
HAL Id: tel-03115438
https://theses.hal.science/tel-03115438

Submitted on 19 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explainable Classification and Annotation through
Relation Learning and Reasoning

Régis Pierrard

To cite this version:
Régis Pierrard. Explainable Classification and Annotation through Relation Learning and Reasoning.
Artificial Intelligence [cs.AI]. Université Paris-Saclay, 2020. English. �NNT : 2020UPAST008�. �tel-
03115438�

https://theses.hal.science/tel-03115438
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0
2
0
U

PA
S
T
0
0
8

Explainable Classification and
Annotation through Relation

Learning and Reasoning

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 573, Interfaces : approches interdisciplinaires,
fondements, applications et innovations

Spécialité de doctorat : Informatique
Unité de recherche : Université Paris-Saclay, CentraleSupélec, Mathématiques et

Informatique pour la Complexité et les Systèmes, 91190, Gif-sur-Yvette, France.
Référent : CentraleSupélec

Thèse présentée et soutenue à Gif-sur-Yvette, le 15 septembre 2020, par

Régis PIERRARD

Composition du jury:

Hugues Talbot Président
Professeur des universités, CentraleSupélec
Freddy Lecue Rapporteur et Examinateur
Directeur de recherche, Thales/INRIA
Yann Chevaleyre Rapporteur et Examinateur
Professeur des universités, Université Paris Dauphine
Isabelle Bloch Examinatrice
Professeur des universités, Télécom Paris

Céline Hudelot Directrice
Professeur des universités, CentraleSupélec
Jean-Philippe Poli Encadrant
Ingénieur de recherche, Commissariat à l’énergie atom-
ique et aux énergies alternatives (CEA)
Laurent Cabaret Invité
Professeur agrégé, CentraleSupélec

iii

Acknowledgements
This thesis has been an extraordinary adventure and I would like to thank all the

people that made its completion possible. First, I am thankful to all the members
of the jury for the time they dedicated to evaluate my work and for their patience
when we had to postpone the defense twice because of the exceptional sanitary cir-
cumstances.

I sincerely think the supervisors have a great impact on how well a thesis pro-
gresses and on the overall experience of the doctoral student. I was fortunate to be
surrounded by people who were able to motivate and push me when it was needed
and who helped me to achieve this work. Thus, I am very grateful to Jean-Philippe,
my supervisor at CEA, who has always been available when I had a question or
an issue and who gave me multiple suggestions to shape this thesis. I would also
especially like to thank my thesis director, Céline Hudelot, for always supporting
me and for being willing to meet and talk each time I needed it. Jean-Philippe and
Céline always tried to put myself in the best position to carry out my thesis, which I
appreciate very much.

A part of the work presented in this manuscript is the result of a collaboration
with Laurent Cabaret, professor at CentraleSupélec. He helped me to deal with sci-
entific constraints I had little knowledge about. I truly appreciated working with
him and I would like to thank him for his availability and the time he spent review-
ing a part of this work. I am also thankful to Isabelle Bloch for accepting to attend
and review my mid-thesis defense and for her cooperation when I was working on
the fuzzy dilation operator.

The warm welcome I received when I arrived in the LADIS laboratory and the
people I met there also helped me to go through this whole experience. I am thankful
to the midday eaters group and to all the people who played football every Wednes-
day after work. I am very pleased that this weekly football session has become a
habit and I am looking forward to playing again. In particular, I would like to thank
Sandra for the many breakfasts and talks we had together, for the hints she gave me
and for all the activities she proposed, Vincent for the countless hours we spent in
our office talking about every possible topic, Arnaud for his love of etymology and
for the two great trips we did together in Spain and Brazil to attend conferences, and
Ismaïl for the great technical and sport talks we had. I also want to thank Shivani,
Andrei, Baptiste, Hung, Edwin, Étienne, Meritxell, Rafaël, Mickaël and Harry.

Finally, I would like to highlight the role of my family. I cannot thank my parents
enough for their support, they have always encouraged me to give my best and
given me everything I needed to follow the directions I chose. I am also grateful to
my brother and my grandma for always being by my side and for keeping believing
in myself.

v

Contents

Acknowledgements iii

Introduction 1

I Explainability in AI 5

1 Explainable Artificial Intelligence 7
1.1 Towards a Definition of Explainability and Interpretability 8
1.2 Taxonomy . 11
1.3 Related Works . 13
1.4 Evaluating Explanations . 32
1.5 Impact of Explanations on Users . 36
1.6 Discussion . 37

2 Proposed Approach 39
2.1 Which Explanation? . 39
2.2 Which Model? . 40
2.3 Which Features? . 40
2.4 The Overall Approach . 41

II Building an Explainable Model 45

3 Model Expressivity and Fuzzy Relations 49
3.1 Expressivity of a Model . 49
3.2 Fuzzy Relations . 51
3.3 Discussion . 54

4 Learning Relevant Relations and Descriptors 55
4.1 Relation-based Descriptors . 55
4.2 Frequent Itemset Mining . 56
4.3 Fuzzy Frequent Itemset Mining . 60
4.4 Fuzzy Close Algorithm . 62
4.5 Discussion . 68

5 Heuristics for Preventing Redundant Evaluations 71
5.1 Brute Force Evaluation of Relations . 72
5.2 Online Pruning of Infrequent Relations 72
5.3 Knowledge-based Ordering of Relations 74
5.4 Discussion . 84

vi

6 Generating Rules or Constraints for Performing Explainable Classification
or Annotation 87
6.1 Building Rules for Classification . 87
6.2 Converting Relations into Constraints for Annotation 91
6.3 Generating Explanations from Rules and Constraints 95
6.4 Discussion . 98

III Application to Spatial and Temporal Reasoning 101

7 Spatial and Temporal Relations 105
7.1 Fuzzy Spatial Relations . 105
7.2 Temporal Relations . 114
7.3 Spatio-temporal Relations . 115
7.4 Discussion . 116

8 Fast Parallel Fuzzy Morphological Operators 117
8.1 Fuzzy Dilation . 118
8.2 Related Algorithms . 118
8.3 Vectorized Multithreaded Reverse Algorithm 123
8.4 Benchmark and Results . 126
8.5 Discussion . 130
8.6 Acknowledgements . 130

9 Experiments on Images 131
9.1 Toy Dataset for Image Classification . 131
9.2 Organ Annotation in Medical Images 140
9.3 Discussion . 151

10 Application to Time Series Classification 153
10.1 Dataset . 153
10.2 Vocabulary of Relations . 155
10.3 Discussion . 160

Conclusion and Perspectives 163

A Publications 169
A.1 International Peer-Reviewed Conferences 169
A.2 National Peer-Reviewed Conferences 169

B Fuzzy Logic : Main Definitions 171
B.1 Fuzzy Set . 171
B.2 Linguistic Variable . 172
B.3 Fuzzy Relations . 172
B.4 Fuzzy Operators . 172

C Closure Operator 175
C.1 Definitions . 175
C.2 Proof . 175

D Fuzzy Close Algorithm: Experimental Results 179
D.1 Datasets . 179
D.2 Results and Discussion . 179

vii

E Topological Sorting 181
E.1 Definitions . 181
E.2 Example . 181
E.3 Algorithms . 182

F Additional Results 183
F.1 Constraints in the Organ Annotation Experiment 183
F.2 Time Series Classification: Linguistic Variables 184

G SIMD 185
G.1 Architecture . 185
G.2 Instructions . 186

H Résumé en français 187

Bibliography 189

ix

List of Figures

1.1 Example of dog classification (Simonyan et al., 2013) which illustrates
the difference between interpretation and explanation. On the left,
the saliency map is an interpretation because it is relatively easy to
understand given the input but it does not describe the logic that led
to the classification. On the right, it is an example of explanation since
the causes are clearly stated. 11

1.2 Example from (Laugel et al., 2019). Two classifiers have been trained
on the Iris dataset, which contains three different classes. They both
have an accuracy of 78% on the test set. In Figure 1.2A, the random
forest makes some questionable divisions of the feature space due to
its sensitivity to outliers. In Figure 1.2B, the SVM decisions far from
training data do not seem reliable too. In those cases, post-hoc inter-
pretability may produce plausible but misleading explanations. 13

1.3 An example of interpretable decision set from (Lakkaraju et al., 2016).
Since it is a decision set, rules are independent from each other. The
length of rules and their number per class is not high, which make the
result understandable and the reasoning clear. 15

1.4 Example of decision tree for assessing what kind of lenses a person
may wear. The reasoning leading to each class is clear and the shal-
lowness of the tree makes the model easily interpretable. This exam-
ple was taken from the course on decision trees given by Bhiksha Raj
at Carnegie Mellon University. 16

1.5 Example where linear regression is used as an interpretable model
(Poursabzi-Sangdeh et al., 2018). The goal is to predict the price of an
apartment in a neighborhood of New York City given eight different
features. The coefficients corresponding to each feature give users an
idea of the role they play in the final result. 17

1.6 Example showing how kNN can be used to interpret a prediction
(Kenny and Keane, 2019). The instance to classify is a “6”, but the
system returns “0”. kNN enables to understand that the system has
been misled by a few training instances that belong to the class “0”
but look like “6”. 19

1.7 Overall architecture of the self-explaining neural network (Alvarez
Melis and Jaakkola, 2018). There is a parametrizer (in orange) that
generates relevance scores that correspond to β. Then, a encoder is
used (in green) to learn higher level concepts from the raw features of
the input space, which correspond to h. Finally, an aggregating layer
enables to define g and an explanation is obtained as a set of couples
coefficient/concept. 20

x

1.8 Example of explanation produced by a self-explaining network (Al-
varez Melis and Jaakkola, 2018) on the MNIST dataset. Five concepts
have been learnt and their corresponding coefficients are shown for
two different inputs. For each concept, the most representative in-
stances in the dataset are displayed. 20

1.9 Architecture of the network proposed by (Li et al., 2018). Inputs are
projected into a latent space using an encoder so that they can be com-
pared to the prototypes that were learnt. The decoder enables to visu-
alize these prototypes. 21

1.10 Example from (Alonso and Bugarín, 2019). The goal is to predict if,
following telemarketing, a consumer subscribes a term deposit. This
is represented by the variable Bank that can take two values: “yes”
or “no”. Here, the branch leading to the prediction is highlighted (in
green) and an explanation in natural language is generated. We can
see that the splitting criteria on the features pdays and euribor3m are
characterized by the linguistic term “low”. 22

1.11 Optimization process that led to an image maximizing the activation
of a single neuron (Olah et al., 2017). The initial image has been filled
with random noise. At the end of the process, we can see the type
of pattern that activates the neuron the most. In this particular case,
the image maximizing the activation represents a regular pattern that
seems to be a texture. 24

1.12 Example of a soft decision tree obtained by distillation of a teacher
neural network on the MNIST dataset (Frosst and Hinton, 2017). The
images at each node are the filters that were learnt to define the prob-
ability distributions used for splitting subsets of instances. The most
likely classifications at each node and at each leaf are annotated in the
tree. 25

1.13 A set of prototypes and a set of criticisms that were learnt on the
MNIST dataset (Kim et al., 2016). We can see that prototypes look
more like handwritten digits that a human would expect than criti-
cisms. 25

1.14 This plot represents the Individual Conditional Expectancy of a pre-
diction with respect to feature F1 (Goldstein et al., 2015). We can see
that there is a parabolic relationship between the estimator ŷ and F1.
The dots correspond to the actual value of F1 for each instance. The
yellow line is the Partial Dependence Plot, which is the average of the
ICE over all instances. 27

1.15 Architecture of the model presented in (Kim et al., 2018). In a©, the
user provides a set of examples representing a concept (here “striped”)
and a set of random examples. In b©, the training instances corre-
sponding to the class under study (here zebras) are provided. In c©, fl
is the projection of an input instance into the latent space correspond-
ing to layer l, and hl,k is the classifier. In d©, the concept activation
vector vl

C is learnt by training a linear classifier to distinguish between
the activations produced by the concept’s examples and the ones pro-
duced by other examples. Finally, in e©, the conceptual sensitivity is
computed by deriving hl,k with respect to fl(x) in the direction of vl

C. . 28

xi

1.16 The model presented in (Hendricks et al., 2016) extracts visual fea-
tures and predicts a class label. Then, sentence generation is condi-
tioned by both the visual features and the class label to get a discrim-
inative and descriptive explanation. 29

1.17 Illustration of the principles of LIME and Anchors. 31
1.18 Architecture of the model presented in (Lécué and Pommellet, 2019).

An object detection model is trained and applied on an image. In par-
allel, contextual information is extracted from knowledge graphs for
each type of object in the dataset. Depending on the consistency be-
tween this contextual information and the predictions of the other ob-
jects in the image, the confidence of the output of the model increases
or not. 33

1.19 Example from (Hendricks et al., 2016) that presents the difference be-
tween image descriptions, which are not necessarily class relevant,
and class definitions, which are not necessarily image relevant. A vi-
sual explanation should rely on class discriminative features that are
also present in the image under study. 35

2.1 Illustration of the approach proposed in this thesis for performing im-
age annotation. 42

3.1 Figure representing the linguistic variable (”duration“, [0; 100], {Fshort, Flong}).
The membership functions of the two fuzzy sets Fshort and Flong are
represented respectively in blue and red. The core of Fshort is [0; 25]
and the core of Flong is [75; 100]. 53

3.2 Two figures where the relation disk to the left of square cannot be ex-
pressed the same way. Fuzzy logic provides tools to characterize dif-
ferently these two situations while relying on the same fuzzy relation
to the left of. 54

5.1 Curves representing the evolution of B = n(S−1)
k + 1 with the number

of assessed examples k for a total number of examples n = 30. For
the sake of clarity, only the positive values of B are displayed (if B is
negative, no support can be discarded because it is always positive or
null). 74

5.2 Example of labeled directed graph. The vertices are relations and the
directed edges between vertices are labeled according to the links be-
tween relations. For each edge, its corresponding labels are to its right. 80

5.3 Example of directed acyclic graph that we get using Algorithm 3 on
the knowledge graph displayed on Figure 5.2. 82

7.1 Pictures representing the 8 core relations of RCC8: DC (Disconnected),
EC (Externally Connected), PO (Partially Overlaps), EQ (Equals), TPP
(Tangential Partial Part), NTPP (Non-Tangential Partial Part), TPPi
(Tangential Partial Part inverse) and NTPPi (Non-Tangential Partial
Part inverse) (Randell et al., 1992). 106

7.2 An example of fuzzy dilation. Figure 7.2B represents the fuzzy land-
scape associated to the fuzzy dialtion of the red object by the structur-
ing element displayed in Figure 7.2A. 109

7.3 Example of distance relations “near” and “far”. 110
7.4 Example of a fuzzy landscape representing the relation “between” the

two red objects (Cinbis and Aksoy, 2007). 111

xii

7.5 Examples from (Vanegas, 2011). 111
7.6 Examples of enlacement between two objects (Clément et al., 2017). . . 113
7.7 Axes of symmetry found by the method described in (Colliot, 2003) . . 114
7.8 Examples of fuzzy temporal scopes (Poli et al., 2018). 116

8.1 Fuzzy dilation DSE(F) of the reference object F by the structuring el-
ement SE. The spatial relation represented here is “close to”. The in-
tensity of each pixel of Dν(µ) represents in which extent it verifies the
relation. The image of the structuring element is four times as big as
the two others because it is needed for performing the dilation. 118

8.2 For each iteration of the fuzzy dilation, DSE(F)(u) with u ∈ U , the
structuring element SE is looped over the input image F. As shown
on these two figures, SE needs to be bigger than F to cover it completely.119

8.3 Comparisons of fuzzy landscapes generated with both the naive algo-
rithm and Bloch’s method. 122

8.4 Comparison of the naive and reverse algorithms for computing a fuzzy
dilation. The input image has 384 rows. While the naive approach
computes the dilation pixel by pixel, the reverse one only computes
the contributions of the non-zero pixels in the reference object. On row
33, the first non-zero pixels of the reference object are barely percep-
tible on the figure and have been surrounded by a red ellipse. Once
the reference object has been completely looped over (row 170), the
reverse algorithm finishes and returns the same result as the naive
approach after row 384. 124

8.5 Contribution to the fuzzy dilation of one active pixel (in red) from the
reference object (on the left). For the sake of this illustration, only 4
threads and 128 columns are represented. PR is the multi-threaded
version of the reverse algorithm where each thread is responsible for a
strip of rows of the fuzzy dilation Dν(µ). With PR128, PR256 and PR512,
for each thread, columns of Dν(µ) are distributed using AVX, AVX2
and AVX512 respectively. 126

8.6 Artificial dataset samples: a) Rectangle, b) Disk, c) Ellipse, d) 256×
256 crisp square with 256 active pixels, e) 256× 256 crisp square with
4096 active pixels, f) 256× 256 crisp square with 65536 active pixels,
g) 256× 256 fuzzy square with 256 active pixels, h) 256× 256 fuzzy
square with 4096 active pixels, i) 256× 256 fuzzy square with 65536
active pixels, j) 512 × 512 crisp square with 65536 active pixels, k)
1024× 1024 crisp square with 65536 active pixels 127

8.7 Execution time distributions for the natural image dataset. 130

9.1 Examples from each class of the dataset used in the example of ex-
plained classification in Section 9.1 . 132

9.2 Example of how a specific relation is computed in an instance. Here,
the goal is to compute the relation ellipse to the right of disk. Given
an instance (Figure 9.2A), the disk, which is the reference object in
the relation to evaluate, is extracted (Figure 9.2B). The fuzzy land-
scape to the right of disk can then be computed (Figure 9.2C). Finally,
as explained in Chapter 7, the relation can be evaluated using a fuzzy
pattern matching approach. 133

xiii

9.3 Example of signature of a fuzzy ellipse generated using (Chanussot
et al., 2005). For each alpha cut of the ellipse, its edge is extracted and
the distance of each point of this edge to the centroid of the ellipse is
computed. Thus, we get a shape signature for each alpha cut. At the
end, the final signature is obtained by averaging all the signatures we
got at the previous step. Here, we can see that there are two maxima
and two minima of same values. Also, these extrema are uniformly
spread over the edge. This signature is typical of an ellipse. 134

9.4 Graph representing the logical links between the relations in the vo-
cabulary. There are three subgraphs with only one type of edge: e,
which representsR1 ⇒ R2. 135

9.5 Plot displaying the performance of the model with respect to the value
of the minimum support. We reach an accuracy of 100% between 0.5
and 0.65. The red dashed line represents the average number of re-
lations in rules before they were pruned from relations common to
other classes. The red plain line is its counterpart for rules that were
pruned from common relations. 136

9.6 Example of explanation for an instance from class 1. Relations in bold
were pruned because they are shared by rules from other classes. . . . 138

9.7 Example of explanation for an instance from class 2. This is one of
the borderline example we generated. Relations in bold were pruned
because they are shared by rules from other classes. 138

9.8 Example of explanation for an instance from class 3. Relations in bold
were pruned because they are shared by rules from other classes. . . . 139

9.9 Example of explanation for an instance from class 4. This is one of
the borderline example we generated. Relations in bold were pruned
because they are shared by rules from other classes. 139

9.10 Examples of the four types of scans in the dataset. 140
9.11 In this experiment, we consider the 9 colored organs in this figure. . . . 141
9.12 Comparison of the fuzzy landscapes corresponding to the relation to

the left of the liver (figure 9.12A on page 142) and the relation completely
to the left of the liver (figure 9.12B on page 142). 142

9.13 Examples of symmetry measure. 142
9.14 Graph representing the logical links between the relations handled by

the model in this experiment. 142
9.15 Example of explained annotations. 145
9.16 Answers to the first four assertions. 149
9.17 Answers to the last four assertions. 150

10.1 Examples from the time series dataset we worked on. 154
10.2 Three examples from class 4 that do not present the same properties

at first sight. Those are the three types of patterns that we encounter
in the instances of class 4. 154

10.3 Example of a time series from class 1. The 8 signals have been smoothed
and a segmentation has been performed. The vertical black line repre-
sents the border between the first segment, corresponding to transient
state, and the second segment, corresponding to steady state. 155

10.4 Graph representing the logical links between relations for the time
series classification experiment. 156

10.5 Example of explanation for an instance from class 1. 157
10.6 Example of explanation for an instance from class 2. 157

xiv

10.7 Example of explanation for an instance from class 3. 158
10.8 Example of explanation for an instance from class 5. 158
10.9 Confusion matrix displaying the performance of our model in the

time series classification experiment. 159
10.10Given an input image, we can get a convenient segmentation of the

entities of interest by applying hierarchical clustering on an overseg-
mentation. 166

D.1 Plots showing the number of database passes relatively to the mini-
mum support threshold for the three datasets. 180

E.1 Example of a directed acyclic graph for topological sorting. 182

F.1 Fuzzy sets corresponding to the linguistic variables Increases and De-
creases. 184

F.2 Fuzzy sets corresponding to the linguistic variable Varies. 184
F.3 Fuzzy sets corresponding to the linguistic variable Distance. 184

G.1 Figure representing how SIMD instructions enable to parallelize com-
putations compared to a single instruction operating on single data
(Intel, 2011). 185

G.2 Figure showing how different data types fit in a 128-bit register (upper
part of the figure) and in a 256-bit register (lower part) (Intel, 2011). . . 186

xv

List of Tables

1.1 Table representing the taxonomy we propose for XAI methods. The
approaches classified in this table are described in Section 1.3. There
is no example of method that relies on both transparency and model-
agnosticism since, by definition, model-agnostic methods do not rely
on any model. 33

1.2 Criteria for evaluating explanations (Baaj and Poli, 2019). They are
split into three categories: natural language, human-computer interaction
and content and form. The first category aims at assessing the correct-
ness of the language used in explanations. In the second category,
criteria enable to evaluate what the explanation conveys when it is
transmitted from the system to the user. The third category is dedi-
cated to assessing the content and the form of the explanation. 35

4.1 Example of database for the basket market problem. We call this database
Dmarket. 57

4.2 Representation of the formal context associated to Dmarket (cf. Ta-
ble 4.1). Zeros are not displayed for a better visualization of the formal
context. 57

4.3 A fuzzy database Dfuzzy represented as a fuzzy formal context. 61
4.4 The fuzzy database Dfuzzy. 66
4.5 FCC1 on the left and FC1 on the right. { } is pruned from FCC1 to

FC1 because it is not frequent. 69
4.6 FCC2 on the left and FC2 on the right. 69
4.7 FC . 69
4.8 Deriving frequent itemsets. Bold lines refer to derived itemsets. From

left to right: L3, L2 and L1. 69

5.1 The fuzzy database Dfuzzy. For a minimum support greater than or
equal to 0.5, we can know that { } cannot be frequent after having
processed the first four transactions. However, for { }, we need its
evaluation in t5 to assess whether it is frequent or not. 72

5.2 This table shows the four types of implications between relations that
the approach can process. Those implications enable to propagate the
result of one relation to another. R1 and R2 are two p-ary fuzzy rela-
tions defined on a space A. e is a tuple of entities defined on Ap. 78

5.3 Recap of the different kinds of link we consider between relations and
their notation in the graph representation. The third column specifies
how the corresponding edge is represented in a graph. R1 andR2 are
two p-ary fuzzy relations defined on a space A. 79

6.1 The set FC of frequent closed itemsets that we got in the example of
Chapter 4 on page 55. 90

xvi

7.1 Definition of topological relations in the original RCC (Randell et al.,
1992) and the fuzzy RCC for regions u and v in a universe U (Schock-
aert et al., 2009). t is a left-continuous t-norm and t−→ the residual
implicator corresponding to t. 106

8.1 Execution time in ms for one fuzzy landscape computation with vari-
able image sizes and a 4096-pixel centered fuzzy square. Bold font
indicates the best result for each case. 128

8.2 Execution time in ms for one fuzzy landscape computation with vari-
able image sizes and a 65536-pixel centered fuzzy square. Bold font
indicates the best result for each case. 128

8.3 Speedups with the reverse algorithm as reference for variable image
and reference object sizes. Bold font indicates the best result for each
case. 128

8.4 Execution time in ms for one fuzzy landscape computation with vari-
able number of active cores and reference object sizes. 129

8.5 Acceleration ratio with Bloch’s algorithm as reference with variable
image and reference object sizes. 130

9.1 Table representing several results for each class of organ when per-
forming a nested cross-validation with 5 folds in the outer loop. First,
the minimum support associated to the learning of the frequent sub-
sets of relations is given for each class. In the second column, the
average number of constraints that we get for each class of organ at
the end of the learning is displayed. Finally, we show the average con-
fidence that we got for each annotation during the testing (accuracy
of 100%). 146

9.2 Table presenting the number of prevented evaluations using our sec-
ond heuristic (cf. section 5.3 on page 74). Following the topological
sort that we got in section 9.2.2 on page 141, the results for each logical
link are shown. Overall, this strategy enables to prevent 1636 evalua-
tions, which represents 7.6% of the total number of evaluations. 147

10.1 The second column shows the values of minimum support we found
for each class after tuning. The third column shows the average length
of rules before the relations that are shared by rules from other classes
are removed. The last column displays the average length of rules
after they have been pruned. 159

1

Introduction

Context

Artificial Intelligence (AI) has reached many layers of society and has become more
and more popular. It is naturally part of many current and developing technologies,
such as smartphones and autonomous vehicles for instance. It has also turned into
a hot topic of discussion among politicians, social scientists or in the media. This
keen interest in AI is the consequence of the great strides the field has made over
the last decade, in particular with the success of Deep Learning (DL). Deep neural
models have enabled to dramatically improve the performance of automatic sys-
tems in many different tasks, such as object recognition (Russakovsky et al., 2015) or
also high-level reasoning tasks like strategic games (Silver et al., 2016). While a few
articles claim to reach superhuman performance (Russakovsky et al., 2015; Brinker
et al., 2019), their main purpose is to interact with humans and help their decision-
making. On the other hand, this great coverage about the recent successes of AI also
contributes to put forth its current weaknesses.

This is not the first time AI has raised so much enthusiasm since the field was
born in 1956. The motivation behind AI has often been linked to humans and
their activity, hence interactions between both parts. AI applications aim at either
replicating a task performed by humans, like automatic quality control in the indus-
try for example, or at aiding humans perform more complex assignments, such as
diagnostic-aid systems in medicine. The latter is an example of critical application
since the decision of the AI may have an impact on the well-being of the patient. In
such high-stake applications, interactions between AIs and humans are even more
important. As a consequence, the cost of making a bad decision is very high (Rudin,
2019) and so great levels of safety, robustness and reliability are required. However,
the most performing approaches do usually not satisfy these requirements and may
even be vulnerable to attacks (Szegedy et al., 2013; Nguyen et al., 2015; Moosavi-
Dezfooli et al., 2016). Thus, they are not suited to such applications.

In that context, several areas of research have been investigated in the last few
years to build trustable AIs. Those are privacy, fairness and explainability. Privacy aims
at preserving individuals against potential attacks and weaknesses of AI systems
that could reveal information about them. Fairness is also a growing topic in AI
because datasets that are used to build state-of-the-art models are likely to contain
biases. Therefore, the model will replicate these biases, which will be detrimental to
its performance and its acceptance. Explainability aspires to provide the rationale
behind a model and its decisions. This enables to understand why a model returns
a given output.

In particular, explainability has recently received special attention and the name
eXplainable Artificial Intelligence (XAI) has been introduced by DARPA (Gunning,
2016) and is now commonly accepted to refer to this field. XAI is composed of
methods that enable to build transparent models, to get more insight into what a
black-box model is doing or to evaluate explanations. This field is actually not new
since explainability was already a concern at the time of the first rule-based expert

2 Introduction

systems in the 1970’s. Because of the weaknesses of current AIs, recent laws have
been proposed to regulate their use (European Council, 2016; Assemblée Nationale,
2019). Coupled with a need for gaining acceptance in the society, it has prompted a
resurgence of interest in XAI. This has led the research community to propose new
approaches.

The present work aims at integrating the platform ExpressIF developed within
CEA. In this platform, an interpretable and fuzzy-logic-based AI is implemented.
Interpretability being one of its core features, several operators were created or inte-
grated so that the knowledge in the model is directly expressible in natural language
and thus more understandable to humans. In this thesis, we would like to learn from
such a large vocabulary of operators for building an interpretable model whose de-
cisions can be explained.

Problematic and Goals

Our objective is to propose a new approach that enables to build models able to both
classify/annotate 1D or 2D signals and provide an explanation. This thesis does not
have a targeted application and our aim is to propose a generic approach that could
be applied to various application cases. Nevertheless, in our work, we are concerned
by high-stake applications whose impact on humans is important and thus a human-
understandable explanation of the decision is mandatory.

For high-stake applications, it has been claimed that black-box models are not
appropriate because getting a faithful and detailed enough explanation is tricky
(Rudin, 2019). Indeed, in most cases, it consists in only attributing importance scores
to features (Ribeiro et al., 2016; Lundberg and Lee, 2017) that are not necessarily in-
terpretable. In such critical applications, transparent models, i.e. models whose trace
and reasoning can be conveniently tracked, are better suited for producing reliable
explanations. As a consequence, in our approach, we focus on transparent models,
such as decision rules, and thus we do not resort to more opaque ones like deep
neural networks.

Understanding a signal such as an image or a time series relies on understanding
the relations between the entities in those signals (Biederman, 1981; Geurts, 2001).
Thus, we assume in this work that these relations should be a core component of
our approach. Therefore, we would like our model to be able to express and han-
dle such relations to classify/annotate instances as well as to generate explanations.
Moreover, in order to bring knowledge about potentially relevant relations, we are
interested in a human in the loop approach that would enable to set beforehand a
vocabulary.

In the context of critical applications, it may be difficult to gather (labeled) data
and so we may have to deal with small datasets. For our approach to be generic, it
should be able to learn relevant relations (from the vocabulary set beforehand) on
few data. Thus, one of our goal is to develop a learning strategy that is suited to any
dataset sizes. This problematic is also linked to the choice of the transparent model.

Explanation evaluation is of paramount importance for assessing the quality of
the explanations returned by the model. This is a major issue in the field of XAI, even
though a few directions have been proposed (Doshi-Velez and Kim, 2017; Hendricks
et al., 2018; Baaj and Poli, 2019). In this thesis, we do not focus on proposing a
new explanation evaluation approach but we will adapt human-grounded evaluation
(Doshi-Velez and Kim, 2017; Baaj and Poli, 2019) to our needs.

Introduction 3

Contributions and Outline

This thesis is organized into three parts as follows.
The first part of this document gives a broad view of the field of XAI. Since there

is no reference definition of explainability, we first specify one in order to set a frame
for the explanations that our model will produce. Following a taxonomy of XAI
methods that we proposed, we present an extensive glimpse of state-of-the-art meth-
ods. This enables us to spot the advantages and weaknesses of these methods and
to propose a new approach that can learn relevant relations in data to classify or
annotate instances with explanations. Besides, we describe the current strategies for
evaluating explanations.

In the second part, we present the theoretical foundations of our approach. In
Chapter 3, we specify the notion of expressivity of our model and present the tools
we rely on to build an expressive model and to express interpretable relations. Chap-
ter 4 tackles our first contribution, which is the learning strategy we propose to build
a model. It is inspired by frequent itemset mining and enables to learn from few data.
It is also suited to learn on correlated data such as the instances of a given class. It
extracts class descriptors as frequent sets of relations that will be the basis for clas-
sification/annotation and explanations. Our second contribution is presented in
Chapter 5 and consists in two heuristics that aim at making the evaluation of re-
lations faster. The first heuristic relies on the properties of the learning algorithm
to discard relations that are bound to be infrequent. The second heuristic is based
on the logical links between relations, such as implications or dependencies. It re-
sults in an adequate order of evaluations of relations for propagating information
and preventing redundant computations. In Chapter 6, we describe how we build
rules or constraints from the relevant relations. We also present how we generate
explanations in natural language.

The third and last part presents applications to spatial and temporal relations for
dealing with images and time series. Chapter 7 is an overview of fuzzy spatial, tem-
poral and spatio-temporal relations. In Chapter 8, we present our third contribution
which consists in a fast, parallel and SIMD-based implementation of the fuzzy dila-
tion operator to make the evaluation of some relations faster. The last two chapters,
Chapter 9 and Chapter 10, present the experiments we carried out in order to test
our approach. Chapter 9 tackles image applications and in particular an example of
explainable organ annotation in medical images. Chapter 10 presents an application
to time series classification on toxic chemicals.

Finally, we will conclude this thesis with an evaluation of our work and we will
present some envisioned prospects.

5

Part I

Explainability in AI

7

Chapter 1

Explainable Artificial Intelligence

Artificial Intelligence (AI) has seen a great renewal in the last decade with the emer-
gence of Deep Learning (DL). It enables to build models that are able to very effi-
ciently classify images, recognize objects or translate from one language to another.
It has been argued that it can even tops human capabilities on several specific tasks
(Russakovsky et al., 2015; Silver et al., 2016; Haenssle et al., 2018). As a consequence,
deep neural networks have been deployed in many applications, including use cases
where the decisions they produce have a direct impact on human well-being. In-
deed, the stakes are not the same for an autonomous vehicle as for performing music
recognition for instance.

For high-stake applications of AI, performance is not the only criterion to opti-
mize (Doshi-Velez and Kim, 2017). Such applications may require a relative under-
standing of the logic performed by the AI. In that case, the end-user would like to
get a response to the question “Why?” (Miller, 2017). eXplainable Artificial Intelligence
(XAI) aims at providing methods that help to make AIs able to answer this question.

The designation explainable artificial intelligence was first used in (Gunning, 2016).
The author states that XAI applications should fulfill two objectives:

1. building models that are more explainable than those obtained with usual Ma-
chine Learning (ML) techniques while keeping a high level of performance,

2. being understandable, trustable and manageable to humans.

The first objective is actually not necessarily compatible with optimizing perfor-
mances. It is usually admitted that there exists a trade-off between the performance
of a model and its interpretability (James et al., 2013), although this claim may not be
legitimate (Rudin, 2019). A simpler model may not be as accurate as a more complex
one, but it should be more interpretable.

The second objective is more related to the applications and recipients of XAI. It
should be used to make AI applications trustworthy (such as in high-stake applica-
tions), easier to improve (by spotting biases for example) or to assess the account-
ability of an autonomous system when an incident happens for instance.

The rise of the need for explainability in AI has also prompted governments to
introduce new regulations. The most famous one is the General Data Protection Reg-
ulation (GDPR) that was introduced by the European Union in 2016 and that has
been enforced since 2018 (European Council, 2016). In particular, articles 13 and 14
state that the data subject shall be provided “meaningful information about the logic , as
well as the significance and the envisaged consequences of such processing for the data sub-
ject”. This has led researchers to wonder whether it introduces a right to explanation
(Goodman and Flaxman, 2017) or more simply a right to information (Wachter et al.,
2017a). Although it is never mentioned explicitly, all the necessary conditions for a
right to explanation seem to be present in the GDPR (Selbst and Powles, 2017). In

8 Chapter 1. Explainable Artificial Intelligence

1974, the US government introduced the Equal Credit Opportunity Act (United States
House of Representatives, 1974) to prevent discriminations against credit applicants.
It already mentioned that, when a creditor rejects a request for credit, it must give
the applicant a statement of the reasons for this decision. For instance, such reasons
can be “The proportion of your revolving balances to total balances is too high” or “You re-
cently opened a new account”. With the extensive use of credit scores in the USA, such
as the FICO score (FICO, 1989), this amounts to explaining why an applicant was
given a low score by a model evaluating his/her/its trustworthiness. In 2018, FICO
launched an Explainable Machine Learning Challenge (FICO, 2018) to improve the
explainability of the ML models the company uses for generating credit scores. More
recently, in October 2019, the French National Assembly approved a draft bioethic
law (Assemblée Nationale, 2019) that introduces, in article 11, a human guarantee:
when a medical decision-aiding model is used, its results must be revealed to the
patient by a healthcare professional that will inform him/her about how the model
is used and how it works. It also states that the optimization process of the model
parameters requires the intervention of a healthcare professional, who may not have
any knowledge in AI.

While regulations do exist, their requirements regarding the explainability of AI
models are technically vague. This is the reflect of the current state of the field of XAI.
Indeed, there is no agreement at the moment on reference definitions of explanations
and interpretations, nor on how to evaluate and present them. Those are ongoing
issues that involve multiple different fields, such as AI, cognitive sciences or law.

Besides, in order to assess, certify or compare models, methods for evaluating
explanations are needed. This is a tricky topic because two different models may
produce explanations in different modalities or two different people may expect dif-
ferent explanations depending on their knowledge.

In this chapter, we first deal with the definitions of explainability/interpretabil-
ity and explanation/interpretation. We will present the definitions that have been
proposed and will specify our position regarding this topic. Then, in Section 1.2, we
propose a taxonomy of XAI methods, depending on what they explain and how they
are applied. We will rely on this to present in Section 1.3 a review of the different
methods that have been proposed by the community. In Section 1.4, we tackle the
issue of evaluating explanations. Finally, in Section 1.5, we present a brief overview
of the impact of explanations on users.

1.1 Towards a Definition of Explainability and Interpretabil-
ity

The field of XAI involves people with different backgrounds such as ML, symbolic
AI, Cognitive Science and Law. Several definitions of explainability and interpretabil-
ity have been proposed in the literature with influences from the fields of expertise
of their authors. As a consequence, there are currently no consensual definitions
of these core notions. (Lipton, 2018) suggests that any claim about interpretability
should rely on a specific definition of this notion. That is why we focus in this sec-
tion on rendering an overview of the definitions that have been proposed, before
specifying the definitions we relied on in this thesis.

1.1. Towards a Definition of Explainability and Interpretability 9

1.1.1 Definitions from the Oxford Dictionary

The word explain comes from the Latin explanare, which means to make clear or, more
literally, to make flatten. The Oxford Dictionary of English defines the verb explain
as to make an idea or situation clear to someone by describing it in more detail or
revealing relevant facts. The word interpret comes from the Latin interpretari, which
is derived from the noun interpres that means an agent or translator between two
parties. The Oxford Dictionary of English defines it as to explain the meaning of
information or actions. This definition involves to explain, which shows that the two
notions are very close to each other. The etymology of interpret is also related to the
notion of intermediary between two parties, which is not the case for explain.

1.1.2 Definitions from Artificial Intelligence

In the context of XAI, explainability and interpretability are often linked to trans-
parency, reliability and trust. That means that they are not directly tied to the perfor-
mance of a system but rather to its usage. Also, they are often used interchangeably.

The explainability of an AI is its ability to generate an explanation. Therefore,
we first have to define what an explanation is. There are two main types of expla-
nation. The most obvious one is the category of causal explanations. Halpern and
Pearl (Halpern and Pearl, 2001) define it as a fact that, if found to be true, would
constitute an actual cause of a specific event. Here, an explanation is the answer to
a “why” question. Whereas a non-causal explanation is the answer to the question
“what happened” (Ginet, 2016). But in XAI the goal is to return an explanation rep-
resentative of the logic that led to a decision, which is exactly what the GDPR states.
As a consequence, the kind of explanation that is expected in XAI is a causal one.

In the fields of AI and ML, several definitions have already been proposed. Based
on how explanations are defined in social sciences, Miller (Miller, 2017) defines an
explanation as the conjunction of three elements:

• a process of abductive inference to determine an explanation for a given event
in which the causes are identified;

• a product, which is the result of the latter point;

• a process of transferring knowledge between the explainer and the explainee.

So an explanation is a product of a process of abductive inference and it is commu-
nicated from the system to the explainee. Gilpin et al. (Gilpin et al., 2018) proposed
another definition. They think an explanation is defined by two features:

• interpretability, whose goal is to describe how the system works in terms un-
derstandable to humans;

• completeness, whose goal is to describe how the system works in an accurate
way.

According to this definition, the main purpose is to find explanations that are both
interpretable and complete. There is usually a trade-off between interpretability and
completeness. This trade-off depends on how much knowledge related to the ap-
plication the explainee has. However, this definition relies on the concept of inter-
pretability that sometimes has its own definitions.

10 Chapter 1. Explainable Artificial Intelligence

In 1953, Tarski gave a first definition of interpretability in the context of first-order
logics (Tarski et al., 1953). For two theories1 T1 and T2, T2 is said to be interpretable in
T1 if we can extend T1 such that this extension is also an extension of T2. More infor-
mally, that means that there must be a common ground between the facts that an AI
(T2) and humans (T1) can express for the AI to be interpretable to humans. Modern
definitions also convey this idea. Doshi-Velez and Kim (Doshi-Velez and Kim, 2017)
define interpretability as the “ability to explain or to present in understandable terms to
a human”. They acknowledge that finding a formal definition of explanation is com-
plicated and maybe impossible. (Biran and Cotton, 2017) define interpretability as
the degree to which an observer can understand the cause of a decision. Based on
this definition of interpretability, Miller (Miller, 2017) states that an explanation is
one mode of obtaining understanding. Thus, for him, interpretability and explain-
ability are equivalent. (Ribeiro et al., 2016) states that an interpretable model “can
be readily presented to the user with visual or textual artifacts”. Older definitions from
subfields of AI like fuzzy logic link the interpretability of a system to its complexity.
For example, a rule-based expert system with 1000 rules was not considered inter-
pretable because of the high number of rules, even though it might be able to explain
a particular decision (Jin, 2000).

The conclusion is that there is no clear consensus around one definition. Some
authors even use the two concepts interchangeably. Still, what emerges from this
study is that interpretability aims at presenting elements that contributed to a de-
cision in an understandable way, while explainability intends to logically and ac-
curately render the decision-making process. Furthermore, we noticed that most
definitions mention humans since they are often the main target of XAI methods.
Thus, making understandable to humans also includes constraints on the medium
(human language, vocabulary related to the knowledge of the explainee) and the
complexity of the output. Thus, we propose the two following definitions:

Definition 1: interpretability

Interpretability is the ability to extract the elements that contributed to a decision
in a way that is understandable for humans.

Definition 2: explainability

Explainability is the ability to describe to humans how a system works in a way
that is accurate and that logically renders the reasoning of the system.

In the following of this work, we will talk about explainability and interpretabil-
ity according to these two definitions.

To illustrate the difference between these two notions, Figure 1.1 displays an
example of classification. The input image represents a dog. The output “It is a
dog” states that this image belongs to the class “dog”. One interpretation is given
as a saliency map (Simonyan et al., 2013). This shows the impact that each pixel
of the input had on the classification. This is insightful when it is coupled with
the original image, but the saliency map alone is not necessarily understandable to
humans. Also, it does not give any information about the reasoning that the model
performed to return this output. One example of explanation is also given. The
causes are clearly stated: it has fur, it has a tail and it has a dog’s nose. Those three
facts are consistent with the knowledge in the model, which leads to the output

1A theory that is formalized within the first-order predicate logic is a set of axioms that are com-
posed of variables and constants.

1.2. Taxonomy 11

FIGURE 1.1: Example of dog classification (Simonyan et al., 2013)
which illustrates the difference between interpretation and explana-
tion. On the left, the saliency map is an interpretation because it is
relatively easy to understand given the input but it does not describe
the logic that led to the classification. On the right, it is an example of

explanation since the causes are clearly stated.

(which is not necessarily true). Thus, the end user knows the logic involved in this
decision and where it comes from.

Here, the interpretation has been performed by returning visual clues about the
input. It could also be clues about the parameters of the model or extracting decisive
features with a feature extraction method. However, for the explanation, a medium
of communication that can express the reasoning has to be used. For most end users,
natural language is the most obvious and trustworthy medium to perform it. As we
see in Section 1.4, the mode of an explanation has an impact on the way humans
assess it.

The concept of justifiability is also sometimes used. It differs from explainability
and interpretability because it only aims at legitimating a decision without being
necessarily close to how the system works (Miller, 2017).

1.2 Taxonomy

Depending on the objective and on the nature of the model, different methods from
the XAI literature may apply. In this section, we focus on providing a taxonomy of
XAI methods that specifies in which case one method is appropriate. The taxonomy
we propose is inspired by (Molnar, 2019) and relies on the three following criteria:

• resorting to a transparent model to have straightforward explanations from it,
or applying a post-hoc interpretability method on a usually more opaque model
to get insight into what it is doing,

• explaining the global behaviour of the model or, at a local scale, explaining a
specific decision on a single instance,

• is the method model-specific or model-agnostic?

12 Chapter 1. Explainable Artificial Intelligence

1.2.1 Transparent Model or Black-Box Model with Post-hoc Interpretabil-
ity

We make a first distinction between models that are inherently transparent and mod-
els that are seen as black boxes.

Lipton introduced three kinds of transparency (Lipton, 2018):

• Simulatability, which is transparency at the scale of the whole model. That
means that one can have a grasp of the complete model at once. More than
on the type of model, it mainly depends on its size. For example, a very deep
decision tree is probably not as interpretable as a forest composed of few shal-
low trees. This is actually dependent on human ability to understand a more
or less large model, which is subjective.

• Decomposability, which is the transparency of the model at a modular level.
This consists in interpreting or explaining what a part of the model does. This
can be one or a few rules in an expert system, or the parameters of a linear
regression.

• Algorithmic transparency at the level of the learning algorithm. While the al-
gorithm itself is fully transparent and understandable, the properties of the
learning process may not. For instance, the optimization process that enables
to train a deep neural network is not well understood and is still an active
research topic.

In this taxonomy, we talk about transparency as Lipton’s simulatability. Thus, what
we call transparent models enable to immediately get an understanding of what they
do. However, they may not perform as well as black-box models.

Post-hoc interpretability consists in generating interpretations after a model has
been completely set. While this type of methods does usually not enable to obtain
a global understanding of the model, they are able to extract information that may
be valuable. Their two main advantages is that they can be applied to black-box
models and they do not sacrifice predictive performance. That is why they are often
used with deep neural networks. The counterpart is that it cannot catch the logic
of the whole model and it can be misleading if it is not applied properly. This may
happen when the optimization process fulfills a subjective demand (Lipton, 2018) or
when it takes into account artifacts resulting from the learning process (Laugel et al.,
2019). Laugel et al. give the example of counterfactual explanations, which are gen-
erated by finding the smallest perturbation to the input that changes the prediction
(a more detailed description of what counterfactual explanations are is given in Sec-
tion 1.3.2.2). It is thus highly sensitive to artifacts that may result from the learning
process. Figure 1.2 shows an example where a few areas of the feature space would
lead to misleading counterfactual explanations.

1.2.2 Global or Local

A global approach aims at describing the global behaviour of a model. On the other
hand, the purpose of a local approach is to explain only a single instance.

For example, feature importance in random forests (Ho, 1995) (cf. Section 1.3.2.1)
is global because it only considers the global behaviour of the forest. On the other
hand, for a given instance, computing the Shapley values (Shapley, 1953) (cf. Sec-
tion 1.3.2.2) for each feature is a local approach since it depends on the feature values
of the instance.

1.3. Related Works 13

(A) Random forest of 3 trees (B) SVM with a RBF kernel

FIGURE 1.2: Example from (Laugel et al., 2019). Two classifiers have been trained on the Iris
dataset, which contains three different classes. They both have an accuracy of 78% on the
test set. In Figure 1.2A, the random forest makes some questionable divisions of the feature
space due to its sensitivity to outliers. In Figure 1.2B, the SVM decisions far from training
data do not seem reliable too. In those cases, post-hoc interpretability may produce plausible

but misleading explanations.

1.2.3 Model-specific or Model-agnostic

A model-specific method is, by definition, specific to a model or a family of models.
The scope of use of such methods is thus restricted.

A model-agnostic method is able to deal with any model. Such methods are always
applied post-hoc since they do not rely on the intrinsic properties of the models they
try to explain.

Let us consider again the example about feature importance and Shapley values.
Feature importance is specific to decision trees and ensemble methods involving
them, such as random forests or XGBoost (Chen and Guestrin, 2016). Thus, this is a
model-specific method. Shapley values are model-agnostic since they only need to
compute the output of a model regardless of its internal working.

1.3 Related Works

This section aims at reviewing the state-of-the-art methods in XAI. While there has
been recently a surge of interest for explaining the decisions returned by AIs, this
is not a new problem.The first expert system was Dendral (Feigenbaum et al., 1970;
Lindsay et al., 1993). It was released in 1965 for describing the molecular structure
of unknown organic chemical compounds. It was not able to explain its outputs but
it could provide a trace of the program reasoning steps. The first intelligent systems
that were able to provide an explanation were developed in the 1970’s. Among them,
MYCIN was one of the first rule-based expert systems (Shortliffe and Buchanan,
1975). It was an automated consultation system for improved antimicrobial selec-
tion. It returned an explanation as a subset of rules that led to the final result. Then,
decision trees and bayesian networks enabled to get interpretable models. The ar-
chitecture of such trees and networks is interpretability-friendly since they make the
reasoning clearer. Later, the emergence of deep learning made Artificial Intelligence
improve in terms of performance. However, explainability issues rose again because
of the difficulty to explain what is happening inside deep neural networks (Marcus,
2018).

According to the taxonomy we proposed, we can distinguish models or meth-
ods that are either transparent or performing post-hoc interpretability, either global

14 Chapter 1. Explainable Artificial Intelligence

or local, and either model-specific or model-agnostic. We will specify where each
model/method is classified in this scheme.

In the following, many methods rely on machine learning concepts. A model
is trained on a training set and is then tested on a test set. Thus, we introduce the
following notations. Let D = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y be a training set of
n instances where xi is the i-th feature vector and yi its corresponding label (classi-
fication) or target value (regression). The set F of m features corresponding to the
instances in D is {F1, . . . , Fm}. The tuple (x, y) will refer to an instance from the test
set.

1.3.1 Transparent Models

As stated in the previous section, in this thesis, we define transparency as the ability
to understand a whole model at once. It is model-dependent and so no model-
agnostic method is presented in this subsection (which explains the cross in Table 1.1
on page 33).

1.3.1.1 Global

As we wrote in the introduction of this section, expert systems were already able
to provide elements of explanation in the 1970’s (Shortliffe and Buchanan, 1975). In
particular, rule-based expert systems consist in an inference engine and a knowledge
base. The knowledge base is composed of facts and if-then rules while the inference
engine applies these rules to known facts to infer new facts. Thus, for each output,
such systems are able to provide the trace of the rules which led to the result. That is
why their reasoning is transparent. However, since the knowledge base of an expert
system is usually big, the trace may not provide an intelligible explanation.

