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Résumé en français

Les assistants de preuve sont des logiciels conçus pour la réalisation de biblio-
thèques de mathématiques numérisées. Celles-ci contiennent des définitions, énon-
cés et preuves tous formalisés dans une variante de logique fixée, de sorte que la
vérification de la bonne formation des énoncés, et la correction des preuves, puis-
sent être réduites à un processus mécanique, celui associé au formalisme logique
sous-jacent. Le noyau de l’assistant de preuve est le composant du logiciel qui
réalise cette vérification, tandis que l’assistant de preuve à proprement parler im-
plémente un ensemble de techniques d’automatisation qui permettent à ses util-
isateurs de mener à bien la formalisation en pratique de définitions et de théories
mathématiques arbitrairement sophistiquées.

À ce jour, les assistants de preuves ont principalement été utilisés dans un con-
texte de vérification de programmes: compilation, programmation système, sécu-
rité, etc. Le théorème à formaliser est alors celui qui spécifie le comportement
attendu du programme. Cette spécification peut porter sur des aspects variés du
comportement des programmes: correction fonctionnelle, gestion de la mémoire,
arithmétique des ordinateurs, etc. Néanmoins, les assistants de preuve ont récem-
ment attiré l’attention d’un nombre croissant de chercheurs en mathématiques,
motivés par la vérification de preuves complexes, et non nécessairement calcula-
toires. La formalisation de ces dernières exige de l’assistant de preuve des formes
d’automatisation essentiellement différentes de celles qui servent les besoins de la
preuve de programme au sens large. Répondre à ces besoins, pour faciliter la
vérification formelle de mathématiques à grande échelle, est un sujet de recherche
actuel, qui est le cadre dans lequel se placent les travaux présentés ici.

Ce mémoire présente une synthèse de trois contributions principales à la vérifica-
tion formelle de théories mathématiques en théorie des types dépendants.

La première de ces contributions porte sur la réalisation d’une bibliothèque de
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mathématiques formalisées couvrant les résultats classiques d’algèbre de niveau
licence, ainsi que des pans plus avancés de théorie des groupes finis. Ces derniers
culminent avec une formalisation du théorème de l’ordre impair (Feit-Thompson,
1963). Il s’agit ici de mettre en perspective les différents ingrédients, de natures
variées, qui permettent d’obtenir un corpus ample, cohérent, lisible, réutilisable, et
facile à maintenir dans la durée. Ces ingrédients couvrent la conception d’un lan-
gage de tactiques, l’utilisation de techniques avancées d’inférence et d’unification,
aussi bien que des techniques de formalisation, par exemple celles qui exploitent
des schémas de réflexion.

La deuxième contribution porte sur la vérification formelle du théorème d’Apéry,
qui établit l’irrationalité de la constante ζ(3). Au delà de l’intérêt intrinsèque
de la vérification formelle ce résultat, il s’agit ici de discuter la coopération de
systèmes de preuves formelles avec des systèmes de calcul formel. La preuve vérifiée
est en effet une preuve par calcul symbolique, dans laquelle des opérateurs de
récurrence jouant un rôle crucial sont calculés par une bibliothèque de calcul formel.
Les algorithmes qui produisent ces opérateurs fournissent également des données
auxiliaires, des certificats, qui permettent une vérification efficace a posteriori de
la correction des résultats produits. On discute ici la mise en œuvre de cette
coopération, ainsi que ses limites.

La troisième et dernière contribution porte sur la vérification formelle d’algorithmes
de calcul numérique rigoureux, en particulier de quadratures réelles. Les algo-
rithmes numériques dits rigoureux analysent précisément leur sources d’erreur
(d’arrondi et de méthode), et calculent des bornes d’erreur explicites sur leurs
résultats. Néanmoins, les conditions sous lesquelles ces calculs d’erreur sont cor-
rects, typiquement une classe de régularité, sont difficiles à tester statiquement
sur les entrées fournies par l’utilisateur, ce qui est une source d’erreurs difficiles à
détecter. Une implémentation formellement vérifiée permet de s’affranchir de ces
erreurs. On discute ici deux approches d’implémentation de quadrature rigoureuse
et formellement vérifiée, pour des fonctions réelles et des intégrales propres et
impropres.
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Chapter 1

From type theory to
machine-checked mathematics

Proof assistants, also called interactive theorem provers, are software tools dedi-
cated to the design of digital libraries of formalized mathematics, which can be
machine-checked automatically. So far mostly used by researchers in computer
science, they have recently attracted the attention of an ever increasing number of
researchers in pure mathematics. This trend is happening now because of the suc-
cessful formalization of recent and major mathematical results, but also because it
is becoming clearer and clearer that formalizing mathematics with proof assistants
can create novel mathematics.

This introductory chapter aims at putting my recent research contributions in
context, while remaining accessible to a non-expert audience.

1.1 Machine-checked mathematics

1.1.1 Computers and proofs

Since the last half of the 20th century, computers have dramatically changed the
face of research in mathematics.

It has obviously changed the way people communicate. Researchers in mathemat-
ics nowadays seldom exchange snail mails, as Serre and Grothendieck [53, 166] did
not so long ago, but electronic messages, like emails or chat group conversions–
see for instance the correspondence of the two mathematicians Cédric Villani and
Clément Mouhot, reprinted in part in Villani’s novel Birth of a Theorem [175].
They write research blog posts, they typeset their own articles using scientific doc-
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1. From type theory to machine-checked mathematics

ument preparation systems, and they access them via the Internet –and less and
less often so by borrowing a volume at the library.

But this revolution goes beyond communication media. From experimentation to
proofs, there is a tremendous momentum right now for computer-aided experiment
and guesswork in mathematics. Groundbreaking conjectures were only made acces-
sible by resorting to superhuman computational power, e.g., Mandelbrot’s fertile
observations in fractal geometry [129], or Birch and Swinnerton-Dyer’s conjecture,
for which the Clay Institute advertises a $1 million bounty [178]. In fact, they have
also revolutionized the essence of what a proof is. Starting with the Four Color the-
orem, about the coloration of planar maps [11], the list of computer-assisted proofs
of major mathematical results has grown steadily, covering a broad range of math-
ematical fields: combinatorics [113], optimization [90], number theory [30, 96],
dynamical systems [169], etc. In turn, the advent of mathematics produced by
computer has sparked new forms of mathematics, including computer algebra or
numerical analysis.

What makes a candidate proof become a theorem is usually a blend of a social
process and of a scrutinizing: people give talks explaining their new ideas to their
peers, they eventually submit papers to journals, and these submissions are care-
fully reviewed by anonymous colleagues. In the vast majority of cases, everything
goes fine and only minor errors persist in published texts, that can easily be fixed
by the target audience of specialists. But sometimes proofs are published that
are truly incomplete or essentially incorrect, and nonetheless believed to be true
for a while. There are notorious long sagas of trials and errors like the the Four
Colour Theorem [79] or Hilbert’s 16th problem [103] – although the latter exam-
ple is an emblematic example of how fertile false proofs can turn out to be. It
is indeed in some cases very difficult to find reviewers who are at the same time:
competent enough in all the areas of expertise required, focused enough to detect
all the potential flaws, and insensitive to subjective information like their personal
relation to the author or his/her reputation in the community. On this topic, the
interested reader may watch V. Voevodsky explaining his misfortunes in a popular
science talk at the Institute of Advanced Study, Princeton (U.S.A.)1, and read
W. Thurston’s reflections [167] on the process of mathematics, written 25 years
ago but still current.

Mathematics produced by computer are even more challenging for the traditional
model of peer-reviewing, as they require assessing the correctness of the output of
complex programs against non-trivial specifications. In the history of mathemati-
cal ideas, there is an abundance of example of fertile mistakes and shortcomings:
excessive rigor in the mathematical discourse sows the seeds of vacuity. René Thom

1https://www.ias.edu/video/voevodsky14
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1.1. Machine-checked mathematics

even declares that: “Truth is not limited by falsity, but by insignificance.” [146]. Is
this also the case for bugged computational proofs? Probably much less so. And
assessing the absolute correctness of computer programs is a notorious difficult
task. Actually, formal methods refer to a broad and diverse range of techniques
in software and hardware engineering, as well as an extremely active research area
in computer science, dedicated to the rigorous assessment of the reliability of soft-
ware. Yet no explicit policy exists today for auditing software that produce proof
steps in submitted papers, even in high-profile mathematical journals. In a number
of cases, reproducibility is not even enforced.

But let us temporarily leave aside the possible particularities of computer-produced
mathematics. In principle, the whole mathematical literature could be expressed in
a non-ambiguous formal language, like set-theory and first-order logic, and proofs
could be detailed in an exhaustive manner, making verification (boring to death
but) trivial and absolutely objective. Of course, this is not the way people com-
municate mathematics in practice. The language of mathematics is made of a
complex apparatus of abstractions, ellipsis and notations which requires some cul-
ture, and years of training to get acquainted with, but which also just makes the
communication of ideas possible. Providing all the seemingly missing details to
an audience of specialists would not only be utterly pedantic, but in fact it would
soon obfuscate the discourse completely, sterilize creativity and miss the point of
what makes mathematics beautiful. The famous group of French mathematicians
N. Bourbaki make it explicit in The Architecture of Mathematics [37]: “What the
axiomatic method sets as its essential aim is exactly that which logical formal-
ism by itself cannot provide, namely the profound intelligibility of mathematics”.
Clarifying the abstract structures, which capture the deep similarities shared by
seemingly extremely different objects is what it is about. “To lay down the rules
of this language, to set up its vocabulary and to clarify its syntax, all that is indeed
extremely useful; indeed this constitutes one aspect of the axiomatic method, the
one that can properly be called logical formalism (or “logistics” as it is sometimes
called). But we emphasize that it is but one aspect of this method, indeed the least
interesting one.” [37]. To summarize, a verbose expansion of all the definitions
and arguments of a given proof, down to the initial actions of a logical foundation,
would both be too boring a task and fail to help understanding its content and
checking its correctness.

Except that one can today take benefit from the computing skills of machines.
The idea of building instruments in order to mechanize the process of verifying
deductions is certainly an old one (see for instance G. Leibniz’ Calculus Ratio-
cinator in his 1666 doctoral thesis, or W. S. Jevons’ Logic Piano built in 1869).
But the advent of computers, of modern logic and of the theory of programming
languages have turned it into concrete tools that can help for real. Proof assistants
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1. From type theory to machine-checked mathematics

provide today an environment for defining mathematical objects, their properties
and the associated candidate proofs in a computer formal language well suited to
this purpose.

1.1.2 Proof assistants

Many different proof assistants are in use today, just like there are many pro-
gramming languages, computer algebra systems or document preparation systems.
Proof assistants are designed to write and check logic- and computer-based formal
proofs, and they usually feature three main ingredients: an expressive specification
language, used to write formal statements; a distinct programming language for
producing candidate formal proofs; a proof checker.

A major choice in the design of a proof assistant is the logical foundation used to
fix the formal language of mathematics: although most mathematicians are used
to set theory and first-order logic, there are many more possible options, some
being better-suited to the formalization of mathematical concepts in practice. The
majority of available proof assistants are actually based on an instance of type
theory, instead of set theory, and allow quantification on arbitrary objects and
functions, instead of being limited to first-order logic. The grammatical construc-
tions and rules of this language are rigid enough so that a program called the kernel
of the proof assistant can check the correctness of proofs written by the user, by
the means of purely mechanical automated process. The kernel is really the cor-
nerstone of a proof assistant: trust in this single piece of code extends to all the
proofs it validates. Formalizing mathematics with a proof assistant means forging
by hand a formal description of the mathematical definitions, theorem statements
and candidate proofs: it is worth insisting at this point that only the verification of
the latter is automated, and not its discovery. Therefore, formalizing mathematics
is about bridging the gap between the very low level language that allows for this
routine verification and the much higher-level language that make mathematics
intelligible to humans. This gap is akin to the distance between the language in
which human beings write programs and the patterns of bits corresponding to the
physical commands executed by the processor. The bulk of proof assistants is thus
to provide tools that help with this matter. The code implementing these tools
is carefully separated from the one of the kernel, so that the trusted base of code
remains clearly identified.

Proof assistants, and more generally formal verification tools, can be classified
according to the expressiveness of the logical language available to express speci-
fications, i.e., the formal statement of candidate theorems. This language is tight
to the choice of mathematical foundations the proof assistant is based on. Dif-
ferent choices for this specification language result in different skills, and different
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1.1. Machine-checked mathematics

natures of success. A less expressive logic offers stronger possibilities to automate
proof search, a key feature to bridge the gap between the expectations of users
and those of the proof checker. On the other hand, a lesser expressiveness imposes
higher piles of encoding when formalizing complex mathematical objects, which
can hamper the readability, and thus the reliability, of specifications.

Satisfiability (SAT) automated solvers are not usually considered as proof assis-
tants stricto sensu because they are designed to be automated instead of interac-
tive, and because they are tied to the unsophisticated propositional logic. They
have yet recently earned their stripes in computer-aided mathematics, by find-
ing spectacular proofs of long-standing Ramsey-like conjectures in combinatorics,
notably the Pythagorean triples conjectures [99] and the value of Schur number
five [98]. In both these cases, certificates, i.e., compact traces, of these proofs
were produced by SAT solvers, stored in files of several terabytes, and validated
by formally verified checkers [59]. These problems are however arguably quite spe-
cific, in that they can be reduced to a bounded, albeit large, quantification: SAT
solvers solve them by (algorithmically) clever brute force. Beyond finitary prob-
lems, the state of the art in formalized libraries of real and complex analysis has
been developed using provers based on higher-order logic (HOL). These systems
offer unsurpassed automated proof-search facilities ; users can rely on advanced
formal-proof-producing decision procedures and heuristics to close mundane proof
obligations [32]. However, the specification language of these provers does not
allow a first-class quantification over the instances of a given algebraic structure:
extra-logical type classes mechanisms alleviate this issue [101]. But some users
report that this limitation can become blocking: see, e.g., Gouëzel’s note on the
definition of the Gromov-Hausdorff distance between compact metric spaces.2

Modern topics in advanced algebra and geometry typically involve complex edifices
of sophisticated algebraic structures and constructions. Formalizing in a proof as-
sistant these definitions and their properties calls for a radically different nature of
automation, one concerned with the inference of the implicit content carried by no-
tations, and by the meaning of linguistic conventions in the paper literature [125].
Dependent type theory, and more precisely a variant thereof called the Calculus
of Inductive Constructions (CIC) [55, 56], provides an extension of higher-order
logic that has proved better suited to a faithful, first-class, representation of hier-
archies of mathematical structures. The Calculus of Inductive Constructions, and
its implementation in the Coq proof assistant, is the main vehicle of the research
described in the present memoir.

2https://www.math.sciences.univ-nantes.fr/~gouezel/ (accessed May 1st, 2020).
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1. From type theory to machine-checked mathematics

1.1.3 Trusting formally verified mathematics

What do we trust when we trust in machine-checked formal proofs, developed
and validated with a given proof assistant? Formal proofs today have become
part of the arsenal of formal methods used to stamp code with codified levels of
trust. 3 For instance, machine checked proofs have recently gained momentum in
security related applications [22, 70, 10]: in this nature of applications it may be
in the interest of malicious users to forge validated but incorrect proofs, so as to
compromise critical components of a system. But even in a less hostile context,
it is worth taking in consideration the ingredients at stake, when we are writing
proofs under the guidance and control of a proof assistant.

Trust certainly has to be put in the foundations underlying the proof assistant
under consideration. In most cases, basing such a tool on an inconsistent proof
system defeats the whole point of formalization, as any statement could be derived
ad absurdum. The case of proof assistants based on dependent type theory poses
some specific issues in that respect. This meta-theory is notoriously subtle, and
a combination of seemingly innocuous extra ingredients can make the whole ed-
ifice collapse [45, 141]. The construction of models which justify extensions of a
core dependent type theory can also prove a delicate exercise, although syntactic
techniques have recently helped clarification [36]. Actually, consistency is not the
only desirable property of the formalism: others facts like subject reduction or the
decidability of type-checking have an important impact as well on the practice of
formalization. Last, there is possibly a non-trivial act of faith in the belief that the
type theory actually implemented in the proof assistant, coincides precisely with
the formalism studied on paper: beyond the possible bugs, some implementation
choices or optimizations can actually affect the formalism.

The proof checker of a proof assistant is the obvious critical piece of the trusted
base of code of a proof assistant and a fertile line of research has been devoted to
self- or cross- verification of proof checkers [92, 20]. The reliability of proof checking
was actually a central motivation of Robin Milner in his design and implementation
of the Logic of Computable Functions (LCF), a variant of a λ-calculus strongly
inspired by Scott and Strachey. The so-called LCF approach [85] refers today to the
design of proof checkers along three main ingredients:4 a special abstract type for
theorems; constructors of this abstract type representing the inference rules of the
logical system; a strongly-typed high-level language for the implementation of the
proof assistant. Proof assistants from the HOL family follow this approach to the
letter. As for the so-called de Bruijn criterion, as coined by Henk Barendregt and

3See for instance Bertot et al.’s position paper on the use of Coq for Common Criteria
Evaluations.

4This trio is borrowed from a talk by Harrison.
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1.1. Machine-checked mathematics

Freek Wiedijk [19] after the architect of the pioneer AUTOMATH system [136], it
requires the possibility of independent proof checking by a small program: proof
assistants based on CIC, like Coq, Agda, Lean and Matita fulfill this condition
by exporting proof objects, that can in principle be verified by an independent
checker.

A proof assistant, however, is much more than a proof checker, and, more often
than not, formalization would not be possible at all without the assistance of
complex elaboration procedures, which transform the input from the user into a
complete term of the formalism, ready to be machine-checked. Without strong
elaboration features, formal statements quickly become too verbose to be readable
(and one becomes exposed to the threat of formalization choices exposed in the
next paragraph). Therefore, inevitably, what the user sees is not what the proof
checker gets. Elaboration, although invisible to the user, nonetheless involves
multiple ingredients: parsing, type inference, unification, insertion of coercions,
etc. Pollack inconsistency is an example of what can go wrong [177]. The extension
of type inference with so-called type class mechanisms [89, 160] raises issues of a
similar nature about the resolution of advanced notation devices, and with the
corresponding inferred meaning. An informative interaction with the users is key
to mitigate the threat of uncontrolled elaboration, and the meta-properties of the
underlying formalism play an important role here.

Last but not least, formalization choices matter. Users can get their formal defini-
tions wrong, that is, they can devise formal definitions that do not coincide with
the mathematical objects they have in mind. And proof assistants are not enti-
tled to check definitions, which often requires several iterations to stabilize. This
threat is rather absent from synthetic mathematics, e.g. synthetic topology [71] or
synthetic homotopy theory [147], but they become more significant in other fields,
in which formal definitions are made of higher piles of intermediate objects. For
some extreme cases of sophisticated definitions, it might even be the case that con-
structing formally an instance of a given abstraction represents a true challenge.
The authors of a formal definition of Schölze’s perfectoid spaces, a tour de force
conducted in the Lean proof assistant, report and discuss this sort of difficulty [41].

Addressing these issues requires theoretical work, both on the foundations and on
the algorithms implemented by proof assistants, but it also requires improving the
design and the implementation of the inspection and visualization tools offered by
proof assistants: all these topics remain as of today research topics of their own.
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1. From type theory to machine-checked mathematics

1.1.4 Computation inside logic

The two systems considered as the first modern proof assistants were indepen-
dently designed in the late 60s. The AUTOMATH system, by Nicolaas G. de
Bruijn [136] was based on a variant of λ-calculus with dependent types and its
claim to fame was the formal verification, by Jutting, of Landau’s Foundations
of Analysis. The Mizar system, founded by Andrzej Trybulec [168], is based on
Tarski-Grothendick’s variant of set theory, and uses of soft type system to help
codifying formal statements. Still in use today, it has been used to produce one of
the largest existing libraries of formalized mathematics [18].

Although these two pioneers have been motivated by the formalization of mathe-
matical theories, the successors of these systems have so far mostly attracted users
with a computer science background, concerned with obtaining the highest possi-
ble confidence in the behavior of programs. Describing accurately the properties of
the output of an algorithm, and the behavior of a program implementing this algo-
rithm, and then, proving that these specifications are fulfilled indeed constitutes a
notoriously difficult task, which can involve arbitrarily advanced mathematics. We
provide below a brief overview of the different approaches to machine-assisted pro-
gram verification, biased towards computational mathematics and in particular,
computer algebra.

A proof assistant based on type-theoretic foundations offers the possibility to im-
plement an algorithm directly as a λ-term, i.e. as an object in the logic. The
program can subsequently become the subject of a formalized statement, that is a
candidate theorem expressing a desired correctness property. The example given in
Listing 1.1 defines a function cormen_lup which computes an LUP decomposition of
its argument, a square matrix with coefficients in a field, according to the classic re-
cursive algorithm explained for instance in Cormen et al.’s reference book [57]. The
output of the algorithm on an input matrix A is a triple (P, L, U) of square matri-
ces, such that P is a permutation matrix, L is an unipotent lower triangular matrix
and U is an upper triangular matrix. The term cormen_lup is a program, written in
Gallina, the programming language integrated to Coq’s logical foundations. The
properties ensuring the correctness of the algorithm are respectively formalized as
the statements of lemmas cormen_lup_perm, cormen_lup_p_correct, cormen_lup_lower,
cormen_lup_upper.

