
HAL Id: tel-03106258
https://theses.hal.science/tel-03106258

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to representation learning of multivariate
time series and graphs

Edouard Pineau

To cite this version:
Edouard Pineau. Contributions to representation learning of multivariate time series and graphs.
Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAT037�.
�tel-03106258�

https://theses.hal.science/tel-03106258
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

P
PA

T0
37 Contributions to representation learning

of multivariate time series and graphs
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

Ecole doctorale de l’Institut Polytechnique de Paris, n◦626 (ED IP Paris)
Spécialité de doctorat : Informatique, données et intelligence artificielle

Thèse présentée et soutenue à Paris, le 07/12/2020, par

EDOUARD PINEAU

Composition du Jury :

Florence d’Alché-Buc
Professeur, Télécom Paris Présidente

Ahlame Douzal
Professeur associé, Université Joseph Fourier Grenoble Rapporteur

Thierry Artières
Professeur, Ecole Centrale Marseille Rapporteur

Ludovic Denoyer
Professeur / ingénieur de recherche, Université Paris 6 / Facebook Examinateur

Fabien Moutarde
Professeur, Ecole Nationale Supérieure des Mines de Paris Examinateur

Thomas Bonald
Professeur, Télécom Paris Directeur de thèse

Sébastien Razakarivony
Ingénieur de recherche, Safran Encadrant industriel

Remerciements

Quelques remerciements. Les noms qui n’y apparaissent pas sont peut-être entre les lignes, lisez atten-

tivement.

Un premier remerciement aux encadrants de ma thèse, Thomas et Sébastien. Leur temps et leur énergie

consacrés à suivre et orienter mes idées et mon cap ont, à différents niveaux, contribué à la réussite de ma

thèse. Le côté humain a aussi une importance que l’intensité des échanges scientifiques n’aurait pu combler

et, en cela, je les remercie également, ils ont été des compagnons de voyage en plus d’être des encadrants de

recherche.

Par ailleurs, je remercie mes parents, pour leur soutien inconditionnel tout au long de ma vie. J’étends

ces remerciements à toute ma famille qui a toujours été à mes côtés.

A Anne-Cécile, pour sa présence indéfectible, pour son soutien si important.

A mes nouveaux amis, ceux que j’ai rencontrés sur le bord du chemin. Les membres du LINCS, les

collègues de Safran. Ils sont nombreux, ceux que j’aurai grand plaisir à revoir. Certains ont particulièrement

compté, ils se reconnaîtront.

A ceux qui ne rentrent pas dans les précédents paragraphes et qui sont concernés par ces remerciement,

je pense à mes amis d’autrefois qui le sont encore aujourd’hui, je vous salue.

ii

Résumé

Les algorithmes d’apprentissage automatique permettent d’apprendre, à partir de données, une capacité

à prendre des décisions ou faire des prédictions, sur un large panel de tâches comme la classification de

données (par exemples des images, des graphes, etc.) ou la surveillance de systèmes mécaniques. Le modèle

appris par l’algorithme est une approximation statistique d’un modèle optimal inconnu. L’efficacité d’un

algorithme d’apprentissage dépend d’un équilibre entre la complexité de la distribution des données, la

richesse du modèle statistique utilisé et la complexité de la tâche (décision/prédiction) à effectuer sur de

nouvelles données issues de la même distribution que les données d’apprentissage.

Néanmoins, il est fréquent d’avoir besoin d’hypothèses simplificatrices sur les données (par exemple

la séparabilité linéaire, l’indépendance des variables, etc.). Mais quand la distribution est complexe (par

exemple en grande dimension avec des interactions entre les variables), les hypothèses simplificatrices sont

souvent fausses et donc contre-productives. Dans cette situation, une solution consiste à ne pas donner

directement les données brutes à l’algorithme d’apprentissage mais une représentation alternative de ces

données. L’objectif de cette représentation est de séparer les informations pertinentes du bruit (qui sera

filtré de la représentation), en particulier quand l’information pertinente est latente (cachée), afin d’aider le

modèle statistique de décision.

Jusqu’à récemment, une majorité des représentations standards utilisées dans les algorithmes d’apprentissage

étaient construites par des experts, à la main, sur la base de connaissances métier et d’intuitions em-

piriques. Récemment, une branche de l’apprentissage automatique appelée apprentissage profond a changé

le paradigme. L’apprentissage profond est essentiellement basé sur les réseaux de neurones, une riche famille

de fonctions paramétriques, qui apprennent des représentations latentes des données directement à partir

des données, avec peu de connaissances d’experts. Ces récentes avancées ont surpassé la plupart des méth-

odes standards dans des domaines comme la vision par ordinateur, l’analyse de la parole ou de textes.

Dans cette thèse, nous nous sommes intéressés à l’apprentissage de représentation de deux types de données

: les séries temporelles multivariées et les graphes. Les séries temporelles et les graphes sont des objets

complexes qui ont des caractéristiques les rendant difficilement traitables par des algorithmes standards de

machine learning. Par exemple, ils peuvent avoir des tailles variables et ont des alignements non-triviaux,

qui empêchent l’utilisation de métriques standards pour les comparer entre eux (e.g. norme Euclidienne).

Il est alors nécessaire de trouver pour les échantillons observés (séries temporelles multivariées ou graphes)

une représentation alternative qui les rend comparables par le biais de métriques et hypothèses standards,

et donc utilisables dans des algorithmes adoptant les hypothèses simplificatrices citées ci-avant.

Les contributions de ma thèse sont un ensemble d’analyses, d’approches pratiques et de résultats théoriques

présentant des méthodes d’apprentissage de représentation de STM et de graphes.

Deux méthodes de représentation de séries temporelles multivariées sont dédiées au suivi d’état caché

de systèmes mécaniques. La première propose une représentation "model-based" appelée Sequence-to-

graph (Seq2Graph). Seq2Graph se base sur l’hypothèse que les données observées ont été générées par un

modèle causal simple, dont l’espace des paramètres sert d’espace de représentation. Cette méthode a été

testée pour différents objectifs : détection de causalité dans des échantillons courts de séries temporelles et

détection de dérive par rapport à un modèle moyen. La seconde méthode propose une méthode générique

de détection de tendances dans des séries temporelles, appelée Contrastive Trend Estimation (CTE), qui

fait l’hypothèse que le vieillissement d’un système mécanique est monotone. Une preuve d’identifiabilité et

une extension à des problèmes d’analyse de survie rendent cette approche puissante pour le suivi d’état de

système mécaniques. En parallèle de l’étude théorique d’identifiabilité de la tendance dans le modèle CTE,

nous avons étudié l’identifiabilité plus générale des problèmes de séparation de sources indépendantes dans

des séries temporelles multivariées.

Deux méthodes de représentation de graphes pour la classification sont aussi proposées. Une difficulté

avec les graphes réside dans le fait que l’objet graphe est invariant (en propriété) à la permutation des indices

des nœuds. Il faut donc trouver une représentation des graphes qui soit invariante à cette permutation. Une

première propose de voir les graphes comme des séquences de nœuds et donc de les traiter avec un outil

standard de représentation de séquences : un réseau de neurones récurrent. Le passage répété sur chaque

graphe vu dans des ordres de nœuds différents permet de forcer le réseau de neurones à apprendre cette

invariance. Une seconde méthode propose une analyse théorique et pratique du spectre du Laplacien pour

la classification de graphes, qui lui est intrinsèquement invariant à la permutation des nœuds du graphe.

Cette dernière méthode, simple, permet d’établir une baseline solide pour la classification de graphes.

ii

Contents

List of Symbols v

Index vi

1 Context, outline and contributions 1

1.1 Context of the thesis . 1

1.2 Thesis outline . 3

1.3 Contributions . 4

2 Representation learning, multivariate time series and graphs 7

2.1 Overview . 7

2.2 Latent variable models . 13

2.3 Multivariate time series . 21

2.4 State-space models . 29

2.5 Graph representation . 37

3 VAR models and Granger causality 43

3.1 Seq2VAR: efficient VAR parameters inference . 43

3.2 Seq2Graph: Seq2VAR for system’s state monitoring . 49

3.3 Experiments . 53

3.4 Discussions . 64

3.5 Conclusion . 67

4 Contrastive learning of hidden temporal trends 69

4.1 Presentation of the problem . 69

4.2 Contrastive trend extraction problem setup . 70

4.3 Identifiability study . 71

4.4 Relation with other models . 73

4.5 Related work on trend detection . 75

4.6 Experiments . 77

4.7 Discussion on noisy CTE . 85

4.8 Conclusion . 88

iii

CONTENTS

5 Recurrent graph classification 89

5.1 Sequential embedding of sequence of nodes . 89

5.2 Recurrent graph classifier . 90

5.3 Regularization with autoregressive node prediction . 92

5.4 Experiments . 94

5.5 Conclusion . 97

6 Laplacian spectrum for graph classification 99

6.1 Introduction and intuition . 99

6.2 Analysis of the relevance of GLS for classification . 100

6.3 Experiments . 104

6.4 Conclusion . 108

6.5 Proofs . 109

7 Conclusion 111

Appendices 113

A Background: neural networks 114

A.1 Different neural networks for different inductive biases . 114

B Background: algebra, statistics and optimization 119

B.1 Note on variational inference . 119

B.2 Change of variable formula . 120

B.3 Note on random coefficient regression . 120

B.4 Note on proximal algorithms . 121

B.5 Note on contrastive divergence and contrastive learning . 122

B.6 Proof of GLS isomorphism-invariance . 124

C Datasets 125

C.1 Ball-springs datasets . 125

C.2 NASA C-MAPSS datasets . 125

C.3 Graph datasets . 126

Bibliography 129

iv

List of Symbols

X Input space

Z Latent space of representation

Y Output space

X Sample from input space

Z Sample from latent space

yX Variable y (e.g. label) associated to sample X

F : X −→ Z Representation function (also called encoder)

D : Z −→ X Generator (also called decoder)

Fφ : X −→ Z Neural representation function with parameters φ

Dψ : Z −→ X Neural generator with parameters ψ

A> Transpose of matrix A

EX Expectation computed over X
∆X Temporal differential operator for temporal signal

〈X〉 Mean with respect to time if X is a time series: 〈X〉 = 1
T

∫ T
0
Xtdt

λ(M) Eigenvalues of a matrix M in ascending order

P(n) Set of all n× n permutation matrices

1n n-dimensional vector of ones

1E Indicator of event E: equals 1 if E, 0 otherwise

v

Index

AE Autoencoder

BSS Blind source separation

CLT Central limit theorem

CNN Convolutional neural network

CTE Contrastive trend extraction

DGI Divergence to graph isomorphism

DL Deep learning

DRM Dimensionality reduction model

FBM Flow-based model

FC Fully-connected

GLS Graph Laplacian spectrum

GNN Graph neural network

GRU Gated recurrent unit

HM Health monitoring

HMM Hidden Markov Model

ICA Independent component analysis

INN Invertible neural network

LRM Latent representation model

LVM Latent variable model

ML Machine learning

MLP Multi-layer perceptron

MTS Multivariate time series

NN Neural network

PCA Principal component analysis

RAE Recurrent autoencoder

RNN Recurrent neural network

UTS Univariate time series

VAE Variational autoencoder

vi

Chapter 1

Context, outline and contributions

1.1 Context of the thesis

1.1.1 Machine learning context

Machine learning (ML) algorithms are designed to learn from data the ability to take decisions or make

predictions, in a large panel of tasks like classification of images or monitoring of mechanical systems. In

general, the learned model is a statistical approximation of the true/optimal unknown decision/prediction

process.

The efficiency of an ML algorithm depends on an equilibrium between model richness, complexity of the

data distribution and complexity of the task. Nevertheless, for computational convenience, the statistical

model may adopt simplifying assumptions about the data (linear separability, independence of the observed

variables, etc.). Yet, when data distribution is complex (e.g. high-dimensional with nonlinear interactions

between observed variables), the simplifying assumptions are counterproductive. In this situation, a solution

is to feed the model with an alternative representation of the data. The objective of the data representation

is to separate the relevant information from the noise, in particular if the relevant information is hidden

(latent), in order to help the simple statistical model.

Until recently and the rise of modern ML, many standard representations consisted in an expert-based

handcrafted preprocessing of data, to filter the unnecessary information before feeding the ML model. Re-

cently, a branch of ML called deep learning (DL) completely shifted the paradigm. DL uses neural networks

(NNs) [Goodfellow et al., 2016], a family of powerful parametric functions, as learning data representation

pipelines. Thanks to cheap high-capacity hardware (e.g. GPUs), many NN-based solutions were developed

to learn to extract relevant representations of different types of data (images, vectors, graphs, time series,

etc.). These recent advances outperformed most of the handcrafted data features [Nanni et al., 2017] in

many domains, like computer vision, speech analysis and text processing.

1.1.2 Industrial context

In this context, Safran, a major aeronautic industrial actor, deployed financial and scientific means in

data-driven activities, like non-destructive inspection, predictive maintenance, aerial object detection, au-

1

CHAPTER 1. CONTEXT, OUTLINE AND CONTRIBUTIONS

tonomous vehicles or design, to propose new tools to engineers.

In particular, my thesis, presented in this document, is undertaken in the Maths and Algorithms for

Temporal Data (MATD) team from the Signal and Information Technologies (SIT) research group. The

purpose of MATD is to propose methods for health monitoring (HM) of Safran products (mechanical systems,

landing gears, etc.) based on data recorded by sensors. The products from which data is recorded/generated

will be generically called mechanical systems .

Data-based HM is the set of operations implemented to assess the state of a system from data, along

its life (see an illustration in Figure 1.1). It is the intermediate phase between data recording and the

decision of performing a maintenance or not. HM from data is an important topic and a major need for

the future of aeronautics business models for two main reasons. First, monitoring the state of a mechanical

system enhances its safety, which is a major concern in aeronautics. Second, besides additional safety,

being more accurate and specific on monitoring would generate cost savings by, for example, optimizing

inter-maintenance time-lapse.

When data is recorded while the studied system is running in real-life situation, several limits occur in

terms of data analysis. First, our data comes from aircraft that landed safely: there is no example of in-use

failures, hence no explicit notion of impairing system. For this limit, test bench may be set to reach rupture

point. However, such data is expensive with a limited representation of real life usage. We note that in certain

situations, simulations of failing mechanical systems can also be used to test the HM methods. Second, there

is generally no data-driven definition of the state of a mechanical system. Some indicators exist, based on

mechanical signals (for example exhaust gas temperature margins (EGT) [Ackert, 2015]). Yet, in certain

situations, they are not fully satisfying, for example because of confusing effects (a growing EGT margin can

both signify improvement or deterioration of an engine, depending on other information). A supplementary

richer monitoring indicator may bring additional meaningful information. Finally, unobserved variables can

influence the system. They can be endogenous (e.g. unrecorded part of the studies mechanical system) or

exogenous (e.g. weather, load). These unobserved variables can sometimes mislead the standard indicators.

In order to ease the problem analysis, we may split HM for in-use mechanical systems in four steps: 1

recording the data with sensors, 2 representing data with an appropriate representation inference model

and/or modeling the studied system (with or without a priori knowledge) with appropriate physical and/or

statistical model, 3 extracting the meaningful information hidden in the representation and/or the model-

ing, 4 defining and monitoring the mechanical system’s state from the steps 2 and 3 .

We mainly focus on the steps 2 and 3 , i.e. representation and information extraction.

1.1.3 The thesis

In this thesis we are interested in extracting meaningful information from two types of data: multivariate

time series (MTS) and graphs. The time series part is directly related to the industrial context, presented

above, since the sensor data we treat at Safran are MTS (one time series by sensor). The graph part is a

contribution to a standard problem in ML community: the classification of graphs.

The interest of studying these types of data is the following: MTS and graphs are particular objects that

do not directly match standard requirements of ML algorithms. For example, they can have variable size

and non-trivial alignment, such that comparing two MTS or two graphs with standard metrics is generally

2

1.2. Thesis outline

Figure 1.1 – A mechanical system (here a plane) effectuates several flights (gray irregular graduations)

during which data are recorded from sensors. The state of the plane varies with time. Maintenances are

carried out regularly to reset the state of the system. The objective is to learn the unknown state of the

system from the recorded MTS, eventually without the supervision of any technical report that explicitly

describes the state of the system at a certain moment of its life.

not relevant. The objective of this thesis is therefore to study and propose solutions to help ML decision

process with appropriate representation of MTS and graphs.

1.2 Thesis outline

The thesis is divided into seven chapters, among which two are dedicated to the introduction (including the

current), four to original contributions and one last to the conclusion. Chapters 3 and 4 are dedicated to

the contributions to MTS representation learning, in particular for HM of mechanical systems. Chapters

5 and 6 are dedicated to the contributions to graph representation and classification. We propose below a

chapter-wise outline.

Chapter 2 introduces the main concepts required to fully understand the current thesis: representation

learning, multivariate time series and graphs.

Chapter 3 presents a new encoder-decoder framework that consists in training an MTS embedding

function that maps MTS samples to model-based Granger causality graphs. We claim and show that such

framework gives relevant MTS representation for mechanical system state monitoring.

Chapter 4 presents a new simple yet powerful method to extract trend signal underlying temporal data,

based on the application of a principle recently widely used in the ML community: the contrastive learning.

Chapter 5 leverages the high expressiveness of recurrent neural networks, coupled with assumptions from

both sequence and graph mining, for the classification of graphs.

Chapter 6 proposes and analyzes a simple graph spectral feature that constitutes a strong baseline for

graph classification.

3

CHAPTER 1. CONTEXT, OUTLINE AND CONTRIBUTIONS

Chapter 7 concludes the thesis.

An illustration of the thesis outline is given in Figure 1.2.

Figure 1.2 – Structure of the thesis

1.3 Contributions

The work done during the thesis resulted in several contributions. In chronological order:

• [Pineau and Lelarge, 2018] Pineau, E. and Lelarge, M. (2018). Infocatvae: Representation learning

with categorical variational autoencoders. Preprint.

• [de Lara and Pineau, 2018] de Lara, N. and Pineau, E. (2018). A simple baseline algorithm for graph

classification. Workshop on Relational Representation Learning, at Advances in Neural Information

Processing Systems (R2L, NIPS 2018).

• [Pineau, 2019] Pineau, E. (2019). Using Laplacian Spectrum as Graph Feature Representation. Preprint.

• [Pineau and de Lara, 2019] Pineau, E. and de Lara, N. (2019). Variational recurrent neural networks

for graph classification. Workshop on Representation Learning on Graphs and Manifolds, at Interna-

tional Conference on Learning Representation (RLGM, ICLR 2019).

• [Pineau et al., 2019] Pineau, E., Razakarivony, S., and Bonald, T. (2019). Seq2var: multivariate

time series representation with relational neural networks and linear autoregressive model. Advanced

Analysis and Learning on Temporal Data, pages 126–140, in Lecture Notes on Artificial Intelligence,

Springer.

• Pineau, E., Razakarivony, S., and Bonald, T. (2020). French patent (information, included title, are

confidential until the end of the publication delay in January 2022).

4

1.3. Contributions

• [Pineau et al., 2020a] Pineau, E., Razakarivony, S., and Bonald, T. (2020). Time series source sep-

aration with slow flows. Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit

Likelihood Models, at International Conference of Machine Learning (INNF+, ICML 2020).

• [Pineau et al., 2020b] Pineau, E., Razakarivony, S., and Bonald, T. (2020). Unsupervised ageing

detection of mechanical systems on a causality graph. International Conference on Machine Learning

and Applications (2020). Oral.

5

CHAPTER 1. CONTEXT, OUTLINE AND CONTRIBUTIONS

6

Chapter 2

Introduction to representation learning,

multivariate time series and graphs

Abstract In this chapter, we introduce the different concepts required to understand what is representation

learning, in particular of multivariate time series and graphs.

2.1 Overview

This section introduces key concepts of representation learning.

2.1.1 Data representation

Data representation is a generic expression that points out a pipeline preceding decision-making model. Its

role is to extract and organize relevant information hidden and entangled within data, so that a human

or an algorithm can take decisions from data. The representation inference mechanism can be seen as a

general embedding function that takes data as input and projects it within a representation space (also

called embedding space, feature space or latent space depending on the context) where relevant information

is disentangled, i.e. the properties of interest are clearly separated from each other and from irrelevant

information (considered as noise). The performance of the downstream task is generally highly dependent on

the quality and the relevance of data representation, hence on the quality and relevance of the representation

pipeline.

Notations We noteX a data sample, X a set of data samples (dataset), Z the representation space (gener-

ally lower dimensional than the observation space X) and F : X → Z the representation pipeline/embedding

function. The objective is to build F and Z with appropriate properties such that relevant information about

X can be extracted from F (X), ∀X ∈ X . The size of the dataset is not specified. Except when explicitly

stated, the order (and index) of the samples in the dataset is not relevant.

There exist many possible constructions of function F that we can split into two groups: manufactured

or learned. In the former case, the function F is built by experts based on a strong (human) a priori

7

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

knowledge about data properties. In the latter case, an algorithm learns function F that extract knowledge

from raw data. It is called representation learning and is the focus of this thesis. Hence, the representation

learning consists in building not the function F but the learning algorithm that learns F .

2.1.2 Inductive bias for representation learning

A list of specifications that define what is a good data representation is proposed in [Bengio et al., 2013].

In this list, we find for example natural clustering, hierarchies, independent directions, sparsity, spatial and

temporal consistency. All these specifications correspond to properties hidden and entangled within data,

and a good representation function F must unveil and disentangle these properties.

These specifications are rarely found by chance in data. To find relevant representation of data, it is

standard to use a priori knowledge and/or assumptions on the structure of the data and on the objective of

the representation (the downstream tasks). When the a priori is integrated into the representation function

F and the learning procedure, it is called an inductive bias.

Definition 1. The inductive bias of a learning algorithm, also known as learning bias, is the set of

assumptions used to predict relevant outputs from data (expressiveness), even on data not used during

training (generalization). The inductive bias can be applied on the representation function F and/or on the

learning procedure and/or on the representation objective.

If the objective of the representation is known, the bias will lean towards the objective; otherwise, the

bias will lean towards preserving and organizing information contained within data. If the representation

of data has no objective nor inductive bias, any embedding function F that preserves all data information

is acceptable: it can be for example any invertible function. In this situation, F (X) has few chance to be

useful or relevant, since it was not learned to separate and organize the part of the data that is considered

as structure from the part the is considered as noise. Hence, before creating a data representation pipeline,

we check the following points:

1. It is important to understand what is the data structure and what information we want to extract from

data before learning the embedding function. The more precise the idea, the more possibly relevant

the representation. The most precise idea is a knowledge about the data structure and the existence

of exact target values to be predicted from the representation that drives the representation of data

2. Otherwise, a stronger set of assumptions about the data, in the shape of an inductive bias, is required

Then, the inductive bias is the manifestation of the a priori we have on data properties and structure,

which we want to transfer into the embedding function to obtain relevant data representation. An objective

of this thesis is to analyze different inductive biases for the representation of multivariate time series and

graphs.

2.1.3 The generative assumption behind representation learning

A way to introduce inductive bias in a representation model is the generative assumption, described below.

It is always possible to assume that there exist parameters associated with a generator that generated

the data. A common assumption for representation learning is that the number of relevant generative

8

2.1. Overview

parameters is low. In this case, the generative parameters are a low-dimensional representation of data,

with respect to the generator. We use the following generic example to illustrate the generative assumption.

We assume that the dataset X has been generated from model D(p, µ) = pN (µ, 1) + (1 − p)N (−µ, 1)

with parameters (p, µ) ∈ {0, 1}×R+ (e.g. a Gaussian mixture). We note yX = (pX , µX) the class and mean

from which sample X has been generated. The generative assumption stipulates that these parameters are

a representation of the data with respect to the generator D. In this situation, a relevant representation

inference function F is a substitute to the inverse generator, i.e. F (X) = yX .

Yet, we will see in Section 2.2.5 that, unlike the true shape of the model is known (here a Gaussian

mixture) or unlike we observe the true generative parameters and learn the mapping, it is rare to find them.

In general, the best we can do is to find a latent representation Z = F (X) such that there exists a function

g such that g(Z) = yX .

The generative assumption is related to a larger family of generative models, called latent variable models

(LVMs) and presented in Section 2.2, to obtain meaningful data representation.

Remark 1. When we observe the parameters yX , the generative assumption is not required (yet still true),

since we can directly learn the function F to map X to yX . Such models are called discriminative.

2.1.4 Different objectives to learn the embedding function

As mentioned above, another way to introduce inductive bias is to insert it into the objective of the represen-

tation. We split the representation objectives into four families that depends on the quantity of information

we have about data.

Supervised learning The existence of a target yX for each sample X ∈ X enables a supervised repre-

sentation, where data is represented such that we can simply infer the target values with an operator T
(usually linear). Hence, the representation problem is:

min
F,T

EX∼X
[
d
(
T ◦ F (X), yX

)]
where d is a divergence. For example, each data sample X is associated to a binary label yX ∈ {0, 1} and
we want to estimate with T ◦ F (X) the probability p(yX = 1|X). These models are called discriminative.

If T is linear, we learn a representation function F such that data with the same label are represented next

to each other in Z and conversely, forming dense linearly separable clusters.

In Chapter 5, we use supervised learning to learn a graph representation function.

Unsupervised learning The representation learning without supervision is called unsupervised represen-

tation learning. It is a set of methods used to extract relevant features from data without target values. It

can be used to find natural clusters [Xu and Tian, 2015], to compress the data in a low-dimensional space

[Uthayakumar et al., 2018] (where information needs to be better structured), to create relative distance

between samples [Wang et al., 2019], or more generally to find the hidden generative factors of variations

[Fabrigar and Wegener, 2011] (the generative assumption 2.1.3) or to estimate the distribution of the data.

The objective function for unsupervised representation is as follows:

9

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

max
F

EX∼X [q (X,F (X))]

where q (X,F (X)) is a quantifier of the information about X included in F (X). It can be for example

the mutual information between X and F (X) [Linsker, 1989] (or a lower bound) or the joint likelihood

[MacKay, 1996] of X and F (X) (or a lower bound). The latter is related to the generative assumption cited

above.

Remark 2. It is possible to add minq in the problem to have q learned to force F to be the best representation

in the worst situation: it is the principle of adversarial learning [Goodfellow et al., 2014].

We propose an unsupervised representation learning of multivariate time series in Chapter 3. We also

propose to study a simple baseline unsupervised graph representation in Chapter 6.

Remark 3. If we have access to labels for certain data samples, a task can be to learn a latent-to-labels

mapping for the annotated data (supervised learning) in addition to the unsupervised representation learning

on all samples. This mix is called semi-supervised classification [Kingma et al., 2014], i.e. learning labels

from incompletely annotated data.

Self-supervised learning More recently, new methods have extended or completed the definition of

unsupervised learning by proposing self-supervision [Weng, 2019]. Self-supervised representation learning is

the set of methods used to find data representations through self-generated tasks. The self-generated tasks,

also called pretext tasks, can be for example auto-completion (hide random part of each data and learn

to predict it from the remaining part), denoising (add random noise to the data and learn to denoise it),

inverse transformation learning (transform the data with random invertible transformations like rotation or

dimension randomization and learn to find the original data). Let T1 . . . TN be N self-generative tasks, such

that for X ∈ X we have
(
x(i), y(i)

)
= Ti(X), with x(i) of the same size than X and y(i) a target. We can

define a set of operators {T (i)}Ni=1 and a set of divergences {di}Ni=1 such that the problem is:

min
F,D(1)...D(N)

EX∼X

[
N∑
i=1

di

(
y(i), T (i) ◦ F

(
x(i)
))

1(x(i),y(i))=Ti(X)

]

F is shared between all pretext tasks, such that if the function F is sufficiently powerful and well trained,

it becomes an expressive representation inference pipeline. We note that the choice of the pretext tasks is

an inductive bias.

Contrastive learning Related to both supervised and self-supervised learning, contrastive learning (CL)

is a type of learning procedure that consists in predicting the relative divergence between inputs. It is also

called metric learning. It consists in selecting similar (dissimilar) samples, with respect to a predetermined

similarity measure sX in the observation space, and learning an embedding function that represents them

closely (distantly) with respect to a divergence sZ in the representation space. The value of the latent

representation F (X) of samples X is not important, only is the relative distance. This idea is standard in

dimensionality reduction models [Bar-Hillel et al., 2003, Hadsell et al., 2006].

10

2.1. Overview

Similarity sX is usually based on auxiliary information: labels [Hadsell et al., 2006, Chechik et al., 2010],

indices of sequential data [Wang and Gupta, 2015], neighboring in graphical data [Lelarge, 2018]. Using the

notations above, the objective of the representation learning with CL is:

min
F

E(X,Y)∈X 2

[
sZ
(
F (X), F (Y), sX (X,Y)

)]
(2.1)

A standard CL loss is the pairwise contrastive loss, where sX (X,Y) ∈ {−1, 1} (dissimilar or similar) and

sZ
(
F (X), F (Y), sX (X,Y)

)
:= sX (X,Y) d(F (X), F (Y)) with d any divergence on Z. Richer versions of

contrastive loss that match (2.1) exist (e.g. triplet loss), but the purpose is the same: placing closer similar

samples and further dissimilar samples, for a given definition of the samples similarity.

A complementary note on CL is given in Appendix B.5. We use CL in Chapter 4, applied to trend

extraction from multivariate time series.

Remark 4. The similarity sX contains the main inductive bias of the CL, since it represents an a priori

on the relative position of samples. This similarity drives the properties of the learned representation and

consequently is usefulness to downstream tasks.

The four types of learning objectives will be tackled in this thesis. As in Remark 3, the learning objectives

can be mixed to improve the expressiveness of the learned representation function. In particular, enriching

the representation function of a weakly supervised task with self-supervised or contrastive tasks is common

[Gidaris et al., 2019, Arora et al., 2019]. For example, in Chapter 5, we propose to improve the supervised

representation of graphs with self-supervised node prediction task.

We have introduced the basis of representation learning required to understand the content of the thesis:

embedding functions, latent space and representation, inductive bias and generative assumption. A remain-

ing problem is the construction of the function F . In fact, the problem of finding a representation function

in a general function space is not tractable. Assumptions must be set about the function shape. In standard

ML, linear assumption is mainly used since it is tractable and theoretically backed. Yet, in many situations,

nonlinear representation is required. In certain situations, for example in physics, explicit models can be

proposed to fit data (e.g. equations of motion). When the knowledge is limited about the true function, it

is required to have universal approximation functions. In the next section, we introduce a generic family of

tractable universal approximation functions that we use in this thesis: the neural networks (NNs).

2.1.5 Neural embedding functions

Recently, advances in NNs and deep learning (DL) methods [Goodfellow et al., 2016] favored the representa-

tion learning against handcrafted representation, particularly for high-dimensional large data with complex

structure.

The NNs compose a rich family of parametric approximation functions. A NN is a nested composition

of simple operations (linear operator, concatenations, reshaping), simple non-linear activations (sigmoid,

rectified linear unit, etc.) and simple regularizing units (normalization, dropout, etc.). The stacked set

of operations that compose NNs is called architecture. NNs architecture can be adapted depending on

the type and complexity of the data. Their simple structure enables efficient (though, ecologically and

11

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

memory expensive) learning procedures using gradient descent methods [Rumelhart et al., 1986]. NNs have

demonstrated high flexibility and expressiveness for data representation. In particular, NNs are universal

approximation functions [Csáji et al., 2001, Lu et al., 2017] such that, when learned with enough data, they

have excellent fit and generalization capacities [Neyshabur et al., 2017]. The latter implies that the learned

NNs gives relevant representation of new data from the same distribution than training data. Finally, NNs

and related learning methods can manage and learn the structure of various types of data (images, speaks,

physics, language, graphs) with variable complexity, on large datasets.

We note Fφ the NN used as embedding function F , with parameters φ ∈ Φ. We can replace embedding

F by a neural network Fφ in the objectives presented in Section 2.1.4. The optimization on function space is

now limited to an optimization on the set of feasible parameters Φ. In general, the set of feasible parameters

is given for one NN architecture, such that we only train the values of the parameters, not the architecture

of the NN. This architecture is predefined and is part of the inductive bias.

The inductive biases of neural networks architectures We can introduce many inductive biases in

the basis elements of neural networks. For example, specific units have been developed to learn representa-

tion of vectors, images, sequences or graphs with respectively fully-connected (FC) multi-layer perceptron

[Van Der Malsburg, 1986] (MLP), convolutional neural networks [LeCun et al., 1989] (CNN), recurrent neu-

ral networks [Hochreiter and Schmidhuber, 1997] (RNN) and graph neural networks [Scarselli et al., 2009]

(GNN). These units leverage specific properties of the data. CNN, with local convolution and weight sharing

across space, brings translation invariance, a fundamental property of images. RNN deals with sequential

data by recording in a memory cell the past information. GNN represents all nodes of a graph by rep-

resenting together node attributes, information of neighboring nodes and the attributes of the connecting

edges. With this panel of neural units and their intrinsic properties, many data types and problems can

be efficiently handled. Otherwise, inappropriate choices for the construction and learning of the embedding

NNs may induce irrelevant hence useless data representation.

We can also easily use the auxiliary knowledge in the objective function used to train the NNs, which

are the same than those in Section 2.1.4, where minF is replaced by minφ.

We decided to let the details about the NNs architectures in Appendix A to not cut the reading flow.

The important knowledge to have is that NNs are easily adaptable to leverage different data structures and

properties, and have high representation and generalization power when the right architecture and training

procedure are chosen. That being said, we still encourage the reader to refer to the appendix for a better

understanding of NNs if needed.

We have introduced the main concepts underlying the representation learning problem. In the next

section, we introduce data models based on the generative assumption (see paragraph 2.1.3) widely used for

representation learning: the latent variable models (LVMs), and their neural extension.

12

2.2. Latent variable models

2.2 Latent variable models

2.2.1 Principle of LVMs

When X is large or high-dimensional, directly modeling distribution p(X) or capturing useful information

about data from X is challenging. A latent variable Z ∈ Z is introduced, generally low-dimensional (com-

pared to X) and with a simple distribution (e.g. Gaussian), under the assumption that Z generated X

(generative assumption 2.1.3).

A likelihood of the data p(X|Z) is then defined conditionally to the latent variable Z with distribution

p(Z). The marginal likelihood can be retrieved by marginalizing over the latent:

p(X) =

∫
Z
p(X,Z)dZ =

∫
Z
p(X|Z)p(Z)dZ (2.2)

For each data sample X, at maximum likelihood (i.e. Z = arg maxz∈Z p(X|z)), variable Z contains the

maximal information about X given distribution p. Z is therefore interpreted as the most likely variable

from which data has been generated and can be also considered as the most likely representation of X.

Figure 2.1 – Graphical representation of a generative (solid arrow) and inference (broken arrow) latent

variable model.

Using Bayes’ rule, we can express the posterior distribution of the latent representation conditionally to the

data:

p(Z|X) =
p(X|Z)p(Z)

p(X)
(2.3)

Hence, sampling from posterior distribution gives likely representations of X. The problem is then to find

the distributions p(Z|X), p(X|Z) and p(Z) to infer meaningful data representation Z ∼ p(Z|X) and/or

generate new data from latent space X ∼ p(X|Z) with Z ∼ p(Z). We note that X is always assumed to be

uniformly sampled on X , such that we have the following relation between inference and generation:

p(Z|X) ∝ p(X,Z) = p(X|Z)p(Z) (2.4)

Remark 5. Equation (2.4) gives insight about the strong link between discriminative and generative models.

As an example, different works [Ng and Jordan, 2002, Grathwohl et al., 2019] have confronted generative

and discriminative models in classification tasks, with tight advantage of discriminative models in fully

supervised problems; same observation for regression problems. Yet, the generative models gives better results

13

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

in robust classification/regression and semi-supervised classification [Grathwohl et al., 2019], besides their

standard application to data modeling, out-of-distribution detection, or unsupervised representation learning.

Latent variable models with auxiliary variables It is possible to enrich the latent variable models

with observed auxiliary variables U , one for each sample X. Hence, the posterior becomes

p(Z|X,U) =
p(X|Z)p(Z|U)

p(X|U)
(2.5)

illustrated in Figure 2.2. The auxiliary variable can be for example categorical (e.g. a class), discrete (e.g.

a time index) or continuous (e.g. a control variable). We note that the prior p(Z|U) also depends on U : if

each sample X is associated with a label yX ∈ J1, LK, we may choose a mixture of L unimodal distributions∑L
l=1 p(Z|l) as prior p(Z).

Figure 2.2 – Graphical representation of a generative (solid arrow) and inference (broken arrow) latent

variable model with observed auxiliary variable. We note that U is both used as condition for generation

and for inference.

Remark 6. Non-constant auxiliary variables break the independence identically distributed (i.i.d) assump-

tion generally made for the data distribution p(X) ; only X|U is i.i.d.. In particular, we will see in Section

2.2.5 that non-constant auxiliary variable is a necessary condition for the identification of the generative

factors underlying the data.

2.2.2 Embedding functions and LVMs

Posterior estimation problem When we assume the generative model p(X|Z), the main challenge is to

estimate the posterior distribution p(Z|X), whose objective is to sample good representations Z ∼ p(Z|X)

of sample X.

First, we need to choose an expressive prior. Intuitively, the prior is the human knowledge from which

the estimation of the posterior goes. Hence, it is better when the prior distribution p(Z) have interesting

properties such that the posterior can be easily induced from prior p(Z) and data X (for example auxiliary

variables or the assumption of natural clusters cited above). When the representation Z of X sampled from

p(Z|X) contains relevant information about X, we say that posterior is also expressive.

Second, we need to find the posterior distribution, given a prior. There are three main families of

posterior estimation methods. First, when the likelihood and prior distributions are conjugate, we can obtain

a closed-form posterior distribution. This case is rarely achieved for complex data. Second, Markov chain

14

2.2. Latent variable models

Mont Carlo (MCMC) methods [Robert and Casella, 2013]. MCMC are approximate inference algorithms

with asymptotic guarantees. They estimate posterior distribution by iterative sampling, such that the

chain of samples is a Markov chain whose stationary distribution is the true posterior distribution. MCMC

methods, although theoretically perfect estimators, suffer from expensive computation and intractability

for large data. Third, variational inference (VI) substitutes the unknown posterior p(Z|X) by a surrogate

posterior q(Z|X) chosen in a simpler variational family of distributions with the objective to minimize

KL(q(Z|X)||p(Z|X)), with KL the Kullback-Leibler divergence (see details on VI are given in Appendix

B.1). Despite the fact that, unlike sampling-based methods, it will almost never find the exact solution

(optimize lower bound of the true data likelihood), VI is generally chosen since cheap and amenable to

modern ML techniques (e.g. parallel computing, GPU acceleration, stochastic gradient descent).

Posterior estimation with an embedding function We can use an embedding function F to cre-

ate a surrogate posterior distribution qF (Z|X), given a prior distribution and a likelihood, such that

EX∼X [qF (Z|X)] = p(Z), and such that X̃ ≈ X for X̃ ∼ p(X|Z̃) and Z̃ ∼ qF (Z|X). For example, if

p(Z) is N (0, I), qF can be a Gaussian density such that F (X) the mean of the Gaussian, i.e. Z = F (X) + ε

where ε ∼ N (0, I).

The likelihood distribution p(X|Z) can also be estimated using an (approximate) inverse of the embed-

ding function F noted D (D = F−1 if F invertible). For example pD(X|Z) = N (D(Z), I). The objec-

tive with embedding functions (and its inverse) is therefore to match the joint distributions qF (X,Z) =

qF (Z|X)qX (X) and pD(X,Z) = pD(X|Z)p(Z).

We note p(F,D)(X,Z) the estimated joint distribution that satisfies the matching.

Remark 7. If we have access to auxiliary variables, we can choose F : X × U → Z and D : Z × U → X .

LVMs additional objectives We have seen four families of representation objectives in Section 2.1.4.

In the unsupervised case, with q the joint likelihood of (X,Z), we find back the LVM problem described

above. More generally, if we remark that the deterministic case is a particular case of the LVM approach,

with p(Z|X) ∝ 1Z=F (X) and p(Z) = U(Z), then the representation objectives can then be used in the

LVM framework by replacing EX∼X and F (X) by E(X,Z)∼qF (X,Z) and Z to enrich the estimated surrogate

posterior distribution qF (Z|X).

Neural LVMs As expected, we can replace embedding function F by a neural network Fφ in the LVMs.

The posterior p(Z|X) is estimated with a neural network Fφ : X → Z, with parameters by φ usually called

encoder. The likelihood p(X|Z) is estimated with a neural network Dψ : Z → X , with parameters ψ usually

called decoder. We note respectively qφ(Z|X) and pψ(X|Z) these neural based distributions. We assume

for simplicity that hyperparameters φ and ψ contain both information on neural network architectures and

weight values (yet only the values are learned, the architecture being fixed).

2.2.3 Identifiability of the latent generative factors

A high-valued concept in data representation, and more generally in statistical inference, is the identifiability.

It concerns parametric models and is defined as follows:

15

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Definition 2. If P = {pθ : θ ∈ Θ} is a parametric statistical model with θ 7→ pθ bijective, then P is

identifiable if {pθ1 = pθ2} ⇒ {θ1 = θ2} ∀(θ1, θ2) ∈ Θ2. A model that do not have such property is called

unidentifiable.

It implies that if P contains the true (unknown) model, we can estimate/learn the true (unknown)

values of its parameters (generally from an infinite number of observations). In LVMs, we are interested in

finding the true latent factors Z that generated the data, considered as generative parameters of an unknown

generator p(X|Z). We give an adaptation/extension of the identifiability for LVMs in the following definition:

Definition 3. A LVM p(X,Z) is identifiable if ∀(Z,Z ′) ∈ Z2:

{p(X|Z) = p(X|Z ′)} =⇒ {Z = Z ′} (2.6)

We can adapt the definition to LVMs with embedding functions, inspired from [Khemakhem et al., 2019].

