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Abstract v

Modeling and control of aerial vehicles using teleoperation with input delay

Abstract

Unmanned Aerial Vehicles (UAVs) are receiving increasing interest from industry and
academia due to their wide application in search and rescue, infrastructure inspection,
surveillance, among others. This thesis focuses on research in the area of teleoperation
systems for quadrotor vehicles. Throughout this thesis, a teleoperation system for a
quadrotor vehicle was developed. In this system, the user interface is based on a virtual
telepresence approach. Control algorithms were developed and implemented within
the master and slave systems.

The first part of this thesis consists of developing mathematical models of the dynamics
of a quadrotor aircraft. Most works currently found in the literature for quadrotors
are based on classical approaches such as Euler angles. These representations can lead
to problems such as discontinuities, singularities, gimbal-locks, and highly non-linear
equations. An alternative to these classical representations are unit quaternions. These
have the advantages of the lack of singularities and gimbal lock effects.

The second part of this work was dedicated to the development of a quadrotor teleoper-
ation system. This system consists of a virtual user interface in a local environment and
a quadrotor in a remote environment. A User Datagram Protocol (UDP) communication
was used to communicate both environments. The user manipulates a virtual drone in
the local environment and a real drone follows the position and orientation references in
a remote environment. The user receives virtual feedback on the states of the real vehicle
in the virtual environment. Results of the implementation of the proposed teleoperation
system in real time are presented.

The last part of this thesis addresses the delay problem in the teleoperation system.
Delays due to system latency and the distance between environments were modeled as
a delayed control input. Then, a predictor-based controller was developed in order to
maintain the stability of a drone’s flight. This approach was applied to the classical Euler-
Lagrange model and to the quaternion-based model in order to analyze performance.
Simulations of both models with delayed inputs are presented.

Keywords: modeling, control, virtual telepresence, simulation, time delay systems,
input delay

Laboratoire Heudiasyc UMR CNRS/UTC 7253
Site de l’Innovation – CS 60319 - 57 avenue de Landshut – 60200 Compiègne
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vi Abstract

Modeling and control of aerial vehicles using teleoperation with input delay

Résumé

UAVs suscite un intérêt croissant de la part de l’industrie et des universités en raison de
leur large application dans la recherche et le sauvetage, l’inspection des infrastructures,
la surveillance, entre autres. Cette thèse se concentre sur la recherche dans le domaine
des systèmes de téléopération pour véhicules quadrirotor. Tout au long de cette thèse,
un système de téléopération pour un véhicule quadrirotor a été développé. Dans ce
système, l’interface utilisateur est basée sur une approche de téléprésence virtuelle. Des
algorithmes de contrôle ont été développés et mis en œuvre dans les systèmes maître et
esclave.

La première partie de cette thèse consiste à développer des modèles mathématiques
de la dynamique d’un avion quadrotor. La plupart des travaux actuellement trouvés
dans la littérature pour les quadrotors sont basés sur des approches classiques telles que
les angles d’Euler. Ces représentations peuvent conduire à des problèmes tels que des
discontinuités, des singularités, des verrous à cardan et des équations hautement non
linéaires. Une alternative à ces représentations classiques sont les quaternions unitaires.
Ceux-ci présentent les avantages du manque de singularités et d’effets de verrouillage
de la nacelle.

La deuxième partie de ce travail a été consacrée au développement d’un système de
téléopération à quatre rotors. Ce système se compose d’une interface utilisateur virtuelle
dans un environnement local et d’un quadrotor dans un environnement distant. Une
communication UDP a été utilisée pour communiquer les deux environnements. L’uti-
lisateur manipule un drone virtuel dans l’environnement local et un vrai drone suit
les références de position et d’orientation dans un environnement distant. L’utilisateur
reçoit un retour virtuel sur les états du véhicule réel dans l’environnement virtuel. Les
résultats de la mise en œuvre du système de téléopération proposé en temps réel sont
présentés.

La dernière partie de cette thèse aborde le problème des retards dans le système de
téléopération. Les retards dus à la latence du système et à la distance entre les envi-
ronnements ont été modélisés comme une entrée de commande retardée. Ensuite, un
contrôleur basé sur des prédicteurs a été développé afin de maintenir la stabilité du vol
d’un drone. Cette approche a été appliquée au modèle classique d’Euler-Lagrange et au
modèle basé sur les quaternions afin d’analyser les performances. Des simulations des
deux modèles avec des entrées retardées sont présentées.

Mots clés : modélisation, contrôle, téléprésence virtuelle, simulation, systèmes de tem-
porisation, entrée retarde
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Outline of the thesis

This thesis contains five chapters organized as follows.

Chapter 1 describes teleoperation systems in general and the main derived
problems. Also, the research problem is limited to the development of a remote
operation interface of a quadrotor and the time delay in the system. The state of
the art of these two problems related to UAVs is presented.

Chapter 2 introduces the classical models of quadrotors: Euler-Lagrange and
Newton-Euler where the rotational dynamics are modeled using the Euler angles.
A model based on unit quaternions is also described that eliminates the gimbal
lock problem. A status feedback controller for this model is developed.

Chapter 3 describes the development of a remote operating interface of a quadro-
tor based on a virtual environment. The virtual and real aerial vehicle controllers
are described. Also a mapping of coordinates of position and orientation of the
virtual environment is presented. Experimental results in real-time are shown.

Chapter 4 describes the challenges of systems with delay compared to systems
without delay. A controller based on the fundamental theorem of calculus is
developed. This controller is applied to the Euler-Lagrange model. It is then
applied to the quaternion-based model in order to observe its performance.
Simulations of these applications are shown.

Chapter 5 presents some conclusions derived from the development of this
thesis. Some problems that could be addressed in the future are also suggested.

xv
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1
Introduction

The topic of teleoperation on aerial vehicles has been important for many re-

searchers in the last years. Teleoperation systems consist of an air vehicle in

a remote environment, a human operator at a local site or workstation, and a

communication channel to transmit commands and signals. The idea is for the

air vehicle to follow the movements dictated by the human operator through a

master device.

Nowadays, it is relatively easy and cheap to acquire a quadrotor aircraft.

The versatility of these aircrafts has fueled the interest of researchers for the

development of novel teleoperation interfaces. The design of those interfaces

are dedicated to facilitating drone piloting in different applications: exploration

missions, Search and Rescue (SaR), handling of hazardous materials, etc., ensur-

ing the success of the task and without putting the human operator at risk. Also,

technological developments such as gestures tracking, haptic and virtual devices

have allowed an improvement of the teleoperation systems for aerial robots in

the sense of telepresence.

Unmanned Aerial Vehicle (UAV) teleoperation system has the main objec-

tive of reducing or eliminating the negative effects of dangerous environments,

keeping human life safe. It is also important to reduce the cognitive load of the

human pilot and ensure the success of the task. However, several questions arise

around a teleoperation system. First, the design of an operator interface that is

easy to use and intuitive. Second, ensure the stability of the air robot. Third, to

solve the problem of time delay inherent in the teleoperation system. Therefore,

a challenge of a teleoperation system is to design an easy-to-use interface for any

user and to maintain the stability of the robotic system against delays.

1



2 CHAPTER 1. Introduction

1.1 Problem statement

In some UAV applications, such as SaR or exploring missions in unknown

and dangerous environments where human lives depend on the success of the

mission, it is necessary to keep the human pilot in the control-loop [1–3]. For

this reason, the development of teleoperation systems for aerial vehicles is an

area of research in development. These systems have two main requirements

that guarantee a successful operation: stability and transparency [4–6]. The

stability of the system must be independent of human behavior and is linked to

the type of robot. Transparency is related to the design of the interface so that

the operator has the feeling of being in the remote environment. Therefore, the

teleoperation problem could be divided into three main axis.

The first axis concerns the development of the mathematical models that de-

scribe aerial vehicles dynamics. In previous years, multiple methodologies have

been proposed and studied by many researchers. These approaches combine

mechanical and physical theories such as Newton’s equations of motion and the

laws of energy conservation. These equations can use different mathematical de-

scriptions of rotations and translations sequences such as Euler angles, rotation

matrices, quaternions, among others.

Since the dynamics of aerial vehicles are generally unstable, complex, nonlin-

ear, and underactuated, the design of control and navigation algorithms becomes

difficult. Many works have proposed approaches that simply mathematical mod-

els to avoid the dynamic nature of the vehicle. However, this put limitations on

the real capacities of UAVs. Non-conventional approaches such as using quater-

nions to describe the vehicle dynamics can provide mathematical simplicity

without sacrificing accurateness and generality, this becomes meaningful in the

second part of the problem.

The second axis is to provide a teleoperation interface of a quadrotor vehicle

for an inexperienced user. This system must ensure the user’s task regardless

of the dynamics of the vehicle and the movements of the pilot. Also a level

of telepresence should be ensured without the user having the vehicle in their

Line-of-Sight (LoS). Different works have developed interfaces using on force

feedback, haptic, visual, among others, based on natural user interfaces to raise

the level of telepresence. However, few works study the latency of the system

due to the use of feedback devices.

The third axis refers to the delay due to the latency of the system. The

communication medium contributes to the complexity of the system due to its

dynamic nature that could distort, delay or lose samples of the signal exchanged

between the operator and the teleoperation system. It may quickly result in

significant damage or destruction of the UAV.
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1.1.1 Objectives

This thesis is devoted to the development of a teleoperation system of aerial

vehicles, more specifically quadrotors, with the goal of helping users to control

a quadrotor. To achieve this goal and to the deal with the challenges involved,

three objectives are raised.

The first one is to develop control algorithms to ensure stability of the vehicle.

Maintaining the stability of the aircraft against the behaviors of an operator

without flight experience is an important characteristic when integrating the

vehicle into a teleoperation system.

The second objective is to propose a novel solution in the design of operator

interface. This must provide feedback to the pilot about the information of the

system states during the flight, to make decisions, or change the mission. An

important feature is that when the user is piloting the vehicle it is not in his LoS.

Finally, the third objective is to design a controller that mitigates the effects

of time delay. This ensures stability of drone flight irrespective of the delay in

data transmission.

1.1.2 Methodology

The vehicle’s stability is ensured using a quaternion-based approach. Unlike

conventional approaches, this describes vehicle rotation using unit quaternions;

that is, a single entity describes the vehicle’s attitude information. This approach

provides a simple calculation of the controller, but one of its most essential

features is avoiding discontinuities and gimbal lock problems. This controller

can help to give robustness to the drone flight.

The controller of the aerial robot has as references the position and orienta-

tion of the virtual vehicle. Considering that an inexperienced user will use this

interface, an interface is built by introducing a virtual telepresence approach.

The control input device used is a standard joystick. The virtual environment is

built with the remote environment’s measurements and characteristics. Visual

feedback from the remote vehicle is displayed in the virtual environment using

a virtual object.

The delay problem due to the system’s latency and the communication chan-

nel is modeled as a delayed control input where the delay is known. A predictor-

based approach is applied using states and past inputs. This approach is applied

to two models of a quadrotor for the analysis of its performance.
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1.2 State of the art

In this subsection, the description of a teleoperation system will be introduced.

Two characteristics that will be studied in this subsection are the interface design

and the time delay. The background of these and some related works will be

presented.

1.2.1 Teleoperation

Teleoperation could be defined as a “remote operation” or manipulation of a

system in order to accomplish some task. “Remote” means that the controlled

system is separated from the operator by a distance [4, 5]. This implies that

there is no direct or visual contact from the operator with the controlled system.

Then, a teleoperated system is composed by two main components: a local site

(master/operator) and a remote site (slave) connected through a communication

channel, see Figure 1.1.

Human
operator

EnvironmentMaster
robot

Slave
robot

Communication
channel

Figure 1.1 – Teleoperation framework.

Teleoperation extends the human capability to manipulate objects remotely

by providing the operator with similar conditions as those at the remote location

[6]. One of the first remote control systems was developed by Nikolas Tesla

in 1898 in New York City, this system consisted of controlling a robotic boat

using radio waves [7]. However, the first master-slave telerobotic system was

developed by Ray Goertz in 1948 at the Argonne National Laboratory, where

the first nuclear reactor was developed [8]. The system designed by Goertz

consisted of an operator using mechanical pantographs at a local site and nuclear

radioactive material placed in a “hot cell” at a remote site. These sites were

separated by a protective window and/or mirrors so that the operator maintained

visual contact with the radioctive material, see Figure 1.2.

The mechanical manipulators were replaced by electromechanical servos

and in 1954 Goertz’s team developed the first electromechanical manipulator

with feedback servo control. After the decline of the nuclear industries, where

teleoperation was essential to manipulate radioactive materials [9, 10], the

advantages of teleoperation techniques began to extended to new areas.
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Figure 1.2 – Master-slave manipulator developed in 1948 by Ray Goertz.

The benefits of teleoperation were extended to deep-sea exploration in the

1960s because it represents a hostile environment for human operators. Then,

deep-sea operations began with teleoperated submarines, frequently equipped

with telemanipulators to perform underwater work tasks. These submarines are

commonly called Remote Operated Vehicles (ROV’s) although this expression

can also be used for ground or flying vehicles. The development and imple-

mentation of teleoperation systems to operate unmanned underwater vehicles

[11–16] at great distances in deep-sea led to the first teleoperation in outer-space.

Particularly, space explorations require many resources to physically transfer hu-

man operators, therefore teleoperating space robots [17–24] is the most efficient

solution. Teleoperation has also helped reduce medical invasions in surgeries,

commonly called telesurgery [25, 26].

Teleoperation has recently become important in the military and security

fields. Commonly tasks in these fields such as: recognition, information gather-

ing, land-mine detection, route clearing, etc., represent a high risk for human

operators. In order to avoid the loss of human lives teleoperated vehicles have

been developed. Many kinds of land and air vehicles have been built for differ-

ent types of environments. Military Unmmanned Ground Vehicles (UGV’s), as

SARGE model, are developed and equipped with vehicle localization (Global Po-

sitioning System (GPS), inertial navigation) and supervisory control to improve

the performance. Frequently these vehicles are equipped with last generation

teleoperation devices (such as stereo-vision or telepresence) to provide the best

response in fast and dangerous missions.

UAVs have also a wide application field in military operations for example

RQ1 predator in Figure 1.3, and X47B of US, Sharp Sword and Dark Sword of

China.



6 CHAPTER 1. Introduction

Figure 1.3 – The RQ-1 Predator unmanned aircraft.

Figure 1.4 – RQ-1 Predator ground control station.

In most cases, the UAVs are remotely piloted by radio control or by satellite

links. However, one of the advantages of this kind of aircraft is its ability to fly

autonomously with the help of GPS and inertial navigation.

In general, the main objective of the application of teleoperated systems is to

help eliminate or reduce the negative effects in hazardous environments such as:

hostile environments, with adverse effects on human operators or inaccessible to

them.
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Despite the different telerobotics applications, the scientific community

is currently investigating how to design teleoperation systems to make the

execution of tasks more flexible and comfortable for the human operators with

the best cost-effective.

Some issues about the design of teleoperation systems [1, 27, 28] are related

to:

• Robot: a machine that receives the control signals using communication

hardware. This robot will be integrated with actuators and sensors, de-

pending on its applications and operating environments.

• Communication channel: a communication link is used to transmit sen-

sors and control signals. Many communication channels can be used in

teleoperation; some are wireless, radio waves, network lines, and the Inter-

net. These can be chosen according to the environment and the application.

However, the criteria to select them are bandwidth and latency.

• Operator interface: The human operator, at the local site, controls the

robot from a workstation. The interface is usually multi-modal, consist-

ing of at least a display visualizing (Graphical User Interface (GUI)) for

the video from the robot’s on-board camera(s) and other sensor or status

information. Depending on the level of telepresence, currently other de-

vices are helping the user to see or perceive information from the remote

environment, for example: haptic joysticks, cyber-gloves, head-mounted

displays, etc. Besides, the interface will require input devices to allow the

operator to enter commands (via keyboard), or execute manual control of

the robot (via joystick) These devices provide information from the remote

site and sensor to encode the human control actions.

• Time-delay problems: In any electromechanical system the time delay is

present. In most cases, it is imperceptible, but in others, it can make the

system unstable. When an electromechanical system is part of a teleop-

eration, the time-delay problem increases due to bandwidth and latency

by the communication channel or delays of the devices in the workstation.

Therefore, a problem in the design of a teleoperation system can be the

time-delay on the system.

From a control-theoretic point of view the main goal of teleoperation can be

presented in two aspects [4–6]:
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• Stability: maintain stability of the closed-loop system irrespectively of

the behavior of the human operator or the environmental perturbations.

Stability in teleoperation is not only related to the robot but also to the

inherent delays of the system due to the delay in data transmission and the

response of the human operator.

