Lorenzo Bruzzone

Professeur Rslab

Nicolas Courty

François Brémond

Yuliya ; Tarabalka

Guillaume Charpiat

Nicolas ; Girard

Loris Felardos

L ; Mattéo

I ; Manighetti

O ; Tasar

F ; Leclerc

T ; Giampietro

C ; Scott

S ; Dominguez

M ; Van Den Ende

R ; Arrowsmith

A ; Vincendeau

T ; Scott

J Malavieille

Andrii Zhygallo

Armand Zampieri

Dmitriy Smirnov

Justin Solomon

Approches d'Apprentissage et Géométrique pour l'Extraction Automatique d'Objets à partir d'Images de Télédétection Learning and Geometric Approaches for Automatic Extraction of Objects from Remote Sensing Images Jury: Rapporteurs

Keywords: Deep learning, Remote sensing, Geometry, Image segmentation, Frame field, Image registration, Input similarity from the neural network perspective

Abstract

Creating a digital double of the Earth in the form of a map has many applications in e.g. autonomous driving, automated drone delivery, urban planning, telecommunications, and disaster management. Geographic Information Systems (GIS) are the frameworks used to integrate geolocalized data and represent maps. They represent shapes of objects in a vector representation so that it is as sparse as possible while representing shapes accurately, as well as making it easier to edit than raster data. With the increasing amount of satellite and aerial images being captured every day, automatic methods are being developed to transfer the information found in those remote sensing images into Geographic Information Systems. Deep learning methods for image segmentation are able to delineate the shapes of objects found in images, but they do so with a raster representation, in the form of a mask. Post-processing vectorization methods then convert that raster representation into a vector representation compatible with GIS. Another challenge in remote sensing is to deal with a certain type of noise in the data, which is the misalignment between different layers of geolocalized information (e.g. between images and building cadaster data). This type of noise is frequent due to various errors introduced during the processing of remote sensing data. This thesis develops combined learning and geometric approaches with the purpose to improve automatic GIS mapping from remote sensing images.

We first propose a method for correcting misaligned maps over images, with the first motivation for them to match, but also with the motivation to create remote sensing datasets for image segmentation with alignment-corrected ground truth. Indeed training a model on misaligned ground truth would not lead to a nice segmentation, whereas aligned ground truth annotations will result in better segmentation models. During this work we also observed a denoising effect of our alignment model and use it to denoise a misaligned dataset in a self-supervised manner, meaning only the misaligned dataset was used for training.

We then propose a simple approach to use a neural network to directly output shape 5 information in the vector representation, in order to by-pass the post-processing vectorization step. Experimental results on a dataset of solar panels show that the proposed network succeeds in learning to regress polygon coordinates, yielding directly vectorial map outputs. Our simple method is limited to predicting polygons with a fixed number of vertices though.

While more recent methods for learning directly in the vector representation are not limited to a fixed number of vertices, they still have other limitations in terms of the type of object shapes they can predict. More complex topological cases such as objects with holes or buildings touching each other (with a common wall which is very typical of European city centers) are not handled by these fully deep learning methods. We thus propose a hybrid approach alleviating those limitations by training a neural network to output a segmentation probability map as usual and also to output a frame field aligned with the contours of detected objects (buildings in our case). The frame field constitutes additional shape information learned by the network. We then propose our highly parallelizable polygonization method for leveraging that frame field information to vectorize the segmentation probability map efficiently. Because our polygonization method has access to additional information in the form of a frame field, it can be less complex than other advanced vectorization methods and is thus faster. Lastly, requiring an image segmentation network to also output a frame field only adds two convolutional layers and virtually does not increase inference time, making the use of a frame field only beneficial.

Résumé

Créer un double numérique de la Terre sous forme de cartes a de nombreuses applications comme la conduite autonome, la planification urbaine, les télécommunications, la gestion des catastrophes naturelles, etc. Les systèmes d'information géographique (SIG) sont utilisés pour intégrer des données géolocalisées sous forme de cartes. Les SIG utilisent une représentation vectorielle pour les objets, prenant peu d'espace mémoire et rendant leur modification plus facile que des données raster. Avec la quantité croissante d'images satellites et aériennes capturées chaque jour, des méthodes automatiques sont en cours de développement pour extraire les informations de ces images de télédétection. Les méthodes d'apprentissage profond pour la segmentation d'images sont capables de délimiter les formes des objets, mais elles le font avec une représentation raster, sous la forme d'une carte de probabilité. Des méthodes de vectorisation post-traitement convertissent ensuite cette représentation raster en une représentation vectorielle compatible avec les SIG. Un autre défi de la télédétection est de gérer un certain type de bruit dans les données, qui est le désalignement entre différentes couches d'informations géolocalisées (par exemple entre les images et les cadastres des bâtiments). Ce type de bruit est fréquent en raison de diverses erreurs introduites lors du traitement des données de télédétection. Cette thèse développe des approches combinées d'apprentissage et géométriques dans le but d'améliorer l'automatisation du processus de cartographie SIG à partir d'images de télédétection.

Nous proposons d'abord une méthode pour corriger les problèmes d'alignement d'une carte sur une image, pour faire correspondre ces deux données géolocalisées, et aussi pour créer des jeux de données de télédétection pour la segmentation d'images avec une vérité terrain corrigée. En effet, entraîner un modèle sur une vérité terrain mal alignée ne mènerait pas à un bon modèle de segmentation. Au cours de ce travail, nous avons également observé un effet de débruitage par notre modèle d'alignement et l'avons utilisé pour débruiter un jeu de données mal aligné de manière auto-supervisée, ce qui signifie que seul le jeu de données mal aligné a été utilisé pour l'apprentissage.

Nous proposons ensuite une approche simple pour utiliser un réseau de neurones produisant directement une représentation vectorielle de l'objet à détecter, afin de contourner l'étape de vectorisation post-traitement. Nous démontrons qu'il est possible d'apprendre à régresser les coordonnées de polygones (avec un nombre de sommets fixes dans notre cas), produisant directement des sorties cartographiques vectorielles.

Bien que les méthodes plus récentes d'apprentissage directement en représentation vecto-7 rielle soient maintenant plus évoluées, elles ont encore d'autres limitations en termes de type de formes d'objets qu'elles peuvent prédire. Des cas topologiques plus complexes tels que des objets avec des trous ou des bâtiments se touchant ayant un mur mitoyen ne sont pas gérés par ces méthodes d'apprentissage. Nous proposons ainsi une approche hybride palliant ces limitations en entraînant un réseau de neurones pour produire une carte de probabilité de segmentation comme usuellement, mais aussi pour produire un "frame field" (4 champs vectoriels superposés) aligné avec les contours des objets détectés. Ce "frame field" encode des informations géométriques supplémentaires apprises par le réseau. Nous proposons ensuite notre méthode de polygonisation parallélisable pour exploiter ce "frame field" pour vectoriser efficacement la carte de probabilité de segmentation. Notre méthode de polygonisation ayant accès à des informations supplémentaires sous la forme d'un "frame field", elle peut être moins complexe que d'autres méthodes de vectorisation avancées et donc plus rapide. De plus calculer ce "frame field" n'augmente pratiquement pas le temps d'inférence, il n'est que bénéfique.

List of Figures

List of Tables

Bibliography I would like to express my deep gratitude to my supervisor Dr Yuliya Tarabalka for her guidance, trust, and support during my PhD. I am profoundly grateful to my co-supervisors Dr Guillaume Charpiat and Professor Justin Solomon for very fruitful discussions and helping me define the path of my research.

I am thankful to Dr Pierre Alliez for welcoming me into his TITANE team at Inria as well as making my visit to Professor Justin Solomon's group at MIT possible. To all members of the TITANE and ABS teams, I thank you for creating a stimulating atmosphere as well as sharing relaxing times. I also wish to thank my team's assistant Florence Barbara for the countless times she has taken care of any procedures I needed help with.

I am thankful to my other co-authors Dmitriy Smirnov, Loris Felardos, and Armand Zampieri for their hard work and substantial contribution to uplift the studies presented in this thesis.

I am grateful to Dr Adrien Bousseau for making me aware of the Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] paper when attending a talk of mine and to Dr Alain Giros for his expertise in remote sensing and fruitful discussions.

I am grateful to Inria Sophia Antipolis -Méditerranée "Nef" computation cluster for providing resources and support, especially from Marc Vesin.

I also thank LuxCarta for providing access to their high-quality satellite images and manuallycurated annotations.

Last but not least I would like to thank all the contributors of the numerous libraries and open software I have used during my research: PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF], PyTorch Geometric [START_REF] Fey | Fast graph representation learning with PyTorch Geometric[END_REF], Tensorflow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], SciPy [START_REF] Virtanen | SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF], NumPy [START_REF] Oliphant | A guide to NumPy[END_REF], Shapely [START_REF] Gillies | Shapely: manipulation and analysis of geometric objects[END_REF], scikit-image [START_REF] Van Der Walt | scikit-image: image processing in python[END_REF], Skan [START_REF] Nunez-Iglesias | skan: skeleton analysis in python[END_REF], OpenCV [START_REF] Bradski | The OpenCV Library[END_REF], GDAL [START_REF]GDAL/OGR Geospatial Data Abstraction software Library[END_REF], tqdm [START_REF] Da Costa-Luis | tqdm: A fast, extensible progress bar for python and cli[END_REF], PyCharm [START_REF] Jetbrains | [END_REF], Blender [START_REF]Blender -a 3d modelling and rendering package[END_REF], Fiona [START_REF] Gillies | Fiona is ogr's neat, nimble, no-nonsense api[END_REF], and all the others I might have missed. [START_REF] Charpiat | Image statistics based on diffeomorphic matching[END_REF] Chapter 1

Introduction

Understanding the spatial environment we live in is a crucial endeavor that allows us to make informed decisions about navigating our daily lives and allows our society to develop itself. From knowing where to gather food in prehistoric times to following our smartphones to the nearest food store, we have always devised tools to record location information for ourselves but also most importantly to share with others. Starting with language to describe the path to a certain place; to carved pictures depicting simple landscape features such as mountains, rivers, valleys, and routes around 25,000 BC; moving on to the Babylonian Map of the World which is a clay tablet created around 700 to 500 B.C. in Mesopotamia; to printed paper maps for mass distribution; and finally to the invention of Google Maps and other free online digital maps of today. While for the vast majority of our history map-making involved a cartographer physically traveling to the places to be mapped, since the invention of flight and later spaceflight we can gather location information from much farther away and thus much more quickly. Nowadays the continuous proliferation and improvement of satellite data sensors yield a huge volume of Earth's images with a high spatial and temporal resolution, as well as with rich spectral information. As an example, a single company called Planet is about to update its constellation of satellites and will be able to capture detailed (50 cm/px) imagery of any spot on earth seven times a day and in some areas up to 12 times a day [START_REF] Sheetz | How planet's new satellite fleet will bring detailed images of places on earth up to 12 times a day[END_REF]. Back in 2016, DigitalGlobe captured enough high-resolution images (also of 50 cm/px) to cover the equivalent surface of the entire country of India every day [START_REF] Technologies | Fun facts about digitalglobe satellites[END_REF]. In 15 years of operation, it has accumulated nearly 90 petabytes of data. These data contain a very valuable source of information, which opens the door to a large range of important applications, such as the monitoring of natural disasters, the planning of urban environments, and precision agriculture. However, petabytes of these massive images are stored into binary files as unstructured raw data, that is meaningless to a computer. In order to integrate the relevant information these images contain into maps it is crucial and urgent to devise novel methods to extract meaningful information from these images. As discussed in [START_REF] Madrigal | How google builds its maps-and what it means for the future of everything[END_REF], not long ago maps were constructed and updated thanks to mind-boggling amounts of human efforts (hundreds of operators working thousands of hours to map each country). Since then machine learning has helped [START_REF] Lookingbill | Google maps 101: how we map the world[END_REF], with the aim to automatize the process as much as possible, with supervised detection and delineation of objects of interest techniques being developed. Object categories are specific to the targeted application, and optionally the identified regions are vectorized. One common application is urban mapping, where the goal is to detect roads and buildings with the purpose to create a Geographic Information System (GIS) map. The automatic update of the Earth's maps has other applications including human navigation, assisted driving, autonomous driving, automated drone delivery, urban planning, telecommunications, disaster management [START_REF] Luiz | An analysis of geospatial technologies for risk and natural disaster management[END_REF], search and rescue, and surveying (e.g. animals and plants). Developing efficient methodologies to update and create maps would provide an important contribution towards the automation map-making, which can yield a major economic impact.

Objective

With this thesis, we aim to develop methods for the automatic editing of maps in Geographical Information Systems (GIS) by integrating geolocalized information extracted from overhead images. Such geolocalized information can include man-made objects, animals, plants, or delimitation perimeters of semantic areas such as forests, urban areas, and buildings. The most important task is the extraction of objects in a format compatible with GIS, which is delineating objects with a vector representation (usually a polygon). Another important task is to correct the alignment of existing mapped objects with an overhead image of those objects.

After introducing the context of remote sensing, its methods, and remaining challenges, we will summarize our contributions and publications.

Context

Remote sensing images

Remote sensing means gathering information remotely, without close contact with the object of interest. Nowadays it commonly means using sensors on satellites or aircraft to capture imagelike data. Sensors can be passive e.g. aerial/satellite photography, hyperspectral imagery, stereo imagery. Sensors can also be active e.g. RADAR, LiDAR, SAR.

In this thesis, we exclusively use color images captured in the visible RGB color space from either aircraft or satellites. An important notion of image quality in remote sensing is the Ground Sample Distance (GSD) which is the size of a pixel measured on the ground. For example, a very high-resolution satellite image can have a GSD of 1 meter, meaning a pixel represents 1 meter on the earth's surface. Aerial images are typically more detailed and can have a GSD of 30 cm or even 10 cm. The GSD determines what objects can be distinguished and recognized depending on their size.

Pansharpening

Pansharpening is a process used to increase the resolution of color images (which are multispectral images, in our case capturing the Red, Green, and Blue bands) using a gray-scale image (called panchromatic) of a higher resolution. It thus merges the high spatial density information of the panchromatic image with the lower spatial density of the color image. The result is a highresolution color image. Almost all overhead images are the result of such a process. A common algorithm for pansharpening is "component substitution" which up-samples the color image to the same size as the panchromatic image and then re-calibrates the intensity of each pixel based on the panchromatic image (while preserving its chroma). In some cases, the color image and the panchromatic image are not captured by the same system and thus image registration is performed to align the two images prior to merging their information.

Orthorectification

Orthographic view

Perspective view Datum plane The orthorectification process re-projects an image captured with a perspective view to an image with an orthographic view.

Remote sensing imagery is the combination of image data and geolocation. Thus, every pixel of a remote sensing image should be geolocalized i.e. we want to know its position on earth. When an image is captured from a satellite, the position in space and the angle of the camera is known. If we model the camera with the pinhole model, the value of a pixel depends on the light received following a ray going from the camera's center to that pixel in the image plane. The intersection point of that ray and the earth's surface is the geolocation of that pixel on earth. As the ray is known, the missing information to compute that intersection is the surface of the earth. As the earth is not a perfect sphere, more or less accurate models of the earth's surface are used. The pinhole camera model is actually not the most common one in remote sensing as most imagery is captured by a push broom scanner (also known as an along-track scanner). It scans a line perpendicular to the flight direction and builds an image strip one line at a time while the satellite or aircraft flies forward. The ray model is thus different but the principle remains the same: the earth's surface geometry must be known to geolocalize each pixel.

The task of orthorectification aims to re-project a captured image onto the earth's surface so that it looks as if it was captured from nadir (straight above), see Fig. 1.1. It aims to remove the effects of perspective and terrain and results in a constant scale across the image. Orthorectification is used to build a digital image model of the earth by merging orthorectified image tiles together in a common coordinate system where the location of each pixel is thus known. The image layer of mapping services such as Google Maps is made of such orthorectified images. The earth's surface needed for orthorectification is modeled by a Digital Elevation Model (DEM) which records the elevation of every point on earth. There exist two variants of DEMs: a Digital Surface Model (DSM) includes everything on the earth's surface (e.g. trees, human-made structures) while a Digital Terrain Model (DTM) only represents the bare ground surface. DEMs typically have a spatial resolution of 10 meters and a vertical resolution of 1 meter [START_REF] Thompson | Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling[END_REF] which introduces position errors in the orthorectified image. Additionally, atmospheric effects modify the light path from the earth's surface to the camera which also introduces position errors. While they can be reduced to an extent [START_REF] Wang | Correction of atmospheric effects on earth imaging (extended inverse method)[END_REF], they can still be present in the captured image. Thus, even if an object is accurately detected in an image, its geolocation cannot be guaranteed to be exact.

Lastly, if a DTM is used for orthorectification (which does not include building heights), building rooftops are not projected correctly since the projection model only projects onto the terrain surface. This results in the rooftop being misaligned relative to the footprint. Unfortunately, that is the most common orthorectification type, as correcting for building height entails filling the missing information occluded by buildings, usually by capturing several images of the same area from different angles.

Cartography

Mapping services aggregate map information from many sources, e.g. local authorities, national institutes for geography, NGOs, and housing developers. Mapmaking is a difficult process with various possible errors [START_REF] Kenneth E Foote | The geographer's craft: Teaching gis in the web[END_REF] due to, e.g. age of the data, map scale, density of observations, format (transmission, storage, and processing may introduce error), cost, measurement, processing, numerical precision. Crowd-sourced mapping projects such as Open Street Map (OSM) [START_REF]Planet dump[END_REF] leverage the efforts of a big community tracing satellite images and also has their own source of errors [START_REF]Osm wiki: Accuracy[END_REF]. The main source of geolocation in OSM is GPS which is not perfectly accurate, and whose error depends on location but also time (thus if going out to trace a road with GPS on two different days, it is possible to have two differing GPS traces). In the case of tracing geometry directly from orthorectified satellite images, the orthorectified image has errors itself as discussed in the previous section. But also manually annotating images is a process prone to human errors. It would be extremely time-consuming to be pixel-perfect and in some cases of lower resolution or lower quality satellite images finding the contour of an object is very difficult, even for a human eye.

Datasets

We introduce the publicly available datasets which we will use in this thesis. Remote sensing does not have as many benchmark datasets as in computer vision and large-scale manually curated datasets are harder to find, although in recent years significant progress has been made in that regard. The last dataset we introduce is private but is made up of satellite images, which are the hardest kind of remote sensing images, and it is thus important to test our methods on those as well.

Inria Aerial Image Labeling Dataset (Inria dataset)

After observing the lack of a benchmark for testing the cross-city generalization capabilities of remote sensing image segmentation methods, Emmanuel Maggiori (a previous Ph.D. student of Yuliya Tarabalka) built the Inria dataset [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF] of 360 aerial images of 5000 × 5000 pixels each with a Ground Sampling Distance of 30 cm (see Fig. 1.2 for a sample image). In total, 10 cities from Europe and the USA are represented, each city having 36 images. Because the goal of the associated benchmark is to test cross-city generalization, 5 cities are selected for training and the other 5 for testing. Each image is accompanied by its building ground truth mask with an average of a few thousand buildings per image. Only the ground truth for the training images is publicly available, while the ground truth for the testing images remains private and is used to compute the results of each method on the leaderboard1 . The images and cities were chosen where a good ground truth mask could be found. In practice, the ground truth can be misaligned by a few meters at times. As the ground truth is in the form of raster bitmap masks and because the methods we developed in this thesis require ground truth annotations to be in vector format (as a collection of building polygons) we use two variants of the Inria dataset.

The first variant is the Inria OSM dataset for which we discard completely the original ground truth masks and instead download annotations from Open Street Map (OSM) [START_REF]Planet dump[END_REF]. While we get annotations in vector format, misalignment errors are higher than in the original ground truth and additionally, OSM has a lot of missing buildings in some images (see Fig. 1.6).

The second variant is the Inria Polygonized dataset for which we take the original ground truth masks and convert them to polygon format with the polygonization method we develop in Figure 1.2: Sample image crop and ground truth from the Inria dataset. The original ground truth mask is in blue-green color fill, the OSM annotations are in deep blue contour. This sample showcases ground truth errors: missing buildings from the OSM annotations and misalignments from both sources of annotations.

Chapter 6. We thus obtain the same ground truth as the original dataset but in vector format.

Aerial imagery object identification dataset for building and road detection, and building height estimation (Bradbury dataset)

The Bradbury dataset [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF] has 24 images of about 5000 × 5000 pixels and 1 image of about 10000 × 10000 pixels for 9 cities of the U.S (see Fig. 1.3 for a sample image). The dataset's authors downloaded the building annotations from Open Street Map and it also suffers some misalignments, especially for images captured far from nadir which suffer more from orthorectification errors.

CrowdAI Mapping Challenge dataset (CrowdAI dataset)

The CrowdAI dataset [START_REF] Prasanna | Crowdai dataset[END_REF] originally has 280741 training images, 60317 validation images, and 60697 test images. All images are 300 × 300 pixels with unknown ground sampling distance, although they are aerial images (see Fig. 1.4 for sample images). As the ground truth annotations of the test set are unreleased because of the challenge, we will actually use the original validation set as our test set and discard the original test images as is commonly done by other methods comparing themselves with that dataset.

Distributed solar photovoltaic array location and extent dataset (PV dataset)

The PV dataset [START_REF] Bradbury | Distributed solar photovoltaic array location and extent dataset for remote sensing object identification[END_REF] contains the geospatial coordinates and border vertices for over 19000 solar panels across 601 high-resolution aerial orthorectified images (of size 5000 × 5000 px with a ground sample distance of 30 cm) from four cities in California, USA. Annotations were manually gathered from several annotators and merged together to reduce annotation errors. This dataset does not have misalignment issues, as annotations were traced on the same images used for the dataset. Only some human annotation errors remain, but those are minimal.

Building annotations on satellite images provided by the company LuxCarta (LuxCarta dataset)

The LuxCarta dataset [START_REF] Tripodi | Automated chain for large-scale 3d reconstruction of urban scenes from satellite images[END_REF] is a private large-scale dataset of satellite images built by the company LuxCarta2 . The images in this dataset were acquired using three types of satellites (Pleiades, WorldView, and GeoEye) over different types of cities (dense, industrial, residential areas, and city centers). We uniformized the image sampling at 50 cm/pixel spatial resolution, with 3band RGB images. 57 images of 30 cities across 5 continents are present in the training dataset (see Fig. more challenging than aerial images (such as the CrowdAI and Inria images) because they are less clear due to atmospheric effects. This dataset also contains much more varied images compared to CrowdAI and Inria, making up for its smaller size.

Methods

The success of deep learning for image classification has now been well transferred to remote sensing [START_REF] Ma | Deep learning in remote sensing applications: A meta-analysis and review[END_REF] for the task of pixel-wise classification (also known as image segmentation) aiming to label every pixel in the image with a semantic class (e.g. building, road, forest). Historically remote sensing uses hyperspectral images (with hundreds if not thousands of different bands, each sensitive to a different spectrum of light) for pixel-wise classification. The label of a pixel would only depend on that pixel's value in all bands. If the target classes are materials (e.g. dirt, vegetation, metal, wood) then this method is effective as different materials reflect light differently which is captured in the hyperspectral image. However, once the target classes are more semantic (e.g. building, road, car park) then spatial context has to be added to be able to classify a pixel. Using context for pixel classification is precisely what CNNs are very good at. However, to reduce computation cost, color RGB images are more used by deep learning methods compared to hyperspectral images. After a few years of development, current deep learning models have reached very good performance on image segmentation. While we briefly introduce some methods below, we will explain each of them further in the relevant chapters.

As we mentioned, pixel-wise classification is not enough for contributing to Geographical Information Systems. They require information in vector format so that it is as sparse as possible while maintaining a certain precision, thus in most cases segmentation maps obtained by deep learning have to be converted to a collection of polygons. Several methods exist but are not yet 100% satisfactory. In the case of buildings, regularization techniques that enforce right angles at corners or parallel walls produce nicer-looking shapes which are needed by some applications however they do not handle the case of more complex buildings with curved walls (which they regularize with a staircase-like pattern) or adjacent building with shared walls (i.e. buildings that touch each other). Indeed current regularization methods, e.g. [START_REF] Lokhat | Enhancing building footprints with squaring operations[END_REF], are not aware of adjacent buildings with shared walls and thus regularize each building separately which introduces gaps or overlaps where there was a shared wall before.

Another class of algorithms aims to by-pass the polygonization post-process by using a neural network model to directly predict the polygon geometry. Those methods are promising since they are optimized to directly predict the final result, without a hand-crafted post-processing step inbetween that can decrease the final score. While some works in this direction have been proposed in recent years, and we explore this paradigm in Chapter 4, it is a difficult task and improvements can be made, especially for more difficult cases of non-trivial object typologies. For instance, such methods as PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF], Polygon-RNN [START_REF] Castrejón | Annotating object instances with a polygon-rnn[END_REF], Polygon-RNN++ [2], and Curve-GCN [START_REF] Ling | Fast interactive object annotation with curve-gcn[END_REF] predict a polyline contour for each detected object thus they cannot handle objects with holes. In the case of buildings, there is a minority but still a significant number of buildings with inner courtyards or openings that constitute a topological hole. PolyMapper for example (we could not test the others) also falls short when it comes to big buildings with a complex shape with many concavities.

On a last note about deep learning, neural networks are optimized starting from randomly initialized weights. This random initialization affects the final performance so that two different initializations lead to two different models having different test scores. Ideally, we would like to train multiple models with different random weight initialization and report their average test score to reduce the variability introduced by random initialization. However, as neural networks are quite costly to train, most papers optimize their models once, from a single weight initialization. We do the same in this thesis.

Challenges

Automatic mapping

Automatically extracting objects from remote sensing images in a format compatible with Geographic Information Systems, meaning a vector format (most often a collection of polygons), is the primary challenge. While the information added to such systems need to be as accurate as possible, part of the challenge is also for this information to be as sparse as possible. Using a vector representation instead of a raster one for object shape reduces storage space requirements by a big factor. Furthermore, that vector representation should itself be as minimal as possible while retaining its accuracy. Other than reducing storage requirements, the vector representation is easily editable which is a big advantage for representing maps since their goal is to be a condensed digital double of our ever-changing world. As discussed in the introduction to remote sensing, large misalignments frequently occur between a remote sensing image and an existing map because of several sources of errors, mainly from the orthorectification process. A map traced on one orthorectified image, even if the tracing is perfect, will be misaligned with another orthorectified image having different orthorectification errors than the first image (e.g. it used a different DEM or was captured from a different view point). One of the challenges in remote sensing is thus to deal with geolocation errors in the data. As an example we observed displacements of up to 8 meters in OpenStreetMap [START_REF]Planet dump[END_REF], which translates to 27px in a 30 cm/px image, and such displacements are not constant across the image, see Fig. 1.6. Aligning two different kinds of geolocalized information is a worthy goal on its own. Additionally, if that misaligned map data is to be used as ground truth for machine learning models, predicted segmentations will be blurry, looking like blobs with rounded corners. Which is another motivation for solving alignment problems between annotations and images in order to obtain better ground truth for machine learning.

Misalignment between ground truth annotations and images

Huge amount of image data

The mind-boggling amount of remote sensing images being captured every day has to be processed in an efficient manner if we hope to use all of it. Thus processing speed should be an important aspect of every method for remote sensing. More importantly than processing speed, it is the throughput that should be high: the rate at which data can be processed.

Contributions

We summarize our contributions and their organization in the following paragraphs. Chapters 2 and 3 should be read in order as well as Chapters 5 and 6.

Chapter 2 A large part of the world is already covered by maps of buildings, through projects such as OpenStreetMap. However, when a new image of an already covered area is captured, it does not align perfectly with the buildings of the already existing map, due to a change of capture angle, atmospheric perturbations, human error when annotating buildings, or lack of precision of the map data. Some of those deformations can be partially corrected, but not perfectly, which leads to misalignments. For example, orthorectification uses a digital terrain model that has a limited precision inducing misaligned building footprints. Additionally, new buildings can appear in the image. Leveraging multi-task learning, we propose a deep learning model that aligns existing building polygons to the new image through a displacement output, and also detects new buildings that do not appear in the cadaster map through a segmentation output. It uses multiple neural networks at successive resolutions to output a displacement field and a pixel-wise segmentation of the new buildings from coarser to finer scales. We also apply our method to building height estimation, by aligning cadaster data to the rooftops of stereo images. The code for this work is available on GitHub: https://github.com/Lydorn/mapalignment.

Chapter 3 After observing a certain robustness of our alignment method to alignment noise in the ground truth, we explore a method to denoise a dataset while only training on that noisy dataset. Indeed while in machine learning the best performance on a certain task is achieved by fully supervised methods when perfect ground truth labels are available, labels are often noisy, especially in remote sensing where manually curated public datasets are rare. We study the multi-modal cadaster map alignment problem for which available annotations are misaligned polygons, resulting in noisy supervision. We subsequently set up a multiple-rounds training scheme that corrects the ground truth annotations at each round to better train the model in the next round. We show that it is possible to reduce the noise of the dataset by iteratively training a better alignment model to correct the annotation alignment. This result spurred further research whose main contributor was my co-supervisor Guillaume Charpiat with the aim to explain this denoising phenomenon by introducing a similarity measure from the neural network's perspective, that measures the influence one optimization step on a certain input would have on another input. The rationale behind it is that similar inputs in that sense would steer the optimization in the same direction. For all those inputs having a noisy ground truth label, the final optimization direction would optimize for the average label (under a L 2 loss). If those labels have a zero-mean noise, then the average label is the noise-less label. We formalize this concept with a neighbor density estimator based on our similarity measure. The code for this work is available on GitHub: https://github.com/Lydorn/mapalignment and https://github.com/Lydorn/netsimilarity.

