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La stabilisation des récepteurs AMPA médiée par une signalisation Wnt non canonique 

protège de la synaptotoxicité des oligomères Aβ42  

 

Les récepteurs AMPA (AMPARs) sont les principaux responsables de la transmission 

excitatrice rapide dans le système nerveux central, aussi les neurones d’hippocampe étudiés 

ici. AMPARs sont très dynamiques dans la membrane. Au sein des épines dendritiques, ils 

peuvent se déplacer par traffic membranaire entre les compartiments intracellulaires et la 

membrane plasmique. Une fois à la surface, ils se déplacent par diffusion latérale et peuvent 

s'ancrer réversiblement avec des protéines de la densité postsynaptique ou retourner dans des 

compartiments endocytaires. Les oligomères Aβ (oAβ) augmentent l'endocytose des AMPARs, 

diminuent la densité des épines dendritique et provoquent des défaillances globales dans la 

transmission synaptique. Ces effets, sont englobés dans le terme "synaptotoxicité des oAβ " et 

sont un domaine principal d'étude de l'étiologie de la maladie d'Alzheimer. Wnt5a un ligand Wnt 

endogène connu pour activer la voie non-canonique dans les neurones d'hippocampe, génère 

une augmentation des courants excitateurs et des aggrégats de  PSD95 et protége les 

neurones de la synaptotoxicité des oAβ. Compte tenu du fait que Wnt5a semble contrecarrer 

les effets nocifs causés par les oligomères Aβ, nous avons procédé à l'étude du mécanisme par 

lequel Wnt5a protège de la synaptotoxicité des oAβ. Cela nous a conduit à évaluer l'effet de 

Wnt5a sur l'un des facteurs dans la transmission glutamatergique, la dynamique des  AMPARs. 

Par microscopie à super-résolution dans les neurones d'hippocampe vivants, nous avons trouvé 

que Wnt5a module la dynamique et la localisation des récepteurs AMPA. Plus précisément, 

Wnt5a stabilise les AMPAs dans les sites spine et dendrite. Ceci est corrélé avec  une 

augmentation de la co-localisation et de l'interaction entre GluA2 et PSD95. Ces effets ne sont 

exercés que par l'activation non-canonique de la signalisation Wnt, à travers le ligand Wnt5a et 

non par les effets canoniques de Wnt7a. Remarquablement, la pré-incubation de Wnt5a 

prévient la toxicité des oAβ et maintient la dynamique basale des AMPARs. Nos données 

suggèrent que Wnt5a empêche la synaptotoxicité des oAβ en favorisant leur stabilisation dans 

les sites synaptiques.  

 

Mots-clés : Wnt, dinamique du récepteur AMPA, Aβ oligomers, synaptotoxicité, neuroprotection.  
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La estabilización de receptores AMPA, mediada por Wnt5a, protege contra los efectos 

sinaptotóxicos de los oligómeros Aβ42  

 

Los receptores AMPA (AMPARs) son los principales responsables de la respuesta excitatoria 

rápida en el sistema nervioso central, incluyendo neuronas hipocampales, estudiadas en esta 

tesis. A diferencia de otros receptores glutamatérgicos, los AMPARs son altamente dinámicos. 

Dentro de las espinas dendríticas, se pueden mover hacia y desde compartimentos endocíticos 

y hacia la membrana plasmática. Una vez en la superficie, a través de difusión lateral, se 

pueden anclar a proteínas de la densidad postsináptica o regresar a compartimentos 

endocíticos. Por otro lado, los oligómeros Aβ (oAβ) aumentan la endocitosis de AMPARs, 

disminuyen la densidad de espinas dendríticas y causan una falla generalizada de la 

transmisión sináptica excitatoria. Estos efectos, entre otros, se engloban en el término 

“sinaptotoxicidad por oAβ” y es uno de los principales puntos de estudio en la etiología de la 

enfermedad de Alzheimer. Al contrario, Wnt5a un ligando endógeno conocido por activar la vía 

no canónica en neuronas hipocampales, genera un aumento en corrientes excitatorias y en los 

clusters de PSD95 y protege a las neuronas contra la sinaptotoxicidad causada por oAβ. 

Debido a esto, procedimos a estudiar el mecanismo por el cual Wnt5a protege de la 

sinaptotoxicidad causada por Aβ. Esto nos llevó a evaluar los efectos de Wnt5a en uno de los 

principales factores en la transmisión glutamatérgica, la dinámica de los AMPARs. Con el uso 

de microscopía de super-resolución en neuronas hipocampales vivas, encontramos que Wnt5a 

modula la dinámica y localización de los AMPARs. Específicamente, Wnt5a estabiliza los 

AMPARs en espinas y dendritas. Lo cual se correlaciona con un aumento en la co-localización 

e interacción entre GluA2 y PSD95. Estos efectos son causados únicamente por la activación 

no-canónica de la vía Wnt, a través del ligando Wnt5a y no por los efectos canónicos de 

Wnt7a. De manera interesante, la pre-incubación de Wnt5a previene la toxicicidad de los 

oligómeros Aβ y mantiene la dinámica basal de los AMPARs. Esta data sugiere que Wnt5a 

promueve la estabilización de AMPARs, previniendo los efectos synaptotóxicos de los oAβ .  

 

Palabras clave : Wnt, dinámica de receptores AMPA, oligómeros Aβ, sinaptotoxicidad, 

neuroprotección. 
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AMPA receptor stabilization mediated by non-canonical Wnt signaling protects against 

Aβ42  oligomers synaptotoxicity   

 

AMPA receptors (AMPARs) are responsible for most fast excitatory synaptic transmission in the 

central nervous system, including hippocampal neurons, studied here. AMPARs are highly 

dynamic in the plasma membrane. Within dendritic spines, they transition by membrane 

trafficking between intracellular compartments and the plasma membrane. Once at the surface, 

they move through lateral brownian diffusion and can reversibly anchor to postsynaptic density 

proteins or return to endocytic compartments. Aβ oligomers (oAβ) increase endocytosis of 

AMPARs, diminish dendritic spine density and cause overall failures in excitatory transmission. 

These effects, among others, are englobed in the term “oAβ synaptotoxicity” and are a main 

focus on the study of Alzheimers disease ethiology. On the contrary, Wnt5a - an endogenous 

Wnt ligand known to activate the non-canonical pathway in hippocampal neurons - generates 

an increase in excitatory currents, clusters of PSD95 and protects neurons against oAβ 

synaptotoxicity. Given the fact that Wnt5a seems to counteract the distresses caused by oAβ, 

we proceeded to study the mechanism through which Wnt5a protects from oAβ synaptotoxicity. 

This led us to evaluate the effect of Wnt5a on one of the most important factors in glutamatergic 

transmission, i.e. AMPARs dynamics. By using super-resolution microscopy in live hippocampal 

neurons, we found that Wnt5a modulates the dynamic and localization of AMPARs. Specifically, 

Wnt5a stabilizes AMPARs in spine and dendritic compartments. This correlates with an 

increase in co-localization and interaction between GluA2 and PSD95. These effects are 

exerted only by non-canonical activation of Wnt signaling, through Wnt5a ligand and not by the 

canonical effects of Wnt7a. Interestingly, pre-incubation of Wnt5a prevents toxicity of oAβ and 

maintains basal AMPARs dynamics. Our data suggest that Wnt5a prevents oAβ effects by 

promoting their stabilization in synaptic sites. 

 

 

 

Keywords: Wnt, AMPA receptor dynamics, Aβ oligomers, synaptotoxicity, neuroprotection. 



6 

 

 

 

 

 

 

 

Institute Interdisciplinaire de Neurosciences (IINS) 

CNRS UMR 5297 

 

Université de Bordeaux  
Centre Broca Nouvelle Aquitaine 

146 Rue Léo Saignat 
33076, Bordeaux 

France 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

 

Acknowledgments 

First, I want to thank Nibaldo Inestrosa for giving me the chance to begin this path. To Daniel 

Choquet, thank you for being a great and thoughtful tutor. I have learned much from you and 

you are really, the kind of scientist I want to become. Françoise Coussen, merci beaucoup, you 

have always been sweet and caring to me. 

During these 6 years I haven’t just learn about science, but so much more. I have met amazing 

people in Chile, in France and the US. It wouldn’t be possible to mention everyone, but I have 

learned from all of you. 

A mis amigos de Chile, que me veían ir y venir, manteniendo la amistad a la distancia. Chio, 

Mona, Coté, Caro, Eva, Dani, Cath, Val, Juan Fra, gracias por su amistad a prueba de 

kilómetros. 

A mes amies du laboratoire, Anne So, Nat’, Ben, Mélanie, Julia et Amadine. Vous aves éte mes 

premières amies à Bordeaux. Vous m'avez accueilli dans votre groupe d'amis avec une grande 

générosité et sans intérêts. Merci beaucoup pour votre amitié, il y a 5 ans et aujourd’hui. Peu 

importe où la vie nous mènera, je me souviens toujours d'eux avec un sourire. Jennifer, you 

are a beautiful person and it makes me happy to call you my friend. Thanks for all those long 

talks, school times and your words of wisdom. 

To Mariela, merci bichi, me has dado tu amistad y has hecho que Bordeaux se sienta un poco 

como casa. Melly, gracias por ser mi apoyo y por entender este proceso, porque si no nos 

tuviéramos, todo hubiera sido mucho más difícil. 

A mi familia, los amo, y sin ustedes nada de esto hubiera sido posible.  Ustedes lo han visto 

todo, lo bueno, lo malo y todo lo intermedio. Gracias por su apoyo incondicional. A mis 

hermanas, Andre y Paulis, las adoro hermanitas. Las extraño, pero de una u otra manera 

siempre están ahí, soy afortunada de tenerlas. Mama Yola, mi fan número 1, gracias por 

siempre tener una sonrisa para mí. 

A mis padres, Pamela y Reinaldo. Gracias por su amor, por hacerme sentir que soy capaz de 

todo, por no limitarme y por confiar en mí, más de lo que yo lo hago.    



8 

 

 

TABLE OF CONTENTS 

 

1. CV Summary …………………...…………….…….…………..………………………………... 11 

 

2. Commonly used abbreviations ……………..……………………..…………….…………... 14 

 

3. Introduction …...……………………………………...……………………………….……..…..... 16

 3.1. Glutamatergic synapse ..…………………………..………………………….……..… 16

 3.2. AMPA Receptors ………………………………………………………………...…….. 17

  3.2.1. The AMPARs-TARP complex ................................................................ 19

  3.2.2. Role of AMPARs dynamics in synaptic plasticity ……...……...…….... 20

 3.3. Alzheimer’s disease ……………………………...…...….……………………..……... 24         

  3.3.1. The tau and the amyloid hypothesis on AD …………………….……...... 25

  3.3.2. APP processing ……………………………….…………………………..... 26

  3.3.3. oAβ: isoforms, agreggation status and concentrations ……………….... 29 

  3.3.4. oAβ affect synaptic plasticity, the AMPA receptor view …………..……. 30

 3.4. Wnt signaling …………………………………………………………………..……...... 31 

  3.4.1. Biogenesis and post-translational modifications of Wnt ligands ….…… 32 

  3.4.2. Wnt Pathways ….…………………………………………………............... 35 

  3.4.3. Wnt signaling in the mature central nervous system …………............... 37 

 3.5. Wnt5a and its neuroprotective role against oAβ ………....…………….………....... 39 

 3.6. What we know so far ……………………………………………………..................... 41 

  3.6.1. Wnt signaling and AMPARs …………………………………………..…… 41 

  3.6.2. Wnt signaling and oAβ-dependent synapto- and neurotoxicity ……...… 42 

 3.7. The problem and the line of attack ………………………………………………....... 43 

 

4. Materials and Methods ………………………………………………………………………….. 44  

 

5. Results 

5.1. Wnt5a immobilizes GluA1-containing AMPARs in a CaMKII- independent manner …… 52  

5.2. Non-canonical activation of Wnt signaling stabilizes endogenous   

       GluA2-containing AMPAR ……………………………...…………………..……………..……. 55 

5.3. The immobilization effect is dependent on the binding of Wnt5a to its receptor ………….. 58 

5.4. Wnt5a-induced stabilization of AMPARs occurs in synaptic and extrasynaptic sites …..… 61 

5.5. Wnt5a increases AMPARs-PSD95 co-localization in dendritic spines .……………………. 64 

5.6. Wnt5a does not affect the clusters of PSD95 or GluA2 ………………………………..……. 67 

5.7. Aβ42  oligomers cause a decrease in the mobility of synaptic AMPARs …………………… 69 

5.8. Wnt5a prevents the effects caused by oAβ in AMPARs dynamics ……………..... 72 

 



9 

 

 

 

 

6. Discussion …………………………………………………………………………..………...…… 75 

 

7. Highlights ….………………………………………………………………………..…...……..….  84 

 

8. Future directions ………………………………………………………………..………..……..... 86  

 

9. References ………………………….…………………………………………......………...…....  87 

 

10. Appendixes 

 10.1. Appendix 1: Supplementary Figures ………………………………….……….…..   96 

 10.2. Appendix 2: Publications ………………….……………...………….………..….... 100 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 

 

 

 

 

Cloud word representing in hierarchical order the mentions to a specific word. The larger the 

size of a word, most commonly is used in the thesis. The background image is an hippocampal 

neuron (16 DIV) tagged with Homer1C:eGFP, from one of the experiments of my thesis.  

 

 

 

 



11 

 

 

1. CV SUMMARY 

 
1. PUBLICATIONS  

 

1.  AMPARs stabilization mediated by non-canonical Wnt signaling.       
Carla Montecinos-Oliva, Daniel Choquet, Nibaldo C. Inestrosa. (in preparation). 
 

2. Wnt in the Central Nervous System: New Insights in Health and Disease. (2018). 
 Carolina A. Oliva Gutiérrez, Carla Montecinos-Oliva, Nibaldo C. Inestrosa. Progress in 
 Molecular Biology and Translational Science. Elsevier. 
 

3. Cheril Tapia-Rojas, Carolina B. Lindsay, Carla Montecinos-Oliva, Macarena S. 
Arrazola, Rocio M. Retamales, Daniel Bunout, Sandra Hirsch and Nibaldo C. Inestrosa 
(2015). Is L-methionine a trigger factor of Alzheimer's like-neurodegeneration? Changes 
in Abeta oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and 
behavioral impairment in wild-type mice. Mol Neurodegener. 10(1):62 

 

4. Parodi J, Montecinos-Oliva C, Varas R, Alfaro IE, Serrano FG, Varas-Godoy M, 
Muñoz FJ, Cerpa W, Godoy JA, Inestrosa NC (2015). Wnt5a inhibits K+ currents in 
hippocampal synapses through nitric oxide production. Mol Cell Neurosci. 24; 68:314-
322. 

 

5. Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar 
L, Barja S, Vio CP, Gomez-Pinilla F, Inestrosa NC (2015). Fructose consumption 
reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim 
Biophys Acta. 1852(11):2379-90 

 

6. Codocedo JF, Montecinos-Oliva C and Inestrosa NC (2015). Wnt-related SynGAP1 is 
a neuroprotective factor of glutamatergic synapses against oAβ. Front Cell Neurosci. 9 
(227). 

 

7. Carla Montecinos-Oliva, Andreas Schüller, Nibaldo C. Inestrosa (2015). 
Tetrahydrohyperforin - a neuroprotective modified natural compound against 
Alzheimer's disease. Neural Regeneration Research, 10 (4):552-554. 

 

8. Carla Montecinos-Oliva, Andreas Schüller, Jorge Parodi, Francisco Melo, Nibaldo C. 
Inestrosa (2014). Effect of Tetrahydrohyperforin on Hippocampal Mice Slices: 
Neuroprotection, LTP and TRPC channels, Current Medicinal Chemistry, 21 (30):3494-
3506. 

 

9. Nibaldo C. Inestrosa, Carla Montecinos-Oliva, Marco Fuenzalida (2012). Wnt 
signaling: role in Alzheimer disease and Schizophrenia, Journal of Neuroimmune 
Pharmacology, 7 (4):788-807. 

 

 

 
2. BOOK CHAPTERS  
 
New Discoveries on the Hyperforin Derivative, Tetrahydrohyperforin: Closer to and Alzheimer’s 
Disease Treatment?  (2015) Carla Montecinos-Oliva, Cheril Tapia-Rojas, Patricia V. Burgos 
and Nibaldo C. Inestrosa. Nova Publishers. 
 

 

 



12 

 

 

3. SCIENTIFIC MEETINGS ATTENDANCE 

 
1. Society for Neuroscience Annual Meeting                           San Diego, 3-7 November 2017 
Poster: “oAβ42 deregulate AMPA receptor membrane trafficking” 
Carla Montecinos-Oliva, Daniel Choquet, Nibaldo C. Inestrosa. 
 
2. Society for Neuroscience Annual Meeting               Washington DC, 11-15 November 2017 
Poster: “AMPARs stabilization mediated by non-canonical Wnt signaling protects 
synapses against Aβ1-42 oligomers synaptotoxicity”. Carla Montecinos-Oliva, Daniel 
Choquet, Nibaldo C. Inestrosa. 
 

3. XIII Annual Meeting of Neuroscience Society of Chile                   Castro, 1-3 August 2017                              
Young  Neuroscientist Sympossium: “Wnt5a stabilizes AMPARs, causing neuroprotection 
against oAβ”. Carla Montecinos-Oliva, Daniel Choquet, Nibaldo C. Inestrosa. 
 

4. 10
th

 FENS Forum of Neuroscience                                              Copenhagen, 2-6 July 2016 
Poster: “The Wnt5a ligand favors immobilization of AMPARs in hippocampal neurons”. 
Carla Montecinos-Oliva, Daniel Choquet, Nibaldo C. Inestrosa. 
 

5. 7
th

 EMCCS-FENS Satellite and 1
st 

EBBS-EMCCS            Copenhagen, 30-1 June-July 2016 
Poster: “The Wnt5a ligand favors immobilization of AMPARs in hippocampal neurons”. 
Carla Montecinos-Oliva, Daniel Choquet, Nibaldo C. Inestrosa. 
 

6. 9
th

 FENS Forum of Neuroscience                                                            Milan, 5-9 July 2014 
Poster: “Impact of the Wnt non-canonical signaling pathway on AMPARs synaptic 
enrichment”.  Carla Montecinos-Oliva, Anne-Sophie Hafner, Daniel Choquet, Nibaldo C. 
Inestrosa. 
 
7. XXVII Cellular Biology Society of Chile Annual Meeting     Pto. Varas 23-27 October 2013 
Poster: “Non-canonical Wnt signaling increases AMPARs clusters in hippocampal 
neurons”. Carla Montecinos-Oliva & Nibaldo C. Inestrosa. 
 
8. XXVII Cellular Biology Society of Chile Annual Meeting     Pto.Varas, 23-27 October 2013 
Poster: “Chronic treatment of wild-type mice with high doses of methionine induces 
neurodegeneration”. Cheril Tapia-Rojas, Carla Montecinos-Oliva, Carolina B. Lindsay, 
Sandra Hirsch, Nibaldo C. Inestrosa. 
 