The kernel of Coq event implements optimized reduction strategies, notably a
virtual machine [86], for evaluating this nature of programs efficiently, when they
operate on appropriate data structures (unlike the present example, which is not
meant to be executed in practice).

Section CormenLUP.
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1.1. Machine-checked mathematics

Variable F : fieldType.

Implicit Types A : ’M[F]_n.+1.

Fixpoint cormen_lup {n} :=

match n return let M := ’M[F]_n.+1 in M -> M * M * M with

| 0 => fun A => (1, 1, A)

| _.+1 => fun A =>

let k := odflt 0 [pick k | A k 0 != 0] in

let A1 : ’M_(1 + _) := xrow 0 k A in

let P1 : ’M_(1 + _) := tperm_mx 0 k in

let Schur := ((A k 0)^-1 *: dlsubmx A1) *m ursubmx A1 in

let: (P2, L2 , U2) := cormen_lup (drsubmx A1 - Schur) in

let P := block_mx 1 0 0 P2 *m P1 in

let L := block_mx 1 0

((A k 0)^-1 *: (P2 *m dlsubmx A1)) L2 in

let U := block_mx (ulsubmx A1) (ursubmx A1) 0 U2 in

(P, L, U)

end.

(* First element of the triple is a permutation matrix *)

Lemma cormen_lup_perm n A :

is_perm_mx (cormen_lup A).1.1.

Proof. ... Qed.

(* Identity relating input and outputs: the input A permuted

by P is equal to the product L * U *)

Lemma cormen_lup_correct n A :

let: (P, L, U) := cormen_lup A in P * A = L * U.

Proof. (...) Qed.

(* Second element of the triple is unimodular *)

Lemma cormen_lup_detL n A :

\det (cormen_lup A).1.2 = 1.

Proof. (...) Qed.

(* Second element of the triple is lower triangular ,

with 1s one the diagonal. *)

Lemma cormen_lup_lower n A (i j : ’I_n .+1) :

i <= j -> (cormen_lup A).1.2 i j = (i == j)%:R.

Proof. (...) Qed.

(* Third element of the triple is upper triangular *)

Lemma cormen_lup_upper n A (i j : ’I_n .+1) :

j < i -> (cormen_lup A).2 i j = 0 :> F.

Proof. (...) Qed.

End CormenLUP.

Listing 1.1: LUP decomposition of a matrix and the related correctness proofs.
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1. From type theory to machine-checked mathematics

Computations carried inside the logic are as trustworthy as the proofs validated by
the proof checker of the proof assistant; this is the approach adopted both in the
verified proof of the four colour theorem [79], using Coq, and in the verified proof
of the Kepler conjecture, using HOL-Light and Isabelle/HOL [90]. Proof assistants
thus provide an appealing solution to the problem of assessing computer-produced
mathematics.

Of course, computing inside the logic incurs a possibly huge efficiency cost. A
fruitful approach thus consists, whenever possible, in relying on external oracles
to produce certificates, later checked inside the prover [94]. This way, exploration
of a large search space can be performed by efficient, unverified oracles, before
a verified checking procedure achieves the final formal validation step. Primality
(dis)proving is an obvious application of this approach, and existing formal-proof-
producing primality tests are efficient enough to prove large primes [88], although
unfortunately not of the size needed in Helfgott’s proof of the Ternary Goldbach
conjecture [97].

In this perspective, several attempts have also been carried to build bridges be-
tween computer algebra systems and proof assistants, so as to ease their cooper-
ation, e.g., Coq and Maple [61], HOL-Light and several systems [109], Lean and
Mathematica [119]. These bridges are however very fragile, as both ends are mov-
ing targets. Moreover, interaction is hampered by the lack of formal semantics of
computer algebra systems, as well as by the lack of standards for sharing data-
structures such as polynomial expressions. Nonetheless, the verification [47] of
Apéry’s proof of the irrationality of ζ(3), described in Chapter 3, illustrates the
huge potential benefits of a smoother interaction between trusted and non-trusted
computer-algebra programs.

The most successful implementations of computer algebra inside proof assistants
actually rather serve the purpose of enhancing the automation of the provers,
with (semi-)decision procedures, e.g., normalization of algebraic expressions [87], of
linear and non-linear real arithmetics [131, 28, 42], automated proofs of asymptotic
behaviors [68], and of bounds on special functions [159, 130]. But the average
efficiency is dreadful, compared to what computer algebra systems offer. These
procedures are in fact designed to solve the possibly numerous yet small problems
generated by proof obligations, instead of very large instances.

1.1.5 Program verification using proof assistants

The optimization allowance when computing inside logic remains limited. Com-
puting inside logic is fortunately not the only option to perform verified compu-
tations using proof assistants, as most systems provide code generation features,

14
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sometimes also called extraction. These features make it possible to translate a
program represented inside the logic, and possibly endowed with a formal proof
of correctness, into another program, this time written in a realistic programming
language, and meant to be executed. Compared to the execution of programs in-
side logic, this approach pulls a larger environment into the trusted base of code.
On the other hand, such a compromise appears as a necessary trade-off in order to
verify computer-produced mathematics at large. For instance, computer algebra
systems owe a large part of their stunning efficiency to their arithmetic and linear
algebra core. And an efficient implementation of such a core is far more demanding
than what internal computations to the logic alone can offer.

Code generation features in proof assistant have been quite extensively used. The
Coq proof assistant implements a variant of realizability, which can produce pure,
functional Ocaml programs, from programs written in the pure, functional pro-
gramming language embarked in Coq’s logic, and even from axiom-free existential
Coq proofs. For example, the CompCert verified compiler [117] or the Verasco veri-
fied static analyzer [108] generate their executable code this way. A similar feature
is used to produce, from Isabelle/HOL functional code, a verified factorization
algorithm for polynomials, based on LLL basis reduction [62], with comparable
performance to the corresponding routine in Wolfram/Mathematica, as well as a
verified, rigorous solver of Ordinary Differential Equations [104].

Frameworks like PVS2C [58], for the PVS prover, or Imperative/HOL [116], for the
Isabelle/HOL prover make it possible to refine pure data structures into imperative
code. The latter framework was used to generate a verified SAT solver whose per-
formances come close to the ones of Mini-SAT [77]. The Lean prover, implemented
in C++, can even be bootstrapped from its meta-programming and code genera-
tion features [171, 69]. In all the above examples however, code generation is not
formally verified. The CakeML ecosystem, by contrast, can produce stateful ML
programs, together with proofs of correctness, from monadic functions in HOL,
and then generate verified machine code, using a verified compiler back-end [100].

The efficiency of state-of-the-art arithmetic packages, such as the GNU Multiple
Precision Arithmetic Library (GMP), and linear algebra packages, such as the
Basic Linear Algebra Subprograms library (BLAS), comes from fine-tuned, in-
place operations on low-level data structures, e.g., imperative arrays and pointers.
Each operation comes in several implementations, each specialized to a different
class of entry size. For instance, the schoolbook quadratic multiplication algorithm
is optimal for numbers shorter than 2000 bits, but beyond, the Toom-Cook family
of interpolation-based algorithms is more relevant. The most efficient algorithms
in these packages are intricate, and their correctness relies on subtle mathematical
tricks, in order to optimize resources. These optimizations are outside the scope
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of compilation, and require operating by hand on low-level features. The formal
verification of arithmetic routines has been motivated by its usage in safety-critical
applications, such as cryptography or security of Internet. By definition, it requires
reasoning on the memory model of the implementation language, typically a variant
of C.

The available verification approaches roughly fall in two camps, which we illus-
trate on the verification of multi-precision arithmetic functions or libraries. The
first approach consists in using a proof assistant to model the programming lan-
guage constructs, its memory model, and to verify the correctness of a model
program. Two decades ago, a proof of the general case of the GMP square root
algorithm would take 13,000 lines of code (loc) of Coq [27], when a decade later
a Coq proof of about the same size can deal with a binary extended GCD al-
gorithm, as well as the functions it depends on, such as addition, subtraction,
and halving [7]. Automation is key to success in this area. Thanks to the strong
support for automation provided by the Isabelle/HOL prover, it takes only 2000
lines of code to verify a bignum library programmed in the SPARK fragment of
the Ada programming language, using a verification framework that sends goals to
the prover. None of these achievements however connects directly proofs to actual,
executed machine code. Perhaps the only exception is a verified implementation of
arbitrary-precision integer arithmetic, using the HOL4 theorem prover [135], which
is turned into x86 machine code using CakeML. But the latter implementation is
not geared towards efficiency (e.g., the multiplication is the schoolbook one).

The other approach consists in using a different kind of deductive tools, which em-
phasizes automation, typically by Satisfiability Modulo Theory (SMT), rather than
foundational correctness. Such tools are geared towards the verification of realistic
code, that can be included in subsequent applications. For instance, the Mozilla
Firefox web browser now uses code from a library for elliptic curve cryptography,
developed using the F∗ verification system [183]. The Why3 verification platform
was used to generate a comprehensive verified C library, for arbitrary-precision
integer arithmetics, with a comparable efficiency to the architecture-independent
mode of GMP [132].

The work presented in the present manuscript mostly belongs to the approach
consisting in computing inside logic. However, our closing chapter discusses the
limits and perspectives of this choice, in the light of the other approaches we
over-viewed in the present introduction.
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1.2 Structure of the manuscript

This manuscript provides a synthesis of a selection of work, carried with my collab-
orators since the completion of my PhD, and published in peer-reviewed venues.
At some places, excerpts of these publications are included verbatim. It does not
include any new contribution, and is intentionally non-technical: details can be
found in the corresponding peer-reviewed and published papers, which should re-
main the main reference. For each chapter, a concluding section outlines a few
comments and draws some perspectives for future work.

A large part of Section 1.1, in the present chapter, is based on the expository
article [121], as well as on discussions with Guillaume Melquiond 5.

Chapter 2 presents two contributions to formalized mathematics. One is a study of
quantifier elimination proofs, in particular for real and algebraic closed fields: this
work was mostly conducted in collaboration with Cyril Cohen while he was a PhD
student under my supervision. The other is about finite group theory: it is the
outcome of the 6-year effort of the Mathematical Components team, culminating
with a formal proof of the Odd Order Theorem. The contributions here consist
in illustrating how various insights from computer science, and more precisely,
from the theory of programming language, can be put at the service of formalized
mathematics in practice. This chapter is largely based on (a synthesis of) my
publications on the topic [51, 50, 120, 81].

Chapter 3 presents a contribution to formally verified computer-produced math-
ematics, using symbolic methods. It describes a formal verification of Apéry’s
proof of the irrationality of ζ(3), based on an interaction between a computer
algebra system and a proof assistant. This work was conducted in collaboration
with Frédéric Chyzak and Thomas Sibut-Pinote, while Thomas Sibut-Pinote was
a PhD student under my supervision. This chapter is largely based on my publi-
cation on the topic [47], as well as on an article to appear in the Logical Methods
in Computer Science journal [124].

Chapter 4 presents a contribution to formally verified computer-produced mathe-
matics, using symbolic-numeric methods. It describes a formally verified routine
for computing numerical enclosures, and quadratures in particular, based on in-
terval arithmetic. This work has two parts: the first was conducted in collabora-
tion with Guillaume Melquiond and Thomas Sibut-Pinote, while Thomas Sibut-
Pinote was a PhD student under my supervision. The second, which proposes a
certificate-based approach for this problem, stems from a collaboration with Flo-
rent Bréhard and Damien Pous. This chapter is largely based on my publications
on the topic [122, 123, 40].

5Its content however remains under my sole own responsibility.

17



1. From type theory to machine-checked mathematics

Finally, Chapter 5 outlines the research program I would like to explore for the
coming years. It has benefited from many discussions with a number of colleagues,
notably Jasmin Blanchette, Sander Dahmen, Maxime Denès, Guillaume Melquiond
and Thierry Priol.
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Chapter 2

Libraries of formalized mathematics

2.1 The Mathematical Components library

2.1.1 Overview

The Mathematical Components library1 is a library of formalized mathematics for
the Coq proof assistant, geared towards algebra. Its first release, in 2008, mostly
included a small collection of files from Georges Gonthier’s Four Colour theorem
proof [79], and an extension to Coq’s tactic language called SSReflect [82]. As of
today, most of the content of this initial release has been merged into the standard
distribution of the Coq proof assistant, including the corresponding documentation,
which has become a chapter of Coq’s reference manual. The Mathematical Com-
ponents library today mostly consists in the general-purpose parts of the libraries
written for a formal proof of the Odd Order theorem (see Section 2.3): graduate
level finite group theory, matrix algebra, commutative algebra, etc. Since its first
release, the library has been continuously maintained and adapted to the evolu-
tion of the Coq proof assistant. But it has also been enriched, with new formalized
content (e.g. related to ordered structures) and with improved infrastructure (e.g.
tooling for algebraic hierarchies).

The corpus of formalized theories to be found in the Mathematical Components
library features a uniform programming style, naming and notation policies, and
formalization choices. The rationale behind the programming style is chiefly read-
ability and maintainability. These objectives are served by the SSReflect extension
of the Coq’s tactic language. In particular, this tactic language enhances the sup-
port for declarative style, so as to make possible the management of long proofs
with numerous proof steps and large contexts, and this in particular when con-

1https://github.com/math-comp/math-comp
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texts are populated by piles of local definitions rather than by case analysis on
inhabitants of sophisticated inductive types. Using this style, the readability of
the proof is ensured by the readability of intermediate mathematical statement,
rather than by the one of the proof script. This guiding principle is not original,
it is for central to the interaction model in Isar [176], for the Isabelle/HOL prover.

As a rule of thumb, the formalization choices adopted in the library favor a faithful
behavior in proofs to a syntactical similarity in formal definitions. The library
thus includes a significant amount of infrastructure material, e.g., for types with
a decidable equality (a special case of h-set), for proof-irrelevant sigma-types, for
iterated binary operators [26], etc. Infrastructure typically combines dependent
records, type-classes, and notations, with a possible additional support at the
level of the tactic language. Inductive-shaped specification lemmas, e.g. using
the reflect two-constructor inductive type, are also pervasive. More details about
these technical aspects are provided in the Mathematical Components reference
book[126].

2.1.2 Structures, type inference and notations

One of the main issues in formalization is to model the training a mathematician
went through to be able to make sense of a mathematical text: this is crucial keep
formal statement intelligible and to tame bureaucracy in formal proofs.

Consider for instance the sentence:

Let R be a commutative ring, the determinant Det(A) of a square matrix A ∈
Mn(R) verifies the formula:

Det(A) = ∑
σ∈Sn

εσ ∏
i

ai,σ(i).

A generic undergraduate student is able to infer without noticing that the Greek
letters Σ and Π, notations for iterated binary operations on the domain described
in subscript, here apply respectively to the addition and to the multiplication of
the ring structure which equips R, that the iteration domain of the product is nec-
essarily iterated for 1 ≤ i ≤ n and that the signature εσ should be understood as
its embedding in R. Although none of these mundane details is explicitly denoted
in the formula, they can all be deduced from the context of the formula. The
missing-but-obvious information in such a string of symbols is however necessary
for the computer to make sense of the statement. Yet it would not be reasonable
to expect the user of the proof assistant to provide it by hand explicitly, nor to
decorate excessively the words constituting the formal sentence. She would soon
not more see the forest for the trees. Fortunately the training of the reader can
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be modeled by implementing and running appropriate algorithms which are able
to infer the canonical properties hidden behind standard notations, once these
rules and habits have been spelled out completely. Such algorithms have to do
with type inference. As in usual programming languages, types are labels car-
rying information like the domain and co-domain loci of functions. Well-formed
sentences satisfy constraints on their types, which are prescribed by the rules of
the formal language. This helps structuring the sentences and ruling out nonsen-
sical ones, hence facilitating the verification. But not all type annotations need
to be provided by the user, as some of them can be retrieved by just enforcing
the constraints on the types. This mechanism, called type inference, also comes
from the theory of programming languages and can be used to reconstruct what
the trained reader can read behind the notations, by encoding enough information
in the types. This has been extensively used in the libraries of the Odd Order
Theorem formal proof to preserve the readability of statements, the modularity of
the theories and the ability to superimpose several views on a same object. In the
end, the code producing the formula ∑σ∈Sn εσ ∏i aσ(i),i in the LATEX typesetting
language is:

\sum_{\sigma \in S_n}\ epsilon_ {\sigma }\ prod_i a_{\sigma (i),i}

when an analogue in Coq would be:

Definition det (R : ringType) n (A : ’M[R]_n) : R :=

\sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).

For a more detailed insight into the use of type inference in the formalization of
mathematics, the interested reader can refer to Jeremy Avigad’s introduction [15].

The Mathematical Components library has pioneered the use of a flavor of unifi-
cation hints [14], called canonical structures [125], to implement this nature of
enhanced type inference in proof assistants based on dependent type theory. In
Coq, the unification algorithm can use these hints to infer the value of a depen-
dent tuple (i.e., a dependent record type) from the value of a single field. The
solution picked by unification to such a unification problem, otherwise unsolvable,
is the one previously stored by the user in the database of hints. The Mathe-
matical Components library features a hierarchy of mathematical structures (and
morphisms) [78], built using this mechanism and populated with a large number
of instances. But other approaches exist to the implementation of type classes in
dependent type theory, usually based on enhancing the inference of implicit argu-
ments [160], rather than on unification hints. They have also been used to build
hierarchies of structures, in Coq [161] as well as in the Lean proof assistant [3]. The
appropriate design of such hierarchies remains as of today research in progress.
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2.1.3 Elementary vocabulary of finite group theory

In the preceding section, we have mentioned how enhanced type inference can be
used for implementing proof search, inferring for the dumb kernel some bureau-
cratic information that the human user would like to be kept implicit. Inappropri-
ate formalization choices might however trigger blocking issues if typing constraints
become too demanding, because types are too fine-grained. The formalization of
the elementary vocabulary of finite group theory illustrates this issue, as described
in more details in the corresponding publications [83, 120].

In this case, a key insight has been to start with two distinct structure types when
crafting the definition of groups: a type of pre-group domain, coined baseFingroupType,
for pointed finite types equipped with a monoid law and an involutive antimor-
phism, and a type finGroupType of group domain, which refines baseFingroupType

into a structure for finite types equipped with a group law. The purpose of these
two structures is to prescribe common laws to the collections of their inhabitants,
even if only some of these collections (satisfying suitable properties) are actual in-
stances of groups. The distinction between group type and pre-group type allows
to define most of the notations at the level of subsets: for instance, notation 1

refers both to the neutral element of a group and to its associated singleton set
(the trivial group). Note however that the possibility to trigger a reduction in
any (sub)term, at any step of a term comparison, makes the interaction between
coercions and notations are quite subtle. Crafting robust notations, ones that do
not vanish unexpectedly because reduction accidentally erased the corresponding
constant, is subtle art. This requires extra care in formal definitions, which are
best described in the comments of library fingroup.v.

More generally, the distinction between domains and actual groups is crucial to
loosen enough the typing constraints under which a formula with group theory
notations is well-formed. For instance, for two subset A and B of a pre-group
domain G, the set product is defined as:

A · B = {a ∗ b | a ∈ A, b ∈ B}

and the normalizer set of A is:

N(A) = {x | Ax ⊂ A} where Ax = {x−1ax | a ∈ A}.

We will also casually write AB for A · B. A group of a pre-group domain type G
is thus a finite subset G ⊂ G such that 1 ∈ G, where 1 is the distinguished point
in G, and G ·G ⊂ G, otherwise said that G is stable under the monoid law. When
the set H is equipped with a group structure, then so is N(H), and this fact is
retrieved automatically thanks to the registration of the corresponding canonical
instance of group via a unification hint.
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Finding the right formal definition for group morphisms required a few iterations.
A group morphism between two group domain G andH is the data of a subset D of
G and of a function ϕ from G to H, such that ϕ(xy) = ϕ(x)ϕ(y) for any x, y ∈ D.
As a consequence the morphic image of a set A ⊂ G under this morphism is the
set ϕ(A ∩ D) and the morphic pre-image of B ⊂ H is ϕ−1(B) ∩ D.

These choices allow a satisfying formalization of elementary finite group theory,
notably including the three group isomorphisms. As elementary as it seems, ob-
taining an appropriate version of these statements, usable in practice in proofs,
was not that easy. A discussion of the formalization of the third isomorphism
theorem, as well as on the definition of composition series and the Jordan-Hölder
theorem can be found in this survey paper [120].

