N

N

Compromise between precision and performance in high
performance computing.

Nestor Demeure

» To cite this version:

Nestor Demeure. Compromise between precision and performance in high performance computing..
Computer Arithmetic. Ecole Normale supérieure Paris-Saclay, 2021. English. NNT: . tel-03110553

HAL Id: tel-03110553
https://theses.hal.science/tel-03110553v1

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03110553v1
https://hal.archives-ouvertes.fr

$d
(1]
—
(@)
Jud
(@
o
ge]
Q
©
()]
(7))
QD
L
-

o
o
()
<
2
o
)
o
[N
o
o~
=
=
=

universite

PARIS-SACLAY

Compromis entre précision et
performance dans le calcul
haute performance.

Theése de doctorat de I’Université Paris-Saclay

Ecole doctorale n° 574, mathématiques Hadamard (EDMH)

Spécialité de doctorat : Mathématiques appliquées
Unité de recherche : Centre Borelli (CGB UMR 9010 Centre Borelli)
Référent : ENS Paris-Saclay

Thése présentée et soutenue a I’Ecole Normale Supérieure
Paris-Saclay, le 11 janvier 2021, par

Nestor DEMEURE

Composition du jury :

Jean-Marie Chesneaux Président
Inspecteur Général de I'Education, du Sport et de la

Recherche

Matthieu Martel Rapporteur
Professeur, Université de Perpignan Via Domitia

Jean-Michel Muller Rapporteur
Directeur de recherches, Ecole Normale Supérieure Lyon

Jean-Yves L'Excellent Examinateur
Chargé de recherche, Mumps Technologies

Pablo de Oliveira Castro Examinateur
Maitre de conférences, Université de Versailles-Saint-
Quentin-en-Yvelines

Christophe Denis Directeur
Maitre de Conférences, Sorbonne Université

Cédric Chevalier Coencadrant
Ingénieur-Chercheur, CEA

Pierre Dossantos-Uzarralde Coencadrant

Chercheur, CEA

PRECISE . PRECISE _ SLIGHTLY LESS
NUMBER * NUMBER ~ PRECISE NUMBER

PRECISE , PRECISE _ SLIGHTLY LESS
NUMBER =~ NUMBER ~ PRECISE NUMBER

PRECOE | ARBAGE = GARBAGE

NUMBER
PRECISE _
NUMBER X GARBAGE = GARBAGE
_ LESS BAD
GARBAGE = GARBAGE

2 \JORSE
(GARBAGE)” = acmAGE

1 Z(N PIECES OF STHﬁETrCHLLY) _ BETTER
N INDEPENDENT GARBAGE / ~ GARBAGE

precise \PRBE MUCH WoRSE
NUMGER = GARBAGE

i} _ MUCH WORSE
GARBAGE - GARBAGE = '8 0%

PRECISE NUMBER MUCH WJORSE
= GARBAGE, POSSIBLE

GARBAGE - GARBAGE pyyisioN BY ZERD

A = PRECISE
GARBAGE * O = |)meer

https://xked.com/2295/

Remerciements

A Pierre sans qui cette thése n’aurait pas eu lieu.

A Christophe pour m’avoir fait découvrir le monde de I'erreur numérique.

A Cédric pour avoir toujours été 1a pour échanger sur ma thése.

A Alexandre, Pierre, Vincent et Yitzhak pour leurs relectures attentives.

A tous les membres de mon jury pour leur rigueur et leurs questions stimulantes.
A tous les chercheurs de mon domaine avec qui j’ai eu le plaisir d’échanger.

A tous les doctorants de Ter@tec pour leur bonne humeur caractéristique, les
croissants et les petits pains.

A l'équipe du centre Borelli pour m’avoir guidé a travers les labyrinthes adminis-
tratifs.

A tous les employés du CEA pour leur soutient et leur curiosité envers mon sujet.

Et finalement & Elann pour m’avoir laissé emprunter quelques une de ses qualités
pendant la rédaction de cette thése.

école

normale — —

supérieure —— -
paris—saclay —— BORELLI

Contents

Remerciements (French)

Introduction

I Numerical Error

1 Floating-point numbers

1.1 Computer representation of reals

1.11

Exact representations

1.1.2 Fixed-point representations
1.1.3 Floating-point representations
1.2 The IEEE-754 standard

1.2.1
1.2.2
1.2.3
1.24

Genesis of the standard
Rounding modes
Consequences

2 Definition and properties of numerical error

2.1 Types of error
2.2 Numerical error

221

A definition of numerical error

2.2.2 Stability, accuracy and precision L.
2.2.3 Significant digitso
2.3 Some consequences of numerical error

2.3.1

Direct consequences

2.3.2 Examples of inaccurate results
2.4 Error-Free Transformations

3 State of the art

3.1 Measuring numerical erroro

11

14
14
14
15
15
16
16
17
19
21

23
23
25
25
26
26
27
27
28
31

34

3.2

3.3

3.1.1 Comparison with higher-precision arithmetic 34

3.1.2 Staticanalysis oo 35
3.1.3 Interval arithmetic 35
3.1.4 Stochastic arithmetic 36
3.1.5 Local error measuring 38
Localizing the sources of numerical error 38
3.2.1 Local error reporting L 38
3.2.2 Delta-Debugging oL 39
Conclusion 39

II Encapsulated error: A direct approach to assess floating-

point accuracy 41
4 Algorithms 44
4.1 Encapsulated error 44
4.1.1 Arithmetic operators 44

4.1.2 Arbitrary functionso 46

4.1.3 Comparisons 46

4.1.4 Output. 47

4.2 Tagged Error 47
421 Tagsandsections 48

4.2.2 Arithmetic operators 48

4.2.3 Arbitrary functionso 49

424 Output. 50

4.3 Discussion on encapsulated error’s properties 50
4.3.1 Characteristics 50

4.3.2 Second-order term 52

4.3.3 Errorboundso 52

4.3.4 Comparison with higher precision arithmetic 53

5 Implementation 55
5.1 Encapsulated error implementation 55

5. L1 CH oo 55

5.1.2 Julia 57

5.2 Tagged error implementation 58
5.2.1 Section delimitation and tag retrieval 58

5.2.2 Operations 59

5.3 Usage 60
5.3.1 Encapsulated error oL 60

5.3.2 Taggederror. 63

5.4

Tools
5.4.1 Numerical debugger
5.4.2 Code instrumentation

III Evaluation and applications of the method

6 Accuracy

6.1

6.2

6.3

Comparison with the state of theart
6.1.1 Rump equation
6.1.2 Trace of a parallel matrix product
6.1.3 A deterministic identity function
Validation of the accuracy
6.2.1 LU factorization.
6.2.2 Integration by the rectanglerule
Tagged error L.
6.3.1 The conjugate gradient algorithm
6.3.2 Analysis with tagged error
6.3.3 Introducing one compensated operation
6.3.4 Introducing two compensated operations

7 Cost of measuring numerical error

7.1
7.2
7.3
7.4

7.5

Comparison with the state of theart
Arithmetic intensity
Tagged error
Exhaustive overhead analysis
7.4.1 Encapsulated error L.
742 Tagged error.o
Conclusion

8 Applications to physical simulation

8.1

8.2

8.3

Instrumentation of a large fission simulation
8.1.1 Problem statement
8.1.2 Instrumentation and numerical stability
813 Conclusion
Validation of a nuclear reaction simulation code
8.2.1 Problem statement
8.2.2 Evaluation of the numerical error
8.2.3 Conclusion of the study
Numerical error and uncertainty quantification
8.3.1 Problem statement

66

69
69
70
71
73
74
74
76
7
7
78
79
81

83
83
86
38
89
90
91
92

8.3.2 Numerical error and normal mode decomposition
8.3.3 Uncertainty quantification
8.3.4 Conclusion of the study

IV Predicting the convergence profile of a linear

9.1 Introduction,
9.2 Linear solvers and preconditioners
9.3 Selecting a linear solver
9.3.1 Stateoftheart
9.3.2 A multi-objective problem
9.4 Ourmodel
9.4.1 Structure
9.4.2 Dataset L
9.4.3 Features
9.44 Training
95 Results.
9.6 Overview and perspectives
9.6.1 Overview
9.6.2 Perspectives L.
Conclusion

List of Figures

List of Tables

List of Code listings
List of Algorithms

List of published works

Résumé étendu a l'intention du lecteur francophone

Introduction
10.1 Etat de art
10.1.1 Mesurer I’erreur numérique
10.1.2 Localiser les sources d’erreur numérique
10.2 L’erreur encapsulée, une nouvelle méthode
10.2.1 Erreur encapsulée

137

138

139

10.2.2 Erreur taguéeo 157

10.2.3 Utilisation 158
10.3 Evaluation de la méthode 160
10.3.1 Précision 160
10.3.2 Surcott en temps de calcul 161
10.4 Prédiction du profil de convergence d’'un solveur linéaire 163
10.4.1 Définition du probléemeo 163
10.4.2 Notremodeéle 164
10.4.3 Résultats 165
10.4.4 Syntheseo 166
Conclusion 166

Introduction

As Moore’s laws is reaching its limit, the authors of computer programs cannot count
on new processors to gain significant improvements in performance. Thus, they are
now focusing on new avenues including different architectures, such as Graphical
Processing Units (GPU), parallelism to get more power by adding more processors
to the task, and mixed precision algorithms to improve the number of operations
per second by reducing the working precision locally. All of those approaches —
one might argue, the writing of high-performance numerical algorithms in general
— requires a control over the trade-off between performance and precision. For
example, using mixed precision requires the ability to consider which parts of a
program could still produce useful outputs when computed in reduced precision.
The link between performance and precision also appears when using parallel
algorithms. These make the non-associativity of floating-point operations explicit
by producing slightly different results from one run to another, which raises
questions about the reproducibility of results. Finally, most GPUs can only reach
their peak performance on 32 bit precision — or even 16 bit, half, precision —
while the majority of current scientific software is developed in 64 bit floating-point
arithmetic. Thus, using those approaches requires knowing how accurate our results
are before and after their application. The aim of this thesis is to give tools to
users so they can make informed decisions about the precision they are trading for
performance, with a focus on simulation and high-performance computing. While I
concentrated my efforts on numerical accuracy, I will also detail an approach for
the selection of a linear solver and preconditioner in Part IV.

My original research question was determining whether it is possible to increase
the performance of a program by decreasing precision locally without compromising
the accuracy of its outputs, but I quickly discovered a lack of viable methods to mea-
sure the numerical accuracy on my problems of interest. Further research revealed
that the systematic verification of the numerical accuracy of an application is not
a common practice, meaning that, often, only the most glaring numerical problems
are likely to be caught. I thus decided to focus on the measure of numerical error
and, in particular, its application to simulation and high performance computing:
large programs that can have long run times and a high number of operations per

second, thus requiring a method that scales well. High performance computing is
of particular interest because, as computing power has increased, so did the size of
simulations, their resolution, the number of their arithmetic operations, and the
magnitude of the values they process. We can now run more than 10! floating-point
operations per second on a supercomputer and 10'? floating-point operations per
second on a standard GPU. In this context, one can expect the rounding errors
introduced by the use of floating-point arithmetic to have an increasing impact on
simulations. This matters as numerical errors can significantly degrade numerical
results, but also introduce artifacts in physical simulations and cause phenomena
to be missed or misinterpreted [Bailey and Borwein, 2015].

As detailed in Chapter 3, evaluating the numerical accuracy of a program is
a hard problem and, while good solutions have been developed, they are either
not suited for very large programs due to their working hypotheses or very slow
and difficult to interpret results. Solutions to the next logical problem, identifying
the sources of numerical error in an inaccurate program, suffer from the same
shortcomings. My core contribution is the development and validation of a new
method, which I call encapsulated error, to measure the numerical error of a program
and localize its sources of error. A one line summary of the method would be: we
evaluate the numerical error produced locally and track its propagation in further
computations via a dedicated type that encapsulate both the result of the original
computation and an approximation of its numerical error. This gives us direct
access to the number of significant digits at all times and for all intermediate results.
While simple, this method is competitive with the state of the art, compatible
with various forms of parallelism, and has a low overhead. This makes it suitable
for use with large programs as illustrated on various applications from the field of
physics simulation. Figure 1 illustrates an application of our method to a simple
test case that will be detailed in Section 6.2.2. Furthermore, it requires building
blocks that are readily available in most programming languages, making it easy
to implement (we provide reference implementations, under the name Shaman and
Shaman_ julia, in both the C++ and Julia programming languages), and gives
easily interpretable results that can be analyzed by a non-expert, an important
property as most numerical codes are not written by numerical analysts. It is
my hope that this method will make the analysis of the numerical accuracy of a
program both more accessible and viable for a wider range of applications.

This dissertation is split into five parts. The first part gives a proper definition
of numerical error, details our hypotheses (and in particular the use of the IEEE-754
standard), and covers the state of the art of measuring numerical error and localizing
the sources of error in a program. The second part covers our main contribution:
our method to measure and locate the sources of numerical error, how it works,
how it is implemented, and why it works. The third part checks both the accuracy

of the method and its runtime overhead, compared to the state of the art, on a
variety of test cases of varying complexity. The fourth part details the numerical
analysis of three large programs coming from the field of physics simulation. It
also illustrates the interactions between numerical error and uncertainty. The final
part is particular in that it does not deal with numerical error, but instead goes
back to the trade-off between precision and performance. It explores an interesting
use of machine learning, predicting the convergence profile of a linear solver for a
new linear system, which can be used to select faster, more accurate solvers and
preconditioners in order to improve results, while still using a properly proven

solver.

I made the conscious decision of writing most of this text in English, except for
an extended summary (page 153). It is not my mother tongue, but, paradoxically is,
the lingua franca of contemporary research. I have enjoyed reading the manuscripts
of Scandinavian, German, and Chinese authors in English, one of the few languages
I can read. It is time to return the favor.

4 Numerical error (Shaman’s estimation) ® Numerical error + discretization error (analytical value)

1e-01 o
L]
1e-03 ®op
1e-05 ®e,

L)
1e-07 AA A aas a a Iy

1e+01 1e+03 1e+05
Number of rectangles

Figure 1: Integrating the cosine function between 0 and 7 using the rectangle rule.
Both axes are displayed on a logarithmic scale. The analytically computed total
error, discretization error plus numerical error, is plotted in blue, while our estima-
tion of the numerical error is plotted in red. As the number of rectangles increase,
the discretization error converges toward zero, leaving us with the numerical error
due to the sum of areas.

10

Part 1

Numerical Error

11

Table of Contents

1 Floating-point numbers 14
1.1 Computer representation of reals 14
1.1.1 Exact representations 14

1.1.2 Fixed-point representations 15

1.1.3 Floating-point representations 15

1.2 The IEEE-754 standard 16
1.2.1 Genesis of the standard 16

1.2.2 Formats 17

1.2.3 Rounding modes oL 19

1.24 Consequences 21

2 Definition and properties of numerical error 23
2.1 Typesoferror 23
2.2 Numerical error 25
2.2.1 A definition of numerical error 25

2.2.2 Stability, accuracy and precision 26

2.2.3 Significant digitso 26

2.3 Some consequences of numerical error 27
2.3.1 Direct consequences 27

2.3.2 Examples of inaccurate results 28

2.4 Error-Free Transformations 31

3 State of the art 34

3.1 Measuring numerical erroro 34
3.1.1 Comparison with higher-precision arithmetic 34
3.1.2 Staticanalysis Lo 35
3.1.3 Interval arithmetic 35
3.1.4 Stochastic arithmetic 36
3.1.50 Local error measuring L. 38

3.2 Localizing the sources of numerical error 38
3.2.1 Local error reporting L 38
3.2.2 Delta-Debugging oL 39

3.3 Conclusion 39

13

Chapter 1

Floating-point numbers

To manipulate real numbers with a computer, we first need to encode them. This
is usually done by a surjective mapping between R, the set of real numbers, and a
subset F of representable numbers. It is the mismatch between those sets that is
at the root of the numerical error studied in this dissertation.

This chapter covers common computer representations for real numbers before
focusing on floating-point arithmetic and, in particular, the IEEE-754 standard
[IEEE, 2019] which is the current standard in simulation and high-performance
computing.

1.1 Computer representation of reals

There are infinitely many reals, but with a fixed number of bits, n, you can represent
at most 2" different numbers. This implies that using a computer to represent
numbers requires a trade-off between the range of numbers that can be represented
accurately, memory use, and performance.

In this section we introduce common computer representations for real numbers
and their usual use-cases. Note that the representation of numbers is still an active
area of research, recent evolutions include the democratization of half-precision, 16
bit floating-point arithmetic, and the introduction of posit numbers [Gustafson,
2015].

1.1.1 Exact representations

It is possible to encode some subsets of real numbers, such as rationals and algebraic
numbers, exactly. Methods to do so include arbitrary-precision numbers (allocating
memory for more bits when needed), fractions (building on large integers and
restricting the field of available operations), and symbolic computations (which

14

might require storing every intermediate operation to determine the n'* digit of
the final output after the fact).

The most common exact number representation is probably rational numbers.
Rational numbers, encoded as a pair of arbitrary-precision integers (also called
bignum integers), form a field: the addition, subtraction, multiplication and division
of rationals are all exact since their output can be encoded as a ratio of integers.
Note that we are only encoding a subset of reals (which, for example, does not
include 7) and that we cannot apply arbitrary mathematical operations to this
representation as, for example, the cosine of a non-zero rational is never a rational.

Exact representations usually require a variable memory consumption and
are much less CPU efficient [Strzeboriski, 1997, Boehm, 2020]. However, those
representations are used in fields such as mathematics (where one might want to
evaluate the terms of a series exactly) and computer geometry (to guarantee the
absence of artifacts and check mathematical properties).