We say that a LVM is weakly identifiable if, given two embedding functions F and F ′ (with respective

surrogate inverse D and D′) learned on a dataset X , ∃A full-rank such that

{pF,D(X,Z) = pF ′,D′(X,Z
′)} =⇒ {F (X) = AF ′(X)} (2.7)

If A is a weighted permutation, then the LVM is identifiable.

Having an identifiable LVM implies that: if the true generative model can be substituted by a LVM

pF∗(X,Z) (i.e. pF∗(X,Z) = p(X,Z)), then in the limit of infinite data, any learned embedding function F

is an estimate of the true function F ∗, up to linear transform A.

Remark 8. Identifying the true generative factors underlying data is called blind source separation (BSS)

[Jutten and Karhunen, 2003].

We note that, without assumption about the shape of the true LVM, the identifiability is only reachable

with universal approximation functions, justifying again the usage of NNs as embedding function for the

posterior distribution.

2.2.4 Examples of latent variable models

We present several standard LVMs for illustration and better understanding of the introduced concepts.

Probabilistic principal components analysis First, we introduce principal component analysis (PCA).

PCA is a dimensionality reduction method (DRM). It consists in linearly projecting the sample X onto the

k < d dominant eigenvectors W:k (i.e. corresponding to the highest eigenvalues) of the eigendecomposition

Σ̂ = WΛWT of the empirical covariance matrix Σ̂ (estimated from the whole dataset X). With this

procedure, PCA maximizes the variance of the projected dataset in each latent direction. Equivalently,

PCA minimizes the reconstruction error
∑
X∈X ‖X −XW:kW

T ‖22.
In [Tipping and Bishop, 1999], they derive a probabilistic framework for PCA by adding a standard

Gaussian prior on latent variables. It is called probabilistic PCA (PPCA) and is a LVM. It is defined as

16

2.2. Latent variable models

X = W:kZ + ε+ µ (2.8)

with Z ∼ N (0, I) and ε ∼ N (0, σ2I). Thanks to linear and Gaussian assumptions, the likelihood and the

posterior have closed form.

Remark 9. PPCA is a good illustration of the interest of using a generative model over a dimensional-

ity reduction model. First, since we have a probabilistic model, parameters W and σ can be inferred by

maximum-likelihood estimation, which is interesting for modeling and unsupervised learning problems (see

Section 2.1.4). Second, it is more robust to outliers since PPCA explicitly models the low-density represen-

tations. Third, it can manage missing data since it fills the latent space with a distribution. Fourth, related

to third advantage, it can be used to generate new data (for PPCA, from prior distribution N (0, I) we have

on Z).

Independent component analysis Independent component analysis (ICA) is a general family of LVMs,

where the latent variables are assumed independent, but not necessarily Gaussian. The most known ICA

assumes linear model X = AZ [Hyvärinen, 1997]. In particular, linear ICA solves BSS (see 2.2.3) if at

most one dimension of Z is Gaussian (from central limit theorem, any linear mixture of independent

sources is more Gaussian than the original sources; hence two mixed Gaussian sources cannot be dis-

criminated from their mixture). The non-Gaussianity assumption is the most used inference method of

ICA [Hyvärinen and Oja, 2000] since it is not particularly restrictive. Yet, is also possible to maximize

any independence criteria between the dimensions of a linear transformation of the data. The used inde-

pendence criteria are usually the mutual information [Hyvärinen, 1997, Stögbauer et al., 2004, Chen, 2006,

Taleb and Jutten, 1999], kernel-based independence criterion [Bach and Jordan, 2002, Gretton et al., 2005,

Shen et al., 2007] or high-order statistics [Cardoso, 1999]. By giving an explicit (non-Gaussian) probabilistic

model to the latent variables, we can also solve the ICA using maximum-likelihood approach.

Variational autoencoders First, we introduce autoencoders (AEs). AEs are neural DRMs (not proper

LVMs, like PCA). They are composed with an encoder Fφ and a decoder Dψ with parameters φ and ψ

optimized to minimize reconstruction error, i.e. φ, ψ = arg minEX∈X ‖X −Dψ ◦Fφ(X)‖22. The encoder and

the decoder can have any form and properties, provided that they serve the autoencoding objective (i.e.

Dψ ≈ F+
φ).

Remark 10. AE with one hidden layer (i.e. Fφ and Dψ linear) finds encoder Fφ that spans the same

subspace as the subspace spanned by the weightsW of a PCA [Baldi and Hornik, 1989], even though Fφ 6= W .

In [Plaut, 2018], they propose a method to recover PCA weights from AE linear encoder.

Several extensions of AE have been proposed. Regularized AEs (RegAE) are trained with a penalization

Ω(Fφ(X)), for example a l1 norm for sparse latent representations [Ng et al., 2011] or l2 norm for cen-

tered spherical representations [Ghosh et al., 2019]. Denoising AEs (DAEs) [Vincent et al., 2010] consist in

adding noise to the input and learning how to reconstruct the clean version of the data. Contractive AEs

[Rifai et al., 2011] (CAEs) use the Frobenius norm of the Jacobian of the encoder’s activation with respect

to inputs as penalty. It forces the AE to learn features that are robust to input changes, hence finding a

17

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Figure 2.3 – Graphical representation of a VAE. Broken arrows are inference (approximate posterior). Plain

arrows are generation. We note that the parameters φ and ψ are learned from the whole dataset, such that

we can add an arrow from X to (φ, ψ).

smooth representation manifold. They show in the paper that CAEs can be related to RegAEs and DAEs.

Finally, as already mentioned for PCA, a way to regularize and/or enrich a DRM is to add a probabilistic

model to the latent representation.

In [Kingma and Welling, 2013], they derive a probabilistic framework for AE and train it with variational

inference (see Appendix B.1): it is the variational autoencoder (VAE) [Kingma and Welling, 2013]. Like

PPCA, latent prior p(Z) is conventionally N (0, I). Under Gaussian likelihood distribution, with Gaussian

prior, the variational posterior q(Z|X) is also Gaussian [Raiffa and Schlaifer, 1961]. Hence, VAE uses neural

networks to find the parameters of the variational posterior qφ(Z|X) = N (µX , σX) where µX , σX = Fφ(X).

The likelihood distributions is also parametrized by neural networks, i.e. and pψ(X|Z) = N (Dψ(Z), I).

VAE is illustrated in Figure 2.3.

Remark 11. In VAEs, the embedding Z is stochastic, i.e. randomly sampled from the estimated distribution

qφ(Z|X) before decoding. The stochasticity of VAE latent representation, beyond the learning of a generative

model, has an interesting regularizing effect. It forces the representation to be consistent (i.e. close samples

are close in the representation space). Let consider that the VAE is well trained. If Z1 . . . Zn are sampled

from qφ(Z|X), VAE requires that Dψ(Zi) ≈ X ∀i ∈ J1, nK. Hence, the factors learned by VAE must be slowly

consistent. Moving slowly in the latent space must implies that the generated data change consistently, and

conversely. It is a very powerful inductive bias for representation learning.

Yet, stochasticity can also be a drawback. In fact, since an infinity of points in the latent space corre-

sponds to the same input X, the representation is uncertain and so is the generation. This phenomenon

in image representation with VAE is called blurriness, illustrated in Figure 2.4. Recent works showed that

the blurriness can be limited by using appropriate representation inference neural network architectures

[Vahdat and Kautz, 2020]. Other works proposed to create generative models with deterministic AE instead

of stochastic. In [Makhzani et al., 2015] they regularize the distribution of the dataset’s latent representation

to match known representation. In [Ghosh et al., 2019], they propose to train a RegAE and to fit ex-post a

density p(Z) to the set of data representation {Fφ(X)|X ∈ X}.

The variational family of distributions can be extended to more general family, as soon as the density

function is differentiable with respect to the inferred parameters, since neural networks are trained with

gradient descent methods. For example, all distributions of the exponential family and all the distributions

that can be related to exponential family through smooth transformation [Kingma and Welling, 2013]. We

can also enriched the latent space distribution with mixture of simple distributions, for example to represent

18

2.2. Latent variable models

Figure 2.4 – VAE based representation learning and generation, to illustrate the impact of stochasticity

in VAE-based representation and the sensitivity of VAE to the importance of the KL in the loss. Top

left: data X ∼ p(X). Bottom left: representation Z = Fφ(X) as a Gaussian distribution. Top right:

Gaussian sampling from prior p(Z). Bottom right: generation from pψ(X|Z). We see that the learned

representation does include out-of-distribution points because of the stochastic aspect of VAE: the central

extremity of the two moons has been averaged.

data in a naturally clustering latent space [Kingma et al., 2014]. It is also possible to change the VAE loss

to induce more expressive posterior approximate.

VAE is a very flexible and powerful representation learning tool. A large review of recent advances in

VAE-based representation learning is presented in [Tschannen et al., 2018].

Remark 12. A thesis preliminary work done to grasp the important concepts underlying representation

learning, in particular with VAEs, appears in the preprint paper [Pineau and Lelarge, 2018]. It consists in

clustering data with VAE using Gaussian mixture latent space and adding information-based regularization.

We show that it improves the quality of both the clustering and the generation in a latent space whose shape

is inspired by subspace clustering. This work is not presented in this report.

Flow-based models A recent alternative family of approximate posterior models are the flow-based mod-

els (FBMs). FBMs are exact likelihood models. To achieve this property, they lean on normalizing flows

(NFs) [Papamakarios et al., 2019]. A NF is a chain of invertible transformations {fr}Rr=1 that enables to

pass from a simple distribution p(Z) (e.g. Gaussian) to a complex distribution qX (X) (e.g. data) via the

change of variable X = f1 ◦ · · · ◦ fR(Z) = F−1(Z) (see Appendix B.2):

qX (X) = p (F (X))

R∏
r=1

∣∣∣∣∣det
∂fr(x)

∂x

∣∣∣∣
x=fr◦F (X)

∣∣∣∣∣
−1

(2.9)

The transformations fr can be arbitrarily complex as soon as they are invertible and we can compute the

Jacobian. We see from (2.9) that a NF requires to be easily invertible and to have Jacobian determinant easy

to compute. Recent works in [Dinh et al., 2014, Dinh et al., 2016] propose to use invertible neural networks

(INNs) F−1
φ = {fφr}

R
r=1 with parameters φ = {φr}Rr=1 to enhance the flexibility and the representation

19

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

capacity of the normalizing flow. Since the NFs are deterministic, we have qφ(Z|X) = δ(Z − Fφ(X)). We

show an illustration of a flow-based representation and generation in Figure 2.5 to compare with VAE.

Yet, the INNs with closed-form Jacobian have limited expressive power and flexibility; hence achieving

good results for complex data may require large INNs and deep NFs (large R). Different works have

subsequently proposed new expressive families of NFs with tractable Jabocian [Papamakarios et al., 2019].

In [Rezende and Mohamed, 2015], they propose to use NF to improve the posterior estimation of VAE,

taking best of both worlds. They expand the Gaussian variational posterior estimation through normalizing

flows in order to obtain non-Gaussian posterior estimation. They derive a new loss for this flow-based VAE

and show that this method enables to achieve highly expressive posterior distributions.

We note that a current thesis work, whose preliminary results are presented in [Pineau et al., 2020a],

uses INNs for BSS of time series data. This work is presented and used in the experiments of Chapter 4.

Figure 2.5 – Flow-based representation learning and generation, using RealNVP model [Dinh et al., 2016],

to compare with VAE-based representation in Figure 2.4. Top left: data X ∼ p(X). Bottom left:

representation Z = Fφ(X) as a Gaussian distribution. Top right: Gaussian sampling from prior p(Z).

Bottom right: generation from pψ(X|Z). We see that, compared to VAE based representation in Figure

2.4, the two moons are perfectly separated, thanks to the deterministic invertible mapping Fφ that favors

the conservation of the data structure.

2.2.5 Identifiability in neural representations

We have seen in Section 2.2.3 the concepts of identifiability and blind source separation (BSS). In Section

2.2.4 we have seen that linear ICA solves the linear BSS problem under simple assumptions on the latent

factors Z. Yet, in general nonlinear settings, additional assumptions are required on the sources to obtain

identifiability, since it was shown that an infinite set of nonlinear mappings could infer arbitrary set of latent

variables that still fulfill assumptions like independence [Hyvärinen and Pajunen, 1999].

In recent works from Aapo Hyvarïnen [Hyvarinen and Morioka, 2016, Hyvarinen and Morioka, 2017,

Hyvarinen et al., 2018], they use neural networks Fφ as universal approximation for the nonlinear mapping

(assumed invertible, for example INNs). Then, they obtain identifiability by relaxing the i.i.d. assumption

usually made about the observed variables. To do so, they use auxiliary variables U associated to samples X.

20

2.3. Multivariate time series

Figure 2.6 – Graphical representation of a VAE with auxiliary variable U . Broken arrows are inference

(approximate posterior). Solid arrows are generation. The usage of an appropriate auxiliary variable is a

condition of identifiability of the true factors Z.

Contrary to standard approaches where the sources Z are simply assumed to be statistically independent,

here the factors Z are assumed statistically dependent and independent conditionally to U . They prove

in different settings that it is a sufficient condition for identifiability (in the presence of infinite data and

universal approximating neural networks, up to simple transformations).

A first setting uses the neural LVMs framework, i.e. with a NN Fφ that estimates the posterior distri-

bution of the latent representation whose parameters φ are learned by maximum-likelihood (see paragraph

Neural LVMs 2.2.2). In [Khemakhem et al., 2019], they introduce auxiliary variables U in VAE frame-

work, on which latent variables Z are explicitly conditioned, to break the i.i.d. assumption. The latent prior

p(Z|U) is factorial, but not necessarily p(Z). They show that it is a condition of latent variable identifiability

in VAE. These results are extended to flow-based LVMs (Section 2.2.4) in [Sorrenson et al., 2020].

A second setting presented in [Hyvarinen et al., 2018] is based on (binary) contrastive learning (see

Section 2.1.4). Parameters φ are learned such that a classifier can distinguish between (Fφ(X), U) and

(Fφ(X), U∗), where U∗ is randomly sampled from the distribution of auxiliary variables U .

In this section, we have seen several important concepts and models for the representation learning

of data. In the following sections, we focus on the main topic of this thesis: learning representations of

multivariate time series and graphs.

2.3 Multivariate time series

We first introduce key concepts attached to multivariate time series (MTS) data. These concepts are the

basis of many time series analysis methods. Then, using the concepts presented in Section 2.1, we introduce

MTS representation learning.

2.3.1 Basic multivariate time series concepts

Notations We note X ∈ Rd×T a d-dimensional time series of length T : X is a matrix whose columns are

indexed by a time index t ∈ J1, T K. X is a univariate time series (UTS) if d = 1 and is a multivariate time

series (MTS) if d > 1.

The time index indicates a sampling ordering, i.e. Xt has been sampled after Xt−1. The ordering of the

index is important and is a particularity of the time series data. Each Xt is a d-dimensional vector. Each

21

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

variable X(i) ∈ RT , i = 1 . . . d, is a UTS. In this thesis, we study real valued MTS with discrete time index.

The important point is the following: MTS have two dimensions d and T . While the spatial dimension

d is standard (like static vectors), the temporal dimension requires specific representation tools.

We note X ⊆ Rd×T the dataset containing the observed data.

Moments and stationarity Time series data are a set of vectors with particular order. As for any set of

vectors, a simple representation of a set of vectors is its set of estimated moments. We can infer statistical

moments from time series X at different time indices t. These moments are basic features of time series,

from which we can define the notion of stationarity.

The mean of time series X at time t is the expected value of the vector Xt

E [Xt] = µt

We say that the time series is mean-stationary if the mean is constant over time, i.e. ∀t ∈ J1, T K, µt = µ.

The notion can be extended to any moment of order n E[Xn
t] or central moment of order n E[(Xt − µt)n],

where the monomial is applied per dimension.

Another feature in multivariate analysis lives in the interactions between variables. The linear interac-

tions are a moment-like feature, given by the covariance matrix

E
[
(Xt − µt)(Xt − µt)T

]
= Σt

The diagonal of Σt contains the central moments of order 2 of the d variables. For h ∈ J0, T K, if the time

series is mean-stationary in time range Jt − h : tK for t ∈ Jh + 1, T K, we can define the lag-h covariance

matrices

E
[
(Xt − µt)(Xt−h − µt)T

]
= Σt,h (2.10)

The diagonal of Σt,h contains the lag-h auto-covariances of the d variables. If Σt,h is not time-dependent,

i.e. ∀t, h we have Σt,h = Σh, we say that time series X is auto-covariance-stationary. In this situation, we

remark that Σh = ΣT−h.

Remark 13. Covariance and auto-covariance represent linear (non-directed) statistical interactions between

variables. Nonlinear interactions can be captured with other indicators like mutual information, kernel-based

discrepancy, etc., from which we can build a similarity matrix. The notion of stationarity with respect to

lagged-covariance matrices can be extended to any lagged-similarity matrices based on these indicators.

Finally, when moments and interaction are not representative enough, a broader definition of stationarity

is the following:

Definition 4. We note FX the cumulative distribution function of any subsample of the time series X. X is

stationary if for all τ ∈ J1, T K and all t1, t2 ∈ J1, T − τK such that t1 < t2, FX(Xt1...t2) = FX(Xt1+τ...t2+τ).

It means that the data generating process is not time-dependent.

22

2.3. Multivariate time series

Remark 14. We find back the notion of data generation we presented in Section 2.1.3.

In this thesis, we will be particularly interested in the nonstationaries hidden in time series data. In fact,

a key concept related to health monitoring is the drift underlying the properties of the monitored system,

which can be interpreted as ageing.

Autoregressive modeling The modeling of time series generally takes into account the time ordering.

In particular, at each time step t, Xt is conditioned on past information X1 . . . Xt−1, i.e.:

p(X) =

T∏
t=1

p(Xt|X1 . . . Xt−1) (2.11)

It is the autoregressive assumption, illustrated in Figure 2.7.

Figure 2.7 – Graphical representation of a generative autoregressive model.

Yet, keeping all past information at each time step is not tractable. Two modeling solutions are generally

adopted: the Markovian assumption and the latent variable modeling, presented in subsequent sections.

The Markovian assumption It is known that in many cases, keeping all past information at each time

step t is not useful: the memory is finite. For example, in the linear case introduced above, there exists

K ∈ N∗ such that ∀h > K, ‖Σt,h‖ = 0. The finite memory of order K extends to nonlinear general case, such

that p(X) =
∏T
t=1 p(Xt|X1 . . . Xt−K). We call this the Markovian assumption of order K. It is illustrated

in Figure 2.8.

Figure 2.8 – Graphical representation of a generative Markovian autoregressive model of order 2.

VAR model The most famous and used MTS model using Markovian assumption is the vector autore-

gressive model (VAR). It consists in a linear regression of some past observations on present observations,

i.e. for d-dimensional time series X, we have a tensor W ∈ RK×d×d and a bias b ∈ Rd such that ∀t ∈ JK,T K

Xt =

K∑
k=1

WkXt−k + b. (2.12)

More precisely, model (2.12) is a d-dimensional linear VAR model of order K, noted VAR(d,K). VAR

model is originally used in the field of econometrics: it helps describing the behavior of a economic system’s

23

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

variables. It describes the dynamical interactions between the variables and improve forecasting models by

taking into account the causal influences between them. This model will be used for time series represen-

tation learning in Chapter 3.

Causality in multivariate time series Causality is type of interaction between variables of a time series.

The notion of causality is a large concept that can be summarized as the study of cause and consequences.

For a good overview of causality in statistical models, see [Pearl et al., 2009] and [Peters et al., 2017]. In

particular, for MTS analysis, the most used notion of causality is the Granger causality [Granger, 1969,

Diks and Panchenko, 2006], whose general definition is:

Definition 5. Let X be a multivariate time series. We say that variable X(i) Granger causes variable X(j)

if p
(
X

(j)
t |X

(j)
<t

)
6= p

(
X

(j)
t |X

(j)
<t , X

(i)
<t

)
, t ∈ J1, T K. Causality is therefore a probabilistic dependency graph.

We note X(i) GC
==⇒ X(j) the Granger causality from X(i) to X(j).

Causality in autoregressive models is illustrated in Figure 2.9.

Figure 2.9 – Graphical representation of a Markovian autoregressive model of order 2, with d = 2. The

arrows are the causalities. Here X(2) GC
==⇒ X(1). We note that the edges can have features W .

Hence, Granger causality is a lagged directed dependency. There exists different approaches to extract

Granger causality graph from data, with two main families of methods. First, causality extraction is

simply processed as a variable selection in a regression of the present on the past, in linear [Granger, 1969,

Eichler and Didelez, 2012] and nonlinear [Haufe et al., 2010, Davis et al., 2016, Tank et al., 2018] settings.

It is the definition we use in Chapters 3. Second, causality is extracted using dependency metrics between

lagged variables, using kernel methods [Ancona et al., 2004], information-theory [Solo, 2008] or probabilistic

approaches [Hu and Liang, 2014].

Causality and sparse VAR models VAR model (2.12), like common linear regression, can suffer from

correlation between variables. A regularization of the model at training time is generally mandatory. In

particular, a L0 regularization of the weights of the linear model provides the elimination of the variables

that contain redundant information about the target values (next time step in VAR). The importance of

such regularization is illustrated in Figure 2.10.

In VAR(d,K) (3.1), the sparsity is directly related to the notion of Granger causality [Eichler, 2001,

Davis et al., 2016] (Definition 5 in Section 2.3.1). If for (i, j) ∈ J1, dK2, there exists k ∈ J1,KK such that

Wk,i,j 6= 0, then X(i) GC
==⇒ X(j). The zero values of W define the non-causalities in X.

The latent variable modeling Instead of explicitly carrying the whole information about the past time-

steps along time axis or limiting the memory like in the Markovian assumption, it is possible to assume that

24

2.3. Multivariate time series

Figure 2.10 – Graphical model of a VAR(2, 2). The dotted lines are the correlations, the arrows are the

causalities. In this example, the absence of sparsity inducing regularization will probably let the model detect

X
(1)
t−1 → X

(2)
t and X(1)

t−2 → X
(2)
t besides the actually existing causalities X(2)

t−1 → X
(1)
t and X(2)

t−2 → X
(1)
t ,

because of the correlation between variables X(1) and X(2). We note that the edges can be weighted with

weights W , and that the set of edge’s weights can change from one MTS sample X to the other.

a memory cell contains and carries an embedding of the past information at each time step, as illustrated

in Figure 2.11.

Figure 2.11 – Graphical representation of a generative latent variables autoregressive model. The vertical

arrow from Z to X is called emission or generation. The horizontal arrows from Zt−1 to Zt are called

transition.

In these models, the size of the memory is implicit and may be theoretically infinite.

We remark that it is a generative LVM forX, given a prior on Z1: p(X) = p(Z1)
∏T
t=2 p(Xt|Zt)p(Zt|Zt−1).

LVMs for time series representation learning will be more exhaustively presented in Section 2.3.

Temporal multi-scaling in time series In many time series, there exist several temporal resolutions

that contain relevant information. For example, in economic time series, days, weeks, trimesters, years

and cycles, are temporal resolutions for which a model is needed. Each resolution is the aggregation of

higher resolution plus some additional specific information. Each resolution can be modeled by its own

autoregressive model based on the aggregate information of higher dimension, like illustrated in Figure 2.12.

The time series can be represented as a hierarchy of statistical representations [Akintayo and Sarkar, 2015].

This multi-resolution with hierarchy of resolution is the principle of deep learning.

We henceforth need to name the two representation scales for time series. First, we will refer to the

representation of time series at the scale of time index as time series decomposition, as we decompose the

samples into temporal explanatory factors (Z1 in Figure 2.12). Second, the representation of the time

series sample viewed as a whole (multiple consecutive time steps), which we will refer to as time series

embedding, as we embed the whole sample (e.g. each Z2
i in Figure 2.12 is an embedding of a Ti-long time

series XTi+1 . . . XTi+1
).

25

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Figure 2.12 – Graphical representation of a generative multiscaled autoregressive model. Z1 has a low

scale autoregressive model; Z2 has a large-scale autoregressive model. {Ti}ni=1 is a set of time index that

indicates the change of large-scale generative factor Z2. We note that the horizontal arrows can be kept

only on one stage: for example, if we only want to model a high-level temporal consistency, we may only

keep the temporal flow between variables Z2.

Figure 2.13 – Alignment and size problem for time series comparison. Left: dynamic time warping for equal

sized UTS. Right: dynamic time warping for unequal sized UTS.

2.3.2 Standard MTS representations

Time series data present three interesting challenges. First time series have variable size. Second, even

in the case they have equal size, time series data have no trivial alignment. Third, in multivariate case,

many complex interactions between variables generally prevent the use of standard (even warped) metrics to

compare MTS data. With these limits, ML on time series data requires special metrics or/and a preceding

representation step that aligns the data samples.

The most common distance between time series data, that deals with the first two challenges, is the

dynamic time warping (DTW) distance. It aligns unaligned curves by warping the temporal axis to find

the minimal distance between them, as illustrated in Figure 2.13.

In this thesis, instead of working on a rich metric to compare time series data and apply ML on it, we

instead are interested in MTS representation. The representation, as mentioned above, enables to apply

26

2.3. Multivariate time series

simple metrics of a representation space to compare MTS samples.

Remark 15. Enriching the metric to compare unaligned samples or finding a representation of data that

aligns them before using a simple metric are two related concepts that treat the same problem with a different

approach.

In [Lin et al., 2007], they remind that time series representation and associated similarity measures were

initially studied and build for specific tasks: database indexing (finding the most similar time series in a

database given a query and a similarity measure) [Chakrabarti et al., 2002], time series classification (as-

signing predefined class to unlabeled time series) [Esmael et al., 2012], motif discovery (summarizing a time

series by extracting its relevant patterns) [Ge and Smyth, 2000] or anomaly detection (finding the abnormal

time indices in a long time series, or samples in a dataset, given a normality model) [Keogh et al., 2005].

Depending on the task, a decomposition and/or an embedding of the time series is required. The jungle

of time series representation methods is traditionally split into three main families [Esling and Agon, 2012],

presented below along with examples of standard models.

Non data-adaptative representations It is the set of methods where the parameters of the represen-

tation are not data-dependent, no matter the nature of the time series. We find for example discrete Fourier

transform [Faloutsos et al., 1994] or discrete wavelet transform [Chan and Fu, 1999]. The set of coefficients

of the decomposition is the time series representation (embedding). We also find piecewise aggregate ap-

proximation (PAA), which reduces temporal dimensionality by replacing sub-sequences of the time series

by their mean [Keogh et al., 2001] (e.g. Z2
n = 1

Tn−Tn−1

∑Tn
t=Tn−1+1 Z

1
t in Figure 2.12).

Data-adaptive representations Contrary to non data-adaptative methods, data-adaptative represen-

tation adapts the parameters of the transformation to the nature of the studies time series. For example,

the singular value decomposition (SVD) of the observed set of time series creates a data-dependent rep-

resentation space on which data is projected. The piecewise linear approximation (PLA) segments time

series into linear pieces [Zhu et al., 2007] whose slope summarizes the segments (size of the segments are

data-dependent). With PLA, the time series is represented as a sequence of slopes. It can be extended

to piecewise polynomial approximation. In [Lin et al., 2007], a symbolic aggregate approximation (SAX)

extends PAA/PLA by adding a data-dependent discretization of the sub-sequences mean/slopes to produce

sequence of symbols. SAX transforms the time series into strings. Hence, algorithms for text data can be

used: for example, segmentation into patterns [Cohen et al., 2007]. We note that we can further transform

the sequence of slopes/symbols into histogram of patterns to embed the time series samples.

Symbolic representation is popular, with many different usages. For example, in [Badiane et al., 2018],

they propose to use SAX for classification and regression tasks on time series data, in a kernel support vector

machine (SVM) framework. In particular, they use the edit distance (distance that quantifies how dissimilar

strings are by computing the minimal number of operations required to transform one into the other) in a

radial-basis function (RBF) kernel to compute samples similarity matrix. In the same paper, they compare

SAX-RBF kernel with other common kernels applicable for time series data. In [Rao et al., 2009], they do

27

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

not symbolize the time series itself but the sequence of wavelet coefficients of the time series (more robust

to noise).

A related time series embedding method are the shapelet-based methods. It consists of creating a

dictionary of maximally informative sub-sequences [Ye and Keogh, 2009] and embedding time series as a

set of frequencies of learned dictionary entries. The shapelets have initially been developed for supervised

time series classification. SAX representation is a way to simplify the construction of the dictionary with

sequences of discrete values from a finite alphabet.

In this thesis, we focus on MTS representation. SAX for MTS analysis is proposed for example in

[Ordonez et al., 2011], where they assign a frequency to each word of d symbols (for d channels composing

the MTS). In [McGovern et al., 2011], they search discriminative string patterns in each variable for MTS

classification. These two examples show that at most, SAX exploits the co-occurence of patterns, but no

other more complex variables interaction. And it is the same for other approaches, like shapelet-based MTS

embedding for classification in [Bostrom and Bagnall, 2017, Yazdi et al., 2018]. Yet, we want to take into

account the multivariate characteristics and in particular the interactions between variables. For example,

in [Chouakria-Douzal, 2003], they propose a method to reduce the temporal dimensionality of MTS while

preserving the correlation between the variables.

Model-based representations They assume that the data was generated from a model, with or with-

out latent variables. We find back the generative assumption of representation learning exposed in Sec-

tion 2.1.3. If we do not use latent variables, it is usual to choose a parametric model whose parameters

are a representation of the data. For example autoregressive models like VAR models (Section 2.3.1)

[Xiong and Yeung, 2002, Prado et al., 2006]: we can compare time series by comparing their VAR parame-

ters. If we assume the existence of latent variables (Figure 2.11), we can work in the latent space of repre-

sentation. For example, a hidden Markov models (HMM) [Rabiner, 1989] can segment a time series into a

sequence latent discrete states. Also, two HMMs (hence two time series representations) can be compared

(we remind that a HMM is characterized by its initial state, its state transition matrix and the observation

emission probability) to compare the time series on which they have been fitted [Antonucci et al., 2015].

We note that it is possible to enhance model-based representation with NNs as in [Kuehne et al., 2018].

Neural representation The application of NNs helps to represent complex MTS. In particular, we know

that recurrent neural networks (RNNs, see Appendix A.1.4) have been developed to model and represent

time series data. They transform each time steps Xt into a representation Zt by sequentially embedding the

information contained in X1:t−1. In this situation, each Zt is a representation of Xt with respect to past

information. Depending on the objective of the representation, Zt can contain different information about

the sample X.

For forecasting, the parameters of the RNN are learned such that Xt+1 = Dψ(Zt) with Dψ a MLP with

parameters ψ. In this situation, we remark that the RNN and the function Dψ form a latent variable model

that can generate the full time series X. For classification, we learn the RNN parameters to sequentially

embed the information in Z such that ZT contains class information about the sampleX. We also can embed

X without supervision. The Recurrent Autoencoder (RAE) [Cho et al., 2014b, Malhotra et al., 2017] is the

28

2.4. State-space models

most popular adaptation of AE (see Section 2.2.4) for time series. It consists in using RNNs as encoder and

decoder. Like AE, RAE can be enriched to meet interesting properties. For example, in [Lei et al., 2017],

they propose an RAE such that the distance between the learned representations of the samples is the

dynamic time warping (DTW) distance (they want to learn pattern consistency in the latent space). In

[Ienco and Interdonato, 2020], they propose a deep time series embedding clustering model using RAE with

an attention mechanism, a binary gate to obtain sparse embedding and a refinement step that stretches the

learned representation toward clusters centroids (they want to find natural clustering in the latent space).

Other interesting unsupervised time series embedding: in [Franceschi et al., 2019], they adapt the self-

supervised (see Section 2.4.3) and the contrastive learning (see Section 2.4.3) to create an unsupervised

scalable time series representation (USTR) model. To learn a meaningful embedding function, they use

the following assumption: a MTS sample is closer to one of its subsamples (positive sampling) than to a

randomly chosen sample of the dataset (negative sampling): they can learn their representation model with

a triplet loss. The learned unsupervised representations feeds a linear classifier independently trained. It

achieves good results in classification downstream task.

More generally, methods developed for static data and presented in Section 2.1 can be adapted for MTS

data, in particular thanks to the high flexibility and power of NNs that adapts to many types of data.

In this thesis, we are interested in neural representation under model-based generative assumption. In

particular, model-based representation are directly related to the LVMs presented in Section 2.2. In the next

section, we introduce a LVM framework for time series, called state-space models (SSMs), and its neural

extension.

2.4 State-space models

In this section, we present a latent representation learning framework for MTS data: the state-space models

(SSM), a LVM for sequential data.

2.4.1 Introduction to state-space model

Let X ∈ X be a time series of length T , Z a T -long sequence of hidden states and U a T -long sequence

of inputs (control commands, auxiliary information, etc.). As already mentioned, a time series X is both a

matrix and a ordered set of vector observationsXt, t ∈ J1, T K, it can therefore be decomposed and embedded.

The two representation scales can be treated with a general framework: the state-space models (SSM).

SSMs were first developed to model physical systems from sequential observations. Like LVM, the SSM

represents the distribution of the data with hidden states and auxiliary variables as follows:

p(X1:T |Z1:T , U1:T) = p(X1:T |Z1:T)p(Z1:T |U1:T) =

T∏
t=1

p(Xt|Zt)p(Zt|Zt−1, Ut) (2.13)

The prior p(Zt|Zt−1, Ut) brings temporal consistency to the model. See an illustration in Figure 2.14.

Remark 16. The relation with static LVM is clear. At each time step t, data Xt, auxiliary Ut and latent

variables Zt−1 and Zt form a LVM. The previous time-step latent representation Zt−1 is an additional

29

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Figure 2.14 – Graphical representation of a generative state-space model. Ut → Zt is called control. Zt−1 →
Zt is called transition, Zt → Xt is called emission. Solid arrows are the generative model. Broken arrows

are the inference model.

auxiliary variable. This addition is the propagation of information along the time axis, which enriches the

posterior estimation with dynamical information.

The SSM is therefore a general but simple time series modeling tool. In particular, from (2.13) we can

build the following MTS representations:

1. Z1:T as a decomposition of X

2. Each Zt as a an embedding of Xt or an embedding of X1:t

Depending on the task, we will refer to one of the items above.

Like in static models, the nature of the latent variable can change depending on what we seek in MTS

data. If we want to segment the time series, we may use categorical Zt|Zt−1 (see HMM cited above). If we

want to model the time series with simple distribution, we can use Gaussian distribution for Zt|Zt−1. If we

want both, we can use a Gaussian mixture. If we want to reduce the temporal dimensionality, we can use

deterministic LVMs for Zt|Zt−1 and only keep ZT (see RAE cited above). We have the high flexibility of

static LVMs in SSMs.

Remark 17. Different natural auxiliary variables Ut exist in time series. For example, we can use Ut =

Xt−1, Ut = X1:t−1 or Ut = t.

Most of the tools and concepts presented for LVMs are applicable in SSM framework. We can use

functions to model the distributions (static case in Section 2.2.2): embedding function F , emission function

D (inverse or approximated inverse of F) and transition functions P which model respectively the posterior

p(Zt|Xt, Zt−1, Ut), the likelihood p(Xt|Zt) and the prior p(Zt|Zt−1, Ut) distributions involved in SSMs. For

example:

Zt = P (Zt−1, Ut) + εt, εt ∼ N (0, Qt)

Xt = D(Zt, Ut) + vt, vt ∼ N (0, Rt)
(2.14)

30

2.4. State-space models

Neural SSM As for LVMs, the model (2.14) can be estimated with NNs (and adapted learning procedures)

[Krishnan et al., 2017]. Fφ models approximate posterior q(Zt|Zt−1, Xt, Ut) and Dψ for likelihood p(Xt|Zt).
We note respectively qφ(Zt|Zt−1, Xt, Ut) and pψ(Xt|Zt) the neural posterior and likelihood distributions.

We give noteworthy examples of SSMs in the following section, for a better understanding of the intro-

duced concepts.

2.4.2 Examples of SSMs

Kalman filter Initially, state-space models assumed linear relations and Gaussian transition [Kalman, 1960]:

Zt = Pt[Zt−1, Ut] + εt, εt ∼ N (0, Qt)

Xt = Dt[Zt, Ut] + vt, vt ∼ N (0, Rt)
(2.15)

with Pt the transition, Qt the transition’s covariance, Dt the emission, vt the observation noise with covari-

ance Rt. In the general case, parameters θt := [Pt, Bt, Qt, Dt, Rt] is time-dependent. In many cases, the

model is stationary, i.e. θt = θ,∀t ∈ J1, T K, or piecewise stationary i.e. θt = θt−1 for almost all t ∈ J2, T K

[Xiong and Zhou, 2013].

Linear Gaussian SSM, thanks to the parsimonious dependency structure (see Figure 2.14) and Gaussian

assumption (implying Gaussian marginal, conditional and joint distributions), has closed-form likelihood

from which we can learn the parameters and/or the hidden states Z. The pure parameter learning can

be done with any maximimum likelihood algorithm. The simultaneous parameters and state inference

can be done with expectation-maximization (EM) algorithm [Ghahramani and Hinton, 1996]. Exhaustive

treatment and use of standard linear SSM can be found in [Casals et al., 2018].

Remark 18. In (2.14), when P and D are smooth enough, i.e. well approximated by first-order Taylor

expansion, extended Kalman filter [Smith et al., 1962] can be used. When the functions P and G are highly

non-linear, difficult to estimate, when the problem is high-dimensional such that the computation of the

Jacobian is intractable, or simply when we do not want assume too much about the distribution in the

modeling problem, NNs are a generic and flexible solution to estimate the emission and transition functions.

Slow LVM Slowness is a common temporal structure used in time series decomposition. It represents

the fact that two consecutive time-steps in a time series have close values. The extraction of slow features

from time series data is called Slow feature analysis (SFA) [Wiskott and Sejnowski, 2002]. The slowness is

generally modeled as the fact that temporal increments of a time series have low variance. The SFA problem

is then defined as follows:

min
F :Z=F (X)

d∑
i=1

〈∆Z(i)2
〉 s.t. 〈Z〉 = 0, ZZT = I (2.16)

with ∆Z =
[
∆Z(1) . . .∆Z(d)

]T ∈ RT×d the set of incrementz and Z0 = 0 (without loss of generality) such

that ∆Z1 = Z1 is defined. Constraints avoid trivial constant solutions and information redundancy between

the latent factors. It is also standard but not required to add an ordering constraint for the slowness, i.e.

〈∆Z(i)2〉 < 〈∆Z(j)2〉 if i < j.

31

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Remark 19. The increasing slowness inductive bias is the direct counterpart of decreasing explained variance

inductive bias of PCA. Both are powerful inductive biases for dimensionality reduction and representation

learning.

In [Turner and Sahani, 2007], the SFA is expressed as a latent variable model. Constraints can be replaced

by Zt ∼ N (0, I) ∀t ∈ J1, T K. Prior on Z = F (X) (2.16) is:

Zt|Zt−1 ∼ N (Zt−1,Σ) (2.17)

and the posterior distribution is

Zt|Xt ∼ N (F (Xt), σ
2
zI) (2.18)

such that the function F is optimized by maximum-likelihood. We note that the slowness can be adapted to

many time series representation learning situations, since the temporal consistency is often a good a priori

knowledge.

Time-based independent components analysis In linear ICA, we have seen that a common assump-

tion is the non-Gaussianity of the sources [Hyvärinen and Oja, 2000]. When data is time series, an alterna-

tive assumption is the slowness [Hyvärinen et al., 2001], presented above. In fact, if the latent Z are slow un-

correlated features then ∀t, i, Z(i)
t ≈ Z

(i)
t−1. Hence, the covariance between 〈Z(i)

1:T−1Z
(j)
2:T 〉 ≈ 〈Z(i)Z(j)〉 = δij .

It is shown in [Tong et al., 1991] that having diagonal instantaneous and lagged covariance is a sufficient

condition for independence.

In [Blaschke et al., 2007], they propose a nonlinear BSS method by coupling linear ICA with SFA. In

[Sprekeler et al., 2014], they enrich the SFA-based nonlinear ICA with an iterative extraction of the sources.

The latter showed that if the sources have different autocorrelation functions, then the true sources are

identifiable. It constitutes the first theoretically grounded nonlinear identifiable nonlinear ICA. Additional

results on nonlinear BSS with NNs will be introduced in Section 2.4.4 after the introduction of neural LVMs

for time series data. A complete review of time-based ICA can be found in [Hyvärinen et al., 2001].

Structural independent components analysis A particular case of temporal ICA assumes the exis-

tence of structural latent components that are supposed to be meaningful. Structural signal extraction hence

refers to the definition and extraction of these structural components that compose the time series. The

standard decomposition in the literature consists in the combination of structural components that are the

trends τ , the cycle c, the seasonality s and the irregularity ε. The trend is a monotone long-term signal.

The cycle is a signal that affects the observations at random frequencies. Seasonality is a signal that affects

the time series at fixed frequency. The irregularity is the rest, that mainly models exogenous factors and

noise. The exogenous input can be a control variable, an environment factor or some random noise. The

structural components τ, c, s, ε are always assumed to be independent, for identifiability reasons (see ICA in

Section 2.2). This decomposition is illustrated in Figure 2.15. In this model, Zt = [τt, ct, st, εt] ∀t ∈ J1, T K.

32

2.4. State-space models

Figure 2.15 – Common latent variable modeling of time series data

Variational state-space model We can adapt the VAE to SSM framework, illustrated in Figure 2.16.

Since SSM is a directed graph of static LVM connected by their latent variable, VSSM is a directed graph of

VAE. The VAE share their parameter, such that the inference mechanism model all time series time-steps.

