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Chapter 1

Introduction

Random forests (RF henceforth) are a non-parametric statistical learning method
introduced by Leo Breiman in 2001, adapted to both supervised classification prob-
lems and regression problems. They allow to consider qualitative and quantitative
explanatory variables together without pre-processing. They can be used to pro-
cess standard data for which the number of observations is higher than the number
of variables, while also performing very well in the high dimensional case, where
the number of variables is quite large in comparison to the number of observa-
tions. Thus, due for sure to their excellent predictive performance, but also to
their flexibility and ease of application, they are extensively used in many fields
of application, such as genomics (Boulesteix, Janitza, Kruppa, & König, 2012;
Dìaz-Uriarte & Alvarez De Andres, 2006; Goldstein, Hubbard, Cutler, & Barcel-
los, 2010), ecology (Prasad, Iverson, & Liaw, 2006), pollution prediction (Ghattas,
1999), and for a broader review, see Verikas, Gelzinis, & Bacauskiene (2011). They
are now one of the state-of-the-art methods in machine learning and data analysis.

RF are obtained by aggregating a collection of randomized tree predictors. As
introduced in Breiman (2001) they use a variant of CART (Classification And Re-
gression Trees) (Breiman, Friedman, Olshen, & Stone, 1984) as individual predic-
tors. More generally, RF are part of the ensemble methods family, which share the
same idea of aggregating several individual predictors in order to get the final one:
Bagging (Breiman, 1996), Arcing (Breiman, 1998), Randomization (Dietterich,
2000), Random Subspace (Ho, 1998) and Adaboost (Freund & Schapire, 1996),
among a large variety of proposals. Ensemble methods ideas have also been used
for other methods: Bolasso (Bach, 2008) and Randomized Lasso (Meinshausen
& Bühlmann, 2010) are respectively a Bagging-like and and RF-like algorithms
developed to stabilize results of the Lasso method (Tibshirani, 1996).

In addition, beyond the performance and the easy to tune feature of the method
with very few parameters to adjust, one of the most important aspects in terms of
application is the quantification of the input variables relative importance. This
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concept, which is not so much examined by statisticians (see for example, Grömp-
ing (2015), in regression), finds a convenient definition in the context of RF that
is easy to evaluate and which naturally extends to the case of groups of variables
(Gregorutti, Michel, & Saint-Pierre, 2015).

Since their introduction, RF have been generalized to various statistical prob-
lems. For example, for survival data analysis, Ishwaran, Kogalur, Blackstone, &
Lauer (2008) introduced Random Survival Forests, transposing the main ideas of
RF to the case where the quantity to be predicted is the time to an event, while
Hothorn, Bühlmann, Dudoit, Molinaro, & Van Der Laan (2006) proposed to ap-
ply regression RF to a transformation of survival data. Random forests have also
been generalized to the multivariate output variable case (see the review by Segal
& Xiao (2011), which also provides references from the 1990s), and been adapted
to address the problem of ranking (Clémençon, Depecker, & Vayatis, 2013).

1.1 Notations
In this chapter and the next one, we stay as general as possible, without assuming
any too restrictive structure on the data. In subsequent chapter, we will assume
some more precise structure on the input and output spaces, depending on the
types of data and problems at hand.

We assume that a learning sample is available: Ln = {(X1, Y1), . . . , (Xn, Yn)}
made of n independent and identically distributed (i.i.d.) random couples, coming
from the same common distribution as a couple (X, Y ) ∈ X ×Y . This distribution
is, of course, unknown in practice and the purpose is precisely to estimate it, or
more specifically to estimate the link that exists between X and Y .

• X is called the input space and the Xi, i = 1, . . . , n are the inputs. We
assume that X = X1×· · ·×Xp is a product of p spaces. The j-th coordinate
Xj of X hence belongs to Xj, and could, e.g., be a real number if Xj = R
or a function if Xj is a functional space, or another statistical quantity of
interest regarding the type of data available.

• Y is the output space and the Yi, i = 1, . . . , n are the outputs. The nature of
prediction problem depends on the nature of the space Y . In this document,
we address standard regression and (supervised) classification problems, as
well as more general regression problems with metric space valued regression
or even time-to-event prediction problems.

The only thing that we need on spaces X1, . . . ,Xp and Y is that they are all
measurable, so that notions of probability, expectation and random variables are
well defined. Note that the most classical case in statistical literature is to consider
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that for all j = 1, . . . , p Xj = R, hence X = Rp and we get p continuous input
variables. In addition, we will be many times facing high-dimensional data, for
which the number of variables p can be very large compared to the number of
observations n, usually denoted by n << p.

1.2 Statistical Objectives

1.2.1 Prediction
The main objective in statistical learning is prediction: the aim is, using the
learning sample Ln, to build a predictor:

ĥ : X → Y

which associates a prediction ŷ of the output corresponding to any given input
x ∈ X . The “hat” on ĥ means that this predictor is constructed using Ln. We
omit the dependence over n for the predictor to simplify the notations, but it does
exist.

More precisely, we want to build a powerful predictor with the lowest prediction
error (also called generalization error) as possible. The definition of the prediction
error of a predictor ĥ depends on the problem at stake:

• In standard regression, where Y = R, we consider the expectation of the
quadratic error: E

[
(Y − ĥ(X))2

]
.

• In classification with C classes, where Y ∈ Y = {1, . . . , C} is a categorical
variable, we consider the probability of misclassification: P

(
Y 6= ĥ(X)

)
.

• In metric space valued regression, where Y = (Y , dY) is a metric space with
distance dY , we consider: E

[
d2
Y(Y, ĥ(X))

]
.

• If Y ∈ R+ is a time to event, we consider the Brier score, at a given time
point t ∈ R+: E

[
(1Y≤t − ĥt(X))2

]
where ĥt(X) is the predicted probability

that the event occurs at time t.

In all frameworks, the prediction error depends on the unknown distribution of
the random couple (X, Y ), so it must be estimated. One classical way to proceed
is, using a test sample Tm = {(X ′1, Y ′1), . . . , (X ′m, Y ′m)}, also made of i.i.d. random
couples drawn from the same distribution as (X, Y ), to compute a test error.
For example, in standard regression, it leads to calculate the mean square error:
1
m

m∑
i=1

(
Y ′i − ĥ(X ′i)

)2
.
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In the case where a test sample is not available, the prediction error can still
be estimated either by cross-validation, or by a specific estimate included in RF,
called Out-Of-Bag error (see Section 2.4).

1.2.2 Variable selection and importance of variables
A second classical objective, especially useful when analyzing high-dimensional
data, is variable selection. This involves determining a subset of the input variables
that are actually useful and active in explaining the input-output relationship.
The quality of a subset of selected variables is often assessed by the performance
obtained with a predictor using only these variables instead of all initial set.

In addition, we can focus on constructing a hierarchy of input variables based
on a quantification of the importance of the effects on the output variable. Such
an index of importance therefore provides a ranking of variables, from the most
important to the least important. As we will see, RF offer a very interesting
framework to the definition of a variable importance score, which can be defined
in general and easily adapted to the different problems addressed here (standard
regression, classification, time-to-event analysis, etc.).

1.3 Applications
Most of applications presented in this document comes from problems arising
from health domain. For some of them, they are actually the motivation for
the development of new RF methods.

1.3.1 Image data in brain functioning study
The knowledge of how the brain functions, e.g., which region of the brain are
activated when an individual performs a certain task (visual recognition of objects,
language, mental calculation, etc.) is an active problem in nowadays neurology
domain. Functional Magnetic Resonance Imagery (fMRI) allows to very precisely
measure the brain activity, leading to dataset with several hundreds of thousands
of voxels (a pixel in 3-D) as continuous variables. Since the number of experiments
is usually of order a few tenth or at most hundreds, we face very high-dimensional
problems when analyzing this type of data.

In this context, we apply a variable selection procedure based on RF on fMRI
data(Robin Genuer et al., 2010) coming from n = 64 experiments and a total of
p = 1000 continuous input variables (obtained by a clustering method apply on
the voxels measuring activity in the all brain). The task done by individuals was
an object recognition task with 4 different shapes of the same object. Hence, in
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this application, we have a high-dimensional classification problem with 4 classes.
The main objective is then to select the brain regions which permit to discrimi-
nate between the stimuli (the different object shapes), given the brain activities
measurements. The prediction objective is kind of secondary here, and is more
considered as a tool to serve the variable selection goal.

Another application in this field was done in Zago et al. (2017). In this work,
we apply a variable selection technique based on support vector machines (Guyon,
Weston, Barnhill, & Vapnik, 2002; Schölkopf, Smola, Williamson, & Bartlett,
2000) to assess hemispheric pattern of language dominance.

1.3.2 Proteomic data in clinical trials
The use of “omics” data to understand the behavior of individuals in terms of
response of a treatment or development of pathologies, is a challenging problem,
more and more tackled in the health domain since more and more characteristics
are now collected on individuals.

In Chavent, Genuer, & Saracco (2019) we apply a combination of clustering
of variables and RF-based variable selection procedure to clinical trial data. It
involved n = 44 patients with a rectum cancer who undertook a treatment of
chemotherapy and radiotherapy, before a surgery intervention. The main goal of
this study was to predict if a patient will respond favorably to the treatment, using
p = 4786 continuous input variables measuring protein abundances at baseline. We
tackled here an high-dimensional binary classification problem and the method
manage to select interesting groups of informative variables, whereas the group
structure was a priori unknown.

1.3.3 Genomic data in vaccine trials
The measure of genomic data becomes the norm in vaccine trial. In Capitaine et
al. (2020b) and Capitaine et al. (2020a) we focused on two vaccine trials for HIV
positive patients. The first, called DALIA-1 (Lévy et al., 2014), is a therapeutic
vaccine trial including n = 19 HIV-infected patients who received an HIV vaccine
candidate before stopping their antiretroviral treatment. Expression of p = 5399
gene transcripts and the HIV viral load were measured at 15 time points during
the trial (6 time points before antiretroviral treatment interruption, and 9 time
points after). The objective is to predict the HIV viral load dynamics after an-
tiretroviral treatment interruption for a patient given the evolution of his/her gene
expression during the vaccination phase (Thiébaut et al., 2019). We deal here with
high-dimensional longitudinal data, and we have to take into account that both
continuous input variables (gene expression) and the continuous output variable
(HIV viral load) are repeatedly measured. Furthermore, more than the predictions
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themselves, knowing which genes are the most involved in the prediction problem
is of great interest to better understand the vaccination mechanism in this context.

