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A B S T R A C T

Recent spatially resolved observations of protoplanetary discs have revealed the presence
of structures with complex morphologies, indicating the probable presence of proto-
planets inside. How could the grains in the disc have formed these structures? How
will they evolve? To answer these questions, we need to understand how grains grow
inside the disc. However, numerical resolution of the coagulation equation by traditional
methods requires prohibitive sampling, making it impossible to integrate it into a three-
dimensional hydrodynamic code.

The goal of this thesis is the development of an algorithm to solve the coagulation
equation while respecting the constraints guided by astrophysics: rigorous conservation
of mass while keeping a precision lower than the hydrodynamic errors on a mass spec-
trum relevant to the observations. Sampling must be minimal to allow coupling with a
hydrodynamic code. To do so, the coagulation equation is solved by an original numerical
scheme based on the discontinuous Galerkin method and a high order integration. The
efficiency of the method is demonstrated on the known solutions of the equation and
transferred to the context of planet formation.

Work carried out in parallel with this study will be presented. Firstly, an analysis
of extra-solar planet observations made with the SPHERE/VLT instrument. Secondly,
the numerical resolution of stochastic equations to understand grain sedimentation in
turbulent disks.
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R É S U M É

Les récentes observations spatialement résolues de disques protoplanétaires ont révélé
la présence de structures à la morphologie complexe, indiquant la présence probable
de protoplanètes à l’intérieur. Comment les grains contenus dans le disque ont-ils pu
former ces structures ? Comment vont elles évoluer ? Pour répondre à ces questions,
il faut comprendre comment les grains grossissent dans le disque. Or, la résolution
numérique de l’équation de coagulation par les méthodes traditionnelles requiert un
échantillonnage prohibitif, rendant impossible son intégration dans un code hydrody-
namique tri-dimensionnel.

Le but de cette thèse est le développement d’un algorithme permettant de résoudre
l’équation de coagulation en respectant les contraintes guidées par l’astrophysique :
conservation rigoureuse de la masse en gardant une précision inférieure aux erreurs hy-
drodynamique sur un spectre de masse pertinent pour les observations. L’échantillonnage
doit-être minimal pour permettre un couplage avec un code hydrodynamique. Pour ce
faire, l’équation de coagulation est résolue par un schéma numérique original reposant
sur la méthode de Galerkine discontinue et une intégration d’ordre élevé. L’efficacité
de la méthode est démontrée sur les solutions connues de l’équation et transférée au
contexte de la formation des planètes.

Des travaux réalisés en parallèle de cette étude seront présentés. En premier lieu, une
analyse d’observations de planètes extra-solaires réalisées avec l’instrument SPHERE/VLT.
En second lieu, la résolution numérique d’équations stochastiques pour comprendre la
sédimentation des grains dans les disques turbulents.
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C H A P T E R S





1
I N T R O D U C T I O N

"Of all the natural
sciences, astronomy
is the one with the
longest chain of
discoveries." –
Pierre-Simon
Laplace
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1.1 planet formation

One of the most fundamental problems of science is the origin of the Solar System. How
planets form is still a pending question of contemporary astrophysics. In 1995, Mayor
and Queloz (1995) detected the first solar-type planet 51 Pegasi b orbiting around the
star 51 Pegasi. This discovery has been a revolution in astrophysics and especially on the
planet formation process. For this discovery, M. Mayor and D. Queloz were awarded of
the Nobel Prize in 2019. The interest in the process of planet formation has drastically
grown in the last 20 years due principally to the discovery of several planetary systems
outside the Solar System. The large number of planets further discovered (∼ 4000 to
date http://exoplanet.eu) has revealed the ubiquitous character of planets around stars
and an unexpected diversity in the architectures of planetary systems (Cassan et al.,
2012). Some remarkable planetary systems have been detected so far (Figure 1.1). The
TRAnsiting Planets and PlanetesImals Small Telescope–South (TRAPPIST-South) located
at La Silla in Chile observed the TRAPPIST-1 planetary system composed of seven
planets. These planets have sizes between Mars and Earth and three of them are located
in habitable zone where liquid water can be supported at the surface of the planet. The
planets undergo mean-motion resonances. Other planetary systems such as Kepler-186
and Kepler-452 have been observed by the Kepler spacecraft. The planet Kepler-452b has
also similar properties to Earth.

3
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Figure 1.1: Left: Illustration of the TRAPPIST-1 planetary system. Seven planets have been de-
tected closed to their host star compared to the Solar System. Right: Illustration of
the Kepler-186 and Kepler-452 planetary systems. The detected planet Kepler-452b
has almost the same properties than Earth. Credits: NASA/JPL-Caltech and NASA
Ames/JPL-CalTech/R.Hurt.

Planet formation originates from molecular clouds, which are mainly composed of
molecular hydrogen (H2). Molecular clouds contain dust (∼ 1% of their mass). The
molecular cloud collapses by gravity, accumulating in its centre the matter which will
form a young star. By conservation of angular momentum, a disc composed of gas
and dust gravitates around the star (Mendoza V., 1966; Safronov, 1972; Testi et al.,
2014). The disc is usually called protoplanetary disc since it contains the material to
form planet embryos. Protoplanetary discs are supposed to be the cradle of planet
formation. First stage of planet formation consists of the formation of solid rocks of size
∼ 1km called planetesimals (Chiang and Youdin, 2010). However, planetesimal formation
remains poorly understood. Grains have first to concentrate and grow by hit-and-stick
collisions up to forming pebbles (see Chapter 2). Then, high hydrodynamical local grain
concentration are triggered by the so-called streaming instability (Youdin and Goodman,
2005; Jacquet et al., 2011; Jaupart and Laibe, 2020). This mechanism is a linear instability
developing from radial drift of dust grains. When the local dust-to-gas ratio is of the
order unity, small clumps of solid material form spontaneously as a result of a traffic
jam generated by local differential drifts. Then, the local over-density of solids reaches
a critical threshold, solid clumps collapse gravitationally to form planetesimals of size
100− 1000m. The streaming instability mechanism allows to overcome the metre-size
barrier problem of planet formation. Once planetesimals are formed, they continue to
grow by accreting pebbles which are solid rocks of size ∼ 1cm (Lambrechts and Johansen,
2012). These growing planetesimals will form solid cores that are the seeds for terrestrial
or gas giant planets (Pollack et al., 1996; Alibert et al., 2005). The discovery of "hot
Jupiters" revealed the importance of considering the migration of these planets within
the disc (Lin et al., 1996). Indeed, planets hardly form close to the star (Bodenheimer
et al., 2000). Protoplanets are therefore expected to form at large radii and to migrate
inwards. Orbital migration is driven by exchange of angular momentum via planet-disc
tidal interactions. Tides transfer angular momentum inside the disc by exciting Lindblad
resonances. This angular momentum is further carried away by waves and is deposited
inside the disc as these waves are dissipated. The tidal torque acting on the planet usually
decreases the orbital angular momentum of the planet, leading generally to inward
migration. In this case, the migration is called type I (Goldreich and Tremaine, 1980;
Baruteau et al., 2014). If the planet is massive enough, tides split the disc into an inner
disc and an outer disc. The planet is locked into a gap, and migrates inwards as the gas
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Figure 1.2: Image of a protoplanetary disc in optical wavelength in the Orion Nebula observed by
the Hubble Space Telescope. Credits: Mark McCaughrean (Max-Planck-Institute for
Astronomy), C. Robert O’Dell (Rice University), and NASA/ESA

is accreted onto the star (Lin and Papaloizou, 1986; Baruteau et al., 2014). In this case
the migration is called of type II. Additional mechanisms developing at corotation also
trigger planet migration (Masset and Papaloizou, 2003). Planets can undergo resonances
as they migrate, shaping the architecture of planetary systems (Baruteau et al., 2014).
Some models examine the planetary dynamics of the Solar System to explain the current
architecture. The "Grand Tack" model (Walsh et al., 2012) simulates the few million years
after the formation of the first solids and before the formation of the Earth. The model
proposes that Jupiter and Saturn migrate inwards (type II migration). At some point, they
merge their gaps and lock into 3:2 resonance, and further undergo outwards migration.
This model gives an explanation for the mass of Mars and the distribution of solids inside
the main asteroid belt. The "Nice Model" (Tsiganis et al., 2005) simulates the final major
dynamical event that shapes the Solar System. It describes the reshuffling of giant planets’
orbits and accounts for the late bombardment of the inner Solar System (Morbidelli et al.,
2010).

1.2 observations of discs

The first observation of discs have been realised with the Infrared Astronomical Satellite
(IRAS) (Strom et al., 1989). These observations at near-infrared wavelengths revealed the
presence of circumstellar discs, containing small dust grains, associated with young solar-
type pre-main sequence stars. Thereafter, the first detectors at millimetre wavelengths at
the James Clark Maxwell Telescope (JCMT) showed the presence of large dust grains in
many discs (Weintraub et al., 1989). Evidence of flattened morphology of discs have been
highlighted in optical wavelengths with the Hubble Space Telescope (Hubble). Figure 1.2
shows disc shadows in a bright nebular background (O’dell and Wen, 1994).

Improvements in sensitivity, resolution and wavelength coverage leaded to an accelera-
tion of discoveries of discs. The Spitzer Space Telescope (Spitzer) have greatly expanded
the knowledge in discs (Werner, 2005). Interferometry probed shorter wavelengths in-
cluding into the sub-millimetre regime with the Submillimetre Array (SMA) (Ho et al.,
2004). High spatial observations in sub-millimetre wavelengths have been realised to
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reveal particular structures in discs (Andrews and Williams, 2007). The development of
new instruments such as Very Large Telescope (VLT) and the Atacama Large Millimetre/-
submillimetre Array (ALMA) have drastically improved the sensitivity and resolution
for observations of discs.

Recent spatially resolved observations with ALMA revealed the presence of substruc-
tures, such as rings, spirals, gaps and horseshoes in discs around young stars (e.g. van der
Marel et al. (2013), ALMA Partnership et al. (2015), Andrews et al. (2016), and Andrews
(2020)). The DSHARP survey (Andrews et al., 2018; Andrews, 2020) provided an impor-
tant collection of observations of dusty discs (see Figure 1.3). Rings, spirals, horseshoes
and shadows have also been detected at infrared wavelengths by the Spectro-Polarimetric
High-contrast Exo-planet REsearch (SPHERE/VLT) instrument (e.g Avenhaus et al. (2014),
Benisty et al. (2015), Benisty et al. (2017), Avenhaus et al. (2018), and Boccaletti et al.
(2020a) and see Figure 1.3). Structures in protoplanetary discs have also been observed
with other instruments such as the Gemini Planet Imager (GPI) instrument (e.g. Hung
et al. (2015)), the Subaru/HiCIAO instrument (Tamura, 2009; Muto et al., 2012; Uyama
et al., 2018). The next generation of instruments such as SPHERE+ (Boccaletti et al.,
2020b), the improvement of SPHERE, the Extremely Large Telescope (ELT) with the
Mid-infrared ELT Imager and Spectrograph (METIS/ELT) (Brandl et al., 2016) and the
James Webb Telescope (JWST) (Gardner et al., 2006) will drastically increase the perfor-
mance for detecting planets and observing protoplanetary discs at high resolution. The
excellent sensitivity and angular resolution of these instruments at near- to mid-infrared
wavelengths will revolutionise our understanding of the inner regions of protoplanetary
discs.

The variety of structures observed in protoplanetary discs was unexpected. Explain the
origin of these structures was the principal challenge of the last five years. The presence
of these structures could be signposts of planets. The high spectral resolution ALMA
line observations provides channel velocity maps of the gas. A new technique consists to
detect a deviation from the Keplerian velocity of the gas in these channel maps, which
suggest the presence of a gravitational companion. Pinte et al. (2018) and Teague et al.
(2018) detected gravitational companions in observing local kinks from the Keplerian
velocity of 12CO. These channel maps can be reproduced by the 3D hydrodynamic code
PHANTOM simulating the evolution of planets within the disc. Pinte et al. (2020) detected
9 exoplanets in protoplanetary discs, with some of them inside a gap for the first time
(see Figure 1.6). Recent observations in direct imaging revealed the presence of massive
planets inside the disc around PDS 70 (Müller et al., 2018; Keppler et al., 2018; Christiaens
et al., 2019; Keppler et al., 2019) and a potential ongoing planet formation in the disc
around AB Aurigae (Boccaletti et al., 2020a), see Figure 1.4. These observations are
the deepest images ever obtained with SPHERE for AB Aurigae in scattered light. The
presence of potential planet in formation is suggested by the analysis of the form of
spirals in the disc. Kraus et al. (2020) have recently detected with ALMA three rings
around the triple star system GW Orionis (Figure 1.5). These observations confirm
evidence of disc tearing, i.e. disc warped and broke into precessing rings. If planet can
form in the warped disc, this could explain the presence of planets on oblique orbits.

These observations probed the distribution of dust grains within the disc (millimetre
pebbles with ALMA and micron-in-size grains from the top layers with SPHERE/VLT).
How these structures form and connect to planet formation is a pending question of
contemporary astrophysics. How planets can form in less than one million year, the
typical lifetime of observed discs? The solid material arising from the interstellar medium
have to grow over 30 orders of magnitude in mass to form planets in such a short time
(Chiang and Youdin, 2010; Testi et al., 2014).
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Ring/Cavity

Rings/Gaps

Arcs

Spirals

Figure 1.3: Gallery of discs with subs-structures. The continuum emission is observed at λ =
0.9 mm. The scattered light is observed at λ = 1.6µm. Resolutions of observations
are marked with white ellipses in the lower left corners of each panel. The 10 AU
scalebars are shown in the lower right corners. For the scattered light images, the grey
circles mark their coronagraphic spots. Credits: Andrews (2020)
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Figure 1.4: Observation of the AB Aurigae system obtained with SPHERE in scattered light. The
presence of planets in this disc explains the form of the spirals (Boccaletti et al., 2020a).

Figure 1.5: Observation of the disc components around GW Orionis with ALMA in millimetre
wavelength. Left: Image of the discs where three rings (R1,R2 and R3) are detected.
Right: Image of the inner part of the disc with the ring R3 and the three stars. This
triple stars system is composed of three rings where planets can form (Kraus et al.,
2020).
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Figure 1.6: Observation of the disc around HD163296 in the continuum emission at λ = 1.3 mm.
The green dot represents the indirect detection of a planet of mass 3MJup with the
kinematic detection (Pinte et al., 2018). The planet is detected in a gap. Credits: Pinte
et al. (2020).

1.3 meteoritic data

Our Solar System is composed of a reservoir of solid materials which testifies to the
history of the formation of planetary systems. In particular, the study of the primitive
rocky meteorites (Nittler and Ciesla, 2016), called chondrites, allows to follow the grain
growth during the evolution of the disc. Chondrites are composed mainly of chondrules
which are spherical millimetre-sized particles. Chondrules are made of silicate materials,
olivine, pyroxene and calcium aluminium inclusions (CAI) embedded in a fine-grained
matrix (Scott, 2007). Most CAIs formed as fined-grained condensates from a gas of solar
composition in a high temperature environment (> 1300 K) at low pressure (< 10−4 bar).
Their dating is obtained by the analysis of the decay of short-lived radionucleides. Their
ages give an estimation of the age of the Sun, 4.567 Gyr. Chondrules are thought to
have formed by coalescence of dust aggregates that were rapidly melted and cooled at
lower temperature (< 1000 K) and higher pressure (> 10−3 bar). Recent measurements of
absolute ages of the chondrules found that they were formed over a period that span from
CAI formation to a few million years beyond (Connelly et al., 2012). Chondrule, CAIs and
the matrix of one chondrite originate from different reservoirs, implying mixing during
the early stages of planet formation (Burbine et al., 2002; Scott, 2007). Dust aggregates
made of micrometer-in-size grains and millimetre-in-size chondrules had to be present at
the formation of the Solar system (Scott, 2007). Similar grain sizes are found in cometary
materials (Blum et al., 2017). Therefore, dust growth has to be efficient during the early
stages of planet formation.

1.4 basic model of protoplanetary discs

Protoplanetary discs are composed of gas and dust orbiting their host star. In the mid-
plane of a typical disc, the mean free path is of order λg ∼ 10 m for a gas essentially
made of molecular hydrogen. This is much larger than the typical size of a dust grain.
Therefore, the gas is considered as a collection of particles colliding with the dust grain.
The appropriate drag regime is the so-called Epstein drag regime for dilute media
(Epstein, 1924; Whipple, 1972; Lynden-Bell and Pringle, 1974; Weidenschilling, 1977a).
The mean free path between dust grains in the mid plane is of order λd ∼ 100 km.
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At the scales of order astronomical units, gas and dust can be treated as continuous
phases. Dust collisional pressure and viscosity are usually neglected. The basic model of
protoplanetary discs has been developed by Whipple (1972), Lynden-Bell and Pringle
(1974), Weidenschilling (1977a), Pringle (1981), Nakagawa et al. (1981), Dubrulle et al.
(1995), and Takeuchi and Lin (2002), where gas and dust evolution are described by fluid
mechanics.

1.4.1 Keplerian motion

The disc is composed of a continuous medium orbiting a star of mass M∗. Each fluid
element of the medium (gas and dust) moves on a Keplerian circular orbit (Armitage,
2019). The Keplerian angular velocity at a radius r writes ΩK =

√
GM∗/r3. The fluid

element experiences a local shear that relates to a differential rotation. The typical
timescale in the disc is the orbital period at 1 au TK = 1 yr (r/1 au)3/2, around a one-Solar
mass star.

1.4.2 Thermal profile

The temperature profile in discs results from the thermal balance between heating from
the central star and cooling by the continuum radiation in the infrared (Chiang and
Goldreich, 1997; Woitke, 2015). At most radii, the dust opacity is high enough for the
disc to be optically thick to the stellar radiation (Armitage, 2019). Considering only
geometrical effects, the radial thermal profile writes in the form T(r) ∝ r−q. Realistic disc
structures provide q ∼ 0.4 (Pinte and Laibe, 2014). At 1 au the typical temperature value
is a few hundreds of Kelvin. Discs are optically thick and almost vertically isothermal,
except in the very top layers (D’Alessio et al., 1998).

1.4.3 Vertical structure of gas

The vertical structure of gas density in discs is determined by the condition of hydrostatic
equilibrium. This equilibrium results from the balance of the gravity of the star and
pressure of the gas in the vertical direction. The disc is considered as isothermal, with
constant sound speed cs and pressure P = ρgc2

s . The vertical hydrostatic equilibrium for
a non-magnetic, non-self-gravitating, and vertically isothermal disc writes in cylindrical
coordinates

∂P
∂z

= −ρg
GM?z

(r2 + z2)3/2 . (1.1)

The sound speed is considered independent of z, then

ρg (r, z) = ρg,0 exp
[
−GM?

c2
s

(
1
r
− 1√

r2 + z2

)]
≈

z�r
ρg,0 exp

[
− z2

2H2
g

]
, (1.2)

with ρg,0 the gas density at z = 0 and Hg = cs/ΩK the typical pressure scale height of
the disc. ρg,0 depends of the surface density of the gas Σg (R) =

∫ ∞
−∞ ρg (R, z)dz,

ρg,0 =
1√
2π

Σg

Hg
. (1.3)

Therefore, in a very good approximation, the gas has a vertical gaussian profile (Armitage,
2019).
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1.4.4 Radial structure

For a disc in vertical hydrostatic equilibrium, the azimuthal component of the momentum
equation writes

ρg

(
∂vr

∂t
+ vr

∂vr

∂r
−

v2
φ

r

)
= −ρg

GM?r
(r2 + z2)3/2 −

∂P
∂r

. (1.4)

At steady-state, the momentum equation writes in the mid-plane

v2
φ

r
=
GM?

r2 +
1
ρg

∂P
∂r

. (1.5)

The negative pressure gradient maintains a globally negative correction to the Keplerian
rotation of order H2/r2 (Whipple, 1972; Weidenschilling, 1977a). Then the azimuthal
velocity writes

vφ =

[
GM?

r
+

r
ρ

∂P
∂r

]1/2

≈ vK +
r

2ρvK

∂P
∂r

< vK. (1.6)

Considering a disc with Σ ∝ r−1, T ∝ r−1/2, one obtains cs ∝ r−1/4, ρg ∝ r−9/4 and
P ∝ r−11/4. Equation 1.6 writes (Armitage, 2019)

vφ = vK

[
1− 11

4

(
Hg

r

)2
]1/2

. (1.7)

The deviation from the Keplerian velocity is of the order of (Hg/r)2. For a disc with
Hg/r = 0.05 at 1 au, the difference between vφ and vK is about 0.3%. This differential
velocity triggers dust drift (see below).

1.4.5 Turbulence

In discs, turbulence acts as one source with winds and self-gravitating waves for the
transport of angular momentum (Lodato, 2008). Although Reynolds numbers are of
the order 1012, the Keplerian differential rotation prevents the development of purely
hydrodynamical turbulence through local shears. More precisely, the flow is stable
under the Rayleigh criterion. The origin of the turbulence in discs comes from the
so-called magneto-rotational instability (Balbus and Hawley, 1991). Turbulence in disc
is conveniently modelled by an effective viscosity (Prandtl’s mixing-length theory).
Shakura and Sunyaev (1973) parametrised the turbulent efficiency by an effective viscosity
ν = αcsHg, where α is a dimensionless parameter. In general, α ∼ 10−4 − 10−3 (values
from ideal MHD simulations, Fromang and Nelson (2009)). These values reproduce
observed accretion rates and are consistent with models and observations. Energy is
injected at the large scale H. The typical turbulent velocity is of order

√
αcs. The turbulent

activity of the gas sustains a stochastic diffusivity of small grains, since they are coupled
to the gas (see Chapter 5). Turbulence generates relative differential velocities between
dust grains that drive the outcome of collisions (see Chapter 5, Youdin and Lithwick
(2007)).
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1.5 dust evolution in discs

1.5.1 Drag

Dust play a crucial role in planet formation. Pebbles provide the primary material to
form planetary cores, whereas small grains set the thermal balance of the disc. Usually,
dust and gas are treated as fluids. Dust fluid is pressureless and do not thermalised
with the gas. Dust and gas are coupled by the drag that acts as a source for exchanging
momentum.

1.5.1.1 Epstein regime

Drag originates from microscopic collision between one grain and gas molecules. The
drag force Fd is obtained by summing the mean rate of momentum exchange by single
gas molecule of negligible mass to the grain during a collision. The drag force writes
Fd ≈ pc/tc, where pc = −m∆v and tc the mean collision time. m is the mass of a
spherical grain. In the case of a spherical uncharged grain and specular reflexion on
the surface of the grain, a factor 4/3 is added Baines et al. (1965). The mean collision
time for ballistic collision writes tc = (ngσvth)

−1, where ng is the number density of gas

molecules, σ the cross section of the grain and vth = cs

√
8

πγ the thermal velocity of the
gas. γ is the adiabatic index of the gas. In the Epstein regime, the drag force writes for
spherical grains

Fd = −m
∆v
ts

, (1.8)

where m is the mass of a grain, ∆v the differential velocity between the gas and the grain
and ts the stopping time of a single grain

ts =

√
πγ

8
ρgrains
ρgcs

. (1.9)

ρgrain is the intrinsic density of a grain with typical value ρgrain = 3 g.cm−3 (Love et al.,
1994) and ρg = ngmg. The stopping time ts is the typical time for dust grains to reach
gas velocity (Epstein, 1924; Baines et al., 1965). Drag is stronger as collisions with the
gas molecules are more frequent. If solids reach zones where λg ≤ s, equation 1.9
expresses according to the Stokes law. These two regimes are reconnected by analytic
approximations (Whipple, 1972).

1.5.1.2 The Stokes number

A key parameter for the dust dynamics is the Stokes number St, defined as the ratio
between the local stopping time ts and the orbital time (Whipple, 1972; Safronov, 1972).
Grains with St � 1 stick to the gas, and they follow the gas motion. Their dynamics
is drag-dominated. Grains with St � 1 do not feel the drag from the gas, they follow
N-body orbits that are slightly damped. Their dynamics is gravity-dominated. Maximal
decoupling and damping is reached at St ∼ 1. Solids differentiate from the gas and
concentrate strongly, making this case of prime importance for planet formation. Typically,
St ∼ 1 are the millimetre-in-size grains observed with ALMA. St ∝ s, therefore, grains
undergo dynamical motions that depend on their sizes. Therefore, dust growth impacts
strongly the dust dynamics.
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1.5.2 Vertical settling

The seminal theory of dust settling was established by Dubrulle et al. (1995). This model
is widely used to estimate dust scale heights in discs. Dullemond and Dominik (2004b)
and Dullemond and Dominik (2005a) pioneered models of dust settling coupled to
Monte-Carlo methods for radiative transfer, a technique extended to ray tracing by Pinte
et al. (2006) and Pinte et al. (2007). In the vertical direction, drag makes the orbital
inclinations of the grains relax towards the mid-plane of the disc (Adachi et al., 1976).
The vertical component of the gravity in cylindrical coordinates is

− GMz

(r2 + z2)3/2 ≈ −Ω2
Kz, (1.10)

where z� r. The vertical component of the drag exerted by the gas on grains is

Fd,z = −md
(ż− vg,z)

ts
. (1.11)

Assuming vertical hydrostatic equilibrium, vg,z = 0. Combining equations 1.9 and 1.2,
the stopping time writes

ts(z) ≈ tz,0 e
z2

2H2 , (1.12)

where z � r and ts,0 ≡ ρs
ρg,0cs

√
πγ
8 . ts,0 denotes the stopping time in the mid-plane. The

balance of forces for a single grain in vertical direction is

z̈ +
e−

z2

2H2

ts0
ż + ΩKz = 0. (1.13)

The Gaussian weight ensures that grains are decoupled from the gas in the top layer of
the discs. Allowing the rescaling Z ≡ z/H and T ≡ tΩK, equation 1.13 writes

Z̈ + St−1
0 e−

Z2
2 Ż + Z = 0, (1.14)

where St0 is the Stokes number of the grain in the mid-plane. For Z � 1, when grains
are close to the mid-plane, equation 1.14 reduces to the damped harmonic oscillator

Z̈ + St−1
0 Ż + Z = 0. (1.15)

Grains relax to the mid-plane in a settling time scale Tsett. According to the three cases of

solution for equation 1.15, the settling time scale can be well approximated by Tsett =
St2

0+1
St0

(Youdin and Lithwick, 2007; Laibe et al., 2014a). Therefore, grains relax to the mid-plane
in a typical time

tsett ∼
St2

0 + 1
St0

Ω−1
K . (1.16)

Settling efficiency is optimal for St0 ∼ 1. Large grains orbit around the star by crossing
the mid-plane and their orbital inclinations relax slowly to zero due to the drag force.
Small grains are stuck to the gas and, therefore, do not cross the mid-plane. In the very
top layers of the disc, gas density decreases, therefore small grains decouple until they
reach z ∼ H in one orbital period. Settling efficiency increases when grains grow and
therefore decouple from the gas (Laibe et al., 2014a).
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1.5.3 Stochastic turbulence in discs

Stochastic models are convenient to analyse the link between the dust scale height and the
turbulent activity in the disc. The turbulent eddies of the gas transport the dust grains in a
random manner, corresponding a diffusion process for the dust. The diffusion coefficient
is defined as D ≡ 2

∫ +∞
0 〈vg(0)vg(t)〉dt (Batchelor, 1950; Fromang and Papaloizou, 2006;

Carballido et al., 2006). In discs, vortices are stretched by differential rotation in a few
orbits. Therefore, correlations at large scales develop for times te ∼ Ω−1

K . The equation of
motion of the gas in the vertical direction writes

dvg

dt
= −

vg

te
+

√
D

te
ẇ, (1.17)

where ẇ defines a purely diffusive process: 〈ẇ(t)〉 = 0 and 〈ẇ(t)ẇ(t′)〉 = δ(t− t′). The
velocity of gas has the following properties

〈vg(t)〉 = 0,

〈vg(t)vg(t′)〉 =
D
2te

e−
|t−t′ |

te .
(1.18)

The diffusion coefficient can also be written using the α prescription D = αcsH/2
(Dullemond and Dominik, 2004a). According to the Wiener-Khinchin theorem, the power
spectrum S(ω) writes

S(ω) =
1

2π

+∞∫
−∞

e−iωt〈vg(0)vg(t)〉dt =
D

2π(1 + ω2t2
e)

. (1.19)

The turbulent velocity of the gas vg,T expresses

v2
g,T ≡

+∞∫
−∞

S(ω)dω =
αc2

s

teΩ−1
K

⇒ vg,T ∼
√

αcs. (1.20)

The equation of motion of grains in vertical direction equation 1.13 writes with equa-
tions 1.18 in dimensionless quantities

dZ = VdT,

dVSt−1VdT + ZdT =
√

2αξSt−1dT,

dξ = − ξ

τe
dT +

dw
τe

,

(1.21)

where τe ≡ teΩ.

1.5.3.1 Small grains

The dynamics of small grains (St � 1) is drag-dominated. Assuming that inertia is
neglected in the disc (dV = 0) and also turbulent correlations (τe → 0), equation 1.21

writes

dZ = VdT,

VdT = StZdT +
√

2αξdT,

ξdT = dw.

(1.22)
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One obtains

dZ = −St0Z eZ2/2 dT︸ ︷︷ ︸
vertical settling

+
√

2αdw︸ ︷︷ ︸
turbulent stirring

. (1.23)

Equation 1.23 shows that the distribution of small grains results from competition
between turbulent stirring and vertical settling. Equation 1.23 is equivalent to a Fokker-
Plank equation giving the probability density function of small grains p as (Risken, 1996)

∂p
∂T

=
∂

∂Z

(
St0Z eZ2/2 p

)
+ α

∂2 p
∂Z2 . (1.24)

At steady-state, solution to equation 1.24 writes

p(Z)∞ ∝ e−
eZ2/2
α/St0 . (1.25)

The ratio α/St0 measures the balance between turbulent stirring and vertical settling. For

α/St0 � 1, equation 1.25 writes p(Z)∞ ∝ e−
Z2/2
α/St0 . Small grains concentrate close to the

mid-plane in a layer of thickness Hd/H =
√

α/St0 where gas density is almost constant.
For α/St0 ≥ 1, small grains distribution looks like a rectangle shape with typical width
of order ∼ 2− 3H. In this case, small grains decouple in the top layers and inertia can
not be negligible.

1.5.3.2 Large grains

Large grains with St0 � 1 are decoupled from the gas. They orbit close to the mid-plane
where gas has almost constant density. For large grains, inertia can not be negligible.
Assuming turbulent correlations are neglected (τe → 0), equation 1.21 writes

dZ = ZdT,

dV + St−1
0 VdT + ZdT = St−1

0
√

αdξ.
(1.26)

The system of equations 1.26 is equivalent to the following Fokker-Plank equation

∂p
∂T

+ V
∂p
∂Z

+
∂

∂V

([
−St−1

0 V − Z
]

p
)
− αSt−2

0
∂2 p
∂V2 = 0, (1.27)

for which the steady state solution writes

p(Z, V)∞ =
St0

2πα
e−

2
α/St0

(
Z2
2 + V2

2

)
. (1.28)

The distribution of large grains is Gaussian at steady state. The dust scale height is still
Hd/H =

√
α/St0. The steady distribution in velocity is reached for a typical stopping

time. The steady scale height is reached for a typical settling time. The mean turbulent
velocity of grains is obtained by taking the variance of equation 1.28 as vd,T = cs

√
α/St0.

In this case, the diffusion coefficient of dust grains in the vertical direction is α/St0. A
refined model can be obtained by including finite correlation (Youdin and Lithwick, 2007)
to take into account that turbulent stirring balances epicyclic oscillations of particles and
not vertical. The stochastic differential equation on large grains writes

dZ = VdT,

dV + St−1
0 VdT + ZdT =

√
2αξSt−1

0 dT,

dξ = − ξ

τe
dT +

dw
τe

.

(1.29)
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By using the identity d〈ξg〉
dT = 〈ξ dg

dT 〉 −
〈ξg〉

τe
and 〈ξξ〉 = 1/2, one obtains the system of

equations

d〈ZZ〉
dt

= 2〈ZV〉,

d〈ZV〉
dt

= −〈ZZ〉 − St−1
0 〈ZV〉+ 〈VV〉+

√
2αSt−1

0 〈ξZ〉,

d〈VV〉
dt

= −2〈ZV〉 − 2St−1
0 〈VV〉+ 2

√
2αSt−1

0 〈ξV〉,

d〈ξZ〉
dt

= − 1
τe
〈ξZ〉+ 〈ξV〉,

d〈ξV〉
dt

= −〈ξZ〉 −
(

St−1
0 +

1
τe

)
〈ξV〉+ St−1

0

√
α/2.

(1.30)

Steady state solutions 〈ZZ〉〉∞ and 〈VV〉∞ of the system of equations 1.30 give

Hd/H =
√

α/St0

√
1 + τe/St0

1 + τe/St0 + τ2
e

,

vd,T/cs =
√

α

√
τe

St0 + τe + St0τ2
e

.

(1.31)

For St0 � 1 and τe, results differ by a factor
√

2 compared to the purely diffusive regime.

Models were refined to understand the role played by different drag regime (Ga-
raud and Lin, 2004), by refined models of turbulence (Schräpler and Henning, 2004;
Jacquet, 2013; Ormel and Liu, 2018), turbulent dead zones (Ciesla, 2007), turbulent cor-
relations (Youdin and Lithwick, 2007), grain growth (Laibe and Price, 2014a) or winds
(Riols and Lesur, 2018). Several aspects of dust settling were quantified with (magneto)-
hydrodynamical simulations: the role of dust feed-back (Barrière-Fouchet et al., 2005;
Johansen and Klahr, 2005; Johansen et al., 2006), turbulence (Takeuchi and Lin, 2002;
Carballido et al., 2006; Fromang and Papaloizou, 2006; Fromang and Nelson, 2009; Ciesla,
2010; Turner et al., 2010; Charnoz et al., 2011; Johansen et al., 2011; Carballido et al., 2011;
Zhu et al., 2015; Stoll and Kley, 2016; Lin, 2019), and grain growth/fragmentation (Zsom
et al., 2011). Dust vertical settling is discussed in Chapter 5. The dust vertical settling is a
source of differential velocities between grains leading to potential collisions.

1.5.4 Radial drift

The drag force leads to migration of grains towards inner radii, called the radial drift
(Whipple, 1972; Adachi et al., 1976; Weidenschilling, 1977a; Nakagawa et al., 1986;
Takeuchi and Lin, 2002). Due to its radial pressure gradient, the gas orbit at a sub-
Keplerian velocity. A freely dust particle orbits at Keplerian velocity. Drag force tends
to decelerate the dust particle, leading to a loose of angular momentum. Therefore,
the dust particles spiral inward towards regions of higher pressure (Testi et al., 2014).
Conservation of momentum for gas and dust write

∂vg

∂t
+
(
vg · ∇

)
vg =

K
ρg

(
vd − vg

)
−∇Φ− 1

ρg
∇P,

∂vd

∂t
(vd · ∇) vd = − K

ρd

(
vd − vg

)
−∇Φ.

(1.32)

The stationary velocities in the mid-plane are obtained with ∂/∂t and performing a
perturbative expansion under the form v = vK + vPeθ, where vP ≡ 1

ρgΩK

∂P
∂r appears as a
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typical optimal drift velocity and eθ is the unity vector in azimuthal direction. Solving
the system of equations

∂vg,r

∂t
=

K
ρg

(
vd,r − vg,r

)
+ 2ΩKvg,θ −ΩKvP,

∂vg,θ

∂t
=

K
ρg

(
vd,θ − vg,θ

)
− ΩK

2
vg,r,

∂vd,r

∂t
= − K

ρd

(
vd,r − vg,r

)
+ 2ΩKvd,θ ,

∂vd,θ

∂t
= − K

ρd

(
vd,θ − vg,θ

)
− ΩK

2
vd,r,

(1.33)

provides the velocities in stationary regime

vst
g,r = −

εvP

St + St−1 (1 + ε)2 ,

vst
g,θ =

1
2

vP

1 + ε

(
1 + ε

St2

(1 + ε)2 + St2

)
,

vst
d,r =

vP

St + St−1 (1 + ε)2 ,

vst
d,θ =

1
2

1 + ε

(1 + ε)2 + St2
vP,

(1.34)

where ε ≡ ρd/ρ is the dust mass concentration, with ρ = ρg + ρd. vst
g,r denotes the gas

drift powered by back-reaction. vst
g,θ denotes the sub-Keplerian rotation corrected by

back-reaction. vst
d,r denotes the drift of grains towards pressure maxima. vst

d,θ denotes
the rotation of grains slowed down by drag. Grains drift towards inner regions of discs.
Drift efficiency depends on the size of the grains and is maximal for St ∼ 1. Such grains
should fall onto the central star before forming planetesimals, which lead to the so-called
radial drift barrier problem. For discs modelled by Minimum Mass Solar Nebulae, St ∼ 1
correspond to solid of size ∼ 1m. Therefore, the so-called radial-drift barrier is called
the metre-size barrier of planet formation. To maintain the presence of dust in discs and
form planets, dust may pile-up at some specific locations that consist of local pressure
maxima. Local traps offer a powerful alternative to concentrate grains and then to make
fast dust growth easier. Some mechanisms of dust trap have been proposed: vortices
(Johansen et al., 2004), dead zones (Dzyurkevich et al., 2010), spiral arms (Dipierro et al.,
2015), self-induced dust traps (Gonzalez et al., 2017) combined with snow-lines (Vericel
and Gonzalez, 2020), streaming instability (Jaupart and Laibe, 2020).

1.6 grain growth

1.6.1 Contact between grains

The process of grain-grain collision is detailed from macroscopic point of view. Two
spherical compact grains in contact undergo two interactions when subjected to a
load: an adhesive surface tension and a repulsive elastic force, which prevent grains to
interpenetrate (Johnson et al., 1971; Derjaguin et al., 1975; Chokshi et al., 1993). Figure 1.7
illustrates the geometry of the Hertz contact model (Hertz et al., 1896). Two spherical
grains of radius R1 and R2 interpenetrate on a length δ = δ1 + δ2 with δ � R1 and
δ � R2. An important parameter of the problem is the contact area between grains
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which is a circle of radius a. The displacement of each sphere writes δi ∼ a2/Ri with
δi � Ri. Therefore, δ ∼ a2/R with R = R1R2/(R1 + R2) the "reduced" radius of the
grains. The force F required to maintain the grains in static contact is the sum of the
radially averaged pressure p exerted onto each element on the contact area

F(a) = 2π

a∫
0

p(r)rdr ∼ πa2〈p〉. (1.35)

The binding energy at the contact circle is Es = −2πa2γ ∼ −γRδ where γ is the surface
energy per unit area of each surface. In the elastic domain, the relation between pressure
and radial strain ∂ξi

∂r is linear, then 〈p〉 ∼ E| ∂ξi
∂r |, where E is the Young modulus of the

grains. E depends on the grains properties. Strain is dominated by the radial deformation
of the grains with ∂ξr

∂r ∼ δ/a. Therefore, F(δ) ∼ E
√

Rδ3/2 and the elastic deformation
energy writes Eel =

∫
Fdδ ∼ E

√
Rδ5/2. From Es and Eel, a typical length δc and a typical

energy Ec. Under a separating force, the grains stretch, form a neck connecting the two
and finally separate at the critical displacement δ = −δc with δc ∼

(
γ2R/E2)1/3. Ec

corresponds to the energy required to separate grains. The typical length and energy
depend on the grain sizes and their material properties. Stable equilibrium is obtained
for sticking grains maintained by an adhesive energy of order ∼ Ec in an interpenetration
of order ∼ δc. The criteria to consider that two grains stick is based on the comparison of
kinetic energy Ek and the critical energy Ec. Let us consider two colliding grains with
relative kinetic energy at infinity Ek = 1

2 mv2. Grains remain bounded after contact if
Ek ≤ Ec, i.e. when the collision velocity is smaller than the critical velocity value (Chokshi
et al., 1993)

vc ∼
γ5/6R−5/6

ρ1/2E1/3 , (1.36)

where ρ is the intrinsic density of grains. Small grains can stick even at high collision
velocity since surface tension has an important contribution. Grains can stick easier if
they are soft, porous and composed of adhesive materials. Sticking is more likely to
occur for ice coated grains (Blum and Wurm, 2008; Musiolik et al., 2016).

The study of collision between aggregates, composed of a chain of grains, is more com-
plex. Indeed, energy is distributed in the aggregate by elastic waves that excite individual
contact between grains. Aggregates can stick, bounce but also can be compacted, eroded
or fragmented. These different processes are tabulated from lab experiments (Blum and
Wurm, 2008; Güttler et al., 2010; Blum, 2010; Musiolik et al., 2016; Gundlach et al., 2018;
Steinpilz et al., 2019; Musiolik and Wurm, 2019), numerical simulations (Dominik and
Tielens, 1997; Geretshauser et al., 2010) and semi-analytical models (Kataoka et al., 2013;
Yamamoto et al., 2014).

1.6.2 Grain-grain interactions

Grain-grain interactions play a fundamental role for planet formation. Grains can stick at
contact under the effect of local electrostatic forces and form larger aggregates (Blum,
2018). Dust growth strongly affects dust dynamics since Stokes number is proportional to
the grain size. Dynamics may in return concentrate solid particles, increasing collisional
rates. Dust distributions are the result of a complex interplay between growth and
dynamics. Dust growth strongly affects the dust distributions from which observational
parameters are evaluated, such as dust opacity (Andrews, 2020). Therefore, dust growth
has to be accounted for accurately. The so-called Smoluchowski coagulation equation
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Figure 1.7: Geometry of the Hertz contact model. Deformations are small δ� a0 � R1,2.

(Smoluchowski, 1916) describes the evolution of populations of grains due to grain-grain
collision. Solving efficiently and accurately this non-linear integro-differential equation is
a numerical challenge. In astrophysics community, several numerical schemes have been
developed to solve this equation (e.g. Safronov (1972), Hayashi and Nakagawa (1975),
Weidenschilling (1977a), Nakagawa et al. (1981), Ohtsuki et al. (1990), Wetherill (1990),
Tanaka et al. (1996), Lee (2001), Dullemond and Dominik (2005b), Ormel et al. (2007),
Estrada and Cuzzi (2008), Brauer et al. (2008), Okuzumi et al. (2009), Birnstiel et al. (2010),
Kobayashi and Tanaka (2010), Charnoz and Taillifet (2012), Garaud et al. (2013), and
Drążkowska et al. (2019)) to treat dust growth in simulations of discs.

1.6.3 Bouncing barrier

Blum and Münch (1993), Güttler et al. (2010), and Blum (2018) experimented grain-grain
collisions in laboratory. A major result is that above a typical size of ∼ 1 cm, growth is
quenched as aggregates bounce onto each others. The initial growth starts by collisions of
small leading to the formation of large grains. Grain sizes and impact velocities increase.
Then, large grains stop to stick. They are only compacted by collisions and only bouncing
collisions occurred.