A central guiding principle in the library is the following: for definitions operating
on “sets with a possibly additional structure”, like operations on groups (product,
quotient, normalized, semi-direct product, etc.), generalize the definitions and no-
tations as much as possible, so that they become as liberal as possible. Then endow
the resulting objects with the desired structure, when parameters are themselves
equipped with the adequate requirements. For instance, on paper, writing G/H is
only allowed when it is known at the time of writing that H is normal in G. But
incorporating such a requirement in the type would be too painful: the statement
of the third isomorphism theorem is an example of this pain. Instead, the Coq term
G / H is well typed as soon as the two groups involved are subsets of a same group
domain, that is (G, H : set gT), for some (gT: finGroupType). But of course it has
the expected meaning only when G and H are actual groups. Let us comment on
a last example, the formalization of semi-direct products of two groups of a same
group domain G = N o H, which is defined on paper only when N is normal in
G, G = NH and N ∩ H = 1. We first introduce a definition of a partial product,
which assigns a default value, the singleton {1} to the set product NH when N
or H is not a group.

Variables gT : finGroupType.

Implicit Types A B C : {set gT}.

Definition partial_product A B :=

if A == 1

then B

else if B == 1

then A

else if [&& group_set A, group_set B & B \subset ’N(A)]

then A * B

else set0.

where [&& _, _ & _] is a ternary (boolean) conjunction and the group_set predicates
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tests whether a subset of a group domain is a group or not, by checking for the
presence of the neutral element, and for the stability under the law:

Definition group_set A := (1 \in A) && (A * A \subset A).

Note that the output of partial_product always verifies group_set. The correspond-
ing formal definition, as a subset of the group domain type, is then the following:

Definition semidirect_product A B :=

if A :&: B \subset 1 then partial_product A B else set0.

Notation "N ><| H" := (semidirect_product N H).

Note that N ><| H is a subset of the group domain, even when N and H are both
groups: they are coerced to their carrier set before being passed to partial_product.
The intended way to recover a group structure is to introduce a third group G and
to state and use an equality N ><| H = G, in particular via the following lemma:

Lemma sdprodP A B (G : {group gT}) :

A ><| B = G ->

[/\ are_groups A B, (* A and B are group_set *)

A * B = G, (* A* B is G as a set *)

B \subset ’N(A) & (* B is a subset of N(A) *)

A :&: B = 1]. (* intersection of A and B is {1} *)

where [/, _ _, _ & _] denotes a 4-ary conjunction Note that a distinct variant of
semi-direct product allows to forge a product of two groups living in distinct group
domains, by providing the defining action explicitly.

2.2 Formalized proofs of quantifier elimination prop-
erties

2.2.1 Quantifier elimination for first-order theories

Quantifier elimination is a standard way of reducing the decidability of a first-
order theory to the validity of its quantifier-free formulas. Typical proofs go by
induction on the structure of a formula, and the crux of the proof is to establish that
formulas possibly featuring free variables, but with a single existential quantifier,
have a quantifier-free equivalent. This restricted elimination principle is akin to
proving that a certain class of constructible sets is stable by projection. Examples
of theories enjoying quantifier elimination include linear orders but also Presburger
(linear) integer arithmetic.

The first-order field theory of algebraically closed fields and that of real closed
fields both also enjoy quantifier elimination. We recall that algebraically closed
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fields are fields which split any univariate polynomial with coefficients in the field,
at that their first order theory is the collection of first order equational formulas
in the language of rings. Real closed fields can be characterized as totally ordered
fields whose positive elements are exactly the squares. For instance, real algebraic
numbers are constructively equipped with a structure of real closed field. The first
order theory of real closed fields thus involves atoms made with the order relation
(strict and large) in addition to the equational ones.

Both these quantifier-elimination results are attributed to Tarski [165]. The cor-
responding geometrical formulation, stating that projections of constructible sets
are themselves constructible is known as Chevalley’s Constructibility theorem [44].

Proofs of both these results are formalized in the Mathematical Components li-
brary2.

2.2.2 Formalization in dependent type theory

The formal statements of these proof-theoretic results make use of several specific
features of the Calculus of Inductive Construction, and would have a very different
wording if formalized in, e.g., a proof assistant from the HOL family. In particular,
the expressivity of dependent type theory enables a first class status to the state-
ment of a quantifier elimination property, by a single quantification over all the
instances of the structure under interest (here closed and real fields respectively),
using a dependent record type which bundles the corresponding carrier, data and
axioms. The formal statements also involve an inductive type for first-order for-
mula in the language of interest, which reifies the theory, and an interpretation
function of such a formula in any instance of the structure.

Consider T a first-order theory on a signature Σ. By definition, a Σ-structure M
is a model of T, denoted M |= T if for any (closed) formula ϕ ∈ T, M |= ϕ. We
say that two (non necessarily closed) formulas ϕ and ψ are equi-satisfiable in a
given model M if for any context e, (M, e |= ϕ if and only if M, e |= ψ). We say
that a theory T admits quantifier elimination, if for every (non-necessarily closed)
formula ϕ ∈ T, there exists ψ ∈ T such that ψ is quantifier free and for any model
M of T, and for any list e of values, M, e |= ϕ⇔ ψ.

The theory considered here is the collection of first-order formulas in the language
of fields with constants in a real (resp. closed) fields. The following formula type
provides a deep-embedding of this theory:

Variable (R : Type).

2More precisely, the proof for real closed fields is a satellite project in the Mathematical
Components github organization.
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Inductive term : Type :=

| Var of nat (* variables *)

| Const of R (* constants *)

| Add of term & term (* addition *)

| Opp of term (* opposite *)

| Mul of term & term (* product *)

| Inv of term (* inverse *).

Inductive formula : Type :=

| Bool of bool

| Equal of term & term

| And of formula & formula

| Or of formula & formula

| Implies of formula & formula

| Not of formula

| Exists of nat & formula

| Forall of nat & formula.

where quantifiers explicitly take as argument the name of the variable they bind.
We now define a Coq predicate

holds : ∀ F : unitRingType , seq F -> formula F -> Prop

The first argument (F : unitRingType) of the hold predicate is an instance of ring
with units, e.g., a field: it is the minimal requirement for being able to interpret
the complete signature reified in the abstract syntax tree of formulas. Its second
argument (e : seq F) is a sequence of terms in the carrier type of field F (a hidden
coercion projects the field onto its carrier). Its last argument (f : formula F) is
a formula whose atoms may feature constants interpreted in the carrier type of
the field F (again, a coercion is inserted). The definition of the hold predicate, by
induction on the structure of the formula, is such that (holds F e f) is F, e |= f .
It uses an auxiliary evaluation function, for terms, also defined by induction, this
time on the structure of a syntactic term (t : term).

Now for any type (T : Type), it is straightforward to test whether a formula
(t : formula T) is quantifier free: one just tests recursively that t does not fea-
ture any Exists nor Forall constructor. This results in a boolean test:

Definition qf_form : ∀ T :Type , formula T -> bool.

Now the Coq theorem we prove is that there exists a transformation:

Definition q_elim: ∀F, formula F -> formula F

such that the following property holds:

Lemma q_elim_wf: ∀ F (f : formula F), qf_form (q_elim f).

Lemma q_elimP: ∀ F (f : formula F) (e : seq F),

holds e f <-> holds e (q_elim f)
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where F will be in one case an algebraically closed field, i.e. (F : closedField), and
in the other a real closed field, i.e., (F : realClosedField).

More precisely, the hierarchy of structures alluded to in Section 2.1.2 features an
interface for fields with a decidable first-order theory, from which the interfaces of
real an algebraically closed fields inherit.

2.2.3 Proofs

The formalized proof of quantifier elimination for algebraically closed fields fol-
lows a standard reference by Saugata Basu, Richard Pollack and Marie-Françoise
Roy [23]. This formal development has been the occasion to expand the theory
of polynomial divisibility. But the main contribution, of this work, mostly due to
Cyril Cohen, has been to find a clever way to perform the computation involved
in the projection argument, and thereby to significantly improve on the classical
presentations.

The crux of the projection lemma is actually to construct, from a formula with
n free variables and a single existential quantifier, a new, quantifier-free formula
which describes a suitable partition of the space Fn, with a system of polynomial
equations (or disequations) for each cell. The initial, quantified formula can be
seen as the statement of the existence of a solution to a certain system of poly-
nomial constraints in the bound variable, where the coefficients of the univariate
polynomials involved in the systems are themselves polynomials in the parameters
(i.e., in the free variables). The different cells of the partition roughly correspond
to the different combinations of results obtained on testing for nullity quantities
obtained from these polynomial coefficients. In order to gradually compute this
formula, akin to an execution trace, the program mimics the proof with functions
operating of formal terms and written in continuation-passing style. This tech-
nique makes the construction of the formula easy to describe, but also smoothens
the formal proofs of the correctness lemma q_elimP. The technical details are given
in the corresponding papers [50, 51].

The proof of quantifier elimination for real closed fields is much more intricate
in essence, even for variants which do not attempt to control the complexity of
the underlying algorithm. The version of the proof formalized in this work indeed
has the same complexity as the one by Tarski, that is, a tower of exponentials
of height the number of quantifiers to be eliminated in the total degree of the
polynomials involved in the formula. This formal proof uses the same technique
based on continuation-passing style to implement quantifier elimination, but this
time, the elimination procedure is more sophisticated. Indeed, the description
of the cells in the partition is more involved, and it is essentially based on the
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study of variants of pseudo-reminder sequences. An additional technicality comes
from the constraint of formulating the proof in the language of integral domain:
the properties of Cauchy indices for rational fraction can actually be expressed
using this language only, and they are connected to the properties of pseudo-
reminder sequences. Here as well, the formal development essentially follows the
reference textbook by Basu, Pollack and Roy [23], based on the computation of
numbers coined Tarski queries. A complete account of this formal proof, as well
as a description of the formal theory associated with the structure of real closed
fields, is available in the corresponding paper [51].

2.3 A formal proof of the Odd Order theorem

A complete description of this formalization work is largely out of the scope of
the present memoir. This section thus provides some context and motivation for
the formalization endeavor undertaken by Georges Gonthier in 2006, with the
Mathematical Components team. Then, after a sketch of its mathematical proof, I
provide few comments about the formal statement of the theorem, and about the
formalization choices for the basic vocabulary of finite group theory.

2.3.1 Context and motivation

The algebraic structure of group is a fascinating piece of abstract algebra, for the
deep behavior captured by this short and simple list of axioms. Famously, Klein
proposed to view geometry as the study of properties that remain invariant under
the action of a given group of transformations, in his seminal Erlangen research
program. Transposing the power of this nature of abstraction in a library of
formalized mathematics is a far-reaching challenge.

The Odd Order theorem is a result of finite group theory, the theory of groups
with a finite carrier. Simple groups are the most elementary, atomic instances of
groups and any other finite group can be built from the finite simple ones –like
molecules from these atoms. The classification of finite simple groups describes
precisely the shape that a finite simple group can take, for each possible cardinal,
and the Odd Order theorem, due to Feit and Thompson [72] is a corner stone of
this edifice:

Theorem 2.1 Every finite group of odd order is solvable.

As a direct consequence, the Odd Order theorem actually provides a complete
description of the structure of simple groups with an odd number of elements:
they are necessarily cyclic, i.e., generated by a single element. The simplicity of
the statement of this result strikingly contrasts with the sophistication of its proof,
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which calls for a combination of arguments of local analysis and of character theory
of finite groups. The original proof [72] was published as a 250 page monolithic
paper, a record at the time. Bender, Glauberman and Peterfalvi later provided a
second-generation proof [24, 142]. R. Solomon describes its impact by saying that:
“This short sentence and its long proof were a moment in the evolution of finite
group theory analogous to the emergence of fish onto dry land. Nothing like it
had happened before; nothing quite like it has happened since” [158]. The validity
of the Odd Order Theorem itself has never been really called into question, but
the story of the classification of finite simple groups has been much more uneven
and controversial, with notorious skeptics, including J. P. Serre [46]. As of today,
the confidence of mathematicians in this complex edifice still rests more upon the
reputation of the rare experts who are able to understand this composite proof in
extenso than on a genuine assimilation by the community.

In 2006, Georges Gonthier initiated a collective research effort for formalizing a
proof proof of theorem 2.1, and this endeavor would come to success 6 years later.
The motivation behind this project was not to track petty errors and holes in this
proof. The relevance of this proof as a case study for the formalization of math-
ematics, besides the significance of the result, is the broad spectrum of algebraic
theories in its prerequisite, like graduate-level linear and multilinear algebra, Galois
theory, representation theory and character theory of finite groups, constructions
of algebraic closures, etc. The challenge was hence to represent formally all the
mathematical objects that play a role in this proof: starting from the definition of
natural numbers, and covering the 250 pages of the proof, plus all the pre-requisite
in-between.

2.3.2 Overview

This section explains the vocabulary involved in Theorem 2.1 and give a bird-eye
view of the proof. Although we have already discussed a few concepts related to
finite group theory in Section 2.1.3, we recall here from scratch a few standard
notations.

A group G consists of a set, usually also named G, together with an associative
binary law ∗, usually denoted by juxtaposition, and an identity element 1, such that
each element g of G has an inverse g−1, satisfying gg−1 = g−1g = 1. When there is
no ambiguity, we identify an element g of a group with the corresponding singleton
set {g}. In particular the trivial group {1} is denoted by 1. The cardinality of
G is called the order of the group. Examples of finite groups include the cyclic
group Z/nZ of integers modulo n under addition, with identity 0; the set Sn of
permutations of {0, . . . , n− 1}, under composition; and the set of isometries of a
regular n-sided polygon. These examples have order n, n!, and 2n, respectively.
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The cartesian product G1×G2 of two groups G1 and G2 is canonically a group with
law (a1, a2) ∗ (b1, b2) := (a1b1, a2b2); the group G1×G2 is called the direct product
of G1 and G2. The law of an abelian group is commutative; in a non-abelian group
G, we only have ab = bab = ba[a, b], where ab := b−1ab is the b-conjugate of a, and
[a, b] := a−1b−1ab is the commutator of a and b. Product and conjugation extend
to subsets A, B of a group G, with AB := {ab | a ∈ A, b ∈ B} and Ab := {ab |a ∈
A}. A subset A of G is B-invariant when Ab = A for all b in B; in that case we
have AB = BA. One says that H is a subgroup of a group G, and writes H < G,
when H is a subset of G containing 1 that is closed under product and inverses –
thus itself a group. For finite H , H < G is equivalent to 1∪H2∪H∪G. The set of
subgroups of G is closed under intersection, conjugation, and commutative product
(such as product with an invariant subgroup). If G is finite and H < G,then the
order of H necessarily divides the order of G. It is not generally the case that for
each divisor of the order of G there exists a subgroup of G of this order, but if G
is a group of order n and p is a prime number dividing n with multiplicity k, then
there exists a subgroup of G having order pk, called a Sylow p-subgroup of G.The
notion of a normal subgroup is fundamental to group theory:

Definition 2.2 (Normal subgroup). H is a normal subgroup of a group G,denoted
H / G, when H is a G-invariant subgroup of G.

If H / G, the set {Hg | g ∈ G} of H-cosets is a group, as (Hg1)(Hg2) = H(g1g2).
This group, denoted G/H, is called the quotient group of G and H because it
identifies elements of G that differ by an element of H. If G1 and G2 are groups,
G1 and G2 are both normal in the group G1× G2. Every finite abelian group is
isomorphic to a direct product of cyclic groups Z/pk

i Z, where the pi are prime
numbers. The far more complex structure of non-abelian groups can be appre-
hended using an analogue of the decomposition of a natural number by repeated
division:

Definition 2.3 (Normal series, factors). A normal series for a group G is a se-
quence 1 = G0 / G1 · · · / Gn = G, and the successive quotients (Gk+1/Gk)0≤k<n
are called the factors of the series.

A group G is simple when its only proper normal subgroup is the trivial group 1,
i.e., if its only proper normal series is 1 / G. A normal series whose factors are all
simple groups is called a composition series. The Jordan-Hölder theorem states
that the (simple) factors of a composition series play a role analogous to the prime
factors of a number: two composition series of the same group have the same
factors up to permutation and isomorphism. Unlike natural numbers, however,
non-isomorphic groups may have composition series with isomorphic factors. The
class of solvable groups is characterized by the elementary structure of their factors:
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Definition 2.4 (Solvable group). A group G is solvable if it has a normal series
whose factors are all abelian.

Subgroups and factors of solvable groups are solvable, so by the structure theorem
for abelian groups, a finite group is solvable if and only if all the factors of its
composition series are cyclic of prime order. As a consequence of Theorem 2.1, a
finite simple group of odd order is both simple and solvable, and thus cyclic.

2.3.3 Proof sketch

This section is an excerpt from our article [81]. It uses more advanced concepts in
finite group theory, and can be safely skipped.

The proof of Theorem 2.1 proceeds by induction, showing that no minimal coun-
terexample G exists. At the outset G is only known to be simple, non-abelian of
odd order, but all proper subgroups of G should be solvable. The first half of the
proof exploits these meager facts to derive a detailed description of the maximal
proper subgroups of G, reducing the general structure of G to five cases. The sec-
ond half of the proof uses character norm inequalities to rule out four of these, and
extract some algebraic identities in a finite field from the last one. Galois theory
is then used to refute these, completing the proof.

The study of the (solvable) subgroups of G exploits their decomposition into prime
factors, reconstructing the structure of a maximal subgroup M from that of its p-
factors for individual primes p. An A-invariant subgroup H of M has a normal
series with A-invariant elementary abelian factors, that is, direct products of prime
cycles. Identifying each one with a vector space over a finite field Fp makes it
possible to analyze the action of A on H via the representations mapping A to a
group of matrices over Fp, and use linear algebra techniques such as eigenspace
decomposition. Indeed, the proof starts by showing that 2× 2 representations are
abelian, then that no representation of A has a quadratic minimal polynomial (this
replaces the use of the Hall-Higman theorem in [72]). This p-stability is combined
with Glauberman’s ZJ∗ factorization to establish a Uniqueness theorem (Chapter
II of [24]): any subgroup of rank 3 (containing an elementary abelian subgroup of
order p3) lies in a unique maximal subgroup of G.

Combining the Uniqueness theorem with results of Blackburn on odd groups of
rank 2 yields that any maximal subgroup M of G is a semi-direct product Mσ o E
with Mσ / M and Mσ, E of coprime order. Furthermore, very few elements of Mσ

and E commute – M is similar to a Frobenius group. Further analysis reveals that
most M are of type I: M is very nearly a Frobenius group, with Mσ equal to the
direct product MF of the normal Sylow subgroups of M. However some M can
be of type P, with M = MFUW1, where W1 is cyclic, UW1 is a Frobenius group,
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and all w1 in W1 commute precisely with the same cyclic group W2 < MF (W1
acts in a prime manner on MF). Type P is subdivided into types V, II, III or IV,
according to whether U is trivial, included in a different maximal group, abelian,
or non-abelian, respectively. If any, there are exactly two type P groups up to
conjugation, with W1 and W2 interchanged; at least one has type II, and over half
of the elements of G lie in conjugates of W = W1W2.

The second part of the proof [142] uses characters. The character of a complex
representation ρ : H 7→ GL(n, C) is the function mapping each h ∈ H to the trace
of ρ(h). In general, a character is not a group homomorphism, but it is a class
function, constant on conjugacy classes of H. Convolution over H makes the set
of class functions on a group H into a Hermitian space, for which the set irr H
of irreducible characters of H forms an orthonormal basis. Characters of H have
natural integer coordinates in irr H, hence an integral norm.

Local analysis provides us both with a precise description of the characters of a
maximal subgroup M, and an isometry mapping certain virtual characters of M
(differences of characters) to virtual characters of G. This Dade isometry is only
defined on functions that vanish on 1, so in order to extract usable information
on G one needs coherence theorems extending it to a set of proper characters.
The first, due to Sibley, covers Frobenius and type V maximal sub-groups, and
the second type II–IV subgroups. For any x ∈ irr G, coherence for a set (Mi) of
non-conjugate maximal sub-groups implies a numerical inequality bounding the
sum of the (Hermitian) norms of the inverse images of the restrictions of x to the
support of the image of the Dade isometries for the Mi, and the (complex) norms
of the values of x elsewhere. For types III–V this bound yields a non-coherence
theorem, which successively eliminates types V and IV; this implies that type I
groups are actually Frobenius, and then the coherence bound forces type P groups
to exist.

More inequalities then force the MF, U, and W1 subgroups of the type P groups to
be isomorphic to the additive, unitary multiplicative, and Galois groups of a finite
field Fpq of order pq, then rule out type III, and imply that U is Wy

2 -invariant for
some y ∈ HF, where H is the other type II group such that W1 < HF. Intricate
calculations show that this implies that if a ∈ Fpq and 2− a both have Galois

norm 1, then so does τ(a) := 2− 1/a, and hence τ(a)...τk(a) = (1− 1/a)k + 1;
for a 6= 1 the Galois norm of (1− 1/a)x + 1 yields a polynomial of degree q which
has 0, . . . , p − 1 as roots, whence q ≤ p and hence q = p by symmetry, so the
orders of MF and E > W1 are not coprime, a contradiction.
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2.3.4 Formalization of the statement

The source code devoted to the verification of the two volumes, respectively by
Bender and Glauberman [24] and Peterfalvi [142], represents 40633 lines of code,
comments included (6% of the code, on average). Each chapter of each of the
two aforementioned books corresponds to one file in the archive: the material in
chapter 1 of Bender and Glauberman’s book is formalized in file BGsection1.v (and
so on for the 16 chapters), the one of chapter 1 of Peterfalvi’s book is formalized
in file PFsection1.v (and so on for the 14 chapters). Comments keep track of the
correspondence between lemma numbering in the paper proof and formal state-
ments. The complete source code is available online and maintained to keep up
with the evolution of Coq and of the Mathematical Components library.