 

4. GRANTS, AWARDS AND FELLOWSHIPS 
US/CRC Fellowship                                                                                              December 2017 
Society for Neuroscience and US/CRC of International Brain Organization  
 
Young Neuroscientist Award                                                                            September  2017                                                                                                           
Chilean Society for Neuroscience 
   
Latin-American Training Program Fellowship                             March 2017- November 2018 
Society for Neuroscience and International Brain Organization 
 
Claude Gay Program for Doctoral Studies                           November 2016 - December 2017 
External Affairs Ministry, French Government 
 
Advanced Human Capital, National PhD Program Fellowship    January 2015 - August 2017 
National Commission for Science and Technology (CONICYT), Chilean Government 
 
 
 
 



13 

 

 

5. COURSES ATTENDANCE 
1. Neurobiology                                                                                May 31

st
 - July 28th 2018 

    Marine Biological Laboratory – The University of Chicago  
    Woods Hole, MA, USA. 
 
2. Signal Processing: from single molecules to brain circuits     March 2017 - April 2017                           

Society for Neuroscience, International Brain Organization and Universidad del Valle.   
Cali, Colombia. 

 
3. Cell Biology Summer Course                                                                   January 2015    

Institute Curie and Fundación Ciencia y Vida.  
     Santiago, Chile 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 

 

 

2. COMMONLY USED ABBREVIATIONS  

Aβ: amyloid-β   

AD: Alzheimer’s disease 

AMPA: L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AMPARs: AMPAR-type receptor 

CAM: Cell-adhesion molecule 

CaMKII: calcium-calmodulin dependen kinase II 

CNS: Central Nervous System 

CP-AMPARs: calcium permeable AMPARs 

DIV: days in-vitro 

eLTP: early Long-Term Potentiation 

EPSP: Excitatory Post-Synaptic Potential 

HFS: High Frequency Stimulation 

JNK: Jun-N-terminal kinase 

KARs: kainate-type glutamate receptors 

KO: knock-out 

lLTP: late Long-Term Potentiation 

LTD: Long-Term Depression 

LTP: Long-Term Potentiation 

MAGUK: Membrane-associates guanylate kinase 

NMDA:  N-Methyl-D-aspartic acid 

NMDAR: NMDA-type glutamate receptor 

oAβ: oligomers Aβ   

PALM: Photo-Activated Localization Microscopy 

PCP: Planar Cell Polarity 

PDZ: PSD-95/DLG/ZO-1 

PIP2: phosphatidil inositol di-phosphate  

PPF: Paired-Pulse Facilitation   

PSD: Postsynaptic density 

PSD95: Postsynaptic density 95 



15 

 

 

PTM: Post-translational modification 

sFRP: soluble Frizzled Related Protein 

STORM: Stochastic Optical Reconstruction Microscopy 

STP: Short-Term Potentiation 

TARP: Transmembrane AMPARs Regulatory Protein 

TBS: Theta-Burst Stimulation 

uPaint: universal Point Accumulation in the Nanoscale Topography 

Wnt: Wingless-type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

3. INTRODUCTION 

In the intricate machinery that gives shape to the synapse, the identity and amount of molecules 

(neurotransmitters, receptors, scaffolding proteins, kinases, etc.) present is fundamental and 

have been widely studied. However, to have an efficient synaptic communication, those 

elements are not the only variables to keep in mind. It is also crucial for those elements to be 

located in the right place, at the right moment.  

For efficient synaptic transmission to occur, it is necessary that the system adapts rapidly to 

new and ever changing inputs. This is called synaptic plasticity, the ability to change the firing 

properties of a synapse, and it relies on many factors, one of them being the fast, initial 

response to neurotransmitter release. Specifically, in glutamatergic synapses, AMPA receptors 

(AMPARs) are the main mediators of fast excitatory response and variations in the amount of 

AMPARs account for short term plasticity (STP) and long term potentiation (LTP) (Benke et al., 

1998; Makino and Malinow, 2009; Penn et al., 2017). The study of how AMPARs respond to 

endogenous inputs could help us to unveil mechanisms to recover from synaptic failure like the 

one occurring in Alzheimer’s disease (AD). 

3.1. Glutamatergic synapses 

Glutamatergic synapses are characterized by the presence of glutamate as the main 

neurotransmitter.  Glutamate, is a non.essential aminoacid, is synthesized from glutamine and 

is the main excitatory neurotransmitter in the vertebrate central nervous system (CNS) (Purves 

et al., 2004). In excitatory synapses, the presynaptic site releases excitatory neurotransmitters 

and their binding to receptors causes membrane depolarization and an excitatory post-synaptic 

potential (EPSP) that increases the probability to generate an action potential.  Glutamate 

receptors can be divided into metabotropic and ionotropic receptors. Metabotropic glutamate 

receptors are associated to G-proteins and  transduct signals through second messengers like 

PIP2 and β-arrestin. There are three types of metabotropic glutamate receptors: group 1, group 

2 and group 3. On the other hand, ionotropic receptors contain a channel allowing ions to pass  

in/out from the cell. There are three types of ionotropic glutamate receptors: AMPAR, NMDA 

and kainate receptors (KARs). This thesis focuses on the study of AMPARs, for reasons that will 

be addressed in the following paragraphs. 



17 

 

 

A characteristic feature of glutamatergic neurons, is the presence of dendritic spines. These 

protrusions are found in the dendrites and constitute the contact point with presynaptic sites. 

Like this, in dendritic spines there is an entire machinery to respond accordingly to presynaptic 

inputs. Dendritic spines are dynamic structures, that vary in shape and quantity throughout short 

and long periods of time. They can be modulated by different inputs and, as will be further 

addressed, Wnt signaling is one of them.  

 

3.2. AMPA receptors  

AMPARs are highly conserved and appear early on in evolution (Chiu et al., 1999). Probably, 

this is a reflection of the relevance of AMPARs in synaptic transmission. AMPARs are mainly 

expressed in the hippocampus, followed by cerebellum and cortex (Schwenk et al., 2014). They 

are highly abundant in hippocampal neurons, compared to other hippocampal cell types. In 

basal conditions, it has been reported that the ratio of PSD95:AMPARs:NMDAR molecules is 

15:3:1 (Sheng and Hoogenraad, 2007). In hippocampal neurons, AMPARs located  in dendritic 

spines, in conjuction with other glutamate receptors (NMDARs and KARs), generate EPSPs 

which are transmitted into the soma of the neuron. If the summation of EPSPs reaches the 

membrane potential treshold  (around        -30 mV), an action potential will be generated. As a 

consequence, the lack of surface-expressed AMPARs into synapses translates into a lower 

probability of action potential generation and decreased synaptic activity.  A synapse that does 

not contain surface-expressed AMPARs in the postsynaptic site,  is refered to as a silent 

synapse (Isaac, 2003; Liao et al., 1995). After trains of high frequency stimulation (HFS) (i.e., 

tetanic stimulation), the number of AMPARs increases largely at synapses, underlying in part, 

activity dependent synaptic potentiation (Makino and Malinow, 2009; Penn et al., 2017; Wu et 

al., 2017). Alternatively, low frequency stimulation (LFS) induces a loss in AMPAR from 

synapses leading to synaptic depression (Fujii et al., 2018; Wu et al., 2017; Zhou et al., 2018) . 

For these various reasons, the study of the localization and dynamic of AMPARs is crucial to 

understand the physiology and patophysiology of synaptic transmission.  

 

AMPARs are ionotropic glutamate receptors. They are composed of 4 subunits (GluA1-4) and 

are usually hetero-tetramers, meaning they contain 2 doublets of homodimers. The most 
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common composition in hippocampal neurons is by ~80% GluA1/GluA2 hetero-tetramers 

followed by ~16% GluA2/GuA3 (Lu et al., 2009). AMPARs are mainly permeable to Na
+ 

and K
+
, 

althought depending on their subunit composition, they can also permeate Ca
2+

. Any receptor 

that contains GluA2 subunit will be impermeable to Ca
2+

, because this subunit contains a 

reentrant loop in the channel forming trasmembrane segment that blocks Ca
2+

 entry. Therefore, 

homotetramers formed by GluA1/GluA1 subunits are calcium permeable AMPARs (CP-

AMPARs), and are of great importance in the generation of long-term potentiation (LTP). The 

subunit composition of AMPARs present in postsynaptic sites can vary depending on activity. 

Particularly, it is proposed that GluA1 homotetramers (CP-AMPARs) are inserted into the 

plasma membrane after high frequency stimulation or theta-burst stimulation (TBS), allowing an 

extra Ca
2+ 

influx on top of the one caused by NMDAR currents, and an increase in the firing 

pattern frequency (Liu and Savtchouk, 2012; Park et al., 2016b). In fact, it is proposed that Ca
2+

 

influx via CP-AMPARs causes fast activity-dependent postsynaptic plasticity (Kim and Von 

Gersdorff). It has even been proposed that Ca
2+ 

influx from activated CP-AMPARs causes 

inhibition of NMDA currents (Rozov and Burnashev, 2016). 

 

Recently, it has been shown that AMPARs organize themselves into nanodomains within the 

dendritic spines (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This contrasts 

with the previous idea that they were homogenously distributed along the membrane of 

dendritic spines (Baude et al., 1995; Nusser et al., 1994). In fact, now we know that AMPARs at 

the plasma membrane are in a dynamic equilibrium between retention sites within nanodomains 

and freely moving outside of nanodomains (Barrera-Ocampo and Chater, 2013; MacGillavry et 

al., 2013; Nair et al., 2013). Each dendritic spine contains between 1.4-2.5 AMPARs 

nanodomains, depending on the super-resolution technique used to study it. Nanodomains are 

about ~70 nm and contain ~20 AMPARs, but their shape and position can change during time, 

although most of them are stable for up to 1 h (Nair et al., 2013).  

 

Another important characteristic of AMPARs is the fact that once inserted into the plasma 

membrane, they can be found in at least, three different conformational states: closed, open or 

desensitized. On the close state, there is no or very low glutamate bound to AMPARs, and no 
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current is generated. The binding of at least two glutamate molecules activates AMPARs, 

opening the channel and allowing an inward Na
+
 current. Since the affinity of AMPARs to 

glutamate is low (~EC50 1.1 ± 0.3 mM), the ligand will rapidly disociate from the receptor 

(Kessler et al., 2008). However, AMPAR can also enter a desensitized state that has a high 

affinity for glutamate (Dürr et al., 2014). In this state, AMPARs can still bind glutamate, but no 

current will be generated from it. In addition, each GluA subunit on the tetramer can bind one 

molecule of glutamate, this adds complexity to the system and generates a differential 

responses (low/high conductance) depending on the amount and type of subunits binding to 

glutamate (Dürr et al., 2014; Kessler et al., 2008). 

 

3.2.1. The AMPARs-TARP complex.  

Interestingly, AMPARs are part of a bigger molecular complex in which they are partnered with 

transmembrane-AMPARs associated protein (TARPs). The C-terminal tail of AMPARs does not 

bind directly to the main scaffolding protein of synaptic densities, PSD95. For this reason, the 

presence of a TARP able to bind AMPARs, allows stabilization of the complex on PSD95 

through the TARP C-terminal domain, creating an indirect interaction between AMPARs and 

PSD95. The process in which AMPARs-TARP complex binds to PSD95, is called “trapping” and 

can lead to persistent or transitory immobilization of AMPARs (Ehlers et al., 2007; Opazo et al., 

2010). TARPs can be phosphorylated and this constitutes a new regulatory mechanism of 

AMPARs activity, trafficking and pharmacology (Jackson and Nicoll, 2011; Kato et al., 2010; 

Ziff, 2007).  

There is a variety of TARPs, TARP-γ2 (Stargazin) is the most studied. Stargazin is highly 

expressed in the cerebellum, while still present in hippocampus but with low expression levels. 

On the other hand, TARP-γ8 is highly enriched in the hippocampal formation (Fukaya et al., 

2006). It has important roles in regulating surface expression of AMPARs (Zheng et al., 2015) 

as well as their distribution (Rouach et al., 2005). It is also involved in synaptic plasticity 

(Sumioka et al., 2011) and LTP generation (Park et al., 2016a). In the present work, we do not  

investigate the identity of the TARP involved in the effects of Wnt5a, but this information will be 

necessary to understand the results and perspectives surrounding them. 
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                 from (Opazo et al., 2012) 

 

TARP-dependent regulation of AMPAR immobilization to scaffolding proteins. The figure 

shows Stargazin (TARP-γ2), but the principle applies to every TARP. Phosphorylation on the C-

terminal tail of Stargazin, by Ca
2+

-activated CaMKII, causes a change on the net charge of it. By 

becoming more negative (due to the addition of phosphate groups), the C-tail is repelled by the 

instrinsically negative internal membrane of the plasma membrane and suffers a conformational 

change that allows the interaction with PDZ-domains of scaffolding proteins, in this case 

PSD95, with the PDZ-binding domains of the TARP C-terminal tail. This will cause the trapping 

of the AMPAR-TARP complex into synaptic sites, and the formation of the trimeric AMPAR-

TARP-PSD95 complex. Importantly, each GluA subunit has the ability to bind a TARP, and 

each TARP can bind a PDZ domain. Thus adding different degrees of regulation and trapping. 

 

3.2.2. Role of AMPARs dynamic in synaptic plasticity 

Synaptic plasticity is defined as the ability of synapses to accommodate their synaptic efficacy 

by a change in the firing properties; that is, to potentiate or depress the synaptic response 

depending on the input (Nicoll, 2017). The main paradigms in synaptic plasticity are short-term 

potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD). Both forms of 
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long-term plasticity (LTP and LTD) have been suggested to be the molecular correlates for 

memory and learning (Morris, 1989; Morris et al., 1986). In all of these processes, the role of 

synaptic receptors and their location on the synapse, is crucial. Next, the role of AMPARs in 

STP, LTP and LTD will be addressed. 

 

In the classic view of synapses, over 20 years ago, synaptic receptors were considered to be 

statically located at a certain position in the postsynapse, waiting to bind a neurotransmitter and 

exert their action. Under this view, receptors could be exocytosed or endocytosed to and from 

the plasma membrane, directly at synaptic sites (Lüscher et al., 1999). In 2002, a third 

trafficking route was suggested by Daniel Choquet, according to which AMPARs could also be 

in an intermediate location; the plasma membrane but at extrasynaptic sites (Borgdorff and 

Choquet, 2002). From there, they could move through lateral diffusion, always in the plane of 

the membrane, to synaptic sites. Presently, and after many studies backing up this hypothesis 

(Ashby et al., 2006; Esteves da Silva et al., 2015; Heine et al., 2008; Makino and Malinow, 

2009; Penn et al., 2017), it is widely accepted that surface mobility of AMPARs is fundamental 

both at rest and at different steps of synaptic plasticity (Hastings and Man, 2018).  

 

Within dendritic spines, AMPARs can be found in endocytic compartments or inserted in the 

plasma membrane. The fast dynamic of AMPARs  helps to tune synaptic response (Heine et al., 

2008). This occurs mainly by regulating the ratio of naïve functional/desensitized AMPARs 

present in the PSD. Depending on the type of stimuli, AMPARs can be either endocytosed or 

inserted into the plasma membrane at extrasynaptic sites, from where they can move to the 

PSD through lateral diffusion (Opazo and Choquet, 2011). This process is fast, AMPARs can 

move from extrasynaptic to synaptic sites, within seconds (Heine et al., 2008). Once present in 

the membrane, AMPARs only reside at the neuronal surface, on average, for tens of minutes 

(Heine et al., 2008). In addition, within the synapse, mobile receptors represent between 50-

80% of all AMPARs and, if not anchored to PSD, reside only for a few seconds (~2 s) in the 

synapse (Heine et al., 2008; Opazo et al., 2012). On the other hand, AMPARs anchored in the 

PSD, remain immobile in the synapse and can remain confined for minutes within PSD95 

nanodomains (Nair et al., 2013).  



22 

 

 

Donald Hebb, in 1949 published “The Organization of Behaviour”, setting the basis to our 

current understanding of synaptic plasticity. He introduced what became known as the Hebbian 

rule, he postulated that “…the persistence or repetition of a reverberatory activity (or "trace") 

tends to induce lasting cellular changes that add to its stability.[…] When an axon of cell A is 

near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells such that A's efficiency, as one of 

the cells firing B, is increased.” (Hebb, 1949), more easily remembered as the corollary “cells 

that wire together, fire together”. Interestingly, Hebb was introducing many concepts like 

synaptic plasticity, spike-timing-dependent plasticity and engrams. Theorical concepts that were 

later proof to be true by Eric Kandel, using the Aplysia model (Kandel and Tauc, 1965).  

Taking the Hebbian principle with what we have learned in the last 70 years, we know that upon 

strong presynaptic stimulation (i.e., increased release of neurotransmitter), like the one 

occurring during LTP induction, there is a rapid lateral diffussion of CP-AMPARs from 

extrasynaptic to synaptic compartments. This rapid change is a proccess of STP (Rozov and 

Burnashev, 2016). Therefore, STP depends greatly on the recruitment of CP-AMPARs from 

extrasynaptic pools, by lateral diffusion (Penn et al., 2017). CP-AMPARs have a faster Ca
2+

-

entry onset than NMDARs and the close proximity of both receptors, usually colocalizing, allows 

local activation of NMDARs (Rozov and Burnashev, 2016).   

Following, NMDA-dependent activation of CaMKII and PKC, there is insertion of new AMPARs 

from endocytic compartments to the plasma membrane, on extrasynaptic sites. Then, lateral 

diffusion of AMPARs from extrasynaptic to synaptic sites, causes an enrichment in AMPARs in 

the PSD. There, AMPARs can get stabilized through interactions between TARPs and the PDZ 

domains of PSD95 (Opazo and Choquet, 2011) or other scaffolding proteins (see section 

6.2.1.). If they are persistently stabilized into the PSD, the postsynaptic excitatory transmission 

becomes more efficient in response to glutamate. Overall, generating a more persistent 

synaptic connection in time, giving rise to LTP, similar to what was proposed by the Hebbian 

theory.  

LTP can be subdivided into 2 different stages, which involve different molecular players and 

proccessess: early LTP (eLTP) which accounts the changes that occur 1 hour after stimulation 
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and late LTP (lLTP) which happens after 1 hour of stimulation and can last for days. eLTP is 

protein synthesis-independent, while lLTP is protein synthesis-dependent (Frey et al., 1988) .  

 

The role of extrasynaptically located AMPARs, has proof to be fundamental for both STP and 

eLTP (Penn et al., 2017). Therefore supporting the important role of lateral diffusion of AMPARs 

in synaptic plasticity. Interestingly, while lateral diffusion is necessary and sufficient for STP, 

lateral diffusion is not sufficient for eLTP (Penn et al., 2017). In eLTP, following lateral diffusion 

of already existent membrane-expressed AMPARs at extrasynaptic sites, exocytosis of new 

AMPARs into the extrasynaptic membrane is necessary to increase and maintain the pool of 

AMPARs. Therefore eLTP requires at least two steps; exocytosis of AMPARs to extrasynaptic 

sites and their lateral diffusion to synaptic sites (Penn et al., 2017). This is explained next, in the 

three-step model for AMPARs mobility (Opazo and Choquet, 2011).  