• Transparency: the human operator should feel as if she/he was present at

the remote site. This means that the dynamic of the master and slave are

canceled out or the equality of velocities and forces.

Satisfying these requirements, in a teleoperation system, extends human capa-

bilities (manipulating objects or performing delicate tasks) by projecting their

expertise to distant locations that are life-threatening.

Teleoperation is divided into two branches.

• Unilateral teleoperation. The human operator is independent of the

whole system, and the operator impedance can not affect the system perfor-

mance. This means that, the operator transmits the master motion and/or

force to the slave site without feedback information from slave to master.

• Bilateral teleoperation. Includes the motion and/or force information

transmissions from the slave site to the master site.

Unilateral teleoperation is easier and reliable to implement than the bilateral

one. The idea in unilateral teleoperation is to make the slave track the human

movements.

The main factors to consider in the design of a teleoperated system have

been previously presented. They depend on the environment and the type of

robot that will be used. One of the objectives of this research is the design of a

teleoperation system for a UAV. Therefore, work related to teleoperation systems

of drones and challenges are described below.

1.2.2 Teleoperation of unmanned aerial vehicles

The first developments of UAVs were for missions during the First World War.

These vehicles were mainly conducted in military projects aiming to perform

missions without risking human lives [2, 3]. The availability of fast, small

computers, light-weight constructions and materials in the past ten years has lead

to an enormous increase in the interest in developing UAVs for the commercial

market. Currently, they are used with a wide variety of applications: border

monitoring [29], plant assents inspection [30], forest fire monitoring [31], sensing

of agricultural products [32], and SaR [33–35].
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Drone teleoperation, commonly employed interfaces, can represent a non-

intuitive and sophisticated control device for beginner users.

Several solutions have been proposed to reduce de cognitive effort and high

concentration of the drone users [36]. Mainly teleoperation, based on haptic

joysticks, has been employed to increase operational performance. These haptic

devices are used to provide the human pilot with a sense of surrounding obstacles

to avoid them [37–44]. For example, in [41] an artificial force field is proposed

and evaluated. This field is configurable and assigns the constraints of the

environment to haptic repulsive forces thereby avoiding collisions. In [38] the

authors proposed a control strategy for changing the reference velocity on-line in

a neighborhood of obstacles in order to avoid them. In [39], a UAV teleoperation

scheme based on haptic feedback force was presented. This force-feedback gives

the user the sensation of touching a rigid surface as if it were positioned above

the reference position of the vehicle. In [37], a framework of haptic teleoperation

algorithms for aerial vehicles was proposed. This framework was based on

energy and concepts of network theory and port-Hamiltonian systems. Under

this scheme, the user was provided with a force-feedback that corresponds to the

speed of the aerial robot given by a local vision loop or a gust of wind. Haptic

interfaces are also used to help operators control swarms of quadrotors, in [43] a

method based on the notions of virtual structure and potential fields of multiple

layers was applied allowing to avoid collisions within the swarm and with fixed

obstacles, see Figure 1.5.

In most cases, the interfaces using a haptic joystick are also provided with

one or more displays showing the flight of the drone from a camera located in

the environment, or with images from the on-board camera. Thus, the user has

tactile and visual feedback.

Figure 1.5 – Haptic joystick used in the mini-UAV swarm.
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Recent technological advances have led to the development of interfaces

with a UCD applied to Natural User Interfaces (NUIs). Different works have

attempted to use innate human characteristics, such as voice, gestures, and

vision, to interact with robots, particularly with aerial robots [45]. Some of the

technologies that have allowed to leave the traditional devices (mouse, keyboard,

remote controllers) are the devices of gesture recognition, eye tracking [46], voice

recognition [47, 48], among others. Some devices used for the identification of

gestures are the Microsoft Kinect and the Leap Motion Sensor, when the gestures

are identified they are related to discrete control commands that are sent to the

drone to teleoperate it, see Figure 1.6. For speech recognition a microphone

is frequently used, in [45] an interface detects voice commands using Robot

Operating System (ROS) software with the Pocketsphinx library and maps them

to discrete control inputs, see Figure 1.7. Although these interfaces may be more

intuitive, in most cases, these types of controls require the aircraft to be in the

pilot’s LoS to recognize user gestures or for the user to observe the drone’s flight

to perform a task. A restriction of the interactions that map the inputs of the

control devices (such as gestures, voice, visual markers, etc.) to a set of control

inputs of a quadrotor aircraft (take-off, land, rotate, go right, etc.) could be the

lack of precise control of the tracking of its trajectory.

Figure 1.6 – A user controls a drone using hand gestures which are identified by
a Leap Motion device [45].
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Figure 1.7 – A human operator gives voice commands which are recorded by a
microphone and mapped to control commands to a quadrotor [45].

Recent advances in the field of Virtual Reality (VR) have helped to generate

sophisticated telepresence systems to pilot drones. These interfaces use VR

devices to increase the transparency of the system. Generally, these systems

involve visual feedback of First Person View (FPV); this means that, the human

pilot observes the images of the on-board camera within its Field of View (FOV)

range. Then, the user can have the feeling of being inside the UAV. The devices

used are Head-Mounted Display (HMD) such as Oculus Rift and HTC Vive.

These interfaces are commonly based on the positions of the pilot (hands, body,

and head) [49–51], see Figure 1.8. A disadvantage of this kind of interface is

that they can degrade situational awareness of the environment for lack of a

third-person perspective. It means that the user could have difficulty to identify

obstacles and other objects around the limited FOV of the on-board camera.

Despite the possibility that the user can explore their environment to avoid

obstacles, depending on the way of interaction, this could affect the mission. In

long-term tasks, these position-based interfaces can cause operator fatigue from

the use of their body and loss of awareness of real-world [52–54].

In order to reduce the impact of FPV issues in a VR environment, some inter-

faces have used AR and Mixed Reality (MR). AR technology involves overlays

computer graphics onto real-world environments in real-time [53, 55, 56].

The three main characteristics of these interfaces are [57]:

1. In a combined scene, the user can see real and virtual objects.

2. The user can perceive how virtual objects are directly embedded in the

real-world.

3. The virtual objects can be interacted with it in real-time.
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Figure 1.8 – Body position based immersion interfaces using VR.

Due to these characteristics, interfaces based on AR have been considered in

various works for drone teleoperation [58–61]. For example, the authors in [53]

present three interface designs to remotely operate a quadrotor using AR. The

first design consists of increasing the real environment by displaying real-world

objects within the FOV of the vehicle’s camera, the second is to augment the

robot by adding a panel for live video transmission on the quadrotor, the third

design shows a fixed video streaming window to the user’s periphery. With the

AR, the user remains aware of the real world and can have added visual feedback

in real-time to successfully perform their task as camera transmission, battery

level, object recognition, etc., see Figure 1.9.

MR is the merging of real and virtual worlds to produce new environments

and visualizations, where physical and digital objects coexist and interact in

real time. MR can also be used for drone piloting, for example, in [62] the

authors presented an interface based in a mixed reality environment and natural

language to command a UAV, see Figure 1.10. One of the advantages of interfaces

based on AR and MR is that it allows us to implement NUIs such as gaze and

gestures, similar to our interaction with computers or touch screens. However,

the problem in both methodologies is that the vehicle must remain in the user’s

LoS.

Despite the recent scientific interest in developing teleoperation interfaces for

aerial robots using immersion devices, a study of the usability of these systems

in real-world cases is still lacking.
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Figure 1.9 – Interaction techniques using an AR interface [58].

Figure 1.10 – A user gives references to objects and positions using a push-to-talk
language in a MR environment [62].

Some alternatives to the issue of keeping the drone in the LoS of the human

pilot have been developed in virtual environments. Recent research considers

virtual interfaces with a third-person view for teleoperation of air vehicles. For

example, in [63] a ground control station for drone based in an immersive

virtual environment was developed, hence the user is informed of the position

and status of the VR, see Figure 1.11. This figure shows as a user uses a joystick

to pilot an aircraft with different views of this within a virtual environment.
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Figure 1.11 – Interface based on virtual environment [63].

Virtual environments are used in different applications to teleoperate cranes,

submarines or mobile vehicles, robotic arms, among others. For example, in [64]

the authors developed a system that integrates two frameworks: ROS software

to control a mobile robot and Unity 3D software to visualize and interact with a

virtual environment, which communicates using a yaml-based communication

protocol. The user drives the robot through a virtual reality-based teleoperation

interface on Unity 3D. In [65], a teleoperation architecture of a hydraulic crane

is presented, it is composed of two subsystems: a sensor-equipped crane in a

remote environment and a Crane VE software (virtual environment) developed

in C ++, using the OpeneScene-Graph library, which are connected through an

IP network, see Figure 1.12. In [66], a scheme of remote operation of a farm

vehicle was presented. This system operates as follows: in a remote site in

Japan a mobile vehicle is composed of actuators and sensors and in a local site

located in the United States a user drives the vehicle from a three-dimensional

stereoscopic reality system, both sites are communicated through the Internet

in real-time. Virtual environments are also used to mitigate the delay of some

systems depending on the precision of the virtual model of the robot. For

example, in [67], a dynamic and geometric model of the remote environment

was proposed in order to correct the errors between the geometric structure of a

virtual model of a robotic arm and a real one.



1.2. State of the art 15

Figure 1.12 – Interface based on virtual environment of a hydraulic crane [65].

The advantages of using virtual environments in some teleoperation systems

is evident when the work environment is known. That is, it is not necessary

to take video from the camera on board the robot to be able to teleoperate it.

This is accomplished by creating a virtual model of the work environment and

decreases the possible delay due to image processing when video is taken from

the remote environment. Also, the flexibility of virtual environments helps

synthesize information for the operator (in the form of views, charts, or other

virtual objects). Thus, the user can make decisions quickly.

Several complications arise when studying teleoperated systems since the

communication medium (wired or wireless) contributes substantially to the

complexity of the overall system and introduces distortion, delays, and losses

that impact stability and performance. These issues have motivated control-

theoretic research in teleoperation over the past decades [6].

Many works devoted to developing teleoperation systems do not include

strategies to mitigate the time delay. However, it is an essential issue in aerial

vehicles because it could affect the vehicle’s flight performance or, in the worst

case, fall or crash due to instability. It is needed to mention that aerial vehicles

have fast dynamics, unlike other robots, such as robotic arms or mobile robots.

This characteristic makes them highly sensitive to time delay. Accordingly, it

may be fundamental to address the time delay problem in these vehicles. Some

theoretical control strategies that have been studied to address the delay problem

will be briefly described below.



16 CHAPTER 1. Introduction

1.2.3 Time delay systems

Time-delay systems are often described by Functional Differential Equations

(FDEs). These systems are also known as systems with aftereffects or dead-time,

hereditary systems, or equations with deviating argument, or systems with time

lag. In the 18th century, the first FDEs were studied by Bernoulli, Poisson,

Laplace, Lagrange, among others, to solve several geometric problems [68].

At the beginning of the 20th century, a large number of practical problems

were modeled by FDEs: viscoelasticity problem, predator-prey model in popula-

tion dynamics, mathematical biology problems, and ship stabilization problem.

Nowadays, it is known that the delay phenomenon is within the internal dynam-

ics of many processes. An example is the internal combustion engine problem.

The Mean Torque Production Model describes an internal combustion engine

and is used for designing of controllers. In this model, the crankshaft rotation

can be modeled from Newton’s second law as following [69–71],

Ti(t − hi)− Tf (t)− Tload(t) = Iω̇(t), (1.1)

where Ti represents the indicated torque generated by the engine which is

delayed by hi seconds due to engine cycle delays such as fuel-air mixing, ignition

delay, cylinder pressure force propagation, etc., and then added to the friction

torque Tf and load torque Tload . The inertia matrix of crankshaft denoted by I

and ω define the engine speed.

There exist different fields where the processes are modeled with delays such

as chemical, economic, biological, physical, physiological processes, as well as

in engineering sciences. Commonly sensors, actuators, and field networks that

are involved in feedback loops introduce also delays. For this reason, they are

strongly involved in challenging areas of information technologies and commu-

nication: high-speed communication networks [72–78], parallel computation

[79–82], stability of networked controlled systems [83–86], computing times in

robotics [87–89], teleoperated systems [90–96]. From the control point of view,

many control strategies have been applied to teleoperation systems to mitigate

the inherent time delay problem. Some control schemes will be described below,

including predictive approaches.
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The two-port network is a method that was discovered in the late 1980s. The

interest in this method is due to its ability to study a mechanical system from

the point of view of an electrical system where passivity results have already

been established. The importance of the passivity of a system is that it requires

minimal knowledge about human and environmental dynamics. The passivity

of these systems guarantees the passivity of the entire teleoperation system,

since one property is that the interconnection of passive systems is passive. For

example, consider the two-port network illustrated in Figure 1.13 where ei and

fi represents the efforts and flows which correspond to voltages and currents in

electric circuits or forces and velocities in mechanical systems, respectively.

f1

Two-port
network

e1

f2

e2

Figure 1.13 – Two-port scheme.

Depending on the signals available to the controller, different matrix repre-

sentations can describe the behavior of this network, for example, the impedance

matrix Z(s) or hybrid H(s). If the flows are considered to be the inputs on

both sides of the two-port network, then an impedance representation of the

master-slave system can be used to relate speeds to forces by FmFs
 = Z(s)

 ẋmẋs
 (1.2)

where Z(s) is the impedance matrix

Z(s) =

 z11(s) z12(s)

z21(s) z22(s)

 . (1.3)
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However, if the force variable is available in the slave robot, then a hybrid

representation can be obtained by Fm−ẋs
 = P (s)

 ẋmFs
 (1.4)

where P (s) is the hybrid matrix

P (s) =

 p11(s) p12(s)

p21(s) p22(s)

 . (1.5)

The elements of this matrix can be interpreted as: p11(s) = Zin, p12(s) =Force

scaling, p21(s) =Velocity scaling and p22(s) = Z−1
out. This representation as a hybrid

matrix is very useful when the time-delays are present in the communication

channel.

Passivity-based control is a common nonlinear control architecture in the

design of a teleoperation system. This has its origin in network theory and

refers to the exchange of energy between interconnected systems. A passive

system absorbs more energy than it produces. The passivity property followed

by the absolute stability condition will be presented as follow: suppose a one-

port network with input flow v(t) and output effort f (t), the total input to the

network can be written as f (t)v(t). Therefore, given zero energy storage at t = 0,

a network is passive if and only if it satisfies the following inequality [4]:∫ ∞
0
f (s)v(s)ds ≥ 0. (1.6)

In general, for the teleoperation system, the human operator and the environ-

ment are said to be passive, meaning that the maps from velocity to force satisfy

that there exist positive constants am, as ≥ 0 such that

−
∫ t

0
ṗTm(s)fh(s)ds+ am ≥ 0, (1.7)

and

−
∫ t

0
ṗTs (s)fe(s)ds+ as ≥ 0, (1.8)

where ṗm and ṗs denote the joint velocity of the master and slave robot, respec-

tively; and the force applied by human and environment are represented by fh
and fe, respectively.
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Many control strategies have been presented based on the passivity concept.

For example, scattering theory [96, 97] is applied to pasify the system with con-

stant time delays. The scattering approach is considered a theoretical approach

to the delay problem. This consists of transforming a teleoperation problem into

a transmission line problem. Then, the transformation allows to obtain a feasible

solution to the delay problem.

The scattering approach the system can be seen as an n-port network with an

effort-flow pair on each port. The relationship between the forces and velocities

at all n ports can be represented by an impedance relationship in the frequency

domain as F(s) = Z(s)V (s), where Z(s) is an n×n impedance matrix and V (s) is the

velocity vector. However, a disadvantage of this technique is that the impedance

relationship is not unique. Considering the case of a two-port network where

stress is force and flow is speed, the scattering operator can be defined as:

Definition 1
The scattering operator S is defined in terms of an incident wave Oi(t) = f (t) + v(t)

and a reflected wave Or(t) = f (t)− v(t) as

Or(t) = S(Oi(t)) (1.9)

For LTI systems, in a two-port network, the scattering matrix in the domain can

be represented in terms of the hybrid matrix as follows

S(s) =

 (P (s)− I)(P (s) + I)−1 0

0 −(P (s)− I)(P (s) + I)−1

 . (1.10)

To guarantee passivity, the incident wave must have a lower energy content than

the scattered wave. Therefore, the following passivity result can be established

with respect to the scatter operator S.

Theorem 1
An n-port system is passive if and only if ‖S‖∞ ≤ 1, where ‖S‖∞ is the infinity

norm of the corresponding scattering matrix [96].