Decision rules have also been used to build other types of models and learning
algorithms have been proposed to avoid generating handcrafted rules (Agrawal et
al., 1993; De Raedt and Thon, 2011). With the resurgence of interest in XAI, several
rule-based methods have been proposed in the last few years (Letham et al., 2015;
Lakkaraju et al., 2016; Malioutov et al., 2017). In particular, (Lakkaraju et al., 2016)
propose to learn a set of rules, called decision set, that can be used independently
from each other. The independence between rules is interesting for generating ex-
planations because it ensures to get a short trace. So the length of the explanations
will only depend on the length of the rules. In their work, a rule is a tuple (I, c)
where I is an itemset, which is a conjunction of predicates of the form (feature, oper-
ator, value)

(
e.g. (Fj, ≤, 1)

)
, and c ∈ Y is a class label. An instance x is assigned label

c if it satisfies I. A decision set is also characterized by four metrics:

• its size (number of rules),

• the lengths of its rules (the number of predicates in a rule),

• the covers of its rules (the set of instances that satisfies a rule),

• the overlap of two rules (the set of instances that satisfies both rules).

Coupled with the accuracy of each rule, these metrics enable to evaluate the whole
decision set. Decision sets are built in two steps: (1) a frequent itemset mining
(Agrawal et al., 1993) algorithm is applied to extract a set of itemsets, (2) a learning

1.3. Related Works 15

objective is optimized such that it favours smaller decision sets and shorter and non-
overlapping rules. Thus, since rules are independent from each other, this should
enable to provide explanations that are concise enough for humans. An example of
explainable decision set learnt with Lakkaraju’s method is displayed in Figure 1.3.

FIGURE 1.3: An example of interpretable decision set from (Lakkaraju
et al., 2016). Since it is a decision set, rules are independent from each
other. The length of rules and their number per class is not high,

which make the result understandable and the reasoning clear.

Decision trees are another family of models that make their reasoning appear
clearly. A decision tree is a tree structure where each node corresponds to a splitting
test on a specific feature and where leaves correspond to the intended result. They
can be used for classification and regression (Breiman, 1984), but we focus here on
classification trees. Going from the root to a leaf, one gets a conjunction of splitting
tests that enable to classify an instance. The most critical point is the construction of
these splitting tests. The main methods for building decision trees are:

• ID3 (Quinlan, 1986), which proposes to start from a root node that represents
the whole dataset. Then, at each iteration, the feature corresponding to the
greatest information gain is selected and used to split the dataset into as many
subsets as possible values for this feature. The selected feature is then removed
from the possible splitting features. The information gain obtained by splitting
the feature Fi ∈ F in the dataset D′ ⊆ D is the difference between the entropy
in D′ and the sum of the entropies in the subsets of D′ obtained by this split-
ting. The entropy H(D′) in the dataset D′ is defined as follows:

H(D′) = − ∑
c∈{y1,...,yn}

pD′(c) log
(

pD′(c)
)

(1.1)

with pD′(c) the proportion of instances in D′ that belong to class c. The infor-
mation gain IF(D′) can then be defined:

IF(D′) = H(D′)− ∑
D′′∈ split(D′,F)

pD′(D′′)H(D′′) (1.2)

with split(D′, Fi) the set of subsets that are obtained by splitting D′ with re-
spect to feature Fi.
The drawback of this method is that it is not suited to continuous features or
discrete features with many different values.

16 Chapter 1. Explainable Artificial Intelligence

• C4.5 (Quinlan, 1993) is an extension of ID3 that can handle continuous val-
ues. For a continuous feature, all its values in D are sorted in ascending order.
Then, looping on these sorted list of values, different threshold are generated
for splitting feature values. At the end, the selected threshold is the one that
enables to maximize information gain.

• CART (Breiman, 1984) differs from C4.5 on a few aspects (Wu et al., 2008),
including in particular:

– Splits in CART are always binary (two outcomes) while C4.5 splits a dataset
into at least two subsets at each node,

– CART’s splitting criterion is based on the Gini index while C4.5 relies on
entropy. The Gini index is defined as follows:

G(D′) = ∑
c∈{y1,...,yn}

pD′
(
c)(1− pD′(c)

)
. (1.3)

For each split, the goal is to find the split that minimizes the Gini index.

The rules that we get at the leaves of a decision tree can be easily extracted to ob-
tain the reasoning of the model. However, due to a high number of nodes, a deep
tree may not lead to explainable rules and to a clear view of the overall model. In
Figure 1.4, an example of explainable decision tree is given.

FIGURE 1.4: Example of decision tree for assessing what kind of
lenses a person may wear. The reasoning leading to each class is clear
and the shallowness of the tree makes the model easily interpretable.
This example was taken from the course on decision trees given by

Bhiksha Raj at Carnegie Mellon University.

Besides, tree-based ensemble methods, which consist in combining several deci-
sion trees to produce the intended results, are not considered as globally transparent
models since they require a strategy for aggregating the outputs of the trees.

1.3. Related Works 17

Another type of model that is transparent is linear regression. For a continuous
output variable, it assumes that its relationships with input variables (features) are
linear. Thus, for an instance xi = (xi,1, xi,2, . . . , xi,m), an estimation of the output
variable is

ŷi =
m

∑
j=1

β jxi,j + ε, (β1, . . . , βm, ε) ∈ Rm+1 (1.4)

where ε is an error term and β j is the coefficient associated to xi,j. This kind of
model is often fitted using a least square approach that may be penalized by an
L1-norm penalty

(
known as lasso (Tibshirani, 1996)

)
or a L2-norm penalty (known

as ridge regression). Figure 1.5 shows an example of linear regression used in the
context of XAI: users are given the values of coefficients β1, . . . , βm, ε so that they can
understand the role of each feature in the final result. While the reasoning of such
a model may not be as intuitive as if-then rules in decision rules and trees, it is still
understandable as long as the number m of features is small enough. In particular,
it is convenient for extracting the most important features.

FIGURE 1.5: Example where linear regression is used as an inter-
pretable model (Poursabzi-Sangdeh et al., 2018). The goal is to predict
the price of an apartment in a neighborhood of New York City given
eight different features. The coefficients corresponding to each fea-

ture give users an idea of the role they play in the final result.

Generalized Linear Models (GLM) (Nelder and Wedderburn, 1972) have been
proposed to generalize linear regression. In GLM, the expected value of a label y ∈ Y
is a function of the linear predictor presented above:

∀y ∈ Y , E(y | xi) = f (
m

∑
j=1

β jxi,j) (1.5)

with f the link function and
m
∑

j=1
β jxi,j the linear predictor (keeping the same notations

as in Equation (1.4)). For example, we get the original linear regression if f is the

18 Chapter 1. Explainable Artificial Intelligence

identity function, and a logistic regression if f is the sigmoid function. However, the
link function may make the model less interpretable than a linear regression.

It is possible to generalize this concept further. While GLM assume linear rela-
tionships between the features and the target variable, Generalized Additive Mod-
els (GAM) (Hastie and Tibshirani, 1986) assume non-linear relationships. The linear
predictor is now an additive predictor, such that:

∀y ∈ Y , E(y | xi) = f
(m

∑
j=1

gj(xi,j)
)
+ ε (1.6)

with f the link function, g1, . . . , gm non-linear functions and ε ∈ R the error term.
While this type of methods is sometimes said to be interpretable, the combination
of the link function and the non-linearities make it much less clear than the other
transparent models we presented in this section.

1.3.1.2 Local

Naive Bayes classifiers are a well-known family of models in the ML community.
They are a particular kind of bayesian networks where features are assumed to be
independent on each other conditionally to the class. This assumption enables to
build simple networks that do not contain any latent variable. According to Bayes’
theorem, we have for an instance xi = (xi,1, xi,2, . . . , xi,m):

p(c | xi) =
p(c, xi,1, . . . , xi,m)

p(x)
, ∀c ∈ {y1, . . . , yn} (1.7)

Relying on the independence assumption and the Bayes’ theorem, one can show that

p(c, xi,1, . . . , xi,m) = p(c)
m

∏
j=1

p(xi,j | c), ∀c ∈ {y1, . . . , yn} (1.8)

Thus, it is possible to directly assessed the impact of each feature on the classification
of an instance. Furthermore, this can be represented as a graphical representation,
which makes this approach more interpretable.

Another type of approaches consists in returning the closest concepts (Alvarez
Melis and Jaakkola, 2018), instances (Kenny and Keane, 2019) or prototypes (Li et al.,
2018) to the instance under consideration. This is especially suited for images since
concepts or instances can be visualized.

The simplest way to achieve that is to use the k-nearest neighbors (kNN) algo-
rithm. Its principle is to assign to an instance the class that is the most represented
among its k closest neighbors. So the performance of the model strongly depends
on the value of k and on the distance metric used to assess the closeness between in-
stances. The interpretability of this approach relies on the instances (from the neigh-
borhood) that were used to produce the result. So, ultimately, it depends on how
interpretable a single instance is, which may not be suited to many applications.
Figure 1.6 displays an example where it provides valuable insights. One image rep-
resenting a “6” has been classified as a “0”. Looking at its nearest neighbours, one
can see that they all represent a “0” but look like a “6”. In this example, it helps the
user to understand that a few training instances are misleading.

1.3. Related Works 19

FIGURE 1.6: Example showing how kNN can be used to interpret a prediction (Kenny and
Keane, 2019). The instance to classify is a “6”, but the system returns “0”. kNN enables to
understand that the system has been misled by a few training instances that belong to the

class “0” but look like “6”.

The approach proposed by (Alvarez Melis and Jaakkola, 2018) is similar to GAM
and GML and aims at obtaining the concepts that contributed to the final decision.
Their model relies on three characteristics:

• Unlike linear regression, the coefficients β j depend on the input x. We write
them β j(x). More precisely, the coefficients are generated by a model that re-
turns a vector β(x) of m coefficients (m being the number of features) for any
instance x. It must respect the constraint that, for two close instances x and
x′, β(x) and β(x′) should not differ significantly. This constraint ensures local
interpretability.

• Since raw features may not always be the most interpretable units to provide
a feedback to humans, the model should manipulate higher level features that
are more suited to human understanding. Thus, a mapping h : X 7→ X ′ ⊆ Rk

is learnt on the training set. k should be relatively small so that the explana-
tions are concise enough for humans. The generalized model is now, for an
instance (xi, yi):

ŷi =
k

∑
j=1

β j(xi)hj(xi) (1.9)

• In Equation (1.9), the elements β j(xi)hj(xi) are summed to produce the final
result. The authors propose to learn a more general aggregation function g
such that

ŷi = g
(

β1(xi)h1(xi), . . . , βk(xi)hk(xi)
)

(1.10)

The authors used an overall architecture in which β and h are realized by deep neu-
ral networks because of their large modeling capacity. They call it a Self-Explaining
Neural Network (SENN). If g is also differentiable, then the whole model can be
trained using gradient descent and back-propagation. Figure 1.7 displays the whole
architecture. For each prediction, an explanation is generated as a set of couples
coefficient/concept (β j/hj), as shown in Figure 1.8. While this approach enables to
get coefficients that are tailored to each instance, its interpretability is not straight-
forward. In Figure 1.8, the coefficients are clearly presented but their corresponding
concepts are ill-defined. Actually, concepts are only illustrated by their most repre-
sentative instances. It makes them difficult to characterize and thus the interpreta-
tion may not be clear, especially for people who have no knowledge about the inner
working of the model.

20 Chapter 1. Explainable Artificial Intelligence

FIGURE 1.7: Overall architecture of the self-explaining neural net-
work (Alvarez Melis and Jaakkola, 2018). There is a parametrizer (in
orange) that generates relevance scores that correspond to β. Then,
a encoder is used (in green) to learn higher level concepts from the
raw features of the input space, which correspond to h. Finally, an
aggregating layer enables to define g and an explanation is obtained

as a set of couples coefficient/concept.

FIGURE 1.8: Example of explanation produced by a self-explaining
network (Alvarez Melis and Jaakkola, 2018) on the MNIST dataset.
Five concepts have been learnt and their corresponding coefficients
are shown for two different inputs. For each concept, the most repre-

sentative instances in the dataset are displayed.

1.3. Related Works 21

(Li et al., 2018) proposed a deep-learning-based approach that consists in com-
paring in a latent space an instance with a set of prototypes, where each prototype
is very close or identical to an instance from the training set (in the latent space). We
call this approach case-based reasoning through prototypes (CBRP). The model is
composed of two main parts:

• an autoencoder such that:

– the encoder enables to reduce the dimensionality of the input and to learn
more abstract features for prediction,

– the decoder enables to visualize the prototypes that were learnt in the
latent space.

• a prototype classification network: it learns several prototypes in the latent
space and assesses the distances between the encoded input and each proto-
type to feed the fully-connected layers. The closest prototypes to the input can
then be used as an interpretation.

The overall architecture of this network is shown in Figure 1.9. The advantages of
this approach is that it is able to learn useful features unlike traditional case-based
learning methods, prototypes can be visualized using the decoder network and the
distances between an instance and all the prototypes are easily computable so that
the classification can be interpreted. However, it is difficult to accurately characterize
which concept a prototype represents. Also, the distance in the latent space may
not be easily interpretable. As for SENN, this interpretation may not be useful for
someone who does not have any knowledge about the model.

FIGURE 1.9: Architecture of the network proposed by (Li et al., 2018).
Inputs are projected into a latent space using an encoder so that they
can be compared to the prototypes that were learnt. The decoder en-

ables to visualize these prototypes.

Another family of approaches relies on the properties of decision trees. As we
saw in the previous section, they are well suited for explaining decisions.

(Alonso and Bugarín, 2019) proposed a web service aiming at providing users
with local multimodal (textual + graphical) explanations. In particular, it uses fuzzy
logic (Zadeh, 1965) to generate linguistic terms for each features, which will enable
to generate a natural language explanation. Given a trained decision tree, at each

22 Chapter 1. Explainable Artificial Intelligence

FIGURE 1.10: Example from (Alonso and Bugarín, 2019). The goal is
to predict if, following telemarketing, a consumer subscribes a term
deposit. This is represented by the variable Bank that can take two
values: “yes” or “no”. Here, the branch leading to the prediction
is highlighted (in green) and an explanation in natural language is
generated. We can see that the splitting criteria on the features pdays

and euribor3m are characterized by the linguistic term “low”.

of its node, the system computes the linguistic term that is the most similar to the
splitting criterion. At the end, an explanation in natural language can be computed
along the branch of the tree that led to the classification. An example is shown in
Figure 1.10. Providing an explanation in natural language is particularly suited for
people without any knowledge about the model being used. However, the name
of the features is literally displayed in the explanation whereas their meaning is
not clear. That shows that, without interpretable features, the explanation may not
be understandable. A similar method is proposed for explaining the classification
provided by a rule set.

(Lundberg et al., 2019) proposed a method called TreeExplainer, which com-
putes the exact Shapley values (Shapley, 1953) in polynomial time for tree-based mod-
els. Let xi,|F′ ∈ D be an instance restricted to the features in F ′ ⊆ F and f|F ′ be the
model’s output for a training set restricted to F ′. For a feature Fj ∈ F and the output
of the model f (xi), the Shapley value φj

(
f (xi)

)
associated to Fj is:

φj
(

f (xi)
)
= ∑
F ′∈P(F\{Fj})

|F ′|!(|F | − |F ′| − 1)!
|F |!

(
f|F ′∪{Fj}(xi,|F ′∪{Fj})− f|F ′(xi,|F ′))

)
(1.11)

The first factor of the product is the proportion of possible combinations of F′ in F
among all the possible combinations in F. The second factor represents the contri-
bution of the j-th feature to the output. Thus, φj

(
f (xi)

)
can be interpreted as the

average contribution of Fj to the prediction f (xi). One big advantage of Shapley
values is that only the output of the model is needed. However, the computational
cost of evaluating all Shapley values is very high and only approximation methods
are used in practice, except TreeExplainer that computes exact values. It works for

1.3. Related Works 23

any tree-based machine learning model and relies on a local tracking of features in
trees. The principle is to “recursively keep track of what proportion of all possible subsets
of features flow down into each leaves of the tree”. We develop more on how Shapley
values can be used to interpret models in Section 1.3.2.2, which is dedicated to local
model-agnostic post-hoc interpretability approaches.

1.3.2 Post-hoc Interpretability

In this section, we focus on approaches that extract interpretations from an already
trained model.

1.3.2.1 Global

This subsection is dedicated to global post-hoc interpretability methods.

Model-specific

Many post-hoc interpretability methods aim at evaluating how features con-
tributed to the output. In particular, some of them are global model-specific ap-
proaches that enable to assess the role of features in the model (Breiman, 2001; Olah
et al., 2017; Yosinski et al., 2015; Jakulin et al., 2005).

In the context of tree-based ensemble methods, (Breiman, 2001) proposed two
different metrics to evaluate feature importance, which characterizes the contribu-
tion of a feature to the global behaviour of a model:

• The first one is usually called permutation importance. It is based on out-of-
bag instances, which are instances that were not used for training one tree of
the forest. For these out-of-bag instances, for each feature Fi ∈ F , the values
of Fi are randomly permuted. The importance is the difference between the
accuracy obtained on the out-of-bag instances with and without permutation.
The idea is that the performance should drop if the values of an important
feature have been permuted among out-of-bag instances.

• The second metric is sometimes referred to as the Gini importance. For a given
feature Fi, it stores the impurity decrease at each node where the splitting cri-
terion was performed over Fi. It is weighted by the number of instances at that
node. Then, it is averaged over all trees and normalized so that the sum of all
importances is equal to 1.

These two approaches are performed after training. Permutation importance can be
used for models relying on bagging while Gini importance can be measured for any
tree-based ensemble model.

For deep neural networks, a first approach consists in performing feature visu-
alization (Olah et al., 2017; Yosinski et al., 2015). It aims at visualizing the concepts
that have been learnt by a unit of the neural network, such as a single neuron, a
channel or a complete layer. The goal is to find the input that maximizes one such
unit. A simple method would be to find in the dataset the instances that maximize
the chosen unit, but what we may notice is just a correlation between those instances
and the true behaviour of the model. A more interesting approach is to find the in-
put that triggers the unit the most (Erhan et al., 2009). This optimization process is
usually constrained by a regularization or diversity objective. An example of feature
visualization is displayed in Figure 1.11. While it does not shed light on the global

24 Chapter 1. Explainable Artificial Intelligence

reasoning of the model, it helps to understand what kind of patterns are detected by
a specific unit of the network.

FIGURE 1.11: Optimization process that led to an image maximizing the activation of a
single neuron (Olah et al., 2017). The initial image has been filled with random noise. At the
end of the process, we can see the type of pattern that activates the neuron the most. In this
particular case, the image maximizing the activation represents a regular pattern that seems

to be a texture.

Model-agnostic

The most direct way to get a global insight into a black-box model is to train a
global surrogate model in order to approximate its behaviour. The surrogate model
must be a transparent model (cf. Section 1.3.1) so that it can provide explanations.
More precisely, on the training set D, the goal is to make the surrogate model repli-
cate as well as possible the predictions of the black-box model. As a consequence, it
is trained using the outputs of the black-box model and not the ground truth. In par-
ticular, several methods propose to approximate a model by a decision tree (Craven
and Shavlik, 1996; Buciluǎ et al., 2006; Hinton et al., 2015; Frosst and Hinton, 2017;
Wu et al., 2018; Zhang et al., 2019).

(Craven and Shavlik, 1996) proposed to train a decision tree that approximates
the concepts represented in the black-box model. The training algorithm, called
TREPAN, relies on querying the black-box model during the training process and
is similar to C4.5 (Quinlan, 1993) (cf. Section 1.3.1.1). Moreover, a constraint on the
number of internal nodes in the tree can be set to ensure the interpretability of the
model. Later, inspired by TREPAN, knowledge distillation (Buciluǎ et al., 2006;
Hinton et al., 2015) was proposed. It consists in transferring the knowledge of a
teacher model to a more compact student model. Originally, the main motivation
for performing model distillation was to get a smaller model that is much easier to
deploy and less computationally expensive while approximating the performance
of the bigger model well. Recently, and similarly to TREPAN, this has been used
to get a more interpretable model that could explain the predictions of a black-box
model (Frosst and Hinton, 2017).

Knowledge transfer from the teacher model to the student model is achieved by
minimizing a loss function whose target is the distribution of probabilities provided
by the teacher model. (Hinton et al., 2015) also showed that integrating ground truth
information during the training of the student model leads to better performance.
Thus, a term that represents the standard loss of the student model with respect to
the ground truth is added to the previous loss function.

An example of distillation has been published in (Frosst and Hinton, 2017) where
a neural network is distilled into a soft decision tree (Irsoy et al., 2012), which is a
decision tree where, at each node, instances are redirected to children according to a
probability distribution. The idea is to go from a neural network relying on hierar-
chical representations to a decision tree relying on hierarchical decisions. Figure 1.12

1.3. Related Works 25

FIGURE 1.12: Example of a soft decision tree obtained by distillation
of a teacher neural network on the MNIST dataset (Frosst and Hin-
ton, 2017). The images at each node are the filters that were learnt
to define the probability distributions used for splitting subsets of in-
stances. The most likely classifications at each node and at each leaf

are annotated in the tree.

FIGURE 1.13: A set of prototypes and a set of criticisms that were
learnt on the MNIST dataset (Kim et al., 2016). We can see that proto-
types look more like handwritten digits that a human would expect

than criticisms.

26 Chapter 1. Explainable Artificial Intelligence

displays an example of a soft decision tree obtained by distillation of a teacher neu-
ral network on the MNIST dataset. Thus, the classification process is clearer since
we can interpret each decision made by the tree. However, while the task is simple
for a human (handwritten digit classification), an interpretation may be more com-
plicated to understand since the concepts at stake in each node are only defined by
their visual representation.

A type of approach that has been investigated recently aims at providing example-
based explanations. A few specific instances, called prototypes, are used to explain
the global behaviour of the model. Fuzzy prototypes have been proposed (Zadeh,
1982; Lesot et al., 2008) to perform classification and clustering. They are generated
based on their similarity with instances from their class and on their dissimilarity
with all other instances. Case-based reasoning (CBR) (Aamodt and Plaza, 1994), such
as in (Kim et al., 2014; Kenny and Keane, 2019; Li et al., 2018), or influence functions
(Koh and Liang, 2017) are also well suited for generating example-based explana-
tions. However, prototypical instances are not sufficient when the dataset is not ho-
mogeneous enough (Kim et al., 2016). For this reason, (Kim et al., 2016) introduces
the notion of criticism instances, which are data samples that do not fit the model
well. Extracting prototypes and criticisms relies on the maximum mean discrepancy
(MMD) (Lloyd and Ghahramani, 2015), which measures the difference between two
distributions. Here, we measure the difference between the dataset D and a subset
D′ ⊆ D. We look for the D′ that minimizes the MMD between D and D′ to get a set
of prototypes, and for theD′ that maximizes the MMD betweenD andD′ to get a set
of criticisms. In order to have relatively small subsets of prototypes and criticisms,
the optimization process is performed under a size constraint on D′. An example
of a set of prototypes and a set of criticisms on the MNIST dataset is displayed in
Figure 1.13. We can see that this type of approaches is well suited to images, but it
does not explain the behaviour of a model. Experiments showed that the addition of
criticisms to prototypes enable humans to classify the instances better. Thus, we can
build with this approach a nearest neighbour (prototype) model for classifying in-
stances. More interestingly, for a given trained model, we can specify its behaviour
by analyzing its predictions on the prototypes and the criticisms. In particular, crit-
icisms are instances for which the behaviour of the model may be unexpected since
they represent data that is not well represented in the dataset. Also, if the dataset is
big, it enables to quickly extract a few instances that should be harder to predict.

A more visual approach has been proposed by (Goldstein et al., 2015): Individ-
ual Conditional Expectation (ICE). The goal is to generate a plot that shows, for
each instance, the evolution of the prediction with respect to one given feature (all
other feature values being constant). Evaluations are made on a grid of values for
the feature under study. This is actually an extension of the Partial Dependence Plot
(PDP) (Friedman, 2001). Figure 1.14 shows an example of ICE and PDP.

1.3.2.2 Local

In this subsection, we focus on local post-hoc interpretability methods.

Model-specific

A few approaches proposed in the literature are based on the notion of concept
activation vector (CAV) (Kim et al., 2018; Graziani et al., 2018; Ghorbani et al., 2019).

1.3. Related Works 27

FIGURE 1.14: This plot represents the Individual Conditional Ex-
pectancy of a prediction with respect to feature F1 (Goldstein et al.,
2015). We can see that there is a parabolic relationship between the
estimator ŷ and F1. The dots correspond to the actual value of F1 for
each instance. The yellow line is the Partial Dependence Plot, which

is the average of the ICE over all instances.

This type of approach is tailored to deep neural networks and the goal is to compute
the degree to which a user-defined concept contributes to a classification result. It
relies on the four following steps (Kim et al., 2018), as illustrated in Figure 1.15:

1. The user needs to define a concept of interest (stripes in Figure 1.15) by feeding
the system with a set of examples representing this concept. Those examples
do not need to be part of the training set the model was trained on.

2. In a hidden layer l where higher level features have been extracted, a linear
classifier is used in the space of activations of l to differentiate vectors repre-
senting the target concept from others. We can then define a concept activation
vector vl

C as the normal to the hyperplane obtained with the linear classifier
(oriented toward concept-based vectors).

3. For an instance x, the conceptual sensitivity of class k to a concept C is com-
puted as the following directional derivative:

δ = lim
ε→0

hl,k
(

fl(x) + εvl
C
)
− hl,k

(
fl(x)

)
ε

(1.12)

with fl(x) the representation of x in the space of activations of layer l and
hl,k
(

fl(x)
)

the probability that x belongs to class k. It enables to assess the sen-
sitivity of the predictions with respect to concepts at any layer of the network.

4. This is repeated for every instance of every class in the dataset to evaluate the
impact of each concept on each class.

Thus, this approach is convenient for analyzing the sensitivity of a class to a specific
concept. However, it requires expert knowledge to select examples of the concept
under study. To solve this problem, (Ghorbani et al., 2019) proposed to perform a

28 Chapter 1. Explainable Artificial Intelligence

FIGURE 1.15: Architecture of the model presented in (Kim et al., 2018). In a©, the user
provides a set of examples representing a concept (here “striped”) and a set of random exam-
ples. In b©, the training instances corresponding to the class under study (here zebras) are
provided. In c©, fl is the projection of an input instance into the latent space corresponding
to layer l, and hl,k is the classifier. In d©, the concept activation vector vl

C is learnt by training
a linear classifier to distinguish between the activations produced by the concept’s exam-
ples and the ones produced by other examples. Finally, in e©, the conceptual sensitivity is

computed by deriving hl,k with respect to fl(x) in the direction of vl
C.

hierarchical segmentation of all the instances from a given class to use the segments
as examples of concepts. These segments are then clustered in the activation space of
layer l. Each cluster should represent a different concept and thus enables to define a
concept activation vector. The conceptual sensitivity can then be computed as in the
original approach. However, in this approach, automating the definition of concepts
makes them lose any semantic interpretability.

An extension of the CAV for dealing with continuous concepts was presented in
(Graziani et al., 2018). A linear regression is performed in the space of activations of
layer l to seek the direction of greatest increase of the concept measures.

Inspired by image captioning methods, (Hendricks et al., 2016) proposed a neural-
network-based approach for generating visual explanations. This work is based on
the following hypothesis: a visual explanation should be both discriminative, which
means that it should be class relevant, and descriptive, which means that it should be
image relevant. The explanation produced by the model is a natural language sen-
tence generated by a long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997). In order to be both class and image relevant, the LSTM is fed with compact
features learnt with a convolutionnal neural network (CNN) and with the class label
of the image that has been predicted by the CNN. The whole architecture is rep-
resented in Figure 1.16. The dataset used in this work was composed of images
associated to five descriptive sentences (which are not explanations).

A similar multimodal explanation approach was proposed in (Huk Park et al.,
2018). The model is trained on images that are all associated to natural language
explanations (and not descriptions). It provides a textual explanation and highlights
the areas in the image that point to the visual evidence for the classification. Since
the model learns on images and their explanations, it does not need to explicitly
distinguish between discriminative and descriptive information. However, it relies
on a dataset where explanations were provided by humans. Such datasets are scarce
and costly to obtain.

We saw in Section 1.3.2.1 that feature visualization is a global approach for get-
ting insight into what a neural network does. At a local level, it is possible to go
further by computing for each neuron visualization how much it has been activated

1.3. Related Works 29

FIGURE 1.16: The model presented in (Hendricks et al., 2016) extracts
visual features and predicts a class label. Then, sentence generation
is conditioned by both the visual features and the class label to get a

discriminative and descriptive explanation.

(Olah et al., 2018). That enables to detect to which extent a feature was detected at a
particular position in the image.

However, although feature visualization allows to know what a network detects,
it does not help to know how the detected features contributed to the final pre-
diction. The latter can be obtained by performing feature attribution. The most
common approach for getting this information with neural networks is to compute
saliency maps. There are three types of methods for generating them (Kindermans
et al., 2019):

• gradient-based methods (Simonyan et al., 2013), which analyze how a small
change to the input affects the model’s output,

• signal-based methods (Zeiler and Fergus, 2014; Springenberg et al., 2014; Kin-
dermans et al., 2017), which isolate input patterns that fire neurons in higher
layers,

• attribution-based methods (Montavon et al., 2017; Sundararajan et al., 2017),
which compute the contribution of input features to the model’s output. They
differ from gradient-based methods because the sum of all contributions should
be approximately equal to the output.

An example of saliency map from (Simonyan et al., 2013) is displayed in Figure 1.1
on page 11. While these methods are very useful for interpreting how a neural net-
work produced a specific output, one should be very careful when using them:

• The saliency map itself is not interpretable without the input.

• (Kindermans et al., 2019) showed that some methods are completely fooled by
adding a constant shift to the input data while this basic transformation does
not have any impact on the output of the model.

• (Adebayo et al., 2018) demonstrated that some saliency methods are com-
pletely independent of both the model and the data generation process. In-
deed, these methods produced the same saliency maps for trained and ran-
domized models, and for correctly and randomly labelled data.

• Some feature attribution methods can be fooled by adversarial attacks (Zhang
et al., 2018; Slack et al., 2019).

30 Chapter 1. Explainable Artificial Intelligence

Feature attribution has also been extended by (Zhou et al., 2018) to deal with sev-
eral concepts. Thus, one saliency map is computed for each concept, which enables
to understand the contribution of each concept to the decision.

The last few years have also seen the emergence of attention-based models (Vaswani
et al., 2017). These are neural networks that rely in particular on computing a mask
that enables to characterize how important to the output the features generated
by the model are. Thus, the values of the mask and their corresponding features
may help to understand what the model focuses on, such as with feature attribution
methods.

Model-agnostic

Local model-agnostic post-hoc interpretability methods enable to get an a pos-
teriori interpretation that does not depend on the internal mechanism of the model.
Since they focus on specific instances and not on the global behaviour of the model,
they often look for an approximation of the model around the instance under study.
This approximation is an explainable model, such as linear regression (Baehrens et
al., 2010; Ribeiro et al., 2016), rules (Ribeiro et al., 2018; Guidotti et al., 2018; Pedreschi
et al., 2019) or abductive reasoning (Ignatiev et al., 2019).

The most famous interpretability method is called LIME, which stands for Local
Interpretable Model-agnostic Explanations (Ribeiro et al., 2016). LIME’s principle
is the following: given an instance x and its prediction by a black-box model, the
local behaviour of the model is obtained by sampling instances around x, weighting
them by their distance to x and training a Lasso on them (cf. Figure 1.17A). The loss
function is the sum of a term representing how well the linear model locally approx-
imates the black-box model and a term representing the complexity of the surrogate
model (the number of coefficients in the case of Lasso). Then, the coefficients of the
local linear model can be interpreted in the same way as presented in Section 1.3.1.1.
Another interpretable model can be used, such as decision trees or rules.

The same author proposed an improvement of LIME actually relying on rules,
which is called anchors (Ribeiro et al., 2018). An anchor is a if-then rule that covers an
area of the decision space where the decision is (almost) always constant (precision
criterion specified by the user). The type of area covered by an anchor is illustrated
in Figure 1.17B. Knowing precisely where the anchor holds is an advantage on local
linear surrogates (such as LIME) for which it is unclear whether they apply or not
to an unseen instance. A similar approach was proposed in (Lakkaraju et al., 2019),
where two-level decision sets (cf. Section 1.3.1.1) are used for characterizing a sub-
space of the feature space (first level) in which a set of rules represents the decision
logic of the black-box model (second level). This approach also allows the user to
specify a set of features on which the explanations, and so the rules, should be based.

Another popular post-hoc local model-agnostic approach is to perform feature
attribution by computing Shapley values (Shapley, 1953; Štrumbelj and Kononenko,
2010; Lundberg and Lee, 2017). As we explained in Section 1.3.1.2, Shapley values
represent the average contribution of a feature to the output of a model. However,
computing the exact values is usually intractable (except for tree-based models with
TreeExplainer, as shown in Section 1.3.1.2). This is why most algorithms aim at com-
puting an approximation of these values. In particular, SHAP (SHapley Additive
exPlanations) (Lundberg and Lee, 2017) is a popular approach that proposes effi-
cient methods for computing the (approximate) Shapley values of any model on an
instance. These methods are based on known methods such as LIME or DeepLift

1.3. Related Works 31

(A) Illustration of the principle of LIME
(Ribeiro et al., 2016). A black-box model has
learnt a certain decision boundary (blue and
pink areas). The bold red cross, which corre-
sponds to the instance whose prediction is be-
ing interpreted, and its closest neighbours are
used for training a linear classifier. Then, the
coefficients of this local linear classifier enable

to interpret the prediction.

(B) Unlike LIME, Anchors (Ribeiro et al.,
2018) generates a if-then rule that covers an
area of the decision space that contains the in-
stance under study and where the decision is
always constant, as far as it is possible. The
bold cross and dash represent the instance to
explain. D is the subspace where the method

looks for an anchor.

FIGURE 1.17: Illustration of the principles of LIME and Anchors.

(Shrikumar et al., 2017), which is why the authors claim to unify several XAI meth-
ods.

For an instance x, the explanation model g to a model to explain f is proposed
by SHAP as the following:

g(x) =
m

∑
j=0

φj, φi ∈ R (1.13)

where φj is the contribution of feature Fj to g(x) for all j ∈ J1; mK and φ0 is the output
of the model when all features have been removed. Attributions are computed using
one of the methods proposed by SHAP to calculate Shapley values. Thus, SHAP can
compute feature attributions for any type of models. However, as neural network
feature attributions methods (cf. Section 1.3.2.2), SHAP (and thus LIME too) can be
fooled by adversarial attacks (Slack et al., 2019).

(Chen et al., 2018b) proposed an approach called L2X that is, to the best of our
knowledge, the only one learning (over the whole training set) how to compute fea-
ture attributions on a single instance. It is based on maximizing the mutual infor-
mation between a subset of features and the output of the model. In particular, it is
much faster than approaches like LIME and SHAP and it enables to perform real-time
interpretation.

Another popular trend is to propose counterfactual explanations. A counter-
factual explanation specifies what would have happened if an event had occurred
differently. For example, “If the car had turned on the left, it would have dodged the
biker” is a counterfactual explanation. From a psychological standpoint, such expla-
nations have two main advantages (Byrne, 2019). First, counterfactuals favor causal
judgments by amplifying the causal link between an action and its outcome. In our
example, users’ judgments of a causal relation between the antecedent, turning on
the left, and the outcome, the car dodging the biker, is amplified. Second, people
make fast inferences from counterfactuals. In our example, people will understand

32 Chapter 1. Explainable Artificial Intelligence

that the car did actually not dodge the biker as fast as with an affirmative sentence
saying that the car did not dodge the biker.

For an instance (x, y), for a given y′ ∈ Y , for a decision function f and for a
distance d defined on the input space, a counterfactual can be computed by finding
(Wachter et al., 2017b)

argmin
x′

max
λ

λ
(

f (x′)− y′
)2

+ d(x, x′) (1.14)

The counterfactual (x′, y′) can be interpreted as the closest x′ to x as possible such
that f (x′) is equal to y′. When λ is high, we lay more emphasis on getting an out-
come close to y′, while a low λ favors close input features (x′ and x). As we can
notice, it is a local method that only needs the output of the model. Thus, this an
ideal candidate for interpreting black-box models and this is one of the reason it has
gained popularity. An application to images has also been proposed (Goyal et al.,
2019).

However, a major drawback of this approach is that there may be many possible
counterfactual explanations for a single instance prediction, depending on how dif-
ferent x′ is from x. For instance, for a high-dimensional feature space, several feature
changes could lead to a counterfactual explanations. So a strategy must be designed
to select the best explanation.

A different area of research is the generation of explanations based on knowl-
edge graphs, which are networks of real-world entities from one or several domains
that define classes and relations between these entities (Paulheim, 2017). (Chen et al.,
2018a) proposed such an approach for transfer learning explanations and (Lécué and
Pommellet, 2019) focused on explaining object detection. The whole architecture of
the model is displayed in Figure 1.18. Given a trained object detection model, con-
textual information is extracted from a set of publicly available knowledge graphs
for each category of object the model can detect. This contextual information is a
dictionary in which each key is an object label and its value is a subset of object la-
bels that are linked to it. Then, for each detection, the confidence score of the model
may be upgraded by looking at the context (other object detections in the image) and
assessing how consistent it is with the contextual information previously extracted.
The contextual predictions that contributed the most to the confidence increase are
used for explaining the output of the model.

1.3.3 Recap

Table 1.1 contains the family of methods that are mentioned in bold font in this sec-
tion. This enables to get an overview of how the different categories in our taxonomy
are represented. We notice that there are few global post-hoc interpretability meth-
ods whereas local model-agnostic ones are much more common. Also, transparent
models are well represented. Overall, there are several methods in every category,
so one has to choose one of them by taking into account the type of model and the
nature of the explanations.

1.4 Evaluating Explanations

When dealing with systems that put much emphasis on explainability, it is impor-
tant to properly assess how pertinent explanations are in order to compare existing

1.4. Evaluating Explanations 33

FIGURE 1.18: Architecture of the model presented in (Lécué and
Pommellet, 2019). An object detection model is trained and applied
on an image. In parallel, contextual information is extracted from
knowledge graphs for each type of object in the dataset. Depending
on the consistency between this contextual information and the pre-
dictions of the other objects in the image, the confidence of the output

of the model increases or not.

Transparency Post-hoc interpretability

Global Local Global Local

Model-specific Decision rules TreeExplainer Feature importance CAV
Decision trees SENN Feature visualization Feature attribution
Linear regression CBRP Visual explanations
Expert systems Naive Bayes
GLM/GAM kNN

Model-agnostic Knowledge distillation LIME
Example-based explanations Shapley values, SHAP
ICE/PDP Anchors

Counterfactual explanations
L2X
Knowledge graphs

TABLE 1.1: Table representing the taxonomy we propose for XAI
methods. The approaches classified in this table are described in Sec-
tion 1.3. There is no example of method that relies on both trans-
parency and model-agnosticism since, by definition, model-agnostic

methods do not rely on any model.

explainable models and evaluate how efficient they are.
Let us make a few remarks about the example of explanation in Figure 1.1 on

page 11. All the causes that are given in this explanation seem perfectly sound to
us. But are they for all possible explainees? It actually depends on the explainee’s
knowledge. If we replace “It has a dog’s nose” by “It has a nose”, the explanation
would still make sense. However, it would then also make sense for cat classifica-
tion. This leads to the following question: is it acceptable to have the same explana-
tion for two different results? Again, it depends on the end-user’s knowledge and
the goal of the system. Another question is: is the explanation short or long enough
to be trusted? As we see, even a simple example can raise several questions. That is
why assessing explanations is a complex task.

Miller and Hoffman et al. made reviews of the main factors that play a role in the

34 Chapter 1. Explainable Artificial Intelligence

human assessment of a good explanation (Miller, 2017; Hoffman et al., 2018). The
authors state that a good explanation needs to be coherent. That means that it must be
consistent with the end-user’s knowledge (Thagard, 1989). Humans prefer simpler
explanations (those that cite fewer causes) and more general explanations (those that
explain more events) (Read and Marcus-Newhall, 1993). Also, people do not usually
judge an explanation on the basis of its probability, but rather on its usefulness and
relevance (McClure, 2002). Vasilyeva et al. (Vasilyeva et al., 2015) show that the goal
of the explainer and the mode of the explanation are both critical in its evaluation. In
the end, there may be a trade-off between making an explanation more likely to be
understandable, acceptable and trustable and making more likely explanations.

Several solutions have been proposed in the XAI literature (Doshi-Velez and
Kim, 2017). The authors classify them into three families of methods:

• Application-grounded evaluation, where an expert directly evaluates how good
an explanation is. This method is accurate but also time-consuming and an
expert is required. It presents the same drawbacks as labeling instances in
supervised learning.

• Human-grounded evaluation. Here, a human is asked to perform simple exper-
iments that are still linked to the target. For example, one or several humans
could be asked to select the best explanation among several of them. This is
faster than application-grounded evaluation but also less accurate since the
task to perform has been simplified. An example of human-grounded evalu-
ation is proposed by (Baaj and Poli, 2019). They proposed a survey aiming at
assessing 17 criteria, which are shown in Table 1.2. Each one of these criteria is
evaluated using a Likert scale (Likert, 1932) like: strongly agree, agree, unde-
cided, disagree, strongly disagree. In computer vision, another possibility is to
compare human and model attention to assess how the model matches human
behaviour (Das et al., 2017).

• Functionally-grounded evaluation. This consists in assessing the explanations
of one model with another model that has been previously validated as an
explainable model. This proxy model can be difficult to obtain since it must
achieve completeness toward the original model (Gilpin et al., 2018). There-
fore, an explainable local approximation of the model to explain is usually
applied around the prediction (Ribeiro et al., 2016). Other approaches have
been proposed to automatically assess visual explanations. In (Hendricks et
al., 2018), similarly to (Hendricks et al., 2016), the strategy is based on both
class and image relevance. Those two notions are not equivalent, as shown in
Figure 1.19, and explanations may lead to a strong bias towards the class defi-
nition. The proposed model evaluates how the visual attributes mentioned in
an explanation are grounded in the image, which enables to compute a score
indicating how image relevant the explanation is. In (Zeiler and Fergus, 2014;
Schlegel et al., 2019), a perturbation analysis is run on the input features to see
if explanations remain consistent.

Choosing the right evaluation method then depends on what has been done
before, how much time we have and how accurate the assessment should be. A
thorough evaluation should be application-grounded, but it is not convenient for
assessing different models since it takes a lot of time. That is a problem because
comparing different models is going to be necessary in order to properly set a bench-
mark. For example, that is straightforward to compare the performance of different

1.4. Evaluating Explanations 35

Natural language
Human-computer

interaction
Content and form

1. Overall, explanations are
written in a correct English

2. Conjugation choices are ap-
propriate and adequate

3. Grammatical form of sen-
tences is satisfying

4. Explanations are simple to
use and easy to read

5. Explanations help to make
decisions faster than with-
out

6. Explanations let you
change your opinion about
your expectations

7. Explanations help to take
good decisions and are con-
vincing

8. Data and explanations are
enough to trust the system

9. Explanations express indi-
rectly the way of the system
is reasoning

10. Length of explanations is
adequate

11. Explanations are repetitive
12. It is difficult to read expla-

nations until the end
13. Content layout and order

of elements in explanations
are satisfying

14. All causes are identified in
explanations

15. Explanations are sufficient
in the sense that they do
not contain superfluous in-
formation and do not miss
one

16. Overall, explanations
seem consistent

17. Explanations are true

TABLE 1.2: Criteria for evaluating explanations (Baaj and Poli, 2019).
They are split into three categories: natural language, human-computer
interaction and content and form. The first category aims at assessing
the correctness of the language used in explanations. In the second
category, criteria enable to evaluate what the explanation conveys
when it is transmitted from the system to the user. The third category
is dedicated to assessing the content and the form of the explanation.

FIGURE 1.19: Example from (Hendricks et al., 2016) that presents
the difference between image descriptions, which are not necessar-
ily class relevant, and class definitions, which are not necessarily im-
age relevant. A visual explanation should rely on class discriminative

features that are also present in the image under study.

36 Chapter 1. Explainable Artificial Intelligence

classifiers on a same test set using tools like confusion matrices. However, compar-
ing explained classifications on this same test set without an expert would be much
more complicated. Yet, it is necessary to compare models and methods, to set bench-
marks or to certify a model. As there is no universal explanation evaluation metric,
this task will be complicated to achieve. As of now, a convenient way to compare
models would be to mix application-grounded, human-grounded and functionally-
grounded evaluations. One model could be thoroughly assessed by an expert and
then used as a landmark for evaluating other models using human-grounded or
functionally-grounded evaluations.

1.5 Impact of Explanations on Users

Evaluating an explainable model or method is paramount, but it is also important to
think about how an explanation affects the end-user. This is related to the notion of
mental model, which we briefly present in this section. We also refer to a few works
that experimentally studied how end-users are impacted by explanations.

A mental model is a mental representation of a specific environment based on
knowledge and a description of this environment (Johnson-Laird, 1983). This is
critical in XAI because, for a given explanation, a user will mentally represent the
reasoning of the model to understand it. There can be several mental models asso-
ciated to one explanation depending on its content. For instance, let us consider a
problem where the goal is to learn the spatial relations between objects A, B, C, D
and E (inspired from (Johnson-Laird, 2010)). We have learnt the following relations:

• B is to the left of A,

• C is to the right of B,

• D is below C,

• E is below B.

Then, two possible representations are:

B A C and B C A
E D E D

Those are two mental models of the spatial relations that were learnt. Thus, an
explanation should make the end-user envision the mental models associated to the
reasoning of the AI model under consideration.

Also, different explanations do not trigger the same reaction. (Lage et al., 2018)
and (Booth et al., 2019) studied the various effects of explanations on the end-users.
The authors carried out experiments where participants were asked to process dif-
ferent explanations given as logical statements. Participants had to either simulate
or verify the prediction of the system given a set of inputs and an explanation, to say
how confident they are in their decision or to determine if the decision changes when
a perturbation slightly alters the input. (Booth et al., 2019) also proposed examples
from three different domains (highway driving, emergency triage and chopsticks,
which is a combinatorial hand game similar to tic-tac-toe). The authors mainly fo-
cused on participants’ response times, which led to several observations. The more
complex the explanation, the greatest the response time of the user. While that ob-
servation seems consistent with what most would expect, it is interesting to see the
effects of different kinds of complexity:

1.6. Discussion 37

• Increasing the number of rules and the number of terms in each rule makes the
response time higher.

• Repeating variables has much less impact on response time than introducing
new concepts.

• Participants took longer to process many simple rules than to process few long
rules.

• Counterfactuals take longer to process, which may happen because partici-
pants try to imagine more mental models.

• The domain has a big impact on how well participants used the explanations
to simulate the response of the model or how long they take to process expla-
nations. One reason may be that different domains require domain-dependent
explanations.

In these two experiments, we can notice that the three main sources of complexity in
explanations are the introduction of new concepts or new domains and counterfac-
tual reasoning.

(Poursabzi-Sangdeh et al., 2018) presented the results of an experiment where
participants were shown functionally identical models (linear regression) with only
two differentiating factors: the number of input features (2 or 8) and the model trans-
parency (displaying the coefficients of the regression or not). Participants were asked
to use these models to predict the prices of apartments in a single neighborhood of
New York City. The first observation is that participants who were shown a transpar-
ent model with few input features simulated the model prediction better. However,
increased transparency did not enable participants to detect the model mistakes as
well as they did for a black-box model. The authors state that it is due to users be-
ing overwhelmed by the supplementary information provided by the transparent
model. We argue that the form of the explanation also had an impact on these re-
sults since non-expert people (recruited on Amazon Mechanical Turk) may need a
clearer explanation than what a linear regression model can provide.

(Papenmeier et al., 2019) investigated the impact of model accuracy and expla-
nation fidelity on user trust. The task consisted in detecting offensive content in a
dataset of tweets. Participants were presented three different models (from the most
accurate to the least: a CNN, a logistic regression and a CNN trained on inverted
labels) combined with three different types of interpretations (from the most reli-
able to the least: keyword highlighting using the L2X algorithm (Chen et al., 2018b),
random keyword highlighting and no interpretation at all). The results show that
model accuracy had the biggest impact on user trust. Then, while high-fidelity in-
terpretations do not improve user trust, providing a low-fidelity interpretation de-
creases trust. The authors argue that further experiments with richer explanations
are needed.

Overall, we come to the conclusion that the fidelity of an explanation and the
way it is presented have a significant impact on the end-user. Thus, XAI applications
should be user-dependent in order to help getting a better understanding of the
model under study.

1.6 Discussion

In this chapter, we presented an extended view of the current field of XAI. We first
started by proposing definitions of explainability and interpretability. This is very

38 Chapter 1. Explainable Artificial Intelligence

important because there are at the moment no consensual definitions. Also, it is
necessary for specifying our line of research. Then, we proposed a taxonomy that
gives a clearer idea of the families of approaches that have been proposed. It is
based on the three following criteria: transparent/post-hoc, local/global and model-
agnostic/model-specific. This was the basis for our review of state-of-the-art meth-
ods. We also described how those approaches can be evaluated and how they impact
users.

This work led us to observations that highlight the core steps of XAI design:

• Explainability is linked to rendering the reasoning of a model while inter-
pretability consists in extracting elements that impacted a model prediction.
This difference directly translates into two families of XAI approaches: trans-
parent models, which offer a relatively clear reasoning, and post-hoc inter-
pretability methods, which are post-training operations to gain insight into
what a model does. Ultimately, choosing one or the other should depend on
the application and on the user.

• Raw input features may not be the best elementary unit for building expla-
nations (e.g. pixels in an image). Since all ML models ultimately rely on the
features they are fed with, there must be an anchoring step that links original
or constructed features to concepts that will be used in explanations.

• Explanation evaluation is one of the biggest hurdle in the field and few precise
methods have been proposed. This is also user- and application-dependent, so
it is tied to the XAI approach that is performed.

• The form of the explanation has a significant impact on how better users un-
derstand a model prediction. Thus, explanation properties such as its length
or its clarity should all matter in the design of an XAI.

In the following chapter, relying in particular on the conclusions and observa-
tions of this chapter, we are going to present and specify the approach we propose.

39

Chapter 2

Proposed Approach

After having presented the current state of the field of XAI in the previous chapter,
we introduce now our positioning. In particular, we focus on high-stake applica-
tions, which represent the cases where XAI is the most needed. In such applications,
it is necessary to have a clear understanding of what a model does. Besides, it may
rely on features that may not be easy to translate into understandable concepts, and
vice versa. Those are two major requirements that the approach we propose must
fulfill.