                 

                                                                                     modified from (Opazo and Choquet, 2011)  

Representation of the three step model for AMPARs synaptic recruitment in synaptic 

plasticity. During LTP (on green), the AMPARs-TARP complex is inserted into the plasma 

membrane (step 1), either at extrasynaptic (dendritic shaft) or synaptic sites (close to the PSD) 

in the spine head. From there, it  moves through the plane of the membrane (step 2) towards 

the PSD and finally AMPARs get immobilized on PSD slots, through indirect interaction 

between TARP and PSD95. During LTD (on blue), the AMPARs-TARP complex gets 

destabilized from the PSD (step 1), moves in the plane of the membrane to extrasynaptic sites 

(step 2) and finally it gets endocytosed either directly from the spine head or from the dendritic 

shaft (step 3).    
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Recently, the fundamental role of AMPARs diffusion on LTP has been proof in in-vitro and in-

vivo experiments. The recruitment of new AMPARs to synapses by lateral surface diffusion is 

critical for the LTP to occur (Penn et al., 2017). By blocking lateral AMPAR diffusion and LTP, 

fear-conditioning learning also gets impaired, proving a correlate between AMPAR lateral 

mobility and learning proccessess (Penn et al., 2017).   

 

More generally, our view not only about the dynamics, but also of the biophysics itself behind 

AMPARs conductance has changed in the last few years. It has been proof that after a single 

subthreshold synaptic activation, most of the sodium entering the neuron does it through 

AMPARs, and not NMDA or voltage-gated sodium channels (Miyazaki and Ross, 2017). 

Sodium, along with potassium, are the main contributors to generate EPSP and action 

potentials, from a purelly electrical point of view. Like this, the relevance of AMPARs becomes 

even clearer. LTP requires stabilization, lateral diffusion towards synaptic sites and exocytosis 

of new AMPARs. But not only are AMPARs crucial players in STP and LTP processess, they 

are fundamental in diverse forms of synaptic plasticity. LTD, for example, depends on the 

unstabilization, release from synaptic sites and endocytosis of AMPARs (Opazo and Choquet, 

2011). Therefore, by studying the elements that stabilize or destabilize AMPARs to and from 

synaptic sites, we are studying the basis of synaptic plasticity.  

 

3.3. Alzheimer’s disease  

Alzheimer’s disease (AD) was first described in 1907 by Alois Alzheimer. It is a progressive 

neurodegenerative disease and the most common cause of dementia in the elderly population, 

accounting for an estimated 50-70% of all late-life dementia cases (Feldman et al., 2014). 

Clinically, is characterized by cognitive failure and loss of encephalic volume, both features 

correspond to late phase states of the disease. AD becomes more and more prevalent since 

worldwide, life expectancy increases and populations age. For example, it is estimated that in 

western Europe by the year 2040, the population over 60 years of age, with dementia, will 

increase from a current 5.4  to 9.9 million, while in Latinamerica the increase would be from 4.6 

to 9.1 million (Ferri et al., 2005)  
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3.3.1. The tau and the amyloid hypothesis on AD 

AD has two well defined pathological hallmarks, the intracellular neurofibrillary tangles formed 

by hyperphosphorylated tau protein and the extracellular amyloid plaques, mainly formed of Aβ 

protein (Crews and Masliah, 2010; Selkoe, 2013). Therefore, giving rise to the two main 

hypothesis regarding the aetiology of AD; the tau hypothesis and the amyloid cascade 

hypothesis. There is compeling evidence for both hypothesis, and the determination of which 

one triggers the disease,  remains a subject of debate. Next, a short description of both 

hypothesis will be given, to later focus our study on the amyloid hypothesis, as subject of this 

thesis work. 

 

Tau is a microtubule-associated protein (MAP) and it has over 80 posible phosphorylatoin sites 

(Ksiezak-Reding et al., 1992). In AD brains, the amount of phosphorylated tau  has been found 

to be 3-times higher than in healthy, same age brains (Köpke et al., 1993). It is unclear how the 

increase in phosphorylation of tau promotes the formation of neurofibrillary tangles, but it has 

been proposed that hyperphosphorylated tau has a lower affinity to microtubules. Considering 

the fundamental role of microtubules in neuronal organization and function, differential 

treafficking of proteins, compartimentalization of neurons, etc. any disruption of microtubules 

would be of great damage. Therefore, tau hyperphosphorylation decreases the affinity of tau to 

stabilize microtubules and forms intracellular neurofibrillary tangles, that disrupts the normal 

shape and function of neurons (Guerrero-Muñoz et al., 2015).  

 

On the other hand, we find the amyloid cascade hypothesis, on which base we conducted our 

experiments. The amyloid cascade considers Aβ as the trigger element of the pathology. The 

rational behing the Aβ hypothesis is that the abnormal extracellular accumulation of Aβ in the 

brain parenquima  leads to synaptic failure and synaptotoxicity followed by neuronal death, 

inflammation, cognitive failure and dementia. However, there is low correlation between the 

presence of senile plaques and the severity of cognitive deficit. What has been revealing, is the 

fact that the presence of a certain species of soluble Aβ, named Aβ oligomers (oAβ) does show 

a higher correlation with neurotoxicity (Benilova et al., 2012; Lue et al., 1999; Tomic et al., 

2009).  
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Today, there is no consensus on whether Aβ has a direct causative role on AD, and if targeting 

Aβ has a significant impact on the progression of the disease. However, there is evidence that 

oAβ are able to cause tau hyperphosphorylation (Bilousova et al., 2016; Miller et al., 2014; 

Sarko et al., 2017) and mislocalization of tau from axon to dendrites (Miller et al., 2014). 

Therefore, supporting the idea that oAβ could be the first insult into AD, causing a cascade of 

effects in a Aβ dependent – tau mediated fashion. Unfortunately, a number of clinical trials that 

were promising in the laboratory and pre-clinical studies have resulted inconclusive (Umar and 

Hoda, 2018).  

 

In order to understand more deeply what this oligomeric species are and how they relate to 

early synaptic failure, we will discuss the processing of APP that gives rise to Aβ. 

 

3.3.2. APP Processing  

The Amyloid Precursor Protein (APP) is a type I transmembrane glycoprotein. In humans, the 

gene for APP is located in chromosome 21 and has three splice variants, being APP695 the 

predominant isoform in excitatory neurons and inhibitory interneurons (Hick et al., 2015), while 

their presence in astrocytes remains unclear. Full length APP is a cell-adhesion molecule (CAM) 

and therefore regulates cell-cell interactions in trans. APP, like most CAM proteins, regulate 

cell-cell contacts by interacting extracellularly with other CAMs or extracellular matrix 

components (i.e., laminin, reelin, etc.) and intracellularly with cytoskeleton machinery. APP is 

able to regulate the guidance of the axonal growth cone, the forming and maintenance of 

synaptic contacts (Ludewig and Korte, 2017). An important difference between full-length APP 

and other CAMs is that APP is found in highly dynamic cellular subdomains like the growth cone 

and dendritic spines, whereas other CAMs (ie., cadherins, integrin β1, etc) are forming more 

stable, tight adhesions. The role of APP in spine dynamics  is directly linked to synaptic 

plasticity (Hick et al., 2015; Korte et al., 2012; Ludewig and Korte, 2017). In fact, KO mice for 

APP have a deficit in synaptic plasticity, mainly in LTP, that becomes evident with age, while no 

changes are seen at young ages (Ring et al., 2007; Seabrook et al., 1999). It is important to 

notice that there are two mammalian homologous of APP, APP-like 1 (APLP-1) and APP-like 2 

(APLP-2). The three homolog forms show  high structural conservancy and high functional 
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redundancy. One explanatio for the lack of phenotype at young ages is function compensation 

given by the redundant APLP2 (the isoform with the highest degree of  sequence homology with 

APP). 

 

APP has physiological roles as a full-length protein and also the different proteolytics fragments 

product of secretase cleaving have different functions.  APP can be cleaved by 4 different 

secretases: α-, β-, γ- and η-secretase, giving rise to different proteolitic pathways and products. 

In the figure below, we see three possible pathways for APP cleaving: η-secretase pathway, 

non-amyloidogenic pathway dependent on α-secretase and the amyloidogenic pathway, 

dependent on β- and γ-secretases to produce Aβ species. 

   

It has been proposed that presynaptically located APP can have roles in synaptic vesicle 

release and short-term plasticity (Korte et al., 2012). APP also interacts with vesicle proteins like 

Rab, AP2, synaptotagmin and clathrin, among others (Ludewig and Korte, 2017). 
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             from (Ludewig and Korte, 2017) 

 

Proteolytic processing of APP. Full-length APP can be processed by different sequential 

combinations of α-, β-, η-, and γ-secretases (arrows indicate cleaving sites), giving raise to three 

different pathways. On the left, it is shown the η-secretase processing of APP. First, η-

secretase cleavage releases the soluble APPsη, while CTFη remains in the plasma membrane. 

CTFη is further processed by α- or β-secretase generating An-α or An-β. Resulting of the 

cleavage of CTFη γ-secretase yields the APP intracellular domain (AICD) containing the highly 

conserved interaction motif (YENPTY, yellow box) or the short extracellular peptides Aβ (red) 

seen in the amyloidogenic or p3 (red) within the non-amyloidogenic pathway. The non-

amyloidogenic pathway shown in the middle, is driven by the action of α-secretase liberating 

APPsα in the extracellular space. Subsequently processing of membrane tethered CTFα by γ-

secretase generates the p3 peptide and cytoplasmic AICD. The right panel illustrates the 

amyloidogenic processing of APP, led by β-secretase resulting initially in the release of the 

APPsβ ectodomain. Next, γ-secretase makes a second cut of the membrane tethered CTFβ 

and the Aβ peptide is secreted along with AICD to the cytoplasm. 
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3.3.3. oAβ: isoform, agreggation status and concentration. 

When referring to Aβ species, it is important to notice at least three different characteristics: 

isoform, agreggation status and concentration used. Experimentally, has been shown that 

biological effects can vary notably depending on these factors (Gulisano et al., 2018; Puzzo et 

al., 2012). Next, an explanation on the differences his characteristics make on toxicity and 

correlation to cognitive impairment, as well as a rationale for the use of Aβ1-42 oligomers in the 

experiments of this thesis. 

 

oAβ, is a term used to describe soluble subproducts of the amyloidogenic cleavage of APP. 

Particularly, soluble products ranging between 2-12 peptides (Ballard et al., 2011).  During 

many years the main focus of research was on the amyloid plaques. The study of oligomeric 

species of Aβ became relevant after the realization of the poor correlation existent between 

fibrillar plaque deposits and cognitive impairment in both animal models and AD human patients 

(Esparza et al., 2013) . On the other hand, soluble oAβ show a high correlation with cognitive 

decline (Benilova et al., 2012; Lue et al., 1999; Tomic et al., 2009).  A study comparing post-

mortem cortex lysates from non-demented patients with Aβ plaque pathology and AD patients 

with Aβ plaque pathology (Esparza et al., 2013). Interestingly, this study showed that even 

though the two groups of patients had equivalent Aβ plaque pathology, only in the AD group 

there was a high correlation (r = 0.88) between Aβ oligomer concentrations and Aβ plaque 

coverage, whereas in the non-AD Aβ plaque group, there was a very weak correlation (r = 0.30) 

(Esparza et al., 2013). Meaning that despite both groups having Aβ plaques, only in the AD 

group the concentration of oAβ was higher. For this reason, we will focus on the study  of 

soluble oligomeric forms of Aβ and not, for instance, fibrillary forms. 

 

Now, the isoform of oligomeric Aβ species can vary greatly. A study,  using high-resolution 

mass spectrometry in post-mortem frontal cortex of six confirmed cases of AD found a diversity 

of 26 different Aβ proteoforms (Wildburger et al., 2017). Interestingly, the canonical forms of 

Aβ1-40 and Aβ1-42 were present in samples from all patients with Aβ1-42 presenting the highest 

relative abundance (Wildburger et al., 2017). It is precisely this proteoform, Aβ1-42 that will be 
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used on this thesis. Although, it is important to notice that other forms of soluble Aβ have also 

shown toxicity, specially Aβ1-40  (Lue et al., 1999) has been also widely used in experimentation. 

 

Finally, the concentration of oAβ42 used is probably hardest to define. It is of course, desirable 

to use a concentration closer to the patophysiological concentrations found in AD patients. In 

this regard, the most reported measurements correspond to oAβ in cerebrospinal fluid. Even 

though it can be very helpful marker of Aβ levels in the brain, the truth is that it does not shade 

light on the actual concentration of Aβ in the brain parenquima, concentration to which neurons 

are being  subjected to.  

 

This subject will be further analyzed in the results and discussion sections. 

 

3.3.4. oAβ affect synaptic plasticity, the AMPAR view 

Synaptic plasticity is greatly affected in hippocampal neurons treated with oAβ. Although oAβ 

cannot fully account for the etiology of AD, evidence in the last decades agrees on the 

relevance of oAβ accumulation as a hallmark for AD (Dinamarca et al., 2008; Lacor et al., 2004; 

Walsh and Selkoe, 2007). Recent work proposes that oAβ generate early synaptic failure and 

synaptotoxicity leading to neuronal death and progressively, cognitive loss. Also, it has been 

reported that oAβ could be accountable for generating other hallmarks of AD, like neurofibrillary 

tangles caused by tau hyperphosphorylation (Jin and Selkoe, 2015) and can lead to tau 

mislocalization (Miller et al., 2014). 

 

How do oAβ cause synaptotoxicity?, there is no definitive and single answer. Among the many 

effects observed after oAβ exposure into hippocampal neurons are: mitochondria damage 

(Paula-Lima et al., 2011), pore opening in the plasma membrane (Arrázola et al., 2017), 

AMPARs endocytosis (Hsieh et al., 2006; Jin and Selkoe, 2015), over-activation of NMDA 

receptors and calcium homeostasis deregulation (Shankar et al., 2007), decrease in density and 

maturity of dendritic spines (Wu et al., 2012), decrease in excitatory currents (Cerpa et al., 

2008a; Dinamarca et al., 2008), LTP impairment (Shankar et al., 2007; Townsend et al., 2006; 

Walsh et al., 2002) and many others.  
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In fact, at least a couple of publications have described how human derived oAβ, from AD 

patients, can directly inhibited LTP, when injected into rat brains and tested in-vivo (Shankar et 

al., 2008; Walsh et al., 2002). Probably giving the most crucial proof in favor of the amyloid 

hypothesis as the trigger of AD pathology. Moreover Aβ producing cells were treated with a γ-

secretase inhibitor, to decrease the production of oAβ and favor monomeric Aβ in the cell 

medium.  When the conditioned media was injected into the rat brains, LTP was no longer 

disrupted (Walsh et al., 2002) .  

 

It has been widely reported, that oAβ cause endocytosis of AMPARs (Hsieh et al., 2006; Miller 

et al., 2014; Miñano-Molina et al., 2011). Particularly, oAβ42  induces a calcineurin-dependent 

dephosphorylation of S845 residue in GluA1, causing endocytosis of AMPARs (Miller et al., 

2014).  

Not only calcinuerin is affected by oAβ, also, the activity of CaMKII can be jeopardized by it. It 

has been found that in animal models for AD, the amount of CaMKII clusters is lower and the 

same happened in in-vitro treatments with oAβ, leading to endocytosis of AMPARs and a 

decrease in AMPA current density (Gu et al., 2009). Under different experimental conditions, it 

has been proposed that Aβ-dependent synaptotoxicity is in fact an NMDA-dependent 

metaplasticity phenomena involving AMPAR desestabilization (Opazo et al., 2018) . The 

proposed mechanism is as follows: within 30 min of treatment with oAβ a NMDAR-dependent 

activation of CaMKII occurs, specifically through GluN2B subunits. This initial and fast CaMKII 

activation occludes new the further activation of new rounds of CaMKII (Opazo et al., 2018). A 

metaplasticity response causes AMPAR desestabilization and a decrease in dendritic spine 

volume, the precise mechanism causing this final effect, remains to be solved (Opazo et al., 

2018).  

 

3.4. Wnt signaling  

Wnt ligands are glycoproteins, members of a wide family of morphogenes involved in cellular 

organization. They were first discovered in the Drosophila melanogaster and initially, their role 

was thought to be exclusively on the pattern formation of the antero-posterior axis in 

development. Wnt signaling is highly conserved in the animal kingdom. In rats and humans, for 
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example, there are 19 different Wnt ligands and 10 Frizzled receptors, with orthologue pairs and 

share ~94% amino acids (Bjarnadóttir et al., 2006). In recent years, there has been a novel 

interest in studying the roles of Wnt signaling at postnatal stages. Particularly, the study of Wnt 

signaling on adults has focused in cancer research and in the postnatal maturation and 

maintenance of neurons in the CNS. Nowadays, we know that Wnt signaling plays a role in 

processess, as diverse as: adult neurogenesis in dopaminergic (Andersson et al., 2013), 

cerebellum  (Subashini et al., 2017) and hippocampal neurons (Lie et al., 2005; Okamoto et al., 

2011), dendritic spine growth (Ciani et al., 2011) and dendritic maintenance (Chen et al., 2017),  

clustering of PSD95 (Ciani et al., 2011; Farías et al., 2009) and of other synaptic proteins like 

Bassoon (Gogolla et al., 2009; Varela-Nallar et al., 2009) , vGlut1 (Varela-Nallar et al., 2009) 

and SynGAP (Codocedo et al., 2015) to mention a few. Wnts can also modulate synaptic 

activity, it has been reported they play a role in presynaptic neurotransmitter release (Cerpa et 

al., 2008b),  increase in glutamatergic currents (Cerpa et al., 2010a) and LTP activity (Cerpa et 

al., 2011, 2015; Ciani et al., 2011) and it has also been involved in neuroprotection (Cerpa et 

al., 2010a; Zhang et al., 2015b).  

 

Next, information regarding the biogenesis of mature Wnt ligands, their release and the effects 

of different Wnt signaling pathways on the mature CNS, will be addressed. 

 

3.4.1. Biogenesis and post-translational modification of Wnt ligands 

There are 19 different Wnt ligands in humans. In general, Wnt ligands are composed of around 

350-400 aminoacids with a molecular weight of ~40-45 kDa, with 23 conserved cysteine 

residues in their N-terminal domain, allowig for intramolecular disulphide bonds to form 

(Rijsewijk et al., 1987).  

 

Wnt proteins suffer from different two post-translational modifications (PTM), that are key for 

their secretion and posterior binding to Frizzled receptors. N-glycosilation and palmitoylation, 

the addition of  palmitate or palmitoleic acid (Komekado et al., 2007; Kurayoshi et al., 2007). 

Once these two PTM occur, Wnt proteins are considered to be mature and can be refered as 

Wnt ligands. Wnt proteins are translated in the ER and immediately after translation, they suffer 
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PTM (glycosylation and palmitoylation) directly at the ER. In charge of catalising  the 

glycosylation and palmitoylation of  newly synthesized Wnt proteins, is Porcupine, an eight 

transmembrane domain protein, resident of the ER and member of the membrane-bound-O-

acyl-transferases family (Herr et al., 2012). Both modifications are independent but it has been 

described that glycosylation follows palmitoylation (Komekado et al., 2007). The role of 

glycosylations is unclear, but is generally accepted that unglycosylated Wnt proteins are 

retained in the ER, thus are not secreted (Komekado et al., 2007). Also, it has been described 

that glycosylation plays a role in Wnt ligand binding to its Frizzled receptor. More conclusive 

evidence shows the fundamental role of palmitoylation in ligand secretion and enhancing their 

ability to bind to Frizzled receptors and co-receptors (Komekado et al., 2007). Porcupine 

palmitoylates Wnt3a proteins at least at two different residues, Cys77 and Ser209, this action 

has found to be crucial for the secretion of Wnt ligands (Komekado et al., 2007; Takada et al., 

2006). In the case of Wnt5a, Cys104 residues are palmitoylated and several asparagine 

residues get glycosylated (Kurayoshi et al., 2007). Different Wnt proteins may have different 

palmitoylation sites, but the overall mechanism and function, its the same. Either, Porcupine 

mutations or site specific mutations on the palmitoylation residues are associated with 

intracellular accumulation of Wnt protein (Takada et al., 2006).   