1.1.2 Fixed-point representations

A very straightforward way to encode real numbers is to use a fixed-point repre-
sentation. A number x is then represented by a sign s and an integer f such that
x = s X f xb"% where b is the basis (usually binary or decimal) and ¢ is a fixed,
predetermined, exponent (hence the name fixed-point). This representation makes
fixed-point numbers easy to emulate with integers which is useful when one cannot
rely on a hardware implementation.

This representation fixes the absolute error: numbers are regularly spaced along
the real line such that the maximum absolute error introduced when rounding a
number is a constant, it will be identical whether we are manipulation 0 or 10%°.

A strong downside of this representation is its limited range making it unpractical
to represent common physical constant such as speed of light (/= 300000000 m/s)
and Newton’s gravitational constant (= 0.0000000000667 N - m? - kg™?) with the
same encoding and meaning that multiplications and divisions tend to quickly
result in overflow or underflow.

Fixed-point numbers appear mostly in finance where the numeric range are
limited and regulations are often expressed in terms of absolute error, embed-
ded systems where processors usually lack floating-point instruction and signal
processing to reduce costs by using less expensive processors.

1.1.3 Floating-point representations

Floating-point numbers, whose representation is detailed in section 1.2.2, encode
reals with two numbers, one of them being the exponent, which is implicit and
fixed with fixed-point numbers.

15

This means that representable numbers cover a very wide range of powers, the
double precision format was designed to be able to express basic physical constants,
but the spacing between two representable numbers is now variable. Numbers
around zero are now much closer to one another than numbers around very large
values.

Floating-point numbers are, currently, the most common representation used in
numeric applications. In the following we will focus on them, and in particular on

the IEEE-754 formats [IEEE, 2019].

1.2 The IEEE-754 standard

One can make many design decisions while designing a floating-point number format.
This section gives a brief overview of the various floating-point formats available
before the introduction of the IEEE-754 standard, motivating its introduction,
followed by a description of the parts of the specification that are of interest for our
work (we recommend [Muller et al., 2010| for a thorough discussion of IEEE-754
floating-point arithmetic and its properties). It finishes with a description of the
consequences of the existence of a standard for numerical analysis.

1.2.1 Genesis of the standard

Before 1985, as can be seen in Table 1.1, floating-point formats were mostly
manufacturer-dependent and varied widely. This made results non-reproducible
between architectures and the numerical stability of algorithms hard to predict
[Kahan, 1997, Severance, 1998|.

This problem was solved by the introduction of the IEEE-754 standard [IEEE,
2019]. The first version of the standard was developed by a committee headed
by William Kahan [Kahan, 1997]. Published in 1985 and revised in 2008 and
2019, it specifies various formats for the binary representation of reals that are now
standard and implemented by the vast majority of processors?.

This was an effort to both standardize floating-point representations and build
on a more principled basis to ensure properties such as the preservation of the
commutativity of the operations (however associativity and distributivity are lost
as detailed in section 2.2.1) and the fact that xt —y = 0 <= x = y which was not
guaranteed by most previous implementations due to small values being flushed to
zero in the absence of subnormal numbers [Severance, 1998].

!Graphics processing unit (GPU) are the most common exception. They usually implement
only a subset of the standard, some of them having no denormals or only some rounding modes
[Whitehead and Fit-Florea, 2011].

16

Significand’s Machine epsilon
Computer Base (b) | digits in the (! bl,pr)) Emin Emax
base (p) 2
Univac 1108 2 27 2727 5 7.45¢79 -128 127
Honeywell 6000 2 27 2727 xx 7.45¢~° -128 127
PDP-11 2 24 2724 ~ 5.96e8 -128 127
Control Data 6600 2 48 2748 5 3.55¢7 15 -975 1070
Cray-1 2 48 2748 ~ 3.55e7 15 | -16384 8191
Illiac-1V 2 48 2718 ~ 3.55¢7 1 | -16384 16383
SETUN 3 18 37~ 3.87¢? ? ?
Burroughs B5500 8 13 2737 » 7.28¢712 -51 T
Hewlett Packard HP-45 10 10 5e~10 -98 100
Texas Instruments SR-5x 10 12 5e~12 -98 100
IBM 360 and 370 16 6 272 47777 -64 63
IBM 360 and 370 16 14 275 x 1.11e 16 -64 63
Telefunken TR440 16 9% 2735 2 2.9]e 1! -127 127
Maniac II 65536 21 271715 ~ 3.73¢9 -7 7

Table 1.1: Floating-point format of various machines developed before the publica-
tion of the IEEE-754 standard. Extracted from [Forsythe et al., 1977] (see section
1.2.2 for an explanation of the column names).

1.2.2 Formats

The IEEE-754 standard defines a variety of floating-point formats and associated
sets of representable numbers, listed in Table 1.2, as (b, p, [Emin, Emaxz]) triplets
where b is the base in which numbers will be encoded, p is the precision, the number
of digits of the significand and, [Emin, Emazx| is an exponent range which defines
the range of values covered by the exponent.

For a given format, representable numbers are encoded as triplets (s,q, f)
composed of:

e A sign bit s € {0,1}.

e An exponent q encoded as an unsigned integer such that Emin < g— Emaz <
Emazx. To decode it, one has to subtract the bias Emax from ¢ which enables
the representation of negative powers.

o A significand, also called fraction or mantissa, f encoded as a p digit unsigned

17

integer in base b. To decode it, one needs to interpret it as a fraction in the
given base with an implicit one in the first place (unless the number is zero
or a subnormal). Thus the fraction 011 would be decoded as the significand

1.011 which, in binary, is 20 + 272 + 273 = 1.375.

Common | Base S%gplﬁ(_:and ® | Machine epsilon .
Name digits in the 1y1_ Emin Emax
name () (30'77)
base (p) 2
binaryl6 Half 2 11 211 v 4.88¢4 14 15
precision
binary32 Single 2 24 2724 ~ 5.96e~8 -126 +127
precision
binary64 p?;‘il;fn 2 53 2753 & 1.11e716 -1022 +1023
. Quadruple —64 —20
binary128 precision 2 113 27%% ~ 5.42¢ -16382 +16383
. Octuple ~113 -35
binary256 precision 2 237 2 ~ 9.63e -262142 4262143
decimal32 10 7 5e~" -95 +96
decimal64 10 16 516 -383 +384
decimal128 10 34 534 -6143 +6144

Numbers can be decoded using the formula x = (—1)% x f x b9.

Table 1.2: TEEE-754 floating-point formats.

The single

precision number represented in Figure 1.1 is decoded as follow:

s=0

f=2"4+2"2=125
q=(22+22+20 +2° 420+ 27) - 127 = -3

= (—1)°x fxbl=(-1)"x1.25 x 27% = 0.15625

A handful of special cases are added to this representation in order to represent

exceptions and specific numbers:

e +0 and —0, which are represented by setting all the bits to zero except for
the sign bit.

18

sign exponent (8 hits) fraction (23 hits)
| |

olo[1[1]1]1]1]o]o]o]1]0]0]0]0|0|o|olo|o|o|ololo|o]o]o]o]o]o]0
31 30 2322 (bit index)

Figure 1.1: Binary representation of 0.15625 in IEEE-754 32-bit floating-point
arithmetic. Picture extracted from [Stannered, 2008].

o

=0.15625

Oe

e 400, —00, which are represented by setting all the exponent bits to one and
all the fraction bits to zero and can be produced by operations such as the
division of a finite, non-zero, number by zero or an overflow.

e two kinds of Not-a-number (NaN), signaling and silent (also called quiet), to
encode the output of invalid operations such as taking the square root of a
negative number or dividing zero by zero. They are represented by setting
all the exponent bits to one and setting some? bits of the fraction to one.

e subnormal (also called denormal) numbers, used to have a finer granularity
around zero and avoid flushing results to zero. They are encoded by setting
the exponent bit set to zero which implies that the implicit first bit of the
fraction should be set to zero.

1.2.3 Rounding modes

Given a real z € R, which can be either an input or the result of an operation done
on one or more representable numbers, one needs a surjective mapping R — F. To
do so, the IEEE-754 standard specifies six possible rounding modes which select
the next or previous representable number as a function of z:

e Round to nearest, ties to even. Rounding to the nearest representable number,
break ties by selecting the representable number with an even last bit to
prevent bias toward larger or smaller numbers. We will denoted it 1, (x).

e Round to nearest, ties away from zero. Rounding to the nearest representable
number, break ties by selecting the representable number with the larger
magnitude. We will denote it 1, ().

e Round to nearest, ties to zero. Rounding to the nearest representable number,
break ties by selecting the representable number closest to zero. We will
denote it T,, ().

20n x86 processors, silent NaN are denoted by setting the most significant bit of the fraction
to one. However, this is not a general rule as the encoding of signaling and silent Nan is not
specified by the IEEE-754 standard.

19

e Round toward 0. Rounding to the representable number closest to zero. We
will denote it 1o ().

e Round toward +oo. Rounding to the representable number closest to 4oc0.
We will denote it T4 (2).

e Round toward —oo. Rounding to the representable number closest to —oo.
We will denote it T_ ().

The standard impose that processors default to Round to nearest, ties to even
unless specified by the program. This rounding mode will be shortened as Round
to nearest in the following discussion. The alternative rounding modes being
mostly used in interval arithmetic implementations and within some specialized
mathematical libraries.

-15.5 -8 4 2 oavorioz g 8 15.5

Figure 1.2: Distribution of representable floating-point numbers (black bars on the
figure) for a hypothetical 8 bit floating-point format that has a 4 bit mantissa and
a 3 bit exponent. The unit in the last place associated to a number is the distance
between the two closest bars. Extracted from [Schatz, 2014].

One important quantity is the unit in the last place of a number (abbreviated
ULP). Borrowing a definition from [Muller, 2005], if = is a real number that lies
between two finite consecutive representable numbers (z1,72) € F?, without being
equal to one of them, then ULP(z) = |zy — x1|. Otherwise, ULP(x) is the distance
between the two finite consecutive representable numbers nearest (ULP(NaN) is
NaN).

This quantity, which can be seen in Figure 1.2, grows with the amplitude of x
(larger representable numbers are further apart) and is used as a unit of accuracy
as an operation cannot be more accurate than % units in the last place since there
would be no representable number to encode the result. All rounding modes defined
by the standard guarantee that the rounding error will be lower than or equal to
one ULP and given the round-to-nearest rounding mode, a real X € R and a finite
floating-point number x € F, we have:

e (X) =2 — | X —1| < %ULP(m)

All arithmetic operators (+, —, x, /) round according to the current rounding
mode. While not mandatory, correct rounding is also recommended for some

20

common functions including the exponential, logarithm, sine, cosine, and tangent.
This means that they can be treated as atomic operations, like arithmetic operators,
that produce a result within one ULP of the output of an equivalent infinite
precision operation applied to the same outputs. This property is a cornerstone
of floating-point analysis as it gives an upper bound on the absolute difference
between the output of a computation done with floating-points and the output of
the same computation done with real numbers. Given three finite floating-point
numbers (x,y, z) € F? and a real numbers Z € R, we have:

r+y=2

1 1

— |Z -2 < ZULP(z) = |(x+y) — 2| < ZULP(z
MZ):Z} 1~ 2 < JULP(:) = |(o+9) - 2| < SULP(:)

For non-subnormal numbers, an ULP can be translated into a relative bound
using € = %bl_p, the machine epsilon, the smallest floating-point number that can
be added to 1 in order to get a result different from 1 (subnormal numbers require
a constant, not relative, bound):

ex <ULP(x) < 2ex

1.2.4 Consequences

The TEEE-754 standard and its wide application has had a profound impact on
the reproducibility of numerical computations across hardware. Given a working
precision, rounding mode and sequence of operations, all fixed at the assembly
level, the standard guarantees that a computation will produce identical results
from one CPU to another making it possible to develop numerical algorithms that
are reliable across languages and processors. Furthermore, guarantees on the upper
bound of the error introduced by the rounding of the arithmetic operators mean
that computer scientists are able to reason and write proofs about floating-point
computations, opening the door for error-free transformations (see section 2.4) and
a wide range of static analysis (mentioned in section 3.1.2).

However, things are not as straightforward as it may seem. Most programming
languages do not give access to all of the features provided by the standard [Kahan,
1997], such as the possibility to change the rounding mode of the processor. Some
programming languages, such as Java [Kahan and Darcy, 1998|, explicitly do not
try to follow the standard. Even when one is using a programming language which
follows the standard and gives ways to access most of its features, such as C or
C++, many factors like parallelism and compiler optimization, which can change
the working precision and reorder operations, can invalidate its properties and
break reproducibility from one processor to the other. For example, the Intel C++

21

Compiler is notorious for reordering arithmetic operations by default, despite the
non-associativy of floating-point arithmetic, which breaks some algorithms such as
Kahan summation [Intel, 2013].

For the sake of simplicity, numbers encoded following the IEEE-754 standard
will be referred to as floating-point numbers and floating-point arithmetic will
be used as a synonym for the IEEE-754 floating-point arithmetic used with the,
default, round to nearest, ties to even rounding mode.

22

Chapter 2

Definition and properties of
numerical error

IEEE-754 floating-point arithmetic uses a finite set of numbers to represent reals.
Hence, most numbers have no exact representations and the result of some arith-
metic operations between floating-point numbers cannot be represented exactly as a
floating-point. This round-off error, which we call numerical error, can accumulate
and be propagated across computations, impacting the final result.

In this chapter, we define the various kinds of error that can affect a simulation
before focusing on numerical error, which is illustrated with various examples, and
introduce two related concepts: Error-free transformations and significant digits.

2.1 Types of error

There are four main types of error that can make the output of a simulation deviate
from the physical truth:

e Modeling error, when the model is inaccurate or incomplete.

e Discretization error, when the algorithm has a step size that is too coarse for
the targeted phenomena. We include temporal and spatial step sizes in this
category but also the error due to the stopping criteria of iterative algorithms.
This error goes to zero as the step size decreases (as seen in Figure 1).

e Uncertainty on the inputs and constants. This stochastic quantity models
imperfect knowledge of the parameters of the model.

e Numerical error, the error introduced by the use of a non-exact computer
representation for the numbers.

23

An example encompassing all those types of error would be the simulation of
the solar system using the gravity between the planets and the sun as the only
forces (Equation 2.1), Newton’s second law to convert those forces into accelerations
(Equation 2.2) and finite differences with a step € to convert acceleration into speed
into position (Equation 2.2, 2.3 and 2.4).

In this example, modeling error comes from using an imperfect formula for the
gravity (Equation 2.1 does not take relativistic effects into account) and missing
some forces (such as the gravity due to stars out of the solar system). Our
discretization error comes from the parameter € used for the finite differences
(Equation 2.2, 2.3 and 2.4) and should reach zero as € decreases in magnitude. Our
uncertainty is the imprecision in our knowledge of the various constants such as the
initial positions xg, speeds v; and masses m; of the planets. The numerical error
is the error introduced by the use of a limited precision computer representation
for numbers which introduce round-offs in the result of the various arithmetic
operations such as the sum of forces in Equation 2.2.

_ G .
Ji2 = 521m2 Ugy (2.1)
12
a/t__;_e — f — Ve — Ut (22)
m €
Tire — Tt
Vil = U; + €ait. = % (2.3)
Tite = Ty + €U, (2.4)

Most users, and indeed most papers, assume that numerical error is a negligible
quantity when compared to other sources of error [Yeo, 2020, Eca et al., 2019,
Zikanov, 2019, Slater, 2008]!. Some also believe that it should always be about
10~% when using double precision?. These misconceptions seem to stem from the
fact that the relative round-off error introduced by a single arithmetic operation in
double precision should indeed be bounded by the machine epsilon which is 2753
(about 1.11 x 107'). Furthermore, current algorithms tend to be built on decades
of numerical analysis and to have good numerical properties, keeping the numerical

L As Oleg Zikanov said in |Zikanov, 2019, section 13.2.1]: "The commonly accepted criterion is
that the iteration errors are at least one order of magnitude lower than the discretization errors.”.
Here the concept of iteration error includes numerical error and all other sources of error that
differentiate the computed result from the theoretical output of the algorithm. It is to be noted
that the author is, himself, careful with the notion and dedicates a section of his book to the
numerical error dampening or amplifying properties of numerical schemes.

2The following citation from the introduction of [Ega et al., 2019] is particularly representative
of a state of mind we found in many papers: "We are assuming that double-precision (14 digits)
1s sufficient to obtain a negligible contribution of the round-off error to the numerical error.”.

24

error in check. However, as will be seen in chapter 8, we found that numerical error
can still have a significant impact on real programs.

2.2 Numerical error

2.2.1 A definition of numerical error

Numerical error is introduced when a number is rounded to the closest computer-
representable number. An example of rounding is the number 0.1 which, similarly to
% in decimal, would requires an infinite number of bits to be represented exactly in
base two (0.00011001100110011...). Having only a limited number of bits available,
one has to truncate the representation, thus 0.1 is encoded as 0.0001100110011
in half-precision which is equal to 0.0999755859375 in decimal. This is called a
round-off, it can happen when encoding a real into a computer-representable format,
when translating between two formats. Round-off can also occur when the output
of an operation which takes representable numbers as inputs cannot be represented
in the current format.

Round-offs are propagated through the computation leading to visible differences
between computations done with real numbers and floating-points as seen in code
listing 2.1.

~

(0.3 + errorl) + 0.3
0.6 + errorl + error2
0.60000000000000009

(0.1 + 0.2) + 0.3
(0.1 + 0.2) + 0.3
(0.1 + 0.2) + 0.3

0.1 + (0.2 + 0.3) 0.59999999999999998

Code listing 2.1: Floating-point computation, done with two different parenthesizing,
in double precision.

We call those differences numerical errors. Some publications include uncer-
tainties in their definition of numerical error, to avoid ambiguities they use the
term round-off error3 to name the error produced by floating-point arithmetic. In
the following numerical error and round-off error will be synonymous.

