [�;
∆

0 hx 7! ti] : [Γ; (x : ?)]

is (i, j)-full if and only if � is (i, `(∆
0
))-full and t is (`(∆

0
), j)-full

– Given two monoidal ps-contexts ∆ and [Γ; (Γ, y : A, f : x ! y)], the monoidal substitution

∆ ` [�;
∆

0 h�, y 7! t, f 7! ui] : [Γ; (Γ, y : A, f : x ! y)]

is (i, j)-full if and only if [�;
∆

0 �] is (i, j)-full and t and u are (`(∆
0
), j)-full

Proof. By definition, of (i, j)-fullness, the monoidal type ∆ ` t �!
A

u is (i, j)-full if and only if

the monoidal type A and the monoidal terms t and u are (i, j)-full. The second property comes
from the fact that � can only contain variables in the contexts before ∆0, and t can only contain
variables from the context starting from ∆0, but they must together contain contexts from all
contexts between i and j. The last property combines these two arguments: The substitution �
and the terms t and u can only ever contain variables starting from contexts starting from ∆

0
, but

together they have to contain variables from all contexts between `(∆
0
) and j. The connectedness

of the ps-context (Γ, y : A, f : x ! y) then implies that all the terms of h�, y 7! t, f 7! ui contain
variables from all contexts between `(∆0) and j

Lemma 152. For any type ∆ ` A satisfying (Cmop0) (resp. satisfying (Cmcoh0)) the flattened

pair (∆
[
, A[

0,`(∆)
) satisfies (Cop) (resp. satisfies (Ccoh)).
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Proof. Consider a type ∆ ` t �!
A

u satisfying (Cmop0) and denote l = `(∆), we have

Var(@�(∆
[
)) = Var(@�(∆)[) by Lemma 150

= Var(@�(∆)) [ {•0, . . . , •l}

Moreover, by assumption Var(t) [ Var(A) contains all variables of @�(∆), hence it contains a
variable xi of dimension 0 from each of the contexts ∆i, after translations, each of the xi has
type •i ! •i+1, hence all of these variables appear in A and hence

Var(t[) [Var(A[) = Var(t) [Var(A) [ {•0, . . . , •l�1}

We can perform a symmetric reasoning for Var(u) [ Var(A). If we consider the type ∆ ` ?

satisfying (Cmop0), we check directly that Var(@�(∆
[
)) = {•0, •l�1} = Var(?[). The case for a

term ∆ ` A satisfying (Cmcoh0) is similar to the first case.

Lemma 153. The operation _[ respects the action of monoidal substitutions: Given a monoidal
substitution �,

– for any type Γ ` A which is (0, `(Γ))-full and substitution ∆ ` � : Γ which is (i, j)-full, we
have A[�][i,j = A[

0,`(Γ)
[�[i,j ]

– for any term t which is (a, b)-full in Γ, we have t[�][ia,jb = t[a,b[�
[
i,j ], where ia is the minimum

index of the variables of ∆ that appears in � after the index a and jb is the maximal index
of the variables of ∆ appearing in � before the index b.

– for any monoidal substitution ⇠ which is (a, b)-full in Γ we have (⇠ � �)[ia,jb = ⇠
[

a,b � ⇠
[

i,j

where ia and jb are defined as in the previous case

Proof. We prove this by mutual induction

Induction for monoidal types:

– For the type ?, we have

(?[�])[i,j = •i �!
?

•j

?[
0,`(Γ)

[�[i,j ] = •0[�
[
i,j ] �!

?
•`(Γ)[�

[
i,j ]

Since � is (i, j)-full, we have (•0 7! •i) 2 �[i,j and (•`(Γ) 7! •j) 2 �[i,j , which proves the
equality.

– For the type t �!
A

u, we have

((t �!
A

u)[�])[i,j = t[�][i,j ����!
A[�][i,j

u[�][i,j

(t �!
A

u)[
0,`(Γ)

[�[i,j ] = t[
0,`(Γ)

[�[i,j ] ��������!
A[

0,`(Γ)
[�[

i,j ]
u[
0,`(Γ)

[�[i,j ]

By Lemma 151, A, t and u are all (0, `(Γ))-full, hence the induction applies and shows the
equality.
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Induction for monoidal terms:

– For a variable term x, x being (a, b)-full necessarily implies that b = a + 1. Denote
t = x[�], then we have (x 7! t) 2 �. By definition of ia and jb, we then have so necessarily
(x 7! t[ia,jb) 2 �[i,j . This shows that t[ia,jb = x[�[i,j ].

– For a term of the form Γ ` mop0
Ξ,A[⇠], we have

mop0Ξ,A[⇠ � �]
[
ia,jb

= opΞ[,A[ [(⇠ � �)[ia,jb ]

(mop0Ξ,A[⇠])
[
0,`(Γ)

[�[i,j ] = opΞ[,A[ [⇠
[

0,`(Γ) � �
[
i,j ]

and by induction this shows that the equality

– The case for the term Γ ` mcoh
0
⇠,A[⇠] is identical.

Induction for monoidal substitutions:

– For a substitution of the form [], the (a, b)-fullness condition implies that Γ = [] and a = b,
and hence � = [] and i = j, then we have

([] � [])[i,i = h•a 7! •ii

[][a,a � []
[
i,i = h•a 7! •ai � h•a 7! •ii

Hence these two expressions are equal.

– For a substitution of the form [⇠;
Γ
0 hi],

([⇠;
Γ
0 hi] � �)[ia,jb = h(⇠ � �)[ia,jb , •`(⇠) 7! •jbi

[⇠
Γ
0hi][a,b � �

[
i,j = h⇠

[

a,b � �
[
i,j , •`(⇠) 7! •b[�

[
i,j ]i

By Lemma 151, the induction applies, and by definition of jb we have •b[�
[
i,j ] = •jb . This

implies the equality.

– For a substitution of the form [⇠;
Γ
0 h⇠, x 7! ti], we have the equalities

([⇠;
Γ
0 h⇠, x 7! ti] � �)[ia,jb = h[⇠ � �; ⇠ � �][i,j , x 7! t[�][z,jbi

([⇠;
Γ
0 h⇠, x 7! ti][a,b � �) = h[⇠; ⇠][a,b � �, x 7! t[

a+`(Γ
0
)+1,b

[�i,j ]i

where � is of the form [_;
∆

0 _]. We admit that the index z is the appropriate index

corresponding to a + `(Γ
0
) + 1 for the induction for terms applies. The induction for

substitutions also applies and gives the result.

Lemma 154. The general flattening operation preserves the derivability of monoidal judgment
in a monoidal ps-context: For a monoidal ps-context ∆ with two indices 0  i  j  `(∆), the
following hold

– For any type ∆ ` A, which is (i, j)-full, we have the derivation of ∆
[
` A[i,j

– For any term ∆ ` t : A which is (i, j)-full, we have a derivation of ∆
[
` t[i,j : A

[
i,j
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– For any substitution ∆ ` � : Γ which is (i, j)-full we have a derivation of ∆
[
` �[i,j : Γ

[

Proof. First note that by hypothesis, we have ∆ `ps, hence by Lemma 147 and Proposition 31

give a derivation of ∆
[
` We prove these results by mutual induction.

Induction for types:

– For the type ∆ ` ?, since i, j  `(∆), we have (•i : ?) 2 ∆
[

and (•j : ?) 2 ∆
[
, hence

rule (var) applies twice and gives derivations of ∆
[
` •i : ? and ∆

[
` •j : ?. We can then

apply the rule (!-intro) to give a derivation of ∆
[
` •i �!

?
•j .

– For the type ∆ ` t �!
A

u, we have a derivation of ∆ ` A, of ∆ ` t : A and of ∆ ` u : A, and

since the type is (i, j)-full, so are A, t and u be Lemma 151. Then, by the induction cases

for types and terms a derivation of ∆
[
` A[i,j , of ∆

[
` t[i,j : A[i,j and of ∆

[
` u[i,j : A[i,j .

These let us apply the rule (!-intro) to give a derivation of ∆
[
` t[ ��!

A[
u[.

Induction for terms:

– For a variable term ∆ ` x : A, since we have ∆
[
`, it suffices to check that x belongs to

∆
[

with the appropriate type. Since we have (x : A) 2 ∆, there exists a index k such that
(x : A) belongs the to context in k-th position in the list ∆, and then x being (i, j)-full

implies that i = k and j = k + 1. Then by definition of the operation ∆
[
, the association

(x : A[k,k+1) 2 ∆
[
, and hence the rule (var) applies to give a derivation of ∆

[
` x : A[k,k+1.

– For the term ∆ ` mop0
Γ,A

[�] : A[�], since A satisfies (Cop) it is necessarily (0, `(∆))-full

and we have by the induction case for types that Γ
[
` A[, and by Lemma 152, Γ

[
, A[

satisfy (Cop). Moreover, we have a derivation of ∆ ` � : Γ, and the condition, and since
Var(()mop0

Γ,A
[�]) = Var(�), � is (i, j)-full, so by the induction case for substitutions, we

have a derivation of ∆
[
` �[i,j : Γ

[
. The rule (mop’) then applies to give a derivation of

∆
[
` op

Γ
[
,A[ : A[[�[i,j ]. By Lemma 153, we also have A[[�[i,j ] = (A[�])[i,j which gives the

result.

– The case for a term ∆ ` mcoh
0
Γ,A

[�] : A[�] is exactly similar: Necessarily Γ
[
` A[ is

derivable and satisfies (Ccoh), and ∆
[
` �[ : Γ[ is derivable, thus the rule (mcoh’) applies,

and Lemma 153 gives the result.

Induction for substitutions:

– For the empty substitution ∆ ` [] : []. Since the substitution [] has no variable and is

(i, j)-full, it implies i = j < `(∆), so we have (•i : ?) 2 ∆
[
. Since we also have a derivation

of ∆
[
`, the rule (var) gives a derivation of ∆

[
` •0 : ?, and we can then construct a

derivation of ∆
[
` [][0,0 : [][ as follows

∆ `

∆ ` hi : ?
(es) (•0 : ?) ` ∆ ` •0 : ?

∆ ` h•0 7! •0i : (•0 : ?)
(se)
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– For the substitution ∆ ` [�; hx 7! ti] : [Γ;
∆

0 (x : ?)], we denote l for `(∆
0
) since by

hypothesis this substitution is (i, j)-full, Lemma 151 shows that � is (i, l)-full, and that
t is (l, j)-full in ∆. Hence by the induction case for substitutions, we get a derivation of

∆
[
` �[i,l : Γ

[
. For simplification, we denote k = `(Γ). Since by definition j < `(∆), we

necessarily have (•j : ?) 2 ∆, and by the induction case on context we have a derivation

of ∆
[
`. This lets us build a derivation as follows

∆
[
` �[i,l : Γ

[
(Γ
[
, •k : ?) `

∆
[
` (•j : ?) 2 ∆

∆
[
` •j : ?

(var)

∆
[
` h�[i,l, •k 7! •ji : (Γ

[
, •k : ?)

(se)

Moreover, the induction case for terms applies and gives a derivation of ∆
[
` t[l,j : •l ! •j ,

and since we also have •k�1[h�
[
i,l, •k 7! •ji] = •l and •k[h�

[
i,l, •k 7! •ji] = •j , this lets us

build the following derivation

∆ ` h�[i,l, •k 7! •ji : (Γ
[
, •k : ?) (Γ

[
, •k : ?, x : •k�1 �!

?
•k) ` ∆

[
` t[l,j : •l �!

?
•j

∆
[
` h�[i,l, •k 7! •l, x 7! t[l,ji : (Γ

[
, •k : ?, x : •k�1 �!

?
•k)

– For the substitution ∆ ` [�;
∆

0 h�, y 7! t, f 7! ui] : [Γ; (Γ, y : A, f : x �!
A

y)], denote

l = `(∆), then since the substitution is (i, j)-full, so is the substitution [�; �], and more-
over, the terms t and y are necessarily (l, j)-full by Lemma 151. Hence, by the induc-

tion case for substitutions, we have a derivation of ∆
[
` [�; �][ : [Γ;Γ][, the induc-

tion case for terms gives a derivation of ∆
[
` t[l,j : (A[�; �])[l,j , and one can check that

(A[�; �])[l,j = (Σk�1,kA)[[�; �][i,j ], this lets us build the following derivation

∆
[
` [�; �][i,j : [Γ;Γ]

[ [Γ;Γ][, y : Σk�1,kA ` ∆
[
` t[l,j : A[�; �]

[
l,j

∆
[
` h[�; �][i,j , y 7! t[l,ji : ([Γ;Γ]

[, y : Σk�1,kA)
(se)

The induction case for terms also provides a derivation of ∆
[
` u[l,j : t0[l,j �����!

A[�:�][
l,j

t[l,j ,

where t0 = x[�; �]. We then again use the equality (Σk�1,kA)[[�; �][i,j ] = A[�; �][l,j to get
the following derivation

∆
[
` h[�; �][i,j , y 7! t[l,ji : Γy Γf ` ∆

[
` u[l,j : t

0[
l,j �����!

A[�;�][
l,j

t[l,j

∆
[
` h[�; �][i,j , y 7! t[l,j , f 7! u[l,ji : Γf

Where we denote Γy to be the context ([Γ;Γ][, y : Σk�1,kA) and Γf to be the context

([Γ;Γ][, y : Σk�1,kA, f : x �����!
Σk�1,kA

y)

Note that this mutual induction is not structurally well-formed, as it requires to prove the
induction hypothesis for any type in any given monoidal ps-context in the case of terms. However

203



this always decreases the depth of the terms, hence we can layer this induction by depth and
dimension, in order to prove that it is well-formed, similarly to the technique we have used
in Proposition 43 Importantly, along this proof, we have showed that given a monoidal type

Γ ` A satisfying (Cmop0) (resp. (Cmcoh0)), we have a type Γ
[
` A[ satisfying (Cop) (resp. (Ccoh)).

Moreover, it is immediate from the inductive definition that given two monoidal types Γ ` A and
Γ ` B both satisfying (Cmop0) or (Ccoh), if A[ = B[, then A = B, hence _[ defines a injection

from moniodal types in Γ satisfying (Cmop0) (resp. satisfying (Cmcoh0)) to types in Γ
[

satisfying
(Cop) (resp. satisfying (Ccoh)).

The general folding operation. We now show that this association in fact defines a bijection,

that is we consider a type ∆
[
` A satisfying (Cop) (resp. (Ccoh)), there exists a monoidal type

∆ ` B satisfying (Cmop0) (resp. (Cmcoh0)) such that B[ = A. We call this type A the folding of
A and denote it A], and we define it by induction as follows

?] = ? (t �!
?

u)] = ? (t �!
A

u)] = t] ��!
A]

u]

x] = x (opΓ,A[�]) = mop0
Γ],A] [�

]] (cohΓ,A[�])
] = mcoh

0
Γ],A] [�]]

For the substitutions, we only define this operation in the case of a derivable whose target is a
ps-context

For the substitution ∆ ` hx 7! ti : (x : ?):

hx 7! ti] = []

For the substitution ∆ ` h�, y 7! t, f 7! ui : (Γ, y : A, f : x �!
A

y)

h�, x 7! ti] =

⇢
[�];∆t

hf 7! u]i] if A = ?

h�], y 7! t], f 7! u]i otherwise

where in the first case, t is a term of dimension 0, hence it is necessarily a variable of ∆, and we
denote ∆t the context obtained from ∆ by removing all the variables that are after t.

Lemma 155. We have the following results relating the introduction rules for the terms in CaTT

with the introduction rules for the terms in MCaTT
0

– For any type Γ ` A derivable in a ps-context Γ in the theory CaTT satisfying (Cop), the
monoidal ps-context Γ] and the type A] satisfy (Cmop0).

– For any type Γ ` A derivable in a ps-context Γ in the theory CaTT satisfying (Ccoh), the
monoidal ps-context Γ] and the type A] satisfy (Cmcoh0).

Proof. We separate the two cases, for the side conditions of the two term constructors.

– Consider a ps-context Γ ` together with a type Γ ` A satisfying (Cop) in the theory CaTT.

Then by definition of (Cop), we necessarily have A = t �!
B

u.
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– If B = ?, then A] = ?. Moreover, necessarily t and u are derivable and of type ? in Γ,
hence t and u are variables. The condition (Cop) then becomes Var(@�(Γ)) = {t} and
Var(@+(Γ)) = {u}, hence @�(Γ) and @+(Γ) are of dimension 0, so Γ is of dimension 1,
and thus Γ] is of dimension 0 in MCaTT0. Hence (Γ], A]) satisfy the condition (Cmop0)

– If B is not the type ?, then A] = t] ��!
B]

u]. Then since @�(Γ]) = (@�(Γ))], we have

Var(@�(Γ])) = Var(@�(Γ))�V0, where V0 is the set of variables of dimension 0 in the
context Γ. Similarly, Var(@+(Γ])) = Var(@+(Γ)) � V0, and Var(B]) = Var(B) � V0,
Var(t]) = Var(t) � V0, Var(u]) = Var(u) � V0. The equalities between sets of vari-
ables given by (Cop) then gives the equalities Var(t]) [ Var(B]) = Var(@�(Γ])) and
Var(u]) [Var(B]) = Var(@+(Γ])), which shows the condition (Cmop0).

– Consider a ps-context Γ ` together with a type Γ ` A satisfying (Ccoh), then we can

decompose A = t �!
B

u.

– If B = ? then the condition (Ccoh) imply that both t and u are the same variable
x, and that Γ is actually the ps-context (x : ?). In this case, the folded judgment is
[] ` ?, which by definition satisfies (Ccoh).

– If B is not the type ?, then we have the equalities between the set of variables

Var(Γ]) = Var(Γ)� V0 Var(B]) = Var(B)� V0

Var(t]) = Var(t)� V0 Var(u]) = Var(u)� V0

where V0 is the set of variable of dimension 0 in Γ, The condition (Ccoh) then implies the
equalities Var(t]) [Var(B]) = Var(Γ]) and Var(u]) [Var(Γ]), which imply (Cmcoh0).

In order to prove the correctness of the folding operation, we introduce a notion that is analogous

to the (i, j)-fullness of a monoidal type, for a regular type in a context of the form ∆
[
. We say

that a type ∆ ` A (resp. a term ∆
[
` t : A or a substitution ∆

[
` � : Γ) is full if in contains at

least a variable from each of the contexts in ∆. Contrarily to our prior convention, the type ? is
now not full in any context.

Lemma 156. The fullness condition allows to perform induction, more precisely, we have

– The type ∆
[
` t �!

A
u with A distinct from ? is full if and only if A, t and u are full.