Based on our observations from Chapter 1, we are going to motivate the choices
we made for designing an XAI able to perform explainable classification and anno-
tation. In Section 2.1, we specify the type of explanations we would like our model
to return. In Section 2.2, we precise the nature of the model we want to build. This
is a critical point since the nature of the explanation and the transparency of the
reasoning directly depend on it. Then, in Section 2.3, we detail our proposition for
adding semantics in our model. Indeed, raw input features may not be understand-
able enough and, thus, should not contribute to make an explanation. Finally, we
finish this chapter by giving an overview of the whole approach in Section 2.4.

2.1 Which Explanation?

One of our main goal is to build a model that can provide explanations for the de-
cisions it returns. This leads to constraints that would not be considered if explain-
ability were not a requirement.

The form of the explanations is very important because they are application- and
user-dependent. Different end-users may not have the same requirements depend-
ing on their knowledge about the target task. Thus, the way the reasoning and the
features are expressed to the user must be chosen carefully:

• It is not reasonable to expect that users without knowledge about ML will un-
derstand how the model works, no matter how transparent it is (Biran and
McKeown, 2017). In that case, the end-user will probably be more comfort-
able with natural language explanations since they are expressed in a familiar
formalism.

• The end-user may not have the knowledge to perform the target task. Thus,
providing interpretations such as saliency maps or concept activation vectors
may not make the model more trustworthy.

• For features, qualifying linguistic expressions may be more satisfactory than
numeric values in an explanation (Biran and McKeown, 2017; Michalski, 1983).

40 Chapter 2. Proposed Approach

To fulfill these three points, we would like to have a model that produces expla-
nations as sentences in natural language. This ensures that an explanation will be
understandable regardless of the knowledge of the actual user.

2.2 Which Model?

As we saw in the previous chapter, there is a wide range of XAI models with distinct
characteristics. There are two main approaches for explaining the behaviour of a
model: either building a model that is inherently transparent, or extracting an inter-
pretation from a model after training. While a transparent model enables to track its
own reasoning, any post-hoc interpretability method cannot be completely faithful
to the model under study (otherwise the original model would not even be needed)
(Rudin, 2019).

Transparent models may require more time to build, especially for adding do-
main expertise. Indeed, feature engineering may be required for the model to han-
dle features that are understandable to humans and specific to the target application.
For high-stake applications, this extra effort outweighs the advantages brought by
black-box models, which may be flawed or too complex (Rudin, 2019).

As a consequence, we decided to rely on transparency to ensure that the gener-
ated explanations are truly representative of the reasoning performed by the model.
In Section 1.3.1.1 on page 14, we mentioned three families of globally transparent
models: rule-based models, decision trees and linear models. Rules and decision
trees are closer to human reasoning (Byrne and Johnson-Laird, 2009) and to the lan-
guage of reasoning (Pedreschi et al., 2019), which is logic. However, decision trees
are known to be unstable (Turney, 1995; Dwyer and Holte, 2007) because they can
produce very different models for small changes in a dataset. So our strategy will
rely on learning classification rules, which present the advantage of being transpar-
ent and explainable. For annotation, we propose to learn in a similar way constraints
that will be then used to solve a constraint satisfaction problem (CSP) (Vanegas et al.,
2016). This constraint-based approach for annotation also satisfies the transparency
requirement.

2.3 Which Features?

Besides transparent reasoning, explainable models also rely on features that can be
translated into understandable concepts. This particular characteristic is very impor-
tant because if the features handled by a transparent model are not understandable
to humans, explanations will not be either.

In this thesis, we focus on applications in which the input is a signal, such as
an image or a time series. For other types of input, features are usually associated
to a meaningful variable. In the case of signals, raw input features are not the best
fit for producing human-understandable explanations since they do not correspond
to what human understanding is based on (Ribeiro et al., 2016; Alvarez Melis and
Jaakkola, 2018). For instance, a pixel is the elementary unit to digitally represent a
2D image, but it is not the elementary unit in human image understanding. More
generally, the signals that are provided to ML models are digital and are thus differ-
ent from the signals a human being processes. Therefore, it is important to extract
more abstract representations from these raw input features.

2.4. The Overall Approach 41

Higher-level features represent properties or, more globally, relations that convey
contextual information. For example, in images, scene description and understand-
ing relies on the analysis of spatial relations between entities in the input image
(Freeman, 1975; Biederman, 1981). The classification of (multivariate) time series
is also based on patterns that are extracted from the signal and that represent rela-
tionships among input features (Geurts, 2001). The same observation can be made
for text understanding where a word may have a different meaning depending on
how it is linked to other words in a sentence. Thus, extracting semantic relations is
paramount for understanding and interpreting a signal.

While deep neural networks are able to learn complex relationships in the fea-
ture space, those are not represented in a form adapted to the generation of explana-
tions. Approaches have been proposed for detecting visual relationships in images
(Dai et al., 2017; Lu et al., 2016; Donadello et al., 2017) or for performing statistical
relational learning (Dumancic et al., 2019a) which aims at predicting relations be-
tween instances. However, those are not necessarily transparent and they rely on
big datasets, which is not always compatible with critical applications. (Clément
et al., 2018) proposed an approach for learning spatial relations in images without
requiring any expert supervision. It is based on force histograms (Matsakis, 2002)
and generates a hierarchical spatial descriptor. However, while relations can be in-
terpreted by looking at the histograms, there is no straightforward way to qualify
them in terms that are understandable to humans.

Instead of providing knowledge about relations by labeling instances, which is
very time-consuming, we propose to define once, before training, a catalogue of po-
tentially relevant relations that we call vocabulary. This vocabulary should be set be-
forehand by an expert to ensure that it is suited to the target task. The idea is to learn
on training instances relations from the vocabulary rather than learning from already
annotated relations in instances. This enables to deal with a much wider range of
datasets and inputs. It also implies a different learning strategy. Relations from the
vocabulary have to be assessed on the training set and then only the most relevant
of them are extracted for building the model. This type of strategy has already been
performed in evolutionary fuzzy systems (Fernandez et al., 2019; González et al.,
2012). However, it can only deal with input features that are already anchored in
human-understandable concepts. The approach we propose goes further and is able
to cope with more complex inputs.

2.4 The Overall Approach

Based on the choices that we made in previous sections, we detail here the approach
we propose. The goal is to build a classification or annotation model by learning
relations of interest from a given vocabulary on a training set. The explanations will
be based on these learnt relations.

In Section 2.2, we chose to build rules for classification and constraints (to define
and solve a CSP) for annotation. Rules are usually inferred on the feature space but,
as we wrote earlier, input features may not be suited to build explanations on. This is
why we propose to extract relations that are associated to linguistic descriptions. A
convenient framework for representing such relations is fuzzy logic, which enables to
take into account both qualitative and quantitative information (Zadeh, 1965; Zadeh,
1999). Also, there exists an extensive literature about spatial and temporal fuzzy
relations, as shown in Chapter 7 on page 105. This makes the whole framework
well-suited for managing images and time series.

42 Chapter 2. Proposed Approach

Relations from the vocabulary are assessed on entities that are part of the in-
stances in the training set. Those entities are either directly provided in the dataset
we use or we have to extract them using a segmentation algorithm.

Given a vocabulary of relations V and a training set of instances D, the approach
we propose consists in three main steps:

1. The relations from the vocabulary V are assessed on the training set D. In
Chapter 5 on page 71, we present two strategies to prevent unnecessary com-
putations to make the evaluation process faster.

2. The most relevant relations are extracted according to the learning algorithm
presented in Chapter 4 on page 55.

3. Rules or constraints are generated from the relevant relations so that classifica-
tion or annotation can be performed. They can then be translated into a natural
language explanation using the linguistic description associated to each rela-
tion in the rules/constraints, as shown in Chapter 6 on page 87.

The whole approach is illustrated in Figure 2.1 in the case of image annotation.

Step 1:

Assessing the relations from V on the

training set D

Step 2:

Extracting

relevant

relations

Step 3:

Generating rules/constraints for classi cation/annotation

Explanation:

The red organ is the liver because it is to the right of the spleen,...

liver

right

kidney

right psoas

major muscle
urinary

bladder

left psoas

major muscle

spleen

n

FIGURE 2.1: Illustration of the approach proposed in this thesis in the particular case of im-
age annotation. V is a vocabulary of relations and D is the training set. For each annotation,

an explanation is provided based on the constraints that directly led to this result.

2.4. The Overall Approach 43

The next part of this thesis consists in four chapters that are dedicated to present-
ing more precisely this approach and our contributions.

45

Part II

Building an Explainable Model

47

Introduction

We present in this part the approach we introduced in Chapter 2. It aims at build-
ing a transparent model able to both tackle classification or annotation problems
and provide explanations in natural language to its results. As we saw in Chap-
ter 1, few approaches return such explanations. The visual explanations proposed
by (Hendricks et al., 2016; Huk Park et al., 2018) fit this requirement but their model
is not transparent, which is not suited for critical applications. (Alonso and Bugarín,
2019) proposed to generate explanations in natural language from a decision tree.
Although it relies on fuzzy logic, it handles features that are not necessarily under-
standable.

The principle of our approach is based on the fact that a human quickly learns
how to describe and recognize a concept on just few instances using his/her knowl-
edge. Indeed, this is possible because core features of this concept occur consistently
among instances while irrelevant features do not (Kellogg, 1980). Thus, we propose
to learn relevant features from few data based on their frequency in the training set.
We assume here that the features we look for are present in most instances.

The features our approach relies on are relations between entities in the instances
of the training set. These entities can be, for example, an object or a part of it in
an image, or one signal in a multivariate time series. Since we need understand-
able features, we decided to handle fuzzy relations. Those are expressed within
the fuzzy logic framework, which enables to express both quantitative and quali-
tative information and to manage the imprecision of the language and of the data.
Thus, many fuzzy relations from the literature are associated to a linguistic variable
(Zadeh, 1975), which makes them interpretable.

In this thesis, we deal with classification and annotation tasks. We consider that
classification consists in assigning a label to an instance. As we wrote in Chapter 2,
we would like to build rules to perform this task. As for annotation, in the scope of
this work, we consider it as the problem of assigning a label to different entities in
an instance. We would like to achieve that by solving a fuzzy constraint satisfaction
problem (FCSP).

Learning class by class the most frequent subsets of fuzzy relations enable to
get class-specific descriptors. This can be achieved once the relations from a given
vocabulary have been evaluated on the training set. Then, a frequent subset of rela-
tions can be turned into a rule (classification) or into a set of constraints (annotation).
This modeling is transparent, which enables to understand how relations are used
for making a decision. Since the fuzzy relations we use are associated to a linguistic
variable, rules or constraints can be translated into natural language to generate an
explanation.

In this part, we first present in Chapter 3 the characteristics that make our ap-
proach expressive. It relies on a vocabulary of relations and the use of the fuzzy logic
framework. Then, we focus in Chapter 4 on describing how class-specific relation-
based descriptors are extracted using a fuzzy frequent itemset mining method. As
the approach requires to evaluate many different relations, including compute-intensive

48

ones, Chapter 5 deals with the strategies that have been developed to prevent unnec-
essary computations during the evaluation of relations. This chapter aims at making
the evaluation, and thus the training, faster. Finally, Chapter 6 tackles the solutions
we propose for solving a classification or an annotation problem and explaining it.
They are based on building rules and generating constraints so that the model is
transparent and an explanation can be expressed as a natural language sentence.

49

Chapter 3

Model Expressivity and Fuzzy
Relations

The performance of a model strongly depends on the features it is fed with and
on the way it handles feature values to compute a decision. If it is provided with
few features, it may not be able to deal with a wide variety of situations. The same
observation can be made if the reasoning of the model is too simple. In these two
cases, the model is restricted by a lack of expressivity. In the context of XAI, the
expressivity of the model also has an impact on the explanations it provides. Indeed,
a lack of expressivity will lead to unconvincing explanations. Thus, expressivity is a
topic we have to address.

The expressivity of a model is linked to the diversity of situations it can express.
This depends on:

• The features it relies on. The more features, the more expressive the model
could be. However, the expressivity of the explanations depends on the num-
ber of understandable features.

• The type of reasoning the model can perform. In the context of explainability,
the reasoning of the model should be quickly understandable by a human,
which is linked to the notions of transparency and simulatability presented in
Section 1.2 on page 11.

While the second point has been previously tackled, we will specify here the features
we use.

In the present chapter, we first focus on defining the notion of expressivity that
was introduced in the previous paragraphs. We review how it has been defined
in other fields and then we specify it in the context of our approach. Then, in the
second section, we present how fuzzy relations, which are the features we use here,
contribute to the expressivity of the approach. They rely on fuzzy logic, which is a
form of many-valued logic that is well suited to the problem we tackle. We introduce
this framework and specify the formalism of fuzzy relations.

3.1 Expressivity of a Model

Our goal is to build a model able to perform classification or annotation and to pro-
vide an explanation to the decisions it makes. The relevance of the explanation de-
pends on the relations that have been learnt and how the system uses them. That
means that the original set of relations from which the most relevant ones are learnt
has to be built wisely. A poor vocabulary could lead to bad decisions and irrelevant
explanations. Thus, we need to ensure that our model is expressive enough to avoid
this kind of situations. This is why we introduce here the notion of expressivity (some

50 Chapter 3. Model Expressivity and Fuzzy Relations

works refer to it as expressiveness or expressive power), which has already been defined
in several other fields.

There exist several works dealing with the expressivity of a language. In knowl-
edge representation, the notion was introduced in the 1980’s in an unformal way
(Levesque and Brachman, 1987). Later, Baader (Baader, 1996) gave a formal defini-
tion of the expressive power of knowledge representation languages. This defini-
tion states that two knowledge representation languages have the same expressive
power if and only if one language can be expressed by the other and vice versa.
While this enables to compare the expressive power of two different knowledge
representation languages, it does not define formally the expressive power of one
knowledge representation language. Borgida (Borgida, 1996) built on Baader’s work
to compare the expressive powers of description logics and predicate calculus. The
comparison is based on the meaning, which is defined for both languages and repre-
sents all the possible interpretations of a given description or set of predicates. We
emphasize that, in this context, an interpretation is a mapping from a description or
set of predicates to a subset of the domain of values it is working on.

From a machine learning point of view, expressiveness is often mentioned in the
deep learning community but it is rarely defined. Cohen et al. (Cohen et al., 2016)
define it as the space of all possible configurations of parameters of the network.
Raghu et al. (Raghu et al., 2017) proposed an approach to measure the expressive
power of neural networks. They define the expressivity as the influence of the archi-
tecture of a neural network over the resulting functions it computes.

In this work, we define expressivity similarly to the definitions from description
logics we presented above. It should reflect the diversity of situations the model
can generate. As we presented in the previous chapter, in the approach we propose,
the model is given a catalog of relations that we call vocabulary. A richer vocabu-
lary should lead to a more expressive system, which should help to produce better
decisions and explanations.

For example, if we classify objects based on their shape and size, a vocabulary
containing only shape properties will entail a model that cannot correctly deal with
the size. In this case, the vocabulary restrains the expressive power of the model too
much. On the other hand, adding size properties to the vocabulary would enable
the model to be more expressive. If the added properties are relevant to the problem
under consideration, then the model should achieve better performance. However,
enriching the vocabulary also leads to a less tractable model. Overall, an expressive
model should rely on the same vocabulary a human would use for performing and
describing the task.

Let us introduce the following notations:

• Let V = {R1, . . . ,RnV } be the vocabulary given for building a model. It is a
set of nV relations.

• Let α : V → N be a function such as α(R) denotes the arity of the relation R
for eachR in V .

• Let X be the space where instances are defined.

• Let x be an instance defined on the space X .

• LetOx = {ox,1, . . . , ox,K | ox,i ∈ X , ∀i ∈ J1; KK} be a set of K entities in x that are
defined on X . We assume here that the number K of entities is fixed.

3.2. Fuzzy Relations 51

• Let Ex(V) = {R(ox,1, ..., ox,α(R)) | R ∈ V , (ox,1, ..., ox,α(R)) ∈ P(Ox)} be the set
of all the relations in V evaluated on the entities in Ox. P(Ox) is the power set
of Ox.

P
(
Ex(V)

)
is the set of all the possible explanations. It characterizes the expressivity

of the model.
Property 1

The number of relations to evaluate for instance x is:

|Ex(V)| =
nV

∑
j=1

|Ox|!(
|Ox| − α(Rj)

)
!

. (3.1)

Proof.
For each relation R ∈ V , we would like to compute R for all the α(R)-ary subsets
of entities included in Ox. Since we do not make any assumption on the symmetry
ofR, this is equivalent to obtaining the ordered subsets of k elements from a set of n
elements. The number of such subsets is given by (Uspensky, 1937)

n!
(n− k)!

.

Thus, the number of times a relationR has to be evaluated is

|Ox|!(
|Ox| − α(R)

)
!

.

We get |Ex(V)| by summing the contributions of each relation.

For example, for an instance x such as Ox = {1, 2, 3, 4, 5, 6, 7, 8, 9} and a vocab-
ulary V = {Rgreater,Rprime,Reven} such as α(Rgreater) = 2, α(Rprime) = 1 and
α(Reven) = 1, we get

|Ex(V)| =
9!

(9− 2)!
+

9!
(9− 1)!

+
9!

(9− 1)!
= 90 .

The time complexity for computing all the evaluations thus depends on the facto-
rial of the number of entities that is generated byOx. (Levesque and Brachman, 1987)
stated first that there is a dependency between the expressive power of a knowl-
edge representation language and its computational tractability. We encounter here
a similar issue and we will propose two methods for reducing the evaluation space
in Chapter 5.

3.2 Fuzzy Relations

We focus now on the type of relations the model handles: fuzzy relations. They are
based on Fuzzy Logic, which presents several advantages:

• it enables to take into account both qualitative and quantitative information,

• it can manage the imprecision of the data and the vagueness of the language,

52 Chapter 3. Model Expressivity and Fuzzy Relations

• the notion of linguistic variable has been defined to characterize a variable with
natural language expressions.

These assets make fuzzy relations well-suited for computing with words (Zadeh,
1999) and thus for generating explanations in natural language.

In this section, we first remind briefly the core definitions of the fuzzy logic
framework before dealing with fuzzy relations. A more extensive recap of the main
notions in fuzzy logic is given in Appendix B on page 171.

3.2.1 Fuzzy Logic

Fuzzy Logic and the fuzzy set theory have been introduced by (Zadeh, 1965). It can
be seen as an extension of Boolean logic that enables to manage imprecision. While
a value is either true or false in Boolean logic, it can range from 0 (false) to 1 (true) in
Fuzzy Logic.

Definition 3: Fuzzy Set

In a universe U , a fuzzy set F is characterized by a mapping µF : U → [0, 1].
This mapping specifies in what extent each u ∈ U belongs to F and it is called the
membership function of F.

If F is a non-fuzzy set (also known as crisp set), µF(u) is either 0, i.e. u is not a member
of F, or 1, i.e. u is a member of F. In the following, we will use the expressions non-
fuzzy and crisp interchangeably.

We will also rely on the notion of core of a fuzzy set.

Definition 4: Core of a Fuzzy Set

The core of a fuzzy set F defined on a universe U is a non-fuzzy set defined as

core(F) = {u ∈ U|µF(u) = 1} . (3.2)

We then define what a linguistic variable is (Zadeh, 1975). It is an important con-
cept since it enables to give interpretability to fuzzy sets.

Definition 5: Linguistic Variable

A linguistic variable is defined as a triplet (V, ∆V , FV) such as:

• V is the name of the variable,

• ∆V is the domain on which V is defined,

• FV = {F1, F2, ...} is a finite collection of fuzzy sets. Each of these fuzzy sets
is associated to a linguistic term which qualifies V.

For example, let us consider a linguistic variable (”duration“, [0; 100], {Fshort, Flong})
represented in Figure 3.1. ∆V is here the domain of time in seconds. The fuzzy set
Fshort enables to characterize how short a duration is while Flong evaluates how long
it is. For δ ∈ [0; 25], µshort(δ) = 1 so a duration taking δ seconds is short. For
δ ∈ [25; 75], the shortness is imprecise. The values of µshort enable to quantify the
vagueness of the definitions. For δ ∈ [75; 100], µshort(δ) = 0 so the duration is not
short. However, that does not necessarily mean that it is long. Indeed, there can
be several intermediary linguistic terms in FV between “short” and “long”, which
would contribute to make the approach more expressive (at the cost of tractability).

3.2. Fuzzy Relations 53

25 50 75 100

1

0

0

time (s)

µ µshort
µlong

core(Flong)core(Fshort)

FIGURE 3.1: Figure representing the linguistic variable
(”duration“, [0; 100], {Fshort, Flong}). The membership functions
of the two fuzzy sets Fshort and Flong are represented respectively
in blue and red. The core of Fshort is [0; 25] and the core of Flong is

[75; 100].

An elementary fuzzy proposition “V is A” is defined from a linguistic variable
(V, ∆V , FV) with A ∈ FV . For example, the fuzzy proposition “the duration is short”
is assessed using the membership function µshort. For a specific duration δ ∈ ∆V , the
truth value of this proposition is returned by µshort(δ) and it is interpreted as shown
in the previous example.

3.2.2 Fuzzy Relations

The fuzzy logic framework is also more suited to express relations between two sets
than Boolean logic because it can express a wider variety of situations (cf. Figure 3.2).

Definition 6: Fuzzy Relation

Given two universes U and W , a binary fuzzy relation R is characterized by a
mapping defined as

µR : U ×W → [0, 1] . (3.3)

It assigns a degree of relationship to any (u, w) ∈ U ×W . p-ary fuzzy relations are
defined identically. A property can be seen as a unary relation, so we will only talk
about relations in the remaining of this thesis.

In Figure 3.2A, the disk is perfectly to the left of the square. In such a situation, a
membership function µto the left of would return 1 and a Boolean relation would return
true. However, in Figure 3.2B, the situation is more difficult to evaluate. In the fuzzy
case, we get a membership degree between 0 and 1, which is similar to the way a
human would describe it. The Boolean logic is not adapted to handle cases like this
one.

In the following, for the sake of comprehension, the word relation refers either to
a fuzzy relation R or to the degree of relationship µR(u, w) between u and w. For
instance, for a dyadic fuzzy relation Rto the left of and two objects u and w, we call
relation the result µRto the left of(u, w), which represents the spatial relation “u to the left
of w”.

54 Chapter 3. Model Expressivity and Fuzzy Relations

(A) The disk is perfectly to the left of the
square.

(B) The disk is to the left of the square but it is
not clear to which extent it is.

FIGURE 3.2: Two figures where the relation disk to the left of square cannot be expressed the
same way. Fuzzy logic provides tools to characterize differently these two situations while

relying on the same fuzzy relation to the left of.

3.3 Discussion

In this chapter, we proposed a definition of expressivity in the context of our ap-
proach. This was motivated by the fact that an expressive enough model is neces-
sary to perform well and produce convincing explanations. We then reminded the
main definitions from the fuzzy logic framework, which is convenient for generat-
ing explanations in natural language. We also illustrated the notions of linguistic
variable and of fuzzy relation.

We saw that the number of relations to evaluate increases quickly with the num-
ber of entities in an instance. Therefore, there may be many relations to assess over
a training set of several instances. In order to keep our approach tractable, we inves-
tigate two different ways:

• We propose in Chapter 5 two heuristics that aim at preventing unnecessary
evaluations. The first one is based on a learning algorithm that we present in
the next chapter. The second heuristic takes advantage of a few properties of
relations, such as their symmetry or the logical implications between them.

• The second solution is relation-specific. We worked on the optimization of
a computationally expensive type of relations so that they can be evaluated
faster. This contribution is presented in Chapter 8.

In our approach, relations are evaluated on the entities in an instance. We as-
sumed that the number of entities is fixed. This assumption can hold true if we are
given the entities beforehand or if we know a priori the number of entities we are
looking for. Clustering or segmentation methods could be applied too but are out of
the scope of this thesis.

In the next chapter, we will see how to extract the most relevant relations among
those that were evaluated.

55

Chapter 4

Learning Relevant Relations and
Descriptors

Being able to express relations between entities in an instance is a necessary but not
sufficient condition for actually using these relations in an XAI. As an explanation
should depict the reasoning of the system, it should rely only on the relations that
are relevant enough for solving the given problem.

The objective of this chapter is to propose a generic method for extracting rele-
vant descriptors of the different classes that will be involved in a task of classification
or annotation. We introduce an algorithm based on fuzzy frequent itemset mining
that selects the most relevant relations in a vocabulary for representing a class. This
algorithm takes as input a set of evaluated fuzzy relations between entities for each
instance in the training set.

In Section 4.1, we introduce our hypothesis about describing classes by their most
relevant relations. Section 4.2 presents the field of frequent itemset mining while
Section 4.3 describes its fuzzy counterpart. Finally, Section 4.4 tackles the solution
we propose for extracting the most relevant subsets of relations.

4.1 Relation-based Descriptors

Since we aim at extracting the most relevant relations for describing each class, we
must first define what relevance means. Given a classification or annotation task, the
relevance of a relation characterizes its appropriateness, in other words how it fits
the classes, and how closely connected it is to the task, which means that it should
help solving the problem induced by the task to perform.

In this thesis, we would like to determine the relations that are the most relevant
to classes of entities. Thus, they should be representative of a class. However, that
does not mean that they necessarily help to perform classification or annotation. For
instance, the property that a tangerine is orange is relevant for classifying tangerines
from bananas whereas it is not for classifying tangerines from oranges. While this
property is important in describing the class tangerine, it is not sufficient for classifi-
cation. As such, it should be part of a higher-level structure that represents a class
and that is unambiguous. In other words, this structure should be both descriptive
and discriminative (Hendricks et al., 2016; Lesot et al., 2008).

In this chapter, we focus on the extraction of descriptors for each class. We will
describe how to turn them into discriminative structures in Chapter 6. A descriptor
is a set of relations that describes a class. So, given the vocabulary and the expres-
sivity of the approach, we would like to extract the most relevant sets of relations for
describing the classes we deal with.

56 Chapter 4. Learning Relevant Relations and Descriptors

As we stated in Chapter 2, we do not rely on a statistical relational learning ap-
proach to extract these sets of relations. Such approaches usually work on relational
data (Dumancic et al., 2019b), which is expensive to obtain since relations between
entities need to be labeled. Another type of approaches relies on propositionalisation
(Kramer et al., 1998) to turn a relational representation of a problem into a proposi-
tional one where each attribute is mapped to a value. This is what we are going to
do here.

While regular datasets (where entities are labeled but not the relations between
them) are also costly to label, they are much more common. In order to take ad-
vantage of them, similarly to (Zucker and Ganascia, 1996), we propose to bring the
knowledge about relations beforehand by providing a vocabulary V of potentially
relevant relations. Thus, we can evaluate relations from V on the training set and
then extract the most relevant of them without relying on any labeling of the rela-
tions in the training instances.

We propose to rely on frequent itemset mining to extract the most frequent de-
scriptors in the training set. We assume here that relevance and frequency are
equivalent. This is a strong assumption that is justified by the fact that relevant
features should occur consistently whereas irrelevant features should occur incon-
sistently (Kellogg, 1980). In other words, entities from one given class should share
the same relevant relations. As a consequence, these relations should be frequent
among the observations of entities from this class. The limits of this assumption are
that learning on few instances could be highly impacted by the presence of one or
several outliers. So we will have to be careful about the way the training set is built.
Also, we extract sets of relations that are frequent together, which means that one
set represents conjunctions of relations. Expressing only conjunctions may limit the
performance of the model we build.

Since we are looking for the frequent subsets of relations of each class, we decide
to carry out the learning phase using a one vs all approach. The learning is thus
performed class by class.

4.2 Frequent Itemset Mining

As we saw in the previous section, and since we handle fuzzy relations, relevant
descriptors are extracted using a fuzzy frequent itemset mining approach. So, in our
case, it consists in performing the mining on the set of the fuzzy relations that were
evaluated on the training set.

In this section, we present the field of frequent itemset mining to introduce the
main concepts that will be used in fuzzy frequent itemset mining.

4.2.1 Background

Frequent itemset mining aims at extracting frequent patterns in a database. It has orig-
inally been introduced for performing association rule learning (Agrawal et al., 1993).
In such problems, the goal is to build rules that catch the frequent patterns in the
database. The most common example of association rule learning is the market basket
problem. In this problem, we have a dataset of transactions made by customers. Each
transaction contains items that one customer purchased, as represented in Table 4.1.
Based on this dataset, the objective is to extract rules that describe well the behaviour
of consumers, such as “ ⇒ ”. It relies on assessing which items are frequently
bought together.

4.2. Frequent Itemset Mining 57

The association rule learning process can be divided into two steps:

1. finding all the frequent subsets of items in the database,

2. building rules based on the frequent subsets of relations.

The first step actually consists in frequent itemset mining, on which we focus
here. It is the most computationally expensive step. It is applied on a database that
can be represented as a formal context.

Definition 7: Formal Context (Ganter and Wille, 1996)

A formal context is a tuple (T , I ,R) such as:

• T is a set of transactions,

• I is a set of items,

• R : T × I → {0, 1} is a binary relation that expresses which items belong
to which transactions.

For example, in the database Dmarket (cf. Table 4.1), we have T = {t1, t2, t3, t4, t5, t6}
and I = { , , , , }. The corresponding formal context is represented in Ta-
ble 4.2.

Transactions Items

t1

t2

t3

t4

t5

t6

TABLE 4.1: Example of database for the basket market problem. We call
this database Dmarket.

Transactions
Items

t1 1 1 1
t2 1 1 1 1
t3 1 1 1
t4 1 1 1 1 1
t5 1 1 1
t6 1 1

TABLE 4.2: Representation of the formal context associated toDmarket
(cf. Table 4.1). Zeros are not displayed for a better visualization of the

formal context.

In the remainder of this thesis, a subset of items will be called an itemset. We also
introduce the notion of k-itemset.

58 Chapter 4. Learning Relevant Relations and Descriptors

Definition 8: k-itemset

For k ∈N, a k-itemset is a set of k items.

In order to assess whether an itemset is frequent or not, one first has to compute
the frequency of this itemset in the database, which is called the support.

Definition 9: Support

The support of an itemset is defined as:

∀I ⊆ I , support(I) =
|{t ∈ T | ∀i ∈ I,R(t, i) = 1}|

|T | (4.1)

The support of an itemset I ⊆ I ranges from 0 (if I is not a subset of any transaction)
to 1 (if I is a subset of every transaction). For example, in Dmarket (cf. Table 4.1), we
have support({ }) = 3

6 = 0.5 and support({ , }) = 4
6 ≈ 0.667.

Once the support of an itemset is known, it is compared to a threshold to deter-
mine whether it is frequent or not.

Definition 10: Frequent Itemset and Minimum Support

Let S be a real number in [0; 1]. An itemset I ⊆ I is said to be frequent if, and only
if, support(I) ≥ S. S is a threshold that is called the minimum support.

For instance, in Dmarket, for S = 0.6, { , } is frequent whereas { } is not.
Some of the frequent itemsets have interesting properties that make them ideal

candidates for generating other frequent itemsets.

Definition 11: Maximal Itemset (Uno et al., 2004)

A frequent itemset I ⊆ I is said to be maximal if, and only if, it has no frequent
superset.

For example, for S = 0.6, { } is frequent because support({ }) ≥ S but it is not
maximal because it is a subset of ({ , }), which is also frequent. However, { , }
is maximal since it has no frequent superset. Intuitively, a maximal itemset could be
used to generate smaller frequent itemsets that are actually its subsets.

Some other itemsets with interesting properties are the closed itemsets, which rely
on a closure operator.

Definition 12: Closure Operator

A closure operator on a poset (cf. Appendix C on page 175) (A,≤A) is a function
h : A→ A such as

• ∀a ∈ A, a ≤A h(a),

• ∀a1, a2 ∈ A, a1 ≤A a2 ⇒ h(a1) ≤A h(a2),

• ∀a ∈ A, h(a) = h ◦ h(a).

Definition 13: Closed Itemset (Pasquier et al., 1999)

Let h be a closure operator over (I ,≤I). An itemset I ∈ P(I) is said to be closed
if, and only if, h(I) = I.

In order to use those closed itemsets, we must define a closure operator. Such oper-
ators are usually built using a Galois connection.

4.2. Frequent Itemset Mining 59

Definition 14: Galois connection

Let (A,≤A) and (B,≤B) be two posets (cf. Appendix C on page 175). Let
f : A→ B and g : B→ A be two functions defined over these two posets.
The couple (f , g) forms a Galois connection between (A,≤A) and (B,≤B) if f and
g are order-reversing and verify

∀a ∈ A, ∀b ∈ B, a ≤A g ◦ f (a) and b ≤B f ◦ g(b) (4.2)

For example, the functions

f : P(T)→ P(I)
T 7→ {i ∈ I | ∀t ∈ T,R(t, i) = 1} (4.3)

and

g : P(I)→ P(T)
I 7→ {t ∈ T | ∀i ∈ I,R(t, i) = 1} (4.4)

form a Galois connection between
(
P(T),⊆

)
and

(
P(I),⊆

)
. One advantage of

these functions is that their composition forms a closure operator.
Lemma 1

Let (A,≤A) and (B,≤B) be two posets. Let f : A → B and g : B → A be two
functions defined over these two posets.
If (f , g) forms a Galois connection, then f ◦ g and g ◦ f are closure operators over
(B,≤B) and (A,≤A) respectively.

Proof.
According to Definition 12, g ◦ f has to satisfy three conditions:

• ∀a ∈ A, a ≤A g ◦ f (a) by definition of the Galois connection,

• ∀a1, a2 ∈ A such as a1 ≤A a2, we have g ◦ f (a1) ≤A g ◦ f (a2) since f and g are
both order-reversing,

• ∀a ∈ A, a ≤A g ◦ f (a), so f (a) ≥A f ◦ g ◦ f (a) since f is order-reversing.
By definition of the Galois connection, f (a) ≤A f ◦ g ◦ f (a)
so f (a) =A f ◦ g ◦ f (a).
Thus, by composition, g ◦ f (a) =A (g ◦ f)2(a).

Thus, g ◦ f is a closure operator over (A,≤A). The reasoning is the same for proving
that f ◦ g is a closure operator over (B,≤B).

Using the definitions of f and g in Equation (4.3) and Equation (4.4) respectively,
h = f ◦ g is thus a closure operator over (I ,≤I). In the following, we will use this
operator as our closure operator on I .

For example, in Dmarket, h({ , }) = { , } because:

• g({ , }) = {t1, t2, t4, t6},

• f ({t1, t2, t4, t6}) = { , },

• h({ , }) = f ◦ g({ , } = { , })
so { , } is a closed itemset.

60 Chapter 4. Learning Relevant Relations and Descriptors

4.2.2 Frequent Itemset Mining Algorithms

In this subsection, we provide a taxonomy of frequent itemset mining algorithms
that is based on the work of (Fournier-Viger et al., 2017). There are four categories of
frequent itemset mining algorithms:

• breadth-first search algorithms such as Apriori (Agrawal et al., 1993). They first
look for the frequent 1-itemsets. Then, they generate the candidate 2-itemsets.
Frequent 2-itemsets are extracted and we then focus on 3-itemsets and so on
until no more itemset can be generated,

• depth-first search algorithms such as Eclat (Zaki, 2000). They first associate ev-
ery 1-itemset I to its tidset, which is the set of transactions in which the corre-
sponding itemset is included. Thus, the support of I is easy to compute since
it is the cardinality of its tidset. Then, all possible 2-itemsets are generated and
their tidsets can be obtained by intersection. The process continues until no
more itemsets can be generated. It is usually faster than breadth-first search
algorithms,

• pattern growth algorithms such as FP-Growth (Han et al., 2000). They first cre-
ate a compact representation of the database as a tree. Then, the tree is used
to generate all the frequents itemsets. It has the advantage of not generating
candidate frequent itemsets,

• reduction algorithms that work on a compact representation of the frequent
itemsets such as closed itemsets (Pasquier et al., 1999) or maximal itemsets (Uno
et al., 2004). After the compact representation is generated, this family of meth-
ods relies on one of the previous categories of algorithms to generate the fre-
quent itemsets.

In our case, we would like to mine frequent subsets of relations class by class.
Thus, there is one different sub-database for each class. As instances from the same
class should share some frequent relations, they should be highly correlated to each
other. Since a closure operator working on an itemset I returns the set of items
that are common to the transactions in which I belongs to, algorithms relying on
closed itemsets should take advantage of this high correlation (Pasquier et al., 1999).
However, since we deal with fuzzy relations, we need an algorithm that is able to
manage such data.

4.3 Fuzzy Frequent Itemset Mining

Fuzzy frequent itemset mining relies on the same principles as frequent itemset min-
ing. In this section, we update the previous definitions to deal with fuzzy data. Then,
we will give a brief review of fuzzy frequent itemset mining algorithms.

It should be noted that these algorithms still return crisp itemsets. However,
the relation between transactions and items is now fuzzy.

4.3.1 Fuzzy Formal Context and Support

The definition of a formal context needs to be updated since we work with fuzzy
data. In that case, it is called a fuzzy formal context.

4.3. Fuzzy Frequent Itemset Mining 61

Definition 15: Fuzzy Formal Context (Belohlávek, 2012)

A fuzzy formal context is a tuple (T , I ,R) such as:

• T is a set of transactions,

• I is a set of items,

• R : T × I → [0; 1] is a dyadic fuzzy relation that expresses to which extent
items belong to transactions.

An example of fuzzy formal context is represented in Table 4.3.

Transactions
Items

t1 0.8 0.1 0.9 0.8 0
t2 0 0.3 0.2 0 0.9
t3 1 0.7 0.7 1 0.6
t4 0 0.2 0 0.2 1
t5 0.9 0.6 0.8 1 0.9

TABLE 4.3: A fuzzy database Dfuzzy represented as a fuzzy formal
context.

Since the relation between transactions and items is now fuzzy, we also need to
update the definition of the support of an itemset.

Definition 16: Support

The support of an itemset is defined as

∀I ⊆ I , support(I) =
∑

t∈T
min
i∈I
R(t, i)

|T | (4.5)

For example, in Dfuzzy (cf. Table 4.3), support({ , }) = 1.4
5 = 0.28.

4.3.2 Fuzzy Frequent Itemset Mining Algorithms

Many fuzzy frequent itemset mining algorithms rely on the Apriori algorithm (Agrawal
et al., 1993). Thus they are breadth-first search algorithms. The F-APACS algorithm
(Au and Chan, 1998) first converts data into linguistic terms using the fuzzy set the-
ory. A statistical analysis is performed to automatically set the minimum support
threshold. (Kuok et al., 1998) proposed a different approach to handle quantitative
databases for generating fuzzy association rules. They introduced a significance fac-
tor that reflects not only the number of transactions supporting an itemset, but also
its degree of support. The FDTA algorithm (Hong et al., 1999) proposes another
way of converting quantitative data into linguistic terms. In other algorithms, each
feature is actually converted into several linguistic terms whereas the FDTA algo-
rithm keeps for each feature only the linguistic term of maximal cardinality. That
means that there are as many linguistic terms as features, which enables to reduce
computational costs.

A completely different way of mining fuzzy frequent itemsets relies on pattern
growth algorithms. The first step consists in fuzzifying data, if necessary. Then, the

62 Chapter 4. Learning Relevant Relations and Descriptors

tree is constructed and the final step is the mining of fuzzy frequent itemsets based
on the previously constructed tree. (Papadimitriou and Mavroudi, 2005) proposed
an algorithm called fuzzy frequent pattern tree (FFPT). Non frequent 1-itemsets are
removed from the database and each transaction is sorted according to the member-
ship value of its frequent 1-itemsets. Then, the tree is constructed by handling each
transaction one by one. Since transactions are sorted by membership values, several
different paths may represent the same itemset. As a consequence, a few useless tree
nodes are generated. The compressed fuzzy frequent pattern tree (CFFPT) algorithm
solves this problem by using a global sorting strategy (Lin et al., 2010b). However,
this solution leads to attaching an array to each node, which requires more memory.
(Lin et al., 2010a) proposed the upper bound fuzzy frequent pattern tree algorithm
(UBFFPT). It estimates the upper bound membership values of frequent itemsets to
avoid attaching an array to each node. This algorithm requires four database passes
to build the tree. Then, the tree is parsed several times to generate all candidate fre-
quent itemsets. Depending on the database, the tree can be deep and have a large
amount of nodes. An ultimate database pass is performed to compute the support
of each candidate frequent itemset. Unlike crisp pattern growth algorithms, these
need to generate candidate frequent itemsets.

To the best of our knowledge, there is no fuzzy frequent itemset mining algo-
rithm that relies on the generation of closed itemsets. As previously mentioned, this
kind of algorithm is well suited to the data we deal with since it takes advantage of
the high correlations between instances of the same class. This is why we worked
on the fuzzification of such an algorithm.

4.4 Fuzzy Close Algorithm

In this section, we are going to present the algorithm we use for mining frequent sub-
sets of fuzzy relations. It is based on an algorithm called Close (Pasquier et al., 1999),
which we present in the first section. Then, we describe the fuzzy transposition of
this algorithm and how we deal with fuzzy data.

4.4.1 The Close algorithm

The Close algorithm has been proposed by (Pasquier et al., 1999). It can only handle
crisp formal contexts. It finds all the frequent closed itemsets so that it can work on
a more compact representation of the frequent itemsets. Since there are often less
frequent closed itemsets than frequent itemsets, the search space is smaller, the com-
putation is less costly and the number of database passes is reduced. The algorithm
relies on the following properties (Pasquier et al., 1999):

1. all subsets of a frequent itemset are frequent;

2. all supersets of an infrequent itemset are infrequent;

3. all closed subsets of a frequent closed itemset are frequent;

4. all closed supersets of an infrequent closed itemset are infrequent;

5. the set of maximal frequent itemsets is identical to the set of maximal frequent
closed itemsets;

6. the support of a frequent itemset I which is not closed is equal to the support
of the smallest frequent closed itemset containing I.

4.4. Fuzzy Close Algorithm 63

It goes through two phases. First, it generates all the frequent closed itemsets
from the database. Then, since the set of all the maximal frequent itemsets is the
same as the set of all the maximal frequent closed itemsets, we can derive all the
frequent itemsets from this set. The more correlated the data, the more efficient the
algorithm.

The closure operator that is used in this algorithm is h = f ◦ g (cf. Equation (4.3)
and Equation (4.4)).

4.4.2 Fuzzification of the Close Algorithm

In the original Close algorithm, the closure operator deals with crisp data. In order
to fuzzify it, we have to find a closure operator able to manage fuzzy data. It still
takes as an argument a crisp set, which we call a generator, and also returns a crisp
set. However, the relationR between transactions and items is now fuzzy. Thus we
have a fuzzy formal context.

We first define what a fuzzy set of items (respectively transactions) is. This will
be used in the definition of a fuzzy closure operator.

Definition 17: Fuzzy Set of Items and Fuzzy Set of Transactions

A fuzzy set of items FI is a fuzzy set whose membership function is defined as

µFI : I → [0; 1] (4.6)

A fuzzy set of transactions FT is a fuzzy set whose membership function is de-
fined as

µFT : T → [0; 1] (4.7)

A fuzzy closure operator verifies the same conditions as a crisp closure operator,
except that it deals with fuzzy sets.

Definition 18: Fuzzy Closure Operator (Belohlávek, 2001)

Let FU be a fuzzy set defined on a universe U . A fuzzy closure operator h over FU
is defined as h : FU → FU and satisfies the following conditions:

• ∀I ⊆ FU , I ⊆ h(I),

• ∀I ⊆ FU , h(h(I)) = h(I),

• ∀I, J ⊆ FU , I ⊆ J ⇒ h(I) ⊆ h(J).

The fuzzy inclusion is defined in Appendix B on page 171.

Although this fuzzy closure operator is able to deal with a fuzzy formal context, its
input argument and the result it generates are fuzzy sets. Thus, we will have to build
a new closure algorithm that is based on a fuzzy closure operator and that takes and
returns a crisp set.

Similarly to the crisp case, a fuzzy Galois connection enables to get a fuzzy clo-
sure operator.

64 Chapter 4. Learning Relevant Relations and Descriptors

Definition 19: Fuzzy Galois Connection (Belohlávek, 1999)

Let U andW be two universes. A fuzzy Galois connection between U andW is a
pair (↑,↓) of mappings ↑ : FU → FW and ↓ : FW → FU such that

• ∀A1, A2 ∈ FU , Subs(A1, A2) ≤ Subs(A↑2 , A↑1),

• ∀A ∈ FU , A ⊆ A↑↓,

• ∀B1, B2 ∈ FW , Subs(B1, B2) ≤ Subs(B↓2 , B↓1),

• ∀B ∈ FW , B ⊆ B↓↑.

with FU (respectively FW) the set of all the fuzzy sets in the universe U (re-
spectively W) and Subs the subsethood degree defined in Appendix B.4.5 on
page 174.

Let us now introduce two new operators that form a fuzzy Galois connection
when used with the Łukasiewicz implication.

Definition 20: Operators ↑ and ↓ (Belohlávek, 1999)

Let FT be a fuzzy set of transactions and FI be a fuzzy set of items. Let → be a
fuzzy implication (cf. Appendix B.4.4). Operators ↑ and ↓ are defined as follows

∀i ∈ I , µF↑T
(i) = inf

t∈T

(
µFT (t)→ R(t, i)

)
, (4.8)

∀t ∈ T , µF↓I
(t) = inf

i∈I

(
µFI (i)→ R(t, i)

)
. (4.9)

F↑T is a fuzzy set of items and F↓I is a fuzzy set of transactions. In the following, the
composition ↑◦↓ of these two functions is written ↑↓.

Definition 21: Łukasiewicz implication

The Łukasiewicz implication L−→ is defined as

L−→ : [0; 1]× [0; 1]→ [0; 1]
(a, b) 7→ min(1− a + b, 1) (4.10)

Using the Łukasiewicz implication enables the pair (↑, ↓) to form a fuzzy Galois con-
nection (Belohlávek, 1999). Also, this implication is compatible with the implication

from classical logic. In the following, we always use L−→ as the implication involved
in operators ↑ and ↓.
Property 2: (Belohlávek, 2012; Gerla, 2013)

Let FI be a fuzzy set of items. ↑↓ is a fuzzy closure operator over FI .

The fuzzy closure of FI by ↑↓ is F↑↓I , which is also a fuzzy set of items.
In our case, the closure operator takes a crisp set of items as a generator. Let I

be a crisp set of items. It can be turned into a fuzzy set FI to be used by the fuzzy
closure operator as follows:

∀i ∈ I , µFI (i) =
{

1, if i ∈ I
0, otherwise

. (4.11)

4.4. Fuzzy Close Algorithm 65

As for the set the closure operator returns, it also has to be a crisp set. We would
like to return the set of items whose membership degree to the fuzzy closure is equal
to 1, such that ∀i ∈ I , µF↑↓I

(i) = 1. This operation actually consists in computing the

core (cf. Appendix B.1.2 on page 171) of F↑↓I . Thus, we propose the following closure
operator:

h : P(I)→ P(I)
I 7→ core(F↑↓I) (4.12)

with FI the fuzzy set corresponding to I as defined in Equation (4.11). This operator
is still a closure operator, but a crisp one. One can interpret the result it returns as
the set of items that are shared by all the transactions that have all the items from
the generator I. The proof that h is a closure operator is presented in Appendix C on
page 175.

4.4.3 Description of the Algorithm

The new algorithm we propose is represented in Algorithm 1 and Algorithm 2. Its
overall structure is the same as the original crisp algorithm but the computation of
the closure has been modified so that it can deal with fuzzy data.

FCCp refers to the set of triplets associated with all the Frequent Closed Candi-
date itemsets whose generator’s size is p. FCp refers to the set of triplet associated
with all the Frequent Closed itemsets whose generator’s size is p. Each triplet is
represented under the form (generator, closure, support). Thus, in the following,
for any c ∈ FCCp or FCp, c refers to the triplet, generator(c) is the corresponding
generator, h(c) is its closure and support(c) is its support.

Algorithm 1: Fuzzy Close algorithm
input :
• a fuzzy formal context (T , I ,R)
• a minimum support S ∈ [0; 1]

output: the set of all frequent closed itemsets and their support

1 FCC1 = {(i,∅, 0) | i ∈ I}
2 p← 1
3 while FCCp 6= ∅ do
4 FCCp ← generateClosures(FCCp) ; // cf.Algorithm 2

5 forall candidate closed itemsets c ∈ FCCp do
6 if support(c) ≥ S then
7 FCp ← FCp ∪ {c}
8 end
9 end

10 FCCp+1 ← generateGenerators(FCp)
11 p← p + 1
12 end

13 FC ←
p−1⋃
j=1
{c | c ∈ FCj}

14 return FC

66 Chapter 4. Learning Relevant Relations and Descriptors

Algorithm 2: generateClosures function
input : the set of candidate closed itemsets FCCp
output: updated FCCp after the computation of closures and supports

1 n← 0
2 forall c ∈ FCCp do
3 g← generator(c)
4 numbers in µg↑↓

a ← 1
5 h(c)← ∅
6 end
7 forall transaction t ∈ T do
8 n← n + 1
9 forall c ∈ FCCp do

10 g← generator(c)
11 µg↓

b ← 1
12 forall items i ∈ g do
13 µg↓ ← min

(
µg↓ ,R(t, i)

)
14 end
15 forall items i ∈ I do
16 µg↑↓(i)← min

(
µg↑↓(i), 1 +R(t, i)− µg↓

)
17 if n = Card(T) then
18 if µg↑↓(i) = 1 then
19 h(c)← h(c) ∪ {i}
20 end
21 end
22 end
23 support(c)← support(c) + µg↓

24 end
25 end
26 return FCCi

aµg↑↓ is a vector corresponding to the membership function of the fuzzy closure g↑↓.
bµg↓ is a fuzzy number that corresponds to µg↓ (t).

Transactions
Items

t1 0.8 0.1 0.9 0.8 0
t2 0 0.3 0.2 0 0.9
t3 1 0.7 0.7 1 0.6
t4 0 0.2 0 0.2 1
t5 0.9 0.6 0.8 1 0.9

TABLE 4.4: The fuzzy database Dfuzzy.

4.4. Fuzzy Close Algorithm 67

Algorithm 1 describes the process of generating all the frequent closed itemsets.
On line 1, FCC1 is initialized with every item in the set of items I . On line 4, for
each generator in FCCp, the generateClosures function provides the corresponding
closure and support. This function is detailed in Algorithm 2. Then, from line 5 to 9,
the set of candidate closed itemsets FCCp is pruned to get the set of frequent closed
itemsets FCp. New generators, whose size is p+ 1, are generated on line 10 using the
generateGenerators function. This function is the same as in the original algorithm
(Pasquier et al., 1999). The whole process will last until no new generators can be
generated. The output is the set of all frequent closed itemsets that will be used to
generate all frequent itemsets.

