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Abstract

This thesis is divided into four parts that can be read independently. In this manuscript,
we make some contributions to the theoretical study and financial applications of optimal

quantization.

In the first part, we recall the theoretical foundations of optimal quantization as well as the

classical numerical methods to build optimal quantizers.

The second part focuses on the problem of numerical integration in dimension 1. This
problem arises when one wishes to numerically compute expectations, such as the valuation of
derivatives in finance that are expressed as the expectation of a function of a single financial
asset. We recall the existing strong and weak error results and extend the results of order 2
convergence rate to other function classes with less regularity. In a second step, we present a
weak error development result in one dimension and a second development in a higher dimension

when the chosen quantizer is a product quantizer.

In the third part, we look at a first numerical application. We introduce a stationary
Heston model in which the initial condition of volatility, instead of being deterministic as in the
standard model, is assumed to be randomly distributed with the stationary distribution of the
CIR EDS governing volatility. This variant of the original Heston model produces for European
options on short maturities a steeper smile of implied volatility than the standard model. We
then develop a product recursive quantization-based numerical method for the valuation of

Bermudan options and barriers.

The fourth and last part deals with a second numerical application, the pricing of Bermudan
exchange rate options in a 3 factor model, i.e. where the exchange rate, domestic and foreign
interest rates are stochastic. These products are known in the markets as PRDC (Power Reverse
Dual Currency). We propose two schemes to evaluate this type of options, both based on

optimal product quantization and establish a priori error estimates.






Résumé

Cette theése est divisée en quatres parties pouvant étre lues indépendamment. Dans ce
manuscrit, nous apportons quelques contributions & I’étude théorique et aux applications en

finance de la quantification optimale.

Dans la premiere partie, nous rappelons les fondements théoriques de la quantification

optimale ainsi que les méthodes numériques classiques pour construire des quantifieurs optimaux.

La seconde partie se concentre sur le probleme d’intégration numérique en dimension 1.
Ce probléme apparait lorsque 1'on souhaite calculer numériquement des espérances, tel que
I’évaluation de produits dérivés en finance qui s’expriment sous la forme d’un calcul d’espérance
d’une fonction d’un unique actif financier. Nous y rappelons les résultats d’erreurs forts et faibles
existants et étendons les résultats des convergences d’ordre 2 a d’autres classes de fonctions
moins réguliers. Dans un deuxiéme temps, nous présentons un résultat de développement
d’erreur faible en dimension 1 et un second développement en dimension supérieure pour un

quantifieur produit.

Dans la troisieme partie, nous nous intéressons a une premiere application numérique.
Nous introduisons un modele de Heston stationnaire dans lequel la condition initiale de la
volatilité, au lieu d’étre déterministe comme dans le modele standard, est supposée aléatoire
de loi la distribution stationnaire de 'EDS du CIR régissant la volatilité. Cette variante du
modele d’Heston original produit pour les options européennes sur les maturités courtes un
smile de volatilité implicite plus prononcé que le modele standard. Nous développons ensuite
une méthode numérique a base de quantification récursive produit pour 1’évaluation d’options

bermudiennes et barriéres.

La quatriéme et derniere partie traite d’une deuxiéme application numérique, I’évaluation
d’options bermudiennes sur taux de change dans un modele 3 facteurs, i.e ou le taux de change,
les taux d’intéréts domestiques et étrangers sont stochastiques. Ces produits sont connus sur
les marchés sous le noms de PRDC (Power Reverse Dual Currency). Nous proposons deux
schémas pour évaluer ce type d’options toutes deux basées sur de la quantification optimale

produit et établissons des estimations d’erreur & priori.
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Chapter 1

Introduction

1.1 Optimal Quantization

This thesis is devoted to various theoretical aspects of optimal quantification in relation to
numerical integration as well as several applications in finance. Optimal quantization was first
introduced by Sheppard in 1897 in [She97]. His work focused on the optimal quantization of the
uniform distribution over unit hypercubes. It was then extended to more general laws with or
without compact support, motivated by applications to signal transmission in the Bell Laboratory
in the 1950s (see [GG82]). Optimal quantization is also linked to an unsupervised learning
computational statistical method. Indeed, the “k-means” method, which is a nonparametric
automatic classification method consisting, given a set of points and an integer k, in dividing
the points into k classes (“clusters”), is based on the same algorithm as the Lloyd method used
to build an optimal quantizer. The “k-means” problem was formulated by Steinhaus in [Ste56]
and then taken up a few years later by MacQueen in [Mac67]. In the 90s, optimal quantization
was first used for numerical integration purposes for the approximation of expectations, see
[Pag98], and later used for the approximation of conditional expectations: see [BPP01; BP03;
BPPO05] for optimal stopping problems applied to the pricing of American options, [PP05;
PRS05] for non-linear filtering problems, [BDD13; PCR09; PPP04a; PPP04b] for stochastic
control problems, [Gob+05] for discretization and simulation of Zakai and McKean-Vlasov
equations and [BSD12; DD12] in the presence of piecewise deterministic Markov processes
(PDMP).

1.1.1 Definitions and key findings

Let X be a random vector with values in R? provided with a |-| norm, here always Euclidean, with
distribution P, defined on a probability space (€2, .A,IP) such that X € L%Rd. The quantization
of X consists in approximating X by a random vector ¢(X) where ¢ is a Borelian function with
values in Ty = {2V,..., 2N} = R% In addition, we can see that dist(X, ¢(X)) = dist(X,Ty)
with equality if and only if ¢ is a nearest neighbor projection, denoted ¢ = Projp, . This



2 Introduction

nearest neighbor projection Projp, is associated biunivocally with a Voronoi Borelian partition
(Ci(FN))1<i<N of R? such that

Ci(Tw) = {€ e R, € — 27| < min¢ — a7}
j#i

Thus, the associated nearest neighbor projection is defined by

N

Projp, (&) = Y 2 Leecyry) -
=1

Such quantization is called “ Voronoi”. We will note XT~ the closest neighbor projection of X
on Ty = {2V, ..., 2}, then
Xtv = Projr, (X).

We lighten the notation from XTIV to XN for clarity.

Then, the law of a quantizer XN s entirely characterized by the centroid grid I'y =
{zN, 1 < i < N} in which the quantizer takes its values and the N-tuple of the weights pZN
which represent the probability that XN s equal to ¥ or, equivalently, that X belongs to the

Voronoi cell 4, i.e.
py =P (XN =2))=P(XeCi(y)), i=1,...,N.

In this thesis, we’ll be working primarily with optimal quadratic quantization. The term
optimal comes from the fact that we look for the best approximation of X in the sense that we
will want to minimize the distance between the random vectors X and X~ by optimizing the
grid T' for a given size N. This distance is measured in L?-norm, hence the term quadratic.
The distance between X and XV , denoted as | X — XN |2, is called the mean quantization error.
But we often reason in terms of distortion which is none other than the square of the mean

quantization error. For a IN-tuple, it is defined by

QN T = (x{v, .. ,x%) — B [i_minN|X — va|2] =|X - )?NHS

So, we're looking for the grid I'y with cardinal at most N such that the quantifier XN =
Projp (X)) minimizes

min X - X2
I'ycRY,|Ty|<N

Such a grid always exists when X € L? (see Theorem 1.1.1 below). In the Figure 1.1, we present
two quantizations of size N = 100 of a centered Gaussian vector with identity covariance matrix.
On the left, we represent an i.i.d. sample of the Gaussian vector and on the right an optimal
quantizer. The color of each cell represents the probability piv associated to the cell C;(T' ) of
centroid z (red dot).



1.1 Optimal Quantization 3

4 0025 4]
5 ooz, |
1 0.015 ]
0 o
1 001 1
24 P
1 0.005 1
44 4
——t———t—————t—————t+————————— ——
4 2 0 2 4

Fig. 1.1 Two quantizations of size N = 100 of a centered Gaussian vector with identity covariance
matrix.
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The minimization problem being set, several results have been demonstrated in the literature,
see for example the two books [GL00; Pagl8] for more details on the theory of optimal
quantization. Let us note that this theory can be fully developed in a LP framework and we
then speak of LP-optimal quantization. We first mention a result that ensures the existence of

an optimal quantizer.
Theorem 1.1.1. (Existence of an optimal N-quantization) Let X € L]2Rd (P) and N € IN*.

(a) The quadratic distortion function Qs N at the N level reaches a minimum in (at least)
one N-tuplet z* = (zV,...,z%) and the associated grid T3 = {zN,i=1,...,N} is called

an optimal N -quantizer.

(b) If the P, distribution support of X has at least N elements, then z* = (z¥,...,z%¥)
has pairwise distinct components and P, (CZ(F}‘V)) > 0,1 =1,...,N. In addition, the
sequence N +— il’lfxe(]Rd)N Qan(x) converges to 0 and is strictly decreasing as long as it is

strictly positive.

In addition to knowing that the quadratic distortion decreases towards 0, the exact speed
of convergence has been established through the contributions of several authors: [Zad82;
BW82; GLO00]. The theorem has been demonstrated in the LP case and thus characterizes the

quantization error LP.
Theorem 1.1.2. (Zador’s Theorem) Let d € IN* and p € (0,+00).

(a) SHARP RATE. Let X € Lf’RJ;‘S(]P) with 6 > 0. Let P (d§) = p(§) - \a(d§) + v(dE), where

v L Agie. v is singular with respect to the Lebesque measure A\q on RE. Then, it exists
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a constant jp,d € (0,400) such that

1/d SN 5 -4 »ta
lim N min |X = X7, = Jpa TP dNg
N—+o0 I'ycRE|Ty|SN R

where XN is an LP-optimal quantization of X.

(b) NON-ASYMPTOTIC UPPER-BOUND [GLO00; PAG18]. Let § > 0. There exists a real
constant Cq 5 € (0,400) such that, for all random vector X with values in RY,

YN > 1, min [ X - XV, < Cupsosip(X)NV
IycRE Dy |<N

where, for r e (0, +0),0,(X) = min, pa |[X —af, < +00.

1.1.2 Construction of an optimal quantizer

There are many methods to build an optimal quantizer. In some very rare cases, centroids are

given explicitly, for example when X ~ U([a, b]) where a,b € R, the Iy grid is given by

'y = {x]lv,,m%} = {222]_\[1 1= 1,...,N}.

We also refer to [GLO0] for Laplace law and [FP02] for semi-closed formulas for exponential
law, power law and inverse power law. However, most of the time this is not the case so we
have to use iterative methods to construct the grids and weights associated with each of the
centroids. These iterative methods are divided into two large families: deterministic methods
(Lloyd’s algorithm, Newton-Raphson’s algorithm and their variants, ...) which are based on
explicit knowledge of the density and the distribution function of the X law and methods based
on stochastic optimization (Competitive Learning Vector Quantization (CLVQ), randomized
version of the Lloyd’s algorithm, ...) requiring only the ability to simulate X. These methods
are detailed in the Chapter 3.

Case of a real-valued random variable - d = 1. In the unidimensional case, we have
a result of uniqueness of the optimal quantizer when the density of X is log-concave. This
theorem has been demonstrated by Kieffer in his [Kie82] (see also [Pag98]).

If X is a random variable (d = 1) for which we know the first partial moment K (-) and

the cumulative distribution function F, of X
K, (z):=E[X 1x<s] and F

then we use in priority deterministic methods which allow to build very quickly an optimal

quantizer of X, such as the Lloyd’s algorithm introduced in [L1o82] which is a fixed point
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search algorithm. It is also possible to apply the Newton-Raphson algorithm by computing
the Hessian of the quadratic distortion function (see [PP03] for a detailed example applied
to a normal random variable). Other deterministic gradient descents can be used such as
Levenberg-Marquardt or quasi-Newton methods. Otherwise, stochastic optimization-based
methods such as the stochastic version of the Lloyd’s algorithm or a stochastic gradient descent

are used (see [Pag98]).

Example 1.1.3. In Figure 1.2, we represent in blue the density of a one-dimensional Gaussian
random variable and in red the centroids of the optimal quantizer of size N = 11 of this
same random variable. We also illustrate what the weights p¥ associated to the centroids z¥
represent. Moreover, we can approach the density (if it exists) at each point of the grid by the
following relation

2p

N _ N -
Tivi2 — Tic1)2

N =P(XeC@y)=P(X =xV)

i

/
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st
e

s
XN 7 /EXN
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e
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Fig. 1.2 Density of a reduced centered Gaussian N(0,1) in blue and centroids of an optimal
quantizer size N = 11 in red.

Case of a random vector - d > 2. Now, let us consider a X random vector with values in
R? (d = 2). Two approaches exist to construct an optimal quantizer of the law of X.

The first approach is to apply the methodology developed in the scalar case directly to
the vector case and thus obtain an optimal quantification of X. If we know the density of X
then it is still possible in dimension 2 or 3 to apply the deterministic methods (cf. Chapter
3). However, from d > 4, we can only rely on stochastic optimization methods based on the
simulation of samples of the X distribution.

The second, product quantization, consists in constructing an optimal quantizer of each
of the components of the random vector and then constructing the quantizer by considering
the cartesian product between all the optimally quantized components. More precisely, that is

X = (X% ¢—1.4, a random vector with values in R?. We consider the d one-dimensional optimal
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quantifiers X of size N* of each of the marginal X¢. Each quantizer X takes its values from
the grid Fév‘f = {zfg, ipe{l,-- ,Ng}}. Thus, the quantizer product of X takes its values in the
grid T'V which is the Cartesian product of the one-dimensional grids, i.e. TV = H‘Z:l Fév‘f of
size N = N! x ... x N% or, equivalently,

FN:{(xl s 2t ...,xd)7 e {1, -, Ny}, ﬁe{l,---,d}}.

ig’

i1’

0.012

0.008

0.008
0.006

0.006

0.004

24 0.004

0.002 0.002

Fig. 1.3 Two quantizations of size N = 200 of a centered Gaussian vector with unit covariance
matriz. Optimal quantization on the left and Product quantization on the right.

In the Figure 1.3, we compare the optimal quantization and the product quantization of a
centered Gaussian vector with unit covariance matrix. Both methods have their advantages
and disadvantages, the first method produces a better quantization of the random vector X
compared to the product quantization but the induced numerical cost for the construction of

an optimal quantizer is often much higher.

Case of diffusions. If now, instead of considering a random vector, we are interested in
diffusions, i.e.
dXt = b(t, Xt)dt + O'(t, Wt)th

then there are, again, several solutions to quantize X;. Specifically, given a time discretization
at n-step (tr)o<k<n, we are looking for the quantisers )A(ZZ’“ of size N, of X;, that we denote
X ,iv * and X in order to lighten the notations. The object we're trying to construct is called a

quantization tree. A tree is characterized by the knowledge of the laws (F ks (p,]f)lgig Nk) of the
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quantizers (X' k)o<k<n and of the transition probabilities pf, e
~ k o
P (Xpy1 = 25| Xp = a}).

We will not present all the existing approaches that allow us to address the problem of
quantization of diffusion but only those that allow us to use deterministic numerical methods
for the optimization of the grids. For other approaches, based on stochastic algorithms we refer
to the series of papers [BPP01; BP03].

Quantization of marginal laws. The problem of quantization of a diffusion has been
initiated and developed in a series of articles [PPP04b; BPP05; BBP09; BBP10; CFG19]. If X}
can be simulated exactly, that is without the help of a time discretization scheme, and that we
know the marginal law of X, at each instant ¢, then we are brought back to the case of the
quantization of a random vector. Indeed, we can optimally quantize each random vector Xy
using deterministic numerical methods if d < 2, producing an optimal quantization tree, or we
can optimally quantize each of its components and then construct a product quantization of

X}, producing a product quantization tree.

Example 1.1.4. If we consider a Black-Scholes model with constant volatility ¢ and constant

interest rates r

dS; = Sy(rdt + odWy), avec Sy = so,

then we have an explicit form for Sy

S, = So e(T’*O'Q/Z)tJrO'Wt

so for a given date t, log(S;/Sop) ~ N ((r —0?/2)t, JQt) so we can optimally quantize S; at each
instant that interests us using deterministic methods (cf. Chapter 3). We can also quantize the

Brownian W; which is “more universal”.

Recursive quantization. In the case where we do not know by the marginal law of
X} and that we need to use a discretization scheme (Euler-Maruyama, Milstein, ...), we will
use a method called recursive quantization. Recursive quantization (also called Markovian
quantization) was first introduced in [PPP04b] and then studied in depth in [PS15] for the case
of a one-dimensional diffusion discretized by an Euler-Maruyama scheme. A fast algorithm
based on deterministic methods to build the quantization tree is developed and analyzed.
Subsequently, fast recursive quantization was extended to higher order one-dimensional schemes
by [McW+18] and to higher dimensions by product quantization (see [PS18b; FSP18; Rud+17;
CFG18; CFG17]). This method consists in building recursively in k& the quantizers X ,iv k via the
recursion

)/(\',iv’“ = ProjFNk ()Z'k) avec Xp = Ep1 ()’(\',iv_kl_l,Zk)
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where £,_1 is a discretization scheme.

1.2 Numerical integration

A common problem in practice is to calculate the expectation of a function of X when X is a
variable or a random vector, i.e. |E [ f(X )] However, except in very particular cases, it is not
possible to calculate explicitly this quantity, it is the case for example if X = Xp the value
of a diffusion at the date T'. This is why it is necessary to use numerical integration methods.
[Pag98] introduces a cubature method based on optimal quantization in order to approximate
expectations of the form IE [ f(X )] Let us consider XV an optimal quantizer of X, the fact

that X7 is discrete allows us to easily define the following cubature formula
R N
E[F(XM)] =Y o) (). (1.1)
i=1

Furthermore, given that XN was constructed as the best discrete approximation of X of
cardinal at most N then it seems reasonable to think that [ f ()2' N )] is a good approximation
of E[f(X)].

In the Chapter 4, taken from the article “New Weak Error bounds and expansions for Optimal
Quantization” published in Journal of Computational and Applied Mathematics, see [LMP19],
we present new results in the real case concerning the error induced by the quantization-based
approximation of expectation IE [ f(X )] This is a joint work with Vincent Lemaire and Gilles

Pages and it is accessible in arXiv or HAL. These “weak” results are summarized below.

1.2.1 Convergence rate of the weak error

In the first part of Chapter 4, we are interested in the rate of convergence from I [ f ()A( N )] to
E [ f(X )] as a function of N for different classes of functions f when X is a random variable

with values in R, i.e we look for the largest o > 0 such that, for any function f in this class F,
lin N°[E [f(X)] = E[f(XV)]| < Cr.x < +o0.

If we naively upper-bound the weak error by the strong error along the Lipschitz continuous
functions, we obtain the following upper-bound (with o = 1) for a sequence of N-quanifiers

L?-optimal N-quantifiers

NIE[f(X)] - E[f(XM)]] < N[f],, |1X = XV, < N[f],,1X - XV, =225 0p < o0

Lip Lip
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where Zador’s Theorem (1.1.2) was used. Moreover, if we consider f(z) = dist(x,'y) then f is

a Lipschitz continuous function and we have
~ ~ 5 N—
NIE[f(X)] -E[f(XM)]]| = N|X - XV|, < N|X - XV, =5 C} < +o.

For some classes of functions we can prove that the cubature formula induces a weak error
of order 2 (o = 2). For example, if we consider functions that are derivable with a Lipschitz
continuous derivative then we have an error of order 2, see [Pag98]. Indeed, we use a Taylor

expansion with an integral remainder of the form

1

f@) = fly) + fy)(e—y) + J (f'(tx + (1 =t)y) — f'(y)) (z — y)dt

0
and the stationarity property of an optimal quadratic quantizer as follows
E[X | XV] =XV,
The first term in the Taylor expansion is zero because
E[f(XN)(X-XM)]=F [f'(XN)E [X-XN | XN]] ~E [f’()%N)(E [X | )?N]—XN)] ~ 0.

Thus, using Lipschitz’s property of the derivative and Zador’s theorem, we get a weak error of

order 2, as expected.

A~ 1 A~ A~ A~
N E[f(X)]-E[f(XM)]| < szo E[[f/(tX + (1 -t)XY) - f(XN)||X — XV|]dt

/
<y ;“P N2 X — XN|? 222, 0 < oo,

In the first part of Chapter 4, we extend these results concerning the convergence rate of
the weak error of order higher than 1 to a wider class of functions with less regularity, more

precisely, functions that are either :
e Lipschitz continuous piecewise affine functions with finitely many breaks of affinity,
e Lipschitz continuous convex functions,

e differentiable functions with piecewise-defined locally Lipschitz derivative (K breaks of
affinity {a1,...,ax}, such that —c0 =ap < a1 < -+ < ax < axy1 = +00 and the locally
Lipschitz property of the derivative is defined by

Vk=0,....K, Vo,ye(a,ar1) (@) = O] < osio® = yl(ge(@) + 96())

where gy : (ag,ar+1) — Ry are non-negative Borel functions,
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e differentiable functions with piecewise-defined locally a-Holder derivative (K breaks of
affinity {ai,...,ax}, such that —0 =ag < a1 < -+ < ag < ax41 = +00 and the locally
a-Holder property of the derivative is defined by

Vk=0,....K, Vg€ (aan),  [f @) = OIS o lr =y (90(2) + 90(v)

where g : (ag,ar+1) — Ry are non-negative Borel functions,

For the first three classes of functions, we show that the weak error is of order 2 and for the

last one, of order 1 + .

In the numerical part, we illustrate this result by evaluating the price of a European Call

in a Black-Scholes model given by
IO =E [e_rT(ST - K)+]

where S; = 5 e(r=o? /Dt Wi with (Wt)te[o,r] @ Brownian motion. In order to approximate,
with the help of quantization, the price of the European Call we can rewrite Iy in two different
ways

Iy =E[p(Sr)] = E[f(Wr)]

where ¢ is a piecewise affine function with one affinity break and f is a differentiable function
with a piecewise locally Lipschitz continuous derivative. Thus, when considering quantizers of
St or Wp and using the cubature formula, we observe, for both approximations, a weak error

of order 2.

1.2.2 Weak error expansion of higher order

In the second part of Chapter 4, we are interested by the weak error expansion of the approxi-
mation of E[f(X)] by E [f()’(\'N)] That is, we're looking expansion of the form

>N €2 —(2
E[f(X)] =E[f(XM)] + 5 + OV (2+8))
where (€ (0,1]. In the previous section, we have already shown that the optimal quantization-
based cubature formula approximation induces an error term of order O(N~2) in the best case.
Here, we seek to refine the previous results in order to obtain a “controlled” error expansion of

order 2 and not a simple convergence rate of order 2.

In Section 4.3, we show that this expansion exists if the function f : R — R is twice
differentiable with a Lipschtiz continuous second derivative. This result uses a Taylor expansion

of order 2 with an integral remainder of the form

1

f@) = fly) + )= —y) + %f”(y)(w )+ f (1= t)(f"(tz+ (L= t)y) — f"(y)) (& — y)*dt

0
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where we take the expectation on both sides of the equality and replace x and y with X and
XN , respectively. The second term on the righthand side is cancelled using the stationarity
property of the optimal quadratic quantizer. For the third term, we rely on [Del+04] (Theorem
6) which states that Vg : R — R such that E [g(X)] < +o

lin N7 B [5(£)]X — £V7] = Qu(Py) [ 9(O) Pt

that we apply to g = f” where Q2(P ) is the Zador’s constant. Thus, we already have the first
two terms in the expansion of the error. For the last term, we use the Lipschitz property of
the second derivative and the rest of the proof is based mainly on a result initially established
in [GLPO08] and then recently extended in [PS18a], known as “L"-L? distortion mismatch”,
which is formulated as follows : what can be said about the convergence rate of It [|X — XN |s]
knowing that XVNisa L"-optimal quantizer when s > r and X € L®*? We cite this theorem for

d = 1, which is the case we’re interested in.

Theorem 1.2.1 (L"-L*-distorsion mismatch). Let X : (2, A, P) —> R a random variable and
r € (0,+00). Let P, (d§) = ¢(&) - AM(dE) + v(d€), where v L X i.e. v is singular with respect
to the Lebesgue measure A on R and ¢ is not identically null. Let (U'n)n=1 a sequence of

L"-optimal quantization grids and s € (r,r +1). If
X e LT (P)

for a d >0, so
limsup N|| X — XV, < +o0.
N

So, applying this theorem with r = 2 and s = 2 + 3, we get a O(N~+A)) for the last term

and V 5 € (0,1), we have the following expansion

E[f(X)] = B[f(X")] + 15 + O(N~+),

This error expansion allows us to theoretically justify the use of Richardson-Romberg

extrapolation which aims to kill the first error term of the expansion by linearly combining two

quantification cubature formulas, respectively at N and M points, i.e.

M2F(XM) — N2f(XN)

E[f(X)]:E M2 — N2

+ O(N~@H0))

for M = kN with k£ > 1.
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We illustrate this result in the numerical part by valuing a European spread option in a

2-dimensional Black-Scholes model whose price is given by
Iy:=E[e™ (S} — 57— K)4].
By preconditioning, we express Iy as follows

Iy =B [¢(Z)]

where Zs is a standard Gaussian and ¢ is a twice differentiable function with a Lipschitz second
derivative. Thus, considering N-optimal quantizers ZN of Zy ~ N(0,1), we approximate I
using the cubature formula based on optimal quantization (1.1) and observe a weak error of
the order of 2. Moreover, using Richardson-Romberg extrapolation, we reach a weak error of
the order of 3.

However, the relevance of the cubature method by optimal quantization when d = 1 remains
limited because it is in competition with methods based on Gauss points. A multi-dimensional
extension is on the other hand very useful as soon as d =3. We consider a function twice
differentiable f : R? — R with a bounded and Lipschitz continuous Hessian. Furthermore,
we assume that X : (2,4, P) — R? has independent components X,k = 1,...,d and that
the quantizer XN isa product quantizer of X with d components ()25’“);6217,,,751 such that
Ni x .-+ x Ng= N. So, we have

~ d c . -
B[00 = BN+ 3, +0<(k in ) W))_

1.2.3 Variance reduction

In the last part of the Chapter 4, we present a new variance reduction method of a Monte Carlo
estimator with control variates based on one-dimensional optimal quantization. Other variance
reduction methods based on optimal quantization have been developed, see for example [CP15;
Pag18] for more details. This approach is motivated by the rate of convergence of order 2 of the
weak error induced by the quantization-based cubature formula for various classes of functions,

including those mentioned above.

The problematic. Let (Zy)y—1..a=Z2c¢€ L?Rd (P) a random vector and a function f : RY —
R. We're interested in the following quantity

I:=E[f(2)]. (1.2)

Often we cannot compute this quantity explicitly, so a standard approach is to use a Monte Carlo

estimator I := % Z%zl f(Z™) by simulation of independent copies Z™ of Z to approximate
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I. The convergence of the method and its rate are determined by the strong law of large
numbers and the central limit theorem, respectively, which ensure, if Z is of integrable square,
that

Iy 25 B[f(2)] and VM (I —E[f(2)]) 5 N (0,0%z) when M -+

where 012(( 7) = Var ( fz )) We notice that, for a given simulation size M, the limiting factor of
the method is UJ%( Xx)» SO variance reduction methods were developed in order to reduce the value
of 0]20( X) and accelerate the convergence of the Monte Carlo estimator to I. The reader can refer
to [Pagl8; Glal3] for more details on Monte Carlo simulation and variance reduction methods

in general such as control variates, antithetic method, stratification, importance sampling, ...

A new method of variance reduction by quantized control variable. Let ZV be a

random vector with values in R? defined by

(1]

Noi= Ek=1....d;

which will be our d-dimensional control variable, each E{CV component is given by

where fi(2) := f(E[Z1],...,E[Zk_1], 2z, E[ Zk11], . .., E[Z4]) and ijv is an optimal quantization
of size N of Zj. We use here a unidimensional optimal quantization in order to take advantage
of the weak error results previously shown, indeed the functions f; : R — R are part of the
classes of functions allowing us to reach a weak error of order 2. We introduce I as an

approximation for (1.2)

PN =E[f(Z2)-\EV)] =E

d d
HAEDY )\kfk(Zk)] + D ME[fr(Z))] (1.3)
k=1 k=1

where X € R, The terms IE | fk(zév )] in (1.3) can be easily and quickly computed using the
discreteness of quantizers.

At this point, we can define T ]l\{vN the Monte Carlo estimator associated to IV

M d d
Y=Y <f<2m> -2 Akfk<ZfT>> £ 2 ME[R(Z)].
m=1

k=1 k=1

It is important to notice that we introduce a bias when using such control variates, indeed
for every k € {1,...,n}, E[ZN] # 0 because E [fk(éliv)] is an approximation of I [ f(Z)].

However, the quantity that really interests us is not the bias induced by the estimator T i‘;N but
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rather the Mean Squared Error (MSE) giving us a bias-variance decomposition

2 d
MSE(IMVY) = Z Me(E[fe(Z))] = E [fr(Z1)] 4 Var F(2)= > Mefu(Zr) |-
M

k=1

biais® Variance du Monte Carlo

Thus, we can take higher values of N to make the bias term negligible compared to the
variance of the estimator while controlling the total cost induced by the Monte Carlo estimator.
In practice, we do not need to take very high values for V. Indeed, the bias term converges to
0 as N~%if f belongs to the right class of functions, so taking optimal quantifiers of size 200 is
more than enough to make the bias negligible compared to the variance of the Monte Carlo

estimator. We develop this point in the third part of the Chapter 4.

In the numerical part of the Chapter 4, we apply the variance reduction method to the
valuation of a basket option in a Black-Scholes model in dimension d. The control variate allows
us to divide the variance of the Monte Carlo estimator by 100 for small dimensions (d = 2 or
d = 3) and by 6 for larger dimensions (d = 10). We also observe that the bias induced by the
quantification becomes negligible for grids with a size greater than 100 (N > 100).

1.3 Examples of applications in finance

1.3.1 Stationary Heston Model

In Chapter 5, we are interested in the stationary Heston model and more precisely in the
evaluation of European, Bermuda and barrier options in this model as well as the calibration
of the model. Chapter 5 corresponds to the preprint “Stationary Heston model: Calibration
and Pricing of exotics using Product Recursive Quantization” accessible in arXiv or HAL (see
[LMP20]). This article is a joint work with Vincent Lemaire and Gilles Pages.

The standard Heston model was originally introduced by Heston in [Hes93]. It is a stochastic
volatility model where the initial volatility condition is assumed deterministic. This model has
become very popular mainly for the following two reasons: it is a stochastic volatility model
so it introduces a smile in the surface of the implied volatility as observed in the market and
the characteristic function of this model is given by a semi closed-form formula which allows
us to value European options (Call & Put) almost instantaneously (see Carr & Madan in
[CM99]). However, a remark often made about this model is that the smile of implied volatility
is not steep enough for short maturities compared to what is observed in the market (see
[Gat11]). Noticing that the volatility process is ergodic with a single invariant distribution
v = I'(a, B) where the a and  parameters depend on the volatility diffusion parameters, it
has been proposed by Pages & Panloup in [PP09] to directly consider that the process evolves

under its stationary regime instead of starting it at time 0 from a deterministic value. This


https://arxiv.org/abs/2001.03101
https://hal.archives-ouvertes.fr/hal-02434232

1.3 Examples of applications in finance 15

choice has the effect of accentuating the volatility smile for short maturities while keeping the
same behavior as the standard model for longer maturities. Later, the short and long-term
behavior of the implied volatility generated by such a model was studied by Jacquier & Shi in
[JS17].

Thus, the diffusion of the asset-volatility couple (St(l’) ,vf) in the stationary Heston model is

defined by o
ds,” ~
T’;) = (r — q)dt + \/v} (pdW; + /1 — p2dW)
¢
dv? = k(6 — V) dt + &/l dW,

where v§ ~ L(v) ~ T'(a, 8) with 8 = 2k/£2, a = 0.

Valuation of European Options. First of all, in the first part of the Chapter 5, we recall
the method used for the valuation of a Call in the standard Heston model. Starting from the
knowledge of the characteristic function w()\(v), U, T) of the logarithm of the asset at date T
(see [SST04; Gatll; Alb+07] for a robust choice of formula), the price of the Call of strike K
and maturity 7' on the asset ngv) in the standard Heston model where the volatility has as

initial condition v € R is given by
C(pv), K, T) = E[e (S = K)1 ] = soe T PL(A(v), K,T) — K ¢~ Py(A(v), K, T)

where the quantities Py (A(v), K, T) and P>(A(v), K, T) are defined by

1 1 (t% o~ ulog(K) 1/1()\(1)), u—1, T)
P (A KT)=—-+— d
1( (v), K, ) 2 + WL Re( u sgelr=a)T ) b
1 1 [+t® e—iulog(K)
Py(A(v),K,T) = 3 + WJO Re(iuw()\(v),u,T)>du
with i the base of imaginary numbers (such that iZ = —1).

From this formula, we derive a method to compute the price Iy of a Call in the stationary

Heston model. Indeed, by preconditioning by vy, we have
Iy =E[e" o(S7))] = E[C(6(uh), K, T)].

Thus, in order to obtain an approximation of Iy, we propose two methods. The first, based
on optimal quantization, consists in building an optimal quantizer of the gamma law I'(«, 3)
and then to use the cubature formula studied in the Chapter 4. The second method is to use a

quadrature formula based on Laguerre polynomials.

Calibration. Once we are able to price European options in the stationary Heston model,

we calibrate the model on market data to study the behavior of short-term implied volatility.
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We also calibrate the standard Heston model to compare its implied volatility surface to the
one of the stationary model. Both models are calibrated on the implied volatility surface of the
EURrRO STOXX 50 (see Figure 1.4). Since we are interested in the short-term behaviour of the
implied volatility surface, the calibration of the models is performed on options with a maturity
of 50 days (T = 50/365). We then observe the implied volatilities generated by the models for

short-term maturities.

Market Market

o
W
S

Implied Volatility
3
N
&
Implied Volatility

Fig. 1.4 Implicit volatility area of the EURO STOXX 50 on September 26, 2019. (Sy = 3541,
r = —0.0032 and ¢ = 0.00225)

The set of 4 parameters of the stationary Heston model to be calibrated is defined by
Pow = {(0,5,& p) € Ry x Ry x Ry x[—1,1]}
and the 5 standard model parameters Py by
Py ={(z,0,5,&p) € Ry x Ry x Ry x Ry x[—1,1]}.

The other parameters are directly observed in the market.

We can notice that the stationary model has one less parameter to be calibrated compared
to the standard model, which makes its calibration more robust than the standard model which
is known to be over-parameterized (see [guarantee2009fitting]). In practice, we observe
that the calibration of the standard model is very dependent on the set of parameters used to

initialize the optimization algorithm whereas it is not the case for the stationary model.
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For the calibration of the models, the standard method consists in solving the following

optimization problem

) U%arket(K’ T) - O’I]\\,J()del(gﬁ, K, T) 2
min Market( [ T
PEP = Orv (K,T)

where the quantities oM/ ¥*t (K, T') and o}°%! (¢, K, T) are, respectively, market implied volatil-
ities and those calculated with a Heston model of parameter ¢ = (0, k,&, p) or ¢ = (z,0, K, &, p)

in appropriate cases.

T=22D T=750D

T 0300 T
040 —ea— Market —a— Market

Heston 0275 Heston
—e— Stationary Heston

035 —e— Stationary Heston
0250
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I}
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Fig. 1.5 Implied volatility for maturity options 22 (left) and 50 (right) days after calibration
without penalty.

In Figure 1.5, we compare the implied volatility curves generated by the two models after
calibration to European options with 50-day maturity. We observe that the stationary model
produces a smile of volatility that is steeper than the standard model for options with a 22-day
maturity. However, when we perform the calibration, we notice that the parameters obtained

do not satisfy the Feller’s condition
€2 < 20

which ensures the strict positivity of volatility. This property is important for the numerical

valuation of exotic options discussed in the last part of the chapter.

Thus, to obtain parameters that satisfy the Feller condition, we constrain the parameters

by adding a penalty to the minimization problem that becomes

+ Amax(£2 — 2k6,0)

min

O_I]\é[arket (K, T) _ U%Odel (¢7 K, T) 2
PP e

G%arket (K’ T)

where X is the penalty factor adjusted during the procedure.



18 Introduction
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Fig. 1.6 Implied volatility for maturity options 22 (left) and 50 (right) days after calibration
with penalty.

In the Figure 1.6, we make the same comparison as before. We notice that the addition of
the penalty deteriorated the quality of the calibration at maturity 50 days. As for maturity 22
days, we observe that the stationary model again succeeds in producing a smile of volatility
closer to that of the market than the standard model.

Exotic Options Valuation by Recursive Product Quantification. In the last part of
the Chapter 5, we address the pricing of exotic options such as Bermudan options and barrier
options using a Backward Dynamic Principle Programming. The numerical method we propose
is based on recursive product quantization. We extend the methodology previously developed by
[FSP18; CFG18; CFG17] where a Euler-Maruyama scheme was considered for the discretization

in time of both assets and volatility.

Time discretization of diffusions. We made the choice to consider a hybrid scheme
composed of an Kuler-Maruyama scheme for the dynamics of the log-active X; = log(St(V)) and

a Milstein scheme for the boosted volatility process Y; = et v¥. Thus, we have

{thﬂ = Epo (ths Xty, Yo, Zp i)
Y;fm—l = ME,& (tk’ Vi Z/%Jrl)

with t, = £, n the number of discretization time steps, Z,; ~ N(0,1) and ZZ ; ~ N(0,1)
such that Corr(Z} b VA +1) = p- The Euler-Maruyama scheme is defined by

Epolt,m,y,2) = + b(t, 2, y)h + o(t,z,y)Vh 2

with et

ey
2

b(t,z,y) =r—q— and o(t,x,y) = e Hit/2 VY,
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and the Milstein schema put into its canonical form

~ Yy T oo’ T ?
Mit,2) =2 = 20 h@(t,x) RGA >> LAY (z . ﬂ&;(tw))

xT

with
gemt/Q

N

b(t, z) = e k6, F(t,x) = Evze™?  and  F(tz) =

Product Markovian Recursive Quantization. Once the choice of the discretization
scheme in time has been made, we are interested in the discretization in space of the asset-
volatility couple.

To do this, we first construct a Markovian quantization tree (?}k) k=0,...n- 1t is advantageous
to notice that the volatility is autonomous and therefore we face a one-dimensional problem.
Thus, the quantizers f/tk are recursively constructed, i.e. f/}k .1 is an optimal quantizer of Ek 1
defined by

i}tk+l = MZ,& (tkﬂ ?tk? Zl§+1)v i}tk+l = Projpy (i}tlﬁ—l)'

N2 k41
Numerically, we use the methods based on deterministic algorithms for the 1 dimension
developed in Chapter 3.
Now, using the fact that Y; has already been quantized, we construct a Markov quantization
tree (th)kzo,..,,n of X;. Again we are brought back to a one-dimensional problem and we

construct the quantizers f(tk recursively, i.e. f(tk .1 is an optimal quantizer of )N(tk .. defined by

th+1 = gb,U (tk7 th? Ytlw Zl%+1)7 th+1 = PrOjFX (th+1)'

N1 k+1

In order to alleviate the notations, we shall denote X 1 and )’}k instead of }?tk and f/}k

Now that we have calibrated the stationary Heston model and are able to construct a
quantization tree for the asset-volatility couple, we are interested in the evaluation of exotic

options and more specifically Bermudan or barrier options.

Bermudan options. The price on date t; of a Bermudan option exercisable on dates

{tk, - ,tn} with payoff ¢y, (X3, ,Ys,) on the date ¢ is given by the Snell envelope Vj

Vi = sup [e_” Ve (X7, Y5) | Fu, ],

mn
TET,

where 7. represents the set of stopping times 7 taking values in {t;,1,...,t,}. The Backward

Dynamic Principle Programming allows to rewrite V. as follows

Vo = e wn(Xm Yn)7
Vi = max (efrtk wk(Xk,Yk),E[VkJrl | ]:k]), 0<k<n-—1.
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We then apply the methodology employed by [BP03; BPP05; Pagl8] which consists in
replacing X and Y} by the quantizers X ¢ and ffk By construction of the recursive quantization,
the couple ()A(k, f/k) is Markovian so we obtain the following Quantized Backward Dynamic

Principle Programming

{‘711 = @Z)n()zvn,i}n)a
Vi = max (¢ (Xp, Vi), E[Vi1 | (X6, Y2)]), K =0,...,n— 1

Finally, the price of the Bermudan option is given by IE [f/o]

Barrier Options. The price on date t; of a barrier option with maturity 7', payoff f and
barrier L is given by
Pyo = e TR [f(XT) ]lSUPtE[O,T] X, <L ] .

For the valuation of the barrier option, we apply the algorithm based on the conditional law of
Euler’s scheme, see [Glal3; Sagl0; Pagl8]. Thus, once the asset-volatility couple is discretized

in time, the price Pyo is rewritten as follows

n—1

D —rT —rT Ve k

Pyo =e T E[f(Xr) Lupyeory t<r|=e¢ T E [f(XT) H G(Xk,yk),xkﬂ(m]
k=0

where
_on (z—u)(z—u)

G/(fw’y)’z (u) = (1 —e T (tymy) ) Ly max(z,2)} -

Finally, replacing X, and Y, by X'k and ?k and using a recursive algorithm to approach
Pyo by ]E[f}o], we have

V, = e_TTf()’(\'n),
- X ~ o
Vi=E [G()A(kyf/k)’f(k+l(L) Vier | (X, V)], 0<k<n-—1

1.3.2  Pricing of Bermudan options in a 3-factor model (PRDC)

In the Chapter 6, we address the problem of Bermudan exchange rate option pricing where
stochastic domestic and foreign interest rates are considered. In this case, we refer to a three-
factor model. Chapter 6 corresponds to the article “Quantization-based Bermudan option
pricing in the FX world” submitted to Journal of Computational Finance and accessible in
arXiv or HAL (see [Fay+19]). This article is a joint work with Jean-Michel Fayolle, Vincent
Lemaire and Gilles Pages.

The need to evaluate such products originated in Japan at the end of the 20th century.
Indeed, the persistence of low interest rates during the last decades of the century was one of

the main reasons that led to the creation of exchange rate structured financial products. These


https://arxiv.org/abs/1911.05462
https://hal.archives-ouvertes.fr/hal-02361667
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products met the need of investors seeking higher coupons than those based on the yen. As
financial products became more and more complex, they became known as power reverse dual
currency (PRDC) products, see [Wys17].

Even though these products were issued towards the end of the 20th century, they are still
present in banks’ portfolios and must be taken into account when evaluating counterparty risk
such as Credit Valuation Adjustment (CVA), Debt Valuation Adjustment (DVA), Funding
Valuation Adjustment (FVA), Capital Valuation Adjustment (KVA), ...., in short xVA (see
[BMP13; CBB14; Grel5] for more details on the subject).

The model. P(¢,T) is defined as the value at time ¢ of one unit of the selected currency
delivered (i.e. paid) at time 7', also known as the zero coupon price or discount factor. We will
note the zero coupon with superscript d when we speak of a zero coupon in the domestic currency
(P%(t,T)) and with superscript f for the zero coupon in the foreign currency. The model used
for the diffusion of the domestic and foreign zero coupons belongs to the Heath-Jarrow-Morton
(HJM) family of yield curve models. For more details and theory on its models, we may refer
to the following articles [EFG96; EMV92; HIM92; BS73].

Thus the diffusion of the domestic zero-coupon curve under the domestic risk-neutral

probability P is given by
dPe(t,T)

d d

where W is a P-Brownian Motion, rf is the instantaneous domestic rate at time ¢ and oy
is the volatility. For the foreign zero-coupon curve, the dynamic is given, under the foreign

risk-neutral probability INP, by the diffusion

dPf(t,T)

f _ g
I T (t,T) = ridt + o (T — t)dWy,

where W/ is a P-Brownian Motion, 7{ is the instantaneous foreign rate at time ¢ and o is the
volatility. The two probabilities P and P are supposed to be equivalent, i.e. P ~ P and there
is pgr defined as the limit of the quadratic variation (W4, W1y, = past.

For the exchange rate (F'X), we refer to S; as the value at time ¢ >0 of one unit of foreign
currency in the domestic currency. The dynamics of ()= is of Black-Scholes type and given
by
= (= rDydt + ogdW,

where r¢ is the instantaneous rate of the domestic currency at time ¢, 7{ is the instantaneous

rate of the foreign currency at time ¢, og is the volatility and W¥ is a standard Brownian

motion under the domestic risk-neutral probability.
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The problem. Our objective is to price Bermudan options on the exchange rate S; exercisable

at n + 1 dates: {to,...,t,}. Thus, the date price ¢; of the Bermuda option is given by the Snell

envelope Vj, of the obstacle (e~ fo" réds Ut (S6)) joom-

Vi = sup E [e*% rids U (S7) | .Ftk]

TeT,?
where 7 is a stopping-time with values in {tx,...,t,} and 7" represents all such stopping-time.

Example 1.3.1. The payoff we consider in Chapter 6 is one of a PRDC coupon (see the
example in Figure 1.7) defined by

Y, () = min <max (Cgsk)x - Cd(tk),Floor(tk)) , Cap(tk)>

where Floor(tx) and Cap(ty) are the floor/cap values chosen when creating the product, as well
as C¢(t) and Cy(ty) which are the coupon values of the foreign and domestic currencies to

which we wish to compare ourselves.
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Fig. 1.7 Ezample of a PRDC payoff 1, (St,) = min <<0.189 — 0.15) ,0.0555) at date ty.
+

Backward Dynamic Principle Programming. The Backward Dynamic Principle Pro-
gramming allows us to rewrite V} as follows:
Vn =e Sé" ngs wn(Stn)7
t
Vi = max (5 g () B[Vier | Fi]), 0<k<n—1.
Furthermore, we notice that the obstacle e™ foréds 1(S¢) can be rewritten as a function hy

of two processes X; and Y;
ot pd
o b0y () = hy(Xy, V)
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where the couple (X,Y') is defined by

t t

(X, Y)) = <aSWf + aff

(¢~ )W), o |
0

) (t — s)dWSd>.

Thus, this new expression for the obstacle allows us to rewrite the Snell envelope problem
in the form of
Vi = sup E [h(X;,Y7) | Fy, |-
TET?
However, the couple (X}, Y%) is not Markovian and this poses a problem in the Principle of Dynamic Program
because the conditioning that appears in the conditional expectation cannot be replaced by
(Xk,Yg). This is why we are led to consider the random vector (X, Wy, W) which is

Markovian. Thus the Backward Dynamic Principle Programming can be rewritten as follows

Vio = hn(Xn, V), 14
Vie = max (hi(Xp Yi), B [Vior | (X6 WY W), O<k<n—1. '

Quantization based numerical solution. We are now interested in the practical part of
numerically computing the values Vj. In the Chapter 6, we have opted for a numerical method
based on optimal quantization as introduced in [BPP01] and developed in [BP03; PPP04b;
BPPO05] for the evaluation of Bermudan options but with the variant that consists in using a
product optimal quantization tree. This approach has the advantage of being fast, stable and
accurate in small dimensions. However, as the dimension grows, the computation time can be
very expensive and the convergence speed of the method is degraded because of the “curse of
dimension” that affects the optimal quantization.

The first idea we present, when we want to discretize (1.4) by optimal quantization, is the
most natural one. We replace the random variables X, W,f , Y. and Wkd by their optimal
quantization )A(k, W,g, }A/k and 17[\/,?, of size N,g(, N,gvf, N,L/Vf, Ng/ and N,ZVd respectively, and
we “force”, in a certain sense, the Markov property by introducing the “forced” Quantized

Backward Dynamic Principle Programming defined by

= hn(Xna i}n>7

Vn
‘7143 = max (hk()/(\vk,i}k),E [‘/}k-i-l | ()A(k,l//l\/,f,?k,ﬁ\/,f)]), 0<k<n-—1.

The term “forced” is justified because ()2 ks 17[\/15 , ffk, ﬁ\/g)k is not a Markov chain so this Backward
Dynamic Principle Programming is not naturally associated to the Snell envelope. We denote
by N = N, lg( X N,XV "N ,3/ x N ZV * the global size of the quantization grid produced.

For this approximation, we provide an a priori quadratic error for |Vy — Vill,, £ =0,...,n.
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Theorem 1.3.2. If the payoff functions (Yt )k=0:n are Lipschitz continuous with compactly
supported (right) derivative. Then the quadratic error induced by the quantization approzimation
()A(k, W,f, Vi, W,f) s upper-bounded by

" " - ~ —~ — 1/2
Vi~ 0, < (X ConllX = R, + Cxi¥i = Fil?, + Cul w3 = W + CopgW] =712
=k

where 1 < p < 3/2 and q¢ = 1 such that % + % = 1 and the constants CXl,CWld,CYl,CWf are
l

finite. So, by taking N = ming, Ny, we have

Jim [V — i = 0.
N0

The major problem with the approach we have just presented is the algorithmic complexity
associated with this method due to the size of the product quantization grids. This complexity
makes the computation of the conditional expectations appearing in the backward dynamic
programming principle very expensive. Our objective is thus to reduce the size of the problem.
To do so, we remove the processes W% and W/ from the product-quantization tree to keep only
X and Y. By doing so, we lose the Markov property of the random vector we are considering,
but we significantly reduce the numerical complexity of the problem. In this context, (1.4) is

approached by

Vo = ha( X, o),
‘7]@ = max (hk(ﬁk,i}k),E[f}k+1 | ()?k,i}k)]>, 0<k<n-—-1

We denote N = N ,gf x N, ,3/ the size of the quantization grid.