The loss for variational SSM (VSSM) directly stems from VAE’s loss [Fraccaro, 2018].

Figure 2.16 – Graphical representation of a VSSM. Broken arrows are inference (posterior), emission and

control (prior). Plain arrows are generation. Parameters are shared between all time-steps.

Like for the static VAE, variational family of distribution is usually Gaussian, with for example prior

p(Zt|Zt−1, Ut) = N (zt−1, σ(Ut)), σ being a function of the control to adapt the uncertainty of the transition

depending on control actions.

Many derivations of the VSSM has been used in the literature, depending on the studied case studied.

On overview of standard VSSMs and their applications is given in [Fraccaro, 2018].

2.4.3 Designing expressive SSM with additional objectives

As in the static case, we can enrich the estimation of the data representation in SSM framework using

additional objectives.

33

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Designing expressive SSM posterior distributions with self-supervised learning Like for static

data, it is possible to enhance the expressiveness of the representation mechanism (posterior distribution)

with self-supervised learning, with standard pretext tasks used for static data, like auto-completion or denois-

ing [Romeu et al., 2015]. In particular, SSM are inherently self-supervising the time series representation.

In fact, the propagation of information through time with latent variable Z (see illustration in Figure 2.14)

can be seen as an auto-completion of the information: Zt|Xt does not contain all the information about Xt,

since Zt is also conditioned on Zt−1. This one-step information completion through time is called temporal

consistency, and contains the notion of slowness previously cited.

Designing expressive SSM posterior distributions with contrastive learning The difficulty of CL

lies in the definition of a similarity in the observation space. When applied for time series representation, the

time index can be leveraged: the closer the time index of samples, the closer they are (in term of properties

or values). This CL based on time-index is called time-contrastive learning (TCL) and has many variants.

In [Sermanet et al., 2018], they reconcile in the latent space different viewpoints from the same scene

in consecutive frames of a video. In [Wang and Gupta, 2015], they assume that close frames of a video

should be represented closer than distant frames and propose a loss that directly optimizes this assumption.

In [Franceschi et al., 2019], a method called Unsupervised Scalable Time Series Representation (USTR)

assumes that a MTS sample is closer to one of its subsamples (positive sampling) than to a randomly chosen

sample of the dataset (negative sampling). The embedding Fφ(X) is trained with a triplet loss to reconcile

the reference sample and the positive sample, and ward the negative sample off. In [Banville et al., 2019],

they use related approach to learn EEG (long time series) representation, by learning to reconcile temporally

close and to discriminate temporally far MTS subsamples.

2.4.4 Identifiability of time series neural representations

We have presented recent identifiability results in Section 2.2.5. These results apply to time series represen-

tation, in the three previously presented settings, as follows.

A first setting uses the neural SSMs framework, i.e. with a NN Fφ that estimates the posterior

distribution of the latent representation whose parameters φ are learned by maximum-likelihood. In

[Khemakhem et al., 2019], they introduce auxiliary variables Ut in VAE framework, on which latent vari-

ables Z are explicitly conditioned, to break the i.i.d. assumption. The latent prior p(Zt|Ut) is factorial, but

not necessarily p(Zt). They show that it is a condition of latent variable identifiability in VAE. We note

that if Ut is constant for all samples, then we find back the standard SSM framework. Ut can be the time

index t, the past observation Xt−1 or any other label (not necessarily related to time).

A second setting is based on supervised learning. In [Hyvarinen and Morioka, 2016], for a time series X,

assumed to be nonstationary (underlying properties are time-dependent), they learn a latent representation

of time-steps Fφ(Xt) such that a linear classifier can determine its time index t (or at least the index of

a time-window that contains t, assuming that the series is stationary-by-part). They show that, if the

stationarity (by-part) condition is respected, then under simple assumptions on the true generative factors

Z of X, then the latent nonlinear variable model is identifiable (up to a linear transform). By applying

a linear ICA on the TCL-based representation, we then obtain true independent generative factors, up to

34

2.4. State-space models

scaling and indexing.

A third setting is based on (binary) contrastive learning (see Section 2.1.4). In [Hyvarinen et al., 2018],

a logistic neural regression learns to discriminate between [Fφ(Xt), Ut] (label 1) and [Fφ(Xt), Ut∗] (label 0),

where Ut is an auxiliary variable for Xt and t∗ a random time index.

A particular case of contrastive learning for hidden trend identification is developed in Chapter 4.

2.4.5 LVMs for time series embedding

We have mentioned above that the last latent variable of an RNN can represent the whole time series

X. More generally, several extensions of the previously presented models can be adapted to time series

embedding.

Variational recurrent autoencoder In Section 2.2.4, we have introduced AEs for dimensionality re-

duction and VAEs its common LVM extension. We have also introduced the RAE in paragraph Neural

representation in Section 2.3.2. Like AE, RAE can be extended with a probabilistic model to create a

variational recurrent autoencoder (VRAE) [Fabius and van Amersfoort, 2014]. We note he the latent vari-

ables of the RNN encoder and hD the latent variables of the RNN decoder. The associated objective is

similar to VAE’s (see Appendix B.1 for details on the VAE loss):

φ, ψ = arg minEX∈X
[
−EZ∼qφ(Z|X,U) [log pψ(X|Z,U)] +KL (qφ(Z|X,U)||p(Z|U))

]
(2.19)

where pψ(X|Z,U) =
∏T
t=1 pψ(Xt|hdt)1hdt=Dψ(hdt−1),Dψ is a MLP with parameters ψ, qφ(Z|X,U) = qφ(Z|heT),

het = Fφ(het−1, Xt, Ut), Fφ is a MLP with parameters φ, hdt = Dψ(hdt−1, Ut) ∀t ∈ J1, T K. Like for VAE, the

prior on Z is generally N (0, I). The model is illustrated in Figure 2.17.

Figure 2.17 – Graphical representation of a whole sequence representation learning framework. he and hd are

respectively encoding and decoding RNN latent variables (see Appendix A). Broken arrows are inference

(posterior), emission and control (prior). Plain arrows are generation. Parameters φ and ψ are shared

between all time-steps. Blank cells are deterministic.

Drawbacks of VRAE for MTS representation Yet, in [Bowman et al., 2016] they raise the difficulty

of learning good representation with VRAE.

35

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Let’s consider that autoregressive decoder (hd, Dψ) is powerful enough to model the data. We remind that

the joint distribution p(X|U) can be decomposed using a chain rule (2.11); hence, a sufficiently large RNN

can theoretically model it. We note pψ(X|U) the learned model of the data, such that pψ(X|U) = p(X|U).

Hence the left-hand term (negative log-likelihood) of (2.19) is minimal, no matter the learned approximate

posterior distribution qφ(Z|X,U). De facto, qφ(Z|heT) can match any prior, i.e. KL (qφ(Z|heT)||p(Z|U)) = 0,

minimizing the right-hand term of (2.19) without affecting the left-hand term. We have minimal loss but

no relevant information in the latent space. All the information is in the decoder.

Remark 20. This problem extends to all high-capacity decoders, i.e. decoders that inherently can model the

studied data distribution.

Trick to learn whole-MTS latent representations To avoid this drawback of VAE-based representa-

tion learning and obtain expressive posterior distributions, several solutions have been proposed.

• Control the convergence: in [Bowman et al., 2016] they control the convergence of the KL by annealing

it with a coefficient β, first set at zero and then progressively increased to 1.

• Enrich the prior: in [Tomczak and Welling, 2018], to prevent the posterior to ignore a too simple

(hence irrelevant) latent space distribution, they learn a richer prior than standard normal prior, by

learning auxiliary meta-variables that condition a multi-model prior. It empowers the over-regularized

standard VAE using a too simple (inexpressive) latent distribution N (0, I).

• Enforce information: several papers proposed to use the mutual information (MI) between data and

latent to induce good representation. In [Alemi et al., 2018] they recycle the information bottleneck

method [Tishby et al., 2000] stating that latent variable representation is a trade-off between distortion

(reconstruction) and complexity (rate of compression). Using the MI maximization as an objective

had many iterations, from blind-source identification [Bell and Sejnowski, 1995] to VAE, with implicit

[Zhao et al., 2017] or explicit [Alemi et al., 2018] MI in the objective.

• Change the VRAE: another way to limit the vanishing of latent information is to modify the framework

by introducing inductive bias, for example by modifying the shapes and/or properties of the encoder-

decoder or by adapting and using the previously introduced posterior enriching methods. For example,

in [Fortuin et al., 2018], they enrich a VRAE with several features. They jointly learn a discrete

VAE [van den Oord et al., 2017] for the embedding, a self-organizing map [Kohonen, 1982] to find

a neighborhood structure in the latent space and a Markov transition model [Geyer, 1992] for the

dynamics. The objective is to learn a discrete representation of trajectories. Other example, important

for the contribution of Chapter 3: in [Kipf et al., 2018], they propose the neural relational inference

(NRI), a VAE that transforms time series into a binary relational graph, trained as a variable selection

method for neural time series model. To do so, they adapt relation neural network (RelNN) and graph

neural networks (GNN, see Appendix A) to embed time series data. In Chapters 3, we use similar

encoder to infer causality in MTS samples.

Finally, the solutions to enrich the RAE and described in paragraph Neural representation in Section

2.3.2 can also be used.

36

2.5. Graph representation

Remark 21. About the last cited paper [Kipf et al., 2018], using the relational inductive bias has become

standard [Battaglia et al., 2018] since it is common to have semantic information that depends on the rela-

tion between objects in data. In MTS, many data are intrinsically relational, for example in action recog-

nition from body sensors [Shi et al., 2019, Asadi-Aghbolaghi et al., 2017] where the graphical structure that

describes the relation between the sensors is the true skeleton.

These different examples of NN-based representation learning methods for MTS data illustrate an im-

portant point: it is simple to adapt the framework with inductive bias when using neural networks, thanks

to their high flexibility and the simplicity of the associated losses.

We have presented in this section the fundamental elements of MTS representation learning, on which

we build the contribution of the thesis.

2.5 Graph representation

In the contributions of the thesis, we also treat the problem of the classification of graphs, in chapters 5

and 6. The generic concepts about representation learning presented in Section 2.1 remain valuable for the

graph representation problem. Yet, like for MTS data, we need to introduce specific knowledge on graphs.

2.5.1 Definitions and notations

A graph G is a representation of the relation between objects called vertices or nodes. We note nG the

number of nodes. The relation between the nodes is represented by edges. Illustration of several graphs is

given in Figure 2.18.

Figure 2.18 – Drawing of three graphs. The first two are the same graph with different views. The last is a

longer graph. Difficulties are: finding a representation that is invariant with respect to the ordering of the

nodes (to align the two equals) and creating an embedding function that deals with variable sized inputs.

More formally, we note G = (V,E,W) a graph where V is the set of vertices (also names nodes) and

E ⊂ V × V is the set of edges. The properties of a graph are characterized by its structure (i.e. the set of

edges), generally represented by a binary adjacency matrix noted A ∈ RnG×nG such that Aij = 1(i,j)∈E .

The entries of the adjacency matrix can also be real (generally in [0, 1]), defining a weighted adjacency

matrix noted W .

When W (or A) is symmetric (i.e. W = WT), we say that the graph is undirected. It means that

{(i, j) ∈ E} ≡ {(j, i) ∈ E}. It is common to have undirected relations between objects; for example the

37

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

covalent bonds between the atoms of the molecules or the friendship relations in social networks. In the

graph chapters 5 and 6, we only treat undirected graphs.

Additional vertex or edge features can be added upon G, yet in this thesis we only treat graphs without

auxiliary features, with the objective to understand how to leverage the information contained only in the

structure of graphs.

Isomorphism-invariance A particularity of graphs is that they have no natural ordering of the nodes.

In fact, a graph is a set of nodes and edges that can be jointly permuted. For example, if V = {0, 1, 2}
and E = {(0, 1), (0, 2), (1, 0), (2, 0)}, and if π is a bijective index permutation such that π(i) = 2 − i, then
Gπ = (V π, Eπ,Wπ) with V π = {0, 1, 2} and Eπ = {(2, 1), (2, 0), (1, 2), (0, 2)} is equal to G. Yet, the

adjacency Wπ of Gπ is different from W but is equal up to a permutation matrix Π corresponding to

permutation operator π, i.e. Wπ = ΠWΠT . The equality of two graphs up-to permutation of the node

index is called isomorphism.

Remark 22. The isomorphism problem is the problem of finding if two graphs are isomorphic. This problem

is not known to be NP-complete nor solvable in polynomial time. Yet, it is a NP-hard problem.

When looking at graph representation F (G) for graph-level tasks (e.g. classification), we need isomorphism-

invariance, i.e. invariance to node indexing:

F (G) = F (Gπ).

Laplacian A standard object associated to graphs is the Laplacian matrix, computed as L = D −W ,

where D = diag(W1) is the degree matrix. The degree of a node, in the undirected case, is the number of

edges that are incident to the node. We note that degrees are intrinsic node features. The vector of degrees

is computed as W1nG , where 1nG is the vector of nG ones. Laplacian matrix is a known and commonly

used representation of graphs [Merris, 1994]. Its spectrum will be the subjects of Chapter 6.

2.5.2 Graph representation for whole-graph classification

The embedding of graphs consists in extracting information that is hidden in the graphical structure. Yet,

the same way different tasks at different scales exist for time series representation, graphs representation or

graphs embedding [Cai et al., 2018] incorporates several concepts:

• Node embedding consists in mapping each node of a graph to a vector that lives generally in a low-

dimensional vector space. The embedding are built to preserve topological properties of the graphs

in the representation space, for example the similarity between nodes (i.e. the similarity of their

neighborhood structure)

• Node classification consists in learning a node-to-label assignment from ground-truth node-labelling

• Node clustering maps each node into a cluster/group such that nodes in the same clusters correspond

to nodes living in a densely connected area of the original graph

38

2.5. Graph representation

• Whole-graph embedding consists in mapping the graph to a vector that lives in a low-dimensional

vector space

It is possible to obtain an isomorphism-invariant whole-graph embedding from node-embedding by using an

aggregation of the nodes embedding that is invariant with respect to a permutation of the nodes index.

Graph embedding benefits in a wide set of tasks: community detection [Hollocou et al., 2018], recom-

mendation [Zhou et al., 2017], link prediction [Wei et al., 2017], graph classification [Zhang et al., 2018], etc.

All these methods are based on a representation of the nodes and/or the graph where the graph structure is

preserved. If the task is at node-level, preservation of the neighboring in the embedding is generally sought.

If the task is at graph-level, the graph-level similarity should be preserved. Since we are only interested

in whole-graph classification in Chapters 5 and 6, we propose to only introduce whole-graph representation

methods that have applied to this task.

Remark 23. We note that the notion of similarity between whole-graphs is not obvious since graphs have

variable size, no trivial alignment and are invariant to permutation of the node indices. We note that we find

the first two drawbacks in time series analysis (see Section 2.3.2). The third drawback is kind of opposite:

in MTS representation, the order of the observation must be preserved.

For better understanding, we divide them into three categories: graph kernel methods, feature-based

methods and deep learning.

Graph kernel methods Informally, a kernel is a function that computes the similarity between two

objects. Formally, it is the inner product of a nonlinear projection of the two objects in a high/infinite-

dimensional space. The kernel trick [Shawe-Taylor et al., 2004] avoids to compute explicitly the coordinates

in the high-dimensional space, only the inner product between all pairs of data: it is an implicit embed-

ding methods. The graph-kernel methods perform pairwise comparisons between atomic substructures of the

graphs. The similarity between two graphs is the number of matching pairs of substructures. These substruc-

tures can be graphlets [Shervashidze and Borgwardt, 2009], subtree patterns [Shervashidze et al., 2009], ran-

dom walks [Vishwanathan et al., 2010] or paths [Borgwardt and Kriegel, 2005]. Yet, the problem with these

graph kernels is that they scale poorly with respect to graph size or dataset size. In [Shervashidze et al., 2011],

they propose a general efficient kernel the encompasses aforementioned families of graph kernels and scale to

large graphs, based on Weisfeiler-Lehman (WL) test of isomorphism (an effective test that enable to iden-

tify and distinguish a large broad of types of graphs [Weisfeiler and Lehman, 1968]). The main difficulty

lives in the choice of appropriate algorithm and kernel that accept graphs with variable size while remaining

computationally efficient (kernel methods, more generally than their application on graphs, can be computa-

tionally expensive but techniques like the Nyström algorithm [Williams and Seeger, 2001] allow to lower the

number of comparison with a low rank approximation of the similarity matrix). In [Nikolentzos et al., 2017],

they mention the fact that graph kernels mostly focus on local properties of graphs whereas we want to

compare whole-graphs. They then propose two kernel methods based on global properties of the graphs,

which match eigenvectors of the adjacency matrix (spectral embedding of the nodes) for all pairs of graphs

in a dataset. First algorithm is an instance of the Earth Mover’s Distance (EMD) [Rubner et al., 2000]. A

second is based on Pyramid Macthing (PM) [Grauman and Darrell, 2007], which maps unordered feature

sets (set embedding of nodes) to histograms and compute histogram intersection.

39

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

Feature-based methods Feature-based (FB) representation methods [Barnett et al., 2016] represent

each graph as a concatenation of relevant features. In particular, for graph classification, the features must

be discriminative. The feature-based representation can offer a certain degree of interpretability and trans-

parency since the features are chosen and built/learned with a strong inductive bias. The most basic ones

are the number of nodes or edges, the histogram of node degrees. These simple graph-level features offers

by construction the sought isormorphism-invariance but suffer from low expressiveness. More sophisticated

algorithms consider dynamic features (DyF) based on attributes of random walks on the graph, for example

correlation patterns of node attributes seen by a random walker at different instants [Gómez and Delvenne,].

Others are based on graphlets [Kondor et al., 2009]. In this situation, the embedding of a graph is then

the number of occurrences of these substructures within it. [Kondor and Borgwardt, 2008] explicitly built

permutation-invariant features by mapping the adjacency matrix to a function on the symmetric group.

[Verma and Zhang, 2017] proposed a family of graph spectral distances (FGSD) to build graph features,

based on functions of the eigendecomposition of the graph Laplacian.

Deep learning based methods The deep learning on graphs is mainly treated with graph neural

networks (GNNs) that are formally presented in Appendix A.1.1. A survey on GNNs can be found in

[Wu et al., 2020]. Here we only give the interesting bibliography regarding the graph classification problem

treated in Chapters 5 and 6.

GNNs learn representation of nodes of a graph by leveraging together their attributes (features attached

to the nodes), information on neighboring nodes and the attributes of the connecting edges. When graphs

have no vertex features, the node degrees are used instead. To create graph-level representation instead of

node representation, nodes embedding are pooled by a permutation invariant readout function like summa-

tion or more sophisticated information preserving ones [Ying et al., 2018, Zhang et al., 2018].

The most known DL-based graph embedding methods are the graph convolutional neural networks (GC-

NNs). They use convolutions on graphs, considering like for image that relevant information is multi-scaled

and that the multi-scaling can be achieved with hierarchical localized receptive fields. The GCNNs fall into

two families of models: the spectral GCNNs and the spatial GCNNs.

Spectral GCNNs assume that the node features are a signal living on the graph. In [Bruna et al., 2013],

they define the convolutions as noise-filters for the signal, in the spectral domain, using a graph Fourier trans-

form [Shuman et al., 2013]. An approximation of the spectral GCNNs is given in [Defferrard et al., 2016],

where they propose an efficient localized filter (i.e. that does note depend on the graph’s size). A main

limit of spectral-based lies in the fact that they are designed to process several signals on one graph. Yet,

for graph classification, we are interested in processing zero or one signal on many graphs. In fact, contrary

to spectral methods that operate on the Laplacian eigenspace, the spatial GCNNs operate in the graph

domain to propagate a signal along the edges of the graphs. In [Niepert et al., 2016], they apply convo-

lutional filters on locally connected region of arbitrary graphs. In [Atwood and Towsley, 2016] they see

convolution as a diffusion process and propose a Diffusion Convolutional Neural Network (DCNN). Then,

different methods and architectures were proposed to enrich the signal propagation/message-passing process

of [Kipf and Welling, 2016], mainly by changing the functions that aggregate neighborhood information. For

example, in [Hamilton et al., 2017], they propose a node embedding that is based on random Graph SAm-

pling and aGgrEgation (GraphSAGE) of neighbor’s features to help the GCNN better generalize on unseen

40

2.5. Graph representation

nodes.

Yet, most of the existing graph-level neural networks are based on GCNNs that first embed nodes,

not graphs. Hence, a dimensionality reduction strategy is required. Two main families of graph dimen-

sionality reduction methods exist. First, we can apply pooling (max, mean) after the message-passing

steps [Duvenaud et al., 2015, Li et al., 2015]. Second, we can cluster node representation, hierarchically

coarsening the graph [Defferrard et al., 2016, Niepert et al., 2016, Monti et al., 2017]. For example, in

[Zhang et al., 2018] they propose a pooling where the nodes are sorted and only the first are kept. They

call this end-to-end graph classification method Deep Graph Convolutional Neutal Network (DGCNN). In

[Ying et al., 2018], they propose a Differentiable Pooling (DiffPool), where they learn the hierarchy through

trainable (hence differentiable) cluster assignment, defining a method that can be applied to any message-

passing GNN. In [Luzhnica et al., 2019], they base the coarsening on clique (subset of nodes where all nodes

are adjacent) aggregation. Recently, [Xinyi and Chen, 2018] leveraged capsule networks [Sabour et al., 2017]

(CapsGNN), neural units designed to better preserve information at pooling time. In [Xu et al., 2018], they

propose the Graph Isomorphism Network (GIN) based on Weisfeiler-Lehman (WL) test that achieves WL

discriminative power and which is supposed to be intrinsically invariant to isomorphism of the graphs. This

last model is built to be the most expressive for graph-level tasks like graph classification, thanks to its

intrinsic isomorphism-invariance.

Many other works about graph embedding have been proposed, based on these recent advances. In par-

ticular, we can cite the theoretical works [Maron et al., 2018, Maron et al., 2019, Azizian and Lelarge, 2020]

done in the continuity of [Xu et al., 2018], which try to define what a GNN can extract from graphs with

new isomorphism-invariant architectures.

In this introduction, we have outlined the main concepts of representation learning, and their extension

to the time series representation and whole-graph classification. We gave required knowledge to understand

the contributions of the thesis exposed in the rest of the document.

41

CHAPTER 2. REPRESENTATION LEARNING, MULTIVARIATE TIME SERIES AND GRAPHS

42

Chapter 3

VAR models and Granger causality

Abstract In this chapter, we provide and experiment a new model-based multivariate time series (MTS)

representation learning method using causality graphs, built as an encoder-decoder. In particular, we show

in experiments that our model is appropriate to monitor ageing mechanical systems. This chapter covers

two publications:

• Pineau, E., Razakarivony, S., and Bonald, T. (2019). Seq2var: multivariate time series representation

with relational neural networks and linear autoregressive model. Advanced Analysis and Learning on

Temporal Data, pages 126–140, in Lecture Notes on Artificial Intelligence, Springer.

• Pineau, E., Razakarivony, S., and Bonald, T. (2020). Unsupervised ageing detection of mechanical

systems on a causality graph. International Conference on Machine Learning and Applications. Oral.

3.1 Seq2VAR: efficient VAR parameters inference

3.1.1 Problem setup

Let X ⊆ Rd×T be a finite set of d-dimensional multivariate time series (MTS), each indexed over the discrete

time range t = 1, . . . , T . We first assume that each sample X follows a VAR model, i.e. for each time series

X there exists a tensor WX ∈ RK×d×d such that ∀t ∈ JK,T K

Xt =

K∑
k=1

WX
k Xt−k. (3.1)

Model (3.1) is a d-dimensional linear vector autoregressive model of orderK, noted VAR(d,K), with sample-

wise parameter WX . Under the VAR assumption (3.1), couple (WX , X0) is an exhaustive representation of

time series X. Hence, comparing the representation (WX , X0) of the time series X ∈ X is a way to compare

the samples X. The initialization X0 being observed, the difficulty of the problem is the inference of the

WX for each X ∈ X .

In standard approaches, the parametersWX are estimated by maximum likelihood, in closed form (under

certain assumptions) or with a likelihood function estimated from data. This likelihood function can for

43

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

example be built for example, in the linear case, with a Kalman filter (see background in appendix). Each

WX must be estimated individually, for each sample X. There are two problems with this approach. First,

the standard estimation of the linear parameter for a given sample does not help for the estimation of the

parameter of another sample. There is not capitalization of the knowledge contained in the whole dataset.

Second, when the dataset is large, when the data are high-dimensional or whenWX has constraints (sparsity,

symmetry, etc.), estimating WX for all samples is not tractable. We need an efficient inference function.

In this chapter, we propose to consider the VAR inference problem as a latent variable representation

learning problem, illustrated in Figure 3.1. As for autoencoder based LVM, we substitute the true posterior

distribution p(WX |X) by a neural network based posterior pφ that maps each sample X into VAR parameter

space using a learned embedding neural network Fφ with parameters φ. We call the model sequence-to-VAR

(Seq2VAR).

Figure 3.1 – Graphical model of the sample-wise VAR tensor inference problem.

3.1.2 Seq2VAR: an encoder-decoder for efficient VAR parameters inference

Our model belongs to encoder-decoder framework. We remind that an encoder-decoder consists of an encoder

Fφ that takes a time series X ∈ X as input and outputs representation Z = Fφ(X) of X such that X can be

reconstructed from Z using a decoder D, i.e. D(Z) ≈ X. More details are given in the Chapter 2 Section

2.2.

In our approach, we train Fφ(X) to be an estimation ŴX of the tensor parameter WX defined in (3.1).

In this situation, the decoder is then simply the autoregressive model (3.1). It has no parameters to learn.

We remind that the causality is a dynamical interaction between the variables of a multivariate time

series, which is naturally represented in sparse VAR models (see Section 2.3.1). Hence, an appropriate neural

inference function Fφ is a neural network that explicitly represent the interactions between variables. In

[Santoro et al., 2017], they propose a type of neural network, called relational neural network (RelNN), that

embeds the interactions between objects in images for relational reasoning. Details about this particular

neural network architecture is given in Appendix A.1.5.

In our case, the objects are the d individual time series composing our samples. A version of a RelNN

for time series has been proposed in [Kipf et al., 2018]. There are two differences with the standard RelNN

proposed in [Santoro et al., 2017]. First, the embedding function, noted fvar, first contracts the time di-

mension of the MTS samples to obtain a vectorial representation of dimension d of each time series. Second,

in [Kipf et al., 2018], the RelNN is expanded with a graph neural network (GNN, see Appendix A) that

takes as input the created tensor containing the embedding of each pairwise relation which can be seen as

fully-connected graph with d2 nodes whose edge features are the relations embedding. This GNN layer en-

44

3.1. Seq2VAR: efficient VAR parameters inference

ables the model to explicitly take into account the fact that each pairwise interaction X(i) ↔ X(j) between

variables also depends on the respective interactions of i and j with the other variables {1, . . . , d} \ {i, j}
(several pairwise interactions per variable). In Seq2VAR we use the expanded version of [Kipf et al., 2018]

and specialize it for the inference of the VAR parameters, as illustrated in Figure A.5. The difference with

[Kipf et al., 2018] is that we specialize the network to find the linear causalities hidden in data.

Figure 3.2 – Graphical model of the expanded relational neural network, with d = 2, specialize to infer

tensor WX given time series X. GNN means graph neural networks.

Remark 24. Beyond the known interest of the relational inductive bias [Battaglia et al., 2018], the interest

of the RelNN compared to a standard neural network for time series data (e.g. recurrent neural networks)

is illustrated in Section 3.4.

We note the RelNN encoder Fφ : Rd×T → RK×d×d. The global encoder-decoder problem of Seq2VAR is

then:

min
φ

∑
X∈X

T∑

t=K+1

∥∥∥∥∥Xt −
K∑
k=1

Fφ(X)kXt−k

∥∥∥∥∥
2

+ λΩ (Fφ(X))

 . (3.2)

where Ω is a regularization function and λ ∈ R+ its coefficient of importance. This regularization can be

used, in particular, to induce and control sparsity in estimated parameters ŴX .

Seq2VAR is illustrated in Figure 3.3.

Figure 3.3 – Seq2VAR model infers a VAR parameter from time series data. Here K = 2.

45

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Remark 25. The decoder’s parameters φ trained on many examples retain some general structural infor-

mation about the data, hence about the system that generated the data (see Figure 3.4), naturally helping

the decoder to generalize to new samples.

Figure 3.4 – Graphical model of the inference of WX (broken arrow) and generation of X (plain arrow).

The parameters φ are inferred from the whole dataset.

Yet, this dataset-level regularization is latent. In Section 3.2, we propose a more explicit dataset-level

regularization of the problem to improve representation quality.

3.1.3 Adapting Seq2VAR for constrained VAR parameter inference

3.1.3.1 Sparse Seq2VAR for causality detection

We remind that in VAR(d,K) (3.1), the sparsity is directly linked to the notion of Granger causality (Section

2.3.1): if for (i, j) ∈ J1, dK2, there exists k ∈ J1,KK such that WX
k,i,j 6= 0, then X(i) GC

==⇒ X(j). The non-zero

values of WX define the causalities in X. De facto, sparsity in VAR model plays an important role in the

quality of the representation of the sample X by parameters WX since it is the signature of the causal

structure. Moreover, as stated in the introduction, sparse VAR models reduce the statistical ambiguity that

exists because of correlation between variables.

In theory, in a regression, true sparsity is achieved with L0 regularization of the weights. The L0 norm of

a vector is the number of non-zero entries. This norm is not differentiable. It cannot be used as Ω penalty.

It is generally replaced by a LASSO penalization, i.e. a L1 norm.

In VAR model (3.1), it is standard to penalize at the same time all lags parameter WX . It enables

to shut down all the causalities from a variable to another. It is called the group-LASSO penalization

[Lozano et al., 2009]. In the introduction (Figure 2.10), we saw that a simple LASSO penalization of tensor

WX , i.e. Ω(WX) =
∑
i,j,k |WX

i,j,k|, would possibly converge to the solution WX
1,2,1 = WX

1,1,2 = 0 and

WX
2,2,1 = WX

2,1,2 = 0. Hence, it would allow crossed causalities, creating an ambiguous causality structure.

A contrario, penalizing all lags at the same time, i.e. Ω(WX) =
∑
i,j ‖WX

i,j‖F would induce the model to

find WX
1,2,1 = WX

1,2,2 = 0 or WX
2,1,1 = WX

2,1,2 = 0, i.e. no cross-causalities.

Remark 26. Different types of grouped penalization exist, depending on the a priori we have on the sough

causality [Jacob et al., 2009, Tank et al., 2018]. We focus on variable group sparsity.

In our case, we need a specific sparsity for each sample X, since the X have specific parameter WX .

We therefore need the encoder Fφ to be enriched so that it can infer not just a VAR parameter but a

sparse VAR parameter for each sample X. We propose to use a sample-adaptative binary masks. This type

46

3.1. Seq2VAR: efficient VAR parameters inference

of masks is commonly used in attention mechanisms [Bahdanau et al., 2014, Xu et al., 2015] or in long-

memory recurrent neural network (LSTM) [Hochreiter and Schmidhuber, 1997] to filter the useless memory

information.

We have seen in the introduction that for encoder-decoder problems, we can add a probabilistic model

to the latent representation (see latent variable models Section 2.2), and estimate the posterior distribution

of the latent representation with neural networks. Here, since we are interested in sparsity, we propose to

use a Bernoulli distribution as probabilistic model for the edges of the (binary) Granger causality graph,

noted G = (V,E), with V is the set of d nodes (here the d variables of the multivariate time series X) and E

the set of edges (the causalities). We note A its binary adjacency, such that Ai,j = 1 if (i, j) ∈ E, Ai,j = 0

otherwise. For Seq2VAR, we a priori consider that edges are independently distributed:

p(G) =
∏

(i,j)∈E

pAi,j (1− p)1−Ai,j (3.3)

The independence of the edges justifies from the fact that causalities in WX are assumed independent

conditionally to X.

The posterior distribution is estimated with neural networks. We note Pφ(X) := pφ(G|X) the probabil-

ities of the Bernoulli sampling estimated with neural network Pφ.

Remark 27. We use the notation φ for the parameters of Pφ since in practice, we only change the output

dimensions of Fφ to obtain Pφ. Hence Fφ(X) ∈ R2K×d×d for LASSO, Fφ(X) ∈ R(K+1)×d×d for group-

LASSO. And Pφ(X) = Fφ(X)≥K .

To obtain a LASSO-like result, we need Pφ(X) ∈ RK×d×d. To obtain a group-LASSO-like result, we need

Pφ(X) ∈ R1×d×d (lags of the variables are turned on and off at the same time). Hence, we have the posterior

distribution p(G|X) := Pφ(X). We note Gφ(X) the binary gates sampled with probability Pφ(X).

To obtain truly binary gates (i.e. whose distribution is concentrated at 0 and 1) and not probabilities

of gates in [0, 1] as usual in approximate binary decision, we propose to use an adaptation of the Gumbel-

softmax trick [Jang et al., 2016, Maddison et al., 2016] proposed in [Li et al., 2018]:

Gφ(X) = σ

(
Pφ(X) + logU − log(1− U)

τ

)
, (3.4)

where σ is the sigmoid function, τ is a temperature parameter. It controls the relaxation of the binary

sampling. When τ → 0, the sampling tends to a true Bernoulli sampling but loses its differentiability. A

contrario, a high temperature implies more continuous relaxation: concentration around 0 and 1 is relaxed,

and samples spread in [0, 1], towards uniform sampling as τ grows. U is a random tensor with same size than

Pφ(X), whose entries are independent identically distributed U(0, 1). σ, log and + are scalar operators.

Now we can control the sparsity of Fφ by controlling the gates/edges posterior distribution Pφ(X), hence

without affecting the values of the entries of Fφ(X):

∑
X∈X

T∑

t=K+1

∥∥∥∥∥Xt −
K∑
k=1

(Gφ(X)� Fφ(X))kXt−k

∥∥∥∥∥
2

+ λΩ (Pφ(X))

 , (3.5)

47

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

where � is the Hadamard product. In [Louizos et al., 2017], they propose similar method to prune a neural

network, with a slight modification of the relaxed binary sampling.

In variational inference, the penalization is

Ω (Pφ(X)) =
∑

(i,j)∈E

Pφ(X)i,j log

(
Pφ(X)i,j

p

)
+ (1− Pφ(X)i,j) log

(
1− Pφ(X)i,j

1− p

)
(3.6)

i.e. the Kullback Leibler divergence between Pφ(X) and Ber(p). We found that in certain situations, like

in VAE problem, KL penalization sometimes collapse such that all entries of the posterior Pφ(X) are p, for

all X. The inference estimator Pφ is stacked in a confortable local minima. To circumvent this problem,

penalizing Gφ(X) instead of Pφ(X) proves mostly stabler behavior (no collapse). Moreover, we remark that

we can approximate the L0 norm of the estimated WX as follows:

‖Gφ(X)� Fφ(X)‖0
τ→0∼ ‖Gφ(X)‖1

Hence, we can simply use the following penalization:

Ω (Gφ(X)) =

∣∣∣∣ 1

C
‖Gφ(X)‖1 − p

∣∣∣∣ (3.7)

where C = Kd2 or C = d2 (depending on the grouping of LASSO penalty) instead of KL (3.6).

In practice, without a strong a priori on p, we may chose p = 0 to obtain the sparsest possible graph,

or more commonly chose uniform prior p = 0.5. The hyper-parameter λ determines the importance of the

apriori during the learning of parameter φ. If we choose weak a priori cited above, we generally choose a

low λ.

We therefore have a representation model for multivariate time series based on the linear dynamics

assumption. This assumption enables to explicitly take the existence of causalities between the variables

into account, thanks to a sample-wise sparsity inference.

Remark 28. A particular version of sparse Seq2VAR is the binary Seq2VAR (B-Seq2VAR), where the

tensor WX is binary, i.e. estimated only with Gφ(·). This case is illustrated in Section 3.3.1.2.

3.1.3.2 Symmetric Seq2VAR

Another constraint that can be easily imposed to Seq2VAR is the symmetry of the tensor WX . We can

simply force WX to be symmetric by imposing WX = 1/2(Fφ(X) + Fφ(X)T (1,2)), where T (1, 2) is the

transposition of dimensions 1 and 2 of the tensor. This setting can be important when the causalities are

bidirectional but not synchronized (otherwise it would be a correlation). It is the case where the interactions

between variables are physical or mechanical.

In this section, we have proposed Seq2VAR, an encoder-decoder framework that learns to efficiently infer

VAR parameters, and in particular under sparsity and symmetry constraints. In the next section, we focus

on a particular case and an extension of Seq2VAR where the whole dataset shares a common causal model.

48

3.2. Seq2Graph: Seq2VAR for system’s state monitoring

Figure 3.5 – We transform time series X, Y and Z into weights of a unique causal graph G that represents

the causal structure underlying the mechanical system (here a plane). The objective is to compare the

weights WX , WY and WZ to characterize the relative state of the system, represented by its color. For

example, if the causality assumption is relevant, WZ should be closer from WX than from WY . We note

that a maintenance was effectuated between Y and Z to restore the system’s state.

3.2 Seq2Graph: Seq2VAR for system’s state monitoring

3.2.1 Context

When observed samples are generated from a unique mechanical system S, it is common to assume a unique

causality structure G for the whole dataset X . For example, G can be the skeleton of an articulated body

or represent the causal relationships (statistical or physical) between sensors arranged in an engine, from

which we observe samples. An illustration is given in Figure 3.5. In this situation, the causal structure G is

shared between all observed samples. When the assumption of a unique graphical structure for all samples

is valid, like in the aforementioned examples, a causality graph G can be extracted directly from the studied

dataset X , using an appropriate statistical method. G is then an abstract representation of the system S
(e.g. a mechanical system) that generated all the observed samples.

Yet, Granger causality inference only aims at discovering and interpreting causalities between observed

variables at the scale of the dataset (i.e. one graph for all samples). In this section, we propose to relegate

the inference of the causal graph G as a preliminary task preceding the representation inference of individual

MTS samples. Our assumption is the following: since G is the graphical model of the system S that generated

all the observed samples (e.g. a mechanical system), G is also a natural meaningful latent structure on which

each data sample can be represented. In particular, each sample X can have its own set of edge’s weights

WX on G, hence its own causality-based representation. We can then consistently compare MTS samples

by comparing their edge’s weights on G. We propose to use the previously presented Seq2VAR model to

obtain these graph weights.

49

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

3.2.2 Representation on a dataset-level causality graph

We know that in VAR model, WX
.,i,j = 0 means the absence of causality from variable X(i) to variable X(j),

for a given sample X, [Eichler and Didelez, 2012]. In order to have all samples X represented on the same

causality graph G, all WX should share the same zeros.

In consequence, we propose to use a sparse random coefficient regression (RCR) [Muthén et al., 2015] to

model our samples (see Appendix B.3) and we assume that each tensorWX has three underlying components:

a dataset-level component W̄ ∈ RK×d×d, a sample-wise component PX ∈ RK×d×d and dataset-level binary

adjacency A ∈ {0, 1}d×d, such that:

WX = Ā�
(
W̄ + PX

)
(3.8)

where � is the Hadamard product and Ā the adjacency A extended to match the dimensionality of W̄ . W̄

and A are shared between all samples X. The entries of the sparse tensor A�W̄ are the edge features of the

causal graph G. The entries of the tensor A�WX are the adjustment of the graph to match the properties

of sample X.

Remark 29. The difference between standard RCR [Muthén et al., 2015] and ours is the shared sparsity

given by A.

In practice, we first infer a sparse tensor W̄ . Then we define a graph adjacency A from W̄ : Ai,j =

1{
∑K
k=1 |W̄k,i,j | > 0}. We then build and train a neural network Pφ with parameters φ that directly and

efficiently outputs the adjustment PX in the RCR. Hence, the previously introduced neural network Fφ is

defined as Fφ(X) := W̄ + PGφ (X), where PGφ (X) = Ā� Pφ(X).

The Seq2Graph framework is illustrated in Figure 3.6.

Remark 30. In term of graph signal processing, G is a directed graph with adjacency A such that A(ij) =

1{
∑K
k=1 ‖W̄k,i,j‖2 > 0}, the Wi,j are the (K × l)-dimensional edge attributes, X(j) is the signal living on

node j and the nodes-to-node signal propagation rule is defined by the GVAR (3.9).

3.2.3 Dataset-level nonlinearities

The same way all the samples may share a unique causal structure G, they may also share a common set of

nonlinearities to enrich and regularize the Seq2Graph model. Hence, let g = {gθj}dj=1 be a set of shallow

neural networks with parameters θ = {θj}dj=1, gθj : Rl → R, such that for each sample X ∈ X we can find

a tensor WX ∈ RK×d×d×l such that ∀j ∈ J1, dK:

X
(j)
t = gθj

(
K∑
k=1

WX
k,.,jXt−k

)
(3.9)

with l ∈ N∗. (3.9) is a neural generalized linear version of a vector autoregressive (VAR) model, called

generalized-linear VAR (GL-VAR) [Tank et al., 2018].

50

3.2. Seq2Graph: Seq2VAR for system’s state monitoring

Figure 3.6 – Representation of a sample X with Seq2Graph. 1© is the dataset-level causal graph G inference.

X̂ is the set of predictions for the whole dataset X . G is built such that it explains the mean dynamical

behavior of the dataset. 2© is the representation inference. X̂ is the prediction of the sample X. The

adjustments PGφ (X) are built such that they explain the specific dynamical behavior of sample X, along the

edge of the mean causal graph.