The second trial that we analyzed in Capitaine et al. (2020a), called LIGHT, is
a therapeutic vaccine trial including n = 97 HIV-infected patients, and p = 1150
continuous input variables of genes expression were measured between 1 and 4
times, leading to a total number of 234 observations. Hence, compared to DALIA
trial, we have a lot more individuals, but less repeated measurements. The ob-
jective of this analysis was to assess the capacity of predicting the abundance of
CD4 T cells using gene expression data as measured by RNA sequencing in whole
blood. Hence we were again dealing with high-dimensional longitudinal data but
with sparse and unbalanced trajectories.

1.3.4 Dynamic predictions of health events
In an ongoing work with Anthony Devaux and Cécile Proust-Lima, we develop a
dynamic prediction method based on machine learning algorithms including RF.
We adopt a landmark approach, which consists in using past data until a landmark
time tLM to predict the probability that an event occurs at some horizon time tHor.
We apply the proposed methodology in two different contexts in health that share
the following characteristics: for some individuals we measure about 10 input
variables (some are continuous, some are categorical) repeatedly over time and the
objective is to predict the time an health event occurs. We also have additional
characteristics of individuals, not repeated over time.

For the first application, the event to predict is death for primary biliary cirrho-
sis patients. For tLM = 4 years after the follow-up start, we get n = 225 patients
and there are 11 longitudinal input variables and 3 time-independent input vari-
ables. For the second application, the objective is to predict all cause death of
elderly people. For tLM = 80 years, we have n = 1561 people, with 9 longitudinal
input variables and 18 time-independent input variables.

The proposed strategy consists in summarizing longitudinal variables trajecto-
ries until tLM and using those summaries into time-to-event prediction methods,
such as random survival forests (Ishwaran et al., 2008). Therefore, we face here a
problem of time-to-event prediction when input variables are either repeated over
time, or time-independent. Again, one interesting question in both contexts is to
select the most informative variables.



Chapter 2

Random Forests: General
Principle

The purpose of this chapter is to give the main ideas that drive RF methods. Here,
we state some definitions as general as possible and make some remarks that apply
in all particular cases developed in the next chapters.

The general principle of RF is to aggregate a collection of randomized trees. The
main idea is, instead of seeking to optimize a predictor “at once” as it is usually
done by most statistical learning methods (e.g., a single tree), to put together a set
of predictors. As we will see more in details in the following, individual predictors
are not built in optimal manner. On the contrary, they are usually obtained by
randomly perturbing optimal procedures. But by doing so, the forest benefits from
an extensive exploration of the space of all possible predictors, which, in practice,
results in better predictive performance.

We give the following general definition of random forests, inspired by that of
Breiman (2001):

Definition 2.1 (General Random Forests). Let
{
ĥ(.,Θ1), . . . , ĥ(.,Θq)

}
be a col-

lection of tree predictors, with Θ1, . . . ,Θq q i.i.d. random variables independent
of Ln. The RF predictor ĥRF(.) is obtained by aggregating this collection of ran-
domized trees.
Remark. We stress that in this definition the variables Θ` are independent of Ln.
Even though it was not specify in Breiman (2001), is more consistent with the
intuition that the additional randomness provided by the Θ` is disconnected from
the learning sample. In addition, it encompasses the most commonly used RF
variants and e.g., all RF methods introduced in this document.

We also note that the RF predictor ĥRF(.) actually depends on all Θ1, . . . ,Θq,
but we do not make this dependence explicit to lighten notation.
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This definition is illustrated by the diagram in Figure 2.1. This scheme will be
adapted several times later on, depending on the different RF methods presented.
Hence, to precisely define a RF method adapted to a particular context, we need

Ln

ĥ(.,Θ1) ĥ(.,Θ`) ĥ(.,Θq)

ĥRF(.)

Randomized tree

Aggregation

Figure 2.1: General scheme of random forests.

the three mandatory following components:

1. A way of building a tree adapted to the data at stake.

2. A way of randomizing individual trees.

3. A way of aggregating several trees.

In the following sections, we discuss more in details those three aspects of RF, but
before that it is useful to keep in mind the following remark.

In order to obtain good predictive performance, a RF method must, in general,
build a collection of trees that is:

• As diverse as possible, because aggregating a set of predictors that are all
very similar would give nothing more than again a similar predictor.

• Made up of individual predictors with acceptable predictive capacity, because
if for a new observation x all trees provide a bad prediction, the aggregation
of these predictions has no chance of being correct.

2.1 General Statements about Trees
Initially, ensemble methods, like RF, were introduced to improve prediction perfor-
mance of trees, and the main idea from one of the first of them, Bagging (Breiman,
1996), was to stabilize CART (Breiman et al., 1984). Indeed, CART’s principal
drawback is its instability, in the sense that one can observe a huge change in the
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resulting predictor when applying CART on a slightly modified dataset. Bagging,
by aggregating several CART trees built on different bootstrap samples from Ln,
do stabilize the result. Moreover, having the “diversity among trees” notion in
mind, the instability of CART is actually an advantage for Bagging. In other
words, if the method used to get individual predictors were too stable, then the
aggregation of those individual predictors would not be much different from them.

However, as a matter of fact, ideas driving tree methods are quite general, and
can thus be transposed to many frameworks. First, trees are piece-wise constant
predictors, and the general principle to obtain them is to recursively partition the
input space X . The way this partitioning is lead is the key aspect of the method-
ology. Thus, trees belong to the family of partitioning predictors and more par-
ticularly to the family of data-dependent partitioning predictors (see, e.g., Chap.
4 and 13 of Györfi, Kohler, Krzyżak, & Walk (2002)). Partitioning predictors are
quite well-known. For example, some general results about consistency and rate
of convergence were obtain by Stone (1977) and Stone (1982), under assumptions
on the partition. For data-dependent partitioning predictors, Nobel (1996) and
Lugosi & Nobel (1996) also stated general consistency results.

Y 1

Y 2 Y 3

Y 4 Y 5

Y 10 Y 11

X1 ≤ d1 X1 > d1

X2 ≤ d2 X2 > d2

X1 ≤ d5 X1 > d5

d1

d2

d50 1

1

X1

X2 Y 3

Y 4

Y 10 Y 11

Figure 2.2: Left: a regression tree with X = [0, 1] × [0, 1] and Y = R.
Right: the associated partition in the input space (Y 1, Y 2 and Y 5 do
not appear because they are not associated with leaves).

In this document, we focus on trees and we are calling them like this thanks to
the recursive characteristics of their partitioning, to which we naturally associate
a tree (in terms of graph). In addition, we restrict ourselves to the case of binary
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trees, which means that sets of the current partition are always split into two sets
during the partitioning process. Figure 2.2 give a representation of a tree and its
associated partition of the input space, in the standard regression case. It can be
seen that each node of the tree has an attached output value: in this case, this is
the mean of output values associated to observations belonging to the node. We
also call a leaf, a node that do not have children nodes. The resulting piece-wise
constant predictor is the partitioning predictor which, for a new observation x,
predicts the output value corresponding to the set of the partition x belongs to.
An equivalent formulation of the prediction process for the tree is: drop down
observation x at the top of the tree (i.e., the root node) and determine the leaf it
falls into, after going through the different splits, given x input variables values,
and then predict the output value attached to that leaf.

All references and works cited here were developed in a classical framework with
inputs in Rp and outputs in R. However, the core ideas are far more general:

• The notion of partition exists for very general input spaces.

• The recursive binary partitioning process is simple enough to be generalized
for many kinds of data.

We do not give full details of the pruning algorithm of CART (Breiman et al.,
1984; Gey & Nedelec, 2005) here, but we stress that once a tree is obtained, it is
most of the time possible to apply the pruning step, in order to find the final tree
with the best prediction performance, i.e., the one that well balances empirical
error and total number of leaves.

Finally, since we focus on binary trees in this document, finding a way of build-
ing individual trees of RF reduces to find a way to partition a set of observations
into two subsets. This separation into two subsets is called a split and this division
procedure is called the splitting process.

2.2 Additional Randomness
Once the tree building strategy is set, the way of randomizing individual trees
has to be chosen. The main kinds of additional randomness in the literature
are actually quite transverse, in the sense that they can be used for several RF
methods:

• To randomly resample the learning set before applying a tree method. Boot-
strap samples (obtained by n uniform draws among Ln observations, with
replacement) are usually used, but “m out of n” samples (obtained by m
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uniform draws among Ln observations, without replacement) were also con-
sidered, in practice or to allow theoretical analyses (Banerjee & McKeague,
2007; Bühlmann & Yu, 2002; Scornet, Biau, & Vert, 2015).

• To randomly choose a subset of input variables (obtained by r uniform draws
among the p input variables, without replacement), either at each node of a
tree (Breiman, 2001; Geurts, Ernst, & Wehenkel, 2006) or for the entire tree
(Ho, 1998), and restrict the search for the best split only among the selected
variables.

• To randomly choose a split, either among a set of optimized splits (Dietterich,
2000) or uniformly among all possible splits only along r input variables
previously chosen (Geurts et al., 2006).

A lot of combinations of those types of randomness have been tried in the literature.
The addition of randomness before or during the tree building has to be well
dosed: too little randomness could lead to a collection of trees not diverse enough;
too much randomness could generate individual trees with too weak prediction
performance.

2.3 Aggregation
The last ingredient of RF, and more generally of any ensemble method, is the
way individual predictors are aggregated. The aggregation has to be adapted to
the type of data in the output space Y . Indeed, the aggregation is done at the
predictions level: for a new observation x ∈ X , each tree provides a prediction
ŷ ∈ Y of its associated output, and RF aggregate those prediction values.