The final statement of the theorem, to be found in file PFsection14 is the following:

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :

odd #|G| -> solvable G.

The statement involves the fingroupType group domain type mentioned in Sec-
tion 2.1.3, and quantifies over (finite) groups with an arbitrary group domain type.
For the skeptical, a stripped version of the formal statement provides a wording of
the same result which does not make use of any advanced elaboration feature of
the Coq proof assistant, like notations, implicit argument, etc.

Theorem stripped_Odd_Order T mul one inv

(G : T -> Type) (n : natural) :

group_axioms T mul one inv -> group T mul one inv G ->

finite_of_order T G n -> odd n ->

solvable_group T mul one inv G.

In fact, this statement does not even use the prelude of Coq, i.e. the set of libraries
silently and automatically loaded by the proof assistant when a session is open. In-
stead, the file where it is stated also contains copies of the inductive types involved
in the definitions, which would usually be retrieved from this prelude, like equality
or Peano natural numbers. In this version, a (finite) group G is formalized as the
characteristic function of a collection of elements in a pointed type T, equipped
with a binary operation (for the product) and a unary one (for the inverse). The
group_axioms predicate ensures that the product is associating and that the inverse
is a left and right inverse o the latter. The group predicate ensures that G con-
tains the unit and is closed under inverse and product. Finally the finite_of_order

predicate states that G is finite of cardinal n. Solvability is defined inductively,
from the definition of an abelian factor. The definition of this stripped version, as
well as its proof from the one of the previous version, takes about 210 lines of code
in total.
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2.4 Deep-embedding

This section focuses on the usage of deep-embedding, also called reification tech-
niques, in the Mathematical Components libraries, in some parts rather specific to
the proof of the Odd Order theorem. Maybe more than in any other part of this
memoir, my contribution to the work presented in this section is more in the de-
scription and documentation of the existing, than in the actual formalization work.
However, I chose to mention this topic because it provides a nice application to
the material presented in Section 2.2, but also, incidentally, because it echoes to
my first publication in interactive theorem proving [87], which used reification
techniques for large scale, formal-proof producing, automated proving.

2.4.1 Deep-embedding and constructive proofs

The variant of proof of the Odd Order Theorem formalized in this work relies
on nothing but the axioms and rules of the Calculus of Inductive Constructions
implemented by Coq3. In particular, this variant, as well as all the theories it
depends on, is constructive. Apart from the fact that reasoning by contradic-
tion is not available on arbitrary statements, this perspective is however mostly
visible in the lowest layers of the libraries. Some of these layers would just van-
ish in a non-constructive context. For instance, in the presence of a global and
sufficiently strong choice axiom, the structure for types equipped with a choice
operator present in the hierarchy would be vacuous, for it would endow any type.

In this proof, each usage of a choice principle can be reduced to choice over a
countable (possibly finite) type, a variant of choice axiom which is provable in the
dependent type theory implemented by Coq.

An obvious deviation from the standard literature induced by a constructive view-
point is the increased precision needed for describing real and complex numbers.
Number fields, and more generally sub-fields of C, come into play in the proof when
representation theory is used to study the characters of the postulated minimal
counter example. In fact, in this proof, any occurrence of C can be harmlessly, and
usefully, replaced by the algebraic closure Q̃ of Q. Equality is decidable for points
in Q̃, and in fact its full ring first-order theory is decidable, as it is an algebraically
closed field. This motivated a formal construction of Q̃, due to Georges Gonthier.
The construction is performed in two stages. First comes a construction of an
algebraically closed field equipped with an order 2 field automorphism:

Theorem Fundamental_Theorem_of_Algebraics :

3Actually, it uses a strict subset of the features available in Coq and does not rely, e.g., on
co-inductive types nor on universe polymorphism.
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{L : closedFieldType &

{conj : {rmorphism L -> L}| involutive conj & ~ conj =1 id}}.

This statement provides an actual witness of closed field L and a ring endomorphism
conj which is is involutive but not the identity. Then, Q̃ is constructed as a partially
ordered sub-field of the latter, in which the order 2 field automorphism plays the
expected conjugation role:

Variables (L : closedFieldType) (conj : {rmorphism L -> L}).

Lemma ComplexNumMixin :

involutive conj -> ~ conj =1 id ->

{numL : numMixin L |

∀ x : NumDomainType L numL , ‘|x| ^+ 2 = x * conj x}.

This statement is parameterized by a closed field L and an order 2 automorphism,
and provides a witness of partially ordered subfield with an absolute value, which
behaves as expected regarding conjugation.

Note that this closure construction applies in fact to any field with a countable
number of inhabitants, and a decidable equality. Recently, Paulo Emı́lio de Vilhena
and Lawrence C. Paulson have formalized the general construction of the algebraic
closure in the classical setting of the Isabelle/HOL proof assistant [60].

Once constructed, by applying the previous construction to the type of rational
numbers, the field Q̃ benefits from the formalized quantifier elimination procedure
for algebraically closed fields, described in Section 2.2, and thus from the proof of
decidability of first order statements in the language of rings with constants in Q̃.
As a consequence, it is possible to reason constructively by case analysis on the
validity or a properties which can be expressed in this language.

A concrete example where this is useful is the definition of socles, for represen-
tations of finite groups: this definition involves testing submodules for simplicity
with respect to a given representation r. By definition, an r-submodule is a module
invariant under r, and it is said to be simple if it is minimal with respect to this
stability property. Simplicity can be expressed as a first order statement, and thus
formalized as a boolean term if the corresponding first theory is decidable 4. This
is the case for a modular representation, because the language is the first order
theory of a finite field, but also in our setting for a complex representation, since
Q̃ can be taken as the base field.

Below is a brief illustration of this formalization pattern with an excerpt of the
library mxrepresentation. Consider a finite dimensional vector space U over a field
F, of dimension smaller than n, and a representation rG of a finite group G into

4We only consider modules of finite type here.
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square matrices of size n × n and coefficients in F. The definition mxnonsimple,
in sort Prop, states that U has a non-trivial strict rG-submodule. Now the term
(mxnonsimple_form rG (mx_term U)) is a reified, quantifier free, version of the same
statement, as deep-embedded first-order formula. When the field F moreover has
a decidable first-order theory, the satisfiability of the latter formula is a boolean
value, and this is the definition mxnonsimple_sat. Finally, lemma mxnonsimpleP es-
tablishes the equivalence of the two versions for a non-trivial module U. The term
mxnonsimple_sat is thus a “decision procedure” for testing the presence of a simple
rG-submodule in a non-trivial module U.

Variables (F : decFieldType) (n : nat) (U : ’M_n(F)).

Variables (G : {group gT}) (rG : mx_representation F G n).

Definition mxnonsimple : Prop := ∃ V : ’M_n ,

[&& mxmodule rG V, (V <= U)%MS, V != 0 & \rank V < \rank U].

Definition mxnonsimple_sat : bool :=

GRing.sat (@row_env _ (n * n) [::])

(mxnonsimple_form rG (mx_term U)).

Lemma mxnonsimpleP :

U != 0 -> reflect mxnonsimple mxnonsimple_sat.

This wording allows to prove that any non-trivial rG-module U has a simple rG-
submodule by (induction on the rank of U and) case analysis on the simplicity of
U, as one would expect.

In other cases, first-order decidability fails, notably for the first order theorem of
the rationals and for that of number fields. As a result, we elected not to rely on
this interface for some basic results in the theory of group modules, that cannot be
proved constructively. Instead, we proved their double negation, expressed using
a classically monadic operator [80, 138]:

Definition classically (P :Prop) : Prop :=

∀ b : bool , (P -> b = true) -> b = true.

The statement (classically P) is logically equivalent to (~~ P), but this formu-
lation is more handy in practice, because when using a hypothesis of the form
(classically P) in the proof of a statement expressed as a boolean (i.e., on which
excluded middle holds), one can constructively assume that P itself holds. Here
is an example of such a classical result, which asserts the existence of simple sub-
module V (in fact, a vector space) for any non trivial subspace U of Kn, with K
an arbitrary field:

Variables (K : fieldType) (n : nat).

Lemma mxsimple_exists (m : nat) (U : ’M_(m, n)) :
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mxmodule U -> U != 0 ->

classically (exists2 V, mxsimple V & V <= U)%MS.

2.4.2 Deep embedding and group presentations

We have seen how to make use of a deep embedding of first-order logic to justify
the use of excluded middle on the evaluation of a reified statement. This nature
of quotation finds another application in the formalization of groups defined by
presentations. Presentations are mainly useful for the study of a class of finite
groups coined extremal p-groups, which are non-abelian with a cyclic maximal
subgroup, in which the order of every element is a power of the prime p. A
structure theorem provides a classification of extremal p-groups into four families
(modular, dihedral, generalized quaternion and semi-dihedral). In particular, for
each family, the theorem provides a presentation describing the groups in this
family.

Presentations of groups appear in two different guise. The first one considers
presentations as constructing a group by quotient of a free group by relations.
Here we follow Aschbacher’s Finite Group Theory [13], but for the notations. For
any cardinality C, there is, up to isomorphism, a unique free group with a free
generating set of cardinal C. Then, if Y is a set distinct symbols, and W a set of
words on alphabet Y ∪Y−1, then one writes 〈Y | W〉 for “the” group F/N, where
F is the free group generated by Y and N is the normal subgroup of F generated
by the subset W. The group 〈Y | W〉 is thus the group generated by Y, subject
to the relations w = 1 for w ∈ W, otherwise said, the largest group generated by
Y in which w = 1 for each w ∈W. When a group has a presentation with a finite
set of generators and relators, then it is said to be finitely presented, and we will
only consider such finite presentations below. But even in this finitary setting, the
construction of a group with a given presentation is not effective. In fact, whether
two finitely presented groups are isomorphic or not, as well as whether or not a
given presentation is that of trivial groups, is undecidable [6, 145].

However, for the purpose of stating, proving and using theorems akin to the clas-
sification of extremal p-groups, this lack of effectivity is however irrelevant, as pre-
sentations are merely used in this context to describe a property for pre-existing
groups. Following the same reference by Aschbacher [13], a presentation for a
group G is a set Y of generators of G, together with a set W of words on alphabet
Y ∪ Y−1, such that the relation w = 1 is satisfied in G for each w ∈ W, and the
natural homomorphism of 〈Y | W〉 onto G is an isomorphism. In this case, one
writes:

G = 〈Y | W〉
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For instance for any group G, 〈g ∈ G, xy(xy)−1〉 is a presentation for G. Perhaps
more interesting, the family of dihedral groups of order 2n, denoted D2n also enjoy
a simple presentation. The group D2n, is defined as the semi-direct product of a
cycle 〈r〉 of order n with a cycle 〈s〉 of order 2, via the automorphism ϕs(r) = r−1.
The group D2n can also be seen as the set of isometries leaving a regular n-sided
polygon invariant, in which case r corresponds to a rotation of angle 2π

n , and s to
a reflection. It is easy to see that D2n is presented as:

〈x, y | xn, y2, srsr−1〉

The presentation Coq library only formalizes this second usage, which views the
statement:

G = 〈Y | W〉
as a predicate on groups, here applied to a concrete group G. The formal definition
of this predicate is built from two inductive data structures, respectively for pro-
viding the language used to provide relators, and for the corresponding formulas,
which are just iterated conjunctions of equalities between terms:

Inductive term :=

| Cst of nat

| Idx

| Inv of term

| Exp of term & nat

| Mul of term & term

| Conj of term & term

| Comm of term & term.

Note that the language for reified terms is not at all minimal, as it rather intends
to offer a convenient language for the user to describe relators. Now a presentation
is given by a formula, which lists its defining relations:

Inductive formula :=

Eq2 of term & term | And of formula & formula.

The language of formula slightly deviates from Aschbacher’s definition, in that it
allows to define relators as equations between terms, rather than imposing one of
the terms to be the neutral element.

Given a group domain (gt : finGroupType), and a list e of points in this domain
used as a context for interpreting constants, any term (t : term) can be interpreted
as a point in gT via the following straightforward evaluation function, defined by
induction on the syntax of the term:

Variable (gT : finGroupType).

Fixpoint eval (e : seq gT) (t : term) : gT :=
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match t with

| Cst i => nth 1 e i

| Idx => 1

| Inv t1 => (eval e t1)^-1

| Exp t1 n => eval e t1 ^+ n

| Mul t1 t2 => eval e t1 * eval e t2

| Conj t1 t2 => eval e t1 ^ eval e t2

| Comm t1 t2 => [~ eval e t1, eval e t2]

end.

and a boolean test for the validity of a given formula in a given subset of a group
domain is built from this evaluation function.

The presentation of dihedral groups D2q, for q > 1, is formalized as:

Variable q : nat.

Hypothesis q_gt1 : q > 1.

Let m := q.*2. (* m := 2 * q *)

Lemma Grp_dihedral :

’D_m \isog Grp (x : y : (x ^+ q, y ^+ 2, x ^ y = x^-1)).

Proof. ... Qed.

where the notation ’D_m refers to the explicit construction by semi-direct products
of Z/qZ by Z/2Z. This sentence seemingly overloads the infix notation for
isomorphism of finite groups (using a dedicated scope). But in fact, the notation
refers to the predicate

_ \isog Grp (x : y : (x ^+ q, y ^+ 2, x ^ y = x^-1))

which is built from a reified presentation formula, and from its evaluation. In fact,
the statement of lemma Grp_dihedral unfolds to the following formula:

∀ (rT : finGroupType) (H : {group rT}),

(H \homg ’D_m) =

(H \homg Grp (x : y : (x ^+ q, y ^+ 2, x ^ y = x^-1)))

where the two occurrences of the infix \homg notation refer to two different accepta-
tions. The one in the left hand-side, (G \homg ’D_m), refers to the existence of a ho-
momorphism from H to ’D_m. The one in the right hand-side, (H \homg Grp (x : y : (x ^+ q, y ^+ 2, x ^ y = x^-1))),
overloads the latter, and unfolds to the following boolean expression:

[∃ t : rT * rT, let: (r, s) := t in

[&& (<[r]> <*> <[s]> == H) ,

(r ^+ q == 1), (s ^+ 2 == 1) & (r ^ s == 1)]

]

which tests the presence in the finite type rT of two points r and s, such that H is
equal as a set to the subgroup generated by r and s, and such that the expected
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equations hold. The presentation holds if and only if these two acceptations are
equivalent, that is, if the two corresponding boolean values are equal for any H.

2.5 Conclusion and perspectives

This chapter provided a very partial and biased selection of topics related to
the Mathematical Components library. The Mathematical Components eponymous
book [126] provides a more in-depth description of the design patterns that are
adopted in a uniform way throughout the library. However, a more thorough de-
scription of the formalized mathematical theories available in this library, easier
to crawl than the existing collection of header comments, is still missing from the
picture. This nature of documentation is in fact quite difficult to design for Coq
libraries, and, more importantly, hard to maintain. In this respect, the documen-
tation of the mathlib library [3] for the Lean proof assistant represents the state
of the art, although the library is arguably much younger. The Archive of For-
mal Proofs (AFP) of the Isabelle/HOL proof assistant provides another successful
model of long-lasting collaborative and curated development, which is “organized
in the way of a scientific journal”5 and provides accompanying documentation and
citation facilities for each of its entries.

One of the delicate issues to be addressed when designing such a large corpus of
formalized mathematics is the one of abstraction and modularity. In particular, it
is crucial to devise a working hierarchy of structures, for abstract algebra, which
can be populated with as many instances as needed. The tools of the trade are
tied to the underlying logical formalism and we have focused here on the case of
dependent type theory, although there is a related literature for systems based on
other foundations, notably HOL [17, 89, 101]. For the proof of the Odd Order
theorem, using packed classes [78] in a systematic proved a successful approach:
incidentally, Galois theory represents an interesting test case for a hierarchy as
reasoning with field extensions superposes ingredients from commutative algebra
and from linear algebra on a same carrier type. Less bundled approaches, like the
one advocated by the MathClasses library [161] can trigger difficult efficiency and
control issues. Yet a serious limitation of the current hierarchy implemented in
the Mathematical Components library is the fact that it is very difficult to modify
and to extend: the size of the required boilerplate code corresponding to an addi-
tional node in the graph of structures grows rapidly, and error messages are quite
difficult to interpret in case of mistake. Recent contributions for debugging [154]
hierarchies based on packed classes, and for generating [52] the corresponding code
to a newly added structure should significantly improve the situation. But more

5https://www.isa-afp.org/
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satisfactory implementations might only be possible from a better understanding
of the formalization of categories in dependent type theory.

As such, the Mathematical Components library has nonetheless been used by users
outside the development team as a backbone library for a wide range of ap-
plications in real algebraic geometry [63], robotics [150], verified probabilistic
data-structures [84], combinatorics6, graph theory [64], discrete geometry [9], etc.
Among the future directions of work that would help making this range of appli-
cations even wider are the improvement of automation and the implementation
of additional consolidated formalized volumes for undergraduate real and complex
analysis.

6https://github.com/hivert/Coq-Combi
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Chapter 3

Symbolic computations

3.1 Proofs by symbolic computations

According to the reference textbook by Bostan et al. [35], symbolic computation,
or computer algebra, “studies exact mathematical objects, from a computer science
viewpoint. In this context, exact means that the theories of interest are mainly
equational, i.e., express identities rather than estimations. And a computer science
viewpoint focuses on effective methods, on the study of their complexity, and on the
design of optimal algorithms.”1 From the late 60s on, symbolic computation gained
traction, and eventually emerged as a scientific area of its own, getting fame with
the Risch algorithm [148] for indefinite integration. It gradually provided efficient
computer implementations and got attention in experimental mathematics. Beside
commutative algebra, differential and recurrence equations have remained a central
research topic of computer algebra over the years.

In order to operate on sequences (or more generally on functions), computer al-
gebra substitutes implicit representations for explicit representations in terms of
named sequences (factorial, binomial, etc): Bruno Salvy’s survey [156] provides a
panorama of this fertile viewpoint. In this vein, ∂-finite functions (and sequences)
provide an emblematic example of algebraic objects which enjoy nice algorith-
mic properties, while encoding interesting properties for a rather large class of
functions. Roughly speaking, ∂-finite sequences (resp. functions), are solution of a
linear recurrence (resp. differential) system, with polynomial coefficients. Notably,
the finiteness property of their definition makes algorithmic most operations un-
der which the class of ∂-finite sequences is stable. See for instance Manuel Kauers’
survey for an introduction to the topic [111].

1Original text in French, translation is mine.
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Symbolic computations can go as far as providing proofs, and sometimes even
provide the sole known proofs of some results: a notable example being the proof by
computer algebra of the q-TSPP conjecture, proved by Manuel Kauers, Christoph
Koutschan and Doron Zeilberger [113]. The latter author is indeed a notorious
advocate of computer-generated proofs. His book on the topic [143], co-authored
with Marko Petkovsek and Herbert Wilf, contains elegant recipes to establish
combinatorial identities“by computer algebra”, in particular those involving hyper-
geometric sequences, which are a particular case of ∂-finite sequences.

This chapter illustrates an application of symbolic computation on ∂-finite se-
quences to a famous problem in number theory. The computations involved in
this computer proofs have the pleasant feature to be easy to check a posteriori,
either by a normalization procedure, possibly with the help of certificates output
by the algorithms at stake. This feature was part of the motivation for starting
a formal verification of this nature of calculation: it was an appealing perspective
to have the expensive exploration of search space performed by efficient computer-
algebra programs, and to be able to control the amount of formally verified com-
putation needed for a completely verified proof. As discussed in the corresponding
publication [47], the formal proof is a standalone collection of Coq source files, but
some of them have been generated by the Maple/Algolib computer algebra system,
and manually annotated with extra information (provisos for recurrence relations)
needed for a complete proof.

3.2 A formal proof of Apéry’s theorem: context

In 1978, Roger Apéry proved that ζ(3) := ∑∞
i=1

1
i3 , now known as the Apéry con-

stant, is irrational. This result was the first dent in the problem of the irrationality
of the evaluation of the Riemann ζ function at odd positive integers. As of today,
this problem remains a long-standing challenge of number theory. Rivoal [149] and
Zudilin [184] showed that at least one of the numbers ζ(5),ζ(7),ζ(9), and ζ(11)
must be irrational. Fischler, Sprang and Zudilin have proved that many odd zeta
values are irrational [76]. But today ζ(3) is the only one known to be irrational.