It is essential to discriminate between three slightly different definitions of
numerical error. Given an expected result X € R and the computed result z € F,
they are defined as follows:

e The numerical error which we define as the difference between the result
computed in infinite precision and the actual floating-point result, E(X, z) =

3The term truncation error is also used in this context. However, it is most commonly used to
describe the error introduced by the truncation of an infinite sum and the discretization error.

25

X — x. This quantity is signed and entirely determined by a sequence of
operations on given inputs and not stochastic, unlike uncertainty. It is the
quantity that we measure and manipulate in the following.

e The absolute numerical error which is the absolute value of the numerical
error, Egpsorute(X,z) = |X — z|. It is unsigned, and thus its manipulation
over several operations can only lead to an upper bound.

e The relative numerical error which is the absolute value of the numerical
error divided by the computed result, E,.cative(X,) =]%| IEEE-754
floating-point arithmetic operators try to minimize this quantity locally while,
by contrast, fixed-point arithmetic will try to minimize the absolute error.

2.2.2 Stability, accuracy and precision

Various terms, most notably stable, accurate and precise, are employed to describe
the numerical behavior of an algorithm or the quality of a result. In the context of
floating-point analysis, the stability of an algorithm describes the way it is influenced
by the use of finite precision, whether the numerical error in the intermediate steps
is dampened or, on the contrary, magnified.

Following the notations of [Chesneaux et al., 2009], let’s take an algorithm G,
computed in R, such that Y = G(X) with (X,Y) € R? and the corresponding
algorithm g, computed in I, such that y = ¢g(X) with y € F. The forward error
corresponds to the numerical error, namely Y — y, while the backward error is the
smallest perturbation dx such that y = g(X + dx) (this concept, made famous by
[Wilkinson, 1964], relates to the residual which is often the error measure used in
linear algebra due to its ease of computation in this context).

A solution is said to be accurate if it has a low forward error, an algorithm is
said to be forward stable if its forward error is of order o(|y| X €) and backward
stable if its backward error is of order o(|z| x €). In the following, we will use
the term numerically stable and, by opposition, numerically unstable to speak of
forward stable algorithms and precise (compared to a result that would have been
computed in R) as a synonym for accurate.

2.2.3 Significant digits

One metric used to evaluate the quality of a numerical result is its number of
significant digits. However, as discussed in [Parker, 1997, section 4.1] and [Sterbenz,
1974, section 3.1], the concept of significant digits is usually not formally defined,
due to its perceived intuitive nature. This leads to non-obvious results. An example
(taken from [Parker, 1997]) would be that if one expects a computation to produce

26

3.14159, most people would consider 3.1415 to have five significant digits and 3.1416
to have four significant digits despite the fact that the later is closer to the expected
result.

Following [Parker, 1997|, we define the number of significant digits of a result
as a function of an associated error and in base b, as:

L—logb ﬂu if number # 0 and ‘ﬂ‘ <1

number number
digits(number, error) = < +o0o if number = 0 and error =0

0 else

This definition gives sensible, comparable, results for various kinds of error
such as a signed numerical error, but also the width of an interval or the standard
deviation of a distribution. The formula also has the interesting property of being
very resilient to imprecision in the measure of the error: as we round the logarithm
of a ratio, having the correct order of magnitude for the error is enough to get the
correct result.

2.3 Some consequences of numerical error

2.3.1 Direct consequences

A direct consequence of numerical error is that, since the order of round-offs change
with the order of operations, addition and multiplication are not associative in
floating-point arithmetic as seen above in example 2.1. This is often detected
in the form of varying outputs when running parallel programs as they tend to
change the order of operations from one run to the other. It can also be seen
when two mathematically equivalent formulae give different results when applied
to floating-point numbers. One such example is the computation of the variance,
Equation 2.5 and Equation 2.6 are mathematically equivalent, but Equation 2.5
(which is commonly used as it can be computed in a single pass on the data) can
sometimes produce a negative variance (which should be impossible in R) due to
the accumulation of numerical errors surfacing in the final subtraction.

variance(x) = <% fo) — (% le> (2.5)
, 1 O 1\
variance(x) = - Z (ml - Z xz> (2.6)

i=1

27

This particular case of round-off, a subtraction between two numbers of similar
magnitude, where a single operation can have a drastic impact is called a cancellation.
Cancellations lead to a drop in magnitude and thus the loss of several bits of
precision. Another example of cancellation is the subtraction in (10 + 1) — 10%°
which is evaluated as 0 in 64 bit IEEE-754 arithmetic since 10%° + 1 rounds to
10%. The subtraction is technically exact (as 10% — 10% is indeed 0) but, due
to the drop in magnitude, the error from the initial round-off becomes apparent.
Cancellations are sometimes called catastrophic cancellation when the number of
bits lost becomes large enough (different tool will have different thresholds to define
the point where a cancellation is considered catastrophic).

Another commonly observed consequence of numerical error is the presence
of unstable tests, Boolean operators (=, #, <, <, >, >) that would have produced
different results if the full computation had been done with real numbers. The sim-
plest, and most commonly known example, is the fact that unless proven otherwise
one should avoid equality tests between outputs of floating point computations (as
seen in example 2.1 where we observe that (0.1 +0.2) +0.3 # 0.1 + (0.2 4+ 0.3)).
The most common solution is to, instead, test whether the absolute difference
between the numbers is below a, problem dependent, acceptability threshold. In
the following, we consider a test unstable if the difference of its operands has no
significant digits when taking into account their respective numerical error (we
define significant digits in section 2.2.3). As will be seen in section 5.3, even a
comparison such as the convergence criteria of an iterative algorithm or, worse,
a criterion used to decide on the model that will be used for a simulation, can
be unstable leading to potentially significant differences between the output of a
computation done with reals or floating-point numbers.

2.3.2 Examples of inaccurate results

This section presents some examples of inaccurate results to give the reader a feel
for the kind of impact that numerical error can have on a computation.

W. Kahan’s second order equation

The example given in code listing 2.2 was introduced by William Kahan [Kahan,
2004] and solves Equation 2.7 using the quadratic formula.

94906265.6252° — 1898125341 + 94906268.375 = 0 (2.7)

Using the resolution of a second degree polynomial, it illustrates how a well
known, textbook formula (which most people are likely to use) can be numerically

28

unreliable.

double SecondOrderEquation ()
{
// a*x"2 + b*z + ¢ = 0
double a 94906265.625;
double b -189812534.0;
double c 94906268.375;

double delta
double rootl
double root2

bxb - 4xaxc;
(-b + sqrt(delta)) / (2*a);
(-b - sqrt(delta)) / (2xa);

return root2;

Code listing 2.2: W. Kahan’s second order equation.

The given polynomial has a single root, 1. Computed in float precision, the
function returns NaN (not-a-number) because the determinant is evaluated as
—2147483648, which is negative, instead of zero due to the round-offs in the
multiplications. A more advanced implementation would conclude, wrongly, that the
polynomial does not have a real root. In double precision we obtain 1.00000014487
979 and, since we know that this function should output the integer one, we can
easily conclude on the precision of the result. This is not generally the case. Long
double precision* returns 1.000000000000000 which lures us in a false sense of
security: one might think that slightly increasing precision is enough to get a
correct result.

S. Rump’s polynomial

The example given in code listing 2.3 was proposed by Siegfried Rump [Rump,
1988| and implements Equation 2.8.

r = T7617
P(z,y) = 333.759% + 2?(112%y* — ¢° — 121y* — 2) + 5.5y + —

2y

It was designed to produce the same output with 32 bit, 64 bit, and 128 bit
floating-point arithmetics on an IBM, pre IEEE-754 standard, machine. While this

4Which is equivalent to 80 bit precision for most C/C++ compilers. The Microsoft Visual
C++ compiler is a notable exception, it defines long double as an alias for 64 bit precision.

29

particular example does not exhibit this behavior on modern processors, it still
produces some interesting outputs.

double Polynomial ()

{
double x = 77617,
double y = 33096;
double x2 = pow(x,2);
double y2 = pow(y,2);
double y4 = pow(y,4);
double y6 = pow(y,6);
double y8 = pow(y,8);
double result = 333.75%y6
+ x2x(11*x2*y2 - y6 - 121*xy4d - 2)
+ 5.5%y8 + x/(2xy);
return result;
}

Code listing 2.3: S. Rump’s polynomial.

The function outputs —7.6 x 10%° in float precision but —1.18 x 10%! in double
precision (a result with a very different magnitude), and 0.18 x 10! in long double
precision (a similar magnitude but a different sign). Here increasing the working
precision, a common heuristic to validate a result (see section 3.1.1), does not
increase our confidence in any output. The analytical result is approximately
—0.827, orders of magnitude from all previous outputs.

J.M. Muller’s sequence

The example given in code listing 2.4 was proposed by Jean-Michel Muller [Muller,
1989], it implements the recurrent sequence given in 2.9. As n increases and with
those initial values, the sequence converges to 6 in R.

U(0) =2
uQ)=-4 (2.9)
U4 1) = 111 1130 3000

T Um) T UM xUm =1

Given enough iterations, here 200, our implementation converges to 100 in any
finite precision.

30

double RecurrentSequence ()

{

double xO
double x1

2.0;
-4.0;

<= 200; i++)

Il
[
]

for(int i

{
double x2 = 111 - (1130 - 3000/x0)/x1;
x0 = x1;
x1 = x2;

return x1;

Code listing 2.4: J.M. Muller’s sequence.

William Kahan gave an analysis of this example in [Kahan, 2006]. Equation
2.10 gives the general equation of the sequence, where «, § and v are function of
U(0) and U(1). 100 is an attractive point for this sequence: if o has any value
different from zero, it will converge to 100. Otherwise, and if 5 # 0, it converges to
6.

Our initial values, U(0) = 2.0 and U(1) = —4.0, are chosen such that the
sequence converges to 6 (o = 0 and 5 # 0) but the slightest round-off in the
computation is enough to make o non-zero which cause the sequence to converge to
100. It is a particularly tricky case as, given enough iterations, no finite precision
will be able to reach the analytical result expected from our starting point.

a x 100" 4+ 8 x 67 4 x 5nft
a x 100" + 8 x 6™ 4 v x 57
This example is also interesting because the output obtained might not always

be considered incorrect. While a mathematician studying the sequence might

consider 6 the only acceptable result, a physicist doing simulation may consider

100 to be the correct result if this sequence is used to model a system which is

susceptible to receive perturbations not taken into account by the model.

U(n) = (2.10)

2.4 Error-Free Transformations

When using the rounding-to-nearest rounding mode, it is known [Bohlender et al.,
1991] that the numerical error of the addition and multiplication operators in IEEE-
754 floating-point arithmetic is a representable floating-point number that can be

31

computed without needing any additional precision for most® floating-points. Error-
free transformations, as introduced in [Knuth, 1998, section 4.2.2|, are operations
that, despite being build on floating-point operators, provably return the numerical
error for any floating-point operands (for a good reference see [Muller et al., 2010,
section 4.3, 4.4, 5.1 and 5.2|). They are commonly used to improve the numerical
properties of algorithms such as the sum, dot product and polynomial evaluation.
Building either compensated algorithms, with a reduced numerical error, or exact
algorithms, guaranteed to be within one ULP of the analytical result. We refer the
interested reader to section 6, Enhanced Floating-Point Sums, Dot products, and
Polynomial Values, of [Muller et al., 2010].

In the following we use two transformations: TwoSum [Knuth, 1998, section
4.4.2, theorem B|, an error-free transformation able to return the error §, of the
addition of two floating-point numbers x and y in the absence of overflow, and a
Fused Multiply-Add (fma) used to extract the error J, of their multiplication (see
Algorithm 2), but also the exact residual of the division and square root [Muller
et al., 2010, section 5.2|. A Fused Multiply-Add is an operation which computes
fma(x,y,z) = x xy + z with an infinite intermediate precision which guarantees
that the result will be within 0.5 ULP of the analytical result. Said differently,
given some inputs it will produce the representable number that is closest to the
analytical output. While it can be implemented at the software level, fast hardware
implementations are accessible from most programming languages and for most
processors due to the usefulness of the operation, as detailed in [Muller et al., 2010,
section 5.2].

Algorithm 1 TwoSum(z, y)
Z4—T+Yy
¥—z—y
y —z—a
0p ¢ (=) +(y—¥)
return 6,

Algorithm 2 TwoMultFma(z, y)
24— T*Y
d < fma(z,y, —2)
return 9,

5There are preconditions, which apply to the majority of inputs, to insures that the numerical
error of the multiplication operator is a representable number. See [Muller et al., 2010, section
4.4].

32

One can show that TwoMultF'ma works as expected in a fairly straightforward
way. Given a product, z =1, (r*xy) = xxy—J, with (2,z,y,d,) € F, where z is the
result and J, the numerical error we want to extract, we have fma(x,y, —z) =1,
(xxy—2z) =T, (xxy— (xxy—0,)) =T, (0x). If we know that the numerical error
is a representable number, then 1, (0,) = 0, and thus fma(z,y, —z) = d..

Twosum cannot be proven to work as easily but one can develop an intuition
for why it does work with an example. Setting = to 23° and y to 1 such that the
numerical error is equal to one of the inputs, we have:

2=t (@+y) =tn (2% +1) = 2%
2 =t (z—y) =ty (2% = 1) = 2¥
Y =t (2 —2') =ty (2 = 2) =0
5 =t (& = 2') =P, (2% = 2) = 0
oy =T (y—y) =tn (1-0)=1
O0r =Tn (6, +6,) =T, (0+1)=1

a2’ and 3’ contain the bit that the result z inherited, respectively, from x and
y. 0, and J, contain the associated bits lost which, summed into d., give us the
numerical error associated with the operation.

It should be noted that, while we focus on the rounding-to-nearest rounding
mode, there is a variation of the TwoSum error-free transformation that is valid for
any rounding mode [Priest, 1992, section 2.3]. There are proofs |Graillat et al., 2009|
showing that the Fused Multiply-Add operation can still be used as an error free
transform for other rounding modes. Using those operations, one could generalize
our work to other rounding modes.

33

Chapter 3

State of the art

Our aim is to develop a method to quantify the impact of the numerical error on
the outputs of a given application in a simulation and high-performance computing
frame (and not, for example, the certification of single functions in a mathematical
library). This chapter does a review of the state of the art through this lens. First,
we introduce the approaches that have been used to measure the numerical error
of a floating-point computation. Second, we describe the methods that are used to
try to localize the sources of error in order to improve the numerical stability of a
program.

3.1 Measuring numerical error

This section introduces the classes of methods currently used to assess the numerical
error of a program. Their strengths and shortcomings are examined as applied to
large simulations and high-performance computing programs.

3.1.1 Comparison with higher-precision arithmetic

The most obvious, and maybe the simplest, way to measure numerical error is
to compare an output with the result of an equivalent computation performed
with higher precision arithmetic. Higher precision arithmetic is usually obtained
with a wider IEEE-754 format, for example 64 bit numbers to analyze 32 bit
arithmetic, or with a library implementing arbitrary precision arithmetic, most
often the MPFR library [Fousse et al., 2007]. Given two numbers (z,y) € F? and a
simple computation, + y?, the method would be applied as follows!:

I'Where {-..} high precision computation denotes a computation done with an increased precision.

34

z:x+f
_ 2
Zhigh precision — {I + Yy }high precision computation
ETTOT = Zhigh precision — <

Good illustrations of this approach include FpDebug [Benz et al., 2012| and
Precimonious [Rubio-Gonzélez et al., 2013]. This is often combined with Shadow
execution (as in [Benz et al., 2012]): running the program with both precisions at
the same time via a form of instrumentation (usually binary instrumentation with
a tool such as Valgrind [Nethercote and Seward, 2007]).

While easy to implement (in its simplest form) and to interpret, this has two
main limitations: high precision tends to have a large overhead (two orders of
magnitude for MPFR in our tests) and this approach relies on the hypothesis
that the precision used will be sufficient to detect problems. As we saw in section
2.3.2 and as detailled in section 4.3.4, a large cancellation can make high precision
arithmetic unreliable when it is used to estimate the numerical accuracy of a result.

3.1.2 Static analysis

Building on the IEEE-754 standard guarantees on the rounding of the operations,
one can use static methods, which are usually built on abstract interpretation (as
in FLUCTUAT [Goubault, 2013]), symbolic reasoning (as in FPTaylor [Solovyev
et al., 2015]), SMT-solvers (as in Rosa [Darulova and Kuncak, 2014b]), or proof
assistants (as in Gappa |[de Dinechin et al., 2011]), to prove that a result will have
sufficient precision for all possible inputs.

The strength of this type of approach is that it provides strong guarantees for
all possible inputs which makes it a method of choice to certify implementation
of mathematical functions. However, it is often confined to programs written in
domain specific languages and tends to be limited to programs that are both short
(often a single function) and simple (loops and tests increase the difficulty of the
task considerably) [Darulova and Kuncak, 2014a].

3.1.3 Interval arithmetic

Interval arithmetic [Moore, 1963, Moore, 1966| provides a more scalable way to get
strong guarantees on a result. Its key idea is to associate an interval [T, f, Tsyp)
with each number x such that x € [z, Tsyp) (the interval can also be encoded by a
midpoint representation of the form x & y;an, as in Arb [Johansson, 2017|, which
provides some efficiency benefits). The interval encodes a strict upper bound and
a strict lower bound on the result, using the rounding toward —oo and rounding

35

toward +o00 to take round-offs into account as seen in Equation 3.1. The output
interval gives us an upper bound on the numerical error of the computation.