Even if the aggregation is a very important step of RF, a majority of RF meth-
ods in the literature put together individual predictions in a quite simple and
usually the most natural way. For example, in a standard regression framework
with Y = R, the aggregation reduces to computing the mean of individual predic-
tions. More advanced ways of aggregating trees predictions, such as aggregation
procedures (see e.g., Lecué (2007) among others) that seek the best way of putting
together predictions to get the best aggregated predictor, have not been, up to
our knowledge, fully addressed in the literature. This is actually not so surprising,
and could come from the fact that in RF, trees are i) built independently from
each other and ii) sub-optimal by nature, because they are usually obtained by
a random perturbation of an optimal algorithm. Therefore, one tree of a RF is
not so interesting by itself, but it is all the collection once aggregated that mat-
ters. Moreover, it is not clear what would be the advantage of treating the trees
differently from each other. By doing so, and by optimizing the aggregation proce-
dure, we could also loose the benefit of the exploration of the space of all possible
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predictors, given by the previously mentioned additional randomness. From this
perspective, RF are fundamentally different from other ensemble methods, like,
e.g., Boosting (Freund & Schapire, 1996).

Extract the best tree of a RF, instead of aggregating all trees, could be at first
quite tempting. Indeed, getting a tree allows to retrieve a great interpretability
of the resulting predictor. However, extracting a tree with comparable predictive
performance is almost hopeless because a tree and a RF are in nature too different.

To conclude, we stress that even if the aggregation is not optimized for most
RF methods, it remains a crucial step of the methodology. It is indeed, when
the collection of trees is aggregated that the gain in prediction performance is
obtained.

2.4 Out-Of-Bag Error and Variable Importance
In this section, we define two very useful quantities naturally computed in RF
methods. The mandatory condition to actually get these quantities is that a
resampling step has been performed before the building of a tree. So, this section
is a little bit less general than the previous ones, but as we will see in subsequent
chapters, this resampling step is very common in RF, and the following mechanisms
are general enough to be used in many different frameworks.

So, assume that the `-th tree of the RF is built on LΘ`
n , a bootstrap sample

of Ln (other resampling techniques would also work as soon as some observations
of Ln are left out the resulting sample). On average (for n sufficiently large),
the bootstrap procedure leaves 0.368n observations outside the resulting sample.
Thus, to each bootstrap sample LΘ`

n , we can associate LOOB`
n = Ln \LΘ`

n (ignoring
repetitions in LΘ`

n ), the set of Ln observations not belonging to LΘ`
n . LOOB`

n is
called the Out-Of-Bag (OOB) sample associated to the `-th tree.

The main idea of OOB error and variable importance (VI) is to use those OOB
samples as “local test sets”. Indeed, since a tree is built on a bootstrap sample,
then the corresponding OOB observations have not already been considered by
this tree and thus can be used to fairly assess predictive performance. The OOB
error is defined as follows:

Definition 2.2 (Out-Of-Bag error). Consider the i-th observation Xi of the learn-
ing set Ln. To predict the output associated to this input, only individual predic-
tors built on bootstrap samples not containing the couple (Xi, Yi) are aggregated.
This provides a prediction Ŷi of Yi. Doing this for every observations of Ln allows
to compute an estimation of the prediction error.

The computation of the prediction error estimation depends on the type of
the problem considered (see Section 1.2.1). This OOB error estimate permits to
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get unbiased prediction error estimation, without the need to perform, e.g., an
additional cross-validation procedure.

One of the main drawback of switching from trees to RF methods is the loss of
the ease of interpretation. Indeed, while a result of tree is quite easy to understand
and to comment, an RF obtained by aggregating hundreds of trees can not be
visualized or interpreted easily. In order to fill the gap between trees and forests
interpretability, variable importance scores were introduced. There exist two main
VI scores: a permutation-based VI score (also called MDA for Mean Decrease
Accuracy), and a heterogeneity-based VI score (also called MDI for Mean Decrease
Impurity).

In this document we focus on the permutation-based VI score, defined as fol-
lows, for the j-th variable Xj:

Definition 2.3 (Permutation-based variable importance). Let us fix j ∈ {1, . . . , p}
and calculate VI(Xj) the permutation-based importance score of variable Xj:

• Consider the `-th bootstrap sample LΘ`
n and the associated LOOB`

n sample.

• Calculate errOOB`, the error made on LOOB`
n by the tree built on LΘ`

n .

• Then randomly permute the values of variable Xj in LOOB`
n . This gives a

perturbed sample, noted LÕOB`

j

n .

• Finally, calculate errÕOB`

j

, the error made on LÕOB`

j

n by the tree built on
LΘ`

n .

• Repeat these operations for all bootstrap samples. The variable importance
of variable Xj, is then defined by the difference between the average error of
a tree on the perturbed OOB sample and that on the OOB sample:

VI(Xj) = 1
q

q∑
`=1

(
errÕOB`

j

− errOOB`

)
.

With this VI definition, the more the increase of the averaged error of a tree on
its associated OOB sample after permutation is, the more important the variable
is.





Chapter 3

Standard Random Forests

In this chapter, I present a series of works that use standard RF, that is the
algorithm RF-RI (Random Forests Random Inputs) from Breiman (2001). After
precisely defining this method by setting tree building, additional randomness and
aggregation, I present a variable selection procedure based on standard RF. Finally
I address the particular case of using RF to analyze Big Data.

3.1 Definitions
Standard RF were introduced to deal with standard regression and classification
problems. Hence in this chapter, the input space X = Rp (input variables also can
be categorical), and the output space Y is either R for regression, or {1, . . . , C}
for classification.

In this context, trees are usually CART-like trees (Breiman et al., 1984), in
which the way of splitting a node t into two child nodes is performed by maximizing
the following criterion:

∆(t) = Φ(t)−
[
ntL

nt

Φ(tL) + ntR

nt

Φ(tR)
]

where Φ(t) is an heterogeneity measure of outputs in node t, tL and tR the left
and right child nodes respectively, and nt the number of observations belonging to
a node t. The heterogeneity measure Φ(t) must be adapted to the outputs nature:

• In regression, Φ(t) = 1
nt

∑
i:Xi∈t

(Yi− Y t)2, is the variance of outputs in node t.

• In classification, Φ(t) =
C∑

c=1
p̂c

t(1− p̂c
t), with p̂c

t the proportion of observations

of class c in node t, is the Gini index of outputs in node t.
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In CART, the criterion ∆(t) is maximized (we seek the largest heterogeneity de-
crease at each split) w.r.t. all admissible splits, i.e., all splits involving any of the
p input variables are considered. For a continuous input variable Xj, admissible
splits are of the form {Xj ≤ s} ∪ {Xj > s} with s ∈ R, while for a categori-
cal variable Xj′ they are of the form {Xj′ ∈ A} ∪ {Xj′ /∈ A} with A a subset
of Xj′ categories. In both cases, we take the convention that observations that
verify the left event ({Xj ≤ s} or {Xj′ ∈ A}) go to the left child node, and other
observations go to the right child node.

We now give the definition of the RF used in this chapter.

Definition 3.1 (Random Forests Random Inputs). The RF-RI predictor is an RF
predictor with the following characteristics:

• Before building a tree, a bootstrap sample is drawn and the associated ran-
domness is referred as Θ1.

• To split a node t, a set Dt of d input variables is randomly selected (uniformly
and without replacement among the p input variables), and the criterion
∆(t) is maximized w.r.t. admissible splits only involving variables in Dt. We
denote by Θ2 all random draws of input variables sets at each node of a tree.
Furthermore, the trees are fully developed and no pruning step is performed.

• Individual trees are aggregated as follows:

– ĥRF−RI(x) = 1
q

q∑
`=1

ĥ(x,Θ1
` ,Θ2

`) (standard mean in regression).

– ĥRF−RI(x) = arg max
1≤c≤C

q∑
`=1

1
ĥ(x,Θ1

`
,Θ2

`
)=c

(majority vote in classification).

We note that the `-th tree is denoted by ĥ(.,Θ1
` ,Θ2

`) and can be seen as a doubly
randomized tree: first thanks to the bootstrap sample draw, and secondly thanks
to the random draws of variable sets at each node. In addition, we stress that the
size d of the variable sets is the same for every nodes of every trees in the forest.
A diagram of the RF-RI algorithm can be found in Figure 3.1.

Remark. The language abuse consisting in naming the RF-RI method by RF is
widely used in the literature on random forests. Since, we give a more general
presentation of RF in this document, we try to avoid this language abuse.

This language abuse is also frequent in implementations of RF methodology:
for example, the very popular R-package randomForest (Liaw & Wiener, 2002)
actually implements the RF-RI algorithm.
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Figure 3.1: RF-RI scheme.

3.2 Variable Selection using Random Forests
As part of my first research activities, I develop a variable selection (Guyon &
Elisseeff, 2003) procedure based on RF-RI, called VSURF (for Variable Selection
Using Random Forests). This led to a series of papers from the methodological
presentation of the procedure (R. Genuer et al., 2010), its application to analyze
fMRI (functional Magnetic Resonance Imagery) data (Genuer et al., 2010), to
the development of the R package VSURF (Genuer, Poggi, & Tuleau-Malot, 2015,
2019). Since its introduction, VSURF has been quite used in different application
domains or compared with other variable selection procedures (Cadenas, Garrido,
& Martínez, 2013; Sanchez-Pinto, Venable, Fahrenbach, & Churpek, 2018; Speiser,
Miller, Tooze, & Ip, 2019).

VSURF is an automatic variable selection procedure, heavily based on RF-RI,
that combines thresholding and stepwise strategies, specifically designed to analyze
high-dimensional data:

• Its most appealing characteristic is that it is fully automatic, in the sense that
during the procedure all quantities of interest are computed on the available
data only, and hence no a priori (e.g., on the number of variables to select)
is needed. Together with the fact that it is based on RF-RI which are a
non-parametric predictor, it makes VSURF a very versatile tool, applicable
to many different datasets (at least for regression and classification).

• VSURF heavily uses RF-RI, both to compute (permutation-based) variable
importance, but also to build predictors involving subset of variables that
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are compared using OOB error. Moreover, the order given by variable im-
portance scores is used during all the procedure. Thus, VSURF is highly
dependent on the capacity of RF-RI to well measure variable importance
and well estimate prediction error of several predictors by OOB error.