Again, we provide an a priori quadratic error for |V — Vi|,, £ =0,...,n.

Theorem 1.3.3. If the payoff functions (Y, )g—0.n are Lipschitz continuous with compactly
supported (right) derivative. Then the quadratic error induced by the quantization approximation

()’fk, ?k) is upper-bounded by
n—1
Vi = Vi, < ( le Crpr Wiy = BV [ (X YDIS + G Wiy —BIWEL | (4 W]

R R 1/2
# O X = Rif2 + Cyilvi - T )
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where 1 < p < 3/2 and q =1 such that 1 +1 =1 and the constants Cx,,Cya ,Cyv;,Cyp  are
B p q I+1 Wl+1
finite. So, by taking N = min N, we have
2 f f 2 2
. > d d
NEIEOO HVk—VkH2 = ZZIL CWZQ1|‘WG+1_E[W1+1 | (XlaYl)]H%*‘CWldH“WlH—E[WlH | (XZ,YE)]H%'

We can thus notice that the approximation we made by replacing the preconditioning in
( Xk, W,f Yy, Wg) by (Xk, Yx), even if it considerably reduces the complexity of the problem,

induces a systematic error. However, it seems reasonable to assume that this error is negligible.

Example 1.3.4. Indeed, in Figure 1.8, when pricing Bermudan options that can be exercised
annually for maturities of 2, 5 or 10 years, considering market parameters for oq and oy, the
price difference between the two methods is negligible. The payoff considered is that of the
Example 1.3.1. For the example considered in the Figure 1.8, the correlations are assumed
to be zero psq = psf = par = 0, So = 88.17, 05 = 50%, 04 = o5 = 50bp (1bp = 0.01%),
Py(0,t) = exp(—rgt) with rq = 1.5% and Py(0,t) = exp(—ryt) with ry = 1%.
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Fig. 1.8 Relative difference between the prices given by the two methods for Bermudan options
yearly exercisable and maturing at 2, 5 or 10 years.






Chapter 2

Introduction - Francais

2.1 Quantification Optimale

Cette these est consacrée a divers aspects théoriques de la quantification optimale en lien avec
Iintégration numérique ainsi que diverses applications & la finance. La quantification optimale
a initialement été introduite par Sheppard en 1897 dans [She97]. Ses travaux ont porté sur la
quantification optimale de la distribution uniforme sur les hypercubes unités. Elle a ensuite
été étendue a des lois plus générales a support compact ou non, motivé par des applications
a la transmission du signal dans le Laboratoire Bell dans les années 50 (voir [GG82]). La
quantification optimale est également liée & une méthode de statistique computationnelle
d’apprentissage non-supervisé. En effet la méthode des “k-means” qui est une méthode de
classification automatique non paramétrique consistant, étant donné un ensemble de points et
un entier k, & diviser les points en k classes (“clusters”) se base sur le méme algorithme que la
méthode de Lloyd utilisée pour construire un quantifieur optimal. La probleme des “k-means”
fat formulé par Steinhaus dans [Ste56] puis reprise quelques années plus tard par MacQueen
dans [Mac67]. Dans les années 90, la quantification optimale fiit d’abord utilisée & des fins
d’intégration numérique pour I’approximation d’espérances, voir [Pag98], et plus tard utilisée
pour l'approximation d’espérances conditionnelles : voir [BPP01; BP03; BPP05] pour des
problémes d’arrét optimal appliqué a ’évaluation d’options américaines, [PP05; PRS05] pour
des problémes de filtrage non-linéaire, [BDD13; PCR09; PPP04a; PPP04b] pour des problémes
de controle stochastique, [Gob+05] pour la discrétisation et la simulation d’équations de Zakai
et de McKean-Vlasov et [BSD12; DD12] en présence de processus de Markov déterministe par
morceaux (PDMP).

2.1.1 Définitions et principaux résultats

Soit X un vecteur aléatoire & valeurs dans RY muni d’une norme | - |, ici toujours euclidienne,
avec distribution P, défini sur un espace de probabilité (€2, .4, P) tel que X € L%Rd(ﬂ, A, P).

La quantification de X consiste & approcher X par un vecteur aléatoire ¢(X) ou g est une
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fonction borélienne a valeurs dans I'y = {x{v yenn ,m%} c R De plus, on peut remarquer
que dist(X, (X)) = dist(X,'y) avec égalité si et seulement si ¢ est une projection au plus
proche voisin, notée ¢ = Projp, . Cette projection au plus proche voisin Proj, est associé

biunivoquement & une partition borélienne de Voronoi (C;(T N))1 <<y de R vérifiant
Ci(Py) = {€e Ry ¢ —af'| < min ¢ — a7}

Ainsi, la projection au plus proche voisin associée est définie par

N

Projr, (§) = 2 2 Leeci(r) -
=1

Une telle quantification est dite “ Voronoi”. Nous noterons XTn 1a projection au plus proche

voisin de X sur I'y = {z}',..., 2}, ainsi
XTI~ = Projp, (X).

On allégera la notation de XTIV en XN pour plus de clarté.

Ainsi, la loi d’un quantifieur XN est entidrement caractérisée par la grille des centroides
'y = {z}¥, 1 <i < N} dans laquelle le quantifieur prend ses valeurs et le N-uplet des poids
plN qui représentent la probabilité que XN soit égal a acfv ou, de fagon équivalente, que X

appartienne a la cellule de Voronoi 4, i.e.
p =P (XN =2)) =P (X eCi(Tn)), i=1,...,N.

Dans cette these, nous travaillerons essentiellement avec de la quantification optimale
quadratique. Le terme optimale provient du fait que I'on cherche la meilleure approximation de
X dans le sens oit 'on va vouloir minimiser la distance entre les vecteurs aléatoires X et XV
en optimisant la grille I'y pour une taille N donnée. Cette distance est mesurée en norme L2,
d’ott le terme quadratigue. La distance entre X et )’(\'N, que l'on note | X — )?NHQ, est appelée
erreur de quantification moyenne. Mais on raisonne souvent en terme de distorsion qui n’est
autre que le carré de 'erreur de quantification moyenne. Pour un N-uplet, elle est définie par

Qo= (@l o) — B[ min X — )] = |x - X2
Ainsi, nous cherchons la grille 'y de cardinal au plus N tel que le quantifeur XN = Projr (X)
minimise

min X - XV|2
IycRYDy|<N
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Une telle grille existe toujours lorsque X € L? (voir théoréme 2.1.1 ci-aprés). Dans la Figure
2.1, nous présentons deux quantifieurs de taille N = 100 d’un vecteur gaussien centré et de
matrice de covariance-variance unitaire. A gauche, nous représentons un échantillon i.i.d. du
vecteur gaussien et a droite un quantifieur optimal. La couleur de chaque cellule représente la

probabilité p¥ associée & la cellule C;(T'y) de centroide ¥ (point rouge).
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i 0.01 1
24 24
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4+ 44
—t Tt ——
-4 -2 [ 2 4

Fig. 2.1 Deux quantifications de taille N = 100 d’un vecteur gaussien centré et de matrice de
variance-covariance unitaire.
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Le probléeme de minimisation étant posé, plusieurs résultats ont été démontrés dans la
littérature, voir par exemple les deux livres [GL00; Pagl8] pour plus de détails sur la théorie
de la quantification optimale. Signalons au passage que cette théorie peut étre entierement
développée dans un cadre LP et I'on parle alors de LP-quantification optimale. Nous citons en

premier un résultat assurant l’existence d’un quantifieur optimal.
Theorem 2.1.1. (Existence d’un N -quantifieur optimal) Soit X € L]QRd (P) et N e N*.

(a) La fonction de distorsion quadratique Qo N au niveau N atteint un minimum en (au
moins) un N-uplet z* = (zV,...,2N) et la grille associée T} = {xN,i=1,...,N} est
appelé un N -quantifieur quadratique optimal.

(b) Sile support de la distribution P, de X a au moins N éléments, alors z* = (z,...,z%)
a des composantes deuzr a deux distinctes et P (C’,(I‘}'\,)) > 0,i=1,...,N. De plus,
a suite N — in ayn QoN(x) converge vers 0 et décroit strictement tant qu’elle es
la suite N — inf, gax Qo 0 et décroit strictement tant qu’elle est

strictement positive.

En plus de savoir que la distorsion quadratique décroit vers 0, la vitesse exacte de convergence
a été établi au travers des contributions de plusieurs auteurs [Zad82; BW82; GL00]. Le théoréme

a été démontré dans le cas LP et donc caractérise ’erreur de quantification LP.
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Theorem 2.1.2. (Théoréme de Zador) Soit d € N* et p € (0,+00).

(a) SHARP RATE. Soit X € LV’ (P) avec § > 0. Soit P (d€) = (&) - Aa(d€) + v(dE), ot
v L Mg i.e. v est singuliére par rapport a la mesure de Lebesqgue Ag sur R?. Alors, il

existe une constante jzxd € (0, +0) tel que

1
i

B =

: 1/d : SN ¥ 7%=
lim N min |X =X, = Jpa pa+rdAg
N—+w IncR|Ty|<N R4

ot XN est un quantifieur LP-optimal de X.

(b) BORNE SUPERIEUR NON-ASYMPTOTIQUE [GLO0; PAG18]. Soit 6 > 0. Il existe une

constante réelle Cy, 5 € (0,+00) tel que, pour tout vecteur aléatoire X d valeurs dans RY,

YN > 1, min X = XV, < Capoosip(X)N T
IycR4Dy|<N

otu, pour r € (0,+0),0,(X) = min gq | X —af, < +o0.

2.1.2 Construction d’un quantifieur optimal

Il existe de nombreuses méthodes pour construire un quantifieur optimal. Dans certains cas tres
rares, les centroides sont donnés explicitement, par exemple lorsque X ~ U([a, b]) ou a,b € R,

la grille I'y est donnée par

I'ny = {x{v,,x%} = {212]_\[1 1= 1,...,N}.

Nous nous référons également a [GLOO] pour la loi de Laplace et a [FP02] pour des formules
semi-fermées pour la loi exponentielle, la loi puissance et la loi puissance inverse. Néanmoins,
la plupart du temps, ce n’est pas le cas donc nous devons utiliser des méthodes itératives pour
construire les grilles et les poids associés a chacun des centroides. Ces méthodes itératives se
divisent en deux grandes familles : les méthodes déterministes (algorithme de Lloyd, algorithme
de Newton-Raphson et leurs variantes, ...) qui se basent sur la connaissance explicite de
la densité et la fonction de répartition de la loi de X et les méthodes a base d’optimisation
stochastique (Competitive Learning Vector Quantization (CLVQ), randomisation de 1’algorithme
de Lloyd, ...) nécessitant seulement de pouvoir simuler X. Ces méthodes sont détaillées dans le
Chapitre 3.

Cas d’une variable aléatoire réelle - d = 1. Dans le cas unidimensionnel, nous avons un
résultat d’unicité du quantifieur optimal lorsque la densité de X est log-concave. Ce théoréme

a été démontré par Kieffer dans [Kie82] (voir aussi [Pag98]).
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Si X est une variable aléatoire (d = 1) dont on connait le premier moment partiel K, (-) et

la fonction de répartition F, de X
K, () = E[X 1x<.] et F, (z):=P(X < x),

alors on utilise en priorité les méthodes déterministes qui permettent de construire tres rapide-
ment un quantifieur optimal de X, tel que l'algorithme de Lloyd introduit dans [L1082] qui est
un algorithme de recherche de point fixe. Il est également possible d’appliquer 'algorithme
de Newton-Raphson en calculant la Hessienne de la fonction de distorsion quadratique (voir
[PP03] pour un exemple détaillé appliqué a une variable aléatoire normale). D’autres descentes
de gradient déterministes peuvent étre utilisées tel que Levenberg-Marquardt ou des méthodes
de quasi-Newton. Sinon, on utilise les méthodes a base d’optimisation stochastique telles que
la version stochastique de Ialgorithme de Lloyd ou une descente de gradient stochastique (voir
[Pag98]).

Example 2.1.3. Dans la Figure 2.2, nous représentons en bleu la densité d’une variable
aléatoire gaussienne unidimensionnelle et en rouge les centroides du quantifieur optimale de
taille N = 11 de cette méme variable aléatoire. Nous illustrons également ce que représentent
les poids pr associés aux centroides va . De plus, nous pouvons approcher la densité (si elle

existe) en chaque point de la grille par la relation suivante

2pN

N _ N -
Tivi2 — Tic1)2

PN =P(XeCy)=P(X =xV)

i

Fig. 2.2 Densité d’une gaussienne centrée réduite N'(0, 1) en bleu et les centroides d’un quantifieur
optimale de taille N = 11 en rouge.
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Cas d’un vecteur aléatoire - d > 2. Maintenant, considérons un vecteur aléatoire X a
valeurs dans R? (d = 2). Deux approches existent pour construire un quantifieur optimal de la
loi de X.

La premiére approche consiste a appliquer la méthodologie développée dans le cas scalaire
directement au cas vectoriel et obtenir ainsi une quantification optimale de X. Si ’on connait
la densité de X alors il est encore possible en dimension 2 ou 3 d’appliquer les méthodes
déterministes (cf. Chapitre 3). Cependant dés d > 4, nous ne pouvons plus guére compter que
sur des méthodes d’optimisation stochastique fondées sur la simulation d’échantillons de la loi
de X.

La seconde, la quantification produit, consiste & construire un quantifieur optimal de chacune
des composantes du vecteur aléatoire et ensuite de construire le quantifieur en considérant le
produit cartésien entre toutes les composantes quantifiées optimalement. Plus précisément,
soit X = (X Z)gzlzd, un vecteur aléatoire a valeurs dans R?. On consideére les d quantifieurs
optimaux unidimensionnels X! de taille N¢ de chacune des marginales X¢. Chaque quantifieur
Xt prend ses valeurs dans la grille I‘éve = {zfé, ipe{l,--- ,Ng}}. Ainsi, le quantifieur produit de
X prend ses valeurs dans la grille 'V qui est le produit cartésien des grilles unidimensionnelles,
ie. TN = 1_[?:1 FéV‘ de taille N = N! x .- x N% ou, de facon équivalente,

FN:{($1 "'7$Z "'axd)’ igE{l,"',N[}, Ee{laad}}

ip?

i1 iq

0.012

0.008

0.008
0.006

0.006

0.004

0.004

0.002 0.002

Fig. 2.3 Deux quantifications de taille N = 200 d’un vecteur gaussien centré et de matrice
de variance-covariance unitaire. Quantification optimale a gauche et quantification produit a
droite.

Dans la Figure 2.3, nous comparons la quantification optimale et la quantification produit

d’un vecteur gaussien centré et de matrice de variance-covariance unitaire. Les deux méthodes
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ont leurs avantages et leurs inconvénients, la premiere méthode produit une meilleure quan-
tification du vecteur aléatoire X comparée a la quantification-produit mais le cotit numérique

induit pour la construction d’un quantifieur optimal est souvent beaucoup plus élevé.

Cas des diffusions. Si maintenant, au lieu de considérer un vecteur aléatoire, nous nous

intéressons aux diffusions, i.e.
dXt = b(t, Xt)dt + O'(t, Wt)th

alors il existe, 1a encore, plusieurs solutions pour quantifier X;. Plus précisément, étant donné
une discrétisation en temps a n-pas (tx)o<k<n, nous cherchons les quantifieurs )A(gkv’“ de taille
Nj, de Xy, que nous noterons X ,iv ket X} afin d’alléger les notations. L’objet que I’on cherche &
construire est dénommé arbre de quantification. Un arbre est caractérisé par la connaissance

des lois (T'k, (pF)1<i<n,) des quantifeurs (X1)o<k<n et des probabilités de transition pﬁ j
P (Xp1 =it | Xy = 2f).

Nous ne présenterons pas toutes les approches existantes qui permettent d’aborder le
probleme de schémas quantifiés de discrétisation d’une diffusion mais seulement celles qui nous
permettent d’utiliser des méthodes numériques déterministes d’optimisation des grilles. Pour
les autres approches, basées sur des algorithmes stochastiques nous renvoyons a la série de
papiers [BPP01; BP03].

Quantification des lois marginales. Le probleme de la quantification d’une diffusion
a été initié et développé dans une série d’articles [PPP04b; BPP05; BBP09; BBP10; CFG19].
Si X}, peut étre simulé de facon exacte, c’est a dire sans I'aide d’un schéma de discrétisation en
temps, et que nous connaissons la loi marginale de X, a chaque instant g, alors nous sommes
ramenés au cas de la quantification d’un vecteur aléatoire. En effet, nous pouvons quantifier
optimalement chaque vecteur aléatoire X a ’aide de méthodes numériques déterministes si
d < 2, ce qui produit un arbre de quantification optimal, ou quantifier optimalement chacune
de ses composantes pour ensuite construire une quantification produit des X, produisant un

arbre de quantification produit.

Example 2.1.4. Si 'on considére un modele de Black-Scholes a volatilité constante o et avec

taux d’intéréts constants r
dS; = Sy(rdt + odWy), avec Sp = so,

alors nous avons une forme explicite pour S

S, = Sy o(r=0?/2)t+a W,
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donc pour un instant donné ¢, log(S;/So) ~ N ((r — 02/2)t,0*t) donc nous pouvons quantifier
optimalement Sy a chaque instant qui nous intéresse a I'aide de méthodes déterministes (cf.

Chapitre 3). Nous pouvons également quantifier le Brownien W; qui est “plus universel”.

Quantification récursive. Dans le cas oll nous ne connaissons pas la loi marginale de X,
et que sommes obligés d’utiliser un schéma de discrétisation (type Euler-Maruyama, Milstein,
...), nous allons utiliser une méthode appelée quantification récursive. La quantification récursive
(aussi appelée quantification Markovienne) a d’abord été introduite dans [PPP04b] puis étudiée
en profondeur dans [PS15] pour le cas d’une diffusion unidimensionnelle discrétisée par un
schéma d’Euler-Maruyama. Un algorithme rapide fondé sur des méthodes déterministes pour
construire ’arbre de quantification y est développé et analysé. Par la suite, la quantification
récursive rapide a été étendue a des schémas unidimensionnels d’ordre supérieur par [McW—+18§]
et a des dimensions supérieures par quantification de produit (voir [PS18b; FSP18; Rud+17;
CFG18; CFG17]). Cette méthode consiste a construire récursivement en k les quantifeurs X ,iv k
via la récursion

)A(]iv’“ = ProjFNk ()Z'k) avec )Afk =& (X;iv_kl_l7zk)

ou &_1 est un schéma de discrétisation.

2.2 Intégration numérique

Un probleme courant en pratique est de calculer ’espérance d’une fonction de X lorsque X
est une variable ou un vecteur aléatoire, c’est a dire |E [ f(X )] Or, sauf dans des cas tres
particuliers, il n’est pas possible de calculer explicitement cette quantité, c’est le cas par exemple
si X = Xr la valeur d’une diffusion a la date T'. C’est pourquoi il est nécessaire de faire appel
a des méthodes d’intégration numérique. [Pag98] introduit une méthode de cubature & base
de quantification optimale afin de pouvoir approcher des espérances de la forme IE [ f(X )]
Considérons XV un quantifieur optimale de X, le fait que XN soit discret nous permet de

définir facilement la formule de cubature suivante
R N

E[£(X™)] =) o) (=) (2.1)
i=1

De plus, étant donné que XN a été construite comme étant la meilleur approximation discrete
de X de cardinal au plus N alors il nous semble raisonnable de penser que & [ f ()2 N )] est une
bonne approximation de It [ f(X )]

Dans le Chapitre 4, tiré de l'article “New Weak Error bounds and expansions for Op-
timal Quantization” publié dans Journal of Computational and Applied Mathematics, voir
[LMP19], nous présentons de nouveaux résultats dans le cas réel concernant l’erreur induite

par 'approximation & base de quantification de ’espérance |E [ fX )] Ce travail est un travail
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commun avec Vincent Lemaire et Gilles Pages et il est accessible sur arXiv ou HAL. Ces

résultats “faible” sont résumés ci-apres.

2.2.1 Convergence faible

Dans la premiere partie du Chapitre 4, nous nous intéressons a la vitesse de convergence de
E[f (XN )] vers E [ f(X)] en fonction de N pour différentes classes de fonctions f lorsque X
est une variable aléatoire a valeurs dans R, i.e nous recherchons le plus grand « > 0 tel que,

pour toute fonction f dans cette classe F,
T N°|E [f(X)] = E[f(XV)]]| < Crx < +0.

Si 'on majore de fagon naive l'erreur faible par I'erreur forte le long des fonctions lips-
chitziennes, on obtient la majoration suivante (avec o = 1) pour une suite de N-quantifieurs

L?-optimaux

NIE[F(X)] = E[F(XN)]] < N[, 1X = XV, < N[f],, |1X = XN], 75 Cp < +o0

Lip Lip

ou le Théoreme de Zador (théoreme 2.1.2) a été utilisé. De plus, si nous considérons f(z) =
dist(z,I'y) alors f est une fonction lipschitzienne et nous avons

N|E[f(X)] -E[f(XM)]| = N|X - XV|, < N|X - XV|, =2 0p < 40,

Pour certaines classes de fonctions nous pouvons démontrer que la formule de cubature induit
une erreur faible d’ordre 2 (a = 2). Par exemple, si nous considérons les fonctions dérivables
avec une dérivée lipschitzienne alors nous avons une erreur d’ordre 2, voir [Pag98|. En effet,

nous utilisons un développement de Taylor avec reste intégral de la forme

1

f@) = F@) + P —y) + j (F(tz + (1 - 1)) — ') (& — y)dt

0
et la propriété de stationnarité d’'un quantifieur quadratique optimale suivante
E[X | XV] = XV,
Le premier terme du développement de Taylor vaut zéro car

E[f(XV)(X-XM)] =E[fEME[X-XY | V]| B[ /(&V)(B[x | X¥]-XV)| -0,


https://arxiv.org/abs/1903.10330
https://hal.archives-ouvertes.fr/hal-02361644
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Ainsi, en utilisant la propriété de Lipschitz de la dérivée et le théoréme de Zador, nous obtenons
une erreur faible d’ordre 2 comme convenu
1

N E[f(X)] -E[f(XM)]| < NQL E[|f/ X + 1 -t)XY) - F(XV)|| X — XV|]at

[0

< SENEX - XN A2, 0 < o,

Dans la premiére partie du Chapitre 4, nous étendons ces résultats concernant la vitesse de
convergence de 'erreur faible d’ordre supérieur a 1 a une plus vaste classe de fonctions ayant

moins de régularité, plus précisément, les fonctions qui sont soit :
e continues et affines par morceaux avec un nombre fini de ruptures d’affinités,
e Lipschitz convexe,

e dérivables avec une dérivée définie par morceaux (nombre fini de morceaux K aux points
{ai,...,ax} tel que —0 = ag < a1 < -+ < ag < ag4+1 = +00) qui soit localement

lipschitzienne, c’est a dire

Vk=0,....K, Vx,ye (a’k7 ak+1) ‘f/(li) - f,(y)| < [f,]k,Lip,loc|:C - y| (gk(x) + gk(y))
ou g : (ak,ag+1) — R4 sont des fonctions boréliennes a valeurs positives,

e dérivables avec une dérivée définie par morceaux (nombre fini de morceaux K aux points
{a,...,ax} tel que —0 = a9 < a1 < -+ < ag < a1 = +0) qui soit localement

a-Holder, c’est a dire

Vk=0,....K, Vr,ye(apap1), (@)= F W< iamelr =yl (g6(x) + g1(v))
ou g : (ag,ar+1) — R4 sont des fonctions boréliennes & valeurs positives.

Pour les trois premieres classes de fonctions, nous démontrons que 'erreur faible est d’ordre 2

et pour la derniere, d’ordre 1 + «.

Dans la partie numérique, nous illustrons ce résultat en évaluant le prix d’'un Call européen

dans un modele de Black-Scholes donné par
Ip:=E[e (S — K)4]

ol S; = Sper=o%/2t+oWi ayec (Wt)te[o,r] un mouvement brownien. Afin d’approcher, a I'aide

de la quantification, le prix du Call européen nous pouvons réécrire Iy de deux facon différentes

Io = Blp(Sr)] = E[f(Wr)]



2.2 Intégration numérique 37

ou ¢ est une fonction affine par morceaux avec une rupture d’affinité et f est une fonction
dérivable avec une dérivée définie par morceaux localement lipschitzienne. Ainsi, en considérant
des quantifieurs de ST ou Wr et en utilisant la formule de cubature, nous observons, pour les

deux approximations, une erreur faible d’ordre 2.

2.2.2 Développement d’erreur faible d’ordre supérieur

Dans la seconde partie du Chapitre 4, nous nous intéressons au développement d’erreur faible
de l'approximation de I [f(X)] par £ [f()?N)] C’est & dire que nous cherchons a obtenir un

développement de la forme

SN C2 —(2
E[/(0] = B[f(R)] + 5 + OV -E+)
ou 3 € (0,1]. Dans la section précédente, nous avons déja montré que I'approximation par
formule de cubature & base de quantification optimale induit un terme d’erreur d’ordre O(N~2)
dans le meilleur des cas. Ici, nous cherchons a raffiner les résultats précédents afin d’obtenir
un développement d’erreur a ’ordre 2 “contr6lé” et non une simple vitesse de convergence a
lordre 2.

Dans la Section 4.3, nous démontrons que ce développement existe si la fonction f: R —
R est deux fois dérivables avec une dérivée seconde lipschitzienne. Ce résultat utilise un

développement de Taylor d’ordre 2 avec reste intégral de la forme

1 1
F@) = f@) + F W) —y) + 5 W)@ —y)° + f L=tz + (1= t)y) — ["(y) (@ —y)dt
0
ou l'on prend l’espérance de chaque c6té de I'égalité et on remplace = et y par X et XN ,
respectivement. Le deuxiéme terme a droite est annulé en utilisant la propriété de stationnarité
du quantifieur quadratique optimal. Pour le troisitme terme, nous nous appuyons sur [Del404]
(Théoréme 6) qui stipule que Vg : R — R tel que E[g(X)] < +o

i N2 B [g(R)1X  RV7) = @ul®) [ o(6) P, (a8

que l'on applique & g = f” ot Q2(P, ) est la constante de Zador. Ainsi, nous avons déja les
deux premiers termes dans le développement de ’erreur. Pour le dernier terme, on utilise la
propriété de Lipschitz de la dérivée seconde et le reste de la preuve se fonde principalement
sur un résultat initialement établi dans [GLPO08] puis récemment étendu dans [PS18a], connu
sous le nom de “L"-L* distorsion mismatch”, qui se formule ainsi : que peut-on dire du taux de
convergence de |E [|X — XN |5] sachant que XN est un quantifieur L"-optimal lorsque s > r et

X € L? 7 Nous citons ce théoreme pour d = 1, qui est le cas qui nous intéresse.
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Theorem 2.2.1 (L"-L*-distorsion mismatch). Soit X : (Q, A,P) — R une variable aléatoire
et r € (0,+00). Soit P, (d§) = p(&) - AN(d€) + v(dE), ou v L X d.e. v est singulier par rapport
d la mesure de Lebesgue A sur R et ¢ est non-identiquement nul. Soit (I'n)n=1 une suite de

grilles L™ -optimales et s € (r,r +1). Si
X e LT o(P)

pour un § > 0, alors

limsup N|X — XV, < +o0.
N

Ainsi, en appliquant ce théoréme avec r = 2 et s = 2 + 3, nous obtenons un O(N —(2+,6))

pour le dernier terme et ¥ 3 € (0,1), nous avons ’expansion suivante

2

Vit O(N~C+8),

BE[f(X)] = E[f(XM)]+
Ce développement d’erreur nous permet de justifier théoriquement 1'usage d’extrapolation
de Richardson-Romberg qui a pour but de tuer le premier terme d’erreur du développement en
combinant linéairement deux formules de cubature par quantification, respectivement & N et
M points, i.e.
M2f(XM) = N?f(XN)
M2 — N2

E[f(X)]=E + O(N—@+9)

pour M = kN avec k > 1.

Nous illustrons ce résultat dans la partie numérique en évaluant une option européenne sur

spread dans un modeéle de Black-Scholes en dimension 2 dont le prix est donné par
Ip:=E[e (S} — 7 — K)4].
En pré-conditionnant, nous exprimons Iy comme suit

Iy = E [¢(Z)]

ou Z, est une gaussienne centrée réduite et ¢ est une fonction deux fois dérivables avec une
dérivée seconde lipschitzienne. Ainsi, en considérant des N-quantifieurs optimaux ZN de
Zy ~ N(0,1), nous approchons Iy a I'aide de la formule de cubature a base de quantification
optimale (2.1) et observons une erreur faible d’ordre 2. De plus, en utilisant I'extrapolation de

Richardson-Romberg, nous atteignons une erreur faible d’ordre 3.

Cependant, l'intérét de la méthode de cubature par quantification optimale lorsque d = 1
reste limité car elle est notamment en compétition avec les méthodes utilisant des points de

Gauss. Une extension multi-dimensionelle est en revanche tres utile des que d = 3. On considere
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une fonction deux fois différentiables f : R? — R avec une Hessienne bornée et lipschitzienne. De
plus, nous supposons que X : (2, A, P) — R? a des composantes indépendantes X, k =1,...,d
et que le quantifieur XN est un quantifieur produit de X a d composantes ()A( ]iv F)k=1,....d tel

que Ny X --- X Ng = N. Ainsi, nous avons

2.2.3 Réduction de variance

Dans la derniere partie du Chapitre 4, nous présentons une nouvelle méthode de réduction de
variance d’un estimateur Monte Carlo avec des variables de contrdle a base de quantification
optimale unidimensionnelle. D’autres méthodes de réduction de variance a base de quantification
optimale ont été développées, voir par exemple [CP15; Pagl8] pour plus de détails. Cette
approche est motivée par la vitesse de convergence d’ordre 2 de ’erreur faible induite par la
formule de cubature a base de quantification pour diverses classes de fonctions, notamment

celles évoquées ci-avant.

Le probléeme. Soit (Z;)k=1,.4=Z € L%Rd (P) un vecteur aléatoire et une fonction f : R —

R. Nous nous intéressons a la quantité suivante

I:=E[f(2)]. (2.2)

Bien souvent, nous ne pouvons pas calculer explicitement cette quantité, c’est pourquoi une
approche standard est de faire appel & un estimateur Monte Carlo I := ﬁ Z%Zl f(Z™) en
simulant des copies indépendantes Z" de Z pour approcher I. La convergence de la méthode
et sa vitesse sont déterminées par la loi forte des grands nombres et le théoréme central limite,

respectivement, qui assurent, si Z est de carré intégrable, que
In 5 E[f(2)] et \/M(I:M -k [f(Z)]) £>./\/(0,UJ2£(Z)) lorsque M — +0o0

ou 0]20( 7)) = Var ( f(Z )) On remarque que, pour une taille de simulation M donnée, le facteur
limitant de la méthode est UJ%( X) c’est pourquoi des méthodes de réduction de variance qui
consistent a réduire la valeur de UJ%( x) bour accélérer la convergence de I'estimateur Monte
Carlo vers I ont été développées. Le lecteur peut se référer a [Pagl8; Glal3] pour plus de
détails sur la simulation de Monte Carlo et les méthodes de réduction de variance en général
telles que les variables de controle, la méthode antithétique, la stratification, ’échantillonnage

préférentiel, ...
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Une nouvelle méthode de réduction de variance par variable de contréle quantifiée.

Soit ZV, un vecteur aléatoire & valeurs dans R?® défini par

=N = fu(Zk) — B [£:(ZD)],

ou fp(z) := f(E[Z1],...,E[Zk-1], 2, E[Zk41], - . ., E[Z4]) et 2,?7 est une quantification optimale
de taille N de Zi. Nous utilisons ici une quantification optimale unidimensionnelle afin de tirer
profit des résultats d’erreur faible précédemment démontrés, en effet les fonctions fr : R — R
font parties des classes de fonctions nous permettant d’atteindre une erreur faible d’ordre 2.

On introduit I*" comme approximation pour (2.2)

PN =E[f(Z)-\EV)] =E

d d
- Z )\kfk(Zk)] + Z A B [fk(éliv)] (2.3)
P =1

ot A € R Les termes IE [ fk(éév )] dans (2.3) peuvent étre aisément et rapidement calculés en
utilisant le caractere discret des quantifieurs.

A ce stade, on peut définir T ]’\\J’N ’estimateur de Monte Carlo associé & IMV

M d d
N = Z ( )—Z/\szk(Z;T)> + Y ME[f(ZY)].
k=1

k=1

Il est important de remarquer que nous introduisons un biais en utilisant une telle variable
de controle, en effet pour tout k € {1,...,n}, E[ZY] # 0 car E [fk(f,]fv)] est une approximation
de & [ fk(Zk)]. Cependant, la quantité qui nous intéresse réellement n’est pas le biais induit
par I'estimateur T 1’\\4’N mais plutdt I'erreur quadratique moyenne ou Mean Squared Error (MSE)

nous donnant une décomposition biais-variance

MSE(TN) = (Z)\k( [#(ZM)] - [fk(Zk)])>2+]\14War< Zd]kszk>

k=1

~
biais® Variance du Monte Carlo

Ainsi, nous pouvons prendre des valeurs de N plus élevées pour rendre le terme de biais
négligeable comparé a la variance de I'estimateur tout en controlant le cofit total induit par
I’estimateur Monte Carlo. En pratique, nous n’avons pas besoin de prendre des valeurs tres
élevées pour N. En effet, le terme de biais converge vers 0 comme N~ si f appartient & la

bonne classe de fonctions, donc prendre des quantificateurs optimaux de taille 200 est largement
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suffisant pour rendre le biais négligeable comparé a la variance de 'estimateur de Monte Carlo.

Nous développons ce point dans la troisieme partie du Chapitre 4.

Dans la partie numérique du Chapitre 4, nous appliquons la méthode de réduction de
variance a 1’évaluation d’une option panier dans un modele de Black-Scholes en dimension d.
La variable de contrdle nous permet de diviser la variance de ’estimateur Monte Carlo par
100 en petite dimension (d = 2 ou d = 3) et par 6 en plus grande dimension (d = 10). Nous
observons également que le biais induit par la quantification devient négligeable pour des grilles
dont la taille est supérieure a 100 (N > 100).

2.3 Exemples d’applications a la finance

2.3.1 Modeéle d’Heston Stationnaire

Dans le Chapitre 5, nous nous intéressons au modele d’Heston stationnaire et plus précisément
a I’évaluation d’options européennes, bermudiennes et barrieres dans ce modeéle ainsi qu’a la
calibration du modele. Le Chapitre 5 est tiré du preprint “Stationary Heston model: Calibration
and Pricing of exotics using Product Recursive Quantization” accessible sur arXiv ou HAL
(voir [LMP20]). Cet article est un travail commun avec Vincent Lemaire et Gilles Pages.

Le modele d’Heston standard fut introduit a 'origine par Heston dans [Hes93]. C’est un
modele a volatilité stochastique ou la condition initiale de la volatilité est supposée déterministe.
Ce modele a acquis une forte popularité principalement pour les deux raisons suivantes : c’est
un modele a volatilité stochastique donc il introduit un smile dans la surface de la volatilité
implicite telle qu'observée dans le marché et la fonction caractéristique de ce modele est donnée
par formule semi-fermée ce qui nous permet d’évaluer les options européennes (Call & Put)
presque instantanément (voir Carr & Madan dans [CM99]). Cependant, une remarque souvent
faite sur ce modele concerne le smile de volatilité implicite qui n’est pas assez pentu pour des
maturités courtes comparé a ce que I’on observe sur le marché (voir [Gatll1]). En remarquant
que le processus de volatilité est ergodique avec une distribution invariante unique v = I'(«, f3)
ou les parametres « et 8 dépendent des parametres de diffusion de la volatilité, il a été proposé
par Pages & Panloup dans [PP09] de considérer directement que le processus évolue sous son
régime stationnaire au lieu de le démarrer au temps 0 a partir d’une valeur déterministe. Ce
choix a pour effet d’accentuer le smile de volatilité des maturités courtes tout en gardant le
méme comportement que le modele standard pour les maturités plus longues. Plus tard, le
comportement a court et long terme de la volatilité implicite générée par un tel modele a été
étudié par Jacquier & Shi dans [JS17].


https://arxiv.org/abs/2001.03101
https://hal.archives-ouvertes.fr/hal-02434232
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Ainsi, la diffusion du couple actif-volatilité (St(y), v{) dans le modele d’Heston stationnaire

est défini par

ds(’/) —
Sé’) = (r — q)dt + /v} (pdW; + /1 — p2dWy)
t

dvy = k(0 —vy)dt + f«/v;’dﬁvft
ot v§ ~ L(v) ~ T'(a, B) avec B = 2k/£2, a = 0.

Evaluation d’options européennes Tout d’abord, dans la premiére partie du Chapitre
5, nous rappelons la méthode utilisée pour I’évaluation d’un Call dans le modeéle d’Heston
standard. A partir de la connaissance de la fonction caractéristique w()\(v), u, T) du logarithme
de Pactif & la date T' (voir [SST04; Gatll; Alb+07] pour un choix robuste de formule), le prix
du Call de strike K et de maturité T sur l'actif S? ) dans le modéle d’Heston standard ot la

volatilité a pour condition initiale v € R est donné par
C(pv), K, T) = E[eT(SY) — K)1] = soe T PL(A(v), K,T) — K e~ Py(A(v), K, T)

ol les quantités P ()\(v), K, T) et Py ()\(v), K, T) sont définies par

11t e~ 1los(K) o (A(v), u — 1, T)
Pi(A(v),K,T) = - + — R d
1( (U)v ’ ) 9 WJ;) e< P Soe(rfq)T > U
1 1 [t® e—iulog(K)
PQ()\(U),K,T) = 5 ﬂ_J;) Re(iuw()\(v),u,T)>du
avec i la base des nombres imaginaires (tel que i = —1).

A partir de cette formule, nous en déduisons une méthode pour calculer le prix Iy d'un Call

dans le modele d’Heston stationnaire. En effet, en préconditionnant par v, nous avons
Iy = B[ o(S7))] = E[C(6(uh), K, T)].

Ainsi, pour obtenir une approximation de Iy, nous proposons deux méthodes. La premiere, a
base de quantification optimale, consiste a construire un quantifieur optimale de la loi gamma
I'(c, B) et ensuite d’utiliser la formule de cubature étudiée dans le Chapitre 4. La deuxieéme

méthode consiste a utiliser une formule de quadrature a base de polyndémes de Laguerre.

Calibration Une fois que nous sommes en mesure de calculer le prix d’options européennes
dans le modele d’Heston stationnaire, nous calibrons le modele sur des données de marché pour
étudier le comportement de sa volatilité implicite en temps court. Nous calibrons également
le modele d’Heston standard afin de comparer sa surface de volatilité implicite & celle du
modele stationnaire. Les deux modeéles sont calibrés sur la surface de volatilité implicite de

’EURO STOXX 50 (voir Figure 2.4). Etant donné que nous nous intéressons au comportement
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court-terme de la surface de volatilité implicite, la calibration des modeles est réalisée sur les
options de maturité 50 jours (T' = 50/365). Nous observons ensuite les volatilités implicites

générées par les modeles pour des maturités court-termes.

Market Market

o

w

S
o
w
S

o
N
&

Implied Volatility

o
N
&

plied Volatility

o
N
S

020 8

Fig. 2.4 Surface de volatilité implicite de 'EURO STOXX 50 a la date du 26 Septembre 2019.
(So = 3541, r = —0.0032 et ¢ = 0.00225)

Le jeu de 4 parametres du modele d’Heston stationnaire devant étre calibré est défini par
Pouw = {(0,5,&,p) e Ry x Ry xRy x[—1,1]}
et celui a 5 parametres du modéle standard P,, par
P, ={(2,0,r,&p) € Ry x Ry x Ry x Ry x[—1,1]}.

Les autres parametres sont directement observés dans le marché.

Nous pouvons remarquer que le modele stationnaire a un parametre en moins a calibrer par
rapport au modeéle standard, ce qui rend sa calibration plus robuste que le modéle standard qui
est connu pour étre sur-parametré (voir [GR09]). En pratique, nous observons que la calibration
du modele standard est trés dépendante du jeu de parametre utilisé pour initialiser ’algorithme

d’optimisation alors que ce n’est pas le cas pour le modéle stationnaire.

Pour la calibration des modeles, la méthode standard consiste & chercher la solution du

probleme d’optimisation suivant

(UIJ\\;[arket(I(7 T) _ U%Odel((ﬁ, K, T) ) 2
= (711\\§[(1.7"l<;et([{7 T)
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ol les quantités oM@ ket (K T) et gMedel(¢, K, T) sont, respectivement, les volatilités implicites
du marché et celles calculées avec un modele de Heston de parametre ¢ = (0,k,&,p) ou

¢ = (z,0,k,&, p) selon les cas.

T=22D T=50D

T 0300 T
040 —a— Market —a— Market
Hestan 0275 Heston
035 —e— Stationary Heston —e— Stationary Heston
0.250
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I~}
0
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Fig. 2.5 Volatilité implicite pour des options de maturité 22 (gauche) et 50 (droite) jours aprés
calibration sans pénalisation.

Dans la Figure 2.5, nous comparons les courbes de volatilité implicite générées par les deux
modeles apres calibration a des options européennes de maturité 50 jours. Nous observons
en effet que le modele stationnaire produit un smile de volatilité plus pentu que le modele
standard pour des options de maturité 22 jours. Cependant, lorsque I'on effectue la calibration,

nous remarquons que les parametres obtenus ne satisfont pas la condition de Feller
€2 < 210

qui assure la stricte positivité de la volatilité. Cette propriété est importante pour I’évaluation

numérique d’options exotiques étudiée dans la derniere partie du chapitre.

Ainsi, pour obtenir des parameétres qui satisfont la condition de Feller, nous contraignons

les parametres en ajoutant une pénalisation dans le probleme de minimisation qui devient

+ Amax(£2 — 2k6,0)

min

O_f/\\;[arket (K, T) - J{\\{odel(¢7 K, T) 2
PP %

UIJ\\jlarket (K’ T)

ou A est le facteur de pénalisation ajusté pendant la procédure.
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Fig. 2.6 Volatilité implicite pour des options de maturité 22 (gauche) et 50 (droite) jours aprés
calibration avec pénalisation.

Dans la Figure 2.6, nous effectuons la méme comparaison que précédement. Nous remarquons
que 'ajout de la pénalisation a dégradé la qualité de la calibration a la maturité 50 jours. Pour
ce qui est de la maturité 22 jours, nous observons que le modele stationnaire arrive la encore, a

produire un smile de volatilité plus proche de celui du marché que le modele standard.

Evaluation d’options exotiques par quantification produit récursive Dans la derniére
partie du Chapitre 5, nous traitons de I’évaluation des options exotiques telles que les options
bermudiennes et les options a barriére a ’aide d’un principe de programmation dynamique. La
méthode numérique que nous proposons est fondée sur de la quantification produit récursive.
Nous étendons la méthodologie précédemment développée par [FSP18; CFG18; CFG17] ou
un schéma d’Euler-Maruyama était considéré pour discrétiser en temps a la fois 'actif et la

volatilité.

Discrétisation en temps des diffusions Nous avons fait le choix de considérer un

schéma hybride composé d’un schéma d’Euler-Maruyama pour la dynamique du log-actif

X = log(SfFV) ) et d’un schéma de Milstein pour le processus de volatilité boosté Y; = et vY.
Ainsi, nous avons
{th-H = gb,o’ (tkv th ) )/;fka Z%Jrl)
3 3 2
Yio = Mg,& (tk’ Y Zk+1)
avec t, = %, n le nombre de pas de temps de discrétisation, Z},; ~ N'(0,1) et Z7, | ~ N(0,1)

tel que Corr(Z ,1 15 Z,? +1) = p. Le schéma d’Euler-Maruyama est défini par
gb,a(ta €, Y, Z) =T+ b(ta z, y)h + O-(t’ z, y)\/ﬁz

avec ‘
e hk

2

b(tvxu y) =Tr—q— and J(t7$7y) = e—fﬂt/2 \/@7
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et le schéma de Milstein mis sous sa forme canonique

~ Yy T oo’ T ?
M 5 (t,,2) = 7 — 2;(’5(;2) ; h@(t,x) _ @) >> AL (z n \/Egi(tyﬂf))

avec
¢ ent/Q

b(t,z) = e kb, F(t,x) = Evze™?  and  F(tz) = N

Quantification Markovienne produit recursive Une fois le choix du schéma de dis-
crétisation en temps fait, nous nous intéressons a la discrétisation en espace du couple actif-
volatilité.

Pour cela, nous construisons tout d’abord un arbre de quantification Markovien (?}k) k=0,...n-
Il est avantageux de remarquer que la volatilité est autonome et donc nous faisons face a un
probléme unidimensionnel. Ainsi, les quantifieurs f/tk sont construits récursivement, c’est a dire

que }A/tk .. est un quantifieur optimal de ﬁk . défini par

}N/thrl = MZ,& (tk7 ﬁfk’ Zl%—&-l)’ ﬁkJrl = Projpy (f/;kJrl)'

No k41
Numériquement, nous utilisons les méthodes a base d’algorithmes déterministes pour la dimen-
sion 1 développées dans le Chapitre 3.

Maintenant, en utilisant le fait que Y; a déja été quantifié, nous construisons un arbre de
quantification Markovien ()?tk) k=0,...n de X;. La encore nous sommes ramenés a un probleme
unidimensionnel et nous construisons les quantifieurs )z}k récursivement, c’est a dire que f(tk 1

est un quantifieur optimal de )thk ., défini par

th+1 = gb,o‘ (tka thv Y'tlw Z]:cl-}—l)v th+1 = PrOjFX

N1 k+1

()?tk+1)'

Afin de simplifier les notations, nous notons dans la suite X L et }Afk a la place de )?tk et i}tk

Maintenant que nous avons calibré le modele d’Heston stationnaire et que nous sommes
capable de construire un arbre de quantification pour le couple actif-volatilité, nous nous
intéressons a I’évaluation d’options exotiques et plus précisément des options bermudiennes ou

barriéres.

Options bermudiennes Le prix a la date t;; d’une option bermudienne pouvant s’exercer
aux dates {tx,--- ,tn} et de payoff ¢y, (Xt,,Y:,) & la date ¢ est donné par 'enveloppe de Snell
Vi

Vi = sup B |77 4o (X0, 7) | F |,

n
TeT,
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ou 7, représente I’ensemble des temps d’arrét 7 a valeurs dans {t,t1,...,t,}. Le Principe de

Programmation Dynamique permet de réécrire Vi comme suit

Vn = eirtn %(Xn, Yn)7
Vi, = max ("% 9 (Xi, Yi), E[Vis1 | Fil), 0<k<n-1

Nous appliquons ensuite la méthodologie employée par [BP03; BPP05; Pagl8] qui consiste
a remplacer X et Y par les quantifieurs )A(k et f/k Par construction de la quantification
récursive, le couple ()/(\' ks }7}6) est Markovien ainsi nous obtenons le Principe de Programmation

Dynamique Quantifié suivant

{‘771 = wn()/en,?n ’
Vk = max (¢k(Xka k)7E[‘/}k+1 ‘ (Xk,?k)]), k= 0, ey — 1.

Finalement, le prix de 'option bermudienne est donné par & [‘70]

Options barrieres Le prix a la date ¢ d’une option barriere Up-and-Out de maturité T,

de payoff terminal f et de barriére L est donné par

Pyo = e—'rT I [f(XT) ]lsupte[O’T] thL]'

Pour I’évaluation de 'option barriére, nous appliquons ’algorithme basé sur la loi conditionnelle
du schéma d’Euler, voir [Gla13; Sagl0; Pagl8]. Ainsi, une fois le couple actif-volatilité discrétisé

en temps, le prix Pyo se réécrit de la facon suivante
n—1
5 —rT v —rT % k
Pyo =e " E[f(Xr) Lupeqo.m t<p]=¢ " E [f(XT) H G(Xk,Yk),XkH(L)]
k=0
o (=) (z—w)

2n "t
Gl(fl”yy)zZ(u) - (1 —¢ TSt y) ) ]l{u>max($,z)} .

Finalement, en remplacant X}, et Y), par 2]« et ?k et en utilisant un algorithme récursif afin

d’approcher Pro par ]E[TA/O], nous obtenons

Vo= f(Xn),
. . . o
Vi =E[Gg o) 20 B Vier | (X, Ye)], 0<k<n-1

2.3.2  Evaluation d’options bermudiennes dans un modéle 3 facteurs (PRDC)

Dans le Chapitre 6, nous nous intéressons au probleme d’évaluation d’option bermudiennes sur

taux de change ou 'on consideére des taux d’intéréts domestiques et étrangers stochastiques.
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Dans ce cas, on fait référence a un modele 3 facteurs. Le Chapitre 6 correspond & l’article
“Quantization-based Bermudan option pricing in the F'X world” soumis a Journal of Compu-
tational Finance et accessible sur arXiv ou HAL (voir [Fay+19]). Cet article est un travail
commun avec Jean-Michel Fayolle, Vincent Lemaire et Gilles Pages.