Chapter 4 While geographic information systems typically use polygonal representations to map Earth's objects, most state-of-the-art methods produce maps by performing pixelwise classification of remote sensing images, then vectorizing the outputs. In this chapter, we explore if one can learn to directly output a vectorial semantic labeling of the image. We here cast a mapping problem as a polygon prediction task, and propose a deep learning approach which predicts vertices of the polygons outlining objects of interest. Experimental results on the PV dataset show that the proposed network succeeds in learning to regress 4-sided polygon coordinates, yielding directly vectorial map outputs. The code for this work is available on GitHub: https://github.com/Lydorn/polycnn.

Chapter 5

We develop another method for extracting objects in vector format but that does not have the limitations of our method from Chapter 4. We propose adding a frame field output to a deep image segmentation model for extracting buildings from remote sensing images.

To this end, we train a deep neural network, which aligns a predicted frame field to ground truth contour data. In addition to increasing performance by leveraging multi-task learning, our method produces more regular segmentations. The code for this work is available on GitHub: https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.

We also made a short video for frame field learning: https://www.youtube.com/watch? v=XdQMD3HTYCU.

Chapter 6

The final aim of the frame field learning approach is to help the polygonization (or vectorization) step. Indeed the polygonization of segmentation probability maps is far from trivial. Polygonization methods have to overcome errors in the segmentation map itself which makes estimating the contour difficult. Most importantly, the discretized nature of segmentation probability bitmaps introduces ambiguities in the shape representation.

Those ambiguities are the result of a lack of information from the segmentation probability map representation. The frame field output from the previous chapter brings the missing shape information needed to resolve these ambiguities. We introduce a new polygonization algorithm leveraging the frame field output, with the additional aim for it to be highly parallelizable on GPUs for fast running times. Lastly, this frame field polygonization method is able to handle the case of a block of buildings where several adjacent buildings share common walls. Our method detects those common walls with a single polyline and geometrically guarantees that this polyline is shared by the building polygons on either side of it. The code for this work is available on GitHub: https://github.com/Lydorn/ Polygonization-by-Frame-Field-Learning.

We make our conclusion in Chapter 7, with remarks about our contributions and discuss possible future directions of research. In preparation for a geoscience journal.

Publications

Chapter 2

Alignment of Building Geometry with Overhead Images by Multi-Task Learning A large part of the world is already covered by cadastral maps of buildings, through projects such as OpenStreetMap [START_REF]Planet dump[END_REF]. This considerable amount of ground truth data could be used to learn the task of automatically mapping the world from remote sensing images. However when a remote sensing image of an already mapped area is captured, due to perturbations introduced at various points in the imaging pipeline (as well as errors in the map-making process), buildings from the image and buildings from the map do not align. Some of those perturbations can be partially corrected, but not perfectly, which leads to misalignments. The biggest source of misalignment is the orthorectification process which needs a Digital Terrain Model (DTM) that has limited precision. This leads to the footprint of the image buildings being misaligned with the map buildings. Additionally, if we are interested in building rooftops, the situation is worse as the DTM only models the surface of the earth and not the building geometries. Thus the orthorectification of an image taken with an angle away from nadir (straight above) will have building rooftops not align with the footprint and thus are much more misaligned relative to the map rooftops. See Chapter 1, §1.2 for a more in-depth explanation of those perturbations. The result is large misalignments frequently occurring between a remote sensing image and an existing map. We observed displacements of up to 8 meters in OpenStreetMap [START_REF]Planet dump[END_REF], which translates to 27 pixels in a 30 cm/pixel image. Such displacements are not constant across the image and include complex deformations such as slight stretching and rotation. We aim to solve this misalignment problem so that existing maps and satellite or aerial images can match in their geolocalized description of the world. The aligned map buildings could then be used as ground truth annotations to train a building extraction machine learning model.

Additionally, if the map is not up to date, new buildings can appear in the image which would need to be added to the map. Leveraging multi-task learning, we propose a deep learning model that aligns the existing building geometry to a remote sensing image through a displacement output, and also detects new buildings that do not appear in the map through a segmentation output. It uses multiple neural networks at successive resolutions to output a displacement field and a pixel-wise segmentation of the new buildings from coarser to finer scales.

We also apply our method to building height estimation, by aligning cadaster data to the rooftops of stereo images. By measuring the displacement between aligned rooftops of a building on two different images, we can compute its height and thus generate a shoe-box 3D model of the building, corresponding to LOD 1 in the CityGML (City Geography Markup Language).

We propose a deep learning method that uses the multi-resolution approach from our previous work [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF] and aims to improve the results by training the network with a multi-task objective. The primary objective is to directly compute a dense displacement map (or flow) that aligns the building cadaster to the image (e.g., building cadaster from OpenStreetMap). See Fig. 2.2 for a visual result of our alignment method. The second objective is to output a segmentation of the buildings from the image (otherwise known as pixel-wise classification) to help train the network and detect new buildings as well which can be used to update a map with missing buildings or recently-built buildings. The contributions of this work are:

(i) the design of a fully convolutional neural network able to correct and update existing cadastral maps. Multi-task learning is used to improve alignment performance and to provide new building detection at no additional cost;

(ii) the use of intermediate losses inside the network to help gradients flow and improve final performance on both objectives;

(iii) random dropping of input polygons, to force the detection of new objects.

We first present related work in §2.1; then after explaining the methodology in §2.2, we present our experimental setup in §2.3; and apply our method to the building alignment task and evaluate the results in §2. 4. We show another applicative potential of our method on building height estimation, from a pair of images and misaligned building cadaster data, in §2.5.

Related work

Solving this alignment problem, also known as non-rigid image registration, can be formulated as the search for a dense displacement field between two given images: here, a cadaster map, and a satellite or aerial photography. Each pixel of the first image is thus associated with a 2D displacement vector describing where it is mapped to in the second image. Non-rigid registration also arises notably in medical imaging, where different scans need to be aligned (scans of different patients, or of the same patient at different times, or of different modalities). Classically, alignment problems are classified into two categories: mono-modal or multi-modal, depending on whether the two images to be registered are taken by the same type of sensor or not.

Classical methods for mono-modal image alignment use image similarity measures or keypoint descriptors such as SIFT [START_REF] David | Distinctive image features from scale-invariant keypoints[END_REF] or HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] to match parts of the 2 images with each other [START_REF] Ptucha | Keypoint matching and image registration using sparse representations[END_REF]. More recent methods use CNNs to predict the optical flow between two images [START_REF] Fischer | Flownet: Learning optical flow with convolutional networks[END_REF]. These methods rely intrinsically on appearance similarities and thus cannot be extended to the multi-modal setting, which is our case of interest. Note e.g. that trees can cover part of the objects of interest in the RGB image while trees are not indicated on the cadastral map, so direct point-to-point appearance matching would fail. However, a recent method considered structural similarity [START_REF] Ye | Robust registration of multimodal remote sensing images based on structural similarity[END_REF] to define a new feature descriptor for key-point matching. Their followup work [START_REF] Ye | Fast and robust matching for multimodal remote sensing image registration[END_REF] uses template matching from dense local descriptors (such as HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]) using a fast similarity measure computed with the fast Fourier transform (FFT). In [START_REF] Vargas-Muñoz | Correcting misaligned rural building annotations in open street map using convolutional neural networks evidence[END_REF], a Markov Random Field is used for aligning buildings to a building segmentation image predicted by a neural network. These methods are not specific to certain types of images or objects, which is why they are widely used. However, machine learning and more recently deep learning methods have achieved state-of-the-art performance on many computer vision problems by learning the best features for the task at hand. Several deep learning methods for image registration have been proposed. For instance, Quicksilver [START_REF] Yang | Quicksilver: Fast predictive image registration -a deep learning approach[END_REF] learns an image similarity measure directly from image appearance, to predict a dense deformation model for applications in medical imaging. However, it works best for rather small displacements and with 2 image-like modalities. Also from the field of medical imaging, the fully-convolutional neural network U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] has been widely used for image segmentation. Its use of skip-connections at intermediate levels of the network performs very well for predicting a spatially precise output that corresponds pixel-to-pixel to the input image. We previously proposed in [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF] a new deep learning method for remote sensing imaging using a U-Net-like model, in a multi-resolution approach to predict large displacements. Indeed, solving for increasing resolutions iteratively has proved successful in a number of applications [START_REF] Hermosillo | Variational methods for multimodal image matching[END_REF][START_REF] Charpiat | Image statistics based on diffeomorphic matching[END_REF]. The method of this chapter is the follow-up work of [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF].

Another success in machine learning has been the use of multi-task learning [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. The idea is to learn multiple tasks at the same time with a single neural network instead of one network per task. This allows the network to train better as it learns common features from all tasks while still being able to learn task-specific features. It also has the advantage of producing a single neural network, smaller and faster than the compilation of individual task-specific networks. Multi-task learning works best when all the tasks being learned are related, so that the tasks do not compete with each other in the final loss function, but rather that an increase in performance in one of the tasks leads to an increase of performance in another. In our case, learning building registration is very related to building segmentation as aligning a building requires knowing where it is, which is the objective of building segmentation.

Methodology

Objective functions

Mathematical modeling

Given two images I and J of same size H × W , but of different modalities, e.g. with I an RGB image (picture from a satellite) and J a binary image (cadaster, indicating for each pixel whether it belongs to a building or not), the alignment problem aims at finding a deformation, i.e. a 2D vector field g defined on the discrete image domain [1, H] × [1, W], such that the warped second image J •(Id+g) is well registered with the first image I. To do this, in a machine learning setting, we will provide examples of image pairs (I, J) as inputs, and ask the estimated deformation ĝ to be close to the ground truth deformation g gt .

For the segmentation problem, only the RGB image I is given as input, and the desired output is an image of the same size, expressing building presence probability for each pixel. The ground truth segmentation is thus the perfectly-registered cadaster J • (Id + g gt).

Displacement field map cost function

The displacement field map loss function is the mean squared error between the predicted displacement field map ĝ and ground truth displacement field map g gt . However, the displacement cannot be predicted equally well on every pixel in the image. For example, building corners can be precisely matched, while building boundary pixels have ambiguous displacement along one dimension (the boundary), which is classically known as the aperture problem because one pixel from the edge can potentially be aligned to any pixel of the aligned edge. Finally, pixels x inside homogeneous cadaster zones (i.e. far inside or outside buildings) suffer from ambiguity in both spatial dimensions and thus cannot hope for a precise displacement vector g(x). To take this into account, we distinguish 4 different classes of pixels on the input cadaster image J (which can be seen as a misaligned polygon raster image). In decreasing difficulty order those are:

1. background: exterior points to all polygons 2. interior: interior points of polygons 3. edge: points within a small distance to a polygon boundary 4. vertex: points within a small distance to a polygon vertex We denote by c(x) ∈ {1, 2, 3, 4} the class of a pixel x ∈ [1, H] × [1, W], background corresponding to 1, interior to 2, etc. We apply a different loss coefficient w c on each pixel class c, making the loss a weighted average of square errors. The loss coefficients are of increasing values from background pixels to vertex pixels (w 1 ≤ w 2 ≤ w 3 ≤ w 4). As pixel classes are unbalanced, the loss of a pixel x is normalized by the pixel count of its corresponding class, denoted by n c(x) .

The displacement field cost is thus defined as:

L disp (ĝ) = x∈[1,H]×[1,W] w c(x) n c(x) ĝ(x) -g gt (x) 2 2
.

(2.1)

Segmentation cost function

As the task of aligning buildings requires to be able to detect where buildings are, we consider an additional segmentation task, to help the training. For each pixel x, and for each class c ∈ {background, polygon interior, edge, vertex}, we independently predict the probability pc (x) that a pixel x belongs to class c. The associated loss function is the sum of class-specific crossentropies KL D(p c gt) D(p c) , where p c gt (x) is the binary ground truth (whether pixel x is of class c), and where D(p) stands for the distribution (p, 1 -p) over the two possibilities (of class c or not). We also apply different coefficients w c for each class, to put more emphasis on vertices than edges, and than interior and background (w 1 ≤ w 2 ≤ w 3 ≤ w 4). The segmentation cost function is thus:

L seg (p) = 1 HW x∈[1,H]×[1,W] 4 c=1 w c KL D(p c gt) D(p c) . (2.2)

Neural network with double inputs and outputs

To address both tasks (alignment and segmentation), the main building block of the method is designed as a neural network with 2 image inputs and 2 image outputs (see Fig. 2.3). It uses skip-connections at multiple levels in the network like U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. The input image I has 3 channels, with real values in [-1, 1], standing for RGB (see Fig. 2.4a for an example). The input misaligned polygon raster J has 3 channels also, with Boolean values in {0, 1}, corresponding to polygon interior, edge, and vertices (see Fig. 2.4b for an example). This J polygon raster image is obtained by rasterizing the polygon interiors for the first channel, the polygon boundaries with a fixed width for the second channel, and the polygon vertices with a fixed radius for the third channel. The output displacement field map has 2 channels with real values in [-1, 1], standing for the x and y components of the displacement vector, more precisely the first channel is for the row (or y-axis) component of the vector and the second channel is for the column (or x-axis) component of the vector (see Fig. The network is fully convolutional and uses only 3 × 3 convolutional kernels without padding, which reduces the image size slightly after every layer but avoids border artifacts. A 220 × 220 pixel input image thus leads to a 100×100 pixel output. The first layer of the input image branch (I) has 32 convolutional filters. Then the number of filters doubles after each pooling operation. For the misaligned polygon raster input branch (J), the first layer is set to use 16 filters only, as polygon rasters are less complex than standard images. In total, the network has about 9

Multi-resolution

From coarse to fine

The multi-resolution approach iteratively applies a neural network at increasing resolutions (see Fig. 2.6 for a diagram of the multi-resolution pipeline). By solving the alignment problem from coarse to fine resolutions, the difficulty at each resolution step becomes drastically lower than for the whole problem. In the first step, the network is applied to the inputs downscaled by a factor of 8. Assuming the initial displacements to predict are in the range [-32 px, 32 px], the new low-resolution ones are within [-4 px, 4 px] only, reducing the search space significantly. Then each next resolution step multiplies the image resolution by a factor 2 and supposes that the remaining, finer deformation to be found is within [-4 px, 4 px] at that scale (the larger displacements having been found at the coarser scales). Note we could multiply the resolution by a factor of 4 at each step but use a factor of 2 to allow for a scale overlap and increased stability.

Intermediate cost functions

When training, the network quickly learns to output a null displacement map, as it is the average of the ground truth displacement maps, and is the best possible constant output. To help the gradients flow and avoid the network being stuck in a local minimum, we added intermediate outputs in the displacement map and segmentation branches at levels l = 0, 1, 2 of each resolutionspecific block (see Fig. 2.3), level 0 being the final full-resolution outputs. The size of these intermediate outputs increases from inside the network block towards the final block outputs. The corresponding loss functions L disp l and L seg l are applied to these intermediary outputs with different coefficients α l . As the training advances, the intermediary losses' coefficients α 0<l of lower levels are decreased to zero so that only the final output (level 0) is optimized. This works well to push the optimization in the right direction at the beginning of training:

L disp total = 2 l=0 α l L disp l , (2.3)
L seg total = 2 l=0 α l L seg l .
(2.4)

Final objective function

The final objective function is a linear combination of the displacement and segmentation cost functions:

L = λ 1 L disp total + λ 2 L seg total .
(2.5)

Experimental setup

Datasets used

We perform main experiments on a dataset made of the two following ones:

1. Inria OSM dataset: Inria Aerial Image Labeling Dataset [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF] (we discarded the provided raster ground truth building mask and instead pulled building polygons from OSM for each geo-localized image of the dataset), 2. Bradbury dataset: Aerial imagery object identification dataset for building and road detection, and building height estimation [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF] (the ground truth annotation are already in vector format and are also pulled from OSM by the dataset's authors).

As both datasets use OSM buildings which are often not well-aligned with images, the cities were hand-picked for their relatively good OSM data. However, in the case of the Bradbury dataset, some images were far from nadir so the OSM data still was not well-aligned. We excluded those images from the training data. We split the Bradbury dataset into 3 folds: 8 images for training, 3 for validation, and 3 for testing. To develop our method to generalize to We now provide more details about the splitting of the datasets into train, validation, and test. Even by removing the worse samples in terms of annotation alignment, relatively few images have perfect ground-truth data. As such, we made sure the validation and test sets are composed only of those good images while also putting some in the train set. Table 2.1 specify the exact dataset splits we used.

After training our whole pipeline and finishing all experiments, we discovered that both datasets had images from the city of San Francisco, with the ones from the Inria dataset being used in training and the ones from the Bradbury dataset being used for testing. Fortunately, the Inria dataset and Bradbury dataset used different images with enough dissimilarity (see also Fig. 2.7):

• Images were captured at different times (some buildings appear in the images from the Bradbury dataset compared to the Inria dataset)

• The capture angle is different (we can see building facades on Inria images because of the angle, which is not the case for the Bradbury images)

• The sun angle is very different, resulting in different shadow angles and lengths

• Variation of object colors

• Finally the Bradbury images are rather noisy, differing them further from the Inria images We also used the CrowdAI dataset for an experiment to test the cross-dataset generalization capabilities of our method. It has 300 × 300 pixel images of buildings, 280741 for training, and 60317 for validation (as the ground truths for the test split of the challenge are not publicly available we cannot use the test split).

Data preprocessing

Displacement map generation

The model needs varied ground truth displacement maps in order to learn, while the dataset is made of perfectly aligned image pairs only (g = 0). We are thus in a self-supervision setting where we can generate our own ground truth. We follow the displacement map ground truth generation method of our previous work [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF], by computing normalized 2D Gaussian random fields added together for each coordinate (see Fig. 2.8 for an example). Each pixel of the displacement field map has a 2D displacement vector assigned to it. The displacements are then scaled so that the maximum absolute displacement is 32 pixels. The ground truth polygons are then inversely displaced by the generated displacements (J • (Id + g) -1) to compute the misaligned polygons which are then rasterized.

Scaling and splitting into patches

All the images of the datasets do not have the same ground sample distance (pixel width measured on the ground in meters), which is a problem for a multi-resolution approach that learns a specific model per resolution. As more than 90% of the images of our dataset have a ground sample distance of 0.3 meters, we rescale the other images to that ground sample distance so that they all match. Then every data sample (image, misaligned polygon raster, and displacement map), which usually is of size 5000 × 5000 pixels, is rescaled to 4 different resolutions defined by the scaling factors. For example, a scaling factor of 2 rescales the data sample to a size of 2500 × 2500 pixels, resulting in a ground sample distance of 0.6 m. Successive rescaling steps are all performed taking the original image as input, to limit interpolation errors of the scaling operations. Finally, data samples are split into patches of size 220 * √ 2 = 312 pixel with a stride of 100/2 = 50 pixels, to account for rotations in the data augmentation step.

Data augmentations

To augment the dataset, classical augmentation techniques were used: perturb image brightness, contrast, saturation randomly, rotate by a random real angle θ ∈ [0, 2π], random horizontal flip, and crop to the final input size of 220 × 220 pixel (to remove dark pixels introduced by the random rotation).

Random dropping of input polygons

With displacements of only up to 4px, it could be easy for the network to keep a small error by outputting, as a segmentation, just a copy of the input polygon raster J. This behavior does not allow the network to learn buildings from the input image I, and it cannot learn to detect new buildings either. To avoid this, we randomly drop (remove) polygons from the polygon raster input before feeding it to the network. This introduces a new hyper-parameter p keep poly ∈ [0, 1] which is the probability each input polygon is kept and actually fed to the network while training (see Fig. 2.9). This operation is also data augmentation in that it generates multiple possible inputs from one data sample.

Training

As shown in Fig. 2.6, 4 different models are used with scaling factors 8, 4, 2, and 1. We trained 4 models independently for each scaling factor. We used the Adam optimizer with batch size 32 on a GTX 1080 Ti. We used a learning rate of 1e -4 until iteration 25000 and then 0.5e -4 until the end (100000 iterations). We also used weight L 2 regularization with a factor of 1e -4 . Tab. 2.2 summarizes the loss coefficients for the intermediate losses (Eq. 2.3,2.4) as well as for the different pixel classes (Eq. 2.1,2.2). We set p keep poly = 0.1 to only keep 10% of input polygons, in order to learn new buildings on 90% of the buildings. To evaluate the method and its variations for the alignment task, we applied the full pipeline on the 3 images/areas of the city of San Francisco from the Bradbury dataset. For each image, we generated 10 different displacement maps in order to have 10 different misaligned buildings for a more precise evaluation, resulting in 30 test samples in total. For visual results of the alignment, see Fig. 2.10.

To measure the accuracy of the alignment, for any threshold τ we compute the fraction of vertices whose ground truth point distance is less than τ . In other words, we compute the Euclidean distance in pixels between ground truth vertices and aligned vertices, and plot the cumulative distribution of those distances in Fig. 2.11 and 2.12a (higher is better). The no alignment curves are for comparison and show the accuracy obtained if the output displacement map is zero everywhere.

We compared our method to our previous method Zampieri et al. [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF], which we trained on the same dataset; its test accuracy is summarized in Fig. 2.12c. We also compare to Quicksilver [START_REF] Yang | Quicksilver: Fast predictive image registration -a deep learning approach[END_REF]; but as it could not handle the 32 pixels displacements we tested on, we trained Quicksilver with images downscaled by a factor of 4 and displacements of 4 pixels maximum at the downscaled resolution. We compare this version of Quicksilver with the model of our method trained with the same downscaling factor for a fair comparison. Fig. 2.12b shows the result of this comparison.

To test the segmentation of new buildings, we apply the model trained at the highest resolution (with a scaling factor of 1) with just the image as input. The polygon raster input is left blank as would be the case with an empty map. In this extreme case, all buildings in the image are new (with respect to the empty polygon raster input). See the right image of Fig. 2.10 for an example of segmentation. We measure the IoU (Intersection over Union) between the ground truth polygons and the output polygon raster (which combines the polygon interior, edge, and vertex channels of the model's output). The polygon raster has values between 0 and 1, we threshold it at various values to obtain a polygon mask. The IoU (Intersection of Union) is then computed for the 3 test images (see Fig. 2.12d for the mean IoUs).

We proceeded with ablation studies to measure the performance gains of the 3 main contributions of this work. For the alignment objective, we removed the segmentation branch in a first experiment, removed all intermediary losses in a second experiment, and set the probability of dropping input polygons to 1 in a third experiment. See Fig. 2.12c for the mean alignment accuracy cumulative distributions of these experiments. For the segmentation objective, we set the probability of dropping input polygons p keep poly to 1 in a first experiment (no dropping of input polygons), removed all intermediary losses in a second experiment (no intermediary loss), and removed the displacement branch in a third experiment (no disp loss). See Fig. 2.12d for the mean IoUs of these experiments.

Our last experiment is to check the cross-dataset generalization capabilities of our method by using the third dataset: the CrowdAI dataset. We first trained our model on all training samples from the 3 datasets: Inria, Bradbury, and CrowdAI datasets. We secondly trained on training samples from Bradbury dataset and CrowdAI dataset only, excluding the Inria dataset entirely. We finally tested our model on 44 images (each 5000 × 5000 pixels) from the Inria dataset, which constitutes our testing samples for this experiment. 21 of those images are from Austin and 23 from Chicago as those are the areas for which the OSM annotations are the most precise. See

Discussion

As much as we tried using the best annotations from OSM, they are still not perfect: some misalignment of a few pixels can be observed in some images. However, our method was still able to learn from these annotations.

We observe that the final alignment accuracy does not depend much on the initial misalignment. As can be seen in Fig. 2.12a for each area, accuracy curves corresponding to "not aligned" have a lot of variability (because of the randomly-generated displacements), whereas accuracy curves corresponding to "aligned" have very low variability.

We show in Fig. 2.12c that we improve upon the method of Zampieri et al. [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF] and in Fig. 2.12b that our model performs better than Quicksilver [START_REF] Yang | Quicksilver: Fast predictive image registration -a deep learning approach[END_REF] in the one-resolution setting with small displacements.

Impact of the segmentation branch

When removing the segmentation branch altogether, we globally lose accuracy on the alignment task. Fig. 2.12c shows a drop of 22% for a threshold value of 4px. The segmentation branch was initially added to stabilize the beginning of the training, it turns out it also improves the final performance of the network as well as providing a way to detect new buildings that do not appear in the input misaligned building map. We chose to classify polygon edges and vertices in addition to the very common polygon interior classification, in order to control how much the network has to focus on learning edges and vertices to optimize its cost function. It also gives more information compared to a classical building classification map. Classifying building edges allows for the separation of individual adjoining buildings that touch each other as can be seen in the right image of Fig. 2.10. The final goal of using the segmentation output is to vectorize the bitmap to obtain building polygons that can be added to an existing map. Detecting vertices, edges, and interior of buildings will help this vectorization step which we explore in Chapter 6.

Impact of the displacement branch

When removing the displacement branch, we also lose accuracy on the segmentation task. Fig. 2.12d shows a relative gain of the full method in terms of area under the curve of 4.6% compared to not using multi-task learning.

Impact of intermediary cost functions

We lose more alignment accuracy when not using intermediary cost functions (by setting α 0 = 1, α 1 = 0 and α 2 = 0). Fig. 2.12c shows a drop of 32% for a threshold value of 4px. It also affects the segmentation task. Fig. 2.12d shows a relative gain of the full method in terms of area under the curve of 8.3% compared to not using intermediary cost functions. This proves that using this technique of intermediary losses could also improve other semantic segmentation methods.

Impact of randomly dropping input polygons

If we set the probability of keeping input polygons p keep poly to 1 (equivalent to not using this technique), the network almost does not output anything for the segmentation output, and consequently, the IoU gets very low (see Fig. 2.12d). The reason is that it learns to output a building only when there is a building in the input. We checked that this technique does not decrease the performance of the alignment task: Figure 2.12c shows that the 2 curves corresponding to using this technique (full method) and not using it (no dropping of input polygons) are equivalent.

Cross-dataset generalization

When excluding the Inria dataset from training, we lose 8.3% relative mean accuracy in terms of area under the average curve on the test split made out of Inria images. That is, we measure the area under the 2 solid curves (representing the average accuracy) of Fig. 2.13 and compare their relative value. We do not lose mean accuracy until threshold 2 pixels, we lose 4% mean accuracy for threshold 3 pixels and 10% for threshold 6 pixels. There is almost no difference for well-aligned vertices: in both cases, about half of the vertices have an error of less than 3 pixels. The loss of mean accuracy mainly happens between threshold 3 pixels and 6 pixels, where it drops by 10 -4 = 6%. The difference between the 2 curves has to be considered relative to the gray curve (no alignment): we can see that the blue curve is much closer to the orange one, showing that most of the alignment accuracy is recovered by the model trained on different datasets.

Smoothness regularization term from Zampieri et al. [100]

During our experiments, we tried to use the smoothness regularization term from Zampieri et al. [START_REF] Zampieri | Coarse to fine non-rigid registration: a chain of scale-specific neural networks for multimodal image alignment with application to remote sensing[END_REF], but we did not see any improvement with it. One of the reasons is that real-case displacements are not very smooth: buildings of different heights have different displacements if the image angle is a cause of the displacement. Furthermore, some building footprints come from a different source compared to surrounding buildings and thus have an uncorrelated displacement. Our multi-task learning and intermediary losses guide the optimization at the start of training so that it works well without regularization. We however observed that the smoothness regularization term naturally decreases without explicitly optimizing it.

2.5D reconstruction of buildings

Method

The alignment of building polygons can be used to solve the building height estimation problem to reconstruct 2.5D buildings from a stereo pair of images. The inputs to the method are 2 orthorectified satellite images captured from different views and a cadaster map of building rooftops which do not need to be aligned to any of the two images. The first step consists in using our alignment method to align the rooftop polygons to the first image and to the second image. We then measure for each building the distance between the centers of corresponding aligned rooftops in both images. From this distance, it is possible to compute the height of the building with trigonometry (assuming the ground is flat). For this, we need to know the elevation (e i) and azimuth (a i) angles of the satellite when it captured each image i. We first used Eq. 19 from [START_REF] Licciardi | Retrieval of the height of buildings from worldview-2 multi-angular imagery using attribute filters and geometric invariant moments[END_REF] which uses only elevation angles because they assume both images are captured from the same side of nadir and also that the satellite ground path goes through the captured area (meaning the azimuth angles are the same for both images). As we cannot make this assumption, we generalize their formula by including azimuth angles, thus linking the building height H to the distance D between the two aligned building rooftop polygons as:

H = D tan(e 1) tan(e 2) tan 2 (e 1) + tan 2 (e 2) -2 tan(e 1) tan(e 2) cos(a 1 -a 2) (2.6)
where:

H = building height D = distance between the 2 aligned rooftop polygon centers e i = elevation angle of image i a i = azimuth angle of image i

Results and discussions

We applied our height estimation method on a pair of Pléiades satellite images of the city of Leibnitz provided by the company LuxCarta. In order to compute quantitative results, they also provided rooftop annotations for both views. That means for each building, we have one annotation aligned with the image of view 1, and another corresponding annotation aligned with the image of view 2. The image of view 1 was captured with an elevation and azimuth angles of 76.7°and 212.9°respectively. For the image of view 2, those angles are 69.6°and 3.6°. In order to test our alignment method on these images, we used the model trained on our Inria + Bradbury dataset made out of aerial images and applied it directly to these Pléiades satellite images, further showing the cross-domain capabilities of our model. We performed two alignments. First, we aligned the annotations from view 2 to image 1. Secondly, we aligned annotations from view 1 to image 2. This setting recreates real-world misalignments due to a change of view. The accuracy of these alignments is plotted in Fig. 2.15 (higher is better). Our model successfully aligned annotations to images 1 and 2 with about half of the vertices having an alignment error of less than 2 pixels (image 2 has slightly worse performance). We use the same elevation and azimuth angles for every building of an image, as our data comprises the mean angles of the images only. In reality, the angles are not constant across the image, and Eq. 2.6 can be used with different angles per building. See Fig. 2.14 for a rendering of the 2.5D buildings obtained by this method. For each building we measure the absolute difference between the ground truth height (also computed with Eq. 2.6 using the ground truth annotations) and the predicted height. We obtain a mean absolute error of 2.2 meters. We identified 2 sources of error:

1. Our model did not train on images far from nadir (lack of rooftop ground truth data at those angles). This could explain why image 2 has lower alignment accuracy than image 1: being farther from nadir, the network has more trouble with it.