27, 2%+ [y Yt = s (27 +47), T (27 +47)] (3.1)

This approach is of particular interest to developers that want to certify a
function or a small program where static methods do not scale or are not applicable.
It can even be combined with static analysis to build on the strengths of both
methods [Darulova and Kuncak, 2014b]. However, when applied to large compu-
tations, these methods tend to return intervals too large to be useful, unless one
performs highly specialized modifications of the original computation in order to
mitigate the problem (Newton’s method famously requires a fix to avoid diverging
intervals [Revol, 2003]).

Some work has been done to mitigate the problem, such as affine arithmetic
[Comba and Stolfi, 1993] which keeps information on the dependencies between
intermediate operations and represents numbers with the form z,ffine = v+, €2
where the x; are floating-point numbers and the ¢; are symbolic values considered
to be within [—1,1]. With this formalism, any source of uncertainty (such as
round-off error) before or after a computation adds a €;z; term which could later be
compensated when combining numbers which share this term (and thus an input).
However, no solution currently fully solves the problem of exploding intervals and
refactoring an algorithm to use interval arithmetic is still a highly specialized task
that might not produce useful results.

3.1.4 Stochastic arithmetic

Stochastic arithmetic [Vignes and La Porte, 1974, Parker, 1997| provides a rather
transversal solution to the problem. Its key idea is to add perturbations to every
arithmetic operation, either by switching the rounding mode randomly toward +oo
or —oo (the CESTAC method [Vignes and La Porte, 1974]) or by adding noise
to the inputs and output (Monte-Carlo arithmetic [Parker, 1997]), and to run
the computation several times while storing the various outputs. The round-to-
nearest [EEE-754 result that we want to study, can be seen as a draw from the
distribution of outputs. If the distribution has a relatively small standard deviation,
then one can conclude that the computation is numerically stable and vice-versa.
Furthermore, the mean of this distribution acts as if the arithmetic was associative
and should converge, asymptotically, toward the result one would obtain in infinite
precision [Chesneaux, 1988].

36

Given a computation, (2 + 3) — 4, the method would be applied as follows?:

(24 3) — 4} stochastic arithmetic = 1.01
(2 + 3) — 4} stochastic arithmetic = 0.99
(2+43)
(2+43)

2 + 3) — 4}stochastic arithmetic — 1.05
2 + 3) — 4}stocha5tic arithmetic — 0.95
ty = mean(x) = 1.0

o, = standardDeviation(x) ~ 0.042

| =4

This method, whose notable implementations include Cadna [Jézéquel and
Chesneaux, 2008|, Verificarlo [Denis et al., 2016] and Verrou [Févotte and Lathuiliére,
2016|, has been applied successfully to large programs [Knizia et al., 2011] and is
particularly suited to applications that already use the Monte-Carlo method (as
the applications are already designed to be run several times in parallel).

However, stochastic arithmetic has two drawbacks. First it is very slow?®, one
needs to run the operations several times (calling a random number generator for
each operation) until a good estimator of the distribution is reached. Second, the
output distribution can be complex to interpret. Most implementations of the
concept, such as Verificarlo [Denis et al., 2016] and Verrou |[Févotte and Lathuiliére,
2016|, are asynchronous: the users run the program several times, collect the
outputs and perform a statistical analysis themselves to conclude on the numerical
quality of the result. This is particularly non-trivial for a multi-modal distribution,
as can be produced by an unstable test.

A notable exception is Cadna [Jézéquel and Chesneaux, 2008] which encapsulate
three synchronous runs of the CESTAC method in a numerical type to avoid re-
runs and post-processing (the Discrete Stochastic Arithmetic method [Vignes,
2004]). This makes the statistical analysis automatic and let them detect unstable
comparisons on the fly. However, one cannot increase the number of runs to get finer
information on the distribution and it uses a majority vote to evaluate comparisons
which can impact the control flow of the program (and, for example, cause iterative
algorithms to stop sooner than in the uninstrumented application that we want

Ty
T2
T3
Ty

{
{
{
{

x
T

digits(x) = L— log, 7
i

2Where {... }stochastic arithmetic denotes the use of a stochastic arithmetic algorithm to inject
noise or switch rounding mode randomly for all operations. The noise has been made artificially
large to make the example easier to follow, in practice one would use noise of the order of one
ULP.

3|Jézéquel, 2020] gives a runtime overhead of 5 to 8 for Cadna, about 30 for Verrou and between
300 and 600 for Verificarlo. We do further benchmarks on arithmetically dense computations in
section 7.1.

37

to validate?). As detailed later, parts of our interface and the idea of using an
instrumented numerical type in our work are inherited from the design of Cadna.

3.1.5 Local error measuring

Some recent publications, such as |[Zou et al., 2019] and [Bao and Zhang, 2013],
have explored entirely local analysis. While there are variations, their common
idea is to measure an error metric for individual operations without taking into
account any error propagation from one operation to the other. Typically, they
measure the loss of magnitude of the outputs of arithmetic operators which can
denote catastrophic cancellations. When the metric goes above a given threshold,
the operation is reported. If enough operations have been reported, then the
computation is considered numerically unstable.

One advantage of this approach is that one can instrument operations without
modifying the memory representation of numbers which can be done fairly easily
with operator overloading or binary instrumentation (with a tool like Valgrind).
These methods appear to work well on small, single functions, where one can work
under the hypothesis that the number of operations is small and that the output is
impacted by all operations.

However, their entirely local nature is a shortcoming when dealing with very
large programs. This approach can fail to detect slow accumulations of numerical
errors (introducing false negatives), while flagging any program which has a locally
unstable component, even if this component does not impact the final result (a
false positive).

3.2 Localizing the sources of numerical error

Once one can measure the numerical error of a program and determine that there
is a problem, the next logical step is to try to localize the sources of error. However,
as solving this problem requires the ability to measure the numerical error, fewer
algorithms have been developed to tackle it. This section covers the two dominant
approaches for finding the sources of error.

3.2.1 Local error reporting

A fairly straightforward solution to identify the sources of error in a program is to
find the operations where the largest errors occur. This is a logical outgrow for
the error measuring algorithms based on local analysis (as presented in section

4This property can be a good thing if one wants to make a stopping criteria more stable.

38

3.1.5); it is also implemented in Cadna [Jézéquel and Chesneaux, 2008| with their
numerical debugger which is triggered whenever a large cancellation occurs.

In its more straightforward form, this method is fairly simple to implement as
it is entirely local, but it shares the downsides of the other purely local approaches
to numerical error. It detects single large cancellations (or sensible operations),
even if they have no impact on the output of the problem, but is oblivious to a
slow accumulation of numerical error making it an unreliable approach to analyze
medium to large programs.

Refinements exist, such as [Zou et al., 2019], that follow the canceled bit to see
whether it impacts the final output. While they help to deal with false positives,
they still rely on the hypothesis that no slow accumulation of error will happen
(hypothesis that is made explicit in [Zou et al., 2019, section 6.1.13]).

3.2.2 Delta-Debugging

When one has an algorithm to measure the numerical error of a program, an option
to identify the sources of error might be to deactivate the measure locally and
find a subset of operations that suffice to reproduce the output error. As this is
a combinatorial problem, one needs an heuristic to prune the search space. One
solution, introduced by Precimonius [Rubio-Gonzalez et al., 2013| and used by
Verrou [Févotte and Lathuiliére, 2016], is to use Delta-Debugging [Zeller, 2009], an
algorithm usually used to locate bugs.

Delta-Debugging can be used to locate the operations of interest by binary
search on the source code. It requires a way to set the error produced by one or
more areas of the program to zero and a binary function to classify an output as
correct or incorrect (this function is subject to tweaking in order to produce an
informative output).

The main downside of this approach is that, despite the huge speed-ups intro-
duced by the use of Delta-debugging over a naive search, it still requires numerous
instrumented runs of the program to zone in on the sources of error, making it very
slow. Furthermore, it provides relatively crude information: for example it can flag
two functions as major sources of error but will not be able to warn the user that
one of those functions produces ten time more numerical error than the other.

3.3 Conclusion

It seems to us that there is a lack of methods to measure numerical error and localize
its sources that can scale to very large programs and high-performance computing.
The problem is that one needs a method that has an overhead low enough to be
applied to a code that already takes a long time to run in its uninstrumented

39

form and that stays accurate when confronted with a large number of operations.
Furthermore, such a method should be able to deal with parallelism and varied
operations, as any program large enough can be expected to have at least one call
to an uncommon mathematical function from the standard library.

With our work, we offer a method with distinct properties: both fast enough to
be used on large simulations and providing easily understandable results that can
be directly used and interpreted by end-users. To do so, we observe that part of the
work that has been done to increase the precision of computation, most notably pair
arithmetic [Lange and Rump, 2020 (which derives from double-double arithmetic
[Dekker, 1971, Bailey, 1995]), can be repurposed and extended to model numerical
error on the fly. Furthermore, it deals correctly with the cancellation problem that
makes high precision arithmetic an unwise choice to measure numerical error. To
the best of our knowledge, we are the first to adapt those concepts to the measure
of numerical error.

40

Part 11

Encapsulated error: A direct
approach to assess floating-point
accuracy

41

Table of Contents

4 Algorithms 44
4.1 Encapsulated erroro 44
4.1.1 Arithmetic operators 44
4.1.2 Arbitrary functions 46
4.1.3 Comparisons 46
414 Output. A7

4.2 Tagged Error 47
4.2.1 Tags and sections Lo 48
4.2.2 Arithmetic operators 48
4.2.3 Arbitrary functions 49
424 Output. 50

4.3 Discussion on encapsulated error’s properties 50
4.3.1 Characteristicso 50

4.3.2 Second-order term 52
4.3.3 Errorbounds 52
4.3.4 Comparison with higher precision arithmetic 53

5 Implementation 55
5.1 Encapsulated error implementation 55
5.1 CH+ o o 55
5.1.2 Juliao o7

5.2 Tagged error implementation 58

5.3

5.4

5.2.1 Section delimitation and tag retrieval 58

5.2.2 Operations. 59
Usage« e 60
5.3.1 Encapsulated error 60
5.3.2 Taggederror. 63
Tools 64
5.4.1 Numerical debugger 64
5.4.2 Code instrumentation 65

43

Chapter 4

Algorithms

Having identified a lack of methods suited for the analysis of large application
and high-performance computing, we developed two methods based on number
representations that encapsulate additional information.

In the first section of this chapter, we introduce the concept of encapsulated
error, which we developed to measure the numerical error through a computation,
and detail the algorithms needed to implement it. In the second section we present
an extension of our method, tagged error, to not only measure numerical error
but also trace it to its origins. Finally, we analyze some key characteristics of the
method.

4.1 Encapsulated error

We propose the use of what we call encapsulated error, to assess floating-point
accuracy. Our idea is to replace floating-point numbers with a pair (number, error)
which contains both the result of the original IEEE-754 floating-point computations
(number), and a signed first-order approximation of its current numerical error
(error), with respect to the machine precision, such that their sum (number+error)
is a first-order approximation of the result we would have obtained in infinite
precision.

The folllowing sections describe our method and, in particular, the way we
apply operations to numbers, compare them, and display them.

4.1.1 Arithmetic operators

All operations on our type, arithmetic operators (4, —, X, /) as well as arbitrary
function, take (number,error) pairs, such as (z,d,) and (y,d,), as inputs and
output a (z,0,) pair, where z is the result of the operation and J, its numerical

44

error. 0, is computed using both the error introduced by the operation and the
error transmitted from the inputs (d, and d,).

When we evaluate arithmetic operators and the square root function, we compute
the error produced by the operation using an error-free transformation (explained
in section 2.4) and combine it with the error transmitted from the inputs using
basic arithmetic:

Algorithm 3 Addition((x,d,), (v,6,))
Z4— Tty
d, < 0y + 0, + TwoSum(z, y)
return (z,0,)

Algorithm 4 Multiplication((x,d,), (y,dy))
24— T XY
0, < (0 % y) + (0, *) + fma(x,y, —2)
return (z,0,)

Algorithm 5 Division((z, d,), (y,d,))

zx/y

numerator < (8, — tma(y, z, —x)) — z * 4,
denominator <— y + o,

J, < numerator/denominator

return (z,9,)

Algorithm 6 Square Root((z,d,))
z 4+ \Jx

numerator <— 0, + fma(—z, z, x)
denominator <— z + z

., < numerator/denominator
return (z,9,)

The error in the multiplication operation should be (0, * y) + (0, *) + (J, *
dy) + fma(z,y, —z) but we decided to omit the second order term, d, * d,, from
the computation of the error and to linearize the square root using its first-order
Taylor approximation. See Section 4.3.2 for an analysis of the associated trade-off.

45

The previous algorithms are equivalent to double-double arithmetic [Dekker,
1971, Bailey, 1995| without the final re-normalization step and have been introduced
independently in [Latkin, 2014] and [Lange and Rump, 2020]. Our work is different
in that it gives a different semantic to this representation: our pairs model numbers
and their errors rather than higher precision numbers. This means that the error
term should never impact the value of the numbers (hence the absence of the
re-normalization step) or comparisons and the control flow of a computation.

As detailed in section 4.3.3, the error bounds from |[Lange and Rump, 2020|
apply to our arithmetic and can be used to prove that, under their hypothesis
and if we restrict ourselves to basic arithmetic operations, our computation of the
numerical error is numerically stable. We test the accuracy of our evaluation on a
practical case in chapter 6.

4.1.2 Arbitrary functions

For arbitrary functions, without any easy way to estimate the error introduced
by the function, we deduce the final error by using higher precision arithmetic! to
subtract the IEEE-754 arithmetic result from a higher precision result computed
after having corrected our number with its error:

Algorithm 7 Arbitrary Function(f, (z,d;))
24 f(z)

62 <~ {f(l’ + 5%) - Z}high precision computation
return (z,0,)

4.1.3 Comparisons

In order to preserve the control flow of the original IEEE-754 computation, com-
parisons and tests are performed on the number part of the pair. Thus, given two
floating-point numbers (z,y) € F? and the associated numerical error approxima-
tions (0, d,) € F?, the comparison of the pairs is equivalent to the comparison of
the numbers:

(z,0,) < (y,0,) ©@x <y

Whenever we call a comparison operator, we can raise a warning if the subtrac-
tion of its arguments produces a number with no significant digits (which Jean
Vignes calls a "zéro informatique" [Vignes and ARSAC, 1986]). It thus means
that the comparison is numerically unstable (this approach is inspired by the
implementation of Cadna [Jézéquel and Chesneaux, 2008]).

'In practice, we use twice the working precision.

46

4.1.4 Output

We display (number, error) pairs with algorithm 8. Our algorithm requires the
function digits that computes the number of significant digits of a (number, error)
pair (introduced in section 2.2.3), a function print_string that prints an arbitrary
string of characters and a function print_scientific that displays a number in
scientific notation with a given number of significant digits.

Algorithm 8 Display((number, error))

digits _number < digits(number, error)
digits _numbery < | —log,, |error| — 1|
if digits _number > 0 then
return print_ scientific(number, digits number)
if (digits _numbery > 0) and (|number| < 1) then
return print_ scientific(0, digits _numberq)

return print("~numerical-noise~")

When a result has significant digits (according to our error measure), we display
it in scientific notation with the computed number of significant digits. When
a result has no significant digits, but is lower than one in absolute value, we
compute what we call its number of significant zeroes (| — log,, |error| —1]), and,
if it is positive, display zero with that number of zeroes. Otherwise, we print
~numerical-noise~ which is our way to signify that a result does not contain
meaningful information.

This algorithm, and in particular the idea of significant zeroes, is inspired by the
display function used by Cadna [Jézéquel and Chesneaux, 2008] (whose details are,
to our knowledge, undocumented). Significant zeros let us encode (1077,107%) as
0.0000, preserving the magnitude information which would otherwise be discarded
if we displayed it as ~numerical-noise~.

4.2 Tagged Error

Once one has the ability to measure numerical error and detect that a given
computation is affected by a large numerical error, the next logical step is to find
the sources of the numerical error in order to try to mitigate it.

We propose an extension of our method, called tagged error, with one error
term (error;) per user-defined section of the code instead of a single term. This
extension, inspired by affine arithmetic [Comba and Stolfi, 1993], lets us track the
evolution, amplification or dampening, of the numerical error produced by various
code sections independently of one another through the rest of the computation.

47

This section details the modifications to the previous algorithms required to
introduce tagged error. We define tags, operations on our numbers and the way we
display the tracking information.

4.2.1 Tags and sections

We call section a line or group of lines in a source code that all fall within the
same scope. We call tag a user-defined name associated to a section that will be
associated with an error term.

A number is represented as a pair (number, [error;|) where [error;] is a mapping
between each tag ¢ and the value of their associated error terms. In practice, this
mapping can be implemented with an array as long as the tags ¢ are consecutive
integers.

We define a function CurrentTag which can be used to get the tag associated
with the current section of the code.

4.2.2 Arithmetic operators

Our operations build on the operation used in encapsulated error, they take (number,
lerror;]) pairs, such as (x, [0,]) and (y, [6,:]), as inputs and output a (z, [0,,]) pair
where z is the result of the operation and the [d,;] its numerical error terms. A
term J,; is computed using the error transmitted from the inputs (J,; and J,;) and,
optionally, the error introduced by the operation. The two main differences are the
fact that we manipulate not one error term, but an array of error terms and that
the error introduced by the operation is considered to be zero for all but the tag
corresponding to the code section in which the operation was done.