Applying this result, assuming incoming and outgoing delay times are equal

and constant, the transmission line model in the n-dimensional case that makes

the channel passive is given by
Fm(t) = Z0(ẋm(t)− ẋs(t − h)) +Fs(t − h) (1.11)

ẋs = Z−1
0 (Fm(t − h)−Fs(t)) + ẋm(t − h) (1.12)

where h represents the time delay on the communication line and Z0 described

the impedance matrix.
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A variant of the scattering technique is the wave variables formulation [92,

97–99] also used to impose passivity on the delayed bilateral teleoperation

system.

The difference with the scattering method is that instead of transmitting the

power variables Fs and ẋm as reference signals, the wave variables us and um are

transmitted (see Figure 1.14), which can be expressed as

us =

√
(Fs(t)− bẋs(t))2

2b
(1.13)

um =

√
(Fm(t)− bẋm(t))2

2b
(1.14)

where b represents the characteristic impedance of the transmission line.

Figure 1.14 – Wave variables

If the channel is composed of constant time delays h, then the wave formula-

tion results with the same control law given for the scattering approach, and the

passivity analysis can be performed in time domain as

E(t) =
∫ t

t−h

(uhm(l)um(l) +uhs (l)us(l))
2

dl ≥ 0 (1.15)

and therefore, the channel is passive.

Several control strategies in the wave domain have been possible thanks to

the intrinsic passivity of the wave formulation. Otherwise, in the domain of the

power variables, passivity would be lost.

Position drifting problem derived from the scattering method [100] can be

overcome using damping intervention method. For example, in [101, 102] a

large damping was injected into the master and slave systems in order to achieve

asymptotic stability, also the human operator and the environment were modeled

by a damping-like scheme plus a finite-energy perturbation.
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An approach widely applied to teleoperation systems is the sliding mode

control. Some advantages of this controller are its robustness against non-

linearities and parametric uncertainties. However, in the case of teleoperation

systems, it can help deal with the time delay. This scheme introduces a sliding

surface s(t) which is a function of the error between the positions and the

velocities of the master and the slave:

s = ė+λe, (1.16)

where λ > 0, e = xs − kxxm, with xm,xs are the generalized position coordinates of

the robots, and kx denotes the position scaling factor. Then, a controller based

on the sliding mode scheme is designed to reach the desired sliding surface in

finite time.

Many studies have been reported in the sliding mode control [103–107].

For example, in [108], the sliding control theory was applied to the 1-degrees

of freedom (DoF) telemanipulation systems. These results were extended to

teleoperation with time-varying delays in [109–111].

Model Predictive Control (MPC) is another technique applied in teleoper-

ation systems. In general, the model of the plant is used to predict the future

evolution of the system. In this prediction architecture, prediction can com-

pensate for delays in communication channels. Forward and feedback channel

delays can also be canceled by generating predictions with a longer horizon.

For example, in [112] a pre-compensated slave robot is considered and an MPC

controller on the master robot provides references in order for the remote system

to track. However, the authors in [113] consider the case of the bilateral problem

where a force feedback is applied and the controllers in the slave and master

robots are designed as the solution to an optimization problem. In [114], the

dynamics of the environment is mapped and simulated at the master robot using

two-neural networks.
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Most of the methods for compensating delay assume a perfect knowledge

of the impedances of the master and slave robots, the environment and the

operator in order to compensate them. A solution to eliminate this hypothesis

is the adaptive controllers which mitigate the effects of the uncertainties of the

parameters in master-slave model and user-environment model or both. In [115],

an adaptive admittance control approach based on an intuitive relationship

between the force data and human velocity was proposed. In this case, the

damping parameter in the robot’s admittance controller is decreased or increased

during accelerating or decelerating motion of the operator. In [116], an internal

disturbance rejection controller was proposed to improve the robustness of robot

model uncertaines under the assumption of measurement of acceleration or

boundedness of the inverse of the estimated inertia. In [117–119], the passive-

based adaptive controllers are proposed for robustness to master and slave

model uncertainties and time delay. In [119, 120], virtual internal model-based

adaptive controllers are proposed for transparency and robustness to the delay.

The advancement of networks and technologies led to, in the mid-90’s, tele-

operation over the Internet. Network robot technology has provided different

remote services with applications in many areas: distance learning, telemedicine,

entertainment, services, security applications, among others. However, Internet-

based teleoperation brings different challenges. On the one hand, the bandwidth

of communication channels, the communicating information across a packet-

switched network results in random, time-varying delays. On the other hand,

due to the limitations of the communication capability, it also leads to the loss of

data packets from the slave to the master robot or vice-versa. Furthermore, the

need to deal with discrete-time stability arises. As a result the performance of

the teleoperation system deteriorates drastically and possibly becomes unstable.

In teleoperation over the Internet, the slave and master robots must transport

their information through the software layers to the physical layer in discrete

time. During the transport the data packets can suffer variable aleatory delays

in the incoming delay time hin(t) and outgoing delay hout(t) which distort the

transmitted signals. Two types of communication that reside in the transport

layer in the ISO 7-layer reference model are Transmission Control Protocol

(TCP) and UDP. On one hand, TCP provides reliable two-way communication

and guarantees data delivery at the cost of retransmissions and long timeouts

that are detrimental in real-time applications such as teleoperation. On the

other hand, UDP does not require reception acknowledgments eliminating

unnecessary waiting time, which makes it appealing for real-time applications

such as teleoperation.
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The packet loss inherent in this type of teleoperation is solved by applying

reconstruction algorithms which address the problem from a passivity point of

view. This means that the lost samples are reconstructed preserving the passivity

of the system. Some policies used in packet loss are to use: packet replacement,

previous packets or passive interpolation.

A problem in the transport of information is the transformation of the signals

in continuous-time to the signals to discrete-time, as this could generate an excess

of energy in the interconnection of ports. Under suitable conditions between the

continuous and discrete-time ports, it is possible to obtain an equality of effort

in each time step as

ec(t) = ed(k), ∀t ∈ [kT , (k + 1)T ]. (1.17)

Then, it is possible to set the following result: If we define for the discrete

interconnection port of

fd(k) =
x((k + 1)T )− x(kT )

T
, (1.18)

where x(·) represents the integral of the continuous flow, namely a position mea-

surement, we obtain an equivalence between the continuous time and discrete

time energy flow in the sense that each n;

Ed(n) =
n−1∑
k=0

eTd (k)fd(k)T =
∫ nT

0
eTc (s)fc(s)ds = Ec(nT ) (1.19)

which guarantees lossless connection between the two systems independent of

the sampling period.

Other analysis strategies have been proposed for teleoperation such as: H∞
design, shared compliant control, virtual internal model, among others. These

solutions to tackle the time-delay problem from the control engineering perspec-

tive. The application of these approaches depends on how the delay is modeled

and where it is located within the system.
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The delay can be present in a system in three ways: in the system’s states,

in the inputs of the system, or both. In particular, systems where the delay is

present on the inputs, can be considered challenging due to requiring infinite

feedback for long delays. Moreover, many systems can be subject to input

delays to represent actual physical transport delay in hydraulically actuated

systems, chemical process systems, slow biological response, or problems where

computational delay can be expressed as equivalent to input delay [121–134].

For example, communication latency in teleoperated robots can lead to poor

performance and potential instability. It is a barrier to achieve high fidelity of the

real robot movements [135]. The problems about performance and stability of

these systems have been addressed by applying predictors-based feedback such

as: Finite Spectrum Assignment (FSA) [128], the reduction approach [122], and

continuous pole placement [136]. One of the classic predictor structures is the

Smith predictor that originated the predictive control [137]. These techniques

require a plant model for output prediction and has been widely studied and

modified for control purposes [138–144].

Different works have addressed the problem of Linear Time-Invariant (LTI)

plants with various kinds of input delay. Recently, input delay has been mod-

eled by hyperbolic Partial Differential Equations (PDE), with this approach a

backstepping design procedure has been developed to provided a stability proof

based on Lyapunov-Krasovskii Functionals (LKFs) for predictor-based control of

LTI systems with constant delays [145]. These results were extended to the case

of LTI systems with unknown input delay [146]. Other recent predictor-based

structure consists in implemented a so-called truncated predictor feedback us-

ing a static finite-dimensional time-varying state feedback control law, for LTI

systems with known time-varying input delay [147].

A challenging opportunity to validate the performance of predictor-based

methods is to use them in UAV dynamics. These vehicles are appropriate to

validate because they require fast, accurate, and robust positioning performance.

For example, when an aerial vehicle flies indoors, it requires the states of position

and linear velocity, which are calculated using data from the sensors. These states

are often delayed due to data transmission. The time delay can be increased

when the vehicle is part of a teleoperation system due to the delay in the local

master system. One approach to mitigate the time delay problem is to develop

predictor-based controllers. Clearly, a predictor-based control should be robust

to UAV model parameter and implementable in a way that does not make the

teleoperation system more complex.
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Neverthless, only few works on predictor-based controllers have been applied

to UAVs. In [148], a discrete-time framework was adopted for LTI systems, the

proposed technique is robust for small bounded uncertainties in the system

parameters, delay, and sampling instants. Experimental results on a quadrotor

for yaw control are provided. The authors in [149] proposed a Taylor series-

based approach and experimental results on position control in a quadrotor

with delayed linear velocity and position measurements are provided. Recently,

a delayed attitude and height controller using prediction for simplified UAV

dynamics was developed locally without controlling the lateral position of the

vehicle [150]. A delayed force input to the outer-loop for a UAV visual servoing

problem was considered in [151]. However, the problem is simplified assuming

that the yaw angle is known for image coordinate reprojection. In [152], the

authors represent the set of time delay as a disturbance that satisfies a Lipschitz

condition. Inner-outer loop control mitigates the effect by bounded tracking

error. In [153], the robustness of a nested saturation control for quadrotors with

respect to small time delay was analyzed. These predictor-based schemes are

commonly applied to drone models based on Euler angles without exploring the

robustness that other models can give.
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2
Quadrotor modeling

The first step towards designing a control strategy that ensures the stability of a

quadrotor in the presence of delays is to establish a mathematical model of the

system. Unlike other robotic systems, quadrotors are challenging to control due

to their fast dynamics and nature underactuated (6 DoF with only 4 actuators),

consequently we will adopt a robust model of the system is related. In this

chapter, different modeling methodologies are analyzed.

This chapter is organized as follows: Section 2.1 introduces the elemental

forces that affect the flight of a quadrotor robot. In Section 2.2 the Euler-Lagrange

formalism is presented. An approach based on the Newton-Lagrange equations

is studied in Section 2.3. In Section 2.4 a quaternion-based approach is described.

Finally, some conclusions about the models are presented in Section 2.6.

2.1 Generalities

Throughout this thesis, the notation will be simplified whenever no confusion

can arise from the context. Vectors in R3 will be denoted with an arrow. Quater-

nions will be denoted by bold letters, except the generalized vector x. We will

denote by I and B the inertial and body frames, respectively.

Quadrotors consist of four coplanar motors that are subject to the main force

(thrust) and three moments (torques). These forces are provided by rotation of

the propellers. Consequently given a rotor i with angular velocity ωi , the force

and moment on a propeller are yielded by

fi = CfiρAr
2ω2

i , (2.1)

τi = CτiρAr
2ω2

i , (2.2)

where fi denotes the total thrust generated by rotor i = 1,2,3,4, τi represents

the rotor torque, r describes the rotor radius, ρ symbolizes the air density and

A = πr2 defines the front propeller disk area. Cf and Cτ are thrust and rotor

torque coefficients.

27
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~Fth
f2

τ2
f3

τ3

f4

τ4

f1
τ1

eBx

eBy

eBz

B

Figure 2.1 – Propeller forces and torques acting on a quadrotor.

It is often assumed that the propeller is not subject to high pressures, the

area of the propeller is small and it does not have a high velocity. Therefore,

aerodynamic parameters in equations (2.1) and (2.2) are considered constants

fi ≈ kfiω
2
i and τi ≈ kτiω

2
i where kfi and kτi represent aerodynamics coefficients of

the propeller.

Given the symmetric configuration of the quadrotor the total torque on the

drone is computed as

~τ =


τψ
τθ
τφ

 =


∑4
i=1 τMi

l(f1 + f2 − f3 − f4)

l(f1 − f2 + f3 − f4)

 (2.3)

and the thrust force is given by

~Fth =


0

0∑4
i=1 kTω

2
i

 (2.4)

where τθ, τψ and τψ represent the total torque components on the body frame,

and ~Fth denotes the total thrust force in the vertical axis of the quadrotor.
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2.2 Euler-Lagrange model

A quadcopter is considered as a solid body evolving in three dimensions and

subject to a main force and three moments. Let us also consider a fixed coordinate

system at a point on the ground called I and a mobile reference system to

attached the vehicle B, where the center of mass and the origin of B coincide.

The generalized coordinates of an air vehicle can be written as

x = (~ξ, ~η)T (2.5)

where ~ξ = (x,y,z)T ∈ R3 denotes the position of the center of mass of the vehicle

relative to the reference frame I and ~η = (ψ,θ,φ)T ∈ S3 define the Euler’s angles

(yaw, pitch and roll, respectively) which represent the orientation of the vehicle.

The Lagrangian equation L is defined as

L(x, ẋ) = Ttrans + Trot −U, (2.6)

where Ttrans =
m
2
~ξT ~ξ describes the translational kinetic energy, Trot =

1
2
~ΩT J ~Ω

denotes the rotational kinetic energy, U = mgz describes its potential energy,
~Ω = (ωx,ωy ,ωz)T symbolizes the angular velocity, J defines the inertia matrix,

m represent its mass, g is the acceleration due to gravity and z is the altitude.

The angular velocity vector ~Ω in the body frame B is related to the generalized

velocities ~̇η (in the region where the Euler angles are valid) by means of the

standard kinematic relationship

~Ω =W~η ~̇η, (2.7)

where

W~η =


−sinθ 0 1

cosθ sinφ cosφ 0

cosθ cosφ −sinφ 0

 , (2.8)

note that W~η is invertible if θ , (2k−1)φ
2 where k ∈ Z+.

Applying the transformation (2.7) on the rotational kinetic energy, we obtain

Trot =
1
2
~̇ηT J~̇η (2.9)

with J = J(~η) =W T
~η
JW~η and

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 , (2.10)

where Jii denotes the moment of inertia with respect to the i = x,y,z axes.
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Note that the matrix J(~η) acts as the inertia matrix for the full rotational

kinetic energy of the vehicle expressed in terms of ~η. Then the mathematical

equations that represent the dynamics of the aerial vehicle are obtained using

the following equation:
d
dt
∂L
∂ẋ
− ∂L
∂x

=

 ~FIth~τ
 , (2.11)

where ~FIth denotes the translational external forces acting on the vehicle due to

the control inputs, and ~τ represents the external torques. We ignore the small

body forces because they are generally of a much smaller magnitude that the

principal control.

Considering from Figure 2.2 that the thrust force acts only in the z-axis, it

can be written as ~Fth = ~nzu, where ~nz = (0,0,1)T represents the thrust directed

out of the top of the vehicle and u = ‖~Fth‖. If this vector force is represented in

the inertial frame using a rotation matrix R derived from the Euler angles as
~FIth = R~Fth, where

R = R(ψ,θ,φ) =


CψCθ −SψCθ Sθ

SψCφ +CψSθSφ CψCφ − SψSθSφ −CθSφ
SψSφ −CψSθCφ CψSφ + SψSθCφ CθCφ

 , (2.12)

where Sβ and Cβ stand for sin(β) and cos(β) with β ∈ {ψ,θ,φ} respectively.

~Fth

eBz

B

m~g
eIy

eBy
eBx

eIx

eIz

I

ψ

θ

φ

Figure 2.2 – Quadcopter scheme in an inertial frame.
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Since the Lagrangian equation (2.6) does not contain crossed terms of ~̇ξ and

~̇η is kinetic energy then the Euler-Lagrange equation (2.11) can be divided into

translation motion

m( ~̈ξ − ~g) = ~FIth, (2.13)

where ~g = (0,0,−g)T denotes the acceleration vector due to gravity, and the

rotational motion

J~̈η + J̇~̇η − 1
2
∂

∂~η

(
~̇ηT J

)
~̇η = ~τ. (2.14)

Therefore, equations (2.13) and (2.14) can be rewriting as

m~̈ξ = ~FIth −mg~nz (2.15)

J~̈η = ~τ −C(~η, ~̇η)~̇η (2.16)

where C(~η, ~̇η) = J̇− 1
2
∂
∂~η

(
~̇ηT J

)
represent to the Coriolis term and contains the gy-

roscopic and centrifugal terms. Computing equations (2.15)-(2.16) is an arduous

task and, in several works, the full inertia matrix J is considered diagonal and

the Coriolis matrix is, in general, neglected.

The inertia and Coriolis matrix can be obtained from (2.11) for the ~η dynamic.