– The substitution (∆k@∆>k)
[ ` [�;

∆k
�] : Γ is full if and only if Γ is full and all the

terms of Gg are full for ∆>k

Proof. If the type t �!
A

u, then it contains in particular a variable of dimension 0 in ∆ which

for each of the contexts in ∆. these variables are of dimension 1 in ∆
[

and since by assumption
A is not ?, they are necessarily of degree strictly positive, hence they appear in Var(A), Var(t)
and Var(u). Similarly, If the substitution (∆k@∆>k)

[ ` [�;
∆k

�] : Γ is full in ∆k, then since

all the variables in Var(�) are in ∆>k, necessarily � contains at least a variable from each of
the contexts in ∆k, so it is full for this context. Moreover, since � contains at least a variable
from each of the context in ∆>k, it has to contain the variables •k and •`(∆) and these are the
only variables of dimension 0 possible in �. Hence all the terms from � have to contain a math
between these variables, and such a path is necessarily full in ∆>k
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Lemma 157. The folding respects the action of substitutions. More precisely, given a substitu-
tion ∆ ` � : Γ

– For every type Γ ` A, we have A[�]] = A][�]]

– For every term Γ ` t : A of dimension non-zero we have t[�]] = t][�]].

– For every substitution Γ ` ⇠ : Ξ whose target is a ps-context, we have (⇠ � �)] = ⇠] � �].

Proof. We prove these by mutual induction

Induction for types:

– For the type Γ ` ?, we have

?[�]] = ?

?[�]] = ?

– For the type Γ ` t �!
?

u, we have

((t �!
?

u)[�])] = ?

(t �!
?

u)][�] = ?

– For the type Γ ` t �!
A

u with A distinct from ? we have

((t �!
A

u)[�])] = t[�]] ���!
A[�]]

u[�]]

(t �!
A

u)][�]] = t][�]] ����!
A][�]]

u][�]]

and the result is given by induction, since the target of ⇠ is the ps-context Ξ

Induction for terms:

– For a variable term Γ ` x : A, denote t = x[�], such that (x 7! t) 2 �. Then since x is of
dimension non-zero, we necessarily have (x 7! t]) 2 �], which proves that t] = x[�]].

– For a term of the form Γ ` opΞ,A[⇠] : A[⇠], we have

(opΞ,A[⇠][�])
] = mop0

Ξ],A] [(⇠ � �)]]

(opΞ,A[⇠])
][�]] = mop0Ξ;A[⇠

]][�]]

And the equality comes from the induction.

– The case for a term of the from cohΞ,A[⇠] is exactly identical.

Induction for substitutions:

– For the substitution Γ ` hx 7! ti : (x : ?), we have

(hx 7! ti � �)] = []

hx 7! ti] � �] = []
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– For the substitution Γ ` h⇠, y 7! t, f 7! ui : (Ξ, y : ?, f : x ! y), we have

(h⇠, y 7! t, f 7! ui � �)] = [(⇠ � �)]; hf 7! u[�]]i]

h⇠, y 7! t, f 7! ui] � �] = [⇠] � �]; f 7! u][�]]]

The induction for substitutions and for terms then gives the equality.

– For the substitution Γ ` h⇠, y 7! t, f 7! ui : (Ξ, y : A, f : x ! y) with A distinct from ?,
we have

(h⇠, y 7! t, f 7! ui � �)] = h(⇠ � �)], y 7! t[�]], f 7! u[�]]i

h⇠, y 7! t, f 7! ui] � �] = h⇠] � �], y 7! t][�]], f 7! u][�]]i

The induction cases for substitutions and terms then give the equality.

Lemma 158. The folding operation preserves the derivability of the full judgments in ps-contexts.

– For any full type ∆
[
` A, we have a derivation of ∆ ` A]

– For any full term ∆
[
` t : A, we have a derivation of ∆ ` t] : A]

– For any full substitution ∆
[
` � : Γ, such that Γ is a ps-context, we have a derivation of

∆ ` �] : Γ].

Proof. We suppose given a monoidal ps-contexts ∆ `ps, and proceed by mutual induction

Induction for types: Note that the type ? is not full, so the induction is in fact the following

– For the type ∆
[
` t �!

?
u, we have A] = ?. Since we have a derivation of ∆ ` the

rule (?-intro) gives a derivation of ∆ ` ?.

– For the type ∆
[
` t �!

A
u with A distinct from ?, we necessarily have derivations of the

judgments ∆
[
` A, ∆

[
` t : A and ∆

[
` u : A. Since t �!

A
u are full by Lemma 156, so

are A, t and u. Hence the induction case for types gives a derivation of ∆ ` A] and the
induction case for terms provides a derivation of ∆ ` t] : A] and of ∆ ` u] : A]. This lets

us apply the rule (!-intro) to get a derivation of ∆ ` t] ��!
A]

u].

Induction for terms:

– For a variable term ∆ ` x : A which is full, necessarily ∆ is a single context [∆], with
(x : B) 2 ∆, such that B[

0,1 = A. Hence by definition of the folding, we have A] = B, and
hence (x : A]) 2 ∆. The rule (var) then applies to give a derivation of ∆ ` x : A].

– For the term ∆ ` opΓ,A[�], then we necessarily have a derivation of Γ ` A, with A

satisfying (Cop). Up to renaming of the variables, we have that Γ]
[
= Γ, and we denote

A0 the type obtained from A by renaming the variables accordingly, so that we have a

derivation of Γ]
[
` A0 satisfying (Cop). This implies in particular that A0 is full for

the monoidal ps-context Γ], and hence the induction case for types gives a derivation of
Γ] ` A0], and by Lemma 155, this satisfies (Cmop0). Moreover, since the only variables
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in A that were renamed to get A0 are of dimension 0, we have that A] = A0], hence we
have in fact a derivation of Γ] ` A]. Moreover, since the variables of the terms are exactly
the variables of �, and the term is full, so is �, hence the induction case for substitution
gives a derivation of ∆ ` �] : Γ]. The rule (mop’) then applies and gives a derivation of
∆ ` mop0

Γ],A] [�
]] : A][�]]. Then result is then given by Lemma 157

– The case for a term of the form cohΓ,A[�] is exactly identical.

Induction for substitutions:

– For the substitution ∆ ` hx 7! ti : (x : ?),we have by definition hx 7! ti] = [] and

(x : ?)] = []. Then t is a term of dimension 0 in ∆
[
, hence it is a variable, which cannot

appear in ∆. The fullness condition then implies that ∆ = [], and the rule (mes) gives a
derivation of [] ` [] : [].

– For a substitution of the form ∆ ` h�, y 7! t, f 7! ui : (Γ, y : ?, f : x �!
?

y), we have the

following equalities

h�, y 7! •k, f 7! ui] = [�];
∆k

hf 7! u]i]

(Γ, y : ?, f : x �!
?

y)] = [Γ]; (f : ?)]

where we denote ∆k the list constituted in the k first elements of the list ∆. The fullness

condition implies that � is full for ∆
[

k, and we necessarily have a derivation of ∆
[

k ` �,
hence the induction case for substitution gives a derivation of ∆k ` �] : Γ]. Moreover,
we have ∆ `, that we can split into ∆ = ∆k@∆>k, and we necessarily have ∆>k `, so
we can build the following derivation

∆k ` �] : Γ : ] ∆>k

∆ ` [�]; hi] : [Γ];?]
(ms+)

Moreover, we necessarily have a derivation of ∆
[
` u : x[�] �!

?
t, and since it does not use

variables of ∆k, u is full in ∆>k. More precisely, we can rename the variables of dimension

0 of u by the transformation •n  •n�k and get the term u0, which is such that ∆
[

>k ` u0

and u0 is full. Applying the induction case for terms, we have a derivation of ∆>k ` u0] : ?,
and since u0] = u], we have in fact a derivation of ∆>k ` u] : ?. This lets us build the
following derivation

∆ ` [�];
∆k

hi] [Γ]; (f : ?)] ` ∆>k ` u] : ?

∆ ` [�];
∆k

hf 7! u]i] : [Γ]; (f : ?)]
(mse)

– For a substitution of the form ∆ ` h�, y 7! t, f 7! ui : (Γ, y : A, f : x �!
A

y), with A

distinct from the type ?, we use a similar reasoning. We first decompose h�i] as [�;
∆k

�0],

and split the context ∆ into ∆ = ∆k@∆>k. Then we have a derivation of ∆
[
` � : Γ

which is full by Lemma 156, hence the induction case for substitutions gives a derivation
of ∆ ` �] : Γ]. Moreover, by Lemma 156 the terms t and u are also necessarily full for
∆>k. Denote B = A[�], then we can perform the renaming of the variables of dimension 0
given by •n  •n�k on the type B and the terms t and u in order to get the type B0 and
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the terms t0 and u0. Then we have a derivation of ∆>k ` t0 : B0 which is full, and by the
induction case for terms provides a derivation of ∆ ` t0] : B0]. Since t0] = t] and B0] = B],
and by Lemma 157, we have B] = A][�]], so this in fact is a derivation of ∆ ` t] : A][�]].
This lets us build a derivation as follows

∆ ` �] : Γ] (Γ], y : A) ` ∆>k ` t] : A][�]]

∆ ` h�], y 7! t]i : (Γ], y : A])
(mse)

We can now iterate this construction: denote s = x[�], then we have a derivation of

∆
[

>k ` u0 : s0 �!
B0

t0 which is full, thus it provides by induction a derivation of the

judgment ∆>k ` u0] : s0] ��!
B0]

t0], which is also a derivation of ∆>k ` u] : x[�]] ����!
A][�]]

t].

This lets us apply the rule (mse) and get a substitution as follows

∆ ` h�], y 7! t]i : (Γ], y : A) Γ
], y : A, f : x ! y ` ∆>k ` u] : x[�]] ����!

A][�]]
t]

∆ ` h�], y 7! t], f 7! u]i : (Γ], y : A, f : x �!
A

y)
(mse)

Note that again this mutual induction is not structurally well defined, but we can layer it using
the depth of the judgments, in order to make it correct.

Flattening and folding. The two operations of flattening and folding that we have defined
are inverse to each other. More specifically, we can check that whenever we have a derivation
of Γ ` A satisfying (Cmop0) or (Cmcoh0), then we have (A[)] = A. Conversely, whenever we have
Γ ` A satisfying (Cop) or (Ccoh), then we also have (Γ])[ ` (A])[ satisfying the same condition,
and additionally, we have proved that (Γ])[ is equal to Γ up to a renaming of its variables of
dimension 0, up to the same renaming, (A])[ is equal to A. These proofs are straightforward,
but one seeds to take the same care about the indices in monoidal substitutions and the names
of the variables, as we have presented before, so we admit this result here. Since by convention
the term constructors do not distinguish between the renamings of the variables, the situation
can be described by the following equations

opΓ,A = op(Γ])[,(A])[ cohΓ,A = coh(Γ])[,(A])[

mop0
Γ,A

= mop0
(Γ

[
)],(A])[

mcoh
0
Γ,A

= mcoh
0

(Γ
[
)],(A])[

5.3.4 Equivalence between MCaTT and MCaTT
0

With the help of the folding and the flattening operation, we can define syntactic translations
between the theories MCaTT and MCaTT0. These translations are defined only for regular
judgments of the theory MCaTT0, and respect completely the structure of category with families,
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in fact they are merely a renaming of the term constructors.

F? = ? F (Γ, x : A) = (FΓ, x : FA)

F? = ? F (t �!
A

u) = Ft ��!
FA

Fu

Fx = x F (mopΓ,A[�]) = mop0
Γ],A] [idΓ] �F�]

F (mcohΓ,A[�]) = mcoh
0
Γ],A] [idΓ] �F�]

F hi = hi F h�, x 7! ti = hF�, x 7! Fti

and conversely

G? = ? G(Γ, x : A) = (GΓ, x : GA)

G? = ? G(t �!
A

u) = Gt ��!
GA

Gu

Gx = x G(mcoh
0
Γ,A

[�]) = mcoh
Γ
[
,A[ [G(Π�)]

G(mop0
Γ,A

[�]) = mop
Γ
[
,A[ [G(Π�)]

Ghi = hi Gh�, x 7! ti = hF�, x 7! Gti

Correctness of the translation F . The translation F takes a judgment of the category
MCaTT to a judgment of the category MCaTT0, in order to prove this we use the following
intermediate result

Lemma 159. The translation F respects the action of substitutions, more precisely, given a
substitution ∆ ` � : Γ,

– For any type Γ ` A, we have F (A[�]) = FA[F�].

– For any term Γ ` t : A, we have F (t[�]) = Ft[F�].

– For any substitution Γ ` ✓ : Θ, we have F (✓ � �) = F✓ � F�.

Proof. We prove this result by mutual induction

Induction for types:

– For the type Γ ` ?, we have ?[�] = ?, and hence F (?[�]) = ?, but we also have F (?)[�] = ?.

– For the type Γ ` t �!
A

u, we have the equalities

F ((t �!
A

u)[�]) = F (t[�]) �����!
F (A[�])

F (u[�])

(F (t �!
A

u))[�] = (Ft)[�] �����!
(FA)[�]

(Fu)[�]

The induction cases for types and terms then prove the equality, by showing that we have
F (A[�]) = (FA)[�], F (t[�]) = (Ft)[�] and F (u[�]) = (Fu)[�]

Induction for terms:

– For a variable Γ ` x : A, we necessarily have (x : A) 2 Γ, hence there is a mapping of the
form x 7! t in �, ans we have x[�] = t, thus F (x[�]) = Ft. But the mapping x 7! t in �

also implies the existence of the mapping x 7! Ft in F�, hence x[F�] = Ft, which proves
the desired equality.
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– For a term of the form Γ ` mopGTH,A[✓], we have the following equalities

F (mopΘ,A[✓][�]) = mop0
Θ],A] [idΘ] �F (✓ � �)]

(FmopΘ,A[✓])[�] = mop0
Θ],A] [(idΘ] �F✓) � F�]

The induction case for substitutions, along with the associativity of substitution then shows
the equality between these two expressions.

– Similarly for a term of the form Γ ` mcohGTH,A[✓], we have the following equalities

F (mcohΘ,A[✓][�]) = mcoh
0
Θ],A] [idΘ] �F (✓ � �)]

(FmcohΘ,A[✓])[�] = mcoh
0
Θ],A] [(idΘ] �F✓) � F�]

The induction case for substitutions, along with the associativity of substitution then shows
the equality between these two expressions.

Induction for substitutions:

– For the empty substitution Γhi : ?, we have hi � � = hi, and hence F (hi � �) = hi and also
F hi � � = hi.

– For a substitution of the form Γ ` h✓, x 7! ti : (Θ, x : A), we have the following equalities

F (h✓, x 7! ti � �) = hF (✓ � �), x 7! F (t[�])i

F (h✓, x 7! ti) � � = hF✓ � �, x 7! (Ft)[�]i

The induction cases for substitution and terms show that F (✓ � �) = F✓ � F� and
F (t[�]) = (Ft)[�], which proves the equality between the two previous expressions.

Lemma 160. The translation F preserves derivability

– For any context Γ ` in the theory MCaTT, the context FΓ ` is derivable in MCaTT
0

– For any type Γ ` A in the theory MCaTT, the type FΓ ` FA is derivable in MCaTT
0

– For any term Γ ` t : A in the theory MCaTT, the term FΓ ` Ft : FA is derivable in
MCaTT

0

– For any substitution ∆ ` � : Γ in the theory MCaTT, the substitution FΓ ` F� : FΓ is
derivable in MCaTT

0

Proof. We prove this by mutual induction

Induction for contexts:

– For the context ? `, we have F? = ?, and the rule (ec) gives a derivation of ? `.

– For the context (Γ, x : A), we have a derivation of Γ ` and a derivation of Γ ` A, which
by the induction cases for contexts and types give a derivation of FΓ ` and of FΓ ` FA.
The rule (ce) then applies to provide a derivation of (FΓ, x : FA) `.

Induction for types:

– For the type Γ ` ?, we have a derivation of Γ `, which by the induction for contexts gives
a derivation of FΓ, and the rule (?-intro) then applies to give a derivation of FΓ ` ?.
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– For the type Γ ` t �!
A

u, we necessarily have a derivation of Γ ` A, which by the induction

case for types gives a derivation of FΓ ` FA. Moreover we have derivations of Γ ` t : A
and Γ ` u : A, which by the induction case for the terms gives a derivation of FΓ ` Ft : FA
and of FΓ ` Fu : FA. These let us apply the rule (!-intro) to construct a derivation of

FΓ ` Ft ��!
FA

Fu.

Induction for terms:

– For a variable term Γ ` x : A, we have a derivation of Γ `, which by the induction case
for contexts gives a derivation of FΓ `. Moreover the condition (x : A) 2 Γ implies that
(x : FA) 2 FΓ, hence the rule (var) applies and gives a derivation of FΓ ` x : FA.

– For a term of the form ∆ ` mopΓ,A[�], we have a derivation of Γ ` A satisfying (Cop),
hence, by Lemma 158, this gives a derivation of Γ] ` A] satisfying (Cmop0). Moreover,
we have a derivation of ∆ ` � :

?yΓ, which by the induction case for substitution gives
a derivation of F∆ ` F� : F (

?yΓ). By Lemma 149, we have F (
?yΓ) =

?yΓ = Π(Γ]), and
Lemma 143 shows that we have a derivation of Π(Γ]) ` idΓ] : Γ], hence the substitutions
compose and give a derivation of F∆ ` idΓ] �F� : Γ]. This lets us apply the rule (mop’)

to get a derivation of F∆ ` mop0
Γ],A] [idΓ] �F�].

– Similarly for a term of the form ∆ ` mcohΓ,A[�], we have a derivation of Γ ` A satisfying
(Ccoh), hence, by Lemma 158, this gives a derivation of Γ] ` A] satisfying (Cmcoh0). More-
over, we have a derivation of ∆ ` � :

?yΓ, and the induction case for substitutions together
with Lemmas 149 and 143 give a derivation of F∆ ` idΓ] �F� : Γ]. The rule (mcoh’) then
gives a derivation of F∆ ` mcoh

0
Γ],A] [idΓ] �F�].

Induction for substitutions:

– For the substitution ∆ ` hi : ?, we have a derivation of ∆ ` which by induction gives a
derivation of F∆ `, and applying the rule (es) provides a derivation of F∆ ` hi : ?.

– For the substitution ∆ ` h�, x 7! ti : (Γ, x : A), we necessarily have a derivation of
∆ ` � : Γ, of (Γ, x : A) `, and of ∆ ` t : A[�]. By the induction cases respectively for substi-
tution, for contexts and for terms, these give a derivation of F∆ ` F� : FΓ, of (FΓ, x : FA)
and of F∆ ` Ft : F (A[�]). Since by Lemma 159 we also have F (A[�]) = FA[F�], the
rule (se) applies and gives a derivation of F∆ ` hF�, x 7! Fti : (FΓ, x : FA).

We can reformulate this result in a more categorical way. Indeed all these results show exactly
that F defines a morphism of category with families between the syntactic category SMCaTT and
the syntactic category SMCaTT0 .