Once PTM are completed, Wnt ligands continue the secretory pathway and migrate to the Golgi 

Apparatus. There, mature Wnt ligands bind to Wntless, a transmembrane protein essential for 

the secretion of Wnt ligands found associated with plasma membrane at the Golgi Apparatus. It 

is considered to be a Wnt transpoter protein. The Porcupine-dependent palmitoylation step 

previously described seems to be a prerequisite for Wnt binding to Wntless (Komekado et al., 

2007).  

 

Wnt ligands can be secreted into small vesicles, probably exosomes (Gross et al., 2012), which 

would allow Wnts to travel longer distance and not interacting with extracellular matrix 

components like heparan sulfate proteoglycans, which due to their highly lipidic mature form, is 

very likely to happen. Nonethelesss, Wnts can also act on a shorter range distance, suggesting 

that could be also be  released from their binding to Wntless, therefore the plasma membrane 
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and be secreted freely. When this happens, usually Wnt ligands act in a short distance 

paracrine or autocrine manner.  

 

 

 

from The Wnt homepage (https://web.stanford.edu/group/nusselab/cgi-bin/wnt/node/263) by Roel Nusse. 

 

The secretory pathway of Wnt ligands. Upon translation at the ER, Wnt proteins (in yellow) 

suffer a series of post-translational modifications. The first one being the addition of lipids, which 

occurs also at the ER and it is catalyzed by the enzime Porcupine. The palmitoyltransferase 

activity of Porcupine, adds a palmitate (lipid) group to the protein. Following on the secretory 

pathway, the lipid modified Wnt (palmitated) will continue into the Golgi Apparatus where only 

lipid-modified Wnts will bind to the membrane-bound Wntless protein. Wnt and Wntless will 

remain attached together into secretory vesicles, or Wnt ligands will be freely-secreted into the 

extracellular space.  
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3.4.2. Wnt Pathways 

Wnt signaling can be roughly divided in two different pathways, noting that this classification is 

not straight forward due to the variable interactions of Wnt ligands with different receptors and 

co-receptors. The first one, called canonical Wnt pathway, can be subdivided depending on the 

requirement of   β-catenin and consequent activation of gene transcription (β-catenin 

dependent), or the activation of the Wnt/mTOR or Wnt/STOP pathways, the first one leading to 

increased protein synthesis and the second one to protein stabilization. On the other hand, the 

non-canonical Wnt pathway can be subvided  into Wnt/Ca
2+

, which increases intracellular Ca
2+

 

concentrations from internal stores and activates CaMKII, PKC and the phosphatase 

calcineurin. The other branch of the Wnt non-canonical pathway is the Wnt/Planar Cell Polarity 

(PCP), also refered as Wnt/JNK, and causes activation of a plethora ot small GTPases like 

Rac1, Daam1/2 and ROCK, and leads to cell polarity and survival. There is evidence arguing for 

a loss on the regulation and balance between canonical  and non-canonical Wnt signaling in the 

early stages of AD. And has even been proposed that a deregulation in the Wnt pathway 

triggers the onset of the disease.   

 

In all cases, a Wnt ligand binds to a Frizzled receptor and this binding favor the coupling of a 

co-receptor, forming a signaling complex. At least 5 families of co-receptors have been 

described. LRP5/6 is related to canonical signaling whereas Ror1/2 or Ryk1, are related to non-

canonical signaling, as depicted on the figure below. It has been proposed then, that co-

receptor binding to the Wnt-Frizzled complex, will confer specificity to the downstream response 

and add regulatory mechanisms for the fine tunning of responses (Verkaar and Zaman, 2010). 

More recently, new co-receptors has been discovered, like: PTK7, RYK and heparan sulphate 

proteoglycan (HSPG)(Niehrs, 2012; Verkaar and Zaman, 2010).  
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                  from (Oliva et al., 2018) 

 

The Wnt signaling pathways. The Wnt signaling pathways can be divided into two main 

branches, canonical (GSK-3β dependent) and non-canonical (GSK-3β independent). In the 

canonical, binding of a Wnt ligand causes internalization of the Frizzled (Fz) receptor and co-

receptor (LRP5/6), forming an intracellular signalosome that binds GSK-3β and disassembles 

the constitutively active β-catenin destruction complex, allowing cytoplasmatic β-catenin 

accumulation. Next, β-catenin migrates to the cell nucleus and binds to TCF/LEF transcription 

factors, favoring the transcription of Wnt-target genes. The second branch of the canonical 

(GSK-3β dependent) Wnt pathway is β-catenin independent. It diverges from the signalosome 

and leads to proteosome inhibition and Stabilization Of Proteins (Wnt/STOP). Also, can cause 

the inhibition of TCS2 which will lead to activation of TORC1 and an increase in protein 

synthesis (Wnt/mTOR). Non-canonical pathways are independent on GSK-3β and β-catenin 

action. The co-receptor can be either Ror1/2 or Ryk. In the Wnt/Ca
2+

 signaling, Fz receptor 

activation leads to G-protein and PLC activation, which will cleave PIP2 into DAG and IP3, This 

will activate IP3 receptors in the rugose endoplasmic reticulum (RER) allowing Ca
2+

 release. The 

increase in cytoplasmic Ca
2+

 activates kinases like CaMKII and PKC or the phosphatase 

calcineurin. CaMKII activation, into successive steps (dashed line), leads to the activation of the 

transcription factor CREB and consequent gene transcription. Finally, activation of the non-

canonical Wnt/PCP pathway acting on small GTPases like RhoA and Rac1, activates kinases 

like ROCK, MAPK and JNK to cause cytoskeleton rearrangements and cell survival.  
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3.4.3. Wnt signaling in the mature central nervous system 

Since the discovery of Wnt signaling, as a crucial developmental signaling pathway, much of the 

focus was put in its role in embryonic patterning formation. However, in the last decade a new 

interest on the roles of Wnt signaling in the central nervous system, and Particularly in the 

already formed, mature CNS, has come to light (Oliva et al., 2018). 

 

That is how it is clear now that Wnt ligands continue on playing a fundamental role in adult 

stages and throughout the entire lifespan of an animal. Particularly, in the mature CNS, Wnt 

signaling is key on regulating neurogenesis (Schneider et al., 2016; Yao et al., 2016), 

maintenance of dendritic arborization (Chen et al., 2017), neurotransmitter release (Cerpa et al., 

2008b; Ciani et al., 2015), among many other functions that are listed in Table 1.   

 

Most of the evidence that will be presented comes from in-vitro experimentation, which in many 

cases has found in-vivo confirmation. In any case, increasing evidence, specially in the last few 

years, converge on the relevance of Wnt signaling in the physiological functioning of the CNS.  
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Table 1. Reported effects of Wnt ligands in the adult central nervous system   

                                                                    

                                                                                                        

   

                                                                                                                 (continues on next page) 
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              from (Oliva et al., 2018) 

 

 

In this thesis, we will focus on the role of Wnt5a in hippocampal neurons, where it acts as a 

non-canonical Wnt ligand (Varela-Nallar et al., 2010) . Cumulative evidence suggests that 

Wnt5a has an important role in the normal development, maturity and maintenance of 

hippocampal neurons. But also has the ability to cause synaptic- and neuroprotection against 

oAβ. 

   

 

3.5. Wnt5a and its neuroprotective role against oAβ 

Wnt5a is a member of the Wnt ligands family and has been unequivocally described as an 

activator of the non-canonical Wnt pathway in hippocampal neurons. Therefore, several studies 

by us and others, have studied the roles of Wnt5a in the organization and maturation of 

postnatal and adult hippocampal activity. Within the rat and human brain, Wnt5a is highly 

expressed in hippocampus and it is the only non-canonical ligand expressed at detectable 

levels (Allen Mouse Brain Atlas webpage). In contrast, Wnt3a and Wnt7a which are also 

expressed in the hippocampus, but are considered to act mainly as canonical Wnt ligands. 

Interestingly, in mouse and rat hippocampus, Wnt5a is expresed only from postnatal stages, 

between P7-P10, with parallel expression of important synaptic proteins, and not earlier in 



40 

 

 

development (Chen et al., 2017). Once expressed, Wnt5a is present throughout the entire 

lifespan of animals (Chen et al., 2017; Varela-nallar et al., 2010). 

Studies show that in hippocampal neurons, Wnt5a increases miniature excitatory postsynaptic 

currents, both for AMPAR and NMDA receptors (Varela-Nallar et al., 2010), promotes the 

clustering of PSD95 (Farías et al., 2009) and SynGAP (Codocedo et al., 2015), increases de 

density of dendritic spines (Ramírez et al., 2016), among other roles described in Table 1. It has 

been shown that Wnt5a alone, has a crucial role in synaptic plasticity and structural 

maintenance of dendritic arborization (Chen et al., 2017). A more recent study showed that 

conditional knock-down expression of Wnt5a in adult mice hippocampus causes severe 

memory impairment, which correlates with the decrease in dendritic arborization (Chen et al., 

2017). Demonstrating that Wnt5a, in adult hippocampus, has a functional relevance in 

processess of learning and memory. On Table 1 are described the effects of Wnt5a in mature 

CNS (Oliva et al., 2018). 

                 

Several studies have described  a neuroprotective role for Wnt5a against oAβ. In-vitro 

experiments show that Wnt5a can revert the effects of oAβ42 by recovering: PSD95 clusters, 

SynGAP clusters (Codocedo et al., 2015), dendritic spines density, excitatory synaptic currents 

(Cerpa et al., 2010a). In hippocampal neurons, Wnt5a activates CaMKII and JNK, which as 

mentioned above are fundamental in the regulation of AMPARs-TARPs interaction with PSD95 

(Opazo and Choquet, 2011; Opazo et al., 2010).Therefore, we reasoned that Wnt5a promotes 

the stabilization of AMPARs in rat hippocampal neurons. And by doing so, Wnt5a protects 

synaptic organization and functionality, against Aβ42 oligomers. 

 

In-vivo administration of Aβ25-35 oligomers reduce LTP response in hippocampal CA1 region, 

withouth affecting paired pulse facilitation (PPF). This effect, is blocked when Wnt5a is 

administrated before Aβ25-35 oligomers. This effects correlate also with a decrease in spatial 

learning and memory when animals are treated with Aβ25-35 oligomers, which again is reversed 

by Wnt5a (Zhang et al., 2015a).  Also in-vivo, it has been proof that administrating a mimic of 

Wnt5a (Foxy5) through an osmotic pump implanted in the hippocampus of  APP/PS1 mice, a 

commonly used model for AD, rescue their memory impairment (Vargas et al., 2014). 
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3.6. What we know so far 

Next, a list of facts, all of them were above mentioned in detail, regarding the two main topics 

that this thesis pretends to study and unite. The study of Wnt ligands as modulators of AMPA 

receptors is still in its youth, so there is not a great body of evidence that directly links them. 

There is, nonethelesss, considerable evidence relating Wnt signaling and excitatory synaptic 

transmission.  

 

In the case of Wnt signling and oAβ synapto- and neuroprotection, a greater body of evidence 

shows that Wnt signaling (mainly Wnt5a) is able to protect from the toxic effects of oAβ. 

 

3.6.1. Wnt signaling and AMPA receptors 

Not much information exists directly relating Wnt signaling to AMPARs. That’s one of the 

reasons this research is of novelty and importance to the field. Next, a few bullet points 

describing known facts over Wnt signaling and AMPA receptor modulation:  

 

 Wnt5a increases the EPSCs of both AMPA and NMDA receptors (Cerpa et al., 2010b). 

 

 Wnt5a increases mEPSCs of both AMPA and NMDA receptors (Varela-Nallar et al., 

2010). 

 

 Wnt7a rapidly promoted synaptic AMPAR recruitment and trapping (Mcleod et al., 

2018). 

 

 Wnt7a increases the presence of extrasynaptic AMPARs, in a CaMKII and PKA 

mediated manner (Mcleod et al., 2018). 
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3.6.2. Wnt signaling and oAβ-dependent synapto- and neurotoxicity 

 

 oAβ42 significantly reduces AMPA and NMDA currents, with a greater effect on NMDA 

currents (Cerpa et al., 2010b).  

 

 Wnt5a treatments (40 min) occlude the synaptic transmission depression induced by 

oAβ (Cerpa et al., 2010b). In this case, it was not determined if the protective effect 

from Wnt5a was by action (directly or indirectly) over AMPA or NMDA receptors.   

 

 Wnt5a is able to recover the loss of several synaptic proteins, induced by oAβ 

treatments. Some of this proteins are: PSD95 (Cerpa et al., 2010b), SynGAP 

(Codocedo et al., 2015). 

 

 In-vivo activation of Wnt signaling, through a mimic of Wnt5a, causes memory 

improofment in animal mouse model of AD (Vargas et al., 2014). 

 

 Wnt3a prevents oAβ-induced mitochondrial permeability transition pore opening in living 

neurons. Like this, it prevents mitochondria swelling, mitochondrial membrane potential 

loss and cytochrome c release. By preventing this sequence of events, it is proposed 

that Wnt3a causes neuroprotection against oAβ (Arrázola et al., 2017).  

 

 In-vitro experiments have shown that inhibition of Wnt signaling leads to an increase in 

the amyloidogenic processing of APP. Thus, linking loss of Wnt signaling to an increase 

in oAβ content and  amyloid depositions (Tapia-Rojas et al., 2016).  
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3.7. The problem and the line of attack 

Considering the information provided throughout the introduction and what we know about Wnt 

signaling in regard to AMPA receptors and oAβ42 (sections 6.6.1 and 6.6.2.), our working 

hypothesis is as follows: “Wnt5a causes protection against oAβ42 by modulating AMPARs 

dynamics”. 

 

This thesis presents a study on the mechanism by which Wnt5a is able to cause synaptic 

protection against oAβ. Throughout this project, we used mainly super-resolution microscopy 

techniques, but also biochemical techniques and confocal microscopy. We performed a 

sedulous attempt to first study the dynamic of AMPARs in response to Wnt5a and oAβ, 

independently. Once these responses were characterized, we analyzed the effect of applying 

Wnt5a followed by oAβ, to test if there is a preventive effect of Wnt5a. Like this, we discovered 

that Wnt5a immobilizes AMPARs and by this means, helps to prevent the effects of Aβ42 

oligomers. 
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4. MATERIALS AND METHODS 

Molecular Biology 

eGFP-Homer 1c plasmid is a gift from S. Okabe (Tokyo University, Tokyo). Coding DNA for 

GluA1 was first subcloned in the eukaryotic vector prK5 before SEP insertion at its amino-

terminal end by subcloning.  

 

Primary Neuronal Cultures and Transfection 

Hippocampal cells of Sprague Dawley embryos E18 were dissected and plated at a density of 

75 cells/mm
2
 on poly lysine-coated glass coverslips. Coverslips were placed upside-down over 

a layer of astrocytes, to modulate physiological conditions and increase cell growth and viability, 

following a Banker protocol. Neurons were transfected at DIV 9-11 with calcium phosphate 

method or Effectene (Qiagen, 301427) according to the protocol suggested by the supplier. 

Shortly, cDNA and 300 µL buffer solution were mixed with 16 µL of enhancer and 50 µL 

Effectene.  After every addition, the mix was gently vortexed and left at room temperature for 10 

min.  On a separate dish, the final mix was added to coverslips and left on incubator (37°C, 95% 

O2) for 50-80 min. Afterwards, coverslips were returned to the original dishes and back to the 

incubator. For PALM-STORM experiments, cells were transfected using the Ca
2+

-phosphate 

method (Jiang and Chen, 2006).  cDNA constructs used were: 1 µg of Homer1C::GFP, 0.5 µg 

GluA1-HA and 1 µg of XpH15::mEos. All experiments were performed at 14-16 DIV. 

 

Recombinant Proteins and reagents 

Recombinant Wnt5a (645-WN/CF), recombinant Wnt7a (3008-WN/CF) and recombinant sFRP2 

(1169-FR/CF) were acquired from R&D Systems, MN. All recombinant proteins were 

reconstituted in PBS 1X to a stock solution of 100 µg/mL. rWnt5a was used at a final 

concentration of 300 ng/mL, rWnt7a was used at 300 ng/mL or 600 ng/mL, and sFRP-2 was 

used at 1 µg/mL or 2 µg/mL. All stocks were stored at -20°C and used within 3 months of 

reconstitution. KN93 (Tocris) was pre-incubated for 2h in incubator (37°C, 5% CO2) at 10µM. 

Wnt5a + sFRP2 complex was formed by mixing 300 ng/mL Wnt5a with 1 µg/mL sFRP2 and left 

in agitation for 30 min, at 37°C. 
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oAβ preparation 

Amyloid-β (Aβ) protein 1-42 (H-1368, Bachem AG, Switzerland) was dissolved in hexafluor-2-

propanol (HFIP) to 1 mM and let rest at room temperature for 30 min and aliquoted. Tubes were 

left under hood, overnight so traces of HFIP evaporate. To remove traces of HFIP, tubes were 

taken to SpeedVac and dry down for 1 h. Dried peptides were stored at -20°C until use. One 

day before experimentation, the pellet is dissolved in DMSO, mixed carefully with pipette and 

sonicated for 1 min. Finally, Neurobasal medium is added to a final concentration of 100 μΜ, 

vortexed and incubated for 24 h at 4°C to allow oligomerization. oAβ were used at 1 μM or 5 μM 

with a calculated final concentration of DMSO <0.002%.  

 

Co-immunoprecipitation and Western Blot 

Hippocampal cells of Sprague Dawley embryos E18 were dissected and plated at a density of 

7500 cells/mm
2
. For co-immunoprecipitation, cells were washed with PBS and lysed in ice cold 

HEPES lysis buffer, supplemented with EDTA, phosphatase and protease inhibitors. 

Afterwards, the lysate was centrifuged for 15 min at 14.000 rpm, 4°C and the supernatant was 

collected. Twenty microliters of beads was added to the lysate along with 0.5 μL of anti-PSD95, 

the mix was left incubating in slow rotation for 2 h at 4°C. Washings were performed on the 

same lysis buffer used previously, all supernatant is carefully removed. Loading buffer 2x is 

added to the final sample and heated at 95°C for 5 min and loaded into a 10% acrylamide SDS-

PAGE gel. Non-denaturing gel was run without adding SDS, β-mercaptoethanol or heating 

samples. Tris-tricine gel was run to separate Aβ species. Primary antibodies used are: Wnt5a 

(Abcam, ab72583), PSD95 (Neuromab, clone K28/43), GluA2 (Neuromab, clone L21/31), 

GluN2B (Neuromab, clone N59/36), CaMKII (Santa Cruz, SC5306), pCaMKII (Santa Cruz, 

SC32289), JNK (Santa Cruz, SC474), pJNK (Cell Signaling, #9251S), 6E10 (BioLegend, 

S803004) and tubulin (Santa Cruz, H235). Bands were quantified by pixel density using ImageJ 

(NIH).  