Therefore, the attitude dynamics yields

d
dt

~ΩT J
∂~Ω
∂ẋ

− ~ΩT J
∂~Ω
∂x

= ~τ (2.17)

Then
∂~Ω
∂ẋ

=W~η and ~ΩT J
∂~Ω
∂ẋ

= (a1, a2, a3)T with

a1 = −Jxx(φ̇Sθ − ψ̇S2
θ) + Jyy(θ̇CθSφCφ + ψ̇C2

θS
2
φ) + Jzz(ψ̇C

2
θC

2
φ − θ̇CθSφCφ),(2.18)

a2 = Jyy(θ̇C2
φ + ψ̇CθSφCφ)− Jzz(ψ̇CθSφCφ − θ̇S2

φ), (2.19)

a3 = Jxx(φ̇− ψ̇Sθ), (2.20)

where Sβ and Cβ stand for sin(β) and cos(β) with β ∈ {ψ,θ,φ} respectively.
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Differentiating ~ΩT J
∂~Ω
∂ẋ

with respect to time, we get

ȧ1 = −Jxx(φ̈Sθ + φ̇θ̇Cθ − ψ̈S2
θ − 2ψ̇θ̇SθCθ) + Jyy(θ̈CθSφCφ

−θ̇2SθSφCφ − θ̇φ̇CθS2
φ + θ̇φ̇CθC

2
φ + ψ̈C2

θS
2
φ − 2ψ̇θ̇SθCθS

2
φ

+2ψ̇φ̇C2
θSφCφ) + Jzz(ψ̈C

2
θC

2
φ − 2ψ̇θ̇SθCθC

2
φ − 2ψ̇φ̇C2

θSφCφ

−θ̈CθSφCφ + θ̇2SθSφCφ + θ̇φ̇CθC
2
φ),

ȧ2 = Jyy(θ̈C2
φ − 2θ̇φ̇SφCφ + ψ̈CθSφCφ − ψ̇θ̇SθSφCφ + ψ̇φ̇CθC

2
φ

−ψ̇φ̇CθS2
φ)− Jzz(ψ̈CθSφCφ − ψ̇θ̇SθSφCφ − ψ̇φ̇CθS2

φ

+ψ̇φ̇CθC
2
φ − θ̈S

2
φ − 2θ̇φ̇SφCφ),

ȧ3 = Jxx(φ̈− ψ̈Sθ − ψ̇θ̇Cθ).

Analogously, we have

∂~Ω

∂~η
=


0 −ψ̇Cθ 0

0 −ψ̇SθSφ −θ̇Sφ + ψ̇CθCφ
0 −ψ̇SθCφ −ψ̇CθSφ − θ̇Cφ

 , (2.21)

then ~ΩT J
∂~Ω

∂~η
= (h1,h2,h3)T where

h1 = 0,

h2 = −Jxx(ψ̇φ̇Cθ − ψ̇2SθCθ)− Jyy(ψ̇θ̇SθSφCφ + ψ̇2SθCθS
2
φ)

−Jzz(ψ̇2SθCθC
2
φ − ψ̇θ̇SθSφCφ),

h3 = Jyy(−θ̇2SφCφ − ψ̇θ̇CθS2
φ + ψ̇θ̇CθC

2
φ + ψ̇2C2

θSφCφ)

+Jzz(−ψ̇2C2
θSφCφ + ψ̇θ̇CθS

2
φ − ψ̇θ̇CθC

2
φ + θ̇2SφCφ).

Notice that

τ =


τψ
τθ
τφ

 =


ȧ1 − h1

ȧ2 − h2

ȧ3 − h3

 . (2.22)

Thus, grouping terms and using (2.15), it follows that

J(~η) =


JxxS

2
θ + JyyC

2
θS

2
φ + JzzC

2
θC

2
φ CθCφSφ(Jyy − Jzz) −JxxSθ

CθCφSφ(Jyy − Jzz) JyyC
2
θ + JzzS

2
φ 0

−JxxSθ 0 Jxx

 (2.23)
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and

C(~η, ~̇η) =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 , (2.24)

where
c11 = Jxxθ̇SθCθ + Jyy(−θ̇SθCθS2

φ + φ̇C2
θSφCφ)

−Jzz(θ̇SθCθC2
φ + φ̇C2

θSφCφ),

c12 = Jxxψ̇SθCθ − Jyy(θ̇SθSφCφ + φ̇CθC
2
φ + ψ̇SθSφS

2
φ)

+Jzz(φ̇CθS
2
φ − φ̇CθC

2
φ − ψ̇SθCθC

2
φ + θ̇SθSφCφ),

c13 = −Jxxθ̇Cθ + Jyyψ̇C
2
θSφCφ − Jzzψ̇C

2
θSθCθ,

c21 = −Jxxψ̇SθCθ + Jyyψ̇SθCθS
2
φ + Jzzψ̇SθCθC

2
φ,

c22 = −Jyyφ̇SφCφ + Jzzφ̇SφCφ,

c23 = Jxxψ̇Cθ + Jyy(−θ̇SφCφ + ψ̇CθC
2
φ − ψ̇CθS

2
φ)

+Jzz(ψ̇CθS
2
φ − ψ̇CθC

2
φ + θ̇SφCφ),

c31 = −Jyyψ̇C2
θSφCφ + Jzzψ̇C

2
θSφCφ,

c32 = −Jxxψ̇Cθ + Jyy(θ̇SφCφ + ψ̇CθS
2
φ − ψ̇CθC

2
φ)

−Jzz(ψ̇CθS2
φ − ψ̇CθC

2
φ + θ̇SφCφ),

c33 = 0.

Note that equations (2.15) and (2.16) represent the mathematical model of

an aerial vehicle having four rotors. These equations are also valid for other

aerial configurations as long as the external forces and torques are rewritten.

Observe that in this approach no aerodynamic effects are taken into account. In

the following subsection these effects will be included.

2.3 Newton-Euler approach
The general mathematical model describing the dynamics of an UAV evolving

in a three-dimensional space is obtained by representing the aircraft as a solid

body, which is subject to non-conservative forces ~FI ∈ R3 expressed in a inertial

frame I , and torques ~τ ∈ R3 applied to its center of mass and specified with

respect to the body frame B, and by using the Newton-Euler approach

m~̈ξ = ~FI , (2.25)

Ṙ = RΩ̂, (2.26)

J ~̇Ω = −~Ω× J ~Ω+ ~τ (2.27)

where Ω̂ describes the anti-symmetric matrix of ~Ω and J represents the constant

inertia matrix around the center of mass.
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In this approach, external perturbations (e.g. wind) and uncertainties in the

model (e.g. blade flapping) are considered. This model contains aerodynamic

effects and could be used for research purposes.

Consider the aerial vehicle in the presence of lateral wind. Then from Figure

2.2 it can be concluded that
~FI = R~Fth + ~g (2.28)

where ~g = (0,0,−g)T denotes the gravity acceleration vector. The main vector

force produced by the rotors is considered as ~Fth = (0,0,u)T .

Considering the total forces and torques from (2.3) and (2.4), and introducing

them into (2.25) and (2.27), it follows that the translational dynamics of the

aerial vehicle is represented by

mẍ = −u sinθ, (2.29)

mÿ = u cosθ sinφ, (2.30)

mz̈ = u cosθ cosφ−mg (2.31)

and its rotational dynamics is given by
ψ̈

θ̈

φ̈

 = J−1



τx
τy
τz

−C(~η, ~̇η)


ψ̇

θ̇

φ̇


 , (2.32)

where C(~η, ~̇η) is referred to as the Coriolis terms and contains the gyroscopic and

centrifugal terms associated with the η dependence of J .

2.4 Quaternion-based model

An existing model in the literature is based upon the use of the quaternion

representation to describe the attitude of the vehicle. In this subsection the

model will be developed. First, some operations and properties of the quaternion

space will be enunciated. Later, the model will be developed.

2.4.1 Quaternion algebra

Let H the quaternion space defined by

H = {q = q0 + q1î + q2ĵ + q3k̂|q0,q1,q2,q3 ∈ R, î2 = ĵ2 = k̂2 = î ĵ k̂ = −1} ⊂ C2. (2.33)

There are different ways of expressing the elements of space H. One of them is

differentiating the real part q0 from the vector part ~q = (q1,q2,q3)T .
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Therefore, a quaternion can be written as

q =

q0

~q

 . (2.34)

The addition and product operations are defined as follows.

Addition: Let q,r ∈ H, such that q =

q0

~q

 y r =

r0~r
 then the sum is defined

term-to-term

q + r =

q0 + r0
~q+~r

 (2.35)

Product: Let q,r ∈H, such that q =

q0

~q

 y r =

r0~r
 then product is

q⊗ r =

 q0r0 − ~q ·~r
r0~q+ q0~r + ~q ×~r

 (2.36)

Theorem 2 (Quaternion exponential)
The exponential of a quaternion q = q0 + ~q is given by

exp(q) = exp(q0)
(
cos(|~q|) +

~q

|~q|
sin(|~q|)

)
(2.37)

Theorem 3 (Quaternion logarithm)
The logarithm of a quaternion q = q0 + ~q is given by

ln(q) = ln(|q|) +
~q

|~q|
arccos

(
q0

|q|

)
(2.38)

Theorem 4 (Quaternion power)
Quaternion power can be defined as

qp = exp(ln(q)⊗p) (2.39)

Note that if the exponent is a scalar value p, then the power is

qp = exp(p ln(q)) (2.40)

Some important properties are listed below.

• The inverse element of the product operation is called conjugate quaternion

and is defined as: given a quaternion q = q0 + ~q its conjugate quaternion is

q∗ = q0 − ~q.
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• The norm of a quaternion is defined as

‖q‖ =
√

q⊗q∗ =
√
q2

0 + q2
1 + q2

2 + q2
3. (2.41)

• Every quaternion except the zero quaternion with real and vector part 0

has an inverse quaternion defined as

q−1 =
q∗

‖q‖2
. (2.42)

• If q ∈ H and ‖q‖ = 1 then q is called unit quaternion. Therefore, a unit

quaternion fulfills that q−1 = q∗. To model the attitude of the drone we will

use the unit quaternions.

Recall that the polar form of a unit complex number can be written as

exp(îϕ) = cosϕ + î sinϕ (2.43)

where ϕ ∈ [0,2π) denote the angle. A quaternion has a similar representation,

consider the rotation of the vector ~γ = (γx,γy ,γz)T and denote its magnitude

γ = ‖~γ‖ in radians, the unit vector is ~α = ~γ/γ then its axis-angle representation

ca be expressed as

~γ = γ ~α, (2.44)

that means that any vector can be decomposed as the product between its norm

by its normalized representation. This property can be extended to quaternions

and is known as Euler-Rodrigues formula, its axis-angle representation is defined

as

q = exp
(
~γ

2

)
= exp

(
γ ~α

2

)
= cos

(γ
2

)
+ ~α sin

(γ
2

)
(2.45)

Using the unit quaternion q = q0 + ~q, ‖q‖ = 1, we define an operator on vector

~v ∈ R3,

Lq(~v) = q⊗ v⊗q∗ (2.46)

= (q0 − ‖q‖2)~v + 2(~q · ~v)~q+ 2q0(~q × ~v) (2.47)

where v =

0~v
 is a pure quaternion built from ~v by adding a zero real part.

Observations:

• The quaternion operator does not change the length of the vector ~v,

‖Lq(~v)‖ = ‖q⊗ v⊗q∗‖ = ‖q‖ ⊗ ‖v‖ ⊗ ‖q∗‖ = ‖~v‖. (2.48)
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• The direction of ~v, if along q, is left unchange by the operator Lq. To verify

this, we let ~v = b~s where b denote a constant, then

Lq(~v) = q⊗ v⊗q∗ = bq. (2.49)

Essentially, any vector along q does not change under Lq.

Note that the operator Lq acts like a rotation about q, which can be established

in the next theorem.

Theorem 5
For any unit quaternion

q = q0 + ~q = cos
γ

2
+ ~α sin

γ

2
, (2.50)

and for any vector ~v ∈ R3 the action of the operator

Lq(~v) = q⊗ v⊗q∗ (2.51)

on ~v is equivalent to a rotation of the vector through an angle γ around ~α as the

axis of rotation.

Another interpretation of this theorem is that if ~v is in a frame of reference F1

and the resultant vector ~v′ = Lq(~v) relative to another reference frame F2 then q
represents a rotation of F2 relative to F1.

From the equation (2.45) we know that if q is a unit quaternion then q =

exp
(
~γ
2

)
, from here we see that given an axis-angle representation we can trans-

form it into a quaternion by applying the exponential function. Conversely, there

is a logarithm function that maps a quaternion to its axis-angle representation

through mapping

q 7→ ~γ = 2lnq, (2.52)

where the logarithm is defined as

lnq =


~q

‖~q‖
arccos(q0), if ‖~q‖ , 0

(0,0,0)T , if ‖~q‖ = 0
(2.53)
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An important equation known in the literature is the kinematic kinematic

equation of a rigid body. This relates the attitude and the angular velocity of the

vehicle by

q̇ =
1
2

q⊗Ω, (2.54)

where Ω =

 0
~Ω

. From the kinematic equation it is possible to deduce a relation-

ship between the angular velocity of the vehicle and the axis-angle representation

of the vehicle as

~̇γ = ~Ω. (2.55)

2.4.2 Rigid body dynamic modeling

Recall the assumptions we have used to establish the models. Denote by I the

inertial frame B the body frame attached to the vehicle. Let ~ξ ∈ R3 be the drone

position in I , ~̇ξ denotes its linear velocity, q = q0 + (q1,q2,q3)T defines a unit

quaternion representing the orientation of the vehicle in I and ~Ω = (ωx,ωy ,ωz)T

describes the rotational speed in B on the center of mass of the drone.

Using the Newton-Lagrange equations, the dynamics of any rigid body using

unit quaternions to represent the rotational dynamics is given by

m~̈ξ = ~FI (2.56)

q̇ =
1
2

q⊗Ω (2.57)

J ~̇Ω = ~τ − ~Ω× J ~Ω. (2.58)

where J is the inertia matrix, Ω =

 0
~Ω

 denotes the pure quaternion representation

of rotational speed, ~τ represents the total torque, both with respect to the body

frame, and ~FI defines the total force applied to the body in the inertial frame.

The quadrotor consists on four parallel rotors with blades. The direction of

the rotation of each blade is selected such that all torques on the rotor cancel out

in stationary flight.



2.4. Quaternion-based model 39

We can assume that some effects as blade flapping and the misalignment on

the motors axes could be considered small enough. Thus we can consider the

total thrust force generated by the rotating blades ~Fth = (0,0,
∑4
i=1 fi)

T , and the

total torque can be expressed by

~τ =


l(f1 + f4 − f2 − f3)

l(f1 + f2 − f3 − f4)∑4
i=1(−1)i+1τi

 (2.59)

where l symbolize the distance of the mass center to the motor. We observe that
~Fth and ~τ act on B, then applying the operator Lq in (2.51), it is easy to change

their reference frame to I . Thus, the dynamical model can be written as

m~̈ξ = ~FIth (2.60)

q̇ =
1
2

q⊗Ω (2.61)

J ~̇Ω = ~τ − ~Ω× J ~Ω. (2.62)

where ~g = (0,0,−g)T is the gravity vector and ~FIth = Lq(~Fth) +m~g. We observe

the dynamics of the translational and rotational model are coupled, due to the

orientation of ~FIth depending on the vehicle’s attitude q. Nevertheless, using an

appropriate approach and some properties of unit quaternions, the quadrotor

can be easily stabilized despite its underactuated nature.

2.4.3 Decoupling the vehicle dynamics

Since the attitude sub-system of the quadrotor is completely actuated, we address

it in this subsection.

From (2.60)-(2.62), the rotational dynamics can be expressed as

q̇ =
1
2

q⊗Ω (2.63)

J ~̇Ω = ~τ − ~Ω× J ~Ω. (2.64)

Applying the logarithmic mapping (2.53) to the attitude, the rotational model in

(2.63)-(2.64) of the aerial vehicle could be expressed as

~̇γ = ~Ω (2.65)

J ~̇Ω = ~τ − ~Ω× J ~Ω. (2.66)

where ~γ = 2lnq.
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The objective is to force the system to have a linear behavior, thus the terms

J−1 and ~Ω× J ~Ω can be compensated using an appropriate ~τ = J~τu + ~Ω× J ~Ω with

~τu as the new control input. Then, (2.65)-(2.66) yields

~̇γ = ~Ω (2.67)

~̇Ω = ~τu , (2.68)

or in matrix form,  ~̇γ

~̇Ω

 =

 03×3 I3×3

03×3 03×3

 ~γ
~Ω

+

 03×3

I3×3

~τu , (2.69)

where 03×3 and I3×3 denotes the zero and identity matrices.