Correctness of the translation G. We follow the same reasoning as for the translation F to
show that the translation G also respects the derivability, and defines a morphism of categories
with families. The proof follows the exact same steps as for F , since F and G are defined the
exact same way on the syntax, replacing the folding by the flattening, and we have proved that
both the folding and the flattening satisfy the same lemmas, so we do not present it here.
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Cancellation of F and G. We now prove that the translations F and G are exactly inverse
to each other

Lemma 161. The following result hold

– For every context Γ in MCaTT, GFΓ = Γ

– For every type A in MCaTT, GFA = A

– For every term t in MCaTT, GFt = t

– For every substitution � in MCaTT, GF� = �

Proof. We prove this by mutual induction. The structure of the proof is exactly similar to the one
of the previous proofs, as F and G respect exactly all the structure of categories with families, and
the type constructors, so we only present the induction case for the term constructors, and since
the two cases for term constructors are very similar, we only present the case of the constructor
mop.For the term constructor mopΓ,A[�], we have

GF (mopΓ,A[�]) = G(mop0
Γ],A] [idΓ] �F�])

= mop(Γ])[,(A])[ [G(Π(idΓ] �F�))]

Since moreover we have

Π(idΓ] �F�) = Π(idΓ]) � F�

= idΓ �F�

= F�

the previous expression simplifies to

GF (mopΓ,A[�]) = mop(Γ])[,(A])[ [GF�]

The induction case for substitutions and the equalities for the term constructors then give

GF (mopΓ,A[�]) = mopΓ,A[�]

Importantly, we consider the indexes Γ, A for the term constructors mop and mcoh up to renaming
of the variables, so even though the contexts Γ and (Γ])[ have different variables they have the
same structure.

Lemma 162. The following result hold

– For every context Γ in MCaTT
0, FGΓ = Γ

– For every type A in MCaTT
0, FGA = A

– For every term t in MCaTT
0, FGt = t

– For every substitution � in MCaTT
0, FG� = �
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Proof. Again, we prove this by mutual induction, and only present the case of the term con-
structor mop0, since the case for the other term constructor is extremely similar and all the other
cases boil down to the fact that F and G preserve all the structural operation of the type theory,
along with the rules for types. For the term constructor mop0

Γ,A
[�], we have

FG(mop0
Γ,A

[�]) = F (mop
Γ
[
,A[ [G(Π�)])

= mop0
(Γ

[
)],(A[)]

[id
(Γ

[
)]
�FG(Π�)]

By our previous discussion, this simplifies to

FG(mop0
Γ,A

[�]) = mop0
Γ,A

[id
Γ
�FG(Π�)]

The induction case for substitution then shows

FG(mop0
Γ,A

[�]) = mop0
Γ,A

[id
Γ
�(Π�)]

= mop0
Γ,A

[�]

These two previous lemmas can be reformulated in a more categorical way, as the following
theorem

Theorem 163. The morphisms of categories with families F and G are inverse isomorphisms
between SMCaTT and SMCaTT0

This shows that the theories MCaTT and MCaTT0 can be considered to be the same in the
strictest sense possible, and from now on we consider that the difference between MCaTT and
MCaTT0 is merely a choice of implementation.

5.3.5 Examples of derivations

Here are few examples and counter-example of derivable terms in MCaTT, to illustrate how they
describe monoidal weak !-categories.

– Monoidal product: we can define the monoidal tensor product in MCaTT as the coherence

prod := coh[(x:?);(y:?)],?

By composing with a substitution, for every objects t and u (of type ?) in a given context Γ,
we can form their tensor product as

Γ ` prod t u : ?

– Associativity of monoidal product: similarly, we can define the valid coherence

assoc := coh[(x:?);(y:?);(z:?)],prod x (prod y z)!prod (prod x y) z

Using this coherence, for every object t, u and v (of type ?) in a given context Γ, we can
form a witness of associativity

Γ ` assoc t u v : prod t (prod u v) �!
?
prod (prod t u) v
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– Neutral element: it is also possible to derive the neutral element for the monoidal product,
which can be viewed as a nullary monoidal product. It is defined as a coherence

e := coh[],?

In any context, one compose with the empty substitution, in order to get the term wit-
nessing the neutral element.

Γ ` e [] : ?

In order to simplify the notations, we may simply denote e in any context, and omit the
empty substitutions [] which carries no information.

– Cancellation witness: one can also prove in MCaTT that the term e is indeed a neutral
element for the monoidal product, here for instance on the left. This is done by the
coherence

l-unit := coh[(x:?)],(prod e x)!x

This coherence can be used to derive, for any object u in a context Γ, the following witness
of left unitality of e

Γ ` l-unit u : (prod e u) ! u

– Functoriality of monoidal product: The following coherence defines the functoriality for
monoidal product

funl := coh[(x:?,y:?,f :x!y);(z:?)],(prod x z)!(prod y z)

Given any three objects u, u0, v together with a term t of type u ! u0 in a context Γ,
this coherence can be used to derive a witness for the functoriality of the monoidal tensor
product on the left

Γ ` funl t v : (prod u v) ! (prod u0 v)

– Symmetry of the monoidal product: note that the same idea does not apply to derive the
symmetry of the monoidal product. Indeed, if we try to build a witness for symmetry, it
would be a term

sym := coh[(x:?);(y:?)],prod x y!prod y x

It turns out that the list [(x : ?); (y : ?)] ` [hyi; hxi] : [(x : ?); (y : ?)] is not a valid substitu-
tion, which makes the judgment [(x : ?); (y; ?)] ` prod y x not derivable. So the term sym

is not derivable in MCaTT. This is a safety check, since the internal language for monoidal
categories is supposed to be unable to derive a witness for commutativity.

5.4 Towards k-tuply monoidal weak !-category

We generalize the type theory MCaTT to model k-tuply monoidal categories, following the exact
same principle as before, and call k-MCaTT the globular type theory we obtain this way. However,
proving that the models of k-MCaTT are equivalent to the models of CaTT that have only one
object in all the dimensions up to k turns out to me significantly more complicated, and we do
not provide a proof of this fact here.

Syntax. We can define the theory k-MCaTT from CaTT by iterating the construction we have
presented to obtain the theory MCaTT from CaTT. We denote kmop and kmcoh the two term
constructors corresponding to op and coh for k-tuply monoidal categories.
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The k-fold desuspension on SPS,0. We start by defining the k-fold desuspension as an
operation on the syntax, that is only valid for derivable judgments in the theory CaTT

For the context ? ` For the context (Γ, x : A) `
?y? = ?

?yk(Γ, x : A) =

⇢ ?ykΓ if dimA  k � 1?ykΓ, x :
?ykA otherwise

For the type Γ ` ? For the type Γ ` t �!
A

u

?yk? = ?
?yk(t �!

A
u) =

8
><
>:

? if dimA  k � 1

?ykt ���!?ykA

?yku otherwise

For a variable Γ ` x : A For the term ∆ ` opΓ,A[�] : A[�]?ykx = x
?ykopΓ,A[�] = kmopΓ,A[

?yk�]

For the term ∆ ` cohΓ,A[�] : A[�]?ykcohΓ,A[�] = kmcohΓ,A[
?yk�]

For ∆ ` hi : ? For ∆ ` h�, x 7! ti : (Γ, x : A)
?ykhi = hi

?ykh�, x 7! ti =

⇢ ?y� if dimA  k � 1
h
?yk�, x 7!

?ykti otherwise

Introduction rules for the theory k-MCaTT. The introduction rules for these term con-
structors can be expressed using the k-fold desuspension operation.

Γ `ps Γ ` A ∆ ` � :
?yk Γ

∆ ` kmopΓ,A : (
?yk A)[�]

whenever A satisfies (Cop),

Γ `ps Γ ` A ∆ ` � :
?yk Γ

∆ ` kmcohΓ,A : (
?yk A)[�]

whenever A satisfies (Ccoh).
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Chapter 6

Cubical weak !-categories

6.1 Type theory for pre-cubical sets

We now present another variation of the theory CaTT that aims to define structures similar
to weak !-categories, but based on cubical shapes rather than on globular ones. To achieve
this, we first present the pre-cubical sets, that we use as support for these structures. Our
strategy is then to carry over the intuitions that we can grow from the theory CaTT to this
structure, and propose directly a type theoretic definition. We then study this definition to
extract a mathematical description of its models that serves as a new definition of cubical weak
!-categories.

6.1.1 The category of pre-cubical sets

We define the pre-cube category and the category of pre-cubical set as an alternate shape for
working with higher structures. Our presentation is inspired by [38].

The pre-cube category. We denote by ⇤ the pre-cube category. It is the free completion by
monoidal product of the category

[0] [1]
�

⌧

One can give a more explicit definition of the pre-cube category, by giving a presentation of this
category.

⇤ : [0] [1] [2] [3] · · ·
�0

⌧0

�0

�1

⌧0

⌧1

�0

�1

�2

⌧0

⌧1

⌧2

subject to the cocubical relations, for all j < i

�j�i = �i+1�j �j⌧i = ⌧i+1�j

⌧j�i = �i+1⌧j ⌧j⌧i = ⌧i+1⌧j
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Shifts in ⇤. Notice that the category ⇤ has a non-trivial faithful endofunctor shift.

shift : ⇤ ! ⇤

[i] 7! [i+ 1]
�i 7! �i+1

⌧i 7! ⌧i+1

The well-definedness of this functor comes from the fact that the cocubical relations are invariant
under the transformation (i, j) 7! (i+ 1, j + 1)

Pre-cubical sets. We now define the category of pre-cubical sets CSet as the presheaf category
over the category ⇤

CSet = b⇤ = Set
⇤

op

more explicitly, a pre-cubical set X• is a collection of sets X0, X1, X2, · · · , together with families
of maps @+i , @�i : Xn ! Xn�1 (0  i  n), satisfying the following cubical relations, that are
dual to the cubical relations:

@�i @
�
j = @�j @

�
i+1 @�i @

+
j = @+j @

�
i+1

@+i @
�
j = @�j @

+
i+1 @+i @

+
j = @+j @

+
i+1

The elements of the set Xn will be called the n-cells of the pre-cubical set X. The 0-cells are
also called objects of X, and the 1-cells are also called arrows of X.We will refer to finite cubical
sets as (cubical) diagrams, and we may give a graphical representation for such diagrams. For
instance, the following diagram

x y z

y0 z0 w0

f g

k l

g0 h0

+↵

represents the pre-cubical set X with X0 = {x, y, z, y0, z0, w0}, X1 = {f, g, g0, h0, k, l}, X2 = {↵},
and X>2 = ;, together with the maps given by

@�0 :

f 7!x
g 7!y
g0 7!y0

h0 7!z0

k 7!y
l 7! z

@+0 :

f 7! y
g 7! z
g0 7!z0

h0 7!w0

k 7!y0

l 7!z0

@�0 (↵) = k
@+0 (↵) = l
@�1 (↵) = g
@+1 (↵) = g0

Shifts of pre-cubical sets. Let X : ⇤op ! Set be a pre-cubical set. The endofunctor
shift : ⇤! ⇤ induces another pre-cubical set shift⇤(X) = X � shift. The object of shift⇤(X) are
exactly the arrows of X, and more generally the n-cells of shift⇤(X) are exactly the n + 1-cells
of X.

shift⇤(X)n = Xn+1
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6.1.2 Type theory for pre-cubical sets

From our presentation of the direct category ⇤, we can extract the type theory T⇤. For integer
i 2 N, there is a type constructor !n of arity 2n, that we denote with n arguments on the left
and n arguments on the right like in the following expression (t1, . . . , tn) !n (u1, . . . , un), and
similarly to the type theory GSeTT, we denote ? for the type !0. These type constructors are
then subject to the following introduction rules

Γ `

Γ ` ?

Γ ` t : ? Γ ` u : ?

Γ ` t !1 u

Γ ` t0 : x !1 y Γ ` t1 : x !1 z Γ ` u0 : z !1 w Γ ` u1 : y !1 w

Γ ` (t0, t1) !2 (u0, u1)

and so on. The rules becoming increasingly complicated as the dimension increases, this type
theory is complicated to study and to implement. We give an alternative presentation for the
type theory T⇤, inspired from cubical type theory [29], and which treats the dimensions more
uniformly.

Signature. Our new presentation of the type theory T⇤ uses a new kind of variables, that we
call dimension variables or direction variables of which we suppose given a set D. The terms and
types may now have free dimension variables, and the constructors Path binds those variables.
In our presentation I always denotes a list of dimension variables, and the dimension variables
are always denoted i, j · · · . We define a term t to be either a variable x 2 V, or of the form ti,
with t a term, and i 2 D, and a type, to be either ?, or of the form Path

i A t u where i 2 D, A
is a type, and t, u are terms.

Judgments. We introduce four kinds of judgments that are similar from our previous judg-
ments, except that they account for the dimension variables. This is done by indexing the
judgment by a list of dimension variables I, and we then denote `I the corresponding judg-
ments.

Γ ` The context Γ is valid
Γ `I A The type A is valid in the context Γ, with direction variables I
Γ `I t : A The term t is of type A in the context Γ, with direction variables I
Γ ` � : ∆ The substitution � is from Γ to ∆

When the list I is the empty list, we will write ` instead of `I , and we call a type A such that
Γ ` A is valid (resp. a term t such that Γ ` t : A is valid) a closed type (resp. closed term) in the
context Γ. We are interested in the closed judgments in this theory, and see the judgment with
free dimension variables as intermediate steps to compute closed ones.

Variable replacement. For a term t (resp. a type A) and two dimension variables i, r, we
introduce the term t[r/i] (resp. the type A[r/i]) obtained by formally replacing all occurrences
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of the dimension variable i by r. This is inductively defined by

For terms:
x[r/i] = x (x is a variable)
(t i)[r/i] = t r
(t j)[r/i] = (t[r/i]) j (j 6= i)

For types:
?[r/i] = ?

(Path
j B u t)[r/i] = Path

j B u[r/i] t[r/i] (j 6= i)

(Path
i B u t)[r/i] = Path

r B[r/i] t u

Typing rules. We consider the following typing rules for our type theory. These rules are very
similar to the general rules for a type theory, but we add the possibility to have free dimension
variables. We also add a rewriting rule that makes explicit the computation on dimension
variables.

For contexts:

? `

Γ ` A x /2 Var(Γ)

(Γ, x : A) `

For types:
Γ `

Γ `I ?

Γ `I,i A Γ `I t0 : A[0/i] Γ `I t1 : A[1/i]

Γ `I Path
i A t0 t1

For terms:
Γ ` (x : A) 2 Γ

(Γ, x : A) ` x : A

Γ `I t : Path
i A u0 u1 r /2 I

Γ `I,r t r : A[r/i]

For substitutions:
∆ `

∆ ` hi : ?

∆ ` � : Γ Γ ` A ∆ ` t : A [�]

∆ ` h�, x 7! ti : (Γ, x : A)

Rewriting :
Γ `I t : Path

i A u0 u1

Γ `I t " u" : A["/i]
(" = 0, 1)

Dimension. A type A of this theory come along with a notion of dimension denoted dim(A),
which is the height of the nested types. It is formally defined inductively as follows

dim(?) = �1 dim(Path
i A t u) = dimA + 1

Given a term t, together with a context Γ such that Γ ` t : A holds, then we define the
dimension of term t in the context Γ. In general the context Γ is clear, and we will often write
dim t, unless we want to emphasize that the definition of this dimension fundamentally relies on
the context. We also define the dimension dim(Γ) of a context Γ to be the maximal dimension
of all its variables

dimΓ(t) = dimA + 1 dim(x0 : A0, · · · , xn : An) = max
i

{dim(Ai)}
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Terms with free dimension variable. Notice that if we have a term t, such that Γ `i t : A
holds, the only way possible for this judgment to be derivable is if there is a term t0 such that
Γ ` t0 : Path

i B t0 t1 holds, and t = t0 i. This allows us to define an extraction function ✏,
which from a term with a free dimension variable extracts a closed term. We define ✏ as a partial
function

✏(t _) = t

and by the above discussion, the following rule is admissible

Γ `i t : A

Γ ` ✏(t) : B

and by the same argument, there is a more general rule

Γ `I,r t : A

Γ `I ✏(t) : B

In particular, from this composing this function n times defines a one to one correspondence be-
tween the terms of dimension 0 with n free dimension variables and the closed terms of dimension
n in Γ.

Sources and target of a term. Given a type A = Path
i B t u, we define inductively its

sources and targets, in various directions. In the categorical point of view, the number of source
and target function depends on the dimension of the type, but here we will instead define the
sources and targets for all indexes as partial functions on types, in order to have an easier
inductive definition (the cases that are not specified here correspond to cases where the function
is undefined).

@�n (Path
i B t u) =

⇢
t If n = dimB + 1
✏(@�n (B)) Otherwise

@+n (Path
i B t u) =

⇢
u If n = dimB + 1
✏(@+n (B)) Otherwise

Notation. For the sake of simplicity, given terms t0, · · · , tn and u0, · · · , un, we may write
(t0, · · · , tn) ! (u0, · · · , un) for the iterated path type

Path
i (Path

j · · · (tn�1 i) (un�1 i)) tn un

so that the dimension of this type is given by dim ((t0, · · · , tn) ! (u0, · · · , un)) = n and all its
sources and targets are given by the following equations

@�i ((t0, · · · , tn) ! (u0, · · · , un)) = ti

@+i ((t0, · · · , tn) ! (u0, · · · , un)) = ui

We can then check that the introduction rules for the types ! are exactly the introduction for
the type !n obtained as the theory T⇤ constructed from the direct category ⇤. We illustrate
this fact in dimension 2: Consider the type

Γ ` Path
i

Path
j
? (t0 i) (u0 i) t1 u1
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then we necessarily have a derivation for the following judgments

Γ `i Path
j
? (t0 i) (u0 i)

Γ ` t1 : Path
j
? (t0 0) (u0 0)

Γ ` u1 : Path
j
? (t0 1) (u0 1)

The first of these derivations implies that we have a derivation of

Γ `i t0 i : ? Γ `i u0 i : ?

Which necessarily gives t0 and u0 of the following form

Γ ` t0 : Path
j
? t�0 t+0 Γ ` u0 : Path

j
? u�

0 u+
0

The second and the third of the previous derivations then rewrites as

Γ ` t1 : Path
j
? t�0 u�

0 Γ ` u1 : Path
j
? t+0 u+

0

Hence the terms t0, u0, t1, u1 satisfy the cubical relations

t�0 u�
0

t+0 u+
0

t1

t0 u0

u1

Conversely, given four terms satisfying these relations, we can reconstruct the type

Γ ` Path
i (Path

i (t 0i) (u 0i) ) t1 u1

This correspondence works the same way for terms of higher dimension, but is more involved to
follow.

Syntactic category. We consider the syntactic category ST⇤
to be the category whose objects

are all contexts Γ `, and whose morphisms ∆ ! Γ are closed substitutions ∆ ` � : Γ. This
category is equipped with a structure of category with families, by choosing TyΓ to be the set
of all closed types Γ ` A, and TmΓ

A to be the set if all closed terms Γ ` t : A. Our previous
remark shows that this syntactic category is isomorphic to the syntactic category of the theory
T⇤ associated to the direct category ⇤. For this reason we denote ST⇤

both syntactic categories.
Our study of the theory TI for any I shows the following, as an application of Theorem 113

Theorem 164. The syntactic category ST⇤
is equivalent to the opposite of the category of finite

pre-cubical sets.