Le besoin d’évaluer de tels produits est né au Japon a la fin du XXe siecle. En effet
la persistance des taux d’intérét bas durant les dernieres décennies du siecle a été 'une des
principales raisons qui ont conduit a la création de produits financiers structurés sur taux de
change. Ces produits répondaient au besoin des investisseurs souhaitant obtenir des coupons
plus élevés que ceux fondés sur le yen. Au fur et & mesure, les produits financiers se sont
complexifiés pour en arriver aux produits appelés : power reverse dual currency (PRDC), voir
[Wys17].

Méme si ces produits ont été émis vers la fin du XXe siecle, ils sont toujours présents dans
les portefeuilles des banques et doivent étre pris en compte lors de ’évaluation des calculs de
risque de contrepartie tels que I'ajustement de valeur de crédit (Credit Valuation Adjustment -
CVA), l'ajustement de valeur de la dette (Debt Valuation Adjustment - DVA), 'ajustement
de valeur du financement (Funding Valuation Adjustment - FVA), I'ajustement de valeur du
capital (Capital Valuation Adjustment - KVA), ...., en bref xVA (voir [BMP13; CBB14; Grel5]

pour plus de détails sur le sujet).

Le modéle. On définit P(t,7T) comme étant la valeur a I'instant ¢ d’une unité de la devise
choisie livrée (c’est-a-dire payée) a l'instant 7', également connue sous le nom de prix du zéro
coupon ou facteur d’actualisation. Nous noterons le zéro coupon avec d en exposant lorsque nous
parlerons de zéro coupon dans la devise domestique (P4(¢, T)) et avec f en exposant pour le zéro
coupon dans la devise étrangere. Le modele utilisé pour diffuser les zéro coupons domestique et
étranger se place dans la famille des modeles de courbe de rendement Heath-Jarrow-Morton
(HIJM). Pour plus de détails et de théorie sur ses modeles, on peut se référer aux articles suivants
[EFG96; EMV92; HIM92; BST73|.

Ainsi la diffusion de la courbe des zéro coupons domestiques sous la probabilité risque-neutre

domestique P est donnée par

dPe(t,T)

d d
= T—
Pt " dt + og(T — t)dWE,

ou W% est un P-mouvement brownien, Tf est le taux instantané domestique au temps t et o4
est la volatilité. Pour la courbe des zéro coupons étrangers, la dynamique est donnée, sous la

probabilité risque-neutre étrangere ]lND, par la diffusion

dPI(t,T)

f _ _naws
PI(t.T) Pl (t,T)=r{dt +or(T —t)dW/,


https://arxiv.org/abs/1911.05462
https://hal.archives-ouvertes.fr/hal-02361667
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ot W/ est un P-mouvement brownien, 7{ est le taux instantané étranger au moment ¢ et oy est

la volatilité. Les deux probabilités P et P sont supposées étre équivalentes, c’est-a-dire P~P

et il existe pgr défini comme limite de la variation quadratique croisée (W, W/ >t = past.
Pour le taux de change (FX), nous désignons par S; la valeur au temps ¢ > 0 d’une unité

de monnaie étrangere dans la monnaie domestique. La dynamique de (S)i=0 est de type

Black-Scholes sous la forme

ds
?t = (rf — rf)dt + adetS,
t

ot 7 est le taux instantané de la monnaie domestique au temps t, rg est le taux instantané

de la monnaie étrangére au temps t, og est la volatilité et W*° est un mouvement brownien

standard sous la probabilité risque-neutre.

La problématique. Notre objectif est d’évaluer le prix d’options bermudiennes sur le taux de
change S; pouvant étre exercé a n + 1 dates: {to,...,t,}. Ainsi, le prix a la date ¢; de l'option

bermudienne est donné par 1’enveloppe de Snell Vi, de 'obstacle (e_ fo rdds wtk(Stk))k:Om

Vk = sup IE [efsgr‘sids wT(ST) | }-tk]

n
TeT,

ou 7 est un temps d’arrét a valeurs dans {ty,...,t,} et 7, représente I'ensemble de ces temps

d’arrét.

Example 2.3.1. Le payoff que nous considérons dans le Chapitre 6 est un celui d’un coupon

de PRDC (voir 'exemple dans la Figure 2.7) défini par

Yy, () = min <max <Cjig(vtk)x - Cd(tk),Floor(tk)) , Cap(tk))

0

ou Floor(tx) et Cap(t) sont les valeurs plancher choisies lors de la création du produit, ainsi
que Cy(tx) et Cy(tx) qui sont les valeurs des coupon des monnaies étrangeres et domestiques

auxquels nous souhaitons nous comparer.
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Fig. 2.7 Exemple de payoff d’'un PRDC 1)y, (S, ) = min ((0.189% —0.15> ,0.0555) au temps
: +

te.

Principe de programmation dynamique. Le Principe de Programmation Dynamique

permet de réécrire Vi, comme suit:

d

Vo= e Wiy (),
Vi = max (e_%k " (St ) B[Vt | ftk]>, O0<k<n-1

_(tpd fo .
De plus, on remarque que 'obstacle e foréds ¥ (S¢) peut se réécerire comme une fonction hy

de deux processus X; et Y;
t
e V075 4y (8)) = y( Xy, )

ou le couple (X,Y) est défini par

¢ t
(X, Y;) = (oswf + aff (t — s)dW/, —adj (t — s)dWsd>.
0 0
Ainsi, cette nouvelle expression pour 'obstacle nous permet de réécrire la probleme de

I’enveloppe de Snell sous la forme

Vi = sup E [hT(XT,YT) | Ft, ]

n
T€T,

Cependant, le couple (X, Yy) n’est pas Markovien et cela pose probleme dans le Principe de
Programmation Dynamique car le conditionnement qui apparait dans I’espérance conditionnelle
ne pourra pas étre remplacé par (Xg, Yy). C’est pourquoi nous sommes amenés a considérer le
vecteur aléatoire (X, W7, Y, W%) qui, lui, est Markovien.

Ainsi le Principe de Programmation Dynamique peut se réécrire de la fagon suivante

Vo = hn(XnaYn)v (2 4)
Vi = max (hk(Xk,Yk),E [Vk+1 | (Xk7Wk{7Yk>Wkd)])7 O0<k<n-1 ‘
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Résolution numérique par quantification. Nous nous intéressons maintenant a la partie
pratique qui consiste a calculer numériquement les valeurs de V. Dans le Chapitre 6, nous avons
opté pour une méthode numérique a base de quantification optimale telle qu’introduite dans
[BPPO1] et développée dans [BP03; PPP04b; BPP05] pour 'évaluation d’options bermudiennes
mais avec la variante consistant a utiliser un arbre de quantification optimale produit. Cette
approche a pour avantage d’étre rapide, stable et précise en petite dimension. Cependant
lorsque la dimension croit, elle peut étre trés cotliteuse en temps de calcul et la vitesse de
convergence de la méthode se dégrade a cause de la “malédiction de la dimension” qui touche
la quantification optimale.

La premiére idée que nous présentons, lorsque ’on souhaite discrétiser (2.4) par quantification
optimale, est la plus naturelle. Nous remplacons les variables aléatoires X}, Wg , Y, and W,gl
par leur quantification optimale )A(k, I//I\/If, f/k et Wg, de taille N,g(, N:Vf, N,L/Vf, N,f et N,gvd
respectivement, et nous “forcons”, en un certains sens, la propriété de Markov en introduisant

le Principe de Programmation Dynamique Quantifié "forcé" défini par

‘771 = hn()?n;i}n%
‘7]6 = max (hk()?k,}/}k),E [‘7]64_1 | ()A(k,l//l\/,f,}?k, W]g)]), 0<k <n-—1.

Le terme "forcé' se justifie car ()A(k,ﬁ\/,f ,}Afk,l//l\/,f)k n’est pas une chaine de Markov donc ce
principe de programmation dynamique n’est pas naturellement associé a une enveloppe de Snell.
Nous désignons par Ny = N, 15( x N IKV T N ,3/ x N /XV * Ja taille globale de la grille de quantification
produit.

Pour cette approximation, nous fournissons une erreur quadratique a priori pour |V} —
Vil,, K =0,...,n.

Theorem 2.3.2. Si les fonctions (Y, )k=o0m sont dérivables a droite avec une dérivée bornée
a support compact. Alors l'erreur quadratique induite par Uapprorimation par quantification
()?k, 171\/,5, f/k, I//I\/,g) est bornée par

N n - ~ —~ —~ 1/2
Ve~ i, = (X Ol = R, + Cx¥i = Tl + Cupl Wi = T2+ Copgwi = 712)
=k

oul <p<3/2etq=1 tel que % + % = 1 et les constantes CXl,CWld,CYL,CWf sont finies.
l

Ainsi, en prenant N = ming Ni, nous avons

Jim [V — Vi = 0.
N—+w0

Le probleme majeur de ’approche que nous venons de présenter est la complexité algo-

rithmique associée a cette méthode due a la taille des grilles de quantification-produit. Cette
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complexité rend tres cotliteux le calcul des espérances conditionnelles apparaissant dans le
principe de programmation dynamique. Notre objectif est donc de réduire la dimension du
probléme. Pour cela, nous enlevons les processus W% et W/ de Parbre de quantification-produit
pour ne garder que X et Y. Ce faisant, nous perdons la propriété de markovianité du vecteur
aléatoire que nous considérons mais nous réduisons considérablement la complexité numérique

du probléme. Dans ce cadre, (2.4) est approchée par

‘7" = hn()?nai}n)a
Vi = max (hk()?m?k)aE [Vis1 | ()A(m?k)]), 0<k<n-1

Nous notons N = N ,5( x N, ,3/ la taille de la grille de quantification.

La encore, nous fournissons une erreur quadratique a priori pour |Vj — 17kH2, k=0,....n
basé sur les erreurs de quantification moyennes || X; — )’QHQT, et |Y; — fﬁHzP mais également sur
les erreurs que nous faisons en ne prenant pas en compte les mouvements browniens dans le

conditionnement.

Theorem 2.3.3. Si les fonctions (¢, )g=0.n sont dérivables a droite avec une dérivée bornée
a support compact alors erreur quadratique induite par l'approrimation par quantification

()’(\'k, ?k) est bornée par
n—1
Vi — VkH2 < ( Z CW/;lHWzil - E[VVZJ;1 | (XlaY})]ij + OWlffH”VVl(il — E[W, | (XZ»YE)]Hzp
1=k
- Lo\ 12
4O X - Sl + Oyl - Ylu%)

ot 1 <p<3/2etq=1tel que 1% + % =1 et les constantes CX“CWld 17CY17 C sont finies.
+

f
_ Wl+1
Ainsi, en prenant N = min Ng, nous avons
2
2p.

N—+00

n—1
Jim [=Vi[2 = D] Chpp W —EW,, | (X0 V)2 +Chp [Wik i —EIWL, | (X0 1))
=k

Nous pouvons ainsi remarquer que 'approximation que nous avons faite en remplacant le
préconditionnement en (X, W,f Yy, Wg) par (X, Yy), méme s’il réduit considérablement la
complexité du probleme induit une erreur systématique. Cependant, il semble raisonnable de

penser que cette erreur est négligeable.

Example 2.3.4. En effet, dans la Figure 2.8, lors de I’évaluation d’options bermudiennes
pouvant étre exercées annuellement pour des maturités de 2, 5 ou 10 ans, en considérant
des parametres de marché pour o4 et oy, la différence de prix entre les deux méthodes est
négligeable. Le payoff considéré est celui de 'exemple 2.3.1. Pour I'exemple considéré dans la

Figure 2.8, les corrélations sont supposées nulles pgq = pss = par = 0, So = 88.17, o5 = 50%,
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oq = o5 = 50bp (1bp = 0.01%), P4(0,t) = exp(—rqt) avec rq = 1.5% et P¢(0,t) = exp(—ryt)

avec 7y = 1%.
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Fig. 2.8 Différence relative des priz données par les deux méthodes pour des options bermudiennes
exercables annuellement et de maturité 2, 5 ou 10 ans.






Chapter 3
Optimization of Optimal Quantizers

Let X be an R%valued random vector with distribution p = P « defined on a probability space
(Q, A, P) such that X € L]2Rd(Q, A,P). Let | - | be the euclidean norm in R . In this chapter,
we describe existing procedures to build the optimal quantizations of X, by which we mean:

the best approximation of X by a discrete random vector XN with cardinality at most N.

3.1 Theoretical foundations

Definition 3.1.1. Let Ty = {z}’,..., 28} < R? be a subset of size N, called N-quantizer. A
Borel partition (Ci(I‘ N))Z.:1 _yof R? is a Voronoi partition of R? induced by the N-quantizer
Iy if, for every i € {1,..., N},

Ci(Ty) © {€ e R [¢ — | < min | — 2]},
VE

The Borel sets C;(I'y) are called Voronoi cells of the partition induced by I'y.

Remark. Any such N-quantizer is in correspondence with the N-tuple x = (z,...,2%) €
(RN as well as with all N-tuples obtained by a permutation of the components of 2. This is

why we sometimes replace I'yy by x.

Definition 3.1.2. A Voronoi quantization of X by I'y, XN , is defined as a Borel nearest
neighbor projection of X onto I'y associated to a Voronoi partition (Ci(FN))izl _ for the
euclidean norm N
XN = Projp (X) = D &) Ixec,ry)
i=1

and its associated probabilities, also called weights, are given by

P (XN =2N) =P (C;(Tn)) =P (X € Ci(T'w)).
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Figure 3.1 shows two Voronoi quantizations of a 2-dimensional centered Gaussian vector.
The red dots represent the centroids, the cells are the Voronoi cells associated to each centroid

and the color of each cell represent the weight of the cell.
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Fig. 3.1 Two quantizations of size N = 100 of a 2-dimensional standard Gaussian vector.

0.015

0.005

We are looking for the best approximation of X in the sense that we want to minimize the
distance between X and X». This distance is measured by the standard L? norm, denoted as
| X — XN ,, is called the mean quantization error. But we often use the quadratic distortion

defined as half of the square of the mean quantization error.

Definition 3.1.3. The quadratic distortion function at level N induced by an N-tuple = :=

(z,...,zY) is given by

1 1 1 A~
QoN T —> iE [ ._minN|X — a:fv|2] = iE [dist(X, FN)Q] = §HX — XNHg.

i=1,...,

Of course, the above result can be extended to the LP case by considering the LP-mean
quantization error in place of the quadratic one.

Thus, we are looking for quantizers XN taking value in grids I'y of size N which minimize
the quadratic distortion

min X - XV|2
I'ycRY Dy |SN

We briefly recall some classical theoretical results on optimal quantizer, see [GL00; Pagl8]

for further details. The first ones deals with of the existence and the uniqueness of optimal

quantizers.

Theorem 3.1.4. (Existence of optimal N-quantizers) Let X € L%Rd (P) and N € IN*.
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(a) The quadratic distortion function Qan at level N attains a minimum at a N-tuple
o= (zV,...,2Y) and Ty = {zV,i = 1,..., N} is a quadratic optimal quantizer at level
N.

(b) If the support of the distribution P of X has at least N elements, then z* = (z,...,z%)
has pairwise distinct components, P, (C’l(F}*V)) > 0,5 = 1,...,N. Furthermore, the

sequence N — ianE(Rd)N Qo N(x) converges to 0 and is decreasing as long as it is positive.

The next results deal with the asymptotic behavior of the distortion. We saw in Theorem
3.1.4 that the infimum of the quadratic distortion converges to 0 as IV goes to infinity. The next
theorem, known as Zador’s Theorem, analyzes the sharp rate of convergence of the quantization

error. This result has been proved in the case of the LP-optimal quantization.
Theorem 3.1.5. (Zador’s Theorem) Let p € (0, +00).

(a) SHARP RATE [ZADS2; GLOO]. Let X € LVR(P) for some 6 > 0. Let P (df) =
©(&) - AN(d€) + v(d€), where v L X i.e. v is singular with respect to the Lebesque measure

X on R Then, there is a constant jp,d € (0,4+0) such that

+

S =
=

. 1/d . SN 5 -4
lim N min |X = X7, = Jpa TP dNg
N—+a0 IncRY Dy |<N R

where XN is an LP-optimal quantization of X .

(b) NON ASYMPTOTIC UPPER-BOUND [GLO00; PAG18]. Let § > 0. There exists a real constant
Caps € (0,400) such that, for every R%-valued random vector X,

YN > 1, min [ X - XV, < Cupsosip(X)NV
I'ycRE|Ty|SN
where, for r € (0,+0),0,(X) = min g4 |[X —af, < +00 is the L"-pseudo-standard

deviation.

Another really interesting property concerning quadratic optimal quantizers is the station-

arity property which is closely linked to the Lloyd method defined later in Section 3.2.1.1.

Proposition 3.1.6. (Stationarity) Assume that the support of P, has at least N elements.
Any L?-optimal N -quantizer T'y € (]Rd)N is stationary in the following sense: for every Voronoi
quantization XN of X,

E[X | XV] = XV,

Moreover P (X € Ui~ 8Ci(FN)) = 0, so all optimal quantization induced by T'n a.s.

coincide.
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3.2 How to build an optimal quantizer?

In this part, we focus our efforts on the following minimization problem

argmin Qg N (3.1)

(RHN
and more exactly, how to build an optimal quadratic quantizer? For that, we differentiate the
L?-distortion function Qo N at level N. The approaches for solving the above minimization
problem can be divided in two families: the fixed-point methods and the gradient descent

methods. Both are linked to the distortion’s gradient that we define below.
Proposition 3.2.1 ([Pagl8]). The distortion function Qa N is continuously differentiable at
N-tuples x € (RN satisfying

x has pairwise distinct components and P (X €

9Ci(FN>> =0
i=1,.,N

with a gradient V Qo N = (aa%\’,N)l . given by
i SIS

0QaN, | d@N B 0@ N
W(ffi) = ]E[ Py (w,X)] = fRd Py (, &) P (d€),

the local gradient being given by

0N
W(:ﬂag) = 2(37{\[ —§) ﬂ'Projl«]\,(f):geé\fﬂ I<i<N. (3.2)
Equivalently, the gradient can also be written as
vou@ 2| [ @ -or]  —2E[tram -], - 63)
Ci(Tn) i=1,...,N i=L....,N

The latter expression is useful for numerical methods based on deterministic procedures while

the former featuring a local gradient is handy when we work with stochastic algorithms.

3.2.1 Real valued random variables: d = 1

In the first part of this section, we focus on the scalar case, when X is a random variable taking

values in R. Hence the Voronoi cells are intervals in R and if we consider that the quantizers

N N N

(zN); are ordered: z¥ < 2} <--- <2l | < 2%, then the Voronoi cells are given by

CZ(FN) = ($ﬁ1/2,$ﬁ1/2], 7 = ]., e 7.Z\[ — 17 CN(FN) = (33%71/2,1’%4»1/2)



3.2 How to build an optimal quantizer? 59

where Vi = 2,..., N, x£\£1/2 = (2N, + 2N)/2 and xfb := inf(supp(P,)) and x%+1/2 =
sup(supp(Py)).

In Figure 3.2, we represent in red the optimal quantizer of a standard normal distribution
and the vertices of the cell C;(I"y) are represented by black lines on the real axis. The probability
associated to the quantizer x)¥ is the integral on the cell C;(I'y) of the normal density, as

represented in the Figure.

PN =P(XeCy)=P(X =xN)

Fig. 3.2 Optimal quantization of size N = 11 of a standard normal distribution N(0,1).

Moreover, in dimension 1, Kieffer (see [Kie83]) showed the uniqueness of the optimal

quantizer if the density of X is log-concave with respect to the Lebesgue measure.

Theorem 3.2.2. (Uniqueness of optimal N -quantizers see [Kie83]) If P, (d€) = ¢ (§)d€ with
log ¢ concave, then for every N > 1, there is exactly one stationary N -quantizer (up to the
permutations of the N-tuple). This unique stationary quantizer is a global (local) minimum of

the distortion function, i.e.

VYN > 1, argmin Qo N = {z*}.
RN
In what follows, we will forget the star notation (x) when speaking of optimal quantizers,

x* and I'}y will be replaced by x and I'y.

Now, we focus on the algorithmic aspects of the optimization of optimal quantizer. If we
know the density of X, then we can devise fast deterministic minimization procedures. For
that purpose, we rewrite Equation (3.3) with the expression of the first partial moment and

the cumulative distribution function of X

VQon(z) = 2[371' (Fx (xﬁl/Q) - Fy ($i]\£1/2)> - (Kx (xﬁd/z) - Ky (val/Q)ﬂ (3.4)

i=1,..,N
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where K (+) and F (-) are, respectively, the first partial moment and the cumulative distribution
function of X
K, () = E[X 1x<,] and F,(z) :=P(X < x).

In the one dimensional case, we have access to a closed-form formula (or efficient numerical
implementation) of the density function, the cumulative distribution function and partial first
moment for a lot of random variables. We summarize below, for several random variables X,
K, (), Fy(-) and ¢ (-), the first partial moment, the cumulative distribution function and the
density of X, respectively.

o Standard normal distribution: X ~ N(0,1)

6_52/2

S0X<€) = m ) FX(S) :N<€)7 Kx(f) = _pr(f)‘

o Log-normal distribution: X = exp(u + 0Z) with € R and o > 0 where Z ~ N (0, 1)
1 log(&) — p ~ar (log(§) — p
QOX(g)_g(pZ(f)a Fx(f)—/\/’<f),
2

K, (&)= ol +a®/2 \f (1035(5) —p—0 )

g

with ¢, the density of Z.

o Exponential distribution: X ~ £(\) with A > 0

0, (€)= Xe™, F (&) =1—e" K (&) =—e? (f—i—%) +§
e Gamma distribution: X ~ I'(«, 8) with a, 8> 0
_ ﬁ a—1 —p¢ _ ’7(057B€) _ o §
ex(@ = gt RO = TR K9 = P - Sec©),

where I'(:) is the gamma function and (s, z) = {;t*~'e~'dt is the lower incomplete gamma
function. Optimized numerical implementations for both functions can easily be find in any

programming language.
e Non-central x?(1) distribution: X ~ x?(1) = (Z + m)? with m € R where Z ~ N(0,1)

oy = VD LD g 2 () N (),

K (&)= (m =N (m++E€) — (m+VEN (m—~/€) + (1 +m?)F(€).
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* Supremum of the Brownian bridge: X = sup[o ) |W; —tW1|. This distribution is also

known as the Kolmogorov-Smirnov distribution.

P (§) =8 Y (R, P = 1-2 3 (1) e,

k=1 k=1

q)k—1
K,(6) = var 3 5 (Wi - 1) - e - £,
k=1

where N (z) denotes the cumulative distribution function of the normal distribution. The proof

of the formulas above are given in Appendix 3.A.

e Symmetric random variable For some random variables X, we have no access to closed-
form formulas for ¢, Fy and K, but if X is symmetric and we have an explicit expression
for its characteristic function y(u) = E [ e!** |, where i is the imaginary number, s.t. iZ2=—1,
then the functions ¢, , F, and K, can be written as alternate series using Fourier transform.
This method was introduced in chapter 5 of [Pagl8]. The proof of the formulas below are given

in Appendix 3.A. For £ > 0, we have

ox(© = 2 X0 [ eostup (T )au

¢ S0 0 ¢

1 1 ™ si k
PO =g+ 20 (T Y

B 1 13 ™1 —(=1DFcos(u) su+kn
Ko =0 e(r© - ) + 1 X [ (g

where C = E[X ] and for £ <0

(Px(g) = QOX(_g)a FX(€> =1-F, (=€), KX(&) = KX(_E)'

Example 3.2.3. We give some examples of symmetric random variables where we can use the

above formulas based on Fourier in order to obtain the functions ¢, F, and K.

* One-sided Lévy’s area: X ~ Sé W2idW?2 where (W', W?) is a 2-dimensional standard

Brownian motion. The characteristic function of the Lévy’s area is given by

1
x(u) = ———— and C =0.24852267 +2.033 x 10~
cosh(u)

where C has been computed using a ML2R estimator.

* Standard normal distribution: X ~ N(0,1). Although we have explicit formulas for

the desired functions, we can still use the above formulas based on alternating series to the
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Gaussian case in order to validate the methodology. For the normal distribution, we have

2 1
w)=e*? and C=—.
x(u) T
¢ Closed-form formula of the characteristic function Another method, introduced in
[CFG19] for the quantization of a positive diffusion (S¢)e[o,r] at time T', is based on Fourier
inversion in order to determine a computable expression of the density and the cumulative
distribution function. They use the fact that the conditional characteristic function of X =

log(St) is explicitly known or can be computed efficiently and denoted
X(u)=E [eiulog(ST) ], ueR.

Using the knowledge of the characteristic function of X, they obtain

P(Sr € dz) = LT Re(eritontole du )d
TEdz) = — e(e x(u))du | dz
0

+00 —iulog(z)
P(Sr<z) = 1 — 1f Re(e,X(u))du, z € (0, +00).

2 7 iu

Hence, based on these formulas, they devise a Newton-Raphson algorithm (as detailed in

Algorithm 4) for the optimization of an optimal quantizer of Sp.

Remark. Let I'y = {x{v yenn ,:c%} be an N-quantizer of X. In the one-dimensional case, when
we know the cumulative distribution function of X as detailed above, we can deduce directly
the probabilities p)¥ = P ()A( N =N ), indeed

~

py =P (XN = @“N) =P (X € Ci(PN)) = Fy (xﬁrl/z) - Fy (%ZL/Q)'

)

3.2.1.1 Fixed-point search (Lloyd method)

Starting from Equation (3.4), when we search a zero of the gradient, we derive a fixed-point

problem. Let A; : RY — R defined by

N
Ai(x) = N (3.5)

then
VOon@) =0 << Vi=1,...,N 1z =M\).

Hence, from this equality, we deduce a fixed-point search algorithm. This method, known as
the Lloyd method, was first devised by Lloyd in [L1082]. The convergence at an exponential
rate of the algorithm was shown by Kieffer in [Kie82].
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Algorithm 1: Lloyd method.

Data: 2¥ an initial guess for the N-quantizer.
Initialization: z « 29 ;
/* Stopping criteria defined in (3.6) */
while not converged do
|z Ax) ;
end
Result: z

Let A : RY — R such that A = (Ai)1<i<n, the Lloyd method with initial condition z° is
defined as follows
21— A(x["])

where the i-th component of the map A : RY — RY is equal to A; and 2" is the quantizer
obtain after n iterations of the algorithm. The pseudo-algorithm of the Lloyd method written

0

on the vector x starting from a given quantizer x" is outlined in Algorithm 1.

Remark. The stopping criteria of the algorithm is arbitrary. A first idea could be to compute
the gradient at each step and stop the iterations when its norm or all its components are lower
than a chosen e. However, the computation of the gradient would increase the computation
time of each iteration. Hence, in all the algorithms we present, we use the following stopping

criteria. Let € € R chosen before the optimization process, we stop if the following is verified

[l 1] gl

2| <e. (3.6)

Moreover as shown in the next proposition, an interesting feature of the Lloyd algorithm is

that it decreases the distortion at each iteration.

Proposition 3.2.4. see e.g. [Pagl8] The Lloyd algorithm makes the quadratic distortion
decrease, i.e.

ne— | X - XN is mon-increasing.

Remark. When no closed-form exists for the first partial moment K, (-) and the cumulative
distribution function F(-), we cannot rely anymore on the deterministic version of the Lloyd

method and we have to use a stochastic version of the Lloyd method detailed in Section 3.2.2.1.

Acceleration procedures When working with fixed-points, it is useful to work with ac-
celeration procedures. Indeed methods to accelerate fixed-point search procedures have been
extensively studied since the 1960’s and a wide range of methods is readily available today. We
refer to [RH15; BZ13] for a review on the literature. As for optimal quantization, we tested
many methods and retained Anderson’s acceleration as the most efficient one. It is introduced
in [And65] and detailed in [WN11].



64 Optimization of Optimal Quantizers

The Anderson acceleration consists in updating the quantizer glnt1]

not only by applying
the map A to the current step of the quantizer: A(:):["]) but to select a linear combination of

the m,, = min(n,m) previous steps A(:U[”_k]) for k =1,...,m, and A(a:[”]) yielding

mn

x[n+1] _ Z akA(:C[nfk])
k=0

The ay’s are chosen in such a way that the residual A(x["]) — 2" decreases as much as

possible, then the ayp’s are solution to the following minimization problem

: N [k]y _ [n—k] S
o i ];Oozk(A(m k‘) x k)H2 s.t. ];)ak—l. (3.7)

This minimization problem cannot be solved directly hence we use the equivalent form of the
least-squares problem (3.7) recalled in [WN11]

min n—Fn 3.8
g min If o[ (3.8)
where f, = A(:E["]) —zl" and F,, = (Afn—m,s---,Afp_1) is a matrix of size N x m,, with

Af; = fir1 — fi and now z["*1] is updated using this formula
gl = A(x["]) + (X, + Fo)yml,

where 7" is the solution of (3.8) and &, = (Azl"=™»] . Azl*=11)is a matrix of size N x m,,
with Azlil = zli+1 — 2l Anderson acceleration’s pseudo-algorithm applied to Lloyd method
for building optimal quantizers is detailed in Algorithm 2.

Remark. Even-though the Anderson acceleration reduce drastically the computation time for
building optimal quantizers, it may suffer, in some cases, instability and produce centroids that
are not in the support of the distribution we wish to quantize and in that case is not able to

produce a quantizer. This is the case of log-normal of chi-squared distributions for example.

3.2.1.2 Gradient descent

Another approach for building an optimal quantizer consists in minimizing directly the problem
(3.1) using a gradient descent. Several gradient descent algorithms applied in the search of an

optimal quantizer exist and we detail them below.

Mean-field CLVQ The first idea is to use a first-order gradient descent. This is the
deterministic or batch version of the Competitive Learning Vector Quantization (CLVQ)
algorithm, which is a stochastic gradient descent introduced for the cases where we cannot

numerically compute the gradient. In the literature on stochastic approximation, it is common
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Algorithm 2: Anderson acceleration applied to Lloyd method.

Data: 20 an initial guess for the N-quantizer, m the deepth of the memory.

Initialization: = «— a9 ;

/* First, we apply one step of Standard Lloyd method
g — Az) ;
feg—xz;
T—ux; /* We keep in memory the previous iteration
T g, /* Standard Lloyd
f<— f; /* We keep in memory the previous residual
/* Then, we apply Anderson acceleration
n«—1;
/* Stopping criteria defined in (3.6)
while not converged do
my, < min(n,m) ;
g—Az);
f<—g—u;
Ar «—x— 17 ;
Af = f—=1F;
Add a column to F with value Af ; /* Size of F: N X (min(n—1,m)+ 1)
Add a column to X with value Az ; /* Size of X: N x (min(n—1,m)+ 1)
if n > m then
Delete first column of F ; /* Size of F: N xXm,
Delete first column of X ; /* Size of X: N xm,
end
Find v solution of min, | f — F~|, ; /* QR decomposition
T—x; /* We keep in memory the previous iteration
xe—g—(X+F)y; /* We update x using the acceleration
f<— I /* We keep in memory the previous residual
n—-n+1;

end
Result: x

*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/
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Algorithm 3: Mean-field CLVQ).

Data: 2¥ an initial guess for the N-quantizer.
Initialization: z « 29 ;
/* Stopping criteria defined in (3.6) */
while not converged do
v <« update__step() ;
e 1 -7V Oan(a) ;
end
Result: =

to name the vector field h(6) = H (0, Z) the mean vector field of the algorithm and, by extension,
the deterministic recursive algorithm the mean-field algorithm or the mean algorithm. It was
far before the emergence of “mean field games”. In the one dimensional case, the gradient
is easily computable using the expression of F, and K, hence we devise a gradient descent
directly on the distortion. Starting from a given initial condition z°, the quantizer after n + 1
iterations is given by

et = gl — 1V Qo ()

where 7,41 € (0,1) is either taken constant (7,41 = 7) or updated at each step using a line
search (see [Bon+06; Swa69]) or using the Barzilai-Borwein method (see [BB88]). We consider
Yn+1 € (0,1) in order to preserve the non-decreasing order of the quantizer after each iteration.

The pseudo-algorithm of the mean-field CLVQ is detailed in Algorithm 3 and the update__step

function is chosen before the optimization.

Newton Raphson method One can optimize the algorithm defined above using a second-
order method where the step 7,,1 is chosen optimally at each step and is set as the inverse of
the Hessian matrix of the distortion function. Again, starting from a initial condition z° at

step 0, we have

-1
2+ = el <v2 QN (x["])> (v Qo N (;13["])) (3.9)
with V2 Qs x() the Hessian matrix for z = (z1,...,2x)
vV Qon(z) = [82 SN, ] :
7 0x;0z; 1<i,j<N

The Hessian matrix tridiagonal and since we have access to X’s density and cumulative

distribution functions, each component of the matrix can be computed efficiently with the
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Algorithm 4: Newton Raphson algorithm.

Data: 2¥ an initial guess for the N-quantizer.
Initialization: z « 29 ;
/* Stopping criteria defined in (3.6) */
while not converged do
H «— V?Qyn(2) ;
G« V Qan() ;
Find v solution of Hu = G ; /* SVD decomposition */
Te—x—u,;
end
Result: =

following expression

02 Qo N

ZT; — T Ti— Ti_
ox? () = 2 (xﬁlﬂ) - Fx (xf\il/z)] - %@x ($ﬁ1/2) - TIGOX (mﬁm),
82 Q T — I
Wii = _%SOX (@ 12),
(92 Q [Iji — :1;2-_
W;@i(’r) - _Tlgpx ($£V—1/2)a
0? QoN

x) = 0 otherwise.
The pseudo-algorithm of the Newton-Raphson method is detailed in the Algorithm 4, where

in place of computing the inverse of the Hessian matrix, we solve the following linear system:

we search for v € R solution of

Hu=G

where H = V? Qon(z) and G = V Qy n(x). In practice for solving the linear system, we use
an SVD decomposition (of course, other decompositions can be used such that LU of QR).
The problem with the Newton-Raphson algorithm is that it suffers from high instability
when the Hessian is almost non-invertible. Indeed, when the Hessian is almost non-invertible,
the inverted Hessian is numerically unstable, the algorithm does not preserve the non-decreasing
order of the quantizer and the solution can diverge. The problem is said to be ill-conditioned.
It often arises when we wish to build optimal quantizers for high values of V. Moreover, when
N is large, even though Newton-Raphson algorithm needs few iterations to converge (when it

converges), each iteration requires a lengthy amount of time which results in slow convergence.

From Newton Raphson algorithm to Levenberg-Marquart method In this part, we
propose a solution to the instability of the standard Newton Raphson algorithm. To obtain a
well-conditioned problem, we replace the Hessian matrix V2 Qg x(7) for a given z in (3.9) by

\& Qo N(x) + Al where I is the identity matrix and A is a chosen parameter. Hence, starting
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Algorithm 5: Newton Raphson algorithm with Levenberg-Marquart method.

Data: 2¥ an initial guess for the N-quantizer.

Initialization: @ « 20, cost < Qan(z0), A < 1;

/* Stopping criteria defined in (3.6) */
while not converged do

previous cost <— cost ;

H « V?Qyn(7) ;

G~V () ;

while cost = previous cost do
H— H+ M\ ; /* Or replace [ by diag(H)I */
Find u solution of Hu = G ; /* SVD decomposition */

T—x—u,;

cost — QaN(T) ;

if cost = previous cost then
‘ A<—10 x A\ ;

end

end

T I
A< A/10;
end

Result: x

from a initial condition x° at step 0, we have
gl = gl (V2 Qo N (x[”]) + )\nI)fl(V QoN (m[”])).

The parameter A is called the damping parameter. Several approaches have been proposed
for the choice of its value. In our case we consider the following heuristic: we start with a Ag
(in our case we choose \g = 1), choose a multiplicative factor v > 1 and compute the distortion
after one iteration of the algorithm with A. If this choice of A reduce the distortion then we
keep the obtained quantizer x, divide A by v and restart the procedure. Otherwise we discard
the obtained quantizer and retry with A x v. An other possibility is to replace the identity
matrix I by the matrix containing only the diagonal entries of the Hessian H.

The Newton-Raphson pseudo-algorithm with its Levenberg-Marquart variant is detailed in
Algorithm 5.

Quasi-Newton algorithms Another solution for solving both the instability problem and
Newton-Raphson algorithm’s cost is to use a Quasi-Newton algorithm. Quasi-Newton algorithm
does not require to compute the Hessian matrix. The Hessian at iteration n + 1 is approximated
by a matrix A,+1 which is a function of the previous step of the approximation A,, the
quantizers and the gradients at the previous iterations. For the update of the matrix A, several

formulas exist such that BFGS, Broyden, DFP or SR1, among the most popular.
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3.2.1.3 Numerical examples

In this section, we compare the algorithms based on fixed-point search or gradient descent for

building optimal quantization of a chosen distribution.

Fixed-point iterations First, in Table 3.1, we compare the optimal quantization of the
Gaussian distribution (with 4 = 0 and o = 1) using the standard Lloyd method or the Lloyd
method with Anderson acceleration denoted AA-Lloyd (where we consider m = 10). We clearly
notice that the Anderson acceleration reduces drastically the computation time when we wish

to quantize the Gaussian distribution.

N | Lloyd | AA-Lloyd
10 | 182 (1 ms) 11 (1 ms)
50 | 3430 (4 ms) 67 (1 ms)
100 | 12105 (27 ms) 170 (2 ms)

200 | 42381 (148 ms) | 461 (10 ms)
500 | 216973 (1731 ms) | 1442 (78 ms)

Table 3.1 Optimal quantization of the Gaussian distribution (with p =0 and o =1). We display
the number of iterations needed, with in parenthesis the computation time, in order to satisfy
the stopping criteria (3.6) with e = 1le — 9.

However, in some cases, the Anderson acceleration procedure fails to produce an optimal
quantizer, as noticed in Remark 3.2.1.1. For example, if we consider a log-normal distribution,
Lloyd method converges in 14548 (61 ms) and 50589 (390 ms) iterations for the optimization
grids of size N = 50 and N = 100, respectively, whereas the acceleration procedure explodes

and is not able to output a grid (see Table 3.3).

Gradient descent In Table 3.2, we compare gradient descent-based methods for building
optimal quantization grids of the Gaussian distribution. In the table, MF-CLVQ stands for
Mean-Field CLVQ, NR for Newton-Raphson and NR-LM for Newton-Raphson with Levenberg-
Marquart method. We notice that NR and NR-LM need few iterations in order to converge
but each iteration takes a significant amount of time compare to the naive gradient descent
MF-CLVQ. It is important to notice that, if we compare the fixed-point methods (Table 3.1)
and gradient descent methods (Table 3.2), it is preferable to use fixed-point methods in the
Gaussian case.

However, if we want to build optimal quantizers of the log-normal distribution with p = 0
and o = 1, the Newton-Raphson algorithm fails to build quantizers of size N = 50, N = 100
and N = 200 when we do not use the Levenberg-Marquart method but when use it, we build it

in less than a second (see Table 3.3).
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N | MF-CLVQ | NR | NR-LM

10 | 4859 (4 ms) 7 (1 ms) 7 (1 ms)

50 | 215295 (436 ms) | 11 (15ms) | 10 (13 ms)
100 | 1057302 (3458 ms) | 13 (127 ms) | 12 (117 ms)
200 | 4798625 (30 s) 14 (13s) |14 (1.3s)
500 | 27468462 (417 s) 17 (30 s) 16 (28 s)

Table 3.2 Optimal quantization of the Gaussian distribution (with p =0 and o = 1). We display
the number of iterations needed, with in parenthesis the computation time, in order to satisfy
the stopping criteria (3.6) with e = 1le — 9.

Remark. For the numerical test, the stopping criterion € has been set equal to € = le — 9. Of
course, higher values could have been used. For example, we tried with ¢ = 1le — 6 but when
doing so, we noticed that the Mean-Field CLVQ algorithm stopped prematurely. Indeed, the
algorithm converge really slowly, hence each iteration as a really small impact on the grid and
if the update is too small, the stopping criterion is triggered. Concerning the other gradient
descend based methods (NR and NR-LM), this change of value for e has no impact because,
when they converged, they converged really fast. For the fixed-point based methods, it depends
on the size of the grid. For small grids (N = 10,50, 100), it has almost no impact in terms
of computation times as we are talking of computation times of few milliseconds. For bigger
grids, the computation time is reduced, when N = 500, with Lloyd it takes 41516 iterations
(344 ms) with € = le — 6 compared to 216973 iterations (1731 ms) when € = le — 9 and with
AA-Lloyd it takes 704 iterations (39 ms) with € = le — 6 compared to 1442 iterations (78 ms)

when € = 1le — 9.

Fixed-point search vs Gradient descent In this paragraph, first, we consider the log-
normal distribution with ¢ = 0 and ¢ = 1. In Table 3.3, we compare all the methods for building
optimal quantizers of the log-normal distribution. The Lloyd method and the Mean-Field
CLVQ always succeed to build a quantizer, even-though it can take several minutes. The Lloyd
method with Anderson acceleration and the Newton-Raphson algorithm fail to build a quantizer
for some values of N. And we notice that the Levenberg-Marquart procedure applied to the
Newton-Raphson algorithm solves the instability problem and makes it the most competitive
method for building optimal quantizers of the log-normal distribution.

In Table 3.4, we display the numerical results for the optimal quantization of the exponential
distribution with parameter A\ = 1. For this distribution, the only method failing to build
optimal quantizer is the Newton-Raphson algorithm and the fastest method is the Lloyd method

with Anderson acceleration.
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N | Lloyd | AA-Lloyd | MF-CLVQ | NR | NR-LM

10 | 845 (1 ms) 28 (1 ms) 1.9e7 (23s) | 11 (1 ms) 11 (1 ms)
50 | 1.5e4 (59 ms) Not converged | 3.3e7 (130 s) | Not converged | 13 (14 ms)
100 | 5.1e4 (363 ms) | Not converged | 4.4e7 (328 s) | Not converged | 14 (118 ms)
200 | 1.9¢5 (2649 ms) | 2.3e4 (803 ms) | 6.5¢7 (898 s) | Not converged | 15 (1278 ms)

Table 3.3 Optimal quantization of the log-normal distribution (with p =0 and o =1). We
display the number of iterations needed, with in parenthesis the computation time, in order to
satisfy the stopping criteria (3.6) with e = le—9.

N | Lloyd | AA-Lloyd | MF-CLVQ | NR | NR-LM

10 | 728 (1 ms) 19 (1 ms) 2.0e6 (1.6s) |8 (1 ms) 8 (1 ms)

50 | 1.4e4 (14 ms) | 189 (1 ms) 9.3e6 (12s) | Not converged | 13 (16 ms)
100 | 4.8¢4 (79 ms) | 610 (8 ms) 1.7e7 (33s) | Not converged | 13 (108 ms)
200 | 1.7e5 (538 ms) | 1513 (36 ms) | 3.4e7 (113 s) | Not converged | 15 (1260 ms)

Table 3.4 Optimal quantization of the exponential distribution (with A\ = 1). We display the
number of iterations needed, with in parenthesis the computation time, in order to satisfy the
stopping criteria (3.6) with e = 1le — 9.

3.2.2 Higher dimension: d > 2

In this section, we consider the general case of a random vector X taking values in R?. We

recall the expression of the gradient of the quadratic distortion

VoG -2l [ @ -gp]
Ci(TN) i=1,...N

Even if we have access to the density of X, it is no longer feasible to compute numerically the
integrals inside (3.2.2) over the cells (the Voronoi cells are polyhedral convex sets of dimension
d) except in dimension 2 where it is possible to build the Voronoi tesselation of a quantizer
and use two-dimensional quadrature formulas for computing the integrals effectively. We detail
the possible numerical procedures for building an optimal quantizer in dimension 2 in Section
3.2.2.2.

Hence, in the generic case, we cannot rely anymore on deterministic procedures because

of the computation of the integral. Instead, we can use stochastic algorithm that we detail in
Section 3.2.2.1.
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3.2.2.1 Stochastic procedures

Two main stochastic algorithms exist for building an optimal quantizer in R?. The first is
the stochastic version of the fixed-point search also called Lloyd method and the second is a

stochastic gradient descent.

Randomized Lloyd method The first method is based on the same idea as the Lloyd
Algorithm 1 and in absence of deterministic methods, the expectations and probabilities are

computed using Monte Carlo simulation. First, we recall (3.5)

, _ I [X ]lXGCi(FN)]
Ailz) = 5 (X eCi(Ty))

Let &1, ...,&y be independent copies of X and AzM : RY — R, the stochastic version of A;
defined by

M=

¢

m ]1{ PI‘ijN (Em):wiv}

AM(z) =™ with Ty = {2, ..., 2}

D=

) L broir | (6m) =2}

m

Hence, let A = (A;)1<i<n, the n + 1 iteration of the Randomized Lloyd method is given by
gl =AM (9:[”]). (3.10)

During the optimization of the quantizer it is possible to compute the weight pfv and the local

distortion ¢!V associated to a centroid defined by
py =P (XeCi(Iy)) and ¢ =E[(X —z])’Lyec,ry) - (3.11)

We detail the pseudo-algorithm of the Randomized Lloyd method and the computation of the
weights and the local-distortion (3.11) in Algorithm 6.

Remark. In the pseudo-algorithm 6, we use new random numbers, independent copies of X,
for each batch of size M. However, it is also possible to generate only once a set of size M of
independent copies of X and then in the loop that iterates from 1 to M we use them for every
batch, as suggested in subsection 6.3.5 of [Pagl8]. This amounts to consider the M-sample of
the distribution of X as the distribution to be quantized.

Competitive Learning Vector Quantization The second algorithm is a stochastic gra-
dient descent called Competitive Learning Vector Quantization (CLVQ) algorithm. Since in

higher dimensions, the gradient cannot be computed, the idea is to replace it in the gradient
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Algorithm 6: Randomized Lloyd method.

Data: 20 an initial guess for the N-quantizer, M: number of copies of X to generate.

Initialization: z « z0;
/* Vector of size N of probabilities init with 0e R */
Initialization: p < 0 ;
/* Vector of size NN of local-distortions init with 0 R */

Initialization: ¢ < 0 ;

/* Vector of size N for the sum in numerator of (3.10) init with 0e R?
*/

Initialization: sum_ nearest < 0 ;

/* Stopping criteria defined in (3.6) */

while not converged do

for m=1to M by 1 do

/* Generate an iid copy of X */

¢ <« randomGeneration() ;

/* Return the index and the distance to the closest centroid of &
*/

i, dist < closest__centroid(x,&, dist,1) ;

p(i) < p(i) + 1;

sum__nearest(i) « sum_nearest(i) + &;

q(i) < q(i) + (dist)” ;

end

fori=1to N by 1 do

x(i) < sum_nearest(i)/p(i) ;

p(i) < p(i)/M ;

q(i) < q(i)/M ;

end

end
Result: z, p, q
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Algorithm 7: Competitive Learning Vector Quantization (CLVQ) algorithm.

Data: 2¥ an initial guess for the N-quantizer, M: number of copies of X to generate.
Initialization: z « 20;

/* Vector of size N of probabilities init with 0e R */
Initialization: p < 0 ;
/* Vector of size N of local-distortions init with 0e R */
Initialization: ¢ < O ;
Initialization: n <« 0 ; /* Counter */
/* Stopping criteria defined in (3.6) */
while not converged do

/* Generate an iid copy of X x/

& «— randomGeneration() ;

v <« update__step() ;

/* Return the index and the distance to the closest centroid of & */
i, dist < closest__centroid(x,&, dist,index) ;

2(i) — (1= )(i) + 7€ ;

p(i) < p(i) + 1;

q(i) < q(i) + (dist)* ;

n«—mn+1:

end

for i =1to N by 1 do
p(i) < p(i)/n ;

q(i) < q(i)/n ;

end

Result: z, p, q

descent by the local-gradient defined in (3.2). Let &1,...,&,,... a sequence of independent
copies of X, the n + 1 iterate of the CLVQ algorithm is given by

gl = gl Tn+1V qz,N(x["],an)

2% N
where V ¢, v = (W 1<i<N

in [Pagl8]. Again, during optimization we can compute the weights pf-v and the local distortions
qZN associated to the centroids. We detail the pseudo-algorithm of the CLVQ algorithm and the

computation of the weights and the local-distortion in Algorithm 7.

and for the choice on the learning rate we refer to the section 6.3.5

Remark. Two developments of the CLVQ algorithm can be considered.
The first one consists in using the averaging algorithm of Rupper and Polyak, yielding the

averaged quantizer Z[n+1 defined by

x[n-‘rl] — l'[n] — 7n+1v q27N($[n]7€n+1)

1 n+1

~n+1] _ [i]
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Fig. 3.3 Optimal quantization of size N = 200 of (lesupte[o,l]Wt) using the randomized Lloyd
method (n =50 and M = 5e6). W is the standard Brownian motion.