 

Live-stainning, immunofluorescence and epifluorescence imaging 

After super-resolution imaging, coverslips were removed from the Ludin chamber and placed on 

a droplet of Tyrode-1% BSA for 2 min in incubator (37°C, 95% O2). Following, neurons were 
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incubated on GluA2 antibody (1:500) in Tyrode-1% BSA, for 6 min in incubator conditions. 

Excess antibody was removed by washing in a droplet of Tyrode-1% BSA, for a few seconds. 

Once live-stainning protocol for GluA2 was ready, cells were fixated in freshly prepared PFA 

4%-Sucrose 4% and rinsed in PBS 1X. Cells were washed with 50 mM PBS-NH4Cl for 10 min in 

order to quench the reactive aldehyde groups, and rinsed with PBS 1X. Blockade was made 

with PBS-1% BSA for 30 min at room temperature. Permeabilization was done using PBS-0.3% 

Tx-100 for 5 min. Primary antibodies PSD95 (1:500) and VAMP2 (1:2000) were incubated for 

60 min at room temperature. Then, rinsed with PBS 1X three times and blocked with PBS-2% 

BSA for 30 min.   

 

Secondary isotope-specific antibodies were incubated (1:500) for 30 min at room temperature. 

For STORM samples, a second blocking step is done with PBS-1% BSA for 30 min. After 

secondary antibody incubation, a second fixation is done with PFA 2%-Sucrose 2%. Finally, 

neurons were rinsed with PBS 1X, distilled water and kept on PBS 1X at 4°C for STORM. For 

DM5000, neurons were mounted in slides with Fluoromount G-DAPI and kept overnight on a 

dark chamber at room temperature. Within a week, images were acquired in microscope or a 

DM5000 epifluorescence microscope. For the latter, a 63x oil immersion objective was used, 8-

10 steps of 0.2 µm in z-axis were obtained. Images were passed by StackReg plugin for ImageJ 

(NIH), to correct any possible drift on the z-stack images. For co-localization analysis the plugin 

Just another Co-localization Plugin (JaCOP) (Bolte and Cordelieres, 2006) was used and for 

synaptic contacts the plugin SynapcountJ, running in ImageJ. JaCOP allows the gathering of 

different co-localization parameters like: Mander’s coefficients 1 and 2, ICA, R, Pearson’s 

coefficient, among others. All of these coefficients measure the co-localization of two labelings, 

and they have their advantages and drawbacks. We used Mander’s coefficient, which integrates 

in its algorithm Pearson´s coefficient as a correlation measurement, but allows easier 

interpretation of the results (Dunn et al., 2011). Mander’s overlap coefficient (MOC), as is 

formally known, is calculated as follows:  
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Where, Ri and Gi refer to the intensity values on the red and green channel, respectively.  

MOC measures the fraction of pixels with positive values for both channels. MOC values range 

from 0 to 1, 0 being no co-localization and 1 reflecting 100% co-localization.  

 

uPaint microscopy 

Throughout this thesis work, the use of super-resolution microscopy has been a fundamental 

part of the experimentation. Particularly, a technique called universal Point Accumulation in on 

the Nanoscale Topography (uPaint) developed by. This technique combines two type of 

microscopy; Photoactivated Localization Microscopy (PALM) and Total Internal Reflection 

Fluoroscence  Microscopy (TIRFM). Next, a short explanation of both microscopy techniques 

(PALM and TIRF) will be presented individually. Following, a specific description of the uPaint 

technique, data analysis and results interpretation, will be explained.  

 

Super-resolution microscopy techniques, do not break the resolution limit; the size of a incident 

laser wavelength cannot be changed, and that is the ultimate limit for light microscopy, 

according to:               

                      
      

  
                                                       (Equation 1) 

 

Where: r is the resolution limit on the x,y axis; λ is the incident light wavelenght; NA is the 

numeric aperture of the lens. 

 

What super-resolution microscopy does, is to bend the resolution limit through clever 

techniques. In PALM microscopy, a subset of fluorophores is stochastically switch from an on to 

an off state. This allows that at a certain time point, the distance between two on-state 

fluorophores is higher than the resolution limit. Like this, each point can be individually located 

and mathematically corrected by the Point Spread Function (PSF). A large amount of individual 

particles are obtained over time and summated into one reconstructed super-resolved image. 

This reconstruction takes into account the particular Point Spread Function (PSF) to 

mathematically correct the size and location of the fluorescent particle and therefore, increase 

the resolution of the image.  
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TIRF microscopy was first developed by in . Its principle is the use a critical angle, called TIRF 

angle, in which the incident illumination over the sample, mediums with different refraction 

indexes, allows the formation of an evanescent wave. The evanescent wave allows for a small 

size of the sample, in proximity with the interface between glass and sample, to receive part or 

all the light in a small section. Usually, this allows to visualize into 100-200 nm deep of a 

particular sample. This feature increases the signal-to-noise ratio, allowing better detection and 

resolution, overall cleaner images. For this reason, TIRF microscopy is widely used to observe 

particles in the plasma membrane. 

 

The uPaint technique uses PALM and TIRF in conjugation to obtain live labeling at super-

resolution in plasma membrane proteins. A main difference between uPaint and other super-

resolution techniques is that labeling itself is performed at low density and therefore, the 

detection will be at low density as well. Instead, in techniques like PALM and STORM, the 

labeling is performed at high density, but due to the use of photoswitchable dyes, detection can 

be performed at low density. The combination of these techniques results in the following 

advantages: 

 1. The longest observation time of individual probes, allowing recordings of minutes 

      tracking the same population of receptor.  

 2. Versatility of endogenous molecules labeling, since the labeling system basically 

      depends on a primary antibody coupled to a fluorescent dye.  

 3. No need of photoswitchable dyes, which can be toxic and harder to produce. 

 

Once the acquisitions are obtained, the offline analysis is as follows: 

Trajectories are reconstructed by connecting single particle detections from consecutive frames. 

In order to avoid false positives, individual particles are detected for a minimum of ten frames 

are included in into the analysis, the ones not complying to this parameter are not considered 

for analysis. All trajectories are summed into one super resolution reconstructed image. To 

identify the position of each single particle at any given time, the following equation is used: 

 

             
                 

    
                                  (Equation 2) 
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Where : I0 is the amplitude of the Gaussian; σ is related to the Full Width at Half Maximum 

(FWHM) if the diffraction pattern by FWHM = 2.35 σ; the parameters x0 and y0 set up the central 

position of the located spot. 

 

Mean Square Displacement (MSD), measures the area covered by a single particle in a fixed 

time frame (500 milliseconds). Normally, a freely diffusing particle with no constrictions but 

temperature (like in brownian movement) shows a linear MSD behaviour, while particles with 

regulated diffusion display a curved MSD, reaching a plateau over time. Therefore, the more 

confined the particles are, the lower the MSD curve.  

 

             
                       

 
                         

   

   
                   (Equation 3) 

 

uPaint microscopy (Giannone et al., 2010) was used to detect and track exogenous GluA1 or 

endogenous GluA2 subunits, in single molecule tracking. Neurons were imaged at 37°C in a 

Ludin chamber (Life Imaging Services, Basel, Switzerland) in a caged microscope, and bathed 

on  Tyrode extracellular solution (15 mM D-glucose, 108 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 

mM CaCl2, 25 mM HEPES; pH adjusted to 7.4, 280 mOsm) and mounted in an inverted 

motorized PALM microscope (Nikon, TI-eclipse) equipped with a NA plan-achromat 100x 1.49 

NA oil immersion objective and a perfect focus system, mounted on an anti-vibrational table 

(TMC, USA). Laser diodes of 488 nm and 642 nm, were used. Images were acquired in total 

internal reflection (TIRF; Ilas, Roper Scientific, Evry, France) configuration, to manipulate tha 

illumination angle. Signals were detected with an EMCCD camera (Evolve, Roper Scientific, 

Evry, France). With the 488 nm laser, detection of Homer1c::eGFP allowed to identify synapses 

and segment according to the labeling of the tagged postsynaptic marker. Within the dendrite, 

those regions lacking Homer1c:eGFP were considered to be dendrites.Anti-SEP antibodies 

were used to detect GluA1-SEP molecules. Anti-GluA2 was in-house made and a gift from Dr. 

Eric Gouaux (Portland, USA). All antibodies were coupled to Atto-647N-NHS-ester (Atto-Tec, 

Siegen, Germany). Single-molecule fluorescent spots were localized in each frame and tracked 

over time. Metamorph software (Molecular Devices, CA, USA) was used for acquisition and 

analysis of images. A total of 8000 frames with an exposure time of 20 ms, were obtained per 
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cell. The pointing accuracy, a measurement of the precision on locating the detected points, 

was calculated as ~50 nm  PALM tracer, a plugin running with Metamorph, was used to derive 

quantitative data on protein localization and dynamics.  

 

Reliable data analysis depends on a good signal/noise ratio. For this reason, with the help of 

PALM Tracer, a threshold is manually set up to determine signal from background. Gaussian 

fitting is used to detect particles on each frame of the acquisition video. Also, a watershed 

algorithm is used to discriminate close particles and identify them as singles. Once single 

particle detections are done, trajectories are reconstructed by connecting detections from one 

image to the next.  

 

As a result of the analysis on Metamorph, not only we obtain a super-resolved image of the 

trajectories of AMPARs. Also, we obtain a file with the diffusion coefficient (D, μm
2
/s) which is 

the area that a given particle travels, per second. We can also obtain the MSD of each particule.  

 

Next, a brief explanation on how each of the paramenters and graphs are obtained. Also, how 

to interpret the results. 

 

LogD histogram: off-line analysis by calculating LogD and their relative frequency compared to 

the LogD of the entire population of particles gives an histogram (frequency %) of LogD of 

AMPARs dynamics for a given condition, depending on the experimental approach. From this 

histogram, different analysis can be made:  
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Completely immobile : corresponding to the % of AMPARs that have a LogD equal to 

-5, in the far left end of the LogD histogram. Meaning that those AMPARs move 

0.00001 μm
2
/s. And therefore are considered to be immobile. Biologically, this means 

that during the entirety of the recording (around 2 min) those AMPARs were completely 

immobile, probably anchored to a protein. It is graphed separately for better 

understanding.  

 

Mobility fraction: by calculating the area under the curve (AUC) of the less mobile 

population of AMPARs (AUC1), from the more mobile population of AMPARs (AUC2) 

and obtaining the relation between AUC2/AUC1, the mobility  is obtained. This 

parameter is a good representation on the behavior of the entire population of AMPARs 

and allows a simple comparison between two conditions. 

 

Trajectories: Quantifying and graphing the amount of trajectories detected is important 

because it gives a good idea on the efficacy on the antibody binding. Also, by comparing the 

change on the amount of trajectories, we can have an idea if we have more or less labeling 

between two time points on the same experiment. In general, it is not desirable to have a 

significant increase or decrease on the detected trajectories. This could an artifactual effect or a 

biological response that would mask the effect on membrane dynamics of AMPARs and lead to 

incorrect interpretation. Due to the high amount of detections, trajectories are graphed in 

thousands (x1000). 

Data Analysis and Statistics 

All experimental data is presented as mean ± SEM. For statistical analysis, Prism GraphPad 7.0 

was used. Grubb’s test was used to detect outliers in data sets. t-test was used to determine 

differences between two conditions. One-way ANOVA was used to determine differences in the 

mobility  between three or more groups. In all cases a minimum of 3 independent experiments 

were performed and n represents the number of total replicates. The significance value used 

was *P<0.05.   
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5. RESULTS 

 

5.1. Wnt5a immobilizes GluA1-containing AMPARs in a CaMKII-independent manner. 

First we tested if, as reported before, Wnt5a (300 ng/mL) activates the non-canonical Wnt 

signaling on mature hippocampal neurons. Effectively, Wnt5a treatments activate two important 

kinases involved in the non-canonical pathway. CaMKII and JNK are rapidly activated by 

treatment with Wnt5a (Figure 1A-B). The time course reveals that already at 15 min there is a 

significant increase of pCaMKII/CaMKII (Figure 1B, black circles). Similarly, pJNK/JNK at 54 

and 48 kDa show an increase already at 5 min of treatment with Wnt5a (Figure 1B, grey 

circles). In order to test our hypothesis, that Wnt5a affects AMPARs dynamics, we evaluated if 

GluA1-containing AMPARs mobility is altered by treatments with Wnt5a. Neurons were co-

transfected with Homer1C:eGFP to visualize the postsynapse and with GluA1-HA in order to 

track them with an anti-HA-Atto-647 antibody (Figure 1C). The epitope for anti-HA is located on 

the N-terminal (extracellular) domain of GluA1, therefore allowing live cell tracking without 

affecting membrane integrity (Figure 1C). In every case, basal acquisition corresponds to the 

dynamic of AMPARs before Wnt5a exposure. After ligand addition, acquisitions were made at 

15 and 30 min of continuous Wnt5a treatment. We observed that the effect of Wnt5a is time-

dependent. At 15 min we see a decrease in mobilization but only at 30 min after treatment, the 

effect is statistically significant (Supplementary Figure 1). For this reason, although in all cases 

experiments were done at basal, 15 and 30 min, we will contrast data at basal vs 30 min. This 

set of experiments are unpaired, meaning that acquisitions were not made in the same dendrite 

before/after treatment, but in different dendrites of the same coverslip. 

 

Figure 1D shows the selected GFP neuron (positively transfected with Homer1C::eGFP) and 

the ROI, trajectories and confinement of the detected AMPARs. Figure 1E shows an histogram 

of the different diffusion coefficients of detected AMPARs. This analysis reveals that compared 

to basal condition (grey), Wnt5a treatment (red) shifts the curve to the left, into less mobile 

coefficients. This proofs that there is a decrease in the mobile population and an increase in the 

immobile population of AMPARs after Wnt5a treatment. The percentage of receptors that have 

a diffusion coefficient (LogD) equal to -5; meaning that the diffusion coefficient of that population 

of receptors is too slow to be detected therefore, is considered to be completely immobile. In 
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this case, Wnt5a seem to increase the completely immobile population of GluA1-containing 

AMPARs, but shows no statistically significant differences (Figure 1F). Nonethelesss, compared 

to 15 min after Wnt5a, there is a time-dependence on the effect (Supplementary Figure 1B). 

The ratio between mobile/immobile, gives away the mobility of the entire population of 

AMPARs. Figure 1G evidences a significant decrease in the mobility after Wnt5a treatment. 

Again, this effect is stronger at 30 min than at 15 min (Supplementary Figure 1C). MSD 

expresses a measurement for confinement of single particles. In this case, we see a decrease 

in the MSD values after Wnt5a treatment, compared to basal MSD (Figure 1H). This means, 

that AMPARs are more confined, covering less distance per unit of time, due to Wnt5a 

treatment. Interestingly, when Wnt5a is boiled (10 min at 95°C) and then applied to neurons, the 

previously observed shift to the left after Wnt5a is lost (Figure 1I), no difference in completely 

immobility  (Figure 1J) or mobility (Figure 1K). This proofs that the effect of the native functional 

Wnt5a protein is responsible for the observed changes in AMPARs dynamic.  

 

Finally, it has been reported that the activation of CaMKII, one of the main downstream effectors 

of Wnt5a, causes phosphorylation of TARP-γ2 (Stargazin), promoting the interaction between 

PSD95 and AMPARs leading to receptor stabilization in synaptic sites (Opazo and Choquet, 

2011; Opazo et al., 2010). Therefore, we performed the same experiment using a CaMKII 

inhibitor, KN93. Interestingly, it seems that the stabilization of AMPARs through Wnt5a is 

independent on the activity of CaMKII, because we continue to see the shift of the curve (Figure 

1L). Also, the use of KN93 does not affect the completely immobile % of AMPARs due to Wnt5a 

treatment (Figure 1M), similarly to what is shown in Figure 1F. The independence on CaMKII 

action is clearly seen in the ratio mobility where there is a clear tendency towards immobilization 

between basal KN93 and KN93 + Wnt5a (P=0.08) and no difference between Wnt5a (same 

from 1G) and KN93 + Wnt5a (P=0.66) (Figure 1N). In order to test the possibility of KN93 

having an effects on its own, control experiments comparing basal mobility with basal mobility 

after KN93 pre-treatment were performed, and no effect was detected (Figure 1N). Overall, we 

argue that although CaMKII may be a part of the effects of Wnt5a, its activity is not necessary 

for the immobilization effect over AMPARs, caused by Wnt5a. In conclusion, Wnt5a stabilizes 

GluA1-containing AMPARs in a CaMKII- independent manner. 
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Figure 1. Activation of non-canonical Wnt signaling immobilizes GluA1-containing 

AMPARs in hippocampal neurons. Detection of overexpressed GluA1 on hippocampal 

neurons before/after Wnt5a treatment.  A) Wnt5a activates non-canonical Wnt signaling, as 

seen by increased phosphorylation of JNK and CaMKII on hippocampal neurons. B) 

Quantification of pCaMKII and pJNK (54 and 48 kDa), in each case proteins are standardized 

against its corresponding total protein. C) Simplified model of the labeling method for detection 

of GluA1-SEP overexpressed protein on AMPARs, anti-SEP-Atto647 was used to track GluA1 

subunits.  D) GFP image to detect Homer1C:GFP, second column shows trajectories and third 

column, the confinement for GluA1 under basal conditions and after 15 and 30 min of exposure 

to Wnt5a.  E) Histogram shows diffusion coefficients of GluA1-containing AMPARs before 

(basal, grey) and after treatment with Wnt5a (red). Vertical dotted line separates immobile and 

mobility s. F) Completely immobility , corresponding to the frequency of particles with a diffusion 
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coefficient equal to -5. % of completely immobile AMPARs for basal and 30 min of Wnt5a 

treatment. G) Mobility for basal and after 30 min of Wnt5a, according to E). H) Mean Square 

Displacement (MSD) determines the confinement of the particles in basal and Wnt5a 

conditions. I) Histogram of diffusion coefficients for basal versus 30 min boiled (denatured) 

Wnt5a. J) % of completely immobile receptors under basal and 30 min boiled Wnt5a. K) mobility 

according to I). L) Histogram of diffusion coefficient of KN93 alone (grey) and KN93+Wnt5a 

(red). M) % completely immobile AMPARs under basal (KN93 alone) and KN93+Wnt5a 

treatments. N) Mobility according to I). In each case, a minimum of 5 independent experiments 

were performed, n represents the total amount of cells registered. Unpaired t-test. P*˂0.05. 

 

5.2. Non-canonical activation of Wnt signaling stabilizes endogenous GluA2-containing 

AMPARs. 

Considering the immobilizing effect of Wnt5a on overexpressed GluA1-containing AMPARs, we 

wanted to test if similar effects are seen on endogenous GluA2-containing AMPARs. To do so, 

we used an antibody able to detect endogenous GluA2 subunits on living hippocampal neurons. 

As before, the epitope is located on the N-terminal domain of GluA2, allowing live tracking 

(Figure 2A). Since GluA2 is the most abundant AMPARs subunit in the hippocampus (Schwenk 

et al., 2014), this experiment not only complements our previous finding but is also a better 

representation on the effects of Wnt5a over the bulk population of receptors. To test if this effect 

is ubiquitous for other Wnt ligands, we also used Wnt7a. This ligand has been described to 

activate the Wnt canonical pathway in hippocampal neurons (Cerpa et al., 2008b; Davis et al., 

2008). We therefore observe a parallel between non-canonical (300 ng/mL Wnt5a) and 

canonical (300 ng/mL Wnt7a) effects. 