While in the linear case the full dynamics information is in WX , here the information about the data

is shared between W and g. Yet, the functions g are shared between all data samples. Hence, when

representing X with WX , the weights still contain sample specific information that can be monitored to

follow the evolution of the model, as in the linear case.

The advantage of Seq2Graph is twofold. First, sharing the graph means sharing the sparsity. It implies

that all samples will be represented in the same low-dimensional space. Second, the RCR structure centers

the distribution of the samples representation. It lower the uncertainties of the VAR models fitted in few

data (we remind that each sample has its own VAR parameter).

3.2.4 Seq2Graph training

Seq2Graph is a two-step method. This section describes the training of these steps.

3.2.4.1 Dataset-level causal structure inference

The first step of Seq2Graph consist in building the causal graph on which we will represent MTS samples.

We search a sparse W̄ from RCR model, and in the nonlinear case (3.9) we also learn θ = {θj}dj=1 the set

of parameters of the neural link functions. We therefore search a solution to the following mean-squared

regression with group-lasso regularization:

51

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

min
W̄ ,θ

R(θ, W̄) := EX∼X

 d∑
j=1

T∑
t=K+1

∥∥∥∥∥X(j)
t − gθj

(
K∑
k=1

W̄k,.,jXt−k

)∥∥∥∥∥
2

2

+ λ

d∑
i,j=1

∥∥W̄.,i,j

∥∥
F

+ γ

d∑
j=1

‖θj‖

(3.10)

where ‖.‖F is the Frobenius norm. The group-lasso penalty for W associated with coefficient λ encourages

each ‖W̄.,i,j‖F to be null, meaning that all causal links from X(i) to X(j) would be cut. λ ∈ R+ controls the

speed and intensity of the pruning. Regularization ‖θj‖ compensates the effect of the group-lasso to avoid

the (theoretical) situation where W̄ goes to zero while parameters θ tend to infinite sensitivity.

(3.10) is pretrained using a stochastic gradient descent method. Then, in order to obtain a truly sparse

weight W̄ (with exact zeros), we apply a proximal gradient descent (PGD) method [Parikh et al., 2014].

Principles of proximal optimization and details of the proximal optimization for our problem are given in

Appendix B.4.

3.2.4.2 Sample-wise causality adjustment

We assume that sparse W̄ and/or non-linearity gθ have been learned (see Section 3.2.4). We therefore can

build the causal structure G on which we want to represent the samples X ∈ X . We now train a relational

neural network Pφ that infers the sample-wise causality adjustment of the RCR model (3.8). We use a

similar approach than in Seq2VAR experiments: we note PGφ = Ā � Pφ the adjustment constrained to the

inferred causal graph. Ā ∈ RK×d×d×l is the adjacency matrix A of G expanded to fit the output dimensions

of tensor PGφ , � is the Hadammard product. Then the problem to solve is:

min
φ

EX∼X

[
d∑
j=1

T∑
t=K+1

∥∥∥∥X(j)
t − gθj

(K∑
k=1

(
W̄ + PGφ (X)

)
k,.,j

Xt−k

)∥∥∥∥2

2

+ ηΩ
(
PGθ (X)

)]
(3.11)

η is a parameter controlling the intensity of the penalty function Ω. This penalty has been added to

enhance the consistency of the samples representation. In fact, we remind that the final objective of the

Seq2Graph model is to compare the samples. Gathering the representations around the mean representation

W̄ insures a consistent behavior.

3.2.4.3 Some implementation details

Sparsity inducing training for the dataset-level causality-graph inference Problem (3.10) is first

optimized with stochastic gradient descent. Then, apply PGD [Parikh et al., 2014] as fine-tuning optimiza-

tion procedure in order to obtain true zeros in W̄ . If we had a target sparsity, we could stop the PGD when

the level is achieved. In our experiment, we do not have (or assume to not have) the true sparsity level.

Instead, we propose to monitor the impact of the sparsity on prediction performance, and chose the maximal

sparsity that does not degrade the prediction capacity of the model. See ageing detection experiments in

Section 3.3.2 for illustration.

Multi-multivariate time series There are cases where the d components of a MTS are multidimensional.

For example, if the MTS has d variables situated in a 2D space (see Experiment 3.3.2.1), hence each variable

52

3.3. Experiments

is represented by a 2D time series. More formally, the problem extends from X ⊆ Rd×T to X ⊆ Rd×m×T ,

i.e. ∀X ∈ X Xt ∈ Rd×m, with m the dimension of individual time series variables. The approach presented

in our paper adapts to this general case by replacing WX ∈ RK×d×d by WX ∈ RK×d×d×1. The additional

dimension in WX enables to consider the m time series of each variable as a whole.

3.3 Experiments

We split the experiments in two main subsections. A first subsection shows on two synthetic datasets

the ability of Seq2VAR to infer relevant VAR parameters from new data after training, and in particular

sparse Seq2VAR and symmetric Seq2VAR presented in Section 3.1.3 are tested out. A second subsection

introduces the context in which the dataset-level regularization presented in Section 3.2 is relevant and

presents experiments on datasets that contains samples from ageing mechanical systems.

3.3.1 Experiments: causality detection with Seq2VAR

3.3.1.1 Methodology

As a preliminary experimental work, we illustrate our approach on several synthetic datasets, each with

several levels of difficulty to illustrate the capacity of Seq2VAR to infer causalities in time series samples.

First, in order to assess the generalization capacity of Seq2VAR, we use a test set with intrinsic parameters

(causality graphs, interaction intensities) that differ from those of the train set in all experiments. Second,

causality discovery is assessed through the F1-score between inferred and ground truth causality graphs.

Third, we can assess the learned representation of samples with a standard downstream task like classification

using the inferred tensors WX . The classification is a 1-nearest-neighbor on the tensors with l2 norm. The

classification is completed in test set representation. Test set is divided in train and test subset for the

classification task.

For each experiment, we compare Seq2VAR to NRI [Kipf et al., 2018] (see Section 2.4.5) and VAR

[Toda and Phillips, 1994] (see Section 2.3.1), from which we respectively inspire for encoder and decoder.

We remind that NRI is a VAE whose latent space contains binary relational graphs. In this setting, the

prior (required in VAE settings) of each latent graph is the proportion of ones wanted in the latent graph

adjacency. Hence, we always give to NRI model the proportion of ones as prior.

To provide fair comparison benchmarks, the experiments are built such that both VAR and NRI model

fit in. We use the implementation of VAR from the Statsmodel python library [Seabold and Perktold, 2010].

3.3.1.2 Causality detection in binary linear setting

For our first experiment, we first aim at showing that binary sampling approach is relevant for Seq2VAR

model and then at analysing how Seq2VAR behaves in the presence of noise. We place ourselves in a favorable

setting for VAR, NRI and Seq2VAR. We generate samples from a stationary 1-order linear autoregressive

model, where the linear transition matrix is a permutation matrix. We add several level of additive Gaussian

noise to the observations (see Figure 3.7 for an illustration).

We chose d = 10, T = 50, K = 1. We generate 10 permutation matrices for the train set and 10 other

53

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.7 – 10-dimensional permutation MTS with observation noise N (0, 0.3).

permutation matrices for the test set. From each matrix we generate 100 samples with random N (0, 1)

initial conditions. We train two versions of the Seq2VAR: dense (without the binary mask) and pure binary.

After training, we show that Seq2VAR has generalized the notion of permutation. We note that the binary

version is naturally the only one to find the real permutation matrices. Figure 3.8 shows the outputs of

different versions of Seq2VAR encoder at test time, with different level of observation noise.

Figure 3.8 – Illustration of inferred transition matrices for different test samples, using VAR, NRI, Seq2VAR

and binary Seq2VAR, compared to ground truth, depending on the level of observation noise: N (0, 0.1) (left),

N (0, 0.5) (right).

We see in Figure 3.8 an illustration of the problems created by an increase of observation noise variance.

While signal-to-noise ratio decreases, disentanglement of the permutations from the noise becomes harder.

We see that VAR is not robust to noise and that NRI overestimates the density of the binary matrix. On

the contrary, Seq2VAR (without regularization) is parsimonious (but not sparse), i.e. it it gathers many

entries of Â around zero (see Figure 3.9).

We explain this behavior by two facts. First the inference mechanism of Seq2VAR is shared by all samples

and has integrated the noise by seeing numerous noisy examples. Second, the low expressive decoder cannot

integrate noise nor deal with complex mixture of noisy signals. This second point explains why Seq2VAR

resists better to noise than NRI that has a powerful decoder that is therefore more sensitive to noise.

We present in Table 3.1 the classification accuracy and causality recovery in the presence of different level

of observation noise. Seq2VAR approaches outperform VAR and NRI when noise gets stronger. Binary-

Seq2VAR give also better results, as its assumption fits the data better.

54

3.3. Experiments

Figure 3.9 – Histogram of the distribution of the entries of inferred transition matrices over a test set, using

VAR, NRI, Seq2VAR and binary Seq2VAR, compared to ground truth, depending on the level of observation

noise: N (0, 0.1) (top), N (0, 0.5) (down).

Dataset Perm. + N (0, 0.1) Perm. + N (0, 0.3) Perm. + N (0, 0.5)

Tasks
Supervised

classification

Causality

detection

Supervised

classification

Causality

detection

Supervised

classification

Causality

detection

VAR 100 ± 0.0 72.2 ± 0.2 96.85 ± 3.8 61.8 ± 4.5 96.5 ± 1.6 52.6 ± 3.9

NRI 100 ± 0.0 95.63 ± 3.1 97.6 ± 3.4 84.3 ± 4.9 97.0 ± 2.1 68.3 ± 3.7

Seq2VAR 100 ± 0.0 97.3 ± 0.3 97.0 ± 4.3 92.5 ± 2.1 97.8 ± 3.9 83.6 ± 2.3

B-Seq2VAR 100 ± 0.0 97.2 ± 0.1 100 ± 0.0 94.6 ± 2.7 97.0 ± 4.3 90.1 ± 2.9

Table 3.1 – Test classification accuracy (%) and causality discovery (F1-score). The standard deviations

correspond to the variation in results between different generated datasets (train and test). B-Seq2VAR

stands for binary Seq2VAR.

In Figure 3.10, we see the boxplot representations of the distribution of the L1 distance between ground

truth and inferred causality graph within the test set, for several levels of observation noise. We first see that

all methods suffer from noise. When noise is low, both NRI, Seq2VAR and binary-Seq2VAR offers almost

perfect graph discover. However, the outliers (red crosses) of NRI spread further than the one of Seq2VAR,

which means that NRI fails to find the latent graph not by simply missing some entries but by finding a

completely different graph that still fits the decoding requirements (thanks to its powerful decoder).

3.3.1.3 Causality detection in interacting Newtonian system

We now propose to assess the capacity of Seq2VAR to find Granger causality graph hidden in physical data.

We use 10-ball-springs system data, consisting of the simultaneous trajectories of 10 identical balls in a 2D

space, each ball being connected to others by springs with probability 0.5. The connection network is called

interaction graph. The system can be represented as a Granger causality graph [Eichler and Didelez, 2012]

55

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.10 – Quartiles of the distribution of the L1 distances between true and inferred causality graphs with

VAR, NRI, Seq2VAR and binary Seq2VAR respectively with observation noise N (0, 0.1) (left), N (0, 0.3)

(middle) and N (0, 0.5) (right). b-Seq2VAR stands for binary Seq2VAR.

Figure 3.11 – Left: example of a 3-balls-springs system. Middle: a MTS sample, with 3 components repre-

senting the location of the ball in the 2D space. Right: the associated Granger causality graph (right). The

causality graph represents the first-order dynamical dependencies between balls position at each time t and

the positions of their direct neighbors at previous time steps t−1 . . . t−K. For all t = K . . . T and i ∈ {1, 2, 3},
arrows indicates a dynamical dependency between (X

(i)
t , Y

(i)
t) and

{
(X

(j)
t−1, Y

(j)
t−1), . . . , (X

(j)
t−K , Y

(j)
t−K)

}
j∈pa(i)

,

with pa(i) the set of parents of node i in the directed graph.

(see Figure 3.11). Note that this experiment is used in NRI paper [Kipf et al., 2018]. Each sample is 49

timesteps long. More information about the simulation of ball-spring system is given in Appendix C.

For the experiments of this section, we sample 20 different balls-spring binary interaction graphs, 10

for the train set and 10 for the test set. Each of the 20 dynamical systems associated to the 20 graphs is

built at random, with balls linked by a spring with probability 0.5. Each graph characterizes a class. We

propose two different datasets: one with identical rigidity 1 for all springs (unweighted interaction graph)

and one with variable rigidity (weighted interaction graph). For the later, the rigidity of each spring is

uniformly sampled in [0.75, 1]. Each binary graph characterizes a class. We use 1000 samples per class. As

for permutation MTS (see 3.3.1.2), train and test set have different causality structures, in order to challenge

the generalization capacity of Seq2VAR.

We trained respectively a VAR, a Seq2VAR, a symmetric Seq2VAR and a sparse Seq2VAR. We chose

K = 2 for all the experiments. For the later, we impose a slight regularization on the level of sparsity, i.e.

56

3.3. Experiments

on the number of null entries in the matrix. In Equation 3.5 we use Ω(Gφ(X)) =
∣∣ 1

100‖Gφ(X)‖1 − 0.5
∣∣ and

λ is set at 1e−3, 0.5 being the sparsity prior. Without this regularization, the sparse Seq2VAR generally

converges naturally towards the right proportion of true zeros. The regularization is added for preventing an

eventual trivial solution where the mask is a matrix of ones. The only occurrence of this problem happened

in the weighted problem.

Table 3.2 gathers the results. We see that Seq2VAR scores better on both quality measures than the usual

VAR approach learned on the test set. If NRI gives very good results of causality detection on unweighted

springs, its causality discovery performance drops when dealing with weighted springs. On the contrary,

Seq2VAR gives good results for both unweighted and weighted rigidity graph.

Dataset Unweighted springs Weighted springs

Tasks
Supervised

classification

Causality

detection

Supervised

classification

Causality

detection

VAR 57.0± 5.7 55.7± 5.3 56.2± 6.3 54.0± 4.8

NRI 100± 0.0 96.1± 1.8 100± 0.0 78.5± 6.8∗
Seq2VAR 100± 0.0 89.4± 2.0 100± 0.0 84.5± 3.7

Symmetric Seq2VAR 99.9± 0.1 91.4± 1.3 100± 0.0 90.4± 2.8

Sparse Seq2VAR 99.7± 0.1 88.2± 3.7 99.2± 0.3 81.4± 4.4

Table 3.2 – Test classification accuracy (%) and causality discovery (F1-score). *Hyperparameters different

than the one used for unweighted springs case (from the original paper [Kipf et al., 2018]) to obtain better

results.

The results also confirms that using an expressive inference network that explicitly model dependencies

between variables capitalize on the global information of the dataset: it generalizes well on new data. It

is also interesting to notice that variable spring rigidity makes the causality less identifiable in both linear

(Seq2VAR) and nonlinear (NRI) decoding process, with respect to our experimental setup. Yet, since the

representation WX from Seq2VAR is continuous coupled with a simple decoder (that is very close to the

physic of the system), the results are more robust in Seq2VAR framework.

We find in Figure 3.12 an illustration of the inference capacities of our model.

Remark 31. For NRI, all other parameters are the one of the original paper for the unweighted springs

rigidity for the unweighted springs. For the weighted springs, the parameter prediction_steps is set to 5

instead of 10 and τ is set to 0.1. These parameters gave the best average results. In fact, due to the highly

expressive form of its decoder, NRI was able to build good predictor with not the good graph. We played

with parameters to get more stable and better results. For the experiments, we also tried to change the skip

first parameter that is set to False or True in the original paper [Kipf et al., 2018], depending on the dataset

studied. It did not change the results of the experiments.

3.3.2 Experiments: unsupervised ageing detection on causality graphs

We propose two experiments to illustrate the interest of Seq2Graph in the context of health monitoring (HM)

for Safran. Both are based on multivariate time series data generated from mechanical systems. For the first,

57

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.12 – Three examples of inferred transition matrices over a test set, using VAR, NRI, Seq2VAR,

Symmetric Seq2VAR, Sparse Seq2VAR and Sparse Symmetric Seq2VAR, compared to ground truth.

we use synthetic data with controlled causal structure to show the interest of the regularization with global

causality graph G with a sparse random coefficient model (3.8). For the second, we use a NASA dataset

to assess Seq2Graph on real representation task. In all experiments, we compare Seq2Graph to three time

series representation methods: a sequential autoencoder (SAE) [Malhotra et al., 2017], to the unsupervised

scalable time series representation (USTR) [Franceschi et al., 2019] and to the sequence-to-VAR (Seq2VAR)

presented above.

The hyperparameters are given in Table 3.3.

λ γ η

Experiment 3.3.2.1 10−3 - 10−5

Experiment 3.3.2.2 5× 10−3 5× 10−3 5× 10−4

Table 3.3 – Hyperparameters for our experiments.

3.3.2.1 Ageing interacting Newtonian system

Dataset We simulate samples from a 10-ball-springs system, consisting of the simultaneous trajectories

of 10 identical balls of unit mass in a 2-dimensional space, each ball being connected to some others by

springs (the rate of connection is 56%). This system has a natural bidirectional causal structure: each

ball’s trajectory acts as a cause for changes in the trajectory of the neighbor balls, and conversely. Using

the previously introduced notations, we have d = 10 (10 balls) and m = 2 (in a 2-dimensional space, see

implementation details). System dynamics follows Newton’s law of motion. We assume that the system is

58

3.3. Experiments

ageing and is regularly restored. All samples share a common graph graphical structure G whose adjacency

is the interaction matrix formed by the springs.

We simulate a synthetic dataset of 15000 samples (trajectories), 5000 for train, 5000 for validation and

5000 for test. Each trajectory is 49 time-steps-long (T = 49). For each batch b of 50 samples, a constant

ageing factor αb ∼ U([0.9, 1]) is applied to the system: at each sample X whose index is s ∈ J0, 50K (within

the batch b of 50 samples), we randomly choose a spring (i, j) and multiply its rigidity by αsb, i.e. an

exponential ageing coefficient with respect to sample index. Every 50 samples, we restore the state of

the system and another ageing factor is sampled and applied to the next batch of 50 samples. For some

trajectories, αb = 1, i.e. there is no ageing: the initial hidden causality graph has binary adjacency and

remains the same along the life of the system. When αb < 1, the initial graph is deteriorating during along

the life (observed through 50 samples) of the system, until restoration. An illustration is given in Figure

3.13.

Figure 3.13 – Representation of the springs degradation in the coefficients of rigidity in the weighted adja-

cency matrix of the interaction graph.

Model For this first experiment, we assume that the model is linear, i.e. that functions gθj are identities.

The objective is to illustrate the impact of representing data on the same causality graph G. We determine

by cross-validation that K = 2. The level of sparsity is determined by the quality of the prediction for

different levels of sparsity of the causality graph, as shown in Figure 3.14. The prediction is almost invariant

until a sparsity of about 56%. We note that we find back the true adjacency.

Metrics and results We assess the quality of the representation inference function PGφ . We test if we

can represent the ageing of the system with respect to a reference healthy sample Xref (first sample of a

batch) picked in the validation set. We then build the test ageing curve

X 7−→

∥∥∥∥∥
K∑
k=1

(PGφ (Xref)− PGφ (X))k

∥∥∥∥∥
2

2

(3.12)

for all samples X ∈ X test. Results are presented in Figure 3.15 and Table 3.4. We note that all curves are

min-max re-scaled.

Table 3.4 gives system ageing detection results. The Ageing score is the correlation between estimated

and real ageing curve.

We see that Seq2Graph outperforms both SAE, USTR and Seq2VAR for unsupervised representation

learning, when meaningful information is fully contained in the causality. In particular, SAE and USTR

59

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.14 – Learning W̄ from ball-springs data. Top: Prediction MSE. Black line is the true sparsity.

Bottom: Causal graphs for different sparsity levels. The third figure is the inferred causal graph, which

matches the ground truth.

Figure 3.15 – Unsupervised estimation of ageing curves for the 10 first batches of the test set. Top-

left: USTR [Franceschi et al., 2019], top-right: SAE [Malhotra et al., 2017], bottom-left: Seq2VAR

[Pineau et al., 2019], bottom-right: Seq2Graph. Orange curve is the ground truth.

completely miss the consistent ageing information, due to the fact the the inductive bias towards the

causality (that fully contains the ageing information) is null. Although consistent, Seq2VAR seems to

suffer when the causalities become lower. We can relate it to the observation that the causality detection

in Experiment 3.3.1.3 becomes harder when causalities are heterogeneous. In fact, lowering the causality

improves the difficulty to capture them, hence prevents to find the trend hidden in causality. Adding a

common causal structure W̄ in Seq2Graph naturally helps the identification and the consistency of the

sample representations.

3.3.2.2 NASA turbofan degradation simulation dataset

Dataset NASA public Commercial Modular Aero-Propulsion System Simulation dataset (CMAPSS) is a

tool for simulation of realistic large commercial turbofan engine data [Saxena and Goebel, 2008]. An engine

degradation simulation was carried out using CMAPSS, under different conditions and different faults.

We use the FD001 dataset which contains 100 time series recorded at sea level with one fault mode for

60

3.3. Experiments

Models MSE Ageing score*

SAE 2.2× 10−5 0.09

USTR - 0.05

Seq2VAR 2.3× 10−7 0.62

Seq2Graph 4.4× 10−7 0.97

Table 3.4 – Performance of several models plus ours on ageing mass-springs problem. *Higher is better.

MSE stands for mean squared error and serves only as a sanity check (for MSE-based methods).

each (degradation of the high-pressure compressor, a fundamental turbofan piece). The time series are the

output of the turbine-engine system that takes a fuel flow as input and outputs 21 variables, whose 13 are

not constant (we only keep these 13 variables). Time series are 206 time-steps long on average. Each time

series is the recording of a turbine engine going to failure. The engine is operating normally at the start of

each time series and develops a fault of unknown initial magnitude in its first moments. We only know that

the impact of this fault on the system grows in magnitude until system failure.

For the results of the paper, we split the dataset: the first 60 time series are train set, the 15 next are

validation set and the last 25 are test set. We extract from these time series sub-trajectories of length 25,

with a rolling window with stride 5 to make our dataset. Hence, as for previous experiment, we have several

batches of samples. A batch corresponds to the life of the system from start to failure. At the end of each

batch, the engine is restored and another batch of samples is recorded.

Model Using the previously introduced notations, d = 13. All samples share a common (unknown)

structure which is the turbine engine mechanics. We assume that this structure can be represented by a

sparse causality matrix. For this experiment each link function gθj is a MLP with 2 hidden layers of 4

channels. We determine by cross-validation that K = 2. The maximal sparsity is determined by the quality

of the prediction for different levels of sparsity, as shown in Figure 3.16. The prediction is almost invariant

until a sparsity of about 75%.

We solve (3.11) using the previously found causal graph. Contrary to the previous experiment, the

system is not isolated since the observed variables are the response to an unobserved command (the fuel

flow). Yet, the variables can effectively interact with each other and statistical causality still makes sense

as a representation assumption.

Metrics We assess the quality of the learned PGφ by testing if we can extract ageing information from

the representations, as for the previous experiment. Yet, we remind that we do not know the importance

of the initial fault. What we know is that the 100 engines go to failure and the degradation of the state is

monotonic until restoration. We propose a two-step process to predict the imminence of a failure.

First, we build an ageing indicator assuming that is a relative position compare to a healthy sample.

We pick a healthy sample Xref (first sample of a batch) in the validation set and build the ageing curve

‖
∑K
k=1(PGφ (Xref)−PGφ (X))k‖22 for all X ∈ X valid. We compute a failure threshold τvalid that must indicate

when an engine goes to failure. We set τvalid to the maximal threshold that ensures turbine engine failure

61

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.16 – Learning W̄ from CMAPSS data. Top: MSE of the prediction. Black line is the sparsity of

the inferred causal graph. Bottom: Causal graphs for different sparsity levels. Fourth image is the inferred

causal graph.

detection for all validation batches, that is:

τvalid = min
X∈Xval,fail

∥∥∥∥∥
K∑
k=1

(PGθ (Xref)− PGθ (X))k

∥∥∥∥∥
2

2

(3.13)

where X val,fail is the set of validation samples preceding the engine failure. We note that τvalid has no

safety margin, i.e. any threshold above τvalid misses at least one engine failure in the validation set (under

monotony assumption underlying the ageing of a mechanical system). It is possible to add a margin by

setting X val,fail as the set of validation samples preceding by k ∈ N samples index (in the batch) the engine

failure.

Second, we build the test ageing curve (3.12) for all X ∈ X test. We apply the detection test using τvalid

(represented by the horizontal dotted line in Figure 3.17.

Results As a first assessment, we see in Figure 3.17 that the estimated ageing curves built from SAE,

Seq2VAR and Seq2Graph are almost monotonic inside each batch (between two vertical orange lines). We

recall that monotony is the only ground truth information we have on the ageing of the system. The

fact that SAE, Seq2VAR and Seq2Graph unveils monotonic signal means the ageing information is present

both in patterns and values (SAE) and in causality (Seq2VAR and Seq2Graph). We do not find consistent

representations with USTR. We also observe that the batches do not begin at the same value (dashed

horizontal lines in Figure 3.17), whatever the method. It is partly imputed to the fact that the mechanical

faults are located at the beginning of each batch and that they vary in intensity. Hence, the inferred first

samples of each batch do not have to be equal.

Remark 32. Not finding a temporally consistent representation of samples does not mean that the USTR is

generally useless. At contrary, USTR has proven impressive performance on downstream classification tasks

on standard datasets. Yet, here USTR does not capture by itself the physical states of the turbine systems

that is hidden within the samples. Additional inductive bias is required.

62

3.3. Experiments

Figure 3.17 – Unsupervised estimation of ageing curve with different models on the 7 first test batches.

Top-left: USTR [Franceschi et al., 2019], top-right: SAE [Malhotra et al., 2017], bottom-left: Seq2VAR

[Pineau et al., 2019], bottom-right: Seq2Graph. Orange picks are engine failures and repair. Long red

dotted horizontal line is the threshold τvalid. Black dashed horizontal lines are the estimated initial states

of each engine, computed as the mean value of the curve on the 10 first samples of each batch. They are

meant to indicate that the first states are more uncertain in term of causality parameters (Seq2VAR and

Seq2Graph) than in term of values (SAE).

We observe that the batch’s ageing curves do not begin at the same value (dashed horizontal lines in

Figure 3.17), whatever the method. It is partly imputed to the fact that the mechanical faults are located

at the beginning of each batch and that they vary in intensity. Hence, the inferred first samples of each

batch do not have to be equal.

We now compare the ability of the different MTS representations to detect failures. In Figure 3.18, built

with extracted signal show in Figure 3.17, gives the proportion of alarm at different time steps before actual

failure happens. First, we note that all models detect almost 100% of failures before it happens. Second, we

want detection of the coming failures to be reasonably early to avoid false alarms. If curves cross threshold

too early, the MTS representation is useless. Figure 3.18 shows that Seq2Graph is the most consistent in

early detection with no alarms far from failure, due to the consistency of the extracted monotonic signal. On

the contrary, SAE always finds early failures. We note that Seq2Graph also has lower standard deviation,

illustrating the interest of the regularizing effect over Seq2VAR.

In Figure 3.19, we give the average precision scores (APS), that summarizes precision-recall curves as

the weighted mean of precision achieved at each failure detection threshold. We see that Seq2VAR and

Seq2Graph are globally better at finding exact failure in advance.

We finally observe on all figures that the results of Seq2Graph effectively completes Seq2VAR (also

causality-based) with a regularizing effect due to the sparse prior on the causality graph representation

space and the link functions gθj of the GVAR (3.9) that contains global causal information about the

engine.

We have built a representation of the samples that both describe the system dynamics and are consistent

with the unknown ageing process since the distance from reference is almost everywhere monotonic before

failure, without supervision.

63

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

Figure 3.18 – Early alarm on CMAPSS data using MTS representation models USTR, SAE, Seq2VAR (see

related work for details) and Seq2Graph. Means and standard deviations are built using all batch’s first

samples as Xref and several encoders trained with different seeds.

3.4 Discussions

This section proposes discussions around our Seq2VAR approach for MTS representation with VAR matrices

and causality graph.

3.4.1 Remarks about the relation between Seq2VAR and NRI

As mentioned above, NRI is a graph relational inference model, set as a VAE with binary latent space.

The inferred unweighted graphs are used as a variable selection procedure for a prediction model (nonlinear

neural decoder). This configuration specifically applies to physical interacting systems MTS (like ball-springs

system). Three major differences appear between Seq2VAR and NRI.

First the form of the decoder. NRI decoding scheme is a nonlinear network that takes as input an

embedding of the pairwise variable interactions at each time step and output the incremental change to

predict next time step from current time step. On the contrary, we propose to leverage the simplicity of a

linear autoregressive decoder that is potentially less expressive but do not require additional parameters.

Second, as a consequence of the form of the decoder, the latent representation is meaningful. We infer

both binary and real latent representation to respectively represent existence and intensity of the causal

interactions in the data. The real part is implicit in NRI. Experiment 3.3.1.3 shows that NRI does not

disentangle existence and intensity of the interactions: when springs are not equally rigid, NRI is perturbed

and finds a latent graph that does not correspond to physical reality. Our Seq2VAR, thanks to its continuous

part, explicitly disentangles latent causal structure from other information and finds a better causal graph.

Third difference, which is also as a consequence of the decoder: the minimal input information require-

ment. In fact, the notion of time lag is absent from NRI and lagged information needs to be furnished

as input. For example, with the ball-springs systems data, Seq2VAR only needs measures of the location

of each ball at each time step while NRI requires both location and velocity. Beyond the minimal input

information requirement, the absence of lag in NRI modeling imposes that causality graph remains the same

for all lags, like in physical structures.

64

3.4. Discussions

Figure 3.19 – Average Precision Score (APS) of the failure detection using MTS representation models

USTR, SAE, Seq2VAR (see related work for details) and Seq2Graph. Means and standard deviations are

built using all batch’s first samples as Xref and several encoders trained with different seeds.

Experiments Permutations (batch size=128) Ball-springs (batch size=64)

Number of

parameters

CPU time

per epoch (s)

Number of

parameters

CPU time

per epoch (s)

NRI [Kipf et al., 2018] 65031 5.1 72966 38.8

Seq2VAR 47811 1.2 52550 4.7

Symmetric Seq2VAR - - 52550 4.7

Binary Seq2VAR 47811 1.4 - -

Sparse Seq2VAR - - 61071 5.7

Table 3.5 – Memory and computing time. Absence of results means that model is not used.

Finally, these differences materialize with the results of the experiments. Note that Seq2VAR, with the

simplification compared to NRI, also procure a significant advantage in term of complexity, assessed in Table

3.5.

3.4.2 RelNN vs. RNN as Seq2VAR encoder

The main assumption when modeling time series data is the autoregressive structure of the observed signal.

A generic and expressive autoregressive model is the recurrent neural network (RNN). Hence, in practice we

could use RNN as representation inference network Fφ(X), as usual for time series, and train it to output

the tensor WX from samples X.

Our different attempts with RNN encoder were not able to generalize over the notion of causal interac-

tions, no matter the regularization technique used to avoid overfitting (reduction of network memory capaci-

ties, increasing of depth [Sak et al., 2014], dropout [Zaremba et al., 2014], batch-norm [Merity et al., 2017],

L1-norm and L2-norm penalty on weights). We show in Figure 3.20 an example of train and test per-

formances evolution during training, respectively for permutation and ball-springs experiments with GRU

encoder instead of RelNN encoder. We can see that a Seq2VAR using RNN as encoder overfits.

65

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

We explain this by the fact that RelNN explicitly takes as input all the pairs of univariate time series

constituting the MTS and outputs a tensor whose entries represent an embedding of each pair. Therefore,

this inductive bias incites the network to model one-to-one interactions. We remind that the causality

graphs of the test set are different from the causality graphs of the train set. Hence we ask our inference

network to generalize over a discontinuous manifold. RelNN inference networks and its explicit one-to-one

interactions modeling learns well to generalize. Conversely, RNNs implicitly learn the notion of interactions

during training, with a vector output that needs to be folded into the right shape. The generalization is

more difficult.

(a) MSE prediction (b) Causality F1-score

Figure 3.20 – Train and test performances during training of Seq2VAR with GRU encoder instead of RelNN

encoder. Column (a): MSE of the 1-step VAR prediction. Column (b): F1-score of the inferred causality

graph. Top row: permutation dataset. Bottom row: unweighted 10-ball-springs dataset. We note that using

RNN for permutation dataset fails to find the good causalities even for training dataset. It finds another

appropriate (more complex) matrix that effectively minimized the MSE.

3.4.3 Explicit temporal consistency

In Seq2Graph experiments, we did not take into account explicitly the temporal relations between samples

(i.e. adding an horizontal an arrow fromWX toWY in Figure 3.5), whereas it was sough in the experiments.

The point was twofold. First, we wanted to show that the causality inductive bias is enough in certain

situations. Second, we do not have always the temporal index of the samples in a dataset. Now, if we have

66

3.5. Conclusion

a dataset X such that the samples are ordered, then we can add an temporal consistency inductive bias (see

Section 2.1). We note iX the index of the sample X in X . Then we can add:

γE(X,Y)∼X 2

[
1{|iX−iY |=1}d

(
PGφ (X), PGφ (Y)

)]
with γ > 0 and d(., .) any divergence between tensors. The norm can be any norm. Such penalization effec-

tively smooths the sequence of inferred representation for a sufficiently high γ. The condition 1{|iX−iY |=1}

is a constraint of the proximity of samples. It can be extended to consistency of longer term n ∈ N∗, for

example 1{|iX−iY |≤n} (hard n-long consistency) or |iX − iY |−n (progressively vanishing consistency).

In practice, choosing γ can be difficult. In particular, for a dataset like the spring-balls, for a not too

high γ the representation became constant, i.e. one stationary model for the whole dataset, since this

local minimum was a stable solution from which it was difficult to get out (the mean-squared error of the

prediction was 5.10−3 with stationary assumption 5.10−4 with sample-wise causality adjustment). It is

explained by the fact that the nonstationarity induces by trends in causality is of low magnitude.

3.4.4 More general extension of the framework

We limited the representation learning framework to represent data with Granger causality. A perspective

for this chapter would be to extend the inductive bias to larger surrogate statistical model. Based on recent

advances on neural architecture search [Elsken et al., 2019] and architecture embedding [Cao et al., 2019],

we can imagine directly the following method. We fit a neural network gθ on the dataset X to explain the

dynamics of observed data, i.e. minθ EX∈X ‖Xt−gθ(X<t)‖. Hence, we find a generative/invertible embedding

function N of parameters θ and train an embedding function Fφ such that φ,N = arg minEX∈X ‖Xt −
gN−1(N(θ)+Fφ(X))(X<t)‖. We note that the embedding function Fφ is not required to be related to Granger

causality anymore.

3.4.5 Seq2VAR and Seq2Graph are meta-learning methods

Meta learning consists in learning at the same time a parametric predictive model (here the one-step post-

linear prediction model 3.9) and a parameter updating model F that learns how to update parameters W

with delta (WX) for each new situation X, with few data. In Seq2VAR and Seq2Graph, a general model is

learned and a RelNN Fφ learns to adjust prediction parameters (gθ, W̄). A particularity of meta learning is

the high generalization capacity of the parameter adaptation model, since it should find the right parameters

from new situations with few data. It is exactly what we have shown for Seq2VAR , with test set containing

unseen Granger causality structures. A good overview of meta-learning techniques is given in [Weng, 2018].

3.5 Conclusion

In this chapter, we proposed a new representation learning based on the assumption that relevant information

can be found in hidden causality underlying multivariate time series data. Our approach is an encoder-

decoder that learns to infer the parameter of a VAR model explaining the dynamics of the data. We

67

CHAPTER 3. VAR MODELS AND GRANGER CAUSALITY

proposed several features to enrich the basic Seq2VAR model and demonstrated its concrete interest with

an application to mechanical system state monitoring.

68

Chapter 4

Contrastive learning of hidden temporal

trends

Abstract In previous chapter, we have shown that using a model-based inductive bias for representation

learning enables to find ageing hidden in mechanical system’s data. In this chapter, we use a natural inductive

bias to focus on ageing detection without assumption on the model describing the data. We propose a new

simple tool to extract trends from time series data, based on temporal contrastive learning, i.e. a type of

learning procedure that uses temporal information to represent data. We prove that our approach identifies

trend hidden in data while avoiding standard restrictive assumptions used for trend identification. We show

in several experiments that our model achieves good results in a panel of trend identification tasks. This

chapter covers two contributions:

• Pineau, E., Razakarivony, S., and Bonald, T. (2020). French patent (information, included title, are

confidential until the end of the publication delay in January 2022).

• Pineau, E., Razakarivony, S., and Bonald, T. (2020). Time series source separation with slow flows.

Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, at In-

ternational Conference of Machine Learning (INNF+, ICML 2020).

4.1 Presentation of the problem

We have seen in the introduction section that there are several possible inductive biases that can be used in

a representation framework, depending on the downstream task of interest. For time series data, a standard

inductive bias assumes the existence of structural latent components that are supposed to be meaningful

(see 2.4.2). We remind that the standard decomposition in the literature consists in the combination of the

trend τ , the cycle c, the seasonality s and the irregularity ε. The structural components τ, c, s, ε are assumed

to be independent, for identifiability reasons (see Section 2.2.5). Signal extraction is therefore a type of time

series independent component analysis (ICA, Section 2.2.4) where independent features are interpretable.

This decomposition always exists without loss of generality, since residual term εX can manage any latent

variable that is not a trend, a cycle or a season.

69

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

In particular, in health monitoring (HM) context, trend signal is a good candidate signature of ageing.

In this chapter, we focus on the detection of the trend component.

To be more concrete, we propose to see the trend identification through an example. Let’s consider a

mechanical system S. We assume that we observe d simultaneous temporal signals from S recorded with

sensors that form a d-dimensional multivariate time series (MTS), at different moments tX of the life of

the system S. We note X ⊆ Rd×T the set of recorded samples. For each X sampled from S, we know its

sampling dates tX . Sample dates are for example counted in hours of usage. We assume that the S ages,

i.e. its state degrades. We denote τX the true age (unknown) of the system at sampling time tX . We

assume that τX is a definition of the system’s state. We do not have access to ground truth ages τX , since

ageing process is not linear of the time and depends on the hidden state of the system, that itself depends

on unknown factors like conception, usage or exogenous factors. We only know the sampling times tX . In

general, the state τX is given by experts that check the system. The objective of our paper is to extract

relevant information about the state τX of system S from observations X , without expert supervision. We

use a particular contrastive learning (CL), introduced in Section 2.1.4, as a way to build expressive posterior

distribution for latent variable models. We call our approach the contrastive trend extraction (CTE).

4.2 Contrastive trend extraction problem setup

Let (X,Y) ∈ X 2 be two observed time series sampled from S, with sampling time tX and tY . At the time

of the sampling, the hidden age of the system was respectively τX and τY . The objective is to build an

estimator of the age τX for each sample X, from data. The only assumption we make for ageing detection

is the following:

Hypothesis 1. The degradation of the system S is monotone with respect to time between two maintenances,

i.e. it does not cure by itself. In particular, for all couples of samples (X,Y) ∈ X 2, we have tY ≤ tY ⇐⇒
τX ≤ τY .

We note that X is a set of samples between two maintenance dates, where each X ∈ X is associated to

a time index tX . Hence we assume monotonicity of the hidden states as in Hypothesis 1. We propose a

framework to estimate the ages from sampling times.

Let Fφ : X → Rde be a neural network (NN) with parameters φ that embeds the MTS samples in a de-

dimensional vector space. Let gβ(., .) : Rde ×Rde → [0, 1] be a parametric logistic regressor with parameters

β, such that:

gβ (Fφ(X), Fφ(Y)) = σ
(
β>(Fφ(X)− Fφ(Y))

)
(4.1)

with σ(x) = (1 + e−x)−1 the sigmoid function. In notations, we separate the embedding from the classifier

since in this thesis, we split the embedding from the downstream task. Yet, both are trained end-to-end.

We note CXY = 1{τX<τY } the variable that describes the trend direction of (X,Y). We want to learn

the posterior distribution p(CXY |X,Y) with Fφ and β, i.e. finding:

p(CXY = 1|X,Y) = gβ(Fφ(X), Fφ(Y)) (4.2)

70

4.3. Identifiability study

Figure 4.1 – Illustration of a trend estimation between samples.

Like for common binary classification problem, training is done by minimizing the binary cross entropy

(BCE) between CXY and the gβ(Fφ(X), Fφ(Y)), for all pairs of samples in the dataset, i.e. by minimizing:

R(β, φ;X) = −E(X,Y)∈X 2 [CXY log gβ(Fφ(X), Fφ(Y))] (4.3)

Our CTE method is illustrated in Figure 4.1.

For the rest of the paper, we note Fβ,φ(X,Y) := β>(Fφ(X)− Fφ(Y)).

4.3 Identifiability study

In this section, we study the identifiability (see Definition 3) of the system’s trend, and in particular the age

τX of each sample X, using our method.

We assume in this section that Fφ is an universal approximation function (property of the NNs, see

Section 2.1.5) and that the amount of data is high enough (theoretically tends to infinity) such that the true

classifier can be estimated (equality (4.2)). Under these assumptions, we can analyze the identifiability of

the system’s age for each sample X. To do so, we need the following definition and results.

Definition 6. (Minimal sufficiency) A sufficient statistic T is minimal sufficient if for any sufficient

statistic U there exists a function h such that T = h(U). If U is also minimal, then h is one-to-one.

Proposition 1. Fβ,φ(X,Y) is a minimal sufficient statistic for CXY .

Proof. First we remind that logistic regression learns likelihood ratios, i.e. Fβ,φ is a log-likelihood difference.