The second, consists in considering a batch version of the stochastic algorithm in order to

approximate the gradient at each step, yielding

1 M
Ilf[n+1] _ x[n] _ fyn+1M Z \V4 q27N(96[n]>§7T+1)-
m=1

This algorithm is the randomized version in dimension d of the mean-field CLV(Q introduced in

the one-dimensional setting.

Numerical example In Figure 3.3, we display the optimal quantization of size 200 of
(W1, supyefo 1w, ) Wwhere W is the standard Brownian motion. The optimal quantizer is obtained
using the randomized Lloyd method with n = 50 iterations and M = 5e6, the size of the
Monte-Carlo at each-step. The red dots represent the centroids, the cells are the Voronol cells

associated to each centroid and the color of each cell represent the weight of the cell.

3.2.2.2 Two dimensional setting: deterministic optimization

Let X a random vector taking values in R? with distribution ; having a second moment. We
consider in this section absolutely continuous distributions with density ¢. The Voronoi cells

can no longer be expressed as intervals but by as polyhedral convex sets. We then we go back
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to the original form of the distortion gradient of (3.3)

V Qon(z) = 2[955\’ P (X € Ci(Tn)) —E[X Lxec,ry) ]]
i=1,...,.N

=2[xf-V [ e | Ms)df} .
Ci(Tn) Ci(Tn) i=1,...N

3ty

So if we are able to compute the two-dimensional integrals above, we can use deterministic

optimization algorithms as in the one-dimensional case for optimizing the optimal quantizers.

In practice, these integrals cannot be computed exactly but they can be approximated

numerically in a very effective way. For that, we build the Voronoi tessellation of the quantizer I'y

and use quadrature formulas. Indeed, we detail below the steps for the numerical approximation

of integrals of the type

fci(FN) f(&)de = ff@(m f(x,y)dady

with € € R? or x,5 € R where f can either be defined as a function with values in R (i.e.
f:R* - R)orin R? (ie. f:R*— R?).

Domain decomposition

1. First, if the support of X is not compact, we make a first approximation truncating the

definition domain of X. For example, if X is a centered Gaussian vector with identity
variance-covariance matrix, its support is Rg, then we truncate the support and work on
the squared domain (for the Gaussian distribution, otherwise on a rectangular domain)
with coordinates

(=M, M), (=M, M), (M, M), (M, —M))

(in practice we consider M = 15). This choice seems reasonable because the Gaussian
density vanishes for values far from zero, i.e. p(§) ~ 0 for |{| = M. This truncation will

impact the estimation of the integrals on the border of the Voronoi tesselation.

. Then, we build the Voronoi tesselation of the grid I'y. Each C;(I'y) is a convex polygon

with vertices (zp, ..., 2m—1) with m > 3, see Figure 3.4 as an example of Voronoi cell.
For convenience we set z,, = zg. The vertices of all Voronoi cells have finite coordinates
because, after truncation, we work on a compact set. Open source C++ libraries able
to build the Voronoi tesselation of a set of points are available online such as the QHull

library [Bar+96] or the Boost Voronoi Diagram Library!.

'https://www.boost.org/doc/libs/1__67__0/libs/polygon/doc/voronoi__diagram.htm
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3. Once the coordinates of the Voronoi cell are obtained, we divide the cell into m triangles

denoted (1)=1,...,m, see Figure 3.4, yielding

m
Ci(Tn) = U Ty where T, = (mﬁV,Zg,l, 20).
=1

Z3

Fig. 3.4 Ezample of division of a Voronoi cell C;(I'y) into 5 triangles.

4. Hence, the integral over the Voronoi cell C;(I'y) is equal the sum of the integral over the

JLKW f (@, y)dady = 2 f le f (@, y)dady.

Now, we only need to approximate the integral on each triangle.

triangles

Integration over a triangle

1. For a given triangle T' € {1y, £ = 1,...,m}, we transform the integral over that triangle
with coordinates ((az, ay), (bz, by), (ca, cy)) to an integral over the 2-simplex, denoted S
with coordinates ((0,0), (1,0),(0,1)), as detailed in [HKA12]. We use the nodal shape

functions for triangles defined by
Ni(u,v) =1—u—w, No(u,v) = u, Ns(u,v) = v.
Hence, if we set

x = P(u,v) = azN1(u,v) + by Na(u,v) + ¢z N3(u,v)
y = Q(u,v) = ayNi(u,v) + byNa(u,v) + ¢y N3(u,v)
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we have

JL f(a,y)dady = 2Ar f LZ F(P(u,v), Q(u,v))dudv

where Ar is the area of the triangle T'
Ar = ‘(bx —ag)(cy — ay) — (cz — az)(by — ay)‘-
2. Now, we use a quadrature formula of degree n for general triangular elements which yields

| || #temdedy ~ Ar Yeas (P, v2). Que, )
k

where the points (ug, vx) and the weights wy, are provided by the quadrature of order n for
the standard triangles as suggested in [Denl0] (we considered Gaussian quadrature points
for the optimal quantization of Gaussian random vector but any quadrature formula can

be used in order to build an optimal quantizer of a chosen random vector X).

Fixed-point search Now, that we are able to evaluate the quantities inside the gradient
of the distortion, as in the scalar case, we can implement a fixed-point search using the
Lloyd Algorithm 1 with this time the fixed-point operator A : (R?)N — (R*)Y defined as
A = (Aj)1<i<n defined by

d
= b [X ]IXECi(FN)] _ JC’L(FN) solt) 5
P (X € Ci(Tn)) J o(£)de
Ci(T'n)

we can apply the Algorithm 1 with A defined

Hence, starting from an initial condition 2

above where the integrals are approximated using the methodology detailed above.

Gradient descent Again, using that for a given quantizer z = (2", ... ,x%) we are able to
compute the gradient of the distortion, we can apply the mean-field CLVQ gradient descent

Algorithm 3 using the following expression for the gradient

v 0ax(o) =2 fci( o= [ epleac]

I'n) Ci(T'N) i=1,.,N

Numerical example We apply this methodology for building optimal quantizers of the
two-dimensional Gaussian random vector N (0, I3) where I5 is the identity matrix. We use the
knowledge of the density, set M = 15 (the value of the squared domain coordinates) and apply
the Lloyd method. We display two optimal quantizations of size 100 and 200.
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Fig. 3.5 Two optimal quantizations of size N = 100 and N = 200 of a 2-dimensional standard
Gaussian vector.
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Appendix 3.A Proof for the formulas of I, and K,

Supremum of the Brownian bridge Let X = supg ) |W; — tW1] denotes the supremum
of the standard Brownian bridge. This distribution is also known as the Kolmogorov-Smirnov

distribution. Let > 0, the distribution is characterized by its survival function

z) =2 Z (_1)k—1 o 2k%a?

k=1

The cumulative distribution function is given by F, (z) = 1 — P(X > z), then

r)=1-2 ) (—1k e e

k=1

In order to obtain the density ¢, , we compute the derivative of F

65‘ _ok242
S0)((x) __8 }: k 1k2e 2k ’
k=1

yielding the desired formula.

Now, using the definition of the cumulated partial first moment function K, of X

K (1) = E[X1ye,] = fo Cep (€)de

- [ Fetepa
= x(l -2 Z (_1)k—1 e_2k2 2 f 1 _9 Z (_1)k_1 e_2k2£2 )dé‘
k=t k=1
(1 . + 2 Z f —2k2¢2 de.
k=1

Moreover, as

f —2k2¢2 d¢ = J o672 85 d5

2kx
K (z)=2)] (—1)’HJ e &2 % — (1~ Fy(z))

we have

_1\k—1
=V2r ) (1]3:(/\/(21{;90) — %) —z(1—F(z)),

k=1

which concludes the proof.

Symmetric random variable Let X be a symmetric random variable with characteristic

function x(u) = E [ei“X ], where i is the imaginary number, s.t. i2 = —1. As X is symmetric,
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the characteristic function is x is real-valued and even: x(u) = E [ei“X ] =F [e
Let z > 0.

TR ] = x(—u).

o First, we express the density of X as an alternate series and show that it is even. By

definition, ¢ (z) = 5 § " x(u)du and we deduce that the density is even

o) = 5= | e xuyan
1 [~ .
=3 . e " x(—v)dv (v=—u)
= o [ e o = g, (a)
=9 e x(v)dv = ¢, (z).
Then
1 1rTu 1 +CD 1TU
pxl@) = 5 | @xudu =1 [ e yu)du
T™JR ™ Jo
and
1 +00
px0) = 2| x(wdu
™ Jo

Hence, we deduce the first desired expression of ¢

Oy (.T) _ Px (35) +2<70X(_33) _ 217TJ;) * (eixu + efixu )X(u)du

1 +00
= — J cos(zu)x (u)du
T Jo

1 +00

= — cos(v)x(g)dv. (v =ux)

™™ Jo

From this expression, we express ¢, as an alternate series

1 +00

o (r) = — cos(u)x(%)du

™ Jo

_1 Z jﬂ(kﬂ) cos(u)x(%)du

T =0 Ik

- 7% Z (—1)* JOW cos(u)x(u —;kﬂ)du.

k=0
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o Now, we focus on the cumulative distribution function F,. As X is symmetric, then

F,(0) = $ and for every z > 0

x(2)

S IENCLE
+o0
f cos(&u)x(u)dudé
0
oo

i L %
(] costenag)

]
™ Jo 0

JJFOO sin(xu)

0 u

[

+

x(u)du

+
N A=

(v = ux)

NI~ NI~ NI~ NI~ N~

Then, we deduce F, (—z)

[e=]

x (2).

| evtde =5 [ e
F

Finally, we express F', as an alternate series using the same argument as for the density

1 1 (*®sin(u) [u
@)—QHL = ()
1 1 e [T osin(uw)  su+km
2+ 2N (41 du.
2+7T]§:0( )Jou+k:7r< T )u

o Next, we focus on the first partial moment function K, . Let > 0, first, we show that K,

is even

Ko@) = [ goclie

= KX(_J:) +

Epx (§)dE

—x

=K, (—x)+ f_ox up, (u)du + Jx v (v)dv

0
T

up, (u)du + L v (v)dv

(=)= [ wer(cudu+ [ oo )i
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because ¢, is even. Moreover,

J Eox (€ J Epx (€ f&«px JLemodf = —E[X].

Now, we express K, as an alternate series

E[X,]+zF, (v) — f (; + % 0+°° Sini%) (u)du) 3
E[X,] +33(F (2) — %) B 71TJO+OO — cos Z:E) + 1X5Lu)d
o) -2 [ S

Finally, we express K, as an alternate series

K, (z)=—-E[X ]+ x(FX(x) — 1) — foroc H(;S(u))(<z>du

~B[X.] + o (Fy(2) - 5 —ZJ 1—u—+k;08( )X(






Chapter 4

New Weak Error bounds and

expansions for Optimal Quantization

This chapter corresponds to the article “New Weak Error bounds and expansions for Optimal
Quantization” published in Journal of Computational and Applied Mathematics (see [LMP19]).
This paper is a joint work with Vincent Lemaire and Gilles Pages and it is accessible in arXiv
or HAL.

Abstract We propose new weak error bounds and expansion in dimension one for optimal
quantization-based cubature formula for different classes of functions, such that piecewise
affine functions, Lipschitz convex functions or differentiable function with piecewise-defined
locally Lipschitz or a-Hoélder derivatives. These new results rest on the local behaviours of
optimal quantizers, the L"-L? distribution mismatch problem and Zador’s Theorem. This new
expansion supports the definition of a Richardson-Romberg extrapolation yielding a better rate
of convergence for the cubature formula. An extension of this expansion is then proposed in
higher dimension for the first time. We then propose a novel variance reduction method for

Monte Carlo estimators, based on one dimensional optimal quantizers.

Introduction

Optimal quantization was first introduced in [She97], Sheppard worked on optimal quantization
of the uniform distribution on unit hypercubes. It was then extended to more general distribu-
tions with applications to Signal transmission at the Bell Laboratory in the 50’s (see [GG82])
and then developed as a numerical method in the early 90’s, for expectation approximations
(see [Pag98]) and later for conditional expectation approximations (see [PPP04b; BPP01; BP03;
BPP05)).

In modern terms, vector quantization consists in finding the projection for the LP-Wasserstein

distance of a probability measure on R? with a finite p-th moment on the convex subset of
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I'-supported probability measure, where T is a finite subset of R? and 0 < p < +00. The aim
of Optimal Quantization is to determine the set T'y := {z{,...,2¥} R? with cardinality
at most N which minimizes this distance among all such sets I'. Formally, if we consider a

random vector X € LP(IP), we search for ', the solution to the following problem

min | X — X'V
I'yveR,|Iy|SN
where XTV denotes the projection of X onto I'y (often XT~ is denoted by XV in order to
alleviate the notations). The term | X — Xt |, is often referred to as the distortion of order p.
The existence of an optimal quantizer at a given level N has been shown in [GL00; Pag98] and
in the one-dimensional case if the distribution of X is absolutely continuous with a log-concave
density then there exists a unique optimal quantizer at level N. In the present paper we will
consider one dimensional optimal quantizers. Moreover, we are not only interested by the
existence of such a quantizer but also in the asymptotic behaviour of the distortion because it
is an important feature for the method in order to determine the level of the error introduced
by the approximation. The question concerning the sharp rate of convergence of | X — XN I,
as N goes to infinity is answered by Zador’s Theorem. For X € LP*9(P), § > 0, such that
P, (d€) = p(&) - A(d€) + v(dE), where v L X is the singular component of P, with respect to

the Lebesgue measure A on RY, the rate of convergence is given by
lim N#|X - XN =J ]
d — = +p
N iriloo H Hp pd R v d

where ¢ is the density of X, A4 is the Lebesgue measure on R? and jp,d =infy>1 Ni |U— ﬁNHp,
ULu ((0, l)d). For more insights on the mathematical/probabilistic aspects of Optimal
quantization theory, we refer to [GL00; Pagl5].

The reason for which we are interested in this optimal quantizer is numerical integration.
The discrete feature of the optimal quantizer XN allows us to define, for every continuous
function f : R — R, such that f(X) € L?(P), the following quantization-based cubature

formula

N
BE[f(XN)] =Y pif())
=1

where p; = IP()A( N = zN). Indeed, as XN is constructed as the best discrete approximation
of X in LP(P), it is reasonable to approximate E [f(X)] by E[f ()A( N)] which is useful for
numerical integrations problems.

The problem of numerical integration appears a lot in applied fields, such as Physics,

Computer Sciences or Numerical Probability. For example, in Quantitative Finance, many
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quantities of interest are of the form
E|[f(S:)] for some t > 0,

where f : R? — R is a Borel function and (Ss)sefo, is a diffusion process solution to a
Stochastic Differential Equation (SDE)

t t

b(s,Ss)ds + f o(s,Ss)dWs, Sy = so,

St:SO+J
0

0
where W is a standard Brownian motion living on a probability space (€2,.4,P) and b and
o are Lipschitz continuous in z uniformly with respect to s € [0,¢], which are the standard
assumptions in order to ensure existence and uniqueness of a strong solution to the SDE. Since
it is often impossible to compute IE [ f (St)] directly, it has been proposed in [Pag98] to compute
an optimal quantizer XN of X where X is a random variable having the same distribution as
St and to use the previously defined quantization-based cubature formula as an approximation.

Another approach, often used in order to approximate I [ f(X )], is to perform a Monte
Carlo simulation fM = Zn]\le F(X™), where (X™),,—1,...m is a sequence of independent copies
of X. The method’s rate of convergence is determined by the strong law of numbers and the

central limit theorem, which says that if X is square integrable, then
T L
VM (T ~E[£(X)]) 5N (0.03x) as M-+

where 0]20( x) = Var ( f(X )) One notices that, for a given M, the limiting factor of the method
is 0]20( X) Hence, a lot of methods have been developed in order to reduce the variance term:
antithetic variables, control variates, importance sampling, etc. The reader can refer to [Pagl8;
Glal3] for more details concerning the Monte Carlo methodology and the variance reduction
methods.

In this paper we propose a novel variance reduction method of Monte Carlo estimator
through quantization. Our method innovates in that it uses a linear combination of one
dimensional control variates to reduce the variance of a higher dimensional problem. More
precisely, we introduce a quantization-based control variates E,]CV for k = 1,...,d. If one

considers a function f : R? — R, we approximate E [ f(X )] by
E[f(X) =\ EY)]

with (-, -) the scalar product in R¢ and (E;]ﬂv)k:L...,d = fi(Xy) — E [fk()’(\',iv)], where X}, is the
k-th component of X, X ,iv is an optimal quantizer of Xj, of size N and fr : R — R is designed
from f. Looking closely at the introduced control variates, one notices that we introduce a
bias in the approximation. However, as since it is closely linked to weak error, this bias can be

controlled. The present paper focuses on the weak error’s rate of convergence.
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First, we place ourselves in the case where X is a random variable in dimension one and we
consider a quadratic optimal quantizer. We work on the rate of convergence of the weak error
induced by the expectation approximation by an optimal quantization-based cubature formula

for different classes of functions f

~

lim N E[f(X)] -E[f(XM)]] < Ctx < +w.
N—+w
The first classical result concerns Lipschitz continuous functions. Using directly the Lipschitz
continuity property of f and Zador’s Theorem a rate of order @ = 1 can be obtained. Moreover,
if we consider the supremum among all functions with a Lipschitz constant upper-bounded by
1, then

N sup |E[f(X)]-E[f(XM)]|=N|X - XV, < N|X - XV|, 2=*2 05 < 0.
[f] <1

A faster rate (o = 2) can be attained for differentiable functions with Lipschitz continuous
derivative, using a Taylor expansion with integral remainder and the following stationarity

property of quadratic optimal quantizers
E[X | XV] =XV,

Moreover, considering the supremum among all functions where the Lipschitz constant of the

derivative is upper-bounded by 1, we have

-~ 1 > —
N* s [B[fQO] = E[SEM)]] = gNx - XV} 5255 O < o
Lip =

where the limit is given by Zador’s Theorem. A detailed summary about this results can be
found in [Pagl8].

In the first part of this paper, we extend this improved rate (o = 2) to classes of less
smooths functions in one dimension. These new results enable us to design efficient variance
reduction methods in higher dimensional settings with in view applications to option pricing.

The new results concerns the following classes of functions

o Lipschitz continuous piecewise affine functions with finitely many breaks of affinity. We
use the stationarity property of the optimal quantizer on the cells where there is no break
of affinity and then we control the error on the remaining cells using results on the local

behaviour of the quantizer.

e Lipschitz continuous convex functions, using local behaviours results on optimal quantizers.
We use a representation formula for convex functions as integrals of Ridge functions

combined with the local behaviour result in order to control the error again.
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o Differentiable functions with piecewise-defined locally Lipschitz derivative. The functions
have K breaks of affinity {ai,...,ax}, such that —0 =ap <a; < -+ < ag < ag4+1 =
+0o0 and the locally Lipschitz property of the derivative is defined by

Vk=0,....K, Vo,ye (aansr) |f' @)= @< sipiol® =l (9e(@) + 9:())

where g : (ag, ar+1) — Ry are non-negative Borel functions. We use the locally Lipschitz
property of the derivative combined with the L"-L® distortion Theorem and Zador’s
Theorem on the cells where there is no break of affinity and then we control the error on

the remaining cells using results on the local behaviour of the quantizer.

o Differentiable functions with piecewise-defined locally a-Hoélder derivative. The functions
have K breaks of affinity {a1,...,ax}, such that —o0 =ay < a1 < -+ <ag < ag41 =
+o0 and the locally a-Holder property of the derivative is defined by

VE=0,...,K, Va,ye(ag,aps1), [f'@) = O < eosel® —y1*(6(2) + 91(v))

where gy : (ag,ar+1) — Ry are non-negative Borel functions. For this class of functions,
the rate of convergence is of order 1 + a. The result is obtained using the same ideas as

in the locally Lipschitz case.

Hence, for all this classes of functions, except the last one, we have

~

Wim NAE[f(X)] -E[f(XM)]| < Cfx < +.

In the second part of the paper we deal with the weak error expansion of the approximation
of E[f(X)] by E[f ()2' M)]. First, we place ourselves in the one dimensional case by considering
a twice differentiable function f : R — R with a bounded Lipschitz continuous second derivative
and X : (Q,A4,P) - R. Through a second order Taylor expansion and with the help of
Corollary 4.1.7, Theorem 4.1.12 and the L"-L*® distortion mismatch Theorem we obtain

E[f(X)] = E[f(X™)] + % + O(N~C+8)

where € (0,1). This expression suggests to use a Richardson-Romberg extrapolation in order

to kill the first term of the expansion which yields

M2F(XM) — N2f(XV)
M2 — N2

E[f(X)]=E + O(N~C+A),

Second, we present a result in higher dimension when considering a twice differentiable function
f: R% — R with a bounded Lipschitz continuous Hessian, X : (Q,AP) — R? with independent
components (X)p=1,. 4 and XN a product quantizer of X with d components ()?,iv’“)k:17,,,7d
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such that Ny x --- x Ny ~ N. Using product quantizer allows us to rely on the one dimensional

results for quadratic optimal quantizers and in that case we have

The paper is organized as follows. First we recall some basic facts and deeper results about
optimal quantization in Section 4.1. In Section 4.2, we present our new results on weak error
for some classes of functions. Then, we see in Section 4.3 how to derive weak error expansion
allowing us to specify the right hypothesis under which we can use a Richardson-Romberg
extrapolation. Finally, we conclude with some applications. The first one is the introduction of
our novel variance reduction involving optimal quantizers. The last one illustrates numerically
the results shown in Section 4.2 and 4.3, by considering a Black-Scholes model and pricing
different types of European Options. We also propose a numerical example for the variance

reduction.

4.1 About optimal quantization (d = 1)

Let X be a R-valued random variable with distribution IP, defined on a probability space
(9, A, P) such that X e L?(P).

Definition 4.1.1. Let I'y = {z',...,2}} = R be a subset of size N, called N-quantizer. A
Borel partition (Ci(F N))i:]L v of R is a Voronoi partition of R induced by the N-quantizer
I'y if, for every i =1,..., N,

Ci(Iw) = {€ € R, [¢ — o] < min ¢ — 2]},
J#1

The Borel sets C;(I'y) are called Voronoi cells of the partition induced by T'y.

One can always consider that the quantizers are ordered: ¥ < 2§’ <--- <2} _; < 2¥ and

in that case the Voronoi cells are given by

Ck(FN) = (ﬁjkv_l/Q,xiV_i_l/Q], k = 17 e ,N — 1, CN(FN) = ($%_1/2,x%+1/2)

N N
Tty

where Vk =2,..., N, 332[—1/2 = 5— and xi\;g := inf (supp(P,)) and x%H/Q := sup (supp(P,)).

Definition 4.1.2. Let Ty = {«}',..., 2} be an N-quantizer. The nearest neighbour projec-
tion Projp, : R — {zV, ..., 2} induced by a Voronoi partition (C’i(lﬂ]\/))i:1 _y is defined
by

N
VEeR, Projr, (&) := 2 Y Leco, () -
=1
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We can now define the quantization of X by composing Projp, and X

N
XTIy = PrijN(X) = Z va Lxecirn)
=1

and the point-wise error induced by the replacement of X by XTw given by

X — XTV| = dist (X, {x{v,,x%}) = :Imn X -z

In order to alleviate the notations, from now on we write XN in place of XTw,

Definition 4.1.3. The L2%-mean (or mean quadratic) quantization error induced by the replace-
ment of X by the quantization of X using a N-quantizer I'y < R is defined as the quadratic

norm of the point-wise error previously defined

o N N |2 12 N2 12
= &80 o= (B[ i 1x-aP]) = ([ i e PRLa)

R =1, N

20ty

It is convenient to define the quadratic distortion function at level IV as the squared mean

quadratic quantization error on (R)":

N N . N2 N |12
QZ,Nx:(wla7$N)'—)E|:Z:mlnN‘X_xz ‘]:HX_X Hz
Remark. All these definitions can be extended to the LP case. For example the LP-mean

quantization error induced by a quantizer of size N is

. N 1/p N 1/p
_ S i _ VP - i — VP
= &8, o (B[ i 1x-a]) = ([ i 1 - ape L)

We briefly recall some classical theoretical results, see [GL00; Pagl8] for further details.

Theorem 4.1.4. (Ezistence of optimal N-quantizers) Let X € L?(P) and N € IN*.

(a) The quadratic distortion function Qan at level N attains a minimum at an N-tuple
e = (2N, ... ,aN) and Ty = {zN i = 1,...,N} is a quadratic optimal quantizer at
level N.

(b) If the support of the distribution P, of X has at least N elements, then W) =
(z, ..., oY) has pairwise distinct components, P, (Ci(:c(N))) >0,i=1,...,N. Fur-
thermore, the sequence N — il’lfxe(]R)N Qan(x) converges to 0 and is decreasing as long

as it is positive.

Following the existence of a minimum for Qs y at W) we can define an optimal quadratic

N-quantizer.
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Definition 4.1.5. A grid associated to any N-tuple solution to the above distortion minimiza-

tion problem is called an optimal quadratic N-quantizer.

A really interesting and useful property concerning quadratic optimal quantizers is the
stationarity property.

Proposition 4.1.6. (Stationarity) Assume that the support of P, has at least N elements.
Any L?-optimal N-quantizer T'y € (R)N is stationary in the following sense: for every Voronoi
quantization XN of X,

E[X | XV] =XV

Corollary 4.1.7. If XN isa L?-optimal quantization of X, hence has the above stationarity
property, and f(X) e L?(P) with f : R — R then

E[f(XV)(X = XV)] =0.

Proof. The proof is straightforward, indeed

E[f(XV)(X - IV)] = B[ B[f(X¥)(X - V) | X]| = B [f(XV) B[x - & | RV]]

e

—E[f(XV)(B[X | £¥] - £V)] -
]

We now take a look at the asymptotic behaviour in N of the quadratic mean quantization
error. We saw in Theorem 4.1.4 that the infimum of the quadratic distortion converges to 0
as N goes to infinity. The next Theorem, known as Zador’s Theorem, analyzes the rate of

convergence of the LP-mean quantization error.
Theorem 4.1.8. (Zador’s Theorem) Let p € (0, +00).

(a) SHARP RATE. Let X € LPTO(P) for some § > 0. Let P (d€) = (&) - N(d€) + v(d€), where
v L X is the singular component of P, with respect to the Lebesque measure A on R.
Then

1
‘ ‘ . N PR
lim N min | X — X7, = Jp1 pird\
N—+00 IncR,|Ty|<N R

. T 1
with Jp,l = m

(b) NON ASYMPTOTIC UPPER-BOUND. Let ¢ > 0. There exists a real constant C ;5 € (0, +00)

such that, for every R-valued random variable X,

. v N —1
VN > 1, FNCI%{IjII‘nN|<N IX - X Hp < Cl,p,6‘76+p<X)N

where, for r € (0, +), 0,(X) = mingeg | X — af, < +o0.
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Now, we state some intuitive but remarkable results concerning the local behaviour of the

optimal quantizers.

Lemma 4.1.9. Let P, be a distribution on the real line with connected support I]pX =

supp(Py,). Let Ty = {zd,..., 2N} be a sequence of r-optimal quantizers, r > 0. Let [a,b], be

U UJ Ci(Ty) < Ky

N Ci(Ty)Alabl+2

a closed interval then

where Ky is a compact set.

Proof. First, if 400 ¢ Ip then the upper-bound of Ky is the upper-bound of Ip  otherwise if
+oo € Ip , let bg € Ip  such that by < b, as P, has a density, then P ({bo}) =P, ({b}) = 0.

Considering the weighted empirical measure

N
]P)?N = Z Py (Ci(FN))(Ssz St Py
i=1

then P_ ([bo, b]) Noo P, ([bo,b]) <P, ([bo,+0)). Moreover, one notices that

Py ([bo,0]) =P | | GiTw)|=Py ) cirw)

iE{ibO,...,ib} iE{ibo,.‘.,ib}

where 2" is the centroid of the cell that contains u. Then, as [bo, xffﬂﬂ] c Uie{iboy--~7ib} Ci(T'w)

P ([bo,z10]) <Py ([bo,b]) 225 P ([bo,b]) < P ([bo, +0))

hence, lim sup y 2"

ipt1/2 < T and supy =

Z].Z +1/2 < T, which gives us the upper-bound of Kjy:
N
SUPN i, 4172
Finally, if —co ¢ Ip  then the lower-bound of Ky is the lower-bound of Ip  otherwise
if —oo € Ip_, then following the same idea as above, we can apply the same deductions in
order to show that inf mg _1jg >~ which gives us the lower-bound of Kj: infy mfz 1o In

conclusion, Ky := supp(P ) ([inf ¥ 5%]‘:7—1/27 Sup N xﬁﬂ/?]' -

The next result, proved in [DFP04], deals with the local behaviour of optimal quantizer,
more precisely it characterises the rate of convergence, in function of N, of the weights and the
local distortions associated to an optimal quantizer. This is the key result of the first part of this
paper. It allows us to extend the weak error bound of order two to less regular functions than
those originally considered in [Pag98|, namely differentiable functions with Lipschitz continuous

derivative.

Theorem 4.1.10. (Local behaviour of optimal quantizers) Let P, be a distribution on the

real line with connected support supp(P, ). Assume that P, has a probability density function
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© which is positive and Lipschitz continuous on every compact set of the interior (m,m) of
supp(P,). Let Ty = {zV,...,2Y} be a sequence of stationary and L™ optimal quantizers,
r> 0.

(a) The sequence of functions (Yn)N=1 defined by

N
YN (€) = NZ Lo,y (©) Py (Ci(Tw)), N=>1,

=1

converges uniformly on compact sets of (m,m) towards c%l/(rﬂ)goﬁ, with ¢, q/(r41) =

—1/(1+r)

HQOHI/(H_T) i.e., for every [a,b] € (m,m), a <b,

sup ]} ’N]PX (CZ(FN)) - C@’l/(r+1)g0ril (g;fv)’ m} 0 (41)

{i:zNefa,b

The local distortion is asymptotically uniformly distributed i.e., for every [a,b] < (m,m),

N0, . (4.2)

Il i
sup NT_HJ |ZL‘£V _ £|r P (dﬁ) — = /(r+1)
{izNe[a,b]} ‘ Ci(Ty) * 2r(r +1)

(b) Moreover, if P, has a compact support [m,m| and ¢ is bounded away from 0 on the

whole interval [m, M|, then all the above convergences hold uniformly on [m,m].

The next result is a weaker version of Theorem 4.1.10 but it is a really useful tool when

dealing with weak error induced by quantization-based cubature formulas.

Corollary 4.1.11. Under the same hypothesis as in Theorem 4.1.10 and if 1 < s < r, we have
the following result, for everyie{1,...,N},

hmsupNS“J 2N — €)* P (d€) = limsup N*T E[| XY — XPLign_pmy ] < +oo.
N C;(Twn N i
Proof. 1f s = 1, using Schwarz’s inequality
3
[ mr-aria< ([ e -dre -, @)
Ci(Tn) Ci(T'N)
1
2
= N[l -gPd) < <N3 | e Ne, (cxrm))
Ci(Tn) Ci(C'n)

And applying Theorem 4.1.10 with P, = ¢ - X\ and r = 2, one derives

limsup N [ o € P(d) < o (pnaliely ) < e
N Ci(Tn) 237 2
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Otherwise, for 1 < s < r, using Holder’s inequality with p = % and g =

JCi(FN) |va - 5’8 ]PX (d§> s (Jci(FN) ‘xiv - §|p8 IPX (d£)> N ( JCi(FN) ]PX (d§>> :
< ( Li(m i —£|Px<d£>)S(IPX (@rw))
o — e polag) < 8 [ e —dpa) (P ()

1
1-s

1—s
NS+1

Ci(Tn) (T'n)

1-s

< (v Y edpia) (Ve @)
Ci(Tn)
And using the result proved above for s = 1 and (4.1), we obtain the desired result

limsupNSHf |$fv — &P P (d€)
N Ci(TN)
1-s

. 2 N ° .
<tmsup (¥ j@(m o P ea9)) (NP (Gry))

1 2 TR
< (mleba) (cmsle?™. )

< +00.
O

The following result will be useful in the last part of the paper, which is the Theorem 6 in
[Del+4-04].

Theorem 4.1.12. Let (I'y)n=1 a sequence of optimal quantizers for P . Then

Jim VB [(RN)X - V) = @a(p,) [g(6) P (at)

for every function g : R — R such that E [g(X)] <+, with Q2(P ) the Zador’s constant.

The last result we state is an answer to the following question: what can we say about the
rate of convergence of It [|X — XN |2+,B] knowing that XNisa quadratic optimal quantization?
This problem is known as the distortion mismatch problem and has been first addressed in
[GLPO8] and the results have been extended in Theorem 4.3 of [PS18al.

Theorem 4.1.13. [L"-L*-distortion mismatch] Let X : (Q, A,P) —> R be a random variable
and let r € (0, +00). Assume that the distribution P of X has a non-zero absolutely continuous
component with density ¢, i.e. P (d§) = ¢(§) - N(d€) + v(dE), where v L X is the singular

component of P, with respect to the Lebesgue measure A on R and ¢ is non-identically null.
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Let (Tn)n>1 be a sequence of L™ -optimal grids. Let s € (r,r +1). If
X e LT ()

for some 6 > 0, then
limsup N|| X — XV, < 4.
N

4.2 Weak Error bounds for Optimal Quantization (d = 1)

Let X € L?(PP) and XN a quadratic optimal quantizer of X which takes its values in the finite
grid Iy = {zV,...,2Y} of size N. We consider a function f : R — R with f(X) € L?(PP). One
of the application of the framework developed above is the approximation of expectations of
the form E[f(X)]. Indeed, as XN is close to X in L?(P), a natural idea is to replace X by
XV inside the expectation

N
E[f(XN)] =D fa) P, (Ci(Tn)).
=1

The above formula is referred as the quantization-based cubature formula to approximate
E [ f(X )] Now, we need to have an idea of the error we make when doing such an approximation
and what is its rate of convergence as N tends to infinity? For that, we want to find the largest
a € R, such that the beyond limit is bounded

~

im NOB[f(X)] = E[f(XM)][ < Crx < +o0. (4.3)
—+00

The first class of function we consider is the class of Lipschitz continuous functions, more
precisely piecewise affine functions and convex Lipschitz continuous functions. Then we deal

with differentiable functions with piecewise-defined derivatives.

4.2.1 Piecewise affine functions

We improve the standard rate of convergence which is of order 1 for Lipschitz continuous
functions by considering a subclass of the Lipschitz continuous functions, namely piecewise

affine functions. This new result shows that the weak error induced is of order 2 (o = 2 in

(4.3)).

Lemma 4.2.1. Assume that the distribution P, = -\ of X satisfies the conditions of Theorem
4.1.10. Let f : IR — R be a Borel function.
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(a) If f is a continuous piecewise affine function with finitely many breaks of affinity, then

there exists a real constant Cy x > 0 such that

~

lim sup N2 E[f(X)]-E[f(X™)]| < Cpx < +o.

(b) However, if f is not supposed continuous but is still a piecewise affine function with

finitely many breaks of affinity, then there exists a real constant Cy x > 0 such that

lim sup NIE[f(X)] -E[f(XM)]] < Cfx < +0.

Proof. Let I be a compact interval containing all the affinity breaks of f denoted ay,...,ay.

(a) Let f supposed to be continuous. Note that f is Lipschitz continuous (with coefficient

denoted [f],, :=max;—1 . /|a;]). Let Ty = {z],...,2}} be an L?- optimal quantizer at level
N>1.
SN 3 N
E|f(X)]-E|f(X7)] = J&) = flai)) Py (dS
O] -BIE =3 [ (0 - ) Pata)
= F&) = f(@i)) Py (de 44
P [IRCCEFCNENCD (4.9

where J}V = {i : C;(I'y) contains an affinity break} since all other terms are 0. Indeed, as
f(&) = a;& + B; on C;(T'y) and using Corollary 4.1.7

L_(F (1O~ ) P(d8) = 0 B[X = XM gy ] =0
Now, taking the absolute value in (4.4), we have
[BLAC0] - E[F(EY)]] < card(F ) max [ [(6) = Flal)| Po(a)
zle Ci(TN)

<card(J) (), max [ e-al P (49
ey JCi(T'w)

and using Corollary 4.1.11 with s = 1, we have the desired result, with an explicit asymptotic

upper bound,

li N2 E[£(X)] =E[f#(XM]] <[], 1 d(Jy N2 —2NP_(d
im sup |E[f(X)] = B[F(XN)]] <[], lim card( f)?el?}{,( Ci(FN)\f ;) | Py (dE)
V4 . 1
< [f]upf\/g(Ccp,1/3H90H1/3HSOl/SHm) 2

< +00.
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(b) The sum in (4.4) in the discontinuous case is still true. However, the bound in (4.5) changes

and becomes

[E[f(O] = B[f (V)] < 200 f,.., max P (Ci(Tw))
€ !

where | f],, , denotes the maximum of [f| on Ko and Ky is defined as the compact appearing
in Lemma 4.1.9 stating that the union over all N of all the cells where their intersection with

the interval [aq, as] is non empty lies in a compact Ky, namely

U U Ci(FN) C Ko.

N Ci(T'n)nlar,ae]#D

The desired limit is obtained using Theorem 4.1.10.

4.2.2  Lipschitz Convex functions

Thanks to the previous result on piecewise-affine functions, we can extend the rate of convergence
of order 2 to a bigger class of functions: Lipschitz convex functions.

We recall that a real-valued function f defined on a non-trivial interval I < R is convex if

flte + (1= t)y) <tf(z) + (1-1)f(y),

for every t € [0,1] and z,y € I. If f: I — R is supposed to be a convex function, then its right
and left derivatives exist, are non-decreasing on I and Vz € I, f’ (z) < f) (z). Moreover, as f
is supposed to be Lipschitz continuous, then f’ and f’ are bounded on I by |f] Lip®

Remark. One of the very interesting properties of convex functions when dealing with
stationary quantizers follows from Jensen’s inequality. Indeed, for every convex function

f: 1 — R such that f(X)e LY(P),
E[f(B[X | XV]))| <B[E[/(X)] £V]|
so that,
E[f(XN)] <B[f(X)].

This means that the quantization-based cubature formula used to approximate IE [ f(X )] isa

lower-bound of the expectation.
We present, here, a more convenient and general form of the well known Carr-Madan

formula representation (see [CMO1]).

Proposition 4.2.2. Let f : I — R be a Lipschitz convex function and let I be any interval

non trivial (# &, {a}) with endpoints a,b € R. Then, there exists a unique finite non-negative
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Borel measure v := vy on I such that, for every ce I,

Veel, f(z)=f(c)+ (z—2c)fi(c) "‘f

[a7c]m[(u — ) v(du) + f (z — u)4v(du).

(e,b]nI
Proof. Let f: I — R be a Lipschitz convex function. We can define the non-negative finite

measure v := vy on I by setting

The finiteness of v is induced by the Lipschitz continuity of f as the left and right derivatives
are bounded by [f],,, = max(|fi[.,[f_[.). Let c€ I, for every x > ¢, we have the following

representation of f(z):

using Fubini’s Theorem and noting that 1. ,)(u) L. (v) = L(cz)(v) Ly g (u). Similarly for
r<c

f@%:ﬂ@+xﬂﬂﬁ+f (u— ) s (du).

[a,c]nI

Then,

e R, J@) =0 +efhio + |

[a,c]ml(u B $)+V(du> + f (J; - U)+I/(du)

(c,b]nI
O

We can now use the representation of convex functions given above and extend the result

concerning the weak error of order 2 (o = 2 in (4.3)).

Proposition 4.2.3. We assume that the distribution P, = ¢ - X of X satisfies the conditions
of Theorem 4.1.10. Let I be any non-trivial interval and let f : I — R be a Lipschitz convex

function with second derivative v (see Proposition 4.2.2). If Ip, N supp(v) is compact, with
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Ip  :=supp(P,), then there exists a real constant Cy x > 0 such that

X

limsup N?|E[f(X)] - E[f(XM)]| < Cyx < +o.
N

Remark. Assuming that supp(v) is compact actually means that f is affine outside a compact
set, namely that there exist a(¥) and ) such that f(z) = oHz + 1) for x large enough
(x> K;) and f(z) = a7z 4+ ), for 2 small enough (z < K_). Therefore, this class of
functions contains all classical vanilla financial payoffs: call, put, butterfly, saddle, straddle,
spread, etc. Moreover, if Ip  is compact, such as in the uniform distribution, then there is no
need for the hypothesis on ¥ and we could consider any Lipschitz convex functions we want.

The hypothesis on the intersection allows us to consider more cases.

Proof. First we decompose the expectations across the Voronoi cells as follows

=
=
>

|
—
=
=

[
M=

E [(f(X) — f(ffN)) ]l{Xeci(rN)}]

~
Il
—_

(3

I
1=

S
Il
—

IE [(f(X) - f(xiv)) ]l{XG(x]'\il/zvzz]'YH/z]} ]

We use the integral representation of the convex function f, of the Proposition 4.2.2, with
z:= X and ¢ := z; and with the stationarity conditional property given by Corollary 4.1.7, the

first term cancels out, for every 1,

E [(X — va)ffr(ﬁﬂfv)]l{XeCi(FN)}] = 0.

Hence, we obtain

]E[(f(X) — f(zV)) ]l{xE(xf.V_I/Q,xﬁl/Q]}]

K3

- <La xN]ﬂI(u ~Aeldu J(anf.\’ b]mI(X - U)+V(dU)> H{Xe(xﬁ1/27mx1/z]} ]
= [J(MUT&?N](U = X)v(du) Lixeen | avyy ] (4.6)
+ E [J(IN7w]\il/2)(X — U/)-i-l/(du) ]l{Xe[xiV’mﬁug]} :|

The interval (.’L‘i]\il/Q, 2] in the integral is left-open because when u = xi]\il/Q, as X € (l‘é\il/Q, ],

(u— X)4+ = 0. The same remark can be made concerning the right open-bound of the interval
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(zN, xf\il /2) in the integral. Now, using a crude upper-bound for (4.6), we get

E [(f(X) — f(zi")) ]1{Xe(xﬁl/2,z§vﬂ/2]}] <E [(l‘fv R QA (CARYNEA) H{Xe(zﬁm,zg\q}]
+ I [(X - xiv)y((vavxﬁ-lﬂ)) ]l{Xe[mgV,wﬁlm]}:l

< E[|z) — X| Lixecyryy J7(Ci(TN))

A

as V((xf\ilﬂ,a:ﬁl/z)) < v(Ci(I'n)). Hence

(@n)
N
=
=
>
|
=
<
=
N
M=

E [z} — X|Lixec, oy [V (Ci(TN))

~
I
—

/A
M=

~
I
—

E[|2 — X[ Lixec,rn)y ] Lnes, v(Ci(TN)

with J, := [infy $£Z_1/2:SUPN :L'ﬁzﬂ/g] where xfz and fo are the centroids of the optimal
quantizer of size N that contains, respectively, the infimum and the supremum of the support
of v, denoted by a and b, respectively. Hence, xfz _1/2 is the lower bound of the Voronoi cell
C;,(I'n) associated to the centroid xfg and a:fZ 412 18 the upper bound of the Voronoi cell
C;, (I'y) associated to the centroid :UfZ . If a is not contained in Ip_, then the lower bound of
Jy is set to a, and the same hold for b: if it is not contained in Ip the upper bound of J,, is
set to b. Then,

N

N?E[f(X) - f(XV)] < N? MIE[e) = X Lxec,ra ] Lpney,y v(Ci(TN))
=1

< N? sup E[|)?N_X|]1{X€Ci(FN)}]

T\ £
0T eI]pX nJy i=1

v(Ci(T'w))

=

<v(lp )N*  sup  E[|XYN - X[ Lixeo,ry) ]

- N
i EI]pX nJy

yielding the desired result with Theorem 4.1.10 if Ip  n J, is compact.
Under the hypothesis Ip, N supp(v) compact, then by Lemma 4.1.9,

U U Ci(FN) < U U CZ'(FN) C Ko,

N aNelp n supp(v) N Ci(Tn)nIp, 0 supp(v)#J
with Kg := IIPX N J, compact, which is what we were looking for. ]

Proposition 4.2.4. Assume that the distribution P, = ¢ - X of X satisfies the conditions of
Theorem 4.1.10 not only on compact sets but uniformly. Let I be any non-trivial interval then

for every function f : I — R Lipschitz convex with second derivative v defined as in Proposition
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4.2.2, there exists a real constant C'y x > 0 such that
limsup N?|E[f(X)] - E[f(XM)]| < Cyx < +o.
N

Proof. This proof is exactly the same as above the Proposition. O

Remark. It has not be shown yet that Gaussian or Exponential random variables satisfy the
conditions of Theorem 4.1.10 uniformly but empirical tests tend to confirm that they exhibit
the error bound property for Lipschitz convex functions. More details are given in the numerical

part.

4.2.3 Differentiable functions

In the following proposition, we deal with functions that are piecewise-defined and where
their piecewise-defined derivatives are supposed to be locally-Lipschitz continuous or locally
a-Holder continuous on the non-bounded parts of the interval. We define below what we mean

by locally-Lipschitz and locally a-Hélder.

Definition 4.2.5. e A function f: I — R is supposed to be locally-Lipschitz continuous,
if
vo,ye I |f(@) = FW < el = yl(9(@) + 9(y))

where [ f] is a real constant and g : R — R.

Lip,loc

e A function f: I — R is supposed to be locally a-Hélder continuous, if

Vo,yel [f(z) = fW) < [flilr — ¥ (9(2) + 9(»))

where [f]_ .. is a real constant and g : R — R.

a,loc

Proposition 4.2.6. Assume that the distribution P, of X satisfies the conditions of the L"-
L?-distortion mismatch Theorem 4.1.13 and Theorem 4.1.10 concerning the local behaviours of
optimal quantizers. If f : R — R is a piecewise-defined continuous function with finitely many
breaks of affinity {a1,...,ax}, where —0 =ag < a1 < -+ < ag < ag4+1 = +0, such that the

plecewise-defined derivatives denoted (f})i—o,....a are either

(a) locally-Lipschitz continuous on (ag,aps1) where 3q > 3 such that the qi-th power of g :
(ak,ar+1) — Ry defined in Definition 4.2.5 are convez and (||gi(X)
Then there exists a real constant Cy x > 0 such that

qu)kzl,...,K < +.

lim sup N E[f(X)] - E[f(XM)]| < Cyx < +o.
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(b) or locally a-Hélder continuous on (ak,ari1), o € (0,1), where 3qr > 52— such that
the qx-th power of gy : (ag,ar+1) — Ry defined in Definition 4.2.5 are convex and
(”gk(X)H%)kzl i < +oo. Then there exists a real constant Cy x > 0 such that

~

lim sup NYE[f(X)] -E[f(XY)]| < Cpx < +o0.

Proof. (a) Let Iy = {zV,...,2¥} be a L?- optimal quantizer at level N > 1. In the first

place, we define the set of all the indexes of the Voronoi cells that contains a break of affinity

reg {Z =1,. Cz(FN) N [al,aK] #* @}

Hence,

reg

First, we deal with the (B) term. As, i ¢ is differentiable in C;(I'y) and admits a
first-order Taylor expansion at the point x¥, moreover by Corollary 4.1.7, SC () f’ (M) (€ -
NP, (d¢) = 0, hence

regv

f (F) — () Py (de) = j j Pt + (1= 0E) @ — )t P (de).
Ci(Tn) i(Cn)

Now, we take the absolute value and we use the locally Lipschitz property of the derivative,

yielding

|- ) Px<ds>‘
Ci(I'N)
f - )f |f'(x "tz + (1= ))| |z — ¢|dt P (dE)

<o | )f (1= 0l = &P (g o) + g 1) + (1= 06)) e P (d9),
LN
(4.7)
with k; :={k =0,...,d: z; € (ax,ar+1)}. Under the convex hypothesis of ngi, we have that

g, (ta + (1= 1)€) < max (gr, (), g1, (€)) < gr, (27) + g1, (€),
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thus
j f (1= )2 — € (gu(a) + gulte + (1 - 0))dt P (d£)
C;(T'n) JO

1

< 2 jci(rw) |z — ¢J? (295 (2; )+ k() P (d€).

Now, taking the sum over all i ¢ IV reg and denoting [f'], . . = maxg[f'], . 0.