In this set of experiments, as for the rest of the thesis, paired acquisitions were obtained, 

meaning that in each case, a direct comparison can be made because a single dendrite was 

imaged before/after treatment.   

 

Similar to the results seen before for GluA1 tracking (Figure 1), we observe shorter and more 

confined trajectories of AMPARs after 30 min of exposure to Wnt5a (Figure 2B). On the 

contrary, there is no effect between basal mobility of AMPARs and 30 min exposure to Wnt7a 
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(Figure 2C). Quantification of the diffusion coefficients show a clear change in the curve from 

basal (grey) to Wnt5a (red) condition (Figure 2D). Notably, the completely immobile receptors 

(LogD equals -5) frequency is significantly increased after Wnt5a treatment, while no difference 

is seen after Wnt7a treatment (Figure 2E). In fact, due to Wnt5a there is a ~7% increase in the 

completely immobile AMPARs, while there is virtually no difference caused by Wnt7a (Figure 

2E). Analyzes of mobility shows a significant decrease after Wnt5a treatment and again, no 

difference is seen after Wnt7a treatment (Figure 2F). Here, the effect is tracked on the same 

ROI (neurite) before and after exposure to Wnt5a, represented as points connected by a line 

(Figure 2E). Cell by cell analysis shows that ~65% (11 out of 17) of all neurons treated with 

Wnt5a decreased their mobility while only ~31% (4 out of 13) of all neurons treated with Wnt7a 

showed a decrease in the ratio. The amount of trajectories detected did not change between 

different time points (Figure 2G). This is an important point to discard any artifactual effects, like 

antibody feeding, this will be further addressed in the discussion section. Finally, we see a small 

non-significant decrease in MSD due to Wnt5a, while again, there is no difference what so ever 

in MSD after Wnt7a treatment (Figure 2H). Altogether, Wnt5a causes a significant decrease in 

the mobility of AMPARs, while under the same conditions, Wnt7a has no effect. 

 

To make sure the lack of effect given by Wnt7a is consistent, we doubled the concentration of 

Wnt7a used (to 600 ng/mL). We observed the same effect of Wnt7a, for both low (300 ng/mL) 

and high (600 ng/mL) concentration. Therefore, we can safely conclude that there is no effect of 

Wnt7a over AMPARs mobilization. Results shown are pooled together.   

 

It is clear that Wnt5a generates immobilization of AMPARs, while Wnt7a, a canonical ligand on 

hippocampal neurons, has no effect on the mobility of AMPARs. Overall, this data proofs that 

the activation of the non-canonical Wnt signaling through Wnt5a ligand causes immobilization of 

AMPARs in hippocampal neurons. 
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Figure 2. Activation of non-canonical Wnt signaling immobilizes endogenous GluA2-

containing AMPARs. Detection of endogenous GluA2 on hippocampal neurons before/after 

Wnt5a or Wnt7a treatment. A) Simplified model of the labeling method for detection of 

endogenous GluA2-containing AMPARs. B) GFP image to detect Homer1C::eGFP, second 

column shows trajectories and third column, confinement for endogenous GluA2 under basal 

conditions and after 30 min of exposure to Wnt5a. C) GFP image to detect Homer1C:GFP, 

second column shows trajectories and third column, confinement for endogenous GluA2 under 

basal conditions and after 30 min of exposure to Wnt7a. D) Histograms shows diffusion 

coefficient of endogenous GluA2-containing AMPARs under basal (grey) or after 30 min of 

treatment with Wnt5a (red) or Wnt7a (blue). E) Completely immobility  (corresponding to the 

frequency of particles with a diffusion coefficient equal to -5) for Wnt5a (red) or Wnt7a (blue). F) 

mobility of AMPARs after 30 min od treatment with of Wnt5a and Wnt7a, each compared with its 



58 

 

 

basal mobility according to to D). G) Amount of trajectories detected (in thousands), in each 

experiment, no significant differences. H) MSD for Wnt5a (red) or Wnt7a (blue) treated neurons. 

In every case, in grey is shown the basal dynamique of receptors. In each case, a minimum of 5 

independent experiments were performed, n represents the total amount of cells registered. 

Paired t-test. n.s;. non significative, P*˂0.05.  

 

5.3. The immobilization effect is dependent on the binding of Wnt5a to its receptor. 

In order to test how specific is the effect of AMPARs immobilization to Wnt5a action, we used a 

tool to interrupt the binding of Wnt5a to Frizzled receptors. Soluble Frizzled Related Protein 2 

(sFRP2) is an endogenous protein with homology to the N-terminal ligand-binding domain of 

Frizzled receptors, we used recombinant sFRP2.  By co-incubating Wnt5a (300 ng/mL) with an 

excess of sFRP2 (1 µg/mL) for 30 min at 37°C in agitation, a complex (Wnt5a + sFRP2) is 

formed, blocking the Frizzled binding site on the Wnt5a ligand, preventing Wnt5a to bind to 

Frizzled. Like this, we prevent the formation of the Wnt5a-Frizzled complex and block signal 

initiation. Because sFRP2 is used in excess (>3 times more sFRP2 than Wnt5a), there is no or 

little free-Wnt5a to interact with Frizzled receptors. As a proof of this we ran a non-denaturing 

gel for the exact amount of Wnt5a used for experiments (lane 1) and for Wnt5a + sFRP2 

complex (lane 2) and immunoblot against Wnt5a (Figure  3A). Recombinant Wnt5a is labeled in 

at ~41 kDa, while on lane 2 there is very weak labeling for Wnt5a at ~41 kDa, suggesting there 

is little amount of free-Wnt5a available, when is complexed with sFRP2. Also, there is labeling 

around ~80 kDa (arrow) which is consistent with the predicted molecular weight for the complex 

Wnt5a + sFRP2 (~41 kDa + ~31.6 kDa) on lane 2. We estimate there is less than a third of free-

Wnt5a available on lane 2 compared to lane 1, and therefore if any free Wnt5a is available in 

our experiments, it is probably at non-functional low concentrations. This is a rough estimation 

and further experiments should be performed to properly establish the efficacy of complex 

formation. Wnt5a + sFRP2 complex was formed as described in Materials and Methods. 

 

Representative figures of Homer1C::eGFP, trajectories and confinement are shown (Figure 3B). 

Following the same experimental design as before, it is evident that when the Wnt5a + sFRP2 

complex is added to live hippocampal neurons, there is no change on the dynamics of 
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AMPARs. As seen in the histogram (Figure 3C) and in the completely immobility  (Figure 3D), 

there is no difference on the diffusion coefficients between basal and Wnt5a + sFRP2. Also, the 

mobility remains unchanged when compared to basal (Figure 3E). In this case, there is a 

significant difference on the amount of trajectories detected (Figure 3F). This was not expected 

and further experiments should be performed to corroborate the effect. 

  

Depending on the cellular context, sFRP2 can have different effects on Wnt signaling or even 

other signaling pathways (i.e., BMP) (Kongkham et al., 2010; Mii and Taira, 2011; Tokuda et al., 

2014). Therefore, it is necessary to test if by adding sFRP2 alone, the mobility of AMPARs is 

affected, or not. Since we are adding an excess of sFRP2 we needed to test if the extra sFRP2, 

not bound to Wnt5a, could be exerting any unwanted effects (i.e., complexing with endogenous 

Wnt5a, interacting with other Wnt ligands, binding to other molecules, etc). To test this, the 

same concentration of sFRP2 (1 µg/mL) used to form the complex, was directly added. Results 

show there is no effect on the mobility of AMPARs when comparing basal with 30 min of 

incubation with sFRP2 (Figure 3G-H), on the completely immobility  (Figure 3I) or in the mobility 

(Figure 3J). To further proof the point, a higher concentration (2 µg/mL) of sFRP2 was also 

tested and still failed to cause an effect on AMPARs dynamics. Results show both 

concentrations pooled together. No differences on the amount of trajectories detected (3K). 

 

We can extract three main conclusions: 1) the immobilization effect reported before (Figure  2) 

is dependent on the binding of Wnt5a to its Frizzled receptor, 2) the use of sFRP2 itself does 

not alter the dynamics of AMPARs and 3) the effect on immobilization is not caused by an 

artifactual effect like antibody feeding, which was also corroborated by the fact that Wnt7a does 

not change AMPARs dynamics (Figure  2). This will be further analyzed on the discussion 

section. Overall, this data corroborates the fact that Wnt5a induces stabilization of GluA1 and 

GluA2-containig AMPARs.  
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Figure 3. The immobilization of AMPARs due to Wnt5a is dependent on the binding of 

Wnt5a to a Frizzled receptor. Detection of endogenous GluA2-containing AMPARs in 

hippocampal neurons treated with Wnt5a + sFRP2 complex or sFRP2 alone. A) Immunoblot 

against Wnt5a for Wnt5a alone and the Wnt5a + sFRP2 complex, arrow indicates labeling at 

approximately 80 kDa (estimated weight for the complex) and arrowhead shows labeling for 

Wnt5a at approximately 40 kDa. B) Representative images for Homer::eGFP, trajectories and 

confinement for GluA2 endogenous receptors of neurons under basal and Wnt5a + sFRP2. C) 

Frequency distribution of neurons under basal condition (grey) and treated with the Wnt5a+ 

sFRP2 complex (black). D) Completely immobility  (corresponding to the frequency of particles 

with a diffusion coefficient equal to -5) for basal (grey) or after 30 min of treatment with 

Wnt5a+sFRP2 complex (black). E) mobility of the frequency distribution according to C). F) 

Amount of detections (in thousands), in each experiment. G) Representative images for 
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Homer1C::eGFP, trajectories and confinement for GluA2 under basal conditions and after 30 

min of exposure to sFRP2 alone. H) Frequency distribution of neurons under basal (grey) and 

sFRP2 (black). I) Completely immobility  for basal (grey) or after 30 min of treatment with sFRP2 

alone (black). J) mobility according to G). K) Amount of particle detections (in thousands), in 

each experiment. In each case, a minimum of three independent experiments were performed, 

n represents the total amount of cells registered. Paired t-test. P*˂0.05. 

 

5.4. Wnt5a-induced stabilization of AMPARs occurs in synaptic and extrasynaptic sites. 

Since Wnt5a causes a significant decrease in AMPARs mobility (Figure 2). We want to establish 

where in the neuron is this immobilization occurring. In that line, we dissected the previous 

analysis by separating synaptic and extrasynaptic trajectories, corresponding to the mobility of 

endogenous AMPARs found in synaptic or extrasynaptic sites. To differentiate synaptic 

trajectories, ROIs surrounding Homer1C::eGFP labeling were done. Everything not compressed 

into synaptic sites (Homer1C::eGFP) was considered to be extrasynaptic. Since uPaint 

technique gives us a spatial resolution of 0.1 μm and on average a dendritic spine is 0.5-2 μm 

long (Morgan Sheng, 2001), we can easily differentiate between dendrite and spines.  

 

Three different dendritic spines, of the same dendrite are shown under basal conditions and 

after 30 min of treatment with Wnt5a, trajectories shown on top and confinement on bottom 

(Figure 4A). Spine analysis of the diffusion coefficient shows that Wnt5 causes an important 

shift to the left compared to basal conditions, indicating immobilization of AMPARs (Figure 4B). 

Analysis of the completely immobility , reveals no significant difference in the immobilization of 

AMPARs, compared to basal conditions (P = 0.48) (Figure 4C). However, there is a significant 

difference in mobility analysis between both groups, cell to cell analysis shows that 80% (8/10) 

of neurons treated with Wnt5a had a decrease in the mobility of AMPARs (Figure  4D). The 

number of trajectories showed no significant difference (Figure 4E). Although there is a 

tendency towards lower valuers of MSD after Wnt5a treatment, no clear difference is found on 

the MSD curves (Figure  4F). 
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The extrasynaptic analysis also shows immobilization of AMPARs after 30 min of treatment with 

Wnt5a (Figure  4G). Wnt5a causes a decrease in the diffusion coefficient of AMPARs (Figure  

4H). We observe a significant increase in the amount of AMPARs considered to be completely 

immobile in Wnt5a-treated neurons (Figure  4I). Also, there is a strong and statistically 

significant decrease on the mobility  after treatment with Wnt5a, cell to cell analysis shows that 

~83% (10/12) of neurons treated with Wnt5a decreased the mobility of their AMPARs (Figure 

4J). The number of trajectories showed no significant difference (Figure 4K). Interestingly, 

Wnt5a generates a significant decrease on the MSD curve, which indicates the increased 

confinement of AMPARs (Figure  4L). The difference on MSD results for synaptic and 

extrasynaptic analysis might be an indicative of a preponderant role of Wnt5a on extrasynaptic 

AMPARs immobilization. This will be further analyzed in the discussion section.  

 

We can conclude that Wnt5a promotes the immobilization of AMPARs in synaptic and 

extrasynaptic sites. Since the localization of AMPARs in synaptic and extrasynaptic sites is 

differentially regulated, it implies that the effect of Wnt5a is not limited to one action mechanism 

and several intermediaries might be involved. 
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Figure 4. Non-canonical activation of Wnt signaling causes de immobilization of AMPARs 

at synaptic and extrasynaptic sites. Synaptic/extrasynaptic analysis of endogenous GluA2 on 

hippocampal neurons before/after rWnt5a treatment. A) Trajectories and confinement of 

endogenous GluA2-containing AMPARs of three different spines (one per line) under basal 

conditions and after 30 min of treatment with Wnt5a, numbers indicate same spines. B) 

Histogram shows diffusion coefficient of endogenous GluA2-containing AMPARs in dendritic 

spines. C) Completely immobility  for synaptic endogenous GluA2-containing AMPARs. D) 

Quantification of mobility  according to B). E) Amount of particle detection (in thousands), in 

each experiment. F) Mean Square Displacement (MSD) for basal (grey) for synaptic analysis. 

G) Trajectories and confinement of endogenous GluA2-containing AMPARs in dendrite, under 

basal conditions and after 30 min of treatment with Wnt5a. H) Histogram shows diffusion 

coefficient of GluA2 for extrasynaptic analysis. I) Completely immobility  for extrasynaptic 

analysis. J) Quantification of mobility  according to G).  K) Amount of particle detection (in 

thousands), in each experiment. L) Mean Square Displacement (MSD) for extrasynaptic 
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analysis. In each case, a minimum of five independent experiments were performed, n 

represents the total amount of cells registered. Paired t-test. n.s.; non significative  P*˂0.05, 

P*˂0.01.  

 

5.5. Wnt5a increases AMPARs-PSD95 co-localization in dendritic spines. 

Following uPAINT experiments, coverslips were removed from the microscope chamber and 

neurons were live stained for GluA2. After fixation and permeabilization, cells were also labeled 

with PSD95 and VAMP2 antibodies, dyed for DAPI and observed under a DM5000 

epifluorescence microscope. This way, performing parallel experiments on the same coverslips 

for uPaint and fluorescence microscopy. Co-localization analysis on GluA2-PSD95 was 

performed on the complete dendrite (including spines) and spines alone. As shown, control, 

Wnt5a and Wnt5a + sFRP2 treated neurons were evaluated, in the merge (GluA2/PSD95) 

image circles show the spines evaluated for co-localization and representative images are 

shown aside (Figure 5A).  

 

In the dendritic  analysis, we observe no statistically significant difference in the co-localization 

of GluA2-containing AMPARs and PSD95 (data not shown). But, when spines are analyzed 

independently of the dendritic shaft, we observe that Wnt5a causes a small but statistically 

significant increase (13 ± 0.01%) of GluA2-PSD95 co-localization on dendritic spines, as seen 

by Mander’s 1 coefficient (M1) (Figure  5B, left). Also, there is a similar change on Mander’s 2 

coefficient (M2) shows a similar change on co-localization of PSD95-GluA2 (~15% ± 0.03%) 

(Figure  5B, middle). This suggests that after 30 min of exposure to Wnt5a, there is an increase 

of AMPARs within dendritic spines, colocalizing with PSD95. For both coefficients, there is no 

increase in co-localization when neurons are treated with the Wnt5a + sFRP2 complex (as used 

before). This, not only supports the effects of Wnt5a, but also correlates with our observations 

on uPaint experiments (Figure  4A-E). Interestingly, we also observed a difference between the 

amount of co-localization clusters (i.e. times in which both proteins were co-localized, 

independent on the level of co-localization) occurring between conditions. Therefore, we 

quantified the percentage of clusters that are both PSD95 immunoreactive and GluA2 

immunoreactive (PSD95
+
/GluA2

+
), independent of the level of co-localization (which is shown 
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with Mander’s coefficients). Meaning, those PSD95 clusters that have GluA2-containing 

AMPARs. To our surprise, Wnt5a significantly increases the percentage of clusters that contain 

both proteins, when compared to basal conditions (Figure 5B, right). Again, we observe a 

significant decrease to basal levels when neurons are treated with the Wnt5a + sFRP2 complex 

(Figure 5B, right). Through this analysis, it is impossible to examine if those “new” AMPARs into 

PSD95 are functional AMPARs, or not, so we cannot refer to this difference as an increase of 

active synapses, but we believe that is a strong indication of that, this point will be addressed in 

more detail on the discussion section. To further study the interaction between GluA2-PSD95, 

we performed co-immunoprecipitation assays from lysates of hippocampal neurons treated with 

Wnt5a and/or sFRP2 and Wnt7a ligand. Pull-down of PSD95 and detection of GluA2 shows that 

after 30 min of incubation with Wnt5a there is an increase association of GluA2 with PSD95 of 

around 20% (Figure 5C). Although this increase fails to be statistically significant it coincides 

with our previous observation of AMPARs increased co-localization with PSD95, in dendritic 

spines. Importantly, the total amount of PSD95 and GluA2 in total hippocampal neuron lysates, 

are not significantly changed by any treatment (Figure 5 D). This corroborates the idea that the 

changes observed are a product of redistribution of existing AMPARs, and not a change in their 

expression level. It is worth mentioning, that this type of analysis is not adequate to measure 

interaction of GluA2 with extrasynaptic proteins. Therefore, we cannot conclude effects on 

extrasynaptic site. We can conclude that activation of the non-canonical Wnt signaling pathway 

through Wnt5a causes an increase of AMPARs at synaptic sites. 
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Figure 5. Wnt5a increases co-localization of GluA2 and PSD95 on dendritic spines, 

without affecting total levels of protein. Following uPAINT experiments, hippocampal 

neurons were live-stained for GluA2, fixed, permeabilized and labeled for PSD95 and images in 

an DM-5000 epifluorescence microscope.     A) Live staining of GluA2, following fixation and 

permeabilization, neurons were labeled with PSD95 and DAPI. Dendrites (dashed rectangle) 

and spines were selected (dashed circles) according to the labeling for PSD95. Co-localization 

of GluA2 and PSD95 on spines was assessed. Magnification of the representative spines are 

shown, three per condition.  B) Left graph shows the quantification of Mander’s 1 (M1, GluA2 

over PSD95), middle graph shows quantification of Mander’s 2 (M2, PSD95 over GluA2) 

coefficient and right graph shows the % of clusters positive for PSD95 and for GluA2, meaning 

postsynaptic densities containing AMPARs. C) After treatment and lysis of neurons, PSD95 was 

pulled-down and GluA2 detected by immunoblot.  Below it is shown the pixel density 

quantification for each treatment, normalized to PSD95 and compared to basal levels. D) 
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Immunoblot analysis of total lysates for PSD95, GluA2 and tubulin. A minimum of three 

independent experiments were done, with between 7-10 neurons per condition.Two-way 

ANOVA and Bonferronoi post-test. n.s. non significative, P*˂0.05, P**˂0.01, P***˂0.001.  