The generateClosures function is stated as shown in Algorithm 2. This func-
tion has been designed to compute the closures and the supports of the generators
in FCCp performing only one database pass. For each transaction t ∈ T , for each
element c ∈ FCCp, g is the generator associated to c and µg↓(t) is computed looping
over the items in g (from line 12 to line 14). Then, for each item i ∈ I , the member-
ship function µg↑↓ of the fuzzy closure is updated (line 16). When the last transaction
is reached and there is no more update to the membership function, the core of the
fuzzy closure is computed (from line 17 to line 21).

The function generateGenerators is exactly the same as in the Close algorithm.
This function generates all the potential generators of size p + 1 from the generators
in FCp. In order to get one potential generator, two generators from FCp that have
the same p− 1 first elements are combined. Then, this set of potential generators is
pruned to avoid useless computations. In particular, if one of the new generators is
included in the closure of one of the former generators, then it is pruned.

Overall, the whole algorithm, i.e. Algorithm 1, needs one database pass per iter-
ation. Like the crisp algorithm, it takes advantage of the correlation in data to have
a smaller number of iterations.

After this phase, all the frequent closed itemsets are used to find all the frequent
itemsets. This new phase is exactly the same as in the original Close algorithm.
The first step consists in splitting the set of all frequent closed itemsets into several
subsets Lp with Lp the subset of all the frequent closed itemsets of size p. Then,
these new sets Lp are looped over in descending order of size to generate all frequent
itemsets of size p− 1. The process will finish when the set of frequent 1-itemsets is
completed.

4.4.3.1 Complexity Analysis

We assume in this section that the value of the minimum support is small enough so
that there exist frequent itemsets.

In the best-case scenario, when all transactions are perfectly correlated, only one
iteration is performed in Algorithm 1 because the closures of all 1-itemsets will be

equal to I . The number of operations to compute is then O
(

Card(T)× Card(I)2
)

.
Thus, the whole database is looped over just once.

In the worst-case scenario, all itemsets are both frequent and closed. Algorithm 1
would then have a complexity in O(2Card(I)).

Overall, the complexity mainly depends on the number of items in the database
and on the number of closed itemsets. As for the original Close algorithm, a rule of
thumb for fuzzy Close is to compute the proportion of 1-itemsets that are closed. If
few of them are closed, then the algorithm should perform better than other meth-
ods.

68 Chapter 4. Learning Relevant Relations and Descriptors

4.4.3.2 Example

For the sake of comprehension, we apply in this section the algorithm on the database
Dfuzzy, which is the same as in Table 4.3 and is recalled in Table 4.4. Dfuzzy contains
five transactions and five items. We set the value of the minimum support at 0.4.

The pruning of FCC1 leads to removing { } since its support is smaller than the
minimum support. The other elements from FCC1 are kept to generate FC1. This
corresponds to line 5 to line 9 in Algorithm 1. FCC1 and FC1 are shown in Table 4.5.

Then, on line 10, FCC2 is generated. { , } is not a generator in FCC2 because it
is included in the closure of { }. FC2 is then generated. { , } and { , } have
the same closure, so only one of them is kept. FCC2 and FC2 are shown in Table 4.6.

FC2 contains only one element, that is why FCC3 is empty. That is the end of
the first phase, which corresponds to Algorithm 1. FC is returned. It is shown in
Table 4.7.

The second phase consists in deriving frequent itemsets from frequent closed
itemsets. The longest closed itemset contains three items. That is why three different
sets are generated for deriving frequent itemsets: L3, L2 et L1. Bold itemsets are
itemsets which have been derived from a bigger closed itemset. These three sets are
shown in Table 4.8. They contain all the frequent itemsets.

4.4.3.3 Experimental Results

Appendix D on page 179 presents experimental results on traditional data mining
datasets. Fuzzy Close is compared to the fuzzy version of the Apriori algorithm
(Agrawal et al., 1993) and to the best fuzzy pattern growth algorithm, UBFFPT (Lin
et al., 2010a).

The results show that our algorithm achieves better performance on highly cor-
related datasets, which was our objective.

4.5 Discussion

In this chapter, we presented a new approach for learning relevant descriptors of
classes. We made the assumption that a relevant descriptor is a frequent subset of
relations, which will be tested in our experiments. That is why our approach relies
on mining frequent itemsets in the training set. While the field of fuzzy frequent
itemset mining is composed of several different methods, none of them uses closed
itemsets to perform better on highly correlated data. Inspired by the Close algo-
rithm, we proposed a new method that generates all the frequent itemsets in a fuzzy
formal context using a closure operator. Thus, we are able to learn relevant descrip-
tors for each class of entities.

Besides, in order to build rules for classification or constraints for annotation,
we will need to extract discriminative information from these descriptors. This is
tackled in Chapter 6.

Based on the learning process we just presented, we will propose in the following
chapter a heuristic that aims at preventing online the evaluation of the relations that
are bound to be infrequent during the evaluation process.

4.5. Discussion 69

Generator Closure Support

{ } { , } 0.54
{ } { } 0.38
{ } { } 0.52
{ } { } 0.60
{ } { } 0.68

Generator Closure Support

{ } { , } 0.54
{ } { } 0.52
{ } { } 0.60
{ } { } 0.68

TABLE 4.5: FCC1 on the left and FC1 on the right. { } is pruned
from FCC1 to FC1 because it is not frequent.

Generator Closure Support

{ , } { , , } 0.46
{ , } { , , } 0.30
{ , } { , , } 0.46
{ , } { , } 0.32
{ , } { , } 0.34

Generator Closure Support

{ , } { , , } 0.46

TABLE 4.6: FCC2 on the left and FC2 on the right.

Closure Support

{ , } 0.54
{ } 0.52
{ } 0.60
{ } 0.68

{ , , } 0.46

TABLE 4.7: FC

Itemset Support

{ , , } 0.46

Itemset Support

{ , } 0.54
{ , } 0.46
{ , } 0.46

Itemset Support

{ } 0.52
{ } 0.60
{ } 0.68
{ } 0.54

TABLE 4.8: Deriving frequent itemsets. Bold lines refer to derived
itemsets. From left to right: L3, L2 and L1.

71

Chapter 5

Heuristics for Preventing
Redundant Evaluations

The approach we propose in this thesis requires to evaluate fuzzy relations from a given
vocabulary before learning from them the most frequent descriptors. At the end of the
evaluation step, the system has a dataset that can be represented as a formal fuzzy
context on which it can perform fuzzy frequent itemset mining (cf. Chapter 4).

The time complexity of this step directly depends on the relations that are eval-
uated. Indeed, some relations may be compute-intensive, which makes the whole
step longer. In order to keep it fast enough, two different types of strategy can be
deployed:

• Speeding up the computation of relations based on their definition. The speed-
up may be obtained by algorithm enhancement, distributed computation or
approximating the result. It is a local optimization process (relation by rela-
tion).

• Filtering relations based on available knowledge, which is a global optimization
process. Indeed, some evaluations of relations could be deduced from former
evaluations if they satisfy some properties (symmetry, dependencies,...).

Both kinds of strategy are compatible since the first kind aims at reducing the com-
putation time of one evaluation of a specific relation while the second kind enables
to prevent unnecessary computations.

In this chapter, we propose two heuristics that enable to prune the evaluation
space and thus make the process faster. We only focus on global strategies here.The
first heuristic we will present consists in not evaluating the relations that, after a few
training instances, are bound to be infrequent. Each time a training instance has been
studied, we compare the current support of each relation to the lowest value it must
have to make the relation frequent. The other heuristic is based on the knowledge we
have about the relations in the vocabulary. Dependencies and implications between
relations are represented in a graph that can be turned into a directed acyclic graph.
A topological sort can then be obtained to get an order of evaluation of the relations
in the vocabulary. Thus, only the necessary evaluations are computed.

In the first section, we present the guidelines of the evaluation process.The fol-
lowing section tackles the heuristic that detects relations that will be infrequent for
sure during the evaluation process. We then present our second heuristic. It is based
on the graphical representation of the dependencies and implications between rela-
tions. This enables to get an order on relations.

72 Chapter 5. Heuristics for Preventing Redundant Evaluations

5.1 Brute Force Evaluation of Relations

Evaluating the relations on entities in the instances of the training set is necessary
for mining the most frequent of them.

We recall here a few notations from Chapter 3. LetD = {x1, . . . , xn} be a training
set of n instances. Each instance xi ∈ D is divided into K entities that form the
set Oxi . Given a vocabulary V of nV fuzzy relations, the number of evaluations to
perform for example xi is |Exi(V)|, whose expression is specified by Property 1 on
page 51. Therefore the total number |ED(V)| of evaluations to compute on the whole
training set is:

|ED(V)| =
n

∑
i=1

nV

∑
j=1

|Oxi |!(
|Oxi | − α(Rj)

)
!

(5.1)

This quantity increases fast with the number of entities in instances, the number of
instances and the number of relations. This is why we worked on two heuristics that
enable to prune the evaluation space.

5.2 Online Pruning of Infrequent Relations

Instances in the training set are evaluated one by one. Thus, the support of each
relation can be updated each time an instance has been fully analyzed. Also, to
ensure that the frequency assumption holds, the minimum support S is always set
to a value greater than or equal to at least 0.50. We assume here that a relation
that is, on average, fully satisfied in less than half of the instances in the training
set is not representative of the class under study. This assumption is not restrictive
since we do not expect to classify and explain an instance on the basis of such a
relation. Indeed, this could harm the performance of the model and the reliability
of the explanations. Thus, that enables to detect relations whose current support
prevents their final support to be greater than or equal to 0.5. Such relations would
be infrequent and are therefore discarded, which is similar to the construction of the
frequent-pattern tree in FP-growth algorithms (Han et al., 2000) where only frequent
1-itemsets are retained. This also presents the advantage of being independent on
the vocabulary and the task to perform.

Transactions
Items

t1 0.8 0.1 0.9 0.8 0
t2 0 0.3 0.2 0 0.9
t3 1 0.7 0.7 1 0.6
t4 0 0.2 0 0.2 1
t5 0.9 0.6 0.8 1 0.9

TABLE 5.1: The fuzzy database Dfuzzy. For a minimum support

greater than or equal to 0.5, we can know that { } cannot be fre-
quent after having processed the first four transactions. However, for
{ }, we need its evaluation in t5 to assess whether it is frequent or

not.

5.2. Online Pruning of Infrequent Relations 73

For example, let us consider the database Dfuzzy (which is exactly the same data-
base as in Chapter 4) given in Table 5.1. Using the same notations as in Chapter 4,
Dfuzzy forms a fuzzy formal context (T , I ,R). With our assumption, we have S ≥
0.5. For an itemset i ∈ I and k ∈ J1; nK, let us note Sk(i) the support of i after
k examples. For instance, we have here S4({ }) = 0.325. So, in the best case, if
R(t5,) = 1, we would get S5({ }) = S({ }) = 0.46. This value is lower than
0.5, so we can discard the item after the first four transactions. However, for the
itemset { }, we need the five transactions to assess whether it is frequent or not.

Using the same reasoning as in the previous example, we can obtain the condi-
tion on which an item can be discarded for any value of the minimum support.

Property 3

Let i ∈ I be an item. Let k be an integer in J1; n− 1K. Let Sk(i) be the support of
i after k examples. Let S be the value of the minimum support. i is bound to be
infrequent if, and only if, it verifies

Sk(i) <
n(S− 1)

k
+ 1 (5.2)

We call B the bound n(S−1)
k + 1.

Proof. The support of i, Sn(i), can be expressed as

Sn(i) =

kSk(i) +
n
∑

j=k+1
R(tj, i)

n
, ∀k ∈ J1; n− 1K (5.3)

After k instances, the greatest possible value for Sn(i) is thus reached when
R(tj, i) = 1, ∀j ∈ Jk + 1; nK. As a consequence, i is bound to be infrequent if, and
only if

kSk(i) + n− (k + 1) + 1
n

< S

which leads to

Sk(i) <
n(S− 1)

k
+ 1 (5.4)

B only depends on S and on the size of the dataset, which makes this heuristic
convenient for any task and vocabulary. With our assumption, we have S ≥ 0.5 and
thus, in the worst case when S = 0.5, we have B = 1− n

2k . If S is required to be
greater than 0.5, it is possible to get a higher value of B, which enables to discard
even more relations. In Figure 5.1, we represented B for several values of S and
for n = 30. Values of S that are lower than 0.50 are not considered since it would
mean that either our assumption that a relevant relation is frequent is false or that
the vocabulary we use is too poor or not suited to the dataset. We chose n so that
its magnitude is representative of the size of the training sets we dealt with in our
experiments (cf. Chapter 9).

Overall, the greater the threshold S, the earlier we should be able to discard
relations. When S = 0.50, we can start discarding relations once half of the training
set has been treated. So, if a relation is never satisfied in the first half of the training
set, we can avoid computing it for the second half.

74 Chapter 5. Heuristics for Preventing Redundant Evaluations

0 3 6 9 12 15 18 21 24 27 30

Number of assessed examples (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
o
u
n
d

va
lu

e
(B

)
S = 0.95

S = 0.90

S = 0.80

S = 0.70

S = 0.60

S = 0.50

FIGURE 5.1: Curves representing the evolution of B = n(S−1)
k + 1 with

the number of assessed examples k for a total number of examples
n = 30. For the sake of clarity, only the positive values of B are
displayed (if B is negative, no support can be discarded because it is

always positive or null).

The experiments that we present in Chapter 9 enable us to quantify the impact
of this heuristic and to validate it.

5.3 Knowledge-based Ordering of Relations

The previous heuristic does not require any knowledge about relations. When this
knowledge is available, it is possible to conduct strategies that are fully compatible
with the one presented in the previous section.

The heuristic we present in this section relies on the knowledge we can get from
the definitions of the relations in the vocabulary. This knowledge enables to express
links between relations. In this work, we are interested in three kinds of links: de-
pendency, implication and symmetry. The principle is to propagate the information
of evaluated relations (using the links between relations) to gain insight on non-
evaluated relations. This materializes as an order on relations with the relations
conveying more information at the front.

5.3.1 Dependency

The first link between relations that we present is the dependency.

5.3. Knowledge-based Ordering of Relations 75

Definition 22: Dependency

Let R1 and R2 be two p-ary fuzzy relations defined on a space A. R1 is said to
be dependent onR2 if, and only if, there exists a function dep : [0; 1]→ [0; 1] such
as

∀e ∈ Ap,R2(e) = dep
(
R1(e)

)
.

where e is a set of p entities in A.
This link means that R2(e) needs the result of R1(e) to be computed. Thus, for

each e ∈ Ap, R1(e) should be computed before R2(e). While this link between re-
lations does not directly discard useless relations, it enables to prevent redundant
computations. Also, it is straightforward to set since it is directly given by the defi-
nitions of relations.

For example, let us consider a relation Rconnected : A× A → [0; 1] that assesses if
two entities are connected. We could define a second relation,Rdisconnected : A× A→
[0; 1], as the complement of the first relation to assess if two entities are disconnected.
In that case, there is a dependency between those two relations.

5.3.2 Symmetry

The second type of link represents a specific property of relations: symmetry.
Definition 23: symmetry

Let R be a p-ary fuzzy relation defined on a space A such as R : Ap → [0; 1].
∀(e1, . . . , ep) ∈ Ap, R is said to be symmetric if, and only if, any permutation of
(e1, . . . , ep) does not modify the result of the evaluation ofR on the set of entities
{e1, . . . , ep}.

For instance, withRconnected, we haveRconnected(a1, a2) = Rconnected(a2, a1), ∀a1, a2 ∈
A. So this relation is symmetric.

For any p-ary symmetric relation R, for a set Ox of p entities associated to an
instance x, the number of evaluations to compute involving R is (according to Sec-
tion 3.1)

|Ex(R)| =
|Ox|!(
|Ox| − p

)
!

. (5.5)

Using the symmetry property, this can be divided by the number of permutations,
p!, and we get

|Ex(R)| =
|Ox|!

p!
(
|Ox| − p

)
!

. (5.6)

Therefore, it will be important to determine which relations in the vocabulary are
symmetric. In the special case of a dyadic relation (p = 2), we also say that this
relation is commutative.

5.3.3 Implications

We consider here the implications between relations from the vocabulary. The idea
is to propagate the result of one relation to another. For example, for two p-ary
relations R1 and R2 defined on a space A, for any tuple of entities e ∈ Ap, if R1 ⇒
R2, then R1(e) should be evaluated before R2(e). The value of R2(e) could then be
deduced fromR1(e).

We are interested in the following four kinds of implications:

76 Chapter 5. Heuristics for Preventing Redundant Evaluations

• The logical implication between two relations. If R1 ⇒ R2, then, for each e ∈
Ap, R1(e) should be evaluated before R2(e) because the evaluation of R1(e)
gives information about the evaluation of R2(e). For instance, let us consider
two dyadic relations: Requal that characterizes whether two entities are equal
or not andRsame size that characterizes if two entities have the same size. Since
two equal entities have the same size, we have Requal ⇒ Rsame size. So it may
be more convenient to evaluate Requal first and to then deduce the value of
Rsame size.

• The logical implication between a relation and the complement of another re-
lation: R1 ⇒ R2. For instance, if two entities are connected, then they cannot
be disconnected.

• The logical implication between the complement of a relation and another re-
lation: R1 ⇒ R2. For instance, if two entities are not connected, then they are
disconnected.

• The logical implication between the complement of a relation and the com-
plement of another relation: R1 ⇒ R2. For instance, if two entities are not
connected, then they cannot overlap with each other.

Since the relations we use are not Boolean, we have to use fuzzy implications. In
Section 4.4.2, we presented the Łukasiewicz implication that we use for generating
the closure of an itemset. We use the same fuzzy implication here. To have an ap-
proach that is always consistent, we are only interested in situations where the fuzzy
implication is equal to 1. The four following subsections are dedicated to establish
properties for detecting relations verifying an implication. We also specify how to
propagate the results for each implication.

5.3.3.1 Implication between two relations

We consider here the implicationR1 ⇒ R2. Let us recall that, ∀a, b ∈ [0; 1],
L−→ (a, b) = min(1 + b− a, 1). We want this implication to be equal to 1:

min(1 + b− a, 1) = 1⇔ 1 + b− a ≥ 1⇔ b ≥ a (5.7)

As a consequence, we have the following property:

Property 4: R1 ⇒ R2

LetR1 andR2 be two p-ary fuzzy relations defined on a space A. There exists a
logical implicationR1 ⇒ R2 if, and only if,

∀e ∈ Ap,R2(e) ≥ R1(e) (5.8)

Proof. According to Equation (5.7), for each e ∈ Ap, we have
L−→
(
R1(e),R2(e)

)
= 1 if, and only if,R1(e) ≤ R2(e).

To be able to deduce the exact value ofR2(e) givenR1(e), the relation betweenR1(e)
andR2(e) must be an equality. Since the upper bound on our fuzzy relations is 1, we
have R2(e) ≤ 1. If R1(e) = 1, then we have also R2(e) ≥ 1 according to Property 4.
That givesR2(e) = 1. So that implication enables to propagate the relations that are
fully satisfied.

5.3. Knowledge-based Ordering of Relations 77

WhenR1(e) < 1, we haveR1(e) ≤ R2(e), which does not enable to get the exact
value of R2(e). This may still be valuable information but we do not tackle that in
this thesis.

5.3.3.2 Implication between a relation and the complement of another relation

We consider here the implication R1 ⇒ R2. We can perform a reasoning similar to
what we did for the previous implication. We also need to introduce the notion of
complement of a fuzzy set.

Definition 24: fuzzy complement

Let F be a fuzzy set defined on a universe U and associated to the membership
function µF. The fuzzy complement of F is defined by a membership function µF
such that ∀u ∈ U , µF(u) = c(µF(u)) with c : [0; 1]→ [0; 1] a function that verifies:

• c(0) = 1 and c(1) = 0,

• ∀z1, z2 ∈ [0; 1], if z1 < z2, then c(z1) > c(z2),

• c is a continuous function,

• ∀z ∈ [0; 1], c(c(z)) = z.

In this work, we use the standard complement, which is defined as

c : [0; 1]→ [0; 1]
z 7→ 1− z (5.9)

We have the following property:

Property 5: R1 ⇒ R2

Let R1 and R2 be two p-ary fuzzy relations defined on a space A. There exists a
logical implicationR1 ⇒ R2 if, and only if,

∀e ∈ Ap,R2(e) ≤ 1−R1(e) (5.10)

Proof. For each e ∈ Ap, we have according to Equation (5.7)
L−→
(
R1(e),R2(e)

)
= 1 if, and only if,R2(e) ≤ 1−R1(e).

When R1(e) = 1, the exact value of R2(e) is 0 since the fuzzy relations we use have
a lower bound equal to 0. So we can propagate a fully satisfied relation to deduce
that another relation is not satisfied at all.

5.3.3.3 Implication between the complement of a relation and another relation

For the implicationR1 ⇒ R2, we have the following property:

Property 6: R1 ⇒ R2

Let R1 and R2 be two p-ary fuzzy relations defined on a space A. There exists a
logical implicationR1 ⇒ R2 if

∀e ∈ Ap,R2(e) ≥ 1−R1(e) (5.11)

78 Chapter 5. Heuristics for Preventing Redundant Evaluations

Proof. For each e ∈ Ap, we have according to Equation (5.7)
L−→
(
R1(e),R2(e)

)
= 1 if, and only if,R2(e) ≥ 1−R1(e).

When R1(e) = 0, the exact value of R2(e) is 1 since the fuzzy relations we use have
an upper bound equal to 1. So we can propagate a relation that is not satisfied at all
to deduce that another relation is fully satisfied.

5.3.3.4 Implication between the complements of two relations

For the implicationR1 ⇒ R2, we have the following property:

Property 7: R1 ⇒ R2

Let R1 and R2 be two p-ary fuzzy relations defined on a space A. There exists a
logical implicationR1 ⇒ R2 if

∀e ∈ Ap,R2(e) ≤ R1(e) (5.12)

Proof. For each e ∈ Ap, we have according to Equation (5.7)
L−→
(
R1(e),R2(e)

)
= 1 if, and only if,R2(e) ≤ R1(e).

When R1(e) = 0, the exact value of R2(e) is 0 since the fuzzy relations we use have
a lower bound equal to 0. So we can propagate a relation that is not satisfied at all to
deduce that another relation is not satisfied at all.

Table 5.2 recaps the four properties that we have just established and how to
propagate the results for each type of implication.

Implication Condition Propagation

R1 ⇒ R2 R2(e) ≥ R1(e) IfR1(e) = 1, thenR2(e) = 1
R1 ⇒ R2 R2(e) ≤ 1−R1(e) IfR1(e) = 1, thenR2(e) = 0
R1 ⇒ R2 R2(e) ≥ 1−R1(e) IfR1(e) = 0, thenR2(e) = 1
R1 ⇒ R2 R2(e) ≤ R1(e) IfR1(e) = 0, thenR2(e) = 0

TABLE 5.2: This table shows the four types of implications between
relations that the approach can process. Those implications enable to
propagate the result of one relation to another. R1 and R2 are two
p-ary fuzzy relations defined on a space A. e is a tuple of entities

defined on Ap.

5.3.4 Graph Representation

The different links between relations that we use have been presented in the previ-
ous subsections. Each type of link can be represented in a graph using the edges
defined in Table 5.3. This is a labeled directed graph.

5.3. Knowledge-based Ordering of Relations 79

Link Notation Corresponding edge

R2 depends onR1 d R2
d−−−−→ R1

R1 is symmetrical c R1 ýc

R1 ⇒ R2 i R1
i−−−→ R2

R1 ⇒ R2 e R1
e−−−→ R2

R1 ⇒ R2 ni R1
ni−−−−→ R2

R1 ⇒ R2 ne R1
ne−−−−→ R2

TABLE 5.3: Recap of the different kinds of link we consider between
relations and their notation in the graph representation. The third col-
umn specifies how the corresponding edge is represented in a graph.
R1 andR2 are two p-ary fuzzy relations defined on a space A.

Definition 25

A labeled directed graph is a triple (G, L, l) such that:

• G = (V, E) is a directed graph such that:

– V is a set of vertices,

– E is a set of edges such that each edge in E is an ordered pair (v1, v2) ∈
V2,

• L is a finite set of labels,

• l : E→ P(L) is a function that assigns a subset of labels to each edge in E.

For example, let us consider a vocabulary of relations V = {R1,R2,R3,R4,R5},
with, ∀i ∈ J1; 5K, Ri : Ap → [0; 1], and a set of links between relations L = {d, i, ni,
e, ne} such that:

• l(R1,R2) = {ni, e},

• l(R2,R1) = {d, ni, e},

• l(R1,R3) = {ne},

• l(R3,R1) = {d, i},

• l(R3,R4) = {e},

• l(R4,R3) = {e},

• l(R5,R5) = {c}.

The corresponding labeled directed graph is represented in Figure 5.2. The meaning
of the edges in the graph are specified in Table 5.3.

The original goal of this strategy is to obtain an order on relations based on the
way they are linked to each other. However, the labeled directed graph we generate
here can be cyclic (like in Figure 5.2), which does not enable to define an order on
relations.

80 Chapter 5. Heuristics for Preventing Redundant Evaluations

R₁

R₂

ni,e

R₃

ned,ni,e d,i

R₄

e e

R₅ c

FIGURE 5.2: Example of labeled directed graph. The vertices are re-
lations and the directed edges between vertices are labeled according
to the links between relations. For each edge, its corresponding labels

are to its right.

5.3.5 Knowledge-based Conversion into an Acyclic Graph

Our goal is to get an order on relations based on the knowledge graph representing
them and their links. We propose to achieve that by getting rid of the cycles in
the graph while keeping as much knowledge as possible to get a meaningful order.
Then, once we have an acyclic graph, an order on its vertices can be obtained by
topological sorting (cf. Appendix E on page 181).

The knowledge graph representing the links between relations is directed. How-
ever, in order to obtain a topological sort of this graph, it must also be acyclic. We
introduce Algorithm 3 and Algorithm 4 that enable to obtain a directed acyclic graph
from the knowledge graph we have. The idea here is to build a new acyclic graph
that preserves, insofar as possible, the information contained in the original one.
Thus, we can get an order on relations that is faithful to the available knowledge.

Algorithm 3 is the main algorithm for converting our labeled directed graph
LDG, which is the knowledge graph, into a directed acyclic graph DAG. On line
1, DAG is instantiated. A copy of LDG2 is made on line 2. The main loop starts at
line 3 and loops over all the subgraphs g in LDG. At line 4, the conditional statement
enables to check whether the subgraph has at least one edge or not. If the subgraph
has no edge, then its vertices are added to VDAG (line 5). Otherwise (from line 7), we
loop over the edges of g (line 8). This loop first detects commutative relations and
removes selfloops (line 9 to 12). Then, it extracts the dependency links and insert
them in DAG (lines 13 to 17). We prioritize dependency over implications since the
resulting relation cannot be computed without the relation it depends on. Then, the
goal is to loop over LDG to extract implication links. The vertex used to start this
exploration is selected from line 19 to line 25. We select one vertex in DAG, which
is called root, that has the most outcoming edges among vertices without incoming
edges (lines 20 and 21). root thus represents the relation involved in the most depen-
dencies while not depending on any other relation. This is usually a generic relation
so this choice enables to favour having this relation at the front of our order. If this

5.3. Knowledge-based Ordering of Relations 81

Algorithm 3: algorithm that converts a labeled directed graph of relations into
a directed acyclic graph of relations.

input : a labeled directed graph LDG = (GLDG, L, l) representing the links
between relations

output: a directed acyclic graph DAG

1 DAG ← (VDAG, EDAG) such that VDAG = ∅ and EDAG = ∅
2 LDG2← copy(LDG)
3 forall subgraph g = (Vg, Eg) ∈ GLDG do
4 if Eg = ∅ then
5 VDAG ← VDAG ∪Vg
6 end
7 else
8 forall edge (v1, v2) ∈ Eg do
9 if v1 = v2 then

10 VDAG ← VDAG ∪ {v∗1}a

11 Eg ← Eg \ {(v1, v1)}
12 end
13 else if d ∈ l(v1, v2) then
14 VDAG ← VDAG ∪ {v1, v2}
15 EDAG ← EDAG ∪ {(v2, v1)}
16 Eg ← Eg \ {(v1, v2)}
17 end
18 end
19 if ∃(v1, v2) ∈ V2

g such that (v1, v2) ∈ EDAG then
20 noParents← {v ∈ VDAG ∩Vg | @(v1, v2) ∈ EDAG such that v2 = v)}
21 root← argmax

v∈noParents

∣∣{(v, v′) ∈ EDAG}
∣∣

22 end
23 else
24 root← randomly select v in Vg
25 end
26 generateOtherLinks(LDG, DAG, LDG2, root)
27 end
28 end
29 return DAG

aThe mark ∗ is added to v1 to specify that it represents a symmetrical relation.

82 Chapter 5. Heuristics for Preventing Redundant Evaluations

Algorithm 4: algorithm that fills the directed acyclic graph with implication
links. It represents the function genrateOtherLinks.

input:
• the labeled directed graph under study LDG = (GLDG, L, l),
• the directed acyclic graph DAG = (VDAG, EDAG) that is being built,
• a copy LDG2 of the original LDG (no edges have been removed),
• the vertex from which the algorithm starts, root.

1 visited← ∅
2 Q← queue(root)
3 while Q is not empty do
4 v0 ← dequeue(Q)
5 neighbours← {v ∈ VLDG2 | (v0, v) ∈ ELDG2 or (v, v0) ∈ ELDG2}
6 if ∃(v1, v2) ∈ ELDG such that v1 = v0 then
7 forall v3 ∈ {v ∈ VLDG | (v0, v) ∈ ELDG)} do
8 VDAG ← VDAG ∪ {v3}
9 EDAG ← EDAG ∪ {(v0, v3)}

10 ELDG ← ELDG \ {(v0, v3), (v3, v0)}
11 end
12 end
13 forall v ∈ neighbours do
14 if v /∈ visited then
15 visited← visited∪ {v}
16 Q← queue(Q, v)
17 end
18 end
19 end

R₅* R₁

R₂ R₃

R₄

FIGURE 5.3: Example of directed acyclic graph that we get using Al-
gorithm 3 on the knowledge graph displayed on Figure 5.2.

5.3. Knowledge-based Ordering of Relations 83

is not possible, we select a random vertex in Vg (line 24). Then, we call the function
generateOtherLinks(LDG, DAG, root) that is represented in Algorithm 4 and that
completes DAG. Finally, once this is over, DAG is returned.

In Algorithm 4, we loop over the graph from the vertex root using a breadth-first
search. We initialize a set visited that stores all the vertices that were visited (line 1).
Then, a queue Q containing root is initialized (line 2). It contains the vertices to visit.
While this queue is not empty, we do the following (line 3). Q is dequeued and
we call v0 the value we get (line 4). The set of all the neighbours of v0 is generated
(line 5). Then, a loop over the outcoming edges of v0 in GLDG is performed (line 7).
If there is any, we add the same edge to DAG and remove it and its opposite (if it
exists) from LDG (lines 8 to 10). Finally, we update the queue and the set of visited
vertices (lines 13 to 18).

Algorithm 4 is a breadth-first search algorithm, so its average complexity can be

expressed as O
(

Card(V) + E
)

with E the number of links between relations from V .

As a consequence, the average complexity of Algorithm 3 is also O
(

Card(V) + E
)

.
Regarding the acyclicity of the new graph, there cannot be a cycle of dependen-

cies since it would mean that no relation can be computed first, which is absurd.
Also, the implications we take into account always bring two opposite edges be-
tween two relations. Indeed, if one implication entails an edge between two rela-
tions, then its contraposition will entail another edge in the opposite direction be-
tween them. Thus, since selfloops are removed (line 11 in Algorithm 3) and we
ensure that parallel edges of opposite directions cannot both be added to DAG (line
10 in Algorithm 4), this new directed graph is acyclic by construction, which was the
primary goal of this new method. The following example illustrates it.

Let us consider the knowledge graph represented in Figure 5.2. It is a directed
graph but it is not acyclic. We apply Algorithm 3 to get a directed acyclic graph
so that we can perform topological sorting. The resulting graph is represented on
Figure 5.3. The star in R∗5 means that it is a symmetric relation.

Once we get a directed acyclic graph DAG, we can perform topological sorting
on all the subgraphs of DAG to get an order on the vertices, and so on the relations.

5.3.6 Global Method

In the previous subsections, we first studied the different kinds of links that may
exist between the relations in the vocabulary. These links can be represented in a
labeled directed graph where the vertices are the relations. Then, we saw how to
convert this graph into a directed acyclic graph in order to perform topological sort-
ing, which returns an order on vertices. Thus, the whole method consists in the
following steps:

1. setting the links between relations from the vocabulary based on their defini-
tions,

2. building a labeled directed graph LDG representing relations and how they
are linked to each other,

3. converting LDG into a directed acyclic graph DAG using Algorithm 3,

4. obtaining a topological sort for each subgraph of DAG,

5. evaluating relations according to the topological sort we got in the previous
step.

84 Chapter 5. Heuristics for Preventing Redundant Evaluations

As stated in Appendix E on page 181, a graph may admit several topological sorts
so the order of evaluation we get may not be unique. The following example depicts
how we use the results of topological sorting to evaluate relations in a specific order.

We extracted the links between relations in the vocabulary V = {R1,R2,R3,R4,R5}
and represented them in a labeled directed graph in Figure 5.2. Then, Algorithm 3
converted it into a directed acyclic graph that is displayed in Figure 5.3. In this
acyclic graph, there are two subgraphs corresponding to the set of vertices {R1,R2,R3,R4}
and {R∗5}. After performing topological sorting, we have the following results:

• R1 → R3 → R4 → R2,

• R∗5 .

where R → R′ means that R should be evaluated before R′. Since those two topo-
logical sorts are independent on each other, we can start by evaluating either R1 or
R∗5 , which is a symmetric relation. That means that, for a given tuple of entities in
Ap, R∗5 should be evaluated only once. Let us now focus on the topological sort
we got on the set of vertices {R1,R2,R3,R4}. It means that R1 must be evaluated
before R3, R3 must be evaluated before R4 and R4 must be evaluated before R2.
Considering the original knowledge graph represented on Figure 5.2, this ordering
of relations is justified by:

• R2 andR3 both depend onR1, soR1 should be computed before them.

• There are two parallel edges in opposite directions between R3 and R4 on
Figure 5.2. Thus, there are two possibilities and, considering only these two
relations, one could be computed before the other and vice versa. The way
the graph DAG is completed depends on the node that is first visited. This
is the node root, which is defined between lines 19 and 25 in Algorithm 3. If
possible, this is the node which has the most relations dependent on itself. As
a consequence, in most cases, this node should not be a leaf. Here, the starting
node wasR1 and soR3 is visited beforeR4. That is why the edge betweenR3
and R4 is directed toward R4. We know that we have R3 ⇒ R4, so if there
exists e ∈ Ap such that R3(e) = 1, then we get R4(e) = 0 without computing
R4(e).

5.3.7 Other applications

In this work, the heuristic we presented in the previous subsections has been ap-
plied to relation evaluation. However, it can be applied to any problem that requires
having an ordering on tasks or concepts that are connected to each other. For ex-
ample, it can be used for finding the optimal ordering of a sequence of tests that are
dependent on each other.

5.4 Discussion

To avoid a brute force and potentially long evaluation phase, we focused in this
chapter on proposing heuristics for preventing unnecessary computations of rela-
tions in the vocabulary. We proposed a first method that detects the relations that
are bound to be infrequent so that they are not evaluated anymore during the train-
ing phase. The second heuristic we presented relies on the dependencies and logical
implications between relations. This knowledge enables to obtain an order on re-
lations so that evaluations are computed in an optimal order. Moreover, these two

5.4. Discussion 85

heuristics are compatible, which enables to benefit from both of them at the same
time. That leads to a shorter training phase before classifying or annotating new
instances and generating explanations, which we present in Chapter 6.

87

Chapter 6

Generating Rules or Constraints
for Performing Explainable
Classification or Annotation

We have previously tackled the extraction of class descriptors and then we focused
on evaluating relations in an efficient way. In this chapter, we deal with the reso-
lution of classification and annotation problems and how to generate explanations.
This is the third main step of the approach we propose (cf. Figure 2.1 on page 42).
Here, we show how descriptors can be used to achieve two goals:

1. performing the target task (classification or annotation),

2. generating explanations.

Both goals are strongly related to each other since our objective is to render in a
transparent way the reasoning of the model in the explanations.

For classification, we propose to build rules from the descriptors, which are fre-
quent subsets of relations. They are transparent and can be directly constructed after
the learning phase since it was performed class by class. For annotation, the problem
is different because the goal is to annotate several entities in the same instance. The
solution we propose is to convert descriptors into sets of constraints. Then, annotat-
ing an instance amounts to solving a fuzzy constraint satisfaction problem (FCSP).

Also, both approaches, rules for classification and FCSPs for annotation, are
transparent. The way relations are combined is straightforward, which is convenient
for generating an explanation. Besides, since we use fuzzy relations that are associ-
ated to a linguistic description, we can translate these combinations of relations into
a natural language sentence.

The first section of this chapter tackles the building of rules for classification.
Then, in the following section, we deal with the generation of constraints to define a
FCSP for annotation. Finally, in the last section, we show how to generate explana-
tions in both cases.

6.1 Building Rules for Classification

6.1.1 Classification

Classification is one of the most common task in machine learning. It consists in
assigning a label to an instance.

Let X be the space where the instances are defined and Y be a set of l labels. Let
D be a dataset such as
D = {(x1, y1), . . . , (xn, yn) | (xi, yi) ∈ X × Y , ∀i ∈ J1; nK}. Instances and labels are

88
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

associated to each other by a mapping f : X → Y . The goal of classification is to
determine an estimate f̂ of f such as f̂ : X → Y is as close as possible to f . This is
usually performed by empirical risk minimization using a loss function that assesses
on a test set the difference between the results of f̂ and the ground truth.

However, in our work, class descriptors have been learnt by mining frequent sets
of relations. So the estimate is based on these descriptors. As we saw in Chapter 4,
we need both descriptive and discriminative descriptors to generate accurate explana-
tions and perform classification. So, after the generation of the descriptors by fre-
quent itemset mining, the estimate is based on descriptors that are modified so that
they also convey discriminative information. This operation of making descriptors
discriminative will be detailed in Section 6.1.3.

6.1.2 Decision Rules

In order to solve complex problems using fuzzy relations, it is necessary to combine
them logically. Rules are a natural solution for that. In this subsection, we briefly
present rule-based systems and then we describe how rules that involve fuzzy rela-
tions work.

6.1.2.1 Rule-based Systems

Rule-based systems are a particular case of expert systems (Bruce, 1983), which are
based on the principle that rules are a natural way to represent expert knowledge
(Davis et al., 1993). They offer a structuration of the knowledge involved in such
approaches as a IF-THEN pair of conditions and conclusions. The principle is then
to fire rules regarding the presence of facts and to observe their conclusions. In the
example of classification of tangerines and oranges given in section 4.1 on page 55,
we can imagine the following rule for classifying tangerines:

IF the entity is orange AND the entity is round AND the entity is small
THEN the entity is a tangerine.

These systems differ in terms of formalism used for knowledge representation (e.g.
logic, fuzzy logic, etc.) and the algorithms which are used to infer new knowledge
(e.g. RETE (Forgy, 1989), Mamdani inference, etc.).

With the need for explanation, everyone can observe a renewed interest in rule-
based systems (Grosan and Abraham, 2011; Evans and Grefenstette, 2018): indeed,
activated rules involve pieces of evidence which can be reformulated to build an
explanation. For instance, the previous rule about tangerine classification could lead
to the following explanation:

It is a tangerine BECAUSE it is orange, it is round and it is small.

The interpretability of this rule is due to the predicates it handles, which are under-
standable, and to the fact that it is not too complex. As we wrote in Chapter 1, if
the model is too complex (too many rules, rules are too long), it is not considered
interpretable since a human would struggle to get a global understanding of what
the model does.

In our case, we chose to use fuzzy relations because they can manage the inherent
vagueness of natural language better than other formalisms. Thus, they facilitate the
generation of human-readable explanations.

6.1. Building Rules for Classification 89

6.1.2.2 Fuzzy Relational Rules

The rules that are used in our system involve fuzzy relations. They are called fuzzy
relational rules (Yager, 1991) and are defined as follows.

Definition 26: Fuzzy Relational Rule (Yager, 1991; Yager and Filev, 1996)

A fuzzy relational rule is a fuzzy rule that contains a fuzzy relation in its an-
tecedents, such as:

IF Z1 is F1 ∧ · · · ∧ Zq is Fq ∧ {
∧
i,j,k

(
(Zi, . . . , Zj) isRk

)
}

THEN C is FC

where Z1, . . . , Zq are the antecedent variables defined on the universes U1, . . . ,Um,
C is the consequent variable defined on the universe UC, F1, . . . , Fq, FC are fuzzy
subsets and for each k,Rk is a p-ary fuzzy relation defined on Ui × · · · × Uj. ∧ is
a t-norm (cf. Appendix B.4.1 on page 172).

For instance, in the previous subsection, the rule given as example to classify tan-
gerines can be seen as a fuzzy relational rule with unary relations. Let us now give
another rule with two different entities, such as

IF entity1 is orange AND entity2 is orange AND entity1 is smaller than entity2
THEN entity1 is a tangerine.

This is another example of fuzzy relational rule with a dyadic relation (is smaller
than).

While the evaluation of the rule is complex in the general case, it is simple
when inputs are just singletons, such as entities in our instances. For such inputs
(z∗1 , . . . , z∗m), the activation (or strength) of the rule is (Yager and Filev, 1996)

A(c) = F1(z∗1) ∧ · · · ∧ Fq(z∗q) ∧ {
∧
i,j,k

Rk(z∗i , . . . , z∗j)} ∧ FC(c), ∀c ∈ UC (6.1)

In our approach, we have already extracted relevant sets of relations, which are
the descriptors. Now, we are going to build fuzzy relational rules based on these.

6.1.3 Constructing Relational Rules

As explained in Chapter 4, we extract class descriptors as frequent sets of relations.
The goal is now to build rules from these sets. However, in the fuzzy Close al-
gorithm, we derive frequent itemsets from the frequent closed itemsets. As a conse-
quence, there are many redundancies between frequent itemsets, such as { , , },
{ , } and { , } in Table 4.8. We can get rid of those redundancies resorting to
maximal itemsets, which are defined in Definition 11 on page 58. We also know that
the set of maximal frequent itemsets is the same as the set of maximal frequent closed
itemsets (Pasquier et al., 1999). So we just need to find the maximal frequent closed
itemsets among the frequent closed itemsets, which are given by FC at the end of
Algorithm 1. This is done as described in Algorithm 5. The algorithm first sort fre-
quent closed itemsets by descending order of size. Then, it extracts the itemsets that
are not subsets of any maximal frequent closed itemset. At the end, we obtain the
set of maximal frequent closed itemsets MFC. The complexity of this algorithm is
equivalent to the complexity of the sort algorithm used at line 2. Thus, the average
complexity is O(N log N) with N the number of frequent closed itemsets in FC.

90
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

Algorithm 5: Algorithm extracting maximal frequent closed itemsets from the
set of frequent closed itemsets.

input : the set of frequent closed itemsets FC
output: the set of maximal frequent closed itemsets MFC

1 MFC = ∅
2 FC ← sort(FC) by descending order of size
3 forall I ∈ FC do
4 if @J ∈ MFC such that I ⊂ J then
5 MFC ← MFC ∩ {I}
6 end
7 end
8 return MFC

Closure Support

{ , } 0.54
{ } 0.52
{ } 0.60
{ } 0.68

{ , , } 0.46

TABLE 6.1: The set FC of frequent closed itemsets that we got in the
example of Chapter 4 on page 55.

For instance, we recall in Table 6.1 the set FC that we got in the example given
in Chapter 4. Here, the maximal frequent closed itemsets, and thus the maximal

frequent itemsets, are { } and { , , } so MFC =
{
{ }, { , , }

}
.

Since the algorithm is performed class by class, rules are class-specific. Let y ∈ Y
be a label corresponding to one class of entities. Let MFCy be the set of descriptors
corresponding to this class. In order to have discriminative descriptors, we remove
from the descriptors all the relations that are common to several classes to get the set
of discriminative descriptors MFC∗y :

MFC∗y =

{
I∗ | I∗ = I \

⋃
y′∈Y\{y}

(⋃
J∈MFCy′

J
)

, I ∈ MFCy

}
(6.2)

Thus, we ensure that we get a descriptor that is both descriptive and discriminative.
We assume here that the vocabulary has been set properly so that there is at least
one I∗ ∈ MFC∗y such that I∗ 6= ∅.

Then, for each y ∈ Y , we can build a rule for each descriptor I∗ in MFC∗y such as

IF
∧
R∈I

R THEN class = y (6.3)

Since there may be several descriptors for a given class, rules are actually aggre-
gated:

∀y ∈ Y , x ∈ X , µy(x) =
∨

I∗∈MFC∗y

(
∧
R∈I∗
R) (6.4)

6.2. Converting Relations into Constraints for Annotation 91

with µy(x) the membership degree of x to the class represented by label y and
∨

an
aggregation operator, such as the supremum or the mean.

However, this does not use any information about the support of the descriptors.
Indeed, descriptors do not all have the same support and so the rules they entail
should not all have the same weight in the final decision. Thus, we propose the
following:

∀y ∈ Y , x ∈ X , µy(x) =
∨

I∗∈MFC∗y

(support(I∗)×
∧
R∈I∗
R) (6.5)

where we can interpret µy(x) as the confidence in assigning the label y to x. Then,
the label corresponding to the greatest confidence is assigned to the instance under
study.

In the example presented in Table 6.1, assuming that the dataset represents in-

stances of a class associated to label y, we saw that MFCy =
{
{ }, { , , }

}
.

Since { } ∩ { , , } = ∅, we have MFC∗y = MFCy. Finally, we get

µy(t) =
∨{

0.68×R(t,), 0.46×
∧

i∈{ , , }

R(t, i)

}
(6.6)

for a transaction t ∈ T (cf. the fuzzy formal context (T , I ,R) presented in Table 4.3
on page 61).

Depending on the value we set for the minimum support in the previous step,
some extracted relations might not be so relevant. Ideally, a few relations would be
extracted when the value of the minimum support is equal to 1. In practice, it is not
likely to happen. That is why we have to set this value carefully. If it is too high,
there will not be enough frequent relations to discriminate classes. This is a case
of underfitting. If it is too low, most relations may be considered as frequent while
some of them are actually irrelevant, this is overfitting. Our strategy is to consider
the minimum support as an hyperparameter of the problem. Thus, there are as
many hyperparameters as there are classes. These hyperparameters will be set in a
validation phase.

6.2 Converting Relations into Constraints for Annotation

6.2.1 Annotation

Annotation consists in assigning a label to one or several entities in an instance. It
can be seen as a specific case of classification.

We define X and Y the same way as for classification. As defined in Chapter 3,
we define Ox = {ox,1, . . . , ox,K | ox,i ∈ X , ∀i ∈ J1; KK} as a set of K entities in x that
are defined on X . Let Yx = {yx,1, . . . , yx,K | yx,i ∈ Y , ∀i ∈ J1; KK} be a set of K labels.
Let D = {(x1,Ox1 , Yx1), . . . , (xn,Oxn , Yxn)} be a dataset of n instances. Entities in
instances and labels are associated to each other by a mapping f : X K → YK. The
goal of annotation is to find a mapping f̂ : X K → YK that is as close as possible to f .

In this work, we propose to convert the relations into constraints to solve a fuzzy
constraint satisfaction problem (Dubois et al., 1996). The goal is to find the mapping be-
tween entities and labels that best satisfies the constraints, as proposed by (Vanegas
et al., 2016).

92
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

6.2.2 Fuzzy Constraint Satisfaction Problem

6.2.2.1 Definitions

A constraint satisfaction problem (CSP) (Montanari, 1974; Mackworth, 1977; Waltz,
1972) consists in assigning some values to a set of variables that must respect a set of
constraints. Many problems can be represented as a CSP like scheduling problems
or the Golomb Ruler problem for placing sensors.

(Dubois et al., 1996) presented an extension of CSP to the fuzzy logic framework
to deal with imprecise parameters and flexible constraints. This is called a fuzzy
constraint satisfaction problem (FCSP).

Definition 27: Fuzzy Constraint Satisfaction Problem (Dubois et al., 1996)

A fuzzy constraint satisfaction problem is defined by:

• a set of variables V = {v1, ..., vK},

• a set of domains D = {D1, ..., DK} such as Di is the range of values that can
be assigned to vi,

• a set of flexible constraints C = {c1, ..., cp}. Each constraint ci is defined by
a fuzzy relationRi and by the set Vi of variables that are involved in it.

In particular, if the constraints involve relations that are all unary or binary, the FCSP
is called a fuzzy constraint network (Dubois et al., 1996).

One instantiation of a FCSP is evaluated by its degree of consistency.

Definition 28: Degree of Consistency (Vanegas et al., 2016)

Given an instantiation γ, its degree of consistency is:

cons(γ) = min
ci∈C

µRi(γ|Vi
) (6.7)

where γ|Vi
is the projection of γ on Vi and µRi the membership function repre-

sentingRi.

This consistency degree also enables to compare different solutions so that the best
one can be extracted. In the following, we write that an instantiation is inconsistent
if its consistency is equal to 0. Otherwise, we say that it is consistent.

Finding consistent solutions is usually too complex, which is why it is often more
convenient to use only local consistency to have a simpler problem to solve. Local
consistency is formalized by the concept of k-consistency.

Definition 29: k-consistency (Dubois et al., 1996)

A FCSP is said to be k-consistent if it verifies the two following properties:

1. any consistent instantiation γ of k− 1 variables can be extended to a con-
sistent instantiation γ′ involving any k-th variable,

2. this instantiation γ′ must be as consistent as γ.

The most used consistencies are arc-consistency (or 2-consistency) and path-consistency
(or 3-consistency). In this work, we rely on arc-consistency to solve FCSPs. In the
context of a FCSP, it can be defined as follows.

6.2. Converting Relations into Constraints for Annotation 93

Definition 30: Arc-consistency (Vanegas et al., 2016)

A FCSP is arc-consistent if, and only if,

∀(vi, vj) ∈ V2 such as vi 6= vj, ∀ck involving vi and vj,

∀u ∈ Di, µvi(u) ≤ sup
w∈Dj

[
min

(
µRk(u, w), µvj(w)

)] (6.8)

where µvi(u) is the degree of membership of the variable vi to the domain u.