1
B < 3 e 3 [ o = 2201 ) 4 006 P
LI
<Epp E XY - X[2(2g1(XY X
= 2 [f ]Lip,loc m’?'x ’ | ( gk'( )+gk( ))
K ~ 5 4.8
< S e [V = X[2 (296 ( RV, + k(X1 (45)
K N ~
< E[f/]Lip,locHXN - Xng m’?X (2Hgk<XN)qu + Hgk<X)”qk)
3K P
< U ol &Y = X 12, max g ()1,

using Holder inequality, such that pik + qik < 1 and the convexity of g%. Under the hypothesis
qr > 3, pr has to be in contained in the interval (1,3/2), hence p is defined as p := maxy, px
and using the non-decreasing property of the LP norm, we obtain the fourth inequality in (4.8).
Now, if we use the L"-L*-distortion mismatch Theorem 4.1.13 with r = 2 and s = 2p < 3 under
the condition X € L%+5(P), we have

_ y23K

N2’( ‘ = [f ]Lip,loc HXN - X”gp m]?“X Hgk(X)qu

N—>+oo
_

(4.9)
Cy < +0o0.

Secondly, we take care of the (A) term. Using Lemma 4.1.9 stating that the union over all N

of all the cells where their intersection with the interval [a;1, ax] is non empty lies in a compact

U UJ Ci(Ty) < Ko

N Ci(Tn)nlar,ax]#D

Ky, namely

and using that f” is bounded on Ko by [f'],,, x,, We can use the following integral representation
of f
- [ rwau+ o)
0
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and the stationarity property of the optimal quantizer on C;(I'y), yielding

[ e - sy ey - u)du P (d)
Ci(Tn) C;(TN)
<[f]W0f 6| P (de).
Ci(T'n)
Now, we sum among all 7 € I,{\ég
1< Py 3 [ =Py (a)

i€l

Hence, using the result concerning the local behaviour of optimal quantizers Corollary 4.1.11 as

[a1,ax] is compact, we have

NQI(A)]< szKo Z f € — 2| P, (d€)

’LG]N (FN)

< N?K[f'],, . sup f € — 2N P, (de)
Ci(T'n)

i:;rlNEKO

N2, 0 < +o0. (4.10)
Finally, using (4.10) and (4.9), we have the desired result

N E[f(X)] - B[F(XM)]] < N*(|(4)] + |(B)]) 2255 ¢ + 6 < +o0.

(b) When the piecewise-defined derivatives are locally a-Hoélder continuous on (—0,a1] and

[ak,+00), a € (0,1), the proof is very close to the locally Lipschitz case. Indeed, the first

N €|2 N §‘1+a

difference is in (4.7), where the |z; is replaced by |x; and the constant is the

one of the locally a-Holder hypothesis. This implies that (4.8) is replaced by
BEf N totioe | ¢
(B)] < S etten | RN e gy (X)),

Finally, using the L"-L*- distortion mismatch Theorem 4.1.13 with » = 2 and s = (1 + a)p < 3

+a)p
under the condition X € L3 +a +6(IP), we have

3K[f ~
wvoy(p)) <yt K dmsee o e g (),

(1+a)p

N
_ﬁﬁcg < +400.

The other parts of the proof are identical, yielding the desired result.
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Remark. If one strengthens the hypothesis concerning the piecewise locally Lipschitz continu-
ous derivative and considers in place that the derivative is piecewise Lipschitz continuous, then
the hypothesis that X should satisfy the conditions of Theorem 4.1.13 can be relaxed. Indeed,

K v - v
the term %[f/]LipylocHXN - XHzp maxy, |gx(X)|,, in (4.8) would become %[f’]LipHXN - X|?

and we would conclude using Zador’s Theorem 4.1.8.

o

4.3 Weak Error and Richardson-Romberg Extrapolation

One can improve the previous speeds of convergence using Richardson-Romberg extrapolation
method. The Richardson extrapolation is a method that was originally introduced in numerical
analysis by Richardson in 1911 (see [Ricl0]) and developed later by Romberg in 1955 (see
[Romb5]) whose aim was to speed-up the rate of convergence of a sequence, to accelerate the
research of a solution of an ODE’s or to approximate more precisely integrals.

[TT90] and [Pag07; Pagl8] used this concept for the computation of the expectation
E [ f (XT)] of a diffusion (X¢)se[o,7) that cannot be simulated exactly at a given time 7" but can
be approximated by a simulable process )Nfi(ph) using a Euler scheme with time step h = T'/n
and n the number of time step. The main idea is to use the weak error expansion of the
approximation in order to highlight the term we would kill. For example, using the following

weak time discretization error of order 1
>(h (& _
E[f(Xr)] = E[f(XF)] + = + 0™,

one reduces the error of the approximation using a linear combination of the approximating

process )?;h) and a refiner process )N(:(Fh/ 2), namely

B [7(Xn)] = B [27(X) — f(R)] - 52 + 0.

Our goal within the optimal quantization framework is to improve the speed of convergence of
the cubature formula using the same ideas. Let us consider a random variable X : (2, 4, P) - R
and a quadratic-optimal quantizer XN of X. In our case we show that, if we are in dimension
one there exists, for some functions f, a weak error expansion of the form:

E[f(X)] = B[f(X™)] + % + O(N—C+8)

with 5 € (0,1). We present in Section 4.3.2 a similar result in higher dimension.
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4.3.1 In dimension one

This first result is focused on function f: R — R with Lipschitz continuous second derivative.
In that case, we have a weak error quantization of order two. The first term of the expansion is

equal to zero, thanks to the stationarity of the quadratic optimal quantizer.

Proposition 4.3.1. Let f : R — R be a twice differentiable function with Lipschitz continuous
second derivative. Let X : (2, A,P) — R be a random variable and the distribution of P, of
X has a non-zero absolutely continuous density ¢ and, for every N = 1, let I'y be an optimal
quantizer at level N =1 for X. Then, ¥V 3 € (0,1), we have the following expansion

C2

it O(N~C+0)y,

E[f(X)] =E[f(X™)]+

Moreover, if ¢ : [a,b] — Ry is a Lipschitz continuous probability density function, bounded

away from 0 on [a,b] then we can choose 5 =1, yielding

E[f(X)] = E[f(XV)] + 5 + O(N ).

Proof. 1If f is twice differentiable with Lipschitz continuous second derivatives, we have the
following expansion
1

f@)=fly)+ fy)(z—y)+ %f”(y)(l‘ —y)’+ f (1=t (f"(tz+ (1= t)y) — f"(y)(x — y)*dt

0

hence replacing x and y by X and XN respectively and taking the expectation yields
~ 1 ~ ~ ~
E[f(X)] = E[f(XN)] + 5 B[ (XY)X - X¥P] + R(X, XT)

where R(X,X) = {o(1 =) E[(f"(tX + (1 —6)X) — f"(X))|X — X|*]dt
First, using Theorem 4.1.12 with f”, we have the following limit

: 2 " N v N |2 //
Jim NPE[FRY)IX - XV - auey) [ 19 P

hence
BA(X)] = BLAEN)] + 15 + ROXXY).
Now, we look closely at asymptotic behaviour of R(X, XN ). One notices that, if we consider a

Lipschitz continuous function g : R — R, for any fixed ae (0,1),

Vo, ye R, |g(z) —g(y) < 2|9l 9], e — '™
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In our case, taking g = f”, we have
(/X + (1= )X) = /(X)X - XV

Lip

<E [QHf//H?O[f//]l—atl—a|X _ )?N|1_Q|X _ )?N|2]
< CpptP B[|X — XN [*+7]
with 0 < 8 < 1 where 8 = 1 — «, hence

R(X, XN) < Cp p B[|X = XN,

with 5’5’f~ = Cﬁ’f”m' Using now Theorem 4.1.13 with » = 2 and s = 2 + 3, we have
the desired result: E [|X — XV 2] = O(N~(2*9)) and finally

E[f(X)] = B[f(XM)] + 5 + O~ ),

for every B € (0,1). If moreover, the density ¢ of X is Lipschitz continuous, bounded away
from 0 on [a, b] then we can take g = 1.
O

Now, following the Richardson-Romberg idea, we could combine approximations with
optimal quantizers XN of size N and XV of size N , with N > N in order to kill the residual

term, leadi
erm, leading NQf()?N) B N2f()2N>
E[f(X)]=E N + O(N~@FA)), (4.11)

Remark. For the choice of N , we consider N := k x N. A natural choice for k could be
k = 2 or k = 4/2 but note that the complexity is proportional to (k + 1)N. In practice it is
therefore preferable to take a small k that does not increase complexity too much. For the
numerical example, we choose N :=k x N with k = 1.2, this is arbitrary and probably not

optimal, however even with this &, we attain a weak error of order 3.

4.3.2 A first extension in higher dimension

In this part, we give a first result on higher dimension concerning the weak error expansion
of & [ f(X )] when approximated by I|E [ f ()2' N )] In the next part, we use the following matrix
norm: let M € R4 then || M]| := SUPy:|u|=1 lu? Mul).

Proposition 4.3.2. Let f : R - R be a twice differentiable function with a bounded and
Lipschtiz Hessian H, namely Va,y € R, ||H(z) — H(y)|| < [H],. |t —y|. Let X : (2, A, P) —
R? be a random vector with independent components (Xk)k=1,..d4- For every (N)p=1,..a>1,

Lip

let ()A(évd)k=17,,,,d be quadratic optimal quantizers of (Xi)k=1,..a taking values in the grids
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(TN )k=1,....a respectively and we define XN as the product quantizer X taking values in the
finite grid 'y := ®k:1,..‘,dFNd of size N := Ny X --- x Ng. Then, we have the following

expansion

E[f(X)] = E[f(XM)] + Zd: oy 0(( min Nk)(w))

k=1:d

Proof. If f is twice differentiable, hence we have the following Taylor’s expansion

£(x) = (@) + Vi(a)x — a) + S H(a) - (x — )

+ fl(l —t)(H(tx + (1 —t)a) — H(a)) - (z — a)®2dt
0

where the notation f(z,a) - (x — a)®? stands for (z — a)” f(z,a)(x — a). Replacing z and a by
X and XV respectively and taking the expectation

E[f(X)] =E[f(XM)]+E[VFXN)(X - X)) + % E[HXY) (X - XV)®2]

) (1= OB [(HEX + (1- %) — HEY) - (X - T
0

Noticing that, by Corollary 4.1.7,

k=1 Oxk
: of oN
=Y E|E {(XN)(Xk - X.*) | X_k}
k=1 O,
= 0.
S o Ny oNk—1 o Nkt v Va
where X_j denotes (X', ..., X, "/, X, ', ..., X ¢). Hence
~ 1 ~ ~
E[f(X)]=E[f(XM)]+ 5 E [H(XN) - (X — XN)®?]

1 (4.12)
+f (1-tHE [(H(tX +(1-)XN) - HXN)) - (X - )?N)®2]dt
0
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and looking at the second term in (4.12)
E[H(XY) (X — XV)®2)
)
k=1
d
el o]
=1
k1

o f 2f 4 - -
E (X)X, = X2 +2) B XM (X, — XNey(x, — XN
| \}+ S8 |t (R0~ T 5

o

[ L@y x - R 1) Xf“)]

0x,01;

_

=0

an N N2 | ¥
E E@QX)IX ~ RN R

Il
M~

el
Il
—_

|
M=~
=

0% f ~ ~
]E[a 2(1:1,...,:Uk_l,X,iV’“,ka,...,xd)|Xk —X,iv’“|2}

)?k—mk]

x>
Il
—

E[E [gro (1910 - 25, |

Il
M=~

x>
Il
—

Now, using Theorem 4.1.12, we have the following limits, for each k

Ny—+00

lim N2 [gre (X)X — SP] = Qa(P, ) f G, () P (d).

Giving us the first part of the desired result
d 1
E[f(X)] =E[f(XV)]+ Jff’“ﬁf (A=0F [(HEX +(1=0)XY) = H(XY))-(X - X%t
k 0

with ¢ := %QQ(]PXk) §S ok, (2) P, (dz)P, (dy). Now, we take care of the integral part,
we proceed using the same methodology as in the one dimensional case, using the hypothesis

on the Hessian
E [| (HX + (1 -t XN) - H(XY)) - (X - )?N)®2|] <2°[H)? |H|SPE[|1X - XN

with 8 € (0,1) and |[|H|| := sup,ega [|H ()| Hence

Jl(l —OE[(HEX + (1 -0XY) = BEY)) - (X - KV)%2at
0
1

_ YN 248
S @raa g e B - X
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Using now Theorem 4.1.13, let s = 2 + 3, we have the desired result: IE [\Xk — X,ivklﬂﬁ] =
O(Nk_(%ﬁ)) and finally

d
s Ck . —(2+8)
E[f(X)] = E[£(XN % L0 ( N )
00T = AR+ 3 1 o () )
for every § € (0,1). If moreover, the densities ¢y of Xy, for all &k = 1,... k, are Lipschitz
continuous, bounded away from 0 on [a, b] then we can take § = 1.
O

Remark. Even-though, we could be interested by considering non-independent components
(X%)k=1,..d, the independence hypothesis on the components is necessary in the proof because
we proceed component by component. For example the first order term of the expansion would

not be null by stationarity if the components are not independent.

4.4  Applications

4.4.1 Quantized Control Variates in Monte Carlo simulations

Let Z € L?(PP) be a random vector with components (Zj)x—1, 4, we assume that we have a
closed-form for E[Zy], k= 1,...,d, and f : R? — R our function of interest. We are interested
in the quantity

I:=E|[f(Z)] (4.13)

The standard method for approximating (4.13) if we are able to simulate independent copies of
Z is to devise a Monte Carlo estimator. In this part, we present a reduction variance method

based on quantized control variates. Let =5 our d dimensional control variate

where each component E{CV is defined by

with fr(2) := f(E[Z1],...,E[Zk-1], 2, E[Zk+1], - .., E[Z4]) and ngv is an optimal quantizer of
cardinality N of the component Z;. One notices that the complexity for the evaluation of fj, is
the same as the one of f. Now, defining X* := f(Z) — (\,ZN) where A € R, we can introduce
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IMV as an approximation for (4.13)
Y= E[X]
=E[f(2) - \EY)]

) ) (4.14)
=E|£(2) =D Mfu(Ze) | + D] M E [fo(Z))].
k=1 k=1

The terms E [ fk(z N )] in (4.14) can be computed easily using the quantization-based cubature

formula if we known the grids of the quantizers (2,53\7 Jk=1,....d and their associated weights.

Remark. We look for the Apj, minimizing the variance of X A
Var(X*min) = min {Var (f(Z) — (), EN>),)\ e R? }
The solution of the above optimization problem is the solution of following system
D(Z)-A=B

where D(Z), the covariance-variance matrix of (fi(Z)) p_1_ g and B are given by

1.,

Var (f1(Zl)) -« Cov (fl(Zl), fd(Zd)) Cov (f(Z), fl(Zl))
D(Z) = : : , B= :

Cov (fa(Za), /1(Z1)) --- Var (fa(Za)) Cov (f(2), fa(Za))
The solution to this optimization problem can easily be solved numerically using any library of
linear algebra able to solve linear systems thanks to QR or LU decompositions.

Remark. If the Z’s are independent hence A can be determined easily. Indeed, in that case

the matrix D(Z) is diagonal. Then, the A\;’s are given by

_ Cov (fi(2r), f(2))
Var (fr(Zr))

Ak

Now, we can define T ;\I’N the associated Monte Carlo estimator of IMY

d

M d
f],\w,N _ % Z (f(zm) — Z )\kfk(Z,T)> + Z )\kE[fk(éljfv)]'
m=1 k=1 k=1

One notices that E [I — IMV] # 0, with bias equal to Zi;l Mo (E [fk(f,iv)] —E[fe(Z1)]).
However the quantity we are really interested by is not the bias but the MSE (Mean Squared
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Error), yielding a bias-variance decomposition

2 d
MSE(IMVY) = Z Me(E[fe(Z))] = E [fr(Z1)] 4 Var F(2)= > Mefu(Zr) |-
M

k=1

bias® Monte Carlo variance

Our aim is to minimize the cost of the Monte Carlo simulation for a given MSE or upper-bound

of the MSE. Consequently, for a given Monte Carlo estimator T ;};N our minimization problem
reads
inf  Cost(INN). (4.15)
MSE(IV)<e

Let k = Cost(f(2)) for a given z € RY, the cost of a standard Monte Carlo estimator I o Of size

M is Cost(f ) = M. In our controlled case, if we neglect the cost for building an optimal

fA,N
M

quantizer, the global complexity associated to the Monte-Carlo estimator is given by

Cost(IMN) = w((d +1)M + dN)

where the cost of the computation of f(z)— A Zzzl fr(z) is upper-bounded by (d + 1)k whereas
kdN is the cost of the quantized part. Indeed, there is d expectations of functions of IN-
quantizers to compute, inducing a cost of order kdN. Some optimizations can be implemented

when computing fi(z), in that case Cost(fx(z)) < k. So, (4.15) becomes

inf  k((d+1)M + dN).
MSE(I;V)<e?
Moreover, using the results in the first part of the paper concerning the weak error, we could
define an upper-bound for the M SE (f j‘{’N ), indeed if each fj is in a class of function where the

weak error of order two is attained when using a quantization-based cubature formula then

[\

=

2
o3 C o
MSE(INN) = (ZM( [:(Z)] - [fk(Zk)]>> ﬁ<m 2
with o3 := Var (f(2) — Zzzl Mef&(Zk)). Now, our minimization problem becomes

1nﬁ£ k((d+1)M + dN).
A

154 corresponds to the squared empirical bias and 2 to the empirical variance, hence a standard

approach when dealing with this kind of problem, is to equally divide €2 between the bias and
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2
the variance: 17 = 5 and Uﬁ = % yielding
N=0(2) and M=0(?2),

hence the cost would be of order O(e~2). However, as the cost is additive and in the case where
af\ is close to Var ( fz )), meaning that the control variate does not really reduce the variance,
we want to reduce the bias as much as we can. So another idea could be to choose both terms
M and N of order O(¢~2), because the impact on the cost of the Monte Carlo is at least of
this order. Then, we search 0 € (0,1) defined by

2
OX

C
0> = — d(1-6)=-2
€ and ( )e ,

N4
such that the impact on the cost of the Monte Carlo part and the quantization part are of same

order: O(e~2). In that case, 6 is given by

In practice, we do take not that high value for N. Indeed, the bias converges to 0 as N %
taking optimal quantizers of size 200 or 500 is enough for considering that the bias is negligible

compared to the residual variance of the Monte Carlo estimator.

Remark. Now, if we consider that we have no closed-form for E[Zy], k = 1,...,d, then we
need to approximate them by my (this would impact the total cost of the method, as one would
need to use a numerical method for computing the my’s but this can be done once and for all
before estimating T ]’\\/V ). These approximations yield different control variates: the functions

fk(z) = f(ma,...,mg_1,2,Mg41,...,mq), inducing a different MSE

MSE(TY) - (ZM( >]—E[ﬁ<zk>])> t o

with 5% := Var (f(Z) — Zgzl kak(Zk)) and Xk, k=1,...,d. Finally, we can conclude in the
same way as before if the fk’s are in a class of function where the weak error of order two is
attained when using a quantization-based cubature formula.

4.4.2 Numerical results

Let (St)e[o,r] be a geometric Brownian motion representing the dynamic of a Black-Scholes
asset between time ¢ = 0 and time ¢ = T defined by

S, = Sy e(r—0'2/2)t+aWt
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with (Wt)sep0,7) @ standard Brownian motion defined on a probability space (2,4, P), r the
interest rate and o the volatility. When considering to use optimal quantization with a Black-
Scholes asset, we have two possibilities: either we take an optimal quantizer of a normal
distribution as W ~ N(0,T) or we build an optimal quantizer of a log-normal distribution as
log(e(r=o*/AT+eWr) . Af ((r —02/2)T,02T). In this part we consider both approaches since
each one has its benefits and drawbacks.

Optimal Quantizers of log-normal random variables need to be computed each time we
consider different parameters for the Black-Scholes asset. Indeed, the only operations preserving
the optimality of the quantizers are translations and scaling. However, this transformations are
not enough if one wishes to build an optimal quantizer of a Log-Normal random variables with
parameters 1 and o from an optimal quantizer of a standardized Log-Normal random variable.
However, if one looses time by computing for each set of parameters an optimal quantizer for
the log-normal random variable, it gains in precision.

Now, if we consider the case of optimal quantizers of normal random variables, we loose in
precision because we do not quantize directly our asset but the optimal quantizers of normal
random variables can be computed once and for all and stored on a file. Indeed, we can build
every normal random variable from a standard normal random variable using translations
and scaling. Moreover, high precision grids of the N(0, 1)-distribution are in free access for
download at the website: www.quantize.maths-fi.com.

Substantial details concerning the optimization problem and the numerical methods for
building quadratic optimal quantizers can be found in [Pagl8; PP03; PPP04b; McW+18]. In
our case, we chose to build all the optimal quantizers with the Newton-Raphson algorithm (see
[PP03] for more details on the gradient and Hessian formulas for the N (0, 1)-distribution and
[McW+18] for other distributions) modified with the Levenberg-Marquardt procedure which

improves the robustness of the method.

4.4.2.1 Vanilla Call
The payoff of a Call expiring at time T is
(ST — K)+

with K the strike and T' the maturity of the option. Its price, in the special case of Black-Scholes

model, is given by the following closed formula
Ip:=E[e(Sr — K);] = Call,;o(So, K,7,0,T) = SoN(d1) — Ke ™" N(dz)  (4.16)

where N (x) is the cumulative distribution function of the standard normal distribution, d; :=

log(SO/K;T/(%JFUQ/Q)T and dy := di — o/T. Although the price of a Call in the Black-Scholes

model can be expressed in a closed form, it is a good exercise to test new numerical methods
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against this benchmark. We compare the use of optimal quantizers of normal distribution,
when one quantizes the law of the Brownian motion at time 7' and log-normal distribution
when one quantizes directly the law of the asset Sp at time T.

In the first case, we can rewrite Iy as a function of a random variable Z with a N'(0,1)-

distribution, namely a normal distributed random variable,
E[e7(Sr—K)4| =E[f(2)]

where f(z) := e T (sger="/ DT+ovTz _ ¢ )+ is continuous with a piecewise-defined locally-
Lipschitz derivative, with respect to the function g(x) = eoVTlal

In the second case, we have
E[e " (Sr— K)4] =E[e(Sr)]

where p(x) := e (z — K), is piecewise affine with one break of affinity.

The Black-Scholes parameters considered are
so = 100, r=0.1, o =0.5,

whereas those of the Call option are T = 1 and K = 80. The reference value is 34.15007.
The first graphic in the Figure 4.1 represents the weak error between the benchmark and the
quantization-based approximations in function of the size of the grid: N — ‘Io —E [ f (2N )]‘
and N — ’Io —-E [go()? N )] ’, the second represents the weak error multiplied by N? in function
of N: N N2 x |Iy = E[f(ZV)]]| and N +—> N? x I — E [p(XM)]].
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Fig. 4.1 Call option in a Black-Scholes model.

First, we notice that both methods yield a weak-error of order 2, as desired. Second, if we
look closely at the results the log-normal grids give a more precise price. However we need to

build a specific grid each time we have a new set of parameters for the asset, whereas such is
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not the case when we choose to quantize the normal random variable, we can directly read
precomputed grids with their associated weights in files.
4.4.2.2 Compound Option

The second product we consider is a Compound Option: a Put-on-Call. The payoff of a

Put-on-Call expiring at time 77 is the following
(Kl —E[e ™) (S, — Ky)y | ST1])+
with price
IO — K |:erT1 (Kl —E [efT(T2*T1)(ST2 - K2)+ | ST1]) :| (417)
+

The inner expectation can be computed, using the fact that Sp, is a Black-Scholes asset and we

know the conditional law of Sz, given St,. Using (4.16), the value of the inner expectation is
E[e " T)(Sy, — Ks)4 | Sty | = Call o (Sty, Ko, 7,0,Ts — Th).
Hence, the price of the Put-On-Call option in (4.17) can be rewritten as
Iy =B | e”™ (Ky = Callyy(Sry, Kor,0, T = Th)) .
The Black-Scholes parameters considered are
so = 100, r = 0.03, o=0.2,

whereas those of the Put-On-Call option are Th = 1/12, T, = 1/2, K; = 6.5 and K3 = 100. The
reference value, obtained using an optimal quantizer of size 10000 of the N (0, 1)-distribution,
is 1.3945704. As in the vanilla case, we compare the use of optimal quantizers of normal

distribution and log-normal distribution. In the first case, we have

Iy =E[f(2)]

where Z ~ N(0,1) and f(z) = et (K; — Call,,4(so or=o*2ATi+ovTiz |y o Ty — Tl))+,
and in the second case
Iy = E [¢(X)]

where log(X) ~ N ((r —02/2)T,0v/T) and ¢(z) = e ™1 (K1 — Call ;4 (soz, Ko, 7,0, T5 — Tl))+.
The first graphic in Figure 4.2 represents the weak error between the benchmark and the
quantization-based approximations in function of the size of the grid: N —— |Io - E [ f (2 N )]|
and N — ‘Io —E [cp()? N )] |, the second allows us to observe if the rate of convergence is indeed

of order 2.
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Fig. 4.2 option in a Black-Scholes model.

We notice that both methods yield a weak-error of order 2 as desired, however it is not
clear that one should use the log-normal representation of (4.17) in place of the Gaussian
representation. Indeed, both constants in the rate of convergence are of the desired order
and getting Gaussian optimal quantizers is much cheaper than building optimal quantizers of
log-normal random variables. Hence, one should choose the Gausian representation as it is as

precise as the log-normal one and is much cheaper.

4.4.2.3 Exchange spread Option

In this part, we consider a higher dimensional problem. Let two Black-Scholes assets (S%);—1.2
at time 7T related to two Brownian motions (Wi);—1 9, with correlation p € [—1,1]. We are

interested by an exchange spread option with strike K with payoff
(Sp — 57 — K)+

whose price is
Iy:=E[e (S} — 57 — K)4]. (4.18)

Decomposing the two Brownian motions into two independent parts, we have (Wr}, W%) =
ﬁ(«/l — p?Z4 + pZa, Zs), where Z; and Zs are two independent N (0, 1)-distributed Gaussian

random variables. Now, pre-conditioning on Z3 in (4.18) and using (4.16), we have
I = B [p(Z)]
where

o(z) = Call, (S(l] efngfT/Qerpﬁz’ Sg e(rfa§/2)T+azﬁz YK, 7 o1/1 — p2, 7).
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The numerical specifications of the function ¢ are as follows:
sh =100, r=0.02, o0;=05 p=05 T=10, K =10.

In that case, the reference value is 53.552678.
First, we look at the weak error induced by the quantization-based cubature formula when
approximating (4.18). We use optimal quantizers of the normal random variable Zs. The

quantization-based approximation is denoted T N,

~

Iy == E[p(ZM)].

The first graphic in Figure 4.3 represents the weak error between the benchmark and the

quantization-based approximation in function of the size of the grid: N —— ‘IO —E [g0(2 N )]

)

the second plots N —— N2 x ‘Io —E [90(2]\7)]} and allows us to observe that the rate of
convergence is indeed of order 2.
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Fig. 4.3 Ezchange spread option pricing in a Black-Scholes model.

Now, noticing that ¢ is a twice differentiable function with a bounded second derivative, we
show that we can attain a weak error of order 3 when using a Richardson-Romberg extrapolation
denoted I 1%1}2\1 and defined in (4.11).
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Fig. 4.4 Richardson-Romberg extrapolation, with N =12x N, for Exchange spread option
pricing in a Black-Scholes model.

4.4.2.4 Basket Option

A typical financial product that allows to diversify the market risk and to invest in options is a
basket option. The simplest one is an option on a weighted average of stocks. For example, if we
consider an option on the FTSE index, this is a basket option where the assets are the companies
defined in the description of the index and the weights are the market capitalization of each
company at the time we built the index normalized by the sum on all market capitalizations.

In this part, we consider d correlated assets (S%) k=1,....d following a Black-Scholes model
and the payoff we consider is

d
f(SE ..., 8%) = (Z akS:’ﬁ—K> (4.19)
k=1

+

whose price is
d
Iy:=eTE [( > Sk —K) ]
k=1 +

Iy cannot be computed directly, hence we use a Monte Carlo estimator in order to approximate
the expectation. The standard estimator, denoted I, M, is the crude Monte Carlo estimator and

is given by

M d

> L k.(m)

IM =€ M Z akST K
k=1 +

m=1

where (S:Iﬁ’(m))m:h,,,M are i.i.d. copies of Sé‘i. We compare the crude estimator to our

novel approach based on a d-dimensional quantized control variates ZV. In that case, Iy is
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approximated by IV defined by

d
Ni.=eE [( > Sk —K> —\EN ]
k=1 +

where ZV is defined later, yielding the following Monte Carlo estimator

- a1 . .
LNi=e TM Z (; Oszf( )_K>+—<>\75N’( 5.
m= =1

We propose two different control variates =V based on optimal quantizers either of log-normal

random variables or of Gaussian random variables.

1. The control variate, denoted ?N, is defined by, Vk =1,...,d

Sy = f(B[SK],..., 5%, ... B[SE]) —E[f(B[Sk],..., 55N . E[S$])]

where (gzlﬁ’N)k=17n_7d are optimal quantizers of cardinality N of S’%. In that case, the
~\N
Monte Carlo estimator is denoted I, .

2. The control variate, denoted =N , is using another representation of the payoff (4.19),
using d Gaussian random variables i.i.d in place of the assets Séi because the d underlying
correlated Brownian Motions can be expressed from d rescaled independent Gaussian

random variables, thus we define ¢ our new representation for the payoff as

(p(Zl,__.’Zd) = f(S%—H"'?S’Jd_‘)

where (Zk Jk=1,....d are i.i.d Gaussian random variables. Now, defining our control variates
with the function ¢, Vk =1,...,d

where (EN)k:L_“,d is an optimal quantizer of Z ~ N(0,1). In that case, the Monte Carlo

estimator is denoted IJ’\}’N.

The Black-Scholes parameters considered are

sh = 100, r = 2%, =TT p=0.5,
and the specifications of the product are
9;
K =100, aj=-—— . T=1

d(d+1)’
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such that > a; = 1. The benchmarks used for the computation of the MSE has been computed
using a Monte Carlo estimator with control variate without quantization where the term
ZZ=1 E[X}] is computed using Black-Scholes Call pricing closed formulas. The Mean Squared
Error of an estimator I is computed using the formula

MSE(I

S\H

where (I(i))izl,“_,n are n independent copies of I.
Table 4.1 compares three different types of Monte Carlo estimators: the standard (Crude)
Monte Carlo estimator I, M, our novel Monte Carlo estimator with control variate based on

optimal quantizers of Gaussian random variables T])\}N and another one with optimal quantizers
A\ N
of log-normal random variables /,, . The notation n corresponds to the number of Monte

Carlo used for computing the MSE, M is the size of each Monte Carlo and N is the size of the

optimal quantizers. The prices of reference for each d are

for d = 2: 14.2589 (+0.0010),

for d = 3: 14.1618 (+0.0015),

for d = 5: 13.9005 (£0.0022),

for d = 10: 13.4979 (+0.0034).

N =120 N =200

d MC Estimator | Mean (£1.96xstd) | MSE | Mean (+1.96xstd) | MSE
Crude 14.2695 (£0.0662) | 0.1450 | 14.2695 (+0.0662) | 0.1450

d=2 OV Gaussian | 14.1017 (£0.0399) | 0.0774 | 14.2773 (£0.0399) | 0.0530
CV Log-Normal | 14.2351 (£0.0078) | 0.0026 | 14.2614 (+0.0078) | 0.0020

Crude MC 14.1770 (£0.0671) | 0.1492 | 14.1770 (+0.0671) | 0.1492

d=3 CV Gaussian 14.0336 (+0.0451) | 0.0837 | 14.1685 (£0.0451) | 0.0673
CV Log-Normal | 14.1479 (£0.0104) | 0.0038 | 14.1674 (+0.0104) | 0.0036

Crude MC 13.8803 (£0.0720) | 0.1717 | 13.8803 (+0.0720) | 0.1717

d=5 CV Gaussian 13.6686 (+0.0562) | 0.1580 | 13.8883 (+0.0562) | 0.1044
CV Log-Normal | 13.8797 (+0.0151) | 0.0080 | 13.9008 (+0.0151) | 0.0076

Crude MC 13.5046 (£0.0599) | 0.1186 | 13.5046 (+0.0599) | 0.1186

d=10 CV Gaussian 13.2429 (+0.0515) | 0.1527 | 13.5113 (£0.0515) | 0.0878
CV Log-Normal | 13.4221 (£0.0194) | 0.0181 | 13.4983 (+0.0194) | 0.0124

Table 4.1 n =128, M = led

One remarks in Table 4.1 the efficiency of the optimal quantization-based variance reduction
method. The variance, in the best cases, can be divided by almost 100 when using the optimal

quantizers of Log-Normal random variables. Figure 4.5 shows the effect of N (for d = 3), the



4.4 Applications 123

size the optimal quantizers, on the bias. The same seeds are used for all the Monte Carlo

estimator, the only thing varying is N.
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Fig. 4.5 n =128, M = led, d = 3.






Chapter 5

Stationary Heston model:
Calibration and Pricing of exotics
using Product Recursive

Quantization

This chapter corresponds to the preprint “Stationary Heston model: Calibration and Pricing of
exotics using Product Recursive Quantization” accessible in arXiv or HAL (see [LMP20]). This

article is a joint work with Vincent Lemaire and Gilles Pages.

Abstract A major drawback of the Standard Heston model is that its implied volatility
surface does not produce a steep enough smile when looking at short maturities. For that
reason, we introduce the Stationary Heston model where we replace the deterministic initial
condition of the volatility by its invariant measure and show, based on calibrated parameters,
that this model produce a steeper smile for short maturities than the Standard Heston model.
We also present numerical solution based on Product Recursive Quantization for the evaluation

of exotic options (Bermudan and Barrrier options).

Introduction

Originally introduced by Heston in [Hes93], the Heston model is a stochastic volatility model
used in Quantitative Finance to model the joint dynamics of a stock and its volatility, denoted
(St(x))tzo and (v¥)¢=0, respectively, where v§ = x is the initial condition of the volatility.
Historically, the initial condition of the volatility x is considered as deterministic and is
calibrated in the market like the other parameters of the model. This model received an

important attention among practitioners for two reasons: first, it is a stochastic volatility model,


https://arxiv.org/abs/2001.03101
https://hal.archives-ouvertes.fr/hal-02434232
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hence it introduces smile in the implied volatility surface as observed in the market, which is
not the case of models with constant volatility and second, in its original form, we have access
to a semi closed-form formula for the characteristic function which allows us to price European
options (Call & Put) almost instantaneously using the Fast Fourier approach (Carr & Madan
in [CM99]). Yet, a complaint often heard about the Heston model is that it fails to fit the
implied volatility surface for short maturities because the model cannot produce a steep-enough
smile for those maturities (see [Gatll]).

Noticing that the volatility process is ergodic with a unique invariant distribution v = I'(«, f3)
where the parameters o and 3 depend on the volatility diffusion parameters, it has been first
proposed by Pages & Panloup in [PP09] to directly consider that the process evolves under
its stationary regime in place of starting it at time 0 from a deterministic value. We denote
by (Sfy))tgo and (vy )0 the couple asset-volatility in the Stationary Heston model. Replacing
the initial condition of the volatility by the stationary measure does not modify the long-term
behavior of the implied volatility surface but does inject more randomness into the volatility for
short maturities. This tends to produce a steeper smile for short maturities, which is the kind
of behavior we are looking for. Later, the short-time and long-time behavior of the implied

volatility generated by such model has been studied by Jacquier & Shi in [JS17].

In the beginning of the paper, we briefly recall the well-known methodology used for the
pricing of European option in the Standard Heston model. Based on that, we express the price

Iy of a European option on the asset S(TV) as

I =E[e T (%)) = E[f(v})] (5.1)

where f(v) is the price of the European option in the Standard Heston model for a given set of
parameters. The last expectation can be computed efficiently using quadrature formulas either
based on optimal quantization of the Gamma distribution or on Laguerre polynomials.

Once we are able to price European options, we can think of calibrating our model to
market data. Indeed the parameters of the model are calibrated using the implied volatility
surface observed in the market. However, the calibration of the Standard Heston model is
highly depending on the initial guess we choose in the minimization problem. This is due to an
over-parametrization of the model (see [GR09]). Hence, when we consider the Heston model in
its stationary regime, there is one parameter less to calibrate as the initial value of the volatility
is no longer deterministic. The stationary model tends to be more robust when it comes to

calibration.

In the second part of paper, we deal with the pricing of Exotic options such as Bermudan
and Barrier options. We propose a method based on hybrid product recursive quantization. The
"hybrid" term comes from the fact that we use two different types of schemes for the discretization
of the volatility and the asset (Milstein and Euler-Maruyama). Recursive quantization was
first introduced by Pages & Sagna in [PS15]. It is a Markovian quantization (see [PPP04b])
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drastically improved by the introduction of fast deterministic optimization procedure of the
quantization grids and the transition weights. This optimization allows them to drastically
reduce the time complexity by an order of magnitude and build such trees in a few seconds.
Originally devised for Euler-Maruyama scheme of one dimensional Brownian diffusion, it
has been extended to one-dimensional higher-order schemes by [McW+18] and to medium
dimensions using product quantization (see [FSP18; Rud+17; CFG18; CFG17; PS18b]). Then,
once the quantization tree is built, we proceed by a backward induction using the Backward
Dynamic Programming Principle for the price of Bermudan options and using the methodology
detailed in [Sagl0; Pagl8] based on the conditional law of the Brownian Bridge for the price of

Barrier options.

The paper is organized as follows. First, in Section 5.1, we recall the definition of the
Standard Heston model and the interesting features of the volatility diffusion which bring us to
define the Stationary Heston model. In Section 5.2, we give a fast solution for the pricing of
FEuropean options in the Stationary Heston model when there exists methods for the Standard
model. Finally, once we are able to price European options, we can define the optimization
problem of calibration on implied volatility surface. We perform the calibration of both models
and compare their induced smile for short maturities options. Omnce this model has been
calibrated, in Section 5.3, we propose a numerical method based on hybrid product recursive
quantization for the pricing of exotic financial products: Bermudan and Barrier options. For

this method, we give an estimate of the L?-error introduced by the approximation.

5.1 The Heston Model

The Standard Heston model is a two-dimensional diffusion process (St(x), vf) solution to the

Stochastic Differential Equation

dsy” ~
(tx) = (r — q)dt + /vf (pdWy + /1 — p2dWy)

S (5.2)
dv{ = k(0 —vf)dt + &/vfdf/[vft

where

St(x) is the dynamic of the risky asset,

v is the dynamic of the volatility process,

. Séz) = so = 0 is the initial value of the process,

r € R denotes the interest rate,

q € R is the dividend rate,
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p € [—1,1] is the correlation between the asset and the volatility,

(W, W) is a two-dimensional standard Brownian motion,

0 = 0 the long run average price variance,

k = 0 the rate at which v} reverts to 0,

& = 0 is the volatility of the volatility,
e vy = x = 0 is the deterministic initial condition of the volatility.

This model is widely used by practitioner for various reasons. One is that it leads to
semi-closed forms for vanilla options based on a fast Fourier transform. The other is that it
represents well the observed mid and long-term market behavior of the implied volatility surface
observed on the market. However, it fails producing or even fitting to the smile observed for

short-term maturities.

Remark (The volatility). One can notice that the volatility process is autonomous thence
we are facing a one dimensional problem. Moreover, the volatility process is following a
Cox-Ingersoll-Ross (CIR) diffusion also known as the square root diffusion. Existence and
uniqueness of a strong solution to this stochastic differential equation has been first shown in
[IW81], if x = 0. Moreover, it has been shown, see [LL11], that if the Feller condition holds,

namely &2 < 2x6, for every = > 0, then the unique solution (v{);>¢ satisfies
V=0, P(ry=+w0)=1 (5.3)
where 77 is the first hitting time defined by
75 = inf{t > 0| vf =0} where inf & = +c0. (5.4)

Moreover, the CIR diffusion admits, as a Markov process, a unique stationary regime, charac-

terized by its invariant distribution
v =T(a,) (5.5)

where
a=08 and B =2/ (5.6)

Based on the above remarks, the idea is to precisely consider the volatility process under its
stationary regime, i.e., replacing the deterministic initial condition from the Standard Heston
model by a v-distributed random variable independent of (W, I/IN/) We will refer to this model
as the Stationary Heston model. Our first aim is to inject more randomness for short maturities

(t small) into the volatility but also to reduce the number of free parameters to stabilize and
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robustify the calibration of the Heston model which is commonly known to be overparametrized
(see e.g. [GR09)).

This model was first introduced by [PP09] (see also [ITW81], p. 221). More recently, [JS17]
studied its small-time and large-time behaviors of the implied volatility. The dynamic of the
asset price (St('/))t>0 and its stochastic volatility (v})¢>0 in the Stationary Heston model are

given by

)

dS ~

o = (1= )t o (pdWe & V1 - p2dWi) (5.7)
t .

dv? = k(6 — V) dt + EJordW,

where v§ ~ L(v) ~ T'(a, 8) with 8 = 2x/£2, a = 0. Séy), r and ¢ are the same parameters as
those defined in (5.2) and the parameters p, 6, k, 6 and £ can be described as in the Standard

Heston model.

5.2 Pricing of European Options and Calibration

In this section, we first calibrate both Stationary and Standard Heston models and then compare
their short-term behaviors of their resulting implied volatility surfaces. For that purpose we
relied on a dataset of options price on the EURO STOXX 50 observed the 26th of September 2019
(see Figure 5.1). This is why, as a preliminary step we briefly recall the well-known methodology
for the evaluation of European Call and Put in the Standard Heston model. Based on that,
we outline how to price these options in the Stationary Heston model. Then, we describe
the methodology employed for the calibration of both models: the Stationary Heston model
(5.7) and the Standard Heston model (5.2) and then we discuss the obtained parameters and

compare their short-term behaviors.

5.2.1 European options
)

The price of the European option with payoff ¢ on the asset S(TV , under the Stationary Heston

model, exercisable at time T is given by
Iy =E[e T o(si)]. (5.8)
After preconditioning by vy, we have
Iy =B |E[eTo(8{) | o(t)]| = B[f(o5)] (5.9)

where f(v) is the price of the European option in the Standard Heston model with deterministic

initial conditions for the set of parameters A(v) = (so,7,q, 0, K, &, p,v).
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Example 5.2.1 (Call). If ¢ is the payoff of a Call option then f is simply the price given
by Fourier transform in the Standard Heston model of the European Call Option. The price
at time 0, for a spot price sp, of an European Call C(\(v), K,T) with expiry T" and strike K
under the Standard Heston model with parameters \(v) = (so,r,q, 0, k,&, p,v) is
COAW), K, T) = [e " T(S%) — K),]
— T (v)
=e " (E[ST ]lS(Tv)>K]_K]E[]lS§F”)>K]) (5.10)

=spe T PL(A(v),K,T) — Ke " Po(A\(v), K, T)

with P (A(v), K,T) and P2(\(v), K,T) given by

1 1 [+ —iulog(K) Av),u—1i,T
Pl()\(v),K,T):f f Rel & . w( (v),u —1i ) du
2 7 iu sger—a)T
. (5.11)
1 1 [+ eflulog(K)
PQ()\(U),K,T) = 5 WL Re(iuw()\(v),u,T)>du
where i is the imaginary unit s.t. i* = —1, ¢ (A(v),u, T) is the characteristic function of the

logarithm of the stock price process at time T'. Several representations of the characteristic
function exist, we choose to use the one proposed by [SST04; Gatll; Alb+07], which is

numerically more stable. It reads

V(M) .T) = B[ 55 | 5 o]
_ iulog(s0)+(r—a)T)

| _ » (5.12)
o« o6 ((n—ptui—d)T—210g((1-ge~*)/(1-g)))

% eV € 2 (n—pEui—d)(1—e~¥)/(1-ge™ %)

with

d=+/(ptui — k)2 — 2(—ui —u2) and ¢ = (k— pfui—d)/(k — pEui + d). (5.13)
Hence, in (5.9), f(v) can be replaced by C(A(v), K, T), which yields
I=E[e"T(SY —K),] =B [C()\(v(‘)’), K, T)]. (5.14)

Now, we come to the pricing of European options in the Stationary Heston model, using

the expression of the density of v§ ~ I'(a, ), (5.9) reads

Iy=E[f(v)] = . f(v)mvo‘_]L e PV dv. (5.15)

Now, several approaches exists in order to approximate this integral on the positive real line.

+00 6&
«
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e Quantization based quadrature formulas. One could use a quantization-based cubature
formula with an optimal quantizer of v with the methodology detailed in Appendix 5.D. Given
that optimal quantizer of size IV, ﬁév , we approximate Iy by fév

N
B =B[f@")] = fd) P (@ = vdy). (5.16)
=1

Remarks. In one dimension, the minimization problem, that consists in building an optimal
quantizer, is invariant by linear transformation. Hence applying a linear transformation to an
optimal quantizer preserves its optimality. For example, if we consider an optimal quantization
XN of a standard normal distribution N (0,1) then u + o X" is an optimal quantizer of a
normal distribution N (i, 0%) and the associated probabilities of each Voronoi centroid stay the

same.

In our case, noticing that if we consider a Gamma random variable X ~ I'(a, 1) then the
rescaling of X by 1/3 yields X/ ~ I'(a, ). Hence, for building the optimal quantizer 5}’
of vy, we can build an optimal quantizer of X ~ I'(r, 1) and then rescale it by 1/4, yielding
@(J]V = XN /B. Our numerical tests showed that it is numerically more stable to use this approach.
In order to build the optimal quantizer, we use Lloyd’s method detailed in Appendix 5.D to
X ~ I'(a, 1) with the cumulative distribution function F, (z) = P(X < z) and the partial first

moment K, (z) = E[X 1x<;] given by

Vo >0, F, (z) = F(la)v(a,a:), K, (z) = aF, (z) — xI‘(Z) , (5.17)
otherwise, F.(xz)=0, K, (z)=0,

where y(a, z) = Sg to~Le~t dt is the lower gamma function. And the associated probabilities of

the optimal quantizer 9 are given by (5.113)

P (@év = U(])Yi) =P ()A(N = a:fv) =F, (mﬁlﬂ) —F, (%]\11/2) (5.18)

, N z el N N
where Vi € [[2,]\7]],1:1._1/2 =5 and 27, = 0 and a7 5 = 0.
e Quadrature formula from Laguerre polynomials. One could also use an algorithm based on
fixed point quadratures for the numerical integration. Indeed, noticing that the density we are
integrating against is a gamma density which is exactly the Laguerre weighting function (up to

a rescaling). Then, I rewrites

(T vﬁva_ e Py = G v)w(v)dv
B | )pg e = s | (o) (519)
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Fig. 5.1 Implied volatility surface of the EURO STOXX 50 as of the 26th of September 2019.
(So = 3541, r = —0.0032 and q = 0.00225) The expiries T are given in days and the strikes K

in percentage of the spot.

where w(v) = v®~!e7P is the Laguerre weighting function. Then, for a fixed integer n > 11,

Iy is approximated by

n

L s ) (5.20)

=1

where the w;’s are the Laguerre weights and the v;’s are the associated Laguerre nodes.

5.2.2 Calibration

Now that we are able to compute the price of European options, we define the problem of
minimization we wish to optimize in order to calibrate our models parameters. Let Py, be the

set of parameters of the Stationary Heston model that needs to be calibrated, defined by
Pow = {(0,r,&,p) e Ry x Ry x Ry x[—1,1]} (5.21)

and let P, be the set of parameters of the Standard Heston model that needs to be calibrated,
defined by

P, ={(z,0,r,&p) € Ry x Ry x Ry x Ry x[—1,1]}. (5.22)

The others parameters are directly inferred from the market: we get Sg = 3541, r = —0.0032

and ¢ = 0.00225. In our case, we calibrate to option prices all having the same maturity.

n practice, we choose n = 20. This number of points allows us to reach a high precision while keeping the

computation time under control.
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The problem can be formulated as follows: we search for the set of parameters ¢* € P that
minimizes the relative error between the implied volatility observed on the market and the
implied volatility produced by the model for the given set of parameters, such that P = P,
for the Stationary Heston model and P = P,, for the Standard Heston model. There is no need
to calibrate the parameters sy, r and ¢ since they are directly observable in the market.
Being interested in the short-term behaviors of the models, it is natural to calibrate both
models based on options prices at a small expiry. Once the optimization procedures have been
performed, we compare their performances for small expiries. For that, we calibrate using only
the data on the volatility surface in Figure 5.1 with expiry 50 days (7" = 50/365) and then we
compare both models to the market implied volatility at expiry 22 days which is the smallest

available in the data set.

Remark. The calibration is performed in C++ on a laptop with a 2,4 GHz 8-Core Intel Core
i9 CPU using the randomized version of the simplex algorithm of [NM65] proposed in the C++
library GSL. This algorithm is a derivative-free optimization method. It uses only the value
of the function at each evaluation point. The computation time for calibrating the Standard
Heston model is around 20s and a bit more than a minute for the Stationary model. However,
these computation times need to be considered carefully because the calibration time highly
depends on the initial condition we choose for the minimizer and on the implementation of the

Call pricer in the Standard Heston model.

