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École doctorale n◦ 579, Sciences mécaniques et énergétiques,
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David MERCIER

Composition du jury:

Rodney FOX Président et rapporteur

Professeur, Université d’État de l’Iowa
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Vincent PLANA Invité
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Abstract

The simulation of the polydisperse fuel sprays is of tremendous importance for high-
fidelity descriptions of aeronautical burners. To this end, the Eulerian Moment Methods
are an interesting strategy, because of their intrinsic statistical convergence. Such meth-
ods have been successfully used to represent macroscopic trends such as the flame shape,
but there are still some issues to be tackled in order to increase their