Models. Again, our study of the theory TI in general, shows the following as a special case of
Theorem 114

Theorem 165. The category of models Mod(ST⇤
) is equivalent to the category of pre-cubical

sets
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6.1.3 Functorialization in the theory T⇤

We introduce two meta operations in the theory T⇤ that are the cubical analogue to the sus-
pension and the functorialization. Note that in a cubical setting, the suspension does not make
immediate sense, as it would generate cells that are not allowed, as we show on the following
diagram

•

•

 • •+

Instead we replace our notion of suspension by another operation that we call extrusion. We first
describe the notion of functorialization, as it stays closer to the definition we have presented in
CaTT, and gives intuition to understand this new operation.

Intuitive description. The intuition for the functorialization is similar to the intuition of the
functorialization in GSeTT: we duplicate a cell, and create a higher cell whose source is our
original cell and whose target is the duplicated cell. Given a cell x, we denote x+ its duplicate
and ~x the higher cell that connects them. The difference however is that in order to functorialize
with respect to a cell, we need to functorialize inductively the lower cells from which it is built.
We give a pictorial example of the process of functorialization, along with its result

x y
f

 

x y

x+ y+

f

~x +~f ~y

f+

Definition. In order to define the functorialization, we suppose that we have enough fresh
variable names at our disposal, and we chose a set X of variables, with respect to which we
perform the functorialization. We then define a context Γ

~X that we call the functorialization of
Γ with respect to the set X, together with two substitutions ◆x(Γ) and ◆x(Γ)

?
~X=?

(Γ, x : A)
~X
=

(
(Γ

~XA , x : A, x+ : A[ ◆XA
(Γ)], ~x : Path

i �!i
A x x+) If x 2 X

(Γ
~X , x : A) Otherwise

where XA = X [Var(A), and the operation
�!i
A on types is defined by

�!i? =?
���������!i
Path

j A x y =Path
j �!i
A (x i) (y i)

���������!i
Path

i A x y =Path
k ����!i
A[k/i] (x i) (y i)

and the substitutions ◆ and ◆are defined by

◆X(?)=hi ◆x(Γ, x : A)=h◆x(Γ), x 7! xi
◆X(?)=? ◆X(Γ, x : A)=h ◆X(Γ), x 7! x+i

Since we do not use this operation, any further and only present it to illustrate possible con-
structions in this theory, we admit without giving a proof that it only produces valid terms.
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6.1.4 Extrusion of a variable

We now describe the other meta-theoretic operation that we use on the theory T⇤. This operation
that we call extrusion is a bit analogous to the suspension in the globular setting, but has to be
adapted a lot to be definable in the cubical setting.

Intuitive description. Intuitively, the idea is similar to the suspension, in that we increase all
the dimensions of the cells by 1, except that we cannot perform this anymore by simply adding
two new points. Instead, we add two new entire copies of our context, and we reinterpret our
context as higher cells in between these two copies. In order to emphasize the similarity with
the functorialization, we reformulate this procedure as adding a copy of our context and higher
cells to fill the gap thus created. The difference with the functorialization is the direction of the
higher cells we add. We again denote for a cell x, its new copy x+, and the higher cell ~x. This
operation can be described pictorially as follows

x

y

f  

x x+

y y+

f

~x

+~f f+

~y

Definition. We again assume that we have as many fresh variable names at our disposal, and
define a fixed set of variables with respect to which we perform the extrusion. For a context Γ,
we consider a set of variables X that is downwards closed, i.e., , if a variable x 2 X is in Var(Γ),
so are all the variables of its type are in X. We denote ΣXΓ the context obtained by extrusion
of Γ with respect to the variables of x, that we define as follows

ΣX? = ?

ΣX(Γ, x : A) =

⇢
(ΣXΓ, x : A, x+ : A+, ~x : Σx,x+

A) If x 2 X
(ΣXΓ, x : A) Otherwise

Σa,b? = Path
i
? a b Σa,b(Path

i A t u) = Path
i (Σ(a i),(b i)A) Σt Σu

Σx = ~x Σ(t i) = (Σt) i
where A+ is defined by
?+ = ? (Path

i A t u)+ = Path
i A+ t+ u+

x+ = x+ (t i)+ = t+ i

Correctness. We have defined this operation purely syntactically, but we can check that it
only yields valid judgments in the theory T⇤. More precisely, we have the following result

Lemma 166. The extrusion preserves the derivability of judgments, for a context Γ ` together
with a set X downwards closed in Γ:

– There is a derivation of ΣXΓ `.

– For any type Γ `I A, there is a derivation of ΣXΓ `I A.

– For any term Γ `I t : A, there is a derivation of ΣXΓ `I t : A.

– For any type Γ `I A with Var(A) ✓ X, there is a derivation of ΣXΓ `I A+.

– For any type Γ `I t : A with Var(t) ✓ X, there is a derivation of ΣXΓ `I t+ : A+ and of

ΣXΓ `I Σt : Σt,t+A.
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Proof. We prove these results by mutual induction, the presence of the dimension variables make
the proofs a little more involved.

Induction for Γ `:

– For the context ?, the derivation is given by the rule (ec).

– For a context of the form (Γ, x : A) ` with x /2 X, by induction we have ΣXΓ ` and
ΣXΓ ` A so the rule (ce) applies and shows ΣX((Γ, x : A)) `.

– For a context of the form (Γ, x : A) ` with x 2 X, we have by induction ΣXΓ ` and
ΣXΓ ` A, hence rule (ce) gives (ΣXΓ, x : A) `. Moreover, the induction gives a derivation
of ΣXΓ ` A+, by weakening and applying the rule (ce) this provides a derivation of
(ΣXΓ, x : A, x+ : A+) `. So it suffices to prove that we have a derivation of ΣXΓ ` Σx,x+

A
and applying (ce) then gives a derivation of ΣX(Γ, x : A) `. We prove this by case analysis
on A:

– For the type A = ?, we have (Γ, x : A, x+ : A+) = (Γ, x : ?, x+ : ?), hence we have a
derivation of (Γ, x : ?, x+ : ?) ` x : ? and of (Γ, x : ?, x+ : ?) ` x+ : ?. These give a
derivation of

(Γ, x : ?, x+ : ?) ` Path
i x x+

which is exactly the type Σx,x+

?.

– For the type A = Path
i B t u, we have a derivation of Γ ` t : B[0/i] and of

Γ ` u : B[1/i], which by the mutual induction give derivation of the following judg-
ments

ΣXΓ ` Σt : Σt,t+(B[[0/i]]) ΣXΓ ` Σu : Σu,u+

(B[[1/i]])

Since moreover t ⌘ x 0, t+ ⌘ x+ 0, u ⌘ x 1 and u+ ⌘ x+ 1, substituting these
equations into the previous judgments and factoring the variable replacements shows
that we have in fact derivations of

ΣXΓ ` Σt : (Σ(x i),(x+ i)B)[0/i] ΣXΓ ` Σu : (Σ(x i),(x+ i)B)[1/i]

So this lets us construct a derivation of

ΣXΓ ` Path
i
Σ

(x i),(x+ i)B Σt Σu

which is exactly the type Σx,x+

A

Induction for Γ `I A:

– For the type Γ `I ?, we necessarily have Γ ` hence by induction ΣXΓ `, so we have
ΣXΓ ` ?.

– For the type Γ `I Path
i A t u, we necessarily have the judgments Γ `I,i A, Γ `I t : A[0/i]

and Γ `I u : A[1/i], so the induction gives the judgments ΣXΓ `I,i A, ΣXΓ `I t : A[0/i]
and ΣXΓ `I u : A[1/i], which prove

ΣXΓ `I Path
i A t u

Induction for Γ `I t : A:

– For a variable term Γ ` x : A, we necessarily have Γ ` and hence by induction ΣXΓ `.
Since moreover we always have (x : A) 2 ΣXΓ, this proves ΣXΓ ` x : A.
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– For a term of the form Γ `I,j t j : A[j/i], we necessarily have Γ `I t : Path
i A u0 u1,

which by induction provides a derivation of ΣXΓ `I t : Path
i A u0 u1, hence we have a

derivation of ΣXΓ `I,j t j : A[j/i].

Induction for Γ `I A with Var(A) ✓ X:

– For the type Γ `I ?, we have already proved that we have ΣXΓ ` ?, which rewrites as
ΣXΓ ` ?+.

– For the type Γ `I Path
i A t u, we necessarily have Γ `I,i A, Γ `I t : A[0/i] and

Γ `I u : A[1/i], so the induction gives the judgments ΣXΓ `I,i A
+, ΣXΓ `I t+ : A[0/i]+

and ΣXΓ `I u+ : A[1/i]+. Since moreover A[r/i]+ = A+[r/i], this gives a derivation of

ΣXΓ `I Path
i A+ t+ u+

Induction for Γ `I t : A with Var(t) ✓ X:

– For a variable term Γ ` x : A, we necessarily have Γ ` and hence by induction ΣXΓ `.
The variables condition then implies that x 2 X and thus we have (x+ : A+) 2 ΣXΓ, this
proves

ΣXΓ ` x+ : A+

Moreover, we also have (Σx : Σx,x+

A) 2 ΣXΓ, hence this gives a derivation of

ΣXΓ ` Σx : Σx,x+

A

– For a term of the form Γ `I,j t j : A[j/i], we necessarily have Γ `I t : Path
i A u0 u1,

which by induction provides a derivation of ΣXΓ `I t+ : Path
i A+ u+

0 u+
1 , hence we have

a derivation of
ΣXΓ `I,j t

+ j : A+[j/i]

Moreover, the induction also provides a derivation of ΣXΓ `I Σt : Σt,t+(Path
i A u0 u1),

which by definition of the extrusion gives ΣXΓ `I Σt : Path
i
Σ(t i),(t+ i)A Σ(u0) Σ(u1).

Hence, we have constructed a derivation of

ΣXΓ `I,j Σt j : Σ(t i),(t +i)(A[j/i])

6.2 Type theory for cubical !-categories

We now define a type theory that we call CaTT⇤ to describe a structure of weak !-categories
in the cubical setting described by the theory T⇤, similar to our definition of the type theory
CaTT.

6.2.1 Ps-contexts

We start by defining a notion of ps-context adapted to the cubical framework, analogous to the
notion of ps-contexts for globular categories. Intuitively this notion classifies contexts that form
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a complete grid, as in the following examples

• • • •

• • • •

• • • •

+ + +

+ + +

and rejects the context that form a grid where a square is missing, even if it is a square in a
corner, as in the following example

• • • •

• • • •

• • •

+ + +

+ +

Judgments. We introduce two new judgments to describe these ps-contexts, that we denote
and interpret as follows

Γ `ps The context Γ is a ps-context
Γ `ps X The context Γ is a ps-context whose dangling border is X

The judgment Γ `ps X has a set of variables X on the right, intuitively, we build ps-contexts
dimension by dimension, and we accumulate the information about the border of the context Γ

in the set X, in order to always extend the context along a complete border.

Inference rules. We now define the rules to check that a given context is a ps-context

x : ? `ps

(pss)
Γ `ps X

ΣXΓ `ps X
+ (pse)

Γ `ps X

Γ `ps

(ps)
Γ `ps

ΣΓ `ps Var(Γ)
+ (ps+)

where the set X+ is the set {x+ : x 2 X}, denoting x+ the new copy of X coming from the
extrusion on the left of the rule. Note that we denote x+ a new variable that does not need to
be literally named x+. This is important because we might compute the extrusion with respect
to the same variable x several times, producing a new copy of x every time, all of them having
different names, and thus the notation x+ is always given relatively to a particular extrusion.
We now give an example of a derivation for this judgment, where in the graphical representation,
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we circle all the variables that appear in the set X of the judgment Γ `ps X

graphical representation judgment
x (x : ?) `ps

x y
f

(x : ?, y : ?, f : Path
i
? x y) `ps {y}

x y z
f g

(x : ?, y : ?, f : Path
i
? x y, z : ?, g : Path

i
? y z) `ps {z}

x

y

z

f

g

(x : ?, y : ?, f : Path
i
? x y, z : ?, g : Path

i
? y z) `ps

x x’

y y’

z z’

f

fx

+↵ f 0

g

fy

+� g0

fz

(x : ?, y : ?, f : Path
i
? x y, z : ?, g : Path

i
? y z,

x0 : ?, y0 : ?, f 0 : Path
i
? x0 y0, z0?, g0 : Path

i
? y0 z0,

fx : Path
i
? x x0,

fy : Path
i
? y y0,↵ : Path

i
Path

j
? (f i) (f 0 i) fx fy,

fz : Path
i
? z z0,� : Path

i
Path

j
? (g i) (g0 i) fy fz)

`ps {x
0, y0, f 0, z0, g0}

x x0 x”

y y0 y”

z z0 z”

f

fx

+↵ f 0

gx

+↵0 f 00

g

fy

+� g0

gy

+�0 g00

fz gz

(x : ?, y : ?, f : Path
i
? x y, z : ?, g : Path

i
? y z,

x0 : ?, y0 : ?, f 0 : Path
i
? x0 y0, z0?, g0 : Path

i
? y0 z0,

fx : Path
i
? x x0,

fy : Path
i
? y y0,↵ : Path

i
Path

j
? (f i) (f 0 i) fx fy,

fz : Path
i
? z z0,� : Path

i
Path

j
? (g i) (g0 i) fy fz,

x00 : ?, y00 : ?, f 00 : Path
i
? x00 y00, z00?, g00 : Path

i
? y00 z00,

gx : Path
i
? x0 x00,

gy : Path
i
? y0 y00,↵0 : Path

i
Path

j
? (f 0 i) (f 00 i) gx gy,

gz : Path
i
? z0 z00,�0 : Path

i
Path

j
? (g0 i) (g00 i) gy gz)

`ps {x
00, y00, f 00, z00, g00}

x x0 x00

y y0 y00

z z0 z00

f

fx

+↵ f 0

gx

+↵0 f 00

g

fy

+� g0

gy

+�0 g00

fz gz

(x : ?, y : ?, f : Path
i
? x y, z : ?, g : Path

i
? y z,

x0 : ?, y0 : ?, f 0 : Path
i
? x0 y0, z0?, g0 : Path

i
? y0 z0,

fx : Path
i
? x x0,

fy : Path
i
? y y0,↵ : Path

i Pathj ? (f i)(f 0 i) fx fy,

fz : Path
i
? z z0,� : Path

i
Path

j
? (g i) (g0 i) fy fz,

x00 : ?, y00 : ?, f 00 : Path
i
? x00 y00, z00?, g00 : Path

i
? y00 z00,

gx : Path
i
? x0 x00,

gy : Path
i
? y0 y00,↵0 : Path

i
Path

j
? (f 0 i) (f 00 i) gx gy,

gz : Path
i
? z0 z00,�0 : Path

i
Path

j
? (g0 i) (g00 i) gy gz) `ps

Sources and targets of a pasting scheme. Similarly to the case of CaTT, we define notions
of sources and targets of a ps-context, but since we are now working in a cubical framework,

228



a ps-context may have more than one source and one target. More specifically, we introduce the
judgment Γ `ps,n to be equivalent to Γ `ps and dimΓ = n. We can then define n source and
targets for any ps-context Γ such that Γ `ps,n, we denote @�0 (Γ), . . . , @�n�1(Γ) for the n sources
and @+0 (Γ), . . . , @+n�1(Γ) for the n targets. We define these operations by mutual induction on
the derivation of a judgment of the form Γ `ps X, and on the derivation of a judgment of the
form Γ `ps. We first define the sources, with the condition that i < dimΓ

For the judgment Γ `ps X:

– For a derivation obtained by application of the rule (pse), the judgment is necessarily of
the form ΣXΓ `ps X

+ and we have a derivation of Γ `ps X, and we define

@�i (ΣXΓ `ps X
+) =

(
@�0 (Γ `ps X) If i = 0
Σ

X\Var(@�
i (Γ))

(@�i (Γ `ps X)) Otherwise

– For a derivation obtained by the rule (ps+), the judgment is necessarily of the form
ΣΓ `ps Var(Γ)

+ and we have a derivation of Γ `ps, and we then pose

@�0 (Γ `ps Var(Γ)) = Γ @�i+1(Γ `ps Var(Γ)) = @�i (Γ `ps)

For the judgment Γ `ps:

– For a derivation obtained as a single application of the rule (pss), the context is necessarily
(x : ?), which is of dimension 0, and the requirement that i < 0 implies that there is no
source to define in this case.

– For a derivation obtained by application of the rule (ps), we necessarily have a derivation
of Γ `ps X, and we pose

@�i (Γ `ps) = @�i (Γ `ps X)

Similarly, we define the notion of target of a ps-context by induction mutual on the derivation
of a judgment Γ `ps X and on the derivation of the judgment Γ `ps, for all i < dimΓ.

For the judgment Γ `ps X:

– For a derivation obtained by application of the rule (pse), the judgment is necessarily of
the form ΣXΓ `ps X

+ and we have a derivation of Γ `ps X, and we define

@+i (ΣXΓ `ps X
+) =

(
X+ If i = 0
Σ

X\Var(@+
i (Γ))

(@+i (Γ `ps X)) Otherwise

– For a derivation obtained by the rule (psf), the judgment is necessarily of the form
ΣΓ `ps Var(Γ)

+ and we have a derivation of Γ `ps, and we then pose

@+0 (Γ `ps Var(Γ)) = Γ @+i+1(Γ `ps Var(Γ)) = @+i (Γ `ps)

For the judgment Γ `ps:

– For a derivation obtained as a single application of the rule (pss), the context is necessarily
(x : ?), which is of dimension 0, and the requirement that i < 0 implies again that there is
no target to define in this case.

– For a derivation obtained by application of the rule (ps), we necessarily have a derivation
of Γ `ps X, and we pose

@+i (Γ `ps) = @+i (Γ `ps X)
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Uniqueness of derivation. The judgments Γ `ps and Γ `ps X enjoy uniqueness of derivations.
Indeed, suppose that a context Γ is of length l, and that the set X is a subset of variables in
Γ downwards closed of cardinal k, then the context ΣXΓ is of length l + 2k. Moreover, in the
process of constructing a ps-context, each consecutive extrusion, so counting the number n of
variables of maximal dimension gives the number of consecutive extrusion. The length of the
context is then given by n`(Γ0), where Γ0 is the context to which the rule (psf) is applied. This
shows that there is only one possible way to obtain a derivation of Γ `ps from a derivation of
Γ0 `ps. Iterating this construction shows that there is a unique derivation for Γ `ps. Moreover,
this argument gives an algorithm to check whether a context is a ps-context or not, by testing if
the only possible derivation is valid or not.