2. Height errors are highly correlated by alignment errors and those alignment errors get amplified by a greater factor when the elevation angle is near nadir (closer to 90°) than when it is farther from it (closer to 0°). Indeed it is a lot easier to estimate the height of a building when looking at it sideways rather than from above.

These 2 sources of errors should be solved by the same solution: training and using the model on images farther from nadir.

Conclusions

The multi-task, multi-resolution method presented in this chapter can be used to effectively solve the common problem of aligning existing maps over a new aerial or satellite image while also detecting new buildings in the form of a segmentation map. The use of multi-task learning by adding the extra segmentation task not only helps the network to train better in a more stable manner, but it also detects new buildings when coupled with a data augmentation technique of randomly dropping input polygons when training. Adding intermediate losses at different resolution levels inside the network also helps the training by providing a better gradient flow. It The "No alignment" curve is obtained by measuring the distance between corresponding vertices in the annotations from both views, it measures the misalignment of annotations from view 1 to image 2 and vice-versa (as the distance is symmetric, there is a single curve). The "Aligned image 1" measures the accuracy of aligning annotations from view 2 to image 1 (taking annotations from view 1 as ground truth). The "Aligned image 2" measures the accuracy of aligning annotations from view 1 to image 2 (taking annotations from view 2 as ground truth).

improves the performance on both alignment and segmentation tasks and could be used in other deep learning methods that have an image-like output that can be interpreted at different scales. Interestingly, multi-task learning also helps the segmentation task, as adding the displacement loss when training increases IoU.

We also tried our method on the task of building height estimation, generating simple but clean 2.5D models of buildings. We hope that our method will be a step towards automatically updating maps and also estimating heights of buildings. Future work could improve the segmentation branch by using a better-suited loss for each output channel and a coherence loss between channels, to further improve map updating. The displacement branch could be improved by encouraging smoothness within polygons but not discouraging large variations of displacement across polygon boundaries. A solution could be to add a regularization loss enforcing piece-wise smooth outputs, such as the BV (Bounded Variation) norm or the Mumford-Shah functional.

Chapter 3

Alignment of Building Geometry with Overhead Images from Noisy Ground Truth One of the main tasks in remote sensing is semantic segmentation or pixel-wise classification. In machine learning, the best performance is achieved by fully supervised methods when perfect ground truth labels are available. However, labels are often noisy, especially in remote sensing where manually curated public annotated datasets are rare. These good annotations are hard to come by because even if annotations do exist (e.g., OpenStreetMap (OSM) annotations [START_REF]Planet dump[END_REF]), they can be misaligned for various reasons as explained in Chapter 1, § 1.2. Misaligned annotations cannot expect to produce good results when used to train a model for semantic segmentation.

53

There is thus a need to correct those misaligned annotations.

The previous Chapter 2 presented our method for correcting the alignment of building annotations over an overhead image. That method assumes access to perfect ground truth labels, meaning perfectly-aligned building annotations. We filtered misaligned annotations as much as possible for training, with some misalignments still present. However, the method was still able to learn how to align building annotations and showed itself to be somewhat robust to misaligned ground truth annotations.

In the real world, most annotations from a remote sensing dataset will be misaligned. In this chapter, we propose a training pipeline aiming to reduce the misalignment in an annotated dataset, while only being trained on that very same noisy dataset (without manual filtering of misaligned annotations). As only misaligned annotations are available, we are in the noisy supervision setting. We set up a multiple-rounds training scheme that corrects the ground truth annotations at each round to better train the model in the next round. We show that it is possible to reduce the noise of the dataset by iteratively training a better alignment model to correct the annotation alignment. See Fig. 3.1 for an example of results where we can see the original OSM annotations being aligned to the underlying image.

After observing the success of our multi-round training scheme for self-alignment correction, my co-supervisor Guillaume Charpiat developed mathematical tools for explaining this denoising phenomenon by introducing a similarity measure from the neural network's perspective, that measures the influence one optimization step on a certain input would have on another input. The rationale behind it is that similar inputs in that sense would steer the optimization in the same direction. For all those inputs having a noisy ground truth label, the final optimization direction would optimize for the average label (under a L 2 loss). If those labels have a zero-mean noise, then the average label is actually the noise-less label. We formalize this concept with a neighbor density estimator based on our similarity measure.

The work presented in this chapter was published in the following papers:

Related work

We focus here on related work that tackle the noisy label problem. In [START_REF] Mnih | Learning to label aerial images from noisy data[END_REF] the authors propose new losses for learning to label aerial images from noisy data. They deal with omission noise which occurs when a building is seen in the image but is not in the ground truth annotations. This happens quite frequently due to incomplete maps. During training, this leads to frequent false positives relative to the noisy labels but that should be in fact true positives relative to perfect labels. In other words, the model rightly detects a building but the noisy ground truth marks it as a false detection because that building is not present in the noisy ground truth. A traditional negative log-likelihood loss would strongly penalize confident incorrect predictions. Because of the label noise, there is a strong possibility that a confident false positive (relative to noisy labels) is actually a true positive (relative to perfect labels), thus the authors introduce an Asymmetric Bernoulli Noise (ABN) model applied to the output of the neural network before computing the negative log-likelihood loss, in order to penalize confident incorrect predictions less. This has the effect of trusting the model a bit more when it is confident, rather than only trusting noisy labels. They also deal with the registration noise which is when annotations are misaligned, which is the kind of noise we also tackle in this chapter. They add random local translations to their ABN model, which they name the Translational Asymmetric Binary Noise (TABN) model. The discrete set of possible translations is very restricted with only 9 possible translations: one for no translation and the remaining 8 for all translations by t max pixel in the vertical and horizontal directions as well as their combinations. The neural network parameters are then learned using the EM-algorithm during which the M-step performs one step of gradient descent update of the neural network parameters on a mini-batch and then the E-step estimates the true labels from which another back-propagation is performed on the neural network. Their method requires 4 tunable parameters to define the TABN model used and essentially shape the loss function. Also, only discrete local translations are modeled. As we work with polygonal labels directly and use an alignment model that outputs continuous corrective general displacements, it is more straight forward to handle the registration noise. Another approach to train under label noise in remote sensing is [6] which uses Optimal Transport to smooth out label noise by averaging nearby labels whose proximity is defined by an optimal coupling in the joint feature-label space.

It has been applied to scene classification and pixel-wise classification of hyperspectral images for which noisy labels means random switching of any label with a certain probability.

Another related work performs simultaneous edge detection and alignment [START_REF] Yu | Simultaneous edge alignment and learning[END_REF] which can handle small displacements in an unsupervised manner. They tackle the problem of noisy annotations from manual labeling. Given the limit of human precision and the diminishing gain of annotation quality from additional efforts, there are always some misalignments in the annotations. They alternatively learn to detect edges and align the edge ground truth map. The available ground truth is modeled in a probabilistic approach that models how annotators would trace the underlying true edges in the image. Their method successfully learns sharp edges by refining non-exact annotations. However, in our case we aim to correct annotations whose noise is primarily not due to human error in annotations (see Chapter 1, § 1.2) and have big displacements of up to 32 pixels (Fig. 3.1 illustrates those big misalignments). As such an edge refinement method is not enough.

The closest related work to ours in principle is Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] about image restoration without clean data, where noisy images are denoised by training a denoising network on noisy images only. While the task is very different, the principle is the same: leveraging the tendency for L 2 optimization to predict the average of all plausible explanations. For example in the superresolution task where a low-resolution image has many possible corresponding high-resolution images (as information is lost in decimation), a network simply trained with a L 2 loss will output blurred high-resolution images which correspond to the average of all plausible highresolution images matching the low-resolution input image. As long as the expectation of the noisy labels is the same as the non-noisy labels, L 2 optimization will lead to the same estimate.

Noise2Noise shows this property on perturbed images at the pixel level with various zero-mean noise distributions while we use this property on annotation alignment noise, which we assume to be zero-mean. Additionally, we developed mathematical tools to better explain and quantify this noise-removal phenomenon. We use our alignment model of Chapter 2 which we will refer to as "base alignment method" from now on. We first briefly explain the most important aspects of the model as a reminder, as well as introduce useful notation and then present our multi-round training scheme for alignment noise reduction.

Methodology

Mathematical modeling

Given two images I and J of same size H × W , but of different modalities, e.g. with I an RGB image (picture from a satellite) and J a binary image (cadaster, indicating for each pixel whether it belongs to a building or not), the alignment problem aims at finding a deformation, i.e. a 2D vector field g defined on the discrete image domain [1, H] × [1, W], such that the warped second image J • (Id + g) is well registered with the first image I. To do this, in a machine learning setting, we consider triplets (I, J, g gt) consisting of two images together with the associated ground-truth deformation g gt . Image pairs (I, J) are given as inputs, and the model's estimated deformation ĝ is optimized to be close to the ground truth deformation g gt .

Displacement map cost function

The displacement map loss function is the mean squared error between the predicted displacement map ĝ and the ground truth displacement map g gt . The actual loss used by the base alignment method is a little more complex (see Chapter 2) but for our purpose here we can consider the simplified loss:

L disp (ĝ) = x∈[1,H]×[1,W] ĝ(x) -g gt (x) 2 2 .
(3.1)

Model

The neural network used by the base alignment method is a transformed U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] with 2 image inputs and 2 image-like outputs for the displacement map and the segmentation image, see Fig. x and y components of the displacement vector. The model uses a multi-resolution approach by applying a neural network at increasing resolutions, iteratively aligning polygons from a coarse to fine scale. The scales used are 1 8 , 1 4 , 1 2 and 1. Thus displacements of up to 32 pixels can be handled by the complete model.

Self-supervised training

The model needs varied ground truth labels (displacements) in order to learn, while the dataset is assumed to be made of aligned image pairs only (g = 0). The dataset is thus enhanced by adding random deformations in the form of 2D Gaussian random fields for each coordinate with a maximum absolute displacement of 32 px. The polygon annotations A are then inversely displaced by the generated displacements, to compute the misaligned polygons, which are then rasterized. We obtain training triplets of the form (I, J, g) with J = rast(A • (Id + g) -1). For the multi-resolution pipeline, 4 different models are trained independently with downscaling factors 8, 4, 2, and 1 (one per resolution). For clarification, labels are the ground truth displacements at each pixel, i.e. a 2D vector, and annotations are the polygons outlining objects.

Multiple-rounds training

We train the base alignment method with the same hyper-parameters as in Chapter 2, which were selected on a validation set to avoid overfitting. We perform multiple rounds of training on the whole dataset to achieve our goal of aligning the whole dataset. It consists of iteratively alternating between training the alignment model on the available dataset (see Alg.

Dataset

We use the same two datasets of Chapter 2:

1. Inria dataset: Inria Aerial Image Labeling Dataset [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF] (we discarded the provided raster ground truth building mask and instead pulled building polygons from OSM for each geo-localized image of the dataset), 2. Bradbury dataset: Aerial imagery object identification dataset for building and road detection, and building height estimation [START_REF] Bradbury | Aerial imagery object identification dataset for building and road detection, and building height estimation[END_REF] (the ground truth annotation are already in vector format and are also pulled from OSM by the dataset's authors).

However this time we do not manually select the samples with aligned annotations and instead keep all the images and OSM annotations from both datasets. The resulting dataset has thus 386 images (with the majority being 5000 × 5000 px) of 16 cities from Europe and the USA. Each image has on average a few thousand building annotations. These polygon annotations are inconsistent across images alignment-wise (see Fig. 3.1 and 3.4 and 3.5). Some are well-aligned, and some are misaligned by up to 30 px. Characterizing the overall misalignment of the whole dataset would require having access to the perfectly-aligned annotations, which does not exist.

For testing we thus had to manually align annotations on a test image.

Ablation studies

To justify the design choices of the multiple-rounds training, we performed ablation studies.

The first ablation study (AS1) changes the second step of Alg. 2 by applying the model on the previously corrected annotations instead of the original annotations: A r = M r (A r-1) in order to test whether it is better to iteratively align annotations. The second ablation study (AS2) trains the model only once on the original annotations, and applies it R times to iteratively align the annotations (as in AS1). This is implemented by additionally replacing step 1 of Alg. 2 by M r = M 1 for r > 1 and leaving it as is for r = 1. This is meant to test the usefulness of re-training the model at each round. Indeed, it could be the case that the base alignment model just needs multiple inference steps to successively refine the alignment of the polygons because it cannot align in one go.

Robustness to noise

Because we do not know how misaligned our dataset is, it may be possible that a sufficient portion of it has well-aligned annotations that steer the optimization in the right direction while the rest of randomly misaligned annotations do not give a clear direction and thus do not affect the optimization as much. In this setting, the effect of the multi-rounds training scheme essentially increases the portion of well-aligned annotations at each round towards a fully well-aligned dataset. While this setting is still interesting and useful, we also test our method in the case of a fully noisy dataset where all annotations are noisy. For this, we perform an additional experiment (Noisier) where all original annotations are perturbed even further with random zero-mean displacements up to 16 px. We then applied our multi-round alignment method for correcting these noisier annotations.

Results

As annotations of our dataset are noisy they cannot be used as ground truth to measure quantitative results. We can first visualize qualitative results in Fig. 3.4 and 3.5. In order to measure the effectiveness of the multiple rounds training, we manually aligned annotations for one 5000 × 5000 pixel image (771 buildings) to obtain a good ground-truth. We chose the blooming-ton22 image from the Inria dataset because its OSM annotations have a severe misalignment.

To measure the accuracy of alignment, for any threshold τ we compute the fraction of predicted (aligned) vertices whose point distance to their corresponding ground truth vertex is less than τ . In other words, we compute the Euclidean distance in pixels between ground truth vertices and aligned vertices, and plot the cumulative distribution of these distances (higher is better) in Fig. 3.6 for our full method; in Fig. 3.7 for the ablation studies AS1 and AS2; in Fig. 3.8 for the Noisier experiment.

Discussion

After the first round of training, the annotations are on average better aligned than the original annotations, but in some cases, the polygons are pushed into the wrong direction (see Fig. resulting in poorer accuracy for some threshold levels (see the blue curve sometimes under the red curve in Fig. 3.6). However, after the second round of training, the annotation alignment has been significantly improved upon the first round (error divided by more than 3 for any quantile, cf. green curve compared to the blue curve). The 3rd round does not bring any significant improvement in this case. The median registration error dropped from 18 pixels (original) to 3.5 pixels (round 2).

See also the wider qualitative result in Fig. 3.5 which shows non-constant misalignment across the image as well as missing buildings in the annotations. Our method successfully aligned the annotations after 2 rounds of training.

Note that a perfect alignment score cannot be expected, because of the ambiguity of the "perfect" ground truth. Indeed, when manually aligning bloomington22's annotations, we observed that the majority of buildings are annotated by a coarse polygon that does not outline the building precisely. Best aligning such a coarse polygon to a real, more complex building becomes an ill-posed problem, with multiple equally-good solutions, which creates ground truth ambiguity. Indeed as a representation of a building's outline, such coarse polygons are ambiguous, as many polygons of the same vertex length could approximate equally well the building's outline. See Fig. 3.9 (left) for an illustration of this problem, especially the building on the top-right. Fig. 3.9 (right) shows an example of a failure case of our approach. The left building was successfully aligned (through a slight vertical and horizontal squashing), but the adjoining building on the right was not, because the model only learned smooth displacement maps. A more well-designed displacement map generation allowing discontinuities across buildings might solve such problems.

The first ablation study (AS1) shows the importance of aligning the original annotations (instead of the last-aligned annotations) in the second step of Alg. 2 as it achieves better accuracy. Indeed the aligned annotations after round 1 can be worse than the original annotations (see The second ablation study (AS2) shows that re-training the model at each step is very important, as skipping it does not improve the first alignment of round 1, see the (AS2) curve of round 2 in Fig. 3.7 achieving about the same level of accuracy as the full method's round 1 curve.

After observing this self-denoising effect of the multi-rounds training scheme, two possible explanations come to mind. The first is that the dataset contains enough perfect ground truth annotations to steer the gradient descent in the right direction while being mildly affected by noisy labels (even if the noise is not zero-mean) if overfitting is avoided. However, the last experiment (Noisier) invalidates this explanation because in that case the fraction of well-aligned ground truth is negligible and still the model was able to align noisier annotations virtually as well as it did original annotations (it however needs a 3rd round to do so, see Fig. 3.8). This leads to the second possible explanation, that is the ground truth labels have a zero-mean noise (without bias). For the alignment task, the network tries to minimize the average error it makes. As such it tends to predict the mean value of the labels when it cannot do better. This is the case if the label noise is independent of the input, and if overfitting noisy labels is avoided. The network will learn the mean alignment, which corresponds to the underlying perfect ground truth, in a very similar way to how Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] is able to denoise images while training with noisy images only. We explore this explanation in the next section.

Explanation of the noise reduction effect

Suppose there exists a perfect ground truth annotation for each building on which we apply a zero-mean displacement noise. When drawing samples from that noise distribution we would obtain such annotations as in the top row of Fig. 3.10. We could now build a dataset with all those sampled annotations. If we were to train an alignment method (such as our method from Chapter 2) with an L 2 alignment loss on that dataset, for each building it will have to minimize its average loss relative to all the sampled ground truth annotations for that building. To do so, it will have to average all the sampled annotations. As those annotations are drawn from a zero-mean displacement distribution, their average displacement is zero, which corresponds to the underlying perfect ground truth annotation. In this setting, it is straight forward to explain the self-denoising effect, when enough annotation samples are drawn.

However in reality we find ourselves in the extreme case where we only have a single sample annotation per building, as in the bottom row of Fig. 3.10. We expect that for the most part, there are enough similar buildings across all the images of the dataset and that the model optimizes each group of similar buildings jointly. Indeed similar objects will be understood in a similar way by the model. Moreover, during data augmentation we apply random rotations of angle θ ∈ [0, 2π] so that our model is as rotation-equivariant as possible (we also apply flips and color adjustments). These data augmentations increase the group size of similar buildings. All those similar buildings within a similarity group each have a (noisy) ground truth annotation. If we identify each similarity group to a single building, we now have several annotations per building and the L 2 alignment loss will optimize the model to average those annotations leading to predicting the underlying perfect annotation for all of the buildings of that similarity group.

Understanding that notion of similarity between buildings led us to define and study an input similarity measure from the neural network perspective in [14]. We briefly introduce that similarity measure as well as the corresponding neighbor density estimator before showing some results on the noisy alignment task. For more details, we refer the reader to our paper [14] and its supplementary materials.

Similarity

Let f θ be a parameterized function (e.g., a trained neural network) and x, x possible inputs (e.g., samples from the train, or test split of the dataset). First, we suppose that f θ is real-valued (we will show the vector output case in the next section). To express the similarity between x and x as seen by the network, we could compare the output values f θ (x) and f θ (x). However, this is not very informative, as the same output might be obtained for different reasons.

Instead, we define similarity as the influence of x over x , by quantifying how much an additional training step for x would change the output for x as well. If x and x are very different from the point of view of the neural network, changing f θ (x) will have little consequence on f θ (x). Conversely, if they are very similar, changing f θ (x) will greatly affect f θ (x) as well. Figure 3.11: Moves in the space of outputs. We quantify the influence of a data point x over another one x by how much the tuning of parameters θ to obtain a desired output change v for f θ (x) will affect f θ (x) as well.

θ f (x') θ v v' f (x)
Formally, if we want to change the value of f θ (x) by a small quantity ε, we need to update

θ by δθ = ε ∇ θ f θ (x)
∇ θ f θ (x) 2 . Indeed, after the parameter update, the new value at x will be:

f θ+δθ (x) = f θ (x) + ∇ θ f θ (x) • δθ + O(δθ 2) = f θ (x) + ε + O(ε 2) .
This parameter change induces a value change at any other point x :

f θ+δθ (x) = f θ (x) + ∇ θ f θ (x) • δθ + O(δθ 2) = f θ (x) + ε ∇ θ f θ (x) • ∇ θ f θ (x) ∇ θ f θ (x) 2 + O(ε 2) . Therefore the kernel k N θ (x, x) = ∇ θ f θ (x) • ∇ θ f θ (x) ∇ θ f θ (x) 2
represents the influence of x over x : if we wish to change the output value f θ (x) by ε, then f θ (x) will change by ε k N θ (x, x). In particular, if k N θ (x, x) is high, then x and x are not distinguishable from the point of view of the network, as any attempt to move f θ (x) will move f θ (x) as well (see Fig. 3.11). We thus see k N θ (x, x) as a measure of similarity. Note however that k N θ (x, x) is not symmetric.

Two symmetric kernels natural arise. The first is the inner product:

k I θ (x, x) = ∇ θ f θ (x) • ∇ θ f θ (x) . (3.2)
The second is its normalized version, the correlation:

k C θ (x, x) = ∇ θ f θ (x) ∇ θ f θ (x) • ∇ θ f θ (x) ∇ θ f θ (x) , (3.3)
which has the advantage of being bounded (in [-1, 1]), thus expressing similarity in a usual meaning.

Intuitively, inputs that are similar from the network perspective should produce similar outputs. We can check that k C θ is a good similarity measure in this respect (see the supplementary materials of [14] for the proof):

Theorem 1. For any real-valued neural network f θ whose last layer is a linear layer (without any parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any inputs x and x ,

∇ θ f θ (x) = ∇ θ f θ (x) =⇒ f θ (x) = f θ (x) .
Corollary 1. Under the same assumptions, for any inputs x and x ,

k C θ (x, x) = 1 =⇒ ∇ θ f θ (x) = ∇ θ f θ (x) , hence k C θ (x, x) = 1 =⇒ f θ (x) = f θ (x) .
More properties are shown in [14] but for our purpose Theorem 1 and its corollary are enough.

Higher output dimension

Let us now study the more complex case when f θ (x) is a vector

f i θ (x) i∈[1,d] in R d with d > 1.
Under a mild hypothesis on the network (output expressivity, which is usually satisfied unless specially designed not to): Theorem 2. The optimal parameter change δθ to push f θ (x) in a direction v ∈ R d (with a force ε ∈ R), i.e. such that f θ+δθ (x) -f θ (x) = εv, induces at any other point x the following output variation:

f θ+δθ (x) -f θ (x) = ε K θ (x , x) K θ (x, x) -1 v + O(ε 2) , (3.4)
where the

d × d kernel matrix K θ (x , x) is defined by K ij θ (x , x) = ∇ θ f i θ (x) • ∇ θ f j θ (x)
. The similarity kernel is now a matrix and not just a single value, as it describes the relation between moves v ∈ R d . Note that these matrices K θ are only d × d where d is the output dimension. They are thus generally small and easy to manipulate or inverse. In our alignment scenario, d = 2 at each pixel output.

Normalized similarity matrix

The unitless symmetrized, normalized version of the kernel (3.4) is:

K C θ (x, x) = K θ (x, x) -1/2 K θ (x, x) K θ (x , x) -1/2 . (3.5)
It has the following properties:

• its coefficients are bounded, in [-1, 1]

• its trace is at most d

• its (Frobenius) norm is at most √ d • self-similarity is identity: ∀x, K C θ (x, x) = Id • the kernel is symmetric, in the sense that K C θ (x , x) = K C θ (x, x) T
Similarity in a single value To summarize the similarity matrix K C θ (x, x) into a single real value in [-1, 1], we consider:

k C θ (x, x) = 1 d Tr K C θ (x, x) . (3.6) It can be shown that if k C θ (x, x) is close to 1, then K C θ (x, x
) is close to Id, and reciprocally (see the supplementary materials of [14]).

Estimating density

In this section, we use similarity to estimate the number of input neighborhoods and perform statistics on them. Given a point x, how many samples x are similar to x according to the network? This can be measured by computing k C θ (x, x) for all x and picking the closest ones, for example the x such that k C θ (x, x) 0.9. More generally, for any data point x, the histogram of the similarity k C θ (x, x) over all x in the dataset (or a representative subset) can be drawn, and turned into an estimate of the number of neighbors of x. To do this, we define a soft estimate:

N S (x) = x k C θ (x, x) . (3.7)
Additional estimates are proposed in [14] however we use the soft estimate as it has a low computational complexity. Indeed it is rewritable as:

N S (x) = x k C θ (x, x) = x ∇ θ f θ (x) ∇ θ f θ (x) • ∇ θ f θ (x) ∇ θ f θ (x) = ∇ θ f θ (x) ∇ θ f θ (x) • g , (3.8)
where g = x

∇ θ f θ (x)
∇ θ f θ (x) can be pre-computed. Consequently N S (x) can be computed jointly for all x in linear time O(|D|p) in the dataset size |D| and in the number of parameters p, in just two passes over the dataset, when the output dimension is 1. For higher output dimensions d, a similar trick can be used and the complexity becomes O(|D|d 2 p).

Applying the similarity and density estimator to the noisy alignment task

As a reminder, our explanation of the self-denoising phenomenon for the alignment task, also proposed in Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] is as follows. Let us consider a regression task, with a L 2 loss, and where true labels y were altered with i.i.d. noise ε of variance v. Suppose a same input x appears n times in the training set, thus with n different labels y i = y + ε i . The network can only output the same prediction for all these n cases (since the input is the same), and the best option, considering the L 2 loss, is to predict the average 1 n i y i , whose distance to the true label

y is O(v √ n).
Thus a denoising effect by a factor √ n can be observed. However, the exact same point x is not likely to appear several times in a dataset (with different labels). Rather, relatively similar points may appear, and the amplitude of the self-denoising effect will be a function of their number and proximity. Here, the similarity should reflect the neural network perception (similar inputs yield the same output) and not an a priori norm chosen on the input space. And the density estimator should reflect the number of similar inputs weighted by their similarity.

Similarity experimentally observed between patches

Our multi-round training scheme for dataset alignment correction involves several trained neural networks. Each round trains a pyramidal multi-resolution model composed of 4 neural networks being trained on 4 different resolutions (in terms of ground pixel size) with downsampling factors 8, 4, 2, and 1. We performed 3 rounds of training correction with the best alignment already achieved at round 2 (round 3 shows no more noise removal). For each round, we selected the network trained with a downsampling factor of 4 for computing the similarities between pairs of samples and neighbor estimations.

Ideally, we would want to compute the similarities of every possible pair of inputs, with the smallest possible patch size to estimate similarities locally. In our case, that patch size is 124 × 124 pixels (the smallest patch size our network can be applied on). Because we do not use padding for any convolutional layer in the network, the output is a 2D displacement map of size 4 × 4 pixel corresponding to the 4 × 4 pixel center crop of the input patch. For each patch pair we compute the single similarity value:

k C θ (x, x) = 1 d Tr K C θ (x, x) ,
which requires computing the 2 × 2 kernel matrix:

K ij θ (x , x) = ∇ θ f i θ (x) • ∇ θ f j θ (x) .
Thus two back-propagation passes are needed in order to get the gradients for each 2D displacement coordinate. Also, note we cannot batch input patches together as we want the gradients per patch. Still, gradients for all patches can be pre-computed in linear time. However, computing similarities between all pairs is quadratic in the number of patches and is the bottleneck of the computation. We have ∇ θ f i θ (x) ∈ R p with p the number of parameters of the network which in our case is p = 9×10 6 . Computing 2×2 = 4 scalar products with vectors of size p = 9×10 6 takes 0.5s. Given that a typical image of the training dataset is 1250 × 1250 pixel (after rescaling) and there are a few hundred of them (328 from the Inria dataset, only counting images with OSM annotations), this would result in 32800 patches. The resulting amount of similarities to compute between pairs of patches would be around half a billion which would make the total time be 8 years. To make any computation feasible, we first sample 10 patches per image from the 328 of the Inria dataset. Those patches are chosen at random, as long as there is at least one building lying fully in the patch. As some images have rather sparse buildings, some images give less than 10 patches. We thus obtain 3045 patches representing the dataset. The number of similarities to compute would be close to 5 million (still a month of computation). To study all patches globally, we can use the soft neighbors estimator k C θ which has linear complexity in the number of patches and allows us to compute the number of neighbors for all 3045 patches in under an hour on a GTX 1080Ti system. However, it is also interesting to go in deeper detail and compute similarities for some input pairs. We thus reduce further the number of pairs by estimating all similarities only for a very small number of 10 patches. This results in a 10 × 3045 similarity matrix obtained in about 4 hours.