In the next paragraphs, we are going to present how to use and implement arc-
consistency to solve a FCSP.

6.2.2.2 Resolution

The resolution of a FCSP can be based on backtracking. This approach consists in
incrementally building a candidate solution. As soon as a candidate solution is not
consistent anymore, it goes backward, to the previous iteration, and explores other
possible candidate solutions. This is done until all solutions are computed.

Each time a candidate solution is extended, its arc-consistency is checked in order
to update the search space and prune inconsistent solutions. It is achieved using the
FAC-3 algorithm (Dubois et al., 1996), which is described in the following paragraph.

6.2.2.3 Algorithms

A famous filtering algorithm based on arc-consistency is AC3 (Mackworth, 1977). It
has been extended to FCSPs as FAC-3 in (Dubois et al., 1996). (Vanegas et al., 2016)

Algorithm 6: FAC-3 algorithm (Dubois et al., 1996)
input : FCSP (V, D, C)
output: an upper bound of the consistency degree if the problem is

arc-consistent

1 ConsSup←− 1
2 ToCheck←− C
3 while ToCheck 6= ∅ do
4 ToCheck←− ToCheck \{ci}
5 foreach vik ∈ Vi do
6 Changed[ik]←− False
7 end
8 result←− Revise(ci, Changed, ConsSup)
9 if result = EmptyDomain then

10 return Failure
11 end
12 if result = Changed then
13 foreach cl 6= ci such that ∃vj ∈ Vi ∩Vl and Changed[j] = True do
14 ToCheck←− ToCheck ∪{cl}
15 end
16 end
17 end
18 return ConsSup

94
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

presents an updated version of the algorithm that can deal with groups of entities. It
is presented in Algorithm 6. Given a set of constraints C, this algorithm propagates
the constraints to update the degrees of membership of each variable vi to its possible
values in Di. The list ToCheck stores the constraints to propagate and the variable
result indicates if any update occured (result = Changed), no update occured (result
= NoChange) or a variable does not have any possible domain anymore (result =
EmptyDomain). The potential updates are performed in the method Revise, which
is detailed in Algorithm 7. Revise updates the membership functions associated to
each variable. As we mentioned for the variable result, three situations may occur
once a membership function has been set to its new value (newDegree). Either the
new value is equal to 0 and then the domain of the variable under consideration
may be empty, or the new value is lower than the current one and the update is
performed, or the new value is greater than or equal to the current one and nothing
changes.

The FAC-3 algorithm enables to prune the search space given the current instan-
tiation that is being built. Thus, it is called at each iteration of the backtracking,
which will then explore every possible solution.

Algorithm 7: Revise method (Dubois et al., 1996; Vanegas et al., 2016)
input : ck, Changed, ConsSup
output: result, which indicates if the variable memberships to domains have

been updated or if a variable cannot be assigned any value

1 Height←− 0
2 result←− NoChange
3 foreach vi ∈ Vk do
4 foreach u ∈ Di do
5 newDegree←− 0
6 foreach tuple Q in the domain ofRk such that u = Q|Di

do
7 eval←− min

(
µRk(Q), min

j∈J1,KK
j 6=i

µvj(Q|Dj
)
)

8 Height←− max(eval, Height)
9 newDegree←− max(eval, newDegree)

10 end
11 if newDegree = 0 then
12 Delete u from Di
13 if Di = ∅ then
14 return EmptyDomain
15 end
16 end
17 if newDegree < µvi(u) then
18 Changed[i]←− True
19 µvi(u)←− newDegree
20 result←− Changed
21 end
22 end
23 end
24 ConsSup←− min(ConsSup, Height)
25 return result

6.3. Generating Explanations from Rules and Constraints 95

6.2.3 Generating constraints

As defined in the previous subsection, a constraint c is a pair (R, V) composed of
a sequence V of variables, representing entities, and one relation R linking those
variables. Since items represent relations that were evaluated between entities, they
can be directly translated into constraints.

The generation of a set of fuzzy constraints C for defining a FCSP is analogous to
the generation of rules: it is performed class by class and it is based on extracting the
set of maximal frequent closed itemsets using Algorithm 5. However, unlike rules,
we do not prune the itemsets from the relations that are common to several classes.
The idea is that we do not want to have too few constraints in our FCSP and that
we should just ensure that there is no descriptor that describe several classes. The
risk if too few constraints are learnt is that there may be too many highly consistent
solutions. On the other hand, we could get no consistent solution if too many con-
straints are learnt, but this case should not happen if the various minimum supports
(for each class) are set properly.

The difference with the previous section is that we only retain the itemset with
the largest cardinality. If there are several such itemsets, we select the one that has
the greatest support in the training set. Let y ∈ Y be a label. Let IM

y be the itemset in
MFCy with the largest cardinality such that

IM
y = argmax

I∈J

[
support(I)

]
such as J = {J ∈ MFCy | |J| = max

P∈MFCy
|P|} (6.9)

As explained above, we assume the itemset of largest cardinality will be the most
helpful for solving the problem since it enables to generate more constraints. Since
constraints are fuzzy, we prefer having more constraints that may lead to a smaller
degree of consistency than less constraints that may not be enough to solve the prob-
lem. Also, the union of frequent maximal itemsets is not an acceptable choice since
it is not a frequent itemset (otherwise it would be the only one maximal frequent
itemset).

We know that each evaluated relation R in IM
y links one or several classes of

entities. Let ΩR be a set that contains those classes. In the definition of the FCSP,
each variable is associated to a different class of entities. Therefore, for each item in
IM
y , we generate a constraint (R, VΩR) with VΩR the set of variables corresponding

to the set of classes ΩR.
After generating constraints for each relation and for each class, we have a set of

constraints that can be used for defining and solving a FCSP. Given a new instance,
the most consistent solution to this problem will lead to the annotation of every
entity in the instance under study. As for rules, a confidence degree can be computed
for a given annotation y ∈ Y as the product of the support of the descriptor IM

y and
the evaluation of the least consistent constraint in IM

y .
There might be some constraints that appear several times. That means that sev-

eral different classes produced the same constraint. That happens with symmetrical
p-ary relations with p > 1. In that case, the set of constraints is reduced so that it
contains this constraint only once.

6.3 Generating Explanations from Rules and Constraints

We presented in the previous sections our methods for performing classification and
annotation. Since our goal is to provide both a result and its explanation, we focus

96
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

now on the generation of explanations from the models we built for classification or
annotation. The explanation we would like to provide to the end-user is a sentence
in natural language that explains how a result has been produced.

This section aims at describing the process of explanation generation in this
work. The first subsection presents the tool we used, SimpleNLG (Gatt and Reiter,
2009), for generating syntactically-correct sentences. The following section explains
how this tool was integrated to our approach for generating explanations in natural
language.

6.3.1 SimpleNLG: a Tool for Generating Sentences

In linguistics, a realization consists in generating a surface form, which is a correct
sentence in a given natural language, from a more abstract representation in which
the different components such as the subject or the verb are specified. Therefore, a
surface realizer is a system that is able to take an abstract semantic representation as
an input to generate a syntactically-correct sentence.

The two most famous open-source realisation engines are SimpleNLG (Gatt and
Reiter, 2009) and OpenCCG (OpenCCG 2004). In this thesis, we decided to rely on
SimpleNLG because it provides an API that is easier to use than OpenCCG while
being complete enough for the kind of explanation we would like to generate.

It works as follows. An empty sentence s, which is actually called a clause in
the API, is created using the function createClause(). s is an object that can be
completed using the following functions:

• the function setSubject(subj) enables to specify the subject in s,

• the function setVerb(verb) enables to specify the verb in s,

• the function setObject(comp) enables to specify the complement in s.

For example, we can call s.setSubject(“The tangerine”), s.setVerb(“be”) and
s.setObject(“orange”) to specify the semantic representation we want. This seman-
tic representation could also be created calling createClause(“The tangerine”,
“be”, “orange”). Then, calling realiseSentence(s) will generate: The tangerine
is orange.

We can also generate a conjuction. Let us consider the three following sentences:

• s1 = createClause(“The tangerine”, “be”, “orange”),

• s2 = createClause(“The banana”, “be”, “yellow”),

• s3 = createClause(“The cherry”, “be”, “red”).

Calling createCoordinatedPhrase() creates an empty clause expressing a conjunc-
tion. We call it c. The members of c can be specified calling c.addCoordinate(s1),
c.addCoordinate(s2) and c.addCoordinate(s3). Calling realiseSentence(c) then
generates the following sentence: The tangerine is orange, the banana is yellow and the
cherry is red.

The final construction we need is the subordinate clause. Let us consider the two
following clauses:

• s4 = createClause(“The entity”, “be”, “a tangerine”),

• s5 = createClause(“it”, “be”, “orange”).

6.3. Generating Explanations from Rules and Constraints 97

Calling s5.setFeature(Feature.COMPLEMENTISER, “because”) and
s4.addComplement(s5) enables to generate: The entity is a tangerine because it is orange.

SimpleNLG provides more functionalities to generate other types of conjunc-
tions, subordinate clauses or manage tenses but we do not need them for the ex-
planations we would like to produce in this thesis. In the following subsection, we
present how to use the functions we just presented for generating explanations.

6.3.2 Generating Explanations in Natural Language

All the relations in the vocabulary are associated to a linguistic variable (cf. Chap-
ter 3). That enables to express these relations in natural language. Also, the evalu-
ated relations that have been learnt to form class descriptors involve entities whose
class is known. Thus, for each relation, we can generate a description in natural lan-
guage. For example, let us consider a descriptor of a class of entities β containing the
relation Requal(β, η), η being another class of entities. It can be expressed in natural
language such as “β equals η”. Since each relation has a known and constant arity,
automating the generation of an expression in natural language can be performed
by associating a template to each relation. This template will be used in SimpleNLG,
which will realize the corresponding clause. For instance, the template associated to
Requal to is createClause(entity1, “equal”, entity2) where entity1 is the sub-
ject, “equal” is the verb and entity2 is the object. Also, since it is straightforward to
convert a constraint into a relation (cf. the definition of a constraint in Section 6.2.2),
constraints can be used to generate a natural language expression as we do with
relations.

At a higher level, descriptors are used to build rules (classification) or constraints
(annotation). For rules, their antecedent is a conjunction of relations. Thus, all the
natural language expressions should be linked by conjunctions, which can be done
with SimpleNLG as shown in the previous subsection. In the case of annotation, the
treatment is similar. Since the result of a FCSP is the solution that best satisfies all
the constraints, it can be translated in natural language as a conjunction using the
same method as for rules.

For classification, the result is a class. It is returned by an aggregation of rules
(cf. Section 6.1.3). When the aggregation operator is the supremum, only one rule
computes the final result and can be directly translated into a sentence in natural
language using the subject-verb-complement structure. When the aggregation oper-
ator is the mean, the basis for the explanation is the union of the antecedents of all
the rules that are being aggregated. We can then also generate a sentence in natural
language. Let ω be the result of the classification for a given instance. The output
can be generated from the following template: createClause(“This instance”,
“belong”, “class” + ω). The confidence of the system in the output it returns
can also be expressed as a linguistic variable, which enables to characterize it as low,
medium or high for example. With SimpleNLG, the confidence can be added to the
end of the clause as an additional complement using addComplement(“with a” +
level + “confidence”) where level is the linguistic expression that characterizes
the confidence. The process is similar with constraints.

Finally, both parts of the explanation can be linked with a complementizer such
as because or since. We then get a complete explanation in natural language. For ex-
ample, classifying an instance as a tangerine could lead to the following explanation:

This instance belongs to class “tangerine” with a high confidence because an entity is
orange, it is round and it is small.

98
Chapter 6. Generating Rules or Constraints for Performing Explainable

Classification or Annotation

In the case of annotation, one explanation is generated for each annotation on the
basis of all the constraints the variable corresponding to the annotation was involved
in.

Further works have been proposed for generating more complex explanations in
natural language that can also express more logical combinations like disjunctions
or negations, as in (Baaj and Poli, 2019).

6.4 Discussion

The goal of this chapter is to propose an approach that can perform classification or
annotation and that is able to provide an explanation to the results it returns.

In order to get the most representative class descriptors, we retain only the de-
scriptors corresponding to a maximal frequent closed itemset. For classification, that
enables to build one fuzzy relational rule per descriptor. Then, the rule is aggregated
if needed and classification can be performed. In the context of annotation, we pro-
pose to generate constraints from the largest maximal frequent itemset in order to
define a fuzzy constraint satisfaction problem. The most consistent solution to this
FCSP is used for annotating entities.

The generation of explanations is based on what the model does (rules or FCSP).
The fuzzy relations in the vocabulary are all associated to a linguistic variable, which
is convenient for translating them into natural language. The antecedents of the
rules or the constraints that led to the result are seen as a conjunction of such re-
lations. Also, we can express a level of confidence in the result which is part of
the explanation. All this information is finally sent to a surface realizer to generate
sentences in natural language.

As we saw in the description of the explanation generation process, our approach
expresses conjunctions between relations to explain results. That is the direct con-
sequence of the models we use. A natural evolution would lead to expressing also
disjunctions or negations for example. This would imply a different learning strat-
egy, but also another way of assessing the consistency of an instanciation in FCSPs.

99

Conclusion

In this part, we proposed an approach for building a model able to perform explain-
able classification or annotation. The primary step was to ensure that the model will
be expressive enough to solve the problem. That is why the system is provided a
vocabulary of potentially relevant relations. Moreover, we chose to use fuzzy re-
lations because they are convenient for managing imprecision in data and they are
well-suited for building an explainable system since they link quantitative and lin-
guistic concepts. These relations are evaluated on the entities of the instances in the
training set.

Then, the goal was to construct relevant descriptors for each class of entity. Re-
lations that are consistently satisfied by examples of one class, and thus descriptive
of this class, can be extracted mining frequent itemsets in the database of fuzzy rela-
tions that were evaluated. So descriptors are built as frequent sets of relations. Since
relations are fuzzy and multiple instances from a given class should all share a com-
mon set of relations, we worked on a new fuzzy frequent itemset mining algorithm
that is suited to this situation. Inspired by an algorithm that was made for dealing
with non-fuzzy data, it relies on a new closure operator that takes and returns crisp
sets of relations while being able to manage fuzzy formal contexts.

Knowing how class descriptors are extracted, we then proposed a heuristic that
discards during the evaluation phase the relations that are bound to be infrequent.
The other strategy we proposed takes advantage of the knowledge on the relations
in the vocabulary. This knowledge is represented in a directed graph that links rela-
tions that are tied by a logical implication, a dependency or a symmetry. To obtain
an order on relations that enables to propagate information effectively, we proposed
a new algorithm for converting such a graph into a directed acyclic graph. Then,
topological sorting can be applied to get the intended order so that redundant com-
putations are avoided during the evaluation process.

Finally, we focused on how the model should use the relation-based class de-
scriptors that were previously extracted. These descriptors can be turned into dis-
criminative structures by removing the relations common to descriptors of other
classes. In order to have a transparent model, we decided to build fuzzy relational
rules relying on these descriptors for classification. In the case of annotation, we
propose to generate constraints from the descriptors so that a fuzzy constraint sat-
isfaction problem can be defined and solved using a backtracking approach and the
FAC-3 algorithm. These two types of models being transparent, the way they handle
relations can be translated into a natural language sentence using a surface realizer.
This also relies on the fact that fuzzy relations can easily be interpreted in under-
standable terms. We can thus produce an explanation that expresses the reasoning
of the system.

At this point of the thesis, we have a global approach that is able to perform
explainable classification or annotation. We are now going to deploy it for classifying
or annotating images and time series. This requires to define specific fuzzy relations
for performing spatial or temporal reasoning.

101

Part III

Application to Spatial and
Temporal Reasoning

103

Introduction

In Part II, we presented the theoretical foundations of our approach. After setting
a vocabulary of potentially relevant relations, the first step consists in evaluating
these relations on the entities in the instances of the training set. We proposed two
heuristics for avoiding unnecessary computations and making the evaluation pro-
cess faster. Then, frequent class descriptor are extracted using a new fuzzy frequent
itemset mining algorithm. Finally, discriminative rules or constraints can be gener-
ated and used to make a decision. An explanation, based on those rules/constraints,
can then be generated.

In order to show the genericity of our approach, we are going to tackle several
situations involving spatial or temporal information. The only difference between
these various situations will be the vocabulary of relations that needs to be set be-
forehand.

Setting a vocabulary is an important step because it conditions the remaining of
the approach. In Chapter 7, we present the most important spatial and temporal
fuzzy relations in the literature that could integrate a vocabulary. These relations all
express human-understandable concepts that can be used for generating an expla-
nation in natural language. Also, we will briefly introduce spatio-temporal fuzzy
relations since they rely on the notions presented for spatial and temporal relations.

Among the spatial relations we presented, directional ones have received much
attention from the beginning of the modeling of spatial relations (Freeman, 1975). As
an essential family of relations, they are not only important in many visual tasks but
can also be used to compute more complex fuzzy relations, such as between (Cinbis
and Aksoy, 2007) or parallelism (Vanegas et al., 2012). A common approach to com-
pute fuzzy directional relations consists in computing a fuzzy dilation (Bloch, 1999a).
This operation being expensive, a few approximation method were proposed (Bloch,
1999a; Wang et al., 2006) but they either do not make the most of modern parallel
architectures or are not suited to deal with various image sizes. In Chapter 8, we
present a new algorithm that avoids unnecessary computations (compared to the
original computationally expensive algorithm) and we propose highly parallel im-
plementations that can take advantage of modern CPU capabilities. We show that
these implementations are fast and compute the exact value of the fuzzy dilation.

In Chapter 9 and Chapter 10, we present the experiments we carried out to assess
our approach. Chapter 9 focuses on the applications to images. A first experiment
was conducted on a toy dataset of images to perform classification. It aims at pre-
senting the behaviour of the model we built and the explanations it provides. We
then tackled organ annotation in 2D medical images to evaluate how the model per-
forms in real conditions given the segments corresponding to each organ. In that
experiment, we assessed more accurately the explanations produced by the model
by organizing a survey. In Chapter 10, we present a case of time-series classification
of toxic chemicals. In particular, we evaluated how the model behaves when entities
are segmented in an unsupervised way and how it deals with a simpler vocabulary.

105

Chapter 7

Spatial and Temporal Relations

As we presented in Part II, the approach we propose relies on learning the most
relevant relations for representing a class of entities. These relations are provided in
a vocabulary, which is a set of relations. It has a direct impact on the expressivity of
the system, which is why the vocabulary should be generated wisely. Moreover, we
decided to focus on fuzzy relations since they enable to manage vagueness and can
be associated to a linguistic variable. Indeed, this is convenient for building an XAI
since it enables to handle natural language expressions (Zadeh, 1999).

In this chapter, we are going to present fuzzy relations that could be relevant for
the problems we will tackle in Chapter 9. Thus, these relations are candidates for
building a vocabulary. We focused on the two following types of fuzzy relations:

• Fuzzy spatial relations: they are important for dealing with images since the
spatial arrangements of entities is very important in scene understanding (Bie-
derman, 1981). Moreover, the fuzzy set theory is convenient for expressing
spatial relations (Freeman, 1975).

• Fuzzy temporal relations: they enable to detect local properties or patterns in
time series, which is important for solving many time series classification prob-
lems (Geurts, 2001).

Also, as a consequence of the two previous points, there also exist fuzzy spatio-
temporal relations for dealing with sequences of images or geolocated entities. We
will present them briefly.

We first lay emphasis on fuzzy spatial relations in Section 7.1. They can be split
into three categories: topological, metric and structural relations (Vanegas et al.,
2016; Hudelot et al., 2008). Then, in Section 7.2, we present a review of fuzzy tem-
poral relations. Finally, we will also briefly tackle fuzzy spatio-temporal relations in
Section 7.3.

7.1 Fuzzy Spatial Relations

The coherence of the spatial arrangement of entities is very important in scene un-
derstanding (Biederman, 1981; Bloch, 2005). That is why we mainly concentrate
on spatial relations when dealing with images. An extensive review of this type of
relations is given in (Bloch, 2005).

Spatial relations belong to one of the three following categories: topological, met-
ric and structural relations. The three following subsections are dedicated to each
one of these categories.

Images are defined in a universe, or space, composed of pixels. We assume here
that an entity is a region in an image that can be represented as a fuzzy set. It enables
to deal with entities whose borders are not well known.

106 Chapter 7. Spatial and Temporal Relations

7.1.1 Topological Relations

Topological relations enable to express core spatial configurations such as the adja-
cency between two regions or their overlapping. In order to model such relations,
(Randell et al., 1992) proposed the Region Connection Calculus (RCC). In particular,
RCC8 is its most famous version. It consists in eight basic binary relations and it re-
lies on a reflexive and symmetric relation C that models the connection between two
regions. These relations are displayed in Figure 7.1 and defined in Table 7.1. Those
are crisp relations between crisp regions.

In (Schockaert et al., 2008b), the authors propose a fuzzy region connection calcu-
lus. The core relations are fuzzy relations that represent the same concepts as RCC8
relations. Regions can be fuzzy or not. C is a reflexive and symmetric fuzzy relation
modeling the connection between two regions. The definitions of all these fuzzy
relations are shown in Table 7.1.

(A)
DC

(B) EC (C) PO (D) EQ

(E) TPP (F) NTPP (G) TPPi (H)
NTPPi

FIGURE 7.1: Pictures representing the 8 core relations of RCC8: DC (Disconnected), EC
(Externally Connected), PO (Partially Overlaps), EQ (Equals), TPP (Tangential Partial Part),
NTPP (Non-Tangential Partial Part), TPPi (Tangential Partial Part inverse) and NTPPi (Non-

Tangential Partial Part inverse) (Randell et al., 1992).

Name Relation RCC definition Fuzzy RCC definition

Disconnected DC ¬C(u, v) 1− C(u, v)
Part P ∀w ∈ U , C(w, u)⇒ C(w, v) inf

w∈U
t−→
(
C(w, u), C(w, v)

)
Proper Part PP P(u, v) ∧ ¬P(v, u) min

(
P(u, v), 1− P(v, u)

)
Equals EQ P(u, v) ∧ P(v, u) min

(
P(u, v), P(v, u)

)
Overlaps O ∃w ∈ U , P(w, u) ∧ P(w, v) sup

w∈U
t
(

P(w, u), P(w, v)
)

Discrete D ¬O(u, v) 1−O(u, v)
Partially Overlaps PO O(u, v) ∧ ¬P(u, v) ∧ ¬P(v, u) min

(
O(u, v), 1− P(u, v), 1− P(v, u)

)
Externally Connected EC C(u, v) ∧ ¬O(u, v) min

(
C(u, v), 1−O(u, v)

)
Non-Tangential Part NTP ∀w ∈ U , C(w, u)⇒ O(w, v) inf

w∈U
t−→
(
C(w, u), O(w, v)

)
Tangential Partial Part TPP PP(u, v) ∧ ¬NTP(u, v) min

(
PP(u, v), 1− NTP(u, v)

)
Non-Tangential PP NTPP PP(u, v) ∧ NTP(u, v) min

(
1− P(v, u), NTP(u, v)

)
TABLE 7.1: Definition of topological relations in the original RCC (Randell et al., 1992) and

the fuzzy RCC for regions u and v in a universe U (Schockaert et al., 2009).

t is a left-continuous t-norm and t−→ the residual implicator corresponding to t.

7.1. Fuzzy Spatial Relations 107

A degree of intersection and a degree of inclusion of two fuzzy sets have also
been proposed. A complete review of these relations is given in (Bloch, 2005). A di-
rect extension of the crisp definition of an intersection gives the following definition.

Definition 31: Fuzzy Degree of Intersection (Bloch, 2005)

For two fuzzy sets F and G defined on a universe U with µF and µG as member-
ship functions respectively, the fuzzy degree of intersection is

Rint(F, G) = sup
u∈U

t
(
µF(u), µG(u)

)
(7.1)

with t a t-norm.

This represents the maximum height of the conjunction between both fuzzy sets.
However, it does not account for different overlapping situations. This is why, in
image understanding, the following definition, which enables to get the notion of
spatial overlapping, is preferred:

Definition 32: Fuzzy Spatial Degree of Intersection (Bloch, 2005)

For two fuzzy sets F and G defined on a universe U with µF and µG as member-
ship functions respectively, the fuzzy spatial degree of intersection is

Rint(F, G) =
VH
(
t(µF, µG)

)
min

(
VH(µF), VH(µG)

) (7.2)

with t a t-norm and VH the hypervolume of a fuzzy set defined as: VH(µ) =

∑
u∈U

µ(u).

A fuzzy degree of inclusion can also be derived from the crisp case:

Definition 33: Fuzzy Degree of Inclusion (Bloch, 2005)

For two fuzzy sets F and G defined on a universe U with µF and µG as member-
ship functions respectively, the fuzzy degree of inclusion is

Rinc(F, G) = inf
u∈U

T
(
c(µF(u)), µG(u)

)
(7.3)

with T a t-conorm (cf. Appendix B) and c a fuzzy complement.

7.1.2 Metric Relations

Metric relations rely on a measure: the orientation for directional relations and the
distance for distance relations.

7.1.2.1 Directional Relations

Directional relations enable to express the orientation of one object relatively to a
reference object. As illustrated in Figure 3.2 on page 54 and justified by (Freeman,
1975), fuzzy relations are more appropriate than crisp relations for modeling relative
positions because they are intrinsically vague.

A first method consists in using angle histograms. They were introduced in
(Miyajima and Ralescu, 1994b). For two objects A and R (the reference), it consists in
assessing the angle between the horizontal axis and the segment linking the points
pA and pR for all pA ∈ A and pR ∈ R. An histogram is then generated from all those

108 Chapter 7. Spatial and Temporal Relations

angles and is normalized. In order to semantically characterize this relation, it must
be compared with a known fuzzy set µα that represents the direction of angle α. This
can be done by evaluating the compatibility (Zadeh, 1996) between the normalized
histogram and µα. A fuzzy pattern matching approach can also be used (Cayrol
et al., 1982; Dubois et al., 1988; Bloch, 2005): the necessity (pessimistic evaluation)
and the possibility (optimistic evaluation) are returned computing respectively the
degree of inclusion and the degree of intersection between both fuzzy sets.

A similar approach is to compute the histogram of forces (Matsakis and Wendling,
1999). It differs from the angle histogram because it takes distances into account.
Objects are not only divided into points but also into longitudinal sections. It can
be seen as a weighted angle histogram (Bloch, 2005). Then, templates of forces have
been introduced by (Matsakis et al., 2006). They improve and generalize histograms
of forces by computing to which extent each point of the space is in a given direction
with respect to R. They can be represented as fuzzy landscapes (Bloch, 2005), which
is an image where the value of each pixel represents to which extent it satisfies the re-
lation. An example of fuzzy landscape is shown in Figure 7.2B. The main advantage
of fuzzy-landscape-based approaches is that only one landscape has to be generated
for a given relation and a given reference object. Thus, in Figure 7.2B, the relation
“blue object to the right of red object” can be computed for any definition of the blue
object in U with a single landscape generation (corresponding to the relation “to the
right of red object”).

Inspired by Newton’s law of universal gravitation, (Matsakis et al., 2009) pro-
posed to compute the force field induced by R on its surrounding points. Then, to
get to which extent one point p is in a direction δ with respect to R, the dot product
between a unit vector in direction δ and the force field in p is performed. The advan-
tages of this method are that it is less sensitive to outliers and it manages elongated
and concave objects better. It can also be represented as a fuzzy landscape. (Gondra
and Cabria, 2016) proposed a faster implementation of the force-field-based method.
It comes from the physical observation that a force field becomes negligible from a
certain distance.

Fuzzy mathematical morphology is another solution (Bloch, 1999a). Mathemat-
ical morphology relies on processing a set with another set called structuring ele-
ment. The two core operators are the erosion and the dilation. Both of these operators
have a fuzzy extension which can be obtained by a direct translation of crisp con-
cepts into their fuzzy counterparts. Here, we focus on the fuzzy dilation.

Definition 34: Fuzzy Dilation (Bloch and Maitre, 1995)

For a universe U , fuzzy sets F and SE defined on U , the fuzzy dilation of F by the
structuring element SE is noted DSE(F) and defined as:

∀u ∈ U , DSE(F)(u) = sup
v∈U

t
(
µSE(u− v), µF(v)

)
(7.4)

with t a t-norm.

In the context of directional relations, the structuring element is defined as:

∀u ∈ U , µθ
SE(u) = max

[
0, 1− 2

π
arccos

−→u · −→vθ

||−→u ||

]
(7.5)

with−→u the vector between the origin and u, and−→vθ the unit vector in the direction θ.
Figure 7.2A shows an example of structuring element for θ = 0, which represents

7.1. Fuzzy Spatial Relations 109

(A) Example of structuring element
for the relation to the right of.

(B) Example of fuzzy landscape.

FIGURE 7.2: An example of fuzzy dilation. Figure 7.2B represents the
fuzzy landscape associated to the fuzzy dialtion of the red object by

the structuring element displayed in Figure 7.2A.

the relation “to the right of ”.
The result of the dilation can be visualized as a fuzzy landscape (Bloch, 2005). An

example of fuzzy landscape is displayed on figure 7.2B. It is the result of the fuzzy
dilation of the red disk by the structuring element that we can see on figure 7.2A.

In figure 7.2B, in order to assess to which degree the blue ellipse is to the right
of the red disk, we can use a fuzzy pattern matching approach and compute the
necessity (the degree of inclusion) and the possibility (the degree of intersection)
(Bloch, 1999a). A consequence of that process is that we do not need to compute
another fuzzy landscape to evaluate the relation “to the right of the red disk” for
any other entity in U .

7.1.2.2 Distance Relations

Many distances have been proposed in the literature but most of them compare two
membership functions and do not include any spatial information (Bloch, 2005). We
focus on the distances that do include such information.

A first solution is to define fuzzy sets that represent a notion like “far” or “near”.
Those are qualitative distance relations (Hernández et al., 1995). For example, the
relation “near” can be expressed as follows (Schockaert et al., 2011):

∀u, v ∈ U , d1, d2 ∈ R+, N(d1,d2)(u, v) =

1 if dE(u, v) ≤ d1
0 if dE(u, v) > d1 + d2
d1+d2−dE(u,v)

d2
otherwise (d2 6= 0)

(7.6)

with dE the euclidean distance in U . Then, the relation “far” can be obtained as:

F(d1,d2)(u, v) = 1− N(d1,d2)(u, v) (7.7)

These two relations are displayed in Figure 7.3.
Another way is to use fuzzy mathematical morphology (Bloch, 1999b). As we

saw for directional relations, it is convenient for generating fuzzy landscapes. It
enables to express relations such as “at a distance less than d”, “at a distance greater
than d” and “at a distance between d1 and d2”. The degree to which a point u ∈ U is at

110 Chapter 7. Spatial and Temporal Relations

d(p,q)

1

d1 d1 + d2

N(d1,d2)(p, q)

F(d1,d2)(p, q)

1

FIGURE 7.3: Example of distance relations “near” and “far”.

a distance between d1 and d2 from the fuzzy object F is:

d(u, F) = t
(

DSE2(F)(u), 1− DSE1(F)(u)
)

(7.8)

with t a t-norm, DSE1 the dilation by the structuring element SE1 and DSE2 the dila-
tion by the structuring element SE2. SE1 and SE2 are defined as follows (Vanegas,
2011):

SE1(u) =
{

1− µn(dE(u, O)) if dE(u, O) ≤ d1,
0 otherwise.

(7.9)

SE2(u) =
{

1 if dE(u, O) ≤ d2,
µn(dE(u, O)) otherwise.

(7.10)

with µn the membership function of a fuzzy set whose core (cf. Appendix B on
page 171) is [d1, d2]. O is the origin of the structuring element. Thus, d is actually
the conjunction of a distance smaller than d2 (DSE2) and a distance larger than d1
(1− DSE1).

(Cinbis and Aksoy, 2007) proposed another method, which is also based on math-
ematical morphology. For a directional relation, we saw that the directional infor-
mation is brought by the term 2

π arccos
−→u ·−→vθ

||−→u || of the structuring element defined in
Equation (7.5). For distances, instead of dealing with angular information, we can
use the norm, such as:

∀u ∈ U , µτ
SE(u) = max

(
0, 1− ||u||

τ

)
(7.11)

with τ ∈ R+∗.

7.1.3 Structural Relations

Structural relations describe a pattern between two or more objects. One can see
them as an extension of simpler directional relations between two objects (cf. Sec-
tion 7.1.2.1).

7.1.3.1 Between

(Cinbis and Aksoy, 2007) proposed a morphological-based approach for evaluating
the spatial relation “between”. Given two objects A and B, this method computes a
fuzzy landscape representing to which extent each pixel is between A and B. The
principle relies on computing the orientation θ0 between A and B using a histogram

7.1. Fuzzy Spatial Relations 111

of angles. Then, the directional fuzzy landscape of A in the direction θ0 and the di-
rectional fuzzy landscape of B in the direction θ0 + π are generated. The final land-
scape, representing the relation “between A and B”, is computed as the intersection
of the two previous fuzzy landscapes. An example is displayed on Figure 7.4.

FIGURE 7.4: Example of a fuzzy landscape representing the relation
“between” the two red objects (Cinbis and Aksoy, 2007).

7.1.3.2 Surroundedness

The “surroundedness” can be evaluated by looking at the angular coverage of a point
or region by another region (Rosenfeld and Klette, 1985; Miyajima and Ralescu,
1994a). (Vanegas, 2011) proposed a method that generates a fuzzy landscape. For
each point u ∈ U , its angular coverage by a region F is computed and used to set a
membership degree. It also takes into account the concavities of F so that only the
points of F that see u are considered. An example is shown in Figure 7.5A.

(A) Fuzzy landscape representing
the “surroundedness”. The purple

object is the reference.

(B) Alignment of planes (in red).

FIGURE 7.5: Examples from (Vanegas, 2011).

Another solution is to use the Φ-descriptor (Matsakis et al., 2015). The Φ-descriptor
of a pair of objects (A, B) is a quantitative representation of the position of A relative
to B. The subregions where both objects interact in direction θ are extracted. This
is done for every direction. The areas and the lengths of these subregions are com-
puted and lead to a 28-tuple. This tuple is the descriptor. Ancillary information is
then deduced from the descriptor and links to a particular relation using a template

112 Chapter 7. Spatial and Temporal Relations

(Francis et al., 2018). The system can return “A is completely surrounded by B” or “A is
somewhat surrounded by B”. This is convenient for generating an interpretation of the
relation in natural language. However, it does not compute any fuzzy landscape, so
a new descriptor has to be generated for each pair of objects. It can interpret other re-
lations, such as RCC8 relations or directional relations (Francis et al., 2018). Another
method proposed by (Clément et al., 2017) can be used for assessing surrounded-
ness. However, it mainly focuses on the assessment of the enlacement between two
objects, which is detailed later.

7.1.3.3 Alignment

(Vanegas, 2011) proposed two different definitions of an alignment: global align-
ment and local alignment. A group of objects G is called “globally aligned” if:

• it contains 3 or more objects;

• all objects in G are considered as neighbours;

• all pair of objects in G are in the same direction θ.

An example of extraction of a globally aligned group of objects is displayed in Fig-
ure 7.5B.

It is called “locally aligned” if:

• all objects in G are considered as neighbours;

• for each object in G, its neighbours in G are aligned.

For the second point, for A, B, C ∈ G and B and C in the neighbourhood of A, align-
ment is assessed by computing a degree of similarity between the angle histogram
between pA and B and the angle histogram between A and C.

7.1.3.4 Enlacement

A method for assessing if two objects are enlaced was presented in (Clément et al.,
2017). An enlacement of one object by another happens in situations similar to the
ones displayed in Figure 7.6. The principle is the following: for two objects A and
B, an enlacement histogram is generated for each value of the orientation. In polar
coordinates, a straight line is defined by a parameter ρ ∈ R+ and a parameter θ ∈
[0; 2π[. For one given orientation θ0, the value EA,B(θ0) in the histogram is computed
as the betweenness of the longitudinal cuts Aρ,θ0 and Bρ,θ0 of A and B in direction θ0,
such as (Clément et al., 2017)

EA,B(θ0) =

+∞∫
0

(+∞∫
−∞

µAρ,θ0
(x)

+∞∫
x

µBρ,θ0
(y)

+∞∫
y

µAρ,θ0
(z)dx dy dz

)
dρ (7.12)

This enables to assess the enlacement of B by A. Then, in order to evaluate the rela-
tion “B enlaced by A”, a fuzzy pattern matching approach (Cayrol et al., 1982; Dubois
et al., 1988; Bloch, 2005) is performed. As with angle histograms for estimating di-
rectional relations (cf. Section 7.1.2.1), the histogram we obtain is normalized and
compared to a fuzzy set representing the enlacement relation. This method can also
be used to assess surroundedness.

7.1. Fuzzy Spatial Relations 113

(A) (B)

FIGURE 7.6: Examples of enlacement between two objects (Clément
et al., 2017).

7.1.3.5 Parallelism

(Vanegas, 2011) introduced a way to evaluate parallelism between two objects or
groups of objects. The degree of parallelism between a linear object A and an object
B depends on:

• the fact that a large proportion of B should be visible to A in the direction
θA + π

2 (with θA the orientation of A);

• the orientation of A and the orientation of the boundary of B that is facing A
and visible to A in the direction θA+ π

2
should be similar.

The definition is analogous for globally aligned groups of objects (cf. Section 7.1.3.3)
in place of linear objects.

7.1.3.6 Line-region Relations

Line-region relations are relations such as “to go through” or “to intersect”. For
example, for the relation “to go through”, the goal is to verify that a linear object
intersects with a region and that this object does not start nor end inside the region.
Thus, for a linear object L and a region R, this relation can be defined as (Vanegas,
2011):

µgo through(L, R) = t
(
Rint(L, R◦), c

(
Rint(Ls ∪ Le, R◦)

))
(7.13)

with Ls and Le the extremities of L (which is a linear object)) and R◦ the interior of
R.

7.1.3.7 Line symmetry

(Colliot, 2003) proposed a symmetry measure for fuzzy objects. For a fuzzy object
A, it is defined as:

σA(Π) = ς(A, eΠ(A)) (7.14)

with Π a plane, eΠ(A) the reflection of A around Π and ς a similarity measure. ς
compares two fuzzy objects and has the following properties:

1. ς(A, B) = ς(B, A) (symmetric);

2. ς(A, B) = 1⇔ A = B;

3. ς(A, B) = 0 if and only if the support of A and the support of B are disjoint;

4. ς is translation-invariant;

114 Chapter 7. Spatial and Temporal Relations

5. ς is rotation-invariant.

For a grayscale image f , the symmetry measure around a plane Π is defined the
same way:

σf (Π) = ς(f , eΠ(f)) (7.15)

The only difference is that ς now compares two images instead of two fuzzy sets.
Such measures can be found in the signal processing literature and the image regis-
tration literature.

The author also proposes a method for finding the plane of symmetry in an im-
age. It consists in 3 steps:

1. Inertia axis are computed using the covariance matrix of the image. For each
inertia axis, a plane orthogonal to this axis is computed. Then, the degree of
symmetry of the image around each plane is assessed;

2. The plane corresponding to the higher degree of symmetry is retained;

3. The position and the orientation of this plane is tweaked according to an opti-
mization process. Since the derivative of the degree of symmetry is unknown,
the author resorted to a derivative-free optimization method called Nelder-
Mead method (Nelder and Mead, 1965).

It was used on 3D MRI images of the brain to compute the interhemispheric plane.
Figure 7.7 contains two examples where the axis of symmetry is extracted.

(A) (B)

FIGURE 7.7: Axes of symmetry found by the method described in
(Colliot, 2003)

7.2 Temporal Relations

Unlike fuzzy spatial relations, the literature about fuzzy temporal relations is thin.
These relations enable to express vague time periods or fuzzy events. Dubois et al.
(Dubois et al., 2003) presented some methods based on the possibility theory for han-
dling imprecise and uncertain information in temporal reasoning. In particular, they
proposed an extension of Allen’s temporal relations (Allen, 1983), such as “before” or

7.3. Spatio-temporal Relations 115

“after”. (Schockaert et al., 2008a) proposed another extension of the set of qualitative
relations defined by Allen so that it can deal with fuzzy intervals. The same au-
thor (Schockaert and De Cock, 2008) presents a way to deal with temporal reasoning
about fuzzy time intervals as a reasoning about linear constraints. In particular, the
degree to which the beginning of a fuzzy time interval A is more than d time units
before the beginning of another fuzzy time interval B is defined as follows:

bb�d (A, B) = sup
p∈R

(
t
(

A(p), inf
q∈R

t−→
(

B(q), L�d (p, q)
)))

(7.16)

where t a t-norm, t−→ the implication associated to t, L�d (p, q) = 1 iff p < q− d and
L�d (p, q) = 0 otherwise. Other similar relations comparing the beginnings and
ends of A and B are defined (Schockaert and De Cock, 2008).

(Poli et al., 2016) proposed other fuzzy temporal relations, which are online as
well. They rely on the notion of temporal scope, which is a temporal fuzzy set (Car-
iñena et al., 2000) whose membership function is used to weight the different past
values and to define a vague notion of past (like “recently” or “the last 5 seconds”).
The authors define the following relations and properties:

• the occurrence of an event given a particular scope. It represents whether a
certain phenomenon has occurred over a certain scope;

• the ratio operator, which indicates how much an expression has been true over
a scope;

• the persistence operator, which characterizes in what extent the phenomenon is
observed at each moment of the scope;

• the precedence for indicating whether a particular phenomenon occurred before
another one;

• the periodicity for representing the degree to which a phenomenon is observed
regularly over a certain scope.

Figure 7.8 shows examples of fuzzy temporal scopes. In (Poli et al., 2017), these
relations were used for monitoring the behaviour of a wind turbine.

7.3 Spatio-temporal Relations

As fuzzy temporal relations, fuzzy spatio-temporal relations have also been little
studied in the literature. (Le Yaouanc and Poli, 2012; Poli et al., 2018) present a
few of them for describing the movements of geolocalized entities in the context
of automatic activity recognition. In (Poli et al., 2018), the activity of a company’s
vehicle fleet is monitored and described. For a mobile entity e and a region o, the
following relations were used:

• the relation IsMoving, which evaluates the positions of the considered entity
over a certain time span;

• the relation IsComingCloseTo between e and o. It takes into account the evolu-
tion of the position of e over a certain time span, the angle between e and o and
the evolution of this angle;

116 Chapter 7. Spatial and Temporal Relations

-30 -25 -20 -15 -10 -5 0

time (s)

0

0.2

0.4

0.6

0.8

1

fu
z
z
y
 v

a
lu

e

last 30 seconds

last 10 seconds

short time

very short time

FIGURE 7.8: Examples of fuzzy temporal scopes (Poli et al., 2018).

• the relation IsGoingAway between e and o. It actually depends on the same
variables as the relation IsComingCloseTo;

• the relation IsGoingAlong between e and o. It relies on the evolution of the
location of e over a certain time span and on the proximity of e to o over this
time span.

The goal of these interpretable operators is to use them for building more complex
operators that are still interpretable.

7.4 Discussion

In this chapter, we presented fuzzy relations that can be used by a model built with
the approach we presented in Part II. We gave an overview of fuzzy spatial relations
for working on images, fuzzy temporal relations for time series and fuzzy spatio-
temporal relations for problems mixing both the space and time dimensions. For
a given problem, all these relations are candidates for being part of the vocabulary
that is provided in our approach. This is how we make the whole system expressive.
However, that does not mean that all the relations should all be included in the
vocabulary. Indeed, adding relations that are bound to be irrelevant for the task
we deal with will only increase the computation time of the training phase. Then,
relations that were added to the vocabulary and that end up being irrelevant will be
filtered by the heuristics we presented in Chapter 5.

We also saw in this chapter that the fuzzy dilation operator is versatile (direc-
tions, distances) and is often used in substeps for computing more complex relations
(parallelism, alignment). Thus, it is needed for evaluating many relations. However,
this operation is computationally expensive, which is why we focus in the next chap-
ter on getting a faster implementation of it.

117

Chapter 8

Fast Parallel Fuzzy Morphological
Operators

In Chapter 7, we introduced fuzzy relations that could be used for building a vocab-
ulary, which is a set of relations. We saw that many different fuzzy spatial relations
were proposed in the literature and that several of them rely on the fuzzy dilation
operator (Bloch and Maitre, 1995). Indeed, it is a versatile operator whose properties
depend on the definition of its structuring element. However, it is computationally
expensive and, since it is used in the computation of several relations, it may lead to
a long evaluation phase.

In Chapter 5, we presented two heuristics that make the evaluation faster. The
first one, relying on the value of the minimum support, prunes the evaluation space
of the relations that are bound to be infrequent. The second heuristic is based on the
logical links between relations and allows to find an optimized path for evaluating
relations. Both of them enable to prevent useless computations, which may take long
if they resort to a fuzzy dilation. However, if we do not know whether a relation will
be frequent or not, and if we have to evaluate it according to the evaluation order of
relations presented in Section 5.3, then the relations involving a fuzzy dilation have
to be computed. That is why we worked on another enhancement of the approach.

(Bloch, 1999a) proposed an algorithm based on a propagation technique inspired
by the chamfer method (Borgefors, 1986). It returns an approximation of the fuzzy
dilation. However, it does not take advantage of modern CPU architectures. (Wang
et al., 2006) proposed another approximation method, based on slicing the images
according to a given set of reference directions. Nevertheless, it is not a generic since
the set of directions has to be set differently for different image sizes. In this chapter,
we propose a new and faster implementation of the fuzzy dilation operator. It relies
on two ideas:

• performing the operations in a different order to prevent useless computations,

• taking advantage of multithreading and vectorization by separating computa-
tions.

The application of these two ideas enables to get a fast execution that returns an
exact result of the fuzzy dilation.

We first remind in Section 8.1 the definition of the fuzzy dilation operator and
how it is used in this work. Then, in Section 8.2, we describe the three existing algo-
rithms for computing a fuzzy dilation: the naive one, which is a direct translation of
the definition, the algorithm proposed by (Bloch, 1999a) and the algorithm proposed
by (Wang et al., 2006). Section 8.3 is dedicated to the new algorithm we propose in
this thesis. In Section 8.4, we present the experiments that we carried out and the
results we got. Finally, we discuss these results in the last section.

118 Chapter 8. Fast Parallel Fuzzy Morphological Operators

8.1 Fuzzy Dilation

Like the dilation operator in mathematical morphology, the fuzzy dilation operator
is the result of set-theoretic operations between an input image (representing the
reference object for the dilation) and a structuring element. It was formally defined
in Definition 34 on page 108. For the sake of clarity, this definition is reminded here.
For a universe U , fuzzy sets F and SE defined on U , the fuzzy dilation of F by the
structuring element SE is noted DSE(F) and defined as:

∀u ∈ U , DSE(F)(u) = sup
v∈U

t
(
µSE(u− v), µF(v)

)
(8.1)

with t a t-norm. An example of fuzzy dilation is displayed in Figure 8.1. It enables
to generate a fuzzy landscape that can be then used for evaluating how close to F
any object in U is.

Several t-norms are defined in the literature. In this paper, we use the Zadeh t-
norm, which is the minimum. Besides, since the fuzzy dilation is applied on images,
U is a finite set so the supremum is equivalent to the maximum. Thus, the expression
of the fuzzy dilation we actually implemented is the following

∀u ∈ U , DSE(F)(u) = max
v∈U

min
(
µSE(u− v), µF(v)

)
(8.2)

(A) A fuzzy
landscape that
corresponds to
the membership
function µF
associated to the
reference object
F in the input

image.

(B) A fuzzy landscape corre-
sponding to the structuring ele-
ment SE associated to the rela-
tion “close to” and represented by

the membership function µSE.

(C) A fuzzy
landscape that
corresponds to
the dilation of
F by SE and
represented by
the membership
function DSE(F)
(reference object

in red).

FIGURE 8.1: Fuzzy dilation DSE(F) of the reference object F by the
structuring element SE. The spatial relation represented here is “close
to”. The intensity of each pixel of Dν(µ) represents in which extent
it verifies the relation. The image of the structuring element is four
times as big as the two others because it is needed for performing the

dilation.

8.2 Related Algorithms

In this section, we provide and describe the three existing algorithms for perform-
ing a fuzzy dilation. The first algorithm we present is the direct translation of the
mathematical definition. The second one, proposed by (Bloch, 1999a), relies on a

8.2. Related Algorithms 119

propagation method that returns an approximation. The third one approximates the
fuzzy dilation by considering only the contributions in a given set of directions.

8.2.1 Naive Forward Algorithm

The naive algorithm is the direct application of Equation (8.2). Three data structures
(cf. Figure 8.1) are involved:

• F, which is the input image containing the reference object and whose size is
N ×M,

• SE, which is the structuring element of the dilation and whose size is 2N× 2M,

• DSE(F), which is the fuzzy dilation of F by SE and whose size is N ×M.

This algorithm is shown in Algorithm 8. It computes the value of each pixel in
DSE(F) in one forward pass, from the top-left pixel to the down-right one. How-
ever, for each iteration, the machine has to loop over the whole input image F while
applying the structuring element SE on it, regardless of the actual number of pixels
belonging to the reference object (µF(u) > 0). Thus, (NM)2 max/min operations
have to be performed leading to a high computation time.

Algorithm 8: Naive algorithm for performing the fuzzy dilation of the refer-
ence object F by the structuring element SE.

input :
• the input image F corresponding to the reference object
• the structuring element SE

output: the fuzzy dilation DSE(F) of F by SE

1 forall u ∈ U do
2 DSE(F)(u)← 0
3 forall v ∈ U do
4 val← µF(v)
5 se← µSE(u− v)

6 DSE(F)(u)← max
(

min
(
val, se

)
, DSE(F)(u)

)
7 end
8 end
9 return DSE(F)

FIGURE 8.2: For each iteration of the fuzzy dilation, DSE(F)(u) with
u ∈ U , the structuring element SE is looped over the input image F.
As shown on these two figures, SE needs to be bigger than F to cover

it completely.

120 Chapter 8. Fast Parallel Fuzzy Morphological Operators

The structuring element SE must be four times as big as the input image because
of the term µSE(u− v) in Equation (8.2). It means that µSE is centered in v and thus
it needs to be four times as big as F when v is a border pixel of the input image. This
is represented in Figure 8.2.

Furthermore, while DSE(F) and F are scanned forward, SE is scanned backward
leading to an inefficient CPU cache usage and an inefficient loop vectorization.

Therefore, this algorithm is computationally very expensive. In practice, it is
never used since a faster algorithm was proposed by (Bloch, 1999a).