1.6.4 Fragmentation barrier

Above a velocity threshold that depends on the material properties of the grains, the
outcome of a collision between two grains can be the fragmentation. Colliding aggregates
explode in several fragments that roughly follow a power-law in size. Blum and Wurm
(2008) determined for a velocity v ≥ 1 m · s−1, the outcome of a collision is not sticking.
This lead to a limitation in size during the dust growth.

1.7 numerical simulations

Since the equations of motion of gas and dust are not solvable analytically, the use
of numerical simulations is required. A consistent understanding of the evolution of
protoplanetary discs requires contribution of spatially resolved observations of discs
and numerical 3D simulations of discs. Two kinds of numerical methods have emerged
to simulate the evolution of dusty discs. The first type of numerical methods are the
grid-based methods which have been widely used since 90s. The major grid-based code
to perform 3D simulations of dusty discs are the following: RAMSES (Teyssier, 2002) with



20 introduction

100 102 104 106

mass x
10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

m
as

s d
en

sit
y 

g(
x,

)

g(x, )
Brauer, N=200

100 102 104 106

mass x
10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

m
as

s d
en

sit
y 

g(
x,

)

g(x, )
Ormel, N=15, NMCpart=10000

100 102 104 106

mass x
10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

m
as

s d
en

sit
y 

g(
x,

)

g(x, )
Brauer, N=15

100 102 104 106

mass x
10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

m
as

s d
en

sit
y 

g(
x,

)
g(x, )
Ormel, N=15, NMCpart=100

Figure 1.8: Numerical simulations of the mass density from methods presented in Brauer et
al. (2008) and Ormel et al. (2007) codes are compared to the analytical solution for
constant kernel K = 1. Top Left: Numerical solution of the mass density versus masses
of grains for the Brauer et al. (2008) code with N = 200 bins. The implementation
of this code is confirmed by the convergence to the analytical solution with a large
number of bins. Top Right: Numerical solution for the Ormel et al. (2007) code with
N = 15 bins and 10000 Monte-Carlo particles. For a large number of Monte-Carlo
particles, the scheme converge to the analytical solution. Bottom Left: Brauer et al.
(2008) code with N = 15 bins. Strong numerical diffusion for grains of large masses.
Bottom Right: Ormel et al. (2007) code with N = 15 bins and 100 Monte-Carlo particles.
The analytical solution can not be approximated on all the mass range, specially for
large masses.

the implementation of the dust dynamics by Lebreuilly et al. (2019), PLUTO (Mignone et al.,
2012; Mignone et al., 2019), FARGO3D (Benítez-Llambay and Masset, 2016; Benítez-Llambay
et al., 2019), ATHENA (Stone et al., 2008; Stone et al., 2020). The second type of numerical
methods is the particle-based method such as Smoothed-Particle Hydrodynamics (SPH).
These methods have the advantage to be grid-free. The most widely used code to perform
3D simulations of dusty discs is PHANTOM (Price et al., 2018).

1.8 scientific objectives of the thesis

According to the encountered barriers in the dust evolution, how grains can growth
over 30 orders of magnitude in mass to form planet in less than 1 million years ? To
answer this question, numerical models have to include a complete dust collision model
described by the Smoluchowski coagulation equation (see Chapter 2). Solving efficiently
and accurately this non-linear integro-differential equation is a critical numerical chal-
lenge that has not been achieved so far. Typically, we estimate that 3D simulations with



1.9 outline of the thesis 21

PHANTOM could handle ∼ 15 dust bins. In astrophysics community, current algorithms re-
quire an important computational cost to solve accurately the Smoluchowski coagulation
equation (e.g. Ormel et al. (2007), Brauer et al. (2008), Birnstiel et al. (2010), Kobayashi
and Tanaka (2010), and Drążkowska et al. (2019)). During the first year of my Ph.D.
thesis, I implemented two widely used algorithms presented in Ormel et al. (2007) and
Brauer et al. (2008) to evaluate their performance. Figure 1.8 shows the performance of
these two schemes. The numerical solution from the Ormel et al. (2007) code converges
for a large number of Monte-Carlo particles (NMCpart). In the case of a small number
of Monte-Carlo particles, the numerical solution from the Ormel et al. (2007) can not
approximate the analytical solution in all the mass range, specially for large masses. The
numerical solution from the Brauer et al. (2008) algorithm converges for a large number
of bins N = 200. In the case of a small number of bins N = 15, the numerical solution
from the Brauer et al. (2008) scheme strongly over-estimates the mass density for grains
with large masses. These two codes require a large number of bins or a large number of
Monte-Carlo particles to approximate accurately the analytical solution, leading to an
important computational cost. Therefore, efficiency and accuracy are not achievable with
these two codes in a tractable computational time for 3D simulations of dusty discs.

From the review of "Protostars and Planets VI" (Testi et al., 2014), the next stage, for the
global models of dust evolution in discs, is however to account properly the dust growth
in 3D. The work, presented in this thesis, was to figure out and develop a numerical
scheme to do so. The first step was to implement the Ormel et al. (2007) and Brauer
et al. (2008) codes. Then a bibliographical research in other scientific communities such
as mathematics, chemistry and aerosols have been realised to develop our algorithm.
The development of our high-order solver started with Filbet and Laurencot (2004) finite
volume scheme, the first to solve the Smoluchowski equation in its conservative form.
The cross references of Filbet and Laurencot (2004) led us to the work of Liu et al. (2019)
for developing a high-order scheme based on the discontinuous Galerkin method in
order to overcome this numerical challenge (see Chapter 3). This scheme solves efficiently
and accurately the Smoluchowski coagulation equation and fulfils all the requirements
to be coupled in a tractable manner to the code PHANTOM (see Chapter 4). 3D simulations
of dusty discs will be performed by including this algorithm in the code PHANTOM.

1.9 outline of the thesis

The manuscript is presented in 7 chapters starting with this introduction. Chapter 2

presents the Smoluchowski coagulation equation. Chapter 3 details the high-order scheme
based on the discontinuous Galerkin scheme. Chapter 4 details the benchmarks and the
performances of the scheme. Chapter 5 presents the first side project on the small grains
evolution in the vertical direction. Chapter 6 presents the second side project on the
analysis of observational data to detect exoplanets with the instrument SPHERE/VLT.
Chapter 7 concludes the thesis and details the perspectives for further studies and
developments.
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2.1 introduction

The first step towards planet formation consists of the dust coagulation. Observations
reveal that protoplanetary discs contain dust grains of at least 0.1− 1µm in size (Testi
et al., 2014; Birnstiel et al., 2016; Blum, 2018; Andrews, 2020). To form planetesimals,
small dust grains have to grow over thirty orders of magnitude in mass. Shall the
core-accretion model be correct, spatially resolved observations of young stellar objects
suggest that at least some planetesimals have to form in less than one million of years
(Andrews (2020) and references therein). Therefore, the formation of planetesimals may
be a relatively short stage of the planet formation process. The key challenge is to explain
how such an effective formation while accounting for the complex dynamics of grains
in discs. The processes of radial drift, vertical settling and turbulence stirring are the
main contributors to the dynamics of dust grains in discs. This complex dynamics can
lead grains of different sizes to have relative local differential velocities. In a simplified
manner, two colliding grains can form a larger grain by coagulation, or several smaller
grains by fragmentation according to the value of this relative velocity. More details
about the result from the collision of two particles are in Blum (2018). To address the
interplay between growth and dynamics, it is required to comprehensively study the
coagulation and fragmentation processes. An interesting point of view is to come back to
the description of the composition of protoplanetary discs. These discs are composed
of a mixture of gas and dust. This mixture is a dispersed system composed of grains
suspended in gas. Therefore, dust grains are dynamically equivalent to aerosols. The
physics of aerosols developed at the beginning of 20th century can be used to analyse
the evolution of dust in protoplanetary discs.

2.1.1 Dust coagulation

In aerosols science, the coagulation process has long been studied (Hidy and Brock (1972),
Williams and Loyalka (1991), Friedlander et al. (2000), Ramkrishna (2000), Jacobson (2005),
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Pruppacher and Klett (2010), Hidy (2012), and Khain and Pinsky (2018) and references in
these reviews). Coagulation can be triggered by any mechanism which sustains relative
velocity between particles (e.g. Brownian motion, turbulence, differential particle motion
associated with external force fields). The mean-field theory of coagulation for binary
collisions has been established by Smoluchowski (1916) to analyse the coagulation of
particles due to Brownian motion. The Smoluchowski coagulation equation has been
derived for a general collision mechanism involving a relative velocity between particles.
This theory has been verified experimentally (Kruyt and Van Arkel, 1920; Turkevich,
1959; Higuchi et al., 1963; Devir (Weinstock), 1963; Devir (Weinstock), 1966; Delichatsios
and Probstein, 1975; Davies, 1979; Lee and Chen, 1984; di Stasio et al., 2002). Therefore,
as mentioned by Safronov (1972), it is natural to adopt the Smoluchowski coagulation
theory in the case of dust coagulation in astrophysics. The Smoluchowski coagulation
model will be described in Section 2.2.

2.1.2 Dust fragmentation

The first model in astrophysics for collisional fragmentation has been developed in the as-
teroids community by Piotrowski (1953), Dohnanyi (1969), Hellyer (1970), and Dohnanyi
(1971). The same model is used by Safronov (1972) to describe dust fragmentation in pro-
toplanetary discs. This model has been widely used in astrophysics community (Wilkins,
1982; Jones et al., 1994; Tanaka et al., 1996; Hirashita and Yan, 2009; Birnstiel et al., 2010;
Kobayashi and Tanaka, 2010; Kobayashi et al., 2010; Gáspár et al., 2012; Brilliantov et al.,
2015). The collisional fragmentation occurs in many other fields such as chemistry to
describe the polymer degradation (Cheng and Redner, 1988; Cheng and Redner, 1990)
or other chemical engineering applications (Kostoglou and Karabelas, 2000; Kostoglou
and Karabelas, 2006), aerosols science (Brazier-Smith et al., 1972; Young, 1975; List and
Gillespie, 1976; Gillespie and List, 1978; Srivastava, 1978; Tzivion (Tzitzvashvili) et al.,
1989; Hu and Srivastava, 1995; Ramkrishna, 2000; Pruppacher and Klett, 2010; Khain and
Pinsky, 2018). In parallel, the mathematical properties of this model have been studied
(Laurençot and Wrzosek, 2001; Paul and Kumar, 2018). The collisional fragmentation
model will be described in Section 2.3.

2.2 smoluchowski equation

At the beginning of the 20th century, M. Smoluchowski studied the statistical problem of
the collision of spherical particles thermally agitated in a gas, by applying the theory of
Brownian motion. The potential of interaction between the molecules is neglected. He
determined the rate of coagulation of aerosols in a static medium by considering only
binary collisions. Smoluchowski’s model assumes that coalescence occurs instantaneously
after two particles collide, and a new spherical particle is formed. The spatially homo-
geneous system is initially composed of N0 particles of equal mass m0 (i.e. monomers)
in a unit volume of the gas. These monomers can form polymers by collision of mass
an integral multiple of m0. The coagulation process lead to the reduction in the number
of polymers in unit volume (i.e. number density), and therefore to the total number
of polymers. The model derived by Smoluchowski (1916) follows the evolution of the
number density of polymers. The illustration in Figure 2.1 explains the evolution of a
group of polymers with similar mass mi during a time dt. This group is named ith-group.
Two colliding polymers can form a new polymer with mass mi. This new polymer
populates the ith-group (left grey arrow in Figure 2.1). A collision between a polymer
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Figure 2.1: Illustration of the Smoluchowski coagulation equation for the group of polymers with
mass mi in orange. The green and blue polymers have a mass lower than mi. The
rainbow polymer represents any polymer in the system. The left, (respectively right)
arrow represents the ingoing (respectively outgoing) polymers in the group.

from the ith-group and any polymers in the system empties the ith-group (right grey arrow
in Figure 2.1). Figure 2.1 is a schematic representation of the Smoluchowski coagulation
equation.

The Smoluchowski theory of coagulation results in the following set of non-linear
differential equations on the number density of polymers in the system

∀i ∈N,

dni

dt
=

1
2

i−1

∑
j=1

Kj,i−jnjni−j − ni

∞

∑
j=1

Ki,jnj,

n1(0) = N0, ∀i > 1, ni(0) = 0,

(2.1)

where ni denotes the number density of polymers with mass mi, t is the time in second
and K is the collision frequency, also called kernel function. It describes the microphysics
of the collision. K depends on the sizes of the colliding particles and on such properties
of the gas such as temperatures and pressure.

The first term on the right-hand side of equation 2.1 is the gain term (left grey arrow in
Figure 2.1). It describes the rate of generation of polymers with mass mi by coalescence
with polymers of mass mj and mi−j. The second term is the loss term (right grey arrow
in Figure 2.1). It describes the decay rate of the number of polymers with mass mi by
coalescence with any other polymers. The coefficient 1/2 is inserted to avoid double
counting of pairwise collisions. equation 2.1 is known as the Smoluchowski equation,
also known as population balance equation (PBE, Ramkrishna (2000)). It is assumed that
Müller (1928) is the first to rewrite Equation 2.1 in its continuous form. The link between
the discrete and the continuous form is straightforward (Hidy and Brock, 1972). Let
denote ni the number of polymers per unit volume at time t whose masses of polymers
are between mi and mi + dmi,

ni = n(mi, t)dmi. (2.2)

The quantity n(m, t) is the continuous polymers number density function by mass interval
dm. Its unity is g−1.cm−3 in c.g.s. Kij = K(mi, mj) is the coagulation kernel for binary
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collisions between polymers of volumes vi and vj. The unity of the kernel function is
cm3.s−1 in c.g.s. Equation 2.1 becomes

∂n(mi, t)
∂t

∆mi =
1
2

i−1

∑
j=1

K(mj, mi −mj)n(mj, t)n(mi −mj, t)∆mj∆(mi −mj)

− n(mi, t)∆mi

∞

∑
j=1

K(mi, mj)n(mj, t)∆mj.

(2.3)

Dividing by ∆mi and taking the limit ∆mj → 0, the result is

Continuous form of the Smoluchowski coagulation equation



∂n(m, t)
∂t

=
1
2

v∫
0

K(m′, m−m′)n(m′, t)n(m−m′, t)dm′

− n(m, t)
∞∫

0

K(m′, m)n(m′, t)dm′,

n(m, 0) = n0(m),

(2.4)

where mi = m and mj = m′. Integrals are defined in the sense of Riemann. The first
integral in equation 2.4 describes the formation of a polymer of mass m only by collision
between polymers with masses m′ and m−m′. The second integral handles the fact that
each polymer of mass m disappears from the interval m + dm after collision with a poly-
mer of mass m′. The expression of K(m, m′) depends on the physics of the collision. The
Smoluchowski coagulation equation 2.4 is a mean-field deterministic integro-differential
equation. It’s an averaged equation over a certain volume of gas, meaning the existence
of a great number of polymer pairs within the volume where collisions are analysed.
The Smoluchowski coagulation equation 2.4 is also called stochastic collection equation
(SCE, Pruppacher and Klett (2010) and Khain and Pinsky (2018)), due to the fact that
coagulation process is a stochastic process.

The physical properties of equation 2.4 are the following

∀(m, t) ∈ R2
+, n(m, t) ≥ 0, ∀(m, m′) ∈ R2

+, 0 ≤ K(m, m′) = K(m′, m). (2.5)

K is a nonnegative symmetric function. Equation 2.4 is an equation of mass conservation.
During each coagulation event, the total mass of particles M1(t) is conserved while the
total number of particles M0(t) decreases. These two quantities are given by

M0(t) =
∞∫

0

n(m, t)dm, M1(t) =
∞∫

0

mn(m, t)dm. (2.6)

It is known that the total mass of particles might not remain constant throughout time
evolution for some kernels. If K increases rapidly for large masses, the larger the particles
are, the faster they merge. A runaway growth appears, where particles with "infinite"
mass are formed in finite time. These particles are removed from the system. Therefore
the total mass starts to decrease. This phenomenon is called occurrence of gelation
(Leyvraz and Tschudi, 1981; Ernst et al., 1984; Dubovskiui, 1994; Aldous, 1999; Filbet and
Laurencot, 2004).
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Before analysing the solutions of the Smoluchowski coagulation equation, it is simpler
to rewrite equation 2.4 in a dimensionless form. Relevant mass normalisation can be
obtained by looking at the evolution of the first moment. Multiplying equation 2.4 by m
and integrating from 0 to ∞, we have

dM1(t)
dt

=
1
2

∞∫
0

m∫
0

K(m′, m−m′)mn(m′, t)n(m−m′, t)dm′dm

− n(m, t)
∞∫

0

∞∫
0

K(m, m′)mn(m′, t)dm′dm.

(2.7)

Following the idea from Estrada and Cuzzi (2008), a step function H is introduced to
extent the limits of the integral over m′ from (0, m) to (0, ∞). H is defined as H = 0 for
m−m′ < 0 and H = 1 otherwise. With a change of variable z = m−m′ and using the
Fubini theorem, the first double integral on the right-hand side writes

1
2

∞∫
0

∞∫
0

H(m−m′)K(m′, m−m′)mn(m′, t)n(m−m′, t)dm′dm

=
1
2

∞∫
0

∞∫
0

K(m′, z)(z + m′)n(m′, t)n(z, t)dzdm′.

(2.8)

With the property of symmetry for the kernel function, the second double integral writes

∞∫
0

∞∫
0

K(m′, m)mn(m′, t)n(m, t)dm′dm

=
1
2

∞∫
0

∞∫
0

K(m′, m)(m + m′)n(m′, t)n(m, t)dm′dm.

(2.9)

Then, z is substituted by m,

dM1(t)
dt

=
1
2

∞∫
0

∞∫
0

K(m, m′)
[
(m + m′)− (m + m′)

]
n(m′, t)n(m, t)dm′dm = 0. (2.10)

Mass conservation ensures that M1 = const ≡ N0m0 where N0 is the initial total number
density of particles and m0 is the initial mean mass of the particles. Equation 2.4 is made
dimensionless with the use of the following expressions (Scott, 1968; Drake, 1972)

x ≡ m/m0, y ≡ m′/m0, K(x, y) = K(m, m′)/K0, τ = (K0N0)t, f (x, τ) = m0n(m, t)/N0,

(2.11)

where K0 is a normalising constant with dimensions [length]3/time. Equation 2.4 becomes
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Dimensionless Smoluchowski coagulation equation in continuous form


f (x, 0) = f0(x), 0 ≤ K(x, y) = K(y, x),

∞∫
0

x f (x, τ) = 1,

∂ f (x, τ)

∂τ
=

1
2

x∫
0

K(y, x− y) f (y, τ) f (x− y, τ)dy− f (x, τ)

∞∫
0

K(y, x) f (y, τ)dy.

(2.12)

Melzak (1957) and McLeod (1962) proved the existence, uniqueness, nonnegativity and
continuity properties of solutions of equation 2.12 in the case of bounded kernels and for
some unbounded kernels. Equation 2.12 is an integro-differential equation strongly non-
linear. Only numerical solution can be derived for general kernels. Analytical solutions
have been derived for peculiar expressions of K.

2.2.1 Analytic solutions

Equation 2.12 have been solved exactly for three kernels: constant, additive and multi-
plicative.

2.2.1.1 Constant kernel

This solution has been first derived by Smoluchowski (1916) for the discrete equation and
by Müller (1928), Schumann (1940), and Rajagopal (1959) for the continuous equation. I
followed the work from Scott (1968) and Silk and Takahashi (1979) for the proofs. The
kernel function writes K(m, m′) = K0, thus K(x, y) = 1. Equation 2.12 becomes

∂ f (x, τ)

∂τ
=

1
2

x∫
0

f (y, τ) f (x− y, τ)dy− f (x, τ)M0(τ). (2.13)

Let us define the Laplace transform as

F(p, τ) = L[ f ](p, τ) ≡
∞∫

0

e−px f (x, τ)dx. (2.14)

By applying the Laplace transform to equation 2.13, we obtain

∂F(p, τ)

∂τ
=

1
2

F2(p, τ)−M0(τ)F(p, τ). (2.15)

This step is derived by the same idea than in equation 2.8 with the step function and the
change of variable. With p = 0, F(0, τ) = M0(τ), then equation 2.15 writes

dM0(τ)

dτ
= −1

2
M2

0(τ) ⇒ M0(τ) =
1

1 + τ
2

, with M0(0) = 1. (2.16)

The solution to equation 2.15 writes

F(p, τ) =
f1(τ)

1
F(0,τ) − f2(τ)

, (2.17)
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where

f1(τ) ≡ exp

 τ∫
0

M0(τ
′)dτ′

 =
4

(2 + τ)2 and f2(τ) ≡
1
2

τ∫
0

f1(τ
′)dτ′ =

τ

2 + τ
. (2.18)

At this stage, a general expression is obtained depending only on the Laplace transform
of the initial condition. Let us choose an initial condition

n0(m, 0) =
N0

m0
e−m/m0 ⇒ f (x, 0) = e−x . (2.19)

The Laplace transform of the initial condition gives F(p, 0) = 1/(1 + p). Then F(p, τ) =

f1(τ) [1 + p− f2(τ)]
−1. To derive the number density, the inverse Laplace transform is

obtained by comparing F(p, τ) with the usual Laplace transform expressions. Then, the
solution is

Constant kernel

K(x, y) = 1, f (x, 0) = e−x,

f1(τ) ≡
4

(2 + τ)2 , f2(τ) ≡
τ

2 + τ
,

f (x, τ) = f1(τ) e−(1− f2(τ))x .

(2.20)

2.2.1.2 Additive kernel

The solution for the additive kernel K(x, y) = x + y with initial condition f0(x, 0) = e−x

has been derived by Golovin (1963) and Scott (1968) extended the derivation for a general
initial condition. The solution is

Additive kernel

K(x, y) = x + y, f (x, 0) = e−x,

T ≡ 1− e−τ,

f (x, τ) =
(1− T) e−x(1+T)

xT1/2 I1

(
2xT1/2

)
,

(2.21)

with I1 the modified Bessel function of first kind. The proofs of the solution are given
in Golovin (1963) and Scott (1968).

2.2.1.3 Multiplicative kernel

McLeod (1962) derived the solution for multiplicative kernel K(x, y) = xy with initial
condition f0(x, 0) = x−1 e−x only for a small finite time interval. A new solution on all
time interval has been derived by Ernst et al. (1984)
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Multiplicative kernel

K(x, y) = xy, f (x, 0) = x−1 e−x,

T ≡
{

1 + τ if (τ ≤ 1)

2τ1/2 otherwise
,

f (x, τ) =
e−Tx I1

(
2xτ1/2)

x2τ1/2 .

(2.22)

The proofs of the solution are given in Ernst et al. (1984). The multiplicative kernel is a
typical kernel to study the occurrence of gelation, since at τ = 1 particles with infinite
mass are formed and mass conservation is no longer satisfied.

2.2.2 Self-preserving solutions

In aerosol science, the size distribution of particles for a system after a long time is of
great interest. Schumann (1940) found that for constant kernel, the exponential form
of the size distribution might be the asymptotic solution for any initial distribution
(Friedlander and Wang, 1966). A similarity theory has been developed by Friedlander
(1960a), Friedlander (1960b), Swift and Friedlander (1964), Friedlander and Wang (1966),
and Wang (1966) to account for similarities in the shapes of atmospheric aerosol spectra
found experimentally (Junge, 1958). Solutions found in this way are asymptotic forms
approached after long times, and they are independent of the initial size distribution.
The similarity transformation is

n(m, t) =
M0(t)2

M1
Ψ(η),

η ≡ M0(t)m
M1

.
(2.23)

The Smoluchowski coagulation equation 2.4 can be reduced to an ordinary integro-
differential equation by the similarity transformation, if the kernel function K(m, m′) is a
homogeneous function of order λ,

K(αm, αm′) = αλK(m, m′), α > 0, λ ∈ [0, 1). (2.24)

Let us give an example by deriving the function Ψ with the Brownian kernel function
following the work of Wang (1966), Lai et al. (1972), and Friedlander et al. (2000). The
Brownian kernel function writes

KB(m, m′) =
(

3
4π

)1/6 (6kT
ρp

)1/2 [ 1
m

+
1

m′

] (
m1/3 + m′1/3

)2
, (2.25)
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where k is the Boltzmann constant, T the absolute temperature, and ρp the particle
density. The Brownian kernel function is a homogeneous function of order 1/6 with
respect to particle masses. Equation 2.4 writes

φ

(
2Ψ + η

dΨ
dη

)
+

η∫
0

[
η̃1/3 + (η − η̃)1/3

]2
(

1
η̃
+

1
η − η̃

)1/2

Ψ(η)Ψ(η̃)dη̃

− 2Ψ(η)

∞∫
0

(
η1/3 + η̃1/3

)2
(

1
η
+

1
η̃

)1/2

Ψ(η̃)dη̃ = 0,

dM0

dt
= −φ

2

(
3

4π

)1/6 (6kT
ρp

)1/2

M1/6
1 M11/6

0 ,

(2.26)

where

φ =

∞∫
0

∞∫
0

[
1
η
+

1
η̃

]1/2 (
η1/3 + η̃1/3

)2
Ψ(η)Ψ(η̃)dηdη̃. (2.27)

Equation 2.26 has the constraints

∞∫
0

Ψ(η)dη = 1,
∞∫

0

ηΨ(η)dη = 1. (2.28)

These constraints correspond to the definition of the total number of particles and to
the conservation of mass. A solution for the lower end of the spectrum can be derived
by assuming η → 0. The first integral term in equation 2.26 vanishes faster than other
terms. Physically, the gain of particles resulting from the coagulation at the lower end of
the spectrum is negligible because the number density of the smallest particle is close to
zero. The second integral is approximated by

∞∫
0

(
η1/3 + η̃1/3

)2
(

1
η
+

1
η̃

)1/2

Ψ(η̃)dη̃ = µ2/3η−1/2 + 2µ1/3η−1/6 + η1/6 +O(η1/3),

(2.29)

where µi is the i-th moment of Ψ, defined as

µi =

∞∫
0

ηiΨ(η)dη. (2.30)

Therefore, at the lower end of the spectrum equation 2.26 is approximated by

φ

(
2Ψ + η

dΨ
dη

)
− 2Ψ(η)

[
µ2/3η−1/2 + 2µ1/3η−1/6 + η1/6

]
= 0. (2.31)

The solution to this equation writes

Self-similar solution at lower end of the spectrum for Brownian kernel

Ψ(η) =
C1

η2 exp
[

1
φ

(
−4µ2/3η−1/2 − 24µ1/3η2/3 + 12η1/6

)]
, (2.32)
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where C1 is an integration constant. It is shown numerically that this solution is valid
for η < 10−2 (Lai et al., 1972). The undetermined constants α, µ1/3 and µ2/3 are evaluated
by using the numerical solution to the discrete Smoluchowski coagulation equation
written in dimensionless form (Lai et al., 1972)

∀i ∈N, mi = i ·m0, KB(mi, mj) =

(
6kTr1

ρp

)1/2 [1
i
+

1
j

]1/2 (
i1/3 + j1/3

)2
,

σi,j =

[
1
i
+

1
j

]1/2 (
i1/3 + j1/3

)2
, X =

t
τ

, Yk =
Nk

N(0)
, τ =

1(
6kTr1

ρp

)1/2
N(0)

dYi

dX
=

1
2

i−1

∑
j=1

σj,i−jYjYi−j −
∞

∑
j=1

σi,jYiYj,

(2.33)

where r1 is the radius of the smallest particle, Ni is the number density of particles of
mass mi, N(0) = ∑∞

i=1 Ni(0) is the total initial number density and τ a characteristic
coagulation time.

For the upper end of the spectrum, η → ∞, the second integral of equation 2.26 is
approximated by

∞∫
0

(
η1/3 + η̃1/3

)2
(

1
η
+

1
η̃

)1/2

Ψ(η̃)dη̃ = µ−1/2η2/3 +O(η1/3), (2.34)

where only the highest-order term is kept. Equation 2.26 becomes

φ

(
2Ψ + η

dΨ
dη

)
+

η∫
0

[
η̃1/3 + (η − η̃)1/3

]2
(

1
η̃
+

1
η − η̃

)1/2

Ψ(η)Ψ(η̃)dη̃

− 2Ψη2/3µ−1/2 = 0.

(2.35)

By setting Ψ(η) = C3 e−C2η g(η), the result is

φ
(
ηg′(η)− C2ηg(η)

)
+ C3

η∫
0

[
η̃1/3 + (η − η̃)1/3

]2
(

1
η̃
+

1
η − η̃

)1/2

g(η̃)g(η − η̃)dη̃

− 2g(η)η2/3µ−1/2 = 0.
(2.36)

Assuming g(η) = C4ηp for large values of η, the previous equation becomes, with only
highest-order terms

−φC2ηp+1 + C2
4C3

(
6 + 2B

(
2
3

,
2
3

))
η2p+7/6, (2.37)

where B is the Beta function. The solution exists only if p = −1/6 and C2
4C3 = φC2

(6+2B( 2
3 , 2

3 ))
.

This solution implies that the loss of particles by coagulation is not important in the
upper end of the spectrum where Ψ(η)→ 0, η → ∞. Therefore, the approximate solution
of the upper end of the spectrum writes

Self-similar solution at upper end of the spectrum for Brownian kernel

Ψ(η) = C5

(
η−1/6 e−C2η

)
, (2.38)
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where the constants are evaluated from a numerical calculation with the discrete
Smoluchowski coagulation equation 2.33.

Since the development of the self-similar theory, several authors such as van Dongen
and Ernst (1985), van Dongen and Ernst (1988), Aldous (1999), Leyvraz (2003), Escobedo
et al. (2005), Escobedo and Mischler (2006), Menon and Pego (2006), Pruppacher and
Klett (2010), Niethammer and Velázquez (2013), Niethammer et al. (2016a), Niethammer
et al. (2016b), and Laurençot (2018) extended the work on the self-preserving distribution
(i.e. scaling theory) with the mathematical proofs for existence and uniqueness for such
solutions.

2.2.3 Physical coagulation kernels

In the Smoluchowski theory, it is assumed that coalescence occurs instantaneously
after collision of two particles. The probability that two particles coalesce is unity. In
astrophysics, the probability of coalescence is different than one, because the main results
of two colliding particles can be: coalescence, bouncing or fragmentation (Blum, 2018).
The key kernel of importance for the early stages of planet formation is the Ballistic
kernel which writes

K
(
m, m′

)
↔ β

(
m, m′, ∆v

)
K
(
m, m′

)
= β

(
m, m′, ∆v

)
∆v
(
m, m′

)
σ
(
m, m′

)
, (2.39)

where ∆v is the mean relative velocity between two colliding particles of masses m and
m′, σ is the effective cross section of the collision and β denotes the averaged probability
for these particles to stick during such a collision. β depends on the shape and the
structures of the grains and their relative velocity. σ is simply the geometric cross-section
of the colliding grains (gravitational and electrostatic focusing can be neglected). The
coagulation kernel encodes the microphysics of the collision such as the range of sizes
considered of the colliding particles or the kinetic and thermodynamical parameters of
an eventual surrounding flow.

The main difficulty is to determinate the appropriate probability β for the studied
system. Without considering fragmentation, the main result of two colliding grains
is coalescence or bouncing (Blum, 2018). The criteria to differentiate coalescence and
bouncing is based on the value of the relative velocity and relies on experimental results
(Blum and Wurm, 2008; Güttler et al., 2010; Blum, 2018) and theory (Chokshi et al., 1993;
Dominik and Tielens, 1997; Wada et al., 2007; Wada et al., 2008; Paszun and Dominik,
2009). More complex models have been derived to determine the coagulation kernel. In
these models, the coagulation kernel depends on a probability density function of the
relative velocity (Okuzumi et al., 2011; Windmark et al., 2012; Garaud et al., 2013).

2.2.4 Conservative form

The mass conservation law governs the Smoluchowski coagulation equation. Tanaka et al.
(1996) and Makino et al. (1998) rewrote the equation in its conservative form, meaning as
conservation law equation

∂g (x, τ)

∂τ
+

∂Fcoag [g] (x, τ)

∂x
= 0,

Fcoag [g] (x, τ) =

x∫
0

∞∫
x−u

K (u, v) g (u, τ)
g (v, τ)

v
dvdu,

(2.40)
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Boum !

Figure 2.2: Left: Scheme of the spontaneous (or linear) fragmentation process of a particle of
mass x into several smaller particles of mass y < x. Right: Scheme of the collisional
(or non-linear) fragmentation process. Two particles of mass x and y collide and form
several smaller particles of mass z < x + y.

where g (x, τ) ≡ x f (x, τ) is the dimensionless density of mass of particles, i.e. the mass
encompassed in elementary mass bins, and Fcoag [g] (x, τ) is the flux of mass density
across masses x triggered by coagulation (Filbet and Laurencot, 2004). The demonstration
of the conservative form is given in Appendix a. Equation 2.40 is of particular interest
for numerical aspects. Under such a form, this equation can be solved by finite volume
methods or finite element method contrary to equation 2.12. These methods ensure an
exact mass conservation. In equation 2.40, the first step is to reduce the computation to
a finite interval since mass is positive. The infinite upper bound of the second integral
in Fcoag can simply be replaced by xmax − u to ensure mass flux across the mass xmax is
null (no particle of mass larger than xmax is allowed to form). This formalism enforces
genuinely mass conservation over a finite interval of masses.

2.3 collisional fragmentation model

Fragmentation is a phenomenon of breakup of particles into a range of smaller particles.
This physical process is found in a wide variety of systems such as polymer degrada-
tion (Ziff and McGrady, 1985; Ziff and McGrady, 1986), breakup of grains (Safronov,
1972; Jones et al., 1996; Tanaka et al., 1996; Kobayashi et al., 2010; Birnstiel et al., 2010;
Blum, 2018), breakup of droplets (Ramkrishna, 2000; Pruppacher and Klett, 2010; Khain
and Pinsky, 2018), breakup of asteroids (Hellyer, 1970; Dohnanyi, 1969), comminution
systems (Fuerstenau et al., 2004). Fragmentation may occurs through external forces,
spontaneously, also called linear fragmentation (see Figure 2.2 on left), or through colli-
sions between particles (see Figure 2.2 on right). Linear fragmentation has been widely
studied (Simha, 1941; Melzak, 1957; Saito, 1958; Hidy and Brock, 1972; Ziff and McGrady,
1985; Hill and Ng, 1996; Ramkrishna, 2000; Filbet, 2008; Pruppacher and Klett, 2010;
Rajesh Kumar, 2014; Liu et al., 2019) . Collisional fragmentation, also called the non-linear
fragmentation has also been widely studied but with a recent mathematical develop-
ment (Dohnanyi, 1969; Safronov, 1972; List and Gillespie, 1976; Cheng and Redner, 1988;
Tanaka et al., 1996; Jones et al., 1996; Kostoglou and Karabelas, 2000; Laurençot and
Wrzosek, 2001; Paul and Kumar, 2018; Bodrova et al., 2019). A review on both models
can be found in Ernst and Pagonabarraga (2007), Villermaux (2007), and Da Costa (2015)

This Ph.D. Thesis is concerned only by collisional fragmentation since solid grains do
not break spontaneously. The collisional fragmentation process can be described by the
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following nonlinear partial integro-differential equation in dimensionless form (Safronov,
1972; Wilkins, 1982; Cheng and Redner, 1990; Kostoglou and Karabelas, 2000)

∂ f (x, τ)

∂τ
=

1
2

∞∫
0

∞∫
x

b(x, y, z)Kfrag(y, z) f (y, τ) f (z, τ)dydz

− f (x, τ)

∞∫
0

Kfrag(x, y) f (y, τ)dy,

(2.41)

where τ, x, y and z are time and masses. f is the number density distribution, Kfrag(x, y)
is the fragmentation kernel, the rate of successful collision for breakage between two
particles of masses x and y. In general, Kfrag(x, y) = [1− β(x, y, ∆v)]Kcoag(x, y) where
β(x, y, ∆v) is the averaged probability that masses x, y stick together during collision
(see Section 2.2.3). The factor 1− β(x, y, ∆v) gives the probability that x and y fragment
after their collision. The first term on the right-hand describes the gain of particles of
mass x due to collisions of particles of masses y and z. The second term accounts for
the loss of particles of mass x because of collisions between particles of mass x with the
remaining particles in the system. b(x, y, z) is the distribution function of particles of
mass x resulting from a breakup of a particle of mass y due to collision with a particle of
mass z. The function b has to satisfy the following requirements

(i)

y∫
0

xb(x, y, z)dx = y,

(ii)
k∫

0

xb(x, y, z)dx ≥
y∫

y−k

(y− x)b(x, y, z)dx,

(iii) v(y, z) =

y∫
0

b(x, y, z)dx,

(2.42)

where k < y/2. The requirement (i) is the mass conservation. The requirement (ii) states
that when fragmentation occurs such that a particle of mass x ≥ y/2 is formed, the
mass contained in the smaller fragments y − x must contribute to the total mass of
the fragments smaller than y− x. In (iii), v is the number of particles resulting from
fragmentation of a single particle of volume y after collision with a particle of mass z.

2.3.1 Analytic solutions

Analytical solutions to the nonlinear fragmentation equation 2.41 can be derived only for
simple expression of fragmentation kernel and function b. The case of a homogeneous
function b independent of z of the form b(x, y, z) = b(x/y)/y and β = 0 are considered.

2.3.1.1 Constant coagulation kernel

An analytic solution has been derived for the constant coagulation kernel Kfrag(x, y) = 1
(Kostoglou and Karabelas, 2000). The equation 2.41 writes

∂ f (x, τ)

∂τ
= −M0(τ) f (x, τ) + M0(τ)

∞∫
x

b(x/y)
y

f (y, τ)dy, (2.43)
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where M0(τ) =
∞∫
0

f (x, τ)dx is the dimensionless total number of particles. By integrating

equation 2.43 with respect to x from 0 to ∞, the equation on M0 writes

dM0(τ)

dτ
= (b0 − 1)M2

0(τ), with b0 =

∞∫
0

b(x)dx. (2.44)

The solution to this equation is M0(τ) = (1− (b0 − 1) τ)−1. By a change of variable

T ≡
τ∫

0

M0(τ)dτ =
ln(1− (b0 − 1)τ)

1− b0
, (2.45)

Equation 2.43 writes

∂ f (x, T)
∂T

= − f (x, T) +
∞∫

x

b(x/y)
y

f (y, T)dy, (2.46)

Equation 2.46 is known as the linear fragmentation equation with constant fragmentation
rate. The solution of equation 2.46 for monodisperse initial distribution f (x, 0) = δ(x− 1)

and a power law fragments distribution b(x/y) = (ν + 2)
(

x
y

)ν
with −2 ≤ ν ≤ 0

(requirements (i) and (ii)) writes (McGrady and Ziff, 1987; Kostoglou and Karabelas,
2000)

Constant coagulation kernel and power law fragments distribution

Kfrag(x, y) = 1, f (x, 0) = δ(x− 1), b(x/y) = (ν + 2)
(

x
y

)ν

, −2 ≤ ν ≤ 0,

T ≡ ln(1− (b0 − 1)τ)
1− b0

, b0 =

∞∫
0

b(x)dx,

f (x, T) = e−T xν

(
(ν + 2)T
− ln(x)

)
I1

[
2 (T(ν + 2) ln(1/x))1/2

]
+ δ(x− 1) e−T .

(2.47)

2.3.1.2 Multiplicative coagulation kernel

A solution for the multiplicative coagulation kernel Kfrag(x, y) = xy has been derived
by Ziff and McGrady (1985), McGrady and Ziff (1987), Krapivsky (1992), and Kostoglou
and Karabelas (2000). With the multiplicative coagulation kernel, b(x, y, z) = b(x/y)/y
and β = 0, equation 2.41 writes

∂ f (x, τ)

∂τ
= −x f (x, τ) +

∞∫
x

b(x/y) f (y, τ)dy, (2.48)

where the mass conservation relation is used
∞∫
0

x f (x, τ)dx = 1. The solution for a power

law fragments distribution and a monodisperse initial condition writes (McGrady and
Ziff, 1987)



2.4 coagulation-fragmentation equation 37

Multiplicative coagulation kernel and power law fragments distribution

Kfrag(x, y) = xy, f (x, 0) = δ(x− 1), b(x/y) = (ν + 2)
(

x
y

)ν

, −2 ≤ ν ≤ 0,

f (x, τ) = e−τ [δ(x− 1) + (ν + 2)τxνM (−(ν + 1), 2, (x− 1)τ)] ,
(2.49)

whereM is the Kummer’s function defined as

M(a, b, z) =
∞

∑
n=0

a(n)zn

b(n)n!
, with a(0) = 1, a(n) = a(a + 1)(a + 2)...(a + n− 1). (2.50)

2.3.2 Conservative form

Similarly to the Smoluchowski coagulation equation, the collision fragmentation equation
can be written in its conservative form (Paul and Kumar, 2018)

∂g (x, τ)

∂τ
+

∂Ffrag [g] (x, τ)

∂x
= 0,

Ffrag [g] (x, τ) =

∞∫
0

∞∫
x

x∫
0

w
yz

b(w, y, z)Kfrag(y, z)g(y, τ)g(z, τ)dwdydz,
(2.51)

where g (x, τ) ≡ x f (x, τ) is the dimensionless mass density of particles and Ffrag [g] (x, τ)
is the flux of mass density across mass x triggered by fragmentation. The expression
of the flux is obtained using the Leibniz integral rules. As mentioned in Section 2.2.4,
equation 2.51 can be efficiently solved by finite volume methods or finite element
methods.

2.4 coagulation-fragmentation equation

In general, collisional fragmentation is studied simultaneously with the coagulation
process (Melzak, 1957; Safronov, 1972; Hidy and Brock, 1972; List and Gillespie, 1976;
Tanaka et al., 1996; Ramkrishna, 2000; Laurençot and Wrzosek, 2001; Birnstiel et al., 2010;
Pruppacher and Klett, 2010; Da Costa, 2015; Khain and Pinsky, 2018; Liu et al., 2019).
To obtain the coagulation-fragmentation equation, equations 2.12 and 2.41 are mixed.
The loss term of particles of mass x is present in the coagulation equation 2.4 and in the
collisional fragmentation equation 2.41. In a system where coagulation and fragmentation
are considered, the loss term is used only one time. Meaning, the loss of particles of
mass x is due to collision between particles of mass x with the remaining particles in the
system leading to coalescence or fragmentation. The coagulation-fragmentation writes
(Safronov, 1972; Tanaka et al., 1996; Laurençot and Wrzosek, 2001; Birnstiel et al., 2010)
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Dimensionless coagulation-fragmentation equation in continuous form

∂ f (x, τ)

∂τ
=

1
2

x∫
0

Kcoag(y, x− y) f (y, τ) f (x− y, τ)dy

− f (x, τ)

∞∫
0

Kcoag(y, x) f (y, τ)dy

+
1
2

∞∫
0

∞∫
x

Kfrag(y, z) f (y, τ) f (z, τ)dydz

− f (x, τ)

∞∫
0

Kfrag(y, x) f (y, τ)dy,

(2.52)

where f is the number density of particles, x, y, z the masses, K the coagulation kernel,
b the fragment distribution function and β the average probability that masses y, z
coalesce after collision. In a more general way,

∂g (x, τ)

∂τ
+

∂

∂x
(

Fcoag [g] (x, τ) + Ffrag [g] (x, τ)
)
= 0. (2.53)

Key is to find a solver for Fcoag, and then apply it to Ffrag.