With those similarities we can compute the 10-nearest neighbors of 10 patches (sampled from the bloomington22 of the Inria dataset) for round 1 to 3, see respectively Fig. 3.12, 3.13 and 3.14. The closest neighbors look similar as they usually feature the same types of buildings, building spatial layout, and vegetation. However, sometimes the network sees a patch as similar when it is not clear from our point of view (e.g., patches with large buildings).

For more in-depth results, we computed the histogram of similarities for those same patches, see Fig. 3.15. We observe that round 2 shows different neighborhood statistics, in that the patch is closer to all other patches than in other rounds. A hypothesis for this phenomenon is that the average gradient was not 0 at the end of that training round, perhaps due to optimization convergence issues, which would shift all similarity histograms by the same value.

Qualitatively, for randomly sampled patches, their similarity histograms tend to be approximately symmetric in round 2, but with a longer left tail in round 1 and a longer right tail in round 3. Neighborhoods thus seem to change across the rounds, with fewer and fewer close points (if removing the global histogram shift in round 2). A possible interpretation is that this would reflect an increased ability of the network to distinguish between different patches, with finer features in later training rounds.

Generally speaking, inputs in round 2 have more neighbors and the 10-nearest ones are closer than in other rounds (see Fig. 3.12, 3.13 and 3.14). For each patch, its closest neighbors generally (for similarity > 0.8) look similar from a human point of view. For example patches with sparse houses and trees have the same kind of neighbors. The same can be said for patches with parking lots and big roads. Another group is patches that are almost empty of buildings, with a lot of low vegetation. Other nearest neighbor patches are more difficult to interpret. In Fig. 3.15 we can see that for round 2, the spread of the similarities of the selected patches is smaller and the peak of the histogram are closer to the right, meaning all patches are closer than in other rounds.

Comparison to the perceptual loss

We compare our approach to the perceptual loss [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] on a nearest neighbor retrieval task. We notice that the perceptual loss sometimes performs reasonably well, but often not. For instance, we show in Fig. 3.16 the closest neighbors to a structured residential area image, for the perceptual loss on the first row and for our similarity measure on the second row. Our similarity measure better groups patches of similar areas.

From similarity statistics to self-denoising effect estimation

We now show how such similarity experimental computations can be used to quantify the selfdenoising effect. Let us denote by y i the true (unknown) label for input x i , by y i the noisy label given in the dataset, and by y i = f θ (x i) the label predicted by the network. We will denote the (unknown) noise by ε i = y i -y i and assume it is centered and i.i.d., with finite variance σ ε . The training criterion is E(θ) = j || y j -y j || 2 . At convergence, the training leads to a local optimum of the energy landscape: ∇ θ E = 0, that is, j (y j -y j)∇ θ y j = 0. Let's choose any sample i and multiply by ∇ θ y i : j (y j -y j)∇ θ y j ∇ θ y i = 0 , using k I θ (x i , x j) = ∇ θ y i .∇ θ y j , we get:

j (y j -y j) k I θ (x j , x i) = 0 =⇒ j (y j -y j) k I θ (x j , x i) j k I θ (x j , x i) -1 = 0 . Let us denote by k IN θ (x j , x i) = k I θ (x j , x i) j k I θ (x j , x i) -1
the column-normalized kernel. We get:

j (y j -y j) k IN θ (x j , x i) = 0 =⇒ j y j k IN θ (x j , x i) = j y j k IN θ (x j , x i) .
Let us denote by E k [a] = j a j k IN θ (x j , x i) the mean value of a in the neighborhood of i, that is, the weighted average of the a j with weights k I θ (x j , x i) normalized to sum up to 1. This is actually a kernel regression, in the spirit of Parzen-Rosenblatt window estimators [START_REF] Parzen | On estimation of a probability density function and mode[END_REF][START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]. Then the previous property can be rewritten as: And as

E k [y] = E k [y] .

APPLYING THE SIMILARITY AND DENSITY ESTIMATOR TO THE NOISY ALIGNMENT TASK73

E k [y] = E k [y] + E k [ε] , this yields: E k [y] = E k [y] + E k [ε] =⇒ y i -E k [y] = E k [ε] + (y i -E k [y]) .
i.e. the difference between the predicted y i and the average of the true labels in the neighborhood of i is equal to the average of the noise in the neighborhood of i, up to the deviation of the prediction y i from the average prediction in its neighborhood.

We want to bound the error y i -E k [y] without knowing neither the true labels y nor the noise ε. We can show that

E k [ε] ∝ var ε (E k [ε]) 1/2 = σ ε k IN θ (•, x i) L2
(see supplementary materials of [14]). The denoising factor D fac is thus the similarity kernel norm:

D fac = k IN θ (•, x i) L2 . (3.9)
which is between 1/ √ N and 1, depending on the neighborhood quality. It is 1/ √ N when all N data points are identical, i.e. all satisfying k C θ (x i , x j) = 1. On the other extreme, this factor is 1 when all points are independent: k I θ (x i , x j) = 0 ∀i = j. This way we extend Noise2Noise [40] to real datasets with non-identical inputs.

In our remote sensing experiment, we estimate a denoising factor D fac = 0.02 ± 10%, consistent across all training rounds and the subset of 3045 input patches, implying that each training round contributed equally to denoising the labels. This is confirmed by Fig. 3.6, which shows the error steadily decreasing, on a control test where true labels are known. The shift (y i -E k [y]) on the other hand can be directly estimated given the network prediction. In our case, it is 4.4 pixel on average (computed on the outputs of the subset of 3045 patches), which is close to the observed median error for the last round in Fig. 3.6. It is largely input-dependent, with variance 3.2 px, which is reflected by the spread distribution of errors in Fig. 3.6. This input-dependent shift thus provides a hint about prediction reliability.

Conclusion

In conclusion, even noisy/misaligned annotations are useful and informative enough. Our model can be iteratively trained on them and align these annotations through a multiple-round training scheme to obtain better-trained models at each round finally leading to a misalignment-free dataset.

We extended the explanation of Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] to the case of non-identical but similar inputs through the introduction of the notion of similarity between inputs from the point of view of the neural network. That similarity then allows us to define a density estimator (or neighbor count estimator). The more neighbors an input patch has, the more noisy ground truth labels (from those neighbors) contribute to its output optimization, thus reducing the final noise of the ground truth. We can thus express the self-denoising effect as a function of inputs' similarities.

We only scratched the surface of the usefulness of that similarity measure (and all the mathematical tools developed around it). It also has applications in other domains of deep learning: prediction confidence, under-fitting estimation, overfitting estimation, enforcing similarity, adversarial examples, etc. (see our paper [14] and its supplementary materials). In the specific case of alignment correction of a remote sensing building dataset, future work would aim to apply the mathematical tools developed around the input similarity measure from the neural network perspective to study more specifically the self-denoising effect we observed by for example experimenting with computing the similarity measure on individual buildings (instead of small patches as in the previous section, where we actually measure the similarity on the center pixel output of the patch) and find out how they are grouped into close neighbors by the model. Another experiment to find out how the model deals with unique buildings whose neighborhood we expect to be very small. It may be the case that the similarity grouping performed by the model is more refined than at the building level: it may consider parts of buildings as similar which would explain how it deals with more unique buildings.

Chapter 4

PolyCNN: learning to directly extract remote sensing objects as polygons With this chapter, we move away from the map alignment problem and begin to tackle the problem of extracting objects from remote sensing images in a format compatible with Geographic Information Systems (GIS) in order to create/update/complete maps with the recognized objects of interest (e.g., buildings, roads, solar panels). GIS mostly uses vector-based data representations, which is a sparse vector representation of shapes. It uses geometric primitives such as points, connected by lines or curves to form polylines and polygons. That representation is much more efficient in terms of storage space, but also for computations and editing. Objects with one or several holes can be represented with an exterior contour and one or several interior contours expressing holes. Those contours are a closed collection of connected line segments connecting points. Shapes are thus generally represented as polygons (with potential holes).

Most state-of-the-art methods produce maps by performing pixel-wise classification (image segmentation) of remote sensing images, then vectorizing the outputs which means converting the raster segmentation map into class-labeled sparse polygons (also called polygonization). The neural network is thus optimized with a segmentation loss, however, the vectorization step is completely deterministic and it is thus not possible to optimize it to best fit objects. Additionally vectorizing a raster segmentation map is a challenge in itself, with various methods having been developed in remote sensing but also in the vector graphics community. In our case, it is most challenging because we cannot expect the segmentation map to be perfect. In most cases, segmentation maps predicted by neural networks are smooth in terms of their segmentation contours e.g., with sharp corners of buildings being rounded. Additionally, the vectorization task from a raster image is an inherently ill-posed problem because of the discretized nature of raster images not giving complete shape information. We will explore more about this problem in the next chapter.

In this work though we aim to by-pass the vectorization step by directly outputting a vector semantic labeling of the image with a neural network. We here cast the image segmentation problem as a polygon prediction task, and propose a deep learning approach which predicts vertices of the polygons outlining objects of interest. Experimental results on the PV dataset [START_REF] Bradbury | Distributed solar photovoltaic array location and extent dataset for remote sensing object identification[END_REF] show that the proposed network succeeds in learning to regress polygon coordinates, yielding directly vector representation outputs.

In the next section, we present some related work. We then explain the proposed CNN architecture, followed by an experimental evaluation on the PV dataset, and draw conclusions.

The work presented in this chapter was published in the following paper:

• End-to-End Learning of Polygons for Remote Sensing Image Classification Nicolas Girard, Yuliya Tarabalka IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018

Related work

Vectorization algorithms generally first detect contours of the raster segmentation map and then simplify those contours to get the sparsest representation possible while retaining most of the shape intact. Well-know contour detection algorithms include marching squares [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] and border-following algorithms [START_REF] Suzuki | Topological structural analysis of digitized binary images by border following[END_REF]. Marching squares finds the iso-line of a 2D scalar field (the segmentation probability map) in the form of contours. Border-following algorithms are applied on a binary image (the segmentation mask) and follow border pixels. Different rules can be used to classify a pixel as a border pixel, such as which neighborhood connectivity to use (4-connected or 8-connected). Those methods output dense contours meaning they have many redundant points that could be removed while not modifying the represented shape too much. Two well-known simplification algorithms are the Ramer-Douglas-Peucker [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF][START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF], and Visvalingam-Whyatt [START_REF] Visvalingam | Line generalisation by repeated elimination of the smallest area[END_REF] algorithms. They are implemented in most GIS packages (e.g., QGIS, ArcGIS). The Ramer-Douglas-Peucker algorithm filters the vertices by keeping the most important ones in order to preserve the shape. Preserving the shape means having a Hausdorff distance between the simplified curve and the original below a chosen tolerance parameter ε. It starts by marking the start and end vertices to be kept. Then it orders the vertices in-between by their distance to the line connecting the start and end vertices. If the largest distance is greater then the tolerance ε, its corresponding vertex is marked to be kept and the algorithm is recursively applied to the two curves on either side of that farthest vertex. If however, the largest distance is below the tolerance ε, it means all distances are below ε and all vertices in-between the start and end vertices are marked to be removed. The result is a simplified curve whose Hausdorff distance to the original one is less than the tolerance ε. The Visvalingam-Whyatt algorithm approach is to iteratively remove low characteristic vertices until a stopping criterion is met. Here characteristic is defined to be the area of the triangle formed by three consecutive vertices. Vertices are removed as long as their corresponding triangle area is lower than the area tolerance parameter. Visvalingam-Whyatt produces less angular results than Ramer-Douglas-Peucker and is more often used when simplifying organic shapes e.g., rivers, roads, coastlines. Ramer-Douglas-Peucker is more suited to artificial objects e.g., buildings, solar panels.

Accurate vectorization of classification maps is still an open research question, with recent more robust contributions such as [START_REF] Maggiori | Polygonization of remote sensing classification maps by mesh approximation[END_REF][START_REF] Tasar | Polygonization of binary classification maps using mesh approximation with right angle regularity[END_REF] performing a 2D mesh approximation with right angle regularity in a general mesh optimization framework. While those approaches are able to directly optimize a combined fidelity/complexity cost function, they are also slower than the simpler Ramer-Douglas-Peucker and Visvalingam-Whyatt algorithms.

The polygonization challenge is illustrated in Fig. 4.1, where a classification map obtained by a convolutional neural network [START_REF] Maggiori | High-resolution aerial image labeling with convolutional neural networks[END_REF] is polygonized using the Ramer-Douglas-Peucker method with two different ε tolerance parameters. We can see that in most cases the resulting polygons do not represent well the underlying objects, mostly because of the smoothed out corners of the detected buildings in the classification map. As we aim to by-pass this vectorization/polygonization step we were inspired by a few works on using neural networks to output geometric objects, such Pointer Nets (Ptr-Nets) [START_REF] Vinyals | Pointer networks[END_REF] which can be trained to find planar convex hulls, compute Delaunay triangulations, and solve the planar Travelling Salesman Problem. However, its inputs are already geometric objects (a sequence of points to be exact) while in our case we have a bitmap remote sensing image input.

At the time of this work (end of 2017), we were looking to quickly explore in a simple way if it were reasonable to directly output geometry and we were not aware of the method of Polygon-RNN [START_REF] Castrejón | Annotating object instances with a polygon-rnn[END_REF] which uses an RNN to output a polygon one vertex at a time. Polygon-RNN's successors Polygon-RNN++ [2] and Curve-GCN [START_REF] Ling | Fast interactive object annotation with curve-gcn[END_REF], as well as Polymapper [START_REF] Li | Topological map extraction from overhead images[END_REF] did not exist yet. We will however discuss these methods in the next chapter.

Methodology

We formulate an object extraction problem as a polygon prediction task. The proposed PolyCNN convolutional neural network takes as input image patches and regresses coordinates of vertices of polygons outlining objects of interest. The network is built so that it can be trained in an end-to-end fashion. A model tackling the complete problem of object extraction in polygonal format would need to solve all of the following tasks: object detection, recognition, and polygon outline regression. It would have to deal with the following difficulties: satellite images can have thousands of objects, there is a variable number of objects across images, a variable number of vertices across polygons, different topologies (e.g., objects with holes), and overlapping objects. As we focus on the polygonal output aspect of the problem, we restricted this study to learning quadrilaterals or 4-sided polygons, the main objective of the study is to demonstrate that we can produce maps for GIS directly in vector format and to break the paradigm of two-stage mapping approaches, where raster classification is followed by vectorization.

Our PolyCNN network takes as input a color (RGB) image patch roughly centered on the object of interest and directly outputs the coordinates of a 4-sided polygon in 2D. These image patches can be obtained by using any object detection system, for instance, a Faster-RCNN network [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF]. In this work, we restricted the space of all possible polygons to 4-sided polygons, so that the network has a fixed-length output. We are thus looking at only dealing with the problem of regressing vertex coordinates.

Neural network

Fig. 4.2 illustrates the architecture of the proposed PolyCNN model. The neural network is made out of three parts: feature extractor, encoder and decoder. The input is of size 67 × 67 px and the feature extractor uses the first few layers of a pre-trained Inception V4 network [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF] to extract 384 features of spatial resolution 6 × 6. The encoder then computes a vector of dimension 128, that can be seen as a point in a latent space of shape representation. The decoder then decodes this 128-vector into the polygonal representation that we are used to: 8 scalars representing the 2D coordinates of 4 points. To find the right architecture of the encoder and decoder, we experimented on a much simpler dataset. For this purpose, we generated 67 × 67 px images of a random white 4-sided polygon on a black background (see Fig. 4.3). This allowed us to have a virtually infinite number of samples. As this simple dataset does not require a complex feature extractor, we used a very small feature extractor made out of three 5 × 5 convolutional layers (with 8, 16, and 32 channels, respectively), each followed by a 2×2 pooling layer. This small feature extractor allows for fast experimentation and we found the architecture for the encoder and especially the decoder with the goal of having the smallest model that could learn to regress vertices of 4-sided polygons. Lastly, it allows us to pre-train the decoder which can later be fine-tuned on a real dataset.

We then had to choose how much of the pre-trained Inception V4 we needed to use. The Inception V4 was trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], whose images are all taken from ground-level. Our model is meant to be trained on aerial or satellite images, which have a very different appearance. Thus only the low-level features of the Inception V4 should be interesting, as they are not specific to an object or point of view and remain general enough. Furthermore, using as few layers as possible has the advantage of yielding a smaller model, which is thus faster to train and is less prone to over-fitting. Using the first layers of the Inception V4 up to the "mixed5e" layer seemed to be a good choice regarding the previous considerations. The loss function used to train the PolyCNN network is the mean Euclidean distance between the vertices of the ground-truth polygon and the predicted polygon. We note n the number of vertices (here fixed to 4), P gt the n × 2 matrix representing the groundtruth polygon and P pred the n × 2 matrix representing the predicted polygon. See Eq. 4.1 for the definition of such loss (and Fig. 4.4a for a visualization):

Loss function

L = 1 n n i=1
P gt (i, .) -P pred (i, .) 2 .

(4.1)

However eq. 4.1 assumes that both ground truth and predicted polygons have their vertices numbered in the same way: same starting vertex and same orientation (clockwise or counterclockwise). The same polygon can be represented by different numberings while this loss function would force the network to learn a specific starting vertex and orientation. The network cannot learn this, because the numbering is arbitrary. We thus first orient all the ground truth polygons to have a counter-clockwise orientation and also define a loss invariant to the starting vertex. For this purpose, we compute all the possible shifts of vertices for the predicted polygon and take the minimum mean L 2 distance (to the ground truth polygon) out of all these shifted polygons. See Eq. 4.2 for our final loss (and Fig. 4.4b for a visualization):

L = min ∀s∈[0,n-1] 1 n n i=1 P gt (i, .) -P pred (i + s, .) 2 . (4.2)
Eq. 4.2 still assumes the orientations of both polygons are the same, but we found this not to be a problem: as long as all ground truth polygons have the same orientation, the network learns to output polygons with the same orientation.

Experimental Results

Dataset

We use the PV dataset [START_REF] Bradbury | Distributed solar photovoltaic array location and extent dataset for remote sensing object identification[END_REF] ("Distributed solar photovoltaic array location and extent dataset") to train, validate and test the performance of the proposed network. This dataset contains the geospatial coordinates and border vertices for over 19000 solar panels (used as ground truth in this work) across 601 high-resolution aerial orthorectified images (of size 5000 × 5000 px with a ground sample size of 30 cm/px) from four cities in California, USA.

Data pre-processing and augmentation

For each image in the PV dataset, we extract square patches of size 67 • √ 2 = 95 pixels (the final image patch will be of size 67 pixels, but we need this margin for the data-augmentation step) around each polygon from the ground truth that satisfies the following conditions:

• Number of polygon vertices is 4. All polygons were simplified first because some of them are overdetermined (e.g., three aligned vertices).

• Polygon diameter is less than 67 • 0.8 = 53.6 px so that enough context is left in the resulting 67 × 67 px image patch.

At this point, we have 6366 ground truth 4-sided polygons each associated with one image patch. Every patch includes at least one polygon and if two polygons are adjacent, two different patches are generated, each with its own polygon. We split this dataset into train, validation, and test sets. We set both validation and testing set sizes to 256 patches each. This leaves 5854 patches for training. This is a fairly small dataset for training a deep neural network. We performed data augmentation to try alleviating this problem, consisting of:

1. Random rotations with angle θ ∈ [0, 2π).

Random vertical flip on the rotated image.

A center cropping is applied to get the final patch size of 67 × 67 px.

Finally, the data is normalized. The image values are scaled to [-1, 1] and the polygon vertex coordinates (relative to the patch) are scaled to [0, 1].

Training

The Inception V4 layers are pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] and are fine-tuned during training. The decoder is also pre-trained, this time on the generated simple dataset of 4-sided polygons we mentioned in the methodology section. We used an Adam optimizer with the default values for the decay rates β 1 = 0.9 and the moment estimates β 2 = 0.999. A batch size of 256 was used. Random weight produce big gradients at the start of training, especially compared to pre-trained weights. To avoid rapid distortion of the pre-trained weights, we freeze them at the beginning. The learning rate (lr) thus follows a different schedule for the 3 parts of the network for gradual training (the randomly-initialed encoder is trained first, then the other pre-trained modules are fine-tuned): lr up to iteration 500 1000 90000 Inception V4 layers 0 0 1e -5 Encoder 1e -5 1e -5 1e -5 Decoder 0 1e -5 1e -5

Results and discussion

To compare our results, we introduce a baseline method to predict 4-sided polygons. It consists of applying U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (which was and still is the underlying architecture of the highest performing networks in Inria aerial image labeling benchmark [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF] such as [START_REF] Huang | Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark[END_REF] at the time, or ICTNet [START_REF] Chatterjee | On building classification from remote sensor imagery using deep neural networks and the relation between classification and reconstruction accuracy using border localization as proxy[END_REF] more recently) to output a pixel-wise classification map, followed by a Ramer-Douglas-Peucker simplification of detected contours. Because the U-Net can predict several solar arrays within the image patch, it can result in multiple components in the prediction image. We thus vectorize the component which gives the maximum intersection area with the ground truth polygon. This way we always obtain a polygon around the center of the image, just like our method. We can observe through the whole test set that our method outputs polygons that feature better preservation of geometric regularities, such as orientation and close-to-right angles, when compared to the baseline approach.

Baseline y

We use two quantitative measures:

1) Intersection over Union (IoU) between the predicted and the ground truth polygons. The proposed PolyCNN and the baseline methods yield a mean IoU of 79.5% and 62.4%, respectively.

2) We introduce a more interesting measure for polygon comparison, which captures well the shape deformation of the prediction polygon. The Euclidean distance between each pair of vertices is computed (the pair is composed of one ground truth vertex and its corresponding predicted vertex, the correspondence is chosen exactly the same as for the modified loss in Eq. 4.2). We then compute the fraction of vertices in the whole test set which are closer to their ground truth position than a certain threshold value in pixels, and call it a polygon accuracy measure. Fig. 4.6 shows the obtained polygon accuracy as a function of the threshold in pixels for both approaches.

From the experimental comparison, we can conclude that the proposed PolyCNN network succeeds in learning to predict vertices of 4-sided polygons corresponding to the objects of interest.

Finally, we would like to note that if we train from scratch, i.e. without using the pre-trained Inception V4, the network does not succeed to learn a vectorial semantic labeling.

Concluding Remarks

We showed that learning directly in vectorial space is possible in an end-to-end fashion and yields better results than a 2-step process involving a U-Net followed by vectorization. Indeed our method can better predict the geometric shape of the object and by-passes a classification raster map representation that exhibits rounded corners for man-made objects such as solar panels. Another interesting note is that while pre-training usually means using pre-trained weights from early layers of another network, we also show it can be useful to pre-train the last layers of a neural network as well (the decoder in our case), especially if it can be done on a generated dataset.

The proposed architecture is relatively big with more than 2.7 × 10e6 weights used just for polygon coordinate regression. However, in a complete object extraction framework, the features already extracted by a Faster-RCNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF] model during object detection could be directly fed into our encoder-decoder blocks to regress that object's polygon (an anonymous person using our method is doing exactly that to extract e.g., doors, windows and monitor screens). We also experimented with learning n-sided polygons with a more complex loss approximating the Hausdorff distance to a variable-sized ground truth m-polygon, allowing the predicted vertices to find the best n vertices approximation of the ground truth polygon having m vertices. However, the predicted polygons had smooth contours not capturing the sharp features of objects due to the use of that approximated Hausdorff loss.

Chapter 5

Frame Field Learning for Regularized Building Segmentation As we have discussed in Chapter 4, while state-of-the-art image segmentation models typically output segmentations in raster format, applications in Geographic Information Systems (GIS) such as Open Street Map (OSM) [START_REF]Planet dump[END_REF] require vectorized object representations usually in the form of polygons. Additionally, the throughput of any method aiming to automatically extract objects in remote sensing images should be high enough to handle the sheer amount of huge satellite/aerial images needed to cover a whole territory and being captured every day. We propose in this chapter and in Chapter 6 another method for extracting objects in vector format, which will not have the limitations of our method from Chapter 4 and has high throughput.

To this end, we first propose in this chapter adding a frame field output (see Fig. 5.1 for a visualization) to a deep image segmentation model for extracting buildings from remote sensing images. A frame field is a 4-PolyVector field which is an assignment of 4 vectors to each point of the plane (as opposed to a single vector for a vector field). We show that using this additional output improves segmentation quality at no additional cost to running time. Our final aim is to output a vectorized object representation of the segmentation and in Chapter 6 we propose our fast polygonization method leveraging the structural information the frame field output provides. For the learning of frame fields, we train a deep neural network, that aligns a predicted frame field to ground truth contour data. In addition to increasing performance by leveraging multi-task learning, our method produces more regular segmentations with straighter walls and sharper corners for buildings.

Existing work on deep building segmentation generally falls into one of two general categories.

The first involves vectorizing the classification map produced by a network e.g., by using contour detection (marching squares [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]) followed by polygon simplification (Ramer-Douglas-Peucker [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF][START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF]). This approach suffers from artifacts when the classification map is not perfect, especially because conventional deep segmentation methods are often unable to produce sharp corners and regular contours. We will also show in Fig. 5.2 that even perfect classification maps are challenging to polygonize. To improve the final polygons, this class of methods employs expensive and complex post-processing procedures. In [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF], polygonal partition refinement is used to approximate shapes in the output classification map. This introduces a tunable parameter to control the trade-off between complexity and fidelity. In [START_REF] Zorzi | Regularization of building boundaries in satellite images using adversarial and regularized losses[END_REF], two distinct models-a shared decoder and a discriminator-are trained to produce cleaner buildings by regularizing the output segmentation maps in an adversarial fashion. This method requires computing large matrices of pairwise discontinuity costs between pixels and involves adversarially training a system of networks, which is less stable than conventional supervised learning. Our method uses a regular fully-convolutional network with just an additional output: a frame field. All other changes are only about the final loss function. We add loss terms to train this frame field output as well as loss terms to force the frame field and segmentation output to be coherent (we call those coupling losses, as they couple the frame field and segmentation together). These coupling losses introduce a regularization effect on the segmentation and our final loss can thus be seen as a regularized loss. This regularized loss principle is used for example in [START_REF] Tang | On regularized losses for weakly-supervised cnn segmentation[END_REF] in which the authors include MRF/CRF regularization terms directly in the loss function, avoiding extra MRF/CRF inference steps for weakly-supervised semantic segmentation. Investing more effort in defining the loss function is very rewarding in deep learning, as it can greatly improve predictions while not increasing training time (unless the loss computation is prohibitively expensive). In any case, it does not affect inference time at all. The other main category of deep segmentation methods attempts to learn a vector representation directly. For example, Curve-GCN [START_REF] Ling | Fast interactive object annotation with curve-gcn[END_REF] trains a graph convolutional network (GCN) to iteratively deform a polygon to fit each object, and PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] uses a recurrent neural network (RNN) to predict polygon vertices one at a time. While these approaches directly predict the parameters of a polygon, GCNs and RNNs suffer from several disadvantages. Not only are they more difficult to train than CNNs, but also their output topology is restricted to simple polygons without holes. This is a serious limiting factor since buildings often exhibit more complex topologies. Additionally, adjoining buildings with common walls are also common, especially in city centers. We have found no previous work in the state-of-the-art explaining how to handle the case of interior walls. While Curve-GCN and PolyMapper may detect adjoining buildings as distinct polygons, the common wall is unlikely to be represented by the exact same polyline, and either some overlap or gap is to be expected. We will discuss these methods further in the related work section.

In this chapter and the next, we introduce a building segmentation algorithm that avoids some of the challenges above by adding a frame field output to a fully-convolutional network. As noted above, only learning the pixel-wise classification of objects makes polygonization challenging. We thus train a network to additionally learn a frame field aligned with the object outlines. This frame field not only increases segmentation performance, e.g., yielding sharper corners, but also provides useful information for vectorization. Thus, while our work generally falls into the first category of approaches described above, we use the learned frame field to bridge the gap between the segmentation and polygonization steps.

Our main contributions are:

(i) learning a frame field aligned to object tangents, which improves segmentation via multitask learning;

(ii) applying coupling losses between outputs so that they are consistent with one another, further leveraging multi-task learning;

(iii) providing additional structural information in the form of a frame field for subsequent polygonization;

The work presented in this chapter was published in the following paper:

• Regularized Building Segmentation by Frame Field Learning Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, Hawaii, 2020.

As well as explained in more detail in the following pre-print:

• Polygonal Building Segmentation by Frame Field Learning Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka CoRR, abs/2004.14875, 2020. In preparation for CVPR.

We made a short video of our work on frame field learning which can be found here: https: //www.youtube.com/watch?v=XdQMD3HTYCU.

Related work

We first explain more about the polygonization method of [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF]. Their input is an RGB image and a probability map of objects (for example buildings) detected in the image, by e.g. a neural network. Then starting from a polygonal partition that oversegments the image into convex cells, the algorithm refines the geometry of the partition while labeling its cells by a semantic class. The refinement process is an optimization over polygonal cell configuration, with energy terms for fidelity to the input data and complexity of the output polygons. The configuration space is explored via splitting and merging operations on the polygonal cells. Those operations are then sorted into a priority queue that determines which one to apply first in order to decrease the energy. As the fidelity and complexity energy terms can be balanced with a coefficient, the fidelity to complexity ratio can be tuned, however, that coefficient is not intuitive and must be tuned by trial and error. Moving on to deep learning methods which have had tremendous success in certain tasks, especially with the use of CNNs. CNNs are very good at ingesting a fixed-sized grid-like input and giving a fixed-sized response. Fully convolutional neural networks can ingest a variablesized input and output a response with the same size as the input (or a fixed center crop of it if no padding is used in convolutions). Those deep learning paradigms are very efficiently trained on GPUs due to the grid-like nature of the data and the use of convolutions. In most tasks tackled by fully-convolutional networks, it is expected that the output for a certain pixel mostly depends on that pixel in the input and its surrounding pixels with their contribution being somewhat inversely proportional to their distance from the output pixel. In this setting, it is straightforward and very efficient to train a network to output a segmentation probability map.