• The main limitation of VSURF is surely its overall computation time. In-
deed, in its first step, it computed several RF-RI predictors with variable im-
portance calculation, so if one RF-RI is already computationally demanding,
this first step runtime will sometimes be prohibitive. However, the imple-
mentation allows to easily use parallel computing, and even if the procedure
has been thought to be automatic, there exist several tuning parameters that
can be adapted to decrease the computational burden.

We now give more details about VSURF procedure. The method involves two
main steps: the first, fairly coarse, proceeds by thresholding the importance of
the variables to eliminate a large number of useless variables, while the second,
finer and ascending, consists of a sequential introduction of variables into RF-RI
predictors.

In this procedure, we distinguish two variable selection objectives: interpreta-
tion and prediction (although this terminology may lead to confusion):

• For interpretation, we try to select all the variables Xj strongly related to
the response variable Y (even if the variables Xj are correlated with each
other).

• While for a prediction purpose, we try to select a parsimonious subset of
variables sufficient to properly predict the output variable.

Typically, a subset built to satisfy the first objective may contain many variables,
which will potentially be highly correlated with each other. On the contrary, a
subset of variables satisfying the second one will contain few variables, weakly
correlated.

The following situation illustrates the distinction between the two types of
variable selection objectives. Consider a high-dimensional classification problem
(n << p) for which each explanatory variable is associated with a pixel in an image
or a voxel in a 3D image as in brain activity (fMRI) classification problems (Genuer
et al., 2010). In such situations, it is natural to assume that many variables are
useless or uninformative and that there are unknown groups of highly correlated
predictors corresponding to regions of the brain involved in the response to a
given stimulation. Although both variable selection objectives may be of interest
in this case, it is clear that finding all the important variables highly related to
the response variable is useful for interpretation, since the selected variables would
correspond to regions of the brain. Of course, the search for a small number of
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variables, sufficient for a good prediction, makes it possible to obtain the most
discriminating variables in the regions previously highlighted but is of less priority
in this context.

With those two objectives defined, VSURF works as follows:

• Step 1. Ranking and preliminary elimination:

– Rank the variables by decreasing importance (in fact by average VI over
typically 50 forests).

– Eliminate the variables of low importance (let us denote by m the num-
ber of retained variables).
More precisely, starting from this order, we consider the corresponding
sequence of standard deviations of the VIs that we use to estimate a
threshold value on the VIs. Since the variability of the VIs is greater for
the variables truly in the model than for the uninformative variables,
the threshold value is given by estimating the standard deviation of the
VI for the latter variables. This threshold is set at the minimum pre-
dicted value given by the CART model fitting the data (X, Y ) where
the Y are the standard deviations of the VI and the X are their ranks.
Then only variables whose average importance VI is greater than this
threshold are kept.

• Step 2. Variable selection:

– For interpretation: we build the collection of nested models given by
forests built on the data restricted to the first k variables (that is the
k most important), for k = 1 to m and we select the variables of the
model leading to the lowest OOB error. Let us denote bym′ the number
of selected variables.
More precisely, we calculate the averages (typically over 25 forests) of
the OOB errors of the nested models starting with the one with only
the most important variable and ending with the one involving all the
important variables previously selected. Ideally, the variables of the
model leading to the lowest OOB error are selected. In fact, to deal
with instability, we use a classical trick: we select the smallest model
with an error less than the lowest OOB error plus an estimate of the
standard deviation of this error (based on the same 25 RF).

– For prediction: from the variables selected for interpretation, a sequence
of models is constructed by sequentially introducing the variables in in-
creasing order of importance and iteratively testing them. The variables
of the last model are finally selected.
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More precisely, the sequential introduction of variables is based on the
following test: a variable is added only if the OOB error decreases more
than a threshold. The idea is that the OOB error must decrease more
than the average variation generated by the inclusion of non-informative
variables. The threshold is set to the average of the absolute values of
the first order differences of the OOB errors between the models includ-
ing m′ variables and the one with m variables:

1
m−m′

m−1∑
k=m′
| errOOB(k + 1)− errOOB(k) | (3.1)

where errOOB(k) is the OOB error of the forest built with the k most
important variables.
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Figure 3.2: Graphs illustrating the results of VSURF on Vac18 data.

A typical output of VSURF is given in Figure 3.2. The procedure has been applied
on the vac18 dataset, coming from an HIV prophylactic vaccine trial (Thiébaut
et al., 2012). Expressions of a subset of p = 1000 genes were measured for n = 42
observations (corresponding to 12 negative HIV participants), corresponding to 4
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different stimuli (different vaccines). The prediction objective here is to determine,
in view of gene expression, the stimulation that has been used. Thus, this a 4-class
high-dimensional classification problem.

In this example, starting with the 1000 available variables, the first thresholding
step keeps 93 variables, the interpretation step leads to the selection of 24 variables,
while the prediction step selects 10 variables.

3.3 Random Forests for Big Data
Due to the very rapid development of technology, huge amounts of data are nowa-
days collected daily in many domains. In this section we focus on the context,
usually called Big Data, where the number of observations included in a dataset
is extremely large: more than hundreds of millions, to give an idea of the order
of magnitude. In this context a first objective is to study the applicability of sta-
tistical methods to such datasets and adapt them if needed. For example, some
datasets are too large to fit in a single computer memory, thus to be analyzed the
dataset has to be distributed among several computers. Hence, one question is
how can, e.g., RF-RI methods, be applied to this kind of data.

In Genuer, Poggi, Tuleau-Malot, & Villa-Vialaneix (2017), we focus on clas-
sification problems and study five RF-RI variants that adapts to Big Data: one
relies on subsampling while three others are related to parallel implementations of
RF-RI and involve either various adaptations of bootstrap to Big Data or “divide-
and-conquer” approaches. The fifth variant relates to online learning of RF.

First of all, since, as stated in Definition 2.1, individual trees are always inde-
pendent, RF methods can easily be parallelized. So, if the building of one tree can
be achieved in reasonable amount of time and if enough processors are available,
computation time of a RF run can naturally be reduced. However if the data
are so large that they do not fit in the computer memory, it is not enough. In
our study, we consider two different parallel implementations of RF-RI, which aim
at reducing the size of the data handled by one single process (in order to build
individual trees):

• First, we consider the m-out-of-n bootstrap (Bickel, Götze, & Zwet, 1997),
which randomly selects only m (with m << n) observations without replace-
ment from the learning set Ln, into RF-RI.

• Secondly, we also implement a variant of RF-RI involving the “Bag of Lit-
tle Bootstraps” (BLB) (Kleiner, Talwalkar, Sarkar, & Jordan, 2014). This
method builds K bootstrap samples of size n but each containing only m
(again with m << n) different observations. On each obtained sample,
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forests of q trees are built, and finally aggregated into the final predictor
(made of K × q trees). Figure 3.3 gives a diagram of this variant.

Ln

SΘ1
1

m SΘ1
k

m SΘ1
K

m

OΘ1
1,Θ2

1
n OΘ1

k,Θ2
k

n OΘ1
K ,Θ2

K
n

ĥq
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Figure 3.3: Scheme of a RF-RI variant using Bag of Little Bootstraps.
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The remaining RF variants that we study are i) a simple RF-RI built on a random
subsample of Ln, ii) a “divide-and-conquer” approach (Chu et al., 2010) of RF-RI
(where forests of q trees are built on the K sets of a partition of Ln) and iii) an
online RF variant (Denil, Matheson, & Freitas, 2013; Saffari, Leistner, Santner,
Godec, & Bischof, 2009). This last variant is quite different from the other ones:
the general principle is to update a RF predictor every time a new observation
is considered, the learning set being read sequentially. Furthermore, whereas all
previous variants are all RF-RI adaptations, Denil et al. (2013) used Extremely
Randomized Trees (Geurts et al., 2006) to be able to perform quick update of their
predictor.
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In our work, we compare those Big Data RF variants first in a simulation study
with 15 millions of observations, and then on a real world dataset made of 120
millions observations. Let us focus on the following result: in the simulation study,
we compare prediction performance of the 5 RF variants and more precisely we
compute on one hand a test error (on a simulated test set, independent from the
learning set), denoted errTest, and on the other hand the OOB error. The OOB
error was calculated in a way adapted to the Big Data RF variant (meaning that
it does not use all available data but only a subset, corresponding to a subsample
or a partition set), denoted BDerrForest, and also with in a standard way (see
Definition 2.2) using the entire learning set, denoted errForest1.
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Figure 3.4: Evolution of the prediction error (top) and computational
time for training (bottom) versus q. q is the number of trees in each
sub-sample for blbRF, the Bag of Little Bootstrap RF-RI (left) or the
number of trees in each chunk for dacRF, the "divide an conquer RF"
(right). K is set to 10 and is the number of subsample for blbRF or
the number of sets of the partition for dacRF.

One striking result illustrated in Figure 3.4 is that the Bag of Little Bootstrap
RF are remarkably stable when the number of trees q varies (and this remains true
when other parameters are modified) and their computational time remains very
low even with high number of trees. On the other hand, the divide and conquer RF,
even if they also reach low prediction error (in terms of test error or standard OOB

1The code of the different Big Data RF variants and of the simulation study is available at:
https://github.com/tuxette/bigdatarf

https://github.com/tuxette/bigdatarf
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error), are computationally demanding, and their intrinsic estimated OOB error
is highly biased, especially when the number of trees is low. Indeed, BDerrForest
only begins to fairly estimated the prediction error when q is set to 100, but with
a high computational cost.

This focus illustrates the fact that some RF variants adapted to Big Data have
to be applied with care, and that their parameters must be tuned properly, even
in distributed environments such as Hadoop or Spark.
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Embedding Random Forests

In this chapter, I show how RF, and more precisely RF-RI and VSURF (detailed
in Chapter 3), can be used together with other statistical methods to tackle specific
problems. In the first section, the problem is to select groups of correlated variables
in a classification framework, when the group structure is a priori unknown. RF-
RI are thus combined with a clustering of variables method in this work (Chavent
et al., 2019). While in the second section, the goal is to analyze high-dimensional
longitudinal data, and RF-RI are embedded in an EM algorithm in order to esti-
mate all quantities of interest from a semi-parametric mixed model (Capitaine et
al., 2020b).