Van der Poorten [174] reports that Apéry’s announcement of this result was at
first met with wide skepticism. His obscure presentation featured “a sequence
of unlikely assertions” without proofs, not the least of which was an enigmatic
recurrence (Lemma 3.4) satisfied by two sequences a and b. It took two months
of collaboration between Cohen, Lenstra, and Van der Poorten, with the help of
Zagier, to obtain a thorough proof of Apéry’s theorem:

Theorem 3.1 (Apéry, 1978) The constant ζ(3) is irrational.
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There exist today several other proofs of Apéry’s theorem, notably a concise and
elegant proof by Fritz Beukers [29], published shortly after Apéry’s announcement.
This gallery includes several computer proofs, which use runs of computer algebra
algorithms to synthesize part of the argument. This approach was initiated by
Zeilberger [182], illustrating the potential of his creative telescoping algorithms [48].

Today, a complete formal proof of this theorem is available, formalized using the
Coq proof assistant and the Mathematical Components libraries [126]. This formal-
ization follows the structure of Apéry’s original proof. However, symbolic compu-
tations replace the manual verification of recurrence relations, via an automatic
discovery of these equations. More precisely, Maple packages perform calculations
outside the proof assistant, and the resulting claims are verified a posteriori, using
Coq. A complete (and constructive) formal proof of Theorem 3.1 follows from
combining the latter verified claims with some additional formal developments.
The formal statement of this theorem, in Gallina, is:

Theorem zeta_3_irrational : ~ (exist r : rat , z3 == r%:CR).

where z3 is the formal definition of the real number ∑∞
i=1

1
i3 .

3.3 Overview of the proof

According to Stéphane Fischler’ survey [75], all known proofs of Apéry’s theorem
share a common structure. They rely on the asymptotic behavior of the sequence
`n, the least common multiple of integers between 1 and n, and they proceed by
exhibiting two sequences of rational numbers an and bn, which have the following
properties:

1. For a sufficiently large n:

an ∈ Z and 2`3
nbn ∈ Z;

2. The sequence δn = anζ(3)− bn is such that:

lim sup
n→∞

|2δn|
1
n ≤ (

√
2− 1)4;

3. For an infinite number of values n, δn 6= 0.

Altogether, these properties entail the irrationality of ζ(3). Indeed, if we sup-
pose that there exists p, q ∈ Z such that ζ(3) = p

q , then 2q`3
nδn is an integer

when n is large enough. One variant of the Prime Number theorem states that
`n = en (1+o(1)) and since (

√
2− 1)4e3 < 1, the sequence 2q`3

nδn has a zero limit,
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which contradicts the third property. Actually, the Prime Number theorem can
be replaced by a weaker estimation of the asymptotic behavior of `n, that can be
obtained by more elementary means.

Lemma 3.2 Let `n be the least common multiple of integers 1 . . . n, then

`n = O(3n).

Since we still have (
√

2− 1)433 < 1, this observation [91, 73] is enough to conclude.

In our formal proof, we consider the pair of sequences proposed by Apéry in his
proof [12, 174]:

an =
n

∑
k=0

(n
k)

2
(n+k

k )
2
, bn = anzn +

n

∑
k=1

k

∑
m=1

(−1)m+1(n
k)

2
(n+k

k )
2

2m3(n
m)(n+m

m )
(3.1)

where zn denotes ∑n
m=1

1
m3 , a sequence obviously converging to ζ3.

By definition, an is a positive integer for any n ∈N. The integrality of 2`3
nbn is not

as straightforward, but rather easy to see as well: each summand in the double
sum defining bn has a denominator that divides 2`3

n. Indeed, after a suitable
re-organization in the expression of the summand, using standard properties of
binomial coefficients, this follows easily from the following slightly less standard
property:

Lemma 3.3 For any integers i, j, n such that 1 ≤ j ≤ i ≤ n, j(i
j) divides `n.

Proof This can be obtained as a direct corollary of a classical formula for the
p-valuation of the factorial n!, for p a prime number and n ∈N:

vp(n!) =

⌊
logp n

⌋
∑
i=1

⌊
n
pi

⌋
.

Indeed, observe that for any prime p, the p-valuation of j(i
j) is smaller than the

one of `n. �

The rest of the proof is a study of the sequence δn = anζ(3)− bn. It is easy to see
that δn tends to zero, from the formulas defining the sequences a and b, but we
also need to prove that it does so fast enough to compensate for `3

n, while being
positive. In his original proof, Apéry derived the latter facts, positivity and limit
of δn, by combining the definitions of the sequences a and b with the study of the
mysterious recurrence relation (3.2). Indeed, he made the surprising claim that
Lemma 3.4 holds:
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Lemma 3.4 For n ≥ 0, the sequences (an)n∈N and (bn)n∈N satisfy the same
second-order recurrence:

(n + 2)3yn+2 − (17n2 + 51n + 39)(2n + 3)yn+1 + (n + 1)3yn = 0. (3.2)

Equation 3.2 is a typical example of a linear recurrence equation with polynomial
coefficients and standard techniques [155, 174] can be used to study the asymptotic
behavior of its solutions. Using this recurrence and the initial conditions satisfied
by a and b, one can thus obtain the two last properties of Fischler’s criterion, and
conclude with the irrationality of ζ(3). The formal proof relies on a simplified
version of this asymptotic study, essentially a variant of the presentation by van
der Poorten [174].

Note that using Equation 3.2 alone, even with sufficiently many initial conditions, it
would not be easy to obtain the first property of our criterion, about the integrality
of an and bn for a large enough n. In fact, it would also be difficult to prove that
the sequence δ tends to zero: we would only know that it has a finite limit, and
how fast the convergence is. By contrast, it is fairly easy to obtain these facts from
the explicit Formulas 3.1.

The proof of Lemma 3.4 was by far the most difficult part in Apéry’s original
exposition. In his report [174], van der Poorten describes how he, with other
colleagues, devoted significant efforts to this verification, after having attended
the talk in which Apéry exposed his result for the first time. But in the end,
the proof of Lemma 3.4 actually amounts to a routine calculation using the two

auxiliary sequences Un,k and Vn,k, themselves defined in terms of λn,k = (n
k)

2
(n+k

k )
2

(with λn,k = 0 if k < 0 or k > n):

Un,k = 4(2n + 1)(k(2k + 1)− (2n + 1)2)λn,k,

Vn,k = Un,k

(
n

∑
m=1

1
m3 +

k

∑
m=1

(−1)m−1

2m3(n
m)(n+m

m )

)

+
5(2n + 1)k(−1)k−1

n(n + 1)

(
n
k

)(
n + k

k

)
The key idea is to compute telescoping sums for U and V. For instance, we have:

Un,k −Un,k−1 = (n + 1)3λn+1,k − (34n3 + 51n2 + 27n + 5)λn,k + n3λn−1,k (3.3)

Summing Equation 3.3 on k shows that the sequence a satisfies the recurrence
relation of Lemma 3.4. A similar calculation proves the analogue for b, using
telescoping sums of the sequence V.
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Not only is the statement of Formula 3.2 difficult to discover: even when this
recurrence is given, finding the suitable auxiliary sequences U and V by hand is a
difficult task. Moreover, there is no other known way of proving Lemma 3.4 than
by exhibiting this nature of certificates.

Fortunately, the sequences a and b belong in fact to the class of objects discussed
in Section 3.1 and are thus amenable to a proof by symbolic computation. Basing
on the the Maple package Mgfun (distributed as part of the Algolib [8] library),
Salvy wrote a Maple worksheet [155] that follows Apéry’s original method but in-
terlaces Maple calculations with human-written parts. In particular, this worksheet
illustrates how parts of this proof, including the discovery of Apéry’s mysterious
recurrence, can be performed by symbolic computations. The formal proof of
Lemma 3.4 follows an approach similar to the one of Salvy. It is based on calcu-
lations performed using the Algolib [8] library, and formally verified a posteriori
using the Coq proof assistant. However, it turned out that the recurrences gener-
ated by the computer algebra program were not sufficient to provide complete proof
of the desired formulas: the algebraic data produced by Maple, which represent
recurrence operators, have to be annotated a posteriori with provisos excluding
some values from the recurrence relations. Moreover, as of today these provisos are
difficult to produce algorithmically, and are thus input manually, after a human
inspection (see the corresponding paper for more details [47]).

3.4 Numbers and Types

The formal verification is conducted with the Coq proof assistant, and does not
feature any unproved assumption: it only relies on the axioms of the logic under-
lying Gallina. In particular, mathematical objects are described using dependent
type theory, and the proof is entirely constructive. We take again here the formal
statement of Apéry’s theorem given at the end of section 3.2:

Theorem zeta_3_irrational : ~ (exist r : rat , z3 == r%:CR).

In this statement, rat is a type representing rational numbers, as pairs of co-prime
integers. Type CR models real numbers, as the total setoid [31, 21] of Cauchy
sequences with an explicit effective modulus of convergence, equating by relation
(_ == _) the sequences with the same limit. For now on, real numbers refers to this
definition. The postfix notation _%:CR refers to an embedding of rational numbers
into real numbers. The constant z3 is the real number associated with the Cauchy
sequence (∑n

1
1

n3 )n∈N. This theorem thus states that the real number z3 cannot
be equivalent, as a Cauchy sequence, to any rational real number.
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This formal statement gives an indication of one of thorny issues of formalizing
mathematics in type theory: a set-theoretic flavor of the same sentence would
simply be:

ζ(3) /∈ Q

Yet, when formalizing this statement in type theory, one has to attach a type for
each of the numbers it mentions. Thus, in the type-theoretic version, the constant
ζ(3) is represented as a term with type the one of real numbers. As no subtyping
can play the role of the inclusion of rationals into real numbers, the reals that
are rational numbers are represented effectively, as the image of a function from
the (type of) rationals to real numbers: this function is what the postfix notation
_%:CR denotes. The formal libraries for this proof make use of the following sets of
numbers:

N ⊂ Z ⊂ Q ⊂ R

each of which is represented by a different type. Each inclusion symbol in the
chain is associated with an explicit embedding function: N is represented using
the classic inductive data type for Peano, unary representation, and Z as a two-
constructor inductive, for two copies of the latter: one for non-negative integers
and one for the negative ones. The first constructor of this type provides the
embedding N ⊂ Z. Then, a generic construction embeds a copy of the (initial)
ring Z into any instance of ring, and in particular into the type Q of rational
numbers. Finally, the type R of real numbers embeds a copy of Q, the (equivalence
classes of) constant sequences with a rational value. Note that in fact, in a small
number of statements related to the estimation of asymptotic behaviors, like in
the proof of Lemma 3.2, we also use a type of complex algebraic numbers. An
explicit cast can turn a rational number into a complex algebraic number, but of
course no such cast exist for arbitrary real numbers.

While typing casts and typing constraints are key to implementing powerful generic
notations, these explicit embedding can become tricky to work with. For instance,
generic casts like the embedding of Z in any instance of ring cannot be declared
as coercions, if only because they do not meet the syntactic requirements imposed
by Coq. They should thus be inserted by hand, and have to be explicitly displayed
in formulas: the postfix notation _%:CR is thus an attempt at a lightweight dis-
play of an information most often left implicit on paper. On the other hand, the
embedding N ⊂ Z can and is declared as a coercion, automatically and silently
inserted by Coq. Unfortunately, this does not imply an automated management
of morphism identities: in the worst cases, two non-convertible expressions can
be displayed exactly the same, which can significantly hamper the diagnostic of
errors.
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As a rule of thumb, it is highly recommended to carefully chose the (super)-type
annotating the quantified variables in given formula, so as to limit the number
of explicit casts. But sometimes, these casts cannot be avoided: notably in the
definition of recurrence relations like Equation 3.2, and even more so when these
relations have provisos. They involve polynomial expressions in the indices, whose
evaluations are rational values. The indices really are integers, and thus have to
be casted in the type of rationals when describing the values of these coefficients.

Besides the aforementioned cooperation between a proof assistant and a computer
algebra system, a substantial part of the formal development is devoted to the proof
of Lemma 3.2. This lemma describes the asymptotic behavior of the sequence
(`n)n∈N, of the least common multiple of integers between 1 and n. For this
purpose, we have formalized an elementary proof due to Hanson [91], following a
suggestion by Alin Bostan.

In Hanson’s short note [91], Lemma 3.2 follows from the study of another sequence,
defined as a multinomial coefficient from the elements of a fast-growing sequence

α. For this sequence, the fact that ∏n
i=1 α

1/αi
i < 3 independently of n then allows

to show that C(n) = O(3n). More precisely, the sequence (αn)n∈N is defined as
α1 = 2, and αn+1 = α1α2· · · αn + 1 for n ≥ 1. By an induction on n, this is
equivalent to αn+1 = α2

n − αn + 1. For n, k ∈N, let

C(n, k) =
n!

bn/α1c!bn/α2c!· · · bn/αkc!
.

As soon as αk ≥ n, C(n, k) is independent of k and we denote C(n) = C(n, k) for
all such k. Now the bulk of the proof consists in showing the following majorization
for C(n, k):

Lemma 3.5 Let k ≥ 1, n ∈N. If αk ≤ n,

C(n, k) <
nn(10 n

α1
)

α1−1
α1 (10 n

α2
)

α2−1
α2 · · · (10 n

αk
)

αk−1
αk(

10 n
α1

) 10 n
α1
(

10 n
α1

) 10 n
α1 · · ·

(
10 n
αk

) 10 n
αk

.

The proof of Lemma 3.5 itself combines two ingredients. The first one is an aux-
iliary majorization of (n, k):

Lemma 3.6 For k ≥ 1 and n ≥ 2,

C(n, k) <
nn

b n
α1
cb

n
α1
c· · · b n

αk
cb

n
αk
c .
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The proof of this first ingredient essentially boils down to properties of multinomial
coefficients, like Relation 3.4, which holds for m and the mi (not all zero) non-
negative integers and m = m1 +· · ·+ mk:

(m1 +· · ·+ mk)
m ≥

(
m

m1,· · · , mk

)
mm1

1 · · ·m
mk
k . (3.4)

Relation 3.4 is obvious from the fact that for n, k1,· · · , kl ∈N and n = k1 +· · ·+
kl, the multinomial coefficient ( n

k1,···,kl
) is the coefficient of xk1

1 · · · x
kl
l in the formal

expansion of (x1 +· · ·+ xl)
n. This remark can in fact be taken as a definition

of multinomial coefficients. When it is not the case, the corresponding formula is
called the multinomial theorem. In the formal libraries, ( n

k1,···,kl
) is defined as the

product
l

∏
i=1

(k1+···+ki
ki

). The main reason for this choice is to provide for free the

fact that multinomial coefficients are integers:

Definition multinomial (l : seq nat) : nat :=

\prod_(0 <= i < size l) binomial (\sum_(0 <= j < i.+1) l_j) l_i

Note that the argument of the function is just a list of numbers: in the notation
( n

k1,···,kl
) , the sum n is a redundant data, and the index l is the length of the list.

Here is the statement of the multinomial theorem formula, for n, m ∈ N and
x1, . . . xs in a commutative ring:

(x1 + . . . xs)
n = ∑

t1+...ts=n

(
n

t1, . . . , ts

)
xt1

1 . . . xts
s

Its formal account is quantified over a sequence l, representing x1, . . . xs, and the
formal \sum_(x <- l)x) ^+ n is for (x1 + . . . xs)n:

Lemma generalNewton (l : seq R) (n m : nat) (s := size l) :

(n <= m)%N ->

(\sum_(x <- l) x) ^+ n =

\sum_(t : s.-tuple I_m.+1 | (\sum_(i <- t) i) == n)

(multinomial (tmap_val t))%:R * monomial l (tmap_val t).

One of the technical issues here lies in the specification of the summation domain in
the right hand-side. In the current state of the Mathematical Components library,
the big operator [26] used to model the iterated sum can only operates on an
explicit, finite sequence of arguments. In our case, this sequence is the list of
inhabitants of the finite type of s-tuples of non-negative integers smaller than n
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(in fact, and more generally, smaller than any m greater than n). The list of
inhabitants of this type (t : s.-tuple I_m.+1) is filtered to keep only those that
sum to n, i.e. the terms t such that (\sum_(i <- t)i)== n.

The other additional annotation required here is the function tmap_val, which maps
a tuple of numbers with bounded values to a list of natural numbers. A term of
type s.-tuple T is a list of elements of type T, paired with a proof that its length is
s, and can be coerced to the corresponding list by forgetting the proof. A term of
type I_k is a natural number, paired with a proof that it is smaller than k, and can
be similarly coerced to the corresponding number. But a term of type s.-tuple I_k

cannot be coerced to a list of numbers: the function tmap_val, which erases both
nature of proof annotations, has to be explicitly inserted.

3.5 Numbers and Proofs

This formal proof of Apéry’s theorem features several natures of computational
steps. The first one is the obvious one: the verification of the certificates generated
by the external oracle. The formal proof of Lemma 3.4 relies on the mechanical
verification of some algebraic identities, and eventually boils down to the normal-
ization to zero of some polynomials produced by the oracle, plus the verification of
some proof obligations phrased in the language of linear arithmetic, coming from
manual annotations [47]. The latter are solved instantaneously using Coq’s lia

tactic [28], for linear integer arithmetic. Although the former polynomial expres-
sions can be easily manipulated by a computer-algebra system, their size makes
the interactive writing of proof scripts quite unusual and challenging.

For example, the oracle guesses a recurrence relation P · y = 0 of order four for the
sequence (bn)n∈N of Equation 3.1. The order of the recurrence is later reduced
using initial conditions, so as to verify the order two recurrence of Lemma 3.4. The
statement P · b = 0, when pretty-printed using Mathematical Components syntax,
spans over 8,000 lines of code, and features over 18,600 monomials. On the other
hand, the integer coefficients involved in the recurrence are quite small, less that
13 decimal digits. The Maple computer algebra system verifies that P · b = 0 in
less than 2 seconds. Coq needs a bit less than 4 minutes to produce and check a
formal proof. The latter time however includes several ingredients, corresponding
to the different phases of the ring tactic [87]: the construction of a reified term; the
normalization of the corresponding polynomial expression per se; the verification
that the reified term is a correct abstract syntax tree for the initial goal. At
the time of writing, the first reification phase is unfortunately the most time-
consuming, although one would expect it to be neglectible. In fact, this phase can
even become the limiting factor on some examples.
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This formal proof makes use of a second nature of computations, of smaller scale,
akin to resorting to a pocket calculator. Remember that the irrationality of ζ(3)
ultimately follows from the fact that the sequence σn = 2`3

n(anζ(3)− bn) tends to
zero while being positive, combined with the fact that if ζ(3) is a rational number,
then σn is an integer. Lemma 3.7 can be used to obtain the asymptotic behavior of
σn can be obtained from the following remark, whose proof is an instance of such
smaller scale computations:

Lemma 3.7 33n ∈ O(an).

Proof Introduce the sequence ρn = an+1/an and observe that ρ51 > 33. We now
show that ρ is increasing. Define rational functions α and β so that the conclusion
of Lemma 3.4 for an rewrites to an+2 − α(n)an+1 + β(n)an = 0 for n ≥ 0. Now,

for any n ∈ N, introduce the homography hn(x) = α(n)− β(n)
x , so that ρn+1 =

hn(ρn). Let xn be the largest root of x2 − α(n)x + β(n). The result follows by
induction on n from the fact that h([1, xn]) ⊂ [1, xn] and from the observation
that ρ2 ∈ [1, x2]. �

Note that the observation that 51 is large enough is best performed outside of Coq,
and that computing the value of ρ51 is an autarkic computation.

The 33 constant featured by Lemma 3.7 indeed combines well with the estimation
of the growth of the sequence `n, the least common multiple of integers between
1 and n, given by Lemma 3.2. As already mentioned in Section 3.4, our formal-
ization of Lemma 3.2 is based on a concise and elementary proof by Hanson [91].
This proof uses among other things the asymptotic properties of real-valued func-
tions like x 7→ (1 + 1

x )x. At the time of writing and up to our knowledge, there
is no library about real numbers available in the Coq system that allows to con-
duct a proof like Lemma 3 in Hanson’s note [91] as straightforwardly as it is on
paper. The sketch library of real numbers used in this proof was originally de-
signed for the purpose of constructing real algebraic numbers, as a model of real
closed field [51]. In particular, it was not designed for the purpose of backing non-
elementary proofs in real analysis. It thus lacks a number of elementary arithmetic
lemmas, that had to be added to the initial content, in order to be able to work
with the equational theory of rational powers of the reals. Moreover, the proof,
as phrased in the original paper, makes use of a few transcendental constants and
functions, whose formalization would have represented a significant extension of
the library with more constructive analysis. We considered several options here:
using an existing library about constructive analysis [115], but this one proved
not complete enough, and thus not worth the non-trivial plumbing issues; using a
non-constructive analysis library [34], but here again the plumbing work to con-
nect data-structures exceeded the benefits. We finally circumvented this issue by
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sticking to constructive reals, and devising an even more elementary version of the
proof, relying on more small-scale calculations.