2.5 summary

Dust coagulation can be described by the Smoluchowski equation 2.4. The Smoluchowski
coagulation theory has long been studied leading to the derivation of analytic solutions
for constant, additive and multiplicative kernels. The self-similarity theory allowed to
study the behaviour of the solution of Smoluchowski equation for long times. A funda-
mental property of the Smoluchowski coagulation equation consists of mass conservation
for non-multiplication kernels. Therefore, the equation can be written in its conservative
form 2.40. The collisional fragmentation model is similar to the Smoluchowski equation.
Analytic solutions have been derived for simple fragmentation kernels. The fragmenta-
tion equation can also be written in its conservative form similar to equation 2.40. In
astrophysics, the kernel of interest for dust coagulation is the ballistic kernel, for which
no analytic solution exists. The dust coagulation equation 2.40 has to be solved numeri-
cally. Solving efficiently and accurately this non-linear integro-differential equation is a
critical numerical challenge, since it may lead to strong numerical diffusion towards large
masses. Taking advantage of the conservative form of the dust coagulation equation,
high-order schemes can be developed to overcome the numerical challenge (see Chapter
3).
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3.1 introduction

No analytic solution exists for the Smoluchowski coagulation equation with physical
kernels, implying a numerical resolution. Various numerical schemes have been devel-
oped for this purpose. Two classes of algorithms have been developed. A first class of
solvers consists of Monte-Carlo simulations (e.g. Gillespie (1975), Liffman (1992), Smith
and Matsoukas (1998), Lee and Matsoukas (2000), Debry et al. (2003), Sheng and Shen
(2006), Ormel et al. (2007), and Zsom and Dullemond (2008)). Although convenient, these
methods have two principal drawbacks. Firstly, a large number of particles is required to
ensure appropriate accuracy of the number density distribution f . Secondly, the scheme
is non deterministic and simulations can be reproduced only in a statistical sense. To
be coupled with a hydrodynamic solver, the numerical scheme has to be deterministic.
The second class of numerical algorithms consist of deterministic numerical solvers.
The methods have been summarized in Kostoglou and Karabelas (1994), Kumar and
Ramkrishna (1996), Ramkrishna (2000), Pruppacher and Klett (2010), and Khain and
Pinsky (2018). A short but comprehensive summary is given hereafter.

3.1.1 Method of moments

The method of moments seems to be the first numerical method proposed to solve the
Smoluchowski equation (Hulburt and Katz, 1964). A system of ordinary differential
equations is written over the kth moments Mk ≡

∫ ∞
0 xk f (x, τ)dx of the number density

function. Approximations either for the reconstruction of f (Hulburt and Katz, 1964) or
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for the derivation of fractional moments (Estrada and Cuzzi, 2008) are then required
to close this system of ordinary differential equations. The Standard Moment Method
(SMM) requires an analytical integration of the kernel. To avoid this difficulty, Quadrature
Moment Methods (QMM), where integrals are approximated by Gaussian quadrature
methods, have been developed. Solutions of moments can be used directly to derive
the total number of particles M0, the total mass M1 or other physical quantity such as
dust opacities (Marchisio et al., 2003; Estrada and Cuzzi, 2008). Number densities f are
reconstructed using polynomials (Pruppacher and Klett, 1980; Piskunov and Golubev,
2002).

3.1.2 Point-based methods

The number density function f is sampled on discrete mass grids. The main difficulty is
to represent the continuous distribution f as accurately as possible using the values of f
at discrete points. Different algorithms have been developed using this approach.

3.1.2.1 Interpolation method

This method was developed by Berry (1967) and Berry and Reinhardt (1974). The
continuous Smoluchowski equation is written in terms of g(x, τ) ≡ x f (x, τ), the mass
density function. The mass interval is discretised using a logarithmic grid. A system of
ordinary differential equations is derived with respect to the variable g evaluated on the
grid points. Gain and loss terms are evaluated separately, and integrals are calculated by
using high-order Lagrangian interpolations. Middleton and Brock (1976) and Suck and
Brock (1979) improved this method by using Simpson’s rules for the integrals and cubic
splines interpolations.

3.1.2.2 Method of orthogonal collocation

The method of weighted residuals (Finlayson, 1972) is a general method for obtaining
numerical solutions to differential equations. The unknown solution is tested over a
set of weight functions and is adapted to give the best approximated solution to the
differential equation. The Smoluchowski equation is multiplied by the weight function φ

and integrated over all the mass domain to form the residual

R ≡
∫ ∞

0

(
∂ f (x, τ)

∂τ
−
∫ x

0
K(x− y, y) f (x− y, τ) f (x, τ)dy

+
∫ ∞

0
K(x, y) f (x, τ) f (y, τ)dy

)
φ(x)dx = 0.

(3.1)

The number density f is approximated by polynomials. The collocation method cor-
responds to the case where φ(x) = δ(x − x0). The coagulation equation is evaluated
at the collocation points x0. This gives a set of ordinary differential equations equal to
the degree of freedom of the polynomials used. Integrals are usually performed using
Gaussian quadrature rules (Eyre et al., 1988).

3.1.2.3 Pair interaction methods

Numerical integration of the Smoluchowski equation consists of summing contributions
of pairwise collisions between all grid points of different masses. For non-regular mass
samplings, aggregates do usually not have masses corresponding to an existing grid
point. To ensure mass conservation, the mass of the aggregate is distributed over the
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xj xj+1xj−1xl xn
xn+l

Figure 3.1: Illustration of the pair interaction methods. A particle of mass xn+l = xn + xl forms
from collision between particles of masses xl and xn. The resulting mass xn+l is
distributed onto adjacent bins, generating numerical over-diffusion towards large
masses.

two relevant adjacent grid points (Figure 3.1). The first pair-interaction solver has been
developed by Kovetz and Olund (1969). In this algorithm, a system of ordinary differential
equations is obtained over the quantities N(xi) =

∫ bi
ai

f (x)dx where xi denotes the mass
of individual particles of the i-th point, and ai ≡ (xi+1 − xi)/2 and bi ≡ (xi − xi−1)/2. In
practice, logarithmic grids are used to cover wide ranges of masses. In the context of
planet formation, widely used solvers follow this approach (e.g. Brauer et al. (2008) and
Birnstiel et al. (2010)). The principal drawback of this method is that redistribution of
mass towards large grains tend to over-predict the number of large aggregates, triggering
artificial formation of large bodies (Figure 1.8). A large number of grid points is therefore
required to avoid an artificial broadening of number density of particles f (Berry and
Reinhardt, 1974; Soong, 1974; Khain and Pinsky, 2018). Moreover, a sufficient number of
grid points is also needed to avoid difficulties related to collisions that form aggregates of
masses larger than the largest mass point. Jacobson (2005) extended the Kovetz and Olund
(1969) algorithm by distributing the mass between grid points and writing the scheme in
a semi-implicit form. This solver ensures mass conservation to machine precision. Bott
(1998), Simmel et al. (2002), and Wang et al. (2007) developed also binary-pairs interaction
methods. Mass is advected towards adjacent grid points by a mass flux expressed with a
high-order scheme. These methods do not introduce a significant numerical broadening.
Other methods have been developed by Hounslow et al. (1988) and Lister et al. (1995)
where four binary interaction mechanisms of gain and loss of particles are considered to
deal correctly the rate of change of particle and mass.

3.1.3 Finite element methods

In these methods, the continuous mass distribution is discretised by a finite number of
mass elements (intervals, cells, bins).

3.1.3.1 Method with finite elements

The first finite element scheme for coagulation was developed by Bleck (1970) by discretis-
ing mass distributions over logarithmic bins. f is approximated by its moment of order
zero over each bin to obtain a system of ordinary differential equations. Over-diffusion for
large grains is observed with this piecewise constant approximation. A change of variable
x → x−3 is operated to reduce diffusivity at large masses. The method of Soong (1974)
follows Bleck (1970). The Smoluchowski equation is written in terms of mass density
distributions g and approximated by piecewise exponential functions. This allows to
reduce drastically the diffusive effect at large masses. Gelbard et al. (1980) and Landgrebe
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and Pratsinis (1990) proposed a similar method, where the Smoluchowski equation is
decomposed over bins of indices j in terms of Qj =

∫
Ij

x f (x, τ)dx. A precise account of
gain and loss of particles in terms of fluxes of Q is performed. Trautmann and Wanner
(1999) extends the work of Gelbard et al. (1980), also finding numerical diffusion when
using piecewise constant approximation, and addressing it by using piecewise exponen-
tial approximations. Another moment method that involves polynomial approximations
for the first two moments M0 and M1 of f has been proposed by Enukashvily (1980),
Kumar and Ramkrishna (1996), and Tzivion et al. (1999).

3.1.3.2 Discontinuous Galerkin method

The discontinuous Galerkin method is a weighted residual method where the weight
φ(x) consists of orthogonal polynomials (Lagrange polynomials, Legendre polynomials,
cubic splines). The numerical solution of the Smoluchowski equation is decomposed on
each bin over this basis and a system of ordinary differential equations is obtained for
the coefficients (e.g. Pilinis (1990), Erasmus et al. (1994), and Mahoney and Ramkrishna
(2002), see Section 3.2.1). Generally, the integrals are performed by Gaussian quadrature
rules (Gelbard and Seinfeld, 1978; Rigopoulos and Jones, 2003; Sandu, 2006).

3.1.3.3 Finite element scheme in the conservative form

Deterministic methods described above solve the Smoluchowski equation 2.12 written in
its original form. The conservative form equation 2.40 has been exploited for numerical
simulations only lately. Filbet and Laurencot (2004) derived a finite volume scheme of
order zero where volume integrals over flux divergences are replaced by flux terms
at the interfaces by the mean of the divergence theorem. This scheme conserves mass
exactly and has been further extended by Filbet (2008), Bourgade and Filbet (2008), and
Forestier-Coste and Mancini (2012). The mass interval can be sampled uniformly or
non-uniformly. Finite volume schemes of higher orders solving for the conservative
form have been investigated recently (Gabriel and Tine, 2010; Liu et al., 2019). Gabriel
and Tine (2010) used WENO reconstruction (Jiang and Peng, 2000) to approximate the
coagulation flux at interfaces. Liu et al. (2019) developed a numerical scheme based
on the discontinuous Galerkin method. This method provides the further advantage
to choose the order of the scheme in a flexible manner. Integrals are calculated using
Gaussian Quadrature rules, which implies sub-sampling of the mass intervals.

3.1.4 Requirements from hydrodynamical simulations

Densities must remain strictly positive and total mass conserved rigorously to ensure the
stability of hydrodynamical simulations. These two properties are genuinely ensured by
finite volume methods based on the conservative form equation 2.40. The double-integral
formulation allows to simply quench the formation of aggregates with unphysical masses,
by setting for the integral bound the maximum mass allowed. These constrains may not
always be satisfied with simple integral formulations.

On the other hand, observational constraints on young stellar objects are essentially
provided by high-contrast spectro-polarimetry at infrared wavelengths (SPHERE/VLT,
GPI, Subaru/HiCIAO) and millimetre interferometry (ALMA). These observations probe
(sub)micron-to-millimetre-in-size dust distributions in discs, which corresponds to 4
orders of magnitude in size, i.e. 12 orders of magnitude in mass for compact grains.
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Figure 3.2: Scheme of the monofluid approach. Gas (blue circle) and dust (orange) are gathered
into a single continuous fluid.

With current computational capacities, 3D dust/gas simulations of dusty discs can
handle ∼ 10− 20 dust species simultaneously (e.g. PHANTOM, Price et al. (2018) or RAMSES,
Lebreuilly et al. (2020)). The global accuracy of second-order hydrodynamical solvers
is of order ∼ 10−3. We aim therefore to design a versatile algorithm for coagulation of
accuracy ∼ 10−3 with ∼ 15 dust bins distributed over 12 orders of magnitude in mass
that allows tractable simulations. We therefore face the issue of over-diffusion associated
to piecewise constant reconstructions with few mass bins, and high-order schemes appear
as a natural way to overcome this difficulty. It is much preferable for hydrodynamics to
handle a fix grid of sizes, to avoid interpolations when updating forces. We seek therefore
for a growth algorithm that works efficiently with a fixed grid.

Additionally, we seek for an algorithm which allows for convergence analysis in
3D hydrodynamical simulations. As explained above, multiplying the number of dust
bins provides prohibitive computational costs. Instead, the order of the scheme may be
varied, should it be parametrised in a flexible manner. This requirement tends to favour
Discontinuous Galerkin schemes with respect to WENO schemes, although they provide
in theory equivalent accuracies. Compared to regular Galerkin schemes, discontinuous
Galerkin solvers decompose the solution over several mass bins. This helps to better
capture the exponential decay of the solution at large masses and avoid over-diffusion
biases. For these reasons, we have chosen to focus on the Discontinuous Galerkin method
to solve for the Smoluchowski equation in astrophysical contexts, an approach recently
pioneered by Liu et al. (2019).

3.1.5 Code PHANTOM

For the purpose of simulating the early stages of planet formation, we decided to choose
the code PHANTOM. It is an efficient 3D non-ideal magnetohydrodynamics Lagrangian
code (Smooth Particle Hydrodynamic) developed in the purpose to study high-energy,
galaxy, stellar and planetary astrophysics (Price et al., 2018). Particularly, this code is
well designed for the 3D simulations of protoplanetary discs. PHANTOM integrates the
monofluid approach which consists of grouping gas and dust into a single continuous
fluid of density ρ = ρg + ρd and velocity ρv = ρgvg + ρdvd (see Figure 3.2). In this
approach, barycentric quantities arise naturally since they are fundamentally associated
to mass conservation. The physical quantities are advected at a single velocity v. The
description of the mixture of gas and dust involves two quantities, the dust mass
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concentration ε ≡ ρd/ρ and the differential velocity ∆v = vd − vg. The monofluid set of
equations expresses (Laibe and Price, 2014b; Lebreuilly et al., 2019)

dρ

dt
= −ρ (∇ · v) ,

dv
dt

= f −
∇Pg

ρ
− 1

ρ
∇ · (ε (1− ε) ρ∆v⊗ ∆v) ,

dε

dt
= −1

ρ
∇ · (ε (1− ε) ρ∆v) ,

d∆v
dt

= −∆v
tS

+
∇Pg

(1− ε) ρ
− (∆v · ∇) v +

1
2
∇ ((2ε− 1)∆v · ∆v)

+ (1− ε)∆v× (∇× (1− ε)∆v)− ε∆v× (∇× ε∆v) ,
deg

dt
= −

Pg

ρ (1− ε)
∇ · (v− ε∆v) + (ε∆v · ∇) eg + ε

∆v · ∆v
tS

,

(3.2)

where tS is the stopping time of the mixture, i.e. the typical time for the drag to damp ∆v.
f represents forces that act on fluid such as gravity. eg is the gas specific internal energy.
This set of equations is complex to solve, therefore the terminal velocity approximation
can used for grains with St� 1.

3.1.5.1 Terminal velocity approximation

The terminal velocity approximation (Youdin and Goodman, 2005; Chiang, 2008; Laibe
and Price, 2014b) is used when St� 1. The following terms

∥∥∆v2/v2
∥∥,
∥∥∆v⊗ ∆v/v2

∥∥,∥∥∆v× (∇× (1− ε)∆v) v2
∥∥ and

∥∥∆v (∇× ε∆v) /v2
∥∥ are second order in St, therefore

they can be neglected. In these conditions,
∥∥∥d∆v

dt /
(

∆v
tS

)∥∥∥ and
∥∥∥(∆v · ∇) v/

(
∆v
tS

)∥∥∥ are
transitory terms, they can be neglected. After a few stopping times, differential velocity
has relax to the terminal velocity

∆vf ≡ tS
∇Pg

(1− ε)ρ
. (3.3)

The steady value for ∆v results from drag balancing the differential forces between gas
and dust. With this approximation the set of equations 3.2 reduces to

dρ

dt
= −ρ (∇ · v) ,

dv
dt

= −
∇Pg

ρ
+ f ,

dε

dt
= −1

ρ
∇ ·

(
εtS∇Pg

)
,

deg

dt
= −

Pg

ρ (1− ε)
∇ · v +

(
εtS

∇Pg

(1− ε) ρ
· ∇
)

eg.

(3.4)

This set of equations works for one dust species. Hutchison et al. (2018) developed the
Multigrain formalism to take into account several dust species in the set of equations
3.4. For N dust populations, the terminal velocities writes ∆vf,k ≡ TS,k

∇Pg

(1−E)ρ . E ≡ ∑Nl=1 εl

is the total dust fraction such as ρd,k = εkρ and ρg = (1− E) ρ. TS,k ≡
tS,k

1−εk
−∑Nl=1

εl
1−εl

tS,l
is the effective stopping time of the k-th species (Lebreuilly et al., 2019). The Multigrain

formalism is essential to couple coagulation to the code PHANTOM.
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Monofluid dust/gas hydrodynamical solvers provide a natural architecture to include
a coagulation equation. Indeed, relative drifts between grains of different sizes are
genuinely computed, eventually in the terminal velocity approximation (e.g. Laibe and
Price (2014b), Hutchison et al. (2018), and Lebreuilly et al. (2019)). Monofluid formalism
also ensures exact conservation of momentum, i.e. no thrust due to mass transfers
propel the mixture. Sub-grid fluctuations should be prescribed by an accurate model that
describes local turbulence or Brownian motion. The Smoluchowski coagulation equation
is a mass conservation equation and, therefore, can be used in the monofluid formalism
in PHANTOM.

3.1.6 Scientific objectives of the Ph.D. Thesis

The aim of my Ph.D. Thesis is to elaborate an efficient algorithm solving the conservative
form of the Smoluhcowski coagulation equation in the purpose to be used in a 3D
hydrodynamic dust and gas code such as PHANTOM.

To design the algorithm, constraints has to be respected:

1. exact mass conservation,

2. positivity of the mass density,

3. discretizing masses over 12 orders of magnitudes which roughly corresponds to
grains of sizes 1µm− 1mm relevant for observations,

4. an accuracy of order ∼ 0.1− 1% to be consistent with hydrodynamics solvers (here
PHANTOM),

5. having a minimal number of bins to maintain global simulations of discs computa-
tionally tractable.

The coagulation solver is coupled to the Multigrain monofluid dust/gas hydrodynami-
cal solver, ensuring exact momentum conservation. A typical number of 10− 20 bins is
targeted compared to the 102 − 103 bins used so far in current algorithms (Ormel et al.,
2007; Brauer et al., 2008; Birnstiel et al., 2010). To fulfil the requirements we figured out
after a literature review that the discontinuous Galerkin method is well adapted to design
the algorithm. In the following, the high-order solver for the Smoluchowski equation is
presented. The solver is based on the discontinuous Galerkin method combined with a
high-order time solver.

3.2 high-order solver for smoluchowski equation

3.2.1 Discontinuous Galerkin method

The discontinuous Galerkin method is presented for the general scalar hyperbolic conser-
vative equation

∂g(x, t)
∂t

+
∂F[g](x, t)

∂x
= 0,

(x, t) ∈ R+,
(3.5)

where g is a density of a conservative quantity and F[g] the associated flux.
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Figure 3.3: Schematic representation of the discontinuous Galerkin method. In each cell, the
solution can be approximated by high-order polynomials to increase accuracy.

Let us partition the domain of interest [xmin, xmax] ∈ R in N subintervals (alternatively,
cells or bins), not necessarily of equal size. Each cell is defined by Ij = (xj−1/2, xj+1/2], j ∈
[[1, N]]. The size of the j-th cell is defined as hj = xj+1/2 − xj−1/2. The cell is centred
around the position xj =

(
xj+1/2 + xj−1/2

)
/2. We define V k the space of polynomials of

degree k in each cell Ij

V k =
{

v : v|Ij ∈ Pk (Ij
)

, j ∈ [[1, N]]
}

. (3.6)

We denote gj ∈ V k the approximate solution of g in the bin Ij. The terminology dis-
continuous Galerkin (DG) comes from the fact that in V k, the functions are allowed to
have jumps at the interfaces xj+1/2. One obtains a weak formulation of equation 3.5 by
multiplying by a test function φ ∈ V k, integrating over Ij and finally integrating by parts
(Cockburn and Shu, 1989)∫

Ij

∂gj

∂t
φdx−

∫
Ij

F[g] (x, t)
∂φ

∂x
dx + F[g]

(
xj+1/2, t

)
φ(xj+1/2)

− F[g]
(
xj−1/2, t

)
φ(xj−1/2) = 0.

(3.7)

Equation 3.7 allows to fix unequivocally the degrees of freedom of the function gj. The
DG method is a particular case of the method of the weighted residual (Finlayson, 1972).
The residual of equation 3.5 on bin Ij is defined as

Rj ≡
∫

Ij

∂gj

∂t
φdx−

∫
Ij

F[g] (x, t)
∂φ

∂x
dx + F[g]

(
xj+1/2, t

)
φ(xj+1/2)

− F[g]
(
xj−1/2, t

)
φ(xj−1/2).

(3.8)

DG schemes consist of choosing a local orthogonal polynomials basis on Ij to replace
the test function and to approximate the solution. Residuals Rj are therefore null in
the sense of orthogonalisation on the basis. In practice, Legendre polynomials are used
(Cockburn and Shu, 1989). We denote hereafter the i-th Legendre polynomial by φi (ξ),
where ξ ∈ [−1, 1]. Polynomial functions φi (ξ) are orthogonal in L2 ([−1, 1]) with respect
to the inner product with weight unity. The prime interest of the DG method is to
approximate the function g in cell Ij by a Legendre polynomial of arbitrary chosen order.
DG method allows to approximate the function g by a piecewise polynomial function
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instead of a constant polynomial function. Figure 3.3 shows a schematic representation
of the DG method. In each cell, the function g is approximated by Legendre polynomials.
The accuracy of the approximation increases with respect to the order of polynomials.
The approximation of g in cell Ij writes

∀x ∈ Ij, g(x) ≈ gj (x, t) =
k

∑
i=0

gi
j (t) φi(ξ j (x)),

gj (x, t) = gT
j (t) ·φ(ξ j(x)), with g j =


g0

j
...

gk
j

 and φ =


φ0
...

φk

 ,

(3.9)

where gi
j is the component of gj on the Legendre polynomials basis. The function

ξ j (x) ≡ 2
hj

(
x− xj

)
is used to map the interval Ij onto the interval [−1, 1]. Normalising

the Legendre basis gives

1∫
−1

φ(ξ)φT(ξ)dξ = diδik with di ≡
2

2i + 1
, (3.10)

where di is the coefficient normalisation. By combining equations 3.7, 3.9 and 3.10 one
obtains

dg j (t)

dt
= L[g] with

L[g] ≡ 2
hj


1/d0

. . .

1/dk


( ∫

Ij

F [g] (x, t) ∂xφ
(
ξ j (x)

)
dx

−
[

F [g]
(

xj+1/2, t
)

φ
(
ξ j
(
xj+1/2

))
− F [g]

(
xj−1/2, t

)
φ
(
ξ j
(
xj−1/2

)) ])
,

(3.11)

where L is the operator that results from applying the DG procedure to equation 3.5
with a Legendre polynomials basis. With the procedure described above, the original
system of partial differential equations (PDE) equation 3.7 is transformed into a system
of ordinary differential equations (ODE) equation 3.11 onto the coefficients gi

j(t). The
initial condition gj (x, 0) is generated by the piecewise L2 projection of an initial mass
density distribution g0(x) on each bin, that is

∀j ∈ [[1, N]],∫
Ij

(
gj (x, 0)− g0 (x)

)
φT(ξ j(x))dx = 0.

(3.12)

Orthogonality of the Legendre polynomials ensures∫
Ij

gjφ
Tdx =

hj

2

∫ 1

−1
φ(ξ)φT(ξ)dξg j(t)

=
hj

2
diag[d0, ..., dk]g j(t).

(3.13)
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Then, the components of g j are given by

∀j ∈ [[1, N]], ∀i ∈ [[0, k]],

gi
j(0) =

2
hjdi

1∫
−1

g0

(
hj

2
ξ j + xj

)
φi(ξ j)dξ j.

(3.14)

To summarize, the DG method consists in solving the following Cauchy problem

DG method applied to a conservative law equation



∀j ∈ [[1, N]], ∀i ∈ [[0, k]],
dg j (t)

dt
= L[g],

gi
j(0) =

2
hjdi

1∫
−1

g0

(
hj

2
ξ j + xj

)
φi(ξ j)dξ j,

(3.15)

where L is detailed in equation 3.11.

3.2.2 Evaluation of the flux

3.2.2.1 Regularised flux

The continuous Smoluchowski coagulation equation 2.40 is defined over an unbounded
interval of masses x ∈ R+. Before applying DG procedure, equation 2.40 is restrained
to a more physical interval of masses. Moreover, growth from a gaseous reservoir is
excluded, meaning that x > 0. The mass interval is therefore reduced to the interval
[xmin, xmax] (Filbet and Laurencot, 2004; Liu et al., 2019). The coagulation flux can be
truncated according to two procedures (Filbet and Laurencot, 2004). On the one hand

Fc
coag [g] (x, τ) =

x∫
xmin

xmax−u+xmin∫
x−u+xmin

K (u, v) g (u, τ)
g (v, τ)

v
dvdu, (3.16)

where Fc
coag is the conservative flux, meaning that no particle of mass larger than xmax is

allowed to form. On the other hand

Fnc
coag [g] (x, τ) =

x∫
xmin

xmax∫
x−u+xmin

K (u, v) g (u, τ)
g (v, τ)

v
dvdu, (3.17)

where Fnc
coag is the non-conservative flux which allows formation of particles of mass

x > xmax. Fc
coag is useful in realistic simulations of growth, whereas Fnc

coag should be used
to compare numerical solution to analytic solutions of equation 2.4.

3.2.2.2 Method of evaluating the flux

A crucial difference between this scheme and usual DG solvers is that the coagulation
flux Fnc

coag is non local. The evaluation of the numerical flux Fnc
coag[g] at the interface xj+1/2

depends on the evaluation of gj in all cells. Mathematically, Fnc
coag is a double integral

of a product of polynomials. Then the flux is a continuous function of mass x. At the
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interface xj+1/2, the numerical flux reduces to Fnc
coag [g] = Fnc

coag [g]
(
xj+1/2, t

)
. In usual

DG solvers, the numerical flux is a discontinuous function and must be reconstructed
at the interfaces (e.g. the Lax-Friedrichs flux in Cockburn and Shu (1989) and Zhang
and Shu (2010)). The principal difficulty lies in carefully evaluating the flux at interfaces.
This relies on handling the numerical integration of the polynomials gj in every relevant
cell. Liu et al. (2019) uses a Gaussian quadrature method with a Legendre polynomials
basis to approximate the flux. The lower bound of the inner integral x− u does usually
not correspond to a grid point. To accurately perform the Gauss quadrature, some grid
elements must be sub-divided, increasing drastically the cost of the numerical procedure,
especially for high-order polynomials. To avoid prohibitive computational costs due to
cell oversampling, we take advantage of the polynomial approximation by calculating
integrals analytically. This requires integrable kernels, which is the case for the four
kernels presented in this study. This approach maintains a reasonable computational cost
by not multiplying the number of sampling points. This also avoid to add errors due to
the numerical integration and to approximate kernels by piecewise constant functions.

3.2.2.3 Mathematical procedure

To integrate analytically the numerical flux Fnc
coag, let define the function g̃ that approx-

imates the function g over the entire mass interval. To gather all the gj polynomials
defined in each bin, we take advantage of the Heaviside θ function as following

∀x ∈ [xmin, xmax], g̃ (x, t) ≡
N

∑
l=1

k

∑
i=0

gi
l (t) φi(ξl(x))[θ(x− xl−1/2)− θ(x− xl+1/2)]. (3.18)

We assume that the kernel function is polynomials and can be written as K(u, v) =

K1(u)K2(v), which is effectively the case forthe three simple kernels and the ballistic
kernel (see Chapter 2). For instance, the additive kernel writes Kadd(u, v) = u + v =

K1
1(u)K1

2(v) +K2
1(u)K2

2(v), where K1
1(u) = u, K1

2(v) = 1, K2
1(u) = 1 and K2

2(v) = v. The
numerical flux is split in two terms. The numerical flux writes

Fnc
coag[g̃](x, t) =
N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t)gi

l(t)

x∫
xmin

xmax∫
x−u+xmin

K(u, v)
v

φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

φi(ξl(v))[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu.

(3.19)

In the DG equation 3.7, the numerical flux is evaluated on grid points xj+1/2 and xj−1/2
with j ∈ [[1, N]]. k is the order of the Legendre polynomials to approximate the solution.
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Therefore, Fnc
coag depends on j and k. The flux is sampled over a 2D array (N, k + 1) in

order to use vectorial operations to reduce the computational time. The numerical flux is

Fnc
coag[g̃](x, t) =

N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t)gi

l(t)T(x, xmin, xmax, i′, i, l′, l),

T(x, xmin, xmax, i′, i, l′, l) ≡
x∫

xmin

K1(u)φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

xmax∫
x−u+xmin

K2(v)
v

φi(ξl(v))[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu.

(3.20)

A priori, the boundaries for the intervals of integration can be very large. We therefore
rescale these intervals over the values, we choose to write the term T in ξl′ and ξl variables
to avoid any numerical issues with large numbers. To avoid critical typos, the term T is
derived with Mathematica by starting with the inner integral on ξl and then injecting it
in the integral on ξl′ .

3.2.2.4 Inner integral

With the change of variable ξl =
2
hl
(x− xl), the inner integral of equation 3.20 writes

Tinner (x, xmin, xmax, i, l) =
xmax∫

x−u+xmin

f2(ξl)

[
θ

(
ξl −

2
hl
(xl−1/2 − xl)

)
− θ

(
ξl −

2
hl
(xl+1/2 − xl)

)]
dξl ,

(3.21)

with

f2(ξl) ≡ K2

(
hl

2
ξl + xl

)
φi(ξi)

hl
2 ξl + xl

. (3.22)

We take advantage of the following identity

a < b, c < b, d ≤ b, c < d∫ b

a
f (x)[θ(x− c)− θ(x− d)]dx =∫ b

c
f (x)dx + θ(a− c)

∫ c

a
f (x)dx− θ(b− d)

∫ b

d
f (x)dx− θ(b− d)θ(a− d)

∫ d

a
f (x)dx.

(3.23)
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Therefore, Tinner writes

Tinner (x, xmin, xmax, i, l) =
2
hl
(xmax−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl + θ

(
x− hl′

2
ξl′ − xl′ + xmin − xl−1/2

) 2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f2(ξl)dξl

− θ (xmax − xl+1/2)


2
hl
(xmax−xl)∫

2
hl
(xl+1/2−xl)

f2(ξl)dξl

+θ

(
x− hl′

2
ξl′ − xl′ + xmin − xl+1/2

) 2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f2(ξl)dξl

 .

(3.24)

3.2.2.5 Outer integral

By applying the outer integral to Tinner, the term T writes

T(x, xmin, xmax, i′, i, l′, l) =
hl

2
hl′

2[ 2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl×


2

hl′
(x−xl′ )∫

2
hl′

(xmin−xl′ )

f1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
dξl′


+

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

2
hl′

(xl−1/2−xl)∫
2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
θ

(
2

hl′
(x− xl−1/2 + xmin − xl′)− ξl′

)
dξldξl′

−

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

2
hl′

(xl+1/2−xl)∫
2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
θ

(
2

hl′
(x− xl+1/2 + xmin − xl′)− ξl′

)
dξldξl′]

,
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(3.25)

with f1(ξl′) ≡ K1(ξl′)φi′ (ξl′). We now use the following identities

a < b, a ≤ c, a < d, c < d∫ b

a
f (x) [θ(x− c)− θ(x− d)]dx

= θ(b− c)
[∫ b

c
f (x)dx + θ(a− c)

∫ c

a
f (x)dx

]
− θ(b− d)

∫ b

d
f (x)dx

a < b, a ≤ c, a < d, c < d, e < b∫ b

a
f (x) [θ(x− c)− θ(x− d)] θ(e− x)dx

= θ(b− d)θ(e− d)
∫ d

e
f (x)dx

+ θ(b− c)
[
(θ(a− c)− 1)θ(b− c)θ(e− c)

∫ c

e
f (x)dx + θ(a− c)θ(e− a)

∫ e

a
f (x)dx

]
,

a < b, a ≤ c, a < d, c < d, e ≤ b∫ b

a
f (x) [θ(x− c)− θ(x− d)] θ(e− x)dx

= θ(b− c)

−θ(a− c)θ(e− a)


a∫

e

f (x)dx + θ(e− b)
e∫

b

f (x)dx


+ (1− θ(a− c))

θ(b− c)θ(e− c)


e∫

c

f (x)dx + θ(e− b)
b∫

e

f (x)dx


+θ(c− b)θ(e− b)


b∫

e

f (x)dx + θ(e− c)
e∫

c

f (x)dx




− θ(b− d)

θ(b− d)θ(e− d)


e∫

d

f (x)dx + θ(e− b)
b∫

e

f (x)dx


+θ(d− b)θ(e− b)


b∫

e

f (x)dx + θ(e− d)
e∫

d

f (x)dx


 ,

(3.26)

The outer integrals write

•

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
dξl′

= θ(x− xl′−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′)

f1(ξl′)dξl′ − θ(x− xl′+1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′)

f1(ξl′)dξl′ ,

(3.27)
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•

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]

θ

(
2

hl′
(x− xl−1/2 + xmin − xl′)− ξl′

)
dξldξl′

= θ(x− xl′−1/2)θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′)

f1(ξl′)F2,1(ξl′)dξl′

+ θ(x− xl′+1/2)θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′ ,

(3.28)

•

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,2(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]

θ

(
2

hl′
(x− xl+1/2 + xmin − xl′)− ξl′

)
dξldξl′

=θ(x− xl′+1/2)θ(x− xl+1/2 + xmin − xl′+1/2)

2
hl′
(xl′+1/2−xl′)∫

2
hl′

(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

+ θ(x− xl′−1/2)θ(x− xl+1/2 + xmin − xl′−1/2)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′)

f1(ξl′)F2,2(ξl′)dξl′

]
,

(3.29)

with

F2,1(ξl′) ≡

2
hl
(xl−1/2−xl)∫

2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f2(ξl)dξl , F2,2(ξl′) ≡

2
hl
(xl+1/2−xl)∫

2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f2(ξl)dξl .

(3.30)
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All details about the derivation are given in Appendix b.1. Therefore, the term T writes

T(x, xmin, xmax, i′, i, l′, l) =
hl

2
hl′

2
2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl

θ(x− xl′−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)dξl′ − θ(x− xl′+1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)dξl′


+ θ(x− xl′−1/2)[

θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

− θ(xmax − xl+1/2)θ(x− xl+1/2 + xmin − xl′−1/2)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′


+ θ(x− xl′+1/2)[

θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

− θ(xmax − xl+1/2)θ(x− xl+1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′


 .

(3.31)
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The high-order solver is written in Fortran. Reducing the number of integrals is key to
avoid numerical issues with differences of large numbers. In this purpose the expression
of T is split in several terms

Tφi ≡

2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl ,

Tφi′ ,mix ≡

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)dξl′ ,

Tφi′ ,term1 ≡

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)dξl′ ,

Tφi′ ,φi ,allmix ≡

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(xl+1/2−xl)

f1(ξl′) f2(ξl)dξldξl′ ,

Tφi′ ,φi ,mix_P1term1_P2term1 ≡

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

Tφi′ ,φi ,P1term1 ≡

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

Tφi′ ,φi ,P1term2 ≡

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′ .

(3.32)

For robustness, all these integrals are calculated with Mathematica. The func-
tion FortranForm in Mathematica is used to translate integral expression of inte-
grals to Fortran. For large expressions, it is necessary to split them with the function
MonomialList. Each part is then translated with FortranForm. The scheme to evaluate
T(x, xmin, xmax, i′, i, l′, l), in Fortran, is given in Appendix b.1.4.
To summarize, a 4D array with element T(x, xmin, xmax, i′, i, l′, l) and a 4D array with
element gi′

l′(t)gi
l(t) are computed. The element (j, k) of the 2D array corresponding to the

flux is obtained by multiplying these two 4D arrays and summing over of all elements.
Fnc

coag[g̃] is then evaluated in xj−1/2 and xj+1/2 for all j.

The numerical flux Fnc
coag[g̃] is now evaluated in xj−1/2 and xj+1/2 for all j. In the DG

equation, it remains the evaluation of the term containing the integral of the flux Fnc
coag[g̃].
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3.2.3 Evaluation of the integral of the flux

Let denote Fnc
coag the term of equation 3.7 corresponding to the integral of the numerical

flux. Fnc
coag writes

Fnc
coag[g̃, j, k](t) =

N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t) gi

l(t)T
(
xmin, xmax, j, k, i′, i, l′, l

)
T
(

xmin, xmax, j, k, i′, i, l′, l
)
≡∫

Ij

x∫
xmin

xmax∫
x−u+xmin

K(u, v)
v

∂xφk(ξ j(x))

φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

φi(ξl(v))[θ(v− xl−1/2)− θ(v− xl+1/2)]dv du dx.

(3.33)

Fnc
coag[g̃] is evaluated similarly to the flux term. A triple integral is derived with Mathe-

matica with the changes of variables

ξl ≡
2
hl

(v− xl) , ξl′ ≡
2

hl′
(u− xl′) , ξ j ≡

2
hj

(
x− xj

)
. (3.34)

To derive tractable equations for the integrals involving Heaviside distributions, we start
to compute integrals over the variable ξl , then calculating the integral over ξl′ and finally,
over x. All details of the calculations are given in Appendix b.2. The integrals cannot be
switched. Therefore, the computational time can take a couple of hours to derive one
triple integral with Mathematica. The obtained expressions are very large. As for the
numerical flux, FortranForm and MonomialList are used to split large expressions and
translate them in Fortran. The scheme in Fortran to evaluate T (xmin, xmax, j, k, i′, i, l′, l)
is given in Appendix b.2.3. Fnc

coag is computed as a product of 4D arrays similarly to Fnc
coag.

Accuracy on T and T depends only the quality of the polynomial approximation of g
by g̃, since the integrals corresponding to Fnc

coag[g̃] and Fnc
coag[g̃] are calculated analytically.

3.2.4 Slope limiter

In Chapter 2, the self-similarity theory shows that the solution of the Smoluchowski
coagulation equation has been mathematically shown to decay with an exponential at
large masses, for most of astrophysical kernels. This part is challenging to approximate
with polynomials, and numerical estimates gj of g in the bin Ij can lead to negative
values, which is not acceptable physically.

To preserve the positivity of solution, the requirement gj(x, t) ≥ 0 for x ∈ Ij needs
to be enforced. The idea is to use a scaling limiter (Liu and Osher, 1996; Zhang and
Shu, 2010; Liu et al., 2019) which controls the maximum/minimum of the reconstruction
polynomials. This is achieved by a reconstruction step using cell averages as a reference.
Let us consider the polynomials gj(x) of order k that approximates g(x) on Ij. Let us
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denote m and M two positive reals and Mj = max
x∈Ij

gj(x), mj = min
x∈Ij

gj(x) and define the

scaled polynomials

pj (x) ≡ γj

(
gj(x)− gj

)
+ gj,

γj = min

{∣∣∣∣∣ M− gj

Mj − gj

∣∣∣∣∣ ,

∣∣∣∣∣ m− gj

mj − gj

∣∣∣∣∣ , 1

}
,

(3.35)

For all j, we assume gj ∈ [m, M]. pj(x) is a polynomial of order k such as pj = gj. Liu and
Osher (1996) proved that ∀x ∈ Ij, pj(x) ∈ [m, M]. This scaling limiter allows to build a
maximum-principle-satisfying DG scheme, in the sense that the numerical solution never
goes out of the range [m, M] of the initial condition. The main difficulty is to ensure the
property gj ∈ [m, M] during the time evolution without loosing high accuracy.

In the DG scheme given by equation 3.11, polynomials gj(x) are replaced by the scaled
polynomials pj(x) that write

pj (x) = γj

(
gj(x)− gj

)
+ gj

=
k

∑
i=0

γjgi
j(t)φ1,i(ξ j(x)) +

k

∑
i=0

gi
j(t)φ2,i(ξ j(x))

(3.36)

with

φ1,i(ξ j(x)) ≡
(

φi(ξ j(x))− 1
2

∫
Ij

φi(ξ j(x))dx
)

,

φ2,i(ξ j(x)) ≡ 1
2

∫
Ij

φi(ξ j(x))dx.
(3.37)

Replacing gj by pj in equation 3.20 gives four terms for the function T: T11[φ1,i′φ1,i],
T12[φ1,i′φ2,i], T21[φ2,i′φ1,i] and T22[φ2,i′φ2,i]. For each term, a corresponding coefficient
gl′,i′(t)gl,i(t) is associated, namely γl′gl′,i′(t)gl,i(t), γl′gl′,i′(t)gl,i(t), γl gl′,i′(t)gl,i(t) and
gl′,i′(t)gl,i(t) (no γ in the last term). Fnc

coag is evaluated by summing over those four terms.
The same procedure is applied for Fnc

coag. Therefore, the positivity of g̃ is ensured in each
cell.

To complete the DG scheme equation 3.11, a high-order time solver is required.

3.2.5 High-order time solver

3.2.5.1 Timestepping

Forward Euler discretisation of equation 3.7 gives

gn+1
j = gn

j −
∆t
∆xj

[
Fnc

coag
[
gj
] (

xj+1/2, t
)
− Fnc

coag
[
gj
] (

xj−1/2, t
)]

, (3.38)

for the n-th time step. Equation 3.38 is also equivalent to the ordinary differential equation
3.11 for the component g0

j . The numerical scheme have to fulfil a criterion on the timestep
to be stable and to converge to a physical solution. This so-called Courant-Friedrichs-
Lewy condition (CFL) is chosen to guarantee the positivity of the cell average gn+1

j > 0
(Filbet and Laurencot, 2004), i.e.

∆t <
∆xjgn

j

|Fnc
coag

[
gj
] (

xj+1/2, t
)
− Fnc

coag
[
gj
] (

xj−1/2, t
)
|
. (3.39)
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This CFL condition associated with the slope limiter (see Section. 3.2.4) ensures the
positivity of the high-order scheme. The CFL condition is initially dominated by small
grains and softens as grains grow.