Typing rules for term constructors. We introduce two terms constructors that we again
call op and coh, and whose introduction are, for the constructor op:

Γ `ps,n @�i Γ ` ti : Ai @+i Γ ` ui : Bi Γ ` ti ! ui ∆ ` � : Γ

∆ ` opΓ,(ti)!(ui)[�] : ((ti) ! (ui)) [�]

where we denote (ti) ! (ui) as a shorthand for (t0, . . . , tn�1) ! (u0, . . . , un�1). This rule applies
under the additional side conditions that for all i the following equalities hold on the variables,
Var(ti)[Var(Ai) = Var(@�i Γ) and Var(ui)[Var(Bi) = Var(@+i Γ), we denote this side condition
(Ccohop,⇤). For the constructor coh, we give the rule

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` cohΓ,A[�] : A [�]

and this rule again applies under the condition that for all i, the equalities hold on the variables:
Var(A) = Var(Γ), we denote this side condition (Ccoh,⇤). We refer the reader to Appendix A.6
for a standalone presentation of all the rules of this theory.

6.2.2 Examples of derivation

We present in this section various coherences that are derivable in this theory. We have a proto-
typical implementation of this type theory available at [13], and the examples we provide here are
all formalized and computer-checked. Since the rules of the theory involve more computation,
and in particular one needs to compute all the sources and targets of every ps-contexts, which
is computationally significantly heavier than computing the source and target of a ps-context in
the globular setting, an implementation is a valuable tool to ensure that all expected operations
and coherences are indeed derivable. Note that our implementation does not feature yet the
implicit arguments, which are by far the most efficient way to reduce the size of the terms, and
as a result, the terms that we present here tend to be very long.

Identity and composition. The first few examples that we give are similar to the examples in
CaTT, as they apply only in low dimension, where CaTT and CaTT⇤ are the same. For instance,
we can define the identity 1-cell of a 0-cell as follows

coh id (x : *) : Path i * x x

and similarly we can define the composition of two composable 1-cells by

coh comp (x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z) :

Path i * x z
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From now on, we denote f · g for the composition of f and g and idx for the identity of x when
we present the terms that we derive in the theory. Of course in the core definition, we still use
the names id and comp that we have introduced, in order to produce valid expressions of the
theory. Showing the unitality of composition is a bit different, it is witnessed by a 2-cell, which
then needs to be a square. In order to generate this square, we insert identity 1-cells for the
0-source and the 0-target, thus describing, for instance the left unitality as the following diagram

x y

x y

(idx)·f

idx + idy

f

This diagram can be encoded as the following expression in the theory CaTT⇤.

coh unit-l (x : *) (y : *) (f : Path i * x y) :

Path i (Path j * ((id x) i) ((id y) i)) (comp x x (id x) y f) f

and we can do the same to derive the right unitality.

Connections and symmetry. In addition to the usual composition, there are some specific
phenomena that appear in the cubical theory and that do not have an equivalent in globular.
An instance of such coherences are the connections, which given a 1-cell f from x to y produces
the two following 2-cells

x y

y y

f

f + idy

idy

x x

x y

idx

idx + f

f

These can both be defined in the theory as follows

coh connexion1 (x : *) (y : *) (f : Path i * x y) :

Path i (Path j * (f i) ((id y) i)) f (id y)

coh connexion2 (x : *) (y : *) (f : Path i * x y) :

Path i (Path j * ((id x) i) (f i)) (id x) f

Another instance is the symmetry, which given two composable cells f and g, produces a 2-cell
as in the following diagram

x y

y y

f

f g

g

This can be thought of as a form of identity, and we can define it in the theory as follows

coh id-sym (x : *) (y : *) (f : Path i * x y) (z : *) (g : Path i * y z) :

Path i (Path j * (f i) (g i)) f g

Composition of 2-cells. We now define the composition of the 2-cells, that are mostly anal-
ogous to the compositions of the 2-cells in CaTT. First we consider the vertical composition,
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which acts on two 2-cells in the following configuration

• •

• •

• •

+

+

coh vcomp (x : *) (x’ : *) (hx : Path i * x x’)

(x’’ : *) (hx’ : Path i * x’ x’’)

(y : *) (y’ : *) (hy : Path i * y y’)

(y’’ : *) (hy’ : Path i * y’ y’’)

(f : Path i * x y)

(f’ : Path i * x’ y’)

(a : Path i (Path j * (hx i) (hy i)) f f’)

(f’’ : Path i * x’’ y’’)

(b : Path i (Path j * (hx’ i) (hy’ i)) f’ f’’) :

Path i

(Path j * ((comp x x’ hx x’’ hx’) i) ((comp y y’ hy y’’ hy’) i))

f f’’

Similarly, we also define the horizontal composition, that gives a result for composing two 2-cells
in the following configuration

• • •

• • •

+ +

coh hcomp (x : *) (x’ : *) (hx : Path i * x x’)

(y : *) (y’ : *) (hy : Path i * y y’)

(f : Path i * x y) (f’ : Path i * x’ y’)

(a : Path i (Path j * (hx i) (hy i)) f f’)

(z : *) (z’: * ) (hz : Path i * z z’)

(g : Path i * y z) (g’ : Path i * y’ z’)

(b : Path i (Path j * (hy i) (hz i)) g g’) :

Path i

(Path j * (hx i) (hz i))

(comp x y f z g) (comp x’ y’ f’ z’ g’)

We also define a term that we call hvcomp consisting in composing four 2-cell in the configuration

• • •

• • •

• • •

+ +

+ +

We use this composition for later definitions, but we do not give its full definition here, as it is
very long and similar to the one we have already given. The interested reader look the definition
up in our implemented formalization [13].
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Associativity. We can define an associativity witness for the composition of 1-cells: Given
three composable 1-cells f, g and h, we always have a 2-cell as represented in the following
diagram

x z

y t

f

f ·g

+ h

g·h

We can define this as a term in our theory

coh assoc (x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z)

(w : *) (h : Path i * z w):

Path i (Path j * (f i) (h i)) (comp x y f z g) (comp y z g w h)

In the case of globular categories, the associativity is invertible, and we can directly define its
inverse. In the case of CaTT⇤ there is an analogue to this phenomenon, that is given by the
symmetric of the associativity. Diagrammatically, we describe it as follows

x y

z t

f ·g

f

+ g·h

h

and we define it as follows

coh assoc-sym (x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z)

(w : *) (h : Path i * z w):

Path i (Path j * ((comp x y f z g) i) ((comp y z g w h) i)) f h

We can define a witness that the associativity and its symmetric cancel each other, but it is a
little involved. Indeed, in order to compose the associativity and its symmetric, we fit them in
the following diagram

x x z

x y t

z t t

f

f ·g

+ h

f ·g

f

+ g·h

g·h

h

where the two additional 2-cells are connections. We can then relate this composition to an
identity, using a 3-cell, that is definable as follows

coh assoc-can

(x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z)

(w : *) (h : Path i * z w) :

Path i

(Path j

(Path k *
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(((unit-l x z (comp x y f z g)) i) j) (((unit-r z w h) i) j))

((unit-l x z (comp x y f z g)) i) ((unit-r z w h) i))

(hvcomp x x (id x) z (comp x y f z g)

x y f w (comp y z g w h)

(id x) f (connexion2 x y f) h (assoc-sym x y f z g w h)

z w h w (id w)

(comp x y f z g) (comp y z g w h) (assoc x y f z g w h)

(id w) (connexion1 y w (comp y z g w h)))

(id-sym x z (comp x y f z g) w h)

Second associativity. We can also define a second 2-cell that witnesses the associativity,
which given three composable 1-cell can be described with the the diagram

x t

x t

(f ·g)·h

idx + idt

f ·(g·h)

we define the corresponding term as follows

coh assoc-bis (x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z)

(w : *) (h : Path i * z w) :

Path i (Path j * ((id x) i) ((id w) i))

(comp x z (comp x y f z g) w h)

(comp x y f w (comp y z g w h))

We can also define a witness that relates the two different cells that we have defined for the
associativity, as follows (where hcomp3 is the ternary horizontal composition of 2-cells, that we
have not introduced, but have defined in our implementation).

coh equiv-assoc (x : *) (y : *) (f : Path i * x y)

(z : *) (g : Path i * y z)

(w : *) (h : Path i * z w) :

Path i

(Path j

(Path k * (((id2 x x (id x)) i) j)

(((id2 w w (id w)) i) j))

((unit-l3 x z (comp x y f z g) w h) i)

((unit-r3 x y f w (comp y z g w h)) i))

(hcomp3 x x (id x) x y f (id x) f

(connexion2 x y f) z w h

(comp x y f z g) (comp y z g w h)

(assoc x y f z g w h)

w w (id w) h (id w) (connexion1 z w h))

(assoc-bis x y f z g w h)

In our implementation, we have also formalized the exchange rule, that we do not present here,
as the corresponding term is very long.
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6.2.3 Comparison with cubical type theory

Although the theory that we have introduced here is directly inspired by cubical type theory [29]
in particular for the type Path , it does not compare immediately to it. The first difference is
that in cubical type theory, the dimension variables enjoy an extra structure, corresponding to
the negation, the meet and the join, whereas in the version we propose, these operations do not
exist. Instead, the cells that are computed using the meet and the join in cubical type theory
can be derived using the coherence rules in our version, hence our version is weaker. Moreover,
cubical type theory is not directed, the negation witnesses this fact, where our theory is directed.
A valuable further work would be to relate the theory CaTT⇤ with cubical type theory in a
precise way, accounting for the divergence between the strictness and the directedness of the
theory. This would establish a connection between our term constructors for operations and
coherences, and the term constructors for the gluing and Kan filling operations introduced in the
cubical type theory.

6.3 Pre-cubical weak ! category

Our goal is now to give a full description of the category Θ⇤,1 as a universal property con-
struction the same way we have given a description of the category Θ1 in the Grothendieck-
Maltsiniotis definition of globular weak !-categories. We achieve this description by applying our
framework for type theories, and under a conjecture for characterizing the syntactiic category as
the opposite of the category Θ⇤,1.

6.3.1 Monoidal structure of pre-cubical Sets

In order to understand the category Θ⇤,1, we first exhibit a description of the cubical ps-contexts
in the category of finite pre-cubical sets. We describe a monoidal structure on the category of
pre-cubical sets which is helpful to achieve such a description.

The monoidal structure of ⇤. The category ⇤ is equipped with a monoidal structure
⌦ : ⇤⇥⇤! ⇤, defined on objects by

n⌦m = n+m

On morphisms, the monoidal product is generated, for �i⌧i : n ! n+ 1, by

�i ⌦ idm = �i : n+m ! n+m+ 1 ⌧i ⌦ idm = ⌧i : n+m ! n+m+ 1

idm ⌦�i = �i : m+ n ! m+ n+ 1 idm ⌦⌧i = ⌧i : m+ n ! m+ n+ 1

Day convolution. The monoidal structure on ⇤ induces a monoidal structure on CSet given
by the Day convolution, defined by

(X ⌦ Y ) =

Z p,q:⇤

Xp ⇥ Yq ⇥⇤(_, p+ q)

In the case of the pre-cubical sets, this operation simplifies to give a very explicit description
of the resulting presheaf. Indeed, the coequalizer characterization of the coend, along with the
pointwise computations in the presheaves give

(X ⌦ Y )n = coeq

0
B@

F
g:p!p0

h:q!q0

Xp0 ⇥ Yq0 ⇥⇤(n, p+ q)
F
p
q

Xp ⇥ Yq ⇥⇤(n, p+ q)

1
CA
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In the category Set, the coequalizer can be computed as a quotient set, which gives the following
expression

(X ⌦ Y )n =
G

p,q

Xp ⇥ Yq ⇥⇤(n, p+ q)/ '

where ' is the equivalence relation defined, for two tuples (x, y, f) 2 Xp ⇥ Yq ⇥⇤(n, p+ q) and
(x0, y0, f 0) 2 Xp0 ⇥Yq0 ⇥⇤(n, p

0+ q0), by (x, y, f) ' (x0, y0, f 0) if and only if there exists two maps
g : p ! p0, h : q ! q0 such that X(g)(x0) = x, Y (h)(y0) = y and (g⌦ h) � f = f 0. Notice that the
set ⇤(n, p+ q) is non empty exactly when p+ q � n. Suppose that p+ q > n, let (x, y, f) be an
element of Xp ⇥ Yq ⇥⇤(n, p+ q). The morphisms of ⇤ being generated by �i, ⌧i, there exists a
factorization of f as f = �if

0 or f = ⌧if
0.

– If f = �if
0 with i < p, then (x, y, f) ' (@�i x, y, f 0).

– If f = ⌧if
0 with i < p, then (x, y, f) ' (@+i x, y, f 0).

– If f = �if
0 with p  i < q, then (x, y, f) ' (x, @�i�py, f

0).

– If f = ⌧if
0 with p  i < q, then (x, y, f) ' (x, @+i�py, f

0).

So in all the cases, there exists (x0, y0, f 0) 2 Xp0⇥Yq0⇥⇤(n, p
0+q0), such that (x, y, f) ' (x0, y0, f 0),

and with p0 + q0 < p + q. By iterating this construction, we prove that any equivalence class of
(X ⌦ Y )n contains at least an element in Xp ⇥ Yq ⇥⇤(n, p+ q), with p+ q = n. Moreover, since
⇤(n, n) = {id}, there is an equality Xp ⇥ Yq ⇥ ⇤(n, p + q) = Xp ⇥ Yq whenever p + q = n. If
(x, y) 2 Xp ⇥ Yq and (x0, y0) 2 Xp0 ⇥ Yq0 , with p+ q = p0 + q0 = n, then (x, y) ' (x0, y0) if there
exists a pair of maps g : p ! p0 and h : q ! q0 satisfying the previous equalities. Such maps can
only exist if p  p0 and q  q0, but the equality p + q = p0 + q0 then implies p = p0 and q = q0,
and so f = idp and g = idq, which implies (x, y) = (x0, y0). This proves the equality

(X ⌦ Y )n =
G

p+q=n

Xp ⇥ Yq

The sources and targets maps are given by, for z 2 (X ⌦ Y )n, let p, q and xp 2 Xp, yq 2 Yq such
that z = (xp, yq) 2 Xp ⇥ Yq, then

@�i z =

(
(@�i (xp), yq) for 0  i < p

(xp, @
�
p+i(yp)) for 0  i < q

@+i z =

(
(@+i (xp), yq) for 0  i < p

(xp, @
+
p+i(yp)) for 0  i < q

For instance, with the diagrammatic notation, we have

• • ⌦ • • • =

• •

• •

• •

+

+

• • • ⌦ • • =

• • •

• • •

+ +
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Pasting schemes. We denote Zk the finite cubical set defined by (Zk)0 = {0, . . . , k}, and

(Zk)1 =
n
~1, . . . ,~k

o
and (Zk)n = ; for n > 1, together with the applications @�0 (i) = i and

@+0 (i) = i + 1. Intuitively, they are cubical sets of dimension 1 constituted in k composable
1-cells. We can illustrate this definition with our diagrammatic notations as follows

Z0 = Y(0) •
Z1 = Y(1) • •

Z2 • • •
Z3 • • • •

Definition 167. We define a cubical pasting scheme (or simply pasting scheme) to be either the
cubical set Z0, or a cubical set obtained as a finite Day convolution of the Zk, with k > 0.

For instance, the expression Z2 ⌦ Z3 defines a ps-context, which corresponds to the following
diagram

• • • •

• • • •

• • • •

+ + +

+ + +

Note that for k = 0, the cubical set Z0 is the unit of the Day tensor product, and hence given a
tensor containing the set Z0, one can simply remove it to exhibit the resulting cubical set as a
tensor which does not contain Z0.

Sources and targets of pasting schemes. Given a pasting scheme X which is not Z0, we
write X = Zk1

⌦ . . .⌦ Zkn
, we define its i-th border for i  n, denoted @i,X , by the formula

@i,X = Zk1 ⌦ . . .⌦ Zi�1 ⌦ Z0 ⌦ Zi+1 ⌦ . . .⌦ Zkn

For k > 0, the cubical set Zk comes naturally equipped with two maps @�0,Zk
: Z0 ! Zk and

@+0,Zk
: Z0 ! Zk, defined by @�0,Zk

(0) = 0 and @+0,Zk
(0) = k. We can give a diagrammatic

definition as follows
• •

• • · · · • •

@�
0

@+
0

These two maps induce two maps @�i,X : @i,X ! X and @+i,X : @i,X ! X, that we call respectively
the i-th source and the i-th target of the pasting scheme X. These maps are defined by

@�i = Zk1 ⌦ . . .⌦ Zi�1 ⌦ @�0,Zi
⌦ Zi+1 ⌦ . . .⌦ Zkn

@+i = Zk1 ⌦ . . .⌦ Zi�1 ⌦ @+0,Zi
⌦ Zi+1 ⌦ . . .⌦ Zkn
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We can again give a graphical intuition for the i-th source and the i-th target, with our previous
example

• • • •

• • • • • •

• • • • • •

• • • • • •

• • • •

+ + +
@+
0

+ + +

@+
0

@�
1

@+
1

Proposition 168. For a pasting scheme X, and for all i < dimX, the cubical set @i X is a
pasting scheme.

Proof. For the pasting scheme Z0, we have dimZ0 = 0, thus there is no i such that i < dimZ0.
For a pasting scheme of the form Zk, with k > 0, we have dimZk = 1, and by definition,
@0,Zk

= Z0 is again a pasting scheme. For a pasting scheme of the form X = Zk1 ⌦ . . .⌦Zkn
with

k1, . . . , kn 6= 0, we have by definition @i,X = Zk1 ⌦ . . .⌦ Zi�1 ⌦ Z0 ⌦ Zi+1 . . .⌦ Zkn
. Since Z0 is

the unit for the Day tensor product, this simplifies to @i,X = Zk1
⌦ . . .⌦ Zi�1 ⌦ Zi+1 . . .⌦ Zkn

,
which exhibits @i,X as a pasting scheme.

Nerve of an extrusion. We can use the Day convolution product in order to express the
nerve of an extruded context in the theory T⇤. This is an important computation to establish
the connection between pasting schemes and ps-contexts. Recall that there is a nerve functor
⌫ : Sop

T⇤
! FinCSet, given by, for all context Γ, ⌫(Γ)n = ST⇤

(Γ,Y(n)). Consider a context Γ in
the theory T⇤, and X a downwards closed set of elements of ⌫(Γ), then ⌫(Γ) can be written as
the colimit of the diagram

⌫(Γ)X

⌫(Γ) ⌫(Γ)X

where ⌫(Γ)X is the sub-cubical set ⌫(Γ) whose elements are in X.

Lemma 169. The nerve of the extrusion ⌫(ΣXΓ) is characterized as the following colimit

⌫(ΣXΓ) = colim

0
BBB@

⌫(Γ)X

⌫(Γ) Z1 ⌦ ⌫(Γ)X

@�
0,Z1

⌦⌫(Γ)X

1
CCCA

Moreover, the set X+ defines the sieve of all the elements of the sub-cubical set characterized by
@+0,Z1

⌦ ⌫(Γ)X : ⌫(Γ)X ! Z1 ⌦ ⌫(Γ)X ! ⌫(ΣXΓ)
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Proof. First note that we can construct a commutative diagram

⌫(Γ)X

⌫(Γ) Z1 ⌦ ⌫(Γ)X

⌫(ΣXΓ)

@�
0,Z1

⌦⌫(Γ)X

by choosing the map ⌫(Γ) ! ⌫(ΣXΓ) to be the inclusion: to each variable x it associates x, and
the map Z1 ⌦ ⌫(Γ)X ! ⌫(ΣXΓ) is the map defined, for all x 2 X by the associations (0, x) 7! x,
(1, x) 7! x+ and (~1, x) 7! ~x. We now check that this square is a pushout: consider a cubical set
Y with two maps f : ⌫(Γ) ! Y and g : Z1⌦⌫(Γ)X ! Y that make the diagram commute. Then
we can define a map h : ⌫(ΣXΓ) by setting, for each variable x 2 Γ, h(x) = f(x), and for each
variable x 2 X, h(x) = g(0, x), h(x+) = g(1, x) and h(~x) = g(~1, x). The fact that the square
commute shows that these definitions agree on the variables x 2 X, and it provides a unique
map, hence proves the universal property of the pushout.