5.2.2.1 Optimization without penalization

We want to find the set of parameter ¢* that minimizes the relative error between the volatilities
observed in the market and the ones generated by the model, hence leading to the following

minimization problem

Market K.T) — M odel K.T 2
min (UIV (K,T) — oy (0, K, )) (5.23)

beP = O-I]\élarket (K, T)

where T is the expiry of the chosen options chosen a priori and K are their strikes. ol arket (K T')
is the Mark-to-Market implied volatility taken from the observed implied volatility surface
and the implied volatility o}°%!(¢, K, T) is the Black-Scholes volatility o that matches the
European Call price in this model to the price given by the Standard or Stationary Heston

model with the set of parameters ¢.

In all the following figures, the strike K is given in percentage of the spot Sp.
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Fig. 5.2 Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days without penalization.

It is clear in Figure 5.2 (right) that both models fit really well to the market data and more
precisely, the Stationary model succeeds to calibrate with the same precision as the Standard
one with one less parameter. Moreover, one notices that even for 22 days maturity options, the
Standard Heston model tends to over-estimate the implied volatility and fails to produce the
right smile whereas the Stationary Heston model is closer to the market observations.

Now, we extrapolate the implied volatility surfaces, given by the two models, for even
smaller maturities (7 and 14 days) in order to analyze the behavior of each model for short-term

expiries.
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Fig. 5.3 Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at 50
days without penalization.

It is clear in Figure 5.3 that the Standard Heston model fails at producing the desired smile
for very small maturities when the Stationary model meets no difficulty to generate it. The
next graphics, Figure 5.4 reproduces the term-structure of the implied volatility in function of

T both models.
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Fig. 5.4 Term-structure of the volatility in function of T and K of both models (left: Standard
Heston and right: Stationary Heston) after calibration at 50 days without penalization.

Now, we investigate how these models behave for longer maturities. Do they succeed in
preserving the general shape of the market volatility surface or are they only correctly fitting
the maturity on which we calibrated them?

Figure 5.5 represents the relative error between the implied volatility given by the market
and the one given by the models calibrated models at 50 days. Clearly, one notices that the
Standard Heston model only fits at this expiry. Indeed, when looking at the expiry 22 days or
for long-term maturities, the relative error explodes. The term-structure of the implied volatility
surface of the market is not preserved when using the Standard Heston model. However, the
Stationary Heston model does fit well at both short and long term expiries. The Stationary
model produces a steep smile for very short maturities and flattens correctly to the appropriate

mean for long expiries.

¢* (. vo 0 m ¢
Standard Heston || —0.74 0.152584 0.01487 80.05  5.22
Stationary Heston || —0.75 0.02744 593.46 36.80

Table 5.1 Parameters obtained for both models after calibration without penalization for options
with maturity 50 days (So = 3541, r = —0.0032 and g = 0.00225).

However, looking closely at the parameters obtained after calibration (which are summarized
in Table 5.1), one notices that both sets of calibrated parameters are far from satisfying the
Feller condition. And we have to keep in mind that the calibration procedure is performed in
order to price path-dependent or American style derivatives using Monte-Carlo simulation or
alternative numerical methods, as developed in the next Section. Hence, the Feller condition
has to be satisfied, this is the reason why we add a constraint to the minimization problem in

order to penalize the sets of parameters not satisfying the condition.
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Fig. 5.5 (K,T) — oy @kt (K T) —oy 00! (¢, K.T)| for both models after calibration at 50 days

O.I]\\ffarket (K,T)
without penalization. The expiries T are given in days and the strikes K are in percentage of
the spot. (left: Standard Heston and right: Stationary Heston).

5.2.2.2 Optimization with penalization using the Feller condition

The minimization problem becomes

Market K. T) — Model K. T 2
min (O-IV ( ) ) UIV (QS? ) ))

A 2 _92k6,0 5.24
¢€P K J%arket(K’ T) + maX(§ K bl ) ( )

where ) is the penalization factor to be adjusted during the procedure. The obtained parameters
after calibration are summarized in Table 5.2. The Feller condition is still not fulfilled for both
models but it is not far from being satisfied. We choose A = 0.01 which seems to be right the

compromise in order to avoid underfitting the model because of the constraint.

a | » w 6 kg

Standard Heston H —0.83 0.0045 0.17023 2.19 1.04

Stationary Heston || —0.99 0.02601 19.28 1.15

Table 5.2 Parameters obtained for both models after calibration with penalization (A = 0.01) for
options with maturity 50 days (So = 3541, r = —0.0032 and q = 0.00225).

Figure 5.6 displays the resulting implied volatility curves at 50 days and 22 days for both
calibrated models and observed in the market with calibration at 50 days. Adding a penalization
term deteriorates the calibration results compared to the non-penalized case (see Figure 5.2

(right)) but the results are still acceptable.
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Fig. 5.6 Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days with penalization.

Now, again, we extrapolate the implied volatility of both models for very short term
maturities in Figure 5.7. The Stationary Heston model produces the desired smile, however the
Standard Heston model fails to produce prices sensibly different than 0 for strikes higher than

105 with this set of parameters, this is why there is no values in implied volatility curves.
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Fig. 5.7 Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at 50
days with penalization.

Figure 5.8 represents, as in the non-penalized case, the relative error between the implied
volatility given by the market and the one given by the models calibrated models at 50 days
using a penalization. The Standard Heston model completely fails to preserve the term-structure
while being calibrated at 50 days. In comparison, the Stationary Heston behaves much better
and the relative error does not explodes for long-term expiries, meaning that the long run

average price variance is well caught.
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Fig. 5.8 (K,T) — '”IQ'“M(f]\%ﬂ;;{l(ﬂv;";f;(‘b"(’y’)' for both models after calibration at 50 days with

penalization. The expiries T are given in days and the strikes K are in percentage of the spot.
(left: Standard Heston and right: Stationary Heston).

5.3 Toward the pricing of Exotic Options

In this Section, we evaluate first Bermudan options and then Barrier options under the Stationary
Heston model. For both products, the pricing rely on a Backward Dynamic Programming
Principle. The numerical solution we propose is based on a two-dimensional product recursive
quantization scheme. We extend the methodology previously developed by [FSP18; CFG1S;
CFG17], where they considered an Euler-Maruyama scheme for both components. In this
paper, we consider a hybrid scheme made up with an Euler-Maruyama scheme for the log-stock
price dynamics and a Milstein scheme for the (boosted) volatility process. Finally, we apply
the backward algorithm that corresponds to the financial product we are dealing with (the
Quantized Backward Dynamic Programming Principle for Bermudan Options, see [BP03; BPP05;
Pagl18] and the algorithm by [Sagl0; Pagl8] for Barrier Options based on the conditional law

of the Brownian motion).

5.3.1 Discretization scheme of a stochastic volatility model

We first present the time discretization schemes we use for the asset-volatility couple (Sf@, v{ )telo0,1]-
For the volatility, we choose a Milstein on a boosted version of the process in order to preserve

the positivity of the volatility and we select an Euler-Maruyama scheme for the log of the asset.

The boosted volatility. Based on the discussion in Appendix 5.A, we will work with the

following boosted volatility process: Y; = e oY t € [0,T] for some k > 0, whose diffusion is



5.3 Toward the pricing of Exotic Options 139

given by
dY; = e kfdt + £ e/ \/Y,dW,. (5.25)

The Milstein discretization scheme of Y; is given by
}7tk+1 = Maa—(tka}_/}k7z}z+l) (526)
with ¢ = % and b and & are given by

66&15/2

b(t,x) = e k0, F(t,x) = &vre™?  and  FL(t 1) NG

x

(5.27)

and My (t, 7, z) defined by

o

5(t, z) ~ (55.)(t, )\ (55)(t,x)h 1 2
ME’E(t,x,z)zm—W+h<b(t,$)— 5 > + 5 <Z+\/W> .
(5.28)

We made this choice of scheme because, under the Feller condition, the positivity of M; - is

ensured, since

2 2 LKt 2
M 5(t, 2, 2) = h et (K,Q - %) + hg 46 <z + \/;g/jtﬂ) (5.29)

and
€2 < 2k0 < 450.

Other schemes could have been used, see [Alf05] for an extensive review of the existing
schemes for the discretization of the CIR model, but in our case we needed one allowing us
to use the fast recursive quantization, i.e., where we can express explicitly and easily the
cumulative distribution function and the first partial moment of the scheme, which is the case
of the Milstein scheme (we give more details in SubSection 5.3.2).

Hence, as our time-discretized scheme is well defined because its positivity is ensured if

the Feller condition is satisfied, we can start to think of the time-discretization of our process

(S£:)>ke[[0,n]]-

The log-asset. For the asset, the standard approach is to consider the process which is the

logarithm of the asset X; = log(S). Applying It6’s formula, the dynamics of X; is given by

dX, = (r . %)dt + JodW,. (5.30)
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Now, using a standard Euler-Maruyama scheme for the discretization of X, we have

{thJrl = gbya(tk,th,}_/;k,Z]%_i_l) (5 31)
}_/;51@+1 = ME,& (tk’ ﬁlﬂ Z’?“rl)
where Z,,, ~ N(0,1), Z2,, ~ N(0,1), Corr(Z}_,, Z¢,,) = p and
Evo(t,z,y,2) =x +b(t,z,y)h +o(t, x, y)\/ﬁz (5.32)
with ot
b(t,z,y) =r—q— ¢ 5 Y and o(t,z,y) = e "2 /. (5.33)

5.3.2 Hybrid Product Recursive Quantization

In this part, we describe the methodology used for the construction of the product recursive
quantization tree of the couple log asset- boosted volatility in the Heston model.

In Figure 5.9, as an example, we synthesise the main idea behind the recursive quantization
of a diffusion v; which has been time-discretized with Fy(¢,z, z). We start at time ¢y = 0 with

a quantizer ¥ taking values in the grid Ty, = {v0,...,vJ,} of size 10, where each point is
0

represented by a black bullet () with probability p? = P(7y = v) is represented by a bar. In
the Stationary Heston model, 7y is an optimal quantization of the Gamma distribution given
by (5.5) and (5.6). Then, starting from this grid, we simulate the process from time to to time
t1 = 5 days with our chosen time-discretization scheme Fy(t, z, z), yielding v1 = Fy(to, Vo, Z1),
where 7] is a standardized Gaussian random variable. Each trajectory starts from point v!
with probability p?. And finally we project the obtained distribution at time ¢; onto a grid
[y, = {vi,...,v]y} of cardinality 10, represented by black triangles () such that 9 is an
optimal quantizer of the discretized and simulated process starting from quantizer Dy at time

to = 0.

Remark. In practice, for low dimensions, we do not simulate trajectories. We use the
information on the law of ¥7 conditionally of starting from vy. The knowledge of the distribution
allows us to use deterministic algorithms during the construction of the optimal quantizer of ¥y

that are a lot faster than algorithms based on simulation.

In our case, we consider the following stochastic volatility system

{dxt = b(t, X;, Yy)dt + o(t, X, Yi)dW, (5.34)

dYy = b(t, Yy)dt + 5 (t, Y;)dW,

where W; and W, are two correlated Brownian motions with correlation pe[-1,1], band o
are defined in (5.33) and b and & are defined in (5.27). Our aim is to build a quantization tree

of the couple (X¢,Y;) at given dates tg, k = 0,...,n based on a recursive product quantization
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Fig. 5.9 Example of recursive quantization of the volatility process in the Heston model for one
time-step.

scheme. The product recursive quantization of such diffusion system has already been studied
by [CFG17] and [Rud+17] in the case case where both processes are discretized using an
Euler-Maruyama scheme.

One can notice that building the quantization tree (Y;) ke[o,n] approximating (Y3)se[o,r is a
one dimensional problem as the diffusion of Y; is autonomous. Hence, based on our choice of
discretization scheme, we will apply the fast recursive quantization (detailed above in Figure 5.9)
that was introduced in [PS15] for one dimensional diffusion discretized by an Euler-Maruyama
discretization scheme and then extended to higher order schemes, still in one dimension, by
[McW+18]. The minor difference with existing literature is that, in our problem, the initial
condition gq is not deterministic.

Then, using the quantization tree of (}A"k) ke[o,n] We will be able to build the tree (Xk) ke[0,n]
following ideas developed in [FSP18; Rud+17; CFG18; CFG17]. Indeed, once the quantization
tree of the volatility is built, we are in a one-dimensional setting and we are able to use fast

deterministic algorithms.

5.3.2.1 Quantizing the volatility (a one-dimensional case)

Let (Y2)se[o,7) be a stochastic process in R and solution to the stochastic differential equation

dY, = b(t, Y,)dt + &(t, Yy)dW, (5.35)
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where Y has the same law than the stationary measure v: £(Yp) = v. In order to approximate
our diffusion process, we choose a Milstein scheme for the time discretization, as defined in
5.28 and we build recursively the Markovian quantization tree (}A/}k) ke[o,n] Where )A/}k L, is the

Voronoi quantization of }N/tk ., defined by

Vg = ME,E (t’ﬁY;fw ZI%+1)7 Ytk+1 = ]-:)TOJF}\’,2 . (Ytk+1) (5.36)
and the projection operator Projpy (+) is defined in (5.105), N2 et = {ka, . ,y]’i,Q k+1} is

Ny k11

the grid of the optimal quantizer of }N/}k ., and Z,% 41 ~N(0,1). In order alleviate the notations,
we will denote ?k and f/k in place of ﬁk and }A/}k

The first step consists in building f’o, an optimal quantizer of size N of Yp. Noticing that
Yy = vf, we use the optimal quantizer we built for the pricing of European options. Then, we
build recursively (}A/k) k=1,..n, Where the N j-tuple are defined by y = (yt,... ,yﬁ“vz’k), by
solving iteratively the minimization problem defined in the Appendlx 5 D in (5.109), with the
help of Lloyd’s method I. Replacing X by Yk+1 in (5.109) yields

P (Vi e C(TY,,.))

E | M 5 (b Vi Z240) 1

(5.37)

MN 5 (tk7Yk7Zk+l) €C; ( Ny k+1) ]

P (/\/l (tk,Yka Z ) € G(TY N k+l))

Now, preconditioning by }Afk in the numerator and the denominator and using pf =P (f/k k

)15

E {]P (M5 (0, T 22,) € G (T, ) |Yk>}

I
s
SN—

we have

E | E| M, (t Ve, 22,0) 1 %
k+1 { Mbv"(k b Zieg) Mz,&(tkvy’wziﬂ)ec(%k“

Yy, =

z

2,k

)]pf
Nos (5.38)
Z IP(-/\/lN (tkayz7Zk+1) EC ( N2k+1)>p7l;g

i=1

(KEE ) — KE W) ) ot
k

(FEs) = FE(Et ) ot
1

E [ME,& (tkayzkv ZI%+1) HM (tk7y1 7Zk+1) €eC;y (

No k41

-
I
—

5

—_

Bl

)
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where C} (F%MH) = (yffllp,yf:ll/z] is defined in (5.104). FF and KF are the cumulative

distribution function and the first partial moment function of UF ~ uf + sk¥(Z} | + \F)?
respectively with

~ k

K= o

7 2 ’ T NVRE (e yh)

U(tk7 yk) g (5—5—/ )(tk’7 yk)
and Mg 20 b bt ) — 20,

(5.39)

The functions F¥ and KF can explicitly be determined in terms of the density and the cumulative

distribution function of the normal distribution.

Lemma 5.3.1. Let U = p+ k(Z + )2, with p,k, e R, A =0, K >0 and Z ~ N(0,1) then

the cumulative distribution function F and the first partial moment K, of U are given by
FU(.%') = (FZ(er) - FZ(.%L)) ]1$>u

K, (z) = (FU () (1 + k(N2 + 1)) + \/%@L e,g g >> L, (5.40)

where x, = A/*E =X\, x_ = —/=F — X and F, is the cumulative distribution function of Z.

K

Finally, we can apply the Lloyd algorithm defined in Appendix 5.112 with F, and K,

defined by
]VQJC N2,k

Fy(z)= Y pfFf(z)  and K, (z) = ) pf Kf(o). (5.41)
i=1 =1

-----

access to the weights pé‘: =P ()A/k = yf), which can be themselves computed recursively, as well

as the conditional probabilities pfj =P (?kﬂ = y;-“’l | l?k = yf)

Lemma 5.3.2. The conditional probabilities pfj are given by

piy =F (W) — FF (W) ) (5.42)

And the probabilities p;“l are given by
Nk

Pt =" Pl (5.43)
=1

]
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Proof. The
pfj =P (Vi1 = ?JJH ’Yk = yl)
=P (Ml% tk;Yk7 Zk+1) € Cj (FNz k+1) | Vi = yf)
=]P<Mg tkayz’Zk:-i-l) EC ( N2k+1))

]:1/2) l ( fjll/Q)

and N
2,k
=P (Ve =gt = 2P (Ve = o)™ | Ve = o) P (Vi = o))
=1

Na

- 2 Pl vl

O]

As an illustration, we display in Figure 5.10 the rescaled grids obtained after recursive
quantization of the boosted-volatility, where v, = et Y} and (f/k) k=1,..n are the quantizers

built using the fast recursive quantization approach.

5.3.2.2 Quantizing the asset (a one-dimensional case again)

Now, using the fact that (Y;); has already been quantized and the Euler-Maruyama scheme of
(X¢)t, as defined (5.32), we define the Markov quantized scheme

thﬂ = gb,ff (tkv Xtmytkv Zli+1)’ th+1 PTOJFX (th+1) (5-44)

N1 k+1

where the projection operator Projprx (+) is defined in (5.105), F%I vsq 1 the optimal Ny -

N1 k41
quantizer of Xy, , and Z%H ~ N(0,1). Again, in order to simplify the notations, X;, and X,
are denoted in what follows by X r and X k-
Note that we are still in an one-dimensional case, hence we can apply the same methodology

as developed in Appendix 5.D and build recursively the quantization ()A( k)k 0..m 3 detailed

above, where the Ny ;-tuple are defined by ar:lf:Nl L= (x’f, . le ) Replacmg X by Xk in
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Fig. 5.10 Rescaled Recursive quantization of the boosted-volatility process with its associated
weights from t = 0 to t = 60 days with a time step of 5 days with grids of size N = 10. The
recursive quantization methodology is applied to Y and then we display the rescaled volatility

U = e "k Y,

(5.109) yield

E[E ey Xe, Yo, ZE ) 1 SN ]
bo (b Xty, Yoo, Zh4q) gb,g(tk,xtk,nk,z,iﬂ)ecjl(rff,l’kﬂ)

P
71 PPN
P (o (ths K Tirs Z111) € G (T5,,,) )
Nik Nog
]E[gb tk)xkaykazl ]l ]pk 3
_ i12=1 i22=1 ’U( e k+1) Eb.o (tk’xfl 7yth’Z’iH) € (Fﬁl,k+1) (i1i2)
- Ny g Naog
’ ’ kE k1 X k 5.45
Z Z g (56,0 (tk7$ilayi27 Zk—i—l) e Cj, (FNl,k—H)) D(iyia) ( )
i1=112=1
Nik Nog
k k+1 k k+1 k
I (K(il,iz)(xjm/z) - K(il,z'z)(%fl/z)) P(in in)
_ii=lig=1
Nk Nag
k k+1

Z Z (F(’§17i2)(x§1-‘r+11/2) - F(i1,i2)(xj1—1/2)> pl(€i1,i2)

11=112=1
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=P (Xk = x“,Yk = ym) and FF

i1,02) (31,12
function and the first partial moment function of the normal distribution u( ) T Z} +10(

where p( ) and Kk (i1,ip) BT€ the cumulative distribution

i1,i2)

and they are defined by

k
T = M
F(§17i2)(x) =F, ( & ('1 2))
(i) 7 . (5.46)
r — M. T — W -
k k (i1,i2) k (31,i2)
K(ilﬂé)(@ - 'u(ihiz)FZ( ok = > +U(i1,i2)Kz< g = )

(i1,2) (i1,i2)

with
,u](‘“il@) = :cfl + b(tk,:vfl,yg)h and 081712) = J(tk,wfl,yf;)\/ﬁ (5.47)

and F, and K, are the cumulative distribution function and the first partial moment of the
standard normal distribution.

Finally, we apply the Lloyd method defined in Appendix (5.112) with F, and K, defined
by

N1 k NQ k Nl k N2 k
2 Z p (31,i2) 11,12)( ) and Z Z p (31,i2) 11 12)($)' (548)
i1=1142=1 11=112=1

The sensitive part concerns the computation of the joint probabilities pl(i.1 ia)" Indeed, they

are needed at each step in order to be able to design recursively the quantization tree.

Lemma 5.3.3. The joint probabilities pl(“i1 i) OT€ given by the following forward induction

N1k Na
k+1 k+1 1
JJ;JQ Z Z Py i) (Xk+1 =y Yoy = ?/]+ | Xk = $217Yk = yw) (5.49)
where the joint conditional probabilities P ()A(;Hl = x;?jl, }A/ = yjz | Xk = 33“7}/]6 - ym) are

given by the formulas below, depending on the correlation

o if COI“I“(Z;L_I, Zl%-{-l) =p=0

P (Xk"'l - x Yk"‘ - y]z o ‘ Xk - xll’Yk yfz) = pfz]é [N (xfl’i27j17+) _N(xfl,i%jl,*)]’

(5.50)
where pfwé is defined in (5.42) and
k+1 k k+1 k
N et Vo B GV U 2V B Y (5.51)
11,02,J1,— ok ’ 11,12,J1,+ T ok ’ :
(i1,i2) (i1,i2)

with ,u(“ i) and a( ) defined in (5.47).

i1,i2)
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o if (DOH(ZI}:—H? Zl%-{-l) =p#0

P(Xpyr = 287 Vi = g™ | X = 28, V5 = o)

_ 1 [k vk |k Nk
=P (ZkJrl € (‘Tilyimjl,*’xi17i27j1,+]’ Zk+1 € ( Yiz,j2,— )‘i27 Yiz,ja,+ A'z])
1 k k 2 k k
+P (Zk+1 € (¥iyi0.d1,— Tissingo, + > Dk € [ Ao = Mo A Yo — /\i2>)

(5.52)
where - . . )
Yjo—1/2 = Py k Yigr1/2 — Hiy
Yinjom = OV = z@m¢=0viié;——, (5.53)
Q9 io

with ,ui-z, kF and )\52 defined in (5.39).

i2

Remark. The probability in the right hand side of (5.52) can be computed using the cumulative

distribution function of a correlated bivariate normal distribution?. Indeed, let
Fo(x1,22) = P(X1 < 21, Xo < 22)

the cumulative distribution function of the correlated centered Gaussian vector (X7, X3) with

unit variance and correlation p, we have
P (X1 € [a,b], X5 € [¢,d]) = F,(b,d) — F,(b,c) — Fy(a,d) + Fj(a,c) (5.54)

with a,c¢ > —o0 and b,d < +0

Proof.
Ic+1 _ _ . k+1
(31732) =P ( +1 = 33 Yk"' y]z )

X

Ny,
(X1 = 25 Vi = X =28 Vi =y )P (X = 2F Vi = oF
k+1 .’E] ym ’ k xlla k yzz) ( k lev k ym)

i

r No
_ k1 O _ o k+1 _ k
Z D(iyi2) Xk"‘l =Ty n = Yj, |Xk xll’Yk yiz)'

204+ 1mplementat10n of the upper right tail of a bivariate normal distribution can be found in John

Burkardt’s website https://people.sc.fsu.edu/~jburkardt/cpp_ src/toms462/toms462.html.
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o if Corr(Z} ,Z2,. 1) =p=0

P (Xk.;,_l = $§1+1,1A/k+1 = y;-f;l | )Z'k = mfl,f/k = yfz)
P (Run = 2570 | B = ok o=l
= pfzjz P (Xkﬂ € (xé?;r—ll/wx?:yﬂ | )A(k = xfl’i}k = yf;)
(8 (trs ks Zhn) & (b b))

= p’f‘gjz [N (xf17i27j17+) _N($§17i27j1,_)j|’

k
= Pisjs P

o if Corr(Z} 1, Z%)=p#0

j1
_ kE .k o1 k+1 k+1 N k2 E+1 E+1
=P <Sb,o(tk>$i17yi2azk+l) € ($j1—1/2’$j1+1/2]’Mb,5(tk’yi2’Zk+1) € (yj2—1/2’9j2+1/2]>
_ k k 1 E+1 E+1 k k(72 k\2 E+1 k+1
=P (N(n,iz) + 0y i) D1 € (le—l/Z’xj1+1/2]"U’i2 + gy (Zja + A7 € (yjz—l/Q’yj2+1/2])
1 k k 2 k\2 k k
=P (Zk-i-l € (xi1,i2,j17—’wil,i27j1,+]7 (Zk:+1 + )‘iz) € (yi27j2,—’ yi2,j27+]

_ 1 k k 2 k k k k
=P (Zhr € (g oh i 1 2R € (Voo = May/vh s — M

1 k k 2 k k k k
+P (Zk+1 € (st~ Tissingo, + > Lkt € [— A\ Yiz,jot — Aias A Vi jo,m — )\i2>).

v k+1 < k+1 | ¥ k 1 k
P(Xpp1 =2 Vi =yt | Xy = 2f Vi = o))

O]

Remark. Another possibility for the quantization of the Stationary Heston model could be to
use optimal quantizers for the volatility at each date ¢; in place of using recursive quantization.
Indeed, the volatility (v¢); being stationary and the fact that we required the volatility to start
at time 0 from the invariant measure, we could use the grid of the optimal quantization 7y
of size N of the stationary measure with its associated weights for every dates, hence setting
U = Up. We need as well the transitions from time ¢ to t;,1 defined by

P (Dpr1 = 0l | B = vf). (5.55)

These probabilities can be computed using the conditional law of the CIR process described

in [CIR05; And07], which is a non-central chi-square distribution. Then, we would build the

recursive quantizer of the log-asset at date X k11 with the standard methodology of recursive

quantization using the already built quantizers of the volatility v, and the log-asset X 1 at time
ty, i.e.

)~(k+1 = gb,a (tk7j€kalﬁk) Zé+1) and Xk-i—l = PI‘ijﬁl . ()N(]H_l) (5.56)
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where, this time, the Euler scheme is not defined in function of the boosted-volatility but

directly in function of the volatility and is given by

v
Ebo (t,x, v, z) =x+ h(r —q— §> + vovhz. (5.57)

However, the difficulties with this approach come from the computation of the couple
transitions

P (Xpy1 = 2 By = 05 | Xy = 2, 0 = o). (5.58)

Indeed, these probability weights would not be as straightforward to compute as the methodology
we adopt in this paper, namely using time-discretization schemes for both components. Our
approach allows us to express the conditional probability of the couple as the probability that
a correlated bi-variate Gaussian vector lies in a rectangle domain and this can be easily be

computed numerically.

5.3.2.3 About the L%-error

In this part, we study the L?-error induced by the product recursive quantization approximation
Ui = ()’(\'k, }’}k) of Uy = (X, Ys), the time-discretized processes defined in (5.26) and (5.31) by

Ui, = F—1(Ug—1, Zy) (5.59)

where Z, = (Z}, Z}) is a standardized correlated Gaussian vector and the hybrid discretization

scheme Fj(u, Z) is given by

(5.60)

50t7 i 7Z1
Fk(u,Z)=<b’ (szﬁy k+1)>‘

M 5 (trys Z241)

We recall the definition of the product recursive quantizer U = ()A( ks }A/k) Its first component
X i is the projection of )N(k onto Fﬁl . and the second component ffk is the projection of }ka onto
Y '
FN2,k’ ie.,
Xy41 = Projpx (Xk+1) and  Yjiq = Projpy (Yit1) (5.61)
Nik+1 N k41

where X, and Y}, are defined in (5.36) and (5.44), respectively. Moreover, if we consider the

couple (}k = ()N( ks 37;9), using the above notations we have

Up = Foey(Up—1, Z). (5.62)
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It has been shown in [FSP18; PS18b] that if, for all £ = 0,...,n — 1, the schemes Fj(u, 2)
are Lipschitz in u, then there exists constants j = 1,...,n, C; < 400 such that

e

1/2

|0 — Ui, < Z (N1j % Naj)~ (5.63)

where Uy, and Uy, are the processes defined in (5.61) and (5.62). The proof of this result is
based on the extension of Pierce’s lemma to the case of product quantization (see Lemma 2.3
in [PS18b]).

In our case, the diffusion of the boosted volatility in the CIR model does not have Lipschitz
drift and volatility components, hence the above result from [FSP18; PS18b] does not apply
in our context. Even if we can hope to obtain similar results by applying the same kind of
arguments, the results we obtain have to considered carefully. Indeed, when we take the limit
in n — 400, the number of time-step, the error upper-bound term goes to infinity. However, in
practice, we consider h = kT'/n fixed and then study the behavior of ﬁk in function of N ; and
Ny ; for j = k. The proof of the following proposition is given in Appendix 5.C.

Proposition 5.3.4. Let b, o, b and &, defined by (5.27) and (5.33), the coefficients of the
log-asset and the boosted-volatility of the Heston model. Let, for every k = 0,...,n, ﬁk the

hybrid recursive product quantizer at level Ny x Noy of Us. Then, for every k =0,....n
~ = L. 1/2
10k = Uily < 3 Aju (N x Nog) ™" + Bev/h (5.64)
j=0
where @_1) 1
~ p—2 D ANs i A 1—-2%27 Jﬁﬂ p
Ay =25 024, <2<’5 D38 |G + ap,,l) (5.65)
1-227"3,
with o
—i VA . - N .
Ajp =27 20 and By =Cr(h) Y. 277 o7 1) (5.66)
7=0

where 3 = 0 by convention and Cr(h) = O(1).

5.3.3 Backward algorithm for Bermudan and Barrier options

Bermudan Options A Bermudan option is a financial derivative product that gives the
right to its owner to buy or sell (or to enter to, in the case of a swap) an underlying product
with a given payoff ¢ (-,-) at predefined exercise dates {tg,- - ,t,}. Its price, at time ¢y = 0, is
given by

sup I [e*” V(X Y7 | .7:,50]
T€{to, " ,tn}

where X; and Y; are solutions to the system defined in (5.34).
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In this part, we follow the numerical solution first introduced by [BPP05; BP03]. They
proposed to solve discrete-time optimal stopping problems using a quantization tree of the risk
factors X; and Y;.

Let FXY = (F)o<k<n the natural filtration of X and Y. Hence, we can define recursively

the sequence of random variable LP-integrable (Vi)o<k<n

Vi, = e " (X, Vo),
! n(Xn, 1) (5.67)
Vi = max (e "% ¢ (Xp, Yi), E[Vig1 | Fil),  0<k<n-—1
called Backward Dynamic Programming Principle. Then
‘/0 = sup { E[e_rT dJT(XT?YT) | .7:(]],’7' € @O,n}
with ©g,, the set of all stopping times taking values in {to,--- ,¢,}. The sequence (Vi)o<k<n is
also known as the Snell envelope of the obstacle process (e*”k Ui (X, Yk))0<k<n' In the end,

E[Vp] is the quantity we are interested in. Indeed, IE[Vy] is the price of the Bermudan option
whose payoff is 1y, and is exercisable at dates {t1,--- ,t,}.

Following what was defined in (5.67), in order to compute E[Vp], we will need to use
the previously defined quantizer of X and Yj: X r and }Afk Hence, for a given global budget
N = Ny gNag+- -+ N1nNap, the total number of nodes of the tree by the couple (X'k, }/}k)ogkgn,
we can approximate the Backward Dynamic Programming Principle (5.67) by the following

sequence involving the couple ()/f ks i}k)ogkgn

‘771 =e " n Xm An )
{ Ul ) (5.68)
ks

Vi = max (e "t D (Xp, i) E[ Vi1 | (Xk7?k)])7 k=0,...,n—1

Remark. A direct consequence of choosing recursive Markovian Quantization to spatially
discretize the problem is that the sequence ()’(\'k,}’}k)ogkgn is Markovian. Hence (Vk)oskgn
defined in (5.68) obeying a Backward Dynamic Programming Principle is the Snell envelope of
(e_”k Q,Z)k()A(k, i}k))ogkgn' This is the main difference with the first approach of [BPP05; BP03],
where in there case they only had a pseudo-Snell envelope of (e_"t’“ 1/1k()2' ks ?k))

0<k<sn’
Using the discrete feature of the quantizers, (5.68) can be rewritten
( =1,...,N
~ _ 11 = c. 1
t n n ) ) M
’Un(x?pyg) =¢€ ann<xi17yi2)7 .
19 = 1,...,N2’n
) Nig+1 N2kt k=0,....,n—1
~ k . ky _ —rtg k ,k k o k+1 | k+1 .
Uk (27, , Ys,) = max (e P (@ i) Z Z W(il,iz),(jl,j2)vk+1($jl Yy )>, i1 =1,...,Nyy
— A .
7 2 2 =1,...,Noy

(5.69)
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k _ Y, o Gkl okl v kv k) iy
where T ia),(jaoga) = P (Xk+1 = ;" Y1 =y, | Xp =27, Y% = 112‘2) is the conditional

probability weight given in (5.52). Finally, the approximation of the price of the Bermudan

option is given by

Nz o
E (20, ¥0)] = ) piTo(0, 9) (5.70)
=1

with p; = P (}Afo = yY) given by (5.18).

Barrier Options A Barrier option is a path-dependent financial product whose payoff at
maturity date T' depends on the value of the process Xp at time T and its maximum or
minimum over the period [0,7]. More precisely, we are interested by options with the following

types of payoff h

h = F(X1) Vsup, g0y Xeel} or  h=f(X7) Liint,c o1 Xeel} (5.71)

where I is an unbounded interval of R, usually of the forme (—o0, L] or [L,+00) (L is the
barrier) and f can be any vanilla payoff function (Call, Put, Spread, Butterfly, ...).

In this part, we follow the methodology initiated in [SaglO] in the case of functional
quantization. This work is based on the Brownian bridge method applied to the Euler-Maruyama
scheme as described e.g. in [Pagl8]. We generalize it to stochastic volatility models and product
Markovian recursive quantization. X; being discretized by an Euler-Maruyama scheme, yielding
X, with k = 0,...,n, we can determine the law of maxye(o,7) X; and mine[o,7] X, given the

values Xj, = 24, Y = yi, k =0,...,n

- — ~1
L (tg[lg% X | X =2, Y =y, k=0, ... ,n) =L (k:{)?.z.i,}fzq (G]Exk,yk),xk+1) (Uk)> (5.72)

and

. _ _ _ -1
L (téﬂ)l,ljl“] X | X =2, Yo =y, k=0, ... ,n) =L (k:g}?ﬁq (F(]thyk),karl) (Uk)> (5.73)

where (Uk)k—o,...n—1 are i.i.d uniformly distributed random variables over the unit interval and

(C;;](Cx’y)’z)_l and (F (’; ,y),z)_l are the inverse of the conditional distribution functions G’&’y)z and
F defined by
(zy),2 ) e
G(a},y),z(u) = (1 —¢ To=(tymy) > ]l{u>max(m,z)} (574)
and & _an
FEo(u) =1- (1 L = ey ) 1 fucmin(e.s)] - (5.75)

Now, using the resulting representation formula for It f(Xr, maXye[o,7] X;) (see e.g. [Sagl0;

Pag18]), we have a new representation formula for the price of up-and-out options Pyo and
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down-and-out options Ppo

n—1
Puo = e " B[f(Xr) Dsupyego X<r]=eTE [f(XT) lﬂ) G?Xk,Yk),Xk+1(L)] (5.76)

and

Ppo = cTE [f(XT) ]linftE[O,T] thL] = TTE[ XT H ( Fkxk Yi), Xk+1(L))] (5.77)

where L is the barrier.

Finally, replace X and Y, by X r and ?k and apply the recursive algorithm in order to
approximate Pyo or Ppo by E[‘A/o] or equivalently E[vg(zo, }A/o)]

V, = eI f X ,
{A” (A "Z S SN (5.78)
Vi = Ege(Xp, Vi, Xpr 1) Vi1 | (X, Ya)],  0<k<n-—1
that can be rewritten
( _ i=1,...,Nin
O (2, yt) = e T flah), T
n( 71 ylg) f(z) j:]-,---,NQ,n
{ Nik+1 Nojk+1 k=0,....,n—1
~ k+1 .k k k .
Vk 117%2 Z Z ﬂ-(“ i2),(j1,j2) karl( + 7yj2+1)9 ( 117y127 ‘71+1>7 1= 1)' . 'aNl,k
Ji=1 ja=1 j=1,...,Noy
(5.79)
with W(ZIM) Grja) = ]P(XkH = J:?:rl,YkH = yJH ] Xk = fl,Yk = yl) the conditional

probabilities given in (5.52) and gx(z,y, 2) is either equal to G(x ) (L) or 1 — F(’; W) (L)

depending on the option type. Finally, the approximation of the price of the barrier option is

given by
~ R Nao
E[Vb] = E [o(z0, Y0)| = )] pi Bo(z0, ) (5.80)
i=1

with p;, = IP ()A/O = y?) given by (5.18).

5.3.4 Numerical illustrations

In this part, we deal with numerical experiments in the Stationary Heston model. We will apply
the methodology based on hybrid product recursive quantization to the pricing of European,
Bermudan and Barrier options. For the model parameters, we consider the parameters given
in Table 5.2 obtained after the penalized calibration procedure and instead of considering the
market value for Sy, we take Sy = 100 in order to get prices of an order we are used to. For

the size of the quantization grids, we consider grids of constant size for all time-steps: for all
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k=0,...,n, we take N1 = N1 and Ny} = Na where n is the number of time steps. During
the numerical tests, we vary the tuple values (n, Ni, Na).

All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core 19 CPU. The computations of the transition probabilities are parallelized on the
CPU.

European options First, we compare, in Table 5.3, the price of European options with
maturity ¢, = T = 0.5 (6 months) computed using the quantization tree to the benchmark price
computed using the methodology based on the quadrature formula (the quadrature formula
with Laguerre polynomials) explained in Section 5.2. In place of using the backward algorithm

(5.68) (without the function max) for computing the expectation at the expiry date, we use the

weights pl(€i1,i2) defined in (5.49) and built by forward induction, in order to compute
Nl,n N2,n
E[e ™ (X, Vo) = e >0 > bl yit). (5.81)
i1=112=1

We give, in parenthesis, the relative error induced by the quantization-based approximation.
We compare the behavior of the pricers with different size of grids and numbers of discretization

steps. We notice that the main part of the error is explained by the size of the time-step n.

‘ (N1, N2)
‘ K Benchmark (20, 5) (50, 10) (100, 10) (150, 10)
80 20.17 19.68 (2.46%) 19.99 (0.92%) 20.04 (0.64%) 20.06 (0.57%)
85 15.56 14.97 (3.75%) 15.35 (1.31%) 15.42 (0.89%) 15.43 (0.79%)
Call | 90 11.24 10.60 (5.68%) 11.03 (1.84%) 11.10 (1.18%) 11.12 (1.02%)
95 7.383 6.781 (8.14%) 7.202 (2.44%) 7.286 (1.30%) 7.306 (1.03%)
100 4.196 3.727 (11.1%) 4.081 (2.73%) 4.173 (0.54%) 4.194 (0.04%)
100 4.469 4.160 (6.90%) 4.396 (1.61%) 4.459 (0.22%) 4.472 (0.08%)
105 7.171 7.034 (1.91%) 7.178 (0.09%) 7.244 (1.01%) 7.257 (1.19%)
Put 110 10.86 10.84 (0.18%) 10.91 (0.46%) 10.97 (1.02%) 10.98 (1.11%)
u
115 15.38 15.43 (0.33%) 15.40 (0.12%) 15.43 (0.37%) 15.44 (0.41%)
120 20.30 20.43 (0.60%) 20.31 (0.02%) 20.29 (0.05%) 20.29 (0.04%)
Time 2.6s 39s 192s 480s

Table 5.3 Comparison between European options prices, with maturity T = 0.5 (6 months),
given by quantization and the benchmark, in function of the strike K and (N7, N2) where we
set n = 180.
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| K Benchmark 30 60 90 180
80 20.17  20.00 (0.83%) 20.03 (0.70%) 20.03 (0.72%) 19.99 (0.92%)
85 15.56 15.33 (1.47%) 15.38 (1.11%) 15.39 (1.07%) 15.35 (1.31%)
Call | 90 11.24 10.94 (2.60%) 11.04 (1.78%) 11.05 (1.63%) 11.03 (1.84%)
95 7.383  7.045 (4.57%) 7.170 (2.87%) 7.203 (2.43%) 7.202 (2.44%)
100 4196 3.879 (7.55%) 4.016 (4.29%) 4.057 (3.31%) 4.081 (2.73%)
100 4469 4161 (6.89%) 4.306 (3.64%) 4.354 (2.56%) 4.396 (1.61%)
105 7.171 6.972 (2.77%) 7.081 (1.25%) 7.125 (0.64%) 7.178 (0.09%)
e | 110 10.86 10.81 (0.44%) 10.85 (0.05%) 10.87 (0.12%) 10.91 (0.46%)
115 15.38 15.39 (0.06%) 15.38 (0.04%) 15.39 (0.08%) 15.40 (0.12%)
120 20.30  20.29 (0.08%) 20.29 (0.09%) 20.29 (0.06%) 20.31 (0.02%)
| Time 9s 16s 24s 425

Table 5.4 Comparison between European options prices, with maturity T = 0.5 (6 months),
given by quantization and the benchmark, in function of the strike K and of the size n where
we set (N1, Na) = (50, 10).

Bermudan options Then, in Figure 5.11, we display the prices of monthly exercisable
Bermudan options with maturity 7" = 0.5 (6 months) for Call and Put of strikes K = 100. The
prices are computed by quantization and we compare the behavior of the pricer for different
choices of time-step n and sizes of the asset grids N; where we set No = 10. Again, we notice
that the choice of n has a high impact on the price given by quantization compared to the

choice of the grid size.

Call (K=100) -- N, =10

Put (K=100) -- N, =10

4.4 4.7
—— EU price —— EU price
4.3 4.61
4.2 3 4.5 'y
® L 3 4.4 s
4.1 o
& ’ & 4.3 ’
4.0 N1 ' N1
e 50 a2, e 50
3091° 100 100
* 200 4.1 * 200
3.8
30 60 90 180 30 60 90 180

n

n

Fig. 5.11 Prices of Bermudan options in the stationary Heston model given by product hybrid
recursive quantization with fived value No = 10.



Stationary Heston model: Calibration and Pricing of exotics using Product Recursive
156 Quantization

Barrier options Finally, in Figure 5.12, we display the prices of an up-and-out Barrier option
with strike K = 100, maturity 7" = 0.5 (6 months), barrier L = 115 and Ny = 10 computed

with quantization. Again, we can notice the impact of n on the approximated price.

Call (K=100)--L=115--N,=10

3.05 Ny
3.00 100
—— 200

0 2.95
(V]
=)
& 2.90

2.85

2.80

30 60 90 180

Fig. 5.12 Prices of Barrier options with strike K = 100 in the stationary Heston model given
by product hybrid recursive quantization with fived value Ny = 10.
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Appendix 5.A Discretization scheme for the volatility preserv-

ing the positivity
We recall the dynamics of the volatility
dvy = (0 — vy)dt + Ex/vedW,

with kK > 0, 8 > 0and £ > 0. In this section, we discuss the choice of the discretization scheme

under the Feller condition, which ensures the positivity of the process.

Euler-Maruyama scheme. Discretizing the volatility using an Euler-Maruyama scheme
Ttyyr = Uty + K(0 — Vg )b+ E SO VR ZE 4

with ¢y = kh, h = T/n and Z}, | = (I/IN/Wrl - VIN/tk)/\/E may look natural. However, such a

scheme clearly does not preserve positivity of the process even if the Feller condition is fulfilled

—vg — k(0 — vg)h
Ex/oovh > =0

with Z ~ N(0,1). This suggests to introduce the Milstein scheme which is quite tractable in

since

]P(z‘;t1<0)=]P<Z<

one dimension in absence of Lévy areas.

Milstein scheme. The Milstein scheme of the stochastic volatility is given by
Vtypy = Mo (tkv 1_)tk+1,Z;%+1)

where (see (5.28))

o(x)
20!

2(7)

Mpo(t,z,2) =2 — 5 P R

o) , oo, 1Y

+ h<b(t,:c) -

with b(z) = k(0 — x), o(z) = &/x and ol (z) = % Consequently, under the Feller condition,

the positivity of My, (¢, z, z) is ensured if

(003)(x)
2

>0, b(t,z) = = 0.
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the second one fails. Indeed

z —_

2 2 4

can be bigger than b(t,z). In order to solve this problem, we consider the following boosted

(col)(@) _ EVizm @

volatility process
Y; = ey, t e [0,T). (5.82)

Milstein scheme for the boosted volatility. Let Y; = " v, t € [0,T] for some k > 0,

which satisfies, owing to It6’s formula
dY; = e kOdt + £ "2 \/Y,dW,.

Remark. The process (Y)se[o,r) Will have a higher variance but, having in mind a quantized

scheme, this has no real impact (by contrast with a Monte Carlo simulation).

Now, if we look at the Milstein discretization scheme of Y;
3 3 2
}/tk+1 = MEV& (tk’ Y;flw Zk+1)

using the notation defined in (5.28) where drift and volatility terms of the boosted process, now

time-dependents, are given by

gemt/Q
NG

b(t,x) = e k0,  F(t,z)=EVze™?  and  F(tx) =

Under the Feller condition, the positivity of the scheme is ensured, since

Sta) o @) e

< b(t,z) = e k0.
2% (t, ) 2 4 (t,2) ="

The last inequality is satisfied thanks to the condition 2%29 < 1 ensuring the positivity of the

scheme.

Appendix 5.B [P-linear growth of the hybrid scheme

The aim of this section is to show the LP-linear growth of the scheme Fj(u,z) with u = (z,y)
defined by

(5.83)

50t7 ’ 7Zl
Fk(u,Z)=<b’ (kin k+1)>‘

M 5 (ti,y, Zi1)
where the schemes & , and Mj - are defined in (5.32) and (5.28), respectively.

The results on the LP-linear growth of the schemes are essentially based on the key Lemma
2.1 proved in [PS18b] in RY that we recall below.
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Lemma 5.B.1. (a) Let ue€ R? and A(u) be a d x g-matriz and let a(u) € RY. Let p € [2,3).
For any centered random vector ( € Lﬁd(ﬂ, A, P), one has for every h € (0, +00)

E [la(u) + VAA(u)(["] < <1+ Wh) la(u)P+h(1+p+h2 ) AP B[]
(5.84)
where |A(u)| = (Tr(A(u)A*(u)))l/z.
(b) In particular, if |a(u)| < |u|(1 4+ Lh) + Lh and |A(u)|P < 2P71TP(1 + |uP), then
E [|a(u) + VRA@W)([P] < ("L + K,)h + (™" +K,h) |ul?, (5.85)
where
p = @_1)2(’)_2) +2pL and K, =2""YP(L+p+hED)E[|CP].  (5.86)

Now, we will apply Lemma 5.B.1 to Fj(u, z) defined in (5.83) further on in order to show
its LP-linear growth. Let a(u) € R? and let A(u) be a 2 x 3-matrix defined by

a(u) = (w +h{r= eﬁ?kg)) , Au) = <e_mk/2 vy ) 0 )

Y+ eftk kOh 0 \/zjentk/Q \/E&ka
D
and (= Zl?+1
(Zin)* -1

First, we show the linear growth of a(u)

e—Htk

la(u)| = <‘x + h(r— y)‘Q |y + et Kleh‘2>1/2

—2kty, 1/2

e

= (a2 + Iyl + 12 (12 + S Iyl?) + > x20%02)
—2nty, 1/2

< (\u|2<1 + [ 1 ) + h2(1"2 + o2tk m292))

—2kKty

4
< |l (1 + h%) +h(r? + 2T 5262)"°

€

< |l (1 + B )1/2 + h(r? + &2t 262) "2

< |u|(1 + Lh) + Lh
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where L = max (%, (r? + e~ T m292)1/2>. Then, we study |A(u)|P

_ 5462I€tk p/2
A = (™ |y| + [yl +h>——)
3 §4e2ntk p/2
— (Iyl(e™ + &™) + b )
16
2p prig
<25yl e g eyt 4 0T
2 t
< 25—1(’1/‘17;‘ 1(e—ntk + ntk)g + hg§ p:p” ’“)
p
kT2 2p prT
<op(lte )2<|y|”+1+h?S ° ! p)
2 2271 (1 4 erT)2

<2P7IYP(1 4 [ufP)

p
Ty P ¢2p gpk
p _ (+e™)2 Lgre
where T? = > + h2s—5

an LP-linear growth

- Hence, by Lemma 5.B.1, the discretization scheme Fj has

E [|Fk(u7 Zk+1)|p] S ap+ ﬁp|u|p

with
ap = (" L+ K,)h and B, =e""+K,h (5.87)

where K, and k), are defined in the Lemma 5.B.1.