3.2.5.2 Strong Stability Preserving Runge-Kutta method

In equation 2.40, the spatial derivative ∂xFcoag[g] is approximated by −L[g] given in
equation 3.11. The expression of L[g] depends on the finite element method (DG method
in our case). L[g] is a nonlinearly stable approximation. For hyperbolic conservation laws,
nonlinear stability property is characterised by the total variation diminishing (TVD)
semi-norm

TV (g) ≡∑
j
|gj+1 − gj|. (3.40)

The spatial discretisation −L[g] has the property that the total variation of the numerical
solution does not increase for a forward Euler integration

gn+1 = gn + ∆tL[g], ∆t ≤ ∆tFE, (3.41)

where ∆tFE is the CFL condition determined in equation 3.39, i.e. TV
(

gn+1) ≤ TV (gn).
In this case the coupling between DG method and forward Euler method has the TVD
property, meaning a nonlinear stability. There is no guarantee that any linear stable high-
order time discretisation method will preserve this nonlinear stability. A new high-order
time discretisation method called Strong Stability Preserving (SSP) has been developed
in the purpose to maintain the nonlinear stability under the same semi norm TV with a
probable different timestep restriction (Shu and Osher, 1988; Gottlieb et al., 2001; Zhang
and Shu, 2010; Liu et al., 2019). The method is SSP if the following condition holds

TV
(

gn+1
)
≤ TV (gn) , (3.42)

and the timestep satisfies

∆tSSP ≤ c∆tFE, (3.43)

where c is a positive coefficient. Stability arguments are based on convex decomposition
of high-order methods in term of the first-order Euler elements. This ensures that SSP
preserves high-order accuracy in time for any convex functional (e.g. TV). In practice,
errors are dominated by mass discretisation. We use a SSP Runge-Kutta (SSPRK) third-
order method (Gottlieb et al., 2009; Zhang and Shu, 2010; Liu et al., 2019) which writes,
with c = 1,

g(1)
j = gn

j + ∆tSSPL[gn
j ],

g(2)
j =

3
4

gn
j +

1
4

(
g(1)

j + ∆tSSPL[g(1)j ]
)

,

gn+1
j =

1
3

gn
j +

2
3

(
g(2)

j + ∆tSSPL[g(2)j ]
)

.

(3.44)

This SSPRK third-order method ensures that gj ∈ [m, M] for (m, M) ∈ R+ for all time.
Hence, under a suitable CFL condition, SSP high-order time discretisation preserves the
property gj ∈ [m, M] of the DG scheme and the linear scaling presented in Section 3.2.4
satisfies a maximum principle.
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3.2.6 Algorithm flowchart

Associating SSPRK with a DG scheme provides overall an high-order scheme that
maintains overall a uniform high-order accuracy of the solution (Zhang and Shu, 2010).
We use the SSPRK of third order given by equation 3.44. Splitting the algorithm into the
following steps ensures positivity:

1. Initialisation: From the initial data g0(x),

a) generate ∀j ∈ [[1, N]], gj(x, 0) ∈ V k by piecewise L2 projection and get the
components on Legendre basis equation 3.14,

b) define [m, M] for which gj(x, 0) ∈ [m, M],

c) replace gj by pj

2. Evolution: Use the scheme 3.44 to compute ∀j ∈ [[1, N]], ∀i ∈ [[1, k]], (gi
j)

n+1

3. Reconstruction: Use 3.36 to reconstruct pj(x, t)

3.2.7 Design

During my Ph.D. Thesis, I visited the Monash Centre of Astrophysics (MoCA) at Monash
University (Melbourne, Australia) to work on the high-order solver in collaboration with
Pr. D. J. Price and D. Mentiplay. I spent in total 4 months at MoCA. We worked on the
interface of the high-order solver and the code PHANTOM. Thanks to their advices, the
high-order solver is designed in a modular way to be user friendly. The code is compiled
as a static library. The submodule procedure in Fortran allows to define the routine which
calls the high-order solver in the library. This submodule interfaces the library with any
other code requiring to solve the Smoluchowski coagulation equation.

3.3 summary

A high-order solver has been developed with the aim of solving efficiently and accurately
the Smoluchowski coagulation equation with a small number of bins and a low impact
on time computation. The high-order solver is based on the discontinuous Galerkin
method (see equation 3.7) associated with a linear slope limiter (see Section 3.2.4) and
on a positivity-preserving high-order time scheme (see Section 3.2.5). This scheme,
developed in this Ph.D. thesis, relies on an analytic integration of numerical fluxes in
order to make the solver efficient. Analytic solutions for different kernels are provided
to benchmark coagulation algorithms. This solver is designed to solve the collisional
fragmentation equation 2.51 and be straightforwardly extended to the coagulation-
fragmentation equation 2.52.
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4.1 introduction

We benchmarked our numerical solver presented in Chapter 3 against the analytical
solutions presented in Chapter 2. Numerical tests for the proposed high-order positivity-
preserving solver are applied to pure coagulation. For comparison purpose, we perform
similar tests than in Liu et al. (2019). The accuracy and the computational time are
compared to the DG method from Liu et al. (2019) where Gauss quadrature method
is used to approximate the integrals. As mentioned in Section 3.1.6, accuracy with a
minimal number of bins is required to couple the high-order solver to the code PHANTOM.
Hence, accuracy tests are performed with a small number of bins.

4.2 error measurements

Numerical simulations are carried out to: i) investigate the experimental order of convergence
(EOC, Rajesh Kumar (2014) and Liu et al. (2019) ), and ii) determine the performances
of the algorithm. Relative errors are measured using a continuous norm and a discrete
norm. The L1 norm is a natural choice for equations of conservation. The continuous L1

norm can be approximated by using a high order Gaussian quadrature rule

‖ f ‖1 ≡
∫ xmax

xmin

| f (x)|dx =
N

∑
j=1

∫
Ij

| f (x)|dx ≈
N

∑
j=1

hj

2

R

∑
α=1

ωα| f (xα
j )|, (4.1)

where N is the number of bins, hj is the size of bin Ij, ωα are the weights and xα
j are

the corresponding Gauss points in cell Ij. We use R = 16 for sufficient accuracy. The
numerical error ec,N is measured with the continuous L1 norm as

ec,N(τ) ≡
N

∑
j=1

hj

2

R

∑
α=1

ωα|gj(xα
j , τ)− g(xα

j , τ)|, (4.2)

where g and gj are the analytic and the numerical solution of the Smoluchowski equation.
Equation 4.2 computed with Mathematica with 16 digits for sufficient precision. The dis-
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crete L1 norm is defined by evaluating gj and g at the geometric mean x̂j ≡
√xj−1/2xj+1/2

of the bin Ij. The numerical error measured with this discrete L1 norm is

ed,N(τ) ≡
N

∑
j=1

hj|gj(x̂j, τ)− g(x̂j, τ)|. (4.3)

We follow Liu et al. (2019) to calculate the experimental order of convergence (EOC)

EOC ≡
ln
(

eN(τ)
e2N(τ)

)
ln(2)

, (4.4)

where eN is the error evaluated for N bins and e2N for 2N bins. For the calculation of the
EOC, the numerical errors are calculated at time τ = 0.01 for the order of convergence of
the DG scheme not to be altered by time stepping errors.
The moments of the numerical solutions are defined by

Mp,N (τ) =

xmax∫
xmin

xp−1 g̃(x, τ)dx =
N

∑
j=1

∫
Ij

xp−1gj(x, τ)dx =
N

∑
j=1

k

∑
i=0

gi
j(τ)

∫
Ij

xp−1φi
(
ξ j(x)

)
dx.

(4.5)

The total mass of the system writes

M1,N(τ) =
N

∑
j=1

k

∑
i=0

gi
j(τ)

hj

2

1∫
−1

φi
(
ξ j
)

dξ j︸ ︷︷ ︸
=δ00=2

=
N

∑
j=1

hjg0
j (τ). (4.6)

Absolute errors on the moments are given by

eMp,N (τ) ≡
|Mp,N(τ)−Mp(τ)|

Mp(τ)
, (4.7)

where Mp(τ) is the moment of order p at time τ for the exact solution. In usual conver-
gence tests, errors are normalised with respect to the number of degrees of freedom of
the algorithm. This is not the case here, since we compare absolute gains for the purpose
interfacing it with an hydrodynamical solver.

4.3 benchmark for coagulation

Numerical tests are performed by comparing numerical solutions the constant, additive
and multiplicative kernels to the solutions given in equations 2.20, 2.2.1.2 and 2.22.
Solutions are integrated over the intervals x ∈ [10−3, 106] for the constant and the
additive kernels, and x ∈ [10−3, 103] for the multiplicative kernel. Tests are performed
with Fortran, errors are calculated with Mathematica at machine precision. Quadruple
precision is required for the additive kernel with k = 2, and for all kernels with k = 3.
The results are shown for Legendre polynomials of order k = 0, 1, 2, 3. Above order 3,
numerical errors due to arithmetics of large numbers are not negligible anymore. A safety
coefficient of 1/2 is applied on the CFL condition, i.e. the coagulation time-step used in
practice is dτcoag = 1/2 dτCFL (see Section 3.2.5.1 in Chapter 3). Initial conditions are set
to satisfy the analytic solution at initial time τ = 0. The analytical and numerical solutions
are compared when particles of large masses are formed at final times τ that depend
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on the kernels. Simulations are performed by dividing τ into constant dumps of value
dτ (300 for the constant and the additive kernels, 10000 for the multiplicative kernel).
Each dump is subdivided in several coagulation steps satisfying the CFL condition.
The analytical derivation of the coagulation flux allows the algorithm to be efficient, i.e.
to reach desired accuracy with a low computational time. To quantify efficiency, the
computational time is compared to the one obtained with the scheme of Liu et al. (2019)
with a number of Gauss points Q = k + 1 on a simulation in double precision with
N = 20 bins, k = 1 for the additive kernel and k = 2 for the constant and multiplicative
kernels. The Liu scheme is implemented by following the description of Liu et al. (2019)
step-by-step, without additional optimisations. Simulations are performed in sequential
on an Intel Core i7 2.8GHz. We use the gfortran v9.2.0 compiler. Such a comparison
is delicate to perform and interpret, since it is implementation-dependant. Should the
number of Gauss points in the Liu algorithm be increased to better approximate the
integral terms calculated here analytically, this may result in an increase of computational
time by several orders of magnitudes, giving the false impression that the Liu algorithm
is not performant. Hence the choice Q = k + 1. Qualitatively, our scheme is more effective
by a factor of several unities for same precision and without requiring sub-binning, except
for the additive kernel for which the Liu scheme exhibits serendipitous super-convergence
(Liu et al., 2019).

4.3.1 Constant kernel

4.3.1.1 Positivity and mass conservation

Physically, the constant kernel K = 1 means the frequency of collisions between two
particles is independent of their size. All particles are formed at the same frequency. The
solution keeps the same shape during time. Figure 4.1 shows the numerical solutions
obtained for N = 20 bins, varying the order of the polynomials k. The analytical and
numerical solutions are compared at time τ = 30000. As expected, the solution remains
positive, as a result from combining the slope limiter (see Section 3.2.4) and the SSP
Runge-Kutta time stepping (see Section 3.2.5.2 in Chapter 3). The piecewise linear solution
(k = 1) appears curved due to the logarithmic scale of the x-axis. Figure 4.2 shows the
numerical absolute error eM1,N on the moment M1,N for N = 20 bins from τ = 0 to
τ = 30000. The total mass remains conserved to machine precision until τ = 104.

4.3.1.2 Accuracy of the numerical solution

As expected, the accuracy of the numerical solution improves with the order of the
scheme. Figure 4.3 shows the numerical solution obtained at τ = 30000 (note the 16
orders of magnitude in mass on the y axis in log). The major part of the total mass of
the system is located around the maximum of the curve. Figure 4.3 shows that around
this maximum, schemes of order k = 1, 2, 3 provide errors of order ∼ 0.1− 1% when
k = 0 generates errors of order ∼ 30%. Figure 4.3 also shows that numerical diffusion is
drastically reduced in the exponential tail as the order of the scheme increases, since a
gain of a factor ∼ 100 is obtained with order 3 compared to order 0.

4.3.1.3 Convergence analysis

Numerical errors introduced in Section 4.2 are shown on Figure 4.4 at τ = 0.01. ec,N and
ed,N are plotted as a functions of the number of bins per decade Nbin/dec, to infer the
EOC independently from the global mass interval. With the continuous L1 norm, the
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Figure 4.1: Test case, constant kernel: the numerical solution gj(x, τ) is plotted for N = 20 bins
and k = 0, 1, 2, 3 from τ = 0 to τ = 30000, and compared to the analytic solution
g(x, τ). Vertical grey lines delimit the bins. The accuracy improves for a higher-order
polynomials. Order 3 approximates the bump where the major part of the total mass
is concentrated with accuracy of order ∼ 0.1%.
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Figure 4.2: Test case, constant kernel: evolution of the numerical absolute error eM1,N on the mo-
ment M1,N for N = 20 bins. The divergence at long time is explained by accumulation
of errors due to numerical diffusion for even orders k = 0 and k = 2. The total mass is
conserved at machine precision so far τ = 104.
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Figure 4.3: Test case, constant kernel: the numerical solution gj(x, τ) is evaluated at the geometric
mean x̂j of each bin Ij.At the location of the maximum, orders k = 1, 2, 3 achieve an
absolute error of ∼ 0.1− 1%, to be compared with 30% obtained with k = 0. Accuracy
in the exponential tail is improved by a factor 100 with k = 3 compared to k = 0.
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Figure 4.4: Test case, constant kernel: the continuous L1 error ec,N and the discrete L1 error ed,N
are plotted as functions of the number of bins per decade. With ec,N , the experimental
order of convergence is EOC = k + 1. With ed,N , EOC = k + 1 for polynomials of odd
orders and EOC = k + 2 for polynomials of even orders. The DG scheme achieves
on ed,N an accuracy of 0.1% with more than 10 bins/decade for k = 0, 1, with ∼ 9
bins/decade for k = 2 and with ∼ 5 bins/decade for k = 3. An accuracy of 1% is
achieved with ∼ 9 bins/decade for k = 0, 1, with ∼ 5 bins/decade for k = 2 and ∼ 2
bins/decade for k = 3.
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Figure 4.5: Test case, constant kernel: numerical errors ec,N with the L1 continuous norm, ed,N
with the discrete L1 norm and. All these errors are calculated for N = 20. Errors
remain bounded at large times.

EOC is of order k + 1 on a geometric grid, similarly to Liu et al. (2019). With the discrete
L1 norm, the EOC is of order k + 2 for odd polynomials, and k + 1 for even polynomials.
We recover second order of convergence (EOC=2) for the finite volume scheme with
k = 0 that was predicted by Filbet and Laurencot (2004). Figure 4.4 shows that the
expected accuracy of order ∼ 0.1% on ed,N is achieved with more than 10 bins/decade
for orders 0 and 1, with ∼ 9 bins/decade for order 2 and with ∼ 5 bins/decade for order
3. Accuracy of order ∼ 1% is achieved with ∼ 9 bins/decade for orders 0 and 1, with
∼ 5 bins/decade for order 2, and with ∼ 2 bins/decade for order 3.

4.3.1.4 Stability in time

Time evolution of the numerical errors ec,N and ed,N are shown in Figure 4.5. The results
are shown for N = 20 bins for k = 0, 1, 2, 3 at time τ = 30000, when particles of large
masses have formed. We verify that ec,N and ed,N remain bounded.
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Figure 4.6: Test case, constant kernel: comparison with the scheme of Liu et al. (2019). Similar
accuracies are reached, but being ∼ 4× more effective due to numerical integration.

4.3.1.5 Computational performance

Figure 4.6 shows that similar accuracies are obtained with this scheme and the scheme
described in Liu et al. (2019). Computational time is compared on a simulation with
N = 20 bins, k = 2 and a final time τ = 30000 after ∼ 103 timesteps. The computational
time for the Liu et al. (2019) scheme is around 16 seconds (real time). The computational
time for this scheme is around 4 seconds (real time). An improvement of factor 4 is
therefore achieved for the computational time by estimating integrals analytically.

4.3.2 Additive kernel

4.3.2.1 Positivity and mass conservation

Physically, the additive kernel means the frequency of collisions increases according
to the size of particles. Massive particles are formed faster compared with constant
kernel leading to greater values of mass density gj for particles of large masses. The
exponential decay is smoother during the time evolution compared to the constant kernel
case. Figure 4.7 shows numerical solutions obtained for N = 20 bins and k = 0, 1, 2, 3 at
time τ = 3. The numerical solutions remains positive as grains grow. Figure 4.8 shows
the evolution of the numerical absolute error eM1,N on the first moment M1,N . The total
mass remains conserved to machine precision until τ = 1.

4.3.2.2 Accuracy of the numerical solution

Figure 4.9 shows numerical solutions obtained at τ = 3 on a logarithmic scale. Figure 4.9
reveals a strong numerical diffusion for order 0. Numerical errors are indeed integrated
and diffused extremely efficiently towards large masses by the additive kernel. In this
case, the mass density for large-masses particles is over-estimated by several orders of
magnitude. High-order schemes reduce this numerical diffusion as expected. Figure 4.9
shows that around the maximum, schemes of order k = 1, 2, 3 provide errors of order
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Figure 4.7: Test case, additive kernel: the numerical solution gj(x, τ) is plotted for N = 20 bins
and k = 0, 1, 2, 3 from τ = 0 to τ = 3, and compared to the analytic solution g(x, τ).
Vertical grey lines delimit the bins. The accuracy improves for larger values of k. Order
3 approximates the bump where the major part of the mass is concentrated with
accuracy of order ∼ 0.1%.
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moment M1,N for N = 20 bins. The divergence at long times is explained by accumu-
lation of errors due to numerical diffusion for orders k = 0, k = 2 and k = 3. Total
mass is conserved at machine precision until τ = 1.

∼ 0.1− 1% when k = 0 generates errors of order ∼ 10%. Numerical diffusion is reduced
in the exponential tail as the order of the scheme increases, up to reaching a gain of a
factor ∼ 10000 with order 3 compared to order 0.

4.3.2.3 Convergence analysis

Numerical errors are shown on Figure 4.10 at τ = 0.01. With the continuous L1 norm,
the EOC is k + 1 on a geometric grid with similar to Liu et al. (2019). With the discrete L1

norm, the EOC is k + 2 for odd polynomials and k + 1 for even polynomials. Accuracy of
order ∼ 0.1% on ed,N errors are achieved with more than 10 bins/decade for order 0 and
1, with ∼ 9 bins/decade for orders 2 and 3. Accuracy of order ∼ 1% is achieved with ∼ 9
bins/decade for orders 0 and 1, with ∼ 5 bins/decade for order 2 and ∼ 2 bins/decade
for order 3.

4.3.2.4 Stability in time

Evolution of the numerical errors ec,N and ed,N are shown in Figure 4.11. The results
are shown for N = 20 bins for k = 0, 1, 2, 3 at τ = 3, when particles with large masses
have formed. At order 0, ec,N (resp. ed,N) increases significantly after τ ≈ 5 · 10−1 (resp.
τ ≈ 10−1). On the contrary, ec,N and ed,N remain bounded for longer times at orders 1, 2
and 3.

4.3.2.5 Computational performance

Computational time is compared to Liu et al. (2019) on a simulation with N = 20 bins,
k = 1 and a final time τ = 3. Figure 4.6 shows similar accuracy for both schemes. The
computational time for the Liu et al. (2019) scheme is around 3 seconds (real time) for
a number of Gauss quadrature points Q = 2. The computational time for this scheme
is 1 second, providing an improvement by a factor 3. Figure 4.12 also shows that for
the additive kernel, the Liu scheme with Q = 2 is counter-intuitively more accurate
than for Q = 16 and the DG scheme. This result can be explained by a serendipitous
compensation of errors when approximating the integrals with a Gauss quadrature of
low order.
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Figure 4.10: Test case, additive kernel: similar to Figure 4.4. The DG scheme achieves on ed,N
an accuracy of order 0.1% with more than 10 bins/decade for k = 0, 1, with ∼ 5
bins/decade for k = 2, 3. An accuracy of order 1% is achieved with ∼ 9 bins/decade
for k = 0, 1, with ∼ 5 bins/decade for k = 2 and with ∼ 2 bins/decade for k = 3.



4.3 benchmark for coagulation 71

10 2 10 1 100

time 
10 5

10 3

10 1

101

nu
m

er
ica

l e
rro

r e
c,

N

k = 0
k = 1

k = 2
k = 3

10 2 10 1 100

time 
10 5

10 3

10 1

101

nu
m

er
ica

l e
rro

r e
d,

N

k = 0
k = 1

k = 2
k = 3

Figure 4.11: Test case, additive kernel: numerical errors ec,N with the L1 continuous norm, ed,N
with the discrete L1 norm. All these errors are calculated for N = 20. Errors remain
bounded at large times for orders k = 1, 2, 3.
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4.3.3 Multiplicative kernel

4.3.3.1 Positivity and mass conservation

Physically, the multiplicative kernel means the frequency of collisions increases according
to the size of particles. Massive particles are formed faster compared with additive kernel
leading to greater values of mass density gj for particles of large masses. The mass
density for lighter particles decreases quickly during time. The exponential decay is
slower during the time evolution. Figure 4.13 shows the numerical solutions obtained for
N = 20 bins and k = 0, 1, 2, 3 after τ = 100. The numerical solutions remain positive as
grain grow. Figure 4.14 shows the evolution of eM1,N . Total mass remains conserved to
machine precision until τ < 1. At τ = 1, gelation occurs, particles with infinite mass are
formed (McLeod, 1962; Ernst et al., 1984; Filbet and Laurencot, 2004) and total mass is
no longer conserved anymore.

4.3.3.2 Accuracy of the numerical solution

Figure 4.15 shows the numerical solution for the multiplicative kernel at τ = 100.
Accuracy of order ∼ 0.1% is obtained at all orders, even k = 0. Physically, growth is
effective enough for advection in the mass space to be more efficient than numerical
diffusion.

4.3.3.3 Convergence analysis

Numerical errors are shown on Figure 4.16 at τ = 0.01. With the continuous L1 norm,
the EOC is k + 1 on a geometric grid with similar to Liu et al. (2019). With the discrete L1

norm, the EOC is k + 2 for odd polynomials and k + 1 for even polynomials. Accuracy of
order ∼ 0.1% on ed,N errors are achieved with ∼ 15 bins/decade for k = 0, 1, with ∼ 7
bins/decade for k = 2, and with ∼ 4 bins/decade for k = 3. Accuracy of order ∼ 1% is
achieved with ∼ 7 bins/decade for k = 0, 1, with ∼ 2 bins/decade for k = 2, and with
∼ 1 bins/decade for k = 3.

4.3.3.4 Stability in time

The evolution of the numerical errors ec,N and ed,N are shown in Figure 4.17. The results
are shown for N = 20 bins fo k = 0, 1, 2, 3 at time τ = 100, when particles with large
masses have formed. We observe that ec,N and ed,N remain bounded, even after the
occurence of gelation at τ = 1.

4.3.3.5 Computational performance

Figure 4.18 shows similar accuracies for the Liu et al. (2019) scheme and our implemen-
tation. With k = 2, the computational time for the Liu et al. (2019) scheme is around 8
minutes for a number of Gauss quadrature points Q = 3. The computational time is for
this scheme 1 minute and 40 seconds, providing an improvement by a factor 5.

4.4 future developments for the discontinuous galerkin scheme

Benchmarks shown that our DG scheme is able to estimate accurately the analytic
solutions for constant, additive and multiplicative kernels. The DG scheme presented
in Section 3.2.1 involves polynomials of high-order, implying issues with differences of
large real numbers. Order k = 3 appears as a maximum limit for the order of the scheme
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Figure 4.13: Test case, multiplicative kernel: numerical solution gj(x, τ) is plotted for N = 20
bins for k = 0, 1, 2, 3 from τ = 0 to τ = 100 and compared to the analytic solution
g(x, τ). Vertical grey lines delimit the bins. Accuracy of order ∼ 0.1% is achieved at
all orders.
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Figure 4.16: Test case, multiplicative kernel: the continuous L1 error ec,N and the discrete L1

error ed,N are plotted as functions of the number of bins per decade. With ec,N ,
the experimental order of convergence is EOC = k + 1. With ed,N , EOC = k + 1 for
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of 1% is achieved with ∼ 7 bins/decade for k = 0, 1, with ∼ 2 bins/decade for k = 2
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Figure 4.17: Test case, multiplicative kernel: numerical errors ec,N with the L1 continuous norm,
ed,N with the discrete L1 norm. All these errors are calculated for N = 20. Errors
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Figure 4.18: Test case, multiplicative kernel: comparison between the numerical solutions pro-
vided by this scheme and the scheme of Liu et al. (2019). Similar accuracies are
reached, but being ∼ 5× more effective due to analytical integration.

in its current form in practice. The derivation of the analytic expressions for the ballistic
kernel are in progress. In a next step, the first 3D simulation of a dusty disc will be
performed by interfacing our algorithm with the code PHANTOM.

In a short future, we plan to extend the scheme to further add relevant physics and
gain in accuracy and computational efficiency: i) the ballistic kernel, ii) the fragmentation
flux, iii) taking advantage of more ingenious time-stepping (e.g. Carrillo and Goudon
(2004) and Goudon et al. (2013), iv) adopt a more relevant choice for the basis (e.g. Soong
(1974)), v) an adapted distribution of bins, vi) the coagulation among grains of different
composition, vii) the agglomerate size distribution. Only the ballistic kernel is presented
here, the other developments are detailed in Chapter 7.

4.4.1 Ballistic kernel

The most relevant kernel for astrophysics is the ballistic kernel (Section 2.2.3). The
analytic derivation of the flux follows the same procedure explained in Section 3.2.2. The
conservative formulation of the flux, i.e. Fc

coag, is used. The numerical flux writes

Fc
coag[g̃](x, t) =
N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t)gi

l(t)

x∫
xmin

xmax−u+xmin∫
x−u+xmin

KB(u, v)
v

φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

φi(ξl(v))[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu,

(4.8)
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where KB(u, v) = σ(u, v)∆v(u, v) is the ballistic kernel (see Section ??). In equation 4.8,
the probability of sticking collision β is taken equal to 1. The ballistic kernel writes in
detail

KB(u, v) ∼ (u1/3 + v1/3)2∆v(u, v) = (u2/3 + 2u1/3v1/3 + v2/3)∆v(u, v). (4.9)

For the analytical derivations, the ballistic kernel is written in the following form

KB(u, v) ∼
(

σ1
1 (u)σ

1
2 (v) + σ2

1 (u)σ
2
2 (v) + σ3

1 (u)σ
3
2 (v)

)
∆v(u, v),

σ1
1 (u) ≡ u2/3, σ1

2 (v) ≡ 1,

σ2
1 (u) ≡ 2u1/3, σ2

2 (v) ≡ v1/3,

σ3
1 (u) ≡ 1, σ3

2 (v) ≡ v2/3.

(4.10)

Large-scale values of ∆v are provided by 2D piecewise constant functions from hydro-
dynamic codes. In discs, the ∆v function encompasses radial drift, vertical settling and
turbulence at large scales. ∆v(u, v) writes

∀(u, v) ∈ [xmin, xmax]
2,

∆v(u, v) =
N

∑
l′=1

N

∑
l=1

∆vl′,l [θ(u− xl′−1/2)− θ(u− xl′+1/2)] [θ(v− xl−1/2)− θ(v− xl+1/2)] .

(4.11)

Models of differential velocities are also used to model sub-grid small-scale values of ∆v
(Brownian motion, dusty turbulence at small scales). Shall these kernels not be integrable,
we will estimate them with an appropriate interpolation.
As such, the conservative flux writes

Fc
coag[g̃](x, t) =

N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t)gi

l(t)T(x, xmin, xmax, i′, i, l′, l), (4.12)

with

T(x, xmin, xmax, i′, i, l′, l) ≡ ∆vl′,l

×
[ x∫

xmin

xmax−u+xmin∫
x−u+xmin

σ1
1 (u)σ

1
2 (v)φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

φi(ξl(v))
v

[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu

+ symmetric terms in σ2
1 (u)σ

2
2 (v)

+ symmetric terms in σ3
1 (u)σ

3
2 (v)

]
.

(4.13)

The procedure in Section 3.2.3 with the ballistic kernel is used to derive the expression of
the integral of the flux F c

coag[g̃]. All the derivation are calculated with Mathematica.
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4.4.1.1 First test with constant piecewise approximation

First test has been performed with the ballistic kernel by using the expression of the
flux from Filbet and Laurencot (2004). For constant piecewise approximation of g, the
numerical scheme only need Fc

coag which writes

Fc
coag[g](xj+1/2, t) =

j

∑
l′=1

∫
Il′

g(u, t)
xmax−u+xmin∫

xj+1/2−u+xmin

K(u, v)
v

g(v, t)dvdu, (4.14)

where xmin = 0. As u ∈ [xl′−1/2, xl′+1/2], ∆v writes

∆v(u, v) =
N

∑
l=1

∆vl′,l [θ(v− xl−1/2)− θ(v− xl+1/2)] . (4.15)

By approximating g by g̃, the conservative flux writes

Fc
coag[g̃](xj+1/2, t) =

j

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t)gi

l(t)T(xj+1/2, xmin, xmax, i′, i, l′, l), (4.16)

with

T(xj+1/2, xmin, xmax, i′, i, l′, l) ≡ ∆vl′,l[ ∫
Il′

xmax−u+xmin∫
xj+1/2−u+xmin

σ1
1 (u)σ

1
2 (v)φi′ (ξl′(u))

φi (ξl(v))
v

[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu

+ symmetric terms in σ2
1 (u)σ

2
2 (v)

+ symmetric terms in σ3
1 (u)σ

3
2 (v)

]
.

(4.17)

The development of term T and the flux are detailed in Appendix c.1.

The test is performed for a typical dusty disc (Laibe et al., 2008) where micron-in-size
silicate grains are located at 1 AU for the initial condition. The parameters of the discs are
α = 0.003, ε0 = 0.01 and H/r = 0.05. The differential velocity between grains is obtain
from turbulence (Stepinski and Valageas, 1997),

∆vi,j =

√
αc2

s

(
1

Sci
+

1
Scj
− 2

SciScj

)
, (4.18)

where i and j denote grains and Sc is the Schmidt number of the flow which estimates
the effect of gas turbulence on the grains. The Schmidt number is defined as

Sc ≈ (1 + Ωkts). (4.19)

Figure 4.19 shows grains of size 10cm are formed after 15120 years. Pebble formation is
consistent with the results from in Laibe et al. (2008). These grains represent the majority
of the dust mass. The formation of these grains is faster than in Laibe et al. (2008), as
expected with growth only with 15 bins. Moreover, all the mass is transferred to the last
bin, centimetre-in-size grains, due to the use of the conservative flux. This explains the
rapid formation of centimetre-in-size grains. Over-diffusion is highlighted for simulations
with 8 bins compared to the one with 30 bins. Orders 1, 2 and 3 are in progress. We
expect to have similar result than k = 0, N = 30 but with k = 3, N = 8.
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Figure 4.19: Test case for ballistic kernel with only growth and constant polynomial approxima-
tion. Left: Test of convergence in number of bins for order 0 at τ = 100 years. A
factor ∼ 1000 is reached between 8 bins and 30 bins when centimetre-in-size grains
form. Orders 1, 2 and 3 are in progress. Right: Simulation so far τ = 15120 years
where grains of size 10cm form. These grains represent almost all the dust mass at
this time.

4.5 summary

We benchmark our high-order solver against the analytic solutions presented in Chapter 2.
As expected accuracy increases with the order of the scheme (we tested orders 0, 1, 2 and
3). At all orders for every tests performed, positivity and mass conservation are satisfied
rigorously. For the three kernels, the DG scheme of order 3 can achieve an improvement
in accuracy of a factor at least 100. The additive kernel is a sensitive test case to analyse
the performance of the code, since it behaves as astrophysical kernels. For this kernel,
the required accuracy of 0.1% for polynomials of order 3 with ∼ 5 bins/decade. An
accuracy of 1% is achieved for order 3 with ∼ 2 bins/decade. Generically, high accuracy
is achieved with a low number of bins. We compare execution times with the ones
found for the DG scheme proposed by Liu et al. (2019). An improvement of factor at
least 3 is achieved for the computational time with the three kernels. Our high-order
solver is able to solve efficiently and accurately the Smoluchowski coagulation equation
with a small number of bins. Therefore, the dust growth over 30 orders in mass can
be studied accurately and in a tractable computational time with our algorithm. This
includes kernels relevant for astrophysics. A first test with the ballistic kernel has been
performed with k = 0, the results are consistent with Laibe et al. (2008).

In a next future, ballistic kernel and fragmentation flux will be added in the algorithm
to perform the first 3D simulation of a dusty disc including dust growth/fragmentation by
interfacing our algorithm with the code PHANTOM. In parallel our solver will be optimised
by adding such as an adapted polynomials basis, an adapted distribution of bins and by
using a rescaling of the Smoluchowski equation in order to increase further the accuracy
and the efficiency. Details on the future developments are given in Chapter 7.
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5.1 context

Dust settling refers to the vertical motion of a grain towards the mid-plane of a disc
in vertical hydrostatic equilibrium. This motion is due to a combination of the vertical
component of the gravity from the central star and gas drag, see Figure 5.1. On top
of these two forces is added a stochastic contribution from the turbulence of the gas,
which stirs particles out of the mid-plane. Dust settling, therefore, fixes the vertical
distribution of grains in disc. According to Mie theory, the size of the scattering particles
is comparable to the wavelength of the emitted light. Critically, this distribution has a
direct effect on the interaction between the radiation emitted by the star and the disc via
the grains. The Dubrulle et al. (1995) model is considered as state-of-the-art to model
dust settling in discs. In this model, the disc’s turbulence is treated as a white noise and
inertia of particles is neglected. This asssumption is correct in the mid-plane of the disc,
but not in the top layers. The use of the Dubrulle et al. (1995) model has already been
a strong improvement compared to a uniform distribution of grains in the disc. After
a typical settling time, the grains converge to the mid-plane and change the amount of
light intercepted by the disc at the different wavelengths. This is a key parametrisation
for disc modelling.

During my M1 internship supervised by Dr. G. Laibe, we aimed to go beyond the
Dubrulle et al. (1995) model. An improved model has been developed to take into account
altogether the stratification in density of the disc and turbulent correlations. The purpose
is to obtain the vertical distribution of dust grains, by including the stratification in
density of the disc self-consistently. I studied the evolution of the grains numerically
along the vertical axis from the new model. This study aimed at better constraining
observationnal data provided by ALMA or SPHERE and the future James Webb Telescope

81
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z

Figure 5.1: Illustration of dust settling of grains in discs. The vertical motion of grains (in orange)
is due to the balance between the gas drag force and the vertical component of the
gravity from the star. The blue spheres represent the stochastic fluctuation of the gas
around the grain.

(JWST). However, we were limited by the existing analytical and numerical methods for
stochastic systems to extract a definitive conclusion from this study.

During my Ph.D. Thesis, I collaborated with Dr. G. Laibe and Dr. C-E. Bréhier to
follow-up the work from my M1 internship. The aim was to derived an analytic formula
for the distribution of small grains that encompass gas stratification, dust inertia and
finite correlation times. This analytic formula is then validated against numerical sim-
ulations. My contribution to this work was to develop the code to solve the system of
stochastic differential equations and perform the convergence analysis of the simulations.
The numerical scheme is the Monte-Carlo method coupled to a Strang splitting method.
Moreover, I parallelized with OpenMP to achieve high accuracy with the Monte-Carlo
method in a reasonable computational time.

This collaboration led to a publication Laibe et al. (2020). The content of this paper is
transcribed below.

5.2 introduction

Details of the structure of dusty discs are now accessible by the mean of instruments
such as the Atacama Large (sub)Millimetre Array ALMA (e.g. van der Marel et al. (2013),
ALMA Partnership et al. (2015), and Andrews et al. (2018)), the Spectro-Polarimetric
High-contrast Exoplanet REsearch instrument SPHERE/VLT (e.g. Benisty et al. (2015)
and Avenhaus et al. (2018)) or the Gemini Planet Imager Gemini/GPI (e.g. Laws et al.
(2020)). Spatial differentiation between gas and dust grains is evidenced, both in the
midplane of the disc (radial drift) or in the vertical direction (vertical settling). Centimetre-
in-size pebbles have attracted lot of attention as they provide primordial material to form
planetary cores (e.g. Chiang (2008) and Testi et al. (2014)). Small micron-in-size grains
are as important (e.g. Apai et al. (2004), Furlan et al. (2006), Dent et al. (2013), Espaillat
et al. (2014), and Maaskant et al. (2015)), since they are often used as a proxy for the
gas. They also set the charge and thermal balances of the disc and radiate polarized
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light. Hence the need of an accurate description of vertical distributions of small particles.

Primary theories of dust settling (e.g. Hoyle (1960), Kusaka et al. (1970), Cameron
(1973), Adachi et al. (1976), Handbury and Williams (1977), and Coradini et al. (1980))
have emerged with the development of the planetary nebulae hypothesis (Mendoza
V., 1966; Safronov, 1972). Further developments of the Minimum Mass Solar Nebulae
models (e.g. Cameron and Pine (1973), Weidenschilling (1977b), and Hayashi (1981))
sparked models coupling settling to growth (Weidenschilling, 1980; Nakagawa et al.,
1981). The idea that turbulence sustains dust stirring (Cuzzi et al., 1993) emanated from
observations of Spectral Energy Distributions of T-Tauri objects (Kenyon and Hartmann,
1987) concomitant to the rediscovery of the magneto-rotational instability (Balbus and
Hawley, 1991).

The seminal theory of dust settling was established by Dubrulle et al. (1995). Turbu-
lence is treated by the mean of a Fokker-Planck equation, an approach that resulted
in a widely-used model to estimate dust scale heights in discs. Soon after, Dullemond
and Dominik (2004b) and Dullemond and Dominik (2005a) pioneered models of dust
settling coupled to Monte-Carlo methods for radiative transfer, a technic extended to ray
tracing by Pinte et al. (2006) and Pinte et al. (2007). Tanaka et al. (2005) modelled spectral
energy distributions expected from the interplay between settling and coagulation. In
parallel, several aspects of dust settling were quantified with (magneto)-hydrodynamical
simulations: the role of dust feed-back (Barrière-Fouchet et al., 2005; Johansen and Klahr,
2005; Johansen et al., 2006), turbulence (Takeuchi and Lin, 2002; Carballido et al., 2006;
Fromang and Papaloizou, 2006; Fromang and Nelson, 2009; Ciesla, 2010; Turner et al.,
2010; Charnoz et al., 2011; Johansen et al., 2011; Carballido et al., 2011; Zhu et al., 2015;
Stoll and Kley, 2016; Lin, 2019), and grain growth/fragmentation (Zsom et al., 2011).
Analytic or semi-analytic models were refined to understand the role played by differ-
ent drag regime (Garaud and Lin, 2004), refined models of turbulence (Schräpler and
Henning, 2004; Jacquet, 2013; Ormel and Liu, 2018), turbulent dead zones (Ciesla, 2007),
turbulent correlations (Youdin and Lithwick, 2007), grain growth (Laibe and Price, 2014a)
or winds (Riols and Lesur, 2018). These models are widely used to infer the properties of
the disc from observations (e.g. de Boer et al. (2017), Dullemond et al. (2018), Sengupta
et al. (2019), Greenwood et al. (2019), and Liu et al. (2019)).

However, we still lack an analytic formula for the distribution of small dust grains that
encompass gas stratification, dust inertia and finite correlation times. To obtain such a
recipe, we depart from the historical Fokker-Planck approach and start directly from a
balance of forces on a dust grain (Sect. 5.3). We obtain a system of stochastic differential
equations that we analyse, in the spirit of Ormel and Liu (2018) (Sect. 5.4). Results are
validated against numerical simulations in Sect. 5.5 and discussed in Sect. 5.6.

5.3 physical model

5.3.1 Balance of forces

We consider a non-magnetic non self-gravitating vertically isothermal disc made of gas
and dust. We denote by r and z the radial and the vertical coordinates respectively. The
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central star is modelled as a point mass M?, such that the vertical component gz of its
gravitational field is

gz = −
GM?z

(r2 + z2)3/2 . (5.1)

The gas is supposed to be inviscid and the disc to be at vertical hydrostatic equilibrium.
Thus, at a distance r from the central star, the gas density is

ρg (r, z) = ρg0 (r) e
−GM?

c2
s (r)

∫ z

0
g
(
z′
)

dz′
, (5.2)

= ρg0 (r) e
−GM?

c2
s (r)

[
1
r
− 1√

r2 + z2

]
, (5.3)

where ρg0 and cs denote the gas density in the midplane of the disc and the sound speed
at a distance r from the star respectively (e.g. Laibe and Price (2012b)). In the limit z� r,
gz linearises into

gz ' −
GM?z

r3 = −Ω2z, (5.4)

a spring-like force of frequency the orbital frequency of the disc. Under this approxima-
tion, Eq. 5.3 reduces to

ρg (r, z) = ρg0 (r) e
− z2

2H2 , (5.5)

where H ≡ Ω−1cs denotes the pressure scale height of the gas. The typical aspect ratio
H/r of observed discs is of order ∼ 0.1. Close to the midplane of the disc (z � H),
Eq. 5.5 becomes

ρg (r, z) = ρg0 + O
(
z2/H2) . (5.6)

Dust grains are assumed to be compact, homogeneous and of spherical shape with radius
s. Grains are uncharged, although this assumption might not be correct anymore for
z . 3H (e.g. Bai and Goodman (2009)). The mass of the grain is therefore md = 4

3 πρs3,
where ρ denotes the intrinsic density of the grain material – typically a few g.cm−1. In
typical classical T-Tauri star discs, the collisional mean free path of the gas is larger than
the size of the grain. The drag force fd exerted by the gas on grains is

fd = −md

(
vd − vg

)
ts

, (5.7)

where ts denotes the drag stopping time, i.e. the typical time for dust grains to reach gas
velocity. The stopping time depends on the gas and dust parameters according to

ts =
ρs

ρgcs

√
πγ

8
, (5.8)

where γ denotes the adiabatic index of the gas (Epstein, 1924; Baines et al., 1965; Whipple,
1972). Combining Eqs. 5.3 and 5.8,

ts (z) = ts0 e

GM?

c2
s (r)

[
1
r
− 1√

r2 + z2

]
' ts0 e

z2

2H2 , (5.9)
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where ts0 denotes the stopping time in the midplane. Hence, grains decouple very
efficiently in the high atmosphere of the disc where the gas density drops, and the
stopping time is an increasing function of the vertical height inversely proportional to
gas density.

Gravity from the star and gas drag are the two main relevant forces for this problem.
Additional contributions such as radiation forces, magnetic forces or other hydrodynami-
cal forces are negligible (Laibe and Price, 2012a). Quadratic corrections for supersonic
drag are not expected to play any sensible contribution in this problem and are neglected
(Kwok, 1975). The ratio of the timescales between the vertical and the radial timescale
is of order (H/r)2 ∼ 0.01, justifying treating r as a constant (Laibe et al., 2014b). This
assumption holds whenever z is small enough for the conservation of angular momentum
to remain valid up to second order in z/r.