What we have just called plumbing represent in fact a recurring modularity issue in
our formalization work. Proofs based on evaluations of closed forms formulas put it
in the foreground. There is indeed a discrepancy between the data-structures used
for a definition of sequences an, bn, ρn, etc. that is convenient in proofs, and the
ones which are amenable to medium-scale computations, like the upper bound for
ρ51. For this purpose, we resorted to the CoqEAL suite of tools [49, 151], which are
designed to automate the transfer of computations between equivalent programs
operating on different representations of numbers, polynomials, matrices, etc. This
approach however still requires writing a significant amount of boilerplate code,
in part because the CoqEAL’s library seems not enough developed yet. More
recent alternatives [163], also based parametricity translations but combined with
a univalent approach, might help leveraging this bureaucracy in the future.

3.6 Conclusion and perspectives

Soon after the completion of this proof, Eberl made available a verified proof
of Apéry’s theorem developed using the Isabelle/HOL proof assistant [66], and
based on a short and elegant proof by Beukers [29]. This formalization takes
benefit of the more advanced material available for real and complex analysis in the
Isabelle/HOL’s ecosystem of libraries. This result contributes to a larger collection
of formalized chapters of undergraduate number theory, also due to Eberl [67].

The specificity of the proof presented in this chapter is the use of computer al-
gebra methods, which are of a broader interest than this sole irrationality result.
In fact, one of the main initial motivations for this work was indeed to provide
formally verified automated routines based on ∂-finiteness, so as for instance to
prove certain combinatorial identities automatically [143]. Such routines would
rely on the cooperation of a computer algebra library (like Maple/Algolib) with a
proof assistant, in which the computer algebra system provides candidate datas,
which are imported in a proof script and included in a proof which remains in-
dependent from how the data have been produced. Two natures of computations
are thus involved: a potentially expensive exploratory work, which is performed
by the computer algebra systems, e.g. to find a certain recurrence operator, and a
verification phase, which amounts to some normalization procedure, e.g. the nor-
malization of a polynomial expression, which is formally verified and performed
using the proof assistant. Such an approach is very much in the spirit advocated
by John Harrison and Laurent Théry two decades ago [94].
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This initial road-map has however been hindered by the unexpected explicit man-
agement of provisios required in the cascading verification of recurrence operators
for composite ∂-finite sequences. Unfortunately, the corresponding literature is
sometimes too vague to justify the correctness of symbolic computations on ac-
tual multi-indexed sequences (as opposed to germs of sequences). Harrison reports
similar shortcomings in his report [93] on the formalization of the Wilf-Zilberger
algorithm, which provides a decision procedure for identities involving hypergeo-
metric series. However, he managed in this case to avoid the disgraceful manual
treatment of provisos by resorting to a rigidity argument from complex analysis.
Unfortunately, we have been so far unable to devise a similar justification for cre-
ative telescoping algorithms [48], which are needed for instance to apply to nested
sums like (bn)n∈N.

However, the shortcomings of a few specific algorithms does not alter the impor-
tance of ∂-finite functions in the algorithmic study of special functions [111]. More
generally the fruitful point of view which consists in representing special functions
by equations (and initial conditions) for implementation purposes [156] has a vast
and under-used potential in the context of formal verification. The perspectives
outlined in Chapter 4 give an example of such possible applications.
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Chapter 4

Numerical computations

4.1 Rigorous numerical integration routines

Computing the value of definite integrals is the modern and generalized take on
the ancient problem of computing the area of a figure. Quadrature methods hence
refer to the numerical methods for estimating such integrals. Numerical integra-
tion is indeed often the preferred way of obtaining such estimations as symbolic
approaches may be too difficult or even just impossible. Quadrature methods, as
implemented in scientific computing systems like, most often consist in interpolat-
ing the integrand function by a degree n polynomial, integrating the polynomial
and then bounding the error using a bound on the (n + 1)-th derivative of the
integrand function. Estimating the value of integrals can be a crucial part of some
mathematical proofs, making numerical integration an invaluable ally. Examples
of such proofs occur in various areas of mathematics: Harald Helfgott’s proof of
the ternary Goldbach conjecture [96] is a prominent such example, in number the-
ory, as well as the first proof of the double bubble conjecture [95], related to the
properties of minimal surfaces.

But numerical integration routines, which compute a floating point value for the
value of the integral, are prone to subtle issues, and hard to check. Incorrect results
can indeed arise from the subtleties of floating-point arithmetics [134], but also
possibly from users’ ignorance of implicit correctness conditions existing on inputs,
typically a regularity assumption needed in the study of the n + 1-th derivative.
Indeed, results are necessarily subject to rounding errors and method errors, which
can be studied on paper, but it is difficult to implement a fast routine able to
perform a reliable static check that its input verifies the hypothesis of the error
analysis. Interval methods [170], also called rigorous numerical methods, compute
intervals with floating point endpoints, instead of a single floating-point value and
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thus propose a good compromise between reliability and speed. In this Section,
we discuss the implementation of formally verified quadrature methods based on
interval methods. These implementations are part of the CoqInterval library [130],
and thus use its data structures.

4.2 Real numbers, intervals, function extensions

This section contains definitions and notations used in the remainder of the chap-
ter. We call an interval a closed connected subset of the set of real numbers. We
use I to denote the set of intervals: {[a; b] | a, b ∈ R ∪ {−∞, +∞}}. A point
interval is an interval of the shape [a; a] where a ∈ R. Any interval variable will
be denoted using a bold font. An enclosure of x ∈ R is an interval x ∈ I such that
x ∈ x. Interval arithmetic is concerned with providing operators on intervals that
respect the inclusion property. Given a binary operator � on real numbers, naive
interval arithmetic provides a binary operator ♦ on intervals such that:

∀x, y ∈ R, ∀x, y ∈ I, x ∈ x∧ y ∈ y⇒ x � y ∈ x♦y.

There might thus be more clever options, which provide tighter bounds, or more
efficient algorithms. In the following, we will not denote interval operators in any
distinguishing way. In particular, whenever an arithmetic operator takes interval
inputs, it should be understood as any interval extension of the corresponding
operator on real numbers. Moreover, whenever a real number appears as an input
of an interval operator, it should be understood as any interval that encloses this
number. For instance, the expression (v− u) · x denotes the interval product of
the interval x with any (hopefully tight) interval enclosing the real v− u.

For any function f : Rn → R, a function F : In → I is an interval extension of f
on R if:

∀x1, . . . , xn, { f (x1, . . . , xn) | ∀i, xi ∈ xi} ⊆ F(x1, . . . , xn).

Note that this condition is very weak, and that the interval {−∞, +∞} is a univer-
sal, albeit un-informative interval extension. Indeed, this definition will mostly be
useful for the purpose of correctness theorems: most of the time, one does not even
need to assume isotonicity, i.e., that tightening the input of an extension cannot
deteriorate its output.

Interval arithmetic trades real numbers for (enclosing) intervals; interval analysis in
turn studies interval extensions of functions, so as to model both sources of errors,
uncertainty on inputs and approximation methods, and to eventually provide a
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correct estimation of the total error. Pioneered by Moore [133] in the mid 60s,
interval analysis is the cornerstone of validated numerics [170].

The verified routines presented here make use of a special shape of interval exten-
sion, called rigorous polynomial approximation. These extensions can be seen as
an interval analogue of polynomial approximations, obtained from the truncation
of a certain series expansion, for which exact coefficients are replaced by inter-
vals. The truncation induces the method error, and the interval coefficients model
the uncertainty sullying the evaluations from which the latter are obtained. For
instance, Taylor models provide an interval analogue of Taylor expansions. Berz
and Makino have advocated the benefits of rigorous polynomial approximations,
and Taylor models in particular, in a series of work related to applications in the-
oretical physics, and in survey articles (e.g., [128]). We denote by I[X] the set of
(finite) tuples of intervals, and, by a slight abuse of notation, we identify every
element (an, . . . a0) of I[X] with the univariate interval function f : I→ I whose
value at x ∈ I is f (x) = anxn + · · ·+ a1x + a0. There exist several variants for
the definition of rigorous polynomial approximations; the appropriate definition
for our purposes is the following:

Definition 4.1 For any function f : R → R, a rigorous polynomial approxima-
tion of f on an interval I is a pair (P, ∆) with P ∈ I[X] and ∆ ∈ I such that there
exists a polynomial P ∈ R[X] enclosed in P for which:

x ∈ I, f (x)− P(x) ∈ ∆

By definition, a polynomial anXn + · · ·+ a0 ∈ R[X] is enclosed in a tuple (am, . . . , a0)
if and only if n = m and for every i, ai ∈ ai.

In the rest of this chapter, we consider two instances of rigorous polynomial ap-
proximations, Taylor models and Chebyshev models [107]: note that our definition
departs from the one used by Joldes [107] and Makino and Berz [128] by allow-
ing for non-tight interval coefficients. Definition 4.1 however corresponds to the
current formalized definition of rigorous polynomial approximations used in the
CoqInterval library [130]1.

4.3 Two interval methods for approximating definite
integrals

This section summarizes the contributions obtained in publications [122, 123]. The
main outcome of this work is an extension of the CoqInterval toolbox [130], which

1The present work on quadratures required improving the definition present in CoqInterval
at the time of its start.
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can approximate proper definite integrals of real univariate functions, of a real
variable, and some improper ones. We provide here an overview of the ingredients
involved in this formally verified quadrature routine. In the rest of the section
we suppose that F I → I is an interval extension of the univariate function
f : R→ R, and we want to compute an enclosure of

∫ v
u f , with u, v ∈ R and f

integrable on [u; v]. For any set A ⊆ R, we denote by hull(A) the closed convex
hull of A, which is the smallest closed interval containing A. By analogy, for any
interval a ∈ I, the interval hull(a, +∞) is [inf(a); +∞].

In order to implement a rigorous quadrature algorithm, a naive albeit natural
idea is to devise an interval analogue of Riemann-Darboux sums, and to compute
an appropriate partition of the integration interval (e.g., by dichotomy) so as to
reach the target precision for the approximation of the integral. The following
elementary lemmas are the cornerstone of this algorithm.

Lemma 4.2 ∫ v

u
f ∈ (v− u) · hull{ f (t) | t ∈ [u; v] ∧ t ∈ [v; u]}

Proof Easy (see [123]). �

Lemma 4.3 For any intervals ,v such that u ∈ u and and v ∈ v, we have:

∫ v

u
f ∈ (v− u) · F(hull(u∪ v))

Proof Easy (see [123]). �

Lemma 4.3 is ultimately used for each interval in the partition, and the results
are combined using additivity of integration and interval addition. This lemma
motivates a first definition of an interval version of the definition of a coarse interval
version of integrals:

Variables (f : R -> R) (F : I.type -> I.type).

Definition naive_integralprec F u v :=

I.mul prec (F (I.join u v)) (I.sub prec v u).

The Coq formal statement corresponding to Lemma 4.3 provides the corresponding
specification to this definition. It can be stated using the additional vocabulary
provided by the Coquelicot: library [34], and proved under the assumption that
the interval-valued integrand is an interval extension of the real-valued integrand:

Hypothesis F_i_extends_f : ∀ (xi : I.type) (x : R),

(Xreal x) ∈ (I.convert xi) ->
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(Xreal (f x)) ∈ (I.convert (F xi)).

Lemma naive_integralprec_correct F u v :

(Xreal (RInt f a b)) ∈
(I.convert (naive_integralprec F u v)).

These formal statements are unfortunately slightly complicated by the presence
of the Xreal and I.convert constants. These constants are related to the fact that
the containment relation, denoted by the infix ∈, which relates a real number to
an interval containing it, is defined only for extended reals, denoted R. The type
of extended reals completes a copy of the type of real numbers with a bottom
element ⊥R, so that R = R ∪ {⊥R}. This formalization choice is deeply rooted
in CoqInterval but it is not essential here.

This enclosure method, using rectangles, is rather crude, but available for a wide
class of functions, as the only requirement is the knowledge of an interval extension
for the function to be integrated. A better knowledge of the integrated function
gives access to higher-order methods, and thus allows for more efficient approaches
based on polynomial approximations. In particular, the class of ∂-finite functions
mentioned in Chapter 3 allows for an automated computation of Taylor models.
Indeed, the linear differential equation that cancels a ∂-finite function induces a
recurrence relation relating the coefficients of their Taylor expansion.

The related cornerstone lemma is the following:

Lemma 4.4 Suppose f is approximated on [u; v] by p ∈ R[X] and ∆ ∈ I in the
sense that ∀x ∈ [u; v], f (x)− p(x) ∈ ∆. Then for any primitive P of p, we have∫ v

u f ∈ P(v)− P(u) + (v− u) · ∆.

Proof Easy. See (see [123]).

This lemma indicates that integrating rigorous polynomial approximations pro-
vides a way to enclose integrals of the approximated function.

4.4 Formally verified approximations of definite in-
tegrals

In this section, we give an overview of the additional ingredients required to turn
the (formalized versions of the) elementary lemmas in Section 4.3 into a formal-
proof-producing quadrature procedure. There are essentially three such additional
ingredients: the reification phase, an adaptative dichotomy strategy, and the au-
tomated proof of integrability. We will not discuss the dichotomy strategy here,
but it is described in our article [123].
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The first step performed by the integral tactic is the reification phase. It follows
the general approach of the CoqInterval library for computing numerical enclosures
of real-valued expressions. It consists in checking that the expression e to be
bounded belongs to the catalog E of expressions known to the CoqInterval library.
This catalog is the class of expressions recursively built from a single variable and
from constants, arithmetic operations, and some elementary functions [130, 123].
As of today, we have:

E :=x | F | π |
√
E | E k |
E + E | E − E | E × E | E ÷ E | − E | ||E || |
cos(E) | sin(E) | tan(E) | atan(E) |
exp(E) | ln(E)

The next step consists in computing an interval e such that e ∈ e holds by con-
struction. Indeed, CoqInterval provides interval operators for each symbol involved
the expressions of the catalog, and the inclusion property of interval arithmetic
is easily transported from operators to whole expressions by induction on these
expressions. Last, the interval e is compared to the bounds to be established, and
if the interval is tight enough, the proof is completed.

In fact, the catalog E is implemented as a type of abstract syntax trees p, imple-
mented as straight-line programs [130, 123]. For instance, expression x ln(1 + x)
could be reified as the following straight-line program, which is meant to operate
on an initial stack of values:

(* initial stack: [t, 1, 1/4] *) Binary Add 1 0

(* current : [t+1, t, 1/4] *) :: Unary Ln 1

(* current : [ln(t+1), t+1, t, 1, 1/4] *) :: Binary Mul 1 0

(* current : [t*ln(t+1), t+1, ...] *) :: nil

where Add, Ln and Mul are abstract symbols, labeled with their arity. Note that in
this case, the initial stack is larger than needed for this expression only, but would
be appropriate for the reification of the complete expression to be bounded.

When provided with a large enough initial stack, a straight light program can be
evaluated. We denote JpKR(−→x ) the result of evaluating the straight-line program
p with operators of a real variable, i.e., using the type R of real numbers, over
an initial stack −→x of real numbers, that is, a list of terms of type R. Similarly,
JpKI(−→x ) denotes the evaluation of program p with interval operations and an
initial stack −→x of intervals.
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Then, thanks to the inclusion property of interval arithmetic, we can prove the
following formula once and for all:

∀p, ∀−→x ∈ Rn, ∀−→x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(−→x ) ∈ JpKI(−→x ) (4.1)

which is the master lemma of the tactic. More precisely, given a goal A ≤ e ≤ B,
the tactic first calls an oracle to produce a program p and an initial stack −→x of
real numbers such that JpKR(−→x ) = e. Note that the correctness of this oracle
does not need to be formally verified; if the oracle fails, then so does the tactic.

The tactic then looks in the context for hypotheses of the form Ai ≤ xi ≤ Bi,
so that it can build a stack −→x of intervals such that ∀i, xi ∈ xi. If there is
no such hypothesis, the tactic just uses (−∞; +∞) for xi. The tactic can now
apply the master lemma 4.1 to replace the goal by JpKI(−→x ) ⊂ [A; B]. It then
attempts to prove this new goal entirely by computation. Note that even if the
original goal holds, this attempt may fail due to loss of correlation inherent to
interval arithmetic. Formula 4.1 also implies that if a function f can be reified as
t 7→ JpKR(t,−→x ), then t 7→ JpKI(t,−→x ) is an interval extension of f if ∀i, xi ∈ xi. A
similar evaluation scheme is used to compute rigorous polynomial approximations
for a function f , using the same programs but degree-1 polynomials in the initial
stack.

These correctness theorems are also formalized and proved use the Coquelicot li-
brary for real analysis [34]. Note that in the classical setting of the Coquelicot
library [34], which provides the vocabulary related to integrals that is used here,
the type of operator RInt is the following:

RInt : ∀ V : CompleteNormedModule R_AbsRing ,

(R -> V) -> R -> R -> V

In particular, for any function (f : R -> R) and any real points (a, b : R), the
term (RInt f a b) is well-formed, whether or not the integrand f is integrable on
the integration interval. However, when the integral does not exist, no property
can be established about this real value. But as expected, and as on paper, the
formalized versions of the theorems in Section 4.3 all require that the integrand
is integrable on the integration domain. As a consequence, the first task to be
performed by the tactic is to produce an integrability proof.

In fact, the catalog E has a quite specific feature: every function in this catalog is
continuous everywhere it is defined; this property can be used to devise a way of
producing an integrability proof at little expense. This automation takes benefit of
the formalization choices for the type of intervals provided by CoqInterval. It does
not only contains pairs of floating-point numbers and half-lines, but also a special
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interval ⊥I, which is always propagated along computations. An interval operator
produces the value ⊥I whenever the input intervals are not fully included in the
definition domain of the corresponding real operator. We can thus implement an
additional evaluation scheme JpKR(−→x ) of a program p on extended reals, whose
correctness theorem can still be expressed using the type I. This scheme assigns
the value ⊥R as soon as an operation is applied to inputs that are outside the
usual definition domain of the operator. For instance, the result of dividing one
by zero in R is ⊥R, while it is unspecified in R. Now we can extend formula 4.1,
by generalizing enclosures with the relation ⊥R ∈ ⊥I:

∀p, ∀−→x ∈ R
n, ∀−→x ∈ In, (∀i ≤ n, xi ∈ xi)⇒ JpKR(−→x ) ∈ JpKI(−→x ) (4.2)

Let us go back to the issue of proving integrability. By definition, whenever
JpKR(−→x ) does not evaluate to ⊥R, the inputs x are part of the definition domain
of the expression represented by p. But we actually have a stronger property: not
only is x part of the definition domain, it is also part of the continuity domain.
More precisely, we can prove the following property:

∀p, ∀t0 ∈ R, ∀−→x ∈ Rn, JpKR(t0,−→x ) 6= ⊥R

⇓
t 7→ JpKI(t,−→x ) is continuous at t0

(4.3)

Combining Formulas 4.2 and 4.3, we have that obtaining an informative enclosure
for a function on a given interval, that is, one different from ⊥I, provides a proof
that this function is continuous (and thus integrable) on this interval. Note that
this property intrinsically depends on the operations that can appear inside p, i.e.,
the operations belonging to the class E . Therefore, its proof has to be extended as
soon as a new operator is supported in E . In particular, it would become incorrect
as such, if the integer part function was ever supported.

4.5 Verified approximations of improper integrals

The integral tactic can also compute numerical enclosures of some improper inte-
grals. The latter are computed by splitting the interval into two parts, a proper
part which is treated with the previous methods, and the remainder which is han-
dled in a specific way. We thus have to describe how we bound the remainder. We
consider improper integrals of the shape

∫ v
u f g where either u = 0 or v = +∞,

and f is bounded. Function g belongs to a catalog of functions with known enclo-

sures of their integral, such as the Bertrand integrals of x 7→ xα lnβ x, that serve
as witnesses of the integrability.
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To determine that a certain reminder
∫ +∞

u h exists, we have added to Coquelicot
a proof of the following Cauchy criterion: this integral exists if and only if for
any v ≤ u,

∫ v
u h exists and for all ε > 0, there exists M > 0 such that for all

u, v ≥ M, |
∫ v

u vh| ≤ ε. We use this criterion to show the following lemma:

Lemma 4.5 Let f , g : R → R. Suppose that, on [u; +∞), f is bounded, f and g
are continuous, and g has a constant sign. Moreover, suppose that

∫ +∞
u g exists.

Then
∫ +∞

u f g exists, and:∫ +∞

u
f g ∈ hull{ f (t) | t ≥ u} ·

∫ +∞

u
g.

Proof See [123]. �

The corresponding effective version of this result is:

Lemma 4.6 Let F, Ig : I → I be interval extensions respectively of f and x 7→∫ +∞
x g. For any interval u such that u ∈ u,∫ +∞

u
f g ∈ F(hull(u, +∞)) · Ig(u).

In order to use Lemma 4.6, the user need to find a suitable extension Ig for the
remainder of the integral of g. In that spirit, the library provides two different

useful classes of functions, namely Bertrand integrals, of the form
∫ +∞

u xα lnβ x
and integrals of exponential functions, of the form

∫ +∞
u eγx.

A similar lemma is proved for singularities at 0+, but Bertrand integrals are the
only possible witnesses. Other singular bounds should be first reduced to one of
these cases by a preliminary (manual) change of variable.