Algorithm 9 Addition((x, [04]), (v, [0yi]))
Z2—T+y
for i in tags do
¢; < if CurrentTag() == i then TwoSum(z,y) else 0.0
0z ¢ Oui + 0yi + €

return (z,[d,])

48

Algorithm 10 Multiplication((x, [04i]), (v, [6yi]))
24T XY
for i in tags do
¢; < if CurrentTag() == ¢ then fma(z,y, —z) else 0.0
0si = (0zi % y) + (0yi x) + &

return (z,[d,])

Algorithm 11 Division((x, [04]), (v, [6yi]))

z+x/y
for i in tags do
¢; < if CurrentTag() == i then fma(y, z, —z) else 0.0
numerator; < (0z; — €;) — 2 % 0y;
denominator; <y + 3, 0y
Oy numeratori/denominaton

return (z,[0,])

Algorithm 12 Square Root((z, [04]))
z 4+ \Jx

for i in tags do
¢; < if CurrentTag() == ¢ then fma(—z, z,z) else 0.0
numerator; < 0 + €;
denominator; < z + z
d.; < numerator; / denominator;

return (z,[d,])

4.2.3 Arbitrary functions

For arbitrary functions, the error introduced by the function (which will be stored
in the current tag) is computed using higher precision arithmetic. The impact
of the error propagated from the inputs is also computed with higher precision
arithmetic before being distributed proportionally between the error terms (this is
equivalent to a linear approximation).

49

Algorithm 13 Arbitrary Function(f, (z,[d.]))
24 f(z)

Zprecise — {f(x)}high precision computation
Zeorrected $— {f(x + Zj 5:r:j)}high precision computation
for i in tags do
¢; < if CurrentTag() == i then z,.c.ise — 2 else 0.0

O — =i x (2 — Zprecise) + €i
21 Z]' O2j (corrected pTeczse) 7

return (z,[d,])

4.2.4 Output

If the number 1.2341152 has a total numerical error of 0.003 split between five
tags (funcl = 0.0027, func2 = —0.0006, funcd = —0.0001, funcs = —0.0001,
func6 = —0.0001), it would be represented as follows:

1.23 [funcl : 90%, func2 : —20%, ...|

We display the number first, only the digits considered significant according
to the total numerical error, followed by a list of error terms with their tag name
in order of decreasing impact, each associated to a signed percentage of the total
error. Displaying signed quantities make it possible to represent compensation
between various code sections.

Tags with a numerical error of exactly zero are omitted. If some tags have a
value that is non-null, but less than 5%, they are omitted and trailing dots are
added to the display to denote their existence.

4.3 Discussion on encapsulated error’s properties

This section tries to answer to some theoretical questions and pinpoint the speci-
ficities of the method. We detail the characteristics that make our method unique,
the reason that led to using a first order approximation, the error bound one can
expect on our approximation of the numerical error and the fundamental differences
between our method and higher precision arithmetic.

4.3.1 Characteristics

Our method was built to have several key characteristics:

20

e First and foremost, it can give us an estimation of the numerical error of any
number in a given computation. Thus, a user can easily analyze a program,
step by step, if needed.

e Second, our outputs have to be pertinent for the non-instrumented computa-
tion. Meaning that the instrumented code should follow the same branches
and code paths as the non-instrumented code and that the user should be
able to confirm that the input was left unchanged by the instrumentation.

e Third, we need to keep the runtime overhead low enough to ensure that our
method can be applied to very large simulations.

Having those design criteria in mind, it is interesting to review some characteris-
tics of the resulting method. As the comparisons are computed on the number part
of the pair, our method ensures that we go through the same path and branches as
the original computation. Therefore, it gives us both the same result that we would
have had with the original computation in IEEE-754 arithmetic? and a first-order
approximation of its numerical error. Having both quantities for all numbers, it is
thus possible to get the amplitude of the numerical error and an estimate of the
number of significant digits at all times and for all intermediate results.

Furthermore, implementations can test the quality of the numbers produced
after each operation and forward the information to a debugger in order to pinpoint
the origin of the numerical inaccuracies in the computation (a functionality inspired
by Cadna [Jézéquel and Chesneaux, 2008|).

However, it is essential to note that, contrary to asynchronous methods such as
stochastic arithmetic, the control flow of the computation is not altered. While
this ensures that our analysis is pertinent to the outputs of the non-instrumented
computation, this means that we only explore and return information about the
branches followed by the original computation. A more accurate result might
have followed different branches with vastly different behaviors due to unstable
comparisons; we know nothing of those behaviors. In practice, this has been
observed to cause our method to underestimate the precision of some algorithms
designed to be resilient to numerical errors in intermediate steps. Hence when
validating an output, one needs to look at the estimation of the number of significant
digits but also insure that meaningful tests are stable. Here, our method’s ability
to detect unstable branches is primordial.

2The instrumentation might interfere with compiler optimizations, such as vectorization,
causing the instrumented result to be different from the result of the original computation. This
difference is, however, bounded by the difference one observes between two levels of compiler opti-
mization and can be quantified by checking whether the output of the instrumented computation
is similar to the output of the non-instrumented computation. In our experience, it does not
interfere with the estimation of the numerical error.

51

Finally, our method is compatible with parallelism and, as we will present in
chapter 7, has a low overhead compared to the state of the art. It makes it a
suitable candidate to analyze high-performance computations.

4.3.2 Second-order term

We could easily have added a second-order term to the formula for the multiplication
operator and deal with the square root as we do with arbitrary functions. In
practice, however, we have observed that adding this term leads to either no
sensible improvement or even an artificial explosion of the numerical error. The
most likely explanation is that the second-order term for the multiplication can be
of the same magnitude as the numerical error introduced by the addition needed
to incorporate it into our estimation.

If the computation of a number z is numerically stable then, by definition,
given the machine epsilon € (273 for 64 bit double precision), its error is of order
o(|z| * €). Adding a second-order term to our estimate adds a correction of order
o(|z|x€%), but the error introduced by the addition of the correction itself is of order
o((|z] * € + |z| * €2) * €) = o|x| * € * (1 + ¢€)) which could dominate the correction
creating spurious results.

Meanwhile, if the error is larger than o(|z|xe€), then the first-order approximation
of the numerical error reflects the fact that the computation is not numerically
stable without requiring second-order terms.

Note that it should be possible to integrate this second order term in a numeri-
cally stable way with an alternative formula based on a compensated dot product.
However, the impact on the computing time would be major while, according to
our tests, the accuracy would not improve sensibly.

4.3.3 Error bounds

The error bounds computed in |[Lange and Rump, 2020| apply to our arithmetic
as long as we restrict ourselves to basic arithmetic operations (avoiding arbitrary
functions which are not covered by [Lange and Rump, 2020]).

Given an arithmetic expression defined by an evaluation tree T', where each
node n is associated with an operation o, out of {+, X, /, va }, we can assign a
number k,, to each node such that:

(0 if n is a leaf

maz(kleft(n)a kright(n)) +1 if o, is a +

kn = Kieto(n) + Fright(n) + 1 if 0, is a X
Fiete(n) + Kright(n) + 2 if 0, is a /
| [§Kehila(n) + 71 if 0, is a2/

52

We define:

° u= %bl_m, the error constant associated to an m digits floating-point system
with base b (u being 275 for 64 bit double precision),

e 1 and J,, the number and error approximation obtained when we evaluate
an evaluation tree 7.

o k = kyoot(1,), the positive integer which is associated with the root of the
evaluation tree that produces z,

e 7, the result that would be obtained in infinite precision,

e X , the positive number that would be obtained after transforming 7, such
that it respects the No Inaccurate Cancellation (NIC) principle from [Demmel
et al., 2008|, To respect the NIC principle, one needs to modify the signs
of intermediate results so that numbers of different signs are never added
together unless they are inputs to the algorithm.

Given those definitions and under the hypothesis that all denominators and all
expressions below a square root comply with the NIC principle and that the nodes
corresponding to divisions and square root operations have a k, smaller than u_%,
theorem 4.2 from [Lange and Rump, 2020| gives us an upper bound of the error of
our approximation of the numerical error:

Z— (2 +6) <kx(k+2)x(1+2u)F xu>x X

4.3.4 Comparison with higher precision arithmetic

One might wonder how could this scheme be more precise than deducing the
error from doing the computation with our target precision and higher precision
arithmetic side by side. Especially since the usual rule of thumb for compensated
summation and arithmetic relying on error-free transformations is to assume that
they are equivalent to doubled precision [Thévenoux et al., 2015].

For most operations you do, indeed, get the same error estimation as you would
with roughly doubled precision (minus any overlapping bit between the value of
the number and its error). However, the decisive difference is in the resilience
to cancellations. For instance, both 64 bit floating-point arithmetic and 200 bit
floating-points arithmetic would evaluate (22%° 4 1) — 229 as 0 (since, even with
200 bit of precision, 220 + 1 rounds to 2?°°). A comparison between both results
would conclude that 0 is indeed the proper result and that there appear to be no
numerical error. However, by keeping the error as a separate quantity, the error

93

introduced during the cancellation (1) is kept separated from the numbers that
caused it and, thus, the error is still properly evaluated:

({2200’0} + {1,0}) . {2200’0} — {2200’ 1} _ {220070} = {O, 1}

It is important to note that our approach is optimized to keep track of the
error and not to increase the precision of the computation. We could increase
the precision of our implementation by minimizing the number of overlapping bit
between the two terms of the pair (the result would be similar to double-double
arithmetic [Dekker, 1971]) but they would not represent the number obtained
without instrumentation and its numerical error. This would force us to run the
computation a second time to be able to evaluate the numerical error.

By keeping a strict separation between the number and its numerical error, we
make the computation of the numerical error efficient in terms of both number of
operations and memory.

o4

Chapter 5

Implementation

One of the strengths of the method is the simplicity of the core algorithms: the
operations are independent, can be written in a few lines of codes requiring only
basic arithmetic operators and a Fused Multiply-Add in the working precision.
It makes writing a correct implementation easy. Most of the work (and of the
implementation) is focused on the ergonomy of the library. We build on operator
overloading, having the programming language replace all numerical operators and
functions by our implementations, to make the instrumentation seamless, and cover
a wide range of operations and functions.

In this chapter we describe our optimized C++ reference implementation
[Demeure and Chevalier, 2019, our Julia implementation [Demeure and Ancellin,
2020], the design of our implementation of tagged error, and the tools we designed
to track the numerical error and instrument a program.

5.1 Encapsulated error implementation

5.1.1 CH++

Our C++ reference implementation, the Shaman library [Demeure and Chevalier,
2019], relies on a custom numeric type with overloaded operations to instrument
every arithmetic operation and function call. We decided to implement it such that,
if one does not need tagged error (which require some data structure initialization),
the library is header-only and thus can be dropped into a code base and used
without any installation or dependencies.

Our custom type, S<numberType, errorType, preciseType>, uses the C++
template system to build an instrumented type on top of any IEEE-754 compatible
type. It takes three arguments, numberType which is the IEEE-754 compatible type
that will be emulated, errorType which is the precision at which the error terms

95

will be manipulated and stored (usually identical to numberType) and preciseType
which is the precision used when higher precision is required (to deal with arbitrary
functions). Hence, we can define Sdouble = S<double, double, long double>
to indicate that we want to use an instrumented type that behaves like the double
type that is commonly used in C and C++ (numerical errors and implicit casts will
be those of the double type), stores and manipulates numerical errors in a double
and does its higher precision computations using the long double type (which is
only used when computing an arbitrary function such as a sine).

We define the Sfloat, Sdouble and Slong_double types out of the box but
our implementation can be used with any user-defined numerical type, as long
as it rounds to nearest according to the IEEE-754 standard. An example would
be emulated 16-bit precision types (we, in fact, provide an SFloat16 type out of
the box in our Julia implementation). Furthermore, the user can use any type to
manipulate the numerical error (it can be used to experiment with further levels of
instrumentation such as using Shaman to measure the numerical error in shaman’s
estimation of the numerical error) and do higher precision computations.

Following our method to instrument arbitrary functions (algorithm 7 page 46),
our implementation covers the 73 mathematical functions from the current C+—+
standard library. We also provided an implementation of the C++ streaming
operator which prints number in scientific notation following the algorithm given
in Section 4.1.4. This is our preferred format to assess a result.

The most complex part of the implementation is the definition of the mixed-
precision operation overloads. We needed to ensure that arithmetic operators would
use the proper conversions for all pair of input types (thus an addition between a
double and a float should be done in double precision). This can be done with
careful code duplication, introducing sixteen variant per operator, but we decided
to use a mix of C style macro (to handle the code generation) and template (to
extract the proper working precision programmatically) to achieve this functionality.
While this produce a hundred lines of complex code, it insures that we use the
same type conversion as the one used by the instrumented types and keeps our
implementation short by encapsulating the functionality.

Integrating our number representation within libraries and framework can be
done at the user level as there is no protected lower level of abstraction within
Shaman. For example, having a seamless integration between Shaman and OpenMP
[Dagum and Menon, 1998| only required implementing the reduce operations for
our number representations which can be done in one line for each (operation, type)
pair as seen in code listing 5.1.

#pragma omp declare reduction (+:Sdouble : omp_out=omp_in
+omp_out) initializer (omp_priv=Sdouble (0.0))

Code listing 5.1: Implementation of an OpenMP reduce operation.

o6

We also made our implementation of encapsulated error compatible with MPI
[Gropp et al., 1996] by defining the MPI_SFLOAT, MPI_SDOUBLE and MPI_SLONG_
DOUBLE types (which describe the memory layout of our numbers) and the MPI_
SMAX, MPI_SMIN, MPI_SSUM and MPI_SPROD operations (which use our overloaded
operators).

Finally, we implemented type traits so that our numbers can be used transpar-
ently within the Eigen [Guennebaud et al., 2010] and Trilinos [Heroux et al., 2005]
linear algebra libraries. Those traits describe the properties of our numbers (whether
they are integers, complex, etc) and some operations (how to get the epsilon ma-
chine, how to compare two numbers, etc) and were derived from the trait of the
instrumented types such that, for example, Sfloat = S<float, float, double>
would behave like float.

5.1.2 Julia

We also provide a Julia reference implementation [Demeure and Ancellin, 2020].
Julia [Bezanson et al., 2017] is a programming language with a strong focus on
dynamic typing and numerical computing. As such, most Julia libraries are designed
to be generic with regard to the numeric type of their inputs. This makes Julia a
perfect fit for type based instrumentation, the language has already been used to
explore domains such as uncertainty quantification [Giordano, 2016] and automatic
differentiation [Revels et al., 2016] with similar approaches. Furthermore, Julia
uses a Just-In-Time compiler which produce code heavily optimized for the current
types via LLVM |[Lattner, 2008|, insuring performances close to C++ if one is
careful to insure type stability within functions.

While our Julia library is a fairly straightforward implementation of the previous
algorithms (providing SFloat16, SFloat32, SFloat64 and SFloat128 types out
of the box), we benefit from the ecosystem which was designed with type based
instrumentation in mind and provides us with functionalities such as the promote_
rule function which can be used to easily specify the type conversion to be used in
mixed-precision operations (a complex part of our C++ implementation). Thanks
to their focus on dynamic typing, the majority of Julia libraries (including BLAS
implementations, Fast Fourier Transforms and a large panel of numerical algorithms)
can be instrumented with Shaman by simply feeding instrumented inputs to them.

However, as our Julia implementation has yet to be tested on a large program,
the following deals only with the C+-+ implementation.

o7

5.2 Tagged error implementation

In practice, whenever tagged error is enabled, we represent numbers as triplet
(number, error, [error;]). This representation lets us easily disable the tagged error
at compile time and gives us access to the total error without having to compute
the, potentially numerically unstable, sum of the individual error terms.

5.2.1 Section delimitation and tag retrieval

A section of the code is represented by a tag which is a user-defined name and
an integer (used to index into various arrays). The mapping between names and
integers is done both ways using a hash-table and a resizable array (commonly
called a vector in C++).

To delimitate sections, the user has access to a macro which, when included
in the code, will start a section with a given name and close it at the end of the
current scope (as will be illustrated in section 5.3.2). If the user wants to use a
single section for a function, he just needs to include the macro at the beginning of
the function. If the user wants a line by line granularity, he just needs to insert
several macros, one before each line of code. In practice, we recommend running
the code several times while increasing the granularity, focussing on the sources of
€error.

Behind the scene, the macro creates a CodeBlock object which is destroyed at
the end of the scope following the Resource Acquisition Is Initialization (RAII)
principle common in C++ and Rust. The constructor of the object requires a
tag name and converts it into an index by querying it with the corresponding
hash-table (and creating it, if needed). The index is then pushed onto a stack that
keeps track of the current tag. When the object is destroyed, the stack is popped
which removes its tag. This relies on the hypothesis that tags are destroyed in
reverse order of their creation which is ensured by the deterministic destruction
provided by RAIL.

To this are added a main tag (which ensures that the stack is never empty) and
a compileTime tag (which is used to deal with any error introduced by operations
that happen before the program is run). With main covering the operations that
are not within user-named sections, we ensure that all the operations have an
associated section and that no numerical error goes unaccounted for.

All of those datastructures and functions are illustrated with pseudocode in
Listing 5.2.

o8

name_of_index Vector (["compileTime", "main"])
index_of_name HashTable (["compileTime"->0, "main"->1])
stack = Stack([0,1])

function CurrentTag():
return stack.top()

function NameOfTag(index):
return name_of_index[index]

object CodeBlock:
function constructor (name):

if not (name in index_of_name):
index = name_of_index.length ()
name_of_index.push(name)
index_of_name [name] = index

index = index_of_name [name]

stack.push(index)

function destructor ():
stack.pop ()

Code listing 5.2: Pseudo code illustrating the section and tag management.

5.2.2 Operations

Some old C++ code bases create arrays using malloc instead of new[] which means
that their content is not initialized. This leads to problems when an object that
points to another resource is accessed or implicitly destroyed to insert a properly
constructed object in the array. To avoid those problems the error terms, associated
with the tags, are stored in fixed size arrays. This requires knowing the number of
tags that will be used in advance but, while this imposes a small constraint to the
user (setting a compile time parameter to a value equal or higher to the number of
tags that will be used) which would be avoided by using dynamically sized vectors,
it let us represent our numbers with was is called a Plain Old Data (POD) class in
C—++ which, in our tests, significantly improves performances.