If (2.67)-(2.68) is stabilized using any appropriate controller ~τu, then the

axis-angle orientation ~γ and its angular velocity ~Ω will converge to zero, which

means the quaternion attitude will converge to q1 = 1 + (0,0,0)T .

Given a desired attitude trajectory defined by a quaternion qd and its angular

velocity ~Ωd , then (2.63)-(2.64) can be defined in terms of the error quaternion

qe := q∗d ⊗q and its angular velocity ~Ωe as

q̇e =
1
2
qe ⊗ ~Ωe (2.70)

J ~̇Ωe = ~τ − ~Ωe × J ~Ωe. (2.71)

if ~τ is correctly designed in terms of the attitude error. Then, qe→ q1 implying

q→ qd .

From (2.60)-(2.62), the translational dynamics are given by

m~̈ξ = ~FIth − ~g. (2.72)

From (2.72), a desired force ~FIth can easily be designed such that xpos and ẋpos
converge to zero. If a position error is defined as ~ξe = ~ξ − ~ξd , where ~ξd symbolize

a desired position for the quadrotor, then the translational error dynamics can

be written as

m~̈ξe = ~FIth − ~g. (2.73)

Consequently, if an adequate controller is designed for ~FIth the position error

will converge to zero, meaning the quadrotor can be stabilized in any desired

position.
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Analyzing (2.73), it yields that the translational model can be seen as a fully

actuated system, in which ~FIth can be designed to point at any direction. But

considering the complete model of the quadrotor, the force that the propellers

really exert depends on the attitude subsystem as seen in (2.60)-(2.62).

Define a desired force ~FIth ∈ R
3 with respect to I which stabilizes system

(2.73) at the desired position, given the direction and magnitude of such force,

the attitude can be controlled using ~τ such that the quadrotor thrust vector ~Fth is

aligned with ~FIth, thus orientating the quadrotor thrust in the direction required

to control the translational dynamics.

This quaternion is derived from the shortest rotation between both vectors,

and represented by qt.
Recalling the Euler-Rodrigues formula, qt is defined as

qt = exp
(1
2
γd ~αd

)
= cos

γd
2

+ ~αd sin
ϕd
2
, (2.74)

where ~αd and γd denote respectively the axis and the angle of the shortest

rotation between ~Fth and ~FIth. Defining ~nz and ~nu as the normalized vectors of the
~Fth and ~FIth respectively (note that ~nz = (0,0,1)T is constant), the cross product

between these vectors is defined as

~nz × ~nu = ~αd sinγd , (2.75)

where ~αd is a unit vector perpendicular to the plane containing ~nu and ~nz, while

the scalar product is given by

~nz · ~nu = cosγd , (2.76)

From the definition of the quaternion product, and treating ~nu and ~nz as quater-

nions with zero-value scalar parts, then applying the quaternion product (2.36)

we obtain

~nu ⊗ ~n∗z = −~nu · ~n∗z + ~nu × ~n∗z. (2.77)

By the anti-commutative property of the cross product we known that

~nu × ~n∗z = −(~n∗z × ~nu) (2.78)

and since ~nz have zero-value scalar part then ~n∗z = −~nz. Therefore we can rewrite

(2.77) as

~nu ⊗ ~n∗z = ~nz · ~nu + ~nz × ~nu . (2.79)
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Replacing the cross (2.75) and inner (2.76) product definitions into (2.79) we

conclude that

~nu ⊗ ~n∗z = cosγd + ~ud sinγd . (2.80)

Note that (2.80) represents twice the desired rotation needed in (2.74). In order

to express (2.80) as a quaternion we applying logarithmic function in (2.74) get

the axis-angle representation

γd ~αd = 2lnqt (2.81)

Using the exponetial function in (2.81) and the equation (2.80) we have

exp(2lnqt) = exp(γd ~αd) = cosγd + ~αd sinγd = ~nu ⊗ ~n∗z (2.82)

Finally, solving the equation (2.82) for qt we obtain the expression

qt = exp
(

ln(~nu ⊗ ~n∗z)
2

)
(2.83)

Note since ~nz only acts in the vertical axis of the quadrotor, then qt will only

compute rotations around the xy-plane of the inertial frame. Considering qz
as a desired rotation around the z-axis of the vehicle’s body frame, the desired

quaternion can be enhanced as

qd = qt ⊗qz (2.84)

Introducing (2.84) into the rotational error dynamic model from (2.70), and if

τ is designed such that q→ qd , then it implies that ~FIth→ ~Fu such that system

(2.73) can be stabilized if ~Fu is correctly designed.

2.5 Quaternion state feedback controller

In this section, a quaternion-based feedback controller is designed as an example

using Lyapunov theory based on the proposed model from Section 3.2.1. This

controller, consist on a force in R3 defined as

~Fu = ~FPD −m~g, (2.85)

where ~FPD = −Kpt(~ξ − ~ξref )−Kdt( ~̇ξ − ~̇ξref ), (2.86)

Kpt,Kdt ∈ R3×3 denote positive control gains, and ~ξref symbolizes the desired

position for the quadrotor.
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Then, the force computed by (2.85) is used to determine the attitude control

action by introducing

~τu = ~τPD + ~Ω× J ~Ω, (2.87)

where

~τPD = −2Kpa ln(q⊗q∗ref )−Kda(~Ω− ~Ωref ) (2.88)

and qref is given by (2.84), and the control gains are denoted by positive matrices

Kpa,Kda ∈ R3×3. The development and stability proof of this algorithm will be

explained in the following subsections.

2.5.1 Translational controller

First, from (2.73), the linear translational subsystem can be written as ~̇ξe~̈ξe
 =

 03×3 I3×3

03×3 03×3


 ~ξe~̇ξe

+
1
m

 03×3

I3×3

(~Fu +m~g
)
, (2.89)

where 03×3 and I3×3 denotes the zero and identity matrices.

Propose the following positive definite function and its derivative as

Vt =
1
2

[
~ξe ~̇ξe

] ~ξe~̇ξe
 (2.90)

V̇t =
[
~ξe ~̇ξe

]
 03×3 I3×3

03×3 03×3


 ~ξe~̇ξe

+
1
m

 03×3

I3×3

(~Fu +m~g
) . (2.91)

Proposing

~Fu = −
[
Kpt Kdt

] ~ξe~̇ξe
−m~g, (2.92)

where Kpt,Kdt ∈ R3 contain control gains and are defined as

Kpt =


kptx 0 0

0 kpty 0

0 0 kptz

 , Kdt =


kdtx 0 0

0 kdty 0

0 0 kdtz

 , (2.93)

then (2.92) can be rewritten as

V̇t =
[
~ξe ~̇ξe

] 03×3 I3×3

03×3 03×3

+
1
m

 03×3

I3×3

[ Kpt Kdt
]

 ~ξe~̇ξe
 . (2.94)



44 CHAPTER 2. Quadrotor modeling

In order to asymptotically stabilize the subsystem, Kpt and Kdt must be

chosen such that the real parts of

eig

 03×3 I3×3

03×3 03×3

+
1
m

 03×3

I3×3

[ Kpt Kdt
] (2.95)

are negative definite.

If the condition satisfied, then asymptotic stability is ensured for system

(2.89) since

Vt > 0, V̇t < 0, for all ~ξe, ~̇ξe , ~0. (2.96)

2.5.2 Rotational controller

Considering qe := q∗ref ⊗ q and ~γe = 2ln(qe), ~̇γe = ~Ω − 2 d
dt ln(qref ), the same

methodology from Section 2.5.1 is now applied to the rotational error model in

its axis-angle representation by introducing ~̇γe~̈γe
 =

 03×3 I3×3

03×3 03×3

 ~γe~̇γe
+

 03×3

J−1

(~τ − ~̇γe × J ~̇γe) , (2.97)

Proposing a positive-definite function with its derivative as

Va =
1
2

[
~γe ~̇γe

] ~γe~̇γe
 (2.98)

V̇a =
[
~γe ~̇γe

] 03×3 I3×3

03×3 03×3

 ~γe~̇γe
+

1
m

 03×3

I3×3

(~τ − ~̇γe × J ~̇γe) . (2.99)

The controller can be defined as

~τ = −
[
Kpa Kda

] ~γe~̇γe
+ ~̇γe × J ~̇γe (2.100)

with control gains given by

Kpa =


kpax 0 0

0 kpay 0

0 0 kpaz

 , Kda =


kdax 0 0

0 kday 0

0 0 kdaz

 . (2.101)
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Therefore, asymptotic stability for the rotational subsystem is ensured as

long the real parts of

eig

 03×3 I3×3

03×3 03×3

+
1
m

 03×3

J−1

[ Kpa Kda
] (2.102)

are negative such that

Va > 0, V̇a < 0, for all ~γe, ~̇γe , ~0. (2.103)

Introducing (2.92) into (2.83), a desired attitude is defined to compute qe and ~γe
such that the final controller expression yields (2.85) and (2.87).

2.6 Vehicle modeling conclusions

In this chapter the mathematical modeling of a quadrotor aircraft has been

developed considering three different approaches: the Euler-Lagrange formalism,

the Newton-Lagrange equations and the quaternion-based method (variant of

the Newton-Lagrange equations). In the first two approaches the attitude of the

quadcopter is described through Euler’s angles while in the third method it is

represented as a unit quaternion. The main advantage of this representation is

to avoid the singularities inherent in the matrix of direct cosines obtained from

Euler rotations.

Even though UAVs are inherently underactuated, the quaternion-based ap-

proach was introduced such that its dynamic equation can be analyzed and

treated as a fully actuated system. Although its representation can appear to be

less intuitive and difficult to conceptualize, the application of quaternions can

really simplify dynamic models, and help in the design of better controllers.
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3
Teleoperation system of a quadrotor

The numerous applications of UAVs and their wide use in the market have led

the scientific community to investigate new ways to keep the human operator

in the control loop. One solution is the use of drone teleoperation systems.

However, these systems imply several challenges in terms of graphical user

interaction, control, time delay, system ergonomics, mental overload, among

others.

In this Chapter, a new teleoperation scheme for a drone is proposed. In

this system, the master robot is a virtual drone on a local computer that is

controlled through a joystick, the slave robot is a quadrotor vehicle in a remote

environment, both environments are linked using UDP communication channel.

The information about the states of the virtual drone are sent to the real drone

to imitate the movements in the remote environment. The states of the real

quadrotor are sent to the local environment where they are represented by a

virtual object.

The proposed graphical user interface is based on a virtual telepresence

approach. That is, the remote environment is virtually recreated in order for

the user to feel immersed in the remote environment. This approach allows

reducing computational resources since it is not necessary to take images from

the drone camera or other devices.

The outline of this Chapter is the following: in Section 3.1 the main problems

in common piloting of a drone are described. In Section 3.2 the teleoperation

system modules are presented. In Subsection 3.2.1 the dynamics of the drone is

introduced. The virtual and real vehicle controls are presented in subsections

3.2.2 and 3.2.3 respectively. In Section 3.3 the validation of the teleoperation

scheme is introduced. In Section 3.4 the results of the implementation of the

scheme in real time are described. Finally, in Section 3.5 presents some conclu-

sions of the chapter.

47
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3.1 Problem statement

Piloting a drone in direct view is a difficult task because it has six DoF, unlike a

car that moves in a plane, UAVs move in a 3-dimensional space. Also, controlling

a drone is not an intuitive task when the user loses the spatial orientation. For

example, when the drone is directed towards the pilot as the command is in the

opposite direction, see Figure 3.1. Maneuvering a drone is a highly complex task

as can be seen in drones racing competitions. Then, performing a task with a

drone for a beginner pilot can generate a high mental overload. To address this

problem, some authors have implemented ways of piloting based on markers,

gesture recognition and voice, among others.

Drone response
relative to the
pilot location.

Forward
Back

Input

Figure 3.1 – A pilot with a fixed position loses the spatial orientation respect to
the drone response.
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In this work, an easy-to-use and intuitive teleoperation scheme is proposed,

see Figure 3.2. In this scheme the master system is a virtual environment where

a virtual drone is commanded manually via joystick. Two elements of this inter-

face can help reduce the user’s mental overload. First, this interface consists of

different virtual views of the remote environment, in particular a first-person

view close to the drone that can help the pilot not lose the orientation of the ve-

hicle. Second, the information on the real states of the drone is concentrated and

displayed to the user in the virtual environment. Then, the virtual environment

interface is developed with different views of the virtual vehicle and is updated

with the position and orientation coordinates of the real drone. The challenges

in this teleoperation system are the design of a user-friendly graphical interface

and to create a virtual and real space mapping to implement the controllers.

Local site Remote site
B

ar
ri

er
Command
signals

Sensor
information

IMU

Figure 3.2 – Teleoperation system: a user pilots remotely a real drone from a
virtual environment.

3.2 Teleoperation architecture

Our teleoperation system has a modular structure where the local environment

simulation and the real drone are independent. This means, the user can teleop-

erate a drone in real time through low-level actions, or use only the simulation

to generate some trajectories (high-level) that can then be sent to the real drone

to execute it. In the following each module of the system will be described.
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3.2.1 Quadrotor dynamic model

Different mathematical models about the dynamics of a quadrotor were de-

scribed in Chapter 2. In this subsection, a brief summary of the Section 2.4

about of the quaternion-based model is presented in order to apply it to the

development of the teleoperation system.

Under the hypotheses stated in the Section 2.4 we know that using the

formalism of the Newton-Euler the dynamics of the UAV can be described by

the equations (2.60)-(2.62).

3.2.2 Virtual representation

In this subsection, we replicate the dynamics of a real drone to simulate a virtual

quadrotor. The objective is to generate realistic movements in the virtual drone

to provide transparency in the system.

The variables that we will use to describe the dynamics of the virtual vehicle

will be indicated with the subscript v. The virtual environment is developed in

Unity 3D software. A rigid body similar to a quadrotor with the dynamics of the

model (2.60)-(2.62) represents the virtual drone, see Figure 3.3. In the object,

four motors are represented and the vehicle is controlled as described below.

In this environment, the inertial frame Ive = {eIvex , e
I
vez , e

I
vey } and a body frame

of the vehicle Bve = {eBvex , e
B
vez , e

B
vey } is given by default (using left hand) as seen in

the Figure 3.3.

To simulate the dynamics of the virtual quadrotor we consider that given a

rotation in terms of the Euler angles (ψ,θ,φ ∈ SO(3)), it can be expressed as a

quaternion using the following transformations

qvψ = cos(ψ/2) + sin(ψ/2)j (3.1)

qvφ = cos(φ/2) + sin(φ/2)i (3.2)

qvθ = cos(θ/2) + sin(θ/2)k. (3.3)

Then, to move in the virtual horizontal plane, the orientations θ and φ are

controlled, which can be expressed as a combined quaternion qvφθ = qvφ ⊗qvθ as

qvφθ =cos
(
φv
2

)
cos

(
θv
2

)
+ sin

(
φv
2

)
cos

(
θv
2

)
i

+sin
(
θv
2

)
sin

(
φv
2

)
j +cos

(
φv
2

)
sin

(
θv
2

)
k. (3.4)
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~ξve

eBvey

eIvey

eIvez

eIvex

θ
ψ

φ
eBvex

eBvez

Figure 3.3 – System of coordinates in the inertial and body frames in Unity 3D.

A Proportional Integral Derivative (PID) controller for the pitch and roll angles

will be used on the virtual model. The control diagram for the displacement is

shown in Figure 3.4. In the scheme, we consider that a user gives orientation

quser and angular speed ωuser references to move the virtual vehicle, a PID

control is used to reach the setpoints and generate the movement of the vehicle,

finally the virtual environment will provide the orientation qv and position ~ξv
of the quadrotor in the virtual world.

The orientation error in pitch and roll is defined as

qevφθ (t) = qd∗vφθ (t)⊗qvφθ (t) (3.5)

where qvφθ (t) is the measure of the pitch and roll angles given by a virtual

gyroscope in Unity 3D and qd∗vφθ (t) is the desired orientation given manually

using a joystick device. The signal τvθ that will be applied to the virtual vehicle.
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+-+
- Controller

quser Virtual
quadrotor

User
input

Unity 3D environment

Virtual
motors

Virtual
gyroscope

ωuser

~τv

~Fv

qv

~ξv

Figure 3.4 – Control scheme of the virtual drone.