4.1 Combining Random Forests and Clustering
of Variables

In this work, we address the problem of prediction and variable selection in an
high-dimensional classification context, but with an additional group structure for
input variables. Hence, we assume that some input variables are related with each
others (so form groups of variables), and that we can also have some input variables
independent from all other variables. This assumption is quite realistic, e.g., in
omics data where gene expressions or protein abundances are often measured for
every genes or proteins whereas some of them are involved in the same biological
pathways, and hence highly correlated with each other. We stress that in our
approach the group structure (which input variable belongs to which group) is a
priori unknown. Thus, the proposed method differs from group-Lasso (Yuan & Lin,
2006) or group-sPLS (Liquet, Micheaux, Hejblum, & Thiébaut, 2015) techniques
(among others), that must know the groups in advance to be applied.

Managing to select groups of informative variables can be interesting both in
terms of prediction performance: if the redundant information brought by several
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highly related variables is well summarized it can help the learning task; and also
in terms of interpretation: in addition to the fact that some variables are selected
we also add the information on how those variables are related to each other (and
all of this in one integrated method).

To reach those objectives, we propose a combination between a clustering of
variables (denoted CoV) method (Chavent, Kuentz-Simonet, Liquet, & Saracco,
2012) and the VSURF procedure (described in Section 3.2). The main principle
of CoV is to sort input variables into homogeneous clusters, and to summarize
variables belonging to the a cluster by a synthetic variable obtained with the
first principal component applied only on variables of that cluster (in general,
when variables can be continuous or categorical, the PCAmix algorithm (Chavent,
Kuentz-Simonet, Labenne, & Saracco, 2017) is used). In the following, we use a
hierarchical clustering of variables algorithm, which builds nested partitions and
is naturally associated to a tree (or a dendrogram). We propose the following
method that we call CoV/VSURF1:

a) Groups of informative variables selection:

• Apply CoV on input data to obtain a hierarchy (a tree) of variables.
• For each K = 2, . . . , p, cut CoV tree in K clusters, train a RF-RI with

the K synthetic variables f 1, . . . , fK as predictors and (y1, . . . , yn) as
outputs and compute its OOB error rate.

• Choose the optimal number K∗ of clusters, which leads to the minimum
OOB error rate. Cut CoV tree in K∗ clusters.
Perform VSURF with the K∗ synthetic variables f 1, . . . , fK∗ as predic-
tors and (y1, . . . , yn) as outputs. Denote by m ≤ K∗ the number of
selected informative synthetic variables (corresponding to the interpre-
tation set of VSURF).

b) Prediction of a new observation:

• Train a random forest, f̂ , on the dataset consisting of the m selected
synthetic variables and outputs.

• Compute the scores of the new observation on the m selected synthetic
variables and predict its class label using f̂ .

To illustrate the procedure, we plot (Fig. 4.1) OOB error rate of RF-RI according
to CoV partition cardinal (from the partition into 2 groups to the partition in p
groups) for a learning set associated to a simulation study for which n = 60 and

1An R package implementing our approach is available at: https://github.com/
robingenuer/CoVVSURF

https://github.com/robingenuer/CoVVSURF
https://github.com/robingenuer/CoVVSURF
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p = 120. Input variables were simulated in order to get 9 groups of correlated
variables and additional noise variables. The dashed vertical line indicates the
optimal choice of partition in terms of prediction error and in this case it leads
to K∗ = 10, fairly retrieving the group structure of input variables. VSURF
applied on the K∗ = 10 associated synthetic variables selects m = 4 clusters,
which correspond to the 4 most informative clusters of this simulation.
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Figure 4.1: Random Forests OOB error rate according to CoV partition
cardinal for a simulated learning dataset with n = 60 observations and
p = 120 variables. The dashed red vertical line corresponds to K∗ = 10
clusters.

The main feature of this algorithm is that it outputs a list of m selected in-
formative synthetic variables. Since each synthetic variable is built on a subset
of original variables, the algorithm implicitly leads to select groups of original
variables.

Another interesting feature of the procedure is that even if the ascendant hier-
archical clustering of variables algorithm is unsupervised (in the sense that it does
not use outputs), the final variables partition is supervised since the number of
clusters is optimized in terms of RF-RI classifier prediction error. This choice is
justified by the fact that our main goal is prediction, so we are primarily inter-
ested in groups of informative variables, rather than groups of all variables. We
stress that each group of informative variables is summarized by its synthetic vari-
able (the first principal component of the group). These synthetic variables are
then used to build the predictive model. Since, the clustering is optimized with
a prediction criterion, informative variables should be well represented by their
associated synthetic variables.

In Chavent et al. (2019), after leading a simulation study (with varied num-
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bers of individuals, variables, groups, sizes of those groups and correlation between
variables) which illustrates the good behavior of the proposed method in terms of
informative groups of variables retrieval, we applied the method to a proteomic
dataset coming from a clinical trial including n = 44 patients. The patients had
a rectum cancer and undertook a treatment of chemotherapy and radiotherapy,
before a surgery intervention. The main goal of this study was to predict if a
patient will respond favorably to the treatment. Our approach managed to high-
light 4 informative groups of variables (peptides in this application) gathering a
total of 143 among the 4786 initial peptides abundances. For comparison, a stan-
dalone application of VSURF lead to a selection of 35 peptides. Thus, in this
example, VSURF gave a sparse variable selection, but without group structure,
and potentially could miss variables that are too redundant with already selected
variables.

4.2 Embedding Random Forests in an EM Algo-
rithm

In this section, we consider the problem of analyzing longitudinal data. Those
data are very common, especially in health domain where variables are very often
measured several times, e.g., during the follow-up of subjects or patients of a study.
In this work (Capitaine et al., 2020b), we tackle the problem of analyzing high-
dimensional longitudinal data, where we get repeated measurements of a large
number of variables. The main principle is to use ideas from RF which behave
well in high-dimension coupled with mixed effects models which handle repeated
measurements. Following previous contributions from Sela & Simonoff (2012),
Hajjem, Bellavance, & Larocque (2011), and Hajjem, Bellavance, & Larocque
(2014) we use a semi-parametric mixed effects model and estimate all quantities of
interest with an EM algorithm where the non-parametric part is estimated by RF-
RI. Moreover, we extend previous models by adding a stochastic process, which is
particularly useful in an high-dimensional context where it is not possible to put
random effects on all variables nor easy to choose which variables get one. Thus,
we introduce the following semi-parametric stochastic mixed effects model:

Yij = f(Xij) + Zijbi + ωi(tij) + εij (4.1)

where Yij (for all i = 1, . . . , n and j = 1, . . . , ni) is the response of the ith individual
at time tij, Xij is the p×1 vector of covariates, f : Rp −→ R is the unknown mean
behavior function, bi is a q × 1 vector of random effects associated with a 1 × q
vector of covariates Zij, ωi(t) is a stochastic process used to model serial correlation
and εij denotes a measurement error.
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In addition, we suppose that for all i = 1, . . . , n the bi are independent, as well
as the ωi(t). And the εij are also independent for all i = 1, . . . , n; j = 1, . . . , ni. We
assume that bi, ωi(t) and εij are mutually independent. We also suppose that the
εij are normally distributed as N (0, σ2), the bi are normally distributed as N (0, B)
where B is a q×q positive definite matrix and ωi(t) is a centered Gaussian process.

We note that in classical linear mixed models (Laird & Ware, 1982), the fixed
part f(Xij) of our model is replaced by a linear combination of input variables.
However those models are not adapted to the high-dimensional context we con-
sider, where the number of input variables p is larger than n the number of indi-
viduals and even larger than N =

n∑
i=1

ni the total number of observations.

To estimate all parameters of the model and also the mean behavior function
f (the non-parametric part of the model), the idea is to use an EM (Expectation-
Maximization)-like algorithm (McLachlan & Krishnan, 1997) as follows:

• Initialization: Let r = 0, b̂i,(0) = 0q, ω̂i,(0) = 0ni
, B̂(0) = Iq, γ̂2

(0) = 1 and
σ̂2

(0) = 1.

• Repeat, until convergence:

1. Set r = r+1, compute Ỹij,(r−1) = Yij−Zij b̂i,(r−1)− ω̂ij,(r−1) and estimate
f in the standard regression framework (with all N observations):

Ỹij,(r−1) = f (Xij) + εij

to get f̂i,(r). Then predict b̂i,(r) and ω̂i,(r) using B̂(r−1), γ̂
2
(r−1), σ̂

2
(r−1) and

f̂i,(r).
2. Update B̂(r), γ̂2

(r) and σ̂2
(r) using f̂i,(r), b̂i,(r) and ω̂i,(r).

The main principle of this procedure is to iterate between estimation/prediction
of all quantities of interest with fixed variance parameters, and update of variance
parameters given current estimations/predictions of the mean behavior function,
random effects and stochastic process. We note that at step 1 of the loop, the
estimation of f could be performed with any statistical method, but we focused
on tree-based methods in our work. The main idea of step 1, is that if random
effects and stochastic process are well predicted, then the dependence structure
between observations from the same individual will be well modeled, hence re-
moving those predicted random parts of the model from outputs Yij will lead to
quite independent observations. And those observations Ỹij can be handled, e.g.,
by RF-RI.

In this work, we introduce a method generalizing previous methods, called
SREEMforest for Stochastic Random Effects-EM forest. The name was inspired
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from REEMtree (Sela & Simonoff, 2012), and the fact that we generalize the
method with an aggregation of randomized REEMtrees and the addition of a
stochastic process. The main characteristic of REEMtree is that in step 1 of the
procedure, it starts by building a CART tree, but then update the leaves values
by taking into account intra-individual covariance (through a linear mixed effects
model where the indicator matrix giving which observations belong to each leaf
plays the role of fix effects matrix). The way we randomize individual tree is then
the same as in RF-RI with the bootstrap resampling preceding trees building and
the random selection of d variables at each node of each tree.