Predicting geometry with a neural network model allows us to directly optimize the output to fit the ground truth. However, we see three challenges in this setting:

The first challenge is that the output of the model needs to be of variable size because the result for different images has a varying amount of objects, each with a varying amount of contours (due to objects possibly having holes), and each contour having a variable amount of vertices. Such variable-sized outputs require more complex architectures such as recurrent neural networks (RNNs) [START_REF] Hochreiter | Long short-term memory[END_REF] which are not as efficiently trained as CNNs and inherently have to perform several iterations to obtain the output, instead of producing it in one inference step. Such is the case of PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF], Polygon-RNN [START_REF] Castrejón | Annotating object instances with a polygon-rnn[END_REF] and Polygon-RNN++ [2]. Curve-GCN [START_REF] Ling | Fast interactive object annotation with curve-gcn[END_REF] regresses and ellipse polyline of fixed-length to fit the object.

The second challenge is that the model is required to make discrete decisions (as opposed to continuous decisions such as class probability per pixel) when deciding:

1. to add another contour 2. to add a hole to an object 3. the lowest number of vertices to use for a given contour Adding another contour is solved by object detection methods: if an object is detected then its contour needs to be predicted. However, adding holes to an object is already more challenging but we can imagine methods that detect such holes and then choose to predict a contour for it. One model, BSP-Net [START_REF] Chen | Bsp-net: Generating compact meshes via binary space partitioning[END_REF], circumvents this issue by combining predicted convex shapes for the final output, allowing to output any kind of shape in a compact format, with potential holes inside. To the best of our knowledge, how many vertices to use is not a decision any current deep learning model can make. Indeed discrete decisions are much harder to learn by a neural network because the training procedure uses gradient back-propagation for learning and thus needs a differentiable cost function. Discrete entities do not lead to such differential cost functions unless more involved training techniques are used e.g., the straight-through estimator [4] or reinforcement learning [START_REF] Sutton | Reinforcement learning i: Introduction[END_REF][START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF][START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]).

The third challenge is that the result is not grid-like. Somewhere along the way, the data structure has to be converted from the grid-like input to the relevant data structure representing the output geometry (different methods use different data structures). This makes the whole network much less efficient to run training and inference on GPUs in general. Until now we only considered individual objects (possibly having holes). However, in remote sensing the case of building extraction in city centers has the additional problem of adjoining buildings that share a common wall. Ideally, the output geometry for such a case would be a collection of polygons, one for each individual building, but that share some polylines corresponding to those common walls. Currently, no previous deep learning method tackles this specific case. Our method is able to solve it but note that it is not a fully end-to-end method. PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] tackles the individual building and road network extraction tasks. As road networks are graphs they propose a novel sequentialization method to reformulate graph structures as closed polygons. Such a method might thus work in the case of adjoining buildings with common walls. As a last note on efficiency, PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF], Polygon-RNN [START_REF] Castrejón | Annotating object instances with a polygon-rnn[END_REF], and Polygon-RNN++ [2] have to perform a beam search at inference to prune off improbable sequences, which requires to make more vertex predictions than are used in the final output and is inefficient.

These reflections led us to look for a middle ground between learning only the bitmap segmentation (followed by a hand-crafted polygonization method) and directly learning geometry with the aim to build a method that is easy to deploy, solves all topology cases (holes and common walls) and has low running times.

On a last note about related work, DiResNet [START_REF] Ding | Diresnet: Direction-aware residual network for road extraction in vhr remote sensing images[END_REF] is a road extraction neural network that outputs road direction in addition to road segmentation, a method first introduced in [3]. The orientation is learned for each road pixel by a cross-entropy classification loss whose labels are orientation bins. This additional geometric feature learned by the network improves the overall geometric integrity of the extracted objects (in this case road connectivity). In that way, it is quite similar to our frame field learning. The differences lie in the fact that the frame field models two orientations instead of just one (needed for corners), we use a regression loss instead of a classification loss, and we use additional coupling losses to explicitly force coherence between segmentation and frame field. Even a perfect classification map can admit a wrong polygonization due to locally ambiguous segmentation maps, as we illustrate above in (a), the output of marching squares. Our polygonization method (explained in Chapter 6) will iteratively optimize the contour (b-d) to align to a frame field, yielding better results as our frame field (blue) disambiguate between slanted walls and corners, preventing corners from being cut off.

Frame fields

We provide the necessary background on frame fields, a key part of our method. Following [START_REF] Vaxman | Directional field synthesis, design, and processing[END_REF][START_REF] Diamanti | Designing N -polyvector fields with complex polynomials[END_REF], a frame field is a 4-PolyVector field, which assign 4 vectors to each point of the plane. In the case of a frame field, however, the first 2 vectors are constrained to be the opposite to the other 2 vectors, i.e. each point of the plane is assigned the 4 vectors (u, -u, v, -v). A frame field is thus locally two symmetric line fields. At each point in the image, we consider the two directions that define the frame as two complex numbers u, v ∈ C. We need two directions (rather than only one) because buildings are very regular structures with sharp corners, unlike organic shapes such as people or vegetation. Capturing directionality at these sharp corners requires two directions, not one. To encode the directions in a way that is agnostic to relabeling and change of sign, we represent them as coefficients of the following complex polynomial:

f (z) = (z 2 -u 2)(z 2 -v 2) = z 4 + c 2 z 2 + c 0 .
(5.1)

We denote (5.1) above by f (z; c 0 , c 2). Given a (c 0 , c 2) pair, we can easily recover one pair of directions defining the corresponding frame:

c 0 = u 2 v 2 c 2 = -(u 2 + v 2) ⇐⇒        u 2 = - 1 2 c 2 + c 2 2 -4c 0 v 2 = - 1 2 c 2 -c 2 2 -4c 0 .
(5.2)

In our approach, inspired by [5], we aim to learn a smooth frame field with the property that, along building edges, at least one field direction is aligned to the polygon tangent direction. At polygon corners, we would like the field to align to both tangent directions, motivating our use of PolyVector fields rather than vector fields. We illustrate our motivation for using frame fields in Fig. 5.2: a frame field should be useful for any polygonization method as it removes local ambiguities of the segmentation map. We will introduce our own polygonization method in Chapter 6. Away from polygon boundaries, the frame field does not have any alignment constraints but is encouraged to be smooth and not collapse into a line field. Like [5], we formulate the field computation variationally, but unlike their approach we use a neural network to learn the field at every pixel of the image, which is also explored in [START_REF] Taktasheva | Learning to approximate directional fields defined over 2d planes[END_REF]. Since learning a (u, v) pair per pixel induces challenging issues involving labeling and sign, we instead learn a (c 0 , c 2) pair, which has no sign or ordering ambiguity.

Frame field learning

Figure 5.3: Given an overhead image, the model outputs an edge mask, an interior mask, and a frame field for buildings. The total loss includes terms that align the masks and frame field to ground truth data as well as regularizers to enforce smoothness of the frame field and consistency between the outputs.

In this section, we describe our method which is illustrated in Fig. 5.3. Our network takes an H ×W pixel RGB image I as input and outputs a pixel-wise classification map and a frame field. The classification map is made up of two channels, y int corresponding to building interiors and y edge to building boundaries. The frame field consists of four channels corresponding to the two complex coefficients c 0 , c 2 ∈ C, as described in §5.2 above.

Starting with basic image segmentation

Our method can be used with any deep segmentation model as a backbone. We show experiments using U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and DeepLabV3 [START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF] architectures for example. The backbone outputs a features tensor y backbone ∈ R B×F ×H×W with the same spatial size as the input patch with F features per pixel. For the segmentation task we append to the backbone a fully-convolutional block (taking y backbone as input) consisting of a 3×3 convolutional layer, a batch normalization layer, an ELU nonlinearity, another 3×3 convolution, and a sigmoid nonlinearity. This segmentation head outputs a segmentation map y seg ∈ R B×2×H×W . The first channel is for the object interior segmentation map y int and the second is for the object contour segmentation map y edge . Our training is supervised, where each input image is labeled with ground truth y int and y edge , corresponding to rasterized polygon interiors and edges, respectively. We then use a linear combination of the cross-entropy loss and the Dice loss [START_REF] Sudre | Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[END_REF] for the loss L int applied on the interior output as well as the loss L edge applied on the contour (edge) output. We define loss functions below:

L BCE (y, y) = 1 HW x∈I y(x) • log(y(x)) + (1 -y(x)) • log(1 -y(x)), (5.3)
L Dice (y, y) = 1 -2 • |y • y| + 1 |y + y| + 1 , (5.4)
L int = α • L BCE (y int , y int) + (1 -α) • L Dice (y int , y int), (5.5
)

L edge = α • L BCE (y edge , y edge) + (1 -α) • L Dice (y edge , y edge), (5.6)
where 0 < α < 1 is a hyperparameter. In practice, α = 0.25 gives good results.

Adding a frame field output

In addition to the segmentation masks, our network outputs a frame field. We thus append another head to the backbone via a fully-convolutional block consisting of a 3×3 convolutional layer, a batch normalization layer, an ELU nonlinearity, another 3×3 convolution, and a tanh nonlinearity. That frame field block takes as input the concatenation of the output features of the backbone and the segmentation output: [y backbone , y seg] ∈ R B×(F +2)×H×W . It outputs the frame field y frame field ∈ R B×4×H×W with four channels, two for each of c 0 , c 2 ∈ C. The corresponding ground truth label is an angle θ τ ∈ [0, π) of the unsigned tangent vector of the polygon contour.

We use three losses to train the frame field:

L align = 1 HW x∈I y edge (x)|f (e iθτ ; c 0 (x), c 2 (x))| 2 ,
(5.7)

L align90 = 1 HW x∈I y edge (x)|f (e iθ τ ⊥ ; c 0 (x), c 2 (x))| 2 , (5.8
)

L smooth = 1 HW x∈I ∇c 0 (x) 2 + ∇c 2 (x) 2 , (5.9)
where θ w is the direction of vector w, i.e., w = w 2 e iθw ∈ C, and τ ⊥ = τ -π 2 . Each loss above measures a different property of the output field:

• L align enforces alignment of the frame field with the tangent directions. This term is small when the polynomial f (•; c 0 , c 2) has a root near e iθτ , implicitly implying that one of the field directions {±u, ±v} is aligned with the tangent direction τ . Since (5.1) has no odd-degree terms, this term has no dependence on the sign of τ , as desired.

• L align90 prevents the frame field from collapsing into a line field by expressing a slight preference for the field to be also aligned with τ ⊥ .

• L smooth is a Dirichlet energy measuring the smoothness of the functions c 0 (x) and c 2 (x) as a function of the location x in the image. Smoothly-varying c 0 and c 2 yield a smooth frame field.

We show a visualization of the L align loss in Fig. 5.4.

Adding coupling losses between different outputs

Given that the outputs of our network (the interior and boundary segmentation masks as well as the frame field) should all be compatible with one another, we add coupling losses to force mutual consistency:

L int align = 1 HW x∈I f (∇ y int (x); c 0 (x), c 2 (x)) 2 ,
(5.10)

L edge align = 1 HW x∈I f (∇ y edge (x); c 0 (x), c 2 (x)) 2 ,
(5.11)

L int edge = 1 HW x∈I max 1 -y int (x), ∇ y int (x) 2 • ∇ y int (x) 2 -y edge (x) .
(5.12)

• L int align : Aligns the spatial gradient of the predicted interior map y int with the frame field (analogous to (5.7)).

• L edge align : Aligns the spatial gradient of the predicted edge map y edge with the frame field (analogous to (5.7)).

• L int edge : Makes the predicted edge map be equal to the norm of the spatial gradient of the predicted interior map. This loss is applied outside of buildings (hence the 1 -y int (x) term in the max) and along building contours (hence the ∇ y int (x) 2 term in the max) and is not applied inside buildings, so that common walls between adjoining buildings can still be detected by the edge map.

Handling numerous heterogeneous losses

We linearly combine our eight losses using eight coefficients, which can be challenging to balance. Because the losses have different scales, we first compute a normalization coefficient N loss name by computing the average of each loss on a random subset of the training dataset using a randomly-initialized network. Then each loss can be normalized by this norm. This normalization aims to rescale each loss term such that it is easier to balance them. The total loss is a linear combination of all normalized losses:

λ int L int N int + λ edge L edge N edge + λ align L align N align + λ align90 L align90 N align90 + λ smooth L smooth N smooth + λ int align L int align N int align + λ edge align L edge align N edge align + λ int edge L int edge N int edge , (5.13)
where the λ loss name coefficients are to be tuned. It is also possible to group main losses together as well as regularization losses and have a single λ coefficient balancing the two loss groups:

λ L int N int + L edge N edge + L align N align + (1 -λ) L align90 N align90 + L smooth N smooth + L int align N int align + L edge align N edge align + L int edge N int edge . (5.14)
In practice we started experiments with the single-coefficient version with λ = 0.75 and then used the multi-coefficient version to have more control by setting λ int = λ edge = 10, λ align = 1, λ align90 = 0.2, λ smooth = 0.005, λ int align = λ edge edge = λ int edge = 0.2.

Experimental setup

Datasets

We perform experiments on the CrowdAI Mapping Challenge dataset [START_REF] Prasanna | Crowdai dataset[END_REF] (CrowdAI dataset), the Inria Aerial Image Labeling dataset [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF] (Inria dataset) and a dataset of satellite images provided by the company Luxcarta (LuxCarta dataset). We provide details about the use of each dataset below. For all datasets, the ground truth angle for the frame field is pre-computed by rasterizing separately each edge in every polygon and taking the edge's angle as value for the drawn segment. The resulting gray image gives us for each pixel the θ τ used in L align .

CrowdAI dataset

As the ground truth annotations of the test set of this dataset are unreleased [START_REF] Li | Topological map extraction from overhead images[END_REF][START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF], we use the original validation set as our test set and discard the original test images. We then use 75% of the original training images as our initial training set and 25% for validation. Out final models are then trained on the entire original training set with hyperparameters selected using our validation test.

Inria dataset

This dataset provides building ground truth in the form of binary mask images for each image. However, our method requires the ground truth annotations to be in vector format (polygons) so that the ground truth for the frame field can be computed: the tangent angle θ τ used in L align .

As the original ground truth binary masks do not provide this information we instead built two alternative datasets with vector annotations. For the first alternative dataset which we call the Inria OSM dataset, we used building ground truth annotations downloaded from Open Street Map (OSM). As we explained in Chapters 2 and 3, OSM annotations are rarely aligned. We thus use our noisy alignment method of Chapter 3 to align the whole dataset. We randomly split the images into train (50%), validation (25%), and test (25%) sets. Because the OSM annotations have a lot of missing buildings in certain images, our test results on this dataset are somewhat skewed. Thus, for the test images, we manually select those with few missing buildings in the annotations, giving us 54 test images in total.

For the second alternative dataset which we call the Inria Polygonized dataset, we polygonized the original building ground truth masks with our frame field polygonization method from Chapter 6. It involves learning a frame field for binary mask images (instead of RGB images as is done in the current chapter) and using that frame field in our polygonization method. We will explain the simple building process of that dataset in Chapter 6, §6.3.2. This allows us to only use the same ground truth data as the other competitors of the Inria Aerial Image Labeling and thus we can directly compare our method to them. Thus we keep the original train and test splits which do not have any cities overlap and tests cross-city generalization (the principal aim of the associated challenge). We then split the original train split into our train (75%) and validation (25%) splits.

LuxCarta dataset

The satellite images of the LuxCarta dataset are more challenging than aerial images (such as the CrowdAI and Inria images) because they are less clear due to atmospheric effects. This dataset also contains much more varied images compared to CrowdAI and Inria, making up for its smaller size. We pre-process the training images by splitting them into smaller 512×512 pixel patches. We then keep 90% of patches for training and 10% for validation.

Different backbone

The first backbone we use is a small U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] with 16 starting hidden features (instead of 64 in the original), which we refer to as U-Net16. Another backbone is a DeepLabV3 [START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF] model that utilizes a ResNet-101 [START_REF] He | Deep residual learning for image recognition[END_REF] encoder (which we refer to as DeepLab101). Our best performing model is using a U-Net with a ResNet-101 [START_REF] He | Deep residual learning for image recognition[END_REF] encoder (pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF]) which we refer to as Unet-Resnet101. We observed that the pre-trained ResNet-101 encoder achieves better final performance than random initialization. For the Unet-Resnet101, we additionally use distance weighting for the cross-entropy loss as is done for the original U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

Ablation studies

We perform an ablation study on the CrowdAI dataset to validate various components of our model training:

• No field: Remove the frame field output for comparison to pure segmentation. Only interior segmentation L int , edge segmentation L edge and interior ↔ edge coupling L int edge losses remain.

• No coupling losses: All coupling losses (L int align , L edge align , L int edge) removed to determine whether enforcing consistency between outputs has an impact.

The results are shown in Table 5.2 below.

Metrics

IoU, AP and AR

The usual metric for the image segmentation task is Intersection over Union (IoU) which computes the overlap between a predicted segmentation and the ground truth annotation. The IoU is then used to compute other metrics such as the MS COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF]

Max tangent angle error

IoU, AP, and AR metrics are not the only measures we care about. Shape regularity is also very important for building extraction that aims to create or update maps with clean geometry. However, the regularity gain brought by the frame field is imperceptible in terms of IoU (and AP/AR), because they do not capture that regularity well. Moreover, as annotations are bound to have at least a few pixel alignment noise (even our aligned Inria OSM dataset cannot be absolutely perfect), only optimizing IoU will favor blurry segmentations with rounded corners over sharp segmentations because the blurry ones correspond to the shape expectation of the noisy ground truth annotation. Thus segmentation results with sharp corners might even have a lower IoU relative to that noisy ground truth compared to the segmentations with rounded corners.

Beyond visually inspecting results, we thus introduce a max tangent angle error metric between predictions and the ground truth to capture the regularity of the predicted contours. First, all polygonal contours are obtained from the segmentation probability maps with the marching squares method (referred to as "simple polygonization" from now on). A max tangent angle scalar error is computed for each predicted contour. Only predicted contours with at least 50% overlap with the ground truth are selected, so that their measure makes sense. Each predicted contour is first sampled homogeneously with points {P i } i∈ [1..n] (specifically a point is sampled every 0.1 pixel). Then the P i points are projected to the ground truth, meaning for each P i we find the closest point Q i belonging to the ground truth annotation. For both sequences of points P i and Q i , corresponding normed tangent directions are computed as:

T (P i) = P i+1 -P i P i+1 -P i and T (Q i) = Q i+1 -Q i Q i+1 -Q i .
The angle differences between the two are computed from the scalar product:

∆θ i = cos -1 (T (P i), T (Q i)) .
Before computing the maximum angle error max i ∆θ i along the whole contour, some angle errors ∆θ i need to be filtered out as they are invalid. Angle error invalidity is due to the projection step. Indeed around ground truth corners, part of the predicted contour will we be squashed to be zero-length for example. Another issue is when P i and P i+1 are projected to two different ground truth polygon sides: the projected edge P i+1 -P i does not represent a ground truth tangent anymore. We thus filter out tangents whose projection is stretched more than a factor of 2, i.e. we keep all ∆θ j , ∀j ∈ V where

V = {j | j ∈ [1 . . n], 1 2 < Qi+1-Qi Pi+1-Pi < 2}.
The final max tangent angle error for that contour is then:

E max tangent angle = max j∈V ∆θ j .
As each contour gives a scalar error, we aggregate all the errors for a certain dataset by averaging this max tangent angle error metric.

Relative angle distribution

We propose an additional measure for building regularity, this time without the need for any ground truth annotation so that results are evaluated on their own. As the previous measure, we use the simple polygonization method to obtain contours from the segmentation map. The minimum rotated rectangle is computed for each building. Then the relative angle between each contour edge and the principal axis of the associated minimum rotated rectangle is computed. For a collection of contours, we aggregate the data in the form of a distribution of relative angles. If the distribution is more homogeneous, it means buildings are less regular, i.e. smoother. Conversely, if the distribution has peaks around certain relative angle values (which are expected to be 0°, 90°, and 180°for buildings), it means buildings are more regular, with sharper corners having similar angles.

Training details

We do not heavily tune our hyperparameters: once we find a value that works based on validation performance we keep it across ablation experiments. We however select a different total number of epochs for the U-Net16 and DeepLabV3 models (25 and 15 respectively) chosen by first training the full method on the training set of the CrowdAI dataset, choosing the epoch number of the lowest validation loss, and finally re-training the model on the train + validation set for that Table 5.1: Mean max tangent angle errors E max tangent angle over all the original validation polygons of the CrowdAI dataset [START_REF] Prasanna | Crowdai dataset[END_REF].

Method

Mean max angle error Unet-Resnet101 (no field), simple polygonization 51.9°U net-Resnet101 (full), simple polygonization 45.1°L i et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF] 44.0°P olyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] 33.1°n umber of total epochs. Segmentation losses L int and L edge are both a combination of 25% cross-entropy loss and 75% Dice loss. To balance the losses in ablation experiments, we used the single-coefficient version with λ = 0.75. For our best performing model Unet-Resnet101 we used the multicoefficients version to have more control by setting λ int = λ edge = 10, λ align = 1, λ align90 = 0.2, λ smooth = 0.005, λ int align = λ edge edge = λ int edge = 0.2. The U-Net16 was trained on 4 GTX 1080Ti GPUs in parallel on 512×512 patches and a batch size of 16 per GPU (effective batch size 64). For all training runs, we compute for each loss its normalization coefficient N loss_name on 1000 batches before optimizing the network.

Our method is implemented in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. On the CrowdAI dataset, training takes 2 hours per epoch on 4 1080Ti GPUs for the U-Net16 model and 3.5 hours per epoch for the DeepLabV3 backbone on 4 2080Ti GPUs. Inference with the U-Net16 on a 5000×5000 image (requires splitting into 1024×1024 patches) takes 7 seconds on a Quadro M2200 (laptop GPU).

Results

CrowdAI dataset

We visualize the predicted classification maps from each ablation study for an example test sample in Fig. 5.5. Both for the U-Net16 and DeepLab101 backbones, the (full) method yields more regular classification maps with sharper corners compared to (no field). Additionally, only learning the frame field with (no coupling losses) is insufficient, as can be seen in Fig. 5.5d.

We will show visual comparisons with Li et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF] and PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] in Chapter 6, comparing them to our frame field learning method. We still include their performance metrics here for reference.

Our max tangent angle error E max tangent angle on the original validation set of the CrowdAI dataset is reported in Table 5.1. While the simple polygonization of the (no field) segmentation has a mean error of 51.9°, the same simple polygonization of the (full) segmentation has a mean error of 45.1°because it explicitly learns orientation with a frame field. Note however that PolyMapper performs even better. Our polygonization method in Chapter 6 will decrease that error further and compare favorably to PolyMapper. We then report MS COCO metrics on the original validation set of the CrowdAI dataset in Table 5.2 for the various ablation studies. For completeness, we also include metrics of previous works.

We do not match the very best state-of-the-art (Li et al.) in Table 5.2 for the CrowdAI dataset because Li et al. actually polygonizes the probability maps of the winning entry for the associated challenge. As our aim is to develop a general framework for segmentation regularization (and polygonal building extraction), we did not tune our method with the aim to beat that winning entry.

We observe the effect of only optimizing for IoU when removing coupling losses: we see that it does not impact AP and AR metrics in Table 5.2, while in Fig. 5.5 the (full) segmentations are clearly sharper compared to the (no coupling losses) ones.

In terms of AP and AR metrics, adding a frame field improves the final score (full) compared to (no field) for all backbones: U-Net16, DeepLab101 and Unet-Resnet101 (see Table 5.2).

Inria OSM dataset

The Inria OSM dataset is more challenging than the CrowdAI dataset because it contains more varied areas (e.g., countryside, city center, residential, and commercial) with different types of buildings. It also features adjoining buildings with a common wall were our building edge segmentation output becomes useful to separate them. The mean IoU on test images of the output classification maps is 78.0% for the U-Net16 trained with a frame field compared to 76.9% for the U-Net16 with no frame field. The IoU does not significantly penalize irregular contours, but, by visually inspecting segmentation outputs as in Fig. 5.6, we can evaluate the effect of the regularization. See also the quantitative results in the next section on the Inria polygonized dataset.

We only compare to our baseline (no field) to show the regularization effect. Additionally PolyMapper and Li et al. do not have results on the Inria dataset and no public code is available to apply their method to another dataset. For this reason, see the next section for a comparison to previous work on the Inria dataset.

Inria polygonized dataset

The Inria polygonized dataset allows to directly compare to other methods on the associated challenge public leaderboard 1 . However because its ground truth annotations were polygonized from the original binary masks, adjoining buildings with common walls are captured represented by a single contour. Thus we cannot show the ability of our method to separate buildings on this Inria polygonized dataset (hence the use of the previous Inria OSM dataset).

This time we use our Unet-Resnet101 model and we compare it with the best method on the leaderboard at the time of writing: ICTNet [START_REF] Chatterjee | On building classification from remote sensor imagery using deep neural networks and the relation between classification and reconstruction accuracy using border localization as proxy[END_REF]. In order to show the detected contours, we apply the "simple polygonization" method of marching squares [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] followed by Ramer-Douglas-Peucker [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF][START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF] simplification with a tolerance of 1 pixel. See Fig. 5.7 for results on the sample test image from the leaderboard, for which the segmentation mask can be downloaded from the leaderboard page for a few methods. ICTNet has an overall mIoU of 80.3% while our Unet-ResNet101 with frame field learning has 74.1% (Unet-ResNet101 without frame field learning has 71.9%). We however obtain more regular contours. To quantify this regularity we use the relative angle distribution metric on the same test sample, see Fig. 5.8 which shows our contours are more regular with more relative angles grouped around the expected corner angles of 0°, 90°, and 180°compared to ICNet. On another note, annotations for the Inria polygonized dataset are not perfect, with building corners rarely well-localized because of misalignment (even more so than the Inria OSM dataset because we did not perform any alignment correction for the Inria polygonized dataset so that we use the same ground truth as all the other methods). We hypothesize that is the reason even the best method on the dataset (ICTNet) outputs rounded corners: because that is the only way to maximize mIoU with the expected ground truth. Our network, being regularized with additional frame field losses, is able to output sharp corners. However, that also means it cannot hope to achieve state-of-the-art performance if only mIoU on an imperfect ground truth is considered. That being said it might still be possible to increase the mIoU performance with frame field learning to somewhere between our Unet-Resnet101 and ICTNet, simple poly.

Ours, simple poly.

LuxCarta dataset

Training on the LuxCarta dataset [START_REF] Tripodi | Automated chain for large-scale 3d reconstruction of urban scenes from satellite images[END_REF] had to be done on an internal computer of the LuxCarta company with limited access thus we only trained two models: U-Net16 (full) and U-Net16 (no field) until validation loss converges (around 1500 epochs). The Unet-Resnet101 would likely produce better segmentation maps but as we aim here to compare the regularization effect of the frame field learning compared to no frame field, training the U-Net16 was enough.

We show results on three test images from different cities not present in the training dataset, a challenging test of generalization capabilities, in Fig. 5.9-5.11. For each test image, we show our (full) frame field learning model followed by the (no field) model. As these are big satellite images, it is best to zoom-in for each one in order to appreciate the regularization effect of our method, which is even more clear on these challenging satellite images.

Conclusion

We improve on the task of image segmentation by learning an additional output to a standard segmentation model, a frame field. Because the network learns an additional highly correlated task, the segmentation performance is increased. Additionally, the use of coupling losses between outputs forces them to be correlated with one another, regularizing the segmentation, e.g., with sharp corners.

Our approach is efficient since the trained model is a single fully-convolutional network that is optimized by local supervision-all outputs for a pixel only require image information in a neighborhood around that pixel, just like conventional image segmentation. The training is straightforward, unlike adversarial training, direct shape regression, and recurrent networks, which require significant tuning. Our method also potentially can be used as a plugin for any existing image segmentation network, including in a multi-class segmentation setting, where the frame field could be shared between all classes.

Indeed frame field learning can be added to any segmentation network by adding a frame field output head. That output needs 4 channels for the 2 complex c 0 and c 2 per pixel. The frame field alignment loss must be added. Optionally, the regularization losses align90 and smooth can be added. The coupling loss between frame field and segmentation should be added to obtain a regular/sharp segmentation.

The final aim of adding a frame field output is to help the next step in the pipeline witch is polygonization. We propose our polygonization by frame field method in Chapter 6.

U-Net16 (no field)

Ours: U-Net16 with field learning Even a perfect classification map can admit a wrong polygonization due to locally ambiguous segmentation maps, as we illustrate above in (a), the output of marching squares. Our polygonization method iteratively optimizes the contour (b-d) to align to a frame field, yielding better results as our frame field (blue) disambiguate between slanted walls and corners, preventing corners from being cut off.