 

5.6. Wnt5a does not affect the clusters of PSD95 or GluA2. 

In order to corroborate previous findings, we wanted to test if our treatment causes the reported 

increase of PSD95 clustering, after Wnt5a treatment (Farías et al., 2009). To do so, we followed 

the same approach as described above. Following uPAINT experiments, under basal conditions 

or with treatments for 30 min of Wnt5a or Wnt5a + sFRP2, cells were live-stained for GluA2, 

fixed, permeabilized and labeled for PSD95 (Figure 6A). Cluster analysis shows that there is no 

significant differences for any of the parameters analyzed. That is, after 30 min of treatment with 

Wnt5a, the amount of clusters per 100 μm of dendrite was not affected either for PSD95 (Figure 

6B) or GluA2 (Figure 6E), the fluorescence intensity of the clusters was not significantly affected 

either (Figure 6C-F), which it is usually considered to be an indicator that there are no changes 

in the total amount of proteins present in the clusters. Therefore, a 30 min treatment of Wnt5a 

would not be affecting total protein levels of PSD95 or GluA2. Finally, we see no significant 

changes on the size of the clusters for PSD95 (Figure 6D). For GluA2, the amount of clusters 

remains the same but show a tendency towards a decrease in their size (Figure 6G). This data 

does not corroborate previous findings and the possible explanations will be addressed on the 

discussion section.     

 

Importantly, treatment with Wnt5a seem to affect mainly post-synaptic architecture, which is 

consistent with the fact that does not affect paired-pulse ratio, therefore suggesting that the pre-

synaptical terminal is not affected (Cerpa et al., 2010a). This is consistent with our findings that 

the amount of synaptic contacts is not altered by treatments with Wnt5a (Supplementary Figure 

2). 
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Figure 6. Wnt5a does not affect the amount of clusters of PSD95 or GluA2. Following 

uPAINT experiments, hippocampal neurons were live-stained for GluA2, fixed, permeabilized 

and labeled for PSD95 and images in an DM-5000 epifluorescence microscope. A) 

Immunofluorescence of PSD95 (green) and GluA2 (red) for neurons under basal condition and 

after 30 min Wnt5a treatment. B) Average PSD95 cluster density, normalized to 100 μm of 

dendrite. C) Average fluorescence intensity of PSD95 clusters.  D) Histogram of PSD95 cluster 

size shows a small, shift to the right. E) Average GluA2 cluster density, normalized to 100 μm of 

dendrite. F) Average fluorescence intensity of GluA2 clusters. G) Histogram shows a small 

decrease in GluA2 cluster size. A minimum of three independent experiments were done, with 

between 7-10 neurons per condition. 
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5.7. oAβ42 cause a decrease in the mobility of synaptic AMPARs.   

In the last years, accumulated evidence supports the idea that oAβ are the main and primary 

effectors on the synaptotoxicity seen in early stages of AD (Jin and Selkoe, 2015; Shankar et 

al., 2007, 2008; Walsh et al., 2002). On recent years, it seems that the evidence has gone 

further to propose that this could be occurring even before the appearance of neurofibrillary 

tangles (Miller et al., 2014). One of the mechanisms proposed on the action of oAβ42 over 

synaptic function involves the endocytosis of AMPARs (Hsieh et al., 2006; Miñano-Molina et al., 

2011) and the consequent decrease of AMPAR currents and overall failure on glutamatergic 

activity.   

 

We used an Aβ42 aggregation protocol that enriches soluble oligomeric species, as shown by 

electron microscopy (Figure 7A, top), tris-tricine separation and detection with 6E10 antibody 

(Figure 7A, bottom). Neurotoxicity was tested by incubating 5 µM Aβ42, for 24h at 37°C, in 

incubator (Supplementary Figure 3). Confirming, we are using a preparation mainly composed 

of Aβ42 oligomers. First, we used 1 µM oAβ42 and evaluated the effects on AMPARs dynamic 

(Figure 7B, C, D). This concentration has been reported to cause endocytosis of AMPARs and 

a decrease in AMPAR currents, when applied for an hours-to-days period (Gu et al., 2009). Our 

experimental design studies the effects on the short-term exposure (≤30 min) to Aβ42 oligomers. 

Nonethelesss, since AMPARs dynamic has not been studied we wanted to established if there 

might be an earlier effect at this given concentration. Analysis of the global dynamic reveals no 

change between basal and after 30 min of treatment with 1 µM Aβ42 oligomers. No changes 

were detected on the dynamic of AMPARs, relative frequency of completely immobile receptors, 

mobility or number of trajectories (Figure 7B). But, when we examined the synaptic dynamic of 

AMPARs, we see a small, but consistent, tendency towards immobilization of AMPARs, with no 

changes in the completely immobile receptors and an interesting tendency towards 

immobilization in the mobility (Figure 7C). The extrasynaptic analysis reveals no changes on 

AMPARs dynamic, completely immobile receptors or mobility (Figure 7D).  

 

To verify the tendency seen before, we studied the effects using a higher concentration (5 µM) 

of oAβ42 (Figure 7E, F, G). This concentration has been reported to cause calcineurin-
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dependent failures in the insertion of AMPARs to the cell membrane (Miñano-Molina et al., 

2011). On the global analysis, we observe a strong immobilization of AMPARs (Figure 7E). 

Interestingly, this immobilization is not increasing the frequency of completely immobile 

AMPARs. Instead, it affects the mobility, therefore immobilizing receptors but not to a complete 

stop. Noteworthy, at the synaptic level we also observe a strong immobilization of AMPARs 

(Figure 7F), which confirms the tendency seen with 1 µM oAβ42 (Figure 7C) and shows the 

existence of a concentration-dependent effect. To our surprise, there is no effect whatsoever on 

the dynamic of AMPARs at extrasynaptic levels, either at the completely immobile receptors or 

mobility (Figure 7G). At this point, it is very important to emphasize that oAβ42 seem to be 

acting only at a synaptic level, this because neither at 1 or 5 µM there is an effect at 

extrasynaptic levels. This data agrees with recent publications showing that oAβ bind and 

cluster at excitatory synaptic sites (Sinnen et al., 2016).  Another interesting observation is that 

already at 15 min the immobilization reaches a peak, since there is virtually no difference 

between 15 and 30 min exposure to oAβ42 (Supplementary Figure 4). This leads to the idea 

that oAβ42 are causing synaptic immobilization of AMPARs, which occurs rapidly and steadily 

at ≤15 min. In every experimental condition and analysis, the average number of detected 

trajectories remained unaltered.  
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Figure 7. Short exposure to oAβ42 (5 µM) affects the dynamic of synaptic AMPARs. 

Hippocampal neurons were treated with 1 or 5 µM of oAβ42 and dynamic of AMPARs was 

measured at basal, 15 and 30 min of treatment. In each case, diffusion coefficient distribution, 

completely immobile %, mobility and amount of trajectories detected, are graphed. A) Top 

image shows electronic microscopy of Aβ42 used, corroborating the presence of oligomeric 

forms and not fibrills. Bottom image shows immunoblot against 6E10, an epitope for Aβ, 

labeling shows the preparation is enriched in oligomeric species between 30-72 kDa (n-mer) 

and not higher or dimers (2-mer) or trimers (3-mer). In every case, from left to right is: 

Histogram for coefficient distribution, completely immobility , mobility and number of trajectories 

detected in each condition, for: B) 1 µM of Aβ42  global analysis C) 1 µM of Aβ42 spine analysis, 

D) 1 µM of Aβ42 dendritic analysis, E) 5 µM of Aβ42 global analysis, F) 5 µM of Aβ42 spine 

analysis and G) 5 µM of Aβ42 dendritic analysis. n represents number of cells, a minimum of 3 

independent experiments were performed, for each condition. Paired t-test. n.s. non 

significative, P*˂0.05, P**<0.01. 
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5.8. Wnt5a prevents the effects caused by oAβ in AMPARs dynamics.  

We have already established that Wnt5a causes stabilization of AMPARs at synaptic and 

extrasynaptic sites. This effect increases with time exposure to Wnt5a and reaches significance 

at 30 min of treatment. We also know, that 5 µM of oAβ42 immobilizes AMPARs, but only at a 

synaptic level and reaching a maximum at 15 min of treatment (no difference between 15 and 

30 min of treatment). Since our main hypothesis is that the effects of Wnt5a against the 

sinaptotoxicity of oAβ42 is related to a change in the mobility of AMPARs. Therefore, and 

according  to the time frames established above, we pre-treated neurons with Wnt5a for 15 min, 

after wish we added Aβ42 oligomers, as presented in the scheme (Figure 8A). Like this, giving 

enough time for both molecules to act and allowing us to determine if Wnt5a prevents the 

effects of 5 µM Aβ42 oligomers. Representative images of the same dendrite throughout the 

experiment progression, showing complete dendrite and three individual dendritic spines, for 

trajectories and confinement (Figure 8B). Global analysis (Figure 8C, left) shows that after 15 

min of treatment with Wnt5a there is a shift from to the left, compared with basal conditions, 

indicating some degree of stabilization of AMPARs, as expected. Interestingly, after 15 min of 

co-treatment with oAβ42 there is no further stabilization of AMPARs. At the same time, analysis 

of the completely immobile (% at logD -5) shows no significant changes (Figure 8C, middle). 

Mobility denotes a clear tendency towards immobilization of AMPARs, in synchrony with what it 

is seen in the histogram (Figure 8C, right). Next, as done before, synaptic and extrasynaptic 

dynamic of AMPARs was examined. Histogram of synaptic analysis shows no important 

differences on the dynamic of AMPARs (Figure 8D, left). Similarly, no significant differences are 

found for the % at logD -5, meaning that there are is no change on the percentage of completely 

immobile receptors for Wnt5a (15 min) alone or Wnt5a co-treated with oAβ42 (Figure 8D, 

middle). Except for one neuron, there is no significant differences in the mobility of AMPARs 

dynamics (Figure 8D, right). Finally, extrasynaptic analysis was performed (Figure 8E). From 

the histogram (Figure 8E, left), it is clear there is a small shift to the left, probably caused by 

Wnt5a compared to basal conditions. Interestingly, after co-treatment with oAβ42 there is a shift 

to the left, indicating that AMPARs get stabilized in extrasynaptic sites (Figure 7E). In fact, % at 

logD -5 shows a tendency to increase due to Wnt5a + Aβ42 co-treatment (Figure 7E). This 

correlates with a decrease in mobility for most of the neurons examined (Figure 7E).  
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Overall, this data indicates that after co-treatment of Wnt5a + oAβ42 there is stabilization of 

AMPARs only at extrasynaptic sites, not affecting synaptic dynamic of AMPARs. As seen 

before, Wnt5a stabilizes AMPARs at synaptic and extrasynaptic sites (Figure 4), while oAβ42 

do it only at synaptic sites (Figure 7B). Therefore, we believe that Wnt5a can compensate for 

the synaptic effects of Aβ42 oligomers. Individual application of Wnt5a and oAβ42 seem to have 

the same response in synaptic sites; stabilization of AMPARs. Since synaptic and extrasynaptic 

effect vary, we believe the mechanisms involved are different, this will be further address on the 

discussion section. In conclusion, Wnt5a prevents the synaptotoxic effects of oAβ42 on 

AMPARs dynamic and this would explain the synapto- and neuro-protective effects reported for 

Wnt5a against oAβ toxicity. 

 

Figure 8. Wnt5a prevents the effects of oAβ42 on synaptic immobilization of AMPARs.  

Co-treatment of hippocampal neuron. A) Scheme showing the treatment of neurons, basal 

acquisition of AMPARs dynamic at time zero, addition of Wnt5a (300 ng/mL) with a first 

acquisition at 15 min, followed by addition of oAβ42 with a final acquisition at 30 min of Wnt5a 

exposure and 15 min of Aβ42 oligomers. B) Representative images of the selected dendrite 

(Homer1c::eGFP), trajectories (top) and confinement (bottom) of AMPARs under basal, Wnt5a 
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or Wnt5a + Aβ42 conditions. In every case, basal condition is shown in grey, Wnt5a (15 min 

treatment) in red and Wnt5a + oAβ42 (30 min and 15 min of exposure, respectively). C) Global 

analysis showing frequency distribution, completely immobile receptors (% LogD -5) and 

mobility. D) Synaptic analysis showing frequency distribution, completely immobile receptors (% 

LogD -5) and mobility.   E) Extrasynaptic analysis showing frequency distribution, completely 

immobile receptors (% LogD -5) and mobility. 
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6. DISCUSSION 

 

In this research, we have proof for the first time that Wnt5a immobilizes AMPARs in synaptic 

and extrasynaptic sites of hippocampal neurons. While oAβ42 immobilizes AMPARs only at 

synaptic sites, consistent with previous reports arguing an increase in endocytosis caused of 

oAβ42 exposure (Almeida et al., 2005; Hsieh et al., 2006; Miñano-Molina et al., 2011) .   

 

Our main finding is that Wnt5a immobilizes GluA1-containing AMPARs (Figure 1E-H) and 

endogenous GluA2-containing AMPARs (Figures 2 and 3). This was proof by different controls 

like denatured recombinant Wnt5a (Figure  1I-K), Wnt7a (Figure  2) and use of sFRP2 

complexed with Wnt5a (Figure  3A-F). The capacity of recombinant Wnt5a to activate CaMKII 

and JNK in hippocampal neurons has been proof by our lab and many others, but it is essential 

to test every batch of recombinant protein and in our particular experimental conditions. 

Activation of these molecules represent the quintessential proof of activation of Wnt non-

canonical signaling in hippocampal neurons. We proof that under our working conditions 

recombinant Wnt5a is able to activate non-canonical downstream effectors like CaMKII and 

JNK in a time dependent manner (Figure 1A). Therefore, there is no doubt that recombinant 

Wnt5a is activating Wnt non-canonical signaling in hippocampal neurons.     

 

We used recombinant Wnt5a to treat neurons. This has the advantage that is a purified form of 

the protein and that at all times, we know the exact concentration used in the experiments, 

making them more reliable and reproducible than, for instance, conditioned medium. On the 

down side, recombinant Wnt5a lacks palmitoylations and glycosylations found in the 

endogenously produced Wnt5a ligand. Lack of glycosylation should not be of importance since 

this post-transcriptional modification is involved in secretion of the ligand and we are 

exogenously adding it to the extracellular medium already. But, by not being palmitoylated there 

is a percentage of Wnt5a that will not bind to Frizzled receptors. Therefore, it raises the 

question on whether the effects seen are actually product of a smaller proportion of the ligand, 

interacting with Frizzled receptors. This point is indirectly answered by the fact that when the 

Wnt5a + sFRP2 complex is added, the effect of Wnt5a on AMPAR mobility, is completely 
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ablated (Figure 3B-F) and sFRP2 on its own is not causing any effects on AMPARs mobility 

(Figure 3G-K).  

 

 

Molecular interactors and action mechanism of Wnt5a-dependent AMPARs 

immobilization 

Here, we do not identify the type of receptor, either Frizzled or co-receptors (i.e. ROR2, LRP5/6 

and Ryk, to mention a few) involved in the signaling of Wnt5a. Nonethelesss, the literature 

suggests that in hippocampal neurons, Wnt5a acts through binding to Frizzled9 (Ramírez et al., 

2016), Frizzled2 (Sato et al., 2010) or Frizzled4 (Bian et al., 2015). sFRP2 has a higher affinity 

to Wnt5a and it has been extensively used to block the effect of Wnt5a, although it is not 

specific to Wnt5a. Since we are working with recombinant Wnt5a, this molecule is the only 

predominant form of Wnt5a in our working conditions and the complex formation solution 

includes only Wnt5a and sFRP2. So the only possibility for unwanted effects of sFRP2 would be 

if freely available sFRP2 binds to other endogenous Wnt ligands. For this reason, we tested if 

sFRP2 alone has an effect on AMPARs mobility. Our data shows that there is no effect over 

AMPARs mobility after 30 min treatment with sFRP2 (used at the same concentration as found 

in the complex) (Figure 3 G-K). Also, since we do not observe any difference in mobility when 

adding only sFRP2, we can presume that there is no, or low quantity, of endogenous Wnt 

ligands. This can be explained by several facts: 1. By changing the neurobasal growing medium 

for Tyrode extracellular solution, we deplete all secreted Wnt and factors from the experimental 

conditions and 2. The little amount of Wnt that could be released by neurons during 

experimentation is even less significant since it is considered that astrocytes are the main 

secretors of Wnt ligands.  

 

The aim of this study was to determine the effect of Wnt5a on AMPARs dynamics. Therefore, 

we did not dissect the specific molecules involved in the immobilization effect. One alternative 

would be that Wnt5a causes modulation of TARPs. It has been described that TARP-γ2 

(Stargazin) (Bats et al., 2007; Bedoukian et al., 2006; Chen et al., 2000) and TARP-γ8 control 

AMPARs number, distribution and function (Rouach et al., 2005). Earlier work reported CaMKII 
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to be fundamental on the increased interaction of the C-terminal Stargazin with PSD95 (Opazo 

et al., 2010). Since the pre-incubation of cells with KN93 did not prevent the Wnt5a 

immobilization of AMPARs (Figure  1 L-N), we do not consider CaMKII activation a necessary 

step for Wnt5a-mediated immobilization of AMPARs. Consequently, Stargazin is not the TARP 

mediating the immobilization of AMPARs caused by Wnt5a in hippocampal neurons. 

Interestingly, the 2h KN93 pre-incubation does not cause changes in the mobility of GluA1-

containing AMPARs compared to basal mobility (Figure 1 L-N), which questions the role of 

CaMKII in the Wnt5a-dependent immobilization of AMPARs. Since it was not the aim of this 

work to dissect the particular signaling pathway underlying the effects of Wnt5a,  further 

experiments should be performed to corroborate the CaMKII-independence of Wnt5a-

dependent AMPAR immobilization. Specially, since there are publications that show a role of 

CaMKII on synaptic recruitment of AMPARs (Opazo and Choquet, 2011; Opazo et al., 2010). A 

different auxiliary protein, TARP-γ8 is expressed in higher numbers than TARP-γ2 in 

hippocampus (Schwenk et al., 2012). Therefore, although we did not test the involvement of 

TARP-γ8, Wnt5a could be acting over TARP-γ8 to cause immobilization of AMPARs. 

Considering that TARP-γ8 is mainly found in extrasynaptic sites (Rouach et al., 2005), this 

could explain the extrasynaptic immobilization we report (Figure  4 G-L). The possibility that 

TARP-γ8, and not TARP-γ2 mediates these effecst, could be tested in the future experiments.  

Another alternative on the mechanism behind Wnt5a actions, relies on the activation of small 

GTPases, which would be in agreement with cytoskeleton rearrangements caused by activation 

of Wnt non-canonical pathway. It is described that Wnt5a activates Rac1, leading to actin 

reorganization on dendritic spines (Chen et al., 2017). Therefore, it is plausible for Wnt5a to 

cause AMPARs immobilization through actin reorganization on dendritic spines. This idea would 

need to be further analyzed.  