From the expression of the stopping time given by Eq. 5.9, the balance of forces for
single dust grain provides

z̈ +
(
ż− vg,z

)
ts,0

e
−GM?

c2
s (r)

[
1
r
− 1√

r2 + z2

]
+

GM?z

(r2 + z2)3/2 = 0. (5.10)

We now introduce the dimensionless quantities Z ≡ z/H, T ≡ t/Ω−1 and Ż = ż/cs.
Note that T denotes the time in units of the orbital period and not the temperature. We
scale also the gas velocity by its sound speed, i.e. Vg = vg/cs. We denote by the constant
φ = H/r the local aspect ratio of the disc. The Stokes number St ≡ Ωts measures the
relative contribution between gas drag and gravity. From Eq. 5.9, it increases with vertical
height as

St = St0 eZ2/2, (5.11)

where St0 denotes the Stokes number in the midplane of the disc. We note that grains
reach St = 1 for Z =

√
−2 ln St0, i.e. a few pressure scale heights even for tiny values of

St0. Starting from Eq. 5.10 and rearranging the terms, one obtains the equation of motion
for a single grain:

Z̈ + S−1
t0 fφ (Z) Ż + gφ (Z) = S−1

t0 fφ (Z)Vg, (5.12)

where

fφ (Z) ≡ e
− 1

φ2

[
1−(1+(φZ)2)

−1/2
]
, (5.13)

gφ (Z) ≡ Z

(1 + φ2Z2)3/2 . (5.14)

Effects of vertical stratification are still encapsulated in the Taylor expansion of Eq. 5.12

with respect to the small parameter φ2 ∼ 0.01

Z̈ + S−1
t0 e−Z2/2Ż + Z = S−1

t0 e−Z2/2Vg. (5.15)

The final step of the model consists of modelling the turbulent velocity of the gas Vg,
which appears in the right-hand side of Eq. 5.12. In the limiting case of a laminar flow,
Vg = 0 and Eq. 5.12 reduces to the well-known equation for vertical settling in laminar
discs (e.g. Laibe and Price (2014a)).
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5.3.2 Modelling dusty turbulence

5.3.2.1 Lagrangian turbulence

The gas velocity is unknown since no exact analytic solution for turbulence in a disc – and
turbulence in general – are known. However, statistical properties of turbulence can be
inferred from laboratory, numerical experiment or theory, and turbulent fluctuations can
be modelled using stochastic processes, independently from the origin of the turbulence
itself. In a seminal study, Thomson (1987) proved that the only expression of vg that is
consistent with Kolmogorov turbulence and the hydrodynamical equations is

dvg

dt
= −

vg

te
+

√
D

te
ẇ, (5.16)

where te denotes the Lagrangian timescale of the turbulence, D is the turbulent diffusivity
(in units m2s−1). w is a Wiener process, such that its derivative is a white noise such that

〈ẇ(t)〉 = 0, (5.17)〈
ẇ(t) ẇ(t′)

〉
= δ(t− t′), (5.18)

where δ denotes the Dirac distribution and the notation 〈·〉 is the expectation operator
(see also WilsonSawford; Sawford (1984)). Eq. 5.16 describes turbulent fluctuations from
a Lagrangian point of view (Taylor, 1922). From Eq. 5.16, the gas velocity can be rewritten

vg = ζ (t, te, D) , (5.19)

where ζ is a stationary Ornstein-Uhlenbeck process defined by

〈ζ(t, te, D)〉 = 0, (5.20)〈
ζ(t, te, D) ζ(t′, te, D)

〉
=

D
2te

e−
|t−t′ |

te . (5.21)

Eq. 5.16 defines a model of turbulence with two parameters, D and te. In discs, te

is typically of order one orbital period, since turbulent vortices are stretched out by
differential rotation in a few orbits (e.g. Beckwith et al. (2011)). From Eq. 5.21, D is related
to the auto-correlation of the turbulent noise according to

D = 2
∫ +∞

0

〈
vg (0) vg (t)

〉
dt. (5.22)

Eq. 5.22 can alternatively be seen as a definition of the turbulent diffusivity, useful in
practice to measure D in numerical simulations. The Wiener-Khinchin theorem ensures
that the power spectrum of the turbulent velocity field S(ω) is the Fourier transform of
this autocorrelation function, i.e.

S (ω) =
1

2π

∫ +∞

−∞
e−iωt 〈vg (0) vg (t)

〉
dt =

D
2π (1 + ω2t2

e)
. (5.23)

Thus, in the inertial subrange (ω2t2
e � 1), we have S(ω) ∝ ω−2, whose equivalent in the

wavelength space is S̃(k) ∝ k−5/3 (Batchelor, 1950). From Eq. 5.23, the standard deviation
of the velocity fluctuation σ is

σ2 ≡
∫ +∞

−∞
S (ω)dω =

D
2te

. (5.24)
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Figure 5.2: Comparison between the toy model α(z) = α0/
√

ρg (z) /ρ0 and values of α measured
directly from the MHD numerical simulations of Fromang and Nelson (2009). The
global trend is reproduced with maximum errors reaching ' 50%, which is sufficient
for this study.

Physically, Eq. 5.24 is a turbulent fluctuation-dissipation theorem.
In astrophysics, the turbulent activity of a disc is often parametrised by a constant

denoted by α (Shakura and Sunyaev, 1973). In this work, we define α according to

α ≡ D
2csH

, (5.25)

to be consistent with previous studies on dust diffusivity (e.g. Fromang and Papaloizou
(2006)). Combining Eqs. 5.21 and 5.25, Eq. 5.19 can be rewritten as

vg/cs =
√

2α ζ (T, τe, 1) , (5.26)

where τe ≡ teΩ. In the literature, the same notation α has been used to denote different
dimensionless physical quantities, all related to the turbulent activity of the disc and
being therefore of the same order of magnitude. The parameter α may be used e.g. for
quantities measuring the efficiency of the transport of angular momentum, the intensity
of the velocity fluctuations or the turbulent diffusivity (e.g. Arena and Gonzalez (2013)).
For a quantitative use of our results, values of α should either be directly measured using
Eq. 5.22 or deduced from an alternative measurement of the turbulent activity of the disc
and a coefficient of proportionality which has been calibrated independently. The ratio
between turbulent and thermal pressure is of order

√
α. Hence, Eq. 5.3 remains a valid

expression for the density profile of the disc.
The vertical dependency of α can be inferred from numerical simulations of magneto-

hydrodynamical turbulence (e.g. Miller and Stone (2000), Fromang and Nelson (2009),
and Fromang (2010)). For numerical tractability, simulations are performed in a local
shearing-box that extends vertically over a few pressure scale heights. Fig. 5.2 displays
values of α measured by Fromang and Nelson (2009). A generic feature is that α increases
with z. No first-principle model exists so far to prescribe α(z). Alternative recipes have
been proposed to mimic this behaviour (e.g. Ciesla (2010) and Ormel and Liu (2018)).
In this study, we use for convenience and tractability a very crude but parameter-free
parametrisation of α (z)

α = α0 (ρ0/ρ)1/2 . (5.27)

This assumption ensures that the density of turbulent energy ρgv2
g remains finite and

roughly constant in a vertical slab of the disc. The model is therefore compatible with
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a steady-state, since no further turbulent processes are required to smooth out local
energy gradients. The agreement between Eq. 5.27 and numerical simulations is quite
reasonable (Fig. 5.2). Although errors may reach ' 50%, the model is conservative for
our study since it enhances slightly the eventual role played by a positive value of the
vertical gradient of α. The prescription may probably be incorrect for z & 3H (Fromang
and Nelson, 2009). This does not affect significantly our results since we find almost no
grain at these heights. In dimensionless quantities, we denote

α = α0h2 (Z) . (5.28)

A value of h = f−1/4 corresponds to Eq. 5.27.
Turbulence could have alternatively been described by the turbulent velocity σt and

the mean rate of dissipation of turbulence kinetic energy εt, where te = 2σ2
t

C0εt
, D =

(2σ2
t )

2

C0εt
, and C0 is a constant to be calibrated (Thomson, 1987). Thus, σt = O

(√
αcs
)

and εt = O
(
αc3

s /H
)
. The turbulent viscosity ν scales like ν = O

(
σ2

t /εt
)
= O (αcsH),

consistently with a Sakura and Sunyaev prescription, for which ν = αSScsH. It is found
in numerical simulations that in protoplanetary discs, α ' αSS ' 10−4 − 10−2. Further
refined stochastic models including multiple turbulent timescales have been used in
the context of aerosols and suspensions (e.g. Shao (1995) and Pope (2002)). Effects
of anisotropy may also be described by other turbulent parameters (e.g. Balbus and
Papaloizou (1999), Ogilvie (2001), Lodato (2008), and Balbus (2011)). These refinements
are not expected to have any significant impact in our study.

5.3.2.2 Equations of motion

Combining Eqs. 5.12 – 5.14, Eq. 5.16 and Eq. 5.28 in a dimensionless form, one obtains
the system

dZ = VdT, (5.29)

dV + S−1
t0 fφ(Z)VdT + gφ(Z)dT = S−1

t0 fφ(Z)h(Z)
√

2α0 ξdT (5.30)

dξ = − ξ

τe
dT +

dw
τe

. (5.31)

The system of equations Eqs. 5.29 – 5.31 is stochastic and the dust scale height in steady-
state is subsequently defined in a probabilistic way as the variance of the dust distribution
at large times, i.e.

Hd ≡
√
〈ZZ〉

T=+∞
. (5.32)

Gravity, which confines dust particle close to the midplane, is encompassed in the
function gφ. in In a real disc, this confinement is weaker than if it were operated by the
osculating harmonic potential of the midplane. On the one hand, gas drag dissipates
the mean kinetic energy of the grain through the second term of the left-hand side of
Eq. 5.30. This makes grains settle to the midplane, which is the bottom of the potential
well. On the other hand, gas drag couples the grain to the stirring turbulent fluctuations
of the gas through the driving term of the right-hand side of Eq. 5.30.

Density stratification of the gas is encoded in the function fφ. From Eqs. 5.29– 5.31,
stratification affects the dynamics of the grain in two ways. Firstly, grains having small
Stokes numbers St0 � 1 in the midplane may have Stokes numbers St = St0/ fφ larger
than unity in the top-layers of the disc. Thus, the dynamics of those grains may counter-
intuitively be gravity-dominated. Secondly, grains couple and react more efficiently to
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turbulent stirring close to the midplane of the disc. If the gradient of the product fφh is
negative, grains receive stronger turbulent kicks from the bottom of the disc than from
the top layers. For smooth vertical profiles of α, this differential effect is the strongest
close to the inflection point of the density profile, i.e. one pressure scale height for the
Gaussian profile. Hence, stratification affects the stirring of small grains (St0 ∼ α � 1)
and can not be neglected. Its effects are the strongest in the top layers of the disc, where
the dynamics is gravity-dominated and submitted to a large differential driving.

5.3.3 Link with previous works

5.3.3.1 Strong drag approximation

A first approximation for Eqs. 5.29 – 5.31 consists of assuming that grains are small
enough for the dynamics to be always drag dominated and that Z̈ � St0 fφ (Z) Ż in
Eq. 5.12. For the sake of clarity, we shall now use the approximations of Eqs. 5.4–5.5 for
fφ and gφ and a constant viscosity (h = 1) to illustrate the effect of this approximation
since it does not affect the nature of our conclusions. The evolution of dust grains is
therefore governed by the equation

dZ = −St0ZeZ2/2dT +
√

2αdξ. (5.33)

For a purely diffusive process ξ, Eq. 5.33 is equivalent to the following Fokker-Planck
equation (e.g. Risken and Haken (1989))

∂p
∂T

=
∂

∂Z

(
St0ZeZ2/2 p

)
+ α

∂2 p
∂Z2 . (5.34)

In the Fokker-Planck formalism, a definition of the dust scale height equivalent to Eq. 5.32

is

Hd =

(∫ +∞

−∞

∫ +∞

−∞
p(+∞, Z, V)Z2 dVdZ

)1/2

. (5.35)

Eq. 5.34 does not depend on the velocity V anymore, and its steady-state solution is (e.g.
Wallis (1990) and Fromang and Nelson (2009))

p(z) ∝ e

∫ z

0
−Z′eZ′2/2

α/St0
dZ′

= e
− eZ2/2

α/St0 , (5.36)

which gives the dust scale height on an integral form

Hd =

∫ +∞

−∞
Z2e
− eZ2/2

α/St0 dZ /
∫ +∞

−∞
e
− eZ2/2

α/St0 dZ


1/2

(5.37)

The parameter α/St0 appears naturally as the relevant quantity to measure whether
dust grains are significantly sensitive to the turbulent activity of the gas or not.
In the dust distribution given by Eq. 5.36, small grains remain confined within almost
three pressure scale heights around the midplane. Indeed, the low gas density in the top
layers of the disc reduces drastically the efficiency of turbulent driving, preventing the
particles to escape. Eq. 5.33 shows that gas stratification acts as a stiff effective potential



90 dust settling for small grains in protoplanetary discs

Veff(Z) ≡ St0ez2/2 that confines the particles close to the midplane. As expected, the
distribution Eq. 5.36 corresponds to the Boltzmann distribution

p(z) ∝ e−Veff(Z)/α. (5.38)

In Eq. 5.38, α is the dimensionless form of the turbulent energy αc2
s . It is not possible

to obtain a closed-form expression for the dust scale height in stationary regime from
Eq. 5.36. When the particles are close enough to the midplane of the disc, i.e. when
α/St0 � 1, Eqs. 5.33 and 5.36 can be linearised, giving

p(+∞, Z) =

√
St0

2πα
e
− Z2

2α/St0 . (5.39)

From Eq. 5.32, and integrating over Z only in this case, the analytic expression of Hd is

Hd =
√

α/St0 . (5.40)

Eq. 5.40 is the analytic estimate obtained by Dubrulle et al. (1995) for the dust scale height
of particles close to the midplane. Physically, Hd is large when turbulence is intense and
grains are small, since strong coupling with the gas ensure continuous stirring by the
turbulent kicks. Importantly, for St0 = α, dust reaches the pressure scale height of the gas
(Hd = 1). This corresponds to Stokes numbers of order 102 − 103 in typical discs. Some
numerical codes use the expression given by Eq. 5.40 since it is easily tractable. However,
to overcome the divergence of Hd at large coupling parameters, cut-offs for large dust
thicknesses need to be enforced, such as

H̃d ≡ min
(√

α

St0
, 1
)

, (5.41)

or the smoother variant (e.g. Riols and Lesur (2018))

Ĥd ≡
(

1 +
St0

α

)−1/2

. (5.42)

Although convenient, this approach brings the drawback of not reproducing the step-
function aspect of the dust distribution for small grains predicted by Eq. 5.36.

5.3.3.2 Linearisation

Eqs. 5.29 – 5.30 have alternatively been studied by linearising the function fφ and gφ in
the limit Z � 1 according to

dZ = ZdT, (5.43)

dV + S−1
t0 VdT + ZdT = S−1

t0

√
2α dξ. (5.44)

This approximation is valid when the dust evolution occurs close to the disc’s midplane.
Carballido et al. (2006) model turbulence by a white noise, i.e. dξ is the Wiener process
given by Eqs. 5.17 – 5.18. Eqs. 5.43–5.44 are equivalent to the Fokker-Planck equation

∂p
∂T

+ V
∂p
∂Z

+
∂

∂V

([
−S−1

t0 V − Z
]

p
)
− αS−2

t0
∂2 p
∂V2 = 0. (5.45)

A rescaling of Eq. 5.45 by Ẑ = Z/
√

α/St0 shows that its solution depends only on the
product α/St0. The probability density function of the grains converges to the Gaussian
distribution

p(+∞, Z, V) =
St0

2πα
e−

1
α/St0

{
Z2
2 + V2

2

}
, (5.46)
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after a typical time Tsett = St0 + S−1
t0 that is the typical settling time in a laminar disc.

From Eq. 5.32, the dust scale height at equilibrium is

Hd =
√

α/St0. (5.47)

Remarkably, Eq. 5.47 provides the same expression than the one obtained in the strong
drag approximation (Eq. 5.40). Youdin and Lithwick (2007) have generalised Eq. 5.47

by including temporal correlations in the model of turbulence. In this case, dξ is the
Ornstein-Uhlenbeck process given by Eqs. 5.20 - 5.21, and the dust scale height depends
additionally on the correlation time τe according to (Masoliver and Porrà, 1993; Wang
and Masoliver, 1996)

Hd =
√

α/St0

√
1 + τe/St0

1 + τe/St0 + τ2
e

. (5.48)

In the limit τe = 0, Eq. 5.48 reduces to Eq. 5.47. For a typical τe = 1, Hd =
√

α/St0

√
St0+1

2St0+1 .
Hence, in real discs, the qualitative discrepancy between Eq. 5.47 and Eq. 5.48 is not
significant. Moreover, the two models are rigorously equivalent in the small grains limit.
Indeed, Hd '

√
α/St0 with an approximation better than one per cent for St0 < 0.02. In

the limit τe → +∞, the disc is laminar and Hd → 0. This case is not relevant in practice.
Importantly, linearised models predict dust scale heights larger than the pressure scale

height of the gas for St0 . α even if physically, there is almost no gas in these layers and
thus, almost no turbulent driving. To understand this feature, let us examine closely how
equations including stratification behaves against linearisation (i.e. Eqs. 5.12 and 5.15).
The limit of a “spring-like” restoring force is obtained by letting the parameter φ go to
zero. This corresponds to the thin cold disc limit. However, the limit of constant damping
(Eq. 5.6) can not be obtained as an asymptotic behaviour of the equations of evolution
with respect to any continuous parameter. Hence, the linearised system of equations
models dust particles embedded in an infinite homogeneous vertical slab of gas, whose
density is the one of the midplane. Small grains are therefore always scattered efficiently
by turbulence wherever their location in the disc, explaining why they are ultimately
reaching infinitely high regions. When including stratification, small particles decouple
from the gas when they reach a sufficient height and fall back into the minimum of
gravitational potential located in the midplane of the disc.

5.3.3.3 Diffusion equations

In Dubrulle et al. (1995), the dust density is obtained from the Fokker-Planck equation

∂ρd

∂t
=

∂

∂z
[
zΩ2ts(z)ρd

]
+

∂

∂z

[
ρg(z)κT(z)

∂

∂z

(
ρd

ρg(z)

)]
, (5.49)

where κT(z) is an effective half-diffusivity (to be consistent with Eq. 5.25). For particles
with small Stokes numbers, κT(z) = αcsH and κT(z) ∝ z−1/2 for particles with large
Stokes numbers (see Riols and Lesur (2018) for a detailed discussion of the origin of
this equation). In essence, the Dubrulle et al. (1995) model is build on the strong drag
approximation and Eq. 5.49 is equivalent to our Eq. 5.34 in dimensionless quantities. The
discrepancies between the two models can be understood the following way:

1. The diffusion operator of Eq. 5.49, originally introduced by Morfill and Voelk
(1984), acts on the quantity ρd/ρg and not on the quantity ρd. For independent and
non-interacting particles, diffusion fluxes smooths gradients of chemical potentials
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that are proportional to densities. The extrapolation to concentrations is valid only
for homogeneous solvent/gas densities. It looks therefore that Eqs. 5.29–5.31 rely
on more robust physical bases. We also note that Eq. 5.49 can not be derived from
a balance of forces with stochastic driving. However, the difference between the
two equations is only minor, since Eq. 5.49 writes with our notations

∂p
∂T

=
∂

∂Z

(
Z
[
St0eZ2/2 + α

]
p
)
+ α

∂2 p
∂Z2 . (5.50)

We note the appearance of an extra drift-term for the grains which does not depend
on St0. This terms can not be of physical origin, since dust coupled to gas only
through gas drag. Anyhow, the extra stir provided by this additional term would
affect only tiny grains close to the mid-plane, which are lifted up by turbulence
anyway.

2. The variable diffusivity κT(z) is inherited from an ad-hoc concept of eddy classes
invoked originally in Voelk et al. (1980), seven years before the work of Thomson.
Riols and Lesur (2018) provide a interpretation for the origin of this term through
Reynolds averaging of the dust/gas equations of motion. On the other hand, Thom-
son (1987) demonstrated that a rigorous way to account eddies of different lifetimes
in a Lagrangian descriptions of turbulence is to introduce a finite correlation time te.
Eq. 5.23 ensures that the correct spectrum of lifetimes for the turbulent structures
in reproduced. In the strong drag approximation, the generalisation of Eq. 5.50 for
finite turbulent times is

∂p
∂T

=
∂

∂Z

(
St0ZeZ2/2

)
+
√

α/2
∂2

∂Z2 [H (T, Z) p] , (5.51)

where H̃(Z) = H (+∞, Z) satisfies

H̃ + τe

(
H̃

∂St0ZeZ2/2

∂Z
− ∂H̃

∂Z
St0ZeZ2/2

)
=
√

2α. (5.52)

The general expression for H (Z, t) is given in Hernandez-Machado et al. (1983).
Eqs. 5.51 – 5.52 reduce to Eq. 5.34 when τe = 0. Interestingly, Eqs. 5.51 – 5.52 reduce
to

∂p
∂T

= − ∂

∂Z
(St0Zp) +

α

1 + St0τe

(
1− e−[τ

−1
e +St0]T

) ∂2 p
∂Z2 , (5.53)

when the equations of evolution are linearised. The equivalent dimensionless
diffusivity is 2α/ (1 + St0τe) and does not depend on Z. In the limit T → +∞, the
dust scale height obtained from Eq. 5.53 is

Hd =

√
α/St0

1 + St0τe
. (5.54)

5.3.3.4 Conclusion

So far, no analytic model predicts steady distributions of small grains that can become
gravity-dominated in the top layers in stratified discs, where turbulence develops on
finite correlation times. Those effects have however been shown to play an important role
in structuring the dust layers and are expected to be the most important for the smallest
grains. Obtaining a formula which integrates these effects altogether is the goal of the
following derivation.
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5.4 mathematical analysis

5.4.1 Rescaling

For the mathematical analysis, introduce the parameters

ε = St0 , δ =
√

τeSt0 , σ =
√

α0/St0. (5.55)

For convenience, we also introduce the parameter λ such as

λ = δ/ε =
√

τe/St0. (5.56)

Asymptotic analysis is performed in the regime

ε� 1 , δ� 1, σ ∼ 1, (5.57)

i.e. the parameters ε and δ go to 0 whereas σ remains of order 1. As will be clear below,
depending on whether δ � ε, ε � δ, or ε ∼ δ, the limiting equations for Z will be
different.

The physical parameters are recovered in terms of the mathematical ones as follows:

St0 = ε , τe =
δ2

ε
, α0 = σ2ε. (5.58)

Define Z′(T) = Z(ε−1T), V ′(T) = V(ε−1T), ξ ′(T) = ξ(ε−1T) and ζ ′(T) = δε−
1
2 ξ ′(T).

Note that the Stochastic Differential Equation for ξ ′ is written as

dξ ′ = − ξ ′

τeε
dT +

dw√
ετe

, (5.59)

since in distribution
(
w(ε−1T)

)
T≥0 =

(
ε−

1
2 w(T)

)
T≥0.

As a consequence, the Stochastic Differential for ζ ′ = δε−
1
2 ξ ′ is written as

dζ ′ = − ζ ′

τeε
dT +

δdw
ετe

= − ζ ′

δ2 dT +
dw
δ

. (5.60)

Writing ξ ′ = δ−1ε
1
2 ζ ′ and using the relations between the parameters, one obtains the

system (where the notation f = fφ is used)
dZε,δ = Vε,δ

ε dt

dVε,δ + f (Zε,δ)Vε,δ

ε2 dt + g(Zε,δ)
ε dt = σ

√
2

εδ f (Zε,δ)h(Zε,δ)ζδdt

dζδ = − ζδ

δ2 dt + 1
δ dβ(t),

(5.61)

where
(

β(t)
)

t≥0 is a standard real-valued Wiener process (Brownian Motion). For sim-
plicity of the presentation, it is assumed that the initial conditions Zε,δ(0) = z and
Vε,δ(0) = v are independent of the parameters ε and δ.

In addition, it is assumed that ζδ(0) ∼ N (0, 1) is a centered Gaussian random variable
with variance 1, and is independent of the Wiener process β. As a consequence,

(
ζδ(t)

)
t≥0

is a stationary Ornstein-Uhlenbeck process: for all t ≥ 0, ζδ(t) ∼ N (0, 1), and for all
t1, t2 ≥ 0, the covariance is written as E

[
ζδ(t1)ζ

δ(t2)
]
= 1

2 exp
(
− |t2−t1|

δ2

)
. When δ→ 0, the

process ζδ converges to a white noise, in fact more precisely
( 1

δ

∫ t
0 ζδ(s)ds

)
t≥0 converges

(in distribution) to a Brownian Motion
(
W(t)

)
t≥0. However, as will be clear below,

one needs to be careful when taking the limit δ → 0 (in particular concerning the
interpretation of the stochastic integral in either Itô or Stratonovich sense at the limit).
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5.4.2 Asymptotic expansions

The goal of this section is to derive limiting Stochastic Differential Equations for the
component Zε,δ where the other components are eliminated, when ε, δ→ 0. We will only
focus on the derivation of the limiting model, the full rigorous proof of convergence
is out of the scope of this work. In this section, the functions f , g and h are arbitrary
real-valued smooth functions, such that f (z) > 0 for all z ∈ R, and with appropriate
growth conditions at infinity to ensure global well-posedness of all the SDEs considered
below.

5.4.2.1 Tools

A convenient approach (Pavliotis and Stuart, 2008) to perform asymptotic analysis in
SDEs such as (5.61) consists in analyzing the behaviour of the associated infinitesimal
generator:

Lε,δ =
1
ε
A1 +

1
εδ
A2 +

1
ε2A3 +

1
δ2A4, (5.62)

where, for any smooth function ϕ : (z, v, ζ) ∈ R3 7→ ϕ(z, v, ζ) ∈ R,

A1ϕ(z, v, ζ) = v∂z ϕ(z, v, ζ)− g(z)∂v ϕ(z, v, ζ),

A2ϕ(z, v, ζ) = σ
√

2h(z) f (z)ζ∂v ϕ(z, v, ζ),

A3ϕ(z, v, ζ) = − f (z)v∂v ϕ(z, v, ζ)

A4ϕ(z, v, ζ) = −ζ∂ζ ϕ(z, v, ζ) +
1
2

∂2
ζζ ϕ(z, v, ζ).

(5.63)

The second-order differential operator Lε,δ appears on the right-hand side of the back-
ward Kolmogorov equation:

∂uε,δ(t, z, v, ζ)

∂t
= Lε,δuε,δ(t, z, v, ζ), t > 0,

uε,δ(0, z, v, ζ) = u0(z, v, η)

(5.64)

for which the solution is given by

uε,δ(t, z, v, ζ) = Ez,v,ζ

[
u0

(
Zε,δ(t), Vε,δ(t), ζε,δ(t)

)]
, (5.65)

where the notation Ez,v,ζ means that the initial conditions are given by Zε,δ(0) =

z, Vε,δ(0) = v, ζε,δ(0) = ζ. By duality, one obtains that the adjoint of the infinitesi-
mal generator Lε,δ is the Fokker-Planck operator, which governs the evolution of the
probability density function of the process (Fokker-Planck equation).

The strategy to obtain a limiting SDE for Zε,δ consists in the following two steps. First,
one identifies the limit of the solution uε,δ of the backward Kolmogorov equation (5.64),
for any initial condition u0 which depends only on the z variable. This requires to con-
struct an appropriate asymptotic expansion, to deal with the singular perturbations when
ε, δ → 0. Second, one interprets the limit as the solution of the backward Kolmogorov
equation associated with a well-posed SDE. Then one concludes that the limiting model
is given by this SDE.
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5.4.2.2 Limiting Equations

In the case of small physical parameters, the system of equations Eq. 5.61 converges to a
single limiting SDE. Three regimes will be studied below:

Regime 1: ε→ 0, then δ→ 0,

Regime 2: δ→ 0, then ε→ 0,

Regime 3: δ = λε, with λ ∈ (0, ∞).

Physically, Regime 1 can be interpreted as ε � δ � 1, Regime 2 can be interpreted as
δ� ε� 1 and in Regime 3, ε ∼ δ� 1.

Recall that for Stochastic Differential Equations, the noise may be interpreted either
with the Itô or the Stratonovich convention, and that formulations are equivalent when
taking into account a correction term: the Itô SDE

dX = b(X)dt + a(X)dW(t) (5.66)

is equivalent to the Stratonovich SDE

dX =
(

b(X) +
1
2

a(X)a′(X)
)

dt + a(X) ◦ dW(t), (5.67)

where the notation a(X) ◦ dW(t) is used to precise that the Stratonovich convention is
used. The Stratonovich formulation is convenient since it respects the chain rule, whereas
for the Itô formulation one needs to use Itô’s formula. However, the link between an
infinitesimal generator, a SDE, and Kolmogorov or Fokker-Planck equations is more
clearly seen when using the Itô formulation. Below, depending on the situation, the most
convenient interpretation is chosen.

Below, we prove that the limiting equations are given by the following SDEs:

Regime 1: dZ = − g(Z)
f (Z)dt + σ

√
2h(Z) ◦ dW(t)

Regime 2: dZ = − g(Z)
f (Z)dt− σ2h(Z)2 f ′(Z)

f (Z) dt + σ
√

2h(Z)dW(t)

Regime 3: dZ = − g(Z)
f (Z)dt− σ2h(Z)(h f )′(Z)

(1+λ2 f (Z)) f (Z)dt + σ
√

2h(Z) ◦ dW(t)

where
(
W(t)

)
t≥0 is a standard real-valued Wiener process.

Importantly, taking limits ε → 0 then δ → 0 or δ → 0 then ε → 0 provides different
limiting SDEs. This property originates from stratification. It is not surprising, since
if f is a constant function, then the Itô formulation of the SDE of Regime 2 gives
dZ = − g(Z)

f (Z)dt + σ
√

2 h(Z)
f (Z)dW(t): the SDEs of Regime 1 and Regime 2 differ by an Itô-

Stratonovich correction term. However, this observation does not hold if f is not constant:
indeed the Itô formulation of the SDE of Regime 2 is

dZ = − g(Z)
f (Z)

dt− σ2h2(Z) f ′(Z)
f 3(Z)

dt + σ
√

2h(Z)dW(t). (5.68)

More precisely, consider the case h = 1, with a non-constant f (this is the most important
case in this study). Whereas Itô and Stratonovich interpretations coincide, the limiting
SDEs differ by the presence of an additional noise-induced drift term (Hottovy et al. (2012),
Hottovy et al. (2015), Herzog et al. (2016), and Freidlin and Hu (2011)) Observe that,
formally, Regime 1 (resp. Regime 2) corresponds to Regime 3 when λ = ∞ (resp. λ = 0).

The physical consequence of this result is that one has to be extremely careful when
choosing the Regime to interpret the dynamics of the system (see Appendix d.1 for
detailed calculations).
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5.4.3 Steady-state dust distributions

5.4.3.1 Constant diffusivity

In this section, it is assumed that h = 1 is a constant. As a consequence, Itô and
Stratonovich interpretations of the limiting SDEs coincide, since the diffusion coefficient
is constant. However, stratification means that f is not constant, thus a noise-induced
drift term appears. With the convention that Regime 1 (resp. Regime 2) is obtained with
λ = ∞ (resp. λ = 0), the limiting SDE is written as

dZ = − g(Z)
f (Z)

dt− σ2 f ′(Z)
(1 + λ2 f (Z)) f (Z)

dt + σ
√

2dW(t). (5.69)

This SDE is rewritten as the overdamped Langevin equation

dZ = −∇Vσ
λ (Z)dt + σ

√
2dW(t), (5.70)

where the potential energy function Vσ
λ is defined as

Vλ(z) = V∞(z) + Vcorr(z).

V∞ denotes the antiderivative of g/ f and Vcorr the antiderivative of σ2 f ′/
([

1 + λ2 f
]

f
)
,

i.e.

Vcorr = σ2 log
( f (z)

1 + λ2 f (z)
)
.

As a consequence, under appropriate conditions on the growth at infinity of Vσ
λ (which

are satisfied in the example considered below), the limiting SDE defines an ergodic
dynamics, with unique invariant distribution having the density

ρσ
λ(z) =

1
Zσ

λ

exp
(
−
Vσ

λ (z)
σ2

)
, (5.71)

with normalization constant Zσ
λ =

∫ +∞
−∞ e−

Vσ
λ
(z)

σ2 dz.

The parameters λ and σ may considerably change the qualitative properties of the
potential energy function Vσ

λ . For instance, choose the functions f and g as follows:

f (z) = e−
z2
2 , g(z) = z,

which gives V∞(z) = e
z2
2 . Observe that this potential energy function is convex, with a

unique global minimum located at z = 0. However, straightforward computations give

∇Vσ
λ (0) = 0 , ∇2Vσ

λ (0) =
1
2
− σ2

1 + λ2 ,

thus 0 is not a minimum of Vσ
λ if σ2 > 1 + λ2. Hence, the steady dust density can

either be single- or double-hump shaped. For eddy times of order unity and typical disc
parameters, the asymptotic distribution obtained from Eq. 5.71 does not differ much from
the model of Fromang and Nelson (2009). This is not the case anymore in the diffusive
limit te → 0.
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5.4.3.2 Stratified diffusivity

We address vertical gradients of the diffusivity α via the simple parametrisation h (z) =
f (z)−1/4 discussed in Sect. 5.3.2.1. We obtain

Vcorr(z) = σ2
∫ h ( f h)′

(1 + λ2 f ) f
(5.72)

= −3σ2

4

{
2√

f
+ 2λ tan−1

(
λ
√

f
)

.

}
. (5.73)

Hence,

∇Vσ
λ (0) = 0 , ∇2Vσ

λ (0) =
1
2
− 3σ2

8 (1 + λ2)
.

0 is therefore not a minimum of Vσ
λ if σ2 >

4(1+λ2)
3 . Except for a marginal set of

nonphysical parameters, dust distributions that account form the vertical dependency of
the diffusivity are almost similar to the one obtained for constant values of α. Stochastic
turbulent driving scales as

√
α/ρg ∝ h f = f 3/4 for our model, hence preserving the

essential of the h = 1 settling mechanism.

5.4.3.3 On the development of bumps in the diffusive limit

A striking feature of the asymptotic distributions obtained in Sect. 5.4.3 is the devel-
opment of dust over-concentrations above the midplane in the limit te → 0. Fig. 5.3
corroborates this finding by comparing the evolution of the two following oscillators

z̈ + S−1
t0 e−z2/2ż + z = G S−1

t0 e−z2/2 sin (ωt) , (5.74)

and its linearised version

z̈ + S−1
t0 ż + z = G S−1

t0 sin (ωt) , (5.75)

for St0 = 0.1, G = 2, ω = 4.4 and z0 = ż0 = 0 (those parameters are chosen to make the
figure clear). G and ω parametrise the intensity and the frequency of the driving and
play the role of α and τe in the stochastic model. Fig. 5.3 shows spontaneous symmetry
breaking between the top and the bottom layers of the stratified disc. Physically, the
lift-up of small grains results from i) an important inertia when grains reach the top
layers of the disc, ii) a modulated intensity of the turbulent driving by stratification that
sets the maximum gradient of turbulent driving at one pressure scale height, and iii)
a driving frequency that is large enough for this differential effect to cumulate. This is
always the case when ω → ∞, which corresponds to τe → 0. Hence, grains are constantly
kicked from below by the differential driving and are lifted up above the midplane,
explaining the formation of the dusty bumps.

5.5 numerical results

5.5.1 Numerical scheme

We now aim to validate Eq. 5.71, i.e. the formula obtained for the invariant distribution
of the limiting SDE by direct numerical simulation of Eqs. 5.29,5.30,5.31. When changing
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Figure 5.3: Evolution of dust grains driven by toy sinusoidal gas velocities. Lift-up of small grains
resulting from the differential driving that originates form stratification (solid blue
line). For an homogeneous disc, grains relax and oscillate around the midplane (solid
red line). We adopt St0 = 0.1, G = 2, ω = 4.4 and z0 = ż0 = 0.

the parameters, we illustrate the apparition of double-humped shaped instead of single-
humped distributions. Eqs. 5.29,5.30,5.31 are solved numerically with a Strang splitting
method, observing that the sub-systems

dZ = 0, (5.76)

dV + S−1
t0 fφ(Z)VdT + gφ(Z)dT = S−1

t0 fφ(Z)h(Z)
√

2α0 ξdT, (5.77)

dξ = 0, (5.78)

and

dZ = VdT, (5.79)

dV = 0, (5.80)

dξ = − ξ

τe
dT +

dw
τe

, (5.81)

can be solved exactly. On the one hand, the solution at any time T > 0 of the system of
Eqs. 5.76,5.77,5.78 is given by

Ψ(1)
t (Z0, V0, ξ0) =



Z0,

e−
fφ(Z0)T

St0 V0+(
1− e−

fφ(Z0)T
St0

)(
h(Z0)

√
2α0 ξ0 − St0

fφ(Z0)
gφ(Z0)

)
,

ξ0.

(5.82)

On the other hand, the solution at any time T > 0 of the system of Eqs. 5.79,5.80,5.81 is
given by

Ψ(2)
t (Z0, V0, ξ0) =


Z0 + TV0,

V0,

e−
T
τe ξ0 +

1
τe

∫ T
0 e−

T−T′
τe dw(T′),

(5.83)
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Figure 5.4: Left: Histogram obtained for 105 particles in a configuration where α = 0.01, St,0 =
0.001 and τe = 1 after a time t = 103. The asymptotic solution obtained in Sect. 5.4.2
is represented by the solid thick blue line. Other curves represent predictions from the
Dubrulle et al. (1995) model (dashed light blue line), the Youdin and Lithwick (2007)
model (dot-dashed lighter blue line) and the Fromang and Nelson (2009) model (solid
lightest blue line). The steady-state distribution is single-humped and is flatter than
a Gaussian, as predicted by our model and the one of Fromang and Nelson (2009).
Right: Similar plot, but for α = 0.1, St,0 = 0.01 and τe = 0.001. This case corresponds
to the purely diffusive limit, and grains are found to over-concentrate well above the
midplane of the disc. This double-hump shape is recovered only by our asymptotic
expansion.

where 1
τe

∫ t
0 e−

t−s
τe dw(s) ∼ N

(
0, 1

2τe
(1− e−

2T
τe )
)

follows a Gaussian distribution. Given a
time-step size ∆T > 0, then the Strang splitting scheme is defined by the recursion

(Zn+1, Vn+1, ξn+1) =
(

Ψ(2)
∆T
2
◦Ψ(1)

∆t ◦Ψ(2)
∆T
2

)
(Zn, Vn, ξn) , (5.84)

and each step is made of three succesive updates. Let γ0,1, γ0,2, . . . , γn,1, γn,2, . . . be
independent N (0, 1) standard Gaussian random variables. First, using the definition of
Ψ(2)

∆T
2

, and a random variable γn,1 ∼ N (0, 1), let
Zn ← Zn +

∆T
2 Vn,

Vn ← Vn,

ξn ← e−
∆T
2τe ξn +

1√
2τe

√
1− e−

∆T
τe γn,1.

(5.85)

Second, using the definition of Ψ(1)
∆T, let

Zn ← Zn,

Vn ← e−
fφ(Zn)∆T

St0 Vn +

(
1− e−

fφ(Zn)∆T
St0

)(
h(Zn)

√
2α0 ξn − St0

fφ(Zn)
gφ(Zn)

)
,

ζn ← ζn.

(5.86)

Using the definition of Ψ(1)
∆T
2

and a random variable γn,2 ∼ N (0, 1),
Zn ← Zn +

∆T
2 Vn,

Vn ← Vn,

ξn ← e−
∆T
2τe ξn +

1√
2τe

√
1− e−

∆T
τe γn,2,

(5.87)

and one sets

Zn+1 ← Zn , Vn+1 ← Vn , ξn+1 ← ξn. (5.88)
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Figure 5.5: Similar to Fig. 5.4, but with α = 0.01, St,0 = 5 and τe = 1, a regime where our
asymptotic expansion is not valid. The model of Youdin and Lithwick (2007) is the
most accurate in this regime.

5.5.2 Numerical dust distributions

We adopt a Courant-Friedrich-Levy condition of ∆t ∝ St0 � 1 and use a safety factor of
0.1 gathered from a numerical convergence analysis. The probability density distributions
reach steady-state for t ∼ S−1

t0 , the settling time of small dust grains. Fig. 5.4 shows
histograms obtained for 105 particles initially placed in the midplane with no velocity.
In this configuration, sufficient accuracy is obtained to validate the model. Our first
simulation consists of a seminal disc with α = 0.01 and τe = 1, populated with small
grains with Stokes number in the midplane St,0 = 10−3. Fig. 5.4 (left) shows that the
steady-state distribution is correctly reproduced by our asymptotic description and
the Fromang and Nelson (2009) model, the two curves being nearly superimposed in
this regime. In particular, flatter distributions than Gaussian are obtained. Stratification
gradients push more grains from the midplane to the top layers of the disc than in an
homogeneous configuration. Almost no grains above z = 3 are found. This is expected as
there is almost no gas at this height and dust grains settle back to the midplane until they
got stuck again. Our second simulation is designed to demonstrate the accuracy of our
asymptotic expansion. We setup an academic configuration where α = 0.1, St,0 = 10−2

and τe = 10−3 to reach the purely diffusive limit while preserving numerical tractability.
Fig. 5.4 (right) shows that again, the steady-state distribution is correctly reproduced by
our asymptotic expansion. In an obvious manner, the double-hump shape with strong
over-concentrations of dust at z ' 2 is correctly captured. Alternative models predict
incorrect bell-shaped distributions in this regime. In this regime, the rate of differential
kicks received by the grains is extremely important and the cumulative contribution
powers up the lift-up of the particles.

Importantly, these peaks can arise as a parasitic effect when equations of motion are
integrated with stratification, inertia, but in the diffusive limit with zero eddy-time.
Hence the necessity of integrating the settling equations including a finite turbulent
timescales. Finally, it should be noted that our asymptotic expansion does not hold for
large grains St,0 & 1 that remain close to the midplane. Fig. 5.5 shows that in that case,
best accuracy is obtained by the Youdin and Lithwick (2007) model. Interestingly, finite
eddy time terms gives noticeable corrections in this case as well.
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5.6 discussion

The model of disc considered in this study remains fiducial. Gas does not undergo
any dynamical evolution such as outflows, winds, viscous spreading or evaporation.
We did not consider gravitating bodies embedded in the disc and have restrained the
study to grains of constant size that neither grow nor fragment. We also focused on
steady-state distributions, since they are widely used in as practical recipes for dust
densities. As a short remark on this point, we note that steady-state is reached after a
few settling times (Eqs. 5.29,5.30). For small grains, this time is orders of magnitude
longer than other dynamical times in the disc. We put therefore a strong warning against
using these formulae in vertically integrated models, to estimate instantaneous volume
concentrations from surface densities. Finally, we note that dust lift-up may become
significant in stratified objects that are trans- or supersonic and contain small grains,
such as molecular clouds. In this case, dust may be lifted up easily by turbulence even
when it develops on large integral timescales, as long as the cloud remains stable over a
time that is sufficiently long for the grains to differentiate spatially.