In this chapter, we introduce our polygonization method leveraging the frame field output from Chapter 5. Learning an additional frame field output regularizes the segmentation and thus brings us closer to a better polygonization. However, as we show again in Fig. 6.1, even a perfect segmentation map has local ambiguities when it comes to finding the polyline contours. This is due to the discretized nature of the raster output which loses some shape information. The frame field removes these ambiguities by bringing that missing shape information. Requiring a frame field input to a polygonization method is not a big requirement as we showed in Chapter 5, it needs a few convolutional layers to be added to an existing segmentation network, which virtually does not increase inference time.

The frame field allows us to devise a fairly simple polygonization method which is highly parallelizable on the GPU, making our polygon extraction pipeline very fast compared to more complex polygonization methods that do not have access to the frame field information. Our overall building extraction method essentially transfers some burden from the polygonization step to the neural network at little computational cost.

Our polygonization method is essentially an extension of the Active Contours Model (ACM) [START_REF] Kass | Snakes: Active contour models[END_REF] (also called snakes) to what we can call the Active Skeleton Model (ASM) which fits a skeleton graph to the image data rather than contours. This skeleton graph is a hyper-graph where each edge connects two junction nodes with a chain of vertices (i.e. a polyline). This choice is so that it is possible to handle the case of common walls between adjoining buildings, which is very common in city centers. In the state of the art, we have found no method handling this case (the LuxCarta dataset [START_REF] Tripodi | Automated chain for large-scale 3d reconstruction of urban scenes from satellite images[END_REF] paper shows results with the case of common walls but does not go into the details of their method for this case). Our method also naturally handles large buildings and buildings with inner holes, which fully-deep learning methods such as PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] do not. Lastly, our formulation and data structure choice allow a GPU implementation of the method.

The work presented in this chapter was posted online in the following pre-print:

• Polygonal Building Segmentation by Frame Field Learning Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka CoRR, abs/2004.14875, 2020. In preparation for CVPR.

Related work

As a reminder, the Ramer-Douglas-Peucker polyline simplification algorithm [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF][START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF] filters the vertices by keeping the most important ones in order to preserve the shape. Preserving the shape means having a Hausdorff distance between the simplified curve and the original below a chosen tolerance parameter ε. It starts by marking the start and end vertices to be kept. Then it orders the vertices in-between by their distance to the line connecting the start and end vertices. If the largest distance is greater then the tolerance ε, its corresponding vertex is marked to be kept and the algorithm is recursively applied to the two curves on either side of that farthest vertex. If however, the largest distance is below the tolerance ε, it means all distances are below ε and all vertices in-between the start and end vertices are marked to be removed. The result is a simplified curve whose Hausdorff distance to the original one is less than the tolerance ε.

Chapter 5 already introduced the main related work of extracting semantic geometry from images, which we will not repeat here. We can however stress the fact that no previous work is able to deal with common walls between adjoining buildings, contrary to our method.

Our polygonization method is inspired by the Active Contour Model (ACM) [START_REF] Kass | Snakes: Active contour models[END_REF], also called snakes. ACM is initialized with a given contour and minimizes an energy function E * contour (see eq.6.1) which moves the contour points towards an optimal position. Usually this energy is composed of the so-called internal and external energies. The internal energy controls the deformations made to the contour, for example it can be used to limit the amount of stretch and/or the amount of curvature. The external energy controls the fitting of the contour to the image. It can additionally include constraints added by the user to allow user interaction during optimization. E * contour is the total energy of the model:

E * contour = 1 0 E contour (v(s))ds = 1 0 E internal (v(s)) + E external (v(s)) ds . (6.1)
where s ∈ [0, 1] is the linear referencing of points v(s) ∈ R 2 along the contour. If the contour is closed then v(0) = v(1). The optimization is performed by gradient descent. Overall the ACM lends itself perfectly for parallelized execution on the GPU and the gradient descent optimization can be performed by a deep learning framework that includes an automatic differentiation module.

Polygonization method

.2: Overview of our post-processing polygonization algorithm. Given an interior classification map and frame field (see Fig. 5.3) as input, we optimize the contour to align to the frame field using an Active Skeleton Model (ASM) and detect corners using the frame field, simplifying non-corner vertices.

An overview of the polygonization method in Fig. 6.2 shows the main steps. The first step is to initialize the geometry structure to be optimized. This geometric structure can either be a collection of polyline contours given by marching squares [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] applied on the building interior probability map y int or it can be a skeleton graph which is the graph of connected pixels of the skeleton image obtained by the thinning method [START_REF] Zhang | A fast parallel algorithm for thinning digital patterns[END_REF] applied on the building wall probability map y edge . This geometry structure is then optimized mainly to align to the frame field in an Active Skeleton Model (ASM) approach (see Fig. 6.4), resulting in clean contours, especially at corners. Then, we apply a corner-aware simplification step to extract low-complexity polygons while ensuring corner vertices detected with the frame field are not removed.

Data structure

Our polygonization method needs to be initialized with some geometry which is then optimized to align to the frame field (among other objectives we will present later).

In the case of extracting individual buildings, we use the marching squares [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] contour finding algorithm on the predicted interior probability map y int with an isovalue l (set to 0.5 in practice). The result is a collection of contours {C i } where each contour is a sequence of 2D points:

C i = (r 0 , c 0), (r 1 , c 1), ..., (r ni-1 , c ni-1) .
where r i , c i ∈ R correspond to vertex i's position along the row axis and the column axis respectively (they are not restricted to being integers). A contour is generally closed with (r 0 , c 0) = (r ni-1 , c ni-1) but it can be open if the corresponding object touches the border of the image (therefore start and end vertices are not the same). In the case of extracting buildings with potential adjoining buildings having a common wall, we extract the skeleton graph of the predicted edge probability map y edge . This skeleton graph is a hyper-graph made of nodes connected together by chains of vertices (i.e. polylines) called paths (see Fig. 6.2 and Fig. 6.4 for examples). To obtain this skeleton graph, we first compute the skeleton image using the thinning method [START_REF] Zhang | A fast parallel algorithm for thinning digital patterns[END_REF] on the binary edge mask (computed by thresholding y edge with l = 0.5). It reduces binary objects to a one-pixel wide representation. We then use the Skan [START_REF] Nunez-Iglesias | skan: skeleton analysis in python[END_REF] Python library to convert this one-pixel wide representation to a graph representation connecting those pixels. The resulting graph is a collection of paths that are polylines connecting junction nodes together. We use an appropriate data structure only involving arrays (named tensors in deep learning frameworks) so that it can be manipulated by the GPU. We show in Fig. 6.3 an infographic of the data structure which we explain in the following. A sequence of node coordinates "pos" holds the location of all nodes i ∈ [0 . . n -1] belonging to the skeleton:

pos = (r 0 , c 0), (r 1 , c 1), ..., (r n-1 , c n-1)
where n is the total number of skeleton pixels and

(r i , c i) ∈ [0 . . H -1] × [0 . . W -1] correspond
to the row number and column number respectively (of skeleton pixel i). The skeleton graph connects junction nodes through paths which are polylines, themselves made up of connected vertices. These paths are represented by the "paths" binary matrix P p,n where element (i, j) is on if node j is in path i. This P p,n is sparse and thus it is more efficient to use the CSR (compressed sparse row) format which represents a matrix by three (one-dimensional) arrays respectively containing nonzero values, the column indices and the extents of rows. As P p,n is binary we do not need the array containing non-zeros values. The column indices array which we name "path_index" holds the column indices of all "on" elements: path_index = (j 0 , j 1 , ..., j n-njunctions+n degrees sum -1) , where n junctions is the total number of junction nodes, n degrees sum is the sum of the degrees of all junction nodes and ∀k ∈ [0 . . n -n junctions + n degrees sum -1], j k ∈ [0 . . n -1]. The extents of rows array which we name "path_delim" holds the starting index of each row (it also contains an extra end element which is the number of non-zeros elements n for easier computation): path_delim = (s 0 , s 1 , ..., s p) . This way in order to get row i of P p,n we need to lookup the slice (s i , s i+1) of path_index. In the skeleton graph case this representation is also easily interpretable. Indices of path nodes are all concatenated in path_index and path_delim is used to separate those concatenated paths. And finally a sequence of integers "degrees" stores for each node the number of nodes connected to it:

degrees = (d 0 , d 1 , ..., d n-1) .
As a collection of contours is a type of graph, in order to use a common data structure in our algorithm we also use the skeleton graph representation for the contours {C i } given by the marching squares algorithm (note we could use other contour detection algorithms for initialization). Each contour is thus an isolated path in the skeleton graph.

In order to fully leverage the parallelization capabilities of GPUs, the largest amount of data should be processed concurrently to increase throughput, i.e. we should aim to use the GPU memory at its maximum capacity. When processing a small image (such as 300 × 300 pixels from the CrowdAI dataset), only a small fraction of memory is used. We thus build a batch of such small images to process them at the same time. As an example, on a GTX 1080Ti we use a polygonization batch size B = 1024 for processing the CrowdAI dataset which induces a huge speedup. Building a batch of images is very simple: they can be concatenated together along an additional batch dimensions i.e. B images I i ∈ R 3×H×W are grouped in a tensor I ∈ R B×3×H×W . This is the case for the output segmentation probability maps as well as the frame field. However, it is slightly more complex to build a batch of skeleton graphs because of their varying sizes. Given a collection of skeleton graphs {(pos i , degrees i , path_index i , path_delim i)} i∈[..B-1] , all pos i and degrees i are concatenated in their first dimension to give batch arrays:

pos batch = [pos 0 , pos 1 , ..., pos B-1] ,
and:

degrees batch = [degrees 0 , degrees 1 , ..., degrees B-1] .
All path_index i need their indices to be shifted by a certain offset:

offset i = i-1 k=0
|pos k |, with |pos k | the number of points in pos k , so that they point to the new locations in pos batch and degrees batch . They are then concatenated in their first dimension:

path_index batch = [path_index 0 + offset 0 , ..., path_index B-1 + offset B-1] .
In a similar manner, we concatenate all path_delim i into path_delim batch while taking care of adding the appropriate offset. We then obtain a big batch skeleton graph which is represented in the same way as a single skeleton graph. In order to later recover individual skeleton graphs in the batch, similarly to path_delim, we need a batch_delim array that stores the starting index of each individual skeleton graph in the path_delim array (it also contains an extra end element which is the total number of paths in the batch for easier computation). While we apply the optimization on the batched arrays pos batch , path_index batch , and so on, for readability we will now refer to them as pos, path_index and so on. Note that in the case of big images (such as 5000 × 5000 pixels from the Inria dataset), we set the batch size to 1, as the probability maps, the frame field, and the skeleton graph data structure fills the GPU's memory well.

At this point the data structure is fixed, i.e. it will not change during optimization. Only the values in pos will be modified. This data structure is efficiently manipulated in parallel on the GPU. All the operations needed for the various computations performed in the next sections are run in parallel on the GPU.

We compute other tensors from this minimal data structure which will be useful for computations:

• path_pos = pos[path_index] which expands the positions tensor for each path (junction nodes are thus repeated in path_pos).

• A batch tensor which for each node in pos_batch stores the index i ∈ [0 . . B -1] of the individual skeleton this node belongs to. This is used to easily sample the batched segmentation maps and the batched frame fields at the position of a node. We adapt the formulation of the Active Contours Model (ACM) to an Active Skeleton Model (ASM) in order to optimize our batch skeleton graph. The advantage of using the energy minimization formulation of ACM is to be able to add extra terms if needed (we can imagine adding regularization terms to e.g. reward 90°corners, uniform curvature, and straight walls). Energy terms will be parameterized by the node positions p ∈ pos, which are the variables being optimized. The first important energy term is E probability which aims to fit the skeleton paths to the contour of the building interior probability map y int (v) at a certain probability level l (which we set to 0.5 in practice, just like the isovalue used to initialize the contours by marching squares):

Active Skeleton Model

E probability = p∈pos (y int (p) -l) 2 .
The value y int (p) is computed by bilinear interpolation so that gradients can be back-propagated to p. Additionally, y int (p) implicitly entails using the batch array to know which slice in the batch dimension of y int ∈ R B×1×H×W to sample p from. This will be the case anytime batched image-like tensors are sampled at a point p. In the case of the marching squares initialization, this E probability energy is actually zero at the start of optimization, since the initialized contour already is at isovalue l. For the skeleton graph initialization, paths that trace inner walls between adjoining buildings will not be affected since the gradient is zero in a neighborhood of homogeneous values (i.e. y int = 1 inside buildings).

The second important energy term is E frame field align which aligns each edge of the skeleton paths to the frame field. Edge vectors are computed in parallel as:

e = path_pos[1:] -path_pos[:-1] ,
while taking care of removing from the energy computation "hallucinated" edges between paths (using the path_delim array). For readability we call E the set of valid edge vectors. For each edge vector e ∈ E, we refer to its direction as e dir = e e . We also refer to its center point as e center = 1 2 (path_pos[1:] + path_pos[:-1]). The frame field align term is defined as: This is the term that disambiguates between slanted walls and corners and results in regularlooking contours.

E
The last important term is the internal energy term E length which ensures node distribution along paths remains homogeneous as well as tight:

E length = e∈E |e| 2 .
All energy terms are then linearly combined:

E total = λ probability E probability + λ frame field align E frame field align + λ length E length .
In practice, the final result is robust to different values of coefficients for each of these three energy terms, and we determine them using a small cross-validation set. The total energy is minimized with the RMSprop [START_REF] Tieleman | Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude[END_REF] gradient descent method with a smoothing constant γ = 0.9 with an initial learning rate of η = 0.1 which is exponentially decayed. The optimization is run for 300 iterations to ensure convergence. Indeed since the geometry is initialized to lie on building boundaries, it is not expected to move more than a few pixels and the optimization converges quickly. See Fig. 6.4 for a zoomed example of different stages of the ASM optimization. We now have a collection of connected polylines that forms a planar skeleton graph. As building corners should not be removed during simplification, only polylines between corners are simplified. For the moment our data structure encodes a collection of polyline paths connecting junction nodes in the skeleton graph. However, a single path can represent multiple walls. It is the case for example of an individual rectangular building: one path describes its contour while it has 4 walls. In order to split paths into sub-paths each representing a single wall we need to detect building corners along a path and add this information to our data structure. This is another reason to use a frame field input, as it implicitly models corners: at a given building corner, there are two tangents of the contour. The frame field learned to align one of u or -u to the first tangent and one of v or -v to the other tangent. Thus when walking along a contour path if the local direction of walking switches from ±u to ±u or vice versa, it means we have come across a corner, see Fig. 6.5 for an infographic for corner detection. Specifically for each node i with position p = path_pos[i] its preceding and following edge vectors are computed as:

Corner-aware polygon simplification

e prev = path_pos[i] -path_pos[i-1] and e next = path_pos[i+1] -path_pos[i].
As the frame field is represented by the coefficients {c 0 , c 2 } at each pixel, we first need to convert it to its {u, v} Because the path positions are concatenated together in the path_pos tensor, some care must be taken for nodes at the extremities of paths (i.e. junction nodes) as they do not have both preceding and following edges. The path_delim tensor is used to mark those nodes as not corners. Once corners are detected we obtain a tensor is_corner_index = {i | node i is a corner} which can be used to separate paths into sub-paths each representing a single wall by merging is_corner_index with the path_delim tensor through concatenation and sorting. Now that each sub-path polyline represents a single wall between two corners, we apply the Ramer-Douglas-Peucker [START_REF] Ramer | An iterative procedure for the polygonal approximation of plane curves[END_REF][START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF] simplification algorithm separately on all sub-path polylines. As explained in the related work, the simplification tolerance ε represents the maximum Hausdorff distance between the original polyline and the simplified one.

Detecting building polygons in planar graph

To obtain our final output of building polygons, the collection of polylines is polygonized by detecting connecting regions separated by the polylines. A list of polygonal cells that partition the entire image is thus obtained. The last step computes a building probability value for each polygon using the predicted interior probability map and removes low-probability polygons.

Experimental setup

Datasets

We use the same trained models on the same datasets as in Chapter 5: CrowdAI [START_REF] Prasanna | Crowdai dataset[END_REF], Inria (OSM and polygonized versions) [START_REF] Maggiori | Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[END_REF], and LuxCarta [START_REF] Tripodi | Automated chain for large-scale 3d reconstruction of urban scenes from satellite images[END_REF] datasets. We explain how we build the Inria polygonizing dataset below.

Building the Inria polygonized dataset

As explained in Chapter 5, in order to compare to other methods on the associated leaderboard of the Inria dataset, we needed to use the original ground truth masks of the Inria dataset (instead of downloading annotations from OSM). However as those ground truth masks do not provide the ground truth tangent angles θ τ needed for our frame field, we used our frame field polygonal extraction pipeline to polygonize the ground truths masks. In this setting, the input to our network (we used the small U-Net16) is just the binary mask and the output a frame field. In order to train this model, we need a dataset of (binary masks, θ τ) pairs. We used the OSM annotations of the Inria OSM dataset, which we rasterized to obtain the input binary masks and which we used to compute θ τ . After our model finished training, we applied our frame field polygonization method on the original binary masks of the Inria dataset and their predicted frame fields. The new Inria polygonized dataset is thus made of (RGB image, polygonized annotations) pairs.

Ablation studies

We perform an ablation study on the CrowdAI dataset to validate various components of our polygonization method:

• Simple polygonization: Use a baseline polygonization algorithm (marching-squares contour detection followed by the Ramer-Douglas-Peucker simplification algorithm) on the interior classification map learned by our full method. It is thus not a field-aligned polygonization method and allows us to study the improvement of our polygonization method leveraging the frame field.

• We perform an ablation study to demonstrate the effect on the trade-off between complexity and fidelity of the tolerance parameter ε of our corner-aware simplification procedure.

We also perform this study on the "simple polygonization" algorithm-marching squares followed by Ramer-Douglas-Peucker-for comparison.

Metrics

In addition to the metrics introduced in Chapter 5, for the polygon complexity/fidelity trade-off ablation study we plot the AP and AR scores for difference simplification tolerance values ε.

Results and Discussion

CrowdAI dataset

For the CrowdAI dataset, we use the marching squares initialization in our polygonization algorithm, as the dataset primarily has individual suburban buildings. We first visualize our polygonal extraction results compared to other methods who shared their results with us in [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF] take as their input the probability maps of a U-Net variant [START_REF] Czakon | Best practices for elegant experimentation in data science projects[END_REF] that won the CrowdAI challenge. We observe that all methods perform well on common building types e.g. houses and residential buildings. However, we can already note that Li et al.'s results are less regular than Polymapper and ours. For more complex building shapes (e.g. not rectangular or with a hole inside), Li et al. output reasonable results, albeit still not very regular. However, the PolyMapper approach of object detection followed by polygonal outline regression does not work in most difficult cases. It cannot handle holes in the detected shapes by design, but also, it has trouble with big complex buildings. We hypothesis that PolyMapper suffers more from the fact that there are not many complex buildings and does not generalize as well as fully-convolutional networks.

We also visually compare our frame field polygonization method with the simple baseline polygonization algorithm (both when the frame field is computed and when it is not) in Fig. 6.7. The Unet-Resnet101 without frame field learning and whose results are polygonized with the simple method performs the worst (see Fig. 6.7c), with the Unet-Resnet101 with frame field learning and whose results are polygonized with the simple method performs already much better (see Fig. 6.7b). Our Unet-Resnet101 with frame field learning and whose results are polygonized with our frame field polygonization method performs the best, with better corners using fewer vertices (see Fig. 6.7a). We can see our method provides the missing information needed to resolve ambiguous cases for polygonization, as shown in Fig. 6.1, and outputs more regular polygons.

We then report in Table 6.2 our max tangent angle error introduced in the last Chapter 6, § 5.4.4. The combination of frame field learning and frame field polygonization achieves a mean error of 31.9°, compared to 33.1°for PolyMapper which is the best-performing previous work in terms of that metric. Indeed the regularity of each method can also be observed in Fig 6 .6. Our method explicitly optimizes tangent for alignment with the ground truth though the frame field. Even though PolyMapper does not explicitly optimize for such alignment, it naturally performs well. In the case of the polygonization method of Li et al., because the probability maps they use are not regularized in any way and they also do no have any tangent alignment term in their polygonal refinement procedure, it does not perform well in this metric.

We report MS COCO metrics on the original validation set of the CrowdAI dataset in Table 6.3 for all experiments, as well as results of previous works. As explained in Chapter 5, AP and AR do not capture the regularity of the contours thus with these metrics we only check if our method does not drop in terms of AP and AR metrics compared to others. Indeed comparing (with field) and (no field) as well as "simple poly." and "our poly.", we observe similar AP and AR results. Compared to other methods we outperform PolyMapper while not reaching the performance of Li et al. Note that Li et al.'s method relies on probability maps whose quality is the largest contribution to AP and AR (as is the case with our method: it is the segmentation part of the network that determines AP and AR, explaining why adding a frame field does not change AP and AR much). As they use the probability maps of the winning method of the CrowdAI challenge (determined by the maximum AP over all competitors), they naturally obtain high AP and AR metrics.

We perform an analysis of the polygonization complexity/fidelity trade-off by changing the tolerance value ε of the baseline simplification method and our corner-aware method. Fig. 6.8a shows that preventing the removal of building corners ensures key points of the contours and the global shape of the building remain intact even with extreme simplification tolerance values. We also plot the AP and AR values of both methods while increasing the tolerance value ε in Fig. 6.8. As expected the score of our method does not drop, unlike the simple polygonization method.

Our polygonization method allows the complexity-to-fidelity ratio to be tuned with the easyto-interpret tolerance value ε of the Ramer-Douglas-Peucker algorithm, unlike Li et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF], which uses a non-intuitive parameter λ to balance complexity and fidelity energies during polygonal partition optimization. Finally, PolyMapper [START_REF] Li | Topological map extraction from overhead images[END_REF] does not have the ability to tune the complexityto-fidelity ratio.

Running times

We compare the running times of our method compared to others in Table 6.4. Since each comparison method is proposed in a different research paper, each row notes the different hardware used and whether or not each timing includes the whole pipeline. For Li et al.'s running time, their paper reports 1-3s per 300 × 300 pixel patch however it is on a single CPU core without parallelization. They do not have a GPU implementation but they give an average running time of 1-3s on CPU with 5-10% CPU utilization. Assuming perfect parallelization, they estimate their average running time to be 0.15s with 100% CPU utilization. Indeed their method is inherently more complex, using a priority queue for optimizing the polygonal partitioning with various geometric operators and is harder to implement on GPU. Overall, we find that our efficient data structure allows our building extraction running time to be competitive with previous work.

Inria OSM dataset

The Inria OSM dataset allows us to show the ability of our method to handle hard cases of nontrivial building topologies, with, e.g., one or more holes, and common walls between adjoining buildings. We show results of our full frame field learning and polygonization with the U-Net16 model on three test images (and compare to the baseline U-Net16 (no field), simple poly.) in Fig. 6.9-Fig. 6.11. Our method successfully handles complex building shapes which can be very large, with blocks of buildings featuring common walls and holes.

Inria polygonized dataset

On the Inria polygonized dataset, we continue our comparison (from Chapter 5) to the best method on the leaderboard at the time of writing: ICTNet [START_REF] Chatterjee | On building classification from remote sensor imagery using deep neural networks and the relation between classification and reconstruction accuracy using border localization as proxy[END_REF]. Their building mask is still being polygonized with the simple polygonization method. For our full method, we use here the Unet-Resnet101 with field learning and polygonization. See Fig 6 .12 for a side-by-side comparison, highlighting our more regular buildings, which thus also use fewer vertices.

LuxCarta dataset

Moving on to the more challenging satellite images of the LuxCarta dataset, we show our full frame field learning and polygonization method using the U-Net16 model on few test images from very different cities not present in the training set. We compare to the baseline U-Net16 without frame field learning and using the simple polygonization method. See Fig. 6.13-6.15 for sideby-side comparisons. The frame field regularization effect is more pronounced on these satellite images. The ability of our method to separate adjoining buildings is also greatly showcased on these images, even if some common walls are missed by our U-Net16 model.

Conclusion

We introduced our frame field polygonization algorithm that makes use of the frame field to solve ambiguous cases of contour detection in segmentation maps. Additionally, the ability to use the frame field to detect building corners allows for their preservation during the simplification step, regardless of the tolerance value ε used, keeping the global shape of buildings even under strong simplification.

Computing a frame field only requires using two extra convolutional layers to an existing segmentation network, adding virtually no cost to inference time. The frame field also yields a rather simple polygonization method, because it provides information to disambiguate tough polygonization cases. Low running times are critical for remote sensing, which deals with enormous numbers of large images. Thanks to an adapted data structure, our frame field polygonization method is highly parallelizable on the GPU, making our polygon extraction pipeline very fast. Our method essentially transfers some burden from the polygonization step to the neural network at little computational cost. Our method handles the case of holes in the building shape, as well as common walls between adjoining buildings. Because of the use of a skeleton graph structure, we naturally have a geometric guarantee that the common wall polyline is indeed shared by the building polygons on either side of it.

Using the frame field output could very well be used by other polygonization methods (e.g. Li et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF]) as well. The overall conclusion of frame field learning and polygonization is that asking the network to learn a frame field virtually does not add any inference time. In addition to regularizing probability maps, it is essentially free additional information that any post-processing methods could use. Chapter 7

Conclusions and Perspectives

The main objective of this thesis was to develop automatic methods for contributing to the effort of mapping our world, thus creating a semantic digital double of the Earth. As Geographic Information Systems for map editing use a sparse vector representation of object shapes, such automatic methods must be able to manipulate and output this sparse vector format. Using the immense resource of remote sensing images (satellite and aerial images) is the only way to rapidly and frequently gather surface information for whole continents. This massive imagery data requires efficient algorithms to process them. Besides, that data has errors due to the capturing process and post-processing of overhead images (such as orthorectification which causes shift or alignment errors).

In the first two chapters of this thesis (Chapter 2 and Chapter 3), we proposed a method for aligning existing building maps (in vector format) with overhead images. For this task, we proposed a multi-task, multi-resolution deep learning model. The use of multi-task learning by adding the extra segmentation task not only helps the network to train better in a more stable manner, but it also detects new buildings (albeit in raster format) when coupled with a data augmentation technique of randomly dropping input polygons when training. Adding intermediate losses at different resolution levels inside the network also helps the training by providing a better gradient flow. It improves the performance on both alignment and segmentation tasks and could be used in other deep learning methods that have an image-like output that can be interpreted at different scales and use a U-Net like network structure. Interestingly, multi-task learning also helps the segmentation task. An additional natural application of alignment methods is building height estimation, using two stereo images on top of which we align annotations to the rooftops. This first alignment method was trained with hand-picked, rather noise-less (misalignment free) annotations however even if some misalignment was still present in the ground truth annotations, we observed that our method could still learn from it. After noticing the ability of our network to learn with somewhat noisy annotations (i.e. misaligned), we experimented learning with all the noisy annotations of our dataset (without any hand-picking to avoid the most severe misaligned annotations) in a multi-round training scheme to iteratively train better alignment 139 models from corrected annotations from the previous round. This procedure was successful in denoising the dataset, even when we artificially added even more misalignment noise as an experiment. That work concluded that even noisy/misaligned annotations are useful and informative enough. Lastly, we aimed to explain this self-denoising phenomenon by formalizing the idea that a trained neural network sees two given input samples as more or less similar. We proposed a similarity measure in terms of how much optimizing the network's weights to push the output of one input affects the output of another second input. This allowed us to extend the explanation of Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] to the case of non-identical but similar inputs through the introduction of the notion of that similarity between inputs from the point of view of the neural network. That similarity then allows us to define a density estimator (or neighbor count estimator). The more neighbors an input patch has, the more noisy ground truth labels (from those neighbors) contribute to its output optimization, thus reducing the final noise of the ground truth. We can thus express the self-denoising effect as a function of inputs' similarities.

We then moved on to the task of extracting objects from overhead images in the vector representation needed to update and contribute to maps in Geographic Information Systems in Chapter 4. With the aim to propose a full deep learning method, trainable end-to-end, we experimented with using a neural network for predicting 4-sided polygons. Using a CNN architecture and an adapted L 2 loss we reached good performance on the task of extracting solar panels from aerial images. We showed that learning directly in a vectorial representation is possible in an end-to-end fashion and yields better results than a 2-step process involving a U-Net followed by vectorization. Indeed our method can better predict the geometric shape of the object and by-passes a classification raster map representation that exhibits rounded corners for man-made objects such as solar panels. Another interesting note is that while pre-training usually means using pre-trained weights from early layers of another network, we also show it can be useful to pre-train the last layers of a neural network as well (the decoder part in our case), especially if it can be done on an artificially-generated dataset as was our case.