As a side remark, this treatment of singularities implies that the integral tactic
knows a few closed forms of integrals, those used in the integrability witnesses
scales. As a result, the tactic can prove the following exact formula for a Bertrand
integral, which may seem surprising at first sight for a numerical method:

Lemma bertrand_eample :

RInt_gen (fun x => 1 * (powerRZ x 3 * ln x^2))

(at_right 0) (at_point 1) = 1/32.

Proof.

(* turns equality into two inequalities *)

refine ((fun H => Rle_antisym _ _ (proj2 H) (proj1 H)) _).

(* calls integral , tuning the precision *)

integral with (i_prec 10).

Qed.
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4.6 A certificate-based approach to numerical en-
closures

In this section, we discuss a complementary approach to the numerical enclosure
of real-valued functions and integrals, based on the verification a posteriori of
un-trusted computations, called certificates. In this sense, this approach proceeds
from the same idea as the one used to verify recurrence relations in Chapter 3.
Indeed, it aims at discharging part of the computation work load involved in some
proof to external oracles, while correctness remains guaranteed via subsequent
validation steps performed inside the proof assistant. The interest of a posteriori
validation is also clear in the context of rigorous numerical methods (not necessar-
ily formally verified), which aim at obtaining tight and correct estimations of their
error at the lowest possible cost. A posteriori validation techniques thus consist in
reconstructing afterwards an error bound for a candidate approximation. Dating
back from the works of Kantorovich about Newton’s method, they gained promi-
nence with the rise of modern computers and were applied to numerous functional
analysis problems [110, 173, 118, 181]. More recently, those methods were used to
compute rigorous polynomial approximations for solutions of linear ordinary dif-
ferential equations [25, 39]. Broadly speaking, the function to be approximated is
characterized as a fixed-point of a contracting operator, from which an error bound
is recovered thanks to the Banach fixed-point theorem. Such techniques are thus of
special interest for formal verification, as it suffices to formalize the theory about
contracting operators and to provide means of computing with those operators.
For instance, this general method can be used to produce rigorous and formally-
verified Chebyshev approximations of functions on reals, as explained in [40]. The
present section provides an outline of this work.

The cornerstone of this family of self-validating methods is the Banach fixed-point
theorem, which we formalized as an extension to the Coquelicot library. This
library makes an extensive use of filters [38, 101] for defining topological concepts.
We briefly recall the corresponding terminology in Coquelicot. A filter on a type T
is a collection of collections of inhabitants of T which is non-empty, upward closed
and stable under finite intersections:

Record Filter (T : Type) (F : (T -> Prop) -> Prop) := {

filter_true : F (fun _ => True) ;

filter_and : ∀ P Q : T -> Prop , F P -> F Q -> F (fun x => P x /\

Q x) ;

filter_imp : ∀ P Q : T -> Prop , (∀x, P x -> Q x) -> F P -> F Q }.

While filters capture the notion of neighborhoods, balls allow for expressing the
relative closeness of points in the space. Balls are formalized using a ternary rela-
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tion between two points in the carrier type, and a real number, with the following
axioms:

ball : M -> R -> M -> Prop ;

ax1 : ∀ x (e : posreal), ball x e x ;

ax2 : ∀ x y e, ball x e y -> ball y e x ;

ax3 : ∀ x y z e1 e2,

ball x e1 y -> ball y e2 z -> ball x (e1 + e2) z

Two points are called close when they cannot be separated by balls:

Definition close (x y : M) : Prop := ∀ eps : posreal , ball x eps y.

A filter is called a Cauchy filter when it contains balls of arbitrary (small) radius:

Definition cauchy (T : UniformSpace) (F : (T -> Prop) -> Prop) :=

∀ eps : posreal , ∃x, F (ball x eps).

Finally, a uniform space is a type equipped with a ball relation and a complete
space moreover has a limit operation on filters, which ensures the convergence of
Cauchy sequences via the following axioms:

lim : ((T -> Prop) -> Prop) -> T ;

ax1 : ∀F, ProperFilter F -> cauchy F -> ∀ eps : posreal , F (ball

(lim F) eps) ;

ax2 : ∀ F1 F2, F1 ⊆ F2 -> F2 ⊆ F1 -> close (lim F1) (lim F2)

(where ProperFilter F is equivalent to Filter F /\ ∀ P, F P -> ∃ x, P x).

We now start describing our extension of the library. The above formal definition
of balls does not enforce closedness nor openness. We thus introduced the relation
associated with the closure of balls, so as to model closed neighborhoods:

Definition cball x r y := ∀ e : posreal , ball x (r+e) y.

Equipped with this definition, hypothesis (ii) of Theorem 4.7 is formalized as
follows:

Definition lipschitz_on (F : U -> U) (mu : R) (P : U -> Prop) :=

∀ x y : U, ∀ r : nonnegreal , P x -> P y -> cball x r y -> cball (F x

) (mu*r) (F y).

Now let us recall the statement of the Banach fixed-point theorem. We use a
slightly non-standard phrasing which is well-suited to our context.

Theorem 4.7 (Banach fixed-point) Let (X, ‖ · ‖) be a Banach space, an operator
F : X → X, h◦ ∈ X, and µ, b, r ∈ R+, satisfying the following conditions:

(i) ‖h◦ − F · h◦‖ ≤ b;

67



4. Numerical computations

(ii) F is µ-Lipschitz over the ball B(h◦, r) := {h ∈ X | ‖h− h◦‖ ≤ r};

(iii) µ < 1 : F is contracting over B(h◦, r);

(iv) b + µr ≤ r.

Then F admits a unique fixed-point h∗ in B(h◦, r).

We now sketch our formalized proof, using mathematical notations. We consider
a complete space X and we write y ∈ B(x, r) for the formal (ball x r y), and
y ∈ B(x, r) for (cball x r y). The key notion is that of strongly stable ball :

Definition 4.8 (Strongly stable ball) A ball B(u, r) is µ-strongly stable for F if F
is µ-Lipschitz on B(u, r) and if there is a non-negative real number s, called the
offset, s.t.:

F · u ∈ B(u, r) and s + µr ≤ r.

Remark 4.9 (Stability) For any x in B(u, r), a strongly stable ball for F, F · x ∈
B(u, r).

Remark 4.10 (Contracting case) When 0 ≤ µ < 1, for any µ-strongly stable ball
B(v, ρ), with offset σ, B(F · v, µρ) is also a strongly stable ball, with offset µσ.
Moreover, B(F · v, µρ) is included in B(v, ρ).

Assume that F has a µ-strongly stable ball B(u, r) of offset s, with µ < 1. In
particular, F is contracting on B(u, r). Consider the sequence of balls defined as
follows:

Bn = B(un, rn) with un = Fn · u and rn = rµn

where Fn · u denotes the iterated images of u under F. By Remark 4.10, (Bn)n∈N

is a nested sequence of µ-strongly stable ball for F, with offset sµn. Let F be the
family of collections of points in U defined as:

F = {P ⊆ U | ∃ n, Bn ⊆ P}.

It is a proper filter: F contains U, it is obviously upward closed, and for P, Q ∈ F ,
P ∩ Q is also in F because (Bn)n∈N is decreasing for inclusion. Thus F has a
limit w, such that for any ε > 0, balls Bn are eventually included in B(w, ε). We
provide a formal proof of Theorem 4.11, a reformulation of Theorem 4.7 using the
vocabulary of the Coquelicot library:

Theorem 4.11 The limit w of the filter F is in B0, and w is a fixed point of F.
Moreover, w is close to every other fixed point of F in B0.
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Proof In this statement “w is a fixed point of F” means “w is close to F ·w”. First,
w ∈ Bn for all n. Indeed, for any ε > 0, there is an m ≥ n s.t. Bm ⊆ B(w, ε),
and since Bm ⊆ Bn, um ∈ Bn ∩ B(w, ε). In particular, w ∈ B0. It is also clear by
stability that F ·w ∈ Bn for all n. Moreover, w is close to any point v s.t. v ∈ Bn
for all n (for any ε > 0, choose n s.t. 2µrn < ε). Taking v := F · w proves that w
is a fixed point of F.

Finally, if w′ ∈ B0 is another fixed point of F, then it follows from an easy induction
that w′ ∈ Bn for all n. Hence, the foregoing shows that w is close to w′. �

Strongly stable balls model the requirements set on the untrusted data to be for-
mally verified. They can also be seen as balls centered at the initial point, and
large enough to include all its successive iterates, i.e. as instances of the locus at
stake in standard presentations of the proof. This result has been formalized in
various flavors of logic and of proof assistants. The version proved by Boldo et
al. [33], also on top of the Coquelicot library, has a slightly more technical wording,
which seems to be made necessary by its further usage in the verification of the
Lax-Milgram theorem. Our proof script is significantly shorter, partly because
we automate proofs of positivity conditions (for radii of balls) using unification
hints for manifestly positive expressions. But the key ingredient for concision is
to make most of the filter device in the proof, and to refrain from resorting to
low-level properties of geometric sequences. To the best of our knowledge, the
other libraries of formalized analysis featuring a proof of this result, notably in
the Isabelle/HOL and HOL-Light systems, are based on variants of proof strategy
closer to the approach of Boldo et al. than to ours.

We now present in more detail the general principle of fixed-point-based a poste-
riori validation methods, and more particularly, the use of Newton-like validation
operators.

Throughout this section, let (X, ‖ · ‖) denote a Banach space, and h∗ the exact
solution of an equation in X. In this article, X stands for the space C(I) of real-
valued continuous functions defined over a compact segment I = [a, b], with the
uniform norm ‖h‖ := supx∈I |h(x)|. The division and square root of functions are
simple examples of solutions of equations in C(I), but there are also differential
equations, integral equations, delay equation, etc. The general scheme for Banach
fixed-point based a posteriori validation methods follows two steps:

1. Approximation step. A numerical approximation h◦ ∈ X of h∗ is obtained
by an oracle, which may resort to any approximation method. In particular,
this step requires no mathematical assumption and can be executed purely
numerically outside the proof assistant, good approximation properties be-
ing only desirable for efficiency. In our setting, with X = C(I), we used
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interpolation at Chebyshev nodes, which provides an efficient and accurate
oracle.

2. Validation step. The initial problem is rephrased in such a way that h∗ is a
fixed point of a (locally) contracting operator F : X → X. An a posteriori
error bound on ‖h◦ − h∗‖ is deduced from the Banach fixed-point theorem
(Theorem 4.7).

We thus need to find a contracting operator F of which h∗ is a fixed point. To
this end, we use Newton-like validation methods, which transform an equation
M · h = 0 into an equivalent fixed-point equation F · h = h with F contracting.
More specifically, suppose that M : X → Y is differentiable; we use a Newton-like
operator F : X → X defined as:

F · h = h− A ·M · h, h ∈ X,

with A : Y → X an injective bounded linear operator, intended to be close to
(DMh◦)

−1. The operator A may be given by an oracle and does not need to be
this exact inverse, which anyway might be non representable on computers exactly.
The mean value theorem yields a Lipschitz ratio µ for F over any convex subset S
of X:

∀h1, h2 ∈ S, ‖F · h1 − F · h2‖ ≤ µ‖h1 − h2‖, with µ = sup
h∈S
‖DFh‖

= sup
h∈S
‖1X − A · DMh‖,

which is expected to be small over some neighborhood of h◦.

Concretely, in order to apply Theorem 4.7, one needs to compute the following
quantities:

• a bound b ≥ ‖A ·M · h◦‖ = ‖h◦ − F · h◦‖;

• a bound µ0 ≥ ‖1X − A · DMh◦‖ = ‖DFh◦‖;

• a bound µ′(r) ≥ ‖A · (DMh −DMh◦) ‖ = ‖DFh − DFh◦‖ valid for any
h ∈ B(h◦, r), and parameterized by a radius r ∈ R+.

If we are able to find a radius r ∈ R+ satisfying:

µ(r) := µ0 + µ′(r) < 1, and b + rµ(r) ≤ r, (4.4)

then Theorem 4.7 guarantees the existence and uniqueness of a root h∗ of M in
B(h◦, r).
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Remark 4.12 Finding an r as small as possible while satisfying (4.4) may be an
nontrivial task for automated validation procedures. For many problems, µ′(r) is
polynomial, hence conditions (4.4) are polynomial inequalities over r: this is called
the radii polynomial approach [102] in rigorous numerics.

Finally here are two concrete examples of validation steps, for the division oper-
ation, and for square root. These cases are rather elementary as division (resp.
square root) induces an affine (resp. quadratic) equation, which admits closed
form solutions.

For f , g ∈ C(I) with g non-vanishing over I, the quotient f /g is the unique root of
M : h 7→ gh− f . Let h◦ be a candidate approximation given by the approximation
step. Constructing the Newton-like operator F requires an approximation A of
(DMh◦)

−1 : k 7→ k/g. For that purpose, suppose w ≈ 1/g ∈ C(I) is also given
by an oracle, and define:

F · h = h− w(gh− f ). (4.5)

The next proposition computes an upper bound for ‖h◦ − f /g‖; its formalization
in Coq provides the desired validation step.

Proposition 4.13 Let f , g, h◦, w ∈ C(I), and µ, b ∈ R+ such that:

‖w(gh◦ − f )‖ ≤ b, (4.13 i)
‖1− wg‖ ≤ µ,

(4.13 ii)
µ < 1.

(4.13 iii)

Then g does not vanish over I and ‖h◦ − f /g‖ ≤ b/(1− µ).

Proof Conditions (4.13 ii) and (4.13 iii) imply that F (Equation (4.5)) is contract-
ing over C(I) with ratio µ. The radius r := b

1−µ makes the ball B(h◦, r) strongly

stable with offset b (4.13 i), since b + µr = r. Therefore, h∗ is the (global) unique
root of M, and ‖h◦ − h∗‖ ≤ r.

Finally, w and g do not vanish because ‖1−wg‖ ≤ µ < 1. Hence, h∗ = f /g over
I. �

Let f ∈ C(I) be strictly positive over I. The square root
√

f is one of the two

roots of the quadratic equation M · h := h2 − f = 0 (the other being −
√

f ).
Let h◦ be a candidate approximation. Since DMh : k 7→ 2hk, one also needs an
approximation w ≈ 1/(2h◦) ≈ 1/(2

√
f ) ∈ C(I) in order to define A : k 7→ wk,

approximating (DMh◦)
−1. Then:

F : h 7→ h− w(h2 − f ). (4.6)

The next proposition computes an upper bound for ‖h◦−
√

f ‖: its implementation
in Coq provides the corresponding validation step.
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Proposition 4.14 Let f , h◦, w ∈ C(I), µ0, µ1, b ∈ R+ and t0 ∈ I such that:

∥∥∥w
(

h◦2 − f
)∥∥∥ ≤ b,

(4.14 i)

‖1− 2wh◦‖ ≤ µ0,
(4.14 ii)

‖w‖ ≤ µ1,
(4.14 iii)

µ0 < 1, (4.14 iv) (1− µ0)2 − 8bµ1 ≥ 0,
(4.14 v)

w(t0) > 0.
(4.14 vi)

Then f > 0 over I and
∥∥h◦ −

√
f
∥∥ ≤ r∗, where:

r∗ :=
1− µ0 −

√
(1− µ0)2 − 8bµ1

4µ1
.

Proof First, since ‖1− 2wh◦‖ ≤ µ0 < 1 (by (4.14 ii) and (4.14 iv)) and w(t0) > 0
(4.14 vi), w and h◦ are strictly positive over I, by continuity. Using (4.14 iii),
µ1 > 0.

If b = 0, then r∗ = 0 and h◦ =
√

f over I, because w(h◦2 − f ) = 0 (4.14 i) and
w, h◦ > 0. Hence the conclusion holds.

From now on, we assume b > 0. F is Lipschitz of ratio µ(r) := µ0 + 2µ1r over
B(h◦, r) for any r ∈ R+, because:

F · h1 − F · h2 = (h1 − h2)− w(h2
1 − h2

2)

= [(1− 2wh◦) + w(h◦ − h1) + w(h◦ − h2)] (h1 − h2).

Therefore, satisfying b + µ(r)r ≤ r is equivalent to the quadratic inequality:

2µ1r2 + (µ0 − 1)r + b ≤ 0. (4.7)

Condition (4.14 v) implies that (4.7) admits solutions, and r∗ is the smallest one.
Moreover, since b, µ1 > 0, we get r∗ > 0, so that b + µ(r∗)r∗ = r∗ also implies
µ(r∗) < 1.

Now, all the assumptions of Theorem 4.7 are fulfilled. Hence, F has a unique fixed
point h∗ in B(h◦, r∗). To obtain h∗ =

√
f over I, it remains to show that h∗ > 0.

This follows from w > 0 and:

‖1− 2wh∗‖ ≤ ‖1− 2wh◦‖+ ‖2w(h∗ − h◦)‖ ≤ µ0 + 2µ1r∗ = µ(r∗) < 1. �

Remark 4.15 The results in this section have been presented with a classical math-
ematics bias. However, there is no difficulty in rephrasing them into constructive
variants, that would justify the same numerical enclosures.
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4.7 Conclusion and perspectives

Rigorous numerical methods is an active research domain today which covers both
fundamental algorithmic contributions and full-fledged libraries providing efficient
implementations of the latter algorithms, themselves based on fast interval (or
ball) arithmetics. Tucker’s proof of the strangeness of the Lorentz attractor [169],
based on a rigorous solver for ordinary differential equations, is probably one of
the most famous achievements in this area.

However, the experiments we carried in order to benchmark the integral tactic
described in Section 4.3 have revealed a few shortcomings in numerical routines
representative of the state of the art. Notably, these benchmarks illustrated on
a few examples how some quadrature routines in Octave [65] and INTLAB [152]
can provide off results without warning. The interval tactic also showed that one
of the bounds used in Helfgott’s first generation proof of the ternary Goldbach
conjecture, obtained with VNODE-LP [137], was actually incorrect. See [123] for
the detailed benchmarks.

Tracking statically the necessary assumptions on entries that guarantee the cor-
rectness of enclosures, without compromising its efficiency is more often than not
an unsolvable dilemma. Rigorous and formally verified numerical routines thus
have a clear interest, despite their worse efficiency. However, as of today, the avail-
able formally verified rigorous numerics toolbox remains quite incomplete. Besides
Guillaume Melquiond’s CoqInterval library, which this work extends, a remarkable
achievement is the formally verified solver of ordinary differential equations imple-
mented by Fabian Immler using the Isabelle/HOL proof assistant, which he used
in particular to study the Lorentz attractor [104].

The integral tactic described in this chapter can (and should) be extended in a
number of directions. Such extensions would roughly fall in two camps: first, im-
proving the efficiency of the procedure, either by implementing new algorithms, or
by using new techniques; second, extending the skills of the procedure, so as to be
able to deal with more enclosure problems. We mention only a few of them. For
instance, the efficiency of the procedure owes a lot to its adaptative heuristic for
computing a suitable partition of the integration domain, together with the appro-
priate approximations of the integrand, one per each sub-interval. Currently, this
heuristic is implemented using Coq, and it is run by the internal code of the tactic.
In order to improve efficiency, an external oracle could provide a template for the
tactic, which could always be refined afterwards, so as to cut unnecessary inter-
mediate calculations as much as possible. Regarding the extensions of the skills
of the procedure, there are again several possible lines of action. For instance, the
catalog of functions the tactic can deal with could be significantly extended by
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introducing some support for ∂-finite functions, for which efficient approximation
algorithms exist that apply uniformly to all members of the class. An extension
for supporting complex-valued functions, based on ball arithmetic, would also be
very useful in many applications, including for instance other estimations in Helf-
gott’s proof of the ternary Goldbach conjecture, currently obtained with the Arb
library [105]. Finally, extending the procedure so as to be able to deal with solu-
tions of more general differential, or functional, equations represents a vast amount
of possibilities. See for instance Warwick Tucker’s introductory text [170].
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Chapter 5

Perspectives

This last chapter is devoted to the medium to long term research directions that I
would like to investigate in the few coming years. This research program consists,
broadly speaking, in improving the reliability of computer-produced mathematics.
More precisely, its central objects of study will be symbolic methods, the substrate
of their implementation, and the verification of some of its recent applications in
computational number theory.

5.1 Context

A large part of computer proofs today are essentially produced by symbolic com-
putations. At the core of computer algebra are exact data such as (unbounded)
integers, rational numbers, polynomials, matrices. But symbolic methods also ex-
ist in approximation theory, as illustrated in Chapter 4: in this case, routines trade
hardly achievable exact results for reliable numerical computations, e.g., intervals
with floating-point endpoints instead of real numbers, thus making it possible to
endow their approximate results with explicit error bounds.

State-of-the-art symbolic methods today are fast. For instance, it takes less than
10 hours to break 512-bit RSA keys on Amazon EC2 (for less than $100), hence
the threat of the Factoring RSA Export Keys (FREAK) attack, on the deliber-
ately weak export cipher suites introduced under the pressure of US government
agencies [1]. And fast symbolic methods are available for exploring the properties
of a variety of mathematical objects. For instance, high-performance, rigorous,
symbolic-numeric methods are used, e.g., to design large particle accelerators [128],
or in space applications [157].