Of course the two steps of the loop are strongly related and in our experiments
we observed that RF-RI must be tuned carefully, specifically the number d of
variables randomly selected at each node, to ensure convergence of the algorithm.
To illustrate this phenomenon, we plot in Figure 4.2 the log-likelihood according to
the number of iterations of SREEMforest applied to a vaccine trial (called DALIA)
dataset including 19 HIV-infected patients, where input variables correspond to
32979 gene transcripts, and the variable to predict is the HIV viral load. As it
can be seen, if d (named mtry as in the randomForest R package here) is set
to a relatively low value (√p) the log-likelihood is even decreasing. Thus, the
best results and stability are obtained for quite large values (at least 2p/3 in this
example).
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Figure 4.2: Log-likelihood according to the number of iterations in
SREEMforest, DALIA trial.

Furthermore, we compare the previously mentioned methods in a simulation
study and emphasize the gain of taking into account repeated measurements by
also comparing prediction error with standard CART and RF-RI methods. Note
that we implement our approach in the R package LongituRF (Capitaine, 2020),
which also integrates the previously mentioned methods.
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Finally, we propose to apply VSURF once the REEMforest procedure has con-
verged to also select input variables in the longitudinal context. Hence, we devel-
oped a RF method able to handle high-dimensional longitudinal data and which
performs in a final step a variable selection. In the case of the DALIA trial, the
overall procedure outputs 21 gene transcripts which were biologically relevant in
this application. However, we emphasize that to apply REEMforest (or other
competitors) to the DALIA dataset, we had to consider both gene expression data
and viral load data on the same time points: those after the antiretroviral treat-
ment interruption of patients. Therefore, the objective is not the same as the one
mentioned in Section 1.3.3: with SREEMforest we study the link between gene
expression and viral load both measured after the treatment interruption. As we
will see in Section 6.1, the primary objective of being able to predict viral load
after treatment interruption using gene expression before the interruption can be
addressed by Fréchet Random Forests.





Chapter 5

Purely random forests

In this chapter, I present theoretical works, which aim at explaining the good be-
havior of RF methods, in the particular case of Purely Random Forests (PRF). In
PRF, the partition of the input space is obtained independently of the learning set,
which allows to ease the theoretical analysis of RF. In this framework, we show
that it is possible to derive asymptotic results illustrating that RF estimators are
better than individual trees estimators. In the first section, I discuss several choices
from the literature for obtaining the input space partition randomly. In the second
section, I give some details about a first result of variance reduction brought by
RF (Genuer, 2012) and other results on a bias focused analysis (Arlot & Genuer,
2014).

5.1 Different Purely Random Partitioning
Schemes

In this chapter we focus on the standard regression problem, where X = Rp and
Y = R. Purely Random Forests (PRF) were first introduced in Breiman (2000),
already in order to simplify theoretical of RF methods. In this document, we
choose the following definition for PRF:

Definition 5.1 (Purely Random Forests). Let U1, . . . ,Uq be q i.i.d. ran-
dom finite measurable partitions of X that are independent with Ln, and let
ĥPRT(.,U1), . . . , ĥPRT(.,Uq) be tree predictors associated with partitions U1, . . . ,Uq

respectively. The aggregated predictor of this collection of trees, ĥPRF(.), is called
a purely random forest.

Remark. This definition is indeed a particular case of Definition 2.1 since individual
trees depend on i.i.d. random variables, which are for PRF the entire input space
partitions.
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We emphasize that each individual tree ĥPRT(.,U`) still depends on Ln, since
the mean values of outputs, over observations belonging to a set of partition U`,
is allocated to this set (as usual in regression). The fundamental characteristic of
PRF is that the patition of the input space is performed independently of the data
Ln.

Finally, we note that we choose this general definition for PRF, and consider
several PRF variants which differ from each other by the way the random partitions
are obtained. However, in the literature, PRF sometimes denote a particular case:
e.g., in Breiman (2000) and Biau, Devroye, & Lugosi (2008), PRF correspond to
the UPBRF variant defined below.

We now detail several PRF variants that have been introduced and theoretically
analyzed in the literature, by defining their random partitioning of X scheme.
From now on, we assume that X = [0, 1]p.

Definition 5.2 (Unbalanced Purely Random Forests (UBPRF)). To build one
individual tree of UBPRF:

1. Put [0, 1]p at the root of the tree.

2. Repeat k − 1 times:

a) Randomly choose a terminal node t to be splitted, uniformly among all
terminal nodes.

b) Randomly choose a split variable Xj, uniformly among the p input
variables.

c) Randomly choose a split point s uniformly over the j-th direction of t
and perform the split {Xj ≤ s} ∪ {Xj > s} to obtain the two children
nodes of t.

This variant was introduced by Breiman (2000) and further analyzed in Biau
et al. (2008). We call it unbalanced PRF, because the choice of the next terminal
node to split is done uniformly among all terminal nodes of a tree and thus induces
unbalanced trees. This contrasts with the following balanced PRF variant.

Definition 5.3 (Balanced Purely Random Forests (UBPRF)). To build one indi-
vidual tree of BPRF:

1. Put [0, 1]p at the root of the tree.

2. Repeat log2(k) times:

• For every terminal node t:
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a) Randomly choose a split variable Xj, uniformly among the p input
variables.

b) Randomly choose a split point s uniformly over the j-th direction
of t and perform the split {Xj ≤ s} ∪ {Xj > s} to obtain the two
children nodes of t.

For BPRF, the depth is the same for all branches of the tree, since at each
iteration every terminal nodes of the same generation are split. The resulting
trees are then balanced in this sense. The BPRF was introduced in Arlot &
Genuer (2014).

Definition 5.4 (Purely Uniformly Random Forests (PURF)). To build one indi-
vidual tree of PURF:

1. Put [0, 1]p at the root of the tree.

2. Repeat k − 1 times:

a) Randomly choose a terminal node t to be splitted, each with a proba-
bility equal to its volume.

b) Randomly choose a split variable Xj uniformly among the p input vari-
ables.

c) Randomly choose a split point s uniformly over the j-th direction of t
and perform the split {Xj ≤ s} ∪ {Xj > s} to obtain the two children
nodes of t.

The PURF variant was introduced in Genuer (2012) in the particular case of
p = 1, with the simpler, and yet equivalent, following formulation: draw k − 1
random variables ξ1, . . . , ξk−1 with uniform distribution on [0, 1] and consider the
obtained partition in k sets:

U = {[0, ξ(1)), . . . , [ξ(k−1), 1)}

where ξ(1) < · · · < ξ(k−1) denotes the corresponding order statistics.
We illustrate the different partitioning schemes in Figure 5.1, in a particular

setting with p = 2 and k = 64. We plot one realization of random partition for
each previously introduced PRF variant and we also add a plot for a TOY model.
The partition of the TOY model is simply obtained by randomly translate (to the
bottom and to the left) a regular partition of the unit square made of

√
k ×
√
k

squares.
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Figure 5.1: Partition of the unit square obtained by four different ran-
dom partitioning scheme: three PRF variants and one TOY random
translation of the regular grid. All partitions are made of 64 sets.

As it can be seen, the choice of the next terminal node to split has a great
impact of the resulting partition. Actually the four partitions plotted are sorted
(from left to right and then from top to bottom), from the least to the best
distributed partition. In other words, the TOY partition has sets in all regions of
space (since it is very close to a regular partition), and as we move from PURF
to UBPRF, we see that more and more numerous and large regions has not been
split. This remark will help understand the rates of convergence obtained in the
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next section.
Before presenting our asymptotic analysis, we mention other partitioning

scheme. First, Mondrian Forests introduced in Lakshminarayanan, Roy, &
Teh (2014) are another example of PRF, with a random partitioning based on
Mondrian processes (Roy & Teh, 2008). On the practical side, some works have
also been made to compare performance of PRF-like methods (or close to it) with
e.g. RF-RI, the state-of-the-art method. Cutler & Zhao (2001) introduced Perfect
Random Tree ensemble which are close to UBPRF, while Geurts et al. (2006)
studied Extremely Randomized Trees (ERT) which lay between UBPRF and
RF-RI methods: in ERT, to split a node, d input variables are randomly selected,
then one split point is chosen uniformly in the node in each of the d selected
directions, and the final split the one that maximize heterogeneity decrease among
the d obtained splits. Hence, in the particular case of d = 1, ERT is equivalent to
UBPRF.

5.2 Theoretical Results
The first asymptotic analysis was sketched by Breiman (2000) and precisely con-
ducted and completed by Biau et al. (2008). Those results concern UBPRF, and
it is shown that both trees and forests are consistent, when they are building with
this partitioning process. Thus, if the number of observations in Ln grows to
infinity, trees and forests estimators converges to the true regression function.

Next, in Genuer (2012), we studied PURF and show, at least when p = 1
that for this variant, trees and forests reach the minimax rate of convergence for
the Lipschitz functions class. Furthermore, we emphasized a gain brought by
forests when compared to trees in the variance of the corresponding estimators.
More precisely, we showed that the variance of forests are less than 3/4 times
the variance of trees. This was, up to our knowledge, the first theoretical result
explicitly showing that forests perform better than trees (which is almost always
observed in practice).

A focus on approximation error was then conducted in Arlot & Genuer (2014), in
which UBPRF, BPRF and PURF variants, and a TOY variant of PRF associated
to the TOY partitioning scheme introduced in the previous section, were ana-
lyzed. In this work, we prove that if we consider more regular regression function,
forests are even better than trees, because they reach faster rates of convergence.
More precisely, if the regression function is assumed to be C2 (twice differentiable
with a second derivative continuous), then the forests approximation error rate
of convergence towards zero is twice the one of trees. And this results holds for
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the four PRF variants analyzed. Moreover, an interesting result of our analysis is
that we found different rates of convergence for the different PRF variants. More
precisely, we showed that PURF and TOY reach minimax rates of convergence for
the class of C2 functions whereas BPRF converge slower and UPBRF even slower.
The plots of Figure 5.1 and previous remarks help to give an intuition about this
result. To help even more, we add the same plots but with k = 1024 (Fig. 5.2).
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Figure 5.2: Partition of the unit square obtained by four different ran-
dom partitioning scheme: three PRF variants and one TOY random
translation of the regular grid. All partitions are made of 64 sets.
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We thus can see that even when k increases, there remain quite large sets in
the partition obtained by UBPRF and to lesser extend for BPRF. However, we
see that the PURF partition is more satisfactory in terms of space exploration.