While the algorithms in section 4.2.2 uses a loop and a test to check whether
an operation happens in the current tag, in practice we do array wise operations
followed by a targeted modification of the cell representing the current tag. Using
fixed size arrays and array-wise operations lets the compiler vectorize the code and

99

improves performances significantlv.

#include <iostream> |vmovsd (%rdx,%rdi,1),%xmm2

#include <shaman.h>|vaddsd (%rsi,%rdi,1),%xmm?2,%xmm?2

vmovsd %xmm2 ,0x8 (hrcx,%hrdi,1)

int main () vmovsd 0x8 (%rdx,%rdi,1),%xmm?2

{ vaddsd 0x8 (%rsi,%rdi,1),%xmm2,%xmm2
Sdouble x = 2.0; vmovsd %xmm2 ,0x10 (Yrcx,%rdi,1)
Sdouble y 3.0; vmovsd 0x10 (%rdx,%rdi,1),%xmm2

vaddsd 0x10 (%rsi,%rdi,1) ,%xmm2,%xmm2

Sdouble z = x + y; |vmovsd %xmm2,0x18 (%rcx,%rdi,1)

vmovsd 0x18 (%rdx,%rdi,1),%xmm2
return O; vaddsd 0x18 (%rsi,%rdi,1) ,%xmm2,%xmm2
S

Code listing 5.3: Code instrumented with Shaman and extract of the corresponding
assembly side to side.

The vectorization can be observed in the assembly corresponding to code listing
5.3. We compiled the code, an addition done with tagged error enabled and 100
tags, with the Clang+-+ compiler and the -mfma -03 -march=native -Rpass=
vect optimization flags on an Intel(R) Xeon(R) CPU E3-1220 v3. Due to the
-Rpass=vect option, the compiler notified us that it vectorized the transform
operation used to sum two vectors containing error terms. Looking at an extract
of the assembly for the main function (exported in the elf64-x86-64 format), we
indeed see a large number of vaddsd and vmovsd instructions, AVX vectorized
addition and move operations, which is consistent with the fact that we are adding
numbers into a new array.

5.3 Usage

This section illustrates the use of both encapsulated error and tagged error for the
analysis of Heron’s square root algorithm.

5.3.1 Encapsulated error

Code listing 5.4 gives an example of Heron’s square root algorithm implemented
in C++ and instrumented with Shaman. Note that the only modification is the
change in type, double becoming Sdouble, which gives us the ability to access both
the number and its error.

60

© 00 1O O W N

DD DD DD DN DN NN = === = = = =
O 00 IO UL WO OO Uik WwNh—O

// Sdouble definition:
// using Sdouble = S<double double, long double>;

Sdouble heron(Sdouble x)

{
Sdouble r = x/2;
int i = 0;
while(le-15 < abs(r*r - x))
{
r = (r + x/r) / 2;
i++;
std::cout << "iteration:" << i << 7.?
// displays only significant digits
<< "sqrt:" << r << std::endl
// direct access to the number
<< "number:" << r.number << std::endl
// direct access to the error
<< "error:" << r.error << std::endl
<< std::endl;
}
return r;
+
void main ()
{
heron (2);
+

Code listing 5.4: C++ implementation of Heron’s square root algorithm instru-
mented with encapsulated error.

We output both the result with the overloaded C++ streaming operator, which
only prints significant digits, and the number and error approximation parts of our
representation. When executed with the numerical debugger enabled in order to
get a summary of the instability at the end of the execution, the code prints code
listing 5.5.

61

iteration:1 sqrt:1.5000000000000000e+00
number :1.500000000000000e+00
error : -0.000000000000000e+00

iteration:2 sqrt:1.41666666666667e+00
number :1.416666666666667e+00
error :1.480297366166875e-16

iteration:3 sqrt:1.414215686274510e+00
number :1.414215686274510e+00
error :1.393221050510000e-16

iteration:4 sqrt:1.414213562374690e+00
number :1.414213562374690e+00
error :4.079910214529664e-17

iteration:5 sqrt:1.414213562373095e+00
number :1.414213562373095e+00
error :1.253716726897950e-16

xk*x SHAMAN *kx

There are 5 numerical instabilities
CANCELLATIONC(S)

UNSTABLE DIVISIONC(S)

UNSTABLE MULTIPLICATION(S)
UNSTABLE MATHEMATICAL FUNCTION(S)
UNSTABLE POWER FUNCTION(S)
UNSTABLE BRANCHING (S)

N O O O O Ww

Code listing 5.5: Output for the implementation of Heron’s square root algorithm
instrumented with encapsulated error.

Note that here the numerical error is small enough to keep the number of signif-
icant digits high. As the output does not tell us when and where the cancellations
or the unstable branches occur, we use a debugger to pause the computations by
having breakpoints on cancellations or unstable branches. Doing so, we learn that
from the iteration 4 onward the subtraction in the loop condition is a cancellation.
We also learn that the test and the computation of the absolute value become
unstable on the last iteration. The localization of the various instabilities can
also be seen in the output of the numerical profiler (code listing 5.6, the line 9
corresponds to the loop condition of the code which is placed inside the heron

62

CO 1 O U = W N+

function of the main.cpp file).

**x*x SHAMAN PROFILE *x*x

5

3
1
1

heron (file main.cpp)
operator - (line 9)
operator< (line 9)
abs (line 9)

Code listing 5.6: Output of the numerical profiler.

Hopefully, this example illustrates that, with minimal modifications (a change

in types), Shaman gives us access to the numerical error with very fine granularity.

5.3.2 Tagged error

In code listing 5.7, we refactored the formula from the previous example to have
two distinct operations within the loop (the computation of a correction and its
application to the previous value) and added markers to delimitate various sections
of interest.

Sdouble heron(Sdouble x)

{

LOCAL_BLOCK("init");
Sdouble x = 2;
Sdouble r x/2;

while(le-15 < abs(r*r - x))

{
LOCAL_BLOCK ("delta");
Sdouble delta = 0.5%x(x/r - r);
LOCAL_BLOCK("add") ;
r += delta;
std::cout << "sqrt:" << r << std:
}

return r;

void main ()

{

heron(2);

63

~

:endl ;

24 |} |
Code listing 5.7: C++ implementation of Heron’s square root algorithm instru-
mented with tagged error.

When we compile and run the code with tagged error, we get code listing 5.8.
e R

sqrt :1.5000000000000000e+00 []
sqrt:1.41666666666667e+00 [add:75%, delta:24Y%]
sqrt:1.414215686274510e+00 [add:79%, delta:20%]
sqrt:1.414213562374690e+00 [delta:99%...]
sqrt:1.414213562373095e+00 [add:88%, delta:11%]

- J
Code listing 5.8: Output for the implementation of Heron’s square root algorithm
instrumented with tagged error.

We observe that, perhaps counter intuitively, most of the numerical error in
the output is produced during the addition step of the loop, not during the three
operations used to compute delta. This proportion is not perfectly stable, as can
be seen during the fourth operation, but it is due to the fact that the error is
very small compared to the numbers (we have 15 significant digits) and thus easily
overwritten in a single iteration.

Also note that during the first iteration, the error is exactly zero as 1.5 can be
represented exactly with floating-point numbers. This explains why the initialization
step has no contribution to the final numerical error.

It is our belief that, due to its flexibility, ease of use, and ability to target the
sources of error that matter for the output, tagged error should be preferred to
local, debugger-based, methods.

5.4 Tools

5.4.1 Numerical debugger

At first, to help with Shaman’s usage, we included a numerical debugger, inspired
by [Jézéquel and Chesneaux, 2008], and made possible by our fine-grained error
representation. The user can use GDB [Stallman et al., 2002| or any classical
debugger to pinpoint certain types of unstable operations such as cancellations and
unstable comparisons.

The user can set a variety of compilation flags to indicate the kind of numerical
errors that are of interest to him, such as unstable comparisons and cancellations.
When one of those operations occurs, the program calls the instability function.
The user can set a breakpoint on the function and it will pause the program, giving
access to all variables and their numerical error.

64

While this lets the user quickly assess the localization of specific numerical errors,
it might become overwhelming on large programs with thousands of cancellations
and unstable tests, often due to only a small subset of operations. We resolved
this problem by writing what we call a numerical profiler. It is a script that hooks
itself onto GDB, records all breakpoint triggers, and produces a report with the
line number, the operation name, and the number of occurrences (an example of
output can be seen in section 5.3, code listing 5.6). This automation script gives
the user an overall view of the numerical behaviors of their program.

It is important to note that those tools are now superseded by the tagged error
which has the ability to detect sources of error that matter via a non-local analysis,
avoiding the shortcomings mentioned in section 3.2.1.

5.4.2 Code instrumentation

A library-based implementation, such as ours, lets the user examine the instru-
mented code and compose our functions with their own to serve their specific
purposes. This flexibility, however, requires access to the source code and the
manual replacements of all floating-point types in a program.

Binary instrumentation tools, such as Valgrind [Nethercote and Seward, 2007|
and Intel PIN [Luk et al., 2005], could make the instrumentation of a program
easier but would obfuscate the instrumented code and are hard to compose.

We propose an automatic refactoring tool based on the Clang compiler [Lattner,
2008], which offers a good compromise between both approaches. It takes code,
parses it with a state of the art C++ compiler (Clang), matches and replaces types
and functions in the abstract syntax tree, and outputs the instrumented code. The
refactoring tool is careful to produce warnings where a human operator should
review the code, such as in the interfaces of extern C sections.

65

Part 111

Evaluation and applications of the
method

66

Table of Contents

6 Accuracy 69
6.1 Comparison with the state of theart 69
6.1.1 Rump equation oL 70
6.1.2 Trace of a parallel matrix product 71
6.1.3 A deterministic identity function 73

6.2 Validation of the accuracy 74
6.2.1 LU factorization. 74
6.2.2 Integration by the rectanglerule 76

6.3 Taggederror. 7
6.3.1 The conjugate gradient algorithm 7
6.3.2 Analysis with tagged error 78
6.3.3 Introducing one compensated operation 79
6.3.4 Introducing two compensated operations 81

7 Cost of measuring numerical error 83
7.1 Comparison with the state of theart 83
7.2 Arithmetic intensityo 86
7.3 Tagged error 88
7.4 Exhaustive overhead analysis 89
7.4.1 Encapsulated error L. 90
74.2 Tagged error. 91

7.5 Conclusion 92

8 Applications to physical simulation 94

8.1

8.2

8.3

Instrumentation of a large fission simulation 94
8.1.1 Problem statement L. 94
8.1.2 Instrumentation and numerical stability 96
81.3 Conclusion. 98
Validation of a nuclear reaction simulation code 98
8.2.1 Problem statement 98
8.2.2 Evaluation of the numerical error 101
8.2.3 Conclusion of the study 103
Numerical error and uncertainty quantification 103
8.3.1 Problem statement 0L 104
8.3.2 Numerical error and normal mode decomposition 104
8.3.3 Uncertainty quantification 106
8.3.4 Conclusion of the study 110

68

Chapter 6

Accuracy

The first and foremost question when evaluating a new method to quantify the
numerical error of a program is whether it is accurate enough to be useful. One
can then wonder how it compares with the state of the art.

In the first section of this chapter, we compare the accuracy of Shaman and
various state-of-the-art tools. We then evaluate Shaman on larger problems using
different proxy to assess the numerical error that we should be measuring. Finally,
we check whether the sources of error given by tagged error are reliable using
targeted numerical improvements to compare the impact of various code sections.

6.1 Comparison with the state of the art

In the following, and in section 7.1, we compare Shaman with various tools. To do
so, we picked at least one implementation for each of the most common approaches
used to measure the numerical error. We choose these implementations because of
their extensive usage in their category!' and efficiency:

e MPFR [Fousse et al., 2007|, with the MPFR C-++ [Holoborodko, 2010]
wrapper, which implements arbitrary precision arithmetic (tested with 100
and 200 bit of precision).

e Boost Interval [Bronnimann et al., 2006], which implements interval arith-
metic.

e Verrou |Févotte and Lathuiliére, 2016|, which implements a form of stochastic
arithmetic (statistical analyses were done with 80 samples).

!Thus, we do not include some alternatives, such as double-double [Dekker, 1971] (which we
expect to be at least as precise as Shaman, due to the similarities in their design, but slower, due
to the additional renormalization step) which, to the best of our knowledge, have never been used
to measure numerical error (contrary to MPFR).

69

e Cadna [Jézéquel and Chesneaux, 2008|, which implements a synchronous
variant of stochastic arithmetic.

The following examples are used to demonstrate that Shaman works as expected
and covers cases not covered by other methods. More realistic examples follow in
the subsequent sections.

6.1.1 Rump equation

This polynomial was proposed by Siegfried M. Rump in [Rump, 1983]. When it is
evaluated in double precision on (%, %), its output has 15 digits of precision, but
when it is evaluated on (10864, 18817) it returns 2 instead of 1, the output has no
significant digits.

Pz,y) =9xa' —y' + 2%y (Rump equation)

It is an example of a computation that has completely different accuracy
depending on its inputs. We consider it our baseline: a fairly simple case where all
methods should perform well.

P(10864,18817) P(L, 2)

33

MPFR (100 bit)
MPFR (200 bit)

Boost Interval

1.00000000000000000e-+ 00
1.00000000000000000¢-+00
[-1.400e+ 1, 2.000e-+0]

8.02469135802469056e-01
8.02469135802469056e-01
[8.025¢-1, 8.025¢-1]

Verrou 1=-1.0192el 0=6.8205e0 1=0.8024e0 0=9.9152e-17

Cadna @.0 0.802469135802469E+000

Shaman ~numerical-noise~ 8.02469135802469¢-01
Double precision 2 8.02469135802469147¢e-01
Analytical result 1 g—? ~ 8.02469135802469135¢ — 01

Table 6.1: Outputs of the tools for Rump’s equation. We computed Verrou’s
metrics ourselves as it requires the user to collect and process the data manually
over several runs of the instrumented program. The notations @.0 and ~numerical-
noise~ denote a number with no significant digits according to their respective
library.

Table 6.1 shows the raw outputs of each method. For ease of comparison, as the
output format varies greatly from one method to another (single number, interval,

70

P(10864,18817) P(3, 2)
MPFR (100 bit) 0 15
MPFR (200 bit) 0 15
Boost Interval >0 > 15
Verrou 0 15
Cadna 0 15
Shaman 0 15
Expected results 0 15

Table 6.2: Estimation of the number of significant digits for Rump’s equation.

statistics, number displayed with only its significant digits), all results will be
converted in number of significant digits for the rest of this chapter.

The main point of this case study is not to discriminate between methods,
as can be seen in Table 6.2 and as expected every method diagnose the outputs
correctly, but to introduce the number of significant digits as a common metric to
compare the accuracy of various algorithms and to illustrate the raw outputs of
their associated implementations.

6.1.2 Trace of a parallel matrix product

One of the most common type of computations where the non-associativity of
floating-point can be felt is parallel computations: if you compute a sum in parallel
several times, the order in which intermediate sums are added is non-deterministic
and hence, due to the non-associativity of IEEE-754 arithmetic, you might get
different results.

In this example we initialize two double precision 1000 by 1000 matrices A and B
with random values (using a fixed seed to insure reproducibility and fairness between
experiments) and compute both trace(A x B) = 3_, - A;;Bj; and trace(B x A) =
> BijAji two times using a parallel reduction. Mathematics tell us that all these
results should be equal but, due to the non-associativity of IEEE-754 arithmetic,
we expect to get slightly different numbers giving us a way to confirm the number
of significant digits given by our tools.

It is interesting to note that by printing only the significant digits, as can be
seen in Table 6.3, Shaman reproduces the outputs of IEEE-754 arithmetic, but
hides the impact of the numerical inaccuracies, and thus the non-associativity of

71

Double precision Shaman

trace(A*B) first run 2.49769989490029950e+15 2.4976998949003e+15

trace(A*B) second run 2.49769989490029900e+15 2.4976998949003e+15

trace(B*A) first run 2.49769989490029400e+15 2.49769989490029¢+15

trace(B*A) second run | 2.49769989490029350e+15 2.49769989490029¢+-15

Table 6.3: Outputs for the trace of a parallel matrix product. Each run is slightly
different due to the non-associativity of floating-point arithmetic.

floating-point operations. Hence, while the outputs in double precision are different,
the variability (due to a sum computed in parallel) disappears with Shaman.

trace(A*B) trace(B*A)
MPFR (100 bit) 14 15
MPFR. (200 bit) 14 15
Boost Interval >12 >12
Verrou 14 14
Cadna 14 14
Shaman 14 15
Expected results 14 15

Table 6.4: Estimation of the number of significant digits for the trace of a parallel
matrix product.

A good property of this example is that we can make the problem as large as we
want giving us a way to test tools on arbitrarily large number of operations (in this
case more than two million operations). We see, in Table 6.4, that Boost Interval’s
results are pessimistic which is expected since interval arithmetic’s bounds tend
to grow larger with the number of operations. The other methods seem to stay
robust despite a high number of operations.

72

6.1.3 A deterministic identity function

In this example we have a function (Identity) that should be the identity, but
returns zero due to cancellations when computed in double precision:

(1+0.5100) —1
0.5100
This identity function is a simple cancellation inspired by [Panchekha et al.,
2015] and requires more than 100 bit of accuracy for any problem to be detected
as seen in Table 6.5. If we wanted to ensure that MPFR still returns an incorrect
result with 200 bit of precision, one would just need to change the 0.5'% for a 0.52%°
in the function definition.

id(z) =z x (Identity)

Double Mpfr Mpfr Expected
precision (100 bit) (200 bit) results
id(4) 0. 0. 4. 4.
id(5) 0 0 5. 5
id(5) — id(4) 0. 0. 1. 1.
id(5) — 1d(5) 0 0 0. 0

Table 6.5: Outputs for the deterministic identity computation. Only the results
obtained with more than 100 bit of precision are accurate.