8.2.2 Bloch’s Propagation Algorithm

(Bloch, 1999a) proposed an algorithm based on a propagation technique inspired
by the chamfer method (Borgefors, 1986). It returns an approximation of the fuzzy
dilation.

This algorithm is displayed in Algorithm 9. First, the functions φ and ∠ are
defined. Then, on line 3, an array P is instantiated to store intermediary results.
In the first loop (from line 4 to line 12), D̃SE(F) and P are initialized. Then, the
propagation is performed in two steps: one forward pass and one backward pass on
the image. The advantage of this method is that it relies on a neighbourhood of the
current point (lines 14 and 21) and not on the full image as in the exhaustive method.
Each pass updates the values in D̃SE(F). Once the passes have been performed, the
result is returned.

Algorithm 9 (on the following page) enables to perform a fuzzy directional dila-
tion but one should just change φ to compute another relation.

Using the same notations as in the previous subsection, the time complexity of
this method is O

(
(1 + 2NN)NM

)
with NN the size of the neighbourhood.

As previously said, the result generated by this method is an approximation of
the result we would get with the naive method. Figure 8.3 compares the results we
get for both methods with two different reference objects. While in most cases this
difference is low, it can be perceptible to the human eye in a few others cases, as in
Figure 8.3F. We carried out an experiment to quantify the impact of this difference
on the final evaluation of a relation. As we said in Chapter 7, for fuzzy landscapes, a
relation between two objects is evaluated using a fuzzy pattern matching approach.
That is what we did on a dataset of organs that we present more exhaustively in
Chapter 9. For this experiment, we had 35 images containing each 9 different organs.
We computed four directional relations between all possible pairs of organs: “to the
left of ”, “to the right of ”, “above” and “below”. That makes a total of 10080 relations to
evaluate between organs. We analyzed the absolute value of the difference between
the evaluation with the exact fuzzy landscape and the evaluation with the approx-
imated one. We found that the mean absolute error is equal to 3.98.10−3, which is
approximately the degree of precision of our images. Indeed, since each fuzzy land-
scape is represented as a 8-bit grayscale image, this degree equals 1

255 ≈ 3.92.10−3.
Also, we deal with vague concepts so an imprecision of this magnitude should not
affect the performance of the approach. Therefore, our conclusion is that the approx-
imated method has little impact on the relations we evaluate.

However, this algorithm cannot be parallelized since it relies on a propagation
method. Indeed, the propagation is gradually spread over the image to update each
pixel. That is why it is not suited to a multithreaded approach. In the following sec-
tion, we present an enhanced version of the naive algorithm that is fully compatible
with parallel computing.

8.2. Related Algorithms 121

Algorithm 9: Bloch’s propagation algorithm for returning an approximation
of the fuzzy dilation of the reference object F by the structuring element SE
(Bloch, 1999a).

input :
• the input image F corresponding to the reference object
• the structuring element SE

output: an approximation D̃SE(F) of the fuzzy dilation of F by SE

1 Let φ : [0; 2π]→ [0; 1] be a function such that
φ(x) = max(0, 1− 2x

π), ∀x ∈ [0; 2π]
2 Let ∠ : U 2 → [0; 2π] be a function such that ∠(u, v) is the angle between the

vector from the origin to u and the vector from the origin to v
3 Let P be a new array defined on U
4 forall u ∈ U do
5 D̃SE(F)(u)← 0
6 if µF(u) > 0 then
7 P(u)← u
8 end
9 else

10 P(u)← −1
11 end
12 end
13 forall u ∈ U do // forward pass

14 Let N (u) be the neighbourhood of u
15 N ∗(u)← N (u) \ {v ∈ N (u) | P(v) = −1}

16 vmax ← argmax
v∈N ∗(u)

(
min

(
µF
(

P(v)
)
, φ
(
∠
(
u, P(v)

))))
17 D̃SE(F)(u)← min

(
µF
(

P(vmax)
)
, φ
(
∠
(
u, P(vmax)

)))
18 P(u) = P(vmax)

19 end
20 forall u ∈ U in the reverse order of the forward pass do // backward pass

21 Let N (u) be the neighbourhood of u
22 N ∗(u)← N (u) \ {v ∈ N (u) | P(v) = −1}

23 vmax ← argmax
v∈N ∗(u)

(
min

(
µF
(

P(v)
)
, φ
(
∠
(
u, P(v)

))))
24 D̃SE(F)(u)← min

(
µF
(

P(vmax)
)
, φ
(
∠
(
u, P(vmax)

)))
25 P(u) = P(vmax)

26 end
27 return D̃SE(F)

122 Chapter 8. Fast Parallel Fuzzy Morphological Operators

(A) Example of fuzzy land-
scape generated with the naive

algorithm.

(B) Example of fuzzy land-
scape generated with Bloch’s

propagation method.

(C) Difference between the re-
sults of both methods.

(D) Example of fuzzy land-
scape generated with the naive

algorithm.

(E) Example of fuzzy land-
scape generated with Bloch’s

propagation method.

(F) Difference between the re-
sults of both methods.

FIGURE 8.3: Comparisons of fuzzy landscapes generated with both
the naive algorithm and Bloch’s method.

8.2.3 Wang’s Algorithm

Wang proposed an algorithm based on F-templates (Wang et al., 2006; Matsakis et
al., 2006) that provides an approximation of the fuzzy dilation. The main idea is to
only take into account the contribution of pixels in a set of K reference directions.
Thus, for each pixel p, only the pixels on straight lines going through p in one of the
reference directions contribute to the final result.

While this method is faster than Bloch’s algorithm for small images (100× 100)
and when K is low (90), Gondra and Cabria showed that K must actually be propor-
tional to

√
MN to keep a good approximation (Gondra and Cabria, 2016). So K must

be greater for bigger images to have a correct approximation. For example, K = 90
is not convenient for a 400 × 400 image (Gondra and Cabria, 2016). This tradeoff
between accuracy and speed quickly turns to the advantage of Bloch. Besides, main-
taining the same accuracy requires to set a new value of K each time the size of the
input image changes, which regularly happens in the medical image dataset that we
worked on and we present in Section 9.2.1 on page 140. Thus, this algorithm is not
as generic as the two others and we discarded it from our experiments.

8.3. Vectorized Multithreaded Reverse Algorithm 123

8.3 Vectorized Multithreaded Reverse Algorithm

This section is dedicated to the new algorithm we propose for computing a fuzzy
dilation. We first present a new algorithm for computing the fuzzy dilation, the
reverse algorithm, which is based on a high level algorithmic transformation that
reduce the amount of computations. Then, we explain how we implemented this
algorithm using vectorization and multithreading.

8.3.1 Reverse Algorithm

The idea of the reverse algorithm, displayed in Algorithm 10, is to reorder the opera-
tions to avoid unnecessary processing: a pixel with a zero value in the input image

(lines 2 and 3) does not contribute to DSE(F)
(
cf. Equation (8.2)

)
since min

(
µSE(v−

u), µF(v)
)
= 0 if µF(v) = 0. That is the difference with the naive algorithm where

those pixels cannot be separated from the contributing ones. This can be represented
as:

∀v ∈ U such as µF(v) > 0,

DSE(F)(u) = max
(

min
(
µSE(u− v), µF(v)

)
, DSE(F)(u)

)
∀u ∈ U (8.3)

Algorithm 10: Reverse algorithm for performing the fuzzy dilation of the ref-
erence object F by the structuring element SE.

input :
• the input image F corresponding to the reference object
• the structuring element SE

output: the fuzzy dilation DSE(F) of F by SE

1 forall v ∈ U do
2 val← µF(v)
3 if val > 0 then
4 forall u ∈ U do
5 se← µSE(u− v)

6 DSE(F)(u)← max
(

min(val, se), DSE(F)(u)
)

7 end
8 end
9 end

10 return DSE(F)

Instead of looping over the pixels of DSE(F) in the main loop, we loop over the
pixels of the input image F. This enables to detect and drop all the computations
related to these non-contributing pixels. Thus, each contributing pixel of the input
image is read only once. Then, its contribution to the dilation is evaluated over
DSE(F) with the structuring element centered around the input pixel position (from
line 4 to line 7). This difference is shown on Figure 8.4, where the executions of both
the naive algorithm and the reverse algorithm are illustrated.

Due to the associative properties of the min and max operators, the final result is
exactly the same as with the naive algorithm. The number of pixels in the reference
object directly affects the number of max/min operations, so the processing time
for computing the fuzzy dilation should mainly depend on the size of the reference

124 Chapter 8. Fast Parallel Fuzzy Morphological Operators

Dilation of by

(384x312)

Reference object Forward Reverse

Row 32

Row 33

Row 113

Row 170

Row 384

Finished

(rst active pixels of

the reference object)

(last active pixels of

the reference object)

FIGURE 8.4: Comparison of the naive and reverse algorithms for computing a fuzzy dilation.
The input image has 384 rows. While the naive approach computes the dilation pixel by
pixel, the reverse one only computes the contributions of the non-zero pixels in the reference
object. On row 33, the first non-zero pixels of the reference object are barely perceptible on
the figure and have been surrounded by a red ellipse. Once the reference object has been
completely looped over (row 170), the reverse algorithm finishes and returns the same result

as the naive approach after row 384.

8.3. Vectorized Multithreaded Reverse Algorithm 125

object. For an object of size p pixels belonging to a N×M input image, only p×NM
max/min operations are executed, providing an acceleration factor dependent on
the object size.

Furthermore, the structuring element SE and the result of the dilation DSE(F)
are both scanned forward, which induces a better cache usage and a direct SIMD (cf.
Appendix G on page 185) alignment.

8.3.2 Multithreading and Vectorization

High-level code transformations, such that the reverse algorithm, conjugated with
the full usage of the multiple cores and the vector instructions (SIMD) offered by
modern CPU architectures have proven their efficiency (Lacassagne et al., 2014).
Thus, we propose algorithms that take advantage of these.

8.3.2.1 PR: parallel reverse algorithm

While the reverse algorithm processes only the active pixels, it still computes their
contribution pixel by pixel on one core. As seen in Algorithm 10 on line 6, with the
reverse modification, the contribution of one pixel of value val = µ − F(v) to the
output DSE(F) consists in applying only separable and aligned operations based on
DSE(F) and the structuring element centered on the current active pixel. Then, for
each pixel where µF(v) > 0 (active pixels), the parrallel reverse (PR) algorithm uses
the OpenMP parallelization framework (Dagum and Menon, 1998) to dispatch the
computations of DSE(F) over each core using a strip based spatial decomposition
as shown in Figure 8.5. The internal loop (from line 4 to line 7 in Algorithm 10)
is processed in parallel using the #pragma omp for directive. By construction, the
reverse algorithm prevents data races as each strip of DSE(F) is processed by a dif-
ferent thread and SE is only accessed in read mode. To avoid recreating the threads
for each new active pixel, which would harm the overall performance, parallel re-
gions are created before the actual parallelization using the #pragma omp parallel
directive over the external loop (line 1 in Algorithm 10).

8.3.2.2 SIMD Optimizations: PR128, PR256 and PR512

In addition to the PR algorithm, we propose 3 SIMD implementations using explicit
SIMD instructions1:

• PR128 is the same as PR except that it uses explicit AVX SIMD instructions. This
enables to compute one operation on 16 8-bit unsigned integers.

• PR256 is specifically designed for the de facto standard version AVX2 (256-bits
wide instructions). This enables to compute one operation on 32 8-bit unsigned
integers.

• PR512 resorts to the recent AVX512 extension (512-bits wide instructions). 64
8-bit unsigned integers can be treated at the same time.

The way computations are dispatched combining OpenMP and SIMD instructions
is displayed in Figure 8.5.

PR, PR128, PR256 and PR512 can be easily modified to use either 8-bits, 16-bits,
32-bits integers, float or double.

1The reader can find more details about SIMD in Appendix G on page 185

126 Chapter 8. Fast Parallel Fuzzy Morphological Operators

Thread 1

Thread 2

Thread 3

Thread 4

Reference object

Contribution to the fuzzy dilation

PR

PR256

PR512

PR128

FIGURE 8.5: Contribution to the fuzzy dilation of one active pixel (in red) from the reference
object (on the left). For the sake of this illustration, only 4 threads and 128 columns are
represented. PR is the multi-threaded version of the reverse algorithm where each thread is
responsible for a strip of rows of the fuzzy dilation Dν(µ). With PR128, PR256 and PR512, for
each thread, columns of Dν(µ) are distributed using AVX, AVX2 and AVX512 respectively.

8.4 Benchmark and Results

8.4.1 Dataset and Benchmark Configurations

The benchmark we propose consists in computing the fuzzy dilation corresponding
to the relation “to the right of ” the reference object. Other dilation-based operations
were not considered since they only rely on another structuring element.

Seven algorithms were evaluated: the naive algorithm, the reverse algorithm, its
parallel version PR and its three SIMD implementations PR, PR128, PR256 and PR512,
and Bloch’s algorithm. We evaluated the algorithms efficiency, using an extensive
benchmark on two different datasets:

• A structured artificial dataset of 282 images. This dataset provides crisp and
fuzzy images, round, rectangle and ellipsoidal shapes, a regular distribution of
squares, different sizes of images (256× 256, 512× 512 and 1024× 1024) and
different sizes of reference objects (from 1 pixel to 65536 pixels). A few samples
from this dataset are shown in Figure 8.6.

• A dataset of medical images coming from (Jimenez-del-Toro et al., 2016) (more
details about this dataset can be found in Section 9.2.1 on page 140). We se-
lected ten 312 × 384 images (from 1234 active pixels to 6138, so that is 1.0%
to 5.1% of the image) and eight 407 × 1515 images (from 1096 active pixels
to 9112, so that is 0.2% to 1.4%). Those images correspond to non-fuzzy seg-
mented organs like the reference objects in Figure 8.4 and Figure 8.5.

The artificial dataset enables to evaluate algorithms on specific criteria while the
datasat of medical images is more representative of real world applications.

8.4. Benchmark and Results 127

(A) (B) (C) (D) (E) (F)

(G) (H) (I) (J) (K)

FIGURE 8.6: Artificial dataset samples: a) Rectangle, b) Disk, c) El-
lipse, d) 256 × 256 crisp square with 256 active pixels, e) 256 × 256
crisp square with 4096 active pixels, f) 256 × 256 crisp square with
65536 active pixels, g) 256× 256 fuzzy square with 256 active pixels,
h) 256× 256 fuzzy square with 4096 active pixels, i) 256× 256 fuzzy
square with 65536 active pixels, j) 512× 512 crisp square with 65536

active pixels, k) 1024× 1024 crisp square with 65536 active pixels

All the computations were performed on an Intel Xeon CPU 6148 (20 cores - fixed
2.4GHz frequency) using executables generated by the Intel ICC compiler 2019.3.

8.4.2 Results

Using the artificial dataset, the benchmark confirms that the fuzziness, the shape
and the position of the reference object in the input image have no effect on the
execution time (< 1% of execution time variation). As expected, the image size, the
reference object size and the algorithm are the three relevant parameters. Table 8.1
and Table 8.2 present the execution time of the seven algorithms for three image sizes
and two reference object sizes: 4096 (referred as small objects) and 65536 (referred as
large objects) respectively. Table 8.3 presents the acceleration ratio of each algorithm
using the reverse algorithm as the reference (the naive algorithm is too slow to be the
baseline, which would skew the comparisons).

Sequential algorithms In this paragraph, we focus on naive, reverse and Bloch’s
algorithms. We observe that the naive algorithm is always the slowest one. This al-
gorithm is not suitable for time-realistic object relationship evaluation since it would
take about three days to generate all the fuzzy landscapes for a dataset of 35 images
with 9 entities per image and 4 different directions. As expected, due to its construc-
tion, the execution time is mainly related to the image size and not to the reference
object size. The reverse algorithm is faster in every configuration. When the refer-
ence object size increases, the execution time of reverse increases but still remains
faster than naive as it provides an additional acceleration factor (xs) compared to the
expected active vs total pixel ratio. This additional factor is underscored in Table 8.2
for a 256× 256 image where xs = 2.1. Indeed, in this configuration, all pixels are
active and both forward and reverse compute the exact same number of pixels. The
fact that reverse uses both the output DSE(F) and the structuring element SE in a
cache-friendly way is beneficial.

In every configuration, Bloch’s algorithm is faster than reverse with a speedup of
×11 for small objects and ×170 for large objects.

128 Chapter 8. Fast Parallel Fuzzy Morphological Operators

Algorithm 256×256 512×512 1024×1024

Naive 11.9×103 191×103 3075× 103

Reverse 354.1 1.4×103 5.6×103

PR 55.2 82.4 297.7
PR128 9.8 12.6 27.1
PR256 9.0 10.7 22.2
PR512 8.4 9.8 19.5
Bloch 33.0 130.9 523.1

TABLE 8.1: Execution time in ms for one fuzzy landscape computation with variable image
sizes and a 4096-pixel centered fuzzy square. Bold font indicates the best result for each case.

Algorithm 256×256 512×512 1024×1024

Naive 11.8×103 189×103 3040× 103

Reverse 5.6×103 22.5×103 89.7×103

PR 454.1 1307.3 4720.7
PR128 144.8 183.9 407.9
PR256 137.8 162.4 319.5
PR512 124.5 147.4 277.5
Bloch 35.4 134.6 530.9

TABLE 8.2: Execution time in ms for one fuzzy landscape computation with variable image
sizes and a 65536-pixel centered fuzzy square. Bold font indicates the best result for each

case.

Algorithm 256×256 512×512 1024×1024

4096-pixels centered object

Naive 3.0×10−2 7.4×10−3 1.8×10−3

Reverse 1 1 1
PR 6.4×100 1.7×101 1.9×101

PR128 3.6×101 1.1×102 2.1×102

PR256 3.9×101 1.3×102 2.5×102

PR512 4.2× 101 1.4× 102 2.9× 102

Bloch 1.1×101 1.1×101 1.1×101

65536-pixels centered object

Forward 4.8×10−1 1.2×10−1 3.0×10−2

Reverse 1 1 1
PR 1.2×101 1.7×101 1.9×101

PR128 3.9×101 1.2×102 2.2×102

PR256 4.1×101 1.4×102 2.8×102

PR512 4.5×101 1.5×102 3.2× 102

Bloch 1.6× 102 1.7× 102 1.7×102

TABLE 8.3: Speedups with the reverse algorithm as reference for variable image and reference
object sizes. Bold font indicates the best result for each case.

8.4. Benchmark and Results 129

Unlike reverse, Bloch’s algorithm computation time does not depend on the ref-
erence object size. However, similarly to reverse, it linearly increases along the image
size. This is due to their complexity: O

(
(1 + 2NN)NM

)
for Bloch’s algorithm and

O
(

pNM
)

for reverse.

SIMD multi-thread algorithms For small objects (cf. Table 8.1), PR512 is the fastest
in every configuration. For large objects (cf. Table 8.2), Bloch’s algorithm is the
fastest for smaller images, while PR512 is the fastest for 1024× 1024 images. This is
explained by the fact that the execution time of PR and its derivatives does not follow
the same image size progression as reverse and Bloch’s since they are significantly
more efficient for larger images (cf. Table 8.3).

Using all 20 cores of our benchmark processor, PR512 is faster than reverse by
a factor fR ∈ [42; 320] and by fPR ∈ [6; 18] compared to PR. However, using the
maximum number of core is not always the optimal solution in our context. As
shown in Table 8.4, for a sufficient amount of data (large object and large image),
PR512 with all cores is the best solution. However, for smaller images and objects,
the best option is to use less cores (8 for a 4096-pixels object in a 256× 256 image and
16 for a 4096-pixels object in a 512× 512 image). In all cases, despite the combined
pressure of the SIMD extensions and multiple threads on memory bandwidth, the
SIMD natural order is respected as tPR512 < tPR256 < tPR128 < tPR. Thus, PR512 is the
best implementation of the PR algorithm.

Active cores 2 4 8 16 20

65536-pixels object in a 1024× 1024 image
PR128 3933.3 1587.2 833.3 461.2 407.9
PR256 3044.4 1140.4 608.4 354.4 319.5
PR512 2746.9 978.8 509.3 306.0 277.5

4096-pixels object in a 512× 512 image

PR128 50.1 27.0 16.4 11.8 12.6
PR256 36.6 20.3 12.9 9.8 10.7
PR512 30.5 17.2 11.8 9.1 9.8

4096-pixels object in a 256× 256 image

PR128 14.8 9.9 7.3 7.3 9.8
PR256 10.7 7.6 6.4 6.7 9.0
PR512 9.6 7.2 5.9 6.7 8.4

TABLE 8.4: Execution time in ms for one fuzzy landscape computation with variable number
of active cores and reference object sizes.

Natural images Real-world images confirms PR512 as the fastest dilation operator
algorithm. In Figure 8.7, the low object size dependency of Bloch’s is highlighted
by close results for each image category. On these images, even the PR algorithm
is competitive with Bloch’s as the number of active pixels with respect to the image
size is low (cf. Section 8.4.1). Both the accelerating effect of AVX extensions and
their limitations when data are not sufficient are well illustrated. Indeed as shown
in Table 8.5, for the 407× 1515 images, the algorithms keeps accelerating along AVX,

130 Chapter 8. Fast Parallel Fuzzy Morphological Operators

AVX2, and AVX512 modifications. This effect is lower or non-existent for 312× 384
images.

312× 384 407× 1515

Alg. min mean max min mean max

PR ×1.0 ×2.2 ×4.8 ×0.8 ×3.3 ×6.7
PR128 ×4.1 ×9.4 ×21.5 ×7.7 ×26.6 ×51.0
PR256 ×4.4 ×9.8 ×20.8 ×9.1 ×30.6 ×57.3
PR512 ×5.0 ×10.6 ×21.5 ×10.1 ×33.5 ×61.6

TABLE 8.5: Acceleration ratio with Bloch’s algorithm as reference with variable image and
reference object sizes.

Bloch PR PR128 PR256 PR512
0

100

200

300

400

Ex
ec

ut
io

n
tim

e
in

m
s

407x1515 natural images

Bloch PR PR128 PR256 PR512
0

10
20
30
40
50
60
70

Ex
ec

ut
io

n
tim

e
in

m
s

312x384 natural images

FIGURE 8.7: Execution time distributions for the natural image dataset.

8.5 Discussion

Since the fuzzy dilation is computationally expensive and it is involved in the com-
putation of several fuzzy spatial relations that could be part of a vocabulary, we
focused in this chapter on a new faster implementation of this operation. Starting
from the mathematical definition of the fuzzy dilation, we studied the naive imple-
mentation of this operator in order to improve it. We proposed a new algorithm that
only takes into account the pixels that contribute to the final result. Also, it enables
to loop forward over the structuring element so that it minimizes cache misses. We
measured that our solution is faster than the state-of-the-art method on real world
images and remains competitive in each situation of our artificial dataset. It is best
suited for small reference objects while it can be slower than Bloch’s algorithm for
bigger reference objects. Overall, for the sizes of the objects we will treat in the next
chapter, the solution we proposed is the fastest in the literature.

Although we only tackled the fuzzy dilation, other fuzzy morphological opera-
tors such as the erosion, the opening and the closing can be optimized similarly.

8.6 Acknowledgements

We achieved the work presented in this chapter in collaboration with Laurent Cabaret
from the research laboratory in Mathematics and Computer Science (MICS) in Cen-
traleSupélec.

This work was performed using HPC resources from the “Mésocentre” comput-
ing center of CentraleSupélec and École Normale Supérieure Paris-Saclay supported
by CNRS and Région Île-de-France.

131

Chapter 9

Experiments on Images

In this chapter, we present the experiments that we carried out to evaluate the ap-
proach described in Part II on images: given a vocabulary of relations, the most
frequent of them are extracted in order to generate rules/constraints to perform the
target task and produce explanations. Relying on the work we presented in the two
previous chapters, a vocabulary of relations can be set for the two experiments we
present in this chapter.

We evaluated three different aspects of the models built with our approach:

• Its raw performance in terms of accuracy, for assessing how well the model
recognizes examples or entities.

• The explanations it provides, for evaluating how suited to the task the explana-
tions generated by the model are.

• How efficiently the heuristics we proposed in chapter 5 on page 71 prune the
evaluation space. We assess the proportion of relations that were not evaluated
because of these heuristics.

We carried out two experiments on image datasets. The first one, that we present
in Section 9.1, consisted in building a model that should classify images from a toy
dataset. Four classes of images were generated so that any image can be classified
relying on the spatial arrangement of the entities that it contains. Then, in Section 9.2,
the goal is to annotate organs in medical images. In this example, the system learns
relational representations for each type of organ in order to generate constraints and
define a FCSP.

9.1 Toy Dataset for Image Classification

This example is the first example we worked on in order to test the approach we
presented in the previous chapters.

In this section, we first present the toy dataset we built and the relations and
properties that belong to the catalogue. Then, we describe more accurately the dif-
ferent steps of the workflow and we present the results we got.

9.1.1 Dataset

In this toy dataset of images, each example contains three fuzzy shapes: a square, a
disk and an ellipse. These shapes correspond to the entities that will be handled in
this experiment. Images from this dataset are divided into four classes. The differ-
ence between the classes is the spatial distribution of the fuzzy shapes. The shapes
in each image of the same class are similarly spatially distributed. Examples from

132 Chapter 9. Experiments on Images

(A) Class 1 (B) Class 2

(C) Class 3 (D) Class 4

FIGURE 9.1: Examples from each class of the dataset used in the ex-
ample of explained classification in Section 9.1

each class are shown in Figure 9.1. The dimensions and the fuzziness of each shape
in each image vary independently of the class. Also, four borderline examples have
been added to each class in order to test the reliability of the system. Each class
contains 44 images and so the whole dataset is composed of 176 examples. The res-
olution of these images is 500× 500.

Each shape is placed randomly in a restricted area of the image. Thus, for class 1,
the square should be to the left of and slightly above the ellipse. The disk should be
below and slightly to the left of the square. The ellipse should be to the top right of
the disk. Classes 2, 3 and 4 are generated the same way and are rotated 90◦, 180◦ and
270◦ counterclockwise respectively. Also, for the sake of simplicity, ellipses always
have the same orientation in every example of each class.

According to the way this dataset has been built, the expected explanation for
justifying why an example belongs to a particular class should mention the relative
position of fuzzy entities to each other.The relative distance between each entity
varying independently of the class, it should not be part of the explanation.

9.1. Toy Dataset for Image Classification 133

9.1.2 Vocabulary of Relations

Based on the way the dataset has been built, we limited the dyadic relations that
are used in this experiment to directional relations. In particular, those are fuzzy
directional dilations (Bloch, 1999a) that were described in chapter 7 on page 105 and
chapter 8 on page 117. We use four of them: to the left of (θ = π), above (θ = π

2), to the
right of (θ = 0) and below (θ = −π

2). Figure 9.2D shows how the relation ellipse to the
right of disk is evaluated.

The unary relations we selected are shape-related. One of them assesses how
close or far to a disk the shape of an entity is, another one assesses how close or far
to a square the shape is and a third one assesses how close or far to an ellipse the
shape is. We call them is disk, is square and is ellipse.

(A) Input (B) Disk

(C) To the right of disk (D) Ellipse to the right of disk

FIGURE 9.2: Example of how a specific relation is computed in an in-
stance. Here, the goal is to compute the relation ellipse to the right of
disk. Given an instance (Figure 9.2A), the disk, which is the reference
object in the relation to evaluate, is extracted (Figure 9.2B). The fuzzy
landscape to the right of disk can then be computed (Figure 9.2C). Fi-
nally, as explained in Chapter 7, the relation can be evaluated using a

fuzzy pattern matching approach.

134 Chapter 9. Experiments on Images

(Chanussot et al., 2005) presented an extension to fuzzy objects of the shape sig-
nature based on the distance of boundary points to the centroid of the object. It is
based on averaging the signatures over the alpha cuts (cf. Appendix B on page 171)
of the fuzzy object. We use this signature to build our three unary relations. Fig-
ure 9.3 displays an example of such a signature for a fuzzy ellipse.

Let χ be the signature of an entity. The relation is disk is defined as:

isDisk(χ) =

{
1− ∆ if ∆ ≤ 1
0 otherwise

(9.1)

with ∆ = max(χ)−min(χ)
mean(χ) . The relations is square and is ellipse are defined differently

from is disk. They both return the absolute value of the correlation coefficient be-
tween χ and the signature χref of a reference shape, such as:

isSquare(χ) = |corr(χ, χref)| (9.2)

isEllipse is defined the same way. These reference shapes are a perfect square and a
perfect ellipse for is square and is ellipse respectively.

Overall, we have 4 different spatial dyadic relations and 3 different unary rela-
tions. As there are 3 different entities in an instance, the total number of relations to
evaluate per instance is equal to 33 (according to property 1 on page 51). Based on
how the dataset was built, these relations should be sufficient for classifying exam-
ples correctly.

(A) Fuzzy ellipse

0 100 200 300 400 500 600

Point number in the signature

20

30

40

50

60

70

80

90

D
is
ta
nc
e
to

th
e
ce
nt
ro
id

(i
n
pi
xe
ls
)

Example of signature

(B) Signature of the fuzzy ellipse

FIGURE 9.3: Example of signature of a fuzzy ellipse generated using
(Chanussot et al., 2005). For each alpha cut of the ellipse, its edge is
extracted and the distance of each point of this edge to the centroid
of the ellipse is computed. Thus, we get a shape signature for each
alpha cut. At the end, the final signature is obtained by averaging all
the signatures we got at the previous step. Here, we can see that there
are two maxima and two minima of same values. Also, these extrema
are uniformly spread over the edge. This signature is typical of an

ellipse.

9.1. Toy Dataset for Image Classification 135

9.1.3 Ordering of Relations

In order to get an ordering of relations that enables to prevent some useless compu-
tations, the logical links between relations from the vocabulary are represented in a
graph. This graph is displayed in Figure 9.4. The edges between directional relations
hold because of the specific shapes of the entities present in the dataset.

Relying on the heuristic presented in Section 5.3, we applied Kahn’s algorithm
(Kahn, 1962) (cf. Appendix E on page 181) to get the following order:

above→ below→ to the left of→ to the right of→ is disk→ is square→ is ellipse (9.3)

is disk

is square

e

is ellipse

e

e

e

e

e

to the left of

to the right of

e e

above

below

e e

FIGURE 9.4: Graph representing the logical links between the rela-
tions in the vocabulary. There are three subgraphs with only one type

of edge: e, which representsR1 ⇒ R2.

9.1.4 Workflow

This first experiment allows us to go into further detail regarding the whole work-
flow of the approach we propose in this thesis. For the sake of clarity, we refer to
each entity in the inputs by their shape. However, the model does not know which
entity corresponds to which shape until shape-related relations are assessed. The
workflow is as follows:

1. During this step, all the relations from the vocabulary are assessed on the en-
tities of each instance in the training set. Relations are evaluated according to
the order given in Section 9.1.3. Also, the heuristic presented in Section 5.2 is
applied to discard infrequent relations online.

2. In the second step, we would like to extract the most frequent subsets of rela-
tions among the ones that have been assessed in step 1. In order to perform this
task, we split the training set into 4 subsets (one for each class). We then apply
the fuzzy Close algorithm for each subset. Thus, we obtain one or several sets
of relevant relations for each class.

3. For each class, we have one or more subsets of relevant relations. We can built
fuzzy relational rules based on those. We already know that the consequent of

136 Chapter 9. Experiments on Images

those rules is the class. Then, as all our relations are linguistically interpretable,
we can predict the class of an instance and provide an explanation for this
decision.

9.1.5 Results

In this experiment, we evaluated the accuracy of the classifier using a 10-fold strat-
ified cross validation strategy. Stratification enables to ensure that classes are uni-
formly distributed among all folds.

Since the spatial arrangements of entities are similar for all classes and mainly
differs from each other in the way they are rotated, we decided to set the minimum
support at the same value for each class.

The results we got are displayed in Figure 9.5. We manage to reach an accu-
racy of 100% when the value of the minimum support ranges from 0.5 to 0.65. This
corresponds to the range of values where rules that were pruned from relations com-
mon to other classes reach a maximum length of 6. This observation seems logical:
pruned rules contain relations that are class-specific, so longer pruned rules should
have a better discriminative power.

We verify that the length of unpruned rules increases when the minimum sup-
port decreases. However, pruned rules do not follow the same behaviour. When the
value of the minimum support is too low, many relations are considered frequent

0.0 0.2 0.4 0.6 0.8 1.0

Minimum support

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Accuracy Rules after pruning Rules before pruning

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
ve

ra
ge

nu
m

b
er

of
re

la
ti
on

s
in

ru
le

s

FIGURE 9.5: Plot displaying the performance of the model with re-
spect to the value of the minimum support. We reach an accuracy of
100% between 0.5 and 0.65. The red dashed line represents the aver-
age number of relations in rules before they were pruned from rela-
tions common to other classes. The red plain line is its counterpart

for rules that were pruned from common relations.

9.1. Toy Dataset for Image Classification 137

and thus rules from all classes share many common relations. Therefore, the prun-
ing remove most of these relations, which are not relevant. That is actually a case of
overfitting, since too many unrelevant relations are learnt.

On the other hand, when the value of the minimum support is too high, only
few frequent relations are extracted. The risk is that those relations are common to
all classes and thus cannot be used for classification. This is a case of underfitting.
When all the relations in a rule are shared by some rules from other classes, the
pruning turns this rule into an empty rule. This is why, in Figure 9.5, the average
length of pruned rules is equal to 0 when the minimum support is set to 1.

Setting a different vocabulary could enable to get relations whose evaluation is
closer to 1. For example, we could achieve this using directional relations that are
closer to the orientation between entities. However, those relations are also less easy
to translate into natural language than the four core directions.

Figures 9.6 to 9.9 show an example of explained classification for class 1, 2, 3 and
4 respectively. We can see that the most obvious relations are used for explaining the
output. Moreover, one can notice in the example of Figure 9.6 that the relations object
B is below object A and object A is above object B express the same situation. That seems
obvious that if one of these two relations is used, the other one will be too. However,
that may not always be the case due to the way these relations are computed. Indeed,
when we use fuzzy mathematical morphology, the result depends on the shape of
the reference object. So two reciprocal relations may not have the same evaluation.
That is why there are slight differences that can impact the relations involved in the
antecedent of the rule.

Figure 9.9 presents an interesting borderline case. This instance belongs to class
4 and has been classified as a member of this class. However, this decision has been
made with less confidence than non-borderline instances, which are easier to classify.
Indeed, the relation object A to the left of object B is less satisfied in this instance than
in other instances from class 4. Also, the relations that were learnt for class 3 entails
a non-negligible firing of the corresponding rules (cf. Figure 9.8). In the end, we get
a confidence of 0.32 for class 4, which we qualify as average, against 0.17 for class 3.

Our first heuristic, which consists in discarding infrequent relations to evaluate
online, enabled us to avoid computing about 28% of the evaluations. For one given
class, there are 44 instances. 33 relations are evaluated on each instance. That makes
a total of 1452 relations to evaluate and our heuristic prevents 403 of them for classes
1 and 2, 401 for class 3 and 404 for class 4. In particular, it prevents useless compu-
tation of a few fuzzy landscapes, such as above square in class 1.

However, our second heuristic, which consists in using the logical links between
relations, is not suited for this experiment. Indeed, there are no relations depending
on others nor symmetrical ones. In the graph displayed in Figure 9.4, we represented
the implications between a few relations. As we explained in Chapter 5, implications
are useful when a relation is fully satisfied or not at all. Here, there are only implica-
tions that requires relations to be fully satisfied. Overall, only one relation has been
evaluated to 1: this is the relation object C below object A in Figure 9.9. This enabled
us to deduce that the relation object C above object A was equal to 0 before assessing
it.

138 Chapter 9. Experiments on Images

C

A

B

This instance belongs to class 1 with a very high confidence because:

• object C is disk,

• object A is square,

• object B is ellipse,

• object A is above object C,

• object A is to the left of object B,

• object C is below object A,

• object C is to the left of object B,

• object B is to the right of object C,

• object B is to the right of object A.

FIGURE 9.6: Example of explanation for an instance from class 1. Re-
lations in bold were pruned because they are shared by rules from

other classes.

B

A

C

This instance belongs to class 2 with a high confidence because:

• object B is disk,

• object C is square,

• object A is ellipse,

• object C is to the left of object B,

• object C is below object A,

• object B is to the right of object C,

• object B is below object A,

• object A is above object C,

• object A is to above object B.

FIGURE 9.7: Example of explanation for an instance from class 2. This
is one of the borderline example we generated. Relations in bold were

pruned because they are shared by rules from other classes.

9.1. Toy Dataset for Image Classification 139

A

B
C

This instance belongs to class 3 with a very high confidence because:

• object A is disk,

• object C is square,

• object B is ellipse,

• object C is below object A,

• object C is to the right of object B,

• object A is above object C,

• object A is to the right of object B,

• object B is to the left of object A,

• object B is to the left of object C.

FIGURE 9.8: Example of explanation for an instance from class 3. Re-
lations in bold were pruned because they are shared by rules from

other classes.

A

B

C

This instance belongs to class 4 with an average confidence because:

• object A is disk,

• object B is square,

• object C is ellipse,

• object B is to the right of object A,

• object B is above object C,

• object A is to the left of object B,

• object A is above object C,

• object C is below object A,

• object C is below object B.

FIGURE 9.9: Example of explanation for an instance from class 4. This
is one of the borderline example we generated. Relations in bold were

pruned because they are shared by rules from other classes.

140 Chapter 9. Experiments on Images

9.2 Organ Annotation in Medical Images

In this experiment, we aim at performing explained automatic image annotation. It
is performed on real images, so that will give us more clues about the performance
of our approach in a more realistic situation.

In this section, we first present the dataset, which contains crisp entities. Then,
we describe the relations that are in the vocabulary to solve this problem and we
present the workflow of the approch in the case of annotation. The following sub-
section presents the results we obtained. Finally, we tackle the evaluation of the
explanations we generated in this experiment.

9.2.1 Dataset

The original dataset we use here comes from the VISual Concept Extraction chal-
lenge in RAdioLogy (VISCERAL) project (Langs et al., 2013). This project proposes a
cloud-based infrastructure for the evaluation of medical image analysis techniques
in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). It contains
one dataset called Anatomy3 (Jimenez-del-Toro et al., 2016). This dataset is used in
one segmentation benchmark. It is composed of 391 CT and MRI images:

• CT images:

– unenhanced CT scans of the whole body (CTwb);

– enhanced CT scans of the whole trunk (CTce);

• MRI images:

– unenhanced MRI scans of the whole body (MRIwb);

– enhanced MRI scans of the abdomen (MRIce).

Figure 9.10 displays one example for each category of scan. Those are all 3D im-
ages that are actually the superposition of 2D slices. As we work on 2D images, we
consider only slices in the following.

20 different organs are segmented among these images. Segmentation files are
provided as binary images for each organ. Thus, the entities we deal with are not
fuzzy.

(A) CTwb (B) CTce (C)
MRIwb

(D) MRIce

FIGURE 9.10: Examples of the four types of scans in the dataset.

9.2. Organ Annotation in Medical Images 141

Left lung

Spleen

Left kidney

Left psoas

major muscle

Bladder

Right lung

Liver

Right kidney

Right psoas

major muscle

FIGURE 9.11: In this experiment, we consider the 9 colored organs in
this figure.

From these images, we created our own dataset for the purpose of this experi-
ment. Since most images from the original dataset contain few segmented organs,
we selected the instances containing the 9 following organs: the liver, the spleen, the
urinary bladder, the left and right kidneys, the left and right lungs and the left and right
psoas major muscles. That makes 35 images and 315 segments. These nine organs are
represented in Figure 9.11. The goal will be to label them in each instance. This new
dataset is small, which enables to assess how our model can perform by learning
from few examples.

Images from Anatomy3 are NIfTI files that contains 3D scans. In our case, since
we work on 2D images, we selected one slice for each of the 35 images in our dataset.
Depending on the modality and the patient, slices are different, so we picked them
manually so that they contain the organs we are interested in.

9.2.2 Vocabulary of Relations

In this example, we used 9 relations. Four of them are the same directional relations
(Bloch, 1999a) as we used in the previous experiment: to the left of, above, to the right
of and below.

Four other relations are also directional. They express the same directions (left,
right, above, below) but their fuzzy landscapes cover a smaller area of the image to
express the following relations: completely to the left of, completely to the right of, com-
pletely above and completely below. They can be obtained by tweaking the structuring
element (cf. Equation (7.5) on page 108). We replaced the factor 2

π by 14
π , which gives

the result displayed in Figure 9.12. Thus, these relations are less often satisfied and
enable to express more accurate situations.

The last relation is the symmetry measure that is presented in (Colliot, 2003).
The goal of this operator is to assess if two organs are symmetrical. It should be
relevant since our dataset contains three pairs of organs, as shown in Figure 9.13A:
lungs, kidneys and psoas major muscles. This operator is applied on an image that
includes two organs. As we want to evaluate how symmetrical two organs are, we
tweaked the original operator so that the line of symmetry cannot intersect with one
organ. That case can happen when both organs are different and one of them is
symmetrical. Figure 9.13B shows such an example.

142 Chapter 9. Experiments on Images

(A) To the left of (B) Completely to the left of

FIGURE 9.12: Comparison of the fuzzy landscapes corresponding to
the relation to the left of the liver (figure 9.12A) and the relation com-

pletely to the left of the liver (figure 9.12B).

(A) The line of symmetry between
both psoas muscles is displayed. It
corresponds to a symmetry mea-

sure of 0.94.

(B) Example where the
line of symmetry inter-
sects with one organ. It
corresponds to a symme-

try measure of 0.80.

FIGURE 9.13: Examples of symmetry measure.

to the left of

to the right of

e

completely to the left of

nee

completely to the right of

ne

i

i

above

below

e

completely above

nee

completely below

ne

i

i

symmetrical to c

FIGURE 9.14: Graph representing the logical links between the rela-
tions handled by the model in this experiment.

9.2. Organ Annotation in Medical Images 143

We have 9 fuzzy dyadic relations and each instance contains 9 entities. Applied
on all entities, that makes 640 relations to assess per instance. These relations and
how they are logically linked are represented in Figure 9.14. For our second heuris-
tic, that leads to the following order of evaluation:

symmetrical to→ above→ completely above→ below→ completely below→
to the left of→ to the right of→ completely to the left of→ completely to the right of

(9.4)

9.2.3 Workflow

The first two steps of the workflow are the same as in the experiment with the toy
dataset in Section 9.1.4. In these steps, the only difference here is that entities are
crisp. However, the process is exactly the same whether we deal with fuzzy or crisp
objects.

As this is an annotation problem, step 3 is different. The goal is now to generate
constraints for defining a FCSP. We know that the set of variables and the set of
domains of this FCSP are:

V = {vliver, vspleen, vbladder, vr_psoas, vl_psoas, vr_lung, vl_lung, vr_kidney, vl_kidney} (9.5)

D = {Dliver, Dspleen, Dbladder, Dr_psoas, Dl_psoas, Dr_lung, Dl_lung, Dr_kidney, Dl_kidney}
(9.6)

where Di is the set of all the possible values of vi. The flexible constraints are gener-
ated from the frequent subsets of relations class by class as explained in section 6.2.3
on page 95. We get a set of constraints C. Furthermore, since every organ is unique,
there cannot be identical labels in this problem. That means C has to be extended
with constraints representing that two variables cannot be the same, which is the
AllDifferent constraint:

∀(vi, vj) ∈ V2 such that vi 6= vj, ci,j, 6= = (vi, vj, R 6=) (9.7)

where the constraint ci,j, 6= represents the relation R 6= between two variables vi and
vj. R 6=(a, b) is a crisp relation that equals 0 if a = b and 1 otherwise.

So the definition of the FCSP is made automatically. Then, once the FCSP is de-
fined, for a given example, it can be solved as described in Section 6.2.2.3 on page 93
using the FAC-3 algorithm, for filtering inconsistent domain values, and the back-
tracking algorithm, for exploring the possible solutions. At the end, the entities of
interest have been labeled and an explanation can be produced based on the con-
straints that were derived from the frequent itemsets.

9.2.4 Results

The model we build with our approach consists in the frequent subsets of relations
that are extracted. There are as many hyperparameters as labels and they correspond
to the thresholds used for assessing the frequency of a subset of relations. Model
selection is necessary to get optimized thresholds. However, we have a small dataset
so performing hyperparameter tuning by splitting the dataset into a training set, a
validation set and a test set is not convenient. In order to get a better performance
estimation and an efficient tuning of hyperparameters, we resorted to nested cross-
validation (Cawley and Talbot, 2010): (1) an outer cross-validation is performed in
which we get a training set and a test set for each iteration (this corresponds to a
regular cross-validation), (2) an inner cross-validation is performed on the training
set of the outer cross-validation to get an inner training set and a validation set for

144 Chapter 9. Experiments on Images

tuning hyperparameters. This enables to get an unbiased tuning of hyperparameters
while also having the advantages of cross-validation.

In the inner cross-validation, hyperparameter tuning is performed using bayesian
optimization over 20 iterations with a Gaussian process prior. The acquisition func-
tion is the expected improvement.

We first decided to perform a 5-fold cross-validation (it corresponds to the outer
cross-validation in the description above). That means we have at each iteration a
training set of 28 images while the test set is composed of 7 instances. The inner
cross-validation, performed on the 28 examples in the training set, contains 3 folds.
In this configuration, we reached 100% of accuracy. That means that, given accurate
segments of the entities to label, our model performs well on this dataset.

One example of explained annotations is displayed in Figure 9.15. The length
of the explanation directly depends on the number of constraints in which the or-
gans were involved. Thus, all organs were involved in at least 4 constraints, except
the bladder. Only one constraint involving this organ was learnt, which may not be
ideal for generating an explanation. This will be tackled in Section 9.2.5 where we
evaluate explanations. We also notice that several reciprocal relations are present
in explanations. This was expected based on our observations from the previous
experiment (cf. Section 9.1). However, we get situations where two different direc-
tion accuracies are used: for example, in the explanation of entity 3 (the spleen) in
Figure 9.15, we have:

• it is completely below entity 1 (left lung),

• entity 1 (left lung) is above it.

One may expect to get both completely below and completely above or both below and
above in the explanation. This is due to the fact that, because of their shapes, the
fuzzy landscape corresponding to completely below the left lung covers a bigger area
of the image than the fuzzy landscape corresponding to completely above the spleen.
The constraints associated to the FCSP that enabled to annotate this instance are
given in Appendix F.1 on page 183.

The average values for the minimum supports associated to each organ are dis-
played in Table 9.1. We can notice that several organs have a minimum support
at 0.99, which means that several relations are almost always fully satisfied. This
happens because these organs satisfy very well the directional relations in the vo-
cabulary. For example, the relation left lung to the left of right lung is equal to 1 in
every instance of the dataset. Thus, for such organs, even a high minimum support
enables to extract relations that are relevant to the problem under study.

Table 9.1 also displays the average number of constraints per organ over all the
folds of the cross-validation. In particular, we notice that the spleen is the organ that
is represented in the greater number of constraints. Even though each organ satis-
fies relations in a different way, this observation is consistent with the fact that the
spleen has the lowest minimum support by a large margin. However, We can also
notice that right lung is involved on average in 8 constraints although its minimum
support is equal to 0.99. This happens because it fully satisfies a few relations in
every instance of the dataset, as described in the previous paragraph. Besides, there
is always only one constraint involving the bladder, which is translated in the ex-
planation of entity 9 in Figure 9.15. While we looked for the hyperparameters that
enable to get the highest annotation performance, this may not always be compat-
ible with the objective of explainability. This is one instance of the kind of tradeoff
we encounter between performance and explainability.

9.2. Organ Annotation in Medical Images 145

1

3

5

7

2

4

6

8

9

Entity 1 is annotated as the left lung with a high confidence because:

• it is completely to the left of entity 2
(annotated as the right lung by the model),

• entity 2 (right lung) is completely to its right,
• it is above entity 3 (spleen),

• entity 3 (spleen) is completely below it,
• it is above entity 7 (left psoas),
• entity 7 (left psoas) is completely below it,
• entity 5 (left kidney) is completely below it.

Entity 2 is annotated as the right lung with a very high confidence because:

• it is completely to the right of entity 1 (left
lung),

• entity 1 (left lung) is completely to its left,
• entity 3 (spleen) is to its left,
• entity 4 (liver) is below it,

• it is above entity 8 (right psoas),
• entity 8 (right psoas) is completely below it,
• entity 6 (right kidney) is completely below it,
• entity 9 (bladder) is below it.

Entity 3 is annotated as the spleen with an average confidence because:

• it is completely to the left of entity 4 (liver),
• entity 4 (liver) is completely to its right,
• it is completely below entity 1 (left lung),
• entity 1 (left lung) is above it,

• it is to the left of entity 6 (right kidney),
• entity 6 (right kidney) is to its right,
• entity 5 (left kidney) is below it,
• entity 7 (left psoas) is below it.

Entity 4 is annotated as the liver with a very high confidence because:

• it is below entity 2 (right lung),
• it is completely to the right of entity 3

(spleen),

• entity 3 (spleen) is completely to its left,
• entity 8 (right psoas) is below it,
• entity 6 (right lung) is completely below it.

Entity 5 is annotated as the left kidney with a high confidence because:

• it is below entity 3 (spleen),
• it is to the left of entity 6 (right kidney),

• it is completely below entity 1 (left lung),
• it is above entity 7 (left psoas.

Entity 6 is annotated as the right kidney with a high confidence because:

• it is completely below entity 4 (liver),
• it is to the right of entity 7 (left psoas),
• it is completely below entity 2 (right lung),
• it is to the right of entity 7 (spleen),

• entity 7 (spleen) is to the left of it,
• entity 5 (left kidney) is to the left of it,
• entity 8 (right psoas) is below it.

Entity 7 is annotated as the left psoas major muscle with an average confidence because:

• it is is completely to the left of entity 8 (right
psoas),

• entity 8 (right psoas) is completely to its
right,

• it is completely below entity 1 (left lung),

• entity 1 (left lung) is above it,
• it is below entity 3 (spleen),
• entity 6 (right kidney) is to its right,
• entity 5 (left kidney) is above it.

Entity 8 is annotated as the right psoas major muscle with a high confidence because:

• it is completely to the right of entity 7 (left
psoas),

• entity 7 (left psoas) is completely to its right,
• it is completely below entity 2 (right lung),

• entity 2 (right lung) is above it,
• it is below entity 6 (right kidney),
• it is below entity 4 (liver).

Entity 9 is annotated as the bladder with a very high confidence because:

• it is below entity 2 (right lung).

FIGURE 9.15: Example of explained annotations.