Of course, those remarks only illustrate individual partitions and hence apply
more directly to trees, but as our result showed, the relative comparison in terms
of rates of convergence between PRF variants are of the same order for trees and
forests.

In Arlot & Genuer (2016), we investigate the impact of subsampling and ran-
domization of the partitions, precisely for the TOY model and with numerical
experiments for what we call “Hold-Out” RF (HORF). The principle of HORF is
to first randomly split the learning set Ln into two subsamples L1

n and L2
n; then a

RF-RI is applied on L1
n to get the partition of the input space X , but then for each

terminal node of each tree of the forest, the associated value is replaced by the
mean of output values from observations of L2

n belonging to the node. Hence, L1
n

is only used to build the partitions of X and L2
n is only used to calculate the labels

associated to the cells of the partitions. Thus, HORF are close to a PRF variant,
since the partitions are independent of data used to labeled them. However the
partitions themselves are not independent from each other, since they are built
using the same data L1

n. Nevertheless, they are a good middle point between PRF
and RF-RI.

For both TOY and HORF we have illustrated that of course at least one source
of randomization is mandatory to reduce quadratic risk of RF compared to trees.
Moreover, the best performance arise when both subsampling and randomization
of the partitions are done. And finally, if we have to choose only one source of
randomization, it seems that randomizing the partitions would be the best choice.
We note that this is in line with ERT (Geurts et al., 2006) where the authors chose
to not perform any subsampling or resampling step.

We finish this section by pointing out recent results of the same nature that
were obtained by Mourtada, Gaïffas, & Scornet (2020) for Mondrian forests. The
author proved that Mondrian trees reach minimax rates of convergence for s-Hölder
functions with s ∈ (0, 1] whereas it holds for Mondrian forests for s ∈ (0, 2]. Thus,
they illustrate better rates of convergence for forests compared to trees for more
regular regression functions.





Chapter 6

Generalized Random Forests

This chapter is dedicated to two works that either develop or use generalized RF
methods, in the sense that the need is to apply RF methods adapted to problems that
are neither standard regression nor classification. In the first approach (Capitaine
et al., 2020a), we develop a quite general RF method adapted to metric spaces
valued input and output data, while in the second one (in progress in collaboration
with Anthony Devaux and Cécile Proust-Lima), we apply existing random survival
forests in a dynamic prediction of health events context.

6.1 Fréchet Random Forests

In this section, we assume that the input space X = (X1, d1) × · · · × (Xp, dp) is
a product of p metric spaces and the output space (Y , dY) is also a metric space.
Hence, the proposed generalization of RF detailed here can handle input data
that are potentially all of different kinds, e.g., some coordinates can be functional
variables, others image-structured variables, and finally others can be standard
continuous or categorical variables. In addition, the output space is also a gen-
eral metric space and thus can be potentially of different nature than inputs. In
the following, we call heterogeneous data such data including input and output
variables of different kinds.

The challenge is then to find a way to keep as many general characteristics of
RF as possible in such a context. As shown in Chapter 2 we need to determine
an adapted way of building individual trees, to randomize them and finally to
aggregate them.



42 Chapter 6. Generalized Random Forests

6.1.1 Fréchet mean and variance
The first idea is to use notions of mean and variance adapted to metric spaces,
because those two notions are central in standard RF, both in the tree building
process and the aggregation procedure. This motivates the use of Fréchet mean
and Fréchet variance (Fréchet, 1948) which are indeed natural generalizations of
mean and variance in metric spaces.

Definition 6.1 (Fréchet mean and variance). Let z1, . . . , zn ∈ (Z, d) a metric
space.

• The empirical Fréchet mean of z1, . . . , zn is defined as:

Zn ∈ argmin
z∈(Z,d)

1
n

n∑
i=1

d2(zi, z)

• The empirical Fréchet variance of z1, . . . , zn is thus defined as:

Vn = 1
n

n∑
i=1

d2(zi, Zn)

Remark. Note that even if in general the empirical Fréchet mean may not exist
nor be unique, we assume from now on, that it does exist and is unique. On the
other hand, the Fréchet variance is always unique. We also stress that the names
Fréchet mean and Fréchet variance will always refer to Fréchet empirical mean and
Fréchet empirical variance in this section.

6.1.2 Splitting rule
One key ingredient to define a RF method is to indicate the tree building process,
and as emphasized in Chapter 2 it suffices to determine a splitting rule that permits
to split a node of a tree into two child nodes.

We start by defining what we call a split for metric spaces input data. The
main idea is that since, in general, input metric spaces are unordered, we can
compare different points with each other only via the distances of those spaces.

Definition 6.2 (Split for metric spaces input data). Let t be a node of a tree to
split and j = 1, . . . , p a variable index. To every couple (cj,L, cj,R) ∈ (Xj, dj)2, we
define a split of t along variable Xj as the following partition into tj,L and tj,R, the
left and right child nodes respectively:{

x ∈ t : dj(xj, cj,L) ≤ dj(xj, cj,R)
}

︸ ︷︷ ︸
tj,L

∪
{
x ∈ t : dj(xj, cj,L) > dj(xj, cj,R)

}
︸ ︷︷ ︸

tj,R
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Then, we fix the heterogeneity measure Φ(t) of a node t to be the Fréchet
variance of outputs in node t:

Φ(t) = Vnt(t) .

Finally, if we assume to have a split (cj,L, cj,R) for every input variable Xj, j =
1, . . . , p, the optimized split is defined as:

∆(t) = argmax
1≤j≤p

{
Φ(t)−

(ntj,L

nt

Φ(tj,L) +
ntj,R

nt

Φ(tj,R)
)}

where we recall that nt denotes the number of observations contained in node t.
In other words, given splits for every input variables, the optimization of the

splitting process is of the same kind of that using in CART, detailed in Section
3.1, replacing standard variance by Fréchet variance.

The last thing we need to define the splitting process is what we call a splitting
function that associates to any data in a node a couple (cj,L, cj,R). More precisely,
we need one splitting function for each input variable Xj (because input variables
can be of different nature). For example:

• If a k-means algorithm is available in space (Xj, dj), then the 2-means meth-
ods (k-means with k = 2) can be used as a splitting function for the corre-
sponding input variable Xj.

• The application of the splitting rule close to the one introduced in Geurts
et al. (2006), for the Extremely Randomized Trees method, can be used
as a split function in general. Indeed, for any j = 1, . . . , p, one can always
randomly select S couples (c1

j,L, c
1
j,R), . . . , (cS

j,L, c
S
j,R) at random among obser-

vations in a node t and then maximize over the S heterogeneity decreases,
to get one split of node t for input variable Xj.

6.1.3 Fréchet tree
Once the splitting function is chosen, the splitting rule can be recursively applied
to develop what we call a Fréchet tree. The development of the tree is carried
on until Fréchet variance of outputs in a node is null. We get a maximal tree
structure, and the final tree predictor is the associated partitioning predictor with
values associated to each node obtained by computing Fréchet mean of outputs in
that node.

In addition, we emphasize that even if we do not focus on pruning in this docu-
ment, all steps of the pruning algorithm performed in CART has been generalized
in our implementation of Fréchet trees.
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Let us finally describe how predictions are obtained: any observation x ∈ X
can be drop down a Fréchet tree by computing, at each node, the distance between
xj and the two components of the split couple (cj,L, cj,R) for the input variable Xj

actually used to split the node. Observation x then goes to the left child node
is dj(xj, cj,L) < dj(xj, cj,R) and the right child node otherwise, and so one until x
reaches a leaf. The prediction of the output of x is then the value associated to
this leaf.

An example of a Fréchet tree built on heterogeneous data including curves,
images and scalars (i.e., standard continuous variables) as input variables, is given
in Figure 6.1. In this example, the Fréchet distance (Fréchet, 1906) is used to
compare curves (it compares their shapes), and the euclidean distance is used to
compare images (thus the comparison is made pixel per pixel).

Y 1

Y 2 Y 3

Y 4 Y 5 Y 6 Y 7

X1

X2 X3X3 ≤ 0.56 X3 > 0.56

Figure 6.1: Example of a Fréchet tree built on heterogeneous data
including curves (X1), images (X2) and scalars (X3) for input variables.
The Y t associated to each node are the Fréchet mean of outputs in the
node. Split variables are indicated under internal nodes, while split
couples are represented on the left and right branches under the nodes.

6.1.4 Additional randomness and aggregation
Once the splitting function fixed, a collection of randomized Fréchet trees can
be built and aggregated to get a Fréchet RF predictor. Most classical choices
for additional randomness are still applicable in this framework. For example,
bootstrap samples can be drawn to resample observations of Ln before Fréchet
trees building, subsets of variables can be randomly selected at each node before
optimizing the splits.

Since (Y , dY) is a metric space, once a collection of individual Fréchet trees is
built, they are aggregated using Fréchet mean of individual predictions. For any
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x ∈ X , the predicted output is obtained as follows:

ŷ = argmin
z∈Y

q∑
`=1

d2
Y(z, ĥ(x,Θl) .

Figure 6.2 illustrates the Fréchet RF method with both bootstrap and input vari-
ables subsets selection (as in RF-RI, see Fig. 3.1), hence a Fréchet tree RI is a
Fréchet tree where at each node a subset of input variables is randomly selected
before optimizing the split. We stress that, in addition to the choice of additional
randomness, Fréchet RF depend on the choice of the splitting functions1.

Ln

LΘ1
1

n LΘ1
`

n LΘ1
q

n

ĥ(.,Θ1
1,Θ2

1) ĥ(.,Θ1
` ,Θ2

`) ĥ(.,Θ1
q,Θ2

q)

ĥFRF(.)

Bootstrap

Fréchet tree RI

Fréchet mean

Figure 6.2: Scheme of Fréchet random forests.