In fact, using Bayes rule, we get

p(CXY = 1|X,Y) =
p(X,Y |CXY = 1)p(CXY = 1)

p(X,Y)
.

71

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

Moreover, using properties of sigmoid function σ and equality (4.2) we have

p(CXY = 0|X,Y) = eFβ,φ(X,Y)p(CXY = 1|X,Y)

Finally we obtain,

eFβ,φ(X,Y) =
p(CXY = 1|X,Y)

p(CXY = 0|X,Y)
=
p(X,Y |CXY = 1)p(CXY = 1)

p(X,Y |CXY = 0)p(CXY = 0)
.

We note that the prior p(CXY = 1) = p(CXY = 0) since we randomly choose X and Y simultaneously in

X . Hence,

eFβ,φ(X,Y) =
p(X,Y |CXY = 1)

p(X,Y |CXY = 0)
. (4.4)

We have a likelihood ratio. Finally we refer to Theorem 2 in [Goh, 2001] stating that the density ratio is a

minimal sufficient statistics and Definition 6 to conclude that Fβ,φ(X,Y) is a minimal sufficient statistic for

CXY .

Remark 33. (4.4) is a likelihood ratio. Learning such quantity without explicitly knowing the likeli-

hood is standard. It is called likelihood-free inference [Thomas et al., 2016]. Related to our approach, in

[Gutmann et al., 2018] is explained how classification can be used to do likelihood-free inference. More gen-

erally, it is the principle of CL. Its main advantage compared to maximum likelihood approaches lives in

the fact that contrasting between two models enables to cancel out some computationally untractable terms,

like the log-determinant of the Jacobian of the embedding function, for example. Many ML approaches use

a version of this trick, like generative adversarial networks (GANs) [Goodfellow et al., 2014] or restricted

Botlzman machines (RBMs) [Hinton and Salakhutdinov, 2006]. More details are given in Appendix B.5.

Lemma 1. ∃h monotone such that Fβ,φ(X,Y) = h(τY − τX).

Proof. τY − τX is a minimal sufficient statistic for CXY since CXY = 1tY −tX>0 = 1τY −τX>0. Hence, since

Fβ,φ(X,Y) is minimal (Proposition 1), Definition 6 says that there exists a one-to-one function h defined in

R such that Fβ,φ(X,Y) = h(τY − τX).

Remark 34. The monotonicity comes from the one-to-one properties. More intuitively, for samples X,Y, Z

of respective age τX , τY , τZ , we have by assumption that τY − τX ≤ τZ − τX ⇒ Fβ,φ(X,Y) ≤ Fβ,φ(X,Z).

Hence h is necessary monotone.

Theorem 1. We can identify the true age τX , up to a monotone transformation h, in the limit of infinite

data.

Proof. We consider a reference sample Xref , sampled from the newest possible system. Hence, any future

sample is sampled from a degraded system. Without loss of generality, we shift the time index and the trend

factor such that tX
ref

= 0 and τX
ref

= 0. Hence, under the assumption that (4.2) is achievable (infinite data

72

4.4. Relation with other models

and universal approximation function Fφ), from Lemma 1, we have (β, φ) such that Fβ,φ(Xref , X) = h(τX).

Hence, if we denote C = β>Fφ(Xref), then

β>Fφ(X) = h(τX) + C

Prior assumption for h The problem is now to identify the function h. We can assume that h is related

to a prior assumption on the distribution of the couple of ages p(τX , τY |CXY). For example:

• Without assumption on the behavior of the relative ageing, we a priori choose constantly ageing

system, i.e. (2CXY − 1)(τY − τX) ∼ U(0,M), where M is a maximum expected life of the ageing

system. Then we may choose h
(
τY − τX

)
∝ τY − τX , hence Fφ(X,Y) ∝ τY − τX

• If we assume a slow ageing for the first part of the system’s life, and then continuous acceleration of

the ageing after a certain relative time, then a priori (2CXY − 1)(τY − τX) ∼ Exp(λ), with λ > 0 for

p(X,Y |CXY). The higher the λ, the longer the time with slow ageing, i.e. the higher the density of

low values of (2CXY − 1)(τY − τX). Then we can use for example h(τY − τX) ∝ sinh
(
λ(τY − τX)

)
• The previous point does not take into account the usage time tX and tY . But the relative age usually

depends on the usage, i.e. exponential parameter depends on time λ(t). For accelerated ageing, λ(t) is

time-decreasing. We may choose h depending on temporal information (tX , tY): h(τY − τX |tX , tY) ∝
sinh

(
λ
(
min(tX , tY)

)
(τY − τX)

)
• If, at contrary, we assume a fast ageing for the first part of the system’s life (running-in period),

and then a stabilization of the state of the system, then we can use for example h(τY − τX) ∝
tanh

(
λ(τY − τX)

)
This list is not exhaustive but shows in which extent a simple assumption about the evolution of the system’s

state can brings identifiability up-to monotone transform towards identifiability.

4.4 Relation with other models

In this section, we relate CTE to two large families of hidden variable estimations: the contrastive learning

methods and the survival analysis methods.

4.4.1 Relation with other time contrastive learning methods

We have introduced contrastive learning (CL) in Section 2.1.4. We mentioned that CL is a representation

learning framework that can be used as a way to improve the expressiveness of posterior distribution of latent

data representation. We also introduced an adaptation of CL for time-indexed data called time-contrastive

learning (TCL) in Section 2.4.3. In this section, we relate our model to existing advances in time series

representation learning with TCL.

73

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

First, we mentioned that time series decomposition in structural components is related to blind source

separation (BSS) and independent component analysis (ICA, see Sections 2.2.4). Since structural compo-

nents are assumed to be independent, each independent component is related to at most one structural

component. Hence, identifying the independent components, and in particular the trend, means identifying

the structural components, up-to variable-wise transformation. It can be done with CL, as proposed in the

recent works of Hyvarinen (and derived works), presented in Section 2.4.4.

Second, other contrastive learning methods are related to our work. In [Misra et al., 2016], they embed

frames of a video with a convolutional neural network (CNN) Fφ. They train Fφ by learning to verify

if several frames are in the correct temporal order (binary classification supervised by correct/incorrect

order label). In [Fernando et al., 2015], they learn to rank video frames to capture temporal consistent

representation of object in the video.

It appears that our approach mixes several aspect of time contrastive learning, applied to a particular

component identification of time series. Further information about general contrastive learning is given in

Appendix B.5.

4.4.2 Relation with survival analysis

A naturally related field of statistics is the survival analysis (SA), also called time-to-event analysis. The

objective of SA it to estimate the lifespan of a system under study, from data. For example, the time-to-

death of a patient, the time-to-failure of a mechanical system. Using previously used notations, we have

X an observed sample (e.g. a patient) at time tX , T the failure time (e.g. death), τX its age at sampling

time tX , T − τX its remaining useful life (RUL). Generally, the lifespan is observed for a subsample of the

dataset. If not observed (right-censored), only the time from first to last observation is known. We note

δX the censor indicator, such that δX = 1 is we know the true lifespan, δX = 0 otherwise. The objective

is to model the conditional survival function S(τx|x) = P (T > τx|X = x), hence the probability that the

current age is lower than death-time. A standard way to estimate S is to use a particular model for the

age, using a hazard function h defined as h(τ |x) := −∂τ log (S(τ |x)). Several features from survival analysis

are used in our study. First, lifespan is relative to a (generally unknown) reference state: we do not have

absolute notion of the state τX . Second, lifespan is generally not linear with time index. Third, the most

used performance metric for survival analysis is similar to our loss and is called the concordance index (CI)

[Harrell Jr et al., 1996]. The CI measures the fraction of pairs of samples (X,Y) that can be ordered in

term of estimated lifespan (from eligible pairs, i.e. pairs for which we have the order information). The CI

is then the mean accuracy of our CTE model. Directly learning CXY from data is equivalent to training

the model to maximize CI and is the learning procedure of CTE. We can check the performance of CTE on

a dataset with a CI, computed as follows:

CI(β, φ;X) = −E(X,Y)∈X 2

1{
CXY =1{gβ(Fφ(X),Fφ(Y))>0.5}

}
 (4.5)

The idea of directly training the model to maximize the CI exists in survival analysis literature. In

[Steck et al., 2008], they describe the ranking problem similarly to (4.3), and relate it to the standard

74

4.5. Related work on trend detection

proportional hazard model (PHM) h(τ |x) = h0(τ) exp(Fφ(x)) [Cox, 1972]. They nevertheless commonly

restrict it to linear Fφ(x) = φTx, for computational reasons and because first order is sufficient in many

cases. In [Katzman et al., 2018], they finally use a neural network for Fφ, to create a personalized treatment

recommender system. In particular, they show that the subsequent recommendation system, under PHM

assumption, is the difference between the embedding of two samples. In [Jing et al., 2019] they learn a

lifespan prediction model by pair, which regresses the difference between two samples embedding on the

difference between samples target RUL (supervised learning). They call it ranking loss since it is the

alternative name of metric learning (see Appendix B.5). Finally, in [Kalderstam et al., 2013] they propose

to learn the CI with an ensemble of NNs trained with genetic algorithms.

An alternative to PHM is the multi-task logistic regression (MTLR) [Yu et al., 2011]. It consists in

building a series of logistic regression models fitted on different time intervals to estimate the probability

that the event of interest (e.g. death) happened within each interval. Another alternative to Cox model is

the proportional odds model (POM) O(τ |x) = O0(τ) exp(Fφ(x)) [Bennett, 1983], where O(τ |x) is the odd of

individual surviving beyond time τ . We remind that an odd is the ratio S(τ |x)
1−S(τ |x) , such that exp(Fφ(x)) =

S(τ |x)
1−S(τ |x) for a constant baseline function O0(τ). The POM is therefore directly related to CTE ratio (4.4).

Yet, we surprisingly found no reference of CTE-like survival analysis, with NNs trained with standard

gradient descent that learns the CI CXY from pairs of samples (X,Y), hence without assumptions on the

shape of the survival model and using only a neural logistic regressor. We therefore did the experiments on

standard survival analysis datasets as a side-contribution of our CTE approach, detailed in Section 4.6.3.

4.5 Related work on trend detection

The trend is a very general concept underlying data distribution. It is any monotone data’s underlying

factor, a "general direction and tendency" [Goldsmith, 2012], without additional specification. The trend

detection, also, encompasses several purposes: trend magnitude estimation, change detection in trend,

trend-based alarm when trend is substantial or when trend value reaches a threshold.

The trend can then be a drift in moments, model parameters, interactions or more generally a monotonic

generative factor underlying data distribution. Depending on the a priori, different methods are proposed.

In this section, we propose a review of commonly used trend detection methods, that we distributed in

several classes. We keep the previously introduced notations.

Monitoring of statistics For each sample X ∈ X , a set of statistics sX can be inferred. If samples

are sufficiently large, we can estimate variables mean, covariance and autocovariance matrices, any high-

order moments or cumulants (or cross-cumulants), parameters of a fitted model (e.g. experiments 3.3.2 of

Chapter 3), etc. Hence, the sequence {sx}x∈X may be monitored to find nonstationarity. If nonstationarity

is monotone, it is a trend. More generally, any embedding F (X) may be monitored while F (X) is informative

about X. We have seen in this thesis several example of embedding methods for time series data.

Regression of time on observations A standard trend detection method consists in regressing time

index t on a response variable Xt. For example, Xt = β0 +
∑P
p=1 βp(t)

p. In general, time is rescaled

in [0, 1]. The null hypothesis is generally H0 : βp = 0 ∀p (the absence of trend). Yet, the polynomial

75

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

shape is unpractical and/or restrictive. A more general flexible model use ft a smooth function of time as

trend estimate. ft can be estimated with smoothing splines, spline regression, kernel smoother [Gray, 2007].

The interest of such methods is that a trend curve can be extracted. We note that this method can be

used by regressing time not on observation X but on the set of statistics computed from X, i.e. F (X) =

β0 +
∑P
p=1 βp(t)

p. Our CTE model does it, with adapted and efficient learning procedure.

Correlation with time index Directly related to regression of time methods, but without model as-

sumption, we may define a correlation coefficient between time and data. In [Thomas, 1996], they use the

Kendall’s τK correlation coefficient. τK measures the ordinal association between variables, i.e. the correla-

tion between variables’ ranking. If one of the variable is the time index, hence τK captures the existence of

a trend if null hypothesis H0 : τK = 0 is rejected. Yet, it does not quantify the trend nor give trend curves.

Same limit for any nonlinear relational coefficient between time and observation (e.g. mutual information).

Remark 35. If we train an embedding function Fφ such that Fφ(X) has maximum correlation with time

index, we find a particular case of CTE where the relation between data and time depends on the correlation

measure we use.

Residual of decomposition into stationary components Another general and standard trend extrac-

tion method is the observation of a residual after decomposition of time series in stationary components (e.g.

Fourier analysis [Körner, 1989]). In [Huang et al., 1998], they propose to use the empirical mode decomposi-

tion (EMD). They provide a general framework for decomposing time series into oscillatory sources {ck}Kk=1,

built from data, whose number of modes is strictly decreasing. By construction, X =
∑K
k=1 ck + rK such

that rK has only local min/max modes are also global modes. Hence if trend exists, it is in rk. An efficient

multivariate extension can be found in [Lang et al., 2018]. EMD is a geometric construction of trend. There

exists several application for climate change [Wu et al., 2007], EEG monitoring [Lang et al., 2018] or elec-

trical data [Mhamdi et al., 2010]. Yet, the trend decomposition is restricted additive trend and particular

time series shapes. If for example, the nonstationarity is that the frequency of data underlying oscillations

increases in time, each ck may contain the trend and the residual rk would be useless.

Independent component analysis We mentioned above the relation between trend and identifiable

ICA using TCL. In [Blaschke et al., 2007] they use slowness (SFA, Section 2.4.2) to decompose time series

into nonlinear independent components, by showing that slowness is a good supplementary assumption for

identification. In particular, we note the trend is the slowest nonconstant component underlying any time

series data.

There are many possible trend detection methods, that can be coupled. But, what is the advantage of

CTE among these many available and simple trend detection methods?

Qualitative comparison between standard methods and CTE With the proposed CTE model, we

do not claim outperformance against all above-cited methods in all situations. For each problem, a possibly

expert-based or appropriate competitive method that fits the time series properties may be developed and

used. Yet, we claim several advantages:

76

4.6. Experiments

• Specialization: our model explicitly seeks and infers trend while majority of existing methods simply

observe a posteriori the time series decomposition and then seek a trend

• Universality : we have no assumption on the type of trend (see the experiments for an illustration) nor

the type of data

• Generalization capacity : neural networks have good generalization capacities at the condition that the

architecture is chosen wisely. Hence, once trained our CTE can be used to infer new data state

• Efficient inference : neural networks are efficient at inference time

• Simplicity : many of the above-named methods are difficult to implement and/or require particular

knowledge. Our CTE approach is simple to understand and to implement, in particular with the

recent development of user-friendly deep learning libraries like Pytorch [Paszke et al., 2017].

4.6 Experiments

Figure 4.2 – Illustration of the creation of each dataset X for CTE experiments. Each dataset contains

all consecutive samples between two maintenances. Planes illustrate the system S that generated the MTS

samples. Vertical long orange lines are maintenances/restorations. Vertical black short lines are observation.

In this section, we propose experiments to illustrate our approach on several datasets with different types

of hidden trend.

We note that in the experiments, we have one or several datasets X composed with samples X sorted

with respect to their sampling date tX , and we note X the set of datasets. The presence of several datasets is

explained by the fact that we may have several batches of samples separated by a break in the monotonicity

of the trend (e.g. a maintenances during the life of a mechanical system). Hence, each dataset is the set of

samples between two monotonicity breaks. In this situation, the problem to solve is the sum of (4.3) over

X. Hence, no information is directly shared between the datasets, except the parameters (φ, β) to learn.

Illustration is given in Figure 4.2.

77

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

Remark 36. At training time, inter-dataset comparison may be inappropriate. For example, we assume

that dataset X ∈ X has a hidden ageing coefficient αX and Y ∈ X has a hidden ageing coefficient αY such

that αX < αY . Then for a sample X from X and a sample Y from Y, we can have tX < tY and τX > τY ,

which stands against the identifiability assumptions.

4.6.1 Toy examples

For the toy examples, we compare CTE to the most appropriate trend extraction methods in different

situations.

4.6.1.1 Evolving correlation

We generate several samples of multivariate Gaussian samplings. We first generate a random sparse corre-

lation matrix Σ. We generate 20 sets of samples (10 for training, 10 for testing). For each set X we generate

a random sparse positive semi-definite matrix SX with entries in [−10−3, 10−3] that shares at least the

sparsity of Σ. In each set X , we generate 1000 Gaussian samples, such that the sample X ∈ X associated

with time index tX ∈ N contains 100 random point from N (0,Σ+ tXSX). We compare the CTE model with

a maximum-likelihood covariance estimation for each sample (from covariance package of scikit-learn

[Pedregosa et al., 2011]). Inferred ageing curves are drawn in Figure 4.3.

Figure 4.3 – Ageing curves computed on the 10 test sets (each monotonic segment matches a set of ageing

correlation). Top: using estimated correlation matrix. Bottom: using curves βTFφ(X).

The variance of the increments of the estimated ageing curves is 0.004 for correlation-based estimation

and 0.006 for CTE-based (equal on train set). The correlation between the two curves is 0.98. Hence,

without the assumption that the drift was contained in the correlation, CTE achieves the quality of the

trend estimation that uses the true nature of the trend.

We note that we can use several types of neural networks, as soon as it is sufficiently expressive to be

considered as a universal approximator with respect to the complexity of the data.

78

4.6. Experiments

4.6.1.2 Structural independent components

We use an experiment presented as an example in a preliminary experimental work [Pineau et al., 2020a].

This work presents a short guideline on how to simply achieve time series BSS using flow-based models

(FBMs). This model is called slow flow-based model (S-FBM) and is quickly introduced above.

S-FBM We have seen in Section 2.4.2 that slowness plays an important role in standard time series

representation learning. In Section 2.2.4, we have introduced flow-based models (FBM), that use normalizing

flows to create powerful latent variable models (LVMs) and in Section 2.4.4 that the identifiability in LVMs

solved by maximum likelihood depends on the existence of auxiliary variable Ut on which we condition the

representation Zt of each observation Xt. In particular, we can use Ut = Zt−1, finding back the SFA prior

(2.17). It is equivalent to add temporal differential operator ∆ in the chain of normalizing flows Fφ, and

maximize the likelihood of ∆ ◦ Fφ(X) under Gaussian assumption (2.17). We call it slow-FBM. Finally,

using the recent advances in neural BSS (see Section 2.6), we can say that with enough data (asymptotic

result) and sufficiently large neural network Fφ, slow-FBM has the necessary conditions to recover the true

sources up to linear transform A, i.e. we can learn φ such that ∃A : S = AFφ(X). Matrix A is assumed

full-rank and is post-learned with a linear ICA.

This work is a preliminary work and is not sufficiently advanced to have a full chapter. We present it

here as a method for time series BSS more than a contribution, as a meaningful comparative model for the

current experiment.

We generate a time series composed with one trend, two cycles and one seasonality. These four compo-

nents are corrupted by additive Gaussian noiseN (0, 0.2). See illustration in Figure 4.4. The four components

are assumed to be independent. We mix the components with an invertible flow-based neural network (FBM,

see Section 2.2.4).

Figure 4.4 – Structural components.

Since we know that one of the sources is effectively a trend and that the sources are independent,

nonlinear independent BSS is an optimal approach. We can use the method S-FBM described above. We

confront CTE to this method. Results are given in Table 4.2.

Hence, CTE achieves the results of an appropriate estimate of the hidden trend.

79

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

S-FBM + ICA CTE

96.7± 3.2 98.9± 0.5

Table 4.1 – Absolute correlation between estimated and true trend.

4.6.2 Mechanical systems’s health monitoring

In this section, we apply our CTE in the same data than in Chapter 3 to have comparison of CTE with

different neural-based inductive biases.

4.6.2.1 Ball-springs dataset

Dataset We use the same dataset than for Seq2Graph experiments. Reminder: we simulate a synthetic

dataset of 15000 samples (trajectories), 5000 for train, 5000 for validation and 5000 for test. Each trajectory

is 49 time-steps-long (T = 49). For each batch b of 50 samples, a constant ageing factor αb ∼ U([0.9, 1]) is

applied to the system: at each sample X whose index is tX ∈ J0, 50K (within the batch b of 50 samples), we

randomly choose a spring (i, j) and multiply its rigidity by αt
X

b , i.e. an exponential ageing coefficient with

respect to sample index. Every 50 samples, we restore the state of the system and another ageing factor is

sampled and applied to the next batch of 50 samples. For some trajectories, αb = 1, i.e. there is no ageing:

the initial hidden causality graph has binary adjacency and remains the same along the life of the system.

When αb < 1, the initial graph is deteriorating during along the life (observed through 50 samples) of the

system, until restoration.

We choose a relational neural network (RelNN) as embedding function Fφ. We jointly train Fφ and a

linear classifier β by minimizing (4.3). Once trained, we build the curve {β>Fφ(X)}X∈X test , where X test is
the test set of samples. Estimated ageing curves are given in 4.5.

Seq2Graph CTE

0.97± 0.03 0.96± 0.01

Table 4.2 – Absolute correlation between estimated and true trend. Seq2Graph is the model presented in

Chapter 3.

Results The concordance index of the trend detection computed as (4.5) is equal to 96% on the test set.

We find back the quality of the results that we obtained with Seq2Graph (relational encoder, VAR decoder

and unique causal graph, Section 3.3.2.1). The difference is that here we swapped physical inductive bias

enforced by the autoregressive sparse decoder and unique causal graph against the trend inductive bias

enforced by the trend contrastive learning. Such a high correlation means that the representation has

inferred the right underlying ageing coefficient α.

4.6.2.2 NASA dataset

Dataset We use the same dataset than for the second experiment of Seq2Graph, Section 3.3.2.2. The

objective is to extract monotonous signals from each lifetime batches (samples from plant to failure). Since

80

4.6. Experiments

(a) Ground truth ageing curves

(b) Estimated ageing curves {β>Fφ(X)}X∈X .

Figure 4.5 – Ageing curves of ageing balls-springs system, from 16 datasets of 50 consecutive samples. The

vertical orange lines delimit the datasets.

we do not have access to the true ageing curve, we do the same analysis than in experiments of Chapter

3: building ageing curves and seeing if we can infer interesting information, like for example the failure

moment. We compare with the previously presented results.

We choose a recurrent neural network (RNN) as embedding function Fφ. We jointly train Fφ and a linear

classifier β by minimzing (4.3). Once trained, we apply the same experimental protocol than in Section

3.3.2. We build an ageing curve {β>Fφ(X)}X∈Xvalid , where X valid is the validation set of samples. We

compute a failure threshold τvalid that must indicate when an engine goes to failure. We set τvalid to the

maximal threshold that ensures turbine engine detection for all validation trajectories, that is:

τvalid = min
X∈Xval,def

β>Fφ(X) (4.6)

where X val,def is the set of validation samples preceding the engine failure. We note that τvalid has no

safety margin, i.e. any threshold above τvalid misses at least one engine failure in the validation set. It

is possible to add a margin, with X val,def the set of validation samples preceding with k index the engine

failure. Then, we build an ageing curve {β>Fφ(X)}X∈X test , where X test is the test set of samples. We

apply a failure detection test using τvalid, represented by the horizontal dotted line in Figure 4.6.

Results As a first assessment, we see in Figure 3.17 that the estimated ageing curves are monotonic inside

each trajectory (between two vertical orange lines): the concordance index of the trend detection computed

as (4.5) is equal to 98.5% on the test set.

Hence the model has well generalized on the trend extraction problem, which is its only explicit objective.

81

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

Figure 4.6 – Estimated ageing curves {β>Fφ(X)}X∈X on the test set of CMAPSS data. We kept the same

samples than Figure 3.17 for comparison. Black dashed horizontal lines are the estimated initial states of

each engine, computed as the mean value of the curve on the 10 first samples of each batch.

We note that the monotonicity is perfect, contrary to curves extracted from Seq2Graph (we remind that

Seq2Graph do not solve a trend extraction problem but an unsupervised representation problem). We

observe that the trajectories do not begin at the same value as well (dashed horizontal lines in Figure 3.17).

We impute it to the fact that the mechanical faults are located at the beginning of each trajectory and that

they vary in intensity. Hence, the inferred first samples of each trajectory do not have to be equal.

We now look at the ability of CTE-based representation to detect failures, like in previous chapter

experiments, from which we also take comparative models. In Figure 4.7 (left), built with extracted signal

show in Figure 4.6, gives the proportion of alarm at different time steps before actual failure happens.

Second, we want detection of the coming failures to be reasonably early to avoid false alarms. If curves

cross threshold too early, the MTS representation is useless. Figure 4.7 (left) shows that CTE is consistent

in early detection, with no alarms far from failure, thanks to the consistency of the extracted monotonic

signal. In Figure 4.8 (right), we give the average precision scores (APS), that summarizes precision-recall

curves as the weighted mean of precision achieved at each failure detection threshold.

Figure 4.7 – Early alarm on CMAPSS data using MTS representation models SAE, Seq2VAR, Seq2Graph

(from Chapter 3) and CTE.

We have built a representation of the CMAPSS samples that explicitly represents the age of the system

(up to monotone transformation, see Section 4.3) at the moment of the sampling. It proved to be very

82

4.6. Experiments

Figure 4.8 – Average Precision Score (APS) of the failure detection using MTS representation models SAE,

Seq2VAR, Seq2Graph (from Chapter 3) and CTE.

consistent in common ageing detection problems. Compared to samples representation learned using Granger

causality graphs (and concurrent methods) presented in Section 3.3.2.2, the CTE finds better ageing curves

from which we can infer failure detection methods, as expected from this new inductive bias.

4.6.3 Side-contribution: survival analysis with CTE

We showed in Section 4.4.2 that our trend extraction method is related to survival analysis methods. In this

section, we show that our CTE model gives state-of-the-art survival analysis results on five public survival

analysis datasets.

Datasets Customer churn prediction (Churn) consists in estimating the percentage of customers that stop

using the products and services of a company. The survival analysis for customer churn helps companies

predicting when a customer is likely to quit considering its personal features.

Credit risk (Credit) is the risk carried by a loan company when people borrow money. It corresponds

to the likelihood of borrower’s credit default with respect to personal features. Survival analysis for credit

risk predicts if and when a borrower is likely to fail.

Treatment effects on survival time are fundamental for pharmaceutical laboratory. It is possible to

do survival analysis of patients. Two public datasets exist. First, German Breast Cancer Study Group

(GBCSG2) contain a subset of variables from the German breast cancer study [Schumacher et al., 1994].

It studies the effects of a treatment with hormones on survival time without cancer recurrence. Second,

Mayo Clinic Primary Biliary Cirrhossis (PBC) [Therneau and Grambsch, 2000] studies the effects of the

drug D-penicillamine on the survival time of patients.

Finally, more interesting for Safran, the predictive maintenance of mechanical equipment consists in

predicting when an equipment will fail in order to prevent the failure by processing a maintenance. We use

a public dataset, called Maintenance, whose data is extracted from sensors on manufacturing machines to

predict which will fail soon.

We compare our CTE surival analysis with five other standard models: the linear and neural Cox

83

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

proportional hazard models (Cox-PHM) [Cox, 1972, Katzman et al., 2018], the extra-tree and random forest

survival analysis (RFS) [Ishwaran et al., 2008] and a multi-task logistic regression (MTLR) survival analysis

[Yu et al., 2011]. In Cox models, hazard function h has the form h(τ |x) = h0(τ) exp(Fφ(X)). If Fφ is linear,

we call it linear Cox, if Fφ is a neural network, we call it neural Cox. In tree-based survival, an estimation

of the cumulative hazard function (
∫
t
h(t|x)dt) is done with bags of trees. The MTLR models are a built as

a series of logistic regression models built on different time intervals so as to estimate the probability that

the event of interest happened within each interval. We do not provide additional information here. An

exhaustive introduction to these models is provided in the website of the PySurvival library [Fotso et al., 19]

that we used to implement the comparative methods.

For the experiments, we used a 10-folds train-test setup. Each dataset is divided into 10 folds used for

cross-validation i.e., one fold serves as the testing set while the other ones compose the training set. This

10-folds train-test separation is repeated several times for robustness of the results. Table 4.3 show the mean

and standard-deviation of the concordance index (CI, see Section 4.4.2) computed on the test samples.

Churn Credit GBCSG2 PBC Maintenance

Linear Cox 87.9± 1.4 76.0± 3.1 66.3± 5.5 79.0± 8.3 96.5± 1.3

Neural Cox 87.8± 2.5 76.5± 2.6 64.4± 4.2 80.2± 8.4 99.3± 0.6

Extra Tree Survival 85.4± 1.9 71.2± 4.3 66.8± 6.4 78.9± 8.5 94.1± 1.5

Random Forest Survival 84.0± 2.7 72.1± 3.2 67.6± 6.4 79.0± 7.5 93.8± 2.1

Multitask 88.6± 1.2 72.4± 3.7 67.9± 7.7 74.8± 8.0 93.4± 1.9

CTE (ours) 89.9± 1.1 76.9± 2.1 67.9± 5.7 80.1± 7.5 99.6 ± 0.6

Table 4.3 – Concordance index of the survival analysis experiments on four datasets, using state-of-the-art

models versus our CTE learning method.

Remark 37. Bold numbers are the best results in term of means; yet taking into account the standard

deviations, we cannot claim that CTE is the best survival model, only that it achieves state-of-the-art re-

sults without standard survival analysis assumption (in particular assumption on survival model). It is

not surprising considering the relation between CTE and survival analysis frameworks, described in Section

4.4.2.

The main difference between CTE for general trend extraction and CTE for survival analysis lies in the

fact that self-supervision is partial. In standard time series, label is easily extracted from two data samples

by looking at their time index (see above). Yet, in survival analysis, certain samples are right-censored. It

means that, for each sample we observe a time index that could be either the survival time or the censored

time (event of interest has not been observed). The censored time will be a lower bound for the survival

time. Hence, for two samples X and Y , we cannot robustly compare samples (hence creating a contrasting

label) in the following situations:

• δX = δY = 0, X and Y are right-censored

• δX = 0, δY = 1 and tX < tY

• δX = 1, δY = 0 and tY < tX

84

4.7. Discussion on noisy CTE

In all other situations, the comparison of time indices tX and tY give robust information about the relative

age of the samples X and Y . Yet, since samples come from different individuals (e.g. one sample for

one patient in health survival analysis), comparing samples even when time indices are eligible for robust

comparison is not always appropriate, as explained in Remark 36. In fact, each individual has proper

features, and in particular its own ageing trend. Yet, we have no choice to consider that all individuals may

have similar behavior to train the model, since we have only one sample per individual, but it is not specific

to our approach: all models suffer from the same limit.

4.7 Discussion on noisy CTE

In real world data, the trend may be noisy. A typical example in monitoring of mechanical system’s state

exists when maintenance procedures (cleaning or piece changing) are effectuated, creating partial (and

usually not indicated in data) restoration of the state. In this situation, with a such powerful embedding

function as neural networks, the noise can be learned, preventing the network to capture the relevant

information. A short analysis of the impact of the noise if given below.

We note that, by definition, only the trend component contains trend information. Then we have

p(CXY |X,Y) = p(CXY |τX , τY).

We now consider that there is noise in the trend, i.e. the existence of outliers such that for example

1{τY −τX>0} 6= CXY , or more generally p(CXY = 1|τX , τY) < p(1−CXY = 0|τX , τY) when τY > τX . This

noise can be seen as a contamination of the density p(τX , τY |CXY) with another density ν(τX , τY |CXY):

pν
(
τX , τY |CXY

)
:= (1− η) p

(
τX , τY |CXY

)
+ ην

(
τX , τY |CXY

)
= p

(
τX , τY |CXY

)(
1 + η

[
ν
(
τX , τY |CXY

)
p (τX , τY |CXY)

− 1

])
with η ∈ [0, 1] the prevalence of the contamination as named in [Fujisawa and Eguchi, 2008]. Then

log pν
(
τX , τY |CXY

)
= log

(
p
(
τX , τY |CXY

))
+ log

((
1 + η

[
ν
(
τX , τY |CXY

)
p (τX , τY |CXY)

− 1

]))

= log
(
p
(
τX , τY |CXY

))
+ η

[
ν
(
τX , τY |CXY

)
p (τX , τY |CXY)

− 1

]
+O

(
η2
)

using the Taylor expansion of the logarithm for small η. Finally

log
pν(X,Y |CXY = 1)

pν(X,Y |CXY = 0)
= log

p(X,Y |CXY = 1)

p(X,Y |CXY = 0)
+ η

[
ν
(
τX , τY |CXY = 1

)
p (τX , τY |CXY = 1)

− 1

]

− η

[
ν
(
τX , τY |CXY = 0

)
p (τX , τY |CXY = 0)

− 1

]
+O

(
η2
)

= h
(
τY − τX

)
+ η

(
ν
(
τX , τY |CXY = 1

)
p (τX , τY |CXY = 1)

−
ν
(
τX , τY |CXY = 0

)
p (τX , τY |CXY = 0)

)
+O

(
η2
)

85

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

Figure 4.9 – Example of noisy CTE on CMAPSS data, with noise distribution given by (4.7). The experi-

mental design is the same than in Experiment 4.6.2.2. Top: Four examples of noisy curves x 7→ x+ 25 with

couples (η,M) respectively (0.2, 2), (0.2, 5), (0.5, 5), (0.5, 10) (increasing noise), on time indices of 5 datasets

(5 curves per subfigure) of CMAPSS data. We see that, even with large local noise, the trend is visually still

existing. Middle: Distribution of couples (tX , tY) for random couples of time series data (X,Y) ∈ X 2, for

different levels of noise. Bottom: Concordance index (4.5), with Fφ a gated RNN with two 128-dimensional

hidden layers. We use the L1 norm as robust classification loss (result from [Ghosh et al., 2017]).

where h
(
τY − τX

)
is a monotone function minimal sufficient statistic for CXY (see Section 4.3).

The interesting point here is that we can understand the degradation of the CTE in terms of likelihood

ratio between clean density and noise density. Under universal approximation properties of the representa-

tion function, we learn parameters β, φ such that Fβ,φ(X,Y) is close to log pν(X,Y |CXY =1)
pν(X,Y |CXY =0) . Yet, in the case

where (τX , τY)|CXY is unlikely under p compared to ν (because of the contamination), the learning can be

severely disrupted.

Yet the situation is not desperate since there exist several ways to limit the impact of noisy labels in a

classification task. In particular, for trend extraction, the impact of the noise may be different depending

on the type of noise.

First, we may have local noise, that consists in having local uncertainty in the ageing monotonicity, while

long term trend is still monotone, like in the second toy experiment 4.6.1.2. For example, if two samples X

and Y have close sampling times tX and tY , we may have

ν(τX , τY |CXY) ∝ e−|τ
X−τY |1|τX−τY |<M (4.7)

with M ≥ 0. In this situation, since we compare randomly chosen samples, if noise is localized (low M)

the model will mainly see true labels even with a η level of noise, since the temporal scale of trend (and

the training) will be larger than the temporal scale of the noise. Hence, the ratio
ν(τX ,τY |CXY =1)
p(τX ,τY |CXY =1)

will not

86

4.7. Discussion on noisy CTE

Figure 4.10 – Corrected CTE to learn from noisy labels.

explode since the noisy couples (tX , tY) are situated in the dense part of the support of p
(
τX , τY |CXY

)
(see

scatter plots in Figure 4.9). Hence, with an expressive embedding function Fφ (with inductive bias) and an

adequate learning procedure (e.g. symmetric loss [Ghosh et al., 2017] or regularization), a representation

and generalization capacity may be obtained even in high-capacity regime (e.g. universal approximation

embedding function). An illustration is given in Figure 4.9.

Second, the global noise. For example, we do not know that an intervention was done on studied ageing

system, creating long-term inversions of the trend. In this situation, the ratio
ν(τX ,τY |CXY =1)
p(τX ,τY |CXY =1)

explodes,

since supports of ν
(
τX , τY |CXY

)
and p

(
τX , τY |CXY

)
have low overlap (see scatter plot in Figure 4.11).

Hence, the standard robust classification losses are not sufficient.

In [Fujisawa and Eguchi, 2008] they propose a method to robustly estimate parameters of a model under

heavy contamination, using a modified cross-entropy function called γ-entropy. The γ-entropy has been

adapted in [Sasaki et al., 2019] to the problem of robust ICA with TCL (TCL is detailed in the Section

4.4.1). Another possibility is to add a likelihood estimate (or another meaningful information) of the

individual representations Fφ(X) to the loss (4.3).

Another possibility is to add an additional network that corrects the first classification decision to meet

the noisy labels. This methods relies on the fact that, when using appropriate neural network architecture,

the clean labels are easier to learn than noisy labels (gradient path is smoother and more monotone in the

direction of the truth). Hence, using the same principle than attention mechanism (a sample-dependent

variable selection method that helps the learning procedure), we may propose the following learning pro-

cedure illustrated in Figure 4.10, where Sψ : Rde × Rde × [0, 1] → [0, 1] a neural network with parameters

87

CHAPTER 4. CONTRASTIVE LEARNING OF HIDDEN TEMPORAL TRENDS

ψ learns a switch parameter ηcXY that changes the estimated probability pXY := gβ (Fφ(X), Fφ(Y)) into

ηXY = (1 − ηcXY)pXY + ηcXY (1 − pXY), with respect to the trend detection objective. Like for attention,

switching model is useful if it helps the training. Considering the fact that an appropriate model (not

over-parametrized compared to the difficulty of the task) that easily learns from data is better than a model

that overfits (overfitting generally comes from inappropriate model), if Fφ is appropriate with respect to

data and task (here trend detection), switching model will help. In this situation, the estimated probability

pXY will contain the more easily learned estimation of label CXY , while ηXY will estimate the noisy labels

seen by the model during training. Each ηcXY will be the estimation of the probability that CXY is noisy.

Remark 38. Like for attention mechanism, the success of such approach depends on the fact that the true

labels are much more easier to learn than the noisy labels. We can regularize the model Fφ to limit the

overfitting capacities and force the label switcher ηcXY to help [Zhang et al., 2016].

Some results are given in Figure 4.11. We note that only the training set is noisy, not the validation

and test sets. We see that effectively, our method based on an unsupervised noise detection helps the model

finding true labels under the hypothesis that true labels are easier to learn than noisy labels. The CI on

test set (clean) is 98.7%, i.e. the level obtained with clean training data.

Figure 4.11 – Left: Distribution of the noisy labels. Right: Results on CMAPSS data when we ignore the

maintenance procedures (i.e. we only have one dataset that contains all the 25-long time series samples),

using the method proposed in Figure 4.10.

4.8 Conclusion

In this chapter, we proposed a new universal trend extraction methods using contrastive learning procedure.

Our model is simple, easy to implement and is supported by theoretical identifiability results. In particular,

it theoretically contains all the already existing trend extraction methods thanks to the usage of universal

approximation functions coupled to a generic formulation of the trend detection and extraction problem.

88

Chapter 5

Recurrent graph classification

Abstract The variable size and absence of natural ordering of the nodes are exotic features of graphs that

make them difficult to embed. To circumvent variable size problem, we use the following inductive bias:

a graph is a sequence of nodes. Under this assumption, it is possible to use recurrent neural networks, a

high-capacity neural network for sequential data, to represent graphs. Moreover, under label supervision,

isomorphism invariance problem (introduced in Section 2.5) is greedy solved by introducing randomness

in the node ordering for each graph at each iteration of the learning process. We show that using these

two features, we obtain a good graph classifier. Inspired by natural language processing methods, we also

study the influence of a node-level self-supervised additional task as regularization. This chapter covers one

contribution:

• Pineau, E. and de Lara, N. (2019). Variational recurrent neural networks for graph classification.

Workshop on Representation Learning on Graphs and Manifolds, at International Conference on

Learning Representation (RLGM, ICLR 2019).

5.1 Sequential embedding of sequence of nodes

We consider G = (V,E,W) a graph where V is the set of vertices (also names nodes) and E ⊂ V × V is

the set of edges. We have seen in Section 2.5 that G is fully identified, modulo any permutation π over its

nodes index, by its (possibly weighted) adjacency matrix Wπ such that Wπ
ij ∈]0, 1] if (i, j) ∈ E and Wπ

ij = 0

otherwise. In classific ation problem, each graph G has a label yG ∈ J0, C−1K. For example, G is a chemical

component and yG = 0 if G is carcinogen, yG = 1 otherwise. We note X the dataset of graphs that contain

all the couples (G, yG).

We want to learn a graph classifier that estimate the label posterior distribution p(y|G). It consists in

building and training an embedding function Fφ with parameters φ and a classifier Dψ with parameters ψ

such that Dψ ◦ Fφ(G) = yG, with Dψ a simple (e.g. linear) classifier. We note pφ,ψ(y|G) the estimated

posterior distribution.

Yet, graphs raise two main difficulties, as illustrated in Figure 2.18 of Section 2.5.

First, graphs have variable size, whose usual representations are edge list or adjacency matrix. Hence,

it is required that Fφ takes variable sized inputs, and outputs fixed-size embedding.

89

CHAPTER 5. RECURRENT GRAPH CLASSIFICATION

Second, in a classification task, the label of a graph is independent from the indices of its nodes, so

the model used for prediction should be invariant to node ordering as well. Hence, if a graph G ∈ X
has nG nodes V = {vi}nG1 and if π is a permutation of J1, nGK and if we note Gπ the graph with nodes

V π = {vπ(i)}nGi=1 (G and Gπ are called isomorphic graphs, i.e. we can find a bijective reindexing of the

nodes to align the graphs), hence we expect to have Fφ(G) = Fφ(Gπ). It is called isomorphism-invariance.