146 Chapter 9. Experiments on Images

Organ Minimum support
Average number

of constraints
Average confidence

per annotation

Liver 0.99 5 0.99
Spleen 0.77 8.2 0.71
Bladder 0.96 1 0.97
Right lung 0.99 8 0.91
Left lung 0.99 7 0.89
Right kidney 0.99 7 0.88
Left kidney 0.99 4.2 0.88
Right psoas major muscle 0.91 6 0.86
Left psoas major muscle 0.85 6.8 0.70

TABLE 9.1: Table representing several results for each class of organ
when performing a nested cross-validation with 5 folds in the outer
loop. First, the minimum support associated to the learning of the
frequent subsets of relations is given for each class. In the second
column, the average number of constraints that we get for each class
of organ at the end of the learning is displayed. Finally, we show the
average confidence that we got for each annotation during the testing

(accuracy of 100%).

The last column in Table 9.1 presents the average values of the confidences as-
sociated to the annotations of each organ. We notice that the two lowest average
confidences correspond to the two classes of organ that have the lowest minimum
supports. This is logical since the minimum support is one of the two factor in the
computation of the confidence. All the organs that have a high minimum support
and, on average, several constraints get a high confidence, which confirms the rel-
evance of the constraints that were extracted during the learning phase. However,
the case of the bladder is again interesting. It gets a high confidence although it is
linked to only one constraint that may not seem relevant to a human (cf. Figure 9.15.
We discuss this in further detail in Section 9.2.5.

We also investigated the number of training examples needed for our model to
perform well. Using the nested cross-validation, we can evaluate the performance
of the model for a number of training examples ranging from 17 to 34. Then, doing a
reverse cross-validation (the training set and the test set are inverted), we can assess
the performance of the model for a number of training examples ranging from 1 to
17. In that situation, instances are part of the test set in several iterations, but we
ensure that the model has learnt from all the possible combinations of instances.

From 7 to 34 training examples, the model reaches an accuracy of 100%. Then,
we get 99.6% for 5 training examples, and 99% with 3 and 2 training examples. These
results shows that the model can learn valuable information from a small dataset. In
this experiment, the whole dataset do not contain any outlier (like a missing organ
for example) so it is suited to learning from few data.

Before training, 21420 relations are evaluated over the whole dataset. We evalu-
ated our first heuristic on these evaluations. Overall, this strategy enabled to prevent
32% of all the evaluations. We are especially interested in preventing expensive com-
putations, which are given our vocabulary of relations:

• Fuzzy directional landscapes since they rely on the computation of a fuzzy

9.2. Organ Annotation in Medical Images 147

dilation (cf. Chapter 8). Since the evaluation of a relation is not expensive once
the corresponding fuzzy landscape has been generated, we would like to avoid
computing fuzzy landscapes if possible. For example, the fuzzy landscape
corresponding to to the right of the liver is not generated if all the relations e
to the right of the liver (e being any entity different from the liver) have been
previously filtered by the heuristic. This is a strong constraint but in practice it
is often satisfied when an entity is close to an edge of the image. For instance,
if an entity e is always in the top left corner of the images, it is likely that the
fuzzy landscapes to the left of e or above e will be dismissed at one point.

• Symmetries are also expensive since they rely on several operations that are
compute-intensive.

Applying this heuristic, we managed to save 484 computations of the symmetry
relation out of 1260 over the whole dataset (for a total of 2520 computations before
taking into account the commutativity of this relation). For fuzzy landscapes, 220
computations were prevented out of 2520 over the whole dataset. Approximately
38% of the symmetries were prevented while about 9% of the fuzzy landscapes were.
Preventing more symmetries than fuzzy landscapes is consistent with the fact that
fuzzy landscapes are avoided if several relations are dismissed (against only one for
the symmetry).

For the second heuristic, there are two different cases. First, the symmetry rela-
tion is commutative. That means that half of the evaluations of this relation can be
saved. As mentioned in the previous paragraph, there was originally 2520 symme-
tries to evaluate and this number is thus reduced to 1260. For directional relations,
the order presented in Equation (9.4) is followed to make the most of the logical
links between these relations. It is important to note that once a relation is discarded
with the first heuristic, we do not count it as a saved computation here. The results
are presented in Table 9.2. This strategy enables to avoid computing the evaluation
of 1636 relations, which represents 7.6% of the total number of evaluations. In par-
ticular, we notice that the logical link ne−−−−→ is more efficient than e−−−→ on this
dataset. This is due to the fact that there are more relations whose evaluation is
equal to 0 than relations which are evaluated to 1: indeed, 3.8% of the evaluations

Logical link
Number of

prevented evaluations
Proportion among

all evaluations

above ne−−−−→ completely above 367 1.7%
above e−−−→ below 14 0.065%
below ne−−−−→ completely below 376 1.8%
to the left of ne−−−−→ completely to the left of 381 1.8%
to the left of e−−−→ to the right of 113 0.53%
to the right of ne−−−−→ completely to the right of 385 1.8%

Total 1636 7.6%

TABLE 9.2: Table presenting the number of prevented evaluations us-
ing our second heuristic (cf. section 5.3 on page 74). Following the
topological sort that we got in section 9.2.2 on page 141, the results
for each logical link are shown. Overall, this strategy enables to pre-
vent 1636 evaluations, which represents 7.6% of the total number of

evaluations.

148 Chapter 9. Experiments on Images

are equal to 1 whereas about 50% of them are equal to 0. This high proportion of
null evaluations also explains the efficiency of the first heuristic.

Overall, combining both heuristics, we manage to avoid computing about 40%
of the total number of evaluations (8596 out of 21420 evaluations). In particular, it
enables to avoid computing expensive relations like the symmetry or morphological
directional relations. Coupled with the work presented in Chapter 8, it has led to a
significant improvement in the execution time of the evaluation step. However, we
notice that the first heuristic, which aims at pruning infrequent relations online, is
more efficient by a large margin.

9.2.5 Evaluation of Explanations

We presented in Section 1.4 on page 32 the current state of the art of evaluation
methods for XAI, which can be divided into three categories: application-grounded,
human-grounded and functionally-grounded evaluations. Since the approach we
propose in this thesis aims at providing an explainable classification or annotation
model for different types of input signal and in different fields, we decided to per-
form a human-grounded evaluation that relies on the method proposed by (Baaj and
Poli, 2019). It consists in assessing a set of assertions that evaluate the language used
in the explanations, the content and the form of the explanations, and how helpful
to humans they are. The full list of assertions is displayed in Table 1.2 on page 35.

In this experiment, we asked a panel of participants to answer the following
assertions:

1. Explanations are simple and easy to read,

2. Explanations are convincing,

3. Data and explanations are sufficient to trust the system,

4. Explanations indirectly express the way the system reasons,

5. The length of the explanations is adequate,

6. It is difficult to read explanations until the end,

7. Explanations seem consistent,

8. Explanations are true.

Participants were asked to assess these assertions using the following Likert scale
(Likert, 1932):

• Strongly disagree,

• Disagree,

• Undecided,

• Agree,

• Strongly agree.

Participants also had the possibility to insert any comment at each evaluation.
The panel of participants was composed of 26 people. One of the participant

was a medical doctor and the others were students and researchers from CEA and
CentraleSupélec.

9.2. Organ Annotation in Medical Images 149

Explanations are simple and easy to read:

Explanations are convincing:

Data and explanations are sufficient to trust the system:

Explanations indirectly express the way the system reasons:

FIGURE 9.16: Answers to the first four assertions.

150 Chapter 9. Experiments on Images

The length of the explanations is adequate:

It is difficult to read explanations until the end:

Explanations seem consistent:

Explanations are true:

FIGURE 9.17: Answers to the last four assertions.

9.3. Discussion 151

The results we got are displayed in Figure 9.16 and Figure 9.17. Regarding the
form of the explanations, 88% of the participants think that explanations are simple
and easy to read. However, about 30% of them believe that it is difficult to read
explanations until the end and 15% are undecided. That suggests that explanations
may be too long, which is supported by the assessment of the length of the explana-
tions. Indeed, half of the participants are not convinced by the length of the explana-
tions. Thus, this is a point to improve. In our approach, a higher minimum support
should lead to shorter explanations but it also has a direct impact on the performance
of the model. There is no clear way to favour one criterion over another.

Besides, several participants highlighted the redundancy in the explanations as
a reason why they are difficult to read until the end. Although it is not the goal of
this work, using synonyms or different sentence structures to break the monotony
of the explanations could help.

Most participants think that the explanations are convincing (69%), are true (65%),
seem consistent (96%), render the reasoning of the system (81%) and enables to trust
it (62%). Those are all good points since a few of the goals of explainable approaches
are to increase trust in AIs and to make their reasoning more transparent.

However, while 96% of the participants think that the explanations seem con-
sistent, fewer of them (although still a majority) find them convincing (69%) and
trustworthy (62%). That means that consistency is not enough to ensure that people
will trust the model. For example, it was pointed out that the explanation for the an-
notation of the bladder is consistent but is not convincing. In particular, the doctor
that answered the survey said that explanations should favour local relations. This
is not the case in the explanation of the annotation of the bladder since it relies on a
relation between the bladder and the right lung. This may be a limit of our assump-
tion that relevance is equivalent to frequency. It may also mean that our vocabulary
lacks the relevant local relations that could explain this annotation better.

Furthermore, a few participants were disturbed because the order in which the
entities were annotated is unknown, which harms the trustworthiness of the model.
While the trace of the resolution of the FCSP could be made clear, we are not sure it
would increase the trust in the system, especially for people who do not have any
knowledge about CSPs.

Overall, this survey shows that most participants are convinced by the explana-
tions and they understand the logic of the model. It also enabled to highlight the
areas of improvement, such as the length of the explanations, their redundancy and
the use of non-local relations.

9.3 Discussion

In this chapter, we presented two experiments we carried out to test our approach
on two image datasets: an artificial one and a real one. These tests enable to validate
the advantages of our approach and to spot a few areas of improvement.

The explanations produced by our model have been overall well graded by a
pool of participants. Most of them agree that the explanations are convincing and
enable to trust the system. This is important because explainability is the main goal
of the approach we propose in this work. However, while our explanations are con-
sistent, they may rely on relations that may not always seem relevant to the end-user.
This could be solved by improving the vocabulary and by tweaking the learning

152 Chapter 9. Experiments on Images

process. For instance, in the case of organ annotation, non-local relations could be
penalized during the learning phase.

Regarding the performance of our model, it managed to reach a perfect accuracy
in both cases when the segments corresponding to entities were already provided.

For preventing useless computations during the evaluation phase, we validated
the performance of our online pruning heuristic. In each experiment, it enabled to
prevent about 30% of the evaluations. Also, we saw in the explainable organ anno-
tation experiment that it was well suited to dismiss infrequent expensive relations
like symmetries and fuzzy directional relations. The second heuristic returned less
impressive results when the number of logical links between relations is restricted.

The learning algorithm we use can generalize well from a small dataset if the
instances are consistent with each other. This behaviour is an advantage because
learning an explainable model on few data may not be easy depending on the type
of model that is built. Besides, a few fields where explanations are needed usually
involve small datasets, such as in medicine.

We also showed in our first experiment that our model can deal with fuzzy en-
tities, which is an asset since entities may not always be precisely defined. This
interesting property enables to combine our approach with a probabilistic or fuzzy
segmentation algorithm which should help to take into account the vagueness in the
input signals.

In the next chapter, we evaluate our approach on a problem of time series clas-
sification. It should be harder to handle since no segments of entities are provided
and the vocabulary should be more limited since the literature about fuzzy temporal
relations is thinner.

153

Chapter 10

Application to Time Series
Classification

In this experiment, we aim at performing explainable time series classification. The
time series we cope with come from (Hotel, 2017) and are multivariate. The chal-
lenges that we expect to face are the following:

• Unlike the previous experiments, we have to perform segmentation on the
time series to obtain time windows in which we can compute interesting rela-
tions between the signals.

• The literature dealing with fuzzy temporal relations is much thinner than with
fuzzy spatial relations, so the vocabulary should be relatively restricted. There-
fore, the performance and the explanations of the model could be affected.

We first present the dataset we worked on. Then, we describe the vocabulary of
relations we built for this experiment. The third section tackles the workflow of the
approach. Finally, we present the results we obtained and discuss them.

10.1 Dataset

The original dataset contains 5 classes of multivariate time series. Each class repre-
sents a different toxic chemical. In order to characterize these chemicals, acquisitions
have been made to obtain 8 electrical signals that represent the response of a sensor
to a gas. These 8 responses form a chemical signature that should enable to classify
the toxic chemicals.

We have normalized all the instances in the dataset so that all signals fit between
0 and 1. Figure 10.1 and Figure 10.2 display examples from all the classes. We notice
that class 4 contains instances that have very different patterns from each other, as
shown in Figure 10.2. This is an issue for our approach because it is based on the
assumption that all or most of the instances from a given class should be highly
correlated with each other (cf. Chapter 4). As a consequence, we decided to discard
this class and to focus only on classes 1,2,3 and 5.

Since signals are noisy, we smoothed them using a Gaussian filter with a stan-
dard deviation equal to 8. Also, the signals have two distinct states: a steady state,
during which the signal is stable in time, and a transient state, during which the sig-
nal evolves to reach the steady state. This is why we decided to perform segmenta-
tion on each time series. We opted for a multivariate time series segmentation algo-
rithm called Greedy Gaussian Segmentation (Hallac et al., 2019). With this method, we
can choose beforehand the number of segments we want. In our case, we decided to
segment time series into two parts with one segment representing the transient state
and the other one representing the steady state. An example of the resulting time

154 Chapter 10. Application to Time Series Classification

(A) Class 1 (B) Class 2

(C) Class 3 (D) Class 5

FIGURE 10.1: Examples from the time series dataset we worked on.

FIGURE 10.2: Three examples from class 4 that do not present the
same properties at first sight. Those are the three types of patterns

that we encounter in the instances of class 4.

10.2. Vocabulary of Relations 155

FIGURE 10.3: Example of a time series from class 1. The 8 signals have
been smoothed and a segmentation has been performed. The verti-
cal black line represents the border between the first segment, corre-
sponding to transient state, and the second segment, corresponding

to steady state.

series and their segments is shown in Figure 10.3. Moreover, since transient state is
not representative of the final state of the signals, which determines the class of the
time series, we decided to focus only on the steady state of each time series.

Thus, we work on a dataset of multivariate time series that have been smoothed
and segmented. It contains 606 images distributed as follows: 170 instances from
class 1, 138 instances from class 2, 158 instances from class 3 and 140 instances from
class 5.

In the following, we will refer to the different signals in the instances by their
color (signal blue, signal red,...).

10.2 Vocabulary of Relations

In this experiment, we resorted to 11 unary relations and 7 dyadic relations. The
unary relations aim at characterizing the evolution of the signal. Among them, a
first type of relations enables us to assess the variations of a signal over a given time
scope. Given an instance in the dataset, we first compute the standard deviation
of each signal over the steady state. Then, we define a linguistic variable Varies
associated to the following fuzzy sets defined over the space of real numbers: varies
very little, varies little, varies averagely, varies much and varies very much. These five
different fuzzy sets are displayed in Appendix F.2 on page 184.

The two other types of unary relations in the vocabulary assess the increase or
the decrease of a signal over a time scope. It relies on computing the gradient, which
enables to get information about the direction in which a signal is evolving. Two
linguistic variables Increases and Decreases are specified. Each one of these variables
is associated to three fuzzy sets such as: decreases little, decreases averagely, decreases
much, increases little, increases averagely and increases much. These fuzzy sets are also
displayed in Appendix F.2 on page 184.

For dyadic relations, we defined two relations that compare if a signal is greater
or lower than another over a time scope. In order to assess these two relations, we
first compute the difference s1 − s2 between a signal s1 and a signal s2. Then, we can
compute the proportion of time when the difference is positive (greater) or negative
(lower) over the whole time scope. This enables to get the relations greater than and
lower than.

156 Chapter 10. Application to Time Series Classification

The last type of relations, which characterizes the distance between two signals,
is also based on the difference between s1 and s2. We compute the mean of the
absolute value of this difference. Then, we define a linguistic variable Distance that
is associated to 5 different fuzzy sets: very close to, close to, at an average distance from,
far from and very far from. They are displayed in Appendix F.2 on page 184.

Overall, we have 11 unary relations and 7 dyadic relations. On 606 instances,
computing relations only during the steady state leads to 290880 evaluations.

The graph displayed in Figure 10.4 shows the logical links between these rela-
tions. Thus, we get the following order on relations:

lower than→ greater than→ very far from→ close to→
at an average distance from→ very close to→ far from→ varies very much→

varies little→ varies very little→ varies much→ varies averagely→ decrease little→
increase averagely→ increase little→ increase much→ decrease much→

decrease averagely

greater than

lower than

e e

very close to

at an average distance from

e

far from

every far from

e

e

e

e

close to

e

e

e

e

e

e

varies very little

varies averagely

e

varies much

evaries very much

e

e

e

e

varies little

e

e

e

e

e

e

decrease little

decrease much

e

increase much

e

increase averagely

eincrease little

e

e

e e

e

e

e

e decrease averagely

e

e

e

e

e

e

e

e

e e

e

FIGURE 10.4: Graph representing the logical links between relations
for the time series classification experiment.

10.2.1 Workflow

In this experiment, the workflow is almost the same as for the toy dataset (cf. Sec-
tion 9.1.4). The only difference is that, in the first step, each instance has to be seg-
mented before evaluating relations. This is important because the quality of the
segmentation could have an impact on the performance of the model, even though
fuzzy logic enables to deal with relatively imprecise segments.

10.2.2 Results

Four examples of explained classifications are displayed in Figures 10.5 to 10.8 (one
for each class). In the following paragraphs, we interpret the quantitative results we
obtained, which enable to understand these examples.

We tested our model doing a 10-fold stratified cross-validation. For hyperpa-
rameter tuning, since the dataset is big enough, we performed an hold-out valida-
tion with a validation set using the same Bayesian optimization method as in Sec-
tion 9.2.4. The hyperparameters that we used are displayed in Table 10.1. The results
we got at the end of the cross-validation are shown in Figure 10.9 and we obtained
an accuracy of 81%. Classes 1,2 and 3 are relatively well classified but the perfor-
mance of the model drops for class 5. We see in Table 10.1 that the rules from class

10.2. Vocabulary of Relations 157

This instance belongs to class 1 with a high confidence because:

• the blue signal increases little in steady state,

• the purple signal is greater than the grey signal in steady state.

FIGURE 10.5: Example of explanation for an instance from class 1.

This instance belongs to class 2 with a high confidence because:

• the pink signal is at an average distance from the brown signal in steady state,

• the brown signal is greater than the pink signal in steady state,

• the grey signal is greater than the purple signal in steady state.

FIGURE 10.6: Example of explanation for an instance from class 2.

158 Chapter 10. Application to Time Series Classification

This instance belongs to class 3 with a high confidence because:

• the pink signal varies much in steady state,

• the red signal is close to the blue signal in steady state.

FIGURE 10.7: Example of explanation for an instance from class 3.

This instance belongs to class 5 with a high confidence because:

• the blue signal varies little in steady state.

FIGURE 10.8: Example of explanation for an instance from class 5.

10.2. Vocabulary of Relations 159

Class Minimum support
Average number

of relations in rules
before pruning

Average number
of relations in rules

after pruning

1 0.89 72.9 2
2 0.85 90.1 3
3 0.87 97.2 1.9
5 0.88 91.5 1

TABLE 10.1: The second column shows the values of minimum sup-
port we found for each class after tuning. The third column shows the
average length of rules before the relations that are shared by rules
from other classes are removed. The last column displays the average

length of rules after they have been pruned.

1 2 3 5
Predicted label

1

2

3

5

T
ru

e
la

b
el

157 0 3 10

0 122 2 14

4 18 130 6

25 27 4 84

Confusion matrix

0

20

40

60

80

100

120

140

FIGURE 10.9: Confusion matrix displaying the performance of our
model in the time series classification experiment.

5 have only one relation left after pruning. This is actually only one rule with a sin-
gle relation in its antecedent: the blue signal varies little in steady state (cf. Figure 10.8).
While this relation is a valid element of description of class 5, the same relation could
be used to describe other classes, such as class 2 for example. The fact that no dyadic
relation is still part of the rules after pruning may harm the classification. This is a
situation similar to the one we encountered with the bladder in Section 9.2, i.e. one
relation has been extracted but the explanation it entails is not convincing enough.
This may indicate that our vocabulary is not rich enough to classify class 5 well.

Table 10.1 also shows the average number of relations in rules before and after
pruning for each class. We notice that at least 97% of the relations are pruned. On
one hand, it enables to get short rules that thus lead to short explanations, which is
positive in light of the results of the survey we presented in the previous experiment.
On the other hand, this is a clue that the vocabulary leads to descriptive but not

160 Chapter 10. Application to Time Series Classification

discriminative relations. This may indicate that the vocabulary of relations was not
set well enough.

In order to verify this point, we trained a random forest classifier on the set of
evaluated relations we get at the end of the evaluation phase. It is a forest of 10 trees
trained using Gini criterion for splitting. Performing the same cross-validation, we
get an accuracy of 99% on the whole dataset, which may validate the vocabulary of
relations and their evaluations. While we should not expect the same performance of
classification rules, this shows that our rule learning algorithm is not as well suited
to this kind of data as some other learning algorithms. One possible explanation
to this phenomenon is that the random forest classifier learns more complex deci-
sion bounds in the feature space than our model. While it enables to get a much
better performance, it may not help to explain the results. Indeed, when comput-
ing the feature importance of the random forest trained on the whole training set,
the most important feature does not account for more than 4.5% of these. This is
much less than the relative proportions of the four classes (28%, 23%, 26% and 23%
respectively), which may show that no relation is truly representative of any class.
Thus, the random forest can perform a more complex reasoning in order to combine
features effectively whereas our rules are short after pruning (3 relations at most on
average). Such short rules cannot reach the same level of performance in the absence
of discriminative features.

Also, we noticed that, for several classifications, we had similar high confidences
in predicting two different classes for the same instance. So, for several instances,
rules struggle to discriminate between two classes. The explanations are useful to
understand this behaviour: looking at Figure 10.5 and Figure 10.8, one explanation
could fit the other instance and vice versa. So, while the results are not as good as we
expected, this use case shows that explanations are important to understand what
the model does and where its mistakes come from.

Regarding our goal to avoid computing useless relations, we also evaluated our
two heuristics on this dataset. It should be noted that the relations in the vocabu-
lary are not expensive, which is logical since we are dealing with 1D signals, and
that preventing useless evaluations is not as important in this experiment as in the
previous two.

With our online pruning heuristic, we prevent the computation of 98023 evalua-
tions out of 290880. That represents about 34% of the total number of evaluations to
perform, which is the same magnitude as in the previous experiments.

As shown in Figure 10.4, there are many logical links between the relations in
our vocabulary in this experiment. That is why we are able to prevent about 20% of
the evaluations. This good performance is also due to the fact that there are many
relations that are fully satisfied, which enables to make the most of the logical links
existing between the relations.

Overall, we are able to save about 54% of the total number of evaluations, which
is a very good result.

10.3 Discussion

In this chapter, we stressed the genericity and limitations of our approach by its
application to a new use case : the classification of time series in order to recognize
several classes of toxic chemicals. We first showed that our approach is able to deal
with a raw segmentation of the inputs. This will enable to deal with a wider variety

10.3. Discussion 161

of tasks. We also had to manage a different type of vocabulary since fuzzy temporal
relations are less common than spatial ones. Our model did not reach the same
level of performance as a random forest classifier. This highlights the interest of
explanations in a different situation. Indeed, unlike the random forest, our model
enables to understand why an instance has been classified well or misclassified.

One solution to improve the performance of our approach consists in express-
ing more complex rules. The current model handles conjunctions of relations and
thus may be enhanced with other operators, such as disjunctions or negations. It
also highlights the limits of our frequency-based learning approach. Some of these
prospects are discussed in Section 10.3.

163

Conclusion and Perspectives

In this thesis, the goal was to make a transparent model that would be able to pro-
vide explanations in natural language for the decisions it makes. Thus, we focused
on proposing an XAI approach that aims at building such a model for solving clas-
sification and annotation tasks.

Also, we wanted our model is based on explicit expressive relations due to their
known importance in human understanding. Relying on a vocabulary defined by an
expert, we investigate potentially relevant and interpretable relations. This strategy
enables to avoid building a dataset where relations are annotated for each instance,
which is expensive to get.

Given a training set and a vocabulary of fuzzy relations, our approach first as-
sesses the different relations in instances according to the vocabulary. Then, a fuzzy
frequent itemset mining method is applied to extract subsets of frequent fuzzy re-
lations. Rules, for classification, or constraints, since annotation relies on a FCSP,
can then be built. After having performed the desired task, the model produces an
explanation based on the relations that contributed to the decision. Since these re-
lations are associated to a linguistic description, we get an explanation in natural
language.

In the following, we first discuss our main contributions and then present several
directions for further research.

Contributions

Learning Relations

To prevent the need of relation annotations, which is costly, we built our approach on
class annotations. We then developed a strategy whose goal is to extract from train-
ing data the most frequent patterns in a given set of computed relations. This idea
is motivated by the observation that instances belonging to the same class should
contain a few relations that are representative of this class. Thus, by extracting the
subsets of relations that are frequently observed in training instances, we should get
a description of each class that can be used for performing classification or annota-
tion.

As a consequence, we decided to focus on frequent itemset mining to extract the
most frequent subset of relations for each class. The Close algorithm (Pasquier et al.,
1999) is well suited for this task since it performs well on correlated data. However,
it is unable to deal with fuzzy data.

We proposed a new algorithm, fuzzy Close, which relies on a closure operator
that enables to deal with a formal fuzzy context. We demonstrated that this new
operator is actually a closure one and that it can extend the original method to cope
with fuzzy data.

We showed on two images datasets that it can learn relevant relations for the
problem to solve. The performance of the algorithm highly depends on the value of

164 Conclusion and Perspectives

its hyperparameter, the minimum support, that enables to assess if a subset is fre-
quent or not. If this hyperparameter is too high, extracted relations are too generic
and not discriminative enough to achieve good performance. This is a case of un-
derfitting. If its value is too low, irrelevant relations will be extracted. That would
harm the generalization ability of the model and leads to overfitting.

We also tested it on an application of time series classification. While the vo-
cabulary of relations seems to be convenient, the approach extracts frequent subsets
of relations that are then expressed as conjunctions of relations. This leads to two
constraints:

• Only conjunctions of relations are expressed. Other operation such as disjunc-
tion or existence could certainly improve the performance of the model and
would not be harder to integrate in an explanation.

• Only frequent subsets of relations are extracted. That means the model learns
the relations that are frequently present together. However, it does not take
into account relations that are not or barely satisfied. Those relations could
also enable to get a richer model and better explanations.

Heuristics for Preventing Useless Evaluations

The first step of our approach consists in evaluating relations from a vocabulary
between all the possible combinations of entities in the instances of the training set.
Thus, the total number of evaluations to perform grows quickly with the number
of relations and their arities, with the number of entities in instances and with the
number of instances.

In order to avoid computing all these evaluations, we develop two heuristics.
The first one is based on the following principle: if a relation is (almost) never sat-
isfied in the instances that have been evaluated, it may increase our confidence that
this relation will not be frequent at the end of the evaluation process. In particu-
lar, we made the assumption that the minimum support should be at least 0.5 to
have representative subsets of relations. Therefore, as soon as a relation is bound
to be infrequent, it is discarded from the set of relations to evaluate. We showed in
our experiments that we can prevent about 30% of the evaluations, including some
evaluations relying on relations that are expensive to compute.

The second heuristic aims at propagating the results of one relation to another
when it is possible. It relies on three kinds of links between relations that can be
obtained from their definition: the dependence between two relations, the logical
implication between two relations and/or their complements, and the symmetry of
a relation. We can represent these links in a graph. We presented an algorithm that
converts this graph in a directed acyclic graph so that a topological sort can be ap-
plied. Thus, we get an order of evaluation on relations that enables to propagate the
results of some evaluations based on the nature of the links between the relations to
evaluate. This heuristic strongly depends on the number of relations in the vocab-
ulary that satisfy such links, and on whether there are many fully satisfied or null
relations. This is why we got better results when more relations are fully satisfied,
such as in the experiment on time series classification.

Conclusion and Perspectives 165

Fast Parallel SIMD-based Fuzzy Dilation Operator

To make the evaluation process faster, we first relied on heuristics to avoid unneces-
sary computations. When computations have to be made, another area of improve-
ment is to ensure that we evaluate relations as fast as possible. On images, several
relations rely on a fuzzy dilation, which is a very expensive operator. The first area
of improvement was to avoid considering pixels that do not contribute to the final
result. This tweak enables to prevent a number of operations proportional to the
ratio between the size of the image and the size of the object under consideration.

Also, this operator is well suited to parallel computing, which is why we worked
on a multithreaded implementation that uses SIMD explicit instructions. We showed
that this implementation enables to top the state-of-the-art algorithm in several sit-
uations, including on the dataset of medical images we used in our experiments.

Besides, this implementation can be extended to the 3D case, which is convenient
for dealing with medical images.

Prospects

Building Richer Rules and Sets of Constraints

As we already mentioned, our fuzzy frequent itemset mining approach returns fre-
quent subsets of relations that represent conjunctions of relations. In order to get
more generic rules or sets of constraints, disjunctions could be considered. This
would enable to take into account various representative subsets of relations better.

Also, the current strategy looks for relations that are frequently satisfied in the
training set. However, the fact that a relation is rarely or never satisfied can also be
a valuable piece of information. Thus, we would like to extract frequent subsets of
relations where each relation is either (almost) fully satisfied or null in the instances
of the training set. To achieve that, a new operator, based on the closure operator we
currently use, could be defined so that, given an itemset I, it also tracks the relations
that are always null when the relations in I are satisfied.

Another type of relations that would be interesting is there exists. In particular,
when the number of entities varies from one instance to another, this would charac-
terize whether another relation has been satisfied or not in instances. For example,
if the instances from a given class always contain at least one square, this would be
more generic than having one relation is square per entity.

Adjusting the Length and Scope of Explanations

In the evaluation of explanations, we saw that the length of the explanations was an
issue for some participants. Also, the fact that some extracted relations are not local
enough was pointed out. We could investigate a new learning process in which
the goal is to optimize a loss function that directly depends on the length of the
explanations (like in (Lakkaraju et al., 2016)) and the locality of the relations they
contain. Thus, we would have more control on those properties.

Dealing with Unsupervised Segmentation

In the case of images, we worked with datasets where the segments of the entities to
annotate were given. However, this may not be the case in another dataset. While
a segmentation algorithm may be learnt, we may have to resort to unsupervised

166 Conclusion and Perspectives

segmentation. In that case, we will first get an oversegmentation of the image, as
shown in Figure 10.10. To obtain segments that are closer to the entities we are
working on, one idea is to apply a hierarchical clustering. An illustration of this
approach is given in Figure 10.10.

(A) Input image (B) Oversegmented image (C) Clustered segments

FIGURE 10.10: Given an input image, we can get a convenient seg-
mentation of the entities of interest by applying hierarchical cluster-

ing on an oversegmentation.

Learning New Relations

Another area to explore is to not only assess relations on the training set, but also
learn new relations from training instances. For example, parametric relations, such
as directions or distances, could be adjusted using histograms of angles or distances.

Furthermore, new dilation-based relations could be defined by learning on the
training set new structuring elements.

Another possibility is to use logic auto-encoders (Dumancic et al., 2019c). Their
principle is the same as traditional auto-encoders except that they handle predicates
and constants. In our case, the latent predicates that are learnt could be more generic
relations that are relevant to the target task. Also, this could enable to get a shorter
set of constraints, which would make the annotation faster.

Evaluating Explanations

Explanation evaluation is one of the biggest current issue in XAI. While a few meth-
ods have been proposed, it is very difficult to compare two different explainable
models. As a consequence, expert assessment or surveys are usually performed.
However, at the scale of one specific application, it may be possible to benchmark
different approaches efficiently.

Some criteria used to assess an explanation could also be automatically evalu-
ated. For example, in the case of image annotation and for assessing the consistency
of an explanation, the principle could be the following:

1. computing all the fuzzy landscapes involved in the explanation,

2. computing the intersection of these fuzzy landscapes,

3. comparing this intersection with the ground truth to assess if the explanation
is consistent.

Conclusion and Perspectives 167

While a few criteria will always require human judgment, the development of a few
methods to perform an automatic evaluation of the explanation would provide a
huge boost to the field of XAI.

169

Appendix A

Publications

A.1 International Peer-Reviewed Conferences

• Spatial Relation Learning for Explainable Image Classification and Annota-
tion in Critical Applications,
Régis Pierrard, Jean-Philippe Poli and Céline Hudelot,
Artificial Intelligence, 2021.

• SIMD-based Exact Parallel Fuzzy Dilation Operator for Fast Computing of
Fuzzy Spatial Relations,
Régis Pierrard, Laurent Cabaret, Jean-Philippe Poli and Céline Hudelot,
PPoPP Workshop on Programming Models for SIMD/Vector Processing, 2020.

• A New Approach for Explainable Multiple Organ Annotation with Few Data,
Régis Pierrard, Jean-Philippe Poli and Céline Hudelot,
IJCAI Workshop on Explainable Artificial Intelligence (XAI), 2019.

• Learning Fuzzy Relations and Properties for Explainable Artificial Intelli-
gence,
Régis Pierrard, Jean-Philippe Poli and Céline Hudelot,
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018.

• A Fuzzy Close Algorithm for Mining Fuzzy Association Rules,
Régis Pierrard, Jean-Philippe Poli and Céline Hudelot,
International Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU), 2018.

A.2 National Peer-Reviewed Conferences

• Apprentissage de relations floues pour l’annotation sémantique expliquée
avec peu de données,
Régis Pierrard, Jean-Philippe Poli and Céline Hudelot,
Rencontres des Jeunes Chercheurs en Intelligence Artificielle, 2019.

171

Appendix B

Fuzzy Logic : Main Definitions

This chapter aims at gathering all the notions from the fuzzy set theory and fuzzy
logic (Zadeh, 1965) that are used in this thesis.

Fuzzy logic can be seen as an extension of Boolean logic that enables to manage
imprecision. While a value is either true or false in Boolean logic, it can range from
0 (false) to 1 (true) in fuzzy logic.

B.1 Fuzzy Set

B.1.1 Definition
Definition 35: Fuzzy Set

In a universe U , a fuzzy set F is characterized by a mapping µF : U → [0, 1].
This mapping specifies in what extent each u ∈ U belongs to F and it is called the
membership function of F.

If F is a non-fuzzy set, µF(u) is either 0, i.e. u is not a member of F, or 1, i.e. u is a
member of F.

B.1.2 Properties

In this subsection, we define the core, the support and the α-cut of a fuzzy set.

Definition 36: Core of a Fuzzy Set

The core of a fuzzy set F defined on a universe U is a non-fuzzy set defined as

core(F) = {u ∈ U|µF(u) = 1} . (B.1)

Definition 37: Support of a Fuzzy Set

The support of a fuzzy set F defined on a universe U is a non-fuzzy set defined as

supp(F) = {u ∈ U|µF(u) > 0} . (B.2)

Definition 38: α-cut of a Fuzzy Set

For α ∈ [0; 1], the α-cut of a fuzzy set F defined on a universe U is a non-fuzzy set
defined as

Fα = {u ∈ U|µF(u) ≥ α} . (B.3)

172 Appendix B. Fuzzy Logic : Main Definitions

B.2 Linguistic Variable

Definition 39: Linguistic Variable

A linguistic variable (Zadeh, 1975) is defined as a triplet (V, ∆V , FV) such as:

• V is the name of the variable,

• ∆V is the domain on which V is defined,

• FV = {F1, F2, ...} is a finite collection of fuzzy sets. Each of these fuzzy sets
is associated to a linguistic term which qualifies V.

B.3 Fuzzy Relations

Definition 40: Fuzzy Relation

Given two universes U and W , a binary fuzzy relation R is characterized by a
mapping defined as

µR : U ×W → [0, 1] . (B.4)

It assigns a degree of relationship to any (u, w) ∈ U ×W . n-ary fuzzy relations are
defined identically.

B.4 Fuzzy Operators

B.4.1 t-norm and t-conorm

Definition 41: t-norm

A t-norm is a function t : [0; 1] × [0; 1] → [0; 1] which satisfies for all a, b, c, d in
[0; 1]:

• t(a, b) = t(b, a) (commutativity),

• t
(
a, t(b, c)

)
= t
(
t(a, b), c

)
(associativity),

• t(a, b) ≤ t(c, d) if a ≤ c and b ≤ d (monotonicity),

• t(a, 1) = a (neutral element).

Any t-norm is a fuzzy intersection operator. The most common one is Zadeh’s t-
norm, where t = min.

B.4. Fuzzy Operators 173

Definition 42: t-conorm

A t-conorm is a function T : [0; 1]× [0; 1] → [0; 1] which satisfies for all a, b, c, d in
[0; 1]:

• T(a, b) = T(b, a) (commutativity),

• T
(
a, T(b, c)

)
= T

(
T(a, b), c

)
(associativity),

• T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d (monotonicity),

• T(a, 0) = a (neutral element).

Any t-conorm is a fuzzy union operator. The most common one is Zadeh’s t-conorm,
where T = max.

B.4.2 Fuzzy Inclusion

Definition 43: Fuzzy Inclusion

Let A and B be two fuzzy sets defined on a universe U with the membership
functions µA and µB respectively.
A is included in B (A ⊆ B), if, and only if, ∀x ∈ U , µA(x) ≤ µB(x).

B.4.3 Fuzzy Closure Operator

Definition 44: Fuzzy Closure Operator

Let FU be a fuzzy set defined on a universe U . A fuzzy closure operator h over FU
is defined as h : FU → FU and satisfies the following conditions:

• ∀I ⊆ FU , I ⊆ h(I),

• ∀I ⊆ FU , h(h(I)) = h(I),

• ∀I, J ⊆ FU , I ⊆ J ⇒ h(I) ⊆ h(J).

B.4.4 Fuzzy Implication

Definition 45: Fuzzy Implication

For any left-continuous t-norm t, there exists a unique function→: [0; 1]→ [0; 1]
such that

∀a, b, c ∈ [0; 1], t(c, a) ≤ b if, and only if, c ≤ (a→ b) (B.5)

In this work, we used the Łukasiewicz implication:

Definition 46: Łukasiewicz Implication

The Łukasiewicz implication L−→ is defined as

L−→ : [0; 1]× [0; 1]→ [0; 1]
(a, b) 7→ min(1− a + b, 1) (B.6)

174 Appendix B. Fuzzy Logic : Main Definitions

B.4.5 Subsethood Degree

We define the subsethood degre that is used to define a fuzzy Galois connection.

Definition 47: Subsethood Degree (Höhle, 1996)

Let U be a universe and FU the set of all the fuzzy sets in the universe U .
The subsethood degree is defined as

Subs : FU × FU → [0; 1]

(A, B) 7→ inf
u∈U

(
µA(u)→ µB(u)

)
(B.7)

B.4.6 Fuzzy Complement

Definition 48: Fuzzy Complement

Let F be a fuzzy set defined on a universe U and associated to the membership
function µF. The fuzzy complement of F is defined by a membership function µF
such that ∀u ∈ U , µF(u) = c(µF(u)) with c : [0; 1]→ [0; 1] a function that verifies:

• c(0) = 1 and c(1) = 0,

• ∀z1, z2 ∈ [0; 1], if z1 < z2, then c(z1) > c(z2),

• c is a continuous function,

• ∀z ∈ [0; 1], c(c(z)) = z.

In this work, we always use the standard complement, which is defined as

c : [0; 1]→ [0; 1]
z 7→ 1− z (B.8)

175

Appendix C

Closure Operator

This chapter is dedicated to demonstrate that the operator h presented in Section 4.4.2
on page 63 is a closure operator. The first section reminds the core definitions of clo-
sure operators and the second section presents the proof.

C.1 Definitions

We first define what a partially ordered set (or poset) is.

Definition 49: Partially Ordered Set

A partial order over a set A is a binary relation ≤A which satisfies

• ∀a ∈ A, a ≤A a (reflexivity),

• ∀a1, a2 ∈ A, if a1 ≤A a2 and a2 ≤A a1, then a1 = a2 (antisymmetry),

• ∀a1, a2, a3 ∈ A, if a1 ≤A a2 and a2 ≤A a3, then a1 ≤A a3 (transitivity).

A set A with a partial order ≤A is called a partially ordered set and is written
(A,≤A).

We can then define what a closure operator and a closed itemset are.

Definition 50: Closure Operator

A closure operator on a poset (A,≤A) is a function h : A→ A such as

1. ∀a ∈ A, a ≤A h(a),

2. ∀a1, a2 ∈ A, a1 ≤A a2 ⇒ h(a1) ≤A h(a2),

3. ∀a ∈ A, h(a) = h ◦ h(a).

Definition 51: Closed Itemset

Let h be a closure operator over (I ,≤I). An itemset I ⊆ I is said to be closed if,
and only if, h(I) = I.

C.2 Proof

Let I be a set of items, T a set of transactions andR a dyadic fuzzy relation such as
〈T , I ,R〉 forms a fuzzy formal context.

The proof we propose is the following:

176 Appendix C. Closure Operator

Proof.

• h satisfies the first condition in Definition 50 because:

∀I ∈ P(I), ∀i ∈ I,

µI(i) = 1⇒ ∀t ∈ T , µI↓(t) = inf
y∈I

[
min

(
1, 1 +R(t, y)− µI(y)

)]
= min

y∈I
R(t, y)

∀i ∈ I,

µI↑↓(i) = min
t∈T

[
min(1, 1 +R(t, i)−min

y∈I
R(t, y))

]
= 1

So h(i) = 1 and i ∈ h(I)

Thus I ⊂ h(I).

• h satisfies the second condition in Definition 50 because:

Let I, J ∈ P(I) such as I ⊂ J.

∀i ∈ I , µI(i) ≤ µJ(i)

So ∀t ∈ T ,

min
i∈I

[
min(1, 1− µI(i) +R(t, i))

]
≥ min

i∈I

[
min(1, 1− µJ(i) +R(t, i))

]
Thus µI↓(t) ≥ µJ↓(t).

∀i ∈ I ,

min
t∈T

[
min(1, 1− µI↓(t) +R(t, i))

]
≤ min

t∈T

[
min(1, 1− µJ↓(t) +R(t, i))

]
So µI↑↓(i) ≤ µJ↑↓(i)

Thus core(I↑↓) ⊂ core(J↑↓) and h(I) ⊂ h(J).

• h satisfies the third condition in Definition 50 because:

We already proved that h(I) ⊂ h(h(I))∀I ∈ P(I). Then, we have to show that

h(h(I)) ⊂ h(I).

∀i ∈ h(h(I)), µh(I)↑↓(i) = 1⇒ R(t, i) ≥ µh(I)↓(t), ∀t ∈ T
µh(I)↓(t) = inf

y∈I

[
min

(
1, 1 +R(t, y)− µh(I)(y)

)]
= min

y∈h(I)
R(t, y)

SoR(t, i) ≥ min
y∈h(I)

R(t, y), ∀t ∈ T .

Similarly, ∀i ∈ h(I), ∀t ∈ T ,R(t, i) ≥ min
y∈I
R(t, y)

So min
y∈h(I)

R(t, y) ≥ min
z∈I
R(t, z), ∀t ∈ T

SoR(t, i) ≥ min
y∈I
R(t, y), ∀i ∈ h(h(I)), ∀t ∈ T .

µI↓(t) = inf
y∈I

[
min

(
1, 1 +R(t, y)− µI(y)

)]
= min

y∈I
R(t, y)

So µI↑↓(i) = inf
t∈T

[
min

(
1, 1 +R(t, i)− µI↓(t)

)]
, ∀i ∈ h(h(I))

µI↑↓(i) = inf
t∈T

[
min

(
1, 1 +R(t, i)−min

y∈I
R(t, y)

)]
µI↑↓(i) = 1

C.2. Proof 177

Thus i ∈ h(I) and h(h(I)) ⊂ h(I).

So h(I) = h(h(I)).

Therefore, h is a closure operator.

179

Appendix D

Fuzzy Close Algorithm:
Experimental Results

In this chapter, we present a benchmark that enables to assess fuzzy Close. In order
to compare our algorithm to the fuzzy version of Apriori (Agrawal et al., 1993) and
to UBFFPT (Lin et al., 2010a), we have implemented these algorithms. As our im-
plementations may not be fully optimized, our results do not show any execution
time. The metric that we used is the number of database passes. It allows to directly
compare the fuzzy version of Apriori to our algorithm.

D.1 Datasets

We used three different datasets. The first one is the mushroom dataset (Schlimmer,
1987). It contains 8124 instances (or transactions). The number of features (or items)
is 22. Those are all categorical features, so the final binary dataset contains 119 at-
tributes. To fuzzify it, zeros were replaced by a uniform random number in [0, 0.5[
and ones were replaced by a uniform random number in [0.5, 1].

The two other datasets come from the 2017 Civil Service People Survey (Govern-
ment of the United Kingdom, 2017). Those are surveys that only contain numbers in
[0, 1]. One dataset, that is called benchmark scores, contains 9 instances. Features have
been pruned to avoid missing values for a final amount of 87 features. The other
dataset is called all organisation scores. After filtering missing values, the dataset con-
tains 93 instances and 84 features.

D.2 Results and Discussion

Results are shown in Figure D.1. For the mushroom dataset, we can observe that our
algorithm makes at best one less database pass than the fuzzy version of Apriori.
This is due to the fact that data are not highly correlated and are sparse. That means
that most frequent itemsets are closed. As a consequence, with the cost of computing
closures, our algorithm should not be expected to outperform Apriori and UBFFPT
on such a dataset.

Observations are different with the two other datasets. We can see that the lower
the minimum support threshold, the larger the difference between the number of
database passes of both algorithms. These data come from surveys, whose data are
usually highly correlated and dense. Our algorithm takes advantage of this using
the closure operator. Thus, most generators are much shorter than their closures.
That explains the lower amount of database passes.

The UBFFPT algorithm needs 4 database passes to construct its tree and to extract
frequent itemsets. Besides, frequent pattern mining algorithms, such as UBFFPT,

180 Appendix D. Fuzzy Close Algorithm: Experimental Results

0.3 0.4 0.5 0.6 0.7

2

4

6

8

10

Minimum support threshold

N
um

be
r

of
da

ta
bs

e
pa

ss
es

Fuzzy Apriori
Fuzzy Close

(A) Mushroom dataset

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

5

10

15

Minimum support threshold

N
um

be
r

of
da

ta
bs

e
pa

ss
es

Fuzzy Apriori
Fuzzy Close

(B) Benchmark dataset

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0

5

10

15

Minimum support threshold

N
um

be
r

of
da

ta
bs

e
pa

ss
es

Fuzzy Apriori
Fuzzy Close

(C) All organisation scores dataset

FIGURE D.1: Plots showing the number of database passes relatively
to the minimum support threshold for the three datasets.

spend most of their time traversing the tree. For highly correlated data, as in the
benchmark dataset, our algorithm has an edge on these algorithms. Moreover, it
consumes less memory than Apriori, which generates many candidates at each it-
eration, and than UBFFPT, which browses all the paths to the item under study1 to
generate candidates.

Also, the first iteration of generating closures in our algorithm can bring valuable
insight. Indeed, if most 1-itemsets are closed, then the data is likely to be weakly cor-
related and another algorithm is likely to perform better. However, if the proportion
of closed 1-itemsets is low, the data is likely to be highly correlated and our algo-
rithm will then compute all the frequent itemsets in few database passes.

1One item is usually represented by several nodes in the tree.

181

Appendix E

Topological Sorting

In this chapter, we focus on defining what topological sorting is. We also give an il-
lustrative example and then mention the main algorithms for obtaining a topological
sort.

E.1 Definitions

Given a directed acyclic graph G = (V, E), a topological sort on G is a total order of
its vertices, which is defined as:
Definition 52: total order

A dyadic relation ≤A is a total order on a set A if ∀a1, a2, a3 ∈ A it verifies:

• if a1 ≤A a2 and a2 ≤A a1, then a1 = a2 (antisymmetry),

• if a1 ≤A a2 and a2 ≤A a3, then a1 ≤A a3 (transitivity),

• a1 ≤A a2 or a2 ≤A a1 (connexity).

We can thus define what a topological sort is.

Definition 53: topological sort

A topological sort of a directed acyclic graph (V, E) is a total order of its vertices
such that for each edge (v1, v2) ∈ E, v1 comes before v2 in the ordering.

It should be noted that topological sorting requires a directed acyclic graph. If the
graph under study contains a circle, then a total order on the vertices cannot be
obtained.

E.2 Example

Let us consider the graph G = (V, E) with V = {A, B, C, D, E, F}. It is displayed on
figure E.1 (on the next page). This graph admits several topological sorts:

• A→ B→ C→ D→ E→ F

• A→ B→ D→ C→ E→ F

• A→ B→ D→ C→ F→ E

• A→ B→ C→ D→ F→ E

• A→ B→ C→ E→ D→ F

182 Appendix E. Topological Sorting

A

C

E F

B

D

FIGURE E.1: Example of a directed acyclic graph for topological sort-
ing.

• B→ A→ C→ D→ E→ F

• B→ A→ D→ C→ E→ F

• B→ A→ D→ C→ F→ E

• B→ A→ C→ D→ F→ E

• B→ A→ C→ E→ D→ F

• B→ D→ A→ C→ E→ F

• B→ D→ A→ C→ F→ E

E.3 Algorithms

There are two main algorithms for obtaining a topological sort. The first one, Kahn’s
algorithm (Kahn, 1962), starts by searching all the nodes that have no incoming edges.
Then, it loops over these nodes, adds them to the tail of the sort and goes down edge
by edge. When a new node is visited, the incoming edge that led to it is removed
and, if it has no other incoming edge, then it is added to the tail of the sort. This
algorithm has a linear complexity in the number of nodes and the number of edges.

The other algorithm relies on depth-first search. It has been first introduced by
(Tarjan, 1976). The first node to visit is selected randomly. Then, starting from this
node, it performs a depth-first search that finishes when a node has no outgoing
edges or when the node has already been visited. Then, another unvisited node is
selected and the same process is applied until all nodes have been visited.

183

Appendix F

Additional Results

F.1 Constraints in the Organ Annotation Experiment

In this section, we specify the constraints that enabled to generate the explanations
in figure 9.15 on page 145.