Our last work also aims to extract objects in a vector representation from overhead images. However, after reviewing related work we opted for a hybrid approach between using a neural network to output a segmentation probability map in the first half of our pipeline (Chapter 5); followed by a vectorization algorithm in the second half of our pipeline (Chapter 6); and using a neural network to directly output objects in vector representation. Our hybrid approach uses a frame field which can be seen as an extension of a vector field but which has four vectors constrained {-u, u, -v, v} at each location instead of just one. Working with an appropriate representation of that frame field we show it is possible to train a neural network to predict a frame field from an overhead image so that at least one of the frame field directions {±u, ±v} aligns with the local tangent vector of an object's contour. We thus trained segmentation neural networks to output a building interior probability map and a building wall probability map as well as a frame field. With losses to enforce the obvious correlation between all outputs (the tangent of the detected shapes should align with the frame field), we observe a regularization effect on the segmentation map outputs, featuring straighter walls and sharper corners compared to other methods not using a frame field output. We thus achieved output regularization through the use of additional losses only, without requiring any Generative Adversarial Network or big network architecture change or post-processing. Our approach is also efficient since the trained model is a single fully-convolutional network on which only two extra convolutional layers were added for the frame field output. That network is also optimized by local supervision-meaning all outputs for a pixel only require image information in a neighborhood around that pixel, just like conventional image segmentation. It thus does not need any attention layer or other methods to cater to cases where the output for a certain pixel should be influenced by the input of a pixel far away. The training is straightforward, unlike adversarial training, direct shape regression, and recurrent networks, which require significant tuning. Our method also potentially can be used as a plugin for any existing image segmentation network with a different target class. Indeed frame field learning can be added to any segmentation network by adding a frame field output head. That output needs 4 channels for the 2 complex c 0 and c 2 (representing the frame field) per pixel. The frame field alignment loss must be added and there is the option for regularization losses to be added as well. The coupling loss between frame field and segmentation should be added to obtain a regular/sharp segmentation. The other half of our object extraction pipeline is our proposed frame field polygonization algorithm which first has access to a regularized segmentation of the image but also makes use of the frame field output to solve ambiguous cases of contour detection in segmentation maps. Additionally, the ability to use the frame field to detect building corners allows for their preservation during the simplification step, regardless of the tolerance value ε used, keeping the global shape of buildings even under strong simplification. The frame field allows us to develop a rather simple polygonization method because it provides information to disambiguate tough polygonization cases. As low running times are critical for remote sensing, we use an efficient data structure, so that our frame field polygonization method is highly parallelizable on the GPU, making our polygon extraction very fast. Our hybrid method essentially transfers some burden from the polygonization step to the neural network at very little computational cost (only two extra convolutional layers added for the frame field output). Furthermore, our method can handle holes within buildings which full deep learning methods cannot handle at least for now. Lastly, our method can also handle the case of adjoining buildings that share a wall (e.g. in European city centers) with a geometric guarantee that the corresponding wall polyline is shared by the building polygons on either side of it. We have not found any state-of-the-art method explaining how to tackle this case.

Lastly, we would like to mention related work too recent to be included in the thesis but that expand on some of our work. On the task of map alignment and correction, [START_REF] Zorzi | Map-repair: Deep cadastre maps alignment and temporal inconsistencies fix in satellite images[END_REF] propose a full framework for removing or adding buildings as well as aligning misaligned footprints and compare favorably to our alignment method. On the task of polygonal building extraction, [START_REF] Zorzi | Machine-learned regularization and polygonization of building segmentation masks[END_REF] propose a model that predicts building corners, which are then used as vertices of the final polygons. However, as results for curved building walls are not shown, we are not sure how well they are handled. At any rate, research interest is still growing in these topics, as they keep being relevant and there is still room for improvement.

Perspectives

For the task of map alignment, a simplification of the multi-resolution approach would be a welcomed one to increase speed. Indeed our current method uses 4 different double U-Net networks with different spatial resolution inputs. Within those U-Nets the input spatial resolution is further reduced by a factor of 2 after each pooling operation. Overall many features computed from a certain input spatial resolution have the same spatial resolution as other features from another network but at a different level within the network (they do have different semantic depth though). As an example, the features after the first pooling operation of the network with an input downscaling factor of 2 have the same spatial resolution as the features before the first pooling operation of the network with an input downscaling factor of 4. It must be possible to merge all those features from 4 different networks into a single one while still having a multiresolution approach which is greatly needed since displacements can be very large. We can imagine using a CNN to extract features from the image and a Graph Neural Network to extract features from the input polygons. Features from both can be mixed by sampling the image features at the location of polygon vertices for example in a very similar way to Curve-GCN [START_REF] Ling | Fast interactive object annotation with curve-gcn[END_REF] which fits an ellipse polygon an object. Such a network would be smaller than the combination of all 4 of our networks and would have faster inference time. Training time might not necessarily be lower though, as we can train our 4 networks in parallel. However total resources spend on training would be lower as well as inference time.

In the case of the alignment of noisy annotations in remote sensing datasets, future work would aim to apply the mathematical tools developed around the input similarity measure from the neural network perspective to study more specifically the self-denoising effect we observed by for example experimenting with computing the similarity measure on individual buildings (instead of small patches as in the previous section, where we measure the similarity on the center pixel output of the patch) and find out how they are grouped into close neighbors by the model. Another experiment to find out how the model deals with unique buildings whose neighborhood we expect to be very small. It may be the case that the similarity grouping performed by the model is more refined than at the building level: it may consider parts of buildings as similar which would explain how it can deal with more unique buildings.

Our proposed frame field learning method is quite general and could be used for other classes (especially any man-made objects), including in a multi-class segmentation setting. For the multiclass setting, an option would be to have a frame field output for each class, but a better option would be to have a single frame field output shared between all classes. In that case using a frame field, which is a 4-PolyVector field that constrains two vectors to be the opposite of the other 2 vectors, may not be enough. For example, if three objects intersect at the same point (either in real life or due to overlaps), three sets of directions would be needed: {-u, u}, {-v, v} and {-w, w}. That case would require a 6-PolyVector field which would require three complex coefficients c 0 , c 2 , c 4 instead of two for the efficient representation. The field output would have an extra 2 channels. The align loss would not require much change: it would just use the three complex coefficients for the polynomial f (which would now be of degree 6). As our frame field polygonization uses the same align loss, it does not require any additional change. Corner detection can also be adapted to detect any frame field direction change while following the contour. Our whole method is thus relatively easy to extend to a 6-PolyVector field to properly handle the case of multi-class polygonal extraction. In the same way, it could be extended to 8-PolyVector field but only extreme cases of three objects meeting a the same point would require it.

Furthermore, the learned frame field output can very well be used by other polygonization methods (e.g. Li et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF]) as well. Asking the network to learn a frame field virtually does not add any inference time. In addition to regularizing probability maps, it is essentially free additional information that any post-processing methods could use.

While deep learning certainly has impressive modeling capabilities and increased performance, we can never expect a model to be correct 100% of the time. There will always be a certain amount of wrong predictions. As many commercial products should be able to guarantee the quality of their results, it becomes more difficult to use deep learning methods, where a human would need to spend time reviewing every prediction to ensure 100% quality. In the case of remote sensing, we explained in the introduction that there are simply too many remote sensing images being produced constantly that it becomes impossible to assign humans to check every prediction. Methods for quality control of a model's predictions are greatly needed. The most basic being the pixel-wise classification confidence score between 0 and 1, however, that score does not correspond to anything meaningful: a score of 0.8 does not mean the system is 80% sure of its prediction. It just means it is more sure of that prediction than another prediction with a confidence score of 0.6 for example. There is also no guarantee that the confidence score is linear. Finally, adversarial examples (first discovered in [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]) clearly show that the network's confidence score only shows confidence from the perspective of the network, not reality: a network can be 99% confident it has detected a cat given an image of a car that was imperceptibly modified to be an adversarial example. Less severe cases of adversarial examples can naturally occur in remote sensing, with the notable example of a parking lot on top of a building (usually classified as a parking lot, while the building underneath is completely missed). Clearly better methods for automatic quality control are needed, as well as ways to deal with adversarial examples. On this note, a recent work [START_REF] Burnel | Generating natural adversarial Remote Sensing Images[END_REF] developed a method to generate natural-looking remote sensing images that can fool a neural network into making a wrong prediction. Developing such adversarial attack methods are necessary in order to later develop methods to counter them.

The example of a parking lot on top of a building resulting in a missed building detection shows that neural networks are missing an essential component of our human vision system: reasoning. From different cues around the parking lot (e.g. shadows, perspective), we Humans can infer that it is on top of a building. Neural networks do not make such reasoning, nor do they ask themselves if their predictions make sense given the input image. However, in recent years datasets for common sense reasoning have been released, to spur the community to develop methods imbibed with common sense (for example [START_REF] Zellers | From recognition to cognition: Visual commonsense reasoning[END_REF]). Methods for graph reasoning using a Graph-NN on detected objects have emerged [START_REF] Santoro | A simple neural network module for relational reasoning[END_REF][START_REF] Liang | Symbolic graph reasoning meets convolutions[END_REF] and are able to answer queries such as comparing positions between objects, count objects, etc. In remote sensing more specifically, RSVQA [START_REF] Lobry | Rsvqa: Visual question answering for remote sensing data[END_REF] is a method for visual question answering for remote sensing data and can answer e.g. location questions of an object relative to another object, count the number of objects of a certain type, and determine the area covered by a certain object type. These methods bring reasoning capabilities to neural networks and should spur further research on this topic.

Résumé Étendu

R.1 Introduction

Comprendre l'environnement spatial dans lequel nous évoluons est une initiative cruciale qui nous permet de prendre des décisions éclairées pour naviguer notre vie quotidienne et permet à notre société de se développer. De savoir où aller chercher de la nourriture à l'époque préhistorique à suivre nos smartphones jusqu'au magasin d'alimentation le plus proche, nous avons toujours conçu des outils pour enregistrer des informations de localisation pour nous-mêmes mais aussi, et surtout, pour les partager avec les autres. En commençant par le langage pour décrire le chemin menant à un certain endroit, en passant par des images sculptées représentant des éléments simples du paysage tels que les montagnes, les rivières, les vallées et les routes vers 25 000 avant J.-C., puis par la carte du monde de Babylone, une tablette d'argile créée vers 700 à 500 avant J.-C. en Mésopotamie, par des cartes imprimées sur papier pour la grande distribution et enfin par l'invention de Google Maps et d'autres cartes numériques gratuites en ligne d'aujourd'hui. Si pendant la plus grande partie de notre histoire, la cartographie a nécessité le déplacement physique d'un cartographe vers les lieux à cartographier, depuis l'invention du vol et, plus tard, du vol spatial, nous pouvons recueillir des informations de localisation de beaucoup plus loin et donc beaucoup plus rapidement. Aujourd'hui, la prolifération et l'amélioration constantes des capteurs de données satellitaires permettent d'obtenir un énorme volume d'images de la Terre à haute résolution spatiale et temporelle, ainsi que de riches informations spectrales. À titre d'exemple, une seule entreprise appelée Planet est sur le point de mettre à jour sa constellation de satellites et sera en mesure de capturer des images détaillées (50 cm/px) de n'importe quel point sur terre sept fois par jour et dans certaines régions jusqu'à 12 fois par jour [START_REF] Sheetz | How planet's new satellite fleet will bring detailed images of places on earth up to 12 times a day[END_REF]. Dès 2016, DigitalGlobe a capturé suffisamment d'images à haute résolution (également de 50 cm/px) pour couvrir la surface équivalente de toute l'Inde chaque jour [START_REF] Technologies | Fun facts about digitalglobe satellites[END_REF]. En 15 ans de fonctionnement, il ont accumulés près de 90 pétaoctets de données.

Ces données constituent une source d'information très précieuse, qui ouvre la porte à un large éventail d'applications importantes, telles que la surveillance des catastrophes naturelles, la planification des environnements urbains et l'agriculture de précision. Cependant, les pétaoctets de ces images massives sont stockés dans des fichiers binaires sous forme de données brutes non structurées qui n'ont aucun sens pour un ordinateur. Afin d'intégrer les informations pertinentes que ces images contiennent dans des cartes, il est crucial et urgent de concevoir de 145 nouvelles méthodes pour extraire des informations significatives de ces images. Comme indiqué dans [START_REF] Madrigal | How google builds its maps-and what it means for the future of everything[END_REF], il n'y a pas si longtemps, les cartes étaient construites et mises à jour grâce à des efforts humains incroyables (des centaines d'opérateurs travaillant des milliers d'heures pour cartographier chaque pays). Depuis lors, l'apprentissage automatique a permis [START_REF] Lookingbill | Google maps 101: how we map the world[END_REF] d'automatiser au maximum le processus, avec la mise au point de techniques de détection et de délimitation supervisées d'objets d'intérêt. Les catégories d'objets sont spécifiques à l'application ciblée, et les régions identifiées sont éventuellement vectorisées. Une application courante est la cartographie urbaine, où l'objectif est de détecter les routes et les bâtiments dans le but de créer une carte du système d'information géographique (SIG) pour les emplacements géographiques. Les approches existantes sont soigneusement adaptées à chaque application et à chaque capteur d'imagerie. Elles ne sont pas adaptées pour résumer efficacement le contenu d'une image satellite. La mise à jour automatique des cartes de la Terre a d'autres applications, notamment la navigation humaine, la conduite assistée par l'homme, la conduite autonome, la livraison automatisée de drones, l'urbanisme, les télécommunications et la gestion des catastrophes [START_REF] Luiz | An analysis of geospatial technologies for risk and natural disaster management[END_REF], la recherche et le sauvetage et la topographie (par example animaux et plantes). Le développement de méthodologies efficaces pour la mise à jour et la création de cartes apporterait une contribution importante à l'automatisation de la cartographie, qui peut avoir un impact économique majeur.

Objectif

Avec cette thèse, nous visons à développer des méthodes pour l'édition automatique de cartes dans les Systèmes d'Information Géographique (SIG) en intégrant des informations géolocalisées extraites d'images de télédetection. Il peut s'agir de la localisation d'objets, d'animaux ou de plantes artificielles, ou de la délimitation de périmètres de zones sémantiques telles que les forêts, les zones urbaines et les bâtiments. La tâche la plus importante est l'extraction d'objets dans un format compatible avec le SIG, qui consiste à délimiter des objets avec une représentation vectorielle (généralement un polygone). Une autre tâche importante consiste à corriger l'alignement des objets cartographiés existants avec une image aérienne de cet objet.

R.2 Contributions

Nous résumons nos contributions et leur organisation dans les paragraphes suivants. Les chapitres 2 et 3 doivent être lus dans l'ordre ainsi que les chapitres 5 et 6. Chapitre 6 L'objectif final de l'approche d'apprentissage du "frame field" est de faciliter l'étape de polygonisation (ou de vectorisation). En effet, la polygonisation des cartes de probabilité de segmentation est loin d'être triviale. Les méthodes de polygonisation doivent surmonter les erreurs dans la carte de segmentation elle-même, ce qui rend l'estimation du contour difficile. Plus important encore, le fait que les cartes de probabilité de segmentation soient discrétisées introduit des ambiguïtés dans la représentation des formes. Ces ambiguïtés sont le résultat d'un manque d'informations provenant de la représentation de la carte de probabilité de segmentation. La sortie "frame field" du chapitre précédent apporte les informations de forme manquantes nécessaires à la résolution de ces ambiguïtés. Nous introduisons un nouvel algorithme de polygonisation qui exploite ce "frame field", parallélisable sur GPU et donc rapide. Enfin, cette méthode de polygonisation par "frame field" est capable de traiter le cas de bâtiments collés les uns aux autres partageant des murs communs. Notre méthode détecte ces murs communs avec une seule polyligne et garantit géométriquement que cette polyligne est partagée par les polygones de construction de chaque côté de celle-ci. Le code pour ce travail est disponible sur GitHub : https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.

R.3 Conclusions et Perspectives

L'objectif principal de cette thèse était de développer des méthodes automatiques pour contribuer à l'effort de cartographie de notre monde, créant ainsi un double numérique sémantique de la Terre. Comme les systèmes d'information géographique pour l'édition des cartes utilisent une représentation vectorielle parcimonieuse des formes d'objets, ces méthodes automatiques doivent manipuler et produire ce format vectoriel parcimonieux. L'utilisation de l'immense ressource que constituent les images de télédétection (images satellites et aériennes) est le seul moyen de recueillir rapidement et fréquemment des informations de surface pour des continents entiers. Ces données d'imagerie massives nécessitent des algorithmes efficaces pour les traiter. En outre, ces données comportent des erreurs dues au processus de capture et au post-traitement des images aériennes (telles que l'orthorectification qui provoque des erreurs de décalage ou d'alignement).

Dans les deux premiers chapitres de cette thèse (Chapitre 2 et Chapitre 3), nous avons proposé une méthode pour aligner les cartes de bâtiments existantes (en format vectoriel) avec les images aériennes. Pour cette tâche, nous avons proposé un modèle d'apprentissage profond multi-tâches et multi-résolution. L'utilisation de l'apprentissage multitâche en ajoutant la tâche de segmentation supplémentaire permet non seulement au réseau de mieux s'entraîner de manière plus stable, mais aussi de détecter les nouveaux bâtiments (bien qu'en format raster) lorsqu'il est couplé à une technique d'augmentation des données consistant à supprimer aléatoirement des polygones d'entrée lors de l'entraînement. L'ajout de fonctions objectives intermédiaires à différents niveaux de résolution à l'intérieur du réseau aide également l'entraînement en fournissant un meilleur flux de gradient. Cela améliore les performances des tâches d'alignement et de segmentation et pourrait être utilisé dans d'autres méthodes d'apprentissage profond qui ont une sortie de type image pouvant être interprétée à différentes échelles et utilisent une structure de réseau de type U-Net. Il est intéressant de noter que l'apprentissage multitâche facilite également la tâche de segmentation. Une autre application naturelle des méthodes d'alignement est l'estimation de la hauteur des bâtiments, en utilisant deux images stéréo sur lesquelles nous alignons les annotations sur les toits. Cette première méthode d'alignement a été entraînée avec des annotations choisies à la main, plutôt sans bruit (sans désalignement) ; cependant, même si un certain désalignement était encore présent dans les annotations de vérité de terrain, nous avons observé que notre méthode pouvait quand même fonctionner. Après avoir remarqué la capacité de notre réseau à apprendre avec des annotations un peu bruités (c'est-à-dire mal alignées), nous avons expérimenté l'apprentissage avec toutes les annotations bruités de notre ensemble de données (sans sélection manuelle pour éviter les annotations mal alignées les plus graves) dans un schéma d'entraînement à plusieurs tours pour entraîner itérativement de meilleurs modèles d'alignement à partir des annotations corrigées du tour précédent. Cette procédure a permis de supprimer le bruit de l'ensemble de données, même lorsque nous avons ajouté artificiellement encore plus de bruit de désalignement à titre expérimental. Ce travail a permis de conclure que même les annotations bruités/mal alignées sont suffisamment utiles et informatives. Enfin, nous avons cherché à expliquer ce phénomène d'auto-débruitage en formalisant l'idée qu'un réseau neuronal entraîné considère deux échantillons d'entrée donnés comme plus ou moins similaires. Nous avons proposé une mesure de similarité en termes d'influence que l'optimisation du réseau pour une entrée donnée a sur la sortie d'une autre entrée. Cela nous a permis d'étendre l'explication de Noise2Noise [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] au cas d'entrées non identiques mais similaires en introduisant la notion de cette similarité entre les entrées du point de vue du réseau de neurones. Cette similarité permet alors de définir un estimateur de densité (ou estimateur du nombre de voisins). Plus une entrée a de voisins, plus les étiquettes de vérité terrain bruités (provenant de ces voisins) contribuent à l'optimisation de sa sortie, réduisant ainsi le bruit final de la vérité terrain. Nous pouvons donc exprimer l'effet d'auto-débruitage en fonction des similitudes des entrées.

Nous sommes ensuite passés à la tâche d'extraction d'objets à partir d'images aériennes dans la représentation vectorielle nécessaire pour mettre à jour et contribuer aux cartes dans les systèmes d'information géographique dans le chapitre 4. Dans le but de proposer une méthode complète d'apprentissage profond, pouvant être entraînée de bout en bout, nous avons expérimenté avec l'utilisation d'un réseau de neurones pour la prédiction de polygones à 4 côtés. En utilisant une architecture CNN et une fonction objective adaptée de L 2 , nous avons atteint de bonnes performances dans la tâche d'extraction de panneaux solaires à partir d'images aériennes. Nous avons montré que l'apprentissage direct dans une représentation vectorielle est possible de bout en bout et donne de meilleurs résultats qu'un processus en deux étapes impliquant un U-Net suivi d'une vectorisation. En effet, notre méthode permet de mieux prédire la forme géométrique de l'objet et contourne une représentation cartographique matricielle de classification qui présente des coins arrondis pour les objets fabriqués par l'humain tels que les panneaux solaires. Une autre note intéressante est que si le pré-entraînement signifie généralement l'utilisation de poids pré-entraînés provenant des premières couches d'un autre réseau, nous montrons également qu'il peut être utile de pré-entraîner également les dernières couches d'un réseau neuronal (la partie décodeur dans notre cas), surtout si cela peut être fait sur un ensemble de données généré artificiellement comme c'était notre cas.

Notre dernier travail vise également à extraire des objets dans une représentation vectorielle à partir d'images de télédétection. Toutefois, après avoir examiné les travaux précédents, nous avons opté pour une approche hybride entre l'utilisation d'un réseau de neurones pour produire une carte de probabilité de segmentation dans la première moitié de notre pipeline (Chapter 5) suivie d'un algorithme de vectorisation dans la seconde moitié de notre pipeline (Chapter 6), et l'utilisation d'un réseau de neurones pour produire directement des objets en représentation vectorielle. Notre approche hybride utilise un "frame field" qui peut être considéré comme une extension d'un champ vectoriel mais qui comporte quatre vecteurs conjugués {-u, u, -v, v} par point du plan, au lieu d'un seul. En travaillant avec une représentation appropriée de ce "frame field", nous montrons qu'il est possible d'entraîner un réseau de neurones pour prédire un "frame field" à partir d'une image de télédétection de sorte qu'au moins une des directions du "frame field" {±u, ±v} s'aligne sur le vecteur tangent local du contour d'un objet. Nous avons donc entraîné des réseaux de neurones à produire une carte de probabilité de l'intérieur d'un bâtiment et une carte de probabilité des murs du bâtiment ainsi qu'un "frame field". Avec des fonctions objectives pour renforcer la corrélation évidente entre toutes les sorties (la tangente des formes détectées doit s'aligner avec le"frame field"), nous observons un effet de régularisation sur les sorties de la carte de segmentation, avec des murs plus droits et des coins plus nets par rapport aux autres méthodes n'utilisant pas de "frame field". Nous avons donc obtenu une régularisation des sorties en utilisant uniquement des fonctions objectives supplémentaires, sans nécessiter de changement d'architecture du réseau, ou de l'utilisation d'un réseau génératif ou de post-traitement. Notre approche est également efficace puisque le modèle entraîné est un simple réseau entièrement convolutif sur lequel seules deux couches convolutives supplémentaires ont été ajoutées pour la sortie du "frame field". Ce réseau est également optimisé par une supervision locale, c'est-à-dire que toutes les sorties pour un pixel ne nécessitent que des informations sur l'image dans un voisinage autour de ce pixel, tout comme la segmentation classique de l'image. Il n'a donc pas besoin de couche d'attention ou d'autres méthodes pour répondre aux cas où la sortie pour un certain pixel devrait être influencée par l'entrée d'un pixel éloigné. L'entraînement est simple, contrairement à l'entraînement adversarial, à la régression directe de forme et aux réseaux récurrents, qui nécessitent des ajustements importants. Notre méthode peut aussi potentiellement être utilisée comme un plugin pour tout réseau de segmentation d'images existant avec une classe cible différente. En effet, l'apprentissage du "frame field" peut être ajouté à n'importe quel réseau de segmentation en ajoutant une tête de sortie. Cette sortie a besoin de 4 canaux pour les 2 complexes c 0 et c 2 (représentant le "frame field") par pixel. La fonction objective d'alignement du "frame field" doit être ajoutée et il est possible d'ajouter également des fonctions objectives de régularisation. La fonction objective de couplage entre le "frame field" et la segmentation doit être ajoutée pour obtenir une segmentation régulière/nette. L'autre moitié de notre pipeline d'extraction d'objets est notre d'algorithme de polygonisation par "frame field" qui a d'abord accès à une segmentation régularisée de l'image mais qui utilise également la sortie du "frame field" pour résoudre les cas ambigus de détection de contour dans les cartes de segmentation.En outre, la possibilité d'utiliser le champ de trame pour détecter les coins des bâtiments permet de les préserver pendant l'étape de simplification, quelle que soit la valeur de tolérance ε utilisée, en conservant la forme globale des bâtiments même en cas de forte simplification. Le "frame field" nous permet de développer une méthode de polygonisation assez simple car il fournit des informations permettant de désambiguïser les cas de polygonisation difficiles. Comme des temps d'exécution courts sont essentiels pour la télédétection, nous utilisons une structure de données efficace, de sorte que notre méthode de polygonisation par "frame field" est hautement parallélisable sur le GPU, ce qui rend notre extraction de polygones très rapide. Notre méthode hybride transfère essentiellement une certaine charge de l'étape de polygonisation au réseau de neurones à un coût de calcul très faible (seulement deux couches convolutionnelles supplémentaires ajoutées pour la sortie du "frame field"). De plus, notre méthode peut traiter les cas des trous dans les bâtiments, ce que les méthodes d'apprentissage profond ne peuvent pas faire, du moins pour l'instant. Enfin, notre méthode peut également traiter le cas de bâtiments adjacents qui partagent un mur (par example dans les centres-villes européens) avec une garantie géométrique que la polyligne du mur correspondant est partagée par les polygones du bâtiment de chaque côté de celui-ci. Nous n'avons trouvé aucune méthode précédente dans l'état de l'art expliquant comment aborder ce cas. que pour l'alignement des cadastres mal alignées et se compare favorablement à notre méthode d'alignement. En ce qui concerne l'extraction des bâtiments polygonaux, [START_REF] Zorzi | Machine-learned regularization and polygonization of building segmentation masks[END_REF] propose un modèle qui prédit les coins des bâtiments, qui sont ensuite utilisés comme sommets des polygones finaux. Cependant, comme des résultats pour des murs de bâtiments courbes ne sont pas montrés, nous ne sommes pas sûrs s'ils sont bien traités. Quoi qu'il en soit, ces sujets ont toujours un intérêt pour de futures recherches, car ils sont toujours d'actualité et les méthodes peuvent encore être améliorés.

Perspectives

En ce qui concerne l'alignement des cartes, une simplification de l'approche multirésolution serait la bienvenue pour accélérer le processus. En effet, notre méthode actuelle utilise 4 réseaux U-Net doubles différents avec des entrées de résolution spatiale différentes. Au sein de ces réseaux U-Net, la résolution spatiale d'entrée est encore réduite d'un facteur 2 après chaque opération de "pooling". Dans l'ensemble, de nombreuses caractéristiques calculées à partir d'une certaine résolution spatiale d'entrée ont la même résolution spatiale que d'autres caractéristiques provenant d'un autre réseau, mais à un niveau différent au sein du réseau (elles ont cependant une profondeur sémantique différente). Par exemple, les caractéristiques après la première opération de "pooling" du réseau avec un facteur de réduction d'échelle de 2 ont la même résolution spatiale que les caractéristiques avant la première opération de "pooling" du réseau avec un facteur de réduction d'échelle de 4. Il doit être possible de fusionner toutes ces caractéristiques des 4 réseaux différents en un seul tout en ayant une approche multi-résolution qui est grandement nécessaire puisque les déplacements peuvent être très importants. Un tel réseau serait plus petit que la combinaison de nos 4 réseaux et aurait un temps d'inférence plus rapide. Le temps d'entraînement ne serait pas nécessairement plus court, car nous pouvons entraîner nos 4 réseaux en parallèle de manière indécente. Cependant, les ressources totales consacrées à l'entraînement seraient moins importantes.

Dans le cas de l'alignement des annotations bruitées dans les ensembles de données de télédétection, les travaux futurs viseront à appliquer les outils mathématiques développés autour de la mesure de similarité d'entrée du point de vue des réseaux de neurones pour étudier plus spécifiquement l'effet d'auto-débruitage que nous avons observé en expérimentant par exemple avec le calcul de la mesure de similarité sur des bâtiments individuels (au lieu de petits patchs comme dans la section précédente, où nous mesurons la similarité sur le pixel central de sortie du patch) et à découvrir comment ils sont groupés en voisins proches par le modèle. Une autre expérience pour découvrir comment le modèle traite les bâtiments uniques dont nous pensons que le voisinage est très petit. Il se peut que le regroupement des similarités effectué par le modèle soit plus raffiné qu'au niveau des bâtiments : il se peut qu'il considère des parties de bâtiments comme similaires, ce qui expliquerait comment il peut traiter des bâtiments plus uniques.

Enfin, la méthode d'apprentissage par "frame field" que nous proposons est assez générale et pourrait être utilisée pour d'autres classes (en particulier tout objet artificiel), y compris dans un cadre de segmentation multi-classes. Dans le cadre d'une segmentation multi-classes, une option serait d'avoir une sortie "frame field" pour chaque classe, mais une meilleure option serait d'avoir une sortie "frame field" unique partagée entre toutes les classes. Dans ce cas, l'utilisation d'un "frame field", qui est un 4-PolyVector field qui contraint deux vecteurs à être à l'opposé des deux autres, peut ne pas être suffisante. Par exemple, si trois objets se croisent au même point (soit dans la vie réelle, soit en raison de chevauchements), trois ensembles de directions seraient nécessaires : {-u, u}, {-v, v} et {-w, w}. Dans ce cas, il faudrait un champ 6-PolyVecteur qui nécessiterait trois coefficients complexes c 0 , c 2 , c 4 au lieu de deux pour une représentation efficace. La sortie du champ aurait 2 canaux supplémentaires. La fonction objective d'alignement ne nécessiterait pas beaucoup de changement : elle utiliserait simplement les trois coefficients complexes pour le polynôme f (qui serait maintenant de degré 6). Comme notre polygonisation par "frame field" utilise la même fonction objective d'alignement, elle n'a pas besoin de plus de changement. La détection des coins peut également être adaptée pour détecter tout changement de direction du "frame field" tout en suivant le contour. Toute notre méthode est donc relativement facile à étendre à un champ 6-PolyVecteur pour traiter correctement le cas de l'extraction polygonale multi-classes. De la même manière, elle pourrait être étendue à un champ 8-PolyVecteur mais seuls les cas extrêmes de trois objets rencontrant un même point le nécessiteraient.