We remind that a permutation of the index of the nodes is equivalent to a simultaneous permutation of the

rows and columns of the adjacency matrix W .

The isomorphism-invariance for graph embedding can be achieved by using certain types of embedding

methods that use permutation-invariant functions, like sums or histograms, on isorphism-invariant embed-

ding of the nodes. The difficulty is then to find such node embedding. More recently, an active research on

graph neural networks (GNNs, see Appendix A.1.1) proposed neural networks architectures designed to be

invariant to permutation of the nodes [Xu et al., 2018], which is required for permutation.

This chapter’s contribution was done in parallel to the rise of these expressive GNN architectures. At that

time, we proposed to test out a different inductive bias instead of improving GNNs for graph classification.

The inductive bias is the following: a graph can be seen as a sequence of nodes. This point of view, that

is true, opened new possibilities to proposed a new classification technique based on sequence embedding

tools, using recurrent neural networks (RNN, see Appendix A.1.4) noted Fφ:

hi = Fφ(vi, hi−1) (5.1)

and the representation of G is the last memory cell of the RNN hnG := Fφ(G) = Fφ(vnG , hnG−1) that

accumulated all the information of the sequence of nodes.

The interest is two-folds. First, given a node representation, the sequential embedding of the nodes solves

the variable-size problem. Second, if we choose a sufficiently expressive RNN Fφ and a simple classifier Dψ,

and learn parameters φ and ψ such that Dψ ◦ Fφ(G) = yG = lGπ = Dψ ◦ Fφ(Gπ) then we obtain an

isomorphism-invariant supervised representation of graph G.

In this chapter, we propose a guideline to build such recurrent graph classifier (RGC). Besides, we exper-

iment the addition of a stochastic node prediction task to see if it helps the model to capture the structure

of the graphs, inspiring from sentence embedding in natural language processing (NLP) [Sanh et al., 2018].

The augmented model is denoted variational recurrent graph classifier (VRGC).

5.2 Recurrent graph classifier

We propose to use a sequential approach to embed graphs with a variable number of nodes and edges into

a vector space of a chosen dimension. This latent representation is then used for classification.

Our model, called recurrent graph classifier (RGC), is divided in three main parts: the preprocessing

sequential representation of the graph, the classification and a result aggregation phase. Consistently, we

assume that Fφ is composed by a preprocessing F 0 and two consecutive RNNs, i.e. Fφ = F 2
φ ◦ F 1

φ ◦ F 0.

Node ordering and pre-embedding Before being processed by the neural network, the adjacency

matrix of a graph is transformed on-the-fly [You et al., 2018] by a preprocessing F 0. First, a node vR with

90

5.2. Recurrent graph classifier

index R is selected at random in V and used as root for a breadth first search (BFS) over the graph. A

BFS consists in, given a root node, exploring all neighbor nodes, depth level by depth level. An illustration

of the BFS is given in Figure 5.1.

The rows and columns of the adjacency matrix are then reordered according to the sequence of node

indices returned by the BFS. The interest of using BFS as a preprocessing step is the following: without

changing the nature of the embedding (still the adjacency matrix), the observed structure contains graph-

level information. BFS preprocessing arranges the adjacency in a favorable shape.

Figure 5.1 – BFS ordering.

Once we have a good adjacency disposition, we still have for each G a list of nG vectors of size nG. Hence,

we cannot use standard RNN shared between all graphs. We propose the following approach. Each row i

(corresponding to the ith node in the BFS ordering) is truncated to keep only the connections of node vi with

the min(i, d) nodes that precede vi in the BFS (illustration in Figure 5.2). The d first nodes are zero padded

since they have less than d connections in the BFS ordered list. This way, each node becomes d-dimensional

such that we now have G represented as a sequence of nG vectors of dimension d. The full pre-processing

to build a sequence from graph G is dependent on root R and we note it h0
R := F 0(G,R) ∈ [0, 1]nG×d the

output of the preprocessing.

Figure 5.2 – Truncation of the BFS-ordered nodes.

Neural embedding After node ordering and pre-embedding, each graph is processed as a sequence of

d-dimensional nodes by a gated recurrent unit (GRU) RNN noted F 1
φ . The GRU is a special RNN with

extended ability to learn long term dependencies by solving vanishing gradient effect [Cho et al., 2014b]. We

note that the choice of GRU over Long Short Term Memory ([Hochreiter and Schmidhuber, 1997]) networks

is arbitrary as they have overall equivalent modeling power [Chung et al., 2014].

In order to help the recurrent network training, we add a multi-layer perceptron (MLP, see Appendix

A.1.2) between pre-embedding and recurrent embedding: the nodes will be presented to the GRU as con-

tinuous vectors instead of binary adjacency vectors. Finally, the GRU sequentially embeds the BFS-ordered

91

CHAPTER 5. RECURRENT GRAPH CLASSIFICATION

and truncated set of nodes h0
R such that h1 = F 1

φ(h0
R) is the embedding of the graphs as a sequence of well

preprocessed and recurrently embedded nodes. See top line of Figure 5.3 for illustration.

Classification After the embedding step, we use an additional GRU noted F 2
φ dedicated to classification

that takes h1 as input, i.e. h = F 2
φ(h1). The last memory cell hnG is an embedding of the graph G that

feeds a softmax multilayer perceptron (MLP) Dψ which performs class prediction. Hence, in the end, for

each graph we obtain an estimate of the distribution p(y|G,R) with pφ,ψ(y|G,R) := Dψ ◦ Fφ(G,R), which

is dependent on the root R. To limit the dependency on R, we propose the following procedure for training

and testing.

Training The model parameters φ and ψ are learned by minimizing the cross-entropy loss between ground-

truth and pφ,ψ(y|G,R) class membership probability vector for all graphs G given all the possible indices of

the BFS root R. We call this objective Lclassif :

Lclassif = EG∼X

ER∼U([1,nG])

 C∑
yG=1

1{y=yG}pφ,ψ(y|G,R)

 (5.2)

In practice, at each epoch of the training, only one R is sampled for each G, which constitutes weak

estimation of the expected value. Since at the end of the training, the network cannot have seen all the BFS

orders, we rely on the generalization capacity of neural networks coupled with the strong proposed inductive

bias to find relevant information in unseen roots and graphs.

Aggregation of the results at test time The node ordering step from random root introduces ran-

domness in the classification. On the one hand, it helps learn more general graph representations during

the training phase, but on the other hand, it might produce different outputs for the same graph during

the testing phase, depending on the root of the BFS. In order to counter this side effect, we add the fol-

lowing aggregation step for the testing phase. For each graph we sample K subsets of N roots, noted

Rk = {R ∼ U(J1, nGK)}Ni=1 (i.e. #Rk = N). For each Rk, we compute an aggregated posterior

pφ,ψ(y|G,Rk) :=
1

N

∑
R∈Rk

pφ,ψ(y|G,R)

This soft vote is repeated for each rk, resulting in K probability vectors
{
pφ,ψ(yG|G,Rk)

}K
k=1

for each graph

G. The estimated class prediction for graph G is then:

yG = max
k∈J1,KK

pφ,ψ(y|G,Rk)

The whole classification process is illustrated in Figure 5.3.

5.3 Regularization with autoregressive node prediction

For the moment, we have treated the problem of graph classification as a pipeline of two representation

mechanisms: BFS and truncation, and recurrent neural networks. We have trained it as a fully supervised

92

5.3. Regularization with autoregressive node prediction

Figure 5.3 – Two-step RGC model. Top: node ordering and embedding. Bottom: scheme of the classifi-

cation. {p̂c}Cc=1 is the set of estimated membership probabilities, i.e. p̂c = pφ,ψ(y = c|G,R).

representation problem. In this section, we propose to study the addition of a standard pretext-task for

sequence embedding: the one-step prediction.

Principle To force each node embedding hi to contain information about the graph, we add an auto-

regression block to our model: at each node, the network makes a prediction for the next node adjacency.

To do so, we propose to use a latent variable model Tθ = (Tθ1 , Tθ2) inspired from variational state-space

model (see Section 2.4.2). For each graph G, a MLP Tθ1 with parameters θ1 transforms each embedding

h1
i−1 of node vi−1 into a low-dimensional stochastic Gaussian latent variable Zi = Tθ1(h1

i−1). A second

MLP Tθ2 transforms Zi into to initial representation h0
Ri of node vi. This block is a type of autoregressive

VAE for node representation. We call is called variational node auto-regression (VNAR), that models the

following distribution:

p(G,Z|h) = p(h0
R1, Z1)

nG∏
i=2

pθ2(h0
Ri|Zi)qθ1(Zi|hi−1).

In practice, pθ2 and qθ1 are modelled by Tθ1 and Tθ2 respectively. Since h0
Ri lives in [0, 1]d, we use

sigmoid output for Tθ2 . Training is done by maximizing the variational lower bound of the log-likelihood of

the observation:

LV AR = EG∼X

[
nG∑
i=2

KL (qθ1(Zi|hi−1)||p(Zi))−
nG∑
i=2

Eqθ1 (Zi|hi−1)

[
log pθ2(h0

Ri|Zi)
]]

(5.3)

which is a lower bound of the negative marginal log-likelihood EG∼X [log pθ2(G)]. We chose the standard

Gaussian prior for p(Zi).

The regularization part is illustrated in Figure 5.4. In the end, the model is trained by minimizing the

total loss

93

CHAPTER 5. RECURRENT GRAPH CLASSIFICATION

Figure 5.4 – Variational auto-regression of the nodes. Input h1:nG−1 is the output of node embedding part

presented above.

L = Lclassif + αLV AR

with respect to parameters φ, ψ, θ1 and θ2.

Intuition Classification of graphs has similarity with classification of sentence. In fact, the embedding of

a node is based on the embedding of its relation with other nodes of the graph. In NLP, standard word

embedding are based on the relation between a word and its context, i.e. the co-ocurrence of neighbor-

ing words [Mikolov et al., 2013]. Moreover, multi-task learning is a common leverage to learn rich word

and sentence representation [Sanh et al., 2018] in NLP. In particular, helping structural information extrac-

tion with auto-regression has been used for complex sequence classification tasks like sentiment analysis

[Latif et al., 2017, Xu et al., 2017]. The sentiment analysis as the particularity to predict ambiguous labels

from sequential discrete data, which is close to our graph classification problem. In NLP, the proposed

regularization (5.3) is the equivalent to the prediction of the ith word of a sentence, given an aggregated

representation of this sentence up to word i− 1.

5.4 Experiments

Experimental setup for classification of graphs For classification, we use the standard 10-folds train-

test setup for model training and evaluation. Each dataset is divided into 10 folds such that the class

proportions are preserved in each fold for all datasets. These folds are then used for cross-validation i.e,

one fold serves as the testing set while the other ones compose the training set. Results are the mean and

standard-deviation computed using the ten results from the ten folds tests.

Hyperparameters The input size d of the recurrent neural network is chosen for each dataset according

to the algorithm described in [You et al., 2018], namely 11 for MT, 25 for EZ, 80 for PF and 11 for NCI1.

All the other hyperparameters are shared between all datasets. We fix learning rate to 10−3 of the Adam

stochastic gradient descent [Kingma and Ba, 2014].

Comparison with other models We compare our model [Pineau and de Lara, 2019] to different graph-

classification methods picked among those presented in Section 2.5.2. Standard graph classification meth-

ods are: Earth Mover’s Distance [Nikolentzos et al., 2017] (EMD), Pyramid Match [Nikolentzos et al., 2017]

94

5.4. Experiments

(PM), Feature-Based [Barnett et al., 2016] (FB), Dynamic-Based Features [Gómez and Delvenne,] (DyF),

Graphlet Kernel [Shervashidze et al., 2009] (GK) and family of graph spectral distances [Verma and Zhang, 2017]

(FGSD). All of these methods represent graphs without supervision and then use support vector classifier

(SVC) over extracted features. Deep learning methods are: Graph Convolutional Network [Kipf and Welling, 2016]

(GCN), Deep Graph CNN [Zhang et al., 2018] (DGCNN), Capsule GNN [Xinyi and Chen, 2018] (Caps-

GNN), Graph Isomorphism Network [Xu et al., 2018] (GIN) and GraphSAGE [Hamilton et al., 2017]. All

deep learning methods are end-to-end graph classifiers (embedding function and classifier are trained con-

currently. More details about these models are given in the introduction, Section 2.5.2.

The results are reported below. All values are directly taken from the aforementioned papers as we use

a setup similar to their. For algorithms presenting results with and without node features, we reported the

results without node features, to obtain comparable results. For those presenting results with several sets of

hyper-parameters, we reported the results for the parameters that performed the best on the largest number

of datasets. We note that contrary to our approach, GNN-based models use the node features when there

are node features. For molecular graphs, we do not report GNN-based results since they use node features.

For social networks, there are no node features; hence we can compare with GNNs.

Molecular graphs We use four datasets for the experiments: Mutag (MT), Enzymes (EZ), Proteins Full

(PF) and National Cancer Institute (NCI1) [Kersting et al., 2016]. All graphs are chemical components.

Nodes are atoms or molecules and edges represent checmical or electrostatic bindings. We note that molec-

ular graphs contain node attributes, that are used by all neural networks based models. Hence for the

molecular graphs, we only compare to non-neural methods. Description and statistics of molecular datasets

are presented in Table C.1, Appendix C.

MT EZ PF NCI1

EMD 86.1 ± 0.8 36.8 ± 0.8 - 72.7 ± 0.2

PM 85.6 ± 0.6 28.2 ± 0.4 - 69.7 ± 0.1

FB 84.7 ± 2.0 29.0 ± 1.2 70.0 ± 1.3 62.9 ± 1.0

GK 81.7 ± 2.1 27.1 ± 0.8 71.7 ± 0.6 26.6 ± 1.0

DyF 86.3 ± 1.3 26.6 ± 1.2 73.1 ± 0.4 66.6 ± 0.3

FGSD 92.1 - 73.4 79.8

RGC 88.3 ± 7.9 48.7 ± 6.1 72.4 ± 3.1 78.3 ± 2.3

VRGC α = 0.1 86.3 ± 8.6 48.4 ± 6.2 74.8 ± 3.0 80.7 ± 2.2

VRGC α = 1 88.7 ± 8.9 49.3 ± 6.1 73.8 ± 3.4 79.9 ± 1.9

Table 5.1 – Accuracy (%) of classification with different graph representations, on molecular graphs.

Social network graphs We use four datasets for the experiments: IMDB-Binary (IMBD-B), IMDB-Multi

(IMDB-M), REDDIT-Binary (REDDIT-B) and COLLAB. All graphs are social networks. The graphs of

these datasets do not contain node attributes. Therefore, we can more appropriately compare RGC and

VRGC to GNN-based classification. We also compare with three standard methods for which we have the

95

CHAPTER 5. RECURRENT GRAPH CLASSIFICATION

figures. Statistics about social networks datasets are presented in Table C.2, Appendix C.

IMDB-B IMDB-M REDDIT-B COLLAB

GK 65.9 ± 1.0 50.6 ± 0.6 69.6 ± 0.9 77.8 ± 0.2

DyF 72.9 ± 4.1 48.1 ± 3.6 89.5 ± 2.0 80.6 ± 1.6

FGSD 73.6 52.4 86.5 80.0

GCN 74.0 ± 3.4 51.9 ± 3.8 - 79.0 ± 1.8

DGCNN 70.0 ± 0.9 47.8 ± 0.9 76.0 ± 1.7 73.8 ± 0.5

CapsGNN 73.1 ± 4.8 50.3 ± 2.7 - 79.6 ± 0.9

GIN-0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 80.2 ± 1.9

GraphSAGE 72.3 ± 5.3 50.9 ± 2.2 - -

RGC 70.4 ± 2.8 47.8 ± 2.4 87.5 ±3.1 79.1 ± 1.5

VRGC (α = 0.1) 71.4 ± 2.7 49.1 ± 2.6 89.7 ± 2.1 77.5 ± 1.9

VRGC (α = 1) 71.2 ± 2.8 48.1 ± 2.6 88.9 ± 2.6 77.4 ± 1.0

Table 5.2 – Classification accuracy (%) of different deep learning based models plus ours over standard social

networks datasets. Graphs of these datasets does not have node features.

Analysis of the results The classification results above illustrate the capacity of RGC to capture graph

structural information from a greedy supervised learning. In molecular experiments, on which we compare

with feature-based and kernel-based methods, we see that RGC and VRGC achieve or outperform state-

of-art results. In particular, the advantage of using expressive embedding functions is important for the

Enzymes classification that have 6 classes.

In social network experiments, we can compare RGC and VRGC with GNNs since these graphs have no

node features. We see that GIN [Xu et al., 2018] outperforms, as expected (see Section 2.5.2). Our approach

yet achieves the performance of other GNN architectures.

Remark 39. We see that the relatively high standard-deviations impeach to have a clear view of the out-

performance. We therefore only look at average score to appreciate it.

Greedy learning of isomorphism invariance Our model is not inherently designed to create graph

embedding that are independent from node ordering. Yet, the randomly rooted BFS performed on each graph

at each epoch associated with a supervised end-to-end learning of a label invariant to the node-root forces

the embedding Fφ to greedy learn an invariant representation of the graphs. Indeed, as illustrated in Figure

5.5, the projections corresponding to the same graphs form a heap in the low dimensional representation

of the latent space, as expected. The greedy approach enables the network to learn the quasi-isomorphism

rule Fφ(G) ≈ Fφ(Gπ).

Contribution of the regularization to classification The variational regularization term seems to

help the model finding a more meaningful latent representation for classification in almost all experiments.

96

5.5. Conclusion

Figure 5.5 – TSNE projection of the latent state preceding classification for five graphs of EZ each initiated

with 20 different BFS. Colors and markers represent the respective classes of the graphs.

Nevertheless, even when the average score is better with regularization, we cannot affirm that it generally

contributes to a better classification, due to the very close scores and the relatively high standard-deviations.

Remark 40. We note that the extra cost of training the regularization is marginal with respect to the training

of the RNNs.

5.5 Conclusion

The contribution of this chapter to supervised graph classification is the following: we can greedily learn

with label’s supervision a graph representation for classification that is almost invariant to isomorphism,

from numerous iterations on randomly rooted BFS-ordered graph using powerful neural networks coupled

with a strong inductive bias. We have seen that node-level additional task may enrich the classifier to

estimate a better label’s posterior distribution. Yet, the results remain unclear.

This work was a short break into the neural-network-based graph classification from the perspective of

sequential data representation. Our results are encouraging and may need to pick new intuitions in NLP

recent models and solutions developed for text and document embedding. Yet, we have the intuition that the

salvation of useful and powerful graph representation and classification more likely lives in GNNs inductive

bias (presented in Appendix A.1.1) rather than in sequential embedding.

97

CHAPTER 5. RECURRENT GRAPH CLASSIFICATION

98

Chapter 6

Laplacian spectrum for graph

classification

Abstract In this chapter, we focus on two important inductive biases for unsupervised representation

of graphs preceding a classification task: the consistency and the isomorphism-invariance. While state-

of-the-art methods presented in the previous chapter seek such properties with powerful neural-networks

trained end-to-end, we propose to look at the classification capacity of a known and simple graph feature

that satisfies the aforementioned two key attributes: the Graph Laplacian Spectrum (GLS). To do so, we

first derive bounds for the Euclidean distance between two GLS and show how it relates to the divergence to

isomorphism, a standard computationally expensive graph divergence. We then experiment GLS as graph

feature representation through consistency tests and classification tasks, and show that it can be a strong

baseline for graph classification. This chapter covers a publication and a preprint:

• de Lara, N. and Pineau, E. (2018). A simple baseline algorithm for graph classification. Workshop

on Relational Representation Learning, at Advances in Neural Information Processing Systems (R2L,

NIPS 2018).

• Pineau, E. (2019). Using Laplacian Spectrum as Graph Feature Representation. Preprint.

6.1 Introduction and intuition

We have seen in previous chapter a fully supervised graph classification where a recurrent neural network

learns to extract and arrange graph-level features while a linear classifier learns to discriminate their under-

lying class.

Here we are interested in the case where an unsupervised graph representation is learned with the

objective to feed a classifier as a downstream task. In this situation, we need to define features that have

certain properties that match natural classification inductive biases.

First, we need to find a feature that is invariant to non-significant factors underlying data. In particular,

as seen in previous chapter, for graph-level tasks we need isomorphism-invariance (see definition in Section

2.5). Second, we need to have separate features for graphs that live in the same class. Since we do not

99

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

know how a class is characterized in graph domain and since we do not learn explicitly the characterization

(unsupervised representation), we use the following inductive bias: graphs in the same class have similar

structures, i.e. close adjacency matrices up to permutation of node index and addition of nodes and edges.

Remark 41. This assumption is relevant since we work on graphs that belong to consistent datasets where

graphs have similar properties (e.g. datasets of comparable proteins).

In this chapter, based on the intuitions given below, we focus on the spectrum (eigenvalues) of a particular

matrix associated to graphs: the Laplacian matrix (see Section 2.5). In particular, we show that Graph

Laplacian Spectrum (GLS) respects the two aforementioned inductive biases and propose experiments to

illustrate its representation power for graph classification.

Why Laplacian sepctrum? The initial intuition of using GLS as graph feature representation for graph

classification is based on known properties of GLS. First, the GLS is invariant to isomophism (see a proof

in Appendix B.6). Second, the Laplacian eigenvalues give many structural information like the presence

of communities and partitions, the regularity, the closed-walks enumeration, the diameter or the density

of the graph [Brouwer and Haemers, 2011, Newman, 2013]. GLS is also interpretable in term of graph

signal processing [Shuman et al., 2016] or mechanics [Bonald et al., 2018]. Hence, GLS can be used in

several contexts to infer information about graphs. In [Wilson and Zhu, 2008], they propose an experimental

approach to show that comparing graphs using their GLS (or more generally the spectrum of their adjacency

and the spectrum of the normalized Laplacian) is meaningful.

This chapter extends this latter work by showing why GLS is a candidate feature that is relevant for

classification, with respect to the aforementioned two inductive biases for graph classification, through the

following contributions:

• We analyze the consistency between structural deformation of the graph and its GLS by deriving

bounds for the distance between the GLS of two graphs, using a ad-hoc perturbation-based framework

• We validate the consistency, the classification power and reasonableness of truncating the GLS (to

solve the variable-size problem) on synthetic and real graphs

The whole graph classification with GLS is illustrated in Figure 6.1.

The rest of the chapter is built as follows. A presentation of the mathematical framework and the analysis

of GLS are displayed in Section 6.2. Section 6.3 exposes the experiments. Finally, after the conclusion in

Section 6.4, the Section 6.5 gathers the proofs of different results of the chapter.

6.2 Analysis of the relevance of GLS for classification

6.2.1 Presentation of the perturbation-based framework

We consider two undirected and weighted graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2) with respective

adjacency matrixW1 andW2, degree matrix D1 and D2. These matrices are set with respect to an arbitrary

indexing of the nodes. We remind that the Laplacian matrix Li of Gi is defined as Li = Di −Wi. We aim

at using the GLS to build fixed-dimensional representation that encodes structural information to compare

100

6.2. Analysis of the relevance of GLS for classification

Figure 6.1 – Classification procedure using truncated GLS (t-GLS)

any graphs G1 and G2 (i.e. that are not aligned nor equally sized). For the rest of the paper, and without

loss of generality we postulate that |V1| ≤ |V2|. The rest of this section introduces the definitions, hypothesis

and notations needed for our theoretical analysis of the GLS.

Definition 7. Let G = (V,E,W) an undirected weighted graph with n nodes, with W ∈ Mn×n the n × n
weighted adjacency matrices. We define P ∈ Mn×n a symmetric matrix with Pii = 0, Pij ∈ [−Wij ,Wij]

such that Wij + Pij ∈ [0, 1]∀(i, j). We define the two following perturbations applied on graph G:

• Adding isolated nodes: W =

 W 0n×m

0m×n 0m×m

• Adding or removing edges: WP = W + P

We call edge-perturbation the addition or removal of edges, and node-perturbation the addition of nodes.

A complete perturbation is done by adding isolated nodes (i.e. without incident edges) and perturbing the

augmented graph with edge addition or removal. If graph G is unweighted, i.e. with binary adjacency, then

edge perturbations Pij ∈ {−1, 0, 1}.

From Definition 7 the importance of the perturbation is contained in P . The intuition is that the denser

P , the higher the difference between initial and perturbed graphs. We note LP the Laplacian of P . We

remind that the permutation of node indices is not a relevant perturbation. Hence, we have the following

definition:

Definition 8. We say that GP
∗
is a perturbed version of G if we have

W
P∗ = Π∗T (W + P ∗)Π∗

s.t. Π∗ = arg minΠ∈P(n) ‖WP∗ −ΠTWΠ‖1

i.e. such that P ∗ is the sparsest possible i.e. does not include permutations.

101

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

Notations We note P ∗ the sparsest perturbation as defined in Definition 8. We note G the completion of

G with isolated nodes. If M is a matrix associated to G, we note M the equivalent matrix for G. We note

λ(X) the eigenvalue of a square matrix X in ascending order, λi(X) the ith smallest eigenvalue.

Remark 42. In this part, the representation function F is the eigenvalue algorithm applied on the graph

Laplacian. Hence, F is the composition of G 7→ L and λ. We note that λ can be any eigenvalue algorithm.

Since we work on real symmetric matrices, we can use for example the Jacobi eigenvalue algorithm for F .

In this chapter, we do not assume that the graph representation unveils generative factors, only interesting

properties.

From the introduced concepts above, we can propose the following assumption on which we will build

our study:

Hypothesis 2. Without loss of generality, we assume that G2 is a perturbed version of G1, i.e. there exist

P ∗ the |V2|-square sparsest perturbation matrix associated with a permutation matrix Π∗ ∈ P(|V2|) such that

W2 = Π∗T
(
W1 + P ∗

)
Π∗.

We have defined a notion of smooth consistency between graphs that has a natural and simple inter-

pretation: any graph G2 is a perturbed version of graph G1, and the larger the perturbation the higher

the structural dissimilarity between G1 and G2. Under classification inductive bias cited above, a smaller

perturbation between two graphs increases the probability that they are in the same class.

Yet, finding P ∗ or its norm for all pairs of graphs of a dataset is not tractable. In the next section, we use

the previously presented mathematical framework to show that the GLS can help solving this intractable

problem.

6.2.2 Analysis

We place ourselves under the Hypothesis 2 saying that the difference between graphs G1 and G2 is charac-

terized by the unknown deformation P ∗. A good embedding of these graphs should be close when level of

deformation is low, and far otherwise. This level of deformation can be quantified by the structure of P ∗,

which can be represented by its Laplacian noted LP∗ .

We use this idea to propose an analysis of the distance between two GLS. All proofs are detailed in

Section 6.5.

6.2.2.1 Consistency under deformation and relation to graph isomorphism

We remind that two graphs G1 and G2 are isomorphic if and only if ∃Π ∈ P(|V1|) such that L2 = Π−1L1Π

[Merris, 1994], hence when they are structurally equivalent irrespective to the vertex ordering. Several papers

has proposed to use a notion of divergence to graph isomophism (DGI) to compare graphs [Grohe et al., 2018,

Rameshkumar et al., 2013]. The DGI between graphs G1 and G2 is generally minΠ

∥∥L1 −Π−1L2Π
∥∥
F
.

Considering this definition, the following Lemma links the graph-isomorphism problem and the Laplacian

of the hypothetical perturbation P ∗:

Lemma 2. Using the notations from Hypothesis 2, we have L2 = Π∗T
(
L1 + LP∗

)
Π∗, with LP∗ = diag(P ∗1|V1|)−

P ∗ the Laplacian of P ∗ and 1n the n-dimensional unit vector. In particular, minΠ‖L2 −ΠTL1Π‖F =

‖LP∗‖F .

102

6.2. Analysis of the relevance of GLS for classification

We remind that the DGI is known to be NP-hard [Grohe et al., 2018]. The Propositions 2 and 3, and

the different comments, relate the distance between GLS to the DGI and show the interest of GLS for

whole-graph comparison hence classification.

Proposition 2. Using Hypothesis 2 and Lemma 2: ‖λ(L2)− λ(L1)‖2 ≤ ‖LP∗‖F .

The above result tells us that the higher the difference between GLS, the larger the hypothetical pertur-

bation P ∗ i.e. the higher the structural dissimilarity.

The implication of GLS closeness is less clear, since it tackles the notion of non-isomorphic L-cospectrality,

which is the idea that two graphs can have equal eigenvalues while having different Laplacian matrix

[Brouwer and Haemers, 2011]. In fact, there exist families of graphs that are not fully determined by their

spectrum, like trees [Schwenk, 1973].

Yet, especially for graph classification, non-isomorphic cospectrality is not necessarily a problem. First,

almost all graphs are determined by their spectrum [Brouwer and Haemers, 2011, Haemers, 2016]. Sec-

ond, when two graphs are non-isomorphic cospectral, it means that they share certain intrinsic properties

[Shuman et al., 2016]. For example, we have mentioned that eigenvalues are related to properties of the

signal living on a graph (for example the edge weights). Hence, equal GLS means equal properties of the

signalµ. We note that the signal can be the weights of the graph. If the class label associated to graphs is

related to the signal living on it, which is not rare, the cospectrality is meaningful.

Nevertheless, the above intuition is not fully satisfying. We accordingly propose the Proposition 3 to

better understand GLS proximity even when graphs are non-isomorphic cospectral.

Proposition 3. The closer the GLS, the closer to unitary-similarity the Laplacian matrices.

We remind that two real n-square matrices A and B are unitary-similarity if there exists an orthogonal

matrix O such that B = OAOT . Similarity is an equivalence relation on the space of square-matrices.

Moreover, divergence to unitary-similarity defined by minO∈O(|V2|)‖L1 − OL2O
T ‖F is a relaxed version of

the divergence to graph-isomorphism [Grohe et al., 2018], where the permutation matrix space is replaced

by a unitary matrix space. Finally from Proposition 2 and 3 we can bound the distance between GLS as

follows:

min
O∈O(|V2|)

‖L1 −OL2O
T ‖F ≤ ‖λ(L1)− λ(L2)‖2 ≤ ‖LP∗‖ (6.1)

In this section, we have shown that structural similarity (divergence) between graphs can be reasonably

approximated by the similarity (divergence) between their GLS, at least for graph-level problems in which

the relevant similarity is related to structural similarity between graphs, like for example graph classification.

6.2.2.2 Some practical aspects

Previous section showed the capacity of the distance between Laplacian spectrum to serve as proxy for

graph similarity. We note that the computation of spectrum is backed by efficient and robust approximate

eigen-decomposition algorithms enabling to scale on large graphs and datasets [Halko et al., 2011].

Another problem is the variable size of the graphs, since a graph G with nG nodes has a GLS of size

nG. In practice, a fixed embedding dimension d must be chosen for all graphs in dataset D. According to

103

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

previous analysis, the most obvious dimension is d = maxG∈D |V | and all graphs with less than d nodes

may be padded with isolated nodes. We note that padding with isolated nodes is equivalent to adding zeros

in the GLS. Nevertheless, in some datasets, some graphs can be significantly larger and the padding can

become abusive. We therefore propose for these graph to have d < maxG∈D |V |. We simply truncate the

GLS such that we keep only the highest d eigenvalues. This method also enables to save computation time

with efficient truncated singular value decomposition [Yuan and Zhang, 2013].

The problem with this method is that we may lose information for graphs with more than d nodes. Yet,

in practice, for large graphs, the contribution of the lowest eigenvalues to the distance between GLS as a

proxy for graph divergence is negligible. In particular, large graph have many sparse areas, such that many

eigenvalues are very low, hence truncating the bottom part of the GLS is usually not a problem. We assess

the impact of the truncation in the experimental section.

Remark 43. We note that we can also propose several ways to limit information loss for truncated GLS

(t-GLS), like low-dimensional embedding of the lowest eigenvalues with moments or histograms for example.

6.3 Experiments

6.3.1 Preliminary experiments

As a first illustration of deformation-based results presented in Section 6.2.2, we sample a random graph

from Erdos-Rényi model [Erdős and Rényi, 1959], with parameter nG = 80 and p = 0.05 (graph randomly

chosen among the set of graphs with a certain number of nodes nG and a certain edge density p). On that

random graph, we do two simple illustrative experiments.

First, the distance between the Laplacian spectrum of a graph and a perturbed version of this graph

is related to the number of perturbations. We can find the experimental illustration in Figure 6.2 (similar

to those in [Wilson and Zhu, 2008]). We see that the number of perturbations is directly related to the

distance between GLS features for edge addition and edge withdrawal.

Remark 44. A relation between graph sparsity and Laplacian eigenvalues can be seen for example through

the Gershgorin circle theorem [Gershgorin, 1931].

Figure 6.2 – Experimental results to illustrate how GLS behaves under edge addition and withdrawal. Left:

edge addition. Right: edge withdrawal. In this case, studied adjacency and perturbation matrix are binary.

104

6.3. Experiments

Second, we mentioned that when a graph is significantly bigger than other graphs of a dataset, we can

use a truncated GLS (t-GLS). In Figure 6.4, we iteratively add 20 nodes with various random connections

to a random Erdos-Rényi graph G. We keep the same dimensionality nG for all the t-GLS at each iteration.

We illustrate the fact that the t-GLS is consistent with node addition and the intensity of the connection

of the new nodes. We do the same experiment with a real molecular graph from MUTAG dataset (see

Appendix C.3).

Figure 6.3 – Experimental results illustrate how t-GLS behaves under iterative addition of 20 new nodes

with respectively 0, 1, 2 and 3 random connections. Left: synthetic a 80-nodes Erdos-Rényi graph. Right:

a 28-nodes molecular graph from MUTAG dataset. Horizontal dotted lines (right figure) are the quartiles

25, 50, 75 and 100 of the distances between the GLS of the 28-nodes graph and the other 187 graphs of the

dataset. The curves are computed as the l2-norm between each t-GLS and the initial GLS.

6.3.2 Classification of molecular and social network graphs

We evaluate GLS for classification on molecular graphs and social network graphs. We remind the inductive

bias: two structurally close graphs belong to the same class. We know that GLS is consistent with struc-

ture deformation. We now challenge the assumption and previous results with the following classification

experiments.

Experimental setup for classification of graphs Like for experiments of Chapter 5, we use the stan-

dard 10-folds train-test setup for model training and evaluation. Each dataset is divided into 10 folds such

that the class proportions are preserved in each fold for all datasets. These folds are then used for cross-

validation i.e, one fold serves as the testing set while the other ones compose the training set. Results are

the mean and standard-deviation computed using the ten results from the ten folds tests.

Hyperparameters We use the support vector classifier (SVC) from scikit-learn [Pedregosa et al., 2011].

We chose Radial Basis Function as kernel, i.e. K(λ(L1), λ(L2)) = exp (−γ‖λ(L1)− λ(L2)‖22) since directly

related to Euclidean distance between GLS for which we have bounds (6.1). Hence, our theoretical results

remain consistent with our experiments. Hyper parameters C and γ are searched at each fold training among

respectively {0.5, 1, 5} and {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5} for the molecular datasets, and {0.5, 1, 5, 25, 50}
and {0.0001, 0.001, 0.01, 0.1} for the social network datasets (in practice, using a global pool for all the

datasets gives equivalent results, but hyperparameter inference becomes expensive with a too large grid, in

105

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

particular when repeated ten times). The nested hyperparameter search works as follows: in each training

fold we perform a 5-fold random search cross-validation. We therefore avoid the problem of overfitting

related to model selection that appear when using non-nested cross-validation [Cawley and Talbot, 2010].

For the dimension d ∈ J1,maxG∈D nGK, representing the number of eigenvalues we keep to build the

t-GLS, we chose the percentile 95 of the distribution of graph sizes in each dataset. A study of the impact

of the truncation is given in paragraph On the reasonableness of using t-GLS (Section 6.3.2).

Comparison with other models We compare GLS+SVC with the same models that in previous chapter,

presented in Section 2.5.2. We also add the results of our graph classification method presented in Chapter

5.

Molecular graphs We use four datasets for the experiments: Mutag (MT), Enzymes (EZ), Proteins Full

(PF) and National Cancer Institute (NCI1) [Kersting et al., 2016]. All graphs are chemical components.

Nodes are atoms or molecules and edges represent checmical or electrostatic bindings. We note that molec-

ular graphs contain node attributes, that are used by all neural networks based models. Hence for the

molecular graphs, we only compare to non-neural methods. Description and statistics of molecular datasets

are presented in Table C.1, Appendix C.

MT EZ PF NCI1

EMD + SVC 86.1 ± 0.8 36.8 ± 0.8 - 72.7 ± 0.2

PM + SVC 85.6 ± 0.6 28.2 ± 0.4 - 69.7 ± 0.1

FB + SVC 84.7 ± 2.0 29.0 ± 1.2 70.0 ± 1.3 62.9 ± 1.0

DyF + SVC 86.3 ± 1.3 26.6 ± 1.2 73.1 ± 0.4 66.6 ± 0.3

FGSD + SVC 92.1 - 73.4 79.8

RGC 88.3 ± 7.9 48.7 ± 6.1 72.4 ± 3.1 78.3 ± 2.3

VRGC α = 0.1 86.3 ± 8.6 48.4 ± 6.2 74.8 ± 3.0 80.7 ± 2.2

VRGC α = 1 88.7 ± 8.9 49.3 ± 6.1 73.8 ± 3.4 79.9 ± 1.9

GLS + SVC 87.9 ± 7.0 40.7 ± 6.3 75.3 ± 3.5 73.3 ± 2.1

Table 6.1 – Accuracy (%) of classification with different graph representations, on molecular graphs. SVC

stands for support vector classifier. Comparative models are divided into two groups: feature + SVC and

end-to-end deep learning. *Models using node attributes.

Social network graphs We use five datasets for the experiments: IMDB-Binary (IMBD-B), IMDB-Multi

(IMDB-M), REDDIT-Binary (REDDIT-B) and COLLAB. All graphs are social networks. The graphs of

these datasets do not contain node attributes. Therefore, we can more appropriately compare GLS + SVC

to deep learning based classification. Statistics about social networks datasets are presented in Table C.2,

Appendix C.

Analysis of the results The classification results above illustrate the capacity of GLS to capture graph

structural information, under the assumption that structurally close graphs belong to the same class. In

106

6.3. Experiments

IMDB-B IMDB-M REDDIT-B COLLAB

GK 65.9 ± 1.0 50.6 ± 0.6 69.6 ± 0.9 77.8 ± 0.2

DyF 72.9 ± 4.1 48.1 ± 3.6 89.5 ± 2.0 80.6 ± 1.6

FGSD 73.6 52.4 86.5 80.0

GCN 74.0 ± 3.4 51.9 ± 3.8 - 79.0 ± 1.8

DGCNN 70.0 ± 0.9 47.8 ± 0.9 76.0 ± 1.7 73.8 ± 0.5

CapsGNN 73.1 ± 4.8 50.3 ± 2.7 - 79.6 ± 0.9

GIN-0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 80.2 ± 1.9

GraphSAGE 72.3 ± 5.3 50.9 ± 2.2 - -

RGC 70.4 ± 2.8 47.8 ± 2.4 87.5 ±3.1 79.1 ± 1.5

VRGC (α = 0.1) 71.4 ± 2.7 49.1 ± 2.6 89.7 ± 2.1 77.5 ± 1.9

VRGC (α = 1) 71.2 ± 2.8 48.1 ± 2.6 88.9 ± 2.6 77.4 ± 1.0

GLS + SVC 73.2 ± 4.2 48.5 ± 2.5 87.4 ± 3.4 78.5 ± 1.1

Table 6.2 – Classification accuracy (%) of different deep learning based models plus ours over standard social

networks datasets. Graphs of these datasets does not have node features. SVC stands for support vector

classifier.

molecular experiments, on which we compare with feature-based and kernel-based methods, we see that GLS

is a strong baseline that achieves or outperform state-of-art results. Yet, we see that the results achieved by

the our model RGC (only NN-based graph classifier that do not use node features) presented in Chapter 5

still outperform thanks to its high expressiveness.

In social network experiments, we can compare GLS+SVC with GNNs since these graphs have no node

features. We see that GIN [Xu et al., 2018] outperforms, as expected (see Section 2.5.2). GLS yet achieves

the performance of other GNN architectures.

These experiments, we can say that GLS is a simple way to represent graphs in an unsupervised manner,

with theoretical background, simplicity of implementation (there exist many efficient implementation of

eigenvalues inference) and competitive downstream classification results.

Remark 45. We see that the relatively high standard-deviations impeach to have a clear view of the out-

performance of certain models against each others. We therefore only look at average score to appreciate the

results.

On the reasonableness of using truncated GLS We assess the impact of truncating the GLS. We

remind that using t-GLS enables to reduce the computational cost for large graphs and reduce the dimen-

sionality of the graph representation for all graphs (Section 6.2.2.2). Results are presented in Figure 6.4 for

molecular datasets.

We see that truncating GLS is not highly impacting classification results. Only ENZYMES multi-class

classification, which is a particularly difficult task (see experiments in Section 6.3.2), suffers from truncation.

Figure 6.5 illustrates the reasonableness of using only the highest eigenvalues of the Laplacian spectrum

as whole-graph feature representation. We take the original and final graphs of the deformation-consistency

107

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

Figure 6.4 – Illustration of the impact of the truncation in term of classification accuracy. Left: molecular

graphs. Right: social networks. We represent the impact relatively to the 95-percentile truncation adopted

for classification experiments.