The PID controller for the attitude (roll, pitch) is given by

τvθ(t) =kθpqevφθ3
(t)+kθd

(
d
dt

qevφθ3
(t)
)
+kθi

∫ t

0
qevφθ3

(τ)dτ, (3.6)

τvφ(t) =kφpqevφθ1
(t)+kφd

(
d
dt

qevφθ1
(t)
)
+kφi

∫ t

0
qevφθ1

(τ)dτ, (3.7)

where kjp, kjd , kji with j ∈ {θ,φ} are negative constants. The yaw angle will be

controlled by

τvψ(t) = kωpω
e
vy (t) + kωi

∫ t

0
ωevy (τ)dτ, (3.8)

where ωevy = ωdvy − ωvy where ωdvy and ωvy symbolize the desired and actual

angular velocity respectively, and kωp, kωi are negative constants.

In the virtual environment the quadrotor will be controlled by the operator

via joystick, by defining a desired pitch and roll angles, a yaw angular rate, and

a total thrust. For safety and to avoid gimbal lock problems, the desired Euler

angles are bounded at 0 < θv ,φv ≤ π/3 radians.

The virtual environment can be adapted to fit any space, this means that,

it can be inside a complex structure such as a building or simple as a cube or

even a sphere. In addition, it is possible that the virtual drone could be bounded

inside a simulated cubic scene using the following equations

x1(t) ≤ xv(t) ≤ x2(t)

y1(t) ≤ yv(t) ≤ y2(t)

z1(t) ≤ zv(t) ≤ z2(t)

(3.9)

where xi , yi , zi with i = 1,2 can be functions of time or constants measured in

meters.
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In Figure 3.5, the graphical user interface is illustrated. It is composed by (A)

a frontal view where it is possible to visualize the vehicle moving in a virtual

environment, (B) a top view that could help beginner pilots, (C) a fixed top

view on the virtual environment to observe the location of the virtual quadrotor.

Finally, (D) displays the position errors between the virtual and real drone.

B

A

C

D

Figure 3.5 – Graphical interface of the virtual environment. (A) Virtual drone,
(B) top view on the vehicle, (C) top view on the workspace, (D) position errors.

The outputs in the simulation environment are the vehicle position ξv in the

virtual space and its attitude quaternion qv that will be sent to the real drone as

references.

From Figure 3.6 observe that the virtual workspace is fed back with informa-

tion coming from the real drone. An additional virtual object will be introduced

(called phantom drone), which represents the real states of the real drone.

The virtual and real environments use different coordinate systems, this

means that the x,y, and z axes point respectively towards south, up, and east

directions in the virtual scenario, while in real-world coordinates follow the east,

north, down convention.

To match the information of both environments a mapping is defined as

qr←v =
1
2

+
1
2

i +
1
2

j +
1
2

k. (3.10)
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eIvy

Virtual environment Real environment

Phantom drone

eIvz
eIvx

q∗v←r ~ξr

qr

eIrz

eIry

eIrx

Figure 3.6 – Visual feedback information of the real drone under the transforma-
tions q∗v←r .

Remember that a vector can be directly treated as a quaternion with zero

scalar part, and viceversa, then, the position of the virtual drone represented in

the real environment is given by

ξr = qr←v ⊗ ξv ⊗q∗r←v (3.11)

and the attitude is transformed as

qr = qr←v ⊗qv ⊗q∗r←v . (3.12)

Following quaternion operations, the inverse transformation returns the

remote site information, see Figure 3.2, to the virtual environment to feedback

simple virtual avatar for the user.

The advantages of displaying an avatar instead of a video from the real drone

camera is that it requires less communication resources, and the mental overload

imposed on the operator is lighter compared to a full animated rendering of the

real drone.

3.2.3 Real quadrotor control algorithm

Analogously to model (2.60)-(2.62) the real quadrotor dynamic equations are

described by using the suffix r. A quaternion-based controlled was adopted

from [154], to give robustness to the real-world vehicle, this algorithm is given

by firstly defining a desired force Fu ∈ R3 to track the position signals from the

virtual environment.

~Fu = m~g −Kpt(~ξr −qr←v ⊗ ~ξv ⊗q∗r←v)

−Kdt( ~̇ξr −qr←v ⊗ ~̇ξv ⊗q∗r←v),
(3.13)



3.2. Teleoperation architecture 55

where Kpt = diag([kptx > 0, kpty > 0, kptz > 0]) and Kdt = diag([kdtx > 0, kdty >

0, kdtz > 0]) represent the proportional and derivative control gains respectively.

Then, a desired quaternion rotation is computed to align the real vehicle’s vertical

thrust vector ~FIthr with the desired control force, this rotation is computed by

introducing dot and cross products into the Euler-Rodrigues equations as

qt =



0

0

1

 · ~Fu + ‖~Fu‖

+


0

0

1

× ~Fu∥∥∥∥∥∥∥∥∥∥


0

0

1

 · ~Fu + ‖~Fu‖

+


0

0

1

× ~Fu
∥∥∥∥∥∥∥∥∥∥
, (3.14)

The desired quaternion rotation is then tracked by a control torque ~τu ∈ R3 given

by

~τu =Jr(−2Kpa ln(qr←v ⊗q∗vψ ⊗q∗r←v ⊗q∗t ⊗qr)

−Kda(Ωr)) +Ωr × JrΩr , (3.15)

where qvψ denotes the virtual vehicle’s yaw orientation, expressed as a quater-

nion, Jr defines the inertia matrix, Kpa = diag{[kpax > 0, kpay > 0, kpaz > 0]} and

Kda = diag{[kdax > 0, kday > 0, kdaz > 0]}.
The vehicle total thrust is driven by the absolute value of the control force,

following

~Fthr =


0

0

‖~Fu‖

 . (3.16)

Remark from Figure 3.7 that the input of this controller is the position ~ξv and

orientation of the virtual drone qv that generate the output signals given by the

torque ~τr and the thrust force ~Fthr to follow the actions of the virtual drone, a

motion capture system measures the position of the vehicle and the IMU gives

the orientation that will feedback the virtual environment.
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Controller UAV+
-

+
-

qv
~ξv ~ξr

qr~τr
~Fthr

Figure 3.7 – Control scheme of the real drone.

3.3 Numerical results

The control algorithms and the teleoperation scheme were first tested using

the simulation in Unity 3D and an emulator of a real drone included in the

Framework Libre Air (FL-AIR) environment.

The virtual environment was designed using Unity 3D version 5.6.4 on a

PC running Windows 10 operating system. The Unity 3D system is compatible

with most current virtual reality and augmented reality devices. A scene was

developed on this framework, including a simulated master drone.

The quadrotor vehicle (slave system) was coded using the FL-AIR framework,

developed at the Heudiasyc laboratory, which includes libraries to program

controllers and commands real drones from a ground station running on Linux

OS (Ubuntu 18.04). FL-AIR includes an emulator of a real drone [155], which is

compatible with the software that will be uploaded to the real drones.

UDP communication was used to link the computer where the virtual drone

was coded with the slave UAV. Figure 3.8 illustrates both virtual environments,

on the left side, the master system is shown and on the right side the slave

system.

The information of the real drone feeds back the master system and is illus-

trated as a phantom drone.

In Figure 3.9, the position performance in R3 of real quadrotor is shown.

Observe that the user performs some aggressive movements and the emulated

drone can follow them. The controller ensures that the real drone follows

a trajectory and avoids possible aggressive movement when trying to reach

it. Remark in Figure 3.10 that the slave drone accurately tracks the attitude

trajectory of the virtual drone.

The position error given by the performance of both drones is displayed to

the user in the graphical interface, this signal is presented in Figure 3.11.
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Figure 3.8 – Validation of the system using the FL-AIR simulator and the virtual
environment.

The practical goal of this work is to implement the proposed scheme in a

real drone which follows the dynamic of a virtual vehicle. Control algorithms

and teleoperation communication were validated with simulations. Then, these

scheme were migrated to a real configuration, which is described in the following

section.
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Figure 3.9 – Quadcopter performance in the virtual (xv , yv , zv) and the real
(xr , yr , zr) scenarios.
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Figure 3.10 – Orientation components qr of the slave drone and its trajectory.
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Figure 3.11 – Position errors computed using states from the virtual and real
drone (emulated from FL-AIR).
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3.4 Experimental results

The real time validation of our teleoperation system is performed in an indoor

flight arena. This area is equipped with an Optitrack motion capture system

that provides accurate information about the real position of the drone. An

AR.Drone Parrot 2.0 quadrotor was used, whose factory firmware was erased

and reprogrammed with our framework FL-AIR, the attitude information was

measured with an Inertial Measurement Unit (IMU). The same UDP commu-

nication protocol was used, from the emulated tests only switching the virtual

slave and real drone’s Internet Protocol (IP) addresses. In the following, the task

performed by a user to analyze the performance of the teleoperation system is

detailed.

3.4.1 Real-time application

To verify the robustness of the teleoperation system, we consider the following

scenario: a beginner pilot must perform the monitoring of a zone following a

square trajectory in the virtual scenario. A physical barrier is imposed to prevent

accidents with the real drone such that the pilot must operate only with the

information feedbacked to the virtual environment, see Figure 3.12.

The translational performance between the real and virtual drones is illus-

trated in Figure 3.13. Notice here that the user does not perfectly perform the

flight task but the proposed scheme allows the real drone to successfully perform

the mission, the upper view of this mission is shown in Figure 3.14.

The proposed scheme involves a quaternion rotation for the quadrotor thrust

vector to move the real vehicle, the computed attitude trajectory, and its accurate

tracking is illustrated in Figure 3.15.

This test can be seen in the following video link: https://youtu.be/DgHF7M_zcTY
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Figure 3.12 – On the left side a user pilots the virtual drone through a joystick.
On the right side, a real drone imitates the behavior of the virtual vehicle.
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Figure 3.13 – 3D-position performance trajectory given by the user and imitated
by the real drone.
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Figure 3.14 – x-y behavior of the experimental test.



3.4. Experimental results 63

0 2 4 6

-1

0

1

0 2 4 6

-0.05

0

0.05

0.1

0 2 4 6

-0.05

0

0.05

0.1

0 2 4 6

-1

-0.5

0

0.5

Figure 3.15 – Attitude performance of the real drone vs desired values from the
virtual drone.
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3.5 Conclusion

In this chapter, a new teleoperation system based on a virtual telepresence ap-

proach was presented. This system is composed of an interface that makes the

task of piloting a drone simple and intuitive. This means that, the interface

allows the user to be more focused on performing the task than on understand-

ing the dynamics of the drone. The control schemes implemented allow the

real drone to follow the movements of the virtual vehicle even when the pilot

performs aggressive maneuvers. As well, the visual information of an avatar and

the control based on quaternions generates a low computational cost. Our teleop-

eration scheme can be extended to an immersion system by using virtual reality

glasses. This is due to the compatibility of the virtual environment application

in unity 3D with the majority of virtual reality devices.



4
System with input delay

Time-delay often appears in many control systems, either in the state, the con-

trol input, or the measurements. There can be transport, communication, or

measurements delays. Control systems often operate in the presence of delays,

primarily due to the time it takes to acquire the information needed for desicion-

making, to create control decisions, and to execute these decisions. Actuators,

sensors, and field networks that are involved in feedback loops usually introduce

delays. Delays are strongly involved in challenging areas of communication and

information technologies deteriorating the performance of systems. Therefore,

it is important to study techniques to mitigate the time delay.

This chapter is divided as follows: Section 4.1 introduces the main problems

that make the study of delayed systems challenging. Section 4.2 presents one of

the first approaches for solving systems with input delay: the Smith predictor,

which introduced the concept of predictive technique. Section 4.3 proposes a

predictor-based controller on the Fundamental Theorem of Calculus (FTC). In

Sections 4.4 and 4.5 the predictor-based controller proposed is applied in the

classical Euler-Lagrange model and the quaternions-based model, respectively,

showing its trajectory tracking performance in simulations. Finally, Section 4.6

presents some conclusions of the chapter.

4.1 Features of TDSs

Time-Delay Systems (TDSs) are also called systems with aftereffect or dead-time

hereditary systems, differential-difference equations or equations with deviating

argument. They belong to the class of FDEs which are infinite-dimensional,

as opposed to Ordinary Differential Equations (ODEs). This feature can be

observed with the following example.

65
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4.1.1 TDSs are infinite-dimensional

Consider the linear equation

ẋ(t) = x(t). (4.1)

It is well known that x(t) = et is a solution and that all solutions are of the form

x(t) = Cet where C is an arbitrary constant. We can assume that C ∈ C and then

the formula obtained covers all the complex solutions of the equation. This idea

is transformed into a general method to obtain solutions of linear equations with

constant coefficients: propose solutions of the form

x(t) = eλt, (4.2)

and the values λ that cancel out the characteristic polynomial associated are com-

puted. Then, replacing (4.2) into (4.1) we have λx(t) = x(t) and the characteristic

polynomial of (4.1) is P (λ) = λ− 1, with λ = 1 as the only root.

However, the situation is difficult when introducing a delay in equation (4.1).

Consider the system with delay

ẋ(t) = x(t − h), (4.3)

where h is the instant of delay time. Indeed, replacing (4.2) into (4.3) gives

λx(t) = e−λhx(t), (4.4)

then λ must be a solution of the characteristic equation P (λ) = 0, where P is not

a polynomial but a transcendent function

P (λ) = λ− e−λh. (4.5)

Since λ = 0 is not a root, the change of variable

z =
1
λ
, (4.6)

can be applied in the equation (4.5) and gives

ze−h/z = 1. (4.7)

Note that the function f (z) = ze−h/z has an essential singularity at z = 0 and it

does not vanish in C\{0}. Hence, from Great Picard Theorem it follows that

f −1(1) has infinite elements, this means that, the solutions of the characteristic
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equation form the set

{λk | k ∈ N, |λk | −→∞}. (4.8)

Therefore, the differential equation (4.3) has complex infinite solutions [156].

With this example, one of the main features of studying TDSs has been observed.

The formulation of the initial value problem and the definition of a solution

in a delayed system are different concepts from those we known in ODEs as we

will see below.

4.1.2 Initial value problem

It is well known that a particular solution of a delay-free system, ẋ = F(t,x), is

defined by its initial conditions, which include an initial instant t0 and an initial

state x0 ∈ Rn. This is not case when dealing with a solution for a time-delay

system. Here the knowledge of t0 and x0 is not sufficient even to define the value

of the time derivative of x(t) at the initial time instant t0. To define a solution

of a system with delay, one needs to select an initial time instant t0 ≥ 0 and an

initial function ϕ : [−h,0] −→ Rn. The initial value problem is formulated as

follows. Given an initial time instant t0 ≥ 0 and an initial function ϕ, find a

solution of the system that satisfies the condition

x(t0 + s) = ϕ(s), s ∈ [−h,0]. (4.9)

The initial function ϕ belongs to a certain functional space [157].

4.1.3 Solution concept

Consider the simple delay equation:

ẋ(t) = −x(t − h), x(t) ∈ R, h > 0, t ≥ 0. (4.10)

In order to define its solution for t ∈ [0,h], we have to define the right-hand side

x(t − h) for t ∈ [0,h], which results in the initial value function

x(s) = ϕ(s), s ∈ [−h,0], (4.11)

instead of initial value x(0) for ODEs with h = 0. In order to find a solution to

this problem, we shall use the step method initiated by Bellman [158]. First, we

find a solution on t ∈ [0,h] by solving

t ∈ [0,h], ẋ(t) = −ϕ(t − h), x(0) = ϕ(0). (4.12)



68 CHAPTER 4. System with input delay

Then we continue this procedure for t ∈ [h,2h], t ∈ [2h,3h], . . .. For the constant

ϕ ≡ ϕ0 the step method gives polynomial in t solution. Figure 4.1 shows the

solutions for h = 1 and for the initial functions ϕ ≡ 1 and ϕ = 0.5t. In this

figure we can see that several solutions that achieve the same value x(t∗) at some

instants t∗.

Figure 4.1 – Solutions with h = 1 and ϕ ≡ 1 (plain blue) or ϕ = 0.5t (dotted red).

This is different from ODEs, i.e. from ẋ(t) = −x(t), where through each x(t∗)

only one solutions passes. Therefore, in TDSs, a proper state is a function

xt : [−h,0] −→ R : xt(s) = x(t + s), s ∈ [−h,0], (4.13)

corresponding to the past time-interval [t − h, t] [158].

These concepts and properties give an idea of the complexity of studying

systems with delay. After understanding these concepts, I began the study of the

Smith predictor, which is one of the most used approaches in TDSs.

4.2 Smith predictor

The Smith Predictor [137] is one of the broadest strategies for controlling linear

systems with delays. The idea of this technique is to use a prediction of the state

or output from the system model to compensate the delay.

Linear systems, or systems that can be linearized, with delay can be modeled

as:

• Input delay

Suposse that the delay h is known, then the system can be expressed by

ẋ(t) = Ax(t) +Bu(t − h) (4.14)

y(t) = Cx(t). (4.15)

• Output delay
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Suposse that the delay h is known, then the system can be expressed by

ẋ(t) = Ax(t) +Bu(t) (4.16)

y(t) = Cx(t − h) (4.17)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, h ∈ Z+.