5.7 conclusion

In the context of better understanding observations of small dust grains in young
discs, we derived refined analytic prescriptions for the distributions of small grains
that populate their top layers. Our model includes gas stratification, dust inertia and
finite correlation times for the turbulence. It is derived from first principles, by writing a
balance of forces on a grain where stochastic driving mimics rigorously the statistical
properties of homogeneous isotropic turbulence. The role of the vertical gradient of α is
investigated using the scaling α ∝ ρ−1/2, which ensures a constant density of turbulent
energy through the disc. From rigorous asymptotic expansions, we obtained steady-
state distributions for small grains scattered through the stratified disc by turbulence.
Unexpected technicalities arise to handle small Stokes numbers in the diffusive limit.
These novel distributions are validated against a direct numerical integration of the
stochastic system via a Strang-splitting scheme. The main results of this study are
summarised below.

1. Let consider a disc orbiting with frequency Ω and gas scale height H, for which
the turbulent activity and the lifetime of the largest eddies are parametrised by α

and te. We consider grains that have Stokes numbers in the midplane smaller than
unity, i.e. St0 � 1. Dust density a steady-state is given by

ρd(z) ∝
(

teΩ
St0

+ e
z2

2H2

)
exp

− e
z2

2H2

α/St0

 , (5.89)

which corresponds to Eq. 5.71 expressed in physical quantities.

2. For te ∼ Ω−1, dust distributions are single-humped and flattened. In the purely
diffusive limit te � Ω−1, dust distributions become bumpy and develop non-
physical strong peaks at z ≥ H. As such, turbulent correlations must be handled
with care in settling models.

3. Observations support the absence of dust over-concentrations above the scale height
of young disc, hence corroborating numerical experiments predicting te ∼ Ω−1.
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Trans- or supersonic stratified systems such as molecular clouds may enter the regime
of parameters where dust lift-up may becomes important and should deserve further
investigations.
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6.1 context

Two decades ago, the only planets we knew were the ones of our Solar System. Nowa-
days, with the important development of space and ground based telescopes, dedicated
instrumentation and observing technics, thousands of exoplanets have been discovered,
which is a significant step toward the search for other worlds and exo-Life. In this
context, the role of observations to detect and characterize exoplanets and planetary
architectures is essential to improve our understanding of planetary formation and
evolution, as well as of the physics of exoplanets. Since the first exoplanet discovery
around the main-sequence star 51 Peg in 1995 Mayor and Queloz (1995), key discoveries
were obtained in exoplanetary science with: i/ the detection and confirmation of about
4500 exoplanets today (http://exoplanet.eu), ii/ the discovery of the Hot-Jupiter family,
composed of gaseous giants similar to Jupiter but located at a few stellar radii from
the star, iii/ the first glimpse of planetary atmosphere characterization, iv/ the direct
images of Super-Jupiters around their host stars, v/ the discovery of Super-Earths in the
Habitable Zone, where water should be at the liquid state.

Today, the five main techniques currently used to detect exoplanets are: radial velocity,
transit, micro-lensing, direct-imaging and astrometry. They are complementary and can
be combined to constrain the planet properties like density (with radial velocity and
transit) or the internal energy (combining radial velocity/astrometry and imaging). Fig.
6.1 shows today’s confirmed exoplanets detected by those different methods. Radial
velocity, transit, micro-lensing and astrometry are mostly sensitive to the internal part of
exoplanetary systems, at less than typically 5− 10 au. Direct imaging is here unique to
explore the outer regions beyond 5− 10 au to complete our view of planetary system
architectures. Moreover, direct imaging enables to resolve the photons of exoplanets
and thus to probe the planet’s luminosity and atmospheric properties. All exoplanets
currently imaged are young, as they are hotter, brighter, and thus easier to detect than
their old counterparts. As a consequence, their atmospheres reveal low-gravity features,
as well as the presence of thick cloud layers, and non-equilibrium chemistry processes.
These physical observations are very different and complementary to the ones observed
in the atmospheres of irradiated Hot Jupiters studied with transit techniques. Finally,
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Figure 6.1: Exoplanets discoveries nowadays considering the different planet hunting techniques
(from http://exoplanet.eu). The exoplanets masses are reported as a function of their
distances to the star.

direct imaging (DI) enables to directly probe the presence of planets in their birth envi-
ronment within circumstellar disks to study the formation and evolution processes in
action (Keppler et al., 2018; Christiaens et al., 2019; Keppler et al., 2019; Boccaletti et al.,
2020a).

During my M2 internship supervised by Dr. G. Chauvin at the Franco-Chilean Labora-
tory for Astronomy in Santiago, I carried out the complete analysis of a direct imaging
survey to search for young, giant planets. I analysed data from the VLT/SPHERE extreme
Adaptive Optics (xAO) planet imager obtained in the course of the Open Time program
DUSTIES (Dusty, yoUng and early-type Star Imaging for ExoplanetS). This program
is dedicated to the search for and the characterization of giant planets around young,
nearby stars hosting multi-belt system to maximize the chances of discoveries. Key
questions studied are the physical properties of young Jupiters and their interaction with
belt architecture. I used the SPHERE Data Reduction and Handling automated pipeline
to perform the data reduction (Pavlov et al., 2008). During that period, I had the chance
to participate to a SPHERE observing run from June 3th to June 7th, 2017 to witness in
real time performances and limitations of xAO imagers.

Companion candidates have been detected after the data reduction process. Follow-up
observations of these candidates were automatically scheduled, during 2018 and 2019.
These new observations were performed in J2 J3 bands to distinguish bound companions
from background star. No new exoplanets were found that could be in addition connected
to the multi-belt architectures known for these systems. I could however set robust
constraints on the presence of giant planets in these systems, paving the way to future
characterization with new generation for planet imagers at VLT and ELT. This study
was completed during my Ph.D leading to a publication of the paper Lombart, M. et al.
(2020). The details of this paper is presented in the following parts.

http://exoplanet.eu
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6.2 introduction

How giant planets form and evolve is one of the biggest challenges of modern astronomy
and remains a subject of heated debate. This major goal is directly connected to the
ultimate search for life over the horizon 2030 to 2040, although several astrophysical
(formation, evolution, dynamics, structure, and atmosphere), biological (bio-markers),
and technical (new technologies developed for next generation of instrumentation) steps
must be carried out in that perspective. Understanding how giant planets are formed and
structured, how they evolve and interact, is critical as they completely shape the planetary
system architectures and therefore the possibility of forming telluric planets capable of
hosting life. More than two decades ago, the only planets we knew were the ones of our
Solar System. With the manna of exoplanet discoveries since the 51 Peg discovery (Mayor
and Queloz, 1995), the diversities of systems found (hot Jupiters, irradiated and evapo-
rating planets, misaligned planets with stellar spin, planets in binaries, telluric planets in
habitable zones, discovery of Mars-sized planets...), the theories of planetary formation
have drastically evolved to digest these observing constraints. However, we are still miss-
ing the full picture, and some key fundamental questions still lack answers. For example:
i/ the physical processes at play to pass the km-size barrier to form planetary cores, ii/
the physics of accretion to form planetary atmospheres, iii/ the formation mechanisms to
explain the existence of giant planets at wide orbits, iv/ the physical properties of young
Jupiters, v/ the impact of planet-planet and planet-disk interaction in the final planetary
system architecture, or vi/ the influence of the stellar mass and stellar environment in the
planetary formation processes. Neither core accretion plus gas capture (CA; Pollack et al.
(1996)) nor disk fragmentation driven by gravitational instabilities (GI; Cameron (1978))
can globally explain all current observables from planet hunting techniques. Alternative
mechanisms are then proposed, such as pebbles accretion to enable core accretion to
operate at wide orbits (Lambrechts and Johansen, 2012), inward/outward migration or
planet-planet (Crida et al., 2009; Bromley and Kenyon, 2014) or simply the possibility
to have several mechanisms forming giant planets (Boley, 2009). In this context, each
individual discovery of a giant planet and young planetary system using direct imaging
is rich in terms of scientific exploitation and characterization, as these systems offer the
possibility of i/ directly probing the presence of planets in their birth environments, ii/
enabling the orbital, physical, and spectral characterization of young massive Jupiters,
iii/ characterizing the population of giant planets at all separations in synergy with
complementary techniques such as astrometry (GAIA) and radial velocity adapted to
filter stellar activity.

Dusty debris disks around pre- and main-sequence stars are possible signposts for the
existence of planetesimals and exoplanets (Matthews et al., 2014). Numerous T Tauri and
Herbig stars indicate that the characteristic timescale for the dispersal of a surrounding
dusty, gaseous disk is a few million years (Kennedy and Kenyon, 2008). Giant planet
formation is therefore expected to play a key role in the evolution of disk. This is
indirectly confirmed by extant submillimeter and near-infrared images of cool dusty
debris disks around main-sequence stars usually showing substantial spatial structure
(e.g., ε Eri, Vega, Fomalhaut, β Pic; see Schneider et al. (2014)). It is striking to note
that a majority of recent discoveries of imaged giant planets have been obtained around
young, dusty, early-type stars. It includes the breakthrough discoveries of Fomalhaut b
(3 MJup at 110 AU, A4V star; Kalas et al. (2008)), HR 8799 bcde (5-10 MJup at 10-64 au,
F0V star; Marois et al. (2010)), β Pictoris b (8-13 MJup at 9 au, A5V star; Lagrange et al.
(2010)), HD 95086 b (3-5 MJup at 56 au, A8V star; Rameau et al. (2013)), and more recently
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51 Eri b (2 MJup at 14 au, F0V star; Macintosh et al. (2015)). The presence of dust and
the spatial substructure (ring, gap, warp, and other asymmetries) are possible indirect
indicators of the presence of giant planets (Mouillet et al., 1997; Dipierro et al., 2015;
Pinte et al., 2020). Direct imaging is here a unique and viable technique to complete
our view of planetary system characteristics at wide orbits (≥ 5 au). This technique
enables us to directly study the planet-disk connection to constrain the planet’s and
disk’s physical properties, evolution, and formation. In the case of β Pictoris, Lagrange
et al. (2012) confirmed that β Pic b was actually responsible for the disk inner warp
geometry, perturbing the planetesimals field and shaping the warp up to 40-60 au. The
stars HD 95086 and HR 8799 share a common two-component architecture consisting of
a warm inner belt (≤ 5 au) and a cold outer disk (100− 200 au) (see Su et al. (2015)).
Kennedy and Wyatt (2014) actually showed that the spectral energy distributions of both
systems are consistent with two-temperature components compatible with dust emission
arising from two distinct radial locations. Such an architecture would be analogous to
the outer Solar System’s configuration of asteroid and Kuiper belts separated by giant
planets. Therefore, following the strategy of our NaCo DUSTIES (Dusty, yoUng, and
early-type STar Imaging for ExoplanetS) survey (Rameau et al., 2013) that led to the
discovery of HD 95086 b, we initiated a searching for giant planets with SPHERE at VLT
around an newly identified sample of young early-type stars with indication for some
cases of multi-belt architecture to maximize the chances of discoveries. The sample, the
observations, and the data reduction and analysis are presented in Sections 6.3, 6.4 and
6.5, respectively. The results are reported in Section 6.6 and discussed in Section 6.7.

6.3 target properties

The target selection of the survey was obtained from a large sample of young, nearby
early-type stars according to the following criteria: declination (δ ≤ 25o), age (≤ 100
Myr), distance (≤ 100 pc), and R-band brightness (≤ 9.5) to favor good adaptive optics
performances. Age selection criteria were applied based on different youth diagnos-
tics (kinematics, isochrones, Lithium, Hα emission, X-ray activity, stellar rotation, and
chromospheric activity). We also used, as selection criteria, the presence of significant
60− 70 µm excess from the IRAS and Spitzer missions in the spectral energy distributions
(Zuckerman et al., 1995; Zuckerman, 2001; Rhee et al., 2007; Zuckerman and Song, 2004a;
Zuckerman and Song, 2004b; Zuckerman et al., 2011; Zuckerman et al., 2013; David and
Hillenbrand, 2015; Moór et al., 2016) or the existence of multi-belt component analysis
from Kennedy and Wyatt (2014). A final total of 30 late-B-, A-, and early-F-type young
stars, observable from the southern hemisphere, were then kept, 22 of which were ob-
served between October 2016 and August 2019. Their stellar properties are reported in
Table 1. The age, distance, spectral type, and IR excess properties are shown in Figure 6.2.

6.4 observations

The SPHERE planet-finder instrument installed at the VLT (Beuzit et al., 2019) is a highly
specialized instrument, dedicated to high-contrast imaging and spectroscopy of young
giant exoplanets. It is based on the SAXO extreme adaptive optics (XAO) system (Fusco
et al., 2006; Sauvage et al., 2010; Petit et al., 2014), which controls a deformable mirror
with 41× 41 actuators, and four control loops (fast visible tip-tilt, high-orders, near-
infrared differential tip-tilt, and pupil stabilization). The common path optics employ
several stress-polished toric mirrors (Hugot et al., 2012) to transport the beam to the
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Target RA(2000) DEC(2000) µα µδ. cos(δ) H SpT Dist. Age Exc. References

(mas/yr) (mas/yr) (mag) (pc) (Myr)

HIP3277 00 41 46.3 -56 30 04.73 90.79 57.19 5.6 A3V 67 93+283
−76 / D15

HIP7345 01 34 37.7 -15 40 34.89 94.84 -3.14 5.5 A1V 61 35+5
−5 Y Z95; Z12; G16

HIP7805 01 40 24.0 -60 59 53.62 61.94 -10.50 6.7 F2V 66 30+15
−15 Y Z01; Z04; M17

HIP8832 01 53 31.8 +19 17 37.87 79.20 -97.63 2.8 A0 50 87+195
−71 / D15

HIP9902 02 07 26.1 -59 40 45.942 91.11 -18.29 6.2 F7V 44 45+4
−4 Y K14; B15

HIP13141 02 49 01.4 -62 48 23.47 94.02 29.10 5.2 A2V 50 100+200
−70 Y R07; G16

HIP16095 03 27 18.6 +12 44 07.03 10.36 -7.56 6.3 A0V 88 194+171
−138 / Z13; D15

HIP18437 03 56 29.3 -38 57 43.80 29.46 0.10 6.8 A0V 100 187+150
−177 Y R07; M17

HIP19990 04 17 15.6 +20 34 42.93 -39.41 -60.79 4.6 A3 29 70+30
−40 / Z13; G16

HIP22192 04 46 25.7 -28 05 14.8 -3.82 17.58 5.7 A3V 56 12+5
−5 / Z13; G16

HIP22226 04 46 49.5 -26 18 08.84 34.52 -4.13 6.9 F3V 78 30+20
−20 Y R07; G16

HIP22845 04 54 53.7 +10 09 02.99 41.49 -128.73 4.5 A3V 34 100+200
−70 Y Z04b; G16

HIP26309 05 36 10.2 -28 42 28.847 25.80 -3.04 5.9 A2V 56 30+20
−10 / Z11; G16

HIP26990 05 43 35.8 -39 55 24.7145 25.82 15.08 6.8 G0V 55 42+8
−7 Y M16; V17

HIP34276 07 06 20.9 -43 36 38.69 5.80 13.20 6.5 A0V 102 185+120
−170 Y R07; M17

HIP41307 08 25 39.6 -03 54 23.11 -66.43 -23.41 3.9 A0V 37 203+100
−100 Y R07; M17

HIP93542 19 03 06.8 -42 05 42.38 56.41 -46.43 5.0 B9V 59 76+148
−62 Y R07; D15

HIP95619 19 26 56.4 -29 44 35.617 18.63 -50.13 5.7 B8.5 70 86+138
−69 Y D15

HIP97749 19 51 50.6 -39 52 27.7 18.42 -11.27 5.4 A 100 82+177
−67 / D15

HIP101800 20 37 49.1 +11 22 39.63 39.15 -8.26 5.4 A1V 57 225+311
−43 Y R07; D15

HIP101958 20 39 38.2 +15 54 43.46 53.82 8.47 3.9 B9V 77 60+164
−49 / D15

HIP117452 23 48 55.5 -28 07 48.97 100.80 -105.34 4.6 A0V 42 70+30
−40 Y Z11; D15

Table 6.1: Description and properties of the sample. The Exc. column indicates the presence
of an IR excess. The symbol "/" means no IR excess, and "Y" means with IR excess.
References: (B15) Bell et al. (2015); (D15) David and Hillenbrand (2015); (G16) Galicher
et al. (2016); (K14) Kennedy and Wyatt (2014); (M16) Moór et al. (2016); (M17) Meshkat
et al. (2017); (R07) Rhee et al. (2007); (V17) Vigan et al. (2017); (Z95) Zuckerman et al.
(1995); (Z01) Zuckerman (2001); (Z04) Zuckerman and Song (2004a);(Z04b) Zuckerman
and Song (2004b); (Z11) Zuckerman et al. (2011); (Z12) Zuckerman and Song (2012);
(Z13) Zuckerman et al. (2013).
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Figure 6.2: Diagram of target properties taking into account age with error bars, distance, spectral
type, and excess in infrared.
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Figure 6.3: Distribution of the SAXO real-time parameters, averaged over each observing sequence,
for the complete survey: airmass, DIMM seeing (ω), parallactic angle variation (∆θ),
the Strehl ratio at 1.6 µm, and the Fried parameter of the atmosphere (r0).

coronagraphs and scientific instruments. Several types of coronagraphic devices for
stellar diffraction suppression are provided, including apodized pupil Lyot coronagraphs
(Soummer, 2005) and achromatic four-quadrant phase masks (Boccaletti et al., 2008).
The instrument has three science subsystems: the infrared dual-band imager and spec-
trograph (IRDIS, Dohlen et al. (2008)), an integral field spectrograph (IFS; Claudi et al.
(2008)), and the Zimpol rapid-switching imaging polarimeter (ZIMPOL; Thalmann et al.
(2008)).

The sample of young early-type stars was observed using the IRDIFS-EXT mode, with
IRDIS in the dual-band imaging (DBI, Vigan et al. (2010)) mode with K1K2 filters (λK1 =

2.1025± 0.1020, µm - λK2 = 2.2550± 0.1090, µm), and IFS in the Y− H (0.97− 1.66 µm)
mode in pupil-tracking. This combination enables the use of angular and/or spectral
differential imaging techniques to improve the contrast performances at the subarcsecond
level (Racine et al., 1999; Marois et al., 2006). The choice between IRDIFS mode and
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IRDIFS-EXT mode is critical to optimizing the detection of young, early-T, or warm,
mid-L dwarfs planets, considering the primary age and distance. Indeed, it was crucial
in the cases of the β Pic b (Lagrange et al., 2009) and HD 95086 b (Rameau et al., 2013)
discoveries to properly remove quasi-static speckles that dominate performance detection
at close inner angles (0.1− 2.0′′, i.e., 3− 60 au at 30 pc), but to also maximize the emitted
flux by the giant planets. For young ages (10 − 50 Myr), as the potential planets to
which we are mostly sensitive are warm and dusty L-type planets with no methane
absorption, the choice of the IRDIFS-EXT mode is more appropriate and was chosen
for this observing campaign. For the follow-up, as candidates were only detected in
the IRDIS field of view, we opted for the use of the IRDIS the DBI mode with J2 J3

filters (λJ2 = 2.1025± 0.1020 µm - λJ3 = 2.2550± 0.1090 µm) in pupil-tracking. Thus, this
second epoch provides, in addition to the possibility of checking for common proper
motion of the candidates relative to the primary star, the possibility to better discriminate
background stars from physically young, early-T, or warm mid-L dwarfs planets in the
color-magnitude diagram (Bonnefoy et al., 2018).

The observing sequence used for the survey is as follows; PSF flux reference, corono-
graphic centering using the waffle spots, deep coronographic observation of about 70 min
in total on target, new coronographic centering using the waffle spots, PSF flux reference,
and sky. The PSF flux references were used to estimate the relative photometry of the
companion candidates detected in the IRDIS and IFS field of view, as well as the detection
limits. The coronographic centering sequence using the waffle spots sequence is critical
to obtaining the position of the star behind the coronograph and the relative astrometry
of the companion candidates. The deep coronographic observation was obtained close
to meridian to maximize the field rotation. Finally, the sky background was used to
optimize the background subtraction and the flat field correction. The typical observing
sequence lasts approximately 90 min, including pointing and overheads. The detail of
the observations per target is reported in Table 6.2. As a by-product of the SPHERE
observation, one can access the evolution of the different atmospheric parameters seen
and registered by the SPHERE XAO system (SAXO). These real-time parameters are
good diagnostics of the turbulence conditions (τ0, r0, integrated wind over the line of
sight) and of the XAO correction (Strehl at 1.6 µm) during the observing sequence. The
summary of these SAXO parameters over the full survey is reported in Table 6.2 and
shown in Figure 6.3. Given the brightness of our targets, about 70 % of the survey was
obtained under median or good conditions for Paranal, with a typical Strehl ratio larger
than 80 %. Prior to the UT3 intervention at VLT in 2017, a few cases were affected by the
low-wind effect, despite good atmospheric conditions.

6.5 data reduction and analysis

In order to calibrate the IRDIS and IFS dataset on sky, the platescale and true north
solution at each epoch were corrected based on the long-term analysis of the SPHERE
Guaranteed Time Observation astrometric calibration described by Maire et al. (2016). The
rotation correction considered to align images to the detector vertical in pupil-tracking
observations is −135.99± 0.11◦. Anamorphism correction was obtained by stretching
the image Y-direction with a factor of 1.0060± 0.0002. All IRDIS and IFS datasets were
reduced using the SPHERE Data Reduction and Handling (DRH) automated pipeline
(Pavlov et al., 2008) and additional IDL routines for the IFS data reduction (Mesa et al.,
2015) at the SPHERE Data Center (Delorme et al., 2017) to correct each data cube for bad
pixels, dark current, flat field, and sky background. After combining all data cubes with
an adequate calculation of the parallactic angle for each individual frame of the deep
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UT Date Target Instru. Mode Filter NDIT Nexp ∆θ ω Strehl Airmass

× DIT (s) (o) (") 1.6µm

Survey

05-10-2016

HIP9902

IRDIS DBI K1K2 3× 64
46 20.7 0.62 0.75 1.22

IFS Rλ = 30 YJH 1× 64

HIP18437

IRDIS DBI K1K2 3× 64
46 44.2 0.47 0.77 1.03

IFS Rλ = 30 YJH 1× 64

07-10-2016

HIP7805

IRDIS DBI K1K2 3× 64
46 20.0 0.53 0.83 1.24

IFS Rλ = 30 YJH 1× 64

HIP16095

IRDIS DBI K1K2 3× 64
46 19.0 0.46 0.87 1.26

IFS Rλ = 30 YJH 1× 64

08-10-2016 HIP13141

IRDIS DBI K1K2 3× 64
46 20.8 0.41 0.83 1.30

IFS Rλ = 30 YJH 1× 64

10-11-2016 HIP19990

IRDIS DBI K1K2 3× 64
46 22.6 0.27 0.94 1.30

IFS Rλ = 30 YJH 1× 32

12-11-2016 HIP26309

IRDIS DBI K1K2 3× 64
46 107.4 0.41 0.87 1.01

IFS Rλ = 30 YJH 1× 64

13-11-2016 HIP22192

IRDIS DBI K1K2 7× 32
46 130.9 0.33 0.86 1.01

IFS Rλ = 30 YJH 1× 32

04-12-2016 HIP7345

IRDIS DBI K1K2 3× 64
17 81.4 0.44 0.90 1.02

IFS Rλ = 30 YJH 1× 64

05-12-2016 HIP22226

IRDIS DBI K1K2 3× 64
46 15.2 0.42 0.82 1.00

IFS Rλ = 30 YJH 1× 64

07-12-2016 HIP22845

IRDIS DBI K1K2 3× 64
46 19.3 0.44 0.82 1.27

IFS Rλ = 30 YJH 1× 32

13-12-2016 HIP34276

IRDIS DBI K1K2 8× 32
46 39.5 0.55 0.84 1.06

IFS Rλ = 30 YJH 1× 64

15-12-2016

HIP26990

IRDIS DBI K1K2 3× 64
46 42.6 0.55 0.76 1.04

IFS Rλ = 30 YJH 1× 64

HIP41307

IRDIS DBI K1K2 17× 16
46 43.0 0.35 0.92 1.03

IFS Rλ = 30 YJH 1× 16

17-06-2017

HIP93542

IRDIS DBI K1K2 7× 32
46 59.5 0.83 0.69 1.05

IFS Rλ = 30 YJH 1× 32

HIP97749

IRDIS DBI K1K2 7× 32
46 43.3 0.81 0.52 1.06

IFS Rλ = 30 YJH 1× 32

06-07-2017 HIP101800

IRDIS DBI K1K2 7× 32
42 22.1 0.58 0.86 1.24

IFS Rλ = 30 YJH 1× 32

15-07-2017 HIP117452

IRDIS DBI K1K2 6× 32
46 117.1 0.45 0.87 1.01

IFS Rλ = 30 YJH 1× 32

Table 6.2: Observing Log
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UT Date Target Instru. Mode Filter NDIT Nexp ∆θ ω Strehl Airmass

× DIT (s) (o) (") 1.6µm

Survey

20-07-2017 HIP101958

IRDIS DBI K1K2 15× 16
46 23.4 0.45 0.90 1.36

IFS Rλ = 30 YJH 1× 16

31-07-2017 HIP95619

IRDIS DBI K1K2 7× 32
46 110.0 0.77 0.62 1.01

IFS Rλ = 30 YJH 1× 32

09-08-2017 HIP8832

IRDIS DBI K1K2 15× 16
46 22.5 0.35 0.89 1.40

IFS Rλ = 30 YJH 1× 16

10-09-2017 HIP3277

IRDIS DBI K1K2 7× 32
46 26.5 0.54 0.83 1.20

IFS Rλ = 30 YJH 1× 32

Follow-up
27-09-2018 HIP117452 IRDIS DBI J2 J3 6× 32 22 112.7 0.41 0.88 1.00

10-10-2018 HIP8832 IRDIS DBI J2 J3 4× 48 23 20.4 0.61 0.78 1.00

22-11-2018 HIP34276 IRDIS DBI J2 J3 4× 64 23 46.3 0.39 0.82 1.44

09-05-2019 HIP95619 IRDIS DBI J2 J3 7× 32 23 22.3 0.51 0.75 1.02

18-06-2019 HIP101800 IRDIS DBI J2 J3 7× 32 23 20.2 0.68 0.83 1.36

Table 6.2: Observing Log (cont.)

coronagraphic sequence, all frames were shifted at the position of the stellar centroid
calculated from the initial star center position.

For an independent check, two pipelines were then used to process the data in angular
differential imaging (ADI), and in combined spectral and angular differential imaging
(ASDI): the IPAG-ADI pipeline (Chauvin et al., 2012), and the SpeCal (Galicher et al.,
2018). These routines allowed us to reduce the data cubes with almost the same set of al-
gorithms (classical ADI, Marois et al. (2006); LOCI, Lafrenière et al. (2007); PCA,Soummer
et al. (2012); Andromeda, Cantalloube et al. (2015)), and to exploit the spectral diversity of
the IRDIS and IFS observations using ASDI techniques in addition to ADI only. Following
the principles described in Galicher et al. (2018), SpeCal (and IPAG-ADI) delivers, for var-
ious algorithms and observing techniques (ADI, ASDI), contrast curves, signal-to-noise
ratio (S/N) maps, and the possibility to locally characterize the astrometric, photometric,
and spectroscopic signal of any companion candidate using either a template or negative
fake planet injection approach. As consistent results were found with both pipelines, the
full set of observations was reduced with SpeCal (routinely used with the SPHERE GTO)
using the TLOCI algorithm (in ADI and ASDI) for IRDIS, and the PCA algorithm (in
ASDI) for IFS. A spatial filtering for each data cube was automatically applied to the
deep coronographic observations and the reference PSFs before the use of SpeCal.

The TLOCI algorithm is implemented in SpeCal, to attenuate the background signal.
The TLOCI algorithm locally subtracts the stellar speckle pattern for each frame in
annuli of 1.5× FWHM further divided into sectors. The subtraction is based on a linear
combination of the best 20 (N parameter) correlated reference images calculated in the
optimization region and selected to minimize the self-subtraction at a maximum of 20%
(τ parameter), see Galicher et al. (2011) and Marois et al. (2014) for a further description
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Figure 6.4: Left: IRDIS reduced full-frame image of HIP 16095 in the K1 and K2 combined filters
using SpeCal with the TLOCI algorithm (Galicher et al., 2011). A bright companion
candidate is well identified at a few arcseconds to the east of the star. North is up, and
east is left. Right: IFS image reduced in PCA ASDI of HIP 41307.

of the reference frame selection and the subtraction and optimization regions. For IFS,
in the PCA version, each frame we used is subtracted from its average over the field
of view to estimate the principal components. The spectral diversity is exploited after
proper rescaling and renormalization of the IFS data cubes as detailed by (Mesa et al.,
2015). Considering the significant field rotation of our observations, the first 100 principal
components were subtracted.

6.6 companion candidate detection and characterization

Using the IRDIS and IFS S/N maps provided by SpeCal, we identified a total of eight
companion candidates by eye at relatively large separation (≥ 3.0′′) in the IRDIS fields
of view of six targets (HIP 16095, HIP 95619, HIP 101800, HIP 34276, HIP 117452, and
HIP 8832) of the complete survey. One companion candidate was identified at relatively
close separation in the IFS field of view of HIP 41307, but later flagged as a bright
quasi-static speckle through various processing tests, and was therefore discarded.

Figure 6.4 shows the IRDIS image reduced in TLOCI ADI of HIP 16095 (bright com-
panion located at 3.3′′ in the K1 and K2 combined filters), and the IFS image reduced in
PCA ASDI of HIP 41307 (quasi-static speckle discarded located at 0.5′′ in the combined
YJH-bands) as an illustration of the detection process. All companion candidates were
then characterized using SpeCal with the TLOCI algorithm in ADI only, and according
to a template approach. The relative astrometry and photometry are reported in Table 6.3.
As first diagnostics, in Figure 6.5 (Left), we reported the location of all our companion
candidates in the K1-band- and K2-band-based color-magnitude diagram (CMD). Details
on the diagrams are given in Mesa et al. (2016), Samland et al. (2017), Chauvin et al.
(2018), and Bonnefoy et al. (2018). We used the most recent parallaxes of the young
objects from Greco and Brandt (2016), and added additional companions (Gauza et al.,
2015; Stone et al., 2016; De Rosa et al., 2014) at the L/T transition. At first glance, we
see that all detected companion candidates fall on the expected sequence of possible
bound companions from the early-M spectral type for the candidates around HIP 117452,
late-L spectral types for HIP 95619, HIP 16095 and HIP 8832, to early-T for HIP 34276. The
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Figure 6.5: Left: absolute magnitude in K1-band versus K1-K2 color for brown dwarfs with
discovered companions. Right: same, but for absolute magnitude in J3-band versus
J3 − J2 color. The targets from our survey are noted in red.

companion around HIP 101800 was detected only in K1-band during the first epoch. After
a verification of the public archive, the companion candidates around HIP 34276 (cc1 and
cc2) and HIP 101800 (cc1 and cc2) were previously known and characterized as stationary
background sources by Wahhaj et al. (2013) as part of the NICI campaign concerning
debris disk stars. Both companion candidates around HIP 117452 were earlier identified
by De Rosa et al. (2011) in the course of the Volume-limited A-Star (VAST) survey as a
candidate binary companion. They were later confirmed by Matthews et al. (2018) as
physically bound, confirming that this system was actually a quadruple system with an
A0 primary (HIP 117452 A), orbited by a close binary pair Ba and Bb also resolved in this
survey, and additionally by a K-type star at about 75”.

Follow-up observations of the candidates were automatically scheduled and obtained
using the DBI mode with J2 J3 filters of IRDIS, which is well adapted to distinguish
background stars from physically young, early-T, or warm mid-L dwarf planets, and
offers an additional epoch for a proper motion test. Follow-up observations were then
processed using SpeCal with the TLOCI algorithm in ADI only and a template approach
as before. All companion candidates were re-detected, except the one around HIP 8832

falling outside the IRDIS field, given its large separation and an observing sequence
that was not perfectly centered with the meridian passage. The results are reported
in Table 6.3. The use of a different pair of filters enabled us to explore the companion
candidate photometric properties in the J2-band- and J3-band-based CMD, for which
we also report the distribution of background stars observed in previous crowded
fields (see Figure 6.5, Right). One can directly see that most of our late-L to early-T
potential companion candidates, including the previous ones identified as stationary
background stars around HIP 34276 (cc1 and cc2) and HIP 101800 (cc1 and cc2), fall onto
the background contaminant sequence indicating that they are most likely background
stars. As a further check, we used the relative astrometry obtained at two epochs
to estimate the proper motion of the companion candidates relative to their primary
stars. Figure 6.6 shows the proper motion plots of each candidate and confirms that
the companion candidates around HIP 34276, HIP 101800, and HIP 95619 are not co-
moving with their primary stars. The distance and proper motion of the stars, with their
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Target UT Date CC Filter Separation Position angle ∆Filter−1 ∆Filter−2

(mas) (deg) (mag) (mag)

HIP16095 57669.2937186 cc-1 DK12 3368± 2 111.38± 0.04 11.46± 0.12 11.28± 0.12

58092.1556576 cc-1 DJ23 3385± 2 111.21± 0.02 12.88± 0.08 12.55± 0.09

HIP95619 57965.1627630 cc-1 DK12 4564± 3 254.25± 0.03 11.11± 0.51 10.94± 0.54

58613.3454076 cc-1 DJ23 4597± 2 255.23± 0.01 12.17± 0.24 11.83± 0.29

HIP101800 57940.3125070 cc-1 DK12 4513± 4 89.84± 0.037 12.42± 0.12 -

58653.3759935 cc-1 DJ23 4418± 2 89.82± 0.01 13.34± 0.17 13.07± 0.15

58653.3759935 cc-2 DJ23 4021± 2 89.83± 0.01 14.42± 0.19 14.17± 0.17

HIP34276 57736.2557381 cc-1 DK12 3108± 7 132.55± 0.11 12.90± 0.12 12.72± 0.13

57736.2557381 cc-2 DK12 4407± 4 138.56± 0.06 12.26± 0.12 12.30± 0.12

58445.3349875 cc-1 DJ23 3124± 4 133.01± 0.06 14.58± 0.29 14.34± 0.12

58445.3349875 cc-2 DJ23 4421± 5 138.95± 0.06 14.30± 0.29 14.02± 0.13

HIP117452 57949.3975893 Ba DK12 3708± 9 238.09± 0.15 3.84± 0.05 3.76± 0.05

Bb DK12 3318± 10 239.13± 0.17 4.58± 0.05 4.51± 0.05

HIP8832 57974.3996411 cc-1 DK12 5674± 3 213.71± 0.04 11.47± 0.50 11.54± 0.51

Table 6.3: Companion candidate (CC) characterization and identification. Target name and ob-
serving date (modified Julian day) are given, as well as the different sources identified
with their relative position and relative flux.

uncertainties, are taken from the Gaia Data Release 2 catalog (Gaia Collaboration et al.,
2018). For HIP 16095, given the relatively low proper motion of the star, the status of
the companion candidate HIP 16095-cc1 remains ambiguous. However, the J2-band- and
J3-band-based CMD still supports a background contamination. If bound, this candidate
would have an estimated mass between 7 and 12 MJup at the system age (≤ 100 Myr)
and distance (88 pc) illustrative of the SPHERE detection performances around young
nearby stars beyond 10 au.

For HIP 117452 Ba and Bb, the colors and magnitudes in K1 and K2 compared to the
predictions of the evolutionary models of Siess et al. (2000) suggest that Ba and Bb
are a pair of M1 and M2 low-mass stars, considering an age of 40 Myr at a distance
of 42 pc. Combining our relative astrometry with the one reported by Matthews et al.
(2018) and shown in Table 6.3, we performed a first orbit fitting of the pair. Following
the method developed by Chauvin et al. (2012), we used a Markov chain Monte Carlo
(MCMC) Bayesian analysis technique (Ford and Gregory, 2007), which is well suited
for observations covering a small part of the whole orbit (for large orbital periods). We
did not consider any prior information using the proximity of the primary star. The
results are reported in Figure e.1 and favor a relatively inclined orbit i ∼ 98+8

−5 deg,
a longitude of ascending node fairly well-constrained at Ω = 20± 2 deg, tight semi-
major axis a ∼ 14+7

−4 au, but surprisingly large eccentricities e ≥ 0.4. These large values
of eccentricity are not dynamically expected, given the proximity of the primary star
located at a physical projected separation of ∼ 150 au, although the orbit of the binary
companion around HIP 117452 is not known. Fitting solutions using a least squares
Levenberg-Marquardt (LSLM) algorithm (Press et al., 1992) to search for the model with
the minimal reduced chi2 are also reported for comparison. Further dynamical study of
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Figure 6.6: SPHERE measurements (in blue) of the offset positions of the companion candidates
relative to their primary stars. For each diagram, if the candidate is a stationary
background object, the expected variation of offset positions is shown (solid line). This
is based on a distance and on a primary proper motion, as well as the initial offset
position of the candidate relative to the primary. The predicted offset positions of a
stationary background object for the second epoch is shown in red with uncertainties.
For HIP117452, measurements of both components Ba and Bb at various epochs are
plotted in dark and light blue, respectively.

the global system considering the debris disk architecture around HIP 117452 and the
binary companion HIP 117452 BaBb configuration is be needed.

6.7 detection limits and survey completeness

To exploit the information from the actual nondetection in IFS and IRDIS observations of
the survey, the detection limits of each individual observations were then estimated. Based
on SpeCal results, we derived a standard pixel-to-pixel noise map for each observing
sequence corrected from the flux loss related to the ADI or ASDI processing by injecting
fake planets. The detection limit maps at 5σ were then obtained using the pixel-to-pixel
noise map divided by the flux loss and normalized by the relative calibration with
the primary star (considering the different exposure times, the neutral density, and the
coronograph transmission). These detection limits were finally corrected from small
number statistics following the prescription of Mawet et al. (2014) to adapt our 5σ

confidence level at small angles with IRDIS and IFS. The 5σ contrast curves, resulting
from the azimuthal average of the detection maps, are reported for IFS and IRDIS in
Figure 6.7.

To convert the detection limits in terms of the mass and semi-major axis parameter
space explored with SPHERE, we used the multi-purpose exoplanet simulation system
(MESS) code, a Monte Carlo tool for the statistical analysis and prediction of exoplanet
search results (Bonavita et al., 2012). This code has been used extensively in previous
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Figure 6.7: Magnitude contrast limit curves for all targets with TLOCI algorithm.

direct imaging surveys for that same purpose (Chauvin et al., 2010; Chauvin et al., 2015;
Chauvin et al., 2018; Vigan et al., 2012; Vigan et al., 2017; Rameau et al., 2013; Lannier
et al., 2016). With MESS, we then generated a uniform grid of mass and semi-major axis in
the interval [1, 80] MJup and [1, 1000] au with a sampling of 0.5 MJup and 1 au, respectively.

For each point in the grids, 100 orbits were generated, randomly oriented in space
from uniform distributions in cos(i), ω, Ω, e ≤ 0.8, and Tp. We built detection probability
maps by counting the number of detected planets over the number of generated ones and
simply comparing the on-sky projected position (separation and position angle) of each
synthetic planet with the SPHERE 2D detection limit maps at 5σ converted in masses
based on the COND (hot-start) model predictions (Baraffe et al., 2003). The primary age,
distance, and magnitude reported in Table 6.1 are considered for the luminosity-mass
conversion.

The resulting detection probability map of the complete survey is reported in Figure 6.8.
This result shows that, despite the relatively wide age range (20 to 120 Myr) and distance
(10 to 102 pc) of our sample, we achieved a relatively good detection probability larger
than 50 % for giant planets with masses larger than 5 MJup and semi-major axes between
10 and 500 au, sufficient for the detection of system analogs to HR 8799 or HD 95086. In
principle, the degeneracy between mass and initial entropy could change these limits
considerably (e.g., Marleau and Cumming (2014) and Brandt et al. (2014)). In practice,
however, taking more realistic post-formation entropies into account strongly mitigates
this problem, as shown for instance in the case of HIP 65426 b by Marleau et al. (2019).

6.8 discussion

Our survey is composed of relatively old gas-free systems. Therefore, some of these
systems contain debris disks. We assumed that planets are a valid explanation for the
formation of debris structure, as shown in the case of the Solar System where planets are
known to reside between two belts of debris, and in the case of HR 8799 and HD 95086

where planets are known to reside in two-temperature debris disks. The analysis of our
survey follows the work by Matthews et al. (2018). The temperature values of debris
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Figure 6.8: Combined mean detection probability map for the whole survey.

belts are found in Chen et al. (2014), where these temperatures were estimated using a
two-temperature black-body model and a Bayesian parameter estimation to select the
best model to fit the SED. The disk radii were calculated following Pawellek and Krivov
(2015), assuming that dust are composed of 50% astrosilicate and 50% ice. In addition, we
constrained our SPHERE/IRDIS observations with dynamical arguments on the possible
planetary systems hiding within the debris gaps (Shannon et al., 2016).

Mass limits were calculated with the MESS code as described in Section 6.7 and shown
in Figure 6.9. The theoretical mass for a single planet to clear the observed gap is large
≥ 25MJ (Nesvold and Kuchner, 2015). Therefore, in our cases, we infer that the systems
must be in multi-planet configuration, as in HR8799, in which several planets with lower
masses clear the gap. In Figure 6.9, we plot the minimum masses of planets required
to clear the debris gaps, as well as their location and their "Np" number based on the
N-body simulations of Shannon et al. (2016). This model considers only planets with low
eccentricities. The mass and the Np number change if the eccentricity is larger. The mass,
shown in green in Figure 6.9, is the minimum mass per planet, with uncertainties based
on the age of the system and on the belts radius. The minimum mass calculation assumes
that planets are spaced by a typical value of ∼ 20 mutual Hill radius (RH), which is
consistent with the value of 21.7± 9.5RH predicted by Fang and Margot (2013).

By combining the observational upper and theoretical lower mass constrains, only a
small region of parameter space is unconstrained. For 12 targets in our survey of which
the temperature values are found in Chen et al. (2014), we infer a multi-planet system
based on the large theoretical clearing masses. In such a multi-planet system, the widest
separation planet would have a physical separation close to that of the outer debris belt,
where our direct imaging limits are relatively tight. In main cases, planets must be at
least ∼ 0.1MJ to clear the observed gap based on dynamical arguments, and in some
cases the dynamical mass limit exceeds 1MJ . In Figure 6.9, for the target HIP7345, the
mass limit, ∼ 1.3MJ at 90% in the gap, is close to the dynamical mass limit ∼ 0.9.