Figure 6.5 – Illustration of the relative importance of the dimensionality of GLS-embedding, after the

iterative addition of 20 new nodes with respectively 0, 1, 2 and 3 random connections with graph. Left:

synthetic a 80-nodes Erdos-Rényi graph. Right: a 28-nodes molecular graph from MUTAG dataset. We

see that the first largest eigenvalues of the Laplacian are the most important to discriminate a graph and

its perturbed version.

test presented in Figure 6.4. We compute the L2 distance between t-GLS with dimension d and divide it by

d, for d varying from 1 to 15. The objective is to confirm that first eigenvalues are relatively more important

to discriminate to structurally different graphs, which is the case. We note that for the Erdos-Rényi case with

few connected additional nodes, first eigenvalues are not as relatively important as for the other example.

In fact, adding nodes with stochastic connections is the construction process of Erdos-Rényi graphs. Hence,

discriminating augmented graph from the original one is difficult based only on the structural information.

6.4 Conclusion

In this chapter, we analyzed the graph Laplacian spectrum (GLS) as whole graph representation for graph

classification. We showed that comparing two GLS is a good proxy for the divergence between two graphs in

terms of structural information. We also showed that truncating the GLS to align graphs with different sizes

is acceptable. We coupled these results with the simplicity of implementation, the computational efficiency

offered by modern randomized eigenvalues algorithms and the rare occurrence of detrimental L-cospectral

non-isomorphic graphs to propose the GLS as a strong baseline for graph classification.

108

6.5. Proofs

6.5 Proofs

This section gathers the proofs that complete the results below.

6.5.1 Proof of Lemma 2

L2 = D2 −W2

= diag(W21)−W2

= diag(Π∗T
(
W1 + P ∗

)
Π∗1)−Π∗

(
W1 + P ∗

)
Π∗

= diag(Π∗TW1Π∗1) + diag(Π∗TP ∗Π∗1)−Π∗TW1Π∗ −Π∗TP ∗Π∗

= Π∗TD1Π∗ −Π∗TW1Π∗ + Π∗TDP∗Π
∗ −Π∗TP ∗Π∗

= Π∗TL1Π∗ + Π∗TLP∗Π
∗

with LP∗ = diag(P ∗1)− P ∗ = DP∗ − P ∗ and 1 the unit vector.

Therefore,

min
Π
‖L2 −ΠTL1Π‖F = min

Π
‖ΠTLP∗Π‖F = ‖LP∗‖F

6.5.2 Proof of Proposition 2

From lemma 2 we have L2 = Π∗TL1Π∗ + Π∗TLP∗Π
∗. Moreover, from Weyl’s eigenvalues inequalities and

since eigenvalues are isomorphism invariant:λi(L2) ≤ λi(L1) + λ|V2|(LP∗)

λi(L1) + λ1(LP∗) ≤ λi(L2)

Hence: λ1(LP∗) ≤ λi(L2)− λi(L1) ≤ λ|V |(LP∗).
Now let (λ, x) be any eigen couple of a matrix M ∈ Mn×n. We can always pick i ∈ {1 . . . n} and build

x such that |xi| = 1 and |xj 6=i| < 1. Hence:

(Mx)i = λxi ⇐⇒
n∑
j=1

mijxj = λxi

⇐⇒ λ2 ≤
n∑
j=1

(mijxj)
2

=⇒ λ2 ≤
n∑
j=1

(mij)
2

=⇒ λ2 ≤ 1

n

n∑
i,j=1

m2
ij

Using previous results we get:

|V2|∑
i=1

(
λi(L2)− λi(L1)

)2 ≤ |V2|
1

|V2|

|V2|∑
i,j=1

LP∗
2
ij = ‖LP∗‖2F ,

109

CHAPTER 6. LAPLACIAN SPECTRUM FOR GRAPH CLASSIFICATION

with ‖X‖F =
√∑

i

∑
j |Xij |2 the Frobenius norm.

6.5.3 Proof of Proposition 3

Denoting O(n) the n-orthogonal matrices group (orthogonal since real), we want to show that:

min
O∈O(|V2|)

‖L1 −OTL2O‖F ≤ ‖λ(L1)− λ(L2)‖2

We note Li = QiΛiQi
T the eigendecomposition of the Laplacian Li with Λi = diag(λ(Li)). Since Q1 is

unitary and using property of Frobenius norm, we have, ∀O ∈ O(|V2|):

‖L1 −OTL2O‖F = ‖Λ1 −Q1
T
OTQ2Λ2Q2

TOQ1‖F ,

We know that Q1 and Q2 are orthogonal since they are respectively eigenvector matrices of symmetric

matrix L1 and L2. We therefore have:

(QT2 OQ1)T (QT2 OQ1) = Q1
T
OTQ2Q

T
2 OQ1 = I|V1|

Moreover ∀Π̃ ∈ P(|V2|) ⊂ O(|V2|), if O = Q2Π̃Q1
T
then O ∈ O(|V2|).

Hence,

min
O∈O(|V2|)

‖L1 −OTL2O‖F = min
O∈O(|V2|)

‖Λ1 −Q1
T
OTQ2Λ2Q2

TOQ1‖F

≤ min
Π̃∈P(|V2|)

‖Λ1 −Q1
T

(Q2Π̃Q1
T

)TQ2Λ2Q2
T (Q2Π̃Q1

T
)Q1‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃TΛ2Π̃‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃Λ2Π̃T ‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃Λ2Π̃T ‖F

= min
σ∈S(|V2|)

‖λ(L1)− λ(L2)σ(1:|V2|)‖2

≤ ‖λ(L1)− λ(L2)‖2

with S(n) the permutation group of {1 . . . n}.

110

Chapter 7

Conclusion

In this thesis, we have explored several inductive biases and methods for the representation of multivariate

time series (MTS) and graphs. The goal was twofold. First, contribute to the representation of MTS and

graphs problem. Second, propose ideas and tools to help data analysts of Safran to build health monitoring

(HM) solutions for turbine engines.

Chapter 3 proposed a consistent model-based framework to represent MTS data, in particular MTS

samples recorded on mechanical systems. The principle was the following: we substitute the true unknown

physical model describing the data dynamics by a simple statistical model whose first parameter controls

the causality between observed variables. We trained a neural inference function to infer these parameters,

using an encoder-decoder framework. We claimed and showed that the inferred MTS representations were

relevant for monitoring the state of mechanical systems (a Newtonian system and a turbine engine).

Chapter 4 proposed a simple yet powerful and universal model called contrastive trend extraction (CTE)

to extract the trend signal from data with generic neural networks (NNs), without assumption on the shape

of the model underlying the data. Trend extraction is interesting under the assumption that a mechanical

system ages monotonously. Hence, searching monotonous trends in data is equivalent to searching ageing

signal. We proposed both experimental and theoretical results to explain in which extent this approach is

relevant. We also showed that CTE is related to another interesting topic for Safran: the survival analysis.

In particular, besides the exhibition of the relation, we used our CTE model on survival analysis datasets

and found out that it achieves state-of-the-art results. We finally proposed an analysis of the impact of the

noise on the trend detection quality.

Both chapters illustrated the interest of using adapted inductive biases to learn relevant MTS represen-

tation, in particular for ageing signal extraction for health monitoring.

A natural extension of these works, in which we developped methods to search particular signals under-

lying data under generative assumption (e.g. ageing), uses recent literature about blind source separation

(BSS). This literature proposes new identifiability results for data decomposition into generative factors

that can be applied to time series data. The idea is the following: with appropriate representation tools and

inductive biases, we can extract the true factors that generated the data, in which we might find the ageing

signal but also other interesting information about the studied mechanical system. The preliminary work of

such perspective has been studied and presented as a contribution in [Pineau et al., 2020a], not sufficiently

111

CHAPTER 7. CONCLUSION

advanced for a full chapter in this thesis report but described in the experiment part of Chapter 4.

Several additional perspectives exist that are both interesting for ML community and Safran. First, we

may have specific information about the monitored mechanical system, for example physical model, causal

rules, etc. How can we integrate these information within a statistical data representation model to obtain

more meaningful, interpretable or robust monitoring indicators? Second, for certain mechanical systems

we have access to simulators; for example, some stages of turbine engines can be simulated. How can we

use the simulator or the simulations to enhance the representation model? Third, it is common in real

world problems to have few data. Can we propose specific MTS few-shot learning processes to learn robust

representations of data?

These open questions are of major interest in many domains where research in ML may bring solutions.

We also used our knowledge about sequence embedding to a very studied and experimented topic: the

classification of graphs. In fact, we experimented in Chapter 5 an inductive bias for the classification

of graphs with NNs that is different than the standard end-to-end classification model with graph neural

networks (GNNs). The main assumption is that graphs are sets of nodes, that can be sequentially embedded

with respect to a given node indexing. Using a standard node-ordering called breadth first search, we turned

each graph into a sequence of nodes. Therefore, we leveraged the high capacity of recurrent neural networks

(RNNs) to achieve state-of-the-art results. We also tested out the addition of a node-level task to help

the graph-embedding model to generalize better by forcing it to keep local information during the graph-

embedding phase. Despite the justified interest of such recurrent graph embedding for classification, the

more recent GNN architectures outperform our approach.

Finally, in Chapter 6, we showed with a simple graph-feature which satisfies graph classification inductive

biases, that the usage of the high capacity of GNNs for graph classification is not always fully justified, in

particular on the commonly studied datasets.

We have seen in this thesis that the recent advances in graph classification are numerous, yet limited in

their experiments to simple datasets (small graphs and binary classification). Hence, a first perspective would

be to extend the benchmarks to large datasets of large graphs. A second perspective is for sequential graph

classification. Since sequential graph embedding is inspired from NLP, we could use the recent advances

(e.g. transformers) to find more expressive representation of graphs, using recent advances in text/document

embedding.

This thesis was a journey in machine learning world, with focus on the inductive biases required to learn

relevant data representation. In particular, we leveraged the high capacity and flexibility of neural networks

coupled with adapted biases to build original embedding frameworks for MTS data, in particular in order

to bring knowledge and solutions for health monitoring problems, and for graph classification.

112

Appendices

113

Appendix A

Background: neural networks

This appendix gives details on neural networks (NNs) that can be useful for the self-contained understanding

of the thesis. We decompose the appendix in two sections. A first section presents the main neural networks

architectures. A second section gives details on the learning procedure of the neural networks weights.

A.1 Different neural networks for different inductive biases

Neural networks are parametric functions composed as a stack of linear operations and nonlinear activation

functions (sigmoid, rectified linear unit, tanh, etc.). They have been recently widely used in machine

learning because of their high representation and generalization capacities. The purpose of this section is

not to explain why neural networks are powerful but to introduce standard architectures.

The important knowledge to have is the following: NNs have shapes that depends on the a priori we

have on data structure. This a priori can be though as a graphical structure on which data lives. For this

reason, we first introduce graph neural network, since graphs are the most general data structure (contains

all the others).

Global remark on the notations. For simplicity we share the same notations for all the presented archi-

tectures. Yet, in practice, depending of the scale data is regarded, the notations change.

A.1.1 Graph neural network

Graphs are data structures that model a set of objects (nodes) and their pairwise interactions (edges between

nodes). Hence, data leaving on a graph domain can not be managed with tools developed for Euclidean

(regular) data structure.

Presentation The main purpose of graph neural networks (GNNs) [Sperduti and Starita, 1997] is to

represent objects living in a graph domain, by taking into account the neighboring information. We consider

a graph G = (E, V,W,X) with E the edge list, V the vertex set, W the adjacency and X a set of five d-

dimensional objects with features X = {Xi}5i=1 ∈ R5×d, illustrated in Figure A.1.

The representation of each object Xi should take into account its conditional terms, i.e. other objects that

interact with it. We note A ∈ R5×5 the adjacency of the graph G such that Aij 6= 0 if edge Xi → Xj exists.

114

A.1. Different neural networks for different inductive biases

Figure A.1 – Five objects in graph domain. Arrows are conditional dependencies. Lines are joint distribu-

tions (double arrow).

GNNs are based on the recursive message passing/neighborhood aggregation embedding. At iteration k

of the aggregation process, a representation Zku of node u ∈ V is defined as

Zku = AGGREGATE(k)
({
h(k−1)
v : v ∈ N (u)

})
where N (u) is the set of neighbors for node u and h

(k)
v = COMBINE(k)

(
h

(k−1)
v , Zkv

)
∀v ∈ N (u). AG-

GREGATE and COMBINE have several definitions. The most famous compose the graph convolutional

neural network (GCN) proposed in [Kipf and Welling, 2016]. The multilayer GCN with latent dimensions

{dl}Ll=1 consists in the following embedding: Zl = σ
(
ĀZl−1W l−1

)
, with W l ∈ Rdl×dl−1 , h0 = X, d0 = d,

Ā = D̃−
1
2AD̃−

1
2 with Ã = A + I, D̃ij =

∑
k Ãikδij and σ any activation function (e.g. sigmoid). The

product by Ā enables to only propagate node information contained in X to neighboring nodes: in the first

layer only direct neighboring information is passed, in the second layer the neighbor’s neighbors information

is passed, etc. At the end of the training, ZL contains a dl-dimensional embedding of the nodes of G that

can be use for downstream tasks (possibly learned end-to-end). We note that all objects Xi ∈ X share the

weights W (l).

Many particular GCNs have been proposed (with several AGGREGATE and/or COMBINE functions)

to both outperform the expressiveness of basic GCN and solve precise problems on graph domains. In

[Wu et al., 2020] is proposed a survey of on GNNs.

If the GCN is sufficiently deep to reach equilibrium (i.e. Zl = Zl−1) and if all layers share the same

weights (i.e. W l = W 0 for all layers l), we find the convergence and principle of recurrent graph neural

network (RGNN) [Sperduti and Starita, 1997] which is the pioneer work of GNNs.

Remark 46. From nodes embedding, it is possible to create an embedding Zi→j of edges i→ j by embedding

couples [Zi, Zj]. Conversely, an embedding Zj of the node j can be extracted from the edge embeddings

{Zi→j}i:Aij 6=0, for example Zj =
∑
i Z

i→j.

Whole-graph embedding In Chapters 5 and 6 we are interested in the classification of whole graphs. Yet,

GNNs presented above are made to embed nodes of the graph by taking into account the graph structure they

live on. For whole-graph embedding, a READOUT function is required: ZG = READOUT
({
ZKv : v ∈ V

})
.

For example, READOUT function can be a mean or a max pooling, or a most sophisticated one (see Section

2.5.2 for examples).

115

APPENDIX A. BACKGROUND: NEURAL NETWORKS

A.1.2 Multi-layer perceptron

When we have no information nor a priori on the data graphical structure relating the observed objects, we

may consider a fully disconnected graph as illustrated in Figure A.2.

Figure A.2 – Absence of graphical a priori.

It is equivalent to have A = 0, i.e. lth layer values of the graph has values Zli = σ
(
Zl−1
i W l−1 + b

)
for objects

i, with Z0 = Xi. It is the multilayer perceptron (MLP). Yet, it is still possible to find hidden interactions

within data by using Remark 46. Since all objects are disconnected, the linear operations ZlW l can be

parallelized for faster computation.

A.1.3 Convolutional neural network

A common prior on graphical structure of image data is the regular grid. Each pixel (generally 3-dimensional

since RGB color decomposition) is a node (the objects are here the pixels). Core pixels have a minimum of

eight neighbors, border pixels have a minimum of five neighbors and corner pixels have a minimum of three

neighbors, as illustrated in Figure A.3. Edges between neighboring pixels can be weighted by a function of

the pixels (nodes) values.

Figure A.3 – Graphical a priori for image (each object is a pixel, this is a very little image).

In general, since interactions between nodes are very local and structured (A is block-diagonal) and since gen-

erally images are high-dimensional (with thousands of objects), the image is treated as a fully-disconnected

set of connected pixels. The local connection between pixel is implicitly taken into account by using localized

convolutional filters. Hence, the parallelization property of MLP can also be used.

116

A.1. Different neural networks for different inductive biases

A.1.4 Recurrent neural network

The main a priori on sequential data structure is the auto-regression, introduced in Section 2.3, Figure 2.7.

Using the notations above, it would require A to be upper triangular and dense in its upper part. When t

grows, the number of edges to Xt grows also and computational/memory problems arise (we note that the

problem exists for large graphs). Hence, a simplification of the a priori graph, thanks to hidden variables

(see Section 2.3). The set of objects {Xi}Ti=1 are assumed to be disconnected like in MLP. Nevertheless,

to keep the autoregressive aspect, all layers of the neural networks are assumed to have a Markov chain

structure, as illustrated in Figure A.4.

Figure A.4 – Graphical representation of a recurrent neural network. White balls are unobserved (latent).

It is the recurrent neural networks (RNN). A memory cell h accumulates the information such that ht
contains all (relevant) information from past and present time steps X1:t. Using notations above plus

additional weights {U l}Ll=1 for the memory cell, we have hlt = σ(hl−1
t W l−1 + hlt−1U

l + bZ) and yt =

σ(hLt Uy + by).

Remark 47. RNN can be trained and used as a sequential generative model, if yt serves as prediction of

Xt+1 that feeds the.

In practice, it is known that RNN fails at modeling long-term dependencies in its memory cell Z. Infor-

mation vanishes. Long-short term memory cells for recurrent neural networks (LSTM) has been proposed in

[Hochreiter and Schmidhuber, 1997] to improve the long-term dependency modeling in RNN. LSTM leans

on the usage of binary gates that chose, with respect to memory and observed data, if the past information

should go through, without being diluted. In [Li et al., 2018], they observe that in practice, these binary

gates are not really binary, and in many cases are half-open. They improve the LSTM by sampling the

gates as (relaxed) binomial variables, hence truly binary. An equivalent (with little less parameters) is the

gated recurrent unit (GRU) [Cho et al., 2014a, Chung et al., 2014].

Remark 48. GRU has been used in [Li et al., 2015] to model a particular type of GCN (Section A.1.1) called

recurrent GNN (RNN). Using gated neighbor aggregation facilitates the convergence towards an equilibrium

of the message passing process.

117

APPENDIX A. BACKGROUND: NEURAL NETWORKS

A.1.5 Relational neural networks

A relational neural network consists in finding an embedding of the relation between objects. We consider

five objects X = {Xi}ni=1, Xi ∈ X . First, a function fvar : RX → Rdv embeds the d variables Xi of a sample

X in a latent space of dimension dv. Second, a function fint : R2×dv → Rdi takes as input each couple

[fvar(Xi), fvar(Xj)] and embeds it into second latent space of dimension di. We note hi = fvar(Xi) and

hi,j = fint([h
i, hj]).

Figure A.5 – Graphical model of a relational neural network, embedding the relation between two objects

(i, j).

In [Kipf et al., 2018], the RelNN is expanded with a GNN that takes as input the fully-connected graph

with n2 nodes, whose edge features are the hi,j . This GNN layer enables the model to explicitly take into

account the fact that the interactions between objects (i, j) are also dependent on the respective interactions

of i and j with the other objects {1, . . . , n} \ {i, j}. We use the expanded version of RelNN in Chapters 3.

Remark 49. All the neural networks implementations have been made using PyTorch library [Paszke et al., 2019].

118

Appendix B

Background: algebra, statistics and

optimization

This section gives the minimal background about algebra, statistics and optimization to fully understand

the thesis.

B.1 Note on variational inference

The variational inference (VI) is a method used in Bayesian statistics to approximate densities of probability

through optimization techniques. In particular, it is often used for the approximation of marginal likelihood

of observed data or posterior distributions of unobserved parameters conditionally to observed data. VI is

generally faster and easier to scale to high dimensional data and large datasets than Markov chain Monte

Carlo (MCMC) estimation [Hastings, 1970]. In this section, we give minimal needed information about VI

to understand to content of the thesis. Exhaustive information can be found in [Blei et al., 2017].

Consider the problem of estimating posterior p(Z|X) in latent variable models (2.5). It is generally

untractable. The VI consists in replacing p(Z|X) by a variational distribution q selected from a variational

family of distibution Q, such that:

q = arg min
q∈Q

KL (q(Z|X)||p(Z|X))

where KL is the Kullback-Leibler divergence (KLD). Yet, the quantity still depends on p(Z|X). We change

the point of view. As usual, the problem can be related to the maximization of data log-likelihood log p(X).

We remark that

119

APPENDIX B. BACKGROUND: ALGEBRA, STATISTICS AND OPTIMIZATION

log p(X) = log

∫
p(X,Z)dZ

= log

∫
q(Z|X)

q(Z|X)
p(X,Z)dZ

= logEq(Z|X)
p(X,Z)

q(Z|X)

≥ Eq(Z|X) log
p(X,Z)

q(Z|X)

= Eq(Z|X) log
p(X|Z)p(Z)

q(Z|X)

= Eq(Z|X) log p(X|Z) +KL (q(Z|X)||p(Z))

Hence, finding the best variational approximiation q must maximize the lower bound of the log-likelihood,

called evidence lower bound (ELBO). The first term of the last line is the reconstruction term, related to

the estimated likelihood. The second term is a regularization of to match prior and posterior distributions.

Generally, the family Q is much simpler than the true posterior distribution, e.g. the exponential family,

generally Gaussian. Otherwise, the ELBO would not be tractable. The maximization with respect to q then

becomes a maximization with respect to the parameters of the variational family.

Remark 50. The ELBO is the loss of variational autoencoders (VAE), the most known family of neural

latent variable models, introduced in Section 2.2.4.

B.2 Change of variable formula

If we have z ∼ p(z) a d-dimensional variable and f : Rd → Rd an invertible function such that x = f(z),

then the density:

x ∼ p
(
f−1(x)

) ∣∣∣∣∣det
∂f−1(y)

∂y

∣∣∣∣
y=x

∣∣∣∣∣ = p
(
f−1(x)

) ∣∣∣∣∣det
∂f(y)

∂y

∣∣∣∣
y=x

∣∣∣∣∣
−1

the second equality coming from two properties. First, the Jacobian of the inverse is the inverse of the

Jacobian. Second, the determinant of the inverse is the inverse of the determinant.

B.3 Note on random coefficient regression

In standard regression model, the parameters (e.g. slope β and intercept b of a linear model) are fixed

after fitting a dataset. The assumption is that data is stationary. In random coefficient models (RCR),

the parameters are allowed to vary according to a distribution [Muthén et al., 2015]. For example, if the

variable to predict is the baccalauréat score Y from in-class evaluation scores X, the regression parameters

may depend on characteristics Cp of each pupil p, like the school, the socio-professional status, etc. We

would therefore have the additional assumption (βp, bp) ∼ p(β, b|Cp) such that the predicted baccalauréat

score Yp for pupil p is βpX + cp.

120

B.4. Note on proximal algorithms

B.4 Note on proximal algorithms

B.4.1 Principles of proximal gradient descent

A standard minimization problem in machine learning consists of an objective function and a regularization

function, in the following generic shape:

min
θ
f(θ) + λg(θ) (B.1)

where f : Rn → R is generally a smooth (differentiable) function and g : Rn → R∪{+∞} is non-smooth,

like LASSO penalty for example. We assume that f and g are convex.

We call proximal operator of convex function f the function:

proxf (θ̃) := arg min
θ

f(θ) +
1

2
‖θ̃ − θ‖22 (B.2)

The proximal operator has the following property

θ = proxf (θ̃)⇔ θ̃ − θ ∈ ∂f(θ) (B.3)

where ∂f(θ) is the subderivative of f at θ, defined by:

∂f(θ) = {v|f(z) ≥ f(θ) + 〈v, z − θ〉,∀z ∈ domf} (B.4)

We note that if f is differentiable, then ∇f(θ) ∈ ∂f(θ). It implies two important features for our

problem. First, proximal operation can be seen as a gradient step, with a minimum of f being achieved at

a fixed point of proxλf (θ). If f is differentiable, proxλf (θ) ≈ θ − λ∇f(θ). Second, a fixed point of proxf is

a minimizer of f . More details can be found in [Parikh et al., 2014]. We generically call proximal gradient

method (PGM) the learning procedure based on proximal gradient.

In problem (B.1), the proximal operator is required for g. We note λr the gradient descent step.

The splitting of the problem in differentiable and non-differentiable functions is treated with two steps

[Polson et al., 2015]. Fist, the parameter θ is updated in the direction of ∇f(θ), that exists since f is dif-

ferentiable. Second, the updated θ − λr∇f(θ) is mapped towards a minimum of function g using proxλg.

The parameter λ, as a stepsize, controls the importance of the mapping towards the minimum of g. It is

summaried in Algorithm 1.

Algorithme 1 : Proximal gradient step for a problem (B.1)
Input : Initial parameter θ

Output : Updated parameter θ

θ ← θ − λr∇f(θ)

θ ← proxλg(θ)

121

APPENDIX B. BACKGROUND: ALGEBRA, STATISTICS AND OPTIMIZATION

We note that this algorithm is still meaningful for nonconvex smooth functions f [Polson et al., 2015],

like neural networks [Ma et al., 2019]. Some pretraining might be useful to avoid convergence anomalies, by

placing θ in a favorable location before processing proximal gradient steps. We use this proximal algorithm

in our experiments of Chapter 3.

We note that efficient proximal algorithm is still an active field of research [Yao et al., 2016]. For this

thesis, we do not go further than the basis PGM.

B.4.2 Application of proximal gradient to sparse VAR problem

This section details the proximal gradient descent applied on the sparse VAR problem of Chapter 3. We do

not remind the notations in this Appendix.

In order to obtain truly sparse weights W̄ (with exact zeros), we apply a proximal gradient method

[Parikh et al., 2014]. Principles of proximal optimization of given in Appendix B.4. If we note λr the

learning rate and G(W) :=
∑d
i,j=1 ‖W.,i,j‖F the group-LASSO penalty, we use a block soft thresholding

proximal operator:

proxλG(W.,i,j) =

(
1− λ

‖W.,i,j‖F

)
+

W.,i,j (B.5)

Referring to the proximal Algorithm 1 (Appendix B.4), we learn θ and W̄ with the procedure described

in Algorithm 2.

Algorithme 2 : Proximal gradient descent for sparse GVAR training
Input : θ, W̄

λr, λ Output : Updated parameter θ, W̄

while not converged do

for j ← 1 to d do
θj ← θj − λr∇θR(θj , W̄)

for i← 1 to d do

for j ← 1 to d do
W̄.,i,j ← W̄.,i,j − λr∇W̄.,i,j

R(θ, W̄)

W̄.,i,j ← proxλrλG(W̄.,i,j)

B.5 Note on contrastive divergence and contrastive learning

The contrastive learning (CL) is a set of methods to transform unsupervised learning into supervised learning.

We split the CL into two branches: the contrastive divergence learning and the contrastive metric learning.

Contrastive divergence learning A first version of CL emerged in modern ML to treat untractable

probabilistic modeling that maximum-likelihood estimation (MLE) could not. It is based on contrastive

divergence (CD), an approximate maximum-likelihood estimation (MLE) [Hinton, 2002] to learn the pa-

rameters θ of unnormalized parametric statistical models fθ(X) (i.e. that does not integrate to one)

122

B.5. Note on contrastive divergence and contrastive learning

[Carreira-Perpinan and Hinton, 2005]. To apply MLE, we need to normalize fθ with the partition func-

tion Z(θ) =
∫
fθ(x)dx such that pθ(x) = fθ(x)/Z(θ). Then MLE consists in arg minθ EX [− ln pθ(x)],

where EX is the empirical expected value over the observed data X . The main problem with this es-

timation is that Z(θ) is often untractable, and so its gradient. In [Hinton, 2002], they simply remark

that, given pnθ an approximation of pθ with n steps of MCMC (we remind that pnθ
n→∞−−−−→ pθ), then

∂θEX [ln pθ(x)] ≈ EX∼X [∂θfθ(X)] − EX∼pnθ [∂θfθ(X)], i.e. partition function disappears from the estima-

tion problem (we note that we can sample from pnθ without computing the partition function since MCMC

methods involve density ratios pθ(x′)/pθ(x) = fθ(x
′)/fθ(x)). Finding the best θ then becomes finding the

model that do not contrast between MCMC-generated data and observed data, here with respect to the

unnormalized density. This is the essence of contrastive divergence learning: finding the set of parameters

such that contrast between generated and observed data is null. It is the principle of many likelihood-free

inference models.The most known usage of this contrastive estimation of the density gradient is to train re-

stricted Boltzman machine (RBM) [Hinton and Salakhutdinov, 2006, Carreira-Perpinan and Hinton, 2005],

an unsupervised representation learning framework. In [Gutmann and Hyvärinen, 2010], they show that the

parameter inference of any unnormalized model fθ, hence not solvable with maximum-likelihood methods

like mentioned above, can be approximated by learning to contrast between observed data X and generated

data (noise) N with distribution pn. Observed data have labels 1, noise data have labels 0. They train the

classifier hθ(x) = σ (ln fθ(x) + c− ln pn(x)) with respect to θ, c using these labels. Here, c is a substitute

to Z(θ). Hence, by minimizing E(X,ε)∼X×N [− lnhθ(X)− lnhθ(1− ε)], they show that the estimated θ is

the maximum-likelihood estimator, and c the associated (untractable) log-partition function. It is called

noise contrastive estimation (NCE). We can find NCE in recent advances in neural generative modeling

of high-dimensional data [Gao et al., 2019]. A particular case of NCE is the negative sampling estimation

[Dyer, 2014], whose most famous example is the word2vec [Mikolov et al., 2013]. More recently, generative

adversarial networks (GANs) [Goodfellow et al., 2014] rely on the same principle. A neural network Gθ

parametrized by θ implicitly represents density of the data. Fake data is generated from Gθ. A discrim-

inator Dφ with parameters φ learns to contrast between generated and observed data. When there is no

parameters φ such that the discriminator can find contrast between generated and true data, then θ is the

most likely data density parameter. Finally, the CD approach is a very general and powerful framework for

learning the parameters of complex models.

Metric learning A second version of CL is the metric learning or ranking learning. It is the CL that

has been introduced in Section 2.1.4. It consists in learning representation of data by learning to distance

dissimilar samples and reconcile similar samples, in a latent representation space. At the end, with a

sufficiently expressive data representation procedure, CL ranks the samples in term of relative similarity in

the latent space. This CL is obviously related to the latter paper presented in previous paragraph. This

time, noise sampling is replaced by dissimilar sampling. If X ∼ X , X− a dissimilar (negative) sample, X+

a similar (positive) sample, then the objective is to minimize hθ(X,X+) = d(fθ(X), fθ(X
+)) and maximize

hθ(X,X
−) = d(fθ(X), fθ(X

−)), with d any divergence. In [Saunshi et al., 2019] they theoretically explain

CL by introducing the notion of latent classes, such that similar samples are implicitly in the same latent

class, and conversely. These latent classes overlaps, such that similarity is a continuous notion in observation

space. This paper gives good view of what is possible and impossible with CL.

123

APPENDIX B. BACKGROUND: ALGEBRA, STATISTICS AND OPTIMIZATION

The main problem is then to define the a priori similarity label between sampels. Yet, there are several

domains where it is available. When samples have auxiliary attributes (e.g. labels), the distance between at-

tributes is a simple information about semantic similarity in observation space [Hadsell et al., 2006]. Hence,

CL naturally proved to be very efficient for classification downstream task [Chen et al., 2020] when classes

are chosen as similarity indicator. In natural language processing (NLP), the similarity between words

is generally their number of co-occurence [Mikolov et al., 2013]. This idea extends to all sequential data.

Similarity between time series is the co-occurence of patterns [Lin and Li, 2009], or the proximity in term

of time-index.

B.6 Proof of GLS isomorphism-invariance

We propose a simple proof of the known GLS isomorphism-invariance used as an important inductive bias

for graph-level tasks, like classification, in Chapter 6.

Let G = (V,E,W) be an undirected and weighted graph, L its Laplacian matrix and Π ∈ P(|V |) be a

permutation matrix. A permutation of node indexing implies a permutation of both rows and columns of

the Laplacian matrix.

The spectrum of L is the set of roots of P (λ) = det
(
L− λI|V |

)
. We want the spectrum of Π+LΠ:

PΠ(λ) = det
(
ΠTLΠ− λI|V |

)
= det

(
ΠTLΠ− λΠ+Π

)
= det

(
ΠT
(
L− λI|V |

)
Π
)

= det
(
ΠT
)
det
(
L− λI|V |

)
det (Π)

Yet we know that the determinant of a matrix is invariant to transpose and that the determinant of a

permutation matrix is equal to its signature:

det (Π) = det
(
ΠT
)

= (−1)|V |−
∑|V |
i=1 Πii

Hence:

PΠ(λ) = (−1)
2
(
|V |−

∑|V |
i=1 Πii

)
det
(
L− λI|V |

)
= det

(
L− λI|V |

)
= P (λ)

124

Appendix C

Datasets

C.1 Ball-springs datasets

The balls-springs is a simulated data used in several chapters of our thesis. It consists in the trajectory

in a 2-dimensional space of N balls randomly linked with springs, with probability 0.5. The springs follow

the Newton’s law of motion and are very practical for several reasons. First, they contain an underlying

graph structure that can be easily controlled for simulation. Second, they contain several independent

controllable factors, that are also independent of the graph adjacency, like initial velocity, initial position,

rigidity of the springs. like many simple dataset used for interpretable/disentangled representation learning

have equivalent properties. It is a very challenging and complete time series toy dataset for unsupervised

representation learning tasks. We used the implementation given along the paper [Kipf et al., 2018].

In particular, we use an ageing version of the ball-springs system for experiments in Chapters 3 and 4,

that are illustrated in Figure C.1.

Remark 51. Newton’s law tells that the position of a mass is proportional to its acceleration (i.e. its second

time derivatives) that can be estimated with Euler method. The acceleration is itself proportional to the force

applied to the mass, i.e. to the acceleration of the others masses. It is the origin of Granger causality in

mass-spring data. Nevertheless, we note that our time series are subsampled, the estimation of the derivative

is not perfect, and so the causality detection [Gong et al., 2015].

C.2 NASA C-MAPSS datasets

NASA public Commercial Modular Aero-Propulsion System Simulation dataset (C-MAPSS) is a tool for

simulation of realistic large commercial turbofan engine data [Saxena and Goebel, 2008]. The common

repository proposes four datasets, that consist of sets of multivariate time series. Each time series is from a

different engine. Each engine is considered as new, like coming out of the plant. Hence, each engine starts

with different degrees of initial wear and manufacturing variation which is unknown to the user. This wear

and variation is considered normal, i.e., it is not considered a fault condition. There are three operational

settings that have a substantial effect on engine performance. These settings are also included in the data.

The data is contaminated with sensor noise.

125

APPENDIX C. DATASETS

Figure C.1 – Examples of three samples from the same balls-springs system, after respectively 0, 20 and 40

steps of ageing with ageing coefficient αb = 0.9.

The engine is operating normally at the start of each time series, and develops a fault at some point

during the series. In the training set, the fault grows in magnitude until system failure. Each time series

from start to failure is called trajectory in the thesis.

C.3 Graph datasets

In Chapters 5 and 6, we use five molecular datasets and five social network datasets for the experiments

[Kersting et al., 2016]. Tables C.1 and C.2 gives statistics of the differents datasets. All used datasets can

be found at the following address: https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

Molecular graphs datasets are Mutag (MT), Enzymes (EZ), Proteins Full (PF), Dobson and Doig (DD)

and National Cancer Institute (NCI1). In MT, the graphs are either mutagenic and not mutagenic. EZ

graphs are tertiary structures of proteins from the 6 Enzyme Commission top level classes. In DD, com-

pounds are secondary structures of proteins that are enzyme or not. PF is a subset of DD without the

largest graphs. In NCI1, graphs are anti-cancer or not. The graphs of these datasets have node labels that

can be leverages by graph neural networks.

Social networks datasets are IMDB-Binary (IMBD-B), IMDB-Multi (IMDB-M), REDDIT-Binary (REDDIT-

B), REDDIT-5K-Multi (REDDIT-M) and COLLAB. REDDIT-B and REDDIT-M contain graphs represent-

ing discussion thread, with edges between users (nodes) when one responded to the other’s comment. Classes

are the subreddit topics from which thread have originated. IMDB-B and IMDB-M contain networks of

actors that appeared together within the same movie. IMDB-B contains two classes for action or romance

genres and IMDB-M three classes for comedy, romance and sci-fi. COLLAB graphs represent scientific

collaborations, with edge between two researchers meaning that they co-authored a paper. Labels of the

126

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

C.3. Graph datasets

MT EZ PF DD NCI1

graphs 188 600 1113 1178 4110

classes 2 6 2 2 2

bias (%) 66.5 16.7 59.6 58.7 50.0

min./max. |V | 10/28 2/125 4/620 30/5736 3/106

avg. |V | 18 33 39 284 30

avg. |E| 39 124 146 1431 65

Node attributes X X X X X

Table C.1 – Molecular datasets statistics. Bias indicates the proportion of the dominant class.

graphs correspond to subfields of Physics. The graphs of these datasets have no node attributes and therefore

enable fair comparison with deep learning methods.

IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB

graphs 1000 1500 2000 4999 5000

classes 2 3 2 5 3

bias (%) 50.0 33.3 50.0 20.0 52.0

min./max. |V | 12/136 7/89 3/3760 22/3606 32/492

avg. |V | 20 13 426 501 75

avg. |E| 97 66 496 590 2458

Node attributes 7 7 7 7 7

Table C.2 – Social network datasets statistics. Bias indicates the proportion of the dominant class.

127

APPENDIX C. DATASETS

128

References

[Ackert, 2015] Ackert, S. (2015). Engine maintenance management. Managing technical aspects of leased

assets, Madrid, pages 1–31.

[Akintayo and Sarkar, 2015] Akintayo, A. and Sarkar, S. (2015). A symbolic dynamic filtering approach to

unsupervised hierarchical feature extraction from time-series data. In 2015 American Control Conference

(ACC), pages 5824–5829. IEEE.

[Alemi et al., 2018] Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., and Murphy, K. (2018).

Fixing a broken elbo. In International Conference on Machine Learning, pages 159–168.

[Ancona et al., 2004] Ancona, N., Marinazzo, D., and Stramaglia, S. (2004). Radial basis function approach

to nonlinear granger causality of time series. Physical Review E, 70(5):056221.

[Antonucci et al., 2015] Antonucci, A., De Rosa, R., Giusti, A., and Cuzzolin, F. (2015). Robust classifica-

tion of multivariate time series by imprecise hidden markov models. International Journal of Approximate

Reasoning, 56:249–263.

[Arora et al., 2019] Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and Saunshi, N. (2019). A

theoretical analysis of contrastive unsupervised representation learning. arXiv preprint arXiv:1902.09229.

[Asadi-Aghbolaghi et al., 2017] Asadi-Aghbolaghi, M., Clapés, A., Bellantonio, M., Escalante, H. J., Ponce-

López, V., Baró, X., Guyon, I., Kasaei, S., and Escalera, S. (2017). Deep learning for action and gesture

recognition in image sequences: A survey. In Gesture Recognition, pages 539–578. Springer.

[Atwood and Towsley, 2016] Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks.

In Advances in Neural Information Processing Systems, pages 1993–2001.

[Azizian and Lelarge, 2020] Azizian, W. and Lelarge, M. (2020). Characterizing the expressive power of

invariant and equivariant graph neural networks. arXiv preprint arXiv:2006.15646.

[Bach and Jordan, 2002] Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis.

Journal of machine learning research, 3(Jul):1–48.

[Badiane et al., 2018] Badiane, M., O’Reilly, M., and Cunningham, P. (2018). Kernel methods for time

series classification and regression. In AICS, pages 54–65.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

129

REFERENCES

[Baldi and Hornik, 1989] Baldi, P. and Hornik, K. (1989). Neural networks and principal component anal-

ysis: Learning from examples without local minima. Neural networks, 2(1):53–58.

[Banville et al., 2019] Banville, H., Moffat, G., Albuquerque, I., Engemann, D.-A., Hyvärinen, A., and

Gramfort, A. (2019). Self-supervised representation learning from electroencephalography signals. In

2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6.

IEEE.

[Bar-Hillel et al., 2003] Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. (2003). Learning distance

functions using equivalence relations. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 11–18.

[Barnett et al., 2016] Barnett, I., Malik, N., Kuijjer, M. L., Mucha, P. J., and Onnela, J.-P. (2016). Feature-

based classification of networks. arXiv preprint arXiv:1610.05868.

[Battaglia et al., 2018] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,

Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive

biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[Bell and Sejnowski, 1995] Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural computation, 7(6):1129–1159.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.

[Bennett, 1983] Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in

medicine, 2(2):273–277.

[Blaschke et al., 2007] Blaschke, T., Zito, T., and Wiskott, L. (2007). Independent slow feature analysis

and nonlinear blind source separation. Neural computation, 19(4):994–1021.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review

for statisticians. Journal of the American Statistical Association, 112(518):859–877.

[Bonald et al., 2018] Bonald, T., Hollocou, A., and Lelarge, M. (2018). Weighted spectral embedding of

graphs. In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton),

pages 494–501. IEEE.

[Borgwardt and Kriegel, 2005] Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs.

In Data Mining, Fifth IEEE International Conference on, pages 8–pp. IEEE.

[Bostrom and Bagnall, 2017] Bostrom, A. and Bagnall, A. (2017). A shapelet transform for multivariate

time series classification. arXiv preprint arXiv:1712.06428.

[Bowman et al., 2016] Bowman, S., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., and Bengio, S. (2016).

Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference on Com-

putational Natural Language Learning, pages 10–21.

130

References

[Brouwer and Haemers, 2011] Brouwer, A. E. and Haemers, W. H. (2011). Spectra of graphs. Springer

Science & Business Media.

[Bruna et al., 2013] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and

locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

[Cai et al., 2018] Cai, H., Zheng, V. W., and Chang, K. (2018). A comprehensive survey of graph embedding:

problems, techniques and applications. IEEE Transactions on Knowledge and Data Engineering.

[Cao et al., 2019] Cao, S., Wang, X., and Kitani, K. M. (2019). Learnable embedding space for efficient

neural architecture compression. arXiv preprint arXiv:1902.00383.

[Cardoso, 1999] Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural

computation, 11(1):157–192.