If we apply this function to two consecutive numbers and subtract the result,
we expect to get one (Theoretical one). In practice, unless we have more than
100 bit of precision, it will return zero due to our identity function returning zero
instead of its input: we need a system that is resilient to 100 bit cancellations to
be able to detect problems in this function.

one(z) = id(x + 1) — id(x) (Theoretical one)

However, applying this function to the same number twice and subtracting the
result should, and indeed does, produce a zero (Theoretical zero) independently of
the errors introduced in our identity function since the computations, as incorrect
as they are, are deterministic. To confirm that this function is exact, we would
need a system that can deal with correlated errors properly.

zero(x) = id(x) — id(x) (Theoretical zero)

Table 6.6 shows that, as expected, one cannot identify the cancellation with
MPFR and only 100 bit of precision. Furthermore, stochastic arithmetic (which

73

id(4) id(5) id(5) — 1d(4) d(5) — id(5)
MPFR (100 bit) 17 17 17 17
MPFR (200 bit) 0 0 0 17
Boost Interval >0 >0 >0 >0
Verrou 0 0 0
Cadna 0 0 0 0
Shaman 0 0 0 17
Expected results 0 0 0 17

Table 6.6: Estimation of the number of significant digits for the deterministic
identity computation.

is non-deterministic) and interval arithmetic (which cannot consider correlations
between errors) are unable to tell us that id(5) — id(5) is exact as they do not
model the fact that both computations return the same, incorrect, result.

6.2 Validation of the accuracy

Now that we have established that Shaman behaves well on edge cases that cause
problems to other methods, we want to validate the accuracy of Shaman using
more realistic problems where accurate references are available. We first compare
Shaman’s error estimations with the estimations obtained using 10000 bit floating-
point arithmetic on a LU factorization. Then, we compare Shaman’s estimation
with analytical values on an integration problem.

6.2.1 LU factorization

To demonstrate the accuracy of our algorithm, we applied it to the LU factorization
of a double-precision 200 by 200 random matrix whose entries are uniformly sampled
from [—1,1]. The LU factorization algorithm decomposes a matrix into a lower
triangular and an upper triangular matrix whose product is equal to the input
matrix. It is a well-known algorithm that uses all arithmetic operators and is
fundamental in linear algebra (used to solve linear systems, invert matrices, and
compute determinants).

As the numerical stability of the algorithm depends on the magnitude of
its pivots, most implementations use the partial pivoting strategy. The test is

74

performed twice, with and without partial pivoting. The condition number of our
test matrix, defined as the ratio of its largest and smallest eigenvalues, is roughly
700. Thus, one would expect the numerical error to be sensibly smaller when using
partial pivoting.

To evaluate the accuracy of Shaman’s estimation of the error, we also perform
the computation using MPFR and 10000 bit of precision. While using 10000 bit
of precision is too slow and memory intensive to be used on larger problems, it
should be accurate enough to be used as a reference. Note that we set aside any cell
that has an infinite number of significant digits according to MPFR (meaning that
MPFR and double precision reached the same number) when computing average
numbers of significant digits.

No pivoting strategy Partial pivoting strategy
16 16 4
j2]
k=
©
<
[
o
=14 14
=4
2
2
(0]
ES]
S
c
S 12 12
©
£
2 L
© e
E10 10
<
%] ’
7
/l'
10 12 14 16 10 12 14 16
Significant digits computed in 10000 bits of precision Significant digits computed in 10000 bits of precision

Figure 6.1: Estimation of the number of significant digits for the LU factorization
algorithm computed in double precision. Each dot corresponds to a cell in the
non-zero half of either the L or U matrix produced by the decomposition. The
dashed line represents the equality between both estimations of the number of
significant digits.

Without any pivoting strategy, we measured an average of 13.03 significant
digits and a mean absolute difference between our estimation and the 10000 bit
arithmetic estimation of 0.004 significant digits. With a partial pivoting strategy,
we measured an average of 14.80 significant digits, confirming that the algorithm is
more numerically stable. We also measured a mean absolute difference between
our estimation and the 10000 bit arithmetic estimation of 0.028 significant digits.
In both cases, the difference between our estimation and the 10000 bit arithmetic
estimation of the numerical error is close to the machine epsilon (roughly 1071¢ for
64 bit double precision).

75

Looking at Figure 6.1, one can observe that Shaman’s estimation of the number
of significant digits is consistent with the reference. It tends to be noisier when
the number of significant digits is large which makes sense as it means that
the numerical error is close to machine epsilon, making it harder to manipulate
accurately. However, its relative precision increases sensibly with the magnitude of
the numerical error, meaning that Shaman gets more accurate in its estimation
as the number of significant digits of the output of this computation decreases. A
good behavior as the difference between 15 and 16 significant digits is less likely
to matter compared to the difference between 5 and 6 significant digits when one
wants to evaluate if a program is precise enough for a given use-case.

6.2.2 Integration by the rectangle rule

We also evaluated the accuracy of Shaman on the integration of the cosine function
between 0 and 7 using the rectangle method (this test case comes from the authors
of Verrou [Févotte and Lathuiliére, 2016] and, in particular, [Févotte and Lathuiliére,
2017)).

In infinite precision the only source of error is the discretization error of the
integration which reduces in O(%) as the number of rectangles increases (meaning
that the step size gets finer) until the result reaches 1, the known analytical value of
the integral. In finite precision, here float precision (32 bit), there are two sources
of error: the discretization error and the numerical error. This is particularly
interesting because, as the discretization error reaches zero, it gives us a reliable
estimate of the numerical error.

When we plot the difference between the result of the integration and the
analytical value as a function of the number of rectangles (Figure 6.2), we observe
that while it first decreases (which is predicted by the decrease in discretization
error), it then starts to become noisier and increases.

This behavior is explained when we look at Shaman’s estimation of the numerical
error (here we display the absolute value of the raw numerical error and not the
number of significant digits). It can be seen that the numerical error increases with
the number of rectangles and ends up becoming the dominant source of error?, the
estimation of the numerical error perfectly overlapping with the error computed
analytically.

2A similar observation is at the root of Jean Vignes’s "test d’arrét optimal" [Vignes, 1984], a
stopping criteria for iterative algorithms.

76

4 Numerical error (Shaman’s estimation) ® Numerical error + discretization error (analytical value)

1e-01 *
L]
L]
.
° L]
...
1e-03 %,
L]
®op 0%
%, 0 0)
-.... .“o‘..‘ o
() ° I’ ° °
..'- 0 00 o e ® o
1e-05 o, -
%0 VI
® o o, at” o
Sieety 92y . o
A ¢
A L aaT A L4, Agt 2
A A A AAA A AA A N
1e-07 aaoa aad N N P
A
A
A R R a
1e+01 1e+03 1e+05

Number of rectangles

Figure 6.2: Absolute value of the error as a function of the number of rectangles
used for the integration of the cosine function between 0 and 7 using the rectangle
method. Both axes are displayed in a logarithmic scale.

6.3 Tagged error

Evaluating the accuracy of the tagged error algorithm is trickier as there is no
algorithm for the localization of sources of error that is similar enough to be used
as ground truth or point of comparison. What we can do is reduce the numerical
error locally, replacing parts of an algorithm with numerically more stable or
compensated alternatives, and check whether tagged error was able to predict the
impact of the modification.

6.3.1 The conjugate gradient algorithm

In this section we will study the conjugate gradient algorithm, an iterative algorithm
that solves linear systems under the hypothesis that they are symmetric and positive-
definite. It is commonly used due to its fast convergence.

As can be seen in algorithm 14, the conjugate gradient algorithm can be split
into five sections, an initialization phase (initialization) and a loop composed of a
matrix-vector product (matriz-vector product), two dot products (dot product 1
and dot product 2), and various smaller operations (loop body).

77

Algorithm 14 ConjugateGradient(A, b, x)

residualVector <—b— Axx > initialization

searchDirection < residualV ector

squaredResidual < residualV ector - residualV ector

while not convergenceCriteria(squaredResidual) do > loop body
Ad < A * searchDirection > matrix-vector product
stepSize < squaredResidual /(searchDirection - Ad) > dot product 1
T < x + stepSize x searchDirection
residualVector < residualVector — stepSize x Ad
newSquaredResidual < residualV ector - residualVector > dot product 2
ratio < newSquaredResidual / squared Residual
searchDirection < searchDirection x ratio + residualV ector
squaredResidual < newSquaredResidual

return

Our tests are made with a random input vector, a random matrix of size 1000
and a random right-hand side of size 1000. The input vector and right-hand side
are reused from one experiment to the other. The matrix is generated to have a
given condition number?, defined as the ratio of the absolute values of its smallest
and largest eigenvalues. The algorithm stops when it either reaches 1000 iterations
or a residual of 1071°. We measure the mean of the absolute value of the numerical
on the output vector to have a single number representing the full vector.

6.3.2 Analysis with tagged error

Figure 6.3 shows the evolution of the numerical error as a function of the matrix
condition number, as measured by Shaman.

Following the code splits suggested in 6.3.1, we instrumented the code with
tagged error. Figure 6.4 shows the raw value of the numerical error associated with
each code section. As the log scale can be misleading, we also display the error
associated with each term as a percent of the total error in Figure 6.5. The main
observation is that the matrix-vector product quickly becomes the cause for the
vast majority of the numerical error in the output.

A matrix of condition number 10%° exhibits a typical behavior: namely, the
output has a mean relative error of 5.4 times the value of the output (meaning

3In practice, we use a two-step process to generate the matrix. We first sample values uniformly
and shift them to produce a diagonal matrix with the target condition number. We then generate
a random orthogonal matrix and multiply the diagonal matrix on both side (by the orthogonal
matrix and its transpose) to produce a symmetric positive definite matrix with the desired
condition number.

78

total error

1,00e+02

1,00e-02

1,00e-06

1,00e-10

1,00e-14

10e0 10e05 10e10 10e15 10e20 10e25

condition number of the matrix

Figure 6.3: Evolution of the numerical error in the output of the conjugate gradient
algorithm as a function of the matrix condition number. Note that the numerical
error is displayed in log scale.

that it is mostly numerical noise), ninety-nine percent of which comes from the
matrix-vector product, and an absolute residual of about 14. The algorithms
did not converge and stopped only because it reached the maximum number of
iterations allowed.

6.3.3 Introducing one compensated operation

We then replaced one operation, a dot product or the matrix product, by an
equivalent compensated algorithm to reduce their contribution to the numerical
error sensibly. Tagged error tells us that the vast majority of the numerical error
comes from the matrix-vector product and that replacing it should be much more
impactful.

79

== initialization == loop body dotproduct 1 == dot product2 == matrix vector product » == total error

1,00e+02

———
- ——

1,00e-02

1,00e-06

1,00e-10

1,00e-14

10e0 10e05 10e10 10e15 10e20 10e25

condition number of the matrix

Figure 6.4: Distribution of the numerical error in the output of the conjugate
gradient algorithm as a function of the matrix condition number. Note that the
numerical error is displayed in log scale.

Compensated operation Numerical error Residual
None 5.4 14
Dot product 1 0.56 6.9
Dot product 2 60.5 6.8eb
Matrix vector product 1.5e™7 3.5

Table 6.7: Relative numerical error, computed on the mean of the output vector,
and absolute residual associated with the solution of the linear system when an
operation is replaced by a compensated algorithm.

Table 6.7 illustrates the residual and relative error observed once one compen-
sates a single operation. As predicted, compensating the matrix-vector product
has a major impact while the dot products give much lower benefits (compensating
dot product 2 is even detrimental to the algorithm!).

80

B matrix vector product [l dot product 2 dotproduct 1 [l loop body [initialisation

100%
T 75%
£
S
5
T 50%
°
kS
c
kS
8 25%
T
0%
10e0 10e05 10e10 10e15 10e20 10e25

Matrix conditioning

Figure 6.5: Distribution of the numerical error in the output of the conjugate
gradient algorithm, in percents of the total error.

6.3.4 Introducing two compensated operations

As expected, once we compensate the matrix vector product, the product stops
producing ninety-nine percent of the numerical error, leading to the following

repartition:
[dotproductl : 51%, loopbody : —21%, dotproduct2 : 17%, initialization : 7%. . .|
Dot product 1 causes about half of the numerical error, much more than dot

product 2, despite both algorithms doing the exact same number of arithmetic
operations.

81

Compensated operation Numerical error Residual

Matrix vector product 1.5e~7 3.5
only
Matrix vector product 9.4~ 8 3.3

and Dot product 1

Matrix vector product 3.0e”7 3.5
and Dot product 2

Table 6.8: Relative numerical error, computed on the mean of the output vector,
and absolute residual associated with the solution of the linear system when the
matrix vector product and an additional operations are replaced by compensated
algorithms.

Table 6.8 illustrates the residual and relative error obtained by compensating
both the matrix-vector product and a dot product. It shows that compensating dot
product 1 reduces the numerical error by a further 37 percent, while compensating
dot product 2 was, once more, detrimental.

While the reduction in numerical error is not as large as predicted (37% instead
of 51%), it can be explained by the dynamic nature of the algorithm which,
once the second compensated algorithm was introduced, took fewer iterations to
converge and thus behaved slightly differently. Furthermore, the numerical error
of a computation stems from an interdependent system, if a section improves its
numerical stability significantly, then it will produce different outputs and thus the
other sections will behave differently.

Once dot product 1 has been compensated, it is interesting to observe that the
main sources of error becomes the various operations in the main loop and still not
the second dot product:

[loopbody : 73%, initialization : 11%, dotproduct2 : 11%. . .]

It is our hope that this short study adequately demonstrates the power of tagged
error as a means to identify the sources of numerical error and explore ways to
make a computation more numerically stable.

As a side note, algorithms with targeted compensated operations might be of
interest in linear algebra as a way, orthogonal to preconditioners, to deal with
badly conditioned problems or reduced precision algorithms. It might be especially
interesting when dealing with sparse problems, where the additional computation
and increased arithmetic intensity, due to the introduction of the compensated
operations, might have a lower impact on the computing time.

82

Chapter 7

Cost of measuring numerical error

One of our goals was to develop a method fast enough to be viable for the analysis
of large numerical programs. In this chapter we evaluate the runtime overhead
introduced when instrumenting a code with the Shaman library. We first compare
Shaman with the state-of-the-art on a variety of benchmarks before evaluating the
overhead of tagged error as a function of the number of tags and, finally, gathering
overhead data on all the programs that have been studied in this dissertation.

7.1 Comparison with the state of the art

In this section we compare Shaman with the tools introduced in Section 6.1
using highly optimized benchmark codes as well as a more realistic numerical
computation. Please note that the computing times given for Verrou and Mpfr
are lower bounds as, for Verrou, we report computing time for only one run while,
stochastic arithmetic requires several runs in order to draw any conclusion. One
would need to multiply Verrou’s computing time by a factor of five or more to take
this fact into account. Along the same line, we do not take into account the fact
that, to draw conclusion on the numerical error when using Mpfr or any higher
precision arithmetic implementation, one would need to compare a higher precision
run with a double precision run.

We instrumented four programs. The first three are the tasks that deal with
floating-point arithmetic in the computer benchmark game [Gouy, 2020], a well-
known benchmarking suite that is used to compare the peak performances of
programming languages on different tasks. The last program of our selection is the
Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics code (Lulesh
1.0 [Karlin, 2012|), a proxy program for performance benchmark for exascale
computing. To sum up, our experiments consist of instrumenting and analyzing;:

e n-body: N-body simulation.

83

e Spectral norm: computing an eigenvalue using the iterated power method.

e Mandelbrot set: generating the Mandelbrot set at a given resolution; it is the
only parallel benchmark of the set.

e Lulesh 1.0: solving explicit hydrodynamics equations on a collection of
volumetric elements.

All four programs are in double precision (represented by Shaman’s Sdouble
type). As the computer benchmark game provides several implementations for each
task, we instrumented the fastest C++ implementations, at the time of writing,
that do not rely on explicit vectorization or calls to libraries (such as Eigen) in
order to do their computations. As the code is highly optimized, sometimes several
orders of magnitude faster than a naive implementation, we expect to observe
extreme behaviors on those programs.

We also instrumented the serial version, as some tools would not lend themselves
to the parallel versions, of Lulesh 1.0 on a grid of size 10 in order to compare
different tools on a program that is representative of the kind of computations that
are actually done in high-performance computing. We expect to observe a very
representative overhead on this benchmark.

Each program was compiled with GCC 7.3.0 and the -O3 optimization flag
and ran on a 4-cores Intel(R) Xeon(R) CPU E3-1220 v3 @ 3.10GHz with 16 GB
of RAM. Measures presented below correspond to the minimum computing time
over thirty runs (while the average running time produces a similar plot, it is less
appropriate to estimate the intrinsic running time independent of the perturbations
as perturbations can only increase the running time). Since the variation coefficient
was always below 2%, for the sake of readability, we do not include error-bars.

As shown in Figure 7.1, Shaman displays the lowest overhead on every program.
Moreover, it is interesting to observe that, while it takes eight operations to compute
an addition with our formula, the increase in run time using Shaman stays well
below a factor eight for most programs.

One explanation is that the computations spend a non-negligible time on
non-numerical operations, but it seems unlikely given that those are numerically
intensive programs. An alternative and more likely explanation is that, since the
compiler has full access to the instrumented code (which would not be the case
if we were instrumenting at the binary level) and since there are no tests inside
our arithmetic operators, the compiler can still vectorize and use instruction-level
parallelism. Furthermore, since our representation takes only twice as much memory
as the original floating-point representation, it increases the arithmetic intensity
(see section 7.2) which is beneficial on modern processors |Yang et al., 2018].