In particular, when performing the extrusion with respect to all the variables in the context, we
get the following result.

Lemma 170. Given a context Γ in the theory T⇤, the nerve of its extrusion ΣΓ is isomorphic
to ⌫(ΣΓ) = Z1 ⌦ ⌫(Γ). Moreover, the set of variable Var(Γ)

+
correspond to the elements of the

image of the sub-cubical set @+0,Z1
Z0 ⌦⌫(Γ) ! Z1 ⌦ ⌫(Γ) under this correspondence.

Ps-contexts are pasting schemes. The category ST⇤
is equivalent to the opposite of the

category of finite cubical sets. Among the contexts in ST⇤
we have exhibited a particular class

of ps-contexts, characterized by the judgment `ps. We now show that these particular contexts
are pasting schemes.

Proposition 171. Consider a context Γ in T⇤ such that Γ `ps is derivable, then the finite cubical
set corresponding to Γ, ⌫(Γ) is a pasting scheme.

Proof. We prove this proposition by mutual induction together with the fact that whenever the
judgment Γ is derivable, the cubical set ⌫(Γ) is a pasting scheme such that the elements of the
image of @0,⌫(Γ) are exactly the elements of X.

For the judgment Γ `ps:

– For the judgment (x : ?) `ps, obtained by the rule (pss), we have ⌫(x : ?) = Y(0) = Z0,
hence ⌫(⇥ : ?) is a pasting scheme.

– For the judgment Γ `ps obtained by the rule (psd), we necessarily have a derivation of the
form Γ `ps X, and by the induction case for this case, this proves in particular that ⌫(Γ)
is a pasting scheme.

For the judgment Γ `ps X:

– For the judgment ΣΓ `ps Var(Γ)
+ obtained by the rule (ps+), the judgment Γ `ps is

necessarily derivable. By Lemma 170, the cubical set ⌫(ΣΓ) is obtained as the product
Z1 ⌦ ⌫(Γ). By induction, that ⌫(Γ) is a pasting scheme, hence, either ⌫(Γ) = Z0, in
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which case Z1 ⌦ ⌫(Γ) = Z1 is a ps-context, or ⌫(Γ) = Zk1 ⌦ . . . ⌦ Zkn
, in which case

Z1 ⌦ ⌫(Γ) = Z1 ⌦ Zk1
⌦ . . . ⌦ Zkn

is also a pasting scheme. Moreover, Lemma 170 also
shows that Var(Γ)

+ characterizes the variables in the image of @0,⌫(ΣΓ).

– For the judgment ΣΓ `ps X
+ obtained by the rule (pse), the judgment Γ `ps X is neces-

sarily derivable. Lemma 169 characterizes ⌫(ΣXΓ) as the colimit

⌫(ΣXΓ) = colim

0
BBB@

⌫(Γ)X

⌫(Γ) Z1 ⌦ ⌫(Γ)X

1
CCCA

By induction, ⌫(Γ) is a pasting scheme of the form Zk1⌦, . . . , Zkn
, and ⌫(Γ)X = @0,⌫(Γ),

the inclusion ⌫(Γ)X ! ⌫(Γ) being the map @+0,⌫(Γ). Rewriting this in the previous colimit
and simplifying using the commutation of the Day convolution with the colimit yields

⌫(ΣXΓ) = colim

0
BBB@

Z0

Zk1
Z1

@+
0,Zk1

@�
0,Z1

1
CCCA⌦ Zk2

⌦ . . .⌦ Zkn

The colimit now computes to Zk1+1, thus showing ⌫(ΣXΓ) = Zk1+1 ⌦ Zk2
⌦ . . . ⌦ Zkn

.
Moreover, Lemma 169 also characterizes X+ as the set of variables of the inclusion map
@+0,Z,0 ⌦ id : Z0 ⌦Zk2 ⌦ . . .⌦Zkn

! Z1 ⌦Zk2 ⌦ . . .⌦Zkn
! ⌫(ΣXΓ), which is exactly the

image of application @+0,⌫(Σ
X
Γ).

Global computation. From the previous proof, we can extract the formulas allowing to ex-
hibit ⌫(Γ) as a pasting scheme from a derivation of Γ `ps. Suppose that the given derivation of
Γ `ps is of the form

Γ `ps= (pss)(ps+)(pse)
kn (ps)(ps+)(pse)

kn�1 (ps)(ps+)(pse)
kn�2 . . . (pse)

k1 (ps)

then the cubical set ⌫(Γ) can be expressed as a pasting scheme as the following expression

⌫(Γ) = Zk1+1 ⌦ . . .⌦ Zkn�1+1 ⌦ Zkn+1

Converse. Conversely, we show that every pasting scheme can be represented in the category
ST⇤

by a unique context Γ such that Γ `ps holds.

Proposition 172. Given a pasting scheme X, there exists a unique ps-context Γ such that Γ `ps

is derivable and ⌫(Γ) = X.

Proof. Given a pasting scheme X, if X is the pasting scheme Z0, then (x : ?) is the only ps-
context such that ⌫(x : ?) = Z0. Otherwise, X is of the form X = Zk1

⌦Zkn
, with k1, . . . , kn > 0.

Then there is a unique ps-context whose nerve is X, obtained by the derivation

(pss)(ps+)(pse)
kn�1

(ps) . . . (ps+)(pse)
k1�1

(ps)
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Source and target. Our definitions for sources and targets for the ps-contexts and for the
pasting schemes are compatible. In particular, considering a ps-context Γ of dimension n and
an integer i < n, we can compute its i-source @�i (Γ) and its i-target @+i (Γ). But we can also
define the pasting scheme ⌫(Γ). Our computation shows that ⌫(@�i (Γ)) and ⌫(@+i (Γ)) both
compute to @i,⌫(Γ), and moreover, under this equality, the image of the canonical substitution
Γ ! @�i (Γ) (resp. Γ ! @+i (Γ)) computes to the map @�

i,⌫(Γ) : @i,⌫(Γ) ! ⌫(Γ) (resp. the map

@�
i,⌫(Γ) : @i,⌫(Γ) ! ⌫(Γ))

Equivalence. We have now proved that the map ⌫ defines an equivalence of categories between
the category of cubical pasting schemes and the category of cubical ps-contexts. Moreover, each
ps-context corresponds to a given globular sum, and hence two different ps-contexts are two
different globular sums, so are non-isomorphic. Hence it also defines a bijection between the
pasting and the ps-contexts, and this bijection respects the notions of source and target.

6.3.2 Cubical extensions

In our general framework, we characterize the contexts indexing the introduction rules for term
constructors, as corresponding to a class of colimits in the category of presheaves. Here we have
made them explicit as freely generated via tensor product by a family of globular sets that we
have called Zk. In order to fit our framework, we provide another characterization of the pasting
schemes as a class of colimits. We call a cubical structure on a category C, a functor ⇤! C.

Cubical sums. Define the category Zk, whose objects are the disjoint union of {0, · · · , k} and

of
n
~1, · · · ,~k

o
, and whose morphisms are generated by i� : i � 1 ! ~i and i+ : i ! ~i, for all

1  i  k.

Zk :

~1 ~k

0 1 k � 1 k

· · ·
1� 1+ k� k+

The dimension in objects of Zk is defined by dim(i) = 0 and dim(i) = 1. For (k1, · · · , kn) 2 N,
consider the category Zk1,··· ,kn

= Zk1
⇥ · · · ⇥ Zkn

. The dimension of an object of this category
is defined to be the sum of the dimensions of its components. The arrows in the category
Zk1,··· ,kn

are generated by the arrows (1, 1, · · · , 1, @↵i , 1, · · · , 1, 1), with the non identity in position
0  l  n and 0  i < kl. Such an arrow is called a cosource when ↵ = � and a cotarget if
↵ = +. Let C a category with a cubical structure, and denote Cn the image of n. A cubical sum
in C is the colimit of a diagram D : Zk1,··· ,kn

! C sending objects of dimension n in Zk1,··· ,kn
to

Cn, and sending the cosources (resp. the cotargets) in Zk1,··· ,kn
on cosources (resp. on cotargets)

in C.

Cubical extensions. A category C with a cubical structure is called a cubical extension if it
has all cubical sums. The category FinCSet is equipped with a structure of a cubical extension
for the Yoneda embedding ⇤! FinCSet, indeed, it has all finite colimits, so it has in particular
the cubical sums.

Proposition 173. In the category FinCSet, a cubical set is a cubical sum if and only if it is a
pasting scheme.
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Proof. By definition, Zk is the cubical sum indexed by the diagram Zk. Consider two diagrams
D : I ! ⇤ and D0 : J ! ⇤, then they induce the diagram D ⌦ D0 : I ⇥ J ! ⇤. Since the Day
convolution product preserves the colimits in both variables, we have

colim(Y �D)⌦ colim(Y �D0) ' colim(Y �(D �D0))

hence, if we denote X the cubical sum indexed by Zk1,...,kn
and Y the cubical sum indexed by

Zl1,...,lm , then X⌦Y is the cubical sum indexed by Zk1,...,kn,l1,...,lm . This shows that Zk1
⌦. . .⌦Zkn

is the cubical sum indexed by Zk1,...,kn
.

Universal cubical extension. This shows that restricting the Yoneda embedding a functor
C : ⇤ ! Θ⇤,0 exhibits Θ⇤,0 as a cubical extension. This in fact realizes the initial cubical
extension, in such a way that for any cubical extension F : ⇤! C, there is an essentially unique
functor eF : Θ⇤,0 ! C preserving the cubical sums, such that the following triangle commutes

Θ⇤,0 C

⇤

eF

C
F

Indeed, suppose eF exists, and consider X to be a cubical sum indexed by Zk1,...,kn
in Θ⇤,0,

then since eF preserves the cubical sums, eF (X) is a cubical sum indexed by Zk1,...,kn
for the

cubical extension F : ⇤ ! C, this determines eF up to isomorphism, hence eF is essentially
unique. Conversely, taking eF to associate to X the chosen cubical sum indexed by Zk1,...,kn

in
the cubical extension F : ⇤! C yields a functor which preserves cubical sums.

6.3.3 Cubical Cat-coherator

Cubical theories. A cubcial theory is a cubical extension ⇤! C such that the universal mor-
phism of cubical extensions Θ⇤,0 ! C is faithful and induces a bijection of the set of isomorphism
classes of objects. Similarly to [54], up to equivalence of category, we can always identify Θ0

with a full subcategory of C whenever C is a globular theory, and arrow f of C will be said to be
cubical if it is in Θ0.

Compatible families of arrows. Given a cubical theory C, we denote Cn the image of n,and
�i, ⌧i the respective images of �i and ⌧i. A family of arrows f0, g0, . . . , fn�1, gn�1 : Ci ! X is
said to be compatible if it satisfies the following equations, for all 0  i < j  n� 1

fj�i = fi+1�j fj⌧i = gi+1�j

gj�i = fi+1⌧j gj⌧i = gi+1⌧j

Intuitively, saying that a family (f0, g0, . . . , fn, gn) is compatible means that they fit into the
border of a potential (n+1)-cell. In the category FinCSet, a compatible family of arrows Y([n])
is equivalent to a morphism @Y([n+1]) ! X, but in an arbitrary cubical theory, there might be
enough limits to define @Y(n), thus we present it using explicit algebraic conditions. A lifting
for a compatible family of arrows (f0, g0, . . . , fn, gn) : Cn ! X is an arrow h : Cn+1 ! X such
that for all 0  i  n, we have

fi = h�i gi = h⌧i
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Intuitively, it corresponds to a filling of the (n + 1)-cube in X whose border has been specified
by the compatible family. An arrow f in a cubical theory is said to be algebraic if for all decom-
positions f = gf 0 with g cubical, g is an identity. We also define a family of arrows f0, . . . , fn to
be simultaneously algebraic if for all simultaneous decomposition f0 = gf 0

0, . . . , fn = gf 0
n with g

cubical, g is an identity. A morphism of cubical theories is a morphism of the underlying cubical
extensions.

Admissible families of arrows. Let C be a cubical theory. An admissible family of ar-
rows is a compatible family of arrows f1, g1, . . . , fn, gn : Ci ! X such that either the arrows
f0, g0, . . . , fn, gn are simultaneously algebraic, or for all k there exists decompositions fk = @�k,Xf 0

k

and gk = @+k,Xg0k, with f 0
k and g0k algebraic

Cubical Cat-coherator. We now introduce the cubical Cat-coherator to be the cubical theory
⇤! Θ⇤,1 defined as the colimit

Θ⇤,1 ' colim(Θ⇤,0 ! Θ⇤,1 ! Θ⇤,2 ! · · · ! Θ⇤,n ! · · · )

Where Θ⇤,n is given by induction on n. Define En to be the set of all pairs of admissible arrows
of Θ⇤,n that are not in E0

n for any n0 < n. Then we can define Θ⇤,n+1 to be the universal cubical
extension of Θ⇤,n obtained by formally adding a lift for each pairs in En. In other words, for
each cubical extension f : Θ⇤,n ! C such that the image by f of all pairs of arrows in En has
a lift in C, there is an essentially unique cubical extension f̃ preserving the chosen lifts, which
makes the following triangle commute

Θ⇤,n Θ⇤,n+1

C
f

f̃

Cubical weak !-categories. We define the category of cubical weak !-categories to be the
full subcategory of \Θ⇤,1 whose objects are the presheaves that preserves the cubical products
of Θop

⇤,infty
.

6.3.4 Coherator of the theory CaTT⇤.

This definition of cubical weak !-categories is the mathematical pendent of our type theory. Our
general framework for the ⇤-type theories and our nerve theorem shows that for studying the
models of this type theory, it suffices to study its coherator, which in this case is the subcategory
of SCaTT⇤

whose objects are the ps-contexts. We denote SPS⇤,1 this category. As in the case of
CaTT, there is a dualization happening, and we follow the same naming convention for the dual
notions: We thus have coccubical structures, cocubical extension, coadmissible families of maps,
and so on.

Coherence depth. As was the case with CaTT, we introduce the notion of coherence depth of
a term, in order to reproduce the inductive definition of Θ⇤,n. The coherence depth is defined
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by induction as follows

cd(x) = 0 cd(opΓ,A[�]) = max(cd(A) + 1, cd(�))

cd(cohΓ,A[�]) = max(cd(A) + 1, cd(�))

cd(t i) = cd(t)

cd(?) = 0 cd(Path
i A t u) = max(cd(A), cd(t), cd(u))

cd(hi) = 0 cd(h�, x 7! ti) = max(cd(�), cd(t))

We consider the category SPS⇤,n which is the subcategory of SPS⇤,1 whose substitution all use
terms of coherence depth at most n.

Coadmissible families of arrows in SPS⇤,1. The compatible families of arrows in SPS⇤,1

are exactly the families satisfying the cubical relations, that define the type constructors in the
theory T⇤. They are equivalent to the relations in our implementation with the types Path .
Thus compatible families of arrows exactly correspond to types. We conjecture the two following
results that are analogous to the case of CaTT. We believe that proving these results would
require a similar analysis of the use of the variables allowed in a type and a term.

Conjecture 174. for any compatible pair of arrows (f0, g0 . . . , fn, gn) : Cn ! X, in Θ⇤,m, the
family the arrows f0, g0, . . . , fn, gn are simultaneously algebraic if and only if both the families of
arrows f0, . . . , fn and g0, . . . , gn are simultaneously algebraic.

Conjecture 175. The compatible family of morphisms corresponding to a type is coadmissible
if and only if the type satisfies either (Ccohop,⇤) or (Ccoh,⇤)

Note that Conjecture 175 is the stronger one, as it implies Conjecture 174. From now on, we
admit this conjecture for continuing the study of the type theory.

Tower of definition. Following our proof in the case of CaTT, we define the set En to be the
set of all types Γ ` A of coherence depth n in a ps-context Γ, satisfying (Ccohop,⇤) or (Ccoh,⇤).
Conjecture 175 the family En can be defined inductively as the set of all coadmissible families
of maps in SPS,n that do not belong to any En0 for n < n0.

Lemma 176. The inclusion SPS⇤,n ! SPS⇤,n+1 exhibits SPS⇤,n+1 as the universal cocubical
extension of SPS⇤,n which has a lift for all pair of morphisms in En.

Proof. As we have already proved, this map commutes with the cocubical structure, and both
these categories have all the cubical products, hence it defines a cocubical extension. Moreover,
consider a coadmissible pair (f, g) in En, then id corresponds to a type Γ ` A in a ps-context
Γ, which satisfies (Cop) or (Ccoh) and which is of depth n. Hence we can derive a term t by
Γ ` opΓ,A[idΓ] : A if A satisfies (Cop), or Γ ` cohΓ,A[idΓ] : A if A satisfies (Ccoh), which is of
depth n + 1. This term defines a map �t in the category SPS⇤,n+1, that fits in the following
diagram

Y(n)

Γ @Y(n)

⇡

�A

�t
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By definition of A corresponding to the coadmissible pair (f, g), this shows that �t defines exactly
a lift for the pair (f, g). Hence SPS⇤,n+1 is a coglobular extension which contains a lift for all pairs
in En. We now show that this extension is universal: consider another extension F : SPS⇤,n ! C

that defines a lift for all the pairs in En, we show that there exists a unique F̃ that preserves the
chosen lifts which makes the following diagram commute

SPS⇤,n SPS⇤,n+1

C
F

F̃

Indeed, the map F̃ is already defined on all objects of SPS⇤,n+1, and all maps of coherence depth
less than n, to coincide with F , so it suffices that there is a unique extension to the maps of
coherence depth n+ 1. Since all the object in SPS⇤,n+1 are cubical products, it suffices to show
it for the maps of the form Γ ! Y(n). We can thus reformulate by saying that it suffices to
show that there is a unique map F̃ on terms, with the condition that F̃ (t[�]) = F̃ t � F̃�. We
proceed by induction on the depth, noticing that a term of coherence depth n + 1 cannot be a
variable, hence we have already defined a unique value for F̃ on terms of depth 0, by our previous
condition, and thus the induction is already initialized

– For a term ∆ ` opΓ,A[�] : A[�] of depth d + 1, the value of F is uniquely determined by

F̃ (opΓ,A[�]) = F̃ (opΓ,A[idΓ])F̃�, and since � is of depth d, by induction F̃ (�) is defined,

and F̃ (opΓ,A[idΓ]) is uniquely defined by the condition of preserving the lifts for the pairs
in En

– Similarly for a term ∆ ` cohΓ,A[�] : A[�] of depth d + 1, the value of F is uniquely
determined by F̃ (opΓ,A[�]) = F̃ (opΓ,A[idΓ])F̃�, and since � is of depth d, by induction

F̃ (�) is defined, and F̃ (cohΓ,A[idΓ]) is uniquely defined by the condition of preserving the
lifts for the pairs in En

This proves that there exists a unique F̃ satisfying the condition, and hence SPS⇤,n+1 is the
universal globular extension obtained by adding a lift for all arrows in En to SPS⇤,n

Theorem 177. Under Conjecture 175, the category SPS⇤,1 is equivalent to the category Θ
op
⇤,1

Proof. By induction, Lemma 176 shows that the categories SPS⇤,n and Θ
op
⇤,n

satisfy the same
universal property, hence they are equivalent, and taking the colimit yields an equivalence
SPS⇤,1 ' Θ

op
⇤,1

Models of the theory CaTT⇤. Our framework for studying ⇤-type theories then allows us
to obtain immediately the following characterization of the models of the theory CaTT⇤.