Computer algebra systems are the main vehicle of symbolic methods. Besides
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the libraries implementing cutting-edge fast algorithms, these complex systems
are also powered by a domain specific language, used to formulate queries, and
sophisticated graphical interfaces, which allow to produce documents interleav-
ing text and graphics, with calculations. The major ones, like the commercial,
closed-code Mathematica, Maple, and the free, open-source, SageMath are fast,
multi-purpose, and easy to use. They are thus used both as research tools and
in the classroom. Matlab and Octave, leading scientific computing software, can
also be extended with symbolic-numeric toolboxes such as INTLAB, which pro-
vides rigorous numerical algorithms of about the same efficiency as the fastest pure
floating-point routines, using the fastest compilers available [152]. Some more spe-
cialized tools provide a portfolio of algorithms of special interest in some identified
areas. For instance in number theory, the Pari/GP system provides state-of-the-art
computational algebra [140], while Arb provides state-of-the-art symbolic-numeric
algorithms, based on ball complex arithmetic [105].

The material presented in Chapter 4 however provides a first illustration that
computer algebra is a giant with a feet of clay. We reported the problems we
identified to INTLAB developers; unfortunately, they could only fix the bug by
dropping support for the absolute value [153]. This is a well-known pitfall: state-
of-the-art libraries in scientific computing, whether numerical or purely symbolic,
cannot afford tracking the regularity assumptions that would ensure the correct-
ness of their results. Implementations of symbolic methods today are deliberately
geared towards speed, at the price of correctness. In the best case, the correctness
assumptions of a given routine are documented, but more often than not, they
remain implicit, and hidden to end users. For instance, the documentation of the
solver of differential equations implemented in the Wolfram Language (Mathemat-
ica) only states that “the answer might not be valid for certain exceptional values
of the parameters” [179]. But it does not explain which ones.

This goes beyond the traditional definition of a bug as a programming error. In
fact, one could even go as far as saying that computer algebra systems and their
numerical extensions are wrong by design.

In this sorry state of affairs, it is all the more worrying that no explicit policy
exists for auditing software that produce proof steps in submitted papers, even
in high-profile mathematical journals. Generally speaking, the social process of
peer-reviewing just falls short of evaluating the proofs produced by computers, as
reported by Hales after the publication of his computer-aided proof of the Kepler
Conjecture [16].

A diverse range of verification methods, however, exist for auditing software and
assess its dependability. Logic- and computer-based formal methods have been on
the rise, motivated by the huge money losses, as well as human deaths, that bugs
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have caused. Among them, proof assistants provide the most versatile approach.
They can be used to represent sophisticated constructions of cutting-edge research
in mathematics, like the perfectoid spaces introduced by Schölze in 2012 [41], and
to verify large and complex proofs, like the odd order theorem discussed in Chap-
ter 2. They can also verify large-scale programs such as an operating system [112],
or a realistic compiler for the C language [117]. They can even generate state-of-
the-art low-level code for fast cryptographic arithmetic [70]. However in practice,
almost no software cited in publications in mathematics is verified.

Quoting again the Wolfram Language documentation, “treating expressions like
f [x] as both symbolic data and the application of a function f provides a uniquely
powerful way to integrate structure and function” [180] and it is in fact a central
design decision to computer algebra systems. Sadly, this integration blurs the
interaction between the simplification rules that normalize symbolic data, and the
reduction rules that govern the evaluation of programs. For a symbolic expression
E(α, β), with two free variables α and β, it may happen that substituting first
α for β, then β by −1 leads to a different result than substituting both α and
β by −1, as illustrated by Johansson [106] using Mathematica but also SymPy,
the fundamental package for symbolic mathematics in Python. We replay it in
Listing 5.1:

1 >>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))

2 2

3 >>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})

4 E

Listing 5.1: Substitutivity does not hold in computer algebra systems

His example involves the expression hyper([n],[m],x), with three free variables n,
m, and x; it represents the (generalized) hypergeometric function 1F1(n; m; x). In
a first query, at line 1, symbolic variables m and n are both substituted by -1, and
variable x by 1. In a second query, at line 3, m is first substituted by the symbolic
variable n; the expression now no more depends on m, and variable n is substituted
by -1, and x by 1. In both cases, the resulting expressions from these substitutions
are simplified, and this yields to completely different results: the integer 2 in the
first case, and E, the base of the natural logarithm, in the second. What happens
here is of a similar nature as the shortcomings of creative telescoping algorithms
discussed in Chapter 3.

Users simply have no control on the simplification strategy implemented by com-
puter algebra systems, which may use incorrect rules by ignoring provisos, and
confuse abstractions. This assessment actually motivated the work presented in
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Chapter 3, so as to provide a more reliable version of Salvy’s existing Maple work-
sheet [155]. Such severe design flaws prevent the design of any useful semantics, a
first step towards specification and verification, and ruin the hope for a posteriori
verification approaches, e.g. using Hoare-logic like assertions. In some luck cases,
verifying results post hoc, without any assumption on the way data have been
produced, is of course possible with a minimal amount of trusted computation,
when a certificate-based method exists: Chapter 3 and Chapter 4 provide two
non-trivial examples of such a situation. But verifying certificates demands a fast
trusted verifier, which is often itself a computer algebra routine.

In fact, such design flaws even compromise the meaning of tests, and forbid the
use of such domain specific languages in any critical application. As expected, it
also leads to wrong proofs. For example, one of the verified quadrature routines
presented in Chapter 4 was used by my co-author Florent Bréhard to invalidate a
proved bound on a quantity related to Hilbert’s 16th problem, and to compute a
new (at the time) record bound, stamped with a Coq formal proof [40].

The formidable advances of symbolic computation has led to high-speed but unre-
liable implementations but the sources of unreliability are of a fundamental nature.

5.2 Positioning

“Are we just getting wrong answers faster?” Stadtherr’s unkind question [162]
to the community of high-performance computing not only remains valid today,
but it extends to the realm of computer algebra. While machine-assisted design
and verification have become standard for critical systems or when security and
privacy issues are at stake, only makeshift techniques are available for auditing
computer-produced mathematics, far behind the current state of the art in program
verification.

The main challenge posed by the verification of computer-produced mathematics
is the sophisticated vocabulary required in the specifications of the correspond-
ing code. Verifying computer algebra in the large is demanding, as elementary
specifications will casually involve quantifying over objects such as “finite fields of
an arbitrary characteristic p”, with a formal integer p. Such a parameterization is
typically beyond the skills of computer algebra systems; they only provide concrete
instances of these fields, for concrete values of p, as this prime integer controls al-
gorithmic choices in modular arithmetic. In fact, verifying computer algebra calls
for the most expressible logic a verification tool can be based on: dependent type
theory.

Computer algebra systems and proof assistants are both designed with the same
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ambition: doing mathematics by computers. But they are developed by disjoint
communities, with different motivations: computer algebra systems seek speed
when proof assistants enforce correctness. The objective of this research program
is to reconcile these two approaches to computer-produced mathematics, and the
corresponding research areas.

However, retrofitting correctness in systems that have sacrificed semantics for speed
is not an option, therefore, I propose build a new nature of mathematical software,
grounded in the rigorous foundations of a proof assistant, Coq [54]. But in turn,
catching up on efficiency requires radical changes in the programming environ-
ment of dependently typed proof assistants, while remaining compatible with their
logical foundations.

The ultimate goal of my research program can thus been seen as the materialization
of a verified compilation scheme from textbook formulas to machine code, with
feedback to formal proofs.

Figure 5.1 illustrates this approach on the example of estimating
√

π, a compu-
tational step in a larger mathematical proof. Successive translations refine the
various views implicitly overlaid on the expression, in the course of the computer
proof. Using Coq’s higher-order, dependently typed, programming language it is
possible to express all these views, to specify and to verify each transformation
phase, and to reuse the value, in a broader formal proof context.

Figure 5.1: From formula to formally verified computation, and back
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5.3 Methodology

This program would consist in investigating three scientific objectives, presented
below together with the corresponding envisioned methodology.

5.3.1 Achieve high-level syntax and fast low-level, in a proof
assistant.

This objective addresses the design of the programming environment underpinning
our software. Finding the right balance between strong typing and productivity is
a long standing open question in the design of scripting languages. The challenge
is to erase the overhead of logic so as to generate efficient code, which can still
be reused in formal proofs, without compromise on their trustworthiness. This
challenge is compounded by the need to serve two kinds of users [74]: end users,
who want a high-level language that makes it simple and fast to state their problem
and the way to solve it, and developers, who need to get their computationally
intensive programs as close as possible to the bare metal of the machine.

Design a high-level, interpreted, domain-specific language for computer alge-
bra. Gallina, the programming language provided by Coq, has higher-order pure
functions and dependent types. Operating on syntax trees, at the core of computer
algebra, is a sweet spot for the sophisticated pattern-matching features of Gallina.
But at the same time, Gallina blatantly lacks essential meta-programming features,
like quotations and advanced binder management. As a programming language,
it also desperately lacks some pure features, like exceptions and generalized recur-
sion, as well as impure ones: fresh name generation, timer, file access, etc. As Coq
currently stands, the best approach to these imperative extensions seems to be a
monadic encoding [127]. This powerful mechanism to capture side effects at large
is at the core of Haskell, a leading pure functional programming language, or of
F∗, used in security-oriented realistic applications. However, monadic program-
ming is hopelessly alien to the community of computer algebra. The design of a
neat surface language, which can still be adequately interpreted and optimized by
Coq, is an outstanding challenge.

Provide a deeply embedded layer of verified low-level constructs. The effi-
ciency of a state-of-the-art linear algebra toolbox is tied to fine-tuned, in-place
operations on low-level data structures, e.g., imperative arrays and pointers. With
the help of expert colleagues, we would thus design a low-level language well-suited
to the verification of code that relies in a crucial way on actual low-level features,
for efficiency reasons. It will come with a formalized operational semantics, close to
C, and it will use dependent types to annotate programs, so as to ease subsequent
verification. By contrast with other verification-oriented low-level languages [144],
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it will be deeply embedded in Gallina, and meant to be compiled to machine code,
using a verified compilation scheme [117], before being executed. We ambition to
go beyond the state of the art in verified low-level code [164], by reaching the same
level of guarantee, but for an integrated language to a higher-level layer, which
can in particular be used to write code generators.

5.3.2 Powerful verification frameworks

The complete verification of symbolic methods in a foundational proof assistant,
and in particular, its automation, poses specific research problem. Beyond the
traditional acceptation of trusted decision procedures, this objective is about au-
tomation based on the study of the structural properties of programs, of data
structures, and of mathematical objects.

Verified refinements. Verified refinements [4, 5, 116] usually consider step-wise
tool-chains for connecting higher-level representations of programs, typically inside
the logic implemented by the proof assistant, to some generated code, meant to
be executed. Here, we need to extend both ends of the chain. At the top end,
principled tools could refine an existence theorem (primality is decidable) into an
efficient program (a primality test), by refining both algorithms and data struc-
tures, and by justifying formally the successive steps of the transformation. At
the bottom, automation tools [43] would verify code generators for the low-level
language of the system, written using the high-level language from in the first ob-
jective. The suite of features provided by both languages is challenging, but the
fact that the entire chain, including the code generator and the target language,
live in fact inside the same Gallina language is a strong asset for proof automation.

Verify low-level programs. The formal verification of the low-level programs in-
volved here requires going beyond the features of existing frameworks for verified
code generation, which operate on functional programs, generate high-level code,
and may not handle pointers, nor I/O [58, 116]. Also, contrarily to the pure frag-
ment of our high-level language, parallelism and especially concurrency no longer
come for free. With the help of expert colleagues, we would build a verification
framework based on the latest approach for separation logic proofs [114]. But an
important point is to extend this approach so as to include the generation of code.
Besides, our setting is significantly more subtle, as the programs we need to verify
can manipulate arbitrary high-level objects, e.g., expressions. In such cases, sepa-
ration logic proofs would nonetheless have to guarantee that the trusted code base
remains safe.

Transport mathematical properties. As discussed in Chapter 2, paper proofs
elide proof steps pertaining to folklore abstract algebra, thus the corresponding
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proof steps in formal proofs have to be automated. The reconstruction is con-
cerned with the needs of sharing for formal proofs (vocabulary and theories), for
automation (delimited decision procedures), and for implementation (methods),
which should all scale to the hierarchies underlying computer algebra systems. All
existing approaches fail in at least one respect [89, 161, 78]. Proof search should
also be informed with isomorphisms, e.g., between matrices of polynomials and
polynomials of matrices. But as of today, no automation exist in formal systems to
transport the properties of such isomorphic objects. Insights from homotopy the-
ory [172] and parametricity for dependent types [163] provide a promising starting
point, but how to turn these ideas into efficient concrete implementations remains
to be invented.

5.3.3 Verify state-of-the art computational mathematics

Implementing the core of our computer algebra system, e.g., its arithmetic (typi-
cally a GMP-like library) and linear algebra routines (e.g., a subset of the BLAS
library features), would be a benchmark for the outcome of the two first objectives.
But I would also like to use this system and, crucially, to to make it usable enough
for an audience of non-formal proof experts. Below are two applications that I
think worth investigating, and a few comments on the improvements that need to
be brought to a proof assistant like Coq to serve the needs of computer algebra
users.

Special functions. What is the true meaning of the basic mathematical vocabu-
lary such as log (the natural logarithm) or Ai (the Airy function)? The answer is
clear on paper, much less so in silico. The specific formulas used in implementa-
tions are hardly exposed to users, next-to-impossible to reverse engineer. Hidden,
incompatible assumptions are a major source of debilitating mistakes. By focus-
ing on a restricted core of ∂-finite special functions [156], the ones mentioned in
Chapter 3, one can aim at covering about 60% of the entries of the NIST Hand-
book of Mathematical Functions [139] in our environment, and address the needs
of average users. My recent discussions with colleagues at the Vrije Universiteit
Amsterdam also suggested a different nature of applications, which would be to
provide a more specific algorithms toolbox for number theory, and more specifi-
cally for modular forms. Modular forms are a distinct class of special functions
pervasive in mathematics and physics — and involved, e.g., in Wiles’ proof of Fer-
mat’s last theorem, and in the Birch and Swinnerton-Dyer’s conjecture [178] in
number theory. An interesting case study would be the verification of the classical
modular forms data, in the reference L-functions and Modular Forms Database [2].
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User interface, inspection and visualization tools. Proof assistants today are
not equipped with appropriate interaction tools for the needs of computer algebra
users: for instance, available inspection tools are focused on logic rather than
on user-library specific data-structures and notations. Providing a suite of fine-
grained inspection tools, key to the usability of the environment, is a technical
challenge, because of the need to address and connect every language layer. But
this nonetheless represents a key ingredient to the usability of the software. It is
all the more challenging that the feedback provided today to the users of proof
assistants, and of its automation component is more than often hardly informative.
At the formal proof level, the latter should provide facilities to uncover part of the
elaboration process on any sub-term of a formula, improve error messages and
cross-linking to documentation; at the domain-specific language level, it should
provide tools for inspecting, visualizing, plotting mathematical objects, but also
for querying their level of verification. The several technical skill necessary to
devise such improvements are certainly outside of my current culture, but I would
be keen on collaborating with the appropriate people to advance such topics.

5.4 Conclusion

I am convinced that it is possible to turn a proof assistant like Coq into a high-
level, performance-oriented programming language, designed for writing efficient
and correct code easily, and for serving the front-line of research in computational
mathematics. In this environment, users would ideally be able to experiment with
fast implementations, that do not need to be all formally verified at once. But
users may also ultimately decide to increase the level of trust in any component at
stake in their work. The same environment would therefore provide powerful veri-
fication tools, that allow to verify with high-productivity any component involved
in a program, so as to prevent run-time errors, but also incorrect mathematical
semantics.

Figure 5.2 gives an overview of what such an environment, based on Coq, could look
like. Its purpose would be to help users producing and verifying computer-aided
mathematics, expressed as theorems in CIC, the logical formalism underlying the
Coq proof assistant. CIC is the top-most layer on the figure. The middle layer is
Gallina, Coq’s programming language, and the lowest layer is machine code. Dif-
ferent code generation phases, represented with dark arrows, refine an existential
properties down to executable code. Light arrows represent code usage features;
they allow the use of efficient, unverified code, for experimentation purposes, but
when the corresponding code generation phases are formally verified, they also
close the feedback loop to formal proofs.
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Figure 5.2: Architecture of the environment

Two decades ago, William Thurston wrote: “formalizing parts of mathematics by
computer, with actual formally correct formal deductions [. . . ] is a very big but
very worthwhile project, and I am confident that we will learn a lot from it. The
process will help simplify and clarify mathematics” [167]. But an appropriate en-
vironment for making this tangible still does not exist yet; this research program
aims at contributing to its advent. I have the strong belief that formalized mathe-
matics will bring even more to research in mathematics than just simplification and
clarification; this material offers novel experimentation and learning perspectives,
and it will ultimately allow for the discovery of new mathematics.
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Lecerf, Bruno Salvy, and Éric Schost. Algorithmes efficaces en calcul formel,
August 2017. 686 pages. Édition 1.0.
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[40] Florent Bréhard, Assia Mahboubi, and Damien Pous. A certificate-based ap-
proach to formally verified approximations. In John Harrison, John O’Leary,
and Andrew Tolmach, editors, 10th International Conference on Interactive
Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA,
volume 141 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

88



Bibliography

[41] Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfec-
toid spaces. In 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP), pages 299–312, January 2019.

[42] Amine Chaieb and Tobias Nipkow. Proof synthesis and reflection for linear
arithmetic. J. Autom. Reason., 41(1):33–59, 2008.
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hen, François Garillot, Stéphane Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico
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Hritcu, Exequiel Rivas, and Éric Tanter. Dijkstra monads for all. In
24th ACM SIGPLAN International Conference on Functional Programming
(ICFP), volume 3 of PACMPL, pages 104:1–104:29, August 2019.

[128] Kyoko Makino and Martin Berz. Verified computations using Taylor models
and their applications. In Alessandro Abate and Sylvie Boldo, editors, 10th
International Workshop on Numerical Software Verification (NSV), volume
10381 of LNCS, pages 3–13. Springer, July 2017.

[129] Benoit Mandelbrot. The Fractal Geometry of Nature. Freeman and Co.,
1982.
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aux entiers impairs. PhD thesis, Université de Caen, 2001.
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Titre : Mathématiques Assistées et Vérifiées par Ordinateur

Mot clés : Théorie des types, preuves formelles, calcul formel

Résumé : Les assistants de preuve sont
des logiciels conçus pour la réalisation de
bibliothèques de mathématiques numérisées.
Celles-ci contiennent des définitions, énoncés
et preuves tous formalisés dans une variante
de logique fixée, de sorte que la vérification de
la bonne formation des énoncés, et la correc-
tion des preuves, puissent être réduites à un
processus mécanique, celui associé au forma-
lisme logique sous-jacent. Le noyau de l’assis-
tant de preuve est le composant du logiciel qui
réalise cette vérification, tandis que l’assistant
de preuve à proprement parler implémente un
ensemble de techniques d’automatisation qui
permettent à ses utilisateurs de mener à bien
la formalisation en pratique de définitions et

de théories mathématiques arbitrairement so-
phistiquées.

Ce mémoire présente une synthèse de
trois contributions principales à la vérifica-
tion formelle de théories mathématiques en
théorie des types dépendants. La première
de ces contributions porte sur la réalisation
d’une bibliothèque de mathématiques forma-
lisées couvrant les résultats classiques d’al-
gèbre de niveau licence, ainsi que des pans
plus avancés de théorie des groupes finis. Les
deux autres contributions concernent les en-
jeux de vérification formelle de preuves ma-
thématiques calculatoires, respectivement au
moyen d’algorithmes symboliques et de mé-
thodes numériques rigoureuses.

Title: Machine-Checked Computer-Aided Mathematics

Keywords: Type theory, formal proofs, computer algebra

Abstract: Proof assistants are pieces of soft-
ware designed for the realization of digital li-
braries of formalized mathematics. The lat-
ter libraries contain definitions, statements,
and proofs, all formalized in a fixed variant
of logic. In particular, the verification of the
well-formedness of statements, and of the cor-
rectness of proofs, boils down to a mechan-
ical process, associated with the underlying
logical formalism. The kernel of a proof as-
sistant is the software component which per-
forms this verification, while the actual proof
assistant implements a collection of automa-
tion techniques, which allow users to conduct
in practice the formalization of arbitrarily so-

phisticated mathematical definitions and the-
ories.

This memoir presents an overview of three
main contributions to the formal verification of
mathematical theories in dependent type the-
ory. The first of these contributions deals with
the realization of a library of digitized math-
ematics covering the standard undergradu-
ate background in algebra, as well as some
more advanced chapters in finite group the-
ory. The two other contributions are related to
the issues pertaining to the formal verification
of computational mathematical proofs, by the
means of symbolic algorithms and of rigorous
numerical methods respectively.
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