118 vlt/sphere survey for exoplanets around young early-type stars

Figure 6.9: Constraints on planetary systems for 12 targets in our survey. The positions of the
inner and the outer debris belts are shown in orange by shading the regions inside the
inner and beyond the outer. Our mass contrast limits are based on SPHERE/IRDIS
and COND model predictions. Dynamical mass constraints for a slightly closer
planet spacing of 20 mutual Hill radii from Shannon et al. (2016) are shown in green
with masses below this value shaded. Np is the number of planets with the mass
(indicated in green) required to open the gap. The uncertainties for debris belt position
and dynamical mass limit are calculated based on the uncertainty in debris belt
temperature, and indicated with hatching.

Among our 12 targets for which we note the presence of two debris belts, no exoplane-
tary mass companions were detected. Our sample is too small for a detailed statistical
analysis. However, a nondetection in a sample of 12 stars is not inconsistent with the
debris disk occurrence rate of 6.27% in a debris disk sample of planets between 5− 20MJ

and 10-1000 au (Meshkat et al., 2017), since we would expect that some companions
might be below our detection limits. Our nondetections are also consistent with the lower
occurrence rate of ∼ 1% found in Bowler (2016) and Galicher et al. (2016). The results
of this 12 target sample are not incompatible with the theory that planets are carving
wide debris gaps, since in each case our direct imaging mass limits are higher than the
theoretical mass limits that we calculate.

The existence of the planetary perturbers beyond 5 au, and potentially these architec-
tures will be explored in futur observations: i/ observations combining radial velocity,
astrometry with GAIA for the inner parts (≤ 5 au), ii/ observations with the next genera-
tion of planet imagers from the ground (SCExAO, KPIC, SPHERE+, GPI2.0 on 10m-class
Telescopes, then with the ELTs) and space (JWST, WFIRST).
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6.9 conclusions

We reported the observations and analysis of a survey of 22 stars with VLT/SPHERE
with IRDIS in the DBI mode with K1K2 filters and J2 J3 for the follow-up observations,
and IFS in the Y− H filters, with the goal of detecting and characterizing giant planets
on wide orbits. The selected sample favors young, that is to say≤ 100 Myr, nearby, ≤ 100
pc, dusty, and early-type stars to maximize the range of mass and separation, over which
the observations are sensitive. The optimized observation strategy with the angular
differential imaging in thermal bands and a dedicated data reduction using various
algorithms allow us to reach a typical contrast 12.5 mag at 0.25” and 14 mag at 1.0” in
IRDIS. These contrasts are converted to mass limits for each target. Despite the good
sensitivity of our survey, we did not detect any new giant planets. We confirmed that the
sources detected around HIP 34276, HIP 101800, HIP 16095, and HIP 95619 are stationary
background sources by analyzing K1-band, K2-band, J2-band, and J3-band images and
their relative motions. The status of the candidate around HIP 8832 still requires further
follow-up. HIP 117452 BaBb is resolved and confirmed as a binary companion (De Rosa
et al., 2011; Matthews et al., 2018). For 12 targets of our survey, where we determined
the radii of the debris belt, we derived upper and lower mass limits. We used Monte
Carlo simulations to estimate the sensitivity survey performance in terms of planetary
mass and semi-major axis to perform the upper limit. We additionally calculated the
minimum required mass for planets in the system to have cleared the observed debris
gap to perform the lower mass limit. Combining our upper and lower mass limits, we
are able to tightly constrain the unexplored parameter space around these systems:
typically, planets must be at least ∼ 0.1MJ in main cases to clear the observed gap based
on dynamical arguments, and in some cases the dynamical limit exceeds 1MJ . Direct
imaging data from VLT/SPHERE are sensitive to planets of ∼ 3MJ for a typical target
in our survey. Several of the planetary systems will likely be detectable with the next
generation of high-contrast imagers.
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C O N C L U S I O N A N D F U T U R E W O R K S

"When you do
something best in
life, you don’t really
want to give that up
- and for me it’s
tennis." – Roger
Federer

7.1 summary of the ph .d works

How grains can grow over 30 orders of magnitudes in mass to form planets in less
than 1 million years ? To answer this outstanding question, numerical models of dusty
discs require a comprehensive model of dust collisions described by the Smoluchowski
coagulation equation (see Chapter 2). We adopt a deterministic mean-field approach and
aim to solve for the Smoluchowski equation in a 3D dust/gas hydrodynamical simulation
of a young stellar object. However, solving efficiently and accurately this non-linear
integro-differential equation is one of the grand challenges of planet formation (Haworth
et al., 2016). We have first shown that a proper understanding of the mathematical
properties of the Smoluchowski equation is crucial to choose an appropriate numerical
scheme to solve this equation. Tanaka et al. (1996) wrote the Smoluchowski equation in
the conservative form

∂g (x, τ)

∂τ
+

∂Fcoag [g] (x, τ)

∂x
= 0,

Fcoag [g] (x, τ) =

x∫
0

∞∫
x−u

K (u, v) g (u, τ)
g (v, τ)

v
dvdu.

(7.1)

Equation 7.1 led to the development of a novel family of numerical solvers based
on the methods of finite volume (Filbet and Laurencot, 2004; Liu et al., 2019). The
work presented in this Ph.D. Thesis presents the development of a high-order scheme
based on the discontinuous Galerkin method in order to fulfil the stringent criteria
set by the astrophysical constraints (see Chapter 3). In particular, an important analytic
development has been performed to calculate the flux term Fcoag accurately and efficiently.
Our scheme is designed to satisfy the requirements based on astrophysical observations
and simulations, i.e.

1. exact mass conservation,

2. positivity of the mass density,

3. discretizing masses over 12 orders of magnitudes, which roughly corresponds to
grains of sizes 1µm− 1mm relevant for observations,

4. an accuracy of order ∼ 0.1− 1% to be consistent with hydrodynamics solvers (here
PHANTOM),

5. having a minimal number of bins to maintain global simulations of discs computa-
tionally tractable.

Typically, we estimate that with current computational capacities 3D simulations of dusty
discs with hydrodynamics solvers (e.g PHANTOM, RAMSES) could handle ∼ 20 bins. Differen-
tial velocities between grains are calculated by the hydrodynamics solver and then used
in the algorithm. Sub-grid process not included in hydrodynamics code such as Brownian
motion could be treated in our algorithm. Our high-order scheme is benchmarked with
the analytic solutions of the Smoluchowski coagulation equation for constant, additive
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Figure 7.1: Left: Test case constant kernel: numerical solution gj(x, τ) evaluated at the geometric
mean x̂j of each bin Ij. At the location of the maximum, order 0 can achieve an absolute
error of 30% compared to order 1,2 and 3. Order 3 can achieve an improvement in
accuracy of a factor 100 compared to order 0 in the exponential tail. Right: Test case for
ballistic kernel with only growth and constant polynomial approximation. Simulation
so far τ = 15120 years where grains of size 10cm form. These grains represent almost
all the dust mass at this time.

and multiplicative kernels (Figure 7.1, see Chapter 4). At the very end of this Ph.D.
Thesis, a first test for a ballistic kernel has been performed with polynomials of order
0. Simulation of dust growth at 1 AU in a typical dusty discs shows the formation
of pebbles from micron-in-size grains in 15120 years, consistent with the results from
Laibe et al. (2008) in Figure 7.1. We worked in collaboration with Pr. D. J. Price and D.
Mentiplay to design a modular and user friendly interface for the algorithm. In practice,
the code is compiled as a library and interfaced with PHANTOM.

Two works have been carried out in parallel of the thesis work. Firstly, I continued
the work from my M2 internship with Dr. G. Chauvin on the complete analysis of a
direct imaging survey to determine the probability of detection for giant planets aroung
young nearby stars hosting multi-belt system. I analysed data from the SPHERE/VLT
extreme Adaptive Optics (xAO) planet imager obtained with the Open Time Program
DUSTIES. No new exoplanets were found. I could however set robust constraints on
the presence of giant planets around observed stars (Lombart, M. et al., 2020). This
work paves the way to future observations of this survey with the next generation of
instruments. The improvement of SPHERE called SPHERE+ (Boccaletti et al., 2020b)
will detect planets with higher sensibility. SPHERE+ is designed to detect giant plan-
ets at snow lines location between 3-10 AU. The new instruments JWST and ELT will
provide high resolution and sensibility. The JWST will be able to detect giant planet so
far Neptune-sized and their atmosphere with high spectral resolution. The ELT will be
able to detect planets close to the star (1-10 AU) and at very low masses (lower than
1MJup). Secondly, I collaborated with Dr. G. Laibe and Dr. C-E. Bréhier to derive an
analytic formula for the distribution of small grains that encompass gas stratification,
dust inertia and finite correlation times in protoplanetary discs (Laibe et al., 2020). My
contribution to this work was to develop the code to solve the system of stochastic
differential equations and perform the convergence analysis of the simulations. The
numerical scheme is the Monte-Carlo method coupled to a Strang splitting method. The
code is parallelized to achieve high-accuracy with the Monte-Carlo method in a tractable
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Figure 7.2: State-of-the-art dust surface density distributions as function of radius and grain size
at 104 years from Birnstiel et al. (2012). The model is a 1D viscous disc evolution code
and a dust evolution code taking into account radial drift, turbulent mixing, dust
coagulation/fragmentation. We expect different result for 3D simulations.

computational time. The analytic formula is then validated against numerical simulations.

7.2 future works

7.2.1 Fragmentation

Dust fragmentation will be implemented in the algorithm by adding the fragmentation
flux presented in equation 2.51 since it does not affect the architecture of the solver. The
fragmentation kernel depends on the mass distribution of fragments b, which is usually
chosen as power law function (Petit and Farinella, 1993; Birnstiel et al., 2010; Kobayashi
and Tanaka, 2010). We plan therefore to integrate the fragmentation flux in a similar
manner than the coagulation flux, with analytical intermediates. Astrophysical mass
distributions are expected to be dominated by large grains. Hence, the CFL condition for
fragmentation should be similar to the one for growth (Vericel and Gonzalez, 2020). If so,
numerical integration will be performed explicitly. If not, implicit time-stepping can be
implemented in a manageable way since the number of dust bins has been kept minimal
with analytic integrations (i.e. linear algebra with ∼ 15× 15 matrices).

7.2.2 3D simulations of dusty discs with dust growth/fragmentation

Observations of discs such as HL Tau (ALMA Partnership et al., 2015), HD142527
(Avenhaus et al., 2017) or HD163296 (Isella et al., 2018) have revealed the presence of
substructures (see Figure 7.3). Reproducing and understanding the physics under these
observations is crucial to constrain models of discs, evolution of dust size distribution,
masses of planets, physics of gas, the impact of dust grains on gas by back-reaction and
on the physics of dust. In particular, can these structures be reproduced by 3D simula-
tions of discs including dust growth/fragmentation ? So far, synthetic observations have
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been produced with simulations evolving grains of constant sizes, over very short times
(a few tens of orbits) compared to the lifetime of the disc (a few thousands of orbits).
However, we expect grain growth to strongly affect the dynamics of the grains in a few
tens of orbits as well, implying that the structures currently simulated are not stable.
From these sensitive simulations, we hope to constrain important parameters such as
fragmentation thresholds, gas densities or turbulent viscosities in the disc. Note that an
incorrect estimate of the millimetre dust flux can lead to a large overestimation of the
mass of the planet (Dipierro and Laibe, 2017). We also aim to ultimately constrain the
detailed physics of the coagulation process. In particular, we expect for the model of
dusty turbulence used to affect the results by favouring or not the formation of large
grains (Ormel et al., 2007; Laibe, 2014). We plan to investigate whether some of these
kernels can be discriminated from our numerical simulations. The shape of the grains,
their composition and the value of the parameter β can also affect the growth timescales
and can be investigated in a similar manner. We also note that β depends on the threshold
velocity of fragmentation.

Birnstiel et al. (2010) model is a dust evolution code coupled to a 1D viscous gas disc
evolution code. Radial drift, turbulent mixing, dust coagulation/fragmentation with
100− 200 different grain sizes are taken into account in this model. Figure 7.2 shows the
evolution of dust surface density distributions as function of radius and grain size so
far 104 years. We aim to perform 3D simulations of dusty discs with the code PHANTOM

including our high-order scheme to test the validity of the model from Birnstiel et al.
(2010). We expect to obtain different dust surface density distributions with 3D simula-
tions for the same initial condition. Specifically, the evolution of dust size distribution
strongly impacts the dust and gas dynamics in discs, which requires a precise account of
the evolution of the dust size distribution obtained with our algorithm.

Planet formation results from a complex interplay between dynamics and growth of
dust grains in discs. Metre-in-size barrier is thought to be overcome by the combination of
two processes which concentrate grains: i) self-induced dust trap (Gonzalez et al., 2017),
ii) streaming instability (Youdin and Goodman, 2005). Dust grains concentrate leading to
a dust concentration of order > 1% due to the back-reaction on gas and grow to form
grain with St ∼ 0.1. In Gonzalez et al. (2017), self-induced dust trap mechanism has been
evidenced in 3D SPH simulations with the mono-disperse treatment of the growth and
fragmentation. However, these traps have not been found in the simulations of Birnstiel
et al. (2010). The model of Birnstiel et al. (2010) treat the dust growth/fragmentation
by solving the Smoluchowski equation but with a 1 + 1D code to simulate evolution
of discs leading to a poor treatment of hydrodynamics. By performing 3D simulations
with a comprehensive model of dust growth, we plan to disentangle between the two
models and answer whether self-induced dust traps can form or not in young discs. Our
algorithm which solves the Smoluchowski equation will be coupled to the code PHANTOM

to study comprehensively dust growth/fragmentation in 3D hydrodynamics simulations
of discs.

7.2.3 3D simulations of dusty protostellar collapses

Our algorithm is designed in a modular way, implying that it should be easily coupled to
grid-based magneto-hydrodynamical codes such as RAMSES (Teyssier, 2002). A collabora-
tion has been initiated with Dr. Ugo Lebreuilly to study dusty protostellar collapse with
dust growth/fragmentation. Lebreuilly et al. (2020) found that dust grains of size 160µm
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Figure 7.3: Sub-structures observed in dust in HL Tau (left, ALMA Partnership et al. (2015)),
HD142527 (middle, Avenhaus et al. (2017)) and HD163296 (right, Isella et al. (2018)).

Figure 7.4: Simulation of protostellar collapse with gas and dust from Lebreuilly et al. (2020).
Left: gas density during the collapse. Right: dust density during the collapse. Local
enrichments of dust grains of size 160µm form.

start to decouple from the gas and concentrate in high density regions (see Figure 7.4).
Indeed, at this critical size, the typical drag time becomes longer than the free-fall time
which leads to dust enrichment in high density regions such as the disc. As such, one
expects grains to decouple more or less from the gas during stellar collapses, and for the
dust not to be a proxy for the gas even in this very young phase. A strong corollary is that
star and disc formation should entirely be revisited ! Indeed, key processes (transfer of
angular momentum, formation of the disc) are highly sensitive to the thermodynamics of
the collapsing cloud, which itself depends on the dust opacities that can not be computed
from the gas density profile. From the knowledge acquired on protoplanetary discs, we
know that dust growth certainly play a key role in interplaying with the dust dynamics
to set the dust distribution and thus, the local opacities. Dust opacity depends on grain
sizes. Therefore, a precise account of the evolution of dust size distribution is required to
obtain the right flux from dust to be compared with observations. Moreover, dust grains
are charge carriers. They regulate the evolution of magnetic field during protostellar
collapse which impact the formation of the disc (Hennebelle et al., 2020). We expect
similarly that accounting for grain growth accurately will allow to compute the accurate
dust charge for a realistic treatment of the magnetic effects during the collapse.
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7.2.4 Future developments for the DG scheme

In parallel, the DG scheme will be extended with different developments. At the moment,
one timestep with our DG scheme is executed in ∼ 10−3s (in real time). In a 3D numerical
simulation, the hydrodynamical solver will call the coagulation algorithm in each SPH
particles. To reproduce ALMA/SPHERE observations, a typical simulation uses ∼ 1
million SPH particles. As is, it will take 103s to evolve the dust size distribution in all
SPH particles for one hydrodynamics timestep. Optimisations are required to reduce the
computational time as much as possible, ideally for not being the process dominating
the global timestep. We plan to implement the following optimisations in our algorithm:
i) modifying polynomial basis, ii) using an adapted distribution of bins, iii) rescaling of
the Smoluchowski equation. Moreover GPU parallelisation is planned, since calls to the
coagulation solver by the hydrodynamical code are independent.

7.2.4.1 Adapted polynomials basis

Figure 7.5 shows the approximation of the initial condition g(x, 0) with the Legendre
polynomials of order 3 for N = 3 bins. This crude simulation highlights the main
difficulty for the coagulation solver, that is to approximate the exponential tail on the
right side of the curve with a third order polynomials. It is known that constant, additive
and multiplicative kernels admit a self-similar solution with exponential decay (Menon
and Pego, 2004). The idea is to include this expected exponential behaviour in the
approximation gj of g. In each bin Ij, gj can be written as

gj(x, τ) =
k

∑
i=0

gi
j(τ)ψi(ξ j(x)),

ψ(ξ j) ≡ e−ξ j/2 Pi(ξ j),

(7.2)

where Pi represents orthonormal basis of polynomials according to the inner product

∀x ∈ [−1, 1],
1∫
−1

e−x Pi(x)Pj(x)dx = δij. (7.3)

This orthonormal basis is built with the Gram-Schmidt algorithm. This new orthonormal
polynomials basis will allow to better approximate the function g in the exponential tail.
Therefore, a good accuracy will be achieved for a small number of bins with low-order
polynomials. Soong (1974) and Trautmann and Wanner (1999) shown the approximation
of g by a decaying exponential reduces drastically the numerical diffusion. High accuracy
reached with polynomials of low order will reduce drastically the computational time.
We aim to reduce the computational time by a factor at least 10.

7.2.4.2 Adapted distribution of bins

Figure 7.5 shows that the left part of the curve is well approximated for one large bin
with polynomial of order 3. Thus, only a few number of bins is required to approximate
the left part of the curve. The exponential tail on the right side of the curve is better
approximated with a large number of bins. Kumar and Ramkrishna (1996) shown
a significant gain in accuracy for a non-uniform geometric grid. This non-uniform
grid samples the exponential tail with a large number of bins. In practice, an adapted
distribution of bins will allow to gain in accuracy with polynomials of low order. This
will reduce the computational time.
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Figure 7.5: Initial projection of g(x, 0) = x exp(−x) on Legendre polynomials of order 3 with N =
3 bins. The left side of the analytic solution is well approximated. The approximation
of the exponential tail on the right side is poorly approximated.

7.2.4.3 Rescaling

In the aim to study the large time behaviour of the solutions of Smoluchowski coagulation
equation, a rescaling can be applied (Carrillo and Goudon, 2004; Goudon et al., 2013)

τ̃ ≡ ln(1 + τ), y ≡ x
1 + τ

,

n(x, τ) =
1

(1 + τ)2 f
(

ln(1 + τ),
x

1 + τ

)
,

(7.4)

where n is the solution to the Smoluchowski equation 2.4. This rescaling is particularly
important for numerics since it provides a natural way to reduce the computational
domain. In practice, simulations are performed for smaller mass domain and a small
evolution in time. The rescaling allows to obtain the numerical solution for large masses at
larger evolution of time. Important reduction of the computational time will be achieved.

7.2.5 Future physics developments

The Smoluchowski equation can be adapted to integrate different aspects of the physics
of coagulation such as the coagulation among grains of different composition and the
coagulation between agglomerates.

7.2.5.1 Ice condensation

The coagulation of grains is not the only physical process to evolve the dust size distri-
bution in discs. Condensation is an efficient mechanism that leads to growth of grains
beyond decimetre-sized pebbles close to water ice line in protoplanetary discs (Ros and
Johansen, 2013; Ros et al., 2019). Sublimation of icy particles at water ice line provides
material in the form of vapour. Therefore, grains outside the ice line can grow by con-
densation of the vapour. Condensation has been widely studied in aerosol community
(Gelbard and Seinfeld, 1978; Pratsinis, 1988; Ramkrishna, 2000; Friedlander et al., 2000;
Sandu, 2006; Pruppacher and Klett, 2010; Khain and Pinsky, 2018). The condensation
equation writes

∂ f
∂t

= −∂I f
∂x

, (7.5)
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where I is the rate of grain growth from condensation. This equation of condensation is
written as conservation law equation and can be directly solved by our algorithm and
therefore included in PHANTOM simulations in mono-fluid by evolving the dust fraction.

7.2.5.2 Coagulation among grains of different composition

The Smoluchowski coagulation equation can be adapted to treat the coagulation of grains
with different compositions (Gelbard and Seinfeld, 1980; Pilinis et al., 1987; Pilinis, 1990;
Jacobson et al., 1994; Chen and Lamb, 1994; Trautmann and Wanner, 1999; Sandu, 2006;
Matsoukas et al., 2006; Fernández-Díaz and Gómez-García, 2007; Yang et al., 2014). The
mass density of species i is defined as gi(x, τ), so that gi(x, τ)dx is the mass concentration
of the species i in particles in the mass range [x, x + dx] at time τ. The total mass density
g(x, τ) is given by

g(x, τ) =
p

∑
i=1

gi(x, τ), (7.6)

where p is the total number of species. By definition, gi and g are related by

gi(x, τ) =
xi

x
g(x, τ), (7.7)

where xi is the mass of species i in a particle of total mass x. Therefore, a system of
Smoluchowski equations on gi 2.40 is obtained and can be solved by our DG scheme.
This future multicomponent DG solver would be adapted to analyse the coagulation of
interstellar dust grains of different composition (Köhler et al., 2015; Ysard et al., 2019).
The dust evolution in the interstellar medium (ISM) resulting from coagulation leads
to significant changes in the optical properties of the grains. Therefore, it is crucial to
follow accurately the dust evolution. The DG solver could be interfaced with the code
THEMIS (Jones et al., 2017) to perform coagulation of interstellar dust grains with different
compositions.

The water snow line located in protoplanetary discs is of particular interest for dust
growth since it suggests the presence of wet icy grains. Icy grains tend to be less
sensitive to fragmentation since the collisional energy necessary is much higher than for
silicates (Blum and Wurm, 2008; Steinpilz et al., 2019). Therefore, a key question is the
fragmentation barrier can be overcome by coagulation of icy grains ? Collisions between
grains of multiple compositions such as silicate and water ice could be treated with our
algorithm in 3D simulations of dusty discs. The system of Smoluchowski coagulation
equations for each component of icy grains will be solved with our algorithm. The
probability of sticking will be adapted for icy grains.

7.2.5.3 Agglomerate size distribution

The coagulation model from Smoluchowski considers that colliding spherical grains
coalesce instantaneously to form larger spherical grains. In reality, dust growth is the
growth of aggregates from small monomers (Chokshi et al., 1993; Dominik and Tielens,
1997; Blum and Wurm, 2000; Blum and Wurm, 2008; Blum, 2018). Figure 7.6 shows
different kinds of aggregates formed in laboratory. Porous aggregates are found to be
able to overcome the radial drift barrier (Okuzumi et al., 2012). Planetesimals can be
formed by direct collisional growth of porous aggregates ?
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Figure 7.6: Example of aggregates from laboratory experiments. Credits: Güttler et al. (2019)

A dust agglomerate is composed of N monomer grains of radius rm. The agglomerate
structure has a characteristic radius R. Experimentally, it is found that N and R are
related by the following expression

N ∼ RD f , (7.8)

where the exponent D f is called the fractal dimension of the aggregate. For instance,
D f = 3 for compact agglomerates, while for a chain-like structure D f = 1 (Friedlander et
al., 2000). Usually, the growth of aggregates from small monomers is treated in two ways:
Particle-Cluster Aggregation (PCA) and Cluster-Cluster Aggregation (CCA) (Dominik
and Tielens, 1997; Paszun and Dominik, 2009; Dominik et al., 2016). Agglomerate size
distribution can also be calculated by solving the Smoluchowski coagulation equation
using an appropriate expression of the kernel (Jullien and Meakin, 1989; Friedlander et al.,
2000; Okuzumi et al., 2009). There is a fundamental difference between this approach
and simulations with PCA or CCA. In general, the value of D f is determined by the
collision algorithm (PCA or CCA). The Smoluchowski equation requires an assumption
on the value of D f that appears in the collision kernel. For a ballistic kernel, only the
cross-section depends on D f ,

σ(i, j) = (Ri + Rj)
2 ∼

(
mN

1/D f
i + mN

1/D f
j

)2
, (7.9)

where mN
1/D f
i is the mass of agglomerate j. The impact of porous aggregates on dust

dynamics and growth (Okuzumi et al., 2012; Garcia and Gonzalez, 2020) will be tested
with the code PHANTOM and our algorithm solving the Smoluchowski coagulation equation
with aggregates.

7.2.5.4 Coagulation of charged grains

An important aspect for the coagulation of micron-in-size grains is the electrostatic
repulsion of charged grains (Simpson et al., 1979; Okuzumi et al., 2009; Akimkin, 2015;
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Akimkin et al., 2020). Small dust can be charged positively in the layers of the discs due
to the photoelectric emission caused by UV radiations. In disc, gas can be weakly ionised
and plasma charging dominates. Therefore, grains are charged negatively inside the disc
(Okuzumi et al., 2009; Okuzumi et al., 2011; Akimkin, 2015). How millimetre grains are
formed from micron-in-size grains due to electrostatic barrier ?

Electrostatic interactions between charged grains affect their interaction and therefore
their collisional cross section. Following the work from Spitzer (1941) and Okuzumi et al.
(2009), the cross section is expressed as

σ = π(Ri + Rj)
2
(

1− Eel

Ekin

)
, Ekin > Eel, (7.10)

where Ri and Rj are the radius of colliding grains. Ekin is the kinetic energy for relative
motion of the two grains

Ekin =
1
2

m̃(∆v)2, (7.11)

where m̃ = mimj/(mi + mj) is the reduced mass and ∆v the relative velocity between the
two grains. The electrostatic energy between the grains just before contact expresses

Eel =
ZiZje2

Ri + Rj
, (7.12)

where Zi and Zj are charges of grains. The condition for the grains to collide is

Ekin > Eel. (7.13)

This modification of the cross section can be implemented in our algorithm to treat
the coagulation of the charged grains. 3D simulations will be performed with the code
PHANTOM to analyse the formation of millimetre grains from charged micron-in-size grains
in discs.
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a
C H A P T E R 2

a.1 conservative form of the smoluchowski equation

The conservative form of the Smoluchowski equation is
∂g (x, τ)

∂τ
+

∂Fcoag [g] (x, τ)

∂x
= 0,

Fcoag [g] (x, τ) =

x∫
0

∞∫
x−u

K (u, v) g (u, τ)
g (v, τ)

v
dvdu,

(a.1)

where g(x, τ) = x f (x, τ). The proof is to develop the equation a.1 in order to obtain the
classic Smoluchowski equation 2.4.
Let us define the Leibniz integral rule

d
dx

 b(x)∫
a(x)

f (x, tdt

 = f (x, b(x)) · db(x)
d
− f (x, a(x)) · da(x)

dx
+

b(x)∫
a(x)

∂ f
∂x

(x, t)dt, (a.2)

where x ∈ R+ and a, b two functions with values in R. Let define

Γ(x, u, τ) ≡
∞∫

x−u

K(u, v) f (u, τ) f (v, τ)dv. (a.3)

Applying the integral Leibniz rule the derivative of the flux, we obtain

∂Fcoag

∂x
= Γ(x, x, τ) +

x∫
0

∂Γ(x, u, τ)

∂x
du. (a.4)

Now, let define the function Φ as

Φ(u, v, τ) ≡ K(u, v)u f (u, τ) f (v, τ). (a.5)

Integral Leibniz rule is applied to the derivative of Γ,

∂Γ(x, u, τ)

∂x
= −Φ(u, x− u, τ). (a.6)

Therefore,

∂Fcoag

∂x
= Γ(x, x, τ)−

x∫
0

Φ(u, x− u, τ)du

=

∞∫
0

K(x, v)x f (x, τ) f (u, τ)du−
x∫

0

K(u, x− u)u f (u, τ) f (x− u, τ)du.

(a.7)
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At this stage, the second integral on the right side of the equation has to be written by a
change of variable. Let define z ≡ x− u,

x∫
0

K(u, x− u)u f (u, τ) f (x− u, τ)du =

x∫
0

K(x− z, z)(x− z) f (x− z, τ) f (z, τ)dz

=

x∫
0

K(x− z, z)x f (x− z, τ) f (z, τ)dz

−
x∫

0

K(x− z, z)z f (x− z, τ) f (z, τ)dz.

(a.8)

The kernel is a symmetric function K(u, v) = K(v, u), therefore equation a.8 writes with
z = u

x∫
0

K(u, x− u)u f (u, τ) f (x− u, τ)du =
1
2

x∫
0

K(u, x− u)x f (u, τ) f (x− u, τ)du. (a.9)

By combining equations a.8, a.7 and dividing by x 6= 0, the original Smoluchowski
equation is obtained

∂ f (x, τ)

∂τ
=

1
2

x∫
0

K(u, x− u) f (u, τ) f (x− u, τ)du− f (x, τ)

∞∫
0

K(u, x) f (u, τ)du. (a.10)
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C H A P T E R 3

b.1 derivation of the flux

The expression of the numerical coagulation flux Fnc
coag[g̃] is given in equation 3.20. After

applying the rules for integrals with Heaviside function, T writes

T(x, xmin, xmax, i′, i, l′, l) =
hl

2
hl′

2[
2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl×


2

hl′
(x−xl′ )∫

2
hl′

(xmin−xl′ )

f1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
dξl′


+

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

2
hl′

(xl−1/2−xl)∫
2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
θ

(
2

hl′
(x− xl−1/2 + xmin − xl′)− ξl′

)
dξldξl′

−

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

2
hl′

(xl+1/2−xl)∫
2
hl

(
x− hl′

2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
θ

(
2

hl′
(x− xl+1/2 + xmin − xl′)− ξl′

)
dξldξl′]

,

(b.1)

with f1(ξl′) ≡ K1(ξl′)φi′ (ξl′) and f2(ξl) ≡ K2

(
hl
2 ξl + xl

)
φi(ξi)

hl
2 ξl+xl

.
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b.1.1 Simple integral

The rule for the simple integral with the Heaviside function is

a < b, a ≤ c, a < d, c < d∫ b

a
f (x) [θ(x− c)− θ(x− d)]dx

= θ(b− c)
[∫ b

c
f (x)dx + θ(a− c)

∫ c

a
f (x)dx

]
− θ(b− d)

∫ b

d
f (x)dx.

(b.2)

The simple integral writes

•

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]
dξl′

=θ(x− xl′−1/2)


2

hl′
(x−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

f1(ξl′)dξl′ + θ(xmin − xl′−1/2)

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin



− θ(x− xl′+1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)dξl′

= θ(x− xl′−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)dξl′ − θ(x− xl′+1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)dξl′ .

(b.3)



b.1 derivation of the flux 137

b.1.2 First double integral

The rule for the first double integral with the Heaviside function is

a < b, a ≤ c, a < d, c < d, e ≤ b∫ b

a
f (x) [θ(x− c)− θ(x− d)] θ(e− x)dx

= θ(b− c)

−θ(a− c)θ(e− a)


a∫

e

f (x)dx + θ(e− b)
e∫

b

f (x)dx


+ (1− θ(a− c))

θ(b− c)θ(e− c)


e∫

c

f (x)dx + θ(e− b)
b∫

e

f (x)dx


+θ(c− b)θ(e− b)


b∫

e

f (x)dx + θ(e− c)
e∫

c

f (x)dx




− θ(b− d)

θ(b− d)θ(e− d)


e∫

d

f (x)dx + θ(e− b)
b∫

e

f (x)dx


+θ(d− b)θ(e− b)


b∫

e

f (x)dx + θ(e− d)
e∫

d

f (x)dx


 .

(b.4)
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The double integral writes

(1)

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,1(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]

θ

(
2

hl′
(x− xl−1/2 + xmin − xl′)− ξl′

)
dξldξl′

= θ(x− xl′−1/2)[
− θ(xmin − xl′−1/2)

2
hl′

(xmin−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′ + θ(xmin − xl−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(x−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin


+ (1− θ(xmin − xl′−1/2))[

θ(x− xl′−1/2)θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′ + θ(xmin − xl−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin


+ θ(xl′−1/2 − x)θ(xmin − xl−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin

+θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′





(b.5)
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− θ(x− xl′+1/2)[
θ(x− xl′+1/2)θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+ θ(xmin − xl−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin


+ θ(xl′+1/2)θ(xmin − xl−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′


 .

(b.6)
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(1) = θ(x− xl′−1/2)−θ(xmin − xl′−1/2)θ(x− xl−1/2)

2
hl′

(xmin−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+ (1− θ(xmin − xl′−1/2))θ(x− xl′−1/2)θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+ θ(xl′−1/2 − x)θ(xmin − xl−1/2)×

θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin




− θ(x− xl′+1/2)θ(x− xl′+1/2)θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+ θ(xl′+1/2 − x)θ(xmin − xl−1/2)

θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

︸ ︷︷ ︸
0 since xl−1/2≥xmin



(1) = θ(x− xl′−1/2)θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,1(ξl′)dξl′

+ θ(x− xl′+1/2)θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

f1(ξl′)F2,1(ξl′)dξl′ .

(b.7)
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b.1.3 Second double integral

The rule for the second double integral with the Heaviside function is

a < b, a ≤ c, a < d, c < d, e < b∫ b

a
f (x) [θ(x− c)− θ(x− d)] θ(e− x)dx

= θ(b− d)θ(e− d)
∫ d

e
f (x)dx

+ θ(b− c)
[
(θ(a− c)− 1)θ(b− c)θ(e− c)

∫ c

e
f (x)dx + θ(a− c)θ(e− a)

∫ e

a
f (x)dx

]
,

(b.8)

The double integral writes

(1)

2
hl′

(x−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,2(ξl′)

[
θ

(
ξl′ −

2
hl′

(xl′−1/2 − xl′)

)
− θ

(
ξl′ −

2
hl′

(xl′+1/2 − xl′)

)]

θ

(
2

hl′
(x− xl+1/2 + xmin − xl′)− ξl′

)
dξldξl′

(1) = θ(x− xl′+1/2)θ(x− xl+1/2 − xl′+1/2 + xmin)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

+ θ(x− xl′−1/2)[
(θ(xmin − xl′−1/2)− 1)×

θ(x− xl′−1/2)θ(x− xl+1/2 − xl′−1/2 + xmin)

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

+θ(xmin − xl′−1/2)θ(x− xl+1/2 + xmin − xmin)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

 ,

(b.9)
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(1) = θ(x− xl′−1/2)θ(xmin − xl′−1/2)×

θ(x− xl+1/2 − xl′−1/2 + xmin)

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

+θ(x− xl′−1/2)θ(xmin − xl′−1/2)θ(x− xl+1/2)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

︸ ︷︷ ︸
0 since xl′−1/2≥xmin

+ θ(x− xl′+1/2)θ(x− xl+1/2 − xl′+1/2 + xmin)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

− θ(x− xl′−1/2)θ(x− xl+1/2 − xl′−1/2 + xmin)

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′ .

(b.10)

(1) = θ(x− xl′+1/2)θ(x− xl+1/2 − xl′+1/2 + xmin)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

f1(ξl′)F2,2(ξl′)dξl′

+ θ(x− xl′−1/2)θ(x− xl+1/2 − xl′−1/2 + xmin)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)F2,2(ξl′)dξl′ .

(b.11)
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Then, T writes

T(x, xmin, xmax, i′, i, l′, l) =
hl

2
hl′

2
2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl

θ(x− xl′−1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)dξl′ − θ(x− xl′+1/2)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)dξl′


+ θ(x− xl′−1/2)[

θ(x− xl−1/2 + xmin − xl′−1/2)

2
hl′

(x−xl−1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

− θ(xmax − xl+1/2)θ(x− xl+1/2 + xmin − xl′−1/2)

2
hl′

(x−xl+1/2+xmin−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′


+ θ(x− xl′+1/2)[

θ(x− xl−1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl−1/2+xmin−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′

− θ(xmax − xl+1/2)θ(x− xl+1/2 + xmin − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(x−xl+1/2+xmin−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(x− hl′

2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)dξldξl′


 .

(b.12)
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b.1.4 Fortran scheme for flux term

The Fortran scheme to evaluate T(x, xmin, xmax, i′, i, l′, l) writes with terms in equa-
tion 3.32

1 res1=0

2 res2=0

3 if (x > xl′+1/2) then

4 res1 = Tφi × Tφi′ ,mix

5 if (x > xl+1/2 + xl′+1/2 − xmin) then

6 res2 = Tφi′ ,φi ,allmix

7 else if (x ≤ xl+1/2 + xl′+1/2 − xmin and x > xl+1/2 + xl′−1/2 − xmin and

x > xl−1/2 + xl′+1/2 − xmin) then

8 res2 = Tφi′ ,φi ,mix_P1term1_P2term1 − Tφi′ ,φi ,P1term2

9 else if (x ≤ xl+1/2 + xl′+1/2 − xmin and x ≤ xl+1/2 + xl′−1/2 − xmin and

x > xl−1/2 + xl′+1/2 − xmin) then

10 res2 = Tφi′ ,φi ,mix_P1term1_P2term1

11 else if (x ≤ xl+1/2 + xl′+1/2 − xmin and x > xl+1/2 + xl′−1/2 − xmin and

x ≤ xl−1/2 + xl′+1/2 − xmin) then

12 res2 = Tφi′ ,φi ,P1term1 − Tφi′ ,φi ,P1term2

13 else if (x ≤ xl+1/2 + xl′+1/2 − xmin and x ≤ xl+1/2 + xl′−1/2 − xmin

14 and x ≤ xl−1/2 + xl′+1/2 − xmin and x > xl−1/2 + xl′−1/2 − xmin) then

15 res2 = Tφi′ ,φi ,P1term1

16 else

17 res2 = 0

18 endif

19 else if (x ≤ xl′+1/2 and x > xl′−1/2) then

20 res1 = Tφi × Tφi′ ,term1

21 if (x > xl+1/2 + xl′−1/2 − xmin) then

22 res2 = Tφi′ ,φi ,P1term1 − Tφi′ ,φi ,P1term2

23 else if (x ≤ xl+1/2 + xl′−1/2 − xmin and x > xl−1/2 + xl′−1/2 − xmin) then

24 res2 = Tφi′ ,φi ,P1term1

25 else

26 res2 = 0

27 else

28 res1=0

29 res2=0

30 endif

31

32 T = (res1+res2)*hl*hl ’/4
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b.2 derivation of integral of the flux

The term with the integral of the numerical flux, that we note Fnc
coag, writes

Fnc
coag[g̃, j, k](t) =

N

∑
l′=1

k

∑
i′=0

N

∑
l=1

k

∑
i=0

gi′
l′(t) gi

l(t)T
(
xmin, xmax, j, k, i′, i, l′, l

)
T
(

xmin, xmax, j, k, i′, i, l′, l
)
≡∫

Ij

x∫
xmin

xmax∫
x−u+xmin

K(u, v)
v

∂xφk(ξ j(x))

φi′(ξl′(u))[θ(u− xl′−1/2)− θ(u− xl′+1/2)]

φi(ξl(v))[θ(v− xl−1/2)− θ(v− xl+1/2)]dv du dx,

T
(

xmin, xmax, j, k, i′, i, l′, l
)
≡
∫
Ij

T(x, xmin, xmax, i′, i, l′, l)∂xφk(ξ j(x))dx

(b.13)
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Multiplying T(x, xmin, xmax, i′, i, l′, l) in equation b.12 by ∂xφk
(
ξ j(x)

)
, T writes, with

ξ j =
2
hj

(
x− xj

)
,

T
(
xmin, xmax, j, k, i′, i, l′, l

)
=

hl

2
hl′

2
2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl×


2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′

)
∫

2
hl′
(xl′−1/2−xl′)

f1(ξl′)∂ξ j φk(ξ j)θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)
dξ j

−

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′

)
∫

2
hl′
(xl′+1/2−xl′)

f1(ξl′)∂ξ j φk(ξ j)θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)
dξl′dξ j



+

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′

)
∫

2
hl′
(xl′−1/2−xl′)

2
hl
(xl−1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)

× θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)
θ

(
ξ j −

2
hj
(xl−1/2 + xl′−1/2 − xmin − xj)

)
dξldξl′dξ j

−

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′

)
∫

2
hl′
(xl′−1/2−xl′)

2
hl
(xl+1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)

× θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)
θ

(
ξ j −

2
hj
(xl+1/2 + xl′−1/2 − xmin − xj)

)
dξldξl′dξ j

+

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′
(xl′+1/2−xl′)∫

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′

)
2
hl
(xl−1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)

× θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)
θ

(
ξ j −

2
hj
(xl−1/2 + xl′+1/2 − xmin − xj)

)
dξldξl′dξ j

−

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′
(xl′+1/2−xl′)∫

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′

)
2
hl
(xl+1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)

× θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)
θ

(
ξ j −

2
hj

(
xl+1/2 + xl′+1/2 − xmin − xj

))
dξldξl′dξ j

]
.

(b.14)



b.2 derivation of integral of the flux 147

b.2.1 Derivation of double integrals

The rule for the double integrals is
a < b

b∫
a

f (x)θ(x− c)dx = θ(b− c)

 b∫
c

f (x)dx + θ(a− c)
c∫

a

f (x)dx

 .
(b.15)

Then we obtain

•

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)
dξ j

= θ(xj+1/2 − xl′−1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl′−1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

+θ(xj−1/2 − xl′−1/2)

2
hj
(xl′−1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

 ,

•

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)
dξ j

= θ(xj+1/2 − xl′+1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl′+1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

+θ(xj−1/2 − xl′+1/2)

2
hj
(xl′+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(x−xl′ )∫
2

hl′
(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

 .

(b.16)



148 chapter 3

b.2.2 Derivation of the triple integrals

The rule for the first and third triple integrals is

a < b, c ≤ d∫ b

a
f (x)θ(x− c)θ(x− d)dx =

θ(b− c)

θ(a− c)θ(b− d)


b∫

d

f (x)dx + θ(a− d)
d∫

a

f (x)dx


+ (1− θ(a− c))

θ(c− b)θ(c− d)


d∫

c

f (x)dx + θ(b− d)
b∫

d

f (x)dx


+θ(b− c)θ(b− d)


b∫

d

f (x)dx + θ(c− d)
d∫

c

f (x)dx




(b.17)

Let denote

F1
(
ξ j
)
≡

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′

)
∫

2
hl′
(xl′−1/2−xl′)

2
hl
(xl−1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′ ,

F3
(
ξ j
)
≡

2
hl′
(xl′+1/2−xl′)∫

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′

)
2
hl
(xl−1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′ .