Theorem 178. Under Conjecture 175, the models of the theory CaTT⇤ are equivalent to the
category of pre-cubical weak !-categories.

Proof. This is an application of Theorem 116: Since the arity limits are the cubical products,
the models are equivalent to the functors SPS⇤,1 ! Set that preserve the cubical products.
Theorem 177 then gives the result.
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Conclusion and further work

The approach we have presented for studying weak !-categories and similar higher structures
has many practical advantages. It allows for an implementation of a coherence checker for these
structures, which gives a direct way to access and manipulate the operations and coherence,
experiment with them and build up strong intuition in a safe and computer checked environment.
Additionally it provides a syntax to do so, which is more convenient than diagram chasing. The
presence of a syntax also gives a good setup for inductive reasoning, which is useful both for
understanding the theory, and defining operations like the suspension (c.f. Section 3.2) and the
functorialization (c.f. Section 3.4). Additionally, the framework more general framework of I-
types theories for any direct finite branching category I, that we have introduced in Section 4.3
allows for defining various higher structures similar to globular weak !-categories, and gives a
convenient and modular way to directly characterize their models. The intuition gained from
the practical use of a proof assistant can then be used to tweak a little the rules and define
another type theory fit for different higher structures, and extract a mathematical definitions of
the models of the theory, as we have done in Section 6 for cubical weak !-categories. This has
left several directions open for further research

Polygraphs and weak functors. As we briefly mentioned, the syntactic category of CaTT

(or of any I-type theory) gives a natural notion of finite polygraphs for weak !-categories (or for
other higher structures). A natural follow up to this remark is to try to define all the polygraphs of
such structures, with a theory where contexts may be infinitely long. This approach is currently
being studied by Finster, and would have important consequences: We expect that for any
weak !-category F 2 Mod(SCaTT), there is a morphism Γ ! F in Mod(SCaTT), where Γ is a
category freely generated by such a polygraph (not necessarily finite), and that this morphism
corresponds to an expected notion of weak equivalence, providing an analogue to the cofibrant
replacement. There may not be however a full-fledged model structure on the category of models
of CaTT. This “cofibrant replacement” is expected to provide a notion of weak functors: A weak
functor between F and F 0 is then a functor in the category Mod(SCaTT) between their cofibrant
replacements. This is analogous to a known definition of weak functors for weak !-groupoids.

Automation of the inverse. Working to prove Conjecture 80 is an important goal for two
reasons. It first strengthen our claim that terms of strictly positive degree are invertible, thus
providing a complete understanding of the invertibility of all the cells of the !-categories freely
generated by finite polygraphs. It would also provide with an explicit algorithm to compute
the cancellation witness of a term of degree positive with its inverse. Further work along these
lines would then be to implement the algorithm giving the inverse of a term of positive degree
together with the aforementioned algorithm in order to automatically generate all the inverses and
cancellation witnesses. This would be a significant improvement for the proof assistant, sparing
the user to manually define all of these, as they are an important part of the development. An
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approach that we consider for proving this conjecture is to work with an unbiased version of it.
It would be more general, but it is likely to also yield a more natural algorithm for computing
the inverses and cancellation witnesses, similarly to the fact that weak !-categories are easier
to define in their unbiased versions, even if in the end one wants to work in practice with the
(biased) binary composition.

Furthering automation. The meta-operations of suspension and functorialization that we
have defined respectively in Section 3.2 and Section 3.4 are important for the practical use of
the proof assistant, and using them enables for shorter and simpler developments. Their use
is however restricted to very specific cases, in particular for the functorialization which only
applies to operation, and does not allow for generating new coherences. We believe that this
operation can be extended to coherences and then used to generate automatically the coherences
associated to a functorialized operation. Simple examples show that such a definition would
have to generate complicated terms, and in particular it would have to encode all the cubical
compositions, in a globular setting. We believe that defining this operation in an appropriate
notion of cubical categories, and then defining a translation from this notion to the globular
categories is a promising approach towards a definition of the functorialization in general.

Cubical categories. In Section 6 we have defined a type theory that describes a cubical notion
of !-categories, motivated by the example of functorialization. However the functorialization in
this theory, that we have not presented, is very involved and yields to terms that are too long to
be manageable in practice. We believe that the reason for this is because we rely on a framework
that gives only cubes. Our intuition is that introducing more diverse shapes for composing, and
in particular allowing for some of the low dimensional faces of the cubes to be contracted to a
point, would provide a theory that encompasses both the globular approach and the cubical one.
Such a theory can be obtained by allowing weakenings with respect to the dimension variables,
which is not permitted in the theory we have presented, but the notion of ps-context and the
term introduction rules need then to be adapted. We believe that this is the natural setting
in which the functorialization lives, and expect such a definition of weak !-categories to be
computationally better behaved: It allows for both simpler expressions and heavier automation.
Additionally, while working with CaTT, it happens often that we perform cubical reasoning and
then manually encode it into globular shapes to fit the framework, this expected new framework
could provide a better account for this. We expect that any term of this theory can be translated
into the theory CaTT, requiring to automate the translation of a cubical cell into a globular one.
Such a translation would then immediately provide a general definition of the functorialization
in CaTT, and we expect it to be simpler than this general definition.

Monoidal categories. In Section 5 we have presented a type theory for describing monoidal
weak !-categories. As a generalization, we have briefly introduced a type theory for describing
k-tuply monoidal !-categories without studying it. In particular characterizing the models of
this theory in relation with the models of CaTT as we have done for MCaTT is an potential
research project, that could have deep consequences for the theory CaTT. We illustrate this fact
with the doubly monoidal !-categories: the theory 2-MCaTT describes a monoidal !-category
with a single object, whereas all the contexts in the theory MCaTT define infinitely many terms
of dimension 0: They all define at least (using the coherence names introduced in Section 5.3)
e, prod e e, prod (prod e e) e,. . . Hence a syntactic translation from 2-MCaTT to MCaTT

cannot be defined by simply reindexing the term constructors: It has to use the compositions
of the theory MCaTT to relate the borders of the terms to a reduced version of them where all
the products of the monoidal unit have been simplified. Defining such a translation amounts
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to a strictification procedure on the coherences that are generated by products of the monoidal
unit. Since the Eckmann-Hilton morphism is just a single definition in the theory 2-MCaTT,
this translation has to be powerful enough to generate our entire formalized definition of the
Eckmann-Hilton morphism in CaTT. As this formalization makes heavy use of the suspension
and the functorialization, and could also be simplified using automatic inverses, cancellation
witness and our expected general formalization, we expect all the previously mentioned work to
be very helpful for defining this translation. We do not know whether there is a general scheme for
this strictification that could work for k > 2 and give translations from k-MCaTT to CaTT. Such
a scheme would result in extremely heavy automation, making almost completely immediate a
definition such as the syllepsis in triply monoidal categories, that is barely manageable in the
current state of development. Another follow up would be to try and adapt the theory k-MCaTT

to a theory 1-MCaTT describing symmetric weak !-categories.

Comparison with homotopy.io Homotopy.io1 is another proof assistant for working with
higher categories of a slightly different flavor. These are higher categories where the identities
and the associativities are on the nose, but the other higher cells are weak. It would be very
valuable to study the connection between homotopy.io and CaTT, and in particular defining a
translation between these two would amount to generating automatically a lot of higher cells in
CaTT with very few input commands by the user. Extensive work has already been pursued in
this direction by Finster, Reutter and Vicary [34].

Flavors of type theory. All the theory that we have presented have exchange, contractions
and weakening. This is usually the case for dependent type theories, and these rules force every
context to be obtained as a series of pullbacks along display maps. For this reason we call these
kind of type theories cartesian. For simple type theories many other flavors of type theory exist:
One may present a theory that forbids some combinations of these rules. Not all combinations
can be allowed or forbidden (c.f. [31]). These yields to other notions of simple type theories such
as linear type theories (disallowing the contractions). Reconciling dependent types and linear
type theory in a single framework is an active project. In this regard, frameworks analogous
to the I-type theory that we have introduced could give a syntax for a notion of generalized
algebraic theory in which the arities of the operation are given by a computation that is not a
limit.

1https://homotopy.io/
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Appendix A

Presentation of the type theories

A.1 The type theory GSeTT

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t �!
A

u with A type and t and u terms

Terms: variables

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

Inference rules.

For contexts:

? `
(ec)

Γ ` A

Γ, x : A `
(ce) Where x /2 Var(Γ)

For types:
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t �!
A

u
(!-intro)

For terms:
Γ ` (x : A) 2 Γ

Γ ` x : A
(var)

For substitutions:
∆ `

∆ ` hi : ?
(es)

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)
(se)

Semantics.

SGSeTT = FinGSet
op

Mod(SGSeTT) = GSet
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A.2 The type theory CaTT

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t �!
A

u with A type and t and u terms

Terms: either variables or of the form opΓ,A[�] or cohΓ,A[�] with Γ a ps-context, A a type and
� a substitution

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

Rules for ps-contexts.

(x : ?) `ps x : ?
(pss)

Γ `ps x : A

Γ, y : A, fx �!
A

y `ps f : x �!
A

y
(pse)

Γ `ps f : x �!
A

y

Γ `ps y : A
(psd)

Γ `ps x : ?

Γ `ps

(ps)

Source and target of a ps-context.

@�i (x : ?) = (x : ?) @�i (Γ, y : A, f : x ! y) =

⇢
@�i Γ if dimA � i� 1
(@�i Γ, y : A, f : x ! y) otherwise

@+i (x : ?) = (x : ?) @+i (Γ, y : A, f : x ! y) =

8
<
:

@+i Γ if dimA � i
drop(@+i Γ), y : A if dimA = i� 1
@+i Γ, y : A, f : x ! y otherwise

@�(Γ) = @�dimΓ�1Γ @+(Γ) = @+dimΓ�1Γ

where drop(Γ) is the context Γ with its last variable removed.
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Inference rules.

For contexts :

? `
(ec)

Γ ` A

Γ, x : A `
(ce) Where x /2 Var(Γ)

For types :
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t �!
A

u
(!-intro)

For terms :
Γ ` (x : A) 2 Γ

Γ ` x : A
(var)

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` opΓ,A[�] : A[�]
(op)

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` cohΓ,A[�] : A[�]
(coh)

For substitutions :
∆ `

∆ ` hi : ?
(es)

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)
(se)

where in the rule (op), the type A is assumed to satisfy (Cop) and in the rule (coh), the type A
is assumed to satisfy (Ccoh).

(Cop) A is of the form t �!
B

u with

⇢
Var(t) [Var(B) = Var(@�(Γ))
Var(u) [Var(B) = Var(@+(Γ))

(Ccoh)
Var(A) = Var(Γ) or equivalently

A is of the form t �!
B

u with

⇢
Var(t) [Var(B) = Var(Γ)
Var(u) [Var(B) = Var(Γ)

Semantics.

SPS,1 = Θ
op
1

SCaTT : free completion of SPS,1 by canonical limits preserving globular products

Mod(SCaTT) : equivalent to the category of weak !-categories

A.3 The theory MCaTT

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t �!
A

u with A type and t and u terms

Terms: either variables or of the form mopΓ,A[�] or mcohΓ,A[�] with Γ a ps-context, A a type
and � a substitution

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

251



Desuspension.

For the context ? ` For the context (Γ, x : A) `
?y? = ?

?y(Γ, x : A) =

⇢ ?yΓ if A = ??yΓ, x :
?yA otherwise

For the type Γ ` ? For the type Γ ` t �!
A

u

?y? = ?
?y(t �!

A
u) =

8
><
>:

? if A = ?

?yt ��!?yA
?yu otherwise

For a variable Γ ` x : A For the term ∆ ` opΓ,A[�] : A[�]?yx = x
?yopΓ,A[�] = mopΓ,A[

?y�]

For the term ∆ ` cohΓ,A[�] : A[�]?ycohΓ,A[�] = mcohΓ,A[
?y�]

For ∆ ` hi : ? For ∆ ` h�, x 7! ti : (Γ, x : A)
?yhi = hi

?yh�, x 7! ti =

⇢ ?y� if A = ?

h
?y�, x 7!

?yti otherwise

Inference rules.

For contexts :

? `
(ec)

Γ ` A

Γ, x : A `
(ce) Where x /2 Var(Γ)

For types :
Γ `

Γ ` ?
(?-intro)

Γ ` t : A Γ ` u : A

Γ ` t �!
A

u
(!-intro)

For terms :
Γ ` (x : A) 2 Γ

Γ ` x : A
(var)

Γ `ps Γ `CaTT A ∆ ` � :
?yΓ

∆ ` mopΓ,A[�] : (
?yA)[�] (mop)

Γ `ps Γ `CaTT A ∆ ` � :
?yΓ

∆ ` cohΓ,A[�] : (
?yA)[�] (mcoh)

For substitutions :
∆ `

∆ ` hi : ?
(es)

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)
(se)

where in the rule (mop), the type A is assumed to satisfy (Cop) and in the rule (mcoh), the type
A is assumed to satisfy (Ccoh).

Semantics.

– SMCaTT is equivalent to the full subcategory of SCaTT whose objects are the contexts with
a unique variable of type ?.

– Mod(SMCaTT) is equivalent to the full subcategory of Mod(SCaTT) that define a single
0-cell
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A.4 The theory MCaTT
0

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form t �!
A

u with A type and t and u terms

Terms: either variables or of the form mopΓ,A[�] or mcohΓ,A[�] with Γ a ps-context, A a type
and � a substitution

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

Monoidal contexts: lists of contexts [Γ0; . . . ;Γn]

Monoidal substitutions: lists of substitutions [�0; . . . ; �n]

Monoidal ps-contexts.

[] `ps

(mpsnil)

Γ `ps

[Γ; (x : ?)] `ps x : ?
(mpss)

Γ `ps x : A

(Γ, y : A, f : x �!
A

y) `ps f : x �!
A

y
(mpse)

Γ `ps f : x �!
A

y

Γ `ps y : A
(mpsd)

Γ `ps x : ?

Γ `ps

(mps)

Source and target.

@�i ([]) = [] @�i ([Γ; (x : ?)]) = [@�i (Γ); (x : ?)]

@�i (Γ, y : A, f : x �!
A

y) =

(
@�i (Γ) if dim y � i

(@�i (Γ), y : A, f : x �!
A

y) otherwise

@+i ([]) = [] @+i ([Γ; (x : ?)]) = [@+i (Γ); (x : ?)]

@+i (Γ, y : A, f : x �!
A

y) =

8
><
>:

@+i (Γ) if dim y > i
(drop(@+i (Γ)), y : A) if dim y = i

(@+i (Γ), y : A, f : x �!
A

y) otherwise

@�(Γ) = @�
dimΓ

(Γ) @+(Γ) = @+
dimΓ

(Γ)

where dropΓ is the operator drop applied to the last context in Γ
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Inference rules.

For regular judgments:

For contexts:

? `
(ec)

Γ ` Γ ` A

Γ, x : A
(ce) Where x /2 Var(Γ)

For types:
Γ `

Γ ` ?
(?-intro)

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t �!
A

u
(!-intro)

For terms:
Γ ` x : A 2 Γ

Γ ` x : A
(var)

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mop0
Γ,A

[�] : A[�]
(mop’)

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mcoh
0
Γ,A

[�] : A[�]
(mcoh’)

For substitutions:
∆ `

∆ ` hi : ?
(es)

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)
(se)

For monoidal judgments:

For monoidal contexts:

[] `
(mec)

Γ `

[Γ;?] `
(mc+)

[Γ;Γ] ` [Γ;Γ] ` A

[Γ, (Γ, x : A)] `
(mce) Where x /2 Var([Γ;Γ])

For monoidal types:
Γ `

Γ ` ?

Γ ` A Γ ` t : A Γ ` u : A

Γ ` t �!
A

u

For monoidal terms:
Γ ` (x : A) 2 Γ

Γ ` x : A

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mop0
Γ,A

[�] : A[�]
(mop’)m

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` mcoh
0
Γ,A

[�] : A[�]
(mcoh’)m

For monoidal substitutions:

[] ` [] : []
(ems)

∆ ` � : Γ ∆
0
`

∆@∆
0
` [�;

∆
hi] : [Γ;?]

(ms+)

∆@∆
0
` [�;

∆
�] : [Γ;Γ] [Γ

0
; (Γ, x : A)] ` ∆

0
` t : A[�;

∆
�]

∆@∆
0
` [�0;

∆
h�, x 7! ti] : [Γ; (Γ, x : A)]

(mse)
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For substitutions between contexts and monoidal contexts:

∆ `

∆ ` [] : []

∆ ` � : Γ ∆ ` � : Γ

∆ ` [�; �] : [Γ;Γ]

∆ `

∆ ` hi : ?

∆ ` � : Γ Γ, x : A ` ∆ ` t : A[�]

∆ ` h�, x 7! ti : (Γ, x : A)

Where in the rules (mop’) and (mop’)m the type A is assumed to satisfy (Cmop0) and in the
rules (mcoh’) and (mcoh’)m the type A is assumed to satisfy (Cmcoh0).

(Cmop0)
Either A = ? and dimΓ = 0

Or A = t �!
B

u with

⇢
Var(t) [Var(A) = Var(@�(Γ))
Var(u) [Var(A) = Var(@+(Γ))

(Cmcoh0)
Either A = ? and Γ = []

Or A = t �!
B

u with

⇢
Var(t) [Var(A) = Var(Γ)
Var(u) [Var(A) = Var(Γ)

Semantics.

– SMCaTT0 is equivalent to SMCaTT

– Mod(SMCaTT0) is equivalent to Mod(SMCaTT)

A.5 The theory T⇤

Syntax.

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form Path
i A t u with i a dimension variable, A type and t and u

terms

Terms: either variables or of the form t i where t is a term and i a dimension variable

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

The judgments are now indexed by a list of dimension variables, we denote it `I
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Inference rules.