Appendix 5.C Proof of the L?-error estimation of Proposition
5.3.4

We have, for every k =0,...,n—1

Ui+1 — Uky1 = U1 — Ug1 + U1 — U1

R N . _ (5.88)
= Ut1 — U1 + F(Uk, Zis1) — Fi(Ug, Zj1)
by the very definition of ﬁk+1 and Uy,1. Hence,
1041 — Ussalls < 10ks1 — Ukl + [Tkt — Opega ] (5.89)

< |Uks1 = Upsrly + | Fe(Urs Zisr) — Fie(Ur, Zisr) |-
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Using the definition of Milstein scheme of the boosted-volatility models M; . in (5.29), the
%—Hélder property of 4/z, for every y,y’ € R, one has

/2 /] 2 Kt/2 (/] 9
|Mg’5(t,y,2) —Mg’a(t,yﬂz” = (2:56T + \/g) _ (de# i \/J)

< Vi~ VY (121€ 2 VR + i + /i) (5.90)
<AVly =y [Vh|z|€e" 2 +|y —of|

and using the definition of the Euler-Maruyama scheme of the log-asset &, defined in (5.32)

we have, for any x,2",y,7y € Ry

52Vl y -] (5.91)

|gb,0' (ta x,y, Z) - gb,U (t7 xlv y/a Z) | <

Now, when we replace x,y,z’,1y by X ks )’}k, X}, Y, in the last expression, we get an upper-
bound for the last term of (5.89)
| Ex(Ux, Ziesr) — Fio(Op, Zy41),
< €0 (ts X, Yies ZLiy) — fba(tk,)_(kﬁ_/k,Z;iH)H
+ HM (tk”Yk?ZkH) M (tk,ka Zk+1)H

< 1R~ el + (14 S OR) 9~ Vil + [Va(eers + eme02) |9 — Vil |

< IR — Kl + (1+ ?h> Vi = Yil, + | V/2h(E% ik + o)y [T~ Ti|

Now, using that y/avb < (% + bA) with v/a = 4/2h(£2 e + e %) and Vb = Vi — Vi
where we considere that A = v/h h(1— \/E) Wo choose X of this order because we wish to divide
equally the impact of h and get v/h on each side. Hence, we have

2h 2 ntk —Kig =R _
\/Qh(fz efitk —I—e*””t’“)’\/ |Yk — Y| < 5 < (€ )\+ © ) + Y, — Yk|)\>. (5.93)

(5.92)
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Then,

“Fk(ﬁka Zys1) — Fr(Uy, Zk+l)”

~ _ e Kt 2h 2 Kktp +e Kty R _
<R = Kl + (1+ Sh) [T~ Vil + HQ( (e - ) 19— mx)
2
~ _ e_ﬁtk . _ ) . . h
< HXk—XkH2+ (1+ 5 h+§)HYk_YkH2+(§ efith 4 o= F k)X

h _ h
\\/5(14- + 2>HUk Uk’|2+CTX
< ﬁ(1 + *g) |Uy — Ukll, + Cr(h)Vh

(5.94)
where Cp(h) = (1 + €2eT)(1 — vh)™t = O(1).
Finally, (5.89) is upper-bounded by
. L NG
Ok1 = Okl < [0kt = Tl + ﬁ( + Y10k~ Uil + (v
k41 k ,
hk—i+1 h\ k=i
< T - Tjl,2° (1+*§) + VhOr(h szz(uf)
7=0 7=0
k+1
< > Ayt U; = Ujll, + Bryavh
7=0
(5.95)
where -
Ajk = 2%] eé(k 7 and By = Cr(h) 2197;71 e@(k_l_]) (5.96)
j=0

and Y, = 0 by convention.

Now, we follow the lines of the proof developed in [PS18b], we apply the revisited Pierce’s
lemma for product quantization (Lemma 2.3 in [PS18b]) with » = 2 and let p > r = 2, which

yields
k+1

[T = T, <27 Cp 3 Ayt [T, (N1 5 x Noy) ™% + Bryiv (5.97)
7=0
where C}, = 2C ), and C ), is the constant appearing in Pierce lemma (see the second item in
Theorem 5.D.7 and [GLO00] for further details) and we used that ||(7]Hp > Up(ﬁj) = inf g2 Hﬁ] -
al,,. Moreover, noting that the hybrid discretization scheme Fj has an LP-linear growth, (see
Appendix 5.B), i.e

Vk=0,....n—1, YueR? E[|Fi(u, Zk+1)"] < ap+ Bylzl?, (5.98)
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where the coefficients a;, and ), are defined in (5.87). Hence, for all j = 0,...,n — 1, we have
|Uj ]2 = E[E[IF;(U;, Zj+1) P | Uj]] < oy + Byl U2 (5.99)

Furthermore, IE [\ﬁj|p] can be upper-bounded using Jensen’s inequality and the stationary
property satisfied by X ; and f/] independently. Indeed, they are one-dimensional quadratic
optimal quantizers of Xj and }A}j, respectively, hence they are stationary in the sense of

Proposition 5.D.5.
[1%,7] + B [1751°])

(e
<ﬁ1(EUEWﬂXmﬂ+EUEW ?WD
(B[

- (5.100)

_ ob—1y77.1P
=227 |U;®
< 25710 |P.

Now, plugging this upper-bound in (5.99) and by a standard induction argument, we have
1T512 < ap + Bp22 T

“VIB31To |12 + Z (257'5,)° (5.101)

\'U

1— 11/33
1-2 —lﬁp

N

I Uollf + e

wors| N

Hence, using the upper-bound (5.101) in (5.97), we have

1Uk+1 — U1l

k+1 - 1—2(8-1igi\p 12
<2% G 24 k+1< 2= DI gl T 7 + Oépplp> (N1j % Nog) ™" + Braavh
j=0 —2:7°5p
k+1 o
< 2 Ajrst (N1 x Nog) ™% + Bravh
j=0
(5.102)
yielding the desired result with
~ p=2 VA 1—2(5-Digi\ Up
Ajp =27 CSAj,k (2(5_1)J5;];||U0|§ + Oép12;2>1ﬁp> (5.103)
o P
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Appendix 5.D Quadratic Optimal Quantization: Generic Ap-

proach

Let X be a R-valued random variable with distribution P, defined on a probability space
(2, A, P) such that X € L (2, A, P).

Definition 5.D.1. Let I'y = {z}',...,2¥} = R be a subset of size N, called N-quantizer. A
Borel partition (Ci(I'n))e(1,...,n} of R is a Voronoi partition of R induced by the N-quantizer
'y if, for every i € {1,..., N},

Ci(Py) < {€ € R, ¢ — 2| < min¢ — 27|},
E

The Borel sets C;(I'y) are called Voronoi cells of the partition induced by I'y.

Remark. Any such N-quantizer is in correspondence with the N-tuple x = (z,... ,x%) €
(R)™ as well as with all N-tuples obtained by a permutation of the components of x. This is

why we will sometimes replace I'y by x.

N N

1 < T3 N

If the quantizers are in non-decreasing order: x << ang < x%, then the

Voronoi cells are given by

Ci(I'n) = (x£1/2’$ﬁ1/2]7 ie{l,....,N—1}, Cn(Tn) = (55%71/271‘%“/2) (5.104)

N N
. N S N _ N —
where Vi ee {2,...,]\7},951.71/2 = 5 and Ty = o0 and TNpjg = T

Definition 5.D.2. The Voronoi quantization of X by 'y, XN, is defined as the nearest
neighbour projection of X onto I'y

R N

XN = Projp (X) = > 27" Lxecyry) (5.105)

i=1

and its associated probabilities, also called weights, are given by
P (XY =al) =P, (Ci(TN)) =P (X € (210,251 ]).

Definition 5.D.3. The quadratic distortion function at level N induced by an N-tuple

= (z,...,2) is given by

1 . N2 1 . 2 1 v N2
QoN T —> §]E[i€{11171.1.?N}|X—xi | ] = iE[dlst(X,FN) | = §||X—X I3

Of course, the above result can be extended to the LP case by considering the LP-mean

quantization error in place of the quadratic one.
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We briefly recall some classical theoretical results, see [GL0O0; Pagl8] for further details.

The first one treats of existence of optimal quantizers.
Theorem 5.D.4. (Ezistence of optimal N-quantizers) Let X € L (P) and N € IN*.

(a) The quadratic distortion function Qan at level N attains a minimum at a N-tuple
*

ot = (zf,...,aN) and T = {z, i € {1,...,N}} is a quadratic optimal quantizer at
level N.

(b) If the support of the distribution P, of X has at least N elements, then z* = (z¥,...,z¥)
has pairwise distinct components, P (C’z(F}*\,)) > 0,i€{l,...,N}. Furthermore, the

sequence N +— infwe(]R)N Qan(z) converges to 0 and is decreasing as long as it is positive.

A really interesting and useful property concerning quadratic optimal quantizers is the
stationary property, this property is deeply connected to the addressed problem after for the

optimization of the quadratic optimal quantizers in (5.109).

Proposition 5.D.5. (Stationarity) Assume that the support of P has at least N elements.

Any L?-optimal N-quantizer T'y € (R)Y

quantization XN of X,

is stationary in the following sense: for every Voronoi

E[X | XV] =XV

Moreover P (X € Ui:l,...,N 8C'i(FN)) = 0, so all optimal quantization induced by T'y a.s.

coincide.

The uniqueness of an optimal N-quantizer, due to Kieffer [Kie82], was shown in dimension

one under some assumptions on the density of X.

Theorem 5.D.6. (Uniqueness of optimal N-quantizers see [Kie82]) If P (d€) = ¢(&)d¢ with
log ¢ concave, then for every N = 1, there is exactly one stationary N-quantizer (up to the
permutations of the N-tuple). This unique stationary quantizer is a global (local) minimum of

the distortion function, i.e.

VN > 1, arg min Qs N = {z*}.
RN
In what follows, we will drop the star notation (x) when speaking of optimal quantizers, x*
and I, will be replaced by x and I'y.
The next result elucidates the asymptotic behavior of the distortion. We saw in Theorem
5.D.4 that the infimum of the quadratic distortion converges to 0 as IV goes to infinity. The
next theorem, known as Zador’s Theorem, establishes the sharp rate of convergence of the

LP-mean quantization error.

Theorem 5.D.7. (Zador’s Theorem) Let p € (0, +0).
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(a) SHARP RATE [ZAD82; GLO00]|. Let X € Lf’R”(IP) for some 6 > 0. Let P, (d§) =
©(&) - MdE) + v(dE), where v L X i.e., is singular with respect to the Lebesque measure A
on R. Then, there is a constant jp71 € (0,+00) such that

1
R 1 L
lim N min X - XV = ——— J clelrpdA " (5.106)
NoFo  TycR,Ly|<N Poo2(p+1) LR

(b) NON ASYMPTOTIC UPPER-BOUND [GLO0; PAG18]. Let § > 0. There exists a real constant
Cip € (0,400) such that, for every R-valued random variable X,

VN >1 i XXV <c X)N! 5.107
I . [ I, < C1p054p(X) ( )

where, for r € (0,+m),0,(X) = minger X —af < +oo is the L"-pseudo-standard

deviation.

Now, we will be interested by the construction of such quadratic optimal quantizer. We

differentiate Qs N, whose gradient is given by

V Qon(z) = (IE [(va -X)1, (o pis ] DH . (5.108)

i—
goooy

Moreover, if x is solution to the distortion minimization problem then it satisfies

E [X]l ]
VnE)=0 «— zN= Xe(va_l/wxﬁm] i=1,...,N
P (X e (@) paN,]) (5.109)
e LN _ Ky (xf\jrlp) - Ky (va—l/Z) i N

)

Fy (xz]'\—[i-l/Q) - Fy (xz‘]\im)

where K (-) and F, (-) are the first partial moment and the cumulative distribution respectively,

function of X, i.e.
K,(z) =E[X1x<] and F.(z) =P (X <uz). (5.110)

Hence, one can notices that the optimal quantizer that cancel the gradient defined in (5.109),

hence is an optimal quantizer, is a stationary quantizer in the following sense
E[zV | X] =XV, (5.111)

The last equality in (5.109) was the starting point to the development of the first method
devoted to the numerical computation of optimal quantizers: the Lloyd’s method I. This
method was first devised in 1957 by S.P. Lloyd and published later [L1o82]. Starting from a
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sorted N-tuple z[% and with the knowledge of the first partial moment K « and the cumulative
distribution function F, of X, the algorithm, which is essentially a deterministic fixed point
method, is defined as follows

N,[n] N,[n]
Ky (xi+1/2) - Ky (%-1/2)
F

(@) = Fx (@)

N. 1
AN _

. i=1,...,N. (5.112)

In the seminal paper of [Kie82], it has been shown that (x["]) converges exponentially fast

>
toward z, the optimal quantizer, when the density ¢ of X isn lég—concave and not piecewise
affine. Numerical optimizations can be made in order to increase the rate of convergence to the
optimal quantizer such as fixed point search acceleration, for example the Anderson acceleration
(see [And65] for the original paper and [WN11] for details on the procedure).

Of course, other algorithms exist, such as the Newton Raphson zero search procedure or
its variant the Levenberg—Marquardt algorithm which are deterministic procedures as well if
the density, the first partial moment and the cumulative distribution function of X are known.
Additionally, we can cite stochastic procedures such as the CLVQ procedure (Competitive
Learning Vector Quantization) which is a zero search stochastic gradient and the randomized
version of the Lloyd’s method I. For more details, the reader can refer to [Pagl8; PY16].

Once the algorithm (5.112) has been converging, we have at hand the quadratic optimal

quantizer XN of X and its associated probabilities given by

~

P (XN = o) =FX($ﬁ1/2) _Fx(xij\il/Q), i=1,...,n. (5.113)






Chapter 6

Quantization-based Bermudan

option pricing in the F'X world

This chapter corresponds to the article “Quantization-based Bermudan option pricing in the
FX world” submitted to Journal of Computational Finance and accessible in arXiv or HAL
(see [Fay+19]). This article is a joint work with Jean-Michel Fayolle, Vincent Lemaire and
Gilles Pages.

Abstract This paper proposes two numerical solution based on Product Optimal Quantization
for the pricing of Foreign Exchange (FX) linked long term Bermudan options e.g. Bermudan
Power Reverse Dual Currency options, where we take into account stochastic domestic and
foreign interest rates on top of stochastic FX rate, hence we consider a 3-factor model. For these
two numerical methods, we give an estimation of the L?-error induced by such approximations

and we illustrate them with market-based examples that highlight the speed of such methods.

Introduction

Persistent low levels of interest rates in Japan in the latter decades of the 20th century were
one of the core sources that led to the creation of structured financial products responding
to the need of investors for coupons higher than the low yen-based ones. This started with
relatively simple dual currency notes in the 80s where coupons were linked to foreign (i.e.
non yen-based) currencies enabling payments of coupons significantly higher. As time (and
issuers’ competition) went by, such structured notes were iteratively “enhanced” to reverse dual
currency, power reverse dual currency (PRDC), cancellable power reverse dual currency etc.,
each version adding further features such as limits, early repayment options, etc. Finally, in
the early 2000s, the denomination xPRD took root to describe those structured notes typically
long-dated (over 30y initial term) and based on multiple currencies (see [Wys17]). The total

notional invested in such notes is likely to be in the hundreds of billions of USD. The valuation


https://arxiv.org/abs/1911.05462
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of such investments obviously requires the modeling of the main components driving the key
risks, namely the interest rates of each pair of currencies involved as well as the corresponding
exchange rates. In its simplest and most popular version, that means 3 sources of risk: domestic
and foreign rates and the exchange rate. The 3-factor model discussed herein is an answer to
that problem.

Gradually, as the note’s features became more and more complex, further refinements to the
modeling were needed, for instance requiring the inclusion of the volatility smile, the dependence
of implied volatilities on both the expiry and the strike' of the option, prevalent in the FX
options market. Such more complete modeling should ideally consist in successive refinements
of the initial modeling enabling consistency across the various flavors of xPRDs at stake.

The model discussed herein was one of the answers popular amongst practitioners for
multiple reasons: it was accounting for the main risks — interest rates in the currencies involved
and exchange rates — in a relatively simple manner and the numerical implementations proposed
at that time were based on simple extensions of well-known single dimensional techniques
such as 3 dimensional trinomial trees, PDE based method (see [Pit05]) or on Monte Carlo
simulations.

Despite the qualities of these methods, the calculation time could be rather slow (around 20
minutes with a trinomial tree for one price), especially when factoring in the cost for hedging
(that is, measuring the sensitivities to all the input parameters) and even more post 2008, where
the computation of risk measures and their sensitivities to market values became a central
challenge for the financial markets participants. Indeed, even though these products were
issued towards the end of the 20th century, they are still present in the banks’s books and need
to be considered when evaluating counterparty risk computations such as Credit Valuation
Adjustment (CVA), Debt Valuation Adjustment (DVA), Funding Valuation Adjustment (FVA),
Capital Valuation Adjustment (KVA), ..., in short xVA’s (see [BMP13; CBB14; Grel5] for
more details on the subject). Hence, a fast and accurate numerical method is important for
being able to produce the correct values in a timely manner. The present paper aims at
providing an elegant and efficient answer to that problem of numerical efficiency based on
Optimal Quantization. Our novel method allows us reach a computation time of 1 or 2 seconds

at the expense of a systematic error that we quantify in Section 6.3.

Let P(t,T) be the value at time ¢ of one unit of the currency delivered (that is, paid) at
time T, also known as a zero coupon price or discount factor. A few iterations were needed by
researchers and practitioners before the seminal family of Heath-Jarrow-Morton models came
about. The general Heath-Jarrow-Morton (HJM) family of yield curve models can be expressed

as follows — although originally expressed by its authors in terms of rates dynamics, the two

n the case of the FX, the implied volatility is expressed in function of the delta.
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are equivalent, see [HJM92] — in a n-factor setting, we have for the curve P(t,T) that

dP(t,T) ~

——L = pydt (¢, T, P(t,T))dW} 6.1

P(t,T) Tt +;O—’L(7 ) (7 )) t ( )
where 7 is the instantaneous rate at time t (therefore a random variable), W i =1,--- . n

are n correlated Brownian motions and o; (t, T, P(t, T)) are volatility functions in the most
general settings (with the obvious constraint that ¢; (T, T, P(T,T)) = 0). Indeed, the general
HJM framework allows for the volatility functions o; (t, T, P(t, T)) to also depend on the yield
curve’s (random) levels up to ¢ — actually through forward rates — and therefore be random too.
However, it has been demonstrated in [EMV92] that, to keep a tractable version (i.e. a finite
number of state variables), the volatility functions must be of a specific form, namely, of the
mean-reverting type (where the mean reversion can also depend on time). We use this way of
expressing the model as a mean to recall that such model is essentially the usual and well-known
Black Scholes model applied to all and any zero-coupon prices, with various enhancements
regarding number of factors and volatility functions, to keep the calculations tractable. For
further details and theory, one can refer to some of the following articles [EFG96; EMV92;
HJIM92; BS73]. Of course, such a framework can be applied to any yield curve. In its simplest

form (i.e. flat volatility and one-factor), we have under the risk-neutral measure

dP(t,T)

P(t, T) = ridt + O'(T — t)th (62)

where W is a standard Brownian motion under the risk-neutral probability. In that case, o
is the flat volatility, which means the volatility of (zero-coupon) interest rates. That is often
referred to as a Hull-White model without mean reversion (see [HW93]) or a continuous-time
version of the Ho-Lee model. In the rest of the paper, we work with the model presented in
(6.2) for the diffusion of the zero coupon although the extension to non-flat volatilities is easily
feasible.

About the Foreign Exchange (FX) rate, we denote by S; the value at time ¢ > 0 of one
unit of foreign currency in the domestic one. The diffusion is that of a standard Black-Scholes

model with the following equation

ds,

?t = (r] —r])dt + o5dW] (6.3)
¢

where rf is the instantaneous rate of the domestic currency at time ¢, Tf is the instantaneous

rate of the foreign currency at time ¢, og is the volatility of the FX rate and W is a standard

Brownian motion under the risk-neutral probability.

Let us briefly recall the principle of the adopted numerical method, Optimal quantization.

Optimal Quantization is a numerical method whose aim is to approximate optimally, for a
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given norm, a continuous random signal by a discrete one with a given cardinality at most N.
[She97] was the first to work on it for the uniform distribution on unit hypercubes. Since then,
it has been extended to more general distributions with applications to Signal transmission in
the 50’s at the Bell Laboratory (see [GG82]). Formally, let Z be an R%valued random vector
with distribution IP,, defined on a probability space (€2, A, P) such that Z € L?(P). We search
for I'y, a finite subset of R? defined by 'y := (N, ..., z]]\\;} c R4, solution to the following
problem
min |2 -2V,
I'nycRY D |<N

where ZV denotes the nearest neighbour projection of Z onto I'y. This problem can be
extended to the LP-optimal quantization by replacing the L?-norm by the LP-norm but this not
in the scope of this paper. In our case, we mostly consider quadratic one-dimensional optimal
quantization, i.e d = 1 and p = 2. The existence of an optimal quantizer at level N goes back to
[CGMOT] (see also [Pag98; GLOO0] for further developments). In the one-dimensional case, if the
distribution of Z is absolutely continuous with a log-concave density, then there exists a unique
optimal quantizer at level N, see [Kie83]. We scale to the higher dimension using Optimal
Product Quantization which deals with multi-dimensional quantizers built by considering the
cartesian product of one-dimensional optimal quantizers.

Considering again Z = (Z%)y—1.4, a R?valued random vector. First, we look separately at
each component Z¢ independently by building a one-dimensional optimal quantization Z° of size
N*¥, with quantizer Féve = {Zfe,ig e{l,--- ,Ng}} and then, by applying the cartesian product
between the one-dimensional optimal quantizers, we build the product quantizer TV = ]_[zlzl Féve
with cardinality N = N x --- x N% by

TNV = {(z}, 2l 2y, deef{l, o Ng}, Cefl,--d}}. (6.4)

Then, in the 90s, [Pag98] developed quantization-based cubature formulas for numerical
integration purposes and expectation approximations. Indeed, let f be a continuous function
f:R? — R such that f(Z) € L*(IP), we can define the following quantization-based cubature

formula using the discrete property of the quantizer zN
R N
E[f(ZM)] = X pif ()
i=1

where p; = IP(EN = z¥). Then, one could want to approximate E[f(Z)] by E [f(EN)] when
the first expression cannot be computed easily. For example, this case is exactly the problem
one encounters when trying to price European options. We know the rate of convergence of the

weak error induced by this cubature formula, i.e 3a € (0,2], depending on the regularity of f
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such that

Jim NYE[f(2)] - E[£(ZY)]| < Crx < +o0. (6.5)

For more results on the rate of convergence, the value of «, we refer to [Pagl8] for a survey in
R? and to [LMP19)] for recent improved results in the one-dimensional case.

Later on, in a series of papers, among them [BP03; BPP05] extended this method to the
computation of conditional expectations allowing to deal with nonlinear problems in finance
and, more precisely, to the pricing and hedging of American/Bermudan options, which is the

part we are interested in. These problems are of the form

sup [e= S8 (5,)]

t
where (e~ fof rids Vi, (St)) 4o, _, is the obstacle function and 7 : Q — {to,t1,...,tn} is a
stopping time for the filtration (Fy, )k=o where Fy = o(Ss, P4(s,T), P/(s,T),s < t) is the
natural filtration to consider because the foreign exchange rate and the zero-coupon curves are

observables in the market.

In this paper, we will present two numerical solutions, motivated by the works described
above, to the problem of the evaluation of Bermudan option on Foreign Exchange rate with
stochastic interest rates. The paper is organised as follows. First, in Section 6.1, we introduce
the diffusion models for the zero coupon curves and the foreign exchange rate we work with. In
Section 6.2, we describe in details the financial product we want to evaluate: Bermudan option
on foreign exchange rate. In this Section, we express the Backward Dynamic Programming
Principle and study the regularity of the obstacle process and the value function. Then,
in Section 6.3, we propose two numerical solutions for pricing the financial product defined
above based on Product Quantization and we study the L2-error induced by these numerical
approximations. In Section 6.4, several examples are presented in order to compare the two
methods presented in Section 6.3. First, we begin with plain European option, this test is
carried out in order to benchmark the methods because a closed-form formula is known for the
price of a European Call/Put in the 3-factor model. Then, we compare the two methods in
the case of a Bermudan option with several exercise dates. Finally, in Appendix 6.A, we make
some change of numéraire and in Appendix 6.B, we give the closed-form formula for the price

of an European Call, in the 3-factor model, used in Section 6.4 as a benchmark.

6.1 Diffusion Models

Interest Rate Model. We shall denote by P(¢,T') the value at time ¢ of one unit of the
currency delivered (that is, paid) at time 7', also known as a zero coupon price or discount
factor. When ¢ is today, this function can usually be derived from the market price of standard

products, such as bonds and interest rate swaps in the market, along with an interpolation
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scheme (for the dates different than the maturities of the market rates used). In a simple
single-curve framework, the derivation of the initial curve, that is, the zero coupons P(0,7)
for T' > 0 is rather simple, through relatively standard methods of curve stripping. In more
enhanced frameworks accounting for multiple yield curves such as having different for curves for
discounting and forward rates, those methods are somewhat more demanding but still relatively
straightforward. We focus herein on the simple single-curve framework.

In our case we are working with financial products on Foreign Exchange (F'X) rates between
the domestic and the foreign currency, hence we will be working with zero coupons in the
domestic currency denoted by P?%(t,T) and zero coupons in the foreign currency denoted by
Pf(t,T). The diffusion of the domestic zero-coupon curve under the domestic risk-neutral

probability PP is given by
dP%(t,T)

d d

where W¢ is a P-Brownian Motion, r{ is the domestic instantaneous rate at time ¢ and oy
is the volatility for the domestic zero coupon curve. For the foreign zero-coupon curve, the

diffusion is given, under the foreign neutral probability ]lND, by

dPf(t,T)

_ _ S
PI(t.T) ridt + op(T —t)dW;

where W/ is a P-Brownian Motion, r{ is the foreign instantaneous rate at time ¢ and o is
the volatility for the foreign zero coupon curve. The two probabilities P and P are supposed
to be equivalent, i.e P ~ P and it exists pqs defined as limit of the quadratic variation
(WEWy, = past.

Remarks. Such a framework to model random yield curves has been quite popular with
practitioners due to its elegance, simplicity and intuitive understanding of rates dynamics
through time yet providing a comprehensive and consistent modelling of an entire yield curve
through time. Indeed, it is mathematically and numerically easily tractable. It carries no path
dependency and allows the handling of multiple curves for a given currency as well as multiple
currencies — and their exchange rates — as well as equities (when one wishes to account for
random interest rates). It allows negative rates and can be refined by adding factors (Brownian
motions).

However, it cannot easily cope with smile or non-normally distributed shocks or with internal
curve “oddities” or specifics such as different volatilities for different swap tenors within the
same curve dynamics. Nonetheless, our aim being to propose a model and a numerical method
which make possible to produce risk computations (such as xVA’s) in an efficient way, these
properties are of little importance. That said, when it comes to deal with accounting for random
rates in long-dated derivatives valuations, its benefits far outweigh its limitations and its use

for such applications is popular, see [NP14] for the pricing of swaptions, [Pit05] for PRDCs...
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Foreign Exchange Model. The diffusion of the foreign exchange (FX) rate defined under

the domestic risk-neutral probability is

dSy

< = (Tf — r{)dt + adets
t

with WtS a IP-Brownian Motion under the domestic risk-neutral probability such that their exist
psq and pgr defined as limit of the quadratic variation (WS Wy = pgat and (W, W/ >t = psyt,
respectively.

Finally, the processes, expressed in the domestic risk-neutral probability P, are

dP(t,T) J J
_— T —
It T) rddt + o4(T — t)dW;
ds
?: = (! —rDdt + ogdW® (6.6)
dPf(t,T) f s
kin(t,T) = (T‘t —psfagaf(T—t))dt+0f(T— t)dW;

where W/, defined by dW] = dVT/J + psyosds, is a P-Brownian motion, as shown in Appendix

6.A. Using It0’s formula, we can explicitly express the processes

Pi(t, T) = PH0,T) exp <Jt <r;l — Jg(T_S)Q)ds + 04 f(T — s)dwj)

-

0 2 0

t 2
{ S’tzsoexp(J (r?—ri—?)dSvLothS)
0
(T — 5)?

PI(t,T) = P1(0,T) exp (ﬂ <r§ — psjosop(T —s) — f2>ds + oy f(T - s)dWSf>

0

From these equations, we deduce exp ( — Sé rglds) and exp ( — SS 7“5 ds), by taking T' =t and
using that P4(t,t) = P/(t,t) = 1, it follows that

exp < — f: rgds> = @q(t) exp <0d f:(t — s)de>
exp (— Jot r{dg) = () exp (af Lt(t — s)dWJ),

pa(t) = PY(0,t) exp ( — oy E (t 25)2ds> (6.7)

where

and

0

+ 0.2 —s 2
5 (t) = PY(0,1) exp ( _ f (psfasaf(t _s) 4 f(t2)>ds>. (6.9)
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These expressions for the domestic and the foreign discount factors will be useful in the following

sections of the paper.

6.2 Bermudan options

6.2.1 Product Description

Let (2, A,P) our domestic risk neutral probability space. We want to evaluate the price of a
Bermudan option on the F X rate S; defined by

1

exp < - Sé rdds

exp ( — fot rglds> = @q(t) exp <ad fot(t — s)dwg>

where the owner of the financial product can exercise its option at predetermined dates

Sy =

2 t
>Sog0f(t) exp ( — %t + 0’5Wts + Ufj (t— S)dWJ)
0

with

to,t1, -+ ,ty, with payoff vy, at date t, where ¢ty = 0.
At a given time t, the observables in the market are the foreign exchange rate S; and the

and (P/(t,T)) hence the natural filtration to consider is

zero-coupon curves (P%(¢,T)) Tt

T>t

Fi=0(Ss, PUs,T), P/ (s,T),s < t) = o (WS, W, W/, s <t). (6.9)

Let 7 : Q — {to,t1,...,t,} a stopping time for the filtration (Fy, )r=0 and T the set of
all stopping times for the filtration (F;, )x>0. In this paper, we consider problems where the

horizon is finite then we define 7,"*, the set of all stopping times taking finite values
T ={TeT,P(ty <7 <t,) =1} (6.10)
Hence, the price at time t; of the Bermudan option is given by

Vi = sup [e_sg rids wT(ST) | ftk]

n
€T,

and V;, is called the Snell envelope of the obstacle process (e~ fot réds Vi, (St)) j—g.py SUch that

0:

E [¢1, (S4,)?] < 40, Vk=0,...,n. (6.11)
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Remark. The financial products we consider in the applications are PRDC. Their payoffs

(see Figure 6.1) have the following expression

Cy(t
Yy, () = min <max <J:S5k)x - Cd(tk)7Floor(tk)) ; Cap(tk)> (6.12)
0
where Floor(t;,) and Cap(ty) are the floor and cap values chosen at the creation of the product,
as well as C¢(t;) and Cy(t;) that are the coupons value we wish to compare to the foreign and

the domestic currency, respectively.

0.06

0.05

0 20 40 60 80 100 120 140

Fig. 6.1 Ezample of a PRDC payoff {1, (St,) = min ((0.1898?’1“7 — 0.15) ,0.0555) at time ty.
: +

The interesting feature of such functions is that their (right) derivative have a compact

support.

6.2.2 Backward Dynamic Programming Principle

Vi can also be defined recursively by

V= e o rids g (s, ),
(6.13)
Vi, = max (e_%k rids Vi (St ), B[ Vi1 | Ftk])? 0<k<n-1

and this representation is called the Backward Dynamic Programming Principle (BDPP).
First, noticing that the obstacle process e™ fordds ¢(St) can be rewritten as a function h; of

two processes X; and Y; such that
he( Xy, Yy) = e forads Vi (St)
where h is given by

he(z,y) = ¢a(t) e v (Sow oISt/ 2 ety ) (6.14)
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and (X,Y) is defined by

t t

(X4, Y;) = (UsWtS + aff (t — s)de) (6.15)

(t —s)dW/, —adf
0

0
Now, in order to alleviate notations, we denote by X; = X, W,f = Wt};, Y = Yy,
W,f = Wt‘i, W,f = Wti and hy = hy, .

Using this new form, the Snell envelope becomes

Vi = sup E [hT(XnYT) | ‘Ftk]

TET
and the Backward Dynamic Programming Principle (6.13) rewrites

Vn = hn(XnaYn)v
(6.16)
Vi = max (hk(Xk,Yk),E[Vk+1 | ftk])’ 0<k<n-1.

Second, in order to solve the problem theoretically by dynamic programming it is required
to associate a F;-Markov process to this problem and in our case, the simplest of them (i.e. of

minimal dimension) is (X, Wtf .Y, W) which is Fi-adapted and a Markov process because

(

/ Te+1 g te+1
D, A =Xk+0'f(5Wk +Usf dWw:; —i—aff (tks1 —S)dWSf
tr tr
k1
wl,, =w] +L aw
k
< d tetd d
Yiy1 =Yy —0q0Wy — (de (tpr1 — S)dWS
tg
tr41
Wi =i+ | awd
k

where § = % and can be written as

Xir1 = Xp + oW, + Ghyy
f f 2
Y1 =Y — o—d5W,§l + Gz+1

d d 4
Wk+1 = Wk +Gk+1?
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where the increments are normally distributed

G
Gia
~N (1, B (6.18)
i [ e
Gl
with
0
0 i J
Ui+l = 0 and Y1 = @OV( k+1’Gk+1) : (6.19)
ij=1:4
0

One notices that ((G},G3, G}, G%))kzl... ,, are 1.i.d. Based on Equation (6.17), we deduce the

Markov process transition of (Xp, W,ff , Yk, W,f), for any integrable function f: R* — R, given
by

Pf(z,u,y,v) =E[f(z+opéu+ G, u+ Giur,y — 040v + Gopq,v + Giiy)]. (6.20)

Remark. Using the Markov process (X, Wiy, Wd) newly defined, we rewrite the filtration
Fi as
Fi=o(WS W Wl s<t)=0o(X,, Wl Y, Wl s <t). (6.21)

Then, using the new expression for the filtration and the Markov property of (X, W,f , Yi, W,f),
the BDPP (6.16) reads as follows,

Vn = hn(Xn7 Yn)7 (6 22)
Vi = max (hk(Xk,Yk),IE [Vies1 | (Xk,W,{,Yk,Wg)]), O<k<n-—1. :

Moreover, by backward induction we get Vj, = vy (X, W,f , Vi, W) where

Un(Xna tha Yo, qul) = hn(Xn7 Yn)a

Uk(XkawlgaYka ng) = max (hk(Xk,Yk),PUk+1(Xk,Wg,Yk,W]g)>, O0<k<sn-—1
(6.23)

Payoff regularity. First, we look at the regularity of the payoff. The next proposition will
then allow us to study the regularity of the value function through the propagation of the local
Lipschitz property by the transition of the Markov process.

Proposition 6.2.1. If ¢y, is are Lipschitz continuous with Lipschitz coefficient [y, ], with
compactly supported (right) derivative (such as the payoff defined in (6.12)) then hi(x,y) given
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by (6.14) is locally Lipschitz continuous, for every x,x’,y,y' € R
(. y) — b,y < PN ([g] o — 2| + (alte) [ Lo + [0k)0s)ly —o/1)  (6.24)

with (], = [Vt ) 1o Soes (th) e o5t/ 01, ||, € with aby, the right derivative of 1y, .

Proof. Let g be defined by

gk(xa y) = wtk (SO i’;gi:i e—ff?gtk/2+m+y > . (625)

As wék has a compact support, then it exists ¢ € R such that

(1, ()] = ey, ()] < g, |, sup  e® <y ||, e (6.26)
xesuppwgk
Hence [7 !
(L
gk (2, y) = gr(2', ¥ < —2(lz — 2’| + [y = ¥']) (6.27)

Patr)
with [¢r],,, = [V ], Soer(ts) e stk /2 |41, ||, €. Then for every z,2’,y,y" € R, we have

|hie(,y) — hi(2, y)| = @alte)| e gz, y) — e g(,y))|
< @d(tk)<
< sﬂd(tk)(| eV —e V| Wyl + e |gul(a,y) — gk(xl,?/)D

< e (] le — oL+ (palt) [ + [kl L)y = o/1)

le ™ g(z,y) — e gila,y)| + | e gr(z,y) — e gula, y’)\)

(6.28)
0

The next Lemma shows that the transition of the Markov process propagates the local
Lipschitz continuity of a function f. This result will be helpful to estimate the error induced

by the numerical approximation (6.23).

Lemma 6.2.2. Let Pf(z,u,y,v) =E [f(ac +opdu+ Ghu+ Gy —oq0v+G3u+ G4)] be a
Markov kernel. If the function f satisfies the following local Lipschitz property,

|f (@, u,y,0) — f(a, oy, 0)] < (Alz — 2| + Blu— | + Cly — y/| + D|v — V')

'l

(6.29)

% elyl VIV I+blv|v]v

then

]Pf(x,u,y,’u) - Pf(xlau/7y/7v/)| < (ﬁ|x - wl| + .§|U - U’/| + é’y - y/‘ + ﬁ"l} - UID

N7 ’
« olylv I 1+Bll V|

(6.30)
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Proof. 1t follows from Jensen’s inequality and our assumption on f

|Pf(x,u,y,v) = Pf(a’, 4,y 0")]
< E[yf(a;+af5u+ GLou+ G2y — 0g00 + G3,0 + GY)
— f(@ 4 opou + G+ G2y — ogdv + G+ G4)|]
< (Alz — 2| + (B + Aosd)ju—1/| + Cly — /| + (D + Cogd)jo —o'|)  (6-31)
s oIV IV [+ roadlolv ] ) [ (l6°1HCH ]
< (Alz — 2| + Blu — /| + Cly — /| + DJv — ')

% elylV Iy I+blv|v ]|

where
A=AE[k], B=(B+ Ac;0)E[x] (6.32)
and
C=CE[k], D= (D+Cosd)E[s], b=b+0osd (6.33)
with £ = exp(|G3| + b|G*|) and E[x] < +o0. O

Value function regularity. If the functions (¢4, )k—o.n are defined as in Equation (6.12) then

vn(x,u,y,v) preserves a local Lipschitz property. Hence, for every x, 2, u,u/,y,y',v,v" € R,

[on (2, u, y,v) — v (@', 0/, 0)| < (Aple — 2| + Bplu — '] + Cply — | + Dylv — ') (6.34)

% elVIVIY[+bnlv[v V|
where
An = [Q/Gn]up; Bn = Oa Cn = ‘Pd(tn)HwnHw + [&n]upa Dn = Oa bn =0 (635)

with [¢n],,, = [, ], S0@s(tn) exp(—0%tn/2)[¢] ||, ¢¢. Using now Lemma 6.2.2 recursively

and the elementary inequality max(a, b + ¢) < max(a,b) + ¢ (as © — max(a, z) is 1-Lipschitz),
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we have

’Uk(xv u,y, U) - Uk(.’IJ/, U/, yI7 U/)‘

< max (‘hk(df, y) - hk(mla y/)|7 |ka+1(x,u,y, U) - ka+1(x/7ul7y/7 U/)D
< max (ewv'y/' ([n] syl = 2" + (walto) [, + [9n] L)1y = ¥'1)
(Aklz — 2/ + Bilu— /| + Cily — v/ + Dilo —2']) (6.36)

« oluIVIy+BLlvl VI )

< (Aklz — 2’| + Bylu — /| + Cily — ¢| + Dilv — ')

% YV [+br|v] v V|
where

Ap = [Vrly, v (Aks1 Blike1]),  Br = (Begr + Aps1050) Elkp1], bk = bps1 + 040
(6.37)
and

Cr = (alte) Ve, o + [kl 1) Vv (Cos1 Elkk11]),  Di = (Dis1 + Cri1046) Elkgs1] (6.38)

with kgy1 = exp(|Gy, | + brs1|Giyq])- Or equivalently

N I N () 1 Blil)  (639)

1=k I<i<
j=k+1 I=k+1 S'S" j=k+1

and .
Cu = o (a0l + 11,,) T Bl
) d=k+tl i (6.40)
Di=oie 3 wox (el + [6,,,) T] Ele])
I=kt1 S j=k+1
with L
by, = adT(l — 1). (6.41)

6.3 Bermudan pricing using Optimal Quantization

In this section, we propose two numerical solutions based on Product Optimal Quantization
for the pricing of Bermudan options on the FX rate S;. First, we remind briefly what is an
optimal quantizer and what we mean by a product quantization tree. Second, we present

a first numerical solution, based on quantization of the Markovian tuple (X, Wiy, Wd), to
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solve the numerical problem (6.22) and detail the L?-error induced by this approximation.
However, remember that we are looking for a method that makes possible to compute xVA’s risk
measures in a reasonable time but this solution can be too time consuming in practice due to the
dimensionality of the quantized processes. That is why we present a second numerical solution
which reduces the dimensionality of the problem by considering an approximate problem, based
on quantization of the non-Markovian couple (X,Y"), introducing a systematic error induced by

the non-markovianity and we study the L?-error produced by this approximation.

6.3.1 About Optimal Quantization

Theoretical background (the one-dimensional case). The aim of Optimal Quantization
is to determine 'y, a set with cardinality at most N, which minimises the quantization error
among all such sets I'. We place ourselves in the one-dimensional case. Let Z be an R-valued
random variable with distribution PP, defined on a probability space (2, A, P) such that Z € L.

Definition 6.3.1. Let I'y = {z1,...,2nx} < R be a subset of size N, called N-quantizer. A
Borel partition (Ci(FN))ie[[l N
Iy if, for every i = {1,--- , N},

of R is a Voronoi partition of R induced by the N-quantizer

Ci(Tw) = {€ e RyJé — =] < min e — 21}

The Borel sets C;(I'y) are called Voronoi cells of the partition induced by T'y.

One can always consider that the quantizers are ordered: z; < 29 < --- < zy_1 < zy and

in that case the Voronofi cells are given by

Ck (PN) = (2k71/272k+1/2]7 ke[l,N —1], Cn (PN) = (ZN71/27ZN+1/2)

where Vk € {2,--- N},  zp_1p0 = w and z /o = inf (supp(]PZ)) and 2y 41/2 = sup (supp(IPZ)).

Definition 6.3.2. Let I'y = {z1,..., 2x5} be an N-quantizer. The nearest neighbour projection
Projr, : R — {z1,...,2zn} induced by a Voronoi partition (Ci(PN))ie{l Ny 8 defined by

N

V€ e R, Projr, (§) = Z Zi Leeoy(Ty) -
=1

Hence, we can define the quantization of Z as the nearest neighbour projection of Z onto I'n

by composing Projp, and X

N

Z' = Projp (Z) = Z Zilzec,(ry) -
iz1

In order to alleviate notations, we write Z~ from now on in place of Z'~V.
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Now that we have defined the quantization of Z, we explain where does the term "optimal"

comes from in the term optimal quantization. First, we define the quadratic distortion function.

Definition 6.3.3. The L?-mean quantization error induced by the quantizer ZN is defined as

1/2 1/2
1Z - ZV|, = <E[ min \z—zﬂ) - (f min ]f—zi|2]PZ(d§)> . (6.42)
R }

ie{l, ,N} ie{l, ,N

It is convenient to define the quadratic distortion function at level IV as the squared mean

quadratic quantization error on (R)":

tz = (21, ., l—»]E[ i Z — -2]: Z—ZN|2.
Qon:z=(z ZN) ie{{{l}{lN}| zi| I I3

Remark. All these definitions can be extended to the LP case. For example the LP-mean

quantization error induced by a quantizer of size N is

. 1/p 1/p
|z - 2N, = (E[ min }|Z—zi|p]> - <JR min }|Z—z,-|pIPZ(d£)> . (6.43)

ie{l,,N ie{l,~,N
The existence of a N-tuple z(V) = (#1,...,2n) minimizing the quadratic distortion function
Qs N at level NV has been shown and its associated quantizer I'y = {z;,i € {1,---, N}} is called

an optimal quadratic N-quantizer, see e.g. [Pagl8] for further details and references. We now
turn to the asymptotic behaviour in NV of the quadratic mean quantization error. The next
Theorem, known as Zador’s Theorem, provides the sharp rate of convergence of the LP-mean

quantization error.
Theorem 6.3.4. (Zador’s Theorem) Let p € (0, +0).

(a) SHARP RATE. Let Z € LIIORM(IP) for some 6 > 0. Let P, (d§) = ¢(§) - M(dE) + v(dE), where
v L Xi.e. denotes the singular part of P, with respect to the Lebesgue measure A on R.
Then,

~ 1 1 1+%
lim N min [Z-2ZN| = —— f eTrd\| . (6.44)
No>+w  TycR,Ty|<N Po2(p+1) LR

(b) NON ASYMPTOTIC UPPER-BOUND. Let§ > 0. There exists a real constant C1 ;5 € (0, +00)

such that, for every R-valued random variable Z,

VN >1 i z-7N| <cC Z)N1 6.45
) Fngl‘lrnNKN H ||p 1,p,505+p( ) ( )

where, for r € (0, +m),0,(Z) = minger |Z — af|, < +0.

The next result answers to the following question: what can be said about the convergence

rate of IE [\Z —ZN ]2+5], knowing that ZNisa quadratic optimal quantization?
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This problem is known as the distortion mismatch problem and has been first addressed by
[GLPO08] and the results have been extended in Theorem 4.3 of [PS18a].

Theorem 6.3.5. [L"-L*-distortion mismatch] Let Z : (2, A,P) — R be a random variable and
let r € (0,+0). Assume that the distribution P, of Z has a non-zero absolutely continuous

component with density ¢. Let (I'ny)n=1 be a sequence of L™ -optimal grids. Let s € (r,r +1). If
Z e LT 0(Q, A, P) (6.46)

for some 6 > 0, then
limsup N[ Z — ZV||, < +oo. (6.47)
N

Product Quantization. Now, let Z = (Z%)—1.4 be an R%valued random vector with
distribution P, defined on a probability space (£2,.A,P). There are two approaches if one
wishes to scale to higher dimensions. Either one applies the above framework directly to the
random vector Z and build an optimal quantizer of Z, or one may consider separately each
component Z¢ independently, build a one-dimensional optimal quantization 2£, of size N¥, with
quantizer Féve = {zfe, ige{l,--- ,Ng}} and then build the product quantizer TV = ]_[gzl F{Ve
of size N = N x ... x N% defined by

TN = {(ef, o2, 28, dee{l, - Ng}, Lefl,--,d}}. (6.48)

In our case we chose the second approach. Indeed, it is much more flexible when dealing with
normal distribution, like in our case. We do not need to solve the d-dimensional minimization
problem at each time step. We only need to load precomputed optimal quantizer of standard
normal distribution A(0, 1) and then take advantage of the stability of optimal quantization by
rescaling in one dimension in the sense that if TV = {2;,1 < i < N} is optimal at level N for
N(0,1) then p + oT'N (with obvious notations) is optimal for N (i, 02).

Even though it exists fast methods for building optimal quantizers in two-dimension based on
deterministic methods like in the one-dimensional case, when dealing with optimal quantization
of bivariate Gaussian vector, we may face numerical instability when the covariance matrix
is ill-conditioned: so is the case if the variance of one coordinate is relatively high compared
to the second one (which is our case in this paper). This a major drawback as we are looking
for a fast numerical solution able to produce prices in a few seconds and this is possible when

using product optimal quantization.

Quantization Tree. Now, in place of considering a random variable Z, let (Z)e[o,r] be a

stochastic process following a Stochastic Differential Equation (SDE)

t t

bs(Zs)ds + f o(s, Zs)dWs (6.49)

Zt=Z0+J
0

0
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with Zy = zp € RY, W a standard Brownian motion living on a probability space (€2, .4,P) and
b and o satisfy the standard assumptions in order to ensure the existence of a strong solution
of the SDE.

What we call Quantization Tree is defined, for chosen time steps ty, = Tk/n,k =0,--- ,n, by
quantizers 2k of Zy, (Product Quantizers in our case) at dates ¢ and the transition probabilities
between date t; and date t;,1. Although (ZC) & is no longer a Markov process we will consider
the transition probabilities ﬂfj = £(2k+1 | Zk) We can apply this methodology because, with
the model we consider, we know all the marginal laws of our processes at each date of interest.

In the next subsection, we present the approach based on the quantization tree previously
defined that allows us to approximate the price of Bermudan options where the risk factors are
driven by the 3-factor model (6.6).

6.3.2 Quantization tree approximation: Markov case

Our first idea in order to discretize (6.22) is to replace the processes by a product quantizer
composed with optimal quadratic quantizers. Indeed, at each time t;, we know the law of the
processes X, W,ff , Y and W,f. Then we "force" in some sense the (lost) Markov property by
introducing the Quantized Backward Dynamic Programming Principle (QBDPP) defined by

‘/}n = hn()?na ?n)a

~ ~A A ~ s SP o T (6.50)
Ui = max (h(X 0, B [Ver | (R, W/, 00 W), 0<k<n—1,
where for every k =0,...,n, )2/@, I//I\/,f , l?k and W,f are quadratic optimal quantizers of Xj, W,f ,

Y and Wg of size ng(, N,gvf, N,Z and N,L/Vd respectively and we denote N = N,f( X N,gvf X
N, g/ x N, ,L/V * the size of the grid of the product quantizer.