En outre, la sortie du "frame field" appris peut très bien être utilisée par d'autres méthodes de polygonisation (e.g. Li et al. [START_REF] Li | Approximating shapes in images with low-complexity polygons[END_REF]). Demander au réseau d'apprendre un "frame field" n'ajoute pratiquement pas de temps d'inférence. En plus de régulariser les cartes de probabilité, il s'agit essentiellement d'informations supplémentaires gratuites que toute méthode de post-traitement pourrait utiliser. Si l'apprentissage profond offre certainement des capacités de modélisation impressionnantes et des performances accrues, on ne peut jamais s'attendre à ce qu'un modèle soit correct 100% du temps. Il y aura toujours un certain nombre de prévisions erronées. Comme de nombreux produits commerciaux devraient pouvoir garantir la qualité de leurs résultats, il devient plus difficile d'utiliser des méthodes d'apprentissage profond, où un humain devrait passer du temps à vérifier chaque prédiction pour s'assurer de sa qualité à 100%. Nous avons expliqué dans l'introduction qu'il y a tout simplement trop d'images de télédétection produites en permanence pour qu'il devienne impossible d'assigner à l'homme le soin de vérifier chaque prédiction. Des méthodes de contrôle de la qualité des prédictions d'un modèle sont grandement nécessaires. La plus élémentaire est le score de confiance de la classification au niveau du pixel, qui se situe entre 0 et 1, mais ce score ne correspond à rien de significatif : un score de 0,8 ne signifie pas que le système est sûr à 80% de sa prédiction. Cela signifie simplement qu'il est plus sûr de cette prédiction qu'une autre prédiction avec un indice de confiance de 0,6 par exemple. Il n'y a pas non plus de garantie que le score de confiance soit linéaire. Enfin, les examples adversariaux montrent clairement que le score de confiance du réseau ne montre la confiance que du point de vue du réseau, et non de la réalité : un réseau peut être sûr à 99% d'avoir détecté un chat à partir de l'image d'une voiture qui a été imperceptiblement modifiée pour constituer un exemple adversarial. Des cas moins graves d'examples adversariaux peuvent naturellement se produire en télédétection, avec l'exemple notable des parkings au-dessus d'un bâtiment (généralement classé comme parking, alors que le bâtiment en dessous n'est pas du tout détecté). Il est clair que de meilleures méthodes de contrôle automatique de la qualité sont nécessaires.

L'exemple d'un parking sur le toit d'un bâtiment, qui entraîne à la non-détection d'un bâtiment, montre que les réseaux de neurones manquent un élément essentiel de notre système de vision humain : le raisonnement. À partir de différents indices autour du parking (ombres, perspective), nous, les humains, pouvons déduire qu'il se trouve sur le toit d'un bâtiment. Les réseaux de neurones ne font pas ce type de raisonnement, et ne se demandent pas non plus si leurs prédictions ont un sens compte tenu de l'image d'entrée. Cependant, ces dernières années, des jeux de données pour le raisonnement de bon sens ont été publiés, afin d'inciter la communauté à développer des méthodes imprégnées de bon sens (par exemple [START_REF] Zellers | From recognition to cognition: Visual commonsense reasoning[END_REF]).

List of Figures

 Mots clés-Apprentissage profond, Télédétection, Géométrie, Segmentation, Frame field, Alignement CONTENTS Resumé Étendu R.1 Introduction . R.2 Contributions . R.3 Conclusions et Perspectives .

Figure 1 . 1 :

 11 Figure 1.1: The orthorectification process re-projects an image captured with a perspective view to an image with an orthographic view.

Figure 1 . 3 :

 13 Figure 1.3: Sample image crop and ground truth from the Bradbury dataset. OSM annotations are in red. This sample showcases uneven ground truth misalignment errors: annotations are perfect on the left while they are misaligned on the right.

Figure 1 . 4 :

 14 Figure 1.4: Sample images and ground truth from the CrowdAI dataset.

Figure 1 . 5 :

 15 Figure 1.5: Sample image crops and ground truth from the LuxCarta dataset.

Figure 1 . 6 :

 16 Figure 1.6: Misalignment of OSM buildings (left) and Google roads (right).

Figure 2 . 1 :

 21 Figure 2.1: Our method takes in misaligned building polygons (in red) and aligns them with the buildings of the underlying image (polygons in blue). It additionally detects missing buildings from the input.

Figure 2 . 2 :

 22 Figure 2.2: Crop of one of the test images. Green buildings: ground truth; red: misaligned [input]; blue: aligned [our output].

 2.4c and 2.5 for some examples). The output segmentation (or pixel-wise classification) has 4 channels: for the background, interior, edge and vertex classes (see Fig. 2.4d for an example).

Figure 2 . 3 :

 23 Figure 2.3: Model architecture for one resolution. There are 4 different levels inside the network: one after each pooling operation in addition to the first level.

 million trainable parameters. To train this network block, the ground truth displacement map has values in [-4 px, 4 px] which are normalized to [-1, 1] to match the output value range.

Figure 2 . 4 :

 24 Figure 2.4: (a) input image, (b) input misaligned polygon raster, (c) output displacement field map (where hue represents vector orientation and intensity represents vector magnitude), (d) output segmentation.

Figure 2 . 5 :

 25 Figure 2.5: Example displacement field map

Figure 2 . 6 :

 26 Figure 2.6: Multi-resolution pipeline.

Figure 2 . 7 :

 27 Figure 2.7: Crop of San Fransisco from the Inria dataset (left) and the corresponding crop from the Bradbury dataset (right) to showcase dissimilarity.

Figure 2 . 8 :

 28 Figure 2.8: Example of a generated displacement field map, with displacements for the x coordinates on the left and displacements for the y coordinates on the right.

Figure 2 . 9 :

 29 Figure 2.9: Random deletion of input polygons to force the network to recognize buildings from the input image and not from the input polygon raster image.

Figure 2 . 10 :

 210 Figure 2.10: Several crops of test images. Green buildings: ground truth; red: misaligned [input]; blue: aligned [our output]. The right crop is an example of the segmentation output.

Figure 2 . 11 :

 211 Figure 2.11: Alignment accuracy cumulative distributions. Faded curves each correspond to one of the 30 maps to align. Solid curves are the average. Dashed curves are the min and max.

 (a) Our method on 3 images/areas (b) Quicksilver comparison (c) Ablation studies (d) Segmentation task

Figure 2 . 12 :

 212 Figure 2.12: Alignment accuracy cumulative distributions and mean IoU values. Faded curves each correspond to one of the 10 polygon maps to align per image. Solid curves are the average.

Fig. 2 .

 2 Fig. 2.13 for the accuracy plots of this experiment.

Figure 2 . 13 :

 213 Figure 2.13: Alignment accuracies on 44 test images from the Inria dataset. Solid curves are the average, shaded regions are within the standard deviation.

Figure 2 .

 2 Figure 2.14: 2.5D buildings rendered on top of the Leibnitz satellite image with the predicted height

Figure 2 . 15 :

 215 Figure 2.15: Alignment accuracy cumulative distributions.The "No alignment" curve is obtained by measuring the distance between corresponding vertices in the annotations from both views, it measures the misalignment of annotations from view 1 to image 2 and vice-versa (as the distance is symmetric, there is a single curve). The "Aligned image 1" measures the accuracy of aligning annotations from view 2 to image 1 (taking annotations from view 1 as ground truth). The "Aligned image 2" measures the accuracy of aligning annotations from view 1 to image 2 (taking annotations from view 2 as ground truth).

Figure 3 . 1 :

 31 Figure 3.1: Qualitative alignment results on a crop of an image of Bloomington from the Inria dataset. Red: initial noisy (misaligned) OSM annotations used for training; Green: annotations aligned by our method.

Figure 3 . 2 :

 32 Figure 3.2: Multi-resolution pipeline of the base alignment method used. It takes as input misaligned polygons and outputs polygons aligned with the input image.

3 . 2

 32 for a schema of the complete model. The segmentation output is only used during training, having its own cross-entropy loss function. The input image I has 3 channels, with real values normalized to [-1, 1], standing for RGB. The input misaligned polygon raster J also has 3 channels, with Boolean values in {0, 1}, corresponding to polygon interior, edge, and vertices. The output displacement map has 2 channels with real values in [-4 px, 4 px], standing for the

 1) and correcting the alignment of the training dataset to provide better ground truth for the next training round. The multiple-rounds training is explained in Fig. 3.3 and Alg. 2. Algorithm 1: Alignment training of Chapter 2 Input: Images I = {I, ...} and corresponding annotations A = {A, ...} Build dataset with random deformations: D = {(I, J rand , g rand), ...} with J rand = rast(A • (Id + g rand) -1); Train multi-resolution model M to perform this mapping: (I, J rand) → g rand ; Output: Trained model M Algorithm 2: Multiple-rounds training Input: Original annotations A 0 , number of rounds R for r = 1 to R do 1. Get model M r using Alg. 1 with input A = A r-1 ; 2. Apply M r on the original annotations A 0 : A r = M r (A 0); Output: Aligned annotations A R 3.3 Experimental setup

Figure 3 . 3 :

 33 Figure 3.3: Multiple-rounds training infographic.

Figure 3 . 4 :

 34 Figure 3.4: Qualitative alignment results on a crop of bloomington22 from the Inria dataset. Red: initial dataset annotations; blue: aligned annotations round 1; green: aligned annotations round 2.

Figure 3 . 5 :

 35 Figure 3.5: Qualitative alignment results on a crop of innsbruck13 from the Inria dataset. Red: initial dataset annotations; green: aligned annotations round 2.

Figure 3 .

 3 Figure 3.6: (Full method) alignment accuracy cumulative distributions on blooming-ton22.

Figure 3 . 7 :

 37 Figure 3.7: (Ablation studies) alignment accuracy cumulative distributions on blooming-ton22.

Figure 3 .

 3 Figure 3.8: (Noisier) alignment accuracy cumulative distributions on bloomington22.

Figure 3 . 9 :

 39 Figure 3.9: Left: ambiguity of the perfect ground truth annotations. Right: alignment failure case. Magenta: manually aligned annotations; red: original dataset annotations; green: aligned annotations round 2.

Figure 3 . 10 :

 310 Figure 3.10: Top row: several annotation samples for a zero-mean noise on the underlying ground truth annotations. Bottom row: a single annotation sample for the same zeromean noise.

Figure 3 . 14 :Figure 3 . 16 :

 314316 Figure 3.14: Round 3: k-nearest neighbors with k=10. The 10 patches are from from the bloomington22 image. Same patch selection across rounds.

 (a) Image & GT (b) Class.map (c) RDP, ε = 3 px (d) RDP, ε = 7 px

Figure 4 . 1 :

 41 Figure 4.1: Example of a classification map's polygonization. (a) shows a satellite image and vector format ground truth. (b) is a classification map obtained by [55]. (c) and (d) are two polygonization results obtained by Ramer-Douglas-Peucker (RDP) method with different tolerance parameters.

Figure 4 . 2 :

 42 Figure 4.2: Architecture of the complete PolyCNN model. The network takes an image patch as input and directly outputs the coordinates of a 4-polygon in 2D. Activation functions are all ReLUs, except the last activation which is a sigmoid (so that the normalized output coordinates are in [0, 1]). conv = convolutional, fc = fully connected.

Figure 4 . 3 :

 43 Figure 4.3: Example input from the simple generated dataset

 (a) Visualization of the naive loss of Eq. 4.1 (b) Visualization of our final loss of Eq. 4.2

Figure 4 . 4 :

 44 Figure 4.4: Loss visualizations. Gray lines represent the distances taken into account for computing losses.

Figure 4 . 5 :

 45 Figure 4.5: Examples of visual results on the test set. Ground truth, baseline (U-Net + Ramer-Douglas-Peucker) and PolyCNN polygons are denoted in green, red and orange, respectively.

Figure 4 . 6 :

 46 Figure 4.6: Test set polygon accuracy as a function of the threshold in pixels.

Fig. 4 .

 4 Fig. 4.5 illustrates examples of visual results on the test set.We can observe through the whole test set that our method outputs polygons that feature better preservation of geometric regularities, such as orientation and close-to-right angles, when compared to the baseline approach.We use two quantitative measures:1) Intersection over Union (IoU) between the predicted and the ground truth polygons. The proposed PolyCNN and the baseline methods yield a mean IoU of 79.5% and 62.4%, respectively.2) We introduce a more interesting measure for polygon comparison, which captures well the shape deformation of the prediction polygon. The Euclidean distance between each pair of

Figure 5 . 1 :

 51 Figure 5.1: Our additional network output: a frame field (in blue).

Figure 5 . 2 :

 52 Figure5.2: Even a perfect classification map can admit a wrong polygonization due to locally ambiguous segmentation maps, as we illustrate above in (a), the output of marching squares. Our polygonization method (explained in Chapter 6) will iteratively optimize the contour (b-d) to align to a frame field, yielding better results as our frame field (blue) disambiguate between slanted walls and corners, preventing corners from being cut off.

Figure 5 . 4 :

 54 Figure 5.4: Visualization of the frame field align loss L align (in blue) for a certain configuration of {-u, u, -v, v} and all possible ground truth z = e iθτ directions.

Figure 5 . 5 :

 55 Figure 5.5: Classification predictions on a test sample for all training ablation studies.

Figure 5 . 6 :

 56 Figure 5.6: Predicted classification maps (red: interior, green: boundary) on a few test patches. The first row are some test aerial images, the second row are the results of the baseline U-Net16 with no frame field, the third row is our U-Net16 with frame field learning.

Figure 5 . 7 :

 57 Figure 5.7: Crop of results on the sample test image available on the public leaderboard of the Inria dataset challenge. The same "simple polygonization" is performed on both segmentation masks.

Figure 5 . 8 :

 58 Figure 5.8: Regularity measure on the sample test image. A more uniform histogram means less regular contours.

Figure 5 . 9 :Figure 5 . 10 :Figure 5 . 11 :

 59510511 Figure 5.9: Crop results on the "Egypt" test image of the LuxCarta dataset.

Figure 6 . 1 :

 61 Figure 6.1: Even a perfect classification map can admit a wrong polygonization due to locally ambiguous segmentation maps, as we illustrate above in (a), the output of marching squares. Our polygonization method iteratively optimizes the contour (b-d) to align to a frame field, yielding better results as our frame field (blue) disambiguate between slanted walls and corners, preventing corners from being cut off.

Figure 6 . 3 :

 63 Figure 6.3: Our data structure of an example skeleton graph. It represents two buildings with a shared wall, necessitating 3 polyline paths. Here nodes 0 and 4 are shared among paths and are thus repeated in path_index. We can see path_index is a concatenation of the node indices in pos of the paths. Finally, path_delim is used to store the separation indices in path_index of those concatenated paths. Indices of arrays are in gray.

Figure 6 . 4 :

 64 Figure 6.4: ASM optimization steps (zoomed example). Frame field in blue crosses.

 frame field align = e∈E |f (e dir ; c 0 (e center), c 2 (e center))| 2 .

Figure 6 . 5 :

 65 Figure 6.5: Corner detection using the frame field. For each vertex, the frame field is sampled at that location (with nearest neighbor) and represented by the {±u, ±v} vectors.

Figure 6 . 6 :

 66 Figure 6.6: Some example building extraction results on CrowdAI images. Buildings become more complex and challenging from top to bottom. (Left) Li et al., (middle) PolyMapper and (right) Ours: Unet-Resnet101 (full), frame field polygonization.

Figure 6 . 7 :

 67 Figure 6.7: Extracted polygons with: our (full) frame field learning and polygonization method; our frame field learning and simple polygonization method; the (no field) learning and simple polygonization baseline. A low tolerance of ε = 0.125 pixel was chosen to compare precise contours.

 full method: AP vs tolerance Baseline polygonization Our polygonization (b) AP for both our corner-aware method and the simple polygonization for various tolerance value ε.

 full method: AR vs tolerance Baseline polygonization Our polygonization (c) AR for both our corner-aware method and the simple polygonization for various tolerance value ε.

Figure 6 . 8 :

 68 Figure 6.8: Comparison between the baseline simplification algorithm with our corneraware one. Both take the same classification map as input, but the baseline does not use the frame field. The corner-aware simplification guarantees that no corners will be simplified, regardless of the tolerance value ε.

Figure 6 . 10 :

 610 Figure 6.10: Crop of results on the "innsbruck19" image from the Inria dataset.

Figure 6 . 12 :

 612 Figure 6.12: Crop of results on the sample test image available on the public leaderboard of the Inria dataset challenge, with a simplification tolerance ε = 1 px.

Figure 6 . 13 :

 613 Figure 6.13: Crop results on the "Egypt" test image of the LuxCarta dataset.

Figure 6 . 14 :

 614 Figure 6.14: Crop results on the "Bangkok" test image of the LuxCarta dataset.

Figure 6 . 15 :

 615 Figure 6.15: Crop results on the "Chile" test image of the LuxCarta dataset.

1. 1

 1 The orthorectification process re-projects an image captured with a perspective view to an image with an orthographic view. 1.2 Sample image crop and ground truth from the Inria dataset. The original ground truth mask is in blue-green color fill, the OSM annotations are in deep blue contour. This sample showcases ground truth errors: missing buildings from the OSM annotations and misalignments from both sources of annotations. 1.3 Sample image crop and ground truth from the Bradbury dataset. OSM annotations are in red. This sample showcases uneven ground truth misalignment errors: annotations are perfect on the left while they are misaligned on the right. 1.4 Sample images and ground truth from the CrowdAI dataset. 1.5 Sample image crops and ground truth from the LuxCarta dataset. 1.6 Misalignment of OSM buildings (left) and Google roads (right). 2.1 Multi-task building alignment and segmentation 2.2 Visualization of ground truth, misaligned and aligned annotations 2.3 Model architecture for one resolution. There are 4 different levels inside the network: one after each pooling operation in addition to the first level.

 Automatic fault mapping in remote optical images and topographic data with deep learning Lionel Mattéo, Isabelle Manighetti, Yuliya Tarabalka, Jean-Michel Gaucel, Antoine Mercier, Frédérique Leclerc, Onur Tasar, Martijn Van Den Ende, Nicolas Girard, Tiziano Giampetro, Stéphane Dominguez, Jacques Malavieille

1.6.1 Accepted

• Regularized Building Segmentation by Frame Field Learning

Nicolas Girard, Dmitriy Smirnov, Justin Solomon, Yuliya Tarabalka IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, Hawaii, 2020.

•

Table 2 .

 2 1: Details of our Inria dataset splits

	Split	Dataset of origin	City	Image numbers
		Bradbury	Arlington	3
		Bradbury	Atlanta	1, 2, 3
		Bradbury	Austin	1, 2, 3
		Bradbury	NewYork	2
		Inria	Kitsap	1 to 24 and 26 to 36
		Inria	Austin	2 to 9, 11 to 19 and 21 to 36
	Train	Inria Inria	Chicago Tyrol West	2 to 9, 11 to 19 and 21 to 36 2 to 9, 11 to 19 and 21 to 36
		Inria	Vienna	2 to 9, 11 to 19 and 21 to 36
		Inria	Tyrol East	2 to 9, 11 to 19 and 21 to 36
		Inria	San Francisco 2 to 9, 11 to 19 and 21 to 36
		Inria	Innsbruck	2 to 9, 11 to 19 and 21 to 36
		Inria	Bloomington	2 to 9, 11 to 19 and 21 to 36
		Inria	Bellingham	12 to 9, 11 to 19 and 21 to 36
		Bradbury	Norfolk	1, 2, 3
		Inria	Austin	1, 10, 20
		Inria	Chicago	1, 20
		Inria	Tyrol West	1, 10, 20
	Validation	Inria Inria	Vienna Tyrol East	1, 10, 20 1, 10, 20
		Inria	San Francisco	1, 10, 20
		Inria	Innsbruck	1, 10, 20
		Inria	Bloomington	1, 10, 20
		Inria	Bellingham	1, 10, 20
	Test	Bradbury	San Francisco	1, 2, 3
	new cities, each dataset fold does not contain images from the same cities as any of the other 2
	dataset folds. From the Inria dataset, 332 images were picked for training and 26 for validation.
	These datasets may seem small compared to other deep learning datasets which can contain
	millions of images, but because each image is very big, they provide enough data: our testing
	dataset contains 13614 buildings.		

Table 2 .

 2 2: Intermediate loss coefficients α l and class loss coefficients w c , w c .

	Up to iter. 2500 5000 7500 100000 α 0 0.50 0.75 0.9 1.0 α 1 0.35 0.20 0.1 0 α 2 0.15 0.05 0 0	Background (c = 1) Interior (c = 2) Edge (c = 3) Vertex (c = 4)	w c 0 0.1 0.1 w c 0.05 1 1 10 10

 Average Precision (AP and its variants AP 50 , AP 75 , AP S , AP M , AP L) and Average Recall (AR and its variants AR 50 , AR 75 , AR S , AR M , AR L) evaluation metrics. Precision and recall are computed for a certain IoU threshold: detections with an IoU above the threshold are counted as true positives whiles others are false positives and ground truth annotations with an IoU below the threshold are false negatives. Each object is also given a score value representing the model's confidence in the detection. In our case, it is the mean value of the interior probability map inside the detection. The Precision-Recall curve can be obtained by varying the score threshold that determines what is counted as a model-predicted positive detection. Average Precision (AP) is the average value of the precision across all recall values and Average Recall (AR) is the maximum recall given a fixed number of detections per image (100 in our case). Finally, the mean Average Precision (mAP) is calculated by taking the mean AP over multiple IoU thresholds (from 0.50 to 0.95 with a step of 0.05). Likewise for the mean Average Recall (mAR). Following MS COCO's convention, we make no distinction between AP and mAP (and likewise AR and mAR) and assume the difference is clear from context. The AP 50 variant is AP computed with a single IoU threshold of 50% (similarly for AP 75 , AR 50 , and AR 75). The AP S , AP M and AP L variants are AP computed for small (area < 32 2), medium (32 2 < area < 96 2) and large (area > 96 2) objects respectively (like-wise for the AR equivalents).

Table 6 .

 6 1: Summary table for deciding if node i with position p = path_pos[i] is a corner (True) or not (False). | e prev , u p | < | e prev , v p | | e prev , v p | < | e prev , u p | | e next , u p | < | e next , v p | False True | e next , v p | < | e next , u p | True False representation with the simple formulas of eq. 5.2. The frame field is sampled at that position p: u p = u(p) and v p = v(p). Alignment between e prev , e next and ±u p , ±v p is measured with the absolute scalar product so that it is agnostic to the sign of u and v. For example alignment between e prev and ±u p is measured by | e prev , u p | and if | e prev , u p | < | e prev , v p | then e prev is aligned to ±v and not ±u. The same is done for e next . Finally if e prev and e prev do not align to the same frame field direction, then node i is a corner. As a summary for corner cases we refer to Table. 6.1.

Table 6 .

 6 2: Mean max tangent angle errors E max tangent angle over all the original validation polygons of the CrowdAI dataset[START_REF] Prasanna | Crowdai dataset[END_REF].

	Method

Table 6 .

 6 4: Average times to extract buildings from a 300×300 pixel patch

	Method	Time (sec)	Hardware
	PolyMapper [42]	0.38	GTX 1080Ti
	Li et al. [41] 0.15 (not including model inference) Laptop CPU
	Ours: Unet-Resnet101 and field poly.	0.04	GTX 1080Ti

 Chapitre 2 Une grande partie du monde est déjà couverte par des cartes de bâtiments, grâce à des projets tels que OpenStreetMap. Cependant, lorsqu'une nouvelle image d'une zone déjà recouverte est capturée, elle ne s'aligne pas parfaitement avec les bâtiments de la carte existante, en raison d'un changement d'angle de capture, de perturbations atmosphériques, d'une erreur humaine lors de l'annotation des bâtiments, ou d'un manque de précision des données cartographiques. Certaines de ces déformations peuvent être partiellement corrigées, mais pas parfaitement, ce qui entraîne des désalignements. Par exemple, l'orthorectification utilise un modèle numérique de terrain dont la précision est limitée, ce qui entraîne un mauvais alignement du cadastre des bâtiments. De plus, de nouveaux bâtiments peuvent apparaître sur l'image. En tirant parti de l'apprentissage multitâche, nous proposons un modèle d'apprentissage profond qui aligne les polygones des bâtiments existants sur la nouvelle image grâce à une sortie de déplacement, et qui détecte également les nouveaux bâtiments qui n'apparaissent pas dans la carte du cadastre grâce à une sortie de segmentation. Il utilise de multiples réseaux de neurones à des résolutions successives pour produire un champ de déplacement et une segmentation au niveau du pixel des nouveaux bâtiments, de l'échelle la plus grossière à l'échelle la plus fine. Nous appliquons également notre méthode à l'estimation de la hauteur des bâtiments, en alignant les données du cadastre sur les toits d'images stéréo. Le code de ce travail est disponible sur GitHub : https://github.com/Lydorn/mapalignment. Après avoir observé une certaine robustesse de notre méthode d'alignement du bruit de la vérité de terrain, nous explorons une méthode pour dé-bruiter un ensemble de données tout en ne s'entraînant que sur cet ensemble de données bruyants. En effet, alors que dans l'apprentissage machine, la meilleure performance pour une certaine tâche est obtenue par des méthodes entièrement supervisées lorsque des étiquettes de vérité terrain parfaites sont disponibles, les étiquettes contiennent souvent du bruit, en particulier dans la télédétection où les ensembles de données publiques nettoyés manuellement sont rares. Nous étudions le problème de l'alignement des cartes de cadastre multimodales pour lesquelles les annotations disponibles sont des polygones mal alignés, ce qui entraîne une supervision bruité. Nous avons ensuite mis en place un programme d'entraînement à plusieurs tours qui corrige les annotations de vérité de terrain à chaque tour pour mieux entraîner le modèle au tour suivant. Nous montrons qu'il est possible de réduire le bruit du jeu de données en entraînant itérativement un meilleur modèle d'alignement pour corriger l'alignement des annotations. Ce résultat a stimulé d'autres recherches dont le principal contributeur était mon co-superviseur Guillaume Charpiat, dans le but d'expliquer ce phénomène de dé-bruitage en introduisant une mesure de similarité du point de vue du réseau neuronal, qui mesure l'influence qu'un pas d'optimisation sur une certaine entrée aurait sur une autre entrée. Le raisonnement sous-jacent est que des entrées similaires dans ce sens orienteraient l'optimisation dans la même direction. Toutes ces entrées ayant une étiquette de vérité terrain bruité, la direction finale de l'optimisation serait optimisée pour l'étiquette moyenne (sous un fonction objective L 2). Si ces étiquettes ont un bruit moyen nul, alors l'étiquette moyenne est en fait l'étiquette sans bruit. Nous formalisons ce concept avec un estimateur de densité de voisinage basé sur notre mesure de similarité. Le code de ce travail est disponible sur GitHub : https://github.com/Lydorn/mapalignment et Alors que les systèmes d'information géographique utilisent généralement des représentations polygonales pour cartographier les objets de la Terre, la plupart des méthodes de l'état de l'art produisent des cartes en effectuant une classification pixel par pixel des im-ages de télédétection, puis en vectorisant les sorties. Dans ce chapitre, nous examinons si l'on peut apprendre à produire directement une classification sémantique vectoriel de l'image. Nous présentons ici un problème de cartographie comme une tâche de prédiction de polygones, et proposons une approche d'apprentissage profond qui prédit les sommets des polygones décrivant les objets d'intérêt. Les résultats expérimentaux sur l'ensemble de données de localisation de panneaux solaires photovoltaïques montrent que le réseau proposé réussit à apprendre à régresser les coordonnées des polygones à quatre côtés, ce qui donne directement des sorties cartographiques vectorielles. Le code de ce travail est disponible sur GitHub : https://github.com/Lydorn/polycnn. Chapitre 5 Alors que les modèles de segmentation d'images de l'état de l'art produisent généralement des segmentations en format matriciel, les applications dans les systèmes d'information géographique nécessitent souvent des polygones vectoriels. Nous proposons d'ajouter une sortie de champ d'image à un modèle d'apprentissage profond de segmentation d'image pour extraire les bâtiments des images de télédétection. Pour ceci, nous utilisons un réseau de neurones, qui aligne un "frame field" aux contours de la vérité terrain. En plus d'augmenter les performances en tirant parti de l'apprentissage multitâche, notre méthode produit des segmentations plus régulières. Le code de ce travail est disponible sur GitHub : https://github.com/Lydorn/Polygonization-by-Frame-Field-Learning.

	Chapitre 3 https://github.com/Lydorn/netsimilarity.
	Chapitre 4

https://project.inria.fr/aerialimagelabeling/leaderboard/

https://luxcarta.com/

Enfin, nous aimerions mentionner des travaux connexes trop récents pour être inclus dans la thèse mais qui poursuivent certains de nos travaux. Sur la tâche d'alignement et de correction des cartes,[START_REF] Zorzi | Map-repair: Deep cadastre maps alignment and temporal inconsistencies fix in satellite images[END_REF] propose un système complet pour la suppression ou l'ajout de bâtiments ainsi

Acknowledgements

This work benefited from the support of the project EPITOME ANR-17-CE23-0009 of the French National Research Agency (ANR) which I thank for their funding.