The transfer function for both cases is

Gp(s) =
y(s)
u(s)

= Gr(s)e
−hs, (4.18)

where

Gr(s) = C(sI −A)−1B. (4.19)

The representation in block diagram is presented in Figure 4.2.

Gp(s)

Gr(s)
u(s) y(s)

e−hs
yp(s)

Figure 4.2 – The output is given by y(s) = yp(s)e−hs where yp is the output of the
process.

If the process output yp(s) was known and it will feed-back the process,

then we could design the controller without delay. But we do not know yp(s) as

illustrate in Figure 4.3.

Gp(s)

Gr(s)
u(s) y(s)

e−hs
yp(s)

+− K(s)
r(s)

Figure 4.3 – The output yp of the process is unknown and K(s) is a controller.

Then, to solve this problem Smith proposed that given a known model of the
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process

G(s)e−hs. (4.20)

it is possible to obtain the values yp(t) by means of a prediction ŷp(t). For this,

we must first know the process model without delay G(s).

After applying the control action we would obtain the prediction of the

output without delay

ŷp(s) = G(s)u(s) (4.21)

This output prediction would be obtained h instants of time (because the output

of the real process is delayed) with respect to the output of the real process, see

Figure 4.4.

Gp(s)

Gr(s)
u(s) y(s)

e−hs
yp(s)

+− K(s)
r(s)

G(s)

ŷp(s)

Figure 4.4 – Diagram of the Smith solution.

To obtain a feedback system, we will compare the controlled variable y(t)

with the delayed prediction h instants of time ŷp(t − h), see Figure 4.5. The

perturbations or differences between the model and the real process will feed

the control system as a corrective factor on the differences in the prediction.

Consider the following example to illustrate these ideas.

4.2.1 Academic example

Let us suppose a stable process given by

Gr(s) =
5.6e−93.9s

40.2s+ 1
. (4.22)

Also suppose that the model is a perfect model of the system, this means that,

G(s)e−hs = Gr(s)e
−hrs.
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d(t)

y(s)
Gr(s)e−hrs+

− K(s)
r(s)

ŷr(t) ŷp(t − h)
G(s) e−hs

Controller

Disturbance

Real process

Delay-free
model

Delay
model

+

+−

+

+
+

Figure 4.5 – Smith predictor scheme.

Applying a PI controller

kp

(
1 +

1
Tis

)
, (4.23)

where kp = 0.0501 and Ti = 47.3 seconds, we obtain the response depicted in

Figure 4.6. We observe that this controller is able to compensate the delay in the

system.
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Figure 4.6 – Response of the PI controller (dotted red line).
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Figure 4.7 shows the response when applying the Smith predictor to the

system compared to PI controller. It is clear that the Smith predictor has a better

performance with respect to this controller.
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Figure 4.7 – PI controller response (dotted red line) and Smith predictor response
(blue line).

It has been observed that some assumptions of the Smith predictor are that

the time delay is known and that the system model is known and identical to the

real one. The ideas of the Smith predictor design can be extended to problems

that can be modeled as a cascade of systems. This gives rise to other types of

predictors as will be seen in Section 4.3.

4.3 Predictor-based control

Many predictor-based techniques have been developed. However, they com-

monly have the disadvantage that the algorithms developed are complex and

their implementation is difficult. In this section, a predictor-like technique is

presented. This approach allows controlling a delay-free system with a regular

controller neglecting the delay. The main result is the following and later results

of its computational implementation will be introduced.
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Lemma 1
Consider the delayed chain of integrators

ẋ1 = x2 (4.24)

ẋ2 = x3 (4.25)
... =

... (4.26)

ẋn−1 = xn (4.27)

ẋn = u(t − h) (4.28)

where u(t − h) is the control input delayed by h units of time. The controller

u(t) = ~KT ~xpre(t) (4.29)

stabilize the system (4.24)-(4.28). Here K is a vector gain stabilizing the delay-

free system and ~xpre(t) is the predicted state defined as

~xpre(t) = ehA~x(t − h) +ϕ(u(t)) (4.30)

where

ehA =



1 h h2

2 · · · hn−1

(n−1)!

0 1 h · · · hn−2

(n−2)!
...

...
...

. . .
...

0 0 0 · · · h

0 0 0 · · · 1


(4.31)

and

ϕ(u(t)) =



∫ t
t−h

∫ t1
t−h · · ·

∫ tn−1

t−h u(tn)dtndtn−1 · · ·dt1∫ t
t−h

∫ t1
t−h · · ·

∫ tn−2

t−h u(tn−1)dtn−1dtn−2 · · ·dt1
...∫ t

t−h

∫ t1
t−hu(t2)dt2dt1∫ t
t−hu(t1)dt1


(4.32)

This result is based in the FTC. This result was applied in the following cases.

First, it was applied to a simple case, a system given by a double integrator

described in Subsection 4.3.1. It was then implemented in the longitudinal

dynamics of a quadrotor presented in Subsection 4.4.1. Finally, in Subsection

4.4.2 the results of applying the predictor to the system with delayed altitude

are shown.
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4.3.1 Double integrator with input delay

Consider a second-order system with input delay u

ẍ(t) = u(t − h) (4.33)

y(t) = x(t), (4.34)

and the initial conditions

x(0) = 0, (4.35)

u(t) = 0, t ∈ [−h,0], h > 0 (4.36)

where h is a constant delay.

Rewriting x1(t) = x(t) and x2(t) = ẋ(t), we obtain the following system of

first-order cascade equations

ẋ1(t) = x2(t) (4.37)

ẋ2(t) = u(t − h), (4.38)

or in matrix form

Ẋ(t) = AX(t) +Bu(t − h), (4.39)

where

X(t) =

 x1(t)

x2(t)

 , A =

 0 1

0 0

 , B =

 0

1

 . (4.40)

We assume the output as

Y (t) =
[

1 0
]
X(t). (4.41)

States can be predicted as described below. First, to reconstruct the state ẋ the

FTC is applied to ẋ2 on [t − h, t] giving∫ t

t−h
ẋ2(s)ds = x2(t)− x2(t − h) (4.42)

or

x2,pre(t) = x2(t − h) +
∫ t

t−h
ẋ2(s)ds. (4.43)

Substituting (4.38) into (4.43) yields

x2,pre(t) = x2(t − h) +
∫ t

t−h
u(s)ds. (4.44)
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Rewriting in terms of ẋ, it can be concluded that

ẋpre(t) = ẋ(t − h) +
∫ t

t−h
u(s)ds. (4.45)

Second, similarly to ẋ2, the FTC is applied to ẋ1 on [t − h, t] obtaining

x1,pre(t) = x1(t − h) +
∫ t

t−h
ẋ1(s)ds. (4.46)

Notice that the equation (4.46) is equivalent to

x1,pre(t) = x1(t − h) +
∫ t

t−h
[ẋ1(t − h) + ẋ1(s)− ẋ1(t − h)]ds (4.47)

= x1(t − h) +
∫ t

t−h
ẋ1(t − h)ds+

∫ t

t−h
[ẋ1(s)− ẋ1(t − h)]ds (4.48)

= x1(t − h) + hẋ1(t − h) +
∫ t

t−h
[ẋ1(s)− ẋ1(t − h)]ds. (4.49)

Integrating into the equation (4.49) can be expressed by

ẋ1(s)− ẋ1(t − h) =
∫ s

t−h
ẍ1(l)dl =

∫ s

t−h
u(l)dl (4.50)

Therefore, substituting (4.50) into (4.49) concludes that

x1,pre(t) = x1(t − h) + hẋ1(t − h) +
∫ t

t−h

∫ s

t−h
u(l)dlds. (4.51)

4.3.2 Two integrator: simulations results

We assume a constant reference x1,ref (t) = 1, ∀t ≥ 0 and the sampling time

Ts = 0.01. From (4.29) the controller becomes

u(t) = −kp(x1,pre(t)− x1,ref (t))− kdx2,pre(t), (4.52)

where kp = 0.209 and kd = 0.975 was applied in (4.37)-(4.38) with h = 0. The

results are shown in Figure 4.8.

To analyze the performance of the predictor-based controller, a delay of

h = 1.5 seconds is introduced into the system (4.37)-(4.38). System responses

without delay, with delay and with delay compensation are shown in Figure 4.9

and 4.10.

Having analyzed the good performance of the controller for a simple system

such as the double integrator the next step was to analyze its performance in a

classic model of a quadrotor.
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Figure 4.8 – States reponses without delay, h = 0 seconds.
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Figure 4.9 – State x1(t) with constant reference x1ref (t) = 1, delayed measure
x1(t − h) with delay h = 1.5 seconds and the estimated state x1,pre(t).
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Figure 4.10 – State x2 that represent velocity, h = 1.5 seconds.
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4.4 Euler-Lagrange model with input delays

4.4.1 Longitudinal dynamic with input delay

It is well known that the longitudinal dynamics of a quadrotor can be expressed

by

ẍ(t) = −g tan(θ(t)) (4.53)

θ̈(t) = uθ(t). (4.54)

A controller based on nested saturations is proposed in [159],

uθ(t) := −σθ1
(θ̇ + σθ2

(ξ1 + σθ3
(η1 + σθ4

(ρ1)))) (4.55)

where

ξ1 := θ + θ̇ (4.56)

η1 := 2θ + θ̇ +
ẋ
g

(4.57)

ρ1 := θ̇ + 3θ +
3ẋ
g

+
x
g

(4.58)

in order to stabilize the quadrotor vehicle at hover without delay in the control

input. However, this control law can be also used to stabilize the quadrotor even

in presence of delay [160].

Then, introducing a delay h = 0.35 seconds in the control input (4.55) and

applying the result of Lemma 1 we get the responses shown in Figures 4.11-

4.14. Here, we observe that the states of the system with delay (green line)

have an oscillatory behavior. After applying the predictor (red line) such a

behavior decreases considerably, having a behavior similar to the responses of

the delay-free system (blue line). Predictor performance is best seen in Figures

4.12-4.14.

Analogously, the predictor was also applied to quadrotor model with altitude

delay as described in Section 4.4.2.

4.4.2 Quadrotor model with delayed altitude control

The following control algorithm was proposed in [159] to control the trusth of a

quadrotor

u(t) := (r1(t) +mg)
(

1
cos(θ1(t))cos(φ1(t))

)
(4.59)

where

r1(t) := −kpz(z1(t)− zref1 (t))− kdzz2(t) (4.60)

and kpz , kdz are positive constants.
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Figure 4.11 – State x with steped reference and delay h = 0.35 seconds.
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Figure 4.12 – Linear velocity ẋ performance, h = 0.35 seconds.

The delayed thrust control is defined by adding a virtual delay h1 in altitude

control (4.60) then

u(t − h1) := (r1(t − h1) +mg)
(

1
cos(θ1(t))cos(φ1(t))

)
(4.61)

where

r1(t − h1) := −kpz(z1(t − h1)− zref1 (t − h1))− kdzz2(t − h1). (4.62)
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Figure 4.13 – Roll state with delay h = 0.35 seconds.
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Figure 4.14 – Angular speed with delay h = 0.35 seconds.

This delayed input is applied to the drone model in order to recover the state

with the predictor. Using Lemma 1, the z1(t) and z2(t) states can be estimated as

ẑ1(t) = z1(t − h1) + h1z2(t − h1) +
∫ t

t−h1

∫ s

t−h1

u(l)dlds

ẑ2(t) = z2(t − h1) +
∫ t

t−h1

u(s)ds.
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Let us assume the initial conditions x1(0) = 0, y1(0) = 0, z1(0) = 13 and the

constant stepped reference zref1 (t) and x
ref
1 (t) = y

ref
1 (t) = 0. The parameters

values are given in the Table 4.1. The other states are controlled with the

algorithms in the equations (4.63)-(4.65).

Parameter Value
m 1
g 9.8
kpz 2.6
kdz 3
kpψ 0.1
kdψ 0.8

M1, N1 22
M2, N2 11
M3, N3 5.5
M4, N4 2.7

Table 4.1 – Parameters of quadrotor simulation

uψ(t) := −kpψ (ψ1(t)−ψref1 (t))− kdψψ2(t) (4.63)

uθ(t) := −σM1
(θ2(t) + σM2

(ξ1(t) + σM3
(η1(t) + σM4

(ρ1(t))))) (4.64)

uφ(t) := −σN1
(φ2(t) + σN2

(ξ2(t) + σN3
(η2(t) + σN4

(ρ2(t))))) (4.65)

where

ξ1(t) := θ1(t) +θ2(t) (4.66)

η1(t) := 2θ1(t) +θ2(t)− x2(t)
g

(4.67)

ρ1(t) := θ2(t) + 3θ1(t)− 3x2(t)
g
− x1(t)

g
(4.68)

ξ2(t) := ψ1(t) +ψ2(t) (4.69)

η2(t) := 2ψ1(t) +ψ2(t) +
y2(t)
g

(4.70)

ρ2(t) := ψ2(t) + 3ψ1(t) +
3y2(t)
g

+
y1(t)
g

(4.71)

and Mi , Ni with i = 1,2,3,4 are the bounds of the saturation functions and kpψ ,

kdψ are positive constants.



4.4. Euler-Lagrange model with input delays 81

In Figures 4.15 and 4.16 we observe the behavior of the states when the delay

h1 = 0.4 seconds is applied. Here, the response of the delayed system (green

line) has an oscillatory behavior in the first instants while the response applying

the predictor (red line) compensates the delay by eliminating oscillations and

generating a behavior resembling to the response delay-free system (blue line).
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Figure 4.15 – Altitude response with delay h1 = 0.4 seconds.
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Figure 4.16 – Linear velocity around of the z-axis, delay h1 = 0.4 seconds.
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4.4.3 Tracking trajectory with input delays

In this subsection, we will apply a virtual delay h1 in the translational dynamics

and h2 in the rotational dynamics on the Euler-Lagrange model described in

Section 2.2. Then, we will apply the proposed approach to reconstruct the states

of the system.

Using the control laws (4.59), (4.63), (4.64) and (4.65), that stabilize the

quadrotor in hover without the presence of delay, we can define the delayed

control laws as
u(t,h1,h2) := u(z(t − h1), ż(t − h1),θ(t − h2),φ(t − h2)) (4.72)

uψ(t,h1,h2) := uψ(ψ(t − h2), ψ̇(t − h2),ψref (t − h2), ψ̇ref (t − h2)) (4.73)

uθ(t,h1,h2) := uθ(θ(t − h2), θ̇(t − h2),x(t − h1), ẋ(t − h1)) (4.74)

uφ(t,h1,h2) := uφ(φ(t − h2), φ̇(t − h2), y(t − h1), ẏ(t − h1)). (4.75)

Developing the approach described in Section 4.3, we can retrieve the states

of the system under the delays in the control inputs applying the following

expressions
xpre(t) = x(t − h1) + h1ẋ(t − h1)− g

∫ t

t−h1

∫ s

t−h1

θpre(l)dlds (4.76)

ẋpre(t) = ẋ(t − h1)− g
∫ t

t−h1

θpre(s)ds (4.77)

θpre(t) = θ(t − h2) + h2θ̇(t − h2) +
∫ t

t−h2

∫ s

t−h2

uθ(l)dlds (4.78)

θ̇pre(t) = θ̇(t − h2) +
∫ t

t−h2

uθ(s)ds (4.79)

ypre(t) = y(t − h1) + h1ẏ(t − h1) + g
∫ t

t−h1

∫ s

t−h1

φpre(l)dlds (4.80)

ẏpre(t) = ẏ(t − h1) + g
∫ t

t−h1

φpre(s)ds (4.81)

φpre(t) = φ(t − h2) + h2φ̇(t − h2) +
∫ t

t−h2

∫ s

t−h2

uφ(l)dlds (4.82)

φ̇pre(t) = φ̇(t − h2) +
∫ t

t−h2

uφ(s)ds (4.83)

zpre(t) = z(t − h1) + h1ż(t − h1) +
1
m

∫ t

t−h1

∫ s

t−h1

r1(l)dlds (4.84)

żpre(t) = ż(t − h1) +
1
m

∫ t

t−h1

r1(s)ds (4.85)

ψpre(t) = ψ(t − h2) + h2ψ̇(t − h2) +
∫ t

t−h2

∫ s

t−h2

uψ(l)dlds (4.86)

ψ̇pre(t) = ψ̇(t − h2) +
∫ t

t−h2

uψ(s)ds. (4.87)
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Next we will give an example of the implementation of the equations described

above.