[Carreira-Perpinan and Hinton, 2005] Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive

divergence learning. In Aistats, volume 10, pages 33–40. Citeseer.

[Casals et al., 2018] Casals, J., Garcia-Hiernaux, A., Jerez, M., Sotoca, S., and Trindade, A. A. (2018).

State-space methods for time series analysis: theory, applications and software. Chapman and Hall/CRC.

[Cawley and Talbot, 2010] Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and

subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11(Jul):2079–

2107.

[Chakrabarti et al., 2002] Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. (2002). Locally adap-

tive dimensionality reduction for indexing large time series databases. ACM Transactions on Database

Systems (TODS), 27(2):188–228.

[Chan and Fu, 1999] Chan, K.-P. and Fu, A. W.-C. (1999). Efficient time series matching by wavelets. In

Proceedings 15th International Conference on Data Engineering (Cat. No. 99CB36337), pages 126–133.

IEEE.

[Chechik et al., 2010] Chechik, G., Sharma, V., Shalit, U., and Bengio, S. (2010). Large scale online learning

of image similarity through ranking. Journal of Machine Learning Research, 11(Mar):1109–1135.

[Chen, 2006] Chen, A. (2006). Fast kernel density independent component analysis. In International Con-

ference on Independent Component Analysis and Signal Separation, pages 24–31. Springer.

[Chen et al., 2020] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for

contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.

[Cho et al., 2014a] Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the properties

of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop

on Syntax, Semantics and Structure in Statistical Translation, pages 103–111.

[Cho et al., 2014b] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014b). Learning phrase representations using rnn encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078.

131

REFERENCES

[Chouakria-Douzal, 2003] Chouakria-Douzal, A. (2003). Compression technique preserving correlations of a

multivariate temporal sequence. In International symposium on intelligent data analysis, pages 566–577.

Springer.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

[Cohen et al., 2007] Cohen, P., Adams, N., and Heeringa, B. (2007). Voting experts: An unsupervised

algorithm for segmenting sequences. Intelligent Data Analysis, 11(6):607–625.

[Cox, 1972] Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society:

Series B (Methodological), 34(2):187–202.

[Csáji et al., 2001] Csáji, B. C. et al. (2001). Approximation with artificial neural networks. Faculty of

Sciences, Etvs Lornd University, Hungary, 24(48):7.

[Davis et al., 2016] Davis, R. A., Zang, P., and Zheng, T. (2016). Sparse vector autoregressive modeling.

Journal of Computational and Graphical Statistics, 25(4):1077–1096.

[de Lara and Pineau, 2018] de Lara, N. and Pineau, E. (2018). A simple baseline algorithm for graph

classification. Relational Representation Learning Workshops (NIPS 2018).

[Defferrard et al., 2016] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing

Systems, pages 3844–3852.

[Diks and Panchenko, 2006] Diks, C. and Panchenko, V. (2006). A new statistic and practical guidelines

for nonparametric granger causality testing. Journal of Economic Dynamics and Control, 30(9-10):1647–

1669.

[Dinh et al., 2014] Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent components

estimation. arXiv preprint arXiv:1410.8516.

[Dinh et al., 2016] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real nvp.

arXiv preprint arXiv:1605.08803.

[Duvenaud et al., 2015] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-

Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints.

In Advances in neural information processing systems, pages 2224–2232.

[Dyer, 2014] Dyer, C. (2014). Notes on noise contrastive estimation and negative sampling. arXiv preprint

arXiv:1410.8251.

[Eichler, 2001] Eichler, M. (2001). Granger causality graphs for multivariate time series.

[Eichler and Didelez, 2012] Eichler, M. and Didelez, V. (2012). Causal reasoning in graphical time series

models. arXiv preprint arXiv:1206.5246.

132

References

[Elsken et al., 2019] Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey.

Journal of Machine Learning Research, 20:1–21.

[Erdős and Rényi, 1959] Erdős, P. and Rényi, A. (1959). On random graphs i. Publ. Math. Debrecen,

6:290–297.

[Esling and Agon, 2012] Esling, P. and Agon, C. (2012). Time-series data mining. ACM Computing Surveys

(CSUR), 45(1):12.

[Esmael et al., 2012] Esmael, B., Arnaout, A., Fruhwirth, R. K., and Thonhauser, G. (2012). Multivariate

time series classification by combining trend-based and value-based approximations. In International

Conference on Computational Science and Its Applications, pages 392–403. Springer.

[Fabius and van Amersfoort, 2014] Fabius, O. and van Amersfoort, J. R. (2014). Variational recurrent auto-

encoders. arXiv preprint arXiv:1412.6581.

[Fabrigar and Wegener, 2011] Fabrigar, L. R. and Wegener, D. T. (2011). Exploratory factor analysis.

Oxford University Press.

[Faloutsos et al., 1994] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. (1994). Fast subsequence

matching in time-series databases. Acm Sigmod Record, 23(2):419–429.

[Fernando et al., 2015] Fernando, B., Gavves, E., Oramas, J. M., Ghodrati, A., and Tuytelaars, T. (2015).

Modeling video evolution for action recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5378–5387.

[Fortuin et al., 2018] Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., and Rätsch, G. (2018). Som-

vae: Interpretable discrete representation learning on time series.

[Fotso et al., 19] Fotso, S. et al. (2019–). PySurvival: Open source package for survival analysis modeling.

[Fraccaro, 2018] Fraccaro, M. (2018). Deep latent variable models for sequential data.

[Franceschi et al., 2019] Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. (2019). Unsupervised scalable

representation learning for multivariate time series. arXiv preprint arXiv:1901.10738.

[Fujisawa and Eguchi, 2008] Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small

bias against heavy contamination. Journal of Multivariate Analysis, 99(9):2053–2081.

[Gao et al., 2019] Gao, R., Nijkamp, E., Kingma, D. P., Xu, Z., Dai, A. M., and Wu, Y. N. (2019). Flow

contrastive estimation of energy-based models. arXiv preprint arXiv:1912.00589.

[Ge and Smyth, 2000] Ge, X. and Smyth, P. (2000). Deformable markov model templates for time-series

pattern matching. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 81–90.

[Gershgorin, 1931] Gershgorin, S. A. (1931). Uber die abgrenzung der eigenwerte einer matrix. (6):749–754.

[Geyer, 1992] Geyer, C. J. (1992). Practical markov chain monte carlo. Statistical science, pages 473–483.

133

REFERENCES

[Ghahramani and Hinton, 1996] Ghahramani, Z. and Hinton, G. E. (1996). Parameter estimation for linear

dynamical systems. Technical report, Technical Report CRG-TR-96-2, University of Totronto, Dept. of

Computer Science.

[Ghosh et al., 2017] Ghosh, A., Kumar, H., and Sastry, P. (2017). Robust loss functions under label noise

for deep neural networks. In Thirty-First AAAI Conference on Artificial Intelligence.

[Ghosh et al., 2019] Ghosh, P., Sajjadi, M. S., Vergari, A., Black, M., and Schölkopf, B. (2019). From

variational to deterministic autoencoders. arXiv preprint arXiv:1903.12436.

[Gidaris et al., 2019] Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., and Cord, M. (2019). Boosting

few-shot visual learning with self-supervision. In Proceedings of the IEEE International Conference on

Computer Vision, pages 8059–8068.

[Goh, 2001] Goh, C. (2001). Econ 2 0a: Sufficiency, minimal sufficiency and the exponential family of

distributions.

[Goldsmith, 2012] Goldsmith, F. B. (2012). Monitoring for conservation and ecology, volume 3. Springer

Science & Business Media.

[Gómez and Delvenne,] Gómez, L. G. and Delvenne, J.-C. Dynamics based features for graph classification.

In Benelearn 2017: Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning, Technische

Universiteit Eindhoven, 9-10 June 2017, page 131.

[Gong et al., 2015] Gong, M., Zhang, K., Schoelkopf, B., Tao, D., and Geiger, P. (2015). Discovering

temporal causal relations from subsampled data. In International Conference on Machine Learning,

pages 1898–1906.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680.

[Granger, 1969] Granger, C. W. (1969). Investigating causal relations by econometric models and cross-

spectral methods. Econometrica: Journal of the Econometric Society, pages 424–438.

[Grathwohl et al., 2019] Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Norouzi, M., and

Swersky, K. (2019). Your classifier is secretly an energy based model and you should treat it like one.

International Conference on Learning Representation.

[Grauman and Darrell, 2007] Grauman, K. and Darrell, T. (2007). The pyramid match kernel: Efficient

learning with sets of features. Journal of Machine Learning Research, 8(Apr):725–760.

[Gray, 2007] Gray, K. L. (2007). Comparison of trend detection methods.

[Gretton et al., 2005] Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B. (2005). Kernel

methods for measuring independence. Journal of Machine Learning Research, 6(Dec):2075–2129.

134

References

[Grohe et al., 2018] Grohe, M., Rattan, G., and Woeginger, G. J. (2018). Graph similarity and approxi-

mate isomorphism. In 43rd International Symposium on Mathematical Foundations of Computer Science

(MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Gutmann and Hyvärinen, 2010] Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A

new estimation principle for unnormalized statistical models. In Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics, pages 297–304.

[Gutmann et al., 2018] Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2018). Likelihood-free

inference via classification. Statistics and Computing, 28(2):411–425.

[Hadsell et al., 2006] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning

an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE.

[Haemers, 2016] Haemers, W. H. (2016). Are almost all graphs determined by their spectrum. Not. S. Afr.

Math. Soc, 47:42–45.

[Halko et al., 2011] Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with ran-

domness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,

53(2):217–288.

[Hamilton et al., 2017] Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems, pages 1024–1034.

[Harrell Jr et al., 1996] Harrell Jr, F. E., Lee, K. L., and Mark, D. B. (1996). Multivariable prognostic

models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing

errors. Statistics in medicine, 15(4):361–387.

[Hastings, 1970] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their

applications.

[Haufe et al., 2010] Haufe, S., Müller, K.-R., Nolte, G., and Krämer, N. (2010). Sparse causal discovery in

multivariate time series. In Causality: Objectives and Assessment, pages 97–106.

[Hinton, 2002] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8):1771–1800.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimension-

ality of data with neural networks. science, 313(5786):504–507.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Neural computation, 9(8):1735–1780.

[Hollocou et al., 2018] Hollocou, A., Bonald, T., and Lelarge, M. (2018). Multiple local community detec-

tion. ACM SIGMETRICS Performance Evaluation Review, 45(3):76–83.

[Hu and Liang, 2014] Hu, M. and Liang, H. (2014). A copula approach to assessing granger causality.

NeuroImage, 100:125–134.

135

REFERENCES

[Huang et al., 1998] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C.,

Tung, C. C., and Liu, H. H. (1998). The empirical mode decomposition and the hilbert spectrum for

nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:

mathematical, physical and engineering sciences, 454(1971):903–995.

[Hyvärinen, 1997] Hyvärinen, A. (1997). Independent component analysis by minimization of mutual infor-

mation. Helsinki University of Technology Helsinki.

[Hyvärinen et al., 2001] Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Methods using time structure.

Independent Component Analysis, John Wiley & Sons, Inc, pages 341–354.

[Hyvarinen and Morioka, 2016] Hyvarinen, A. and Morioka, H. (2016). Unsupervised feature extraction by

time-contrastive learning and nonlinear ica. In Advances in Neural Information Processing Systems, pages

3765–3773.

[Hyvarinen and Morioka, 2017] Hyvarinen, A. and Morioka, H. (2017). Nonlinear ica of temporally depen-

dent stationary sources. Proceedings of Machine Learning Research.

[Hyvärinen and Oja, 2000] Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms

and applications. Neural networks, 13(4-5):411–430.

[Hyvärinen and Pajunen, 1999] Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component

analysis: Existence and uniqueness results. Neural Networks, 12(3):429–439.

[Hyvarinen et al., 2018] Hyvarinen, A., Sasaki, H., and Turner, R. E. (2018). Nonlinear ica using auxiliary

variables and generalized contrastive learning. arXiv preprint arXiv:1805.08651.

[Ienco and Interdonato, 2020] Ienco, D. and Interdonato, R. (2020). Deep multivariate time series embed-

ding clustering via attentive-gated autoencoder. In Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 318–329. Springer.

[Ishwaran et al., 2008] Ishwaran, H., Kogalur, U. B., Blackstone, E. H., Lauer, M. S., et al. (2008). Random

survival forests. The annals of applied statistics, 2(3):841–860.

[Jacob et al., 2009] Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph

lasso. In Proceedings of the 26th annual international conference on machine learning, pages 433–440.

[Jang et al., 2016] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-

softmax. arXiv preprint arXiv:1611.01144.

[Jing et al., 2019] Jing, B., Zhang, T., Wang, Z., Jin, Y., Liu, K., Qiu, W., Ke, L., Sun, Y., He, C., Hou,

D., et al. (2019). A deep survival analysis method based on ranking. Artificial intelligence in medicine,

98:1–9.

[Jutten and Karhunen, 2003] Jutten, C. and Karhunen, J. (2003). Advances in nonlinear blind source sep-

aration. In Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation

(ICA2003), pages 245–256.

136

References

[Kalderstam et al., 2013] Kalderstam, J., Edén, P., Bendahl, P.-O., Strand, C., Fernö, M., and Ohlsson,

M. (2013). Training artificial neural networks directly on the concordance index for censored data using

genetic algorithms. Artificial intelligence in medicine, 58(2):125–132.

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

[Katzman et al., 2018] Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., and Kluger, Y.

(2018). Deepsurv: personalized treatment recommender system using a cox proportional hazards deep

neural network. BMC medical research methodology, 18(1):24.

[Keogh et al., 2001] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001). Dimensionality

reduction for fast similarity search in large time series databases. Knowledge and information Systems,

3(3):263–286.

[Keogh et al., 2005] Keogh, E., Lin, J., and Fu, A. (2005). Hot sax: Efficiently finding the most unusual

time series subsequence. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages 8–pp.

Ieee.

[Kersting et al., 2016] Kersting, K., Kriege, N. M., Morris, C., Mutzel, P., and Neumann, M. (2016). Bench-

mark data sets for graph kernels. http://graphkernels.cs.tu-dortmund.de.

[Khemakhem et al., 2019] Khemakhem, I., Kingma, D. P., and Hyvärinen, A. (2019). Variational autoen-

coders and nonlinear ica: A unifying framework. arXiv preprint arXiv:1907.04809.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[Kingma et al., 2014] Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised

learning with deep generative models. In Advances in Neural Information Processing Systems, pages 3581–

3589.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114.

[Kipf et al., 2018] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural relational

inference for interacting systems. arXiv preprint arXiv:1802.04687.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907.

[Kohonen, 1982] Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Bio-

logical cybernetics, 43(1):59–69.

[Kondor and Borgwardt, 2008] Kondor, R. and Borgwardt, K. M. (2008). The skew spectrum of graphs. In

Proceedings of the 25th international conference on Machine learning, pages 496–503. ACM.

[Kondor et al., 2009] Kondor, R., Shervashidze, N., and Borgwardt, K. M. (2009). The graphlet spectrum.

In Proceedings of the 26th Annual International Conference on Machine Learning, pages 529–536. ACM.

137

http://graphkernels.cs.tu-dortmund.de

REFERENCES

[Körner, 1989] Körner, T. W. (1989). Fourier analysis. Cambridge university press.

[Krishnan et al., 2017] Krishnan, R. G., Shalit, U., and Sontag, D. (2017). Structured inference networks

for nonlinear state space models. In Thirty-first aaai conference on artificial intelligence.

[Kuehne et al., 2018] Kuehne, H., Richard, A., and Gall, J. (2018). A hybrid rnn-hmm approach for weakly

supervised temporal action segmentation. IEEE transactions on pattern analysis and machine intelligence.

[Lang et al., 2018] Lang, X., Zheng, Q., Zhang, Z., Lu, S., Xie, L., Horch, A., and Su, H. (2018). Fast

multivariate empirical mode decomposition. IEEE Access, 6:65521–65538.

[Latif et al., 2017] Latif, S., Rana, R., Qadir, J., and Epps, J. (2017). Variational autoencoders for learning

latent representations of speech emotion. arXiv preprint arXiv:1712.08708.

[LeCun et al., 1989] LeCun, Y. et al. (1989). Generalization and network design strategies. In Connection-

ism in perspective, volume 19. Citeseer.

[Lei et al., 2017] Lei, Q., Yi, J., Vaculin, R., Wu, L., and Dhillon, I. S. (2017). Similarity preserving

representation learning for time series analysis. arXiv preprint arXiv:1702.03584.

[Lelarge, 2018] Lelarge, M. (2018). Community detection with the triplet loss.

[Li et al., 2015] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2015). Gated graph sequence neural

networks. arXiv preprint arXiv:1511.05493.

[Li et al., 2018] Li, Z., He, D., Tian, F., Chen, W., Qin, T., Wang, L., and Liu, T.-Y. (2018). Towards

binary-valued gates for robust lstm training. arXiv preprint arXiv:1806.02988.

[Lin et al., 2007] Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing sax: a novel symbolic

representation of time series. Data Mining and knowledge discovery, 15(2):107–144.

[Lin and Li, 2009] Lin, J. and Li, Y. (2009). Finding structural similarity in time series data using bag-of-

patterns representation. In International conference on scientific and statistical database management,

pages 461–477. Springer.

[Linsker, 1989] Linsker, R. (1989). An application of the principle of maximum information preservation to

linear systems. In Advances in neural information processing systems, pages 186–194.

[Louizos et al., 2017] Louizos, C., Welling, M., and Kingma, D. P. (2017). Learning sparse neural networks

through l_0 regularization. arXiv preprint arXiv:1712.01312.

[Lozano et al., 2009] Lozano, A. C., Abe, N., Liu, Y., and Rosset, S. (2009). Grouped graphical granger

modeling for gene expression regulatory networks discovery. Bioinformatics, 25(12):i110–i118.

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural

networks: A view from the width. In Advances in neural information processing systems, pages 6231–6239.

[Luzhnica et al., 2019] Luzhnica, E., Day, B., and Lio, P. (2019). Clique pooling for graph classification.

arXiv preprint arXiv:1904.00374.

138

References

[Ma et al., 2019] Ma, R., Miao, J., Niu, L., and Zhang, P. (2019). Transformed l1 regularization for learning

sparse deep neural networks. arXiv preprint arXiv:1901.01021.

[MacKay, 1996] MacKay, D. J. (1996). Maximum likelihood and covariant algorithms for independent

component analysis. Technical report, Citeseer.

[Maddison et al., 2016] Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A

continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712.

[Makhzani et al., 2015] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial

autoencoders. arXiv preprint arXiv:1511.05644.

[Malhotra et al., 2017] Malhotra, P., TV, V., Vig, L., Agarwal, P., and Shroff, G. (2017). Timenet: Pre-

trained deep recurrent neural network for time series classification. arXiv preprint arXiv:1706.08838.

[Maron et al., 2019] Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019). Provably powerful

graph networks. In Advances in Neural Information Processing Systems, pages 2156–2167.

[Maron et al., 2018] Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2018). Invariant and equiv-

ariant graph networks. arXiv preprint arXiv:1812.09902.

[McGovern et al., 2011] McGovern, A., Rosendahl, D. H., Brown, R. A., and Droegemeier, K. K. (2011).

Identifying predictive multi-dimensional time series motifs: an application to severe weather prediction.

Data Mining and Knowledge Discovery, 22(1-2):232–258.

[Merity et al., 2017] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and optimizing lstm

language models. arXiv preprint arXiv:1708.02182.

[Merris, 1994] Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear algebra and its applications,

197:143–176.

[Mhamdi et al., 2010] Mhamdi, F., Poggi, J., and Jaidane, M. (2010). Empirical mode decomposition for

trend extraction: application to electrical data. In 19th International Conference on Computational

Statistics.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in neural information

processing systems, pages 3111–3119.

[Misra et al., 2016] Misra, I., Zitnick, C. L., and Hebert, M. (2016). Shuffle and learn: unsupervised learning

using temporal order verification. In European Conference on Computer Vision, pages 527–544. Springer.

[Monti et al., 2017] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.

(2017). Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124.

[Muthén et al., 2015] Muthén, B., Muthén, L., and Asparouhov, T. (2015). Random coefficient regression.

139

REFERENCES

[Nanni et al., 2017] Nanni, L., Ghidoni, S., and Brahnam, S. (2017). Handcrafted vs. non-handcrafted

features for computer vision classification. Pattern Recognition, 71:158–172.

[Newman, 2013] Newman, M. E. (2013). Spectral methods for community detection and graph partitioning.

Physical Review E, 88(4):042822.

[Neyshabur et al., 2017] Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring

generalization in deep learning. In Advances in neural information processing systems, pages 5947–5956.

[Ng et al., 2011] Ng, A. et al. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19.

[Ng and Jordan, 2002] Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. In Advances in neural information processing systems,

pages 841–848.

[Niepert et al., 2016] Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning convolutional neural

networks for graphs. In International conference on machine learning, pages 2014–2023.

[Nikolentzos et al., 2017] Nikolentzos, G., Meladianos, P., and Vazirgiannis, M. (2017). Matching node

embeddings for graph similarity. In AAAI, pages 2429–2435.

[Ordonez et al., 2011] Ordonez, P., Armstrong, T., Oates, T., and Fackler, J. (2011). Using modified mul-

tivariate bag-of-words models to classify physiological data. In 2011 IEEE 11th International Conference

on Data Mining Workshops, pages 534–539. IEEE.

[Papamakarios et al., 2019] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Laksh-

minarayanan, B. (2019). Normalizing flows for probabilistic modeling and inference. arXiv preprint

arXiv:1912.02762.

[Parikh et al., 2014] Parikh, N., Boyd, S., et al. (2014). Proximal algorithms. Foundations and Trends R© in

Optimization, 1(3):127–239.

[Paszke et al., 2017] Paszke, A., Gross, S., Chintala, S., and Chanan, G. (2017). Pytorch.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,

A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative

style, high-performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché

Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc.

[Pearl et al., 2009] Pearl, J. et al. (2009). Causal inference in statistics: An overview. Statistics surveys,

3:96–146.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in

python. Journal of machine learning research, 12(Oct):2825–2830.

140

References

[Peters et al., 2017] Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal Inference: Foun-

dations and Learning Algorithms. MIT Press, Cambridge, MA, USA.

[Pineau, 2019] Pineau, E. (2019). Using laplacian spectrum as graph feature representation. arXiv preprint

arXiv:1912.00735.

[Pineau and de Lara, 2019] Pineau, E. and de Lara, N. (2019). Variational recurrent neural networks for

graph classification. In Representation Learning on Graphs and Manifolds Workshop.

[Pineau and Lelarge, 2018] Pineau, E. and Lelarge, M. (2018). Infocatvae: Representation learning with

categorical variational autoencoders. arXiv preprint arXiv:1806.08240.

[Pineau et al., 2019] Pineau, E., Razakarivony, S., and Bonald, T. (2019). Seq2var: multivariate time series

representation with relational neural networks and linear autoregressive model. In International Workshop

on Advanced Analysis and Learning on Temporal Data, pages 126–140. Springer.

[Pineau et al., 2020a] Pineau, E., Razakarivony, S., and Bonald, T. (2020a). Time series source separation

with slow flows. Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models Workshop

(ICML 2020).

[Pineau et al., 2020b] Pineau, E., Razakarivony, S., and Bonald, T. (2020b). Unsupervised ageing detection

of mechanical systems on a causality graph. In 2020 19th IEEE International Conference On Machine

Learning And Applications (ICMLA). IEEE.

[Plaut, 2018] Plaut, E. (2018). From principal subspaces to principal components with linear autoencoders.

arXiv preprint arXiv:1804.10253.

[Polson et al., 2015] Polson, N. G., Scott, J. G., Willard, B. T., et al. (2015). Proximal algorithms in

statistics and machine learning. Statistical Science, 30(4):559–581.

[Prado et al., 2006] Prado, R., Molina, F., and Huerta, G. (2006). Multivariate time series modeling and

classification via hierarchical var mixtures. Computational statistics & data analysis, 51(3):1445–1462.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286.

[Raiffa and Schlaifer, 1961] Raiffa, H. and Schlaifer, R. (1961). Applied statistical decision theory.

[Rameshkumar et al., 2013] Rameshkumar, A., Palanikumar, R., and Deepa, S. (2013). Laplacian matrix

in algebraic graph theory. Journal Impact Factor, pages 0–489.

[Rao et al., 2009] Rao, C., Ray, A., Sarkar, S., and Yasar, M. (2009). Review and comparative evaluation

of symbolic dynamic filtering for detection of anomaly patterns. Signal, Image and Video Processing,

3(2):101–114.

[Rezende and Mohamed, 2015] Rezende, D. J. and Mohamed, S. (2015). Variational inference with normal-

izing flows. arXiv preprint arXiv:1505.05770.

141

REFERENCES

[Rifai et al., 2011] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-

encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International Confer-

ence on International Conference on Machine Learning, pages 833–840. Omnipress.

[Robert and Casella, 2013] Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer

Science & Business Media.

[Romeu et al., 2015] Romeu, P., Zamora-Martínez, F., Botella-Rocamora, P., and Pardo, J. (2015). Stacked

denoising auto-encoders for short-term time series forecasting. In Artificial Neural Networks, pages 463–

486. Springer.

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a

metric for image retrieval. International journal of computer vision, 40(2):99–121.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536.

[Sabour et al., 2017] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules.

In Advances in neural information processing systems, pages 3856–3866.

[Sak et al., 2014] Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory recurrent neural

network architectures for large scale acoustic modeling. In Fifteenth annual conference of the international

speech communication association.

[Sanh et al., 2018] Sanh, V., Wolf, T., and Ruder, S. (2018). A hierarchical multi-task approach for learning

embeddings from semantic tasks. arXiv preprint arXiv:1811.06031.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P.,

and Lillicrap, T. (2017). A simple neural network module for relational reasoning. In Advances in neural

information processing systems, pages 4967–4976.

[Sasaki et al., 2019] Sasaki, H., Takenouchi, T., Monti, R., and Hyvärinen, A. (2019). Robust contrastive

learning and nonlinear ica in the presence of outliers. arXiv preprint arXiv:1911.00265.

[Saunshi et al., 2019] Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., and Khandeparkar, H. (2019). A

theoretical analysis of contrastive unsupervised representation learning. In International Conference on

Machine Learning, pages 5628–5637.

[Saxena and Goebel, 2008] Saxena, A. and Goebel, K. (2008). Turbofan engine degradation simulation data

set. NASA Ames Prognostics Data Repository.

[Scarselli et al., 2009] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.

[Schumacher et al., 1994] Schumacher, M., Bastert, G., Bojar, H., Huebner, K., Olschewski, M., Sauerbrei,

W., Schmoor, C., Beyerle, C., Neumann, R., and Rauschecker, H. (1994). Randomized 2 x 2 trial

evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients.

german breast cancer study group. Journal of Clinical Oncology, 12(10):2086–2093.

142

References

[Schwenk, 1973] Schwenk, A. (1973). Almost all trees are cospectral. Harary, F., Ed. New Directions in the

Theory of Graphs, pages 275–307.

[Seabold and Perktold, 2010] Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical

modeling with python. In Proceedings of the 9th Python in Science Conference, volume 57, page 61. Scipy.

[Sermanet et al., 2018] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S.,

and Brain, G. (2018). Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 1134–1141. IEEE.

[Shawe-Taylor et al., 2004] Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern

analysis. Cambridge university press.

[Shen et al., 2007] Shen, H., Jegelka, S., and Gretton, A. (2007). Fast kernel ica using an approximate

newton method. In Artificial Intelligence and Statistics, pages 476–483.

[Shervashidze and Borgwardt, 2009] Shervashidze, N. and Borgwardt, K. (2009). Fast subtree kernels on

graphs. In Advances in neural information processing systems, pages 1660–1668.

[Shervashidze et al., 2011] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v., Mehlhorn, K., and Borg-

wardt, K. M. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,

12(Sep):2539–2561.

[Shervashidze et al., 2009] Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., and Borgwardt, K.

(2009). Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics,

pages 488–495.

[Shi et al., 2019] Shi, L., Zhang, Y., Cheng, J., and Lu, H. (2019). Two-stream adaptive graph convolutional

networks for skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 12026–12035.

[Shuman et al., 2013] Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2013).

The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks

and other irregular domains. IEEE signal processing magazine, 30(3):83–98.

[Shuman et al., 2016] Shuman, D. I., Ricaud, B., and Vandergheynst, P. (2016). Vertex-frequency analysis

on graphs. Applied and Computational Harmonic Analysis, 40(2):260–291.

[Smith et al., 1962] Smith, G. L., Schmidt, S. F., and McGee, L. A. (1962). Application of statistical

filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. National

Aeronautics and Space Administration.

[Solo, 2008] Solo, V. (2008). On causality and mutual information. In 2008 47th IEEE Conference on

Decision and Control, pages 4939–4944. IEEE.

[Sorrenson et al., 2020] Sorrenson, P., Rother, C., and Köthe, U. (2020). Disentanglement by nonlinear ica

with general incompressible-flow networks (gin). International Conference on Learning Representation.

143

REFERENCES

[Sperduti and Starita, 1997] Sperduti, A. and Starita, A. (1997). Supervised neural networks for the clas-

sification of structures. IEEE Transactions on Neural Networks, 8(3):714–735.

[Sprekeler et al., 2014] Sprekeler, H., Zito, T., and Wiskott, L. (2014). An extension of slow feature analysis

for nonlinear blind source separation. The Journal of Machine Learning Research, 15(1):921–947.

[Steck et al., 2008] Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P., and Raykar, V. C. (2008).

On ranking in survival analysis: Bounds on the concordance index. In Advances in neural information

processing systems, pages 1209–1216.

[Stögbauer et al., 2004] Stögbauer, H., Kraskov, A., Astakhov, S. A., and Grassberger, P. (2004). Least-

dependent-component analysis based on mutual information. Physical Review E, 70(6):066123.

[Taleb and Jutten, 1999] Taleb, A. and Jutten, C. (1999). Source separation in post-nonlinear mixtures.

IEEE Transactions on signal Processing, 47(10):2807–2820.

[Tank et al., 2018] Tank, A., Covert, I., Foti, N., Shojaie, A., and Fox, E. (2018). Neural granger causality

for nonlinear time series. arXiv preprint arXiv:1802.05842.

[Therneau and Grambsch, 2000] Therneau, T. M. and Grambsch, P. M. (2000). The cox model. In Modeling

survival data: extending the Cox model, pages 39–77. Springer.

[Thomas, 1996] Thomas, L. (1996). Monitoring long-term population change: why are there so many

analysis methods? Ecology, 77(1):49–58.

[Thomas et al., 2016] Thomas, O., Dutta, R., Corander, J., Kaski, S., and Gutmann, M. U. (2016).

Likelihood-free inference by ratio estimation. arXiv preprint arXiv:1611.10242.

[Tipping and Bishop, 1999] Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component

analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622.

[Tishby et al., 2000] Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck method.

arXiv preprint physics/0004057.

[Toda and Phillips, 1994] Toda, H. Y. and Phillips, P. C. (1994). Vector autoregression and causality: a

theoretical overview and simulation study. Econometric reviews, 13(2):259–285.

[Tomczak and Welling, 2018] Tomczak, J. M. and Welling, M. (2018). Vae with a vampprior. In 21st

International Conference on Artificial Intelligence and Statistics, AISTATS 2018.

[Tong et al., 1991] Tong, L., Liu, R.-W., Soon, V. C., and Huang, Y.-F. (1991). Indeterminacy and identi-

fiability of blind identification. IEEE Transactions on circuits and systems, 38(5):499–509.

[Tschannen et al., 2018] Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent advances in autoencoder-

based representation learning. arXiv preprint arXiv:1812.05069.

[Turner and Sahani, 2007] Turner, R. and Sahani, M. (2007). A maximum-likelihood interpretation for slow

feature analysis. Neural computation, 19(4):1022–1038.

144

References

[Uthayakumar et al., 2018] Uthayakumar, J., Vengattaraman, T., and Dhavachelvan, P. (2018). A survey

on data compression techniques: From the perspective of data quality, coding schemes, data type and

applications. Journal of King Saud University-Computer and Information Sciences.

[Vahdat and Kautz, 2020] Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational autoen-

coder. arXiv preprint arXiv:2007.03898.

[van den Oord et al., 2017] van den Oord, A., Vinyals, O., et al. (2017). Neural discrete representation

learning. In Advances in Neural Information Processing Systems, pages 6306–6315.

[Van Der Malsburg, 1986] Van Der Malsburg, C. (1986). Frank rosenblatt: principles of neurodynamics:

perceptrons and the theory of brain mechanisms. In Brain theory, pages 245–248. Springer.

[Verma and Zhang, 2017] Verma, S. and Zhang, Z.-L. (2017). Hunt for the unique, stable, sparse and fast

feature learning on graphs. In Advances in Neural Information Processing Systems, pages 88–98.

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.

Journal of machine learning research, 11(Dec):3371–3408.

[Vishwanathan et al., 2010] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M.

(2010). Graph kernels. Journal of Machine Learning Research, 11(Apr):1201–1242.

[Wang et al., 2019] Wang, H., Pang, G., Shen, C., and Ma, C. (2019). Unsupervised representation learning

by predicting random distances. arXiv preprint arXiv:1912.12186.

[Wang and Gupta, 2015] Wang, X. and Gupta, A. (2015). Unsupervised learning of visual representations

using videos. In Proceedings of the IEEE International Conference on Computer Vision, pages 2794–2802.

[Wei et al., 2017] Wei, X., Xu, L., Cao, B., and Yu, P. S. (2017). Cross view link prediction by learning

noise-resilient representation consensus. In Proceedings of the 26th International Conference on World

Wide Web, pages 1611–1619.

[Weisfeiler and Lehman, 1968] Weisfeiler, B. and Lehman, A. A. (1968). A reduction of a graph to a canon-

ical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16.

[Weng, 2018] Weng, L. (2018). Meta-learning: Learning to learn fast. lilianweng.github.io/lil-log.

[Weng, 2019] Weng, L. (2019). Self-supervised representation learning. lilianweng.github.io/lil-log.

[Williams and Seeger, 2001] Williams, C. K. and Seeger, M. (2001). Using the nyström method to speed up

kernel machines. In Advances in neural information processing systems, pages 682–688.

[Wilson and Zhu, 2008] Wilson, R. C. and Zhu, P. (2008). A study of graph spectra for comparing graphs

and trees. Pattern Recognition, 41(9):2833–2841.

[Wiskott and Sejnowski, 2002] Wiskott, L. and Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised

learning of invariances. Neural computation, 14(4):715–770.

145

REFERENCES

[Wu et al., 2007] Wu, Z., Huang, N. E., Long, S. R., and Peng, C.-K. (2007). On the trend, detrending, and

variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences,

104(38):14889–14894.

[Wu et al., 2020] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.

[Xinyi and Chen, 2018] Xinyi, Z. and Chen, L. (2018). Capsule graph neural network. International Con-

ference on Learning Representations.

[Xiong and Zhou, 2013] Xiong, J. and Zhou, T. (2013). A kalman-filter based approach to identification of

time-varying gene regulatory networks. PloS one, 8(10).

[Xiong and Yeung, 2002] Xiong, Y. and Yeung, D.-Y. (2002). Mixtures of arma models for model-based

time series clustering. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages

717–720. IEEE.

[Xu and Tian, 2015] Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals

of Data Science, 2(2):165–193.

[Xu et al., 2015] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio,

Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In International

conference on machine learning, pages 2048–2057.

[Xu et al., 2018] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural

networks? arXiv preprint arXiv:1810.00826.

[Xu et al., 2017] Xu, W., Sun, H., Deng, C., and Tan, Y. (2017). Variational autoencoder for semi-supervised

text classification. In AAAI, pages 3358–3364.

[Yao et al., 2016] Yao, Q., Kwok, J. T., Gao, F., Chen, W., and Liu, T.-Y. (2016). Efficient inexact proximal

gradient algorithm for nonconvex problems. arXiv preprint arXiv:1612.09069.

[Yazdi et al., 2018] Yazdi, S. V., Douzal-Chouakria, A., Gallinari, P., and Moussallam, M. (2018). Time

warp invariant dictionary learning for time series clustering: application to music data stream analysis.

In Joint european conference on machine learning and knowledge discovery in databases, pages 356–372.

Springer.

[Ye and Keogh, 2009] Ye, L. and Keogh, E. (2009). Time series shapelets: a new primitive for data mining.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 947–956.

[Ying et al., 2018] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018). Hier-

archical graph representation learning with differentiable pooling. In Advances in Neural Information

Processing Systems, pages 4800–4810.

146

References

[You et al., 2018] You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec, J. (2018). Graphrnn: Generating

realistic graphs with deep auto-regressive models. In International Conference on Machine Learning, pages

5694–5703.

[Yu et al., 2011] Yu, C.-N., Greiner, R., Lin, H.-C., and Baracos, V. (2011). Learning patient-specific cancer

survival distributions as a sequence of dependent regressors. In Advances in Neural Information Processing

Systems, pages 1845–1853.

[Yuan and Zhang, 2013] Yuan, X.-T. and Zhang, T. (2013). Truncated power method for sparse eigenvalue

problems. Journal of Machine Learning Research, 14(Apr):899–925.

[Zaremba et al., 2014] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regu-

larization. arXiv preprint arXiv:1409.2329.

[Zhang et al., 2016] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding

deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

[Zhang et al., 2018] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). An end-to-end deep learning

architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence.

[Zhao et al., 2017] Zhao, S., Song, J., and Ermon, S. (2017). Infovae: Information maximizing variational

autoencoders. arXiv preprint arXiv:1706.02262.

[Zhou et al., 2017] Zhou, C., Liu, Y., Liu, X., Liu, Z., and Gao, J. (2017). Scalable graph embedding for

asymmetric proximity. In Thirty-First AAAI Conference on Artificial Intelligence.

[Zhu et al., 2007] Zhu, Y., Wu, D., and Li, S. (2007). A piecewise linear representation method of time series

based on feature points. In International Conference on Knowledge-based and Intelligent Information and

Engineering Systems, pages 1066–1072. Springer.

147

Titre : Contributions à l’apprentissage de représentation de séries temporelles multivariées et de graphes

Mots clés : séries temporelles multivariées; graphes; réseaux de neurones

Résumé :
Dans cette thèse, nous nous sommes intéressés
à l’apprentissage de représentation de séries tem-
porelles multivariées (STM) et de graphes. STM et
graphes sont des objets complexes qui ont des ca-
ractéristiques les rendant difficilement traitables par
des algorithmes standards de machine learning. Par
exemple, ils peuvent avoir des tailles variables et ont
des alignements non-triviaux, qui empêchent l’utilisa-
tion de métriques standards. Il est alors nécessaire
de trouver pour les échantillons observés (STM ou
graphes) une représentation alternative qui les rend
comparables. Les contributions de ma thèse sont un
ensemble d’analyses, d’approches pratiques et de
résultats théoriques présentant des apprentissages
de représentation de STM et de graphes.
Deux méthodes de représentation de STM sont
dédiées au suivi d’état caché de systèmes
mécaniques. La première propose une représentation
”model-based” appelée Sequence-to-graph

(Seq2Graph). Seq2Graph se base sur l’hypothèse
que les données observées ont été générées par
un modèle causal simple, dont l’espace des pa-
ramètres sert d’espace de représentation. La se-
conde méthode propose une approche générique
de détection de tendances dans des séries tempo-
relles, appelée Contrastive Trend Estimation (CTE).
Une preuve d’identifiabilité, une extension à des
problèmes d’analyse de survie et une discussion sur
le cas des tendances bruitées sont proposées pour
mieux comprendre les capacités et limites du modèle.
Deux méthodes de représentation de graphes pour
la classification sont aussi proposées. Une première
propose de voir les graphes comme des séquences
de nœuds et donc de les traiter avec un outil standard
de représentation de séquences : un réseau de neu-
rones récurrents. Une seconde méthode propose une
analyse théorique et pratique du spectre du Laplacien
pour la classification de graphes.

Title : Contributions to representation learning of multivariate time series and graphs

Keywords : multivariate time series; graphs; neural networks

Abstract :
In this thesis, we are interested in learning represen-
tations of multivariate time series (MTS) and graphs.
MTS and graphs are particular objects that do not di-
rectly match standard requirements of ML algorithms.
They can have variable size and non-trivial alignment,
such that comparing two MTS or two graphs with stan-
dard metrics is generally not relevant. Hence, parti-
cular representations are required for their analysis
using ML approaches. The contributions of this thesis
consist of practical and theoretical results presenting
new MTS and graphs representation learning frame-
works.
Two MTS representation learning frameworks are de-
dicated to the ageing detection of mechanical sys-
tems. First, we propose a model-based MTS re-
presentation learning framework called Sequence-to-
graph (Seq2Graph). Seq2Graph assumes that the
data we observe has been generated by a model
whose graphical representation is a causality graph. It
then represents, using an appropriate neural network,
the sample on this graph. From this representation,

when it is appropriate, we can find interesting informa-
tion about the state of the studied mechanical system.
Second, we propose a generic trend detection me-
thod called Contrastive Trend Estimation (CTE). CTE
learns to classify pairs of samples with respect to the
monotony of the trend between them. We show that
using this method, under few assumptions, we identify
the true state underlying the studied mechanical sys-
tem, up-to monotone scalar transform. We also show
how to extend our approach to survival analysis pro-
blems.
Two graph representation learning frameworks are
dedicated to the classification of graphs. First, we
propose to see graphs as sequences of nodes and
create a framework based on recurrent neural net-
works to represent and classify them. Second, we
analyze a simple baseline feature for graph classifica-
tion: the Laplacian spectrum. We show that this fea-
ture matches minimal requirements to classify graphs
when all the meaningful information is contained in the
structure of the graphs.

Institut Polytechnique de Paris
91120 Palaiseau, France