We note that the increase in run time on the Mandelbrot set computation is
significant for all tools, especially for Mpfr. This might be due to the fact that it

84

E

S

2 | B
O

<

=

z

=

£

S

=

g a Double precision i
o Shaman
= Boost interval

Cadna
Verrou

. Mpfr (100 bit)
g Mpfr (200 bit) i
<

&

<

< | B
g

=

A

| | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

Slowdown compared to double precision

Figure 7.1: Overhead of the Shaman library compared to the state of the art.

is the only parallel program of our benchmark or that its operations are highly
optimized making its performance more sensible to source code modifications.

Finally, it is interesting to remark that the runtime overhead observed on Lulesh
1.0 in this benchmark is consistent with the overhead we observed in most of the
large numerical programs we have instrumented so far. Namely, Shaman’s runs
lead to a slowdown of six or seven when profiling programs.

85

7.2 Arithmetic intensity

Arithmetic intensity is defined as the number of floating point operation per byte of
memory accessed. A program is said to be memory bound if is has a low arithmetic
intensity, meaning that the processor spends time waiting while data is fetched from
memory. On the opposite side of the spectrum, a program is said to be compute
bound if it has a high memory intensity, the processor is fully utilized and can be
feed as soon as data is requested [Marques et al., 2017].

Shaman’s arithmetic operators Heron’s algorithm
Operator Addition Multiplication Division [EEE-754 Shaman
+ 9 2 3 11 141
X 0 3 1 6 28
/ 0 0 2 10 20
fma 0 1 1 0 16

Table 7.1: Number of arithmetic operations used in Shaman’s algorithms and
an execution of either the instrumented or non-intrumented version of Heron’s
algorithm.

Table 7.1 illustrates the number of operation (4, —, x,/ and fma) used to
implement Shaman’s arithmetic operators and called during both the instrumented
and non-instrumented version of Heron’s algorithm (as implemented in section
5.3.1). Encapsulated error uses twice as much memory as floating point arithmetic
but two to ten times as many arithmetic operations, most of them additions and
some of them fused-multiply-add, a processor instruction that is often idle during
dense arithmetic computations. Thus, we can expect an increased arithmetic
intensity, meaning that part of encapsulated error’s overhead should be amortized
by an increased processor usage as long as the program is not compute bound.

Figure 7.2 shows the arithmetic intensity for both IEEE-754 double precision
and Shaman Sdouble precision on Lulesh 1.0 as a roofline plot. One can see that
once Shaman is used, the measures shift up and to the right meaning that both the
minimum number of operation per seconds and the arithmetic intensity increased.
Furthermore, the program goes out of the fully memory bound section (the slanted
zone on the left of the roofline model) to becomes both memory and compute
bound.

This confirms our hypothesis that Shaman makes a more efficient use of the
processor which, at least partly, explains why its overhead is not as important as
would be predicted by the raw number of arithmetic operations.

86

SP Vector FMA Peak: 91.91 GFLOPS

Sd0149

DP Vector FMA Peak: 46.22 GFLOPS
SP VectorAdd Peak: 45.97 GFLOPS

Vector Add Peak: 22.82 GFLOPS

Scalar Add Peak: 5.78 GFLOPS

0.1- °
[)
0.01- °
Memory bound Bound by compute Compute bound
and memory roofs . . ,
Y FLOP/Byte (Arithmetic Intensity)
0.04 0.07 0.1 0.4 07 1 4 7 10
(a) IEEE-754 double precision.
(9]
M
100- 6 __ SP Vector FMA Peak: 92.1 GFLOPS
)
wn
SP Vector Add Peak: 46.18 GFLOPS
DP Vector FMA Peak: 46.11 GFLOPS
DP Vector Add Peak: 23.07 GFLOPS
10-

Scalar Add Peak: 5.77 GFLOPS

Memory bound Bound by compute Compute bound
and memory roofs

FLOP/Byte (Arithmetic Intensity)
0.004 0.0070.01 0.04 0.07 0.1 0.4 07 1 4 7 10

(b) Shamgg Sdouble.

Figure 7.2: Roofline plot comparing the arithmetic intensity of Shaman and double
arithmetic on Lulesh 1.0. The x-axis represents the arithmetic intensity while
the y-axis is the number of operation per seconds. Green, yellow and red points
represent measures, randomly sampled, colored as a function of their associated
computing time. Plot produced with Intel advisor [Marques et al., 2017].

7.3 Tagged error

Tagged error’s running time is a direct function of the number of tags. Therefore,
we decided to measure its runtime overhead, compared to a non-instrumented
execution, as a function of the number of tags. This should be an affine function as,
in our implementation, the time to do a single floating-point operation instrumented
with tagged error is proportional to the number of tag.

600 i i i
—e— Spectral norm
n-body

% —e— Mandelbrot set
<= 400| |—e— Lulesh 1.0 g
£
@]
[eb}
=
2 200 |
]
. '/"/t/*/‘
0 | | | | | | | | |

|
10 20 30 40 50 60 70 80 90 100
Number of tags

Figure 7.3: Runtime overhead of the tagged error algorithm, compared to double
precision, as a function of the number of tags.

Figure 7.3 illustrates the computing time overhead due to the addition of tagged
error as a function of the number of tags. As predicted, it is an affine function.
Fitting a linear model on the data, we observe a slope going from 1 to 4 depending
on the computation and a value at the origin of about 35 except for the Mandelbrot
computation which starts at 130.

It is interesting to note that the Mandelbrot computation is, once more, the
most impacted. Its runtime overhead seems to be roughly 4 times larger than
expected which might be linked to the fact that it uses 4 cores.

One can get a feel for the number of floating-point numbers used for each
program by looking at the memory overhead (which should also be an affine
function of the number of tags).

The memory overhead, which is displayed in Figure 7.4, shows affine functions
with a slope going from —- to % and a value at the origin of about one which is

1000
very stable from one program to the other. Lulesh is the program with the highest

38

40 T T T

—e— Spectral norm
n-body

30 | |- Mandelbrot set

—— Lulesh 1.0

20 |

10

Max memory usage overhead

* L4 ®
10 20 30 40 50 60 70 80 90 100
Number of tags

Figure 7.4: Memory overhead of the tagged error algorithm, compared to double
precision, as a function of the number of tags. The Mandelbrot set and n-body
plots are overlapping and stay very close to 1.

slope which is a direct consequence of the fact that it has the largest quantity of
floating-point numbers used at a given time.

The plots are notably less noisy, better fitted by a linear model, than the one
obtained for the computing time overhead. Probably because they are less impacted
by interactions between components of the program.

The low slopes mean that the memory overhead is negligible at first and grows
very slowly with the number of tags (you need at least 6 tags to double your
memory usage), a good property as the memory usage of large simulations could,
otherwise, quickly get unwieldy when using dozens of tags.

It seems important to indicate that, in practice when analyzing a given program,
we rarely needed more than 10 tags as the analysis was usually done in three or
four runs of increasing granularity.

7.4 Exhaustive overhead analysis

In this section we collect the overhead observed while using Shaman on all the
programs, and even smaller algorithms, in this thesis. This is meant as a way to
get an overview of the slowdown one can expect while using Shaman.

89

7.4.1 Encapsulated error

Figure 7.5 synthesizes the overhead observed for all programs featured in the thesis,
we only omitted the computing times of Felix 1.0 and 2.0 as it was instrumented
with a much older version of Shaman. Here, we are interested in the range of
behaviors observed when instrumenting a program with Shaman rather than the
behavior of individual programs. The main conclusion made from this figure is
that the overhead can go anywhere from a slight decrease in run time (that was
only observed on very fast, toy, test cases and might be due to measurement noise)
to a factor of about 9 (on a program that spends the vast majority of its time
doing dense linear algebra). Overall, an overhead of about a factor 7 is a realistic
expectancy when instrumenting a code with Shaman.

CG compensated matrix product - | | 7.24
CG - | | 5.9
UQ Chaos Polynomials | | 19.32
UQ Gaussian Process | | 19.14
UQ Monte-Carlo - | | 9.27
SCAT2000 Monte-Carlo 1000 samples | []1.98
SCAT2000 intrusive Chaos polynomials | [73.21
SCAT2000 | []1.52
Rectangle integration | | | 4.49
LU factorization no pivot | []1.01
LU factorization pivot 4 []0.97
Deterministic | []0.71
Trace | [1195
Rump 4 []0.71
Heron’s Sqrt | []0.96
Lulesh 1.0 | | | 7.35
Mandelbrot set | | | 6.02
n-body | | | 4.31
Spectral norm | []2.02
| | | | | |
0 2 4 6 8 10

Slowdown compared to double precision

Figure 7.5: Overhead of the Shaman library compared to double precision.

Figure 7.6 displays the computing time of the non-instrumented and instru-
mented version of all the programs to give a sense of their respective scale.

It is interesting to note that the overhead does not increase monotonously with
the computing time. While the fastest programs are the only ones to exhibit an
overhead below one (probably because it is lost in measurement noise), the overhead
alone cannot be used to discriminate between slow running programs and faster
ones.

90

T T T T T T T T T T T T T T T T T
GEJ 103 = wR Rl owddis
’45 ; UuQ l\lolzte—Carlo ;
= 102 L SCAT2000 Monte-Carlo 1000 samplds
. g n-body o |
~ F CG compgusptabmeptest goeduct .
<) 1 [SCAT2000 intrusiv® Chad® polynomials 7
et = N
=} 10 E Lulesh CGr o E
Ga.) E o o]
= 0 E
— 10 E B
R = E
= i L @)
o= 1071 E ° . %d:aurmazmmncppxubt B
CC@: F Rectangle integrationoog B
E -2 ; ° ;
,S_::G 10 E @ DetHmimpistic E
wn [Heron’s Sqrt B
e N N N I | | | | | 1

1072 1071 10° 101 102
Double precision runtime

Figure 7.6: Comparison of computing times between double precision and Shaman
instrumented code in log-log scale.

This is well illustrated by the SCAT2000 and UQ programs. While these
programs have similar computing times (in particular the Monte Carlo versions),
their overhead are drastically different (below 4 and around 9 respectively), probably
due to the UQ program relying on heavily optimized linear algebra kernels that are
more impacted by the instrumentation. Meanwhile, despite the various versions of
these programs having very different computing time, they have similar overheads.

7.4.2 Tagged error

Figures 7.7 gives the overhead of the introduction of tagged error for the programs
covered in the previous section. We excluded SCAT2000 from our instrumentation
as, for historical reasons, some of its components write data on file to read it later
which leads to problems as its parser cannot process the tagged error output format
(a problem that does not occur when using Shaman without tagged error as its
output is displayed as a normal number, with no tag related information, which
can be parsed normally).

We used 10 tags as it is representative of the number of tags we usually used to
search for the sources of numerical error in a program.

Looking at the plot, and ignoring programs too short to be impacted by the
introduction of tagged error (all programs with an overhead below a factor of two
can be put in this category), it is clear that tagged error has a large overhead,
somewhere between a factor of 40 and 100 for most programs (once more, the

91

CG matrix compensated | []40.96 B
CG |["""7]6421 -

UQ Chaos Polynomials | |] 95.55 B
UQ Gaussian Process - | | 87.47 B
UQ Monte-Carlo | | | 94.8 -
Rectangle integration -| [] 12.93 B

1
LU factorization no pivot | | 1.23 I
LU factorization pivot | | 1.08 I
Deterministic | [0.71 -
Trace | [16.38 B
Rump 4]0.71 B
Heron’s Sqrt | [0.96 i
Lulesh 1.0 | | 73.6 B

l

Mandelbrot set - | 176.7
n-body | 777777 53.41 5
Spectral norm | []43.91 B

| | | | |
0 20 40 60 80 100 120 140 160 180 20
Slowdown compared to double precision

Figure 7.7: Runtime overhead of the tagged error algorithm, using 10 tags, compared
to double precision.

computation of the Mandelbrot set is a notable outlier). With ten tags, an overhead
of about 70 is a realistic expectation: about the number of tags time Shaman’s
overhead.

This large overhead, however, is not as problematic as it would be with Shaman
as tagged error focuses on extracting very rich information from a single run and is
expected to be only used on use cases where a significant numerical error has been
spotted with Shaman.

7.5 Conclusion

Instrumenting a program with Shaman makes it about seven times slower but the
overhead appears to be highly computation dependent, going from no perceptible
overhead to making a program nine times slower. While this might seem like a large
value, it is highly competitive with the current state-of-the-art (see section 7.1)
making it particularly suitable for the analysis of long-running programs common
in simulation and high performance computing. Tagged error, while more powerful,
is notably more costly. One can expect that using ten tags will result in making
a program seventy times slower. Furthermore, its cost grows linearly with the
number of tags.

The wide range of overheads observed might be linked to the arithmetic in-

92

tensities of the programs instrumented. As the increase in number of operations
outweighs the increase in memory use, programs that are at peak performance
(a maximal number of operations per bytes of memory used) see a slowdown pro-
portional to the increase in arithmetic operations. However, programs that spend
time waiting while data is fetched from memory to the processor are much less
impacted since they can use this waiting time to do the additional computations.
Paradoxically, the instrumentation gets the program closer to peak performance by
increasing its arithmetic intensity.

93

Chapter 8

Applications to physical simulation

In this chapter we synthesize results obtained by applying Shaman to actual
programs from the field of physical simulation.

We present three programs. First, Felix [Regnier et al., 2016, Regnier et al.,
2017], a code used for fission simulation which has been used to check whether our
tools could scale to a non-trivial code base. Second, SCAT2000 [Bersillon, 1988], a
code from the world of nuclear simulation which we analyze to determine whether
its outputs where reliable. Third, we study the numerical error of a full pipeline,
including a physical model and various metamodels used to compute its uncertainty,
in order to check whether the numerical error impacts uncertainty quantification.

8.1 Instrumentation of a large fission simulation

Felix [Regnier et al., 2016, Regnier et al., 2017], a code used for fission simulation,
has been the first large program that we instrumented with Shaman. Our goal
with this study was not to validate particular outputs, but rather to check whether
our tools could scale to a non-trivial problem.

In this section we quickly introduce Felix before detailing how our instrumenta-
tion of both Felix 1.0 and Felix 2.0 went. We conclude with the impact of this test
case on the development of our tools.

8.1.1 Problem statement

Felix is used to solve the collective Schrodinger equation in a finite element basis
with the time dependent generator coordinate method (TDGCM) in N-dimensions
under the Gaussian Overlap Approximation (GOA). It is given in Equation 8.1
where 7 is the imaginary unit, A the reduced Planck constant, ¢ the time, ¢ a point

94

in space, ¢ is the function describing the dynamic of the system (linked to the wave
function), B is the collective inertia tensor, and V' is the potential.

D otw0 = |25 L pua L v s (5.1

)

There are two versions of the code, Felix 1.0 [Regnier et al., 2016], the first
version for which the authors rolled their own linear solvers and Felix 2.0 [Regnier
et al., 2017] which uses the Eigen linear algebra library [Guennebaud et al., 2010]
to solve its linear systems and introduces additional functionalities. In both cases,
Felix has two main components. First, it discretizes the N-dimensional collective
space using the Galerkin finite element method on a basis of Laplace polynomials.
Those polynomials are integrated analytically in Felix 1.0 (meaning that numerical
error can only come from the polynomial coefficients computation and not from
the integration) and with an adapted quadrature in Felix 2.0. Second, it solves for
the time evolution using either the Crank-Nicholson scheme in Felix 1.0 (which
requires an iterative QMR algorithm with a Jacobi preconditioner) or a Krylov
method in Felix 2.0 (using the Arnoldi iterative algorithm).

Both Felix 1.0 and Felix 2.0 have about 10000 lines of code spread on a hundred
files and use OpenMP to run in parallel. These were selected as our first large test
programs as they do not depend on Fortran subroutines and because both come
with input values to model the following four test cases, some of which have been
validated with analytical solutions:

e the oscillations in a 1D harmonic potential, for which an analytical solution
is available,

e the oscillations in a 2D isotropic harmonic potential, for which an analytical
solution is available,

e the propagation of a free wave packet, a very simple case which was used to
check that the errors introduced in the computation were low enough,

e the induced fission on a 239 plutonium target, a much larger problem.

The code takes a set of points, measurements at those points, a description of
the geometry of the problem, and an initial wave function as input. It outputs a
series of wave functions, which we will call gFunctions following Felix’s terminology,
sampled at regular intervals and the average energy of the solution as a function of
the number of iterations.

We decided to instrument both versions of Felix and see if we could run those
test cases and detect meaningful differences between Felix 1.0 and Felix 2.0.

95

8.1.2 Instrumentation and numerical stability

Felix 1.0

Even before the analysis started, due to its size (about hundred files), Felix 1.0
pushed us to develop an automatic instrumentation tool: at first a python script
and now, as detailed in Section 5.4.2, a proper Clang based refactoring tool.

Once instrumented, Shaman indicated that the outputs of two of the test
cases, the oscillations in a 1D harmonic potential and the induced fission on a 239
plutonium target, had severe numerical inaccuracies (the average energy had a
handful of significant digits, but the gFunction were very inaccurate). Using the
numerical debugger on the simulation of the oscillations in a 1D harmonic potential
to pinpoint their source quickly became impractical as there were thousands of
cancellations (as can be seen in code listing 8.1), most of them benign, which made
a breakpoint type of approach unscalable.

xx*%x SHAMAN s*k*xx

There are 179750963 numerical instabilities
40552 UNSTABLE CANCELLATION(S)

116903 UNSTABLE DIVISION(S)

179500506 UNSTABLE MULTIPLICATION(S)

29974 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE POWER FUNCTION(S)

63028 UNSTABLE BRANCHING(S)

- J

Code listing 8.1: Output of the numerical debuggeur for Felix 1.0.

This led to the development of the numerical profiler, a program able to catch
all breakpoints and print a summary of the results, as presented in Section 5.4.1.
Using the numerical profiler, we were able to assess that most cancellation occurred
during the computa