Numerical example: square path tracking

The following example was developed in Simulink with a sampling time of

Ts = 0.001 and considering the Euler-Lagrange model (2.15)-(2.16). First, we will

apply the control laws (4.59), (4.63), (4.64) and (4.65) for the delay-free system

where the constants are the same as in the Table 4.1 and the reference position is

given by

ξref =



(t,0,11)T , if t < 10,

(10, t − 10,11)T , if 10 < t ≤ 20

(30− t,10,11)T , if 20 < t ≤ 30

(0,40− t,11)T , if t > 30,

(4.88)

and the attitude reference is ψref = θref = φref = 0. Second, to apply the virtual

delays to the control inputs, we will use the control laws defined in (4.72)-(4.75).

Finally, we implement the equations (4.76)-(4.87) in order to recover the states

of the system in presence of delay h1 = h2 = 0.35 seconds.

Figure 4.17 shows the oscillatory behavior in the 3D-position when the system

has a delays in the control inputs (green line). Also, we can see the performance

of the predicted states (red line) which is similar to the behavior of the delay-free

system (blue line). Figure 4.18 shows each of the components of the position.

Oscillatory behavior can be clearly seen in the linear and angular velocity states

shown in the Figures 4.19 and 4.21 respectively. The response in attitude can be

seen in Figure 4.20 where the orientation in the θ and φ angles are destabilized

in the system with delay and are recovered by the predictor.



84 CHAPTER 4. System with input delay

Figure 4.17 – 3D-position response of the Euler-Lagrange model with delayed
inputs. Trajectory tracking (ref ); position evolution with nested saturation
controllers in absence of the delay (f ree); with nested saturation controllers in
the presence of the delay (delay); with predictor-based controller in the presence
of the delay h = 0.35 seconds (pre).
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Figure 4.18 – States position of the Euler-Lagrange model with delayed inputs
h = 0.35 seconds.
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Figure 4.19 – Linear velocity response along the x, y and z axis, delay h = 0.35
seconds.
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Figure 4.20 – Attitude response in yaw (ψ), roll (θ) and pitch (φ), delay h = 0.35
seconds.
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Figure 4.21 – Angular speed, delay h = 0.35 seconds.

4.5 Quaternion-based model with input delays

In this section, we apply our approach to recover the states of the modeled

system with quaternions in the presence of input delay. First, in Subsection

4.5.1 we consider the model with delayed translational dynamics. Second, in

Subsection 4.5.2 we consider rotational dynamics with delayed input. Finally,

in Subsection 4.5.3, we consider trajectory tracking with delays in force control

inputs and torques in trajectory tracking.

4.5.1 Quadrotor translational model with input delay

In this subsection, we introduce the quaternion-based model with the control

force delayed. First, we consider a classical controller that uses linear feedback

for this problem in the delay-free case. Second, we present our predictor-based

controller approach in order to stabilize the states. For this, we consider the

system (2.60)-(2.62) with attitude control given by (2.87) and using the control

force law (2.85) we can define the input delay h1 as
~Fu(t − h1) := ~FPD(t − h1)−m~g, (4.89)

where

~FPD(t − h1) = −Kpt(~ξ(t − h1)− ~ξref (t − h1))−Kdt( ~̇ξ(t − h1)− ~̇ξref (t − h1)). (4.90)
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The references of position and linear velocity are given by ~ξref (t) = (0.1,0.5,1)T

and ~̇ξref (t) = (0,0,0)T . We analyze the system with input delay in the transla-

tional model using a sampling time Ts = 0.001, it is destabilized after a delay of

h1 = 0.5 seconds. However, applying the predictor-based control described in

the Subsection 4.3 we can retrieve the states as

~ξpre(t) = ~ξ(t − h1) + h1 ~̇ξ(t − h1) +
1
m

∫ t

t−h1

∫ s

t−h1

~FPD(l)dlds (4.91)

~̇ξpre(t) = ~̇ξ(t − h1) +
1
m

∫ t

t−h1

~FPD(s)ds. (4.92)

In Figure 4.22, we can see in blue line the position responses of the system

(2.60)-(2.62) without input delay using the force and torque controllers in (2.85)

and (2.87), respectively. Also, we can see in green line the position responses

in presence of delay h1 = 0.5 seconds only in the force control input defined in

(4.89) and how the oscillations increase in the x and y states. In red line, we can

observe the performance of the predictor in the position given by (4.91) and its

tendency to delay-free state.

Similarly, in Figure 4.23 we can observe the behavior in the linear velocity.

The attitude and angular velocity states we can see in the Figures 4.24 and 4.25,

respectively.

4.5.2 Attitude dynamics with delayed control input

We consider the system (2.63)-(2.64) with the control input delayed h2 seconds

~̇γ(t) = ~Ω(t) (4.93)

J ~̇Ω(t) = ~τ(t − h2)− ~Ω(t)× J ~Ω(t), (4.94)

where ~γ(t) = 2lnq(t) and the attitude control delayed is defined as

~τ(t −h2) := −2Kpa ln(q(t −h2)⊗q∗ref (t −h2))−Kda(~Ω(t −h2)− ~Ωref (t −h2)) (4.95)

where ~τ ∈ R3 represents the torques caused by the combined action of the

quadrotor’s motors, and Kpa = diag([kpax > 0, kpay > 0, kpaz > 0]), and Kda =

diag([kdax > 0, kday > 0, kdaz > 0]) denote the proportional and derivative control

gains respectively.
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Figure 4.22 – Position state with input delay h = 0.5 seconds. The subindex f ree
denote the response of the system without delay, pre indicates the response of
the system with delay and applying the predictor, and delay the state of the
system with delay.

Figure 4.23 – Linear velocity state with input delay h = 0.5 seconds.
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Figure 4.24 – Attitude quaternion state with input delay h = 0.5 seconds.

Figure 4.25 – Angular velocity state with input delay h = 0.5 seconds.

We apply the FTC to ~̇Ω in the interval [t − h2, t],∫ t

t−h2

~̇Ω(s)ds = ~Ω(t)− ~Ω(t − h2), (4.96)

or
~Ω(t) = ~Ω(t − h2) +

∫ t

t−h2

~̇Ω(s)ds, (4.97)
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replacing ~̇Ω(s) = τ(s) we can to predict the angular velocity as

~Ωpre(t) = ~Ω(t − h2) +
∫ t

t−h2

τ(s)ds. (4.98)

Analogously, we apply the FTC to ~̇γ in [t − h2, t],∫ t

t−h2

~̇γ(s)ds = ~γ(t)− ~γ(t − h2), (4.99)

or

~γpre(t) = ~γ(t − h2) +
∫ t

t−h2

~̇γ(s)ds. (4.100)

Equivalently,

~γpre(t) = ~γ(t − h2) +
∫ t

t−h2

[ ~̇γ(t − h2) + ~̇γ(s)− ~̇γ(t − h2)]ds (4.101)

= ~γ(t − h2) +
∫ t

t−h2

~̇γ(t − h2)ds+
∫ t

t−h2

[ ~̇γ(s)− ~̇γ(t − h2)]ds (4.102)

= ~γ(t − h2) + h2 ~̇γ(t − h2) +
∫ t

t−h2

[ ~̇γ(s)− ~̇γ(t − h2)]ds. (4.103)

Substituting ~̇γ(t) = ~Ω(t),

~γpre(t) = ~γ(t − h2) + h2
~Ω(t − h2) +

∫ t

t−h2

[~Ω(s)− ~Ω(t − h2)]ds (4.104)

Using the FTC in the integrand of the equation (4.104)

~Ω(s)− ~Ω(t − h2) =
∫ s

t−h2

~̇Ω(l)dl =
∫ s

t−h2

~τ(l)dl (4.105)

Therefore, we can recover the axis-angle representation as

~γpre(t) = ~γ(t − h2) + h2
~Ω(t − h2) +

∫ t

t−h2

∫ s

t−h2

~τ(l)dlds (4.106)

and the attitude state predicted can be computed by

qpre(t) = e

[
lnq(t−h2)+ h2

2
~Ω(t−h2)+

∫ t
t−h2

∫ s
t−h2

~τ(l)
2 dlds

]
. (4.107)



4.5. Quaternion-based model with input delays 91

Example: Rotational dynamic with attitude control delayed

Consider the system

q̇(t) =
1
2

q(t)⊗Ω(t) (4.108)

J ~̇Ω(t) = ~τ(t − h2)− ~Ω(t)× J ~Ω(t) (4.109)

where

J =


12 0 0

0 9 0

0 0 9

 kg ·m2. (4.110)

The initial conditions are q(0) = 1
2 +(−1

2 ,−
1
2 ,

1
2 )T and ~Ω(0) = (0,0,0)T . The desired

attitude will be given by qref (t) = 0.9795 + (0.05791,0.1691,0.0933)T that in

Euler angles is equivalent to (ψref ,θref ,φref )T = (10,20,5)T . The input delayed

is defined by the equation in (4.89) with initial conditions q(t − s) = 1 + (0,0,0)T

and ~Ω(t − s) = (0,0,0) with s ∈ [0,h2], gain constants kpax = kpay = kpaz = 1 and

kdax = kday = kdaz = 2.

In Figure 4.26, we observe the attitude response components q = q0+(q1,q2,q3)T .

The subscript ref denotes the components of the attitude reference (yellow line),

f ree represent the response of the free-delay system using a PD controller (blue

line), delay denotes the response of the system (4.108)-(4.109) with input de-

layed defined by the equation (4.95) with h2 = 0.5 seconds (green line), pre refers

to the predicted response obtained from the equation (4.107) (red line). We can

observe that the response of the system with delay (green line) has an oscillatory

behavior in the vector part between 2 and 10 seconds. However, applying the

proposed predictor it is possible to recover the state (red line). In order to geo-

metrically understand the performance of the predictor, Figure 4.27 shows the

attitude expressed by Euler’s angles.

Similarly, Figure 4.28 shows the components of angular velocity ~Ω = (ωx,ωy ,ωz).

We can see how using the predictor (red line) in the equation (4.98) eliminates

the oscillatory effect generated by the delay (green line).
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Figure 4.26 – Attitude quaternion response of the quaternion-based model with
attitude control delayed. Attitude tracking (ref ); orientation evolution with PD
controller in absence of the delay (f ree); with PD controller in the presence of
the delay (delay); with predictor-based controller in the presence of the delay
h2 = 0.5 seconds (pre).

Figure 4.27 – Representation of attitude in Figure 4.26 as Euler’s angles.
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Figure 4.28 – Angular velocity components, delay h2 = 0.5 seconds.

4.5.3 Tracking trajectory

In this subsection, we apply the predictor on the (2.60)-(2.62) model where

J =


0.177 0 0

0 0.177 0

0 0 0.354

 kg ·m2. (4.111)

with delayed inputs defined as (4.89) and (4.95). A delay in the dynamics of

h1 = h2 = 0.35 seconds will be applied during the tracking of the trajectory given

by (4.88) and the yaw reference ψref = 0. With initial conditions q(t − s2) =

1 + (0,0,0)T and ~ξ(t − s1) = ~̇ξ(t − s1) = ~Ω(t − s2) = (0,0,0)T with s1 ∈ [0,h1] and

s2 ∈ [0,h2] and gain constants

Kpt =


1 0 0

0 1 0

0 0 1

 , Kdt =


2 0 0

0 2 0

0 0 1

 , (4.112)

Kpa =


50 0 0

0 50 0

0 0 50

 , Kda =


10 0 0

0 10 0

0 0 10

 . (4.113)
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In Figure 4.29 we can see the effect of the delay in green line. These effects are

more pronounced in quaternion-based model than in the Euler-Lagrange model

in Figure 4.17. Despite of oscillatory behavior, the predictor (red line) recovers

the states of the delay-free system. We can observe each component of position

in Figure 4.30. The performance of the predictor can also be seen in the linear

velocity in Figure 4.31. Responses in attitude can be seen in Figure 4.32. The

angular speed is shown in Figure 4.35.

Figure 4.29 – 3D-position response of the quaternion-based model with delayed
inputs. Trajectory tracking (ref ); position evolution with PD controllers in
absence of the delay (f ree); with PD controllers in the presence of the delay
(delay); with predictor-based controller in the presence of the delay h = 0.35
seconds (pre).
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Figure 4.30 – States position of the quaternion-based model with delayed inputs
h = 0.35 seconds.
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Figure 4.31 – Linear velocity response along the x, y and z axis, delay h = 0.35
seconds.
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Figure 4.32 – Attitude response, delay h = 0.35 seconds.
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Figure 4.33 – Desired and measured attitude of the delay-free system and delayed
system, delay h = 0.35 seconds.
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predicted-based control in the system with delay, delay h = 0.35 seconds.
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4.6 Conclusion

On one hand, the analysis of the basic concepts of delay systems allowed us to

understand the challenges of TDSs. The main concepts are the definition of

the state through a function instead of a vector and the representation of the

characteristic equation as a transcendent function implies infinite dimensional

solutions. On the other hand, the research about the Smith predictor provided

an idea about the predictor-based approaches, applying the Smith predictor to

a delayed system a better response performance was observed (see Figure 4.7).

Finally, the study of the works presented in [160] and [149] provided us with

a methodology to predict the states of a quadrotor with input delays using the

FTC. This approach allowed us to perform simulations in Simulink where we

validated the performance of the predictor. An advantage of this method is its

feasibility to apply in a real drone.
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5
Conclusions and future work

UAVs have been in constant development since the First World War due to the

benefits of their physical characteristics such as agility, autonomy, and size in

different applications. Much research has been done about these vehicles in fields

such as guidance, navigation, control, among others. The use of drones in search

and rescue in natural disasters has been spreading since they can be operated

remotely without endangering the human operator in dangerous environments.

Even though drones are remotely operated vehicles, a drone teleoperation system

could further extend their capabilities. Therefore, it is crucial and challenging

to develop new drone teleoperation systems using emerging technologies.

In this thesis, a practical teleoperation system of a quadrotor has been de-

veloped. On the one hand, a virtual drone simulation commanded through a

standard joystick was established in the local site as the master system. A local

controller was implemented in the virtual quadrotor to conduct its flight by

a pilot. This user interface was designed in Unity 3D; first and third-person

views were inserted into the environment. These views help the user not to

lose awareness of the environment when the vehicle rotates. Besides, this local

system can be used as a training simulator since its operation does not depend

on the real quadrotor.

On the other hand, in the remote system, a real quadrotor in a structured

environment was equipped with another local controller to perform flight tasks.

The controller was designed with a quaternion-based approach which gives

flight robustness. A UDP communication links the quadrotor aircraft to the

virtual interface. The virtual vehicle’s position and orientation states are sent

and followed as references by the quadrotor in the real environment. The states

of the real vehicle are returned to the virtual environment. They are shown

to the user as a virtual ellipsoid. This return of information from the drone’s

real states, as a virtual object, does not generate high bandwidth consumption

compared to the visual feedback from the camera on board the drone.
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Derived from different tests with our system, when the local interface is

far from the real quadrotor a delay problem was observed. This problem was

addressed within the framework of predictive type controllers. A controller

based on the Fundamental Theorem of Calculus was designed. These types of

controllers depends on the system model. Two models were studied: the Euler

Lagrange model and a model based on quaternions. Numerical simulations

were developed with both models. The simulations showed a good performance

recovering the states of the system for a certain delay time. However, given the

nature of the models used, a better performance was observed in the quaternion-

based model.

5.1 Future work

During the development of this thesis, several points that can be improved have

been detected, hence future work are numerous.

First of all, this work was mainly focused on developing a quadrotor tele-

operation system for inexperienced users using a common joystick. However

there are more sophisticated devices that provide tactile feedback such as haptic

joysticks, bracelets or gloves that can be integrated into the virtual system to

provide greater transparency.

Another important point regarding the teleoperation system is the improve-

ment of the dynamics of the virtual vehicle by designing virtual sensors such as

engines, propellers, and the physical structure. The ROS system could be used

for this purpose.

In this work, the remote environment was assumed to be known, therefore

the information from the drone camera was not taken into account. However,

for unknown remote environments it might be possible to take information

from the drone’s camera and using image processing techniques to recreate the

environment, or to install LIDAR devices on-board the vehicle.

In terms of theoretical control, an improvement to this system could be the

design of a controller that regulates the states of the virtual and real vehicle

in order to reduce errors and become a bilateral system. Implementation of a

trajectory predictive technique such as model predictive control could help to

determine the feasibility of trajectories.

In this project, the delay time was assumed to be constant. However, this

assumption could be removed by modeling the delay as a bounded continuous

variant time function, which is more realistic and challenging. In this sense,

another line of research is the study of the estimation of the system delay when

it is variable.
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The controller proposed in this work could be improved by analytically

determining the critical values that the system can support using the LMI method

to determine the limits of the model parameters.

Experiments with the predictor-based controller will be tested in the future.

Integration of the proposed predictor-based controller for delay compensation

within the teleoperation system also remains future work.
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