(b.18)
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The first triple integral writes

(1)

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)
θ

(
ξ j −

2
hj
(xl−1/2 + xl′−1/2 − xmin − xj)

)
dξ j

= θ(xj+1/2 − xl′−1/2)θ(xj−1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+θ(xj−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)dξ j


+ (1− θ(xj−1/2 − xl′−1/2))θ(xl′−1/2 − xj+1/2)θ(xl′−1/2 + xmin − xl−1/2 − xl′−1/2)


2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xl′−1/2−xj)

F1(ξ j)dξ j

+θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j


+ θ(xj+1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+ θ(xl′−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xl′−1/2−xj)

F1(ξ j)dξ j

︸ ︷︷ ︸
0 since xl−1/2≥xmin






(b.19)
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(1) = θ(xj+1/2 − xl′−1/2)θ(xj−1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+θ(xj−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)dξ j


+ (1− θ(xj−1/2 − xl′−1/2))θ(xl′−1/2 − xj+1/2)θ(xmin − xl−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xl′−1/2−xj)

F1(ξ j)dξ j

+ θ(xl′−1/2 − xj+1/2)θ(xmin − xl−1/2)×

θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

︸ ︷︷ ︸
0 since xl−1/2≥xmin

+θ(xj+1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j




= θ(xj+1/2 − xl′−1/2)θ(xj−1/2 − xl′−1/2)×

((((
((((

((((
(((

((((
(((

((((
(((

(((

θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+ θ(xj+1/2 − xl′−1/2)θ(xj−1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

θ(xj−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)dξ j

− θ(xj−1/2 − xl′−1/2)θ(xj+1/2 − xl′−1/2)
2×

(((
((((

(((
((((

(((
((((

(((
((((

((((

θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+ θ(xj+1/2 − xl′−1/2)
2θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

(b.20)
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(1) = θ(xj+1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)
2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+θ(xj−1/2 − xl′−1/2)θ(xj−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)dξ j

 .

(b.21)

The third triple integral writes, with the similar simplifications,

(3)

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

F3(ξ j)θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)
θ

(
ξ j −

2
hj
(xl−1/2 + xl′+1/2 − xmin − xj)

)
dξ j

= θ(xj+1/2 − xl′+1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′+1/2)
2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′+1/2−xmin−xj)

F3(ξ j)dξ j

+θ(xj−1/2 − xl′+1/2)θ(xj−1/2 + xmin − xl−1/2 − xl′+1/2)

2
hj
(xl−1/2+xl′+1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F3(ξ j)dξ j

 .

(b.22)
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The rule for the second and fourth triple integrals is

a < b, c < d
b∫

a

f (x)θ(x− c)θ(x− d)dx =

θ(b− c)θ(b− d)

(1− θ(a− c))θ(b− c)
b∫

d

f (x)dx

+θ(a− c)

 b∫
d

f (x)dx + θ(a− d)
d∫

a

f (x)dx


= θ(b− d)

 b∫
d

f (x)dx
��

���
���

���
���

�

−θ(a− c)θ2(b− c)
b∫

d

f (x)dx

+
��

���
���

���
��

θ(b− c)θ(a− c)
b∫

d

f (x)dx + θ(b− c)θ(a− c)θ(a− d)
d∫

a

f (x)dx


= θ(b− c)θ(b− d)

 b∫
d

f (x)dx + θ(a− c)θ(a− d)
d∫

a

f (x)dx

 .

(b.23)

Let denote

F2
(
ξ j
)
≡

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′

)
∫

2
hl′
(xl′−1/2−xl′)

2
hl
(xl+1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′ ,

F4
(
ξ j
)
≡

2
hl′
(xl′+1/2−xl′)∫

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′

)
2
hl
(xl+1/2−xl)∫

2
hl

(
hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl

) f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′ .

(b.24)

The second triple integral writes

(2)

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

F2
(
ξ j
)

θ

(
ξ j −

2
hj
(xl′−1/2 − xj)

)

θ

(
ξ j −

2
hj
(xl+1/2 + xl′−1/2 − xmin − xj)

)
dξldξl′dξ j

= θ(xj+1/2 − xl′−1/2)θ(xj+1/2 − xl+1/2 − xl′−1/2 + xmin)
2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′−1/2−xmin−xj)

F2
(
ξ j
)

dξ j

+θ(xj−1/2 − xl′−1/2)θ(xj−1/2 − xl+1/2 − xl′−1/2 + xmin)

2
hj
(xl+1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F2
(
ξ j
)

dξ j

 .
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(b.25)

The fourth triple integral writes

(4)

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

F4
(
ξ j
)

θ

(
ξ j −

2
hj
(xl′+1/2 − xj)

)

θ

(
ξ j −

2
hj
(xl+1/2 + xl′+1/2 − xmin − xj)

)
dξldξl′dξ j

= θ(xj+1/2 − xl′+1/2)θ(xj+1/2 − xl+1/2 − xl′+1/2 + xmin)
2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′+1/2−xmin−xj)

F4
(
ξ j
)

dξ j

+θ(xj−1/2 − xl′+1/2)θ(xj−1/2 − xl+1/2 − xl′+1/2 + xmin)

2
hj
(xl+1/2+xl′+1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F4
(
ξ j
)

dξ j

 .

(b.26)
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Then T writes

T
(
xmin, xmax, j, k, i′, i, l′, l

)
=

hl

2
hl′

2
×

2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl×

θ(xj+1/2 − xl′−1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl′−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

+θ(xj−1/2 − xl′−1/2)

2
hj
(xl′−1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j



− θ(xj+1/2 − xl′+1/2)


2
hj
(xj+1/2−xj)∫

2
hj
(xl′+1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j

+θ(xj−1/2 − xl′+1/2)

2
hj
(xl′+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξ j




+ θ(xj+1/2 − xl′−1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′−1/2)
2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

F1(ξ j)dξ j

+θ(xj−1/2 − xl′−1/2)θ(xj−1/2 + xmin − xl−1/2 − xl′−1/2)

2
hj
(xl−1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F1(ξ j)dξ j


+ θ(xj+1/2 − xl′+1/2)θ(xj+1/2 + xmin − xl−1/2 − xl′+1/2)

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′+1/2−xmin−xj)

F3(ξ j)dξ j

+θ(xj−1/2 − xl′+1/2)θ(xj−1/2 + xmin − xl−1/2 − xl′+1/2)

2
hj
(xl−1/2+xl′+1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F3(ξ j)dξ j


(b.27)
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− θ(xj+1/2 − xl′−1/2)θ(xj+1/2 − xl+1/2 − xl′−1/2 + xmin)
2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′−1/2−xmin−xj)

F2
(
ξ j
)

dξ j

+θ(xj−1/2 − xl′−1/2)θ(xj−1/2 − xl+1/2 − xl′−1/2 + xmin)

2
hj
(xl+1/2+xl′−1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F2
(
ξ j
)

dξ j


− θ(xj+1/2 − xl′+1/2)θ(xj+1/2 − xl+1/2 − xl′+1/2 + xmin)

2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′+1/2−xmin−xj)

F4
(
ξ j
)

dξ j

+θ(xj−1/2 − xl′+1/2)θ(xj−1/2 − xl+1/2 − xl′+1/2 + xmin)

2
hj
(xl+1/2+xl′+1/2−xmin−xj)∫

2
hj
(xj−1/2−xj)

F4
(
ξ j
)

dξ j


 .
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To reduce as much as possible the number of integrals to evaluate, we define the following
term for the scheme

Tφi ≡

2
hl
(xl+1/2−xl)∫

2
hl
(xl−1/2−xl)

f2(ξl)dξl

Tφi′ ,allmix ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξl′dξ j

Tφi′ ,mixP1 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξl′dξ j

Tφi′ ,P1term1 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl′−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξl′dξ j

Tφi′ ,P2term1 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl′+1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl′ )∫

2
hl′

(xl′+1/2−xl′ )

f1(ξl′)∂ξ j φk(ξ j)dξl′dξ j

Tφi′ ,φi ,allmix ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(xl+1/2−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,mixterm1term3 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,mixterm1 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

(b.28)
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Tφi′ ,φi ,mixterm2 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xj−1/2−xj)

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,term1 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′−1/2−xmin−xj)

2
hl′

(
hj
2 ξ j+xj−xl−1/2+xmin−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,term2 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′−1/2−xmin−xj)

2
hl′

(
hj
2 ξ j+xj−xl+1/2+xmin−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,term3 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl−1/2+xl′+1/2−xmin−xj)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(

hj
2 ξ j+xj−xl−1/2+xmin−xl′ )

2
hl
(xl−1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j

Tφi′ ,φi ,term4 ≡

2
hj
(xj+1/2−xj)∫

2
hj
(xl+1/2+xl′+1/2−xmin−xj)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(

hj
2 ξ j+xj−xl+1/2+xmin−xl′ )

2
hl
(xl+1/2−xl)∫

2
hl
(

hj
2 ξ j+xj−

hl′
2 ξl′−xl′+xmin−xl)

f1(ξl′) f2(ξl)∂ξ j φk(ξ j)dξldξl′dξ j.
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b.2.3 Fortran scheme for integral of the flux term

Finally, the Fortran scheme to evaluate T (x, xmin, xmax, j, k, i′, i, l′, l) writes

1 res1 = 0

2 if (xj+1/2 > xl′+1/2) then

3 if (xj−1/2 > xl′+1/2) then

4 res1 = Tφi × Tφi′ ,allmix

5 else if (xj−1/2 ≤ xl′+1/2 and xj−1/2 > xl′−1/2) then

6 res1 = Tφi × (Tφi′ ,mixP1 − Tφi′ ,P2term1)

7 else

8 res1 = Tφi × (Tφi′ ,P1term1 − Tφi′ ,P2term1)

9 endif

10

11 else if (xj+1/2 ≤ xl′+1/2 and xj+1/2 > xl′−1/2) then

12 if (xj−1/2 > xl′−1/2) then

13 res1 = Tφi × Tφi′ ,mixP1

14 else

15 res1 = Tφi × Tφi′ ,P1term1

16 endif

17 else

18 res1 = 0

19 endif

20

21

22 res2 = 0

23 if (xj+1/2 > xl′+1/2) then

24 if (xj+1/2 > xl+1/2 + xl′+1/2 − xmin) then

25 if (xj−1/2 > xl′+1/2) then

26 if (xj−1/2 > xl+1/2 + xl′+1/2 − xmin) then

27 res2 = Tφi′ ,φi ,allmix

28 else if (xj−1/2 ≤ xl+1/2 + xl′+1/2 − xmin

29 and xj−1/2 > xl−1/2 + xl′+1/2 − xmin

30 and xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

31 res2 = Tφi′ ,φi ,mixterm1term3 − Tφi′ ,φi ,mixterm2 − Tφi′ ,φi ,term4

32 else if (xj−1/2 ≤ xl+1/2 + xl′+1/2 − xmin

33 and xj−1/2 > xl−1/2 + xl′+1/2 − xmin

34 and xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin) then

35 res2 = Tφi′ ,φi ,mixterm1term3 − Tφi′ ,φi ,term2 − Tφi′ ,φi ,term4

36 else if (xj−1/2 ≤ xl+1/2 + xl′+1/2 − xmin

37 and xj−1/2 ≤ xl−1/2 + xl′+1/2 − xmin

38 and xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

39 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2 + Tφi′ ,φi ,term3 − Tterm4

40 else if (xj−1/2 ≤ xl+1/2 + xl′+1/2 − xmin

41 and xj−1/2 ≤ xl−1/2 + xl′+1/2 − xmin

42 and xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

43 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

44 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4

45 else

46 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4
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47 endif

48 else if (xj−1/2 ≤ xl′+1/2 and xj−1/2 > xl′−1/2) then

49 if (xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

50 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4

51 else if (xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

52 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

53 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4

54 else

55 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4

56 endif

57 else

58 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3 − Tφi′ ,φi ,term4

59 endif

60 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin

61 and xj+1/2 > xl−1/2 + xl′+1/2 − xmin

62 and xj+1/2 > xl+1/2 + xl′−1/2 − xmin) then

63 if (xj−1/2 > xl′+1/2) then

64 if (xj−1/2 > xl−1/2 + xl′+1/2 − xmin

65 and xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

66 res2 = Tφi′ ,φi ,mixterm1term3 − Tφi′ ,φi ,mixterm2

67 else if (xj−1/2 > xl−1/2 + xl′+1/2 − xmin

68 and xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin) then

69 res2 = Tφi′ ,φi ,mixterm1term3 − Tφi′ ,φi ,term2

70 else if (xj−1/2 ≤ xl−1/2 + xl′+1/2 − xmin

71 and xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

72 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2 + Tφi′ ,φi ,term3

73 else if (xj−1/2 ≤ xl−1/2 + xl′+1/2 − xmin

74 and xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

75 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

76 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3

77 else

78 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3

79 endif

80 else if (xj−1/2 ≤ xl′+1/2 and xj−1/2 > xl′−1/2) then

81 if (xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

82 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2 + Tφi′ ,φi ,term3

83 else if (xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

84 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

85 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3

86 else

87 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3

88 endif

89 else

90 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2 + Tφi′ ,φi ,term3

91 endif

92 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin

93 and xj+1/2 > xl−1/2 + xl′+1/2 − xmin

94 and xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin) then

95 if (xj−1/2 > xl′+1/2) then
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96 if (xj−1/2 > xl−1/2 + xl′+1/2 − xmin) then

97 res2 = Tφi′ ,φi ,mixterm1term3

98 else if (xj−1/2 ≤ xl−1/2 + xl′+1/2 − xmin

99 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

100 res2 = Tφi′ ,φi ,mixterm1 + Tφi′ ,φi ,term3

101 else

102 res2 = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term3

103 endif

104 else if (xj−1/2 ≤ xl′+1/2 and xj−1/2 > xl′−1/2) then

105 if (xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

106 res2 = Tφi′ ,φi ,mixterm1 + Tφi′ ,φi ,term3

107 else

108 res2 = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term3

109 endif

110 else

111 res2 = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term3

112 endif

113 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin

114 and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin

115 and xj+1/2 > xl+1/2 + xl′−1/2 − xmin) then

116 if (xj−1/2 > xl′−1/2) then

117 if (xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

118 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2

119 else if (xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

120 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

121 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2

122 else

123 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2

124 endif

125 else

126 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2

127 endif

128 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin

129 and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin

130 and xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin

131 and xj+1/2 > xl−1/2 + xl′−1/2 − xmin) then

132 if (xj−1/2 > xl′−1/2) then

133 if (xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

134 res2 = Tφi′ ,φi ,mixterm1

135 else

136 res2 = Tφi′ ,φi ,term1

137 endif

138 else

139 res2 = Tφi′ ,φi ,term1

140 endif

141 else

142 res2 = 0

143 endif

144 else if (xj+1/2 ≤ xl′+1/2 and xj+1/2 > xl′−1/2) then
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145 if (xj+1/2 > xl+1/2 + xl′−1/2 − xmin) then

146 if (xj−1/2 > xl′−1/2) then

147 if (xj−1/2 > xl+1/2 + xl′−1/2 − xmin) then

148 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,mixterm2

149 else if (xj−1/2 ≤ xl+1/2 + xl′−1/2 − xmin

150 and xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

151 res2 = Tφi′ ,φi ,mixterm1 − Tφi′ ,φi ,term2

152 else

153 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2

154 endif

155 else

156 res2 = Tφi′ ,φi ,term1 − Tφi′ ,φi ,term2

157 endif

158 else if (xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin

159 and xj+1/2 > xl−1/2 + xl′−1/2 − xmin) then

160 if (xj−1/2 > xl′−1/2) then

161 if (xj−1/2 > xl−1/2 + xl′−1/2 − xmin) then

162 res2 = Tφi′ ,φi ,mixterm1

163 else

164 res2 = Tφi′ ,φi ,term1

165 endif

166 else

167 res2 = Tφi′ ,φi ,term1

168 endif

169 else

170 res2 = 0

171 endif

172 else

173 res2 = 0

174 endif





c
C H A P T E R 4

c.1 derivation of the flux for ballistic kernel

The double integral with terms σ1
1 σ1

2 from equation 4.17 writes

∫
Il′

xmax−u+xmin∫
xj+1/2−u+xmin

σ1
1 (u)σ

1
2 (v)φi′ (ξl′(u))

φi (ξl(v))
v

[θ(v− xl−1/2)− θ(v− xl+1/2)]dvdu. (c.1)

Calculations for σ2
1 σ2

2 and σ3
1 σ3

2 are similar.

c.1.1 Inner integral

The rule for the inner integral is

a < b, c < d∫ b

a
f (x)[θ(x− c)− θ(x− d)]dx =

θ(b− c)
{∫ b

c
f (x)dx + θ(a− c)

∫ c

a
f (x)dx

}
− θ(b− d)

{∫ b

d
f (x)dx + θ(a− d)

∫ d

a
f (x)dx

}
(c.2)

163



164 chapter 4

With the change of variable ξl(x) = 2
hl
(x− xl), the inner integral on ξl writes

F̃(ξl′) ≡

2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)∫

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f (ξl)

[
θ(ξl −

2
hl
(xl−1/2 − xl))− θ(ξl −

2
hl
(xl+1/2 − xl))

]
dξl

= θ(xmax −
hl′

2
ξl′ − xl′ + xmin − xl−1/2)

2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)∫

2
hl
(xl−1/2−xl)

f (ξl)dξl

︸ ︷︷ ︸
F1

+θ(xj+1/2 −
hl′

2
ξl′ − xl′ + xmin − xl−1/2)

2
hl
(xl−1/2−xl)∫

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f (ξl)dξl

︸ ︷︷ ︸
F2


− θ(xmax −

hl′

2
ξl′ − xl′ + xmin − xl+1/2)

2
hl
(xmax−

hl′
2 ξl′+xmin−xl)∫

2
hl
(xl+1/2−xl)

f (ξl)dξl

︸ ︷︷ ︸
F3

+θ(xj+1/2 −
hl′

2
ξl′ − xl′ + xmin − xl+1/2)

2
hl
(xl+1/2−xl)∫

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f ξldξl

︸ ︷︷ ︸
F4


,

(c.3)
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where f (ξl) ≡ σ1
2

(
hl
2 ξl + xl

)
φi

hl
2 ξl+xl

. The double integral writes

2
h′l
(xl′+1/2−xl′ )∫

2
h′l
(xl′−1/2−xl′ )

φi′(ξl′)σ
1
1 (ξl′)F̃(ξl′)dξl′ = θ

(
xmax + xmin − xj+1/2

)
[∫

Il′
φi′σ1F1θ

(
2

hl′
(xmax + xmin − xl−1/2 − xl′)− ξl′

)
dξl′

+
∫

Il′
φi′σ1F2θ

(
2

hl′
(xmax + xmin − xl−1/2 − xl′)− ξl′

)
θ

(
2

hl′
(xj+1/2 + xmin − xl−1/2 − xl′)− ξl′

)
dξl′

−
∫

Il′
φi′σ1F3θ

(
2

hl′
(xmax + xmin − xl+1/2 − xl′)− ξl′

)
dξl′

−
∫

Il′
φi′σ1F4θ

(
2

hl′
(xmax + xmin − xl+1/2 − xl′)− ξl′

)
θ

(
2

hl′
(xj+1/2 + xmin − xl+1/2 − xl′)− ξl′

)
dξl′

]
.

(c.4)

c.1.2 Outer integral

The rules for the outer integral are
a < b∫ b

a
f (x)θ(e− x)dx = θ(e− a)

{∫ e

a
f (x)dx + θ(e− b)

∫ b

e
f (x)dx

}
,

(c.5)



a < b, i < e∫ b

a
f (x)θ(e− x)θ(i− x)dx

= θ(e− a)θ(i− a)
[

θ(e− a)(θ(e− b)− 1)
∫ a

i
f (x)dx

+θ(e− b)
{∫ i

a
f (x)dx + θ(i− b)

∫ b

i
f (x)dx

}]
.

(c.6)

Then the four integrals on ξl′ writes∫
Il′

φi′σ
1
1 F1θ

(
2

hl′
(xmax + xmin − xl−1/2 − xl′)− ξl′

)
dξl′

= θ(xmax + xmin − xl−1/2 − xl′−1/2){∫ 2
hl′

(xmax+xmin−xl−1/2−xl′ )

2
hl′

(xl′−1/2−xl′ )
φi′σ

1
1 F1dξl′

+θ(xmax + xmin − xl−1/2 − xl′+1/2)
∫ 2

hl′
(xl′+1/2−xl′ )

2
hl′

(xmax+xmin−xl−1/2−xl′ )
φi′σ

1
1 F1dξl′

}
,

(c.7)
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∫
Il′

φi′σ
1
1 F3θ

(
2

hl′
(xmax + xmin − xl+1/2 − xl′)− ξl′

)
dξl′

= θ(xmax + xmin − xl+1/2 − xl′−1/2)
2

hl′
(xmax+xmin−xl+1/2−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

φi′σ
1
1 F3dξl′

+θ(xmax + xmin − xl+1/2 − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xmax+xmin−xl+1/2−xl′ )

φi′σ
1
1 F3dξl′

 ,

(c.8)

∫
Il′

φi′σ
1
1 F2θ

(
2

hl′
(xmax − xl−1/2 − xl′)− ξl′

)
θ

(
2

hl′
(xj+1/2 − xl−1/2 − xl′)− ξl′

)
dξl′

= θ(xmax − xl−1/2 − xl′−1/2)θ(xj+1/2 − xl−1/2 − xl′−1/2)[
θ(xmax − xl−1/2 − xl′−1/2)(θ(xmax − xl−1/2 − xl′−1/2)− 1)

×

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(xj+1/2−xl−1/2−xl′ )

φi′σ
1
1 F2dξl′

+ θ(xmax − xl−1/2 − xl′+1/2)
2

hl′
(xj+1/2−xl−1/2−xl′ )∫
2

hl′
(xl′−1/2−xl′ )

φi′σ
1
1 F2dξl′

+θ(xj+1/2 − xl−1/2 − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xj+1/2−xl−1/2−xl′+1/2)

φi′σ
1
1 F2dξl′


 ,

(c.9)
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∫
Il′

φi′σ
1
1 F4θ

(
2

hl′
(xmax + xmin − xl+1/2 − xl′)− ξl′

)
θ

(
2

hl′
(xj+1/2 + xmin − xl+1/2 − xl′)− ξl′

)
dξl′

= θ(xmax − xl+1/2 − xl′−1/2)θ(xj+1/2 − xl+1/2 − xl′−1/2)[
θ(xmax + xmin − xl+1/2 − xl′−1/2)(θ(xmax + xmin − xl+1/2 − xl′−1/2)− 1)

×

2
hl′

(xl′−1/2−xl′ )∫
2

hl′
(xj+1/2+xmin−xl+1/2−xl′ )

φi′σ
1
1 F4dξl′

+ θ(xmax + xmin − xl+1/2 − xl′+1/2)
2

hl′
(xj+1/2+xmin−xl+1/2−xl′ )∫

2
hl′

(xl′−1/2−xl′ )

φi′σ
1
1 F4dξl′

+θ(xj+1/2 + xmin − xl+1/2 − xl′+1/2)

2
hl′

(xl′+1/2−xl′ )∫
2

hl′
(xj+1/2+xmin−xl+1/2−xl′+1/2)

φi′σ
1
1 F4dξl′


 .

(c.10)

The integrals are similar for σ2
1 σ2

2 and σ3
1 σ3

2 .
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c.1.3 Fortran scheme

For the scheme we define the following terms

f1,i′(ξl′) ≡ σ1

(
hl′

2
ξl′ + xl′

)
φi′ (ξl′) ,

f2,i(ξl) ≡ σ2

(
hl

2
ξl + xl

)
φi(ξl)

hl
2 ξl + xl

,

Tφi′ ,φi ,mixterm1term3 ≡
∫

Il′

∫
Il

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,mixterm1 ≡
∫

Il′

∫ 2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)

2
hl
(xl−1/2−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,mixterm2 ≡
∫

Il′

∫ 2
hl
(xl−1/2−xl)

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,mixterm1term2 ≡
∫

Il′

∫ 2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,term1 ≡
∫ 2

hl′
(xmax−xl−1/2+xmin−xl′ )

2
hl′

(xl′−1/2−xl′ )

∫ 2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)

2
hl
(xl−1/2−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,term2 ≡
∫ 2

hl′
(xj+1/2−xl−1/2+xmin−xl′ )

2
hl′

(xl′−1/2−xl′ )

∫ 2
hl
(xl−1/2−xl)

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,term3 ≡
∫ 2

hl′
(xmax−xl+1/2+xmin−xl′ )

2
hl′

(xl′−1/2−xl′ )

∫ 2
hl
(xmax−

hl′
2 ξl′−xl′+xmin−xl)

2
hl
(xl+1/2−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ ,

Tφi′ ,φi ,term4 ≡
∫ 2

hl′
(xj+1/2−xl+1/2+xmin−xl′ )

2
hl′

(xl′−1/2−xl′ )

∫ 2
hl
(xl+1/2−xl)

2
hl
(xj+1/2−

hl′
2 ξl′−xl′+xmin−xl)

f1,i′(ξl′) f2,i(ξl)dξldξl′ .

(c.11)

The scheme to calculate the first part of the flux, i.e. with σ1
1 σ1

2 , for k = 0 writes

1 res = 0

2 if (xmax > xj+1/2) then

3 if (xmax > xl+1/2 + xl′+1/2 − xmin) then

4 if (xj+1/2 > xl+1/2 + xl′+1/2 − xmin) then

5 res = 0

6 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin and xj+1/2 > xl+1/2 + xl′−1/2 − xmin

7 and xj+1/2 > xl−1/2 + xl′+1/2 − xmin) then

8 res = Tφi′ ,φi ,mixterm1term3 + Tφi′ ,φi ,mixterm2 - Tφi′ ,φi ,term4

9 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin and xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin

10 and xj+1/2 > xl−1/2 + xl′+1/2 − xmin) then

11 res = Tφi′ ,φi ,mixterm1term3 + Tφi′ ,φi ,mixterm2

12 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin and xj+1/2 > xl+1/2 + xl′−1/2 − xmin

13 and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin) then

14 res = Tφi′ ,φi ,mixterm1term3 + Tφi′ ,φi ,term2 - Tφi′ ,φi ,term4

15 else if (xj+1/2 ≤ xl+1/2 + xl′+1/2 − xmin and xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin

16 and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin and

xj+1/2 > xl−1/2 + xl′−1/2 − xmin) then

17 res = Tφi′ ,φi ,mixterm1term3 + Tφi′ ,φi ,term2
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18 else

19 res = Tφi′ ,φi ,mixterm1term3

20 endif

21 else if (xmax ≤ xl+1/2 + xl′+1/2 − xmin and xmax > xl+1/2 + xl′−1/2 − xmin

22 and xmax > xl−1/2 + xl′+1/2 − xmin) then

23 if (xj+1/2 > xl+1/2 + xl′−1/2 − xmin and xj+1/2 > xl−1/2 + xl′+1/2 − xmin) then

24 res = Tφi′ ,φi ,mixterm1term2 - Tφi′ ,φi ,term3 - Tφi′ ,φi ,term4

25 else if (xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin and xj+1/2 > xl−1/2 + xl′+1/2 − xmin)

then

26 res = Tφi′ ,φi ,mixterm1term2 - Tφi′ ,φi ,term3

27 else if (xj+1/2 > xl+1/2 + xl′−1/2 − xmin and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin)

then

28 res = Tφi′ ,φi ,mixterm1 + Tφi′ ,φi ,term2 - Tφi′ ,φi ,term3 - Tφi′ ,φi ,term4

29 else if (xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin and xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin

30 and xj+1/2 > xl−1/2 + xl′−1/2 − xmin) then

31 res = Tφi′ ,φi ,mixterm1 + Tφi′ ,φi ,term2 - Tφi′ ,φi ,term3

32 else

33 res = Tφi′ ,φi ,mixterm1 - Tφi′ ,φi ,term3

34 endif

35 else if (xmax ≤ xl+1/2 + xl′+1/2 − xmin and xmax ≤ xl+1/2 + xl′−1/2 − xmin

36 and xmax > xl−1/2 + xl′+1/2 − xmin) then

37 if (xj+1/2 > xl−1/2 + xl′+1/2 − xmin) then

38 res = Tφi′ ,φi ,mixterm1term2

39 else if (xj+1/2 ≤ xl−1/2 + xl′+1/2 − xmin and xj+1/2 > xl−1/2 + xl′−1/2 − xmin)

then

40 res = Tφi′ ,φi ,mixterm1 + Tφi′ ,φi ,term2

41 else

42 res = Tφi′ ,φi ,mixterm1

43 endif

44 else if (xmax ≤ xl+1/2 + xl′+1/2 − xmin and xmax > xl+1/2 + xl′−1/2 − xmin

45 and xmax ≤ xl−1/2 + xl′+1/2 − xmin) then

46 if (xj+1/2 > xl+1/2 + xl′−1/2 − xmin) then

47 res = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term2 - Tφi′ ,φi ,term3 - Tφi′ ,φi ,term4

48 else if (xj+1/2 ≤ xl+1/2 + xl′−1/2 − xmin and xj+1/2 > xl−1/2 + xl′−1/2 − xmin)

then

49 res = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term2 - Tφi′ ,φi ,term3

50 else

51 res = Tφi′ ,φi ,term1 - Tφi′ ,φi ,term3

52 endif

53 else if (xmax ≤ xl+1/2 + xl′+1/2 − xmin and xmax ≤ xl+1/2 + xl′−1/2 − xmin

54 and xmax ≤ xl−1/2 + xl′+1/2 − xmin and xmax > xl−1/2 + xl′−1/2 − xmin)

then

55 if (xj+1/2 > xl−1/2 + xl′−1/2 − xmin) then

56 res = Tφi′ ,φi ,term1 + Tφi′ ,φi ,term2

57 else

58 res = Tφi′ ,φi ,term1

59 endif

60 else

61 res = 0
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62 endif

63 else

64 res = 0

65 endif

The two other parts are similar with σ2
1 σ2

2 and σ3
1 σ3

2 . The total flux Fc
coag is the sum of the

three parts.
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d.1 derivation of the limiting equations

d.1.1 Analysis in Regime 1

The derivation of the limiting SDE in Regime 1 follows from standard arguments and
does not contain any difficulty or unexpected additional term. We thus only provide the
heuristic arguments. A rigorous analysis may be performed using the tools developed
below to deal with the other regimes.

For the first step, the parameter δ > 0 is held fixed, and one needs to pass to the limit
ε→ 0. Observe that

dZε,δ =
Vε,δ

ε
dt

= − g(Zε,δ)

f (Zε,δ)
dt +

σ
√

2
δ

h(Zε,δ)ζδdt− εdVε,δ,
(d.1)

and as a consequence the limiting SDE when ε→ 0 is given bydZ0,δ = − g(Z0,δ)
f (Z0,δ)

dt + σ
√

2
δ h(Z0,δ)ζδdt,

dζδ = − ζδ

δ2 dt + 1
δ dβ(t).

(d.2)

With the notation ηδ(t) = δ−1
∫ t

0 ζδ(s)ds, one has

1
δ

ζδdt = dηδ = dβ(t)− δdζδ, (d.3)

which heuristically justifies convergence of ηδ to Brownian Motion. At the limit, noise
needs to be interpreted with the Stratonovich convention, which is a classical result when
Brownian Motion is approximated by a smooth process. Thus, passing to the limit δ→ 0,
one obtains the limit SDE

dZ = − g(Z)
f (Z)

dt + σ
√

2h(Z) ◦ dW(t), (d.4)

where
(
W(t)

)
t≥0 is a real-valued standard Wiener process.

The equivalent Itô formulation of the SDE is

dZ = − g(Z)
f (Z)

dt + σ2h(Z)h′(Z)dt + σ
√

2h(Z)dW(t). (d.5)

d.1.2 Analysis in Regime 2

In this regime, one needs to be careful in order to exhibit the noise-induced drift term
when f is not constant. We thus provide all the details of the derivation.
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Note that the first step below still follows from a standard argument (which is made
rigorous below): for fixed ε > 0, when δ→ 0, one obtains the limiting SDEdZε = Vε

ε dt

dVε + f (Zε)Vε

ε2 dt + g(Zε)
ε dt = σ

√
2

ε f (Zε)h(Zε)dW̃(t),
(d.6)

where
(
W̃(t)

)
t≥0 is a real-valued standard Wiener process. Observe that Itô and Stratonovich

interpretations of the noise coincide for this SDE (the diffusion coefficient depends only
on the position component, whereas the noise acts only on the velocity component).
However, an heuristic argument to pass to the limit ε→ 0 would not explain the presence
of the noise-induced drift term (when f is not constant), and thus would not provide the
correct limiting SDE.

Let us now present a rigorous derivation of the limiting SDE in Regime 2. For the first
step, the parameter ε > 0 is held fixed. One needs to construct an asymptotic expansion
in terms of the small parameter δ, of the form

uε,δ(t, z, v, ζ) = uε,0(t, z, v) + δrε,1(t, z, v, ζ) + δ2rε,2(t, z, v, ζ) + O(δ3), (d.7)

where the zero-order term uε,0 does not depend on ζ and describes the limiting process.
Then one needs to identify the limiting generator Lε,0

such that one has ∂tuε,0 = Lε,0
uε,0.

Inserting the asymptotic expansion in the backward Kolmogorov equation (5.64) and
using the expression (5.62) of the infinitesimal generator Lε,δ, one obtains the following
hierarchy of equations when matching terms of size δ−2, δ−1 and 1 respectively:

A4uε,0 = 0,

A4rε,1 +
1
ε
A2uε,0 = 0,

A4rε,2 +
1
ε
A2rε,1 +

(1
ε
A1 +

1
ε2A3

)
uε,0 = ∂tuε,0.

(d.8)

The first equation is consistent with the assumption that uε,0 does not depend on ζ. A
solution of the second equation is given by

rε,1(t, z, v, ζ) =
σ
√

2 f (z)h(z)
ε

ζ∂vuε,0(t, z, v). (d.9)

Let ν = N (0, 1
2 ) denote the invariant distribution of the Ornstein-Uhlenbeck process

dζ = −ζdt + dβ(t). The partial differential equation satisfied by uε,0 is obtained by
taking the average of the last equation of the hierarchy, with respect to dν(ζ), and using
the property

∫
A4ψ(ζ)dν(ζ) = 0, for any smooth function ψ. Using that

∫
ζ2dν(ζ) = 1

2 ,
one obtains

∂tuε,0 =
σ2 f (z)2h(z)2

ε2 ∂2
vvuε,0 +

(1
ε
A1 +

1
ε2A3

)
uε,0

= Lε,0
uε,0.

(d.10)

For completeness, rε,2 is constructed as solution of the Poisson equation

−A4rε,2(t, z, v, ζ) =
1
ε

(
A2rε,1(t, z, v, ζ)−

∫
A2rε,1(t, z, v, ·)dν

)
, (d.11)

which is solvable since the right-hand side is centered with respect to ν.
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The limiting generator Lε,0
is associated with the SDE (d.6). It remains now to pass to

the limit ε→ 0. This is performed by constructing an asymptotic expansion in terms of
the small parameter ε of the form

uε,0(t, z, v) = u0,0(t, z) + εr0,1(t, z, v) + ε2r0,2(t, z, v) + O(ε3), (d.12)

where the zero-order term u0,0 does not depend on v, and by identifying the limiting
generator L0,0

such that one has ∂tu0,0 = L0,0
u0,0. Observe that one can write

Lε,0
=

1
ε
A1 +

1
ε2A3, (d.13)

where A3 is defined by

A3 ϕ(z, v) = σ2 f (z)2h(z)2∂2
vv ϕ(z, v)− f (z)v∂v ϕ(z, v). (d.14)

Inserting the asymptotic expansion in the backward Kolmogorov equation yields the
following hierarchy of equations, when matching terms of size ε−2, ε−1 and 1 respectively:

A3u0,0 = 0,

A3r0,1 +A1u0,0 = 0,

A3r0,2 +A1r0,1 = ∂tu0,0.

(d.15)

The first equation is consistent with the assumption that u0,0 does not depend on v. It is
then straightforward to check that a solution of the second equation is given by

r0,1(t, z, v) =
v∂zu0,0(t, z)

f (z)
. (d.16)

Finally, for any fixed z, let µz = N (0, σ2h(z)2 f (z)) denote the invariant distribution of
the Ornstein-Uhlenbeck process solving the SDE dVz = − f (z)Vzdt + σ

√
2 f (z)h(z)dW(t).

The PDE satisfied by u0,0 is obtained by taking the average of the last equation of the
hierarchy, with respect to dµz(v), and using the property

∫
A3ψ(v)dµz(v) = 0 for any

smooth function ψ. Using that
∫

v2dµz(v) = σ2h(z)2 f (z), one obtains

∂tu0,0(t, z) =
∫

∂tu0,0(t, z)dµz(v)

=
∫
A1r0,1(t, z, v)dµz(v)

= σ2h(z)2 f (z)∂z
(∂zu0,0

f (z)
)
− g(z)

f (z)
∂zu0,0

= −
(σ2h(z)2 f ′(z)

f (z)
+

g(z)
f (z)

)
∂zu0,0 + σ2h(z)2∂2

zzu0,0

= L0,0
u0,0.

(d.17)

The origin of the noise-induced drift term when f is not constant appears clearly in
the computation above. For completeness, for fixed t and z, the function r0,2(t, z, ·) is
constructed as solution of the Poisson equation

−A3r0,2(t, z, v) = A1r0,1(t, z, v)−
∫
A1r0,1(t, z, ·)dµz, (d.18)

which is solvable since the right-hand side is centered with respect to µz.
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The limiting generator L0,0
is associated with the SDE written in Itô form

dZ = − g(Z)
f (Z)

dt− σ2h(Z)2 f ′(Z)
f (Z)

dt + σ
√

2h(Z)dW(t) (d.19)

where
(
W(t)

)
t≥0 is a standard real-valued Wiener process.

The Stratonovich form of the SDE is written as

dZ = − g(Z)
f (Z)

dt− σ2h(Z)( f h)′(Z)
f (Z)

dt + σ
√

2h(Z) ◦ dW(t). (d.20)

d.1.3 Analysis in Regime 3

In Regime 3, the parameters δ and ε go to 0, with the constraint δ = λε, where λ ∈ (0, ∞)

is held fixed. In the sequel, we consider ε as the unique small parameter. Let uε
λ = uε,λε.

Using the relation δ = λε, the infinitesimal generator Lε,δ given by (5.62) is written as

Lε
λ =

1
ε
B1 +

1
ε2B2,λ, (d.21)

where B1 = A1 and B2,λ = 1
λA2 +A3 +

1
λ2A4.

One needs to construct an asymptotic expansion in terms of the small parameter ε, of
the form

uε
λ(t, z, v, ζ) = uλ(t, z) + εr1

λ(t, z, v, ζ) + ε2r2
λ(t, z, v, ζ) + O

(
ε3) , (d.22)

where the zero-order term uλ does not depend on v and ζ and describes the limiting pro-
cess. Then, one needs to identify the limiting generator Lλ such that one has ∂tuλ = Lλuλ.
Inserting the asymptotic expansion in the backward Kolmogorov equation (5.64) and
using the expression (d.21) of the infinitesimal generator Lε

λ, one obtains the following
hierarchy of equations when matching terms of size ε−2, ε−1 and 1 respectively:

B2,λuλ = 0,

B2,λr1
λ + B1uλ = 0,

B2,λr2
λ + B1r1

λ = ∂tuλ.

(d.23)

The first equation is consistent with the assumption that uλ does not depend on v and ζ.
The infinitesimal generator B2,λ is associated with the two-dimensional SDE system

for the components v and ζ, with frozen position component z:dVλ,z = − f (z)Vλ,zdt + σ
√

2 f (z)h(z)
λ ζλdt

dζλ = − ζλ

λ2 dt + 1
λ dβ(t).

(d.24)

The process (Vλ,z, ζλ) is a two-dimensional Ornstein-Uhlenbeck process, which converges
when t→ ∞ to a centered Gaussian distribution µλ,z with covariance matrix characterized
by ∫

ζ2dµλ,z(v, ζ) =
1
2

,∫
vζdµλ,z(v, ζ) =

λσ f (z)h(z)√
2(1 + λ2 f (z))

,

∫
v2dµλ,z(v, ζ) =

σ2h(z)2 f (z)
1 + λ2 f (z)

.

(d.25)
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In fact, 〈ζ2〉λ,z =
∫

ζ2dµz(v, ζ), 〈vζ〉λ,z =
∫

vζdµz(v, ζ) and 〈v2〉z =
∫

v2dµλ,z(v, ζ) are
obtained in the large time limit, and solve the system (derived for instance by Shapiro-
Loginov procedure)

0 = − 〈ζ
2〉λ,z
λ2 + 1

2λ2 ,

0 = −
( 1

λ2 + f (z)
)
〈vζ〉λ,z +

σ
√

2 f (z)h(z)
λ 〈ζ2〉λ,z,

0 = − f (z)〈v2〉λ,z +
σ
√

2 f (z)h(z)
λ 〈vζ〉λ,z.

(d.26)

Define

r1
λ(z, v, ζ) =

∂zuλ

f (z)
v + λσ

√
2h(z)∂zuλζ, (d.27)

then one has B2,λr1
λ + B1uλ = 0. To identify the generator of the limiting SDE, it suffices

to exploit the identity
∫
B2,λψ(v, ζ)dµλ,z(v, ζ) = 0 for all smooth functions ψ, and to

compute from the last equation of the hierarchy

∂tuλ(t, z) =
∫

∂tuλ(t, z)dµλ,z(v, ζ)

=
∫
B1r1

λ(t, z, v, ζ)dµλ,z(v, ζ)

= − g(z)
f (z)

∂zuλ + 〈v2〉λ,z∂z
(∂zuλ

f (z)
)
+ λσ

√
2〈vζ〉λ,z∂z

(
h(z)∂zuλ

)
= − g(z)

f (z)
∂zuλ

+
σ2h(z)2 f (z)
1 + λ2 f (z)

∂z
(∂zuλ

f (z)
)
+

λ2σ2h(z) f (z)
1 + λ2 f (z)

∂z
(
h(z)∂zuλ

)
= − g(z)

f (z)
∂zuλ + σ2h(z)2∂2

zzuλ + σ2h(z)h′(z)∂zuλ

− σ2( f h)′(z)h(z)
f (z)(1 + λ2 f (z))

∂zuλ

= Lλuλ.

(d.28)

The limiting generator Lλ is associated with the SDE written in Itô form

dZ = − g(Z)
f (Z)

dt + σ2h(Z)h′(Z)dt

− σ2h(Z)( f h)′(Z)
(1 + λ2 f (Z)) f (Z)

dt + σ
√

2h(Z)dW(t),
(d.29)

where
(
W(t)

)
t≥0 is a standard real-valued Wiener process. One checks that the Stratonovich

form of the SDE is

dZ = − g(Z)
f (Z)

dt− σ2h(Z)( f h)′(Z)
(1 + λ2 f (Z)) f (Z)

dt + σ
√

2h(Z) ◦ dW(t). (d.30)





e
C H A P T E R 6

e.1 mcmc orbital fit of hip 117452 babb

Figure e.1: Results of the MCMC fit of the NaCo and SPHERE combined astrometric data of
HIP 117452 Ba and Bb reported in terms of statistical distribution matrix of the orbital
elements a, e, i,Ω,ω, and tp. The red line in the histograms and the black star in
the correlation plots indicate the position of the best LSLM-χ2 model obtained for
comparison.
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