We are interested by the error induced by the numerical algorithm defined in (6.50) and
more precisely its L2-error, with in mind that we "lost" the Markov property in the quantization

procedure. Moreover, this can be circumvented as shown below.

Theorem 6.3.6. Let the Markov transition P f(x,u,y,v) defined in (6.20) be locally Lipschitz
in the sense of Lemma 6.2.2. Assume that all the payoff functions (¢, )k—o.m are Lipschitz
continuous with compactly supported (right) derivative. Then the L*-error induced by the

quantization approximation ()’(\'k, 171\/,5, ?k, Wg) s upper-bounded by

5 S - - _ . 1/2

Ve = Vi, < (Z Cx, | X1 = Xl”i +Cyi|Yi - YlHi + Cyya|[ WY — WldHi +Cy [wif - Wﬂi> ;

=k
(6.51)
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where 1 < p < 3/2 andq?lsuchthat%+%=1and

— > 2 ~, ~
CXZ = [wl]iip e‘YlIv|Yl| H2q + AIQKZZ, CWld = B?K?, (6 52)
— 2 i1 12 =, ~ ‘
CYl = ((Pd(tl)H'l/}tl Hoo + [wl]Lip) H e|Yl|V|Yl‘ qu + CI2K12ﬂ CWlf = DZQKZ2
with
Ky = | MIVIFRIWEV WA (6.53)
2q
As a consequence if N = min Ny, we have
Jim Vi — [ = 0. (6.54)

N—+o0

Remark. From the definition of the processes Xj, W,f , Y. and W,f, all are Gaussian random
variables hence all the L?9-norms in Equations (6.52) and (6.53) are finite. Indeed, let Z ~
N(0,0,) a Gaussian random variable with variance ag and Z an optimal quantizer of Z with
cardinality N then VA e R

1

1
[NZMZI |~ (E[ezquvé|]>2q < <2E[62qAZ|]>2q < 9% (PN (6.55)
2q
Proof. The error between the Snell envelope and its approximation is given by

Vi — Vi < max (\hk(Xk,Yk) — (X, Vi),

B [V | (X, W, Ve, W] = E [Ty | ()A(kﬁ,j,f/kﬁg)]\)

(6.56)

thus, using the local Lipschitz property of hi established in Proposition 6.2.1 and Holder’s
inequality with p,q > 1 such that % + % = 1, the L2-error is upper-bounded by

Vi — %Hz < || (X, Vi) — hk(f(k,f/k)ui

< H e|Yk|V|f/k‘ qu ((@d(tk)Wtka + [&k]“p)ﬂ‘yk — ?kij + [&k]ip Xk — Xk”i,)
(6.57)

Looking at the last term, we have
E [Virt | (Xi, WY, W] = B [V | (X, W, ¥, W]

—F [Virs | (X, W, Y, W] = E [Vags | (Xe, W, Vi, W] (6.58)
+E[Vk+l ‘ (Xvkawgv?kvﬁ\/]g)] - [‘7/9+1 ‘ (Xkng;?kng)])



188 Quantization-based Bermudan option pricing in the F'X world

Now, we inspect the L2-error of each term on the right-hand side of the equality.

o For the first term, notice that

E[Vis1 | (Xp, W, Vi, W] = Pogyr (X, W, Vi, Wi (6.59)
and
E [Vier | (Xp, W, Vi, W] = Pogr (X3, W/, Y2, W) (6.60)

then, we directly apply Lemma 6.2.2 on the function vi; and obtain

|ka+1(Xk7W]€vKk7W/§) - ka+1()2k7W]f7i}k7Wkd)|

< (‘ZMX’€ — Xil + ék‘Wk]; - W[f\ + C| Y — Yie| + Dy |[Wit — I//[\/',ﬁ|> ol Vil v Vil +be W | v [
(6.61)
with Ay, By, Cj, Dy, and by, defined by (6.32) and (6.33). Hence, using Hélder’s inequality with
p,q = 1 such that 1%—1—% =1,

” E [Vk-i-l ’ (Xk‘a W]f? Yk‘a Wk(:i)] - E [Vk’-i-l ‘ ()?kv W]ga i}kv ng)] Hz
< (R - Ruf? + BAWS - WL + G- Tl + BRIwE W) (662)
< | AV AN AT 12
2q
e The last one is useful for the induction, indeed

| B Vi | (Xe, W, Ve, W] = E [Viys | ()?k,VAV,{,?k,VAV;?)]Hf < Vi — ‘A/k+1||j (6.63)

Finally, using the L"-L® mismatch theorem for the quadratic optimal quantizers X 1 and ?k,
if 1 < p < 3/2, then

lim sup N | Xy, — X, < +oo, limsup N} |V — Yi,, < +o0,
N Ny

R N (6.64)
limsupN,gi ||Wlf - WgHQp <40  and limsupN/ngHWl? - Wl?”% < +0
Nyt Ny
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this yields
Vi = Wi}
<[ X% — )?k|\fp ([ﬁk]iw
Y= Tal2 ((eattlnl, + [l 2| D5 2+ 27

+ BYRR W, = W2 + DERR Wi = W2 + [Vier = Vi (6.65)

Cy
Vel TRl 2y Ang)
q

n
< 2 Ox X=X} + Cwil[Yi = Vill} + Cuya| Wi = W2+ Cyps [ W = W
=k
N+ 0

V. 145 d|, |77 d
where Kk = H e|Yk|v‘Yk|+bk|Wk|v‘Wk‘ H and Yk = 1,. .o, n, CXk7CYk;CWd;C < 4+o0. ]
2q k Wk

Remark. The same result can be obtained if we relax the assumption on the payoff 9. If
we only assume the payoff Lipschitz continuous, we have the same limit with the same rate of

convergence, however the constants C XZ,CYZ,CWld, Cy s are not the same.
l

To conclude this section, although considering product optimal quantizer in four dimensions
for (Xy, W,f , Y, W,f) seems to be natural, the computational cost associated to the resulting
QBDPP is too high, of order O(n x (max N;)?). Moreover the computation of the transition
probabilities needed for the evaluation of the terms I [‘Afkﬂ ] ()2 ks W,f , }Afk, ng)] are challenging.
These transition probabilities cannot be computed using deterministic numerical integration
methods and we have to use Monte Carlo estimators. Even though it is feasible, it is a
drawback for the method since it increases drastically the computation time for calibrating the
quantization tree. In the next section we provide a solution to these problems which consists in
reducing the dimension of the problem at the price of adding a systematic error, which turns

out to be quite small in practice.

6.3.3 Quantization tree approximation: Non Markov case

In this part, we want to reduce the dimension of the problem in order to scale down the
numerical complexity of the pricer. For that we discard the processes W% and W/ in the tree
and only keep X and Y. Doing so, we loose the Markovian property of our original model but
we drastically reduce the numerical complexity of the problem. Thence, (6.22) is approximated
by

Vi = hn (X, o),

. oA . S (6.66)
Vi = max (he(Re, 0, B [Vt | (R T0)]). - 0<k<n—1
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where for every k =0,...,n, X 1 and f/k are quadratic optimal quantizers of X} and Y of size
N, 15( and NV, ,3/ , respectively and we denote N = N, ,5( x N, ,3/ the size of the grid of the product

quantizer.

Theorem 6.3.7. Let the Markov transition P f(z,u,y,v) be defined by (6.20) be locally Lipschitz
in the sense of Lemma 6.2.2. Assume that all the payoff functions (Y1, k=0 are Lipschitz
continuous with compactly supported (right) derivative. Then the L?-error, induced by the

quantization approximation (f(k,f/k) is upper-bounded by

+1

Vi~ 7], < (2 Couy Wy =BV, | CEWIE, + e Wik — BIWEL, | (X))

R R 1/2
# O X = &2+ Cyilvi - 97 )

(6.67)
where 1 < p < 3/2 and q > 1 such that 1 + = =1, moreover

MM?ZlH? +g2HeBz|Yz|v\ﬁ|H2

=[],

Cyi = (Pl + [ ) XM G MM Gy = DR [
(6.68)

~ 2
Cug, = Bl

Taking the limit in N = min Ny, the size of the quadratic optimal quantizers, we have

n—1
2 2
JJim (ViD= écwli (Wil —BWE L XN+ [Wi—EIWE | ()]

(6.69)

Proof. We apply the same methodology as in the proof for the Markov case. The error between

the Snell envelope and its approximation is given by

|V~ V3| < max <‘hk(Xk>Yk)_hk()?ka?k)’a B [Vir | (Xp, W, Y, W] —E [Vig | ()?b?k)”)
(6.70)

thus, using Proposition 6.2.1 and Hoélder’s inequality with p,q > 1 such that % + % =1, the

L?-error is given by

Vi — ‘A/kHj < | (X, Yie) — hk()Afmffk)Hz
| B [Vier | (X WY, W] = E [V | ()A(mf/k)]uz
([@Dk]m X, — ffk”jp + (ealt)l el + [r]L,) ¥ — Yk” )H el Vilv ¥l qu
+ | E Vit | (Xk,W;f7Yk7Wk)] — [Vk+1 | (Xp, Vi) ]H2

(6.71)
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The last term in Equation (6.71) can be decomposed as follows

E Vit | (X, WY W] = B [Viegr | (X5, Y]
=B [Visr | (Xe, W, Ve, W] — B [V | (X, Y2)]
E[Vigr | (Xi, Ye)] = E [Vigs | (X5, Vi)]
E Vit | leyk)] [VkH | ( )]

(6.72)

And again, each term can be upper-bounded.
e The first can be upper-bounded using what we did above on the value function v, and
Hoélder’s inequality with p,q = 1 such that % + % =1
2
| E[ Vi | (Xk,W;f,Yk,WIg)] —E [Vt | (Xk,Yk)]H2
2
< [Vipr = E[Vigr | (Xe, Y]

< Jorsr (Xian, W1 Y, Wik)
— Vg1 (Xk+1, E [ka+1 | (Xk) Yk‘)]? Yk+17 IE [Wkd+1 | (Xk7 Yk)]) Hj

f f d d ~ 2
< |(Beal Wi = B Wy | (X Yl + Dia Wity = BIWEL, | (X5, Vi) y)mmHQ

< H%kHHi (BI%HHWIJH - E[Wlf-',-l ’ (Xka Yk)]“i + DI%HHWI?H - [ngﬂ | (ka Yk)]ij)

(6.73)
with coefficients bgy1, Bry1 and Dy defined in (6.39) and (6.40) and
Rt — el YestlHbeaa WL IVIBIWE (X5, YR (6.74)
o For the second, we define
(X, Yi) = E [Uk+1(Xk+17W]f+1aYk+la W) | (Xg, Yi)]. (6.75)
Indeed, E [Vk+1 | (Xk, Yk)] is only a function of X and Y}, as shown below
E [Vk-i-l ‘ (Xka Yk)] =L [Uk:-i-l(Xk-‘rla W]g.+17yk+l7 chd+1) ’ (Xk‘a Ykz)]
= B | B [vha1 (Xeer, W1 Yoo, Wiki) | (X, WL Vi, W | (X0, i) |
=E [ka’-l-l(Xk? W]f? Y, ng) | (Xka Yk‘)]
(6.76)

1 ~ L
Moreover, we can rewrite Wg = M Xp + & and W,gl = A\ Y% + x& where

_ Cov(Xy, W) 5 _ Cov(¥, W)
¥ Var(Xg) F Var(Yy)
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and &, ~ N (0, ng) and yi ~ N(0,0%,) with agk = Var(Wg—)\ka) and o} = Var(W,f—XkYk),
then

E[ka-i-l(kaW]gakaWIg) ‘ (kayk) = ($,y)]

~E[P A A (6.77)
= [ Uk+1(-717 kT + Ska Y, ALY + Xk)]‘(x,y):(xk,Yk)
yielding
5]6(:1:’3/) = E[ka-i-l(wv)\kw + ks Yy AkY +Xk):| (678)
Now, using Lemma 6.2.2 on vy, we have
|02, y) — Bp(2, ¢)]
= ’ E [Pojes1 (2, A + &y s Moy + xa) — Porrr (27, e’ + &, v/, Ay’ + Xk)]’
~ o~ ~ ~ o . (6.79)
< “((Ak + Byl Az — 2| + (14 Gyl Ay — o [) e ForPwDIlvIT+orbod }
< (Axlw — /| + Culy — y/|) el
where
Ay, = (A + By M) B[] Gy =14 Gyl M, (6.80)
Ek =1+ gk‘xk’ (6.81)

with Ay, By, Ci and by, defined in (6.32) and (6.33). Hence, using Holder’s inequality with
p,q = 1 such that %4_%:1

[E [Vir | (X, Yi)] — B [V | (B, %]

= 0% (Xk, Vi) — 17k()?k,?k)Hz

< H <Ak|Xk — Xp| + Cu|vi — fka R AMA 2 (6.82)
2

< || PEIhIVITA ? (A,%HXk - X, +CRlvi - f/kap).
e The last one is useful for the induction, indeed

| E[Vis1 | ()A(k,f/k)] -E [‘71%1 | ()A(k,f/k)]“i < Vi1 — ‘7k+1Hj- (6.83)

Finally, using the L"-L® mismatch theorem on the quadratic optimal quantizers )A(k and }A/k.,
if 1 <p < 3/2, then

lim sup N{* | Xy — Xk”gp <+o and  limsup N} Yy — }A/kHQp < 400 (6.84)
N Ny
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and
[Vi—Vi
<[ Xk = Xl ([ik]iw eIV 2 . 2] ebel¥ilv i Hi)

¥ = Tl ((Palt) e + ], PR o GBI )

+ B£+1H%k+1”§qHWlf+1 - E[Wlirl | (Xkayk)]Hzp
DB [} Wiy = B Wi | (X YOI, + Vi = Vi

2

n—1
< 5 Oy Wi —BIWL, | (XL DN2 + e Wik — BIWE | (0 )|
=k

2
P 2p

+Ox X0 = Xl + Oy |vi =¥l

_ n—1
3 Oy W~ BOW (X YON, + Cupg, W — BOWE | (60201,
=k

(6.85)
O

Practitioner’s corner. Market implied values of o, 04 and og used for the numerical

computations are usually of order
or ~ 0.005, o4 ~ 0.005, os ~ 0.5 (6.86)

and in the most extreme cases, we compute Bermudan options on foreign exchange with
maturity 20 years (7" = 20). Thus, we can estimate the order of the induced systematic error.
First, we recall the expression of the related coefficients which depends of

i

Bk:Uf% y max <[1Zz‘]up H E[“j]),

I<ig<n
I=k+1 j=k+1
o ) i (6.87)
Du=oul 3 s ((eat)lual. +[6,,,) T Elw])
n I<igsn .
l=k+1 j=k+1
with
Kj = elGFIHb:1G3] Ripq = el el b Wi, IVIBWE (X)) (6.88)
and

-1
b — 04T (1 _k - > (6.89)
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Now, considering the case where the payoffs are the same at each exercise date, the Lipschitz

constants can be upper-bounded by [v]

Lip*

"y —o2 c c A
[wk]Lip = [wtk]Lipso(pf(tk) e sth/2 Hw{‘k Hao e” < 5o [wtk]upuwgk Hoo S [w]Lip (6'90)
and let k defined by
K = max E[kg] = E [e'GgHbong‘ ] < %E [62\GSI + o200l G| ] (6.91)

moreover, if Z ~ N(0,0?) then E [e)“Z‘ ] = e)‘202/2, thence we can upper-bound x

—_

Kk < fIE[e(’gﬂ—i—ebg/Q] = %E[e”3/96+e°'3T2/2] ~ 1. (6.92)

\V]

% being bounded, we notice that the main constants B and D7 in the remaining error are of

order 0(21 or O‘JQ:, indeed

T _- T _
By, < O’fg[w]Lip(n - k)"in_k ~ O’fﬁ[w][‘ip(n - k),

T B . T - (6.93)
Dy, < adg(mlax eat)v]., + [¥],,) (0 — k)" ~ oa([¥l + [¥]1,,) (0 = k).
Furthermore
E [%iil] - [e2Q\Yk+1\+2qbk+1|Wg+1\V|E[W;f+1\(Xk,Yk)]| ]
< 1 (E [64(1\Yk+1| ] + |:e4qbk+1‘Wkd+1|V‘E[W)g+1|(Xk7Yk)]| ])
2
1 4qlY; 4qo 4 (T—tg,)|[ W4 EW, (X, (6.94)
< 2<E[e d m] +E[e 4oa(T—t) Wi, [V EIWE (X, m])
< % <68q203T3/3 +2 eSq2U¢2i(T_tk)2tk+1 )
and from elementary inequality (a + b)l/q <a140Y1 ab=0, =1
1 1
1 q
rnl?, = B3 < (Jebeetrs it
1 1
< (; e8q20§T3/3) Tt (eSq%ﬁ(Ttk)ztkH ) ! (6.95)
L 8402733 | 8qo2(T—t),)2
< m q04 + e q0 4 k)"tk+1

The two terms on the right-hand side of the inequality do not explode. Indeed, the function
g :t— (T —1t)%t, defined for t € [0,T] with T = 20, attains its maximum on ¢ = 20/3 and
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9(20/3) ~ 1185, hence for the considered values
~ 2
Vk=1,...,n, H/€k+1H2q < C; ~ 6. (696)

Finally, rewriting the obtained systematic error induced by the approximation with this new

informations in (6.69) we have

n—1
[Vie = Vil =5 le B[R, [Wiky — BIWEL, | (X YD1,
+D?+1H%z+1H§qHWli1 BW, | (aY)ll2
<o () 1) Z 2RO WE — BIWE | (X))

- 03<g)2(mlax ealtl¥l., + [F,,,)°

n—1
X Z(n IO 117 W, l+1 [lej-l | (XlaYlﬂHi
=k
TN2 _ n—1
<203() 012, X (= 2R DG WL, |2
I=k

9 N— 1

5 (5 S e

(6.97)

Hence, the systematic error is upper-bounded by the squared volatilities 03 and J]%. These

Lip

T\2 -
+ 203 (=) (maxpa(t)]., + [V, )2 5 tn = 02D W |
=k
Lw ) 1

< (a]% [V]2 +o3( max ga(t) 4], +

parameters being of order 5 x 1073 at most, the systematic error is negligible as long as these

volatilities stay reasonably small.

Remark. As in the Markov case, we can extend this result to the case where the payoffs
() are Lipschitz continuous, however the residual error can not be as easily estimated and

controlled.

6.4 Numerical experiments

In this section, we illustrate the theoretical results found in Section 6.3 regarding the pricing
of Bermudan options in the 3-factor model described in Section 6.1. First, we detail both
algorithms and how to compute the quantities that appear in them (conditional expectation,
conditional probabilities, ...). Then, we test our two numerical solutions for the pricing of
European options, whose price is known in closed form. European options are Bermudan

options with only one date of exercise, hence when using the non-Markovian approximate we do
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not introduce the systematic error shown in Theorem 6.3.7 but pricing these kind of options is
a good benchmark in order to test our methodologies. Finally, we evaluate Bermudan options
and compare our two solutions, the Markovian and the non-Markovian approximation.

We have to keep in mind that the computation time is crucial because these pricers are
only a small block in the complex computation of xVA’s. Indeed, they will be called hundreds
of thousands of time each time these risks measures are needed.

All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core i9 CPU. The computations of the transition probabilities and the computations of

the conditional expectations are parallelized on the CPU.

Remark. The computation times given below measure the time needed for loading the pre-
computed optimal grids from files, rescaling the optimal quantizers in order to get the right
variance, computing the conditional probabilities (the part that demands the most in term of
computing power) and finally computing the expectations for the pricing. One has to keep in
mind that the complexity is linear in function of n, the number of exercise dates. Indeed, if we
double the number of exercise dates, we double the number of conditional probability matrices

and expectations to compute.

Characterisation of the Quantization Tree. In what follows, we describe the choice of
parameters we made when building the quantization tree: the time discretisation and the size

of each grid at each time.

e The time discretisation is an easy choice because it is decided by the characteristics of
the financial product. Indeed, we take only one date (and today’s date) in the tree if we
want to evaluate European options and if we want to evaluate Bermudan options we take
as many discretisation dates (plus today’s date) in the tree as there are exercise dates in

the description of the product.

e Then, we have to decide the size of each grid at each date in the tree. In our case, we
consider grids of same size at each date hence Ny, = N, kK = 1...,n and then we take
NX = 10NY for both trees. This choice seems to be reasonable because the risk factor
X}, is prominent, due to the value of og compare to o4. Now, in the Markovian case, we
take NX = ANWr and NY = 4NW4 indeed the two Brownian Motions are important
only when we compute the conditional expectation but not when we want to evaluate the
payoffs, hence we want to give as much as possible of the budget N to NX and NY.
The algorithm: Markovian Case. Let (z¥ ); _;.yx, (ufz)Q:l:NWf, (YF )iy=1.nv and (’L)Zli)u:l:Nwd
be the associated centroids of X ks W,f , }A/k and 171\/,? respectively, at a given time ¢ with 0 < k£ < n.

Using the discrete property of the optimal quantizers, the conditional expectation appearing in
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(6.50) can be rewritten as

E [V | (X, W, Ve, W) = (aF,uf, 0k of)]
=K [@k-&-l(Xk-i-lelL.laYk-i-lang—&-l) | (XmW;faYkang) = (xflaufgaygavi)] (698)

_ (M)kA ktl k1 kel kel
- Z ’Uk"rl(x 72/]3 )

J Ji J2 ’ ]4
J1,32,33,J4
where 771-(1}1)’]6, with i = (i1,12,13,14) and j = (j1, j2,J3,J4), is the conditional probability defined
by
(a),k o wf v Td N _ (k1 R+l R+l k41
; i,j =P ((Xk+17 Wk+17 Yk-‘rlu Wk;+1) = (le ,Uj2 7yj3 )Uj4 )

| ()A(k,ﬁ\/,f,?k,w/f) = (532?1’“?271/@7”5))-

Due to the dimension of the problem (4 in this case), we cannot compute these probabilities
using deterministic methods, hence one has to simulate trajectories of the processes in order to
evaluate them. We refer the reader to [BPP05; BP03; PPP04b] for details on the methodology.

A way to reduce the complexity of the problem is to approximate these probabilities
by 7~r-(M)’k, where the conditional part {()’(\'k, 171\/,5 , ?k, 171\/,?) = (mk )} is replaced by

i 21? Zz’ylg’ (2

{(Xk,Wf,Yk,W,f)= (l‘fl, 12,%3, Z4)} yielding

~(M),k > i f v T17d = (ghtL g FA1 kL k+1
Tij = (Xk+1’Wk+1’Yk+1’Wk+l)_(xjd Uy Y55 5 UGy )

o (6.99)
‘ (kawkvykvwkz) = (xiﬁyiz’uis’vu))'

The reason for replacing {()?k,W,j,?k,W,j) = ( kouk ok k)} by { Xk,W,f,Yk,W,f) =

Tl Wins Yigr Uiy
(:pf”l, kQ,yW v} 4)} is explained in the next paragraph deahrig with the Non-Markovian case
with lighter notations (see Equation (6.102) and (6.104)). Although, these probabilities are
easier to calculate, one still has to devise a Monte Carlo simulation in order to evaluate them.
This simplification will be useful later in the uncorrelated case.

These remarks allow us to rewritte the QBDPP in the Markovian case (6.50) as

-~ n n n n _ n n
Un (171'1 y Win s Yigs Uu) = hp (%‘1 ) yig) )

~ 7k k k k) _ ~(M),k ~ k1l o k1 okl kel
Uk (5‘71'17“@'27%37”1'4) = max <hk( l17y13) Z ﬂ-i,j Vk+1 (le ’ J2 ’yjs ) 34 ) :
J1,J2:J3:J4

(6.100)

The algorithm: Non-Markovian case. Let (2} ); _;.yx and (. );,_1.xv be the associated
centroids of )A(k and f/k respectively, at a given time t; with 0 < k < n. Again, as in

the Markovian case, using the discrete property of the optimal quantizers, the conditional
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expectation appearing in (6.66) can be rewritten as

E[Vier | (X Y2) = (25, 05)] = B [0 (K1, Yirr) | (Xi, Vi) = (2F,45)]

1),k A~ 6.101
_ Z ﬂ-i(,lj'M) ’Uk-',-l( k+1’y;€2+1) ( )
Ji,j2
where WZ(E-M)’IC, with ¢ = (i1,42) and j = (j1, j2), is the conditional probability defined by

NM o v k+1 k41 SR Y kK
m 0 = P (R Ten) = @575 | (R B0) = (@h.0h)).
This probability can be computed by numerical integration, ie

0F = P (Rer, Bin) = (@57 057 | (R V) = (a,0) )
=P ((‘)?k'*‘l’?k'*‘l) = ( k+1>yf2+1) | Xy € ($§171/2>x§1+1/2)vyk € (yf271/2>y§2+1/2))

i14+1/2 1 +l/2 ~
J 1 j 2 Xk+17Yk+1) = ( k+1ay;€2+1) | (kayk) = (:B,y))fg(x,y)dl’dy

i1—1/2 yz —1/2

(6.102)
where fx(z,y) is the joint density of a centered bivariate Gaussian vector with covariance

matrix X given by

_ < Var(Xy) (Dov(Xk,Yk))' (6.103)

@OV(Xk,Yk) Var(Yk)

However, computing the probability in Equation (6.102) can be too time consuming, hence
once again, we approximate this probability by ?rl(’l;l-M)’k, where the conditional part {()2' ks }A/k) =
(xfl,yfg)} is replaced by {(Xk, Yi) = (a;fl,yfg)}, yielding

W(,I;IM) =P ((XkJrlai}kJrl) = (x kH,yf;l) | (X, Yi) = (arfl,yfg)) (6.104)

From the definition of an optimal quantizer and Equation (6.17), this probability can be
rewritten as the probability that a correlated bivariate normal distribution lies in a rectangular

domain

NM

Xip1 =2l LY = =it Xp = 2, Y = yZ)

I
g R = S

+1 k+ k+1 k+1 _ .k
Xps1 € ( 31 1/2) g1+1/2) Vit € (y Yjp— I/Q’yj2+l/2) | Xk = szk = yiz)

(a: + Uf(SW + Gy € (2 fl 1/275‘751111/2) vh — 0adWil + Giyq € (ny 1/27%2111/2))

R kok+l 2 ¢ (1 k+1
Z e ( Ti—12 ~ Tior Ly 4172 — )Z (_]2 1/2 y12’y]2+1/2 yzz))

(6.105)
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2
Z) n ([ a Po1z200 %2 (6.106)
Z? 0 Py1 429,10 40 0-22

with ail = Var(aféwg + Gi1), 022 = Var(—oaW{ + G ) and Pyige = Corr(aféw,f +
Gly1r —0adWE + G} ).
The advantage of expressing (6.105) as the probability that a bivariate Gaussian vector

where

lies in a rectangular domain is that it can be rewritten as a linear combination of bivariate
cumulative distribution functions.

Indeed, let (U, V) a two-dimensional correlated and standard-
v ized normal distribution with correlation p and cumulative distri-
bution function (CDF) given by Ffy(u,v) = P(U < u,V < ).

Fast and efficient numerical implementation of such function

V2

exists (for example, a C++ implementation of the upper right

tail of a correlated bivariate normal distribution can be found
in John Burkardt’s website, see [Burl2], which is based on the

u w v work of [Don73] and [Owe58]. In our case, we are interested in

the computation of probabilities of the form

Fig. 6.2 P (U € (u1,u2),V € (v1,02)). (6.107)

This probability is represented graphically as the integral of the two-dimensional density over
the rectangular domain in grey in Figure 6.2. Now, using F{},V (u,v), the probability (6.107) is
given by

P (U € (u1,up),V € (v1,v2)) = Ffjy(u2,v2) — Ffyy (w1, v2) — Fy (ug, v1) + iy (ur, 01).
(6.108)
This remark will allow us to reduce drastically the computation time induced by the
evaluation of the conditional probabilities and so, of the conditional expectations.

Now, going back to our problem, the QBDPP in the non-Markovian case rewrites (6.66)

~ ~ 6.109
B ) = o (ot ), 2 75 B a0 ) (6:109)
J1,j2

In order to test numerically the two methods, we will evaluate PRDC European and
Bermudan options with maturities 2Y, 5Y and 10Y. We describe below the market and
products parameters we consider. The volatilities of the domestic and the foreign interest rates
are not detailed below because we investigate the behaviour of the methods with respect to oy

and oy.
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Py(0,t) | exp(—rgt) || 74 | 0.015 || psa | O

Ps(0,t) | exp(—r¢t) || ¢ | 0.01 || psy

S() 88.17 gs 0.5 Pdf
Table 6.1 Market values.

Vkel,...,n, Cy(tx) 15% Vkel,...,n, Cf(tk) 18.9%

Vkel,...,n, Cap(tg) | 555% || Vkel,...,n, Floor(ty) | 0%

Exercise date (EU): t, T Exercise dates (US): ty Tk/n
Table 6.2 Product description.

Remark. When the correlations pg and pgq are equal to zero, the numerical computation of
(Mm),k ~(NM),k
iy ond 7

be rewritten as

probabilities 7. can be accelerated. Indeed, in the Markovian case, (6.99) can

1,J J1 0 V2 117 Pig

x P (T, Wika) = (05 051 | 0 W) = (u0)).

=~k _ p ((Xk+1)ﬁ\/]f+1) _ (xkﬂ ukH) | (Xk,W,f) _ (azk uF ))
(6.110)

In that case, we can use the CDF of a correlated bivariate normal distribution, as detailed above
for the non-Markovian case in (6.108), for computing these probabilities in a very effective and
faster way rather than performing a Monte Carlo simulation.

In the non-Markovian case, (6.105) can be rewritten as

~(Nm)k 1 k+1 ko k+1 k 2 k+1 ko k+1 k
Ty =P (Z < (xjrm T T T2 T %)> P (Z € (%'24/2 T Yipr Yjoq12 T yzz))
k+1

k k+1 k kt1 % k1 k
_(r Tiiv12 ~ T 7 L5 1 T T 7 Yip1/2 ~ Yia 7 Yin—1/2 ~ Yia
- () () ) () R ()

z1 z1 022 022

(6.111)
where F,(+) is the CDF of a one-dimensional normal distribution, o, is the standard deviation
of Z' and o, s the standard deviation of Z 2. This remark allows us to drastically reduce the

computation time of the conditional probabilities in the case of zero correlations.

6.4.1 European Option

First of all, we compare the asymptotic behaviour of the Markovian and the non-Markovian
approaches when pricing European PRDC Options with different volatilities and maturities.
In this case, we consider only two dates in the tree: tg = 0 an ¢, = T, the algorithm is a
regular cubature formula and no systematic error is induced by the non-markovianity of the
couple (Xg,Ys). These numerical tests confirm that both approaches give the same value,

however the non-Markovian approach converges much faster due to the dimension of the
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product quantization, 2 for the first one and 4 for the last one. Indeed, the complexity of the 2
dimensional pricer is of order of N = NX x NY while the complexity of the 4 dimensional pricer
is of order N = NX x NY x NW* x NW/ N being the size of the product quantizer at each
date (in two dimensions: N = NX x N and in four dimensions N = N¥X x NW/ 5« NY x NWd).

In the case of the European options, we have a closed-form formula for the price of (6.12).
The benchmark price is computed using the rewriting of (6.12) as a sum of Calls: at a time #,

the payoff can be expressed as

W1, (Sh,) = min <max <0{9(§k> S, — Calty), Floor(tk)> , Cap(tk)>

= Floor(t) — ap(S, — Kp)y + ar(Sy, — K2)+

Cf(tk) _ Cap(tr) + Cy(tg) Floor(tg) + Cqa(tk)

So Cy(tr) Cy(tr)
closed-form formula for the price of a Call is detailed in Appendix 6.B. The prices given by the

with a; =

, K,i x Sp and K,% = x Sp and the
closed-form formula of the European options we consider (different values of volatilities and

different maturities) are given in Table 6.3.

‘ ‘ Exact price

PN

2Y H 9.171945242  2.159404007

50bp 500bp

5Y H 1.630435483  1.539295559

10Y H 1.127330259  0.8013151892

Table 6.3 Prices given by closed-form formula of European options with zero correlations.
(04=0f=0)

The difference of speed of convergence between the two methods is illustrated in Figures 6.3
and 6.4 for the relative errors for both methods compared to the benchmark. N in the label
of each graphic represents the size of the product quantizer (NX x N WE S NY x N in the
Markovian case and NX x NY in the other case), hence the complexity of both trees are the

same.
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Fig. 6.3 04 = oy = 50bp — Relative errors for both methods for 2Y, 5Y and 10Y European
options pricing (with zero correlations).
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Fig. 6.4 04 = oy = 500bp — Relative errors for both methods for 2Y, 5Y and 10Y European
options pricing (with zero correlations).

For both methods, a relative error of 1bp is quickly reached, even for high values of o4 and
os. Indeed, the time needed in order to achieve a 1bp precision for building a quantization tree
with 2 dates, computing the probabilities and pricing a European option is at most 6 ms for
the non-Markovian method and at most 85ms for the Markovian one when the correlations are
equal to zero. The computation times needed for a 1bp relative error are summarised in Table
6.4.
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Non-Markovian — 2d ‘ Markovian — 4d

\‘ 50bp 500bp 50bp 500bp

2Y || 1ms (32000) 4 ms (32000) | 24 ms (512000) 4 ms (64000)

5Y || 4 ms (32000) 6 ms (32000) | 4 ms (64000) 85 ms (2048000)

10Y || 4 ms (32000) 3 ms (32000) | 14 ms (256000) 83 ms (2048000)

Table 6.4 Times in milliseconds needed for reaching a 1bp precision for European options pricing
with zero correlations using both methods with, in parenthesis, the size N of the grid at each
time step. (0q=o0f=0)

Remark. Of course, the pricers can be used even when we consider non-zero correlations.
We choose to show only the asymptotic behaviour of the non-Markovian method because it
converges much faster and the computations of the probabilities can be made deterministically
using the CDF of a correlated bivariate normal distribution. However, if we want to use the
Markovian approach, we need to compute the transition probabilities using a Monte Carlo
simulation, which is a drawback for the method as it increases its computation time. We

consider the following correlations

psy = —0.0272, psq = 0.1574, par = 0.6558.

Table 6.5 summarises the prices given by the closed-form formula.

Exact price

\‘ 50bp 500bp

2Y ‘ 2.173803852 2.185536786

5Y H 1.636518082  1.652226813

10Y H 1.141944391 1.103531914

Table 6.5 Prices given by closed-form formula of European options with correlations. (oq =
of=0)

Figures 6.5a and 6.5b display the relative error induced by the numerical method as a
function of N. And in Table 6.6, we summarise the computation needed in order to reach a

1bp relative error.
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Fig. 6.5 Relative errors for the non-Markovian method for 2Y, 5Y and 10Y FEuropean options
pricing (with correlations).

Non-Markovian — 2d

N 50bp 500bp

2Y || 71 ms (64000) 34 ms (32000)

5Y || 31 ms (32000) 31 ms (32000)

10Y || 32 ms (32000) 139 ms (128000)

Table 6.6 Times in milliseconds needed for reaching a 1bp relative error of European options
pricing with correlations using the non-Markovian method with, in parenthesis, the size N of
the grid at each time step. (04 =0y =0)

It is clear that one should prefer the non-Markovian methodology to the Markovian one for
the evaluation of Furopean options as it is a fast and accurate method for producing prices in
the 3-factor model.

6.4.2 Bermudan option

Now, we compare the asymptotic behaviour of both approaches when pricing true Bermudan
PRDC options. The following figures represent the price and the rescaled difference of the prices
given by the two approaches as a function of NV, which is the size of the product quantizer at each
date (in two dimensions: N = NX x NY and in four dimensions N = N x NWT % NY x NWd).
The financial products we consider are yearly exercisable Bermudan options with different
values for the maturity date (2 years, 5 years and 10 years) and the domestic/foreign volatilities
(50bp and 500bp).

When using domestic and foreign volatilities close to market values, we observe numerically

that the non-Markovian method converges a lot faster than the Markovian one for a given
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complexity. However both methods do not converge to the same value (see Figures 6.6a, 6.6b,
6.6¢), which is consistent with the results we found in Theorems 6.3.6 and 6.3.7. As in the
European case, N in the label of each graph represents the size of the product quantizer
(NX x N % NY x NW* in the Markovian case and NX x NY in the other case), hence the

complexity of both trees are the same.
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Fig. 6.6 04 = oy = 50bp — Price with the two methods for 2Y, 5Y and 10Y yearly exercisable
Bermudan options (with zero correlations).

However, the relative systematic error induced by the non-Markovian methodology is
negligible as can be seen in Figure 6.7, at most 5bp for a 10-year annual Bermudan option.
Hence, one should prefer, again, the non-Markovian methodology when considering to evaluate

Bermudan options.
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Fig. 6.7 04 = oy = 50bp — Relative differences between the two methods for 2Y, 5Y and 10Y
yearly ezercisable Bermudan options (with zero correlations).

Remark. If we consider more exercise dates for the Bermudan option, the systematic errors
increase, as shown in Figure 6.8 where we considered Bermudan options exercisable every 6
months and the same parameters as before with zero correlations and o4 = oy = 50bp. However,
even-though the error is higher for small NV, when the non-Markovian pricer has converged, the

relative difference between both methods is still acceptable (lower than 5bp).
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Fig. 6.8 04 = oy = 50bp — Relative differences between the two methods for 2Y, 5Y and 10Y
bi-annual exercisable Bermudan options (with zero correlations).

When we consider higher values the volatilities, o4 = oy = 500bp, as expected the prices
produced by the non-Markovian methodology produce a systematic error bigger than the case
where 04 = o5 = 50bp (see Figures 6.9a, 6.9b, 6.9c and 6.10). However, the relative difference
between the two methods after convergence is reasonable: less than 0.1% for expiry 2 years,

0.4% for 5 years and around 1.1% for 10 years.
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Fig. 6.9 04 = oy = 500bp — Price with the two methods for 2Y, 5Y and 10Y yearly exercisable
Bermudan options (with zero correlations).
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Fig. 6.10 04 = 0y = 500bp — Relative differences between the two methods for 2Y, 5Y and 10Y
yearly exercisable Bermudan options (with zero correlations).

In Figure 6.7, we reference the time needed for reaching a 5bp relative precision (we

compare the price given by grids of size N to the "asymptotic", which is the price given by

the same method with a very large N) for the pricing of Bermudan options in a scenario of

zero correlations. The non-Markovian method attains better precision than a relative precision
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of 5bp in a few milliseconds, at most 7 ms where the Markovian one can need 4 seconds for
reaching that precision. Hence, the 2 dimensional approximation seems again to be the better

choice.

Non-Markovian — 2d ‘ Markovian — 4d

N 50bp 500bp 50bp 500bp

2Y || 1ms (1000) 1 ms (1000) | 25 ms (3000) 4 ms (1000)

5Y || 3 ms (1000) 4 ms (1000) | 98 ms (8000) 1903 ms (64000)

10Y || 7ms (1000) 7 ms (1000) | 468 ms (16000) 3850 ms (64000)

Table 6.7 Times in milliseconds needed for reaching a 5bp relative precision for Bermudan
options pricing using both methods with zero correlation and, in parenthesis, the size N of the
grid at each time step. (0q=o0f=0)

Remark. Again, the pricers can even be used when we consider non-zero correlations and
we choose to show only the asymptotic behaviour of the non-Markovian method, for the same

reasons as the European case. We consider the same correlations as in the European case
psy = —0.0272, psa = 0.1574, par = 0.6558.

Figures 6.11a, 6.11b and 6.11c display the price given by the numerical method as a function of
N and Table 6.8 summarises the computation time needed in order to do better than a 3bp

precision.
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Fig. 6.11 04 = o5 = 50bp — Price of 2Y, Y and 10Y yearly exercisable Bermudan options
using the non-Markovian method (with correlations).

Non-Markovian — 2d

|
g

2y || 122 ms (1000)
5Y || 553 ms (1000)
10Y | 1283 ms (1000)

Table 6.8 Times in milliseconds needed for reaching a 3bp relative precision for Bermudan
yearly exercisable options pricing with correlations using the non-Markovian method with, in
parenthesis, the size N of the grid at each time step. (04 =05 = 0)

Conclusion

We were looking for a numerical method able to produce accurate prices of Bermudan PRDC
options with a 3-factor model in a very short time because the pricing of such products arises

in a more complex framework: the computation of counterparty risk measures, also called
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xVA’s. We proposed two numerical methods based on product optimal quantization with a
preference for the non-Markovian one. Indeed, even if we introduce a systematic error with our
approximation, the error is controlled, as long as the volatilities of the domestic and foreign
interest rates stay reasonable. Moreover, the numerical tests we conducted confirmed that idea:
we are able to produce prices of Bermudan options in the 3-factor model in a fast and accurate

way.
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Appendix 6.A W/ is a Brownian motion under the domestic

risk-neutral measure

Let (WN/f ) a P-Brownian motion. In this section, we show that the process W/ defined by
AW! = dW{ + psrosds (6.112)

is a P-Brownian motion.
First, we define the following change of numéraire, where P is the foreign risk-neutral

probability and P is the domestic risk-neutral probability,r

- ST T J T f
dP = —exp| — | rgds|)exp rids |dP
So 0 0
2

— exp (aswﬁ — ?T)d]l’

or equivalently

2
AP = exp (— as Wi + (’25T>dIP
0'2 ~
— exp < —og(W2 — 0sT) — 25T> dP (6.113)

= exp ( — agW}g — U;T) dp
where W is a P-Brownian motion defined by dI/IN/tS = dW}? — osdt. More details concerning
the definition of the foreign risk-neutral probability can be found in the Chapter 9 of [Shr04].
Now, we are looking for ¢ € R such that dst = dWSf — qdt is a P-Brownian motion. Let
AeR and Vt > s

E [eA((sz—qw—(v“v’!—qs)) 7| = INE[e*((vwvtf—qw—(ﬁff—qs))—GS(VNVTS—VNVSS)J?(T‘S) |7 |
_ ]’E[e,\((VT/tf—qt)—(W!—qS))—Us(WtS—WsS)—Uzg(t_s) \ ]-"s]

o2 7 V4 W %%
— o M(t—s)— 5 (t—s) INE][eA(Wtf_W!)_JS(WtS_Wf) | ]:S] (6.114)

o

0'2 2 2
_ ef)\q(tfs)fTS(tfs) e%(tfs)f)\ospsf (tfs)JrTS(tfs)

»

_ o2 (t-5) g Aalt—s)~Aosps(t—)

»

= e% (t=s)

the last equality is ensured if and only if

0=—-Mg(t—s) = Aospss(t—s) <= q=—05psy- (6.115)
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Hence, W/ defined by
dst = dWN/YSf + pSfO'SdS

is a IP-Brownian motion.

Appendix 6.B FX Derivatives - European Call

The payoff at maturity ¢ of a European Call on F'X rate is given by
(St — K)+

with K the strike and S; the F X rate at time t.

Our aim will be to evaluate V}
Vo=E [e—SST?dS(St _ K)+].

Proposition 6.B.1. If we consider a 3-factor model on Foreign Exchange and Zero-coupon as

defined in (6.6), Vo is given by

F(0,t) SoP(0,t)
log (52700 ) 4 (0, ¢) log — 11(0, 1)
Vo = Son(o,t)N ( (KPd(o,t)) ) — KPd(O,t)N ( (KPd(o’t)> )

o(0,1) a(0,)
with
0.0 = [ 33060 + o) + o) ds
[ ossms(6)(5.8) = psaos(1a(s, s = prar (5. (5. ) d
and

02(0,t) = 2u(0,1).

Proof. In this part, we want to evaluate

Vo=E [e—SST?dS(St - K)+].

2We ignore the settlements details in the present paper in order to alleviate the notations but the formula
can easily be extended to take them into account.
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If we consider a 3-factor model on Foreign Exchange and Zero-coupon as defined in (6.6), we

have ) .
Vo =E| e tordds(g, — K)+]

_ _(e* S(t) rlds S, —e” S(t) rlds K)+]

=B | (e brit g — e H K g |

: —(trdds — (i rdds
=E|e Jored St]l{StZK}] —KE[e Jorid ]l{StzK}]-

We focus on the first term
KE[e 5 m 5.5 |.

We do the following change of numéraire:

with 1
thexp(f/t—§<}~/,}~/>t>,

Zo=1

where V; = § 04(s,t)dW and < V.,V >;= §; 03(s, t)ds.

Hence, we can define the following Brownian Motions Wd, W/ , WS under @:

AWe = dWl —d <Y, W >, =dW?— oy(s,t)ds,
AWl =awf —d<v,wf >, =aw! - pracd(s,t)ds,
dWsS = de —d<Y, ws >s = deg — psdoa(s,t)ds

(6.116)
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and S; becomes

Soexp<f ( 0*292(8)>d5+£05(3)dW§>

(0 t
SOP exp f )+ af(s t) — (s,t)) — psros(s)og(s,t) ds>
0

t

X exp <L og(s)dW? + J op(s,t)dW! — LUd(Sat)dWsd>

_ SpPl(0,t)
= P01 exp< +Uf(st)—|—ad(st))d>
t
x eXP< f (psros(s)of(s,t) — psaos(s)oa(s,t) _Pdef(Sat)Ud(sat))d'S)
0

t t t
X exp <J os(s dWS f or(s,t)dW/ —J ad(s,t)de>

0 0
_ Wexp<—u(0,t) + f §(s)dS +j o (s, ) ATV — Jtad(s,t)dv?g)

0

Hence, as exp ( - Sé rﬁds) = P%0,t) x Z, (6.116) becomes

—(t rdds
B[ 55 1] K005 ]
= KPY0,t)Q(S; = K)

KP(0,t)
(Z > log (Son(O,t)) + (0, t)>

O

= KP40,1)

o(0,t)

f(0,t)
~ lOg SoP - /’L(Oa t)
— KPY0,0)Q (Z < (Kpd(o’t) >) )

o(0,t

f
RO — (0,1)
)

= KPY0,t) N (10 (
’ o(0,t
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where Z ~ N(0,1) with

—_

1(0,1) = fo 5 (93() + 03 (s, 1) + 35, 1) ds

+ f (psros(s)op(s,t) — psaos(s)oa(s,t)ds — prao(s,t)oq(s,t))ds,

t t t
02(0,t) = Var< as(s)dW5+J af(s,t)dWSf—J ad(s,t)dWsd>
0 0 0
¢ N t N ¢ N
= Var <f Us(S)dWSS> + Var (J Uf(S,t)dst) + Var (J ad(s,t)de>
0 0 0

t t t t
+2Cov <f Us(s)dWsS,f af(s,t)dWSf) —2Cov (f Js(s)dWSS,J ad(s,t)dwj>
0 0 0 0

t t
—2Cov (J Uf(s,t)dWSf,f ad(s,t)dwg>

0 0
t
= f (o%(s) + O']%(S,t) +03(s,t))ds
0
t
+ 2J (psros(s)af(s,t) — psaos(s)oa(s,t) — praoy(s,t)oa(s,t))ds.
0
Now, we deal with the term

E |0 8 s | = PAOOERS, U500 ] (6.117)

using directly the formula of the first partial moment of a log-normal random variable. Let
X ~ Log-N(u,c?), then

2 _
E[X Tjxss ] = 0% N (”+U 10g(w)>.

o

Finally, as Sy = S%,IZZO([;’;)X with X Log- N (—u(0,t),5%(0,t)), we get

_s,p! Q
(6.117) = SoP7(0,t) |E [X]l{ - KPd,1) } ]

= SoPf(0,t)

2 K P(0,t)
S Pf(O £) e—u(07t)+702(0’t) N (—,u(O,t) +07(0,1) — log (SOPf(O,t)>>
= 20 ’

’ 7(0,1)

f(0,t)
log ( S5m0 ) + 10, 1)
= SPI0.ON ( ( ;‘2’33) )

noticing that p(0,¢) = 02(20,15).
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Finally, we get
Vo=E [e_ fordds(g, — K)+]

_E [ef §t rdds S, ]l{StzK}] _KE [ef §ordds ]l{StzK}]

7(0,t) SoP7(0,t)
log (5227004 4 11(0, 1) log = 1(0,1)
:&WQUN< (#F5) )-Kw@wN< (e )

o(0,1) c(0,1)

Special case of constant volatility: os(s) = 0g, oq(s,t) = g x (t —s) o¢(s,t) = 05 x (t =)

M@@:L;ﬁ@+ﬁ@w+ﬁ@m@

+ J (psros(s)of(s,t) — psacs(s)oa(s,t) — praos(s,t)oa(s,t))ds

+ | psjosor(t—s) — psaosoa(t —s) — pracroa(t — s)*ds
0

1 t3 t3 t2 2 3

9 Ugt + Uj%g + 033) + PSfUSO'f§ - PSdUSUd§ - pdefUdg,
t

02(0,t) = f (O‘%(S) + U%(s,t) + U?l(s,t))ds

+ 2J (psros(s)ap(s,t) = psaos(s)aa(s,t) — praos(s,t)aa(s,t))ds
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