C = {(xl_lung, xr_lung,Rcompletely to the left of),
(xl_kidney, xspleen,Rbelow),
(xr_psoas, xr_kidney,Rbelow),

(xl_kidney, xr_kidney,Rto the left of),
(xl_kidney, xl_lung,Rcompletely below),
(xr_kidney, xr_lung,Rcompletely below),

(xl_lung, xl_psoas,Rabove),
(xspleen, xr_lung,Rto the left of),

(xliver, xspleen,Rcompletely to the right of),
(xl_psoas, xr_psoas,Rcompletely to the left of),

(xl_lung, xspleen,Rabove),
, (xr_kidney, xspleen,Rto the right of),

(xr_psoas, xr_lung,Rcompletely below),
(xspleen, xr_kidney,Rto the left of),

(xspleen, xl_lung,Rcompletely below),
(xr_lung, xl_lung,Rcompletely to the right of),

(xr_kidney, xliver,Rcompletely below),
(xr_lung, xr_psoas,Rabove),

(xl_psoas, xl_lung,Rcompletely below),
(xr_psoas, xliver,Rbelow),

(xbladder, xr_lung,Rbelow),
(xliver, xr_lung,Rbelow),

(xr_psoas, xl_psoas,Rcompletely to the right of),
(xr_kidney, xl_psoas,Rto the right of),

(xspleen, xliver,Rcompletely to the left of),
(xl_psoas, xspleen,Rbelow),

(xl_kidney, xl_psoas,Rabove)}

184 Appendix F. Additional Results

F.2 Time Series Classification: Linguistic Variables

In this section, we specify the linguistic variables used in the experiment about time
series classification of toxic chemicals (cf. Chapter 10).

0.000 0.005 0.010 0.015 0.020

Average gradient

0.0

0.2

0.4

0.6

0.8

1.0

M
em

b
er

sh
ip

fu
n
ct

io
n

Fuzzy partition of the linguistic variable increases

Increases averagely Increases much Increases little

(A) Increases

−0.020 −0.015 −0.010 −0.005 0.000

Average gradient

0.0

0.2

0.4

0.6

0.8

1.0

M
em

b
er

sh
ip

fu
n
ct

io
n

Fuzzy partition of the linguistic variable decreases

Decreases averagely Decreases much Decreases little

(B) Decreases

FIGURE F.1: Fuzzy sets corresponding to the linguistic variables Increases and Decreases.

0.000 0.002 0.004 0.006 0.008

Standard deviation

0.0

0.2

0.4

0.6

0.8

1.0

M
em

b
er

sh
ip

fu
n
ct

io
n

Fuzzy partition of the linguistic variable varies

Varies very little Varies little Varies averagely Varies much Varies very much

FIGURE F.2: Fuzzy sets corresponding to the linguistic variable Varies.

0.000 0.005 0.010 0.015 0.020

Average absolute difference

0.0

0.2

0.4

0.6

0.8

1.0

M
em

b
er

sh
ip

fu
n
ct

io
n

Fuzzy partition of the linguistic variable distance

Very close to Close to At an average distance from Far from Very far from

FIGURE F.3: Fuzzy sets corresponding to the linguistic variable Distance.

185

Appendix G

SIMD

Single Instruction Multiple Data (SIMD) is a vectorization paradigm. It enables to
implement instructions that perform parallel computations in a single clock cycle.
Figure G.1 presents an example that shows how parallelization through SIMD in-
structions can help to perform more operations than non-SIMD instructions. Such
instructions are available in most microprocessors from Intel and AMD as a set of
vector extensions named Advanced Vector Extensions (AVX).

In this appendix, we briefly explain the architecture on which AVX relies and we
then give examples of instructions.

FIGURE G.1: Figure representing how SIMD instructions enable to
parallelize computations compared to a single instruction operating

on single data (Intel, 2011).

G.1 Architecture

SIMD instructions rely on a register on which operations are performed. For AVX,
the width of the register is 128 bits. Two other versions have been released in the last
few years: AVX2, which is based on a 256-bit register, and AVX512, whose register
is twice as big and reaches 512 bits. The experiments presented in Chapter 8 were
performed using these three variants of AVX.

In Figure G.2, we see how instances from different data types fit in the register.
In Chapter 8, we dealt with 8-bit unsigned integer and used AVX512. Thus, we were
able to process 64 instances per instruction.

186 Appendix G. SIMD

FIGURE G.2: Figure showing how different data types fit in a 128-bit
register (upper part of the figure) and in a 256-bit register (lower part)

(Intel, 2011).

G.2 Instructions

We resorted to three different instructions in our experiments:

• _mm512_loadu_si512, which enables to load 512 bits of integer data from mem-
ory into the register,

• _mm512_storeu_si512, which enables to store 512 bits of integer data into the
register,

• _mm512_min_epu8, which enables to return the minimum value between two
8-bit unsigned integers,

• _mm512_max_epu8, which enables to return the maximum value between two
8-bit unsigned integers.

187

Appendix H

Résumé en français

Ces dernières années, en raison d’importantes améliorations des performances, l’Intel-
ligence Artificielle (IA) s’est démocratisée au sein de notre société. En effet, de nom-
breuses applications s’appuyant sur des IA sont désormais disponibles et ont un
impact concret sur des milliards d’êtres humains. Cependant, les modèles utilisés
aujourd’hui sont opaques, ce qui empêche de véritablement comprendre le raison-
nement qu’ils effectuent pour produire un résultat. Cette faiblesse est d’autant plus
importante qu’il a été montré que ces modèles se basent parfois sur des corrélations
fallacieuses présentes dans les données d’entraînement et peuvent donc produire
des raisonnements erronés. Ainsi, dans certains domaines sensibles pour lesquels
le coût d’une mauvaise décision est très élevé, tels que la médecine ou les voitures
autonomes par exemple, il est dangereux de s’appuyer sur une IA dont on ne peut
pas déterminer précisément le comportement.

Dans cette thèse, dans le cadre des applications sensibles, nous proposons une
approche permettant de construire un modèle de classification ou d’annotation ca-
pable de fournir une explication claire et détaillée du raisonnement qui l’a mené à
un résultat. En particulier, le modèle s’appuie sur la détection de relations entre les
entités présentes dans les instances de la base de données étudiée. Ainsi, le mod-
èle peut produire un résultat et générer une explication en langage naturel qui fait
intervenir ces relations.

Étant donné un vocabulaire de relations floues potentiellement pertinentes fourni
par un expert, l’approche que nous proposons se divise en trois grandes étapes : i) les
relations du vocabulaire sont évaluées sur les données d’entraînement de manière
à éviter les calculs redondants et inutiles ; ii) les sous-ensembles de relations les
plus fréquents au sein de la base d’entraînement sont extraits ; iii) des règles (dans le
cadre de la classification) ou des contraintes pour définir un problème de satisfaction
de contraintes floues (dans le cadre de l’annotation) sont générées à partir des sous-
ensembles de relations extraits à l’étape précédente afin de construire un modèle. Ce
modèle peut ensuite être utilisé pour classifier ou annoter de nouvelles instances et
pour générer des explications en langage naturel retranscrivant son raisonnement et
la manière avec laquelle il utilise les relations apprises.

Dans ces travaux, nous proposons notamment un nouvel algorithme de fouille
de données pour extraire les motifs fréquents au sein d’une base de données floues.
Lorsque les données sont fortement corrélées entre elles, ce qui est le cas au sein
d’une même classe d’entités par exemple, cet algorithme tire profit d’un opérateur
de fermeture pour être plus performant. Nous présentons également deux nou-
velles heuristiques pour évaluer rapidement les relations de notre vocabulaire sur
les données d’entraînement. La première heuristique proposée consiste à éliminer,
pendant le processus d’entraînement, les relations qui ne pourront plus être con-
sidérées comme fréquentes par notre algorithme de fouille de données. La seconde

188 Appendix H. Résumé en français

heuristique s’intéresse aux liens logiques et aux dépendances entre les relations util-
isées pour obtenir un ordre d’évaluation sur ces relations afin d’éviter les calculs
redondants. Nous présentons également un nouvel algorithme de calcul de la di-
latation floue. Cet algorithme tient compte uniquement des pixels contribuant au
résultat final et s’appuie sur des instructions SIMD afin de paralléliser le calcul au
maximum.

Nous avons testé notre approche sur une base de données jouet pour la classifi-
cation et sur un jeu d’images médicales pour faire de l’annotation d’organes. Outre
les performances en classification/annotation, nous avons validé la pertinence des
explications produites en demandant à un panel de participants d’évaluer plusieurs
critères, tels que la cohérence des explications, leurs lisibilités ou encore la confiance
qu’elles procurent. Nous avons également évalué les performances de l’algorithme
de dilatation floue que nous proposons. Contrairement à l’état de l’art, il produit un
résultat exact tout en étant plus rapide sur les tailles d’objet présentes dans nos jeux
de données.

189

Bibliography

Aamodt, A. and Plaza, E. (1994). “Case-based reasoning: Foundational issues, method-
ological variations, and system approaches”. In: AI communications 7.1, pp. 39–59.

Adebayo, J. et al. (2018). “Sanity Checks for Saliency Maps”. In: Advances in Neural
Information Processing Systems 31, pp. 9505–9515.

Agrawal, R., Imieliński, T., and Swami, A. (1993). “Mining association rules between
sets of items in large databases”. In: Acm sigmod record. Vol. 22. 2, pp. 207–216.

Allen, J. F. (1983). “Maintaining knowledge about temporal intervals”. In: Communi-
cations of the ACM 26.11, pp. 832–843.

Alonso, J.M. and Bugarín, A. (2019). “ExpliClas: Automatic Generation of Expla-
nations in Natural Language for Weka Classifiers”. In: 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6.

Alvarez Melis, D. and Jaakkola, T. (2018). “Towards Robust Interpretability with Self-
Explaining Neural Networks”. In: Advances in Neural Information Processing Sys-
tems 31, pp. 7775–7784.

Assemblée Nationale (2019). Projet de loi relatif à la bioéthique. URL: http://www.
assemblee-nationale.fr/15/projets/pl2187-ei.asp.

Au, W-H. and Chan, K. C. C. (1998). “An effective algorithm for discovering fuzzy
rules in relational databases”. In: Fuzzy Systems Proceedings, 1998. IEEE World
Congress on Computational Intelligence., The 1998 IEEE International Conference on.
Vol. 2, pp. 1314–1319.

Baader, F. (1996). “A Formal Definition for the Expressive Power of Terminological
Knowledge Representation Languages”. In: Journal of Logic and Computation 6.1,
pp. 33–54.

Baaj, I. and Poli, J-P. (2019). “Natural Language Generation of Explanations of Fuzzy
Inference Decisions”. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE).

Baehrens, D. et al. (2010). “How to explain individual classification decisions”. In:
Journal of Machine Learning Research 11.Jun, pp. 1803–1831.

Belohlávek, R. (1999). “Fuzzy Galois Connections”. In: Mathematical Logic Quarterly
45.4, pp. 497–504.

— (2001). “Fuzzy closure operators”. In: Journal of mathematical analysis and applica-
tions 262.2, pp. 473–489.

— (2012). Fuzzy relational systems: foundations and principles. Vol. 20.
Biederman, I. (1981). On the Semantics of a Glance at a Scene.
Biran, O. and Cotton, C. (2017). “Explanation and justification in machine learning:

A survey”. In: IJCAI 2017 Workshop on Explainable Artificial Intelligence.
Biran, O. and McKeown, K. (2017). “Human-Centric Justification of Machine Learn-

ing Predictions”. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pp. 1461–1467.

Bloch, I. (1999a). “Fuzzy relative position between objects in image processing: a
morphological approach”. In: IEEE transactions on pattern analysis and machine
intelligence 21.7, pp. 657–664.

http://www.assemblee-nationale.fr/15/projets/pl2187-ei.asp
http://www.assemblee-nationale.fr/15/projets/pl2187-ei.asp

190 BIBLIOGRAPHY

Bloch, I. (1999b). “On fuzzy distances and their use in image processing under im-
precision”. In: Pattern Recognition 32.11, pp. 1873–1895.

— (2005). “Fuzzy spatial relationships for image processing and interpretation: a
review”. In: Image and Vision Computing 23.2, pp. 89–110.

Bloch, I. and Maitre, H. (1995). “Fuzzy mathematical morphologies: A comparative
study”. In: Pattern Recognition 28.9, pp. 1341–1387.

Booth, S., Muise, C., and Shah, J. (2019). “Evaluating the Interpretability of the Knowl-
edge Compilation Map: Communicating Logical Statements Effectively”. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pp. 5801–5807.

Borgefors, G. (1986). “Distance transformations in digital images”. In: Computer Vi-
sion, Graphics, and Image Processing 34.3, pp. 344–371.

Borgida, A. (1996). “On the relative expressiveness of description logics and predi-
cate logics”. In: Artificial Intelligence 82.1, pp. 353–367.

Breiman, L. (1984). Classification and regression trees.
— (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Brinker, T. J. et al. (2019). “Deep learning outperformed 136 of 157 dermatologists in

a head-to-head dermoscopic melanoma image classification task”. In: European
Journal of Cancer 113, pp. 47–54.

Bruce, G. (1983). “Principles of rule-based expert systems”. In: Advances in computers
22, pp. 163–216.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). “Model compression”. In:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 535–541.

Byrne, R. M. J. (2019). “Counterfactuals in Explainable Artificial Intelligence (XAI):
Evidence from Human Reasoning”. In: Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-19, pp. 6276–6282.

Byrne, R. M. J. and Johnson-Laird, P. N. (2009). “‘If’and the problems of conditional
reasoning”. In: Trends in Cognitive Sciences 13.7, pp. 282–287.

Cariñena, P. et al. (2000). “A language for expressing fuzzy temporal rules.” In: Math-
ware and Soft Computing 7.2-3, pp. 213–227.

Cawley, G. C. and Talbot, N. L. C. (2010). “On over-fitting in model selection and sub-
sequent selection bias in performance evaluation”. In: Journal of Machine Learning
Research 11.Jul, pp. 2079–2107.

Cayrol, M., Farreny, H., and Prade, H. (1982). “Fuzzy pattern matching”. In: Kyber-
netes 11.2, pp. 103–116.

Chanussot, J., Nyström, I., and Sladoje, N. (2005). “Shape signatures of fuzzy star-
shaped sets based on distance from the centroid”. In: Pattern Recognition Letters
26.6, pp. 735–746.

Chen, J. et al. (2018a). “Knowledge-based transfer learning explanation”. In: Six-
teenth International Conference on Principles of Knowledge Representation and Rea-
soning.

Chen, J. et al. (2018b). “Learning to Explain: An Information-Theoretic Perspective
on Model Interpretation”. In: Proceedings of the 35th International Conference on
Machine Learning. Vol. 80, pp. 883–892.

Chen, T. and Guestrin, C. (2016). “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785–794.

Cinbis, R. G. and Aksoy, S. (2007). “Relative Position-Based Spatial Relationships
using Mathematical Morphology”. In: 2007 IEEE International Conference on Image
Processing. Vol. 2, pp. 97–100.

BIBLIOGRAPHY 191

Clément, M., Kurtz, C., and Wendling, L. (2018). “Learning spatial relations and
shapes for structural object description and scene recognition”. In: Pattern Recog-
nition 84, pp. 197–210.

Clément, M. et al. (2017). “Directional Enlacement Histograms for the Description
of Complex Spatial Configurations between Objects”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 39.12, pp. 2366–2380.

Cohen, N., Sharir, O., and Shashua, A. (2016). “On the Expressive Power of Deep
Learning: A Tensor Analysis”. In: 29th Annual Conference on Learning Theory. Vol. 49,
pp. 698–728.

Colliot, O. (2003). “Représentation, évaluation et utilisation de relations spatiales
pour l’interprétation d’images. Application à la reconnaissance de structures anatomiques
en imagerie médicale”. PhD thesis. Télécom ParisTech.

Craven, M. and Shavlik, J. W. (1996). “Extracting tree-structured representations of
trained networks”. In: Advances in neural information processing systems, pp. 24–30.

Dagum, L. and Menon, R. (1998). “OpenMP: an industry standard API for shared-
memory programming”. In: Computational Science & Engineering, IEEE 5.1, pp. 46–
55.

Dai, B., Zhang, Y., and Lin, D. (2017). “Detecting visual relationships with deep re-
lational networks”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3076–3086.

Das, A. et al. (2017). “Human attention in visual question answering: Do humans
and deep networks look at the same regions?” In: Computer Vision and Image Un-
derstanding 163, pp. 90–100.

Davis, R., Shrobe, H., and Szolovits, P. (1993). “What is a knowledge representation?”
In: AI magazine 14.1, pp. 17–17.

De Raedt, L. and Thon, I. (2011). “Probabilistic Rule Learning”. In: Inductive Logic
Programming, pp. 47–58.

Donadello, I., Serafini, L., and Garcez, A. d’Avila (2017). “Logic Tensor Networks for
Semantic Image Interpretation”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pp. 1596–1602.

Doshi-Velez, F. and Kim, B. (2017). “Towards A Rigorous Science of Interpretable
Machine Learning”. In: eprint arXiv:1702.08608.

Dubois, D., Fargier, H., and Prade, H. (1996). “Possibility theory in constraint sat-
isfaction problems: Handling priority, preference and uncertainty”. In: Applied
Intelligence 6.4, pp. 287–309.

Dubois, D., HadjAli, A., and Prade, H. (2003). “Fuzziness and uncertainty in tempo-
ral reasoning”. In: J. UCS 9.9, p. 1168.

Dubois, D., Prade, H., and Testemale, C. (1988). “Weighted fuzzy pattern matching”.
In: Fuzzy sets and systems 28.3, pp. 313–331.

Dumancic, S., Garcia-Duran, A., and Niepert, M. (2019a). “A Comparative Study of
Distributional and Symbolic Paradigms for Relational Learning”. In: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19,
pp. 6088–6094.

— (2019b). “A Comparative Study of Distributional and Symbolic Paradigms for
Relational Learning”. In: Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, pp. 6088–6094.

Dumancic, S. et al. (2019c). “Learning Relational Representations with Auto-encoding
Logic Programs”. In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 6081–6087.

Dwyer, K. and Holte, R. (2007). “Decision tree instability and active learning”. In:
European Conference on Machine Learning, pp. 128–139.

192 BIBLIOGRAPHY

Erhan, D. et al. (2009). “Visualizing higher-layer features of a deep network”. In:
European Council (2016). The general data protection regulation.
Evans, R. and Grefenstette, E. (2018). “Learning explanatory rules from noisy data”.

In: Journal of Artificial Intelligence Research 61, pp. 1–64.
Feigenbaum, E. A., Buchanan, B. G., and Lederberg, J. (1970). “On generality and

problem solving: A case study using the DENDRAL program”. In:
Fernandez, A. et al. (2019). “Evolutionary Fuzzy Systems for Explainable Artificial

Intelligence: Why, When, What for, and Where to?” In: IEEE Computational Intel-
ligence Magazine 14.1, pp. 69–81.

FICO (1989). FICO. URL: https://www.fico.com.
— (2018). FICO Explainable Machine Learning Challenge. URL: https://community.

fico.com/s/explainable-machine-learning-challenge.
Forgy, C. L. (1989). “Rete: A fast algorithm for the many pattern/many object pattern

match problem”. In: Readings in Artificial Intelligence and Databases, pp. 547–559.
Fournier-Viger, P. et al. (2017). “A survey of itemset mining”. In: Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery 7.4, e1207.
Francis, J., Rahbarnia, F., and Matsakis, P. (2018). “Fuzzy NLG system for extensive

verbal description of relative positions”. In: 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pp. 1404–1411.

Freeman, J. (1975). “The modelling of spatial relations”. In: Computer Graphics and
Image Processing 4.2, pp. 156–171.

Friedman, J. H. (2001). “Greedy function approximation: a gradient boosting ma-
chine”. In: Annals of statistics, pp. 1189–1232.

Frosst, N. and Hinton, G. (2017). “Distilling a neural network into a soft decision
tree”. In: arXiv preprint arXiv:1711.09784.

Ganter, B. and Wille, R. (1996). Formal concept analysis: mathematical foundations.
Gatt, A. and Reiter, E. (2009). “SimpleNLG: A Realisation Engine for Practical Appli-

cations”. In: Proceedings of the 12th European Workshop on Natural Language Gener-
ation, pp. 90–93.

Gerla, G. (2013). Fuzzy logic: mathematical tools for approximate reasoning. Vol. 11.
Geurts, P. (2001). “Pattern Extraction for Time Series Classification”. In: Principles of

Data Mining and Knowledge Discovery, pp. 115–127.
Ghorbani, A. et al. (2019). “Towards automatic concept-based explanations”. In: Ad-

vances in Neural Information Processing Systems, pp. 9273–9282.
Gilpin, L. H. et al. (2018). “Explaining Explanations: An Overview of Interpretability

of Machine Learning”. In: 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), pp. 80–89.

Ginet, C. (2016). “Reasons Explanation: Further Defense of a Non-causal Account”.
In: The Journal of Ethics 20.1-3, pp. 219–228.

Goldstein, A. et al. (2015). “Peeking inside the black box: Visualizing statistical learn-
ing with plots of individual conditional expectation”. In: Journal of Computational
and Graphical Statistics 24.1, pp. 44–65.

Gondra, I. and Cabria, I. (2016). “Computing force field-based directional maps in
subquadratic time”. In: Knowledge-Based Systems 95, pp. 58–70.

González, A. et al. (2012). “An efficient inductive genetic learning algorithm for
fuzzy relational rules”. In: International Journal of Computational Intelligence Sys-
tems 5.2, pp. 212–230.

Goodman, B. and Flaxman, S. (2017). “European Union regulations on algorithmic
decision-making and a "right to explanation"”. In: AI Magazine 38.3, pp. 50–57.

Government of the United Kingdom (2017). URL: https://www.gov.uk/government/
publications/civil-service-people-survey-2017-results--2.

https://www.fico.com
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.gov.uk/government/publications/civil-service-people-survey-2017-results--2
https://www.gov.uk/government/publications/civil-service-people-survey-2017-results--2

BIBLIOGRAPHY 193

Goyal, Y. et al. (2019). “Counterfactual Visual Explanations”. In: arXiv preprint arXiv:1904.07451.
Graziani, M., Andrearczyk, V., and Müller, H. (2018). “Regression concept vectors for

bidirectional explanations in histopathology”. In: Understanding and Interpreting
Machine Learning in Medical Image Computing Applications, pp. 124–132.

Grosan, C. and Abraham, A. (2011). “Rule-based expert systems”. In: Intelligent Sys-
tems, pp. 149–185.

Guidotti, R. et al. (2018). “Local rule-based explanations of black box decision sys-
tems”. In: arXiv preprint arXiv:1805.10820.

Gunning, D. (2016). “Explainable artificial intelligence (xAI)”. In:
Haenssle, H. A. et al. (2018). “Man against machine: diagnostic performance of a

deep learning convolutional neural network for dermoscopic melanoma recog-
nition in comparison to 58 dermatologists”. In: Annals of Oncology 29.8, pp. 1836–
1842.

Hallac, D., Nystrup, P., and Boyd, S. (2019). “Greedy Gaussian segmentation of mul-
tivariate time series”. In: Advances in Data Analysis and Classification 13.3, pp. 727–
751.

Halpern, J. Y. and Pearl, J. (2001). “Causes and Explanations: A Structural-Model
Approach”. In: Proceedings of the Seventeenth Conference on Uncertainy in Artificial
Intelligence.

Han, J., Pei, J., and Yin, Y. (2000). “Mining frequent patterns without candidate gen-
eration”. In: ACM sigmod record 29.2, pp. 1–12.

Hastie, T. and Tibshirani, R. (1986). “Generalized Additive Models”. In: Statistical
Science, pp. 297–310.

Hendricks, L. A. et al. (2016). “Generating visual explanations”. In: European Confer-
ence on Computer Vision, pp. 3–19.

Hendricks, L. A. et al. (2018). “Grounding visual explanations”. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 264–279.

Hernández, D., Clementini, E., and Di Felice, P. (1995). “Qualitative distances”. In:
International Conference on Spatial Information Theory, pp. 45–57.

Hinton, G., Vinyals, O., and Dean, J. (2015). “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531.

Ho, T. K. (1995). “Random decision forests”. In: Proceedings of 3rd international confer-
ence on document analysis and recognition. Vol. 1, pp. 278–282.

Hochreiter, S. and Schmidhuber, J. (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780.

Hoffman, Robert R et al. (2018). “Metrics for explainable AI: Challenges and prospects”.
In: arXiv preprint arXiv:1812.04608.

Höhle, U. (1996). “On the fundamentals of fuzzy set theory”. In: Journal of mathemat-
ical Analysis and Applications 201.3, pp. 786–826.

Hong, T-P., Kuo, C-S., and Chi, S-C. (1999). “Mining association rules from quantita-
tive data”. In: Intelligent data analysis 3.5, pp. 363–376.

Hotel, O. (2017). “Algorithms, methods and models for the application of surface
acoustic wave sensors to the recognition of chemical compound signatures”. PhD
thesis. Université Pierre et Marie Curie - Paris VI.

Hudelot, C., Atif, J., and Bloch, I. (2008). “Fuzzy spatial relation ontology for image
interpretation”. In: Fuzzy Sets and Systems 159.15, pp. 1929–1951.

Huk Park, D. et al. (2018). “Multimodal explanations: Justifying decisions and point-
ing to the evidence”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8779–8788.

194 BIBLIOGRAPHY

Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019). “Abduction-based expla-
nations for machine learning models”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33, pp. 1511–1519.

Intel (2011). Introduction to Intel R©Advanced Vector Extensions. https://software.intel.com/en-
us/articles/introduction-to-intel-advanced-vector-extensions.

Irsoy, O., Yıldız, O. T., and Alpaydın, E. (2012). “Soft decision trees”. In: Proceedings of
the 21st International Conference on Pattern Recognition (ICPR2012), pp. 1819–1822.

Jakulin, A. et al. (2005). “Nomograms for visualizing support vector machines”. In:
Proceedings of the eleventh ACM SIGKDD international conference on Knowledge dis-
covery in data mining, pp. 108–117.

James, G. et al. (2013). An introduction to statistical learning. Vol. 112.
Jimenez-del-Toro, O. et al. (2016). “Cloud-based evaluation of anatomical structure

segmentation and landmark detection algorithms: VISCERAL anatomy bench-
marks”. In: IEEE transactions on medical imaging 35.11, pp. 2459–2475.

Jin, Y. (2000). “Fuzzy modeling of high-dimensional systems: complexity reduction
and interpretability improvement”. In: IEEE Transactions on Fuzzy Systems 8.2,
pp. 212–221.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, in-
ference, and consciousness. 6.

— (2010). “Mental models and human reasoning”. In: Proceedings of the National
Academy of Sciences 107.43, pp. 18243–18250.

Kahn, A. B. (1962). “Topological Sorting of Large Networks”. In: Commun. ACM 5.11,
pp. 558–562.

Kellogg, R. T. (1980). “Feature frequency and hypothesis testing in the acquisition of
rule-governed concepts”. In: Memory & Cognition 8.3, pp. 297–303.

Kenny, E. M. and Keane, M. T. (2019). “Twin-Systems to Explain Artificial Neural
Networks using Case-Based Reasoning: Comparative Tests of Feature-Weighting
Methods in ANN-CBR Twins for XAI”. In: Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-19, pp. 2708–2715.

Kim, B., Khanna, R., and Koyejo, O. O. (2016). “Examples are not enough, learn to
criticize! Criticism for Interpretability”. In: Advances in Neural Information Process-
ing Systems 29, pp. 2280–2288.

Kim, B., Rudin, C., and Shah, J. (2014). “The Bayesian Case Model: A Generative
Approach for Case-Based Reasoning and Prototype Classification”. In: Advances
in Neural Information Processing Systems 27, pp. 1952–1960.

Kim, B. et al. (2018). “Interpretability Beyond Feature Attribution: Quantitative Test-
ing with Concept Activation Vectors (TCAV)”. In: International Conference on Ma-
chine Learning, pp. 2673–2682.

Kindermans, P-J. et al. (2017). “Learning how to explain neural networks: Patternnet
and patternattribution”. In: arXiv preprint arXiv:1705.05598.

Kindermans, P-J. et al. (2019). “The (un) reliability of saliency methods”. In: Explain-
able AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 267–280.

Koh, P. W. and Liang, P. (2017). “Understanding black-box predictions via influence
functions”. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1885–1894.

Kramer, S., Pfahringer, B., and Helma, C. (1998). “Stochastic propositionalization of
non-determinate background knowledge”. In: International Conference on Induc-
tive Logic Programming, pp. 80–94.

Kuok, C. M., Fu, A., and Wong, M. H. (1998). “Mining fuzzy association rules in
databases”. In: ACM Sigmod Record 27.1, pp. 41–46.

BIBLIOGRAPHY 195

Lacassagne, L. et al. (2014). “High Level Transforms for SIMD and low-level com-
puter vision algorithms”. In: ACM Workshop on Programming Models for SIMD/Vec-
tor Processing (PPoPP), pp. 49–56.

An Evaluation of the Human-Interpretability of Explanation (2018).
Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). “Interpretable decision sets: A

joint framework for description and prediction”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1675–
1684.

Lakkaraju, H. et al. (2019). “Faithful and customizable explanations of black box
models”. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, pp. 131–138.

Langs, G. et al. (2013). “VISCERAL: Towards Large Data in Medical Imaging - Chal-
lenges and Directions”. In: MCBR-CDS MICCAI workshop. Vol. 7723.

Laugel, T. et al. (2019). “The Dangers of Post-hoc Interpretability: Unjustified Coun-
terfactual Explanations”. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 2801–2807.

Le Yaouanc, J-M. and Poli, J-P. (2012). “A Fuzzy Spatio-temporal-Based Approach
for Activity Recognition”. In: Advances in Conceptual Modeling, pp. 314–323.

Lécué, F. and Pommellet, T. (2019). “Feeding Machine Learning with Knowledge
Graphs for Explainable Object Detection”. In: Proceedings of the ISWC 2019 Satel-
lite Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas) co-located with
18th International Semantic Web Conference (ISWC 2019), Auckland, New Zealand,
October 26-30, 2019, pp. 277–280.

Lesot, M-J., Rifqi, M., and Bouchon-Meunier, B. (2008). “Fuzzy prototypes: From a
cognitive view to a machine learning principle”. In: Fuzzy Sets and Their Exten-
sions: Representation, Aggregation and Models, pp. 431–452.

Letham, B. et al. (2015). “Interpretable classifiers using rules and bayesian analysis:
Building a better stroke prediction model”. In: The Annals of Applied Statistics 9.3,
pp. 1350–1371.

Levesque, H. J. and Brachman, R. J. (1987). “Expressiveness and tractability in knowl-
edge representation and reasoning 1”. In: Computational intelligence 3.1, pp. 78–93.

Li, O. et al. (2018). “Deep learning for case-based reasoning through prototypes: A
neural network that explains its predictions”. In: Thirty-Second AAAI Conference
on Artificial Intelligence.

Likert, R. (1932). “A technique for the measurement of attitudes.” In: Archives of psy-
chology.

Lin, C-W., Hong, T-P., and Lu, W-H. (2010a). “A two-phase fuzzy mining approach”.
In: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pp. 1–5.

— (2010b). “An efficient tree-based fuzzy data mining approach”. In: International
Journal of Fuzzy Systems 12.2, pp. 150–157.

Lindsay, R. K. et al. (1993). “DENDRAL: A case study of the first expert system for
scientific hypothesis formation”. In: Artificial Intelligence 61.2, pp. 209–261.

Lipton, Z. C. (2018). “The Mythos of Model Interpretability”. In: Queue 16.3, 30:57.
Lloyd, J. R. and Ghahramani, Z. (2015). “Statistical model criticism using kernel two

sample tests”. In: Advances in Neural Information Processing Systems, pp. 829–837.
Lu, C. et al. (2016). “Visual relationship detection with language priors”. In: European

Conference on Computer Vision, pp. 852–869.
Lundberg, S. M. and Lee, S-I. (2017). “A Unified Approach to Interpreting Model

Predictions”. In: Advances in Neural Information Processing Systems 30, pp. 4765–
4774.

196 BIBLIOGRAPHY

Lundberg, S. M. et al. (2019). “Explainable AI for Trees: From Local Explanations to
Global Understanding”. In: arXiv preprint arXiv:1905.04610.

Mackworth, A. K. (1977). “Consistency in networks of relations”. In: Artificial Intelli-
gence 8.1, pp. 99–118.

Malioutov, D. M. et al. (2017). “Learning Interpretable Classification Rules with Boolean
Compressed Sensing”. In: Transparent Data Mining for Big and Small Data, pp. 95–
121.

Marcus, G. (2018). “Deep Learning: A Critical Appraisal”. In: CoRR abs/1801.00631.
Matsakis, P. (2002). “Understanding the Spatial Organization of Image Regions by

Means of Force Histograms: A Guided Tour”. In: Applying Soft Computing in
Defining Spatial Relations, pp. 99–122.

Matsakis, P., Naeem, M., and Rahbarnia, F. (2015). “Introducing the Φ-Descriptor -
A Most Versatile Relative Position Descriptor”. In: ICPRAM.

Matsakis, P., Ni, J., and Veltman, M. (2009). “Directional relationships to a reference
object: A quantitative approach based on force fields”. In: 2009 16th IEEE Inter-
national Conference on Image Processing (ICIP), pp. 321–324.

Matsakis, P., Ni, J., and Wang, X. (2006). “Object Localization Based on Directional
Information: Case of 2D Raster Data”. In: 18th International Conference on Pattern
Recognition (ICPR’06). Vol. 2, pp. 142–146.

Matsakis, P. and Wendling, L. (1999). “A new way to represent the relative position
between areal objects”. In: IEEE Transactions on pattern analysis and machine intel-
ligence 21.7, pp. 634–643.

McClure, J. (2002). “Goal-based Explanations of Actions and Outcomes”. In: Euro-
pean Review of Social Psychology 12.1, pp. 201–235.

Michalski, R. S. (1983). “A theory and methodology of inductive learning”. In: Ma-
chine learning, pp. 83–134.

Miller, T. (2017). “Explanation in Artificial Intelligence: Insights from the Social Sci-
ences”. In: CoRR abs/1706.07269.

Miyajima, K. and Ralescu, A. (1994a). “Spatial organization in 2D images”. In: Fuzzy
Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the
Third IEEE Conference on, pp. 100–105.

— (1994b). “Spatial organization in 2D segmented images: representation and recog-
nition of primitive spatial relations”. In: Fuzzy Sets and Systems 65.2-3, pp. 225–
236.

Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models
Explainable. https://christophm.github.io/interpretable-ml-book/.

Montanari, U. (1974). “Networks of Constraints: Fundamental Properties and Ap-
plications to Picture Processing”. In: 7, pp. 95–132.

Montavon, G. et al. (2017). “Explaining nonlinear classification decisions with deep
taylor decomposition”. In: Pattern Recognition 65, pp. 211–222.

Moosavi-Dezfooli, S-H., Fawzi, A., and Frossard, P. (2016). “Deepfool: a simple and
accurate method to fool deep neural networks”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 2574–2582.

Nelder, J. A. and Mead, R. (1965). “A simplex method for function minimization”.
In: The computer journal 7.4, pp. 308–313.

Nelder, J. A. and Wedderburn, R. W. M. (1972). “Generalized linear models”. In:
Journal of the Royal Statistical Society: Series A (General) 135.3, pp. 370–384.

Nguyen, A., Yosinski, J., and Clune, J. (2015). “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 427–436.

https://christophm.github.io/interpretable-ml-book/

BIBLIOGRAPHY 197

Olah, C., Mordvintsev, A., and Schubert, L. (2017). “Feature Visualization”. In: Distill.
https://distill.pub/2017/feature-visualization.

Olah, C. et al. (2018). “The Building Blocks of Interpretability”. In: Distill. https://distill.pub/2018/building-
blocks.

OpenCCG (2004). https://github.com/OpenCCG/openccg.
Papadimitriou, S. and Mavroudi, S. (2005). “The fuzzy frequent pattern tree”. In: The

WSEAS International Conference on Computers, pp. 1–7.
Papenmeier, A., Englebienne, G., and Seifert, C. (2019). “How model accuracy and

explanati-on fidelity influence user trust in AI”. In: IJCAI Workshop on Explainable
Artificial Intelligence (XAI) 2019.

Pasquier, N. et al. (1999). “Efficient mining of association rules using closed itemset
lattices”. In: Information systems 24.1, pp. 25–46.

Paulheim, H. (2017). “Knowledge graph refinement: A survey of approaches and
evaluation methods”. In: Semantic web 8.3, pp. 489–508.

Pedreschi, D. et al. (2019). “Meaningful explanations of black box AI decision sys-
tems”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 9780–
9784.

Poli, J-P., Boudet, L., and Le Yaouanc, J-M. (2018). “Online spatio-temporal fuzzy
relations”. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1003–1010.

Poli, J-P., Boudet, L., and Mercier, D. (2016). “Online temporal reasoning for event
and data streams processing”. In: 2016 IEEE International Conference on Fuzzy Sys-
tems (FUZZ-IEEE), pp. 2257–2264.

Poli, J-P. et al. (2017). “Online Fuzzy Temporal Operators for Complex System Moni-
toring”. In: European Conference on Symbolic and Quantitative Approaches to Reason-
ing and Uncertainty, pp. 375–384.

Poursabzi-Sangdeh, F. et al. (2018). “Manipulating and measuring model interpretabil-
ity”. In: arXiv preprint arXiv:1802.07810.

Quinlan, J. R. (1986). “Induction of decision trees”. In: Machine learning 1.1, pp. 81–
106.

— (1993). C4. 5: programs for machine learning.
Raghu, M. et al. (2017). “On the expressive power of deep neural networks”. In:
Randell, D. A., Cui, Z., and Cohn, A. G. (1992). “A spatial logic based on regions and

connection.” In:
Read, S. J. and Marcus-Newhall, A. (1993). “Explanatory coherence in social expla-

nations: A parallel distributed processing account”. In: Journal of Personality and
Social Psychology.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should i trust you?: Explain-
ing the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1135–1144.

— (2018). “Anchors: High-precision model-agnostic explanations”. In: Thirty-Second
AAAI Conference on Artificial Intelligence.

Rosenfeld, A. and Klette, R. (1985). “Degree of adjacency or surroundedness”. In:
Pattern Recognition 18.2, pp. 169–177.

Rudin, C. (2019). “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead”. In: Nature Machine Intelligence
1.5, pp. 206–215.

Russakovsky, O. et al. (2015). “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision 115.3, pp. 211–252.

Schlegel, U. et al. (2019). “Towards a rigorous evaluation of XAI Methods on Time
Series”. In: arXiv preprint arXiv:1909.07082.

https://github.com/OpenCCG/openccg

198 BIBLIOGRAPHY

Schlimmer, J. (1987). “Concept acquisition through representational adjustment”.
PhD thesis. Department of Information and Computer Science, University of Cal-
ifornia.

Schockaert, S. and De Cock, M. (2008). “Temporal reasoning about fuzzy intervals”.
In: Artificial Intelligence 172.8, pp. 1158–1193.

Schockaert, S., De Cock, M., and Kerre, E. E. (2008a). “Fuzzifying Allen’s temporal
interval relations”. In: IEEE Transactions on Fuzzy Systems 16.2, pp. 517–533.

— (2009). “Spatial reasoning in a fuzzy region connection calculus”. In: Artificial
Intelligence 173.2, pp. 258–298.

— (2011). Reasoning about fuzzy temporal and spatial information from the web. Vol. 3.
Schockaert, S. et al. (2008b). “Fuzzy region connection calculus: Representing vague

topological information”. In: International Journal of Approximate Reasoning 48.1,
pp. 314–331.

Selbst, A. D. and Powles, J. (2017). “Meaningful information and the right to expla-
nation”. In: International Data Privacy Law 7.4, pp. 233–242.

Shapley, L. S. (1953). “A value for n-person games”. In: Contributions to the Theory of
Games 2.28, pp. 307–317.

Shortliffe, E. H. and Buchanan, B. G. (1975). “A model of inexact reasoning in medicine”.
In: Mathematical Biosciences 23.3, pp. 351–379.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning important features
through propagating activation differences”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp. 3145–3153.

Silver, D. et al. (2016). “Mastering the game of Go with deep neural networks and
tree search”. In: nature 529.7587, p. 484.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps”. In: CoRR
abs/1312.6034.

Slack, D. et al. (2019). How can we fool LIME and SHAP? Adversarial Attacks on Post hoc
Explanation Methods. arXiv: 1911.02508.

Springenberg, J. T. et al. (2014). “Striving for simplicity: The all convolutional net”.
In: arXiv preprint arXiv:1412.6806.

Štrumbelj, E. and Kononenko, I. (2010). “An Efficient Explanation of Individual Clas-
sifications using Game Theory”. In: Journal of Machine Learning Research 11, pp. 1–
18.

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for deep net-
works”. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 3319–3328.

Szegedy, C. et al. (2013). “Intriguing properties of neural networks”. In: arXiv preprint
arXiv:1312.6199.

Tarjan, R. E. (1976). “Edge-disjoint spanning trees and depth-first search”. In: Acta
Informatica 6.2, pp. 171–185.

Tarski, A., Mostowski, A., and Robinson, R. M (1953). Undecidable theories. Vol. 13.
Thagard, P. (1989). “Explanatory coherence”. In: Behavioral and Brain Sciences 12.3,

pp. 435–467.
Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In: Journal

of the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–288.
Turney, P. (1995). “Bias and the quantification of stability”. In: Machine Learning 20.1-

2, pp. 23–33.
United States House of Representatives (1974). Equal Credit Opportunity Act.
Uno, T., Kiyomi, M., and Arimura, H. (2004). “LCM ver. 2: Efficient mining algo-

rithms for frequent/closed/maximal itemsets”. In:

http://arxiv.org/abs/1911.02508

BIBLIOGRAPHY 199

Uspensky, J. V. (1937). Introduction to Mathematical Probability.
Vanegas, M. C. (2011). “Spatial relations and spatial reasoning for the interpretation

of Earth observation images using a structural model”. PhD thesis.
Vanegas, M. C., Bloch, I., and Inglada, J. (2012). “Alignment and parallelism for the

description of high-resolution remote sensing images”. In: IEEE Transactions on
Geoscience and Remote Sensing 51.6, pp. 3542–3557.

— (2016). “Fuzzy constraint satisfaction problem for model-based image interpre-
tation”. In: Fuzzy Sets and Systems 286, pp. 1–29.

Vasilyeva, N., Wilkenfeld, D. A., and Lombrozo, T. (2015). “Goals Affect the Per-
ceived Quality of Explanations”. In:

Vaswani, A. et al. (2017). “Attention is all you need”. In: Advances in neural informa-
tion processing systems, pp. 5998–6008.

Wachter, S., Mittelstadt, B., and Floridi, L. (2017a). “Why a right to explanation of
automated decision-making does not exist in the general data protection regula-
tion”. In: International Data Privacy Law 7.2, pp. 76–99.

Wachter, S., Mittelstadt, B., and Russell, C. (2017b). “Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GPDR”. In: Harv.
JL & Tech. 31, p. 841.

Waltz, D. L. (1972). “Generating semantic descriptions from drawings of scenes with
shadows”. In:

Wang, X., Ni, J., and Matsakis, P. (2006). “Fuzzy Object Localization Based on Di-
rectional (and Distance) Information”. In: 2006 IEEE International Conference on
Fuzzy Systems, pp. 256–263.

Wu, M. et al. (2018). “Beyond sparsity: Tree regularization of deep models for inter-
pretability”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

Wu, X. et al. (2008). “Top 10 algorithms in data mining”. In: Knowledge and information
systems 14.1, pp. 1–37.

Yager, R. R. (1991). “The representation of fuzzy relational production rules”. In:
Applied Intelligence 1.1, pp. 35–42.

Yager, R. R. and Filev, D. P. (1996). “Relational partitioning of fuzzy rules”. In: Fuzzy
sets and systems 80.1, pp. 57–69.

Yosinski, J. et al. (2015). “Understanding Neural Networks through deep Visualiza-
tion”. In: arXiv preprint arXiv:1506.06579.

Zadeh, L. A. (1965). “Fuzzy sets”. In: Information and Control 8.3, pp. 338–353.
— (1975). “The concept of a linguistic variable and its application to approximate

reasoning—I”. In: Information sciences 8.3, pp. 199–249.
— (1982). “A note on prototype theory and fuzzy sets”. In: Cognition 12.3, p. 291.
— (1996). “Fuzzy sets and information granularity”. In: Fuzzy Sets, Fuzzy Logic, And

Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 433–448.
— (1999). “Fuzzy logic= computing with words”. In: Computing with Words in Infor-

mation/Intelligent Systems 1, pp. 3–23.
Zaki, M. J. (2000). “Scalable algorithms for association mining”. In: IEEE Transactions

on Knowledge and Data Engineering 12.3, pp. 372–390.
Zeiler, M. D. and Fergus, R. (2014). “Visualizing and understanding convolutional

networks”. In: European conference on computer vision, pp. 818–833.
Zhang, Q. et al. (2019). “Interpreting CNNs via decision trees”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 6261–6270.
Zhang, X. et al. (2018). “Interpretable Deep Learning under Fire”. In: arXiv preprint

arXiv:1812.00891.
Zhou, B. et al. (2018). “Interpretable basis decomposition for visual explanation”. In:

Proceedings of the European Conference on Computer Vision (ECCV), pp. 119–134.

200 BIBLIOGRAPHY

Zucker, J.-D. and Ganascia, J.-G. (1996). “Representation Changes for Efficient Learn-
ing in Structural Domains”. In: ICML.

Titre : Classification et annotation explicable par apprentissage de relations et raison-
nement

Mots clés : Intelligence artificielle explicable, Apprentissage de relations, Logique floue

Résumé : Avec les succès récents de
l’apprentissage profond et les interactions tou-
jours plus nombreuses entre êtres humains et
intelligences artificielles, l’explicabilité est dev-
enue une préoccupation majeure. En effet, il
est difficile de comprendre le comportement des
réseaux de neurones profonds, ce qui les rend in-
adaptés à une utilisation dans les systèmes cri-
tiques. Dans cette thèse, nous proposons une
approche visant à classifier ou annoter des sig-
naux tout en expliquant les résultats obtenus.
Elle est basée sur l’utilisation d’un modèle trans-
parent, dont le raisonnement est clair, et de re-
lations floues interprétables qui permettent de
représenter l’imprécision du langage naturel. Au
lieu d’apprendre sur des exemples sur lesquels
les relations ont été annotées, nous proposons

de définir un ensemble de relations au préal-
able. L’évaluation de ces relations sur les ex-
emples de la base d’entrainement est accélérée
grâce à deux heuristiques que nous présentons.
Ensuite, les relations les plus pertinentes sont
extraites en utilisant un nouvel algorithme de
frequent itemset mining flou. Ces relations per-
mettent de construire des règles pour la clas-
sification ou des contraintes pour l’annotation.
Ainsi, une explication en langage naturel peut
être générée. Nous présentons des expériences
sur des images et des séries temporelles afin de
montrer la généricité de notre approche. En par-
ticulier, son application à l’annotation d’organe
explicable a été bien évaluée par un ensemble de
participants qui ont jugé les explications conva-
incantes et cohérentes.

Title: Explainable classification and annotation through relation learning and reasoning

Keywords: Explainable artificial intelligence, Relational learning, Fuzzy logic

Abstract: With the recent successes of deep
learning and the growing interactions between
humans and AIs, explainability issues have
risen. Indeed, it is difficult to understand the
behaviour of deep neural networks and thus such
opaque models are not suited for high-stake ap-
plications. In this thesis, we propose an ap-
proach for performing classification or annota-
tion and providing explanations. It is based on
a transparent model, whose reasoning is clear,
and on interpretable fuzzy relations that enable
to express the vagueness of natural language.
Instead of learning on training instances that
are annotated with relations, we propose to rely
on a set of relations that was set beforehand.

We present two heuristics that make the process
of evaluating relations faster. Then, the most
relevant relations can be extracted using a new
fuzzy frequent itemset mining algorithm. These
relations enable to build rules, for classifica-
tion, and constraints, for annotation. Since the
strengths of our approach are the transparency
of the model and the interpretability of the re-
lations, an explanation in natural language can
be generated. We present experiments on im-
ages and time series that show the genericity of
the approach. In particular, the application to
explainable organ annotation was received pos-
itively by a set of participants that judges the
explanations consistent and convincing.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Acknowledgements
	Introduction
	I Explainability in AI
	Explainable Artificial Intelligence
	Towards a Definition of Explainability and Interpretability
	Taxonomy
	Related Works
	Evaluating Explanations
	Impact of Explanations on Users
	Discussion

	Proposed Approach
	Which Explanation?
	Which Model?
	Which Features?
	The Overall Approach

	II Building an Explainable Model
	Model Expressivity and Fuzzy Relations
	Expressivity of a Model
	Fuzzy Relations
	Discussion

	Learning Relevant Relations and Descriptors
	Relation-based Descriptors
	Frequent Itemset Mining
	Fuzzy Frequent Itemset Mining
	Fuzzy Close Algorithm
	Discussion

	Heuristics for Preventing Redundant Evaluations
	Brute Force Evaluation of Relations
	Online Pruning of Infrequent Relations
	Knowledge-based Ordering of Relations
	Discussion

	Generating Rules or Constraints for Performing Explainable Classification or Annotation
	Building Rules for Classification
	Converting Relations into Constraints for Annotation
	Generating Explanations from Rules and Constraints
	Discussion

	III Application to Spatial and Temporal Reasoning
	Spatial and Temporal Relations
	Fuzzy Spatial Relations
	Temporal Relations
	Spatio-temporal Relations
	Discussion

	Fast Parallel Fuzzy Morphological Operators
	Fuzzy Dilation
	Related Algorithms
	Vectorized Multithreaded Reverse Algorithm
	Benchmark and Results
	Discussion
	Acknowledgements

	Experiments on Images
	Toy Dataset for Image Classification
	Organ Annotation in Medical Images
	Discussion

	Application to Time Series Classification
	Dataset
	Vocabulary of Relations
	Discussion

	Conclusion and Perspectives
	Publications
	International Peer-Reviewed Conferences
	National Peer-Reviewed Conferences

	Fuzzy Logic : Main Definitions
	Fuzzy Set
	Linguistic Variable
	Fuzzy Relations
	Fuzzy Operators

	Closure Operator
	Definitions
	Proof

	Fuzzy Close Algorithm: Experimental Results
	Datasets
	Results and Discussion

	Topological Sorting
	Definitions
	Example
	Algorithms

	Additional Results
	Constraints in the Organ Annotation Experiment
	Time Series Classification: Linguistic Variables

	SIMD
	Architecture
	Instructions

	Résumé en français
	Bibliography