Going back to the DALIA vaccine trial, with Fréchet RF we have been able
to address the objective detailed in Section 1.3.3, that is predict the HIV viral
load of patients after the interruption of their antiretroviral treatment, using the
gene expression measured before this interruption. This is of primary interest,
because it allows to rely the gene expression variations during the vaccination
phase (before interruption) with the later response in terms of viral load. To
do this, we apply Fréchet RF on those high-dimensional longitudinal dataset, by
choosing the Fréchet distance for both gene expression input spaces and the viral
load output space. Hence, we analyze the data with a functional approach: each
evolution of a gene expression is considered as a curve, and the viral load evolution
is also viewed as a curve. Furthermore, we choose the 2-means longitudinal method

1The R package FrechForest is available at: https://github.com/Lcapitaine/
FrechForest

https://github.com/Lcapitaine/FrechForest
https://github.com/Lcapitaine/FrechForest
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(Genolini et al., 2016) as the splitting function for all functional input variables.
The results showed quite good predictions (the predicted curves were quite close in
shape to the true viral load trajectories) and also permit to highlight very relevant
genes associated to inflammation and T cell groups of genes.

Finally, we point out that a first consistency result has been obtained for Fréchet
regressograms on data-driven partitions (input space was assumed to be Rp, but
Y is a general metric space), which lays the foundations for further theoretical
analysis of this general method.

6.2 Using Random Survival Forests to Make Dy-
namic Prediction

In this ongoing work, in collaboration with Anthony Devaux and Cécile Proust-
Lima, we aim at using Random Survival Forests (Ishwaran et al., 2008), denoted
RSF, (among other prediction methods) to provide individual dynamic predictions
of health events. The idea is to use all information available for an individual,
including repeated measurements of potentially a lot of variables and other time-
independent variables, to correctly predict the occurrence of an event (beginning
or progression of a disease, death, etc.). The objective is, for example, to be able to
adapt as soon as possible a treatment strategy of a given patient. Hence, we again
have longitudinal data, as in Section 4.2, but the output is now a time-to-event.

Our proposed approach works in two steps, in line with landmark models (Van
Houwelingen, 2007): the first step consists in modeling the longitudinal processes
using only the information collected until a given time, called landmark time tLM,
and computing quantities summarizing trajectories of variable with repeated mea-
surements; while in the second step, methods predicting the occurrence of the
event are applied, for individuals still at risk at tLM, using the previously calcu-
lated summaries and time-independent variables as input variables.

In this document, I only describe the methodology using RSF, but we also
include other methods in our study, such as penalized Cox models (Goeman, 2010;
Simon, Friedman, Hastie, & Tibshirani, 2011) and Sparse-Partial Least Square
Cox models (Bastien, Bertrand, Meyer, & Maumy-Bertrand, 2015). The proposed
methodology is thus the following:

1. Longitudinal modeling:

a) Apply a generalized mixed model to each variable with repeated mea-
surements using the information collected up to tLM.
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b) Compute summaries of the evolutions of those variables (current level,
slope, etc.).

2. Event prediction:

a) Apply RSF with time-independent variables and summaries computed
in 1.b) as input variables.

b) Compute the individual predictions using the RSF trained in 2.a).

Since RSF, as all RF methods, naturally handle high-dimensional data, the number
of variables modeled in the first step and the number of summaries calculated for
each of them, are not limited. This characteristic is the strength of our approach,
the hope being that including more information can lead to more precise individual
predictions.

6.2.1 Random Survival Forests
For every i = 1, . . . , n, let T ∗i = min(Ti, Ci) be the observed event time, Ti being
the event time and Ci the independent censoring time. We fix an horizon time,
denoted tHor, and define the probability that a new subject has the event between
tLM and tHor as follows:

P (T ≤ tLM + tHor |T > tLM,Γ(tLM), X)

where T is the event time, Γ(tLM) are the summaries of the trajectories of variables
with repeated measurements calculated at the landmark time and X are the time-
independent variables, all those for the new subject. The objective is now to
estimate this probability using RSF.

In RSF, the splitting rule is adapted to survival data. Admissible splits are
the same as in standard RF (see section 3.1): {Xj ≤ s} where s is a threshold for
continuous variables or {Xj′ ∈ A} where A is a subset of categories for categorical
variables. Those splits are compared using a criterion adapted to time-to-event
data. We use here the classical log-rank test to split a node: the optimized split
is the one that has the lowest log-rank test p-value, meaning that this split max-
imizes the difference in terms of survival between the two groups of individuals
corresponding to the left and right child nodes. Thus, as the depth of a survival
tree increases, the survival profiles of individuals belonging to a node becomes
more and more homogeneous.

In each terminal node, a Nelson-Aalen estimator of the cumulative hazard
function (CHF) is computed only using observations belonging to that node. Thus,
given a new individual, the average of the q individual trees estimates of the CHF
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is computed:

Λ̂RSF(tLM + tHor |Γ(tLM), X) = 1
q

q∑
`=1

Λ̂(tLM + tHor,Θ1
` ,Θ2

` |Γ(tLM), X)

where Λ̂ denotes the Nelson-Aalen estimator of the CHF. The additional ran-
domness is composed of bootstrap sampling before tree building and the random
choice of d variables before optimizing the split of a node (as in RF-RI). Finally,
the probability of occurrence of the event for the new individual is estimated by:

1− exp
(
−Λ̂RSF(tLM + tHor |Γ(tLM), X)

)
6.2.2 Preliminary results
In this ongoing work, we lead simulation experiments to study the behavior of the
proposed approach, and also we compare the use of RSF in the second step with
other prediction methods (CoxLasso and sPLScox)2. Our approach seems promis-
ing since it effectively handles data with many longitudinal variables, and the use
of RSF is naturally interesting when the relationship between the time to event
and input variables (summaries of trajectories of time-dependent variables and
time-independent variables) are complex (non-linear relationships or interactions
involved).

In addition to get individual predictions, we can also use the permutation-based
variable importance score which can, as all RF methods, be computed for RSF.
Hence, we can interpret the prediction results with the extra information of which
variables are the most related to occurrence of the event.

2An R package implementing all those methods is currently in development.



Perspectives

A general perspective would be, using all knowledge that we already have on
RF methods, to continue to derive new RF methods or adapt existing ones, in
order to tackle more and more complex data analysis problems, associated to
more and more massive, complex and heterogeneous collected data. As presented
in Chapter 2, the main ideas of RF are general enough to be adapted in many
different frameworks.

When analyzing high-dimensional and/or heterogeneous data, we have seen
that the problem of variable selection is always of interest and can sometimes
be the primary objective of the data analysis. Hence, as RF methods generalize
and are applied to several frameworks, we also need variable selection techniques
adapted to those contexts. VSURF could serve as an interesting basis for such
developments since the procedure is mainly based on OOB error and Variable
Importance, that are also easily generalized together with RF.

Together with this kind of methodological developments, it would also be very
important to progress in tools to ease the interpretation of RF results. Indeed their
non-parametric nature, which can be viewed as an advantage for their prediction
capacity and generality, could limit their practical use. Some tools already exist,
such as variable importance (and also partial plots for RF-RI, see the partialPlot
function of the R package randomForest), but more work could be done in that
direction.

Dynamic Predictions with a Tailored Random Forests
The last ongoing work presented in Section 6.2 is an interesting first work to pro-
vide individual predictions that make use of many longitudinal variables. However,
a more integrated approach that directly use the raw repeated measurements (in-
stead of their summaries) into a RF method could be more adapted and lead to a
better use of all available data. We actually plan to address this question in the
sequel of Anthony Devaux’s thesis. This would surely be based on the introduction
of a new way to split nodes adapted to the problem of the prediction of an event
and the fact that lots of longitudinal variables are available.
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Applications of Fréchet Random Forests
Fréchet random forests offer a very general framework to apply RF methods in
many complex situations involving heterogeneous data. Therefore, it would be
interesting to apply the method for different data analysis problems. Several in-
formal discussions with colleagues, particularly from the Bordeaux Population
Health research center suggest that interesting applications could be possible in
the health domain. Indeed, in health studies, many data are collected and those
are often of different nature: images from radiology or MRI, high-dimensional lon-
gitudinal data in omics. . . Those applications would surely require some works
about the choice of the distance in different input subspaces and I obviously ex-
pect implementations and computational issues, but I think that there is room for
challenging but interesting applied works with this methodology.

Random Forests Theory
On the theoretical side, the community is quite dynamic from a few years. Indeed,
Scornet et al. (2015) obtained the first consistency results for a RF methods
very close to RF-RI (the bootstrap step was replaced by a subsampling step), at
the price of several assumptions on the regression function. Wager, Hastie, &
Efron (2014) and Mentch & Hooker (2016) derived asymptotic normality results
and proposed confidence intervals for RF predictions. Other RF methods were
also analyzed: Denil et al. (2013) focused to an online RF method and prove its
consistency, while Zhu, Zeng, & Kosorok (2015) obtained consistency and an upper
bound on the convergence rate of their method Reinforcement Learning Trees. We
refer to the very interesting review of Biau & Scornet (2016) for further reading
on that matter, and we also point out more recent references: Athey, Tibshirani,
& Wager (2019) introduced Generalized Random Forests and derived asymptotic
results, Klusowski (2019) goes back to analyze CART and prove its consistency,
among others.

There were also theoretical analysis concerning the variable importance scores
provided by RF. Louppe, Wehenkel, Sutera, & Geurts (2013) characterized the
Mean Decrease Impurity (MDI) score, which is based on the capacity for an input
variable to decrease node heterogeneity when used to split nodes (averaged for
all trees of a RF), while more recently Ramosaj & Pauly (2019) analyzed the
permutation-based variable importance score. In both works, authors managed to
prove, in some specific contexts, that those variable importance indices behave very
well by associating scores strictly larger to input variables related to the output
variable compared to noise variables (independent with the output).

All together (and with results presented in Chapter 5), a bunch of theoretical
guaranties are now available and help to better understand RF methods and their
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behavior in different situations. However, a lot remains to be done: e.g., study
of the effect of the number of variables randomly picked at each node in RF-
RI, derive consistency results in terms of variable selection when using variable
selection procedure based on RF variable importance, further analyze Fréchet RF
or even obtain rates of convergence for data-dependent RF (starting by considering
HORF for example).
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