For contexts:

? `

Γ ` A x /2 Var(Γ)

(Γ, x : A) `

For types:
Γ `

Γ `I ?

Γ `I,i A Γ `I t0 : A[0/i] Γ `I t1 : A[1/i]

Γ `I Path
i A t0 t1

For terms:
Γ ` (x : A) 2 Γ

(Γ, x : A) ` x : A

Γ `I t : Path
i A u0 u1 r /2 I

Γ `I,r t r : A[r/i]

For substitutions:
∆ `

∆ ` hi : ?

∆ ` � : Γ Γ ` A ∆ ` t : A [�]

∆ ` h�, x 7! ti : (Γ, x : A)

Rewriting :
Γ `I t : Path

i A u0 u1

Γ `I t ✏ u✏ : A[✏/i]
(✏ = 0, 1)

Semantics.

ST⇤
= FinCSet

op

Mod(ST⇤
) = CSet

A.6 The theory CaTT⇤

Contexts: lists (x0 : A0, . . . , xn : An) with xi variables and Ai types

Types: either ? or of the form Path
i A t u with i a dimension variable, A type and t and u

terms

Terms: either variables or of the form opΓ,A[�] or cohΓ,A[�] where Γ is a ps-context, A a type
and � a substitution, or of the form t i where t is a term and i a dimension variable

Substitutions: lists hx0 7! t0, . . . , xn 7! tni with xi variables and ti terms

Extrusion.

ΣX? = ?

ΣX(Γ, x : A) =

⇢
(ΣXΓ, x : A, x+ : A+, ~x : Σx,x+

A) If x 2 X
(ΣXΓ, x : A) Otherwise

Σa,b? = Path
i
? a b Σa,b(Path

i A t u) = Path
i (Σ(a i),(b i)A) Σt Σu

Σx = ~x Σ(t i) = (Σt) i
where A+ is defined by
?+ = ? (Path

i A t u)+ = Path
i A+ t+ u+

x+ = x+ (t i)+ = t+ i

Where X is set that is downwards closed in Γ.
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Ps-contexts.

x : ? `ps

(pss)
Γ `ps X

ΣXΓ `ps X
+ (pse)

Γ `ps X

Γ `ps

(ps)
Γ `ps

ΣΓ `ps Var(Γ)
+ (ps+)

Inference rules.

For contexts:

? `

Γ ` A

(Γ, x : A) `
where x /2 Var(Γ)

For types:
Γ `

Γ `I ?

Γ `I,i A Γ `I t0 : A[0/i] Γ `I t1 : A[1/i]

Γ `I Path
i A t0 t1

For terms:
Γ ` (x : A) 2 Γ

(Γ, x : A) ` x : A

Γ `I t : Path
i A u0 u1 r /2 I

Γ `I,r t r : A[r/i]
Γ `ps Γ ` A∆ ` � : Γ

∆ ` opΓ,A[�] : A [�]
(⇤op)

Γ `ps Γ ` A ∆ ` � : Γ

∆ ` cohΓ,A[�] : A [�]
(⇤coh)

For substitutions:
∆ `

∆ ` hi : ?

∆ ` � : Γ Γ ` A ∆ ` t : A [�]

∆ ` h�, x 7! ti : (Γ, x : A)
Rewriting :

Γ `I t : Path
i A u0 u1

Γ `I t ✏ u✏ : A[✏/i]
(✏ = 0, 1)

Where in the rule (⇤op) we assume that A satisfies the condition (Ccohop,⇤) and in the rule (⇤coh)

we assume that A satisfies the condition (Ccoh,⇤)

(Ccohop,⇤)
Γ is of dimension n and A is of the form (t0, . . . , tn�1) ! (u0, . . . , un�1)

with for all i,

⇢
Var(ti) [Var(B�

i ) = Var(@�i (Γ))
Var(ti) [Var(B+

i ) = Var(@+i (Γ))

(Ccoh,⇤) Var(A) = Var(Γ)
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Appendix B

Summary of the formalized results

B.1 Formalized results for the theory GSeTT

Definition of the syntax. The pre-syntax, where we define the expressions for contexts, types
terms and substitutions is declared in the file Syntax.agda as follows

data Pre-Ty : Set

data Pre-Tm : Set

data Pre-Ty where

⇤ : Pre-Ty

) : Pre-Ty ! Pre-Tm ! Pre-Tm ! Pre-Ty

data Pre-Tm where

Var : N ! Pre-Tm

Pre-Ctx : Set1
Pre-Ctx = list (N ⇥ Pre-Ty)

Pre-Sub : Set1
Pre-Sub = list (N ⇥ Pre-Tm)

and we define the action of substitutions on types and terms

_[_]Pre-Ty : Pre-Ty ! Pre-Sub ! Pre-Ty

_[_]Pre-Tm : Pre-Tm ! Pre-Sub ! Pre-Tm

⇤ [ � ]Pre-Ty = ⇤
) A t u [ � ]Pre-Ty = ) (A [ � ]Pre-Ty) (t [ � ]Pre-Tm) (u [ � ]Pre-Tm)

Var x [ nil ]Pre-Tm = Var x

Var x [ � :: (v , t) ]Pre-Tm = if x ⌘ v then t else ((Var x) [ � ]Pre-Tm)

_�_ : Pre-Sub ! Pre-Sub ! Pre-Sub

nil � � = nil

(� :: (x , t)) � � = (� � �) :: (x , (t [ � ]Pre-Tm))
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Judgments and rules of the theory. We then define the judgments in the file Rules.agda,
as inductive inductive types, following, where the inference rules give the generators

data _`C : Pre-Ctx ! Set

data _`T_ : Pre-Ctx ! Pre-Ty ! Set

data _`t_#_ : Pre-Ctx ! Pre-Tm ! Pre-Ty ! Set

data _`S_>_ : Pre-Ctx ! Pre-Sub ! Pre-Ctx ! Set

data _`C where

ec : nil `C
cc : 8 {� A} ! � `C ! � `T A ! (� :: ((length �) , A)) `C

data _`T_ where

ob : 8 {�} ! � `C ! � `T ⇤
ar : 8 {� A t u} ! � `t t # A ! � `t u # A ! � `T ) A t u

data _`t_#_ where

var : 8 {� x A} ! � `C ! x # A 2 � ! � `t (Var x) # A

data _`S_>_ where

es : 8 {�} ! � `C ! � `S nil > nil

sc : 8 {� � � x A t} ! � `S � > � ! (� :: (x , A)) `C
! � `t t # (A [ � ]Pre-Ty)

! � `S (� :: (x , t)) > (� :: (x , A))

Note that in this theory, the judgment _`S_>_ is not mutually inductive with the others and could
be defined separately, however in more complicated theories, we define it by mutual induction
and thus proceed the same way here. We then prove in this file the easier properties satisfied by
these rules, and particular we prove cut admissibility

[]T : 8 {� A � �} ! � `T A

! � `S � > �

! � `T (A [ � ]Pre-Ty)

[]t : 8 {� A t � �} ! � `t t # A

! � `S � > �

! � `t (t [ � ]Pre-Tm) # (A [ � ]Pre-Ty)

Structure of category with families. In the file CwF-Structure.agda, we proceed with
showing all the equalities that define the syntactic category and endow it with a structure of
category with families. We have already proved cut admissibility, we now prove in particular
the functoriality of the application of substitutions and the associativity and unitality of the
composition

[�]T : 8 {� � ⇥ A � �} ! � `T A

! � `S � > �

! ⇥ `S � > �

! ((A [ � ]Pre-Ty) [ � ]Pre-Ty) == (A [ � � � ]Pre-Ty)

[�]t : 8 {� � ⇥ A t � �} ! � `t t # A

! � `S � > �

! ⇥ `S � > �

! ((t [ � ]Pre-Tm) [ � ]Pre-Tm) == (t [ � � � ]Pre-Tm)
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�-admissibility : 8 {� � ⇥ � �} ! � `S � > �

! ⇥ `S � > �

! ⇥ `S (� � �) > �

�-associativity : 8 {� � ⇥ ⌅ � � ✓} ! � `S � > �

! ⇥ `S � > �

! ⌅ `S ✓ > ⇥

! ((� � �) � ✓) == (� � (� � ✓))

�-left-unit : 8{� � �} ! � `S � > �

! (Pre-id � � �) == �

�-right-unit : 8 {� �} ! (� � Pre-id �) == �

Uniqueness of derivations. In the file Uniqueness-Derivations.agda we prove by mutual
induction that every derivable judgment is derivable in a unique way, by showing that the type
of derivations of this judgment is contractible [63], using a terminology from homotopy type
theory. We can simplify the statement even further by showing that every judgment defines a
proposition, again in the sense of homotopy type theory

is-prop-`C : 8 � ! is-prop (� `C)
is-prop-`T : 8 � A ! is-prop (� `T A)

is-prop-`t : 8 � A t ! is-prop (� `t t # A)

is-prop-`S : 8 � � � ! is-prop (� `S � > �)

Decidability of type checking. We show that every judgment defines a decidable type in
the file Dec-Type-Checking.agda

dec-`C : 8 � ! dec (� `C)
dec-`T : 8 � A ! dec (� `T A)

dec-`t : 8 � A t ! dec (� `t t # A)

dec-`S : 8 � � � ! dec (� `S � > �)

These are the most involved proofs and they in particular give a certified implementation of a
type checker for this theory. Since the theory GSeTT is not very relevant in practice, this is
not so important here, however for more complicated theories formally proving the decidability
in Agda gives a certified implementation of the theory, of which one could extract a code that
computes.

Disk and Sphere context. The Agda definition of the disks and sphere contexts are formal-
ized as follows

S : N ! Pre-Ctx

D : N ! Pre-Ctx

S O = nil

S (S n) = (D n) :: (length (D n) , n) n)

D n = (S n) :: (length (S n) , n) n)

we then prove that they define valid contexts

S` : 8 n ! S n `C
D` : 8 n ! D n `C
n) : N ! Pre-Ty
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and we show the familial representability of the type functor

Ty-n : 8 {�} ! ⌃ (N ⇥ Pre-Sub) (� {(n , �) ! � `S � > S n})

! ⌃ Pre-Ty (� A ! (� `T A))

Ty-classifier : 8 � ! is-equiv (Ty-n {�})

B.2 Formalized results for globular type theories

In order to study this general framework for globular type theories along with their properties,
we have formalized it in Agda [12], using de Bruijn levels for variables. This construction is
found in the directory Globular-TT/ of the project and follows the same structure as the one
of the folder GSeTT that we have presented in Section 2.2. The folder CaTT is dedicated to the
work in progress of formalizing the type theory CaTT as a particular case of a globular type
theory (which is slightly more difficult in a constructive and proof relevant setup, that what we
have presented here). We define in particular the syntax of a globular type theory in the file
Syntax.agda as follows, and define the action of substitutions on types and terms as well as
their composition

module Globular-TT.Syntax {l} (index : Set l) where

data Pre-Ty : Set (lsuc l)

data Pre-Tm : Set (lsuc l)

data Pre-Sub : Set (lsuc l)

data Pre-Ctx : Set (lsuc l)

data Pre-Ty where

⇤ : Pre-Ty

) : Pre-Ty ! Pre-Tm ! Pre-Tm ! Pre-Ty

data Pre-Tm where

Var : N ! Pre-Tm

Tm-constructor : 8 (i : index) ! Pre-Sub ! Pre-Tm

data Pre-Sub where

<> : Pre-Sub

<_,_7!_> : Pre-Sub ! N ! Pre-Tm ! Pre-Sub

data Pre-Ctx where

? : Pre-Ctx

_·_#_ : Pre-Ctx ! N ! Pre-Ty ! Pre-Ctx

_[_]Pre-Ty : Pre-Ty ! Pre-Sub ! Pre-Ty

_[_]Pre-Tm : Pre-Tm ! Pre-Sub ! Pre-Tm

_�_ : Pre-Sub ! Pre-Sub ! Pre-Sub

We then define the judgments as inductive inductive types whose generators are the inference
rules of the theory, they are indexed over typed contexts in the theory GSeTT, which we include
as an argument of the module.

module Globular-TT.Rules {l} (index : Set l)
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(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

where

open import Globular-TT.Syntax index

{- Notational shortcuts : the context corresponding to an index -}

Ci : index ! Pre-Ctx

Ci i = GPre-Ctx (fst (fst (rule i)))

Ti : index ! Pre-Ty

Ti i = snd (rule i)

data _`C : Pre-Ctx ! Set (lsuc l)

data _`T_ : Pre-Ctx ! Pre-Ty ! Set (lsuc l)

data _`t_#_ : Pre-Ctx ! Pre-Tm ! Pre-Ty ! Set (lsuc l)

data _`S_>_ : Pre-Ctx ! Pre-Sub ! Pre-Ctx ! Set (lsuc l)

data _`C where

ec : ? `C
cc : 8 {� A} ! � `C ! � `T A ! (� · (C-length �) # A) `C

data _`T_ where

ob : 8 {�} ! � `C ! � `T ⇤
ar : 8 {� A t u} ! � `T A ! � `t t # A ! � `t u # A ! � `T ) A t u

data _`t_#_ where

var : 8 {� x A} ! � `C ! x # A 2 � ! � `t (Var x) # A

tm : 8 {� �} ! (i : index)

! Ci i `T Ti i

! � `S � > Ci i

! � `t Tm-constructor i � # (Ti i [ � ]Pre-Ty)

data _`S_>_ where

es : 8 {�} ! � `C ! � `S <> > ?

sc : 8 {� � � x A t} ! � `S � > �

! (� · x # A) `C
! (� `t t # (A [ � ]Pre-Ty))

! � `S < � , x 7! t > > (� · x # A)

Syntactic properties. We can first check by mutual induction that all the properties of
Proposition 2 hold in any globular type theory. Our formalization shows all these properties in
the file Rules.agda. Note that in this framework, term constructors depend mutually inductively
on substitution, which makes some of these properties harder to prove - If we are not careful,
some of the inductions become ill-formed. For this reason, some of the properties stated here are
proved in the file CwF-Structure.agda, although the corresponding properties for GSeTT are in
the file Rules.agda. The statements corresponding to these properties are similar to the ones
we have presented for the theory GSeTT.

Structure of category with families. We have defined all the structure of a cut-full cat-
egory as we have presented in Section 1.1, and proved that all the defining equations of a

262



cut-full type theory hold for globular type theories. The corresponding proofs are in the file
CwF-Structure.agda. The fact that term constructors depend on substitution also makes this
fact a little bit harder to prove, and most of the results are mutually inductive together. This
makes the proof very hard to check by hand, and illustrates the use of having a proof-assistant
as Agda to manipulate type theories in our case.

Decidability of type checking. The existence of a derivation for any judgment in a globular
type theory is decidable, and we have proved this by induction. For this proof, we follow the
structure described in Proposition 43, and it requires a subtle argument keeping track both of the
depth and the dimension of the terms to ensure that the induction is well-formed. In particular,
it is this property that motivates us to assume that dimAi � dimΓi � 1. We have formalized
this argument in the file Dec-Type-Checking.agda.

module Globular-TT.Dec-Type-Checking {l} (index : Set l)

(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

(assumption : Globular-TT.Rules.well-founded index rule)

(eqdec-index : eqdec index)

where

dec-G`T : 8 (� : GSeTT.Typed-Syntax.Ctx) n A

! dim A  n

! dec (GPre-Ctx (fst �) `T A)

dec-G`t : 8 (� : GSeTT.Typed-Syntax.Ctx) n d A t

! dim A  n ! depth t  d

! dec (GPre-Ctx (fst �) `t t # A)

dec-G`S : 8 (� � : GSeTT.Typed-Syntax.Ctx) n d �

! dimC (GPre-Ctx (fst �))  n

! depthS �  d

! dec (GPre-Ctx (fst �) `S � > GPre-Ctx (fst �))

dec-`C : 8 � ! dec (� `C)
dec-`T : 8 � A ! dec (� `T A)

dec-`t : 8 � A t ! dec (� `t t # A)

dec-`S:G : 8 � (� : GSeTT.Typed-Syntax.Ctx) �

! dec (� `S � > GPre-Ctx (fst �))

dec-`S : 8 � � � ! dec (� `S � > �)

The statements separate in three groups, corresponding to the three steps of the proof that
we have sketch for CaTT (Proposition 43). We first prove the decidability for derivability of
judgments in a context that is in the theory GSeTT. We then prove the derivability for the
regular judgments, restricting the substitution to those whose target is in the theory GSeTT. We
then can prove it for every substitution. The first part of this proof is a bit subtle, as it requires
keeping track both of the dimension and the depth of the objects we manipulate, and relies on
the assumption (which is denoted by the argument assumption of the module) that for all j 2 J ,
we have the inequality dimΓj  dimAj + 1, we have formalized this by the type well-founded
defined as follows

well-founded : Set (lsuc l)

well-founded = 8 (i : index) ! Ci i `T Ti i ! dimC (Ci i)  dim (Ti i)

We also rely on the fact that our indexing set for the term constructors have decidable equality.
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Uniqueness of derivation. Every judgment is derivable in at most one way in a globular type
theory: This is a straightforward mutual induction, and can be seen by the fact that the syntactic
expression of a context, type, term or substitution completely encodes its possible derivation.
We have proved this property in the file Uniqueness-Derivations.agda of our formalization.
The formulation is similar to the one presented in Section 2.2

module Globular-TT.Uniqueness-Derivations {l} (index : Set l)

(rule : index ! GSeTT.Typed-Syntax.Ctx ⇥ (Globular-TT.Syntax.Pre-Ty index))

where

is-prop-`C : 8 � ! is-prop (� `C)
is-prop-`T : 8 � A ! is-prop (� `T A)

is-prop-`t : 8 � A t ! is-prop (� `t t # A)

is-prop-`S : 8 � � � ! is-prop (� `S � > �)

Familial representability of Ty. We have defined the disk and sphere contexts and proved
their validity as well as the familial representability of the type functor in this case in the file
Disks.agda.

S : N ! Pre-Ctx

D : N ! Pre-Ctx

n) : N ! Pre-Ty

S` : 8 n ! S n `C
D` : 8 n ! D n `C
S`) : 8 n ! S n `T n) n

Ty-n : 8 {�} ! ⌃ (N ⇥ Pre-Sub) (� {(n , �) ! � `S � > S n})

! ⌃ Pre-Ty (� A ! (� `T A))

Ty-classifier : 8 � ! is-equiv (Ty-n {�})

B.3 Formalized results for the theory CaTT

The theory CaTT is an instance of a globular type theory, and thus in order to formalize, we can
simply instantiate our previous formalization with the right indexes. This requires formalizing
the algorithm for recognizing ps-contexts, that we have formalized in the file Ps-contexts.agda
as well as the side conditions, that we have defined in the file Fullness.agda. However, due
to the proof-relevance setting of Agda, it is not completely straightforward to translate these
definitions directly, in particular we have to be careful about not having different witnesses to
the equality Var(Γ) = Var(A). There are various ways to circumvent this issue. One is to only
work with variables of maximal dimension, another is to implement sets in Agda. In all the
cases, this requires some substantial extra work, that we do not discuss here.
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