These data provides evidence suggesting that the mechanisms involved in the immobilization of 

AMPARs in synaptic/extrasynaptic sites are different. First, after Wnt5a treatment the shape of 

the curves is different between extrasynaptic and synaptic analysis (compare Figure  4B and 

4H, red curves). Secondly, the fact that there is immobilization of AMPARs in synaptic and 

extrasynaptic sites, but we only observe an increase in the GluA2-PSD95 co-localization in 
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synaptic sites (Figure  5 A-B) with no changes on extrasynaptic sites (not shown). This suggests 

that extrasynaptic immobilization is not mediated by binding to PSD95. Which is supported by 

literature, that claims other interactor to be involved in the anchoring of AMPARs outside the 

PSD, like 4.1N (for GluA1) and NSF (for GluA2). Finally, there is no reason to think there is only 

one pathway involved in the immobilization of AMPARs by Wnt5a. It is feasible, for instance, 

that TARP - γ8 is involved in the extrasynaptic immobilization and that actin reorganization 

through Rac1 or other small GTPases (i.e. Cdc42 and RhoA) are acting at a synaptic level. An 

hypothesis that is currently under investigation by our laboratory. Like this, Wnt5a could be 

mobilizing AMPARs from endocytic to extrasynaptic compartments and from there, increasing 

their presence on synaptic compartments. 

 

Overexpressed GluA1-SEP versus endogenous GluA2 labeling  

We noticed a difference on the experiments done using GluA1 overexpression versus those 

detecting endogenous GluA2. The overall effect of immobilization of the receptors is 

maintained, but it seems that the difference shown in the histograms are bigger when detecting 

GluA1 (Figure 1E) than GluA2 (Figure 2D). However, when comparing the completely immobile 

fraction after Wnt5a treatment, there is a significant increase for GluA2 (Figure 2E) whereas in 

the GluA1 detection is only increased by ~2%. These difference can be for several reasons. 

First, GluA1 overexpression gives away a higher detection of particles, because of the higher 

presence of GluA1-containing receptors. Also, we cannot rule out the possibility that the 

mechanisms leading to immobilization of GluA1-containing AMPARs and GluA2-containing 

AMPARs are different. Since we did not evaluate the effects of Wnt5a on synaptic plasticity but 

only basal activity, we cannot distinguish differences on GluA1 versus GluA2 activity (i.e. 

calcium permeability, conductance, inactivation time, etc).  

 

GluA2-containing AMPARs and their interaction with PSD95  

When examining the co-localization of AMPARs to PSD95 before and after treatment, it was 

obvious that Wnt5a increases the co-localization on both Mander’s coefficients (Mander’s 1 and 
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2). Importantly, when neurons are treated with Wnt5a + sFRP2 complex, co-localization returns 

to basal levels  (Figure 5A-B). Although there is no important change in the amount of clusters 

for PSD95 or GluA2 (Figure 6). It is even more interesting the fact that the percentage of PSD95 

clusters containing AMPARs is significantly increased compared to basal conditions, while 

again the Wnt5a + sFRP2 treatment causes no change from basal conditions (Figure 5B). This 

suggests a possible effect of Wnt5a in turning a silent synapse into an active synapse. 

Electrophysiological experiments are mandatory in order to confirm this idea. But if true, it would 

be a major finding in the regulation of synaptic plasticity.  

The fact that we were not able to replicate the effect of Wnt5a over PSD95 clusters is 

conflicting. Previous reports used the same concentration of Wnt5a, similar 

immunofluorescence protocol and imaging. The main difference is the type of cell culture used, 

they used hippocampal neurons without astrocytes, while in our experiments Banker cultures 

were used. This could cause a difference, mainly on the basal state of the neurons. Like this, 

Banker-grown neurons could basally have a higher amount of PSD95 clusters, due to the 

enriched medium caused by astrocytic factors. Effectively, that is the case, in the paper from 

Farias et al., under basal conditions they detect an average of 80 PSD95 clusters per 100 µm of 

dendrite (Farías et al., 2009; see Figure 1B), while under our experimental conditions we detect 

an average of 150 PSD95 clusters per 100 µm of dendrite (Figure 6B), almost twice the amount 

detected before. Indeed, after 30 min of treatment they detected a significant increase on the 

amount of clusters for PSD95, corresponding to ~95 clusters per 100 µm of dendrite. A count 

that is much lower than ours either for basal or Wnt5a treated conditions. For this reason, we 

think that the difference between culture types (only neurons vs Banker cultured neurons), could 

account for the different results for PSD95 cluster density.  

It has been described that Wnt5a causes a decrease in presynaptic terminals in hippocampal 

neurons (Davis et al., 2008). Therefore, we examined if in our working conditions we observe a 

change in synaptic contacts. To do so, hippocampal neurons were treated for 30 min with 

Wnt5a at 37°C and 5% CO2, fixed and labeled for immunofluorescence. PSD95 and VAMP2 

were used as post- and pre-synaptic markers, respectively and DAPI was used to check 

nucleus integrity. Results show that there is no difference on the the amount of synaptic 
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contacts, when comparing control and Wnt5a treated neurons (Supplementary Figure 2). This 

confirms the idea that the changes seen due to Wnt5a action are occurring at a post-synaptic 

level. Still, it is possible that with longer Wnt5a incubations periods there are changes in 

synaptic contacts. But it is clear that under our working conditions, the immobilization of 

AMPARs is not dependent on changes on the amount of synaptic contacts. 

 

How specific is the effect of Wnt5a versus Wnt7a on AMPAR immobilization? 

We have shown that Wnt5a immobilizes AMPARs in synaptic and extrasynatic sites (Figure 4). 

The fact that Wnt7a exerts no effects on the dynamics of AMPARs (Figure 2), proofs that only 

the non-canonical activation of Wnt signaling, through Wnt5a is able to affect AMPARs mobility. 

In hippocampal neurons, Wnt5a acts as a non-canonical ligand and Wnt7a as a canonical one. 

Although there is a report arguing non-canonical postsynaptic effects of Wnt7a, like increase 

spine size, CaMKII activation and increase excitatory transmission (Ciani et al., 2011). There 

are big differences in their study and ours. First, they treated neurons for 3-16h, we treated 

them for a maximum of 30 min. Second, they used a range of 50-100 ng/mL of recombinant 

Wnt7a while we used throughout all the experiments 300 ng/mL. Wnt7a was acquired from the 

same supplier (R&D Systems), but they do not explicit if they used the carrier (bovine serum 

albumin) or carrier free presentation. Which in our hands, exerts different results. For this 

reason and in order to avoid any unwanted interference with our results, we always used the 

carrier free recombinant proteins.  

 

Recently, it has been reported that Wnt7a modulates spine plasticity and regulates AMPAR 

localization (Mcleod et al., 2018), the data on this points is robust and in tone with previously 

reported Wnt7a effects, by the same group (Ciani et al., 2011; Sahores et al., 2010). More 

broadly, by means of  blocking endogenous Wnt ligands with a mixture of broadly acting sFRPs 

and by shFzd7 expression, authors show that Wnt signaling activation is necessary for LTP 

activity (Mcleod et al., 2018). In this two observations, there is no direct relation with any Wnt 

ligand Particularly and could easily be related to Wnt7a as well as Wnt5a, as the two main Wnt 

ligands in the hippocampus. Also, the relationship between Wnt7a-Fz7 receptor is not exclusive, 

as Fz7 can interact with Wnt1, Wnt3/3a and Wnt7a/b, as reported by CRISPR targeting 
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(Voloshanenko et al., 2017). Even more, it has also been reported thart Fz7 as a strong 

interaction with Wnt5a, also (Dijksterhuis et al., 2015). For this reason, we believe that limiting 

the effect of any particular Wnt ligand to unequivocally to one Frizzled receptor, is a mistake. 

The Wnt-Frizzled interaction, is intrinsically ambiguous and promiscuous. One piece of 

information that directly relates to the results from our work is the data on AMPARs mobility. We 

performed Wnt7a studies on AMPA receptor mobility and found no difference compared to 

basal conditions (Figure 2), while McLeod et al., also detected no difference on the general 

dynamic of AMPA receptors, but only a difference in the completely immobility . To our opinion, 

the observations on AMPA receptor dynamics made by McLeod at al., are not conclusive and 

there is no parallel study performed with Wnt5a (Mcleod et al., 2018). That being said, we 

believe our data and their data complement each other on the important role of Wnt ligands on 

the physiology of mature hippocampal neurons.    

 

oAβ42 immobilize AMPARs only at synaptic sites: possible action mechanisms 

Extracellularly applied oAβ cause a decrease in the AMPAR currents, mainly due to endocytosis 

of the receptor (Gu et al., 2009; Hsieh et al., 2006; Liu et al., 2010; Miller et al., 2014; Miñano-

Molina et al., 2011; Roselli et al., 2005; Zhao et al., 2010). In our experiments, we use two 

different concentrations of Aβ42 oligomers; 1 and 5 μM (Figure 7). Previous research shows that 

treatment with 1 μM oAβ42 for 3 days, causes endocytosis of AMPARs and a decrease in 

AMPARs ionic currents, an effect dependent on CaMKII activation (Gu et al., 2009). However, a 

5 μM oAβ42 concentration has been used for shorter term effects, within 30-60 min (Miñano-

Molina et al., 2011). The rapid effects of 5 μM oAβ42 are dependent on the activity of 

calcineurin, which dephosphorylates Ser845 of GluA1 subunits (Miñano-Molina et al., 2011). 

Phosphorylation of Ser845 by PKA causes synaptic insertion of GluA1-containing AMPARs to 

extrasynaptic sites. Therefore, oAβ42 (through dephosphorylation of GluA1-Ser845) would 

actually be decreasing the extrasynaptic population of AMPARs. Like this, oAβ42 could be 

preventing LTP from occurring and at the same time, promoting LTD, which has been shown on 

several researches (Li et al., 2009; Shankar et al., 2008; Townsend et al., 2006). In our 

investigation, we observe an effect of oAβ only at synaptic and not at extrasynaptic sites (Figure 

7F vs 7G), which is consistent with recent work that establishes that oAβ bind and clusters to 
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excitatory synaptic sites (Sinnen et al., 2016). It is important to notice that we track endogenous 

GluA2-containing AMPARs, nonetheless since the most common conformation of AMPARs in 

hippocampal neurons is the GluA1/GluA2 heterotetramer, we are indirectly tracking 

endogenous GluA1 as well. Therefore, the hypothesis of Aβ acting over the phosphorylation 

state of GluA1-Ser845, is still reasonable. Our findings are supported by published evidence 

that oAβ42 cause a decrease in the activity of AMPARs (Hsieh et al., 2006).  

 

uPAINT: Technical considerations  

This data also allows to examine the existence of any effects on the antibody over the mobility 

of AMPARs. The type of antibody we use to live-track AMPARs is a bivalent IgG-antibody of 

~15 nm. The small size of the antibody allows for it to go in and out of the synaptic cleft. An 

issue that has to be addressed regarding live cell imaging techniques and antibody use is the 

fact that exposure to antibodies alone could be generating an unwanted effect on AMPARs 

mobility. Particularly it has been shown that binding of antibodies to certain motifs in the 

extracellular domain of membrane receptors causes endocytosis of the receptor. This is called 

“antibody feeding” and has been used to study endocytic and recycling pathways. We can 

discard the possibility that antibodies causes endocytosis of AMPARs, creating artificial 

immobilization, we have relevant controls that confirm our observations. First, when testing 

GluA1-AMPARs mobility, we boiled the recombinant Wnt5a protein and under the same 

experimental design, we saw no effect of the denatured Wnt5a. Second, when testing GluA2-

AMPAR receptor mobility, the use of recombinant Wnt7a caused no effect whatsoever on the 

mobility of AMPARs. Third, when using the Wnt5a+sFRP2 complex, we deplete the effect seen 

with Wnt5a alone. Finally, we do not observe changes in the number of trajectories detected. 

This proofs that the effects here reported are not artifactual and that effectively, Wnt5a 

promotes immobilization of AMPARs. It is expected that live staining by means of antibody use 

(antibody feeding) causes by itself a certain degree of receptor immobilization. But the fact that 

sFRP2 depletes the effect of Wnt5a alone, supports the idea of AMPARs stabilization being 

caused by Wnt5a. 
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NMDA receptors  

Here, we did not examine the effect of Wnt5a on the dynamics of NMDA receptors. However, 

that could be interesting to address because, as mentioned above, Wnt5a also affects the 

mEPSC of NMDA receptors. We cannot discard that Wnt5a also affects NMDARs, but since 

oAβ seem to cause endocytosis only on AMPARs, we focused on study them. Also, we believe 

that in case Wnt5a affects both receptors (AMPAR and NMDA receptors) dynamics, probable 

that the effects over NMDA receptors are not as rapid as the effects over AMPARs.   

 

The contribution of this research into the field  

This investigation and the recent work done by others (Chen et al., 2017; Subashini et al., 2017) 

are paving the way into exploring the multiple roles of Wnt5a in the functioning of excitatory 

synapses in hippocampus. A field of study that will for sure continue on expanding. 

 

 

 

 

 

 

 

 

 

 

 



84 

 

 

7. HIGHLIGHTS  

 

1. Wnt5a stabilizes GluA1- and GluA2-containing AMPARs.   

This effect is partially seen after 15 min of treatment and it is statistically significantly  

after 30 min of treatment with Wnt5a. It is dependent on the native structure of Wnt5a, 

proof by the lack of effect in denatured Wnt5a. Another proof of the specificity of Wnt5a 

is the fact that when complexed with sFRP2, no effect is seen. Also, Wnt7a which is 

commonly considered as a canonical ligand in hippocampal neurons, has no effect on 

AMPARs dynamic. Although it was not a goal of this work to elucidate the molecular 

cascades involved in the Wnt5a-dependent stabilization of AMPARs, it seems that is 

not CaMKII-dependent. 

 

2. Wnt5a stabilizes AMPARs at synaptic and extrasynaptic sites. 

Further analysis showed that Wnt5a stabilizes AMPARs in synaptic and extrasynaptic 

sites. Although the overall effect seems to be the same, the dramatic difference in MSD 

at extrasynaptic sites argue for a more critical effect of Wnt5a in extrasynaptic sites 

compared to synaptic sites. Nevertheless, we still observe an increase in stabilization at 

synaptic sites, this correlates with an increase of AMPARs co-localization with PSD95 in 

dendritic spines. Also, co-immunoprecipitation assays suggest an increased interaction 

between GluA2 and PSD95, after 30 min of treatment with Wnt5a. 

 

 

3. oAβ immobilize AMPARs only at synaptic sites.  

Two concentrations of oAβ42 were used, 1 or 5 µM and effects were evaluated at 15 

and 30 min. Although 1 µM oAβ42 showed a tendency towards immobilization of 

AMPARs on global and synaptic analysis, no significant effects were observed and no 

changes were seen at extrasynaptic sites. At 5 µM the before mentioned tendency was 

confirmed; oAβ42 immobilize AMPARs at synaptic sites and again, no changes on 

extrasynaptic sites were observed. Another important fact is that oAβ exerted their 

effect rapidly, more rapidly than Wnt5a. Already at 15 min of treatment with oAβ the 
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immobilization effect seems to reach a plateau. For this reason, 5 µM of oAβ for 15 min, 

were the conditions used for next experiments. 

 

4. Wnt5a compensates the synaptic effects of Aβ42 oligomers. 

Co-treatment analysis of Wnt5a + oAβ42 shows that AMPARs are stabilized at 

extrasynaptic sites, with no changes on synaptic mobility. These results suggest that 

there is a compensation of the synaptic effects of oAβ by Wnt5a. This would explain the 

functional changes caused by Wnt5a, meaning increase in excitatory currents and LTP 

induction, among others. Furthermore, it explains the synapto- and neuro- protective 

effects of Wnt5a against oAβ toxicity. 
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8.  FUTURE DIRECTIONS  

 

We believe this work helps on the understanding of the fine-regulation of synaptic transmission 

through endogenous molecules and made a contribution to the knowledge of the mechanistics 

behind AD. Knowing in more detail the action mechanism of Wnt5a on synapto- and neuro- 

protective function against toxic elements, like oAβ, supports its use in the treatment of 

neurodegenerative diseases, specially AD. A recent publication uses intranasal administration 

of Wnt5a into mice to treat them after ischemia stroke, results are promising and shows there is 

a simple, non-invasive administration method for Wnt5a.  

 

Currently, there are non-invasive intranasal treatments to introduce small molecules into the 

brain. Already, Wnt3a has been administrated into rats by this mean, reaching mainly the 

olfactory bulb, an area which is early and greatly affected by Aβ accumulation. Therefore, the 

possibility of using Wnt5a has treatment for Aβ synaptotoxicity, on AD murine models. Of 

course, more studies are needed to find out a way to locally administrate areas particularly 

affected by amyloidosis in humans, not affecting other areas. 
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10. APPENDIXES 

 

10.1. APPENDIX 1: Supplementary Figures 

 

Supplementary Figure 1. Wnt5a causes immobilization of GluA1-containing AMPARs in a 

time-dependent manner. In every case, the effect of Wnt5a was evaluated at basal condition, 

15  and 30 min after Wnt5a addition, but effects are significant only after 30 min. A)  Histogram 

of GluA1 tracking. B) Completely immobile receptors at different time points. C) mobility of 

AMPARs diminishes with exposure to Wnt5a, it is only statistically significant at 30 min. D) 

Mean Square Displacement (MSD) is also significantly diminished after 30 min exposure to 

Wnt5a. Endogenous GluA2 tracking. One-way ANOVA and Bonferroni post-test, P*<0.05, 

P***<0.001. 
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Supplementary Figure 2. Wnt5a does not affect the amount of synaptic contacts. 

Following uPAINT experiments, hippocampal neurons were fixed, permeabilized and labeled for 

PSD95 and VAMP2, as post-synaptic and pre-synaptic markers, respectively. DAPI was used to 

confirm viability. A) Control and 30 min Wnt5a-treated neurons labeled for PSD95-DAPI (top), 

VAMP2-DAPI (middle) and PSD95-VAMP2-DAPI, to test apposition of PSD95-VAMP2 labeling. 

B) Quantification shows no difference in the amount of synaptic contacts under control or Wnt5a 

conditions. 
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Supplementary Figure 3. oAβ42 identity and neurotoxicity effects. 

To confirm the identity of the Aβ species we produce with the aggregation protocol described 

above, we approach three methods. A) Electron microscopy shows the shape and length and 

shape expected for oligomeric species. B) Tris-tricine gel to identify with 6E10 antibody (β-

amyloid detection), confirms that the species are mainly found in the range of 75-30 kDa (n-

mers), with a smaller population around 10 kDa, consistent of dimers (2-mers) and trimers (3-

mers). C) Hippocampal neuron were exposed to 24h of oAβ42 (5 µM), Höescht stainning and 

active-caspase3 were observed, before and after treatment. 
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Supplementary Figure 4. 5 μM oAβ42 immobilizes AMPARs rapidly in peaking fast. 

Global analysis of 5 μM oAβ42. In every case, the effect was evaluated at basal condition, 15 

min and 30 min after treatment.  A) Histogram of diffusion coefficients at basal, already at 15 

min a shift to the left indicates an increase immobilization of AMPARs. B) Completely immobile 

fraction,  shows a significant difference against basal and after 30 min of treatment. C) Mobility 

indicates a P-value of 0.08 between basal and 30 min of treatment, there is no significant 

difference between 15 and 30 min of treatment.   
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10.2. APPENDIX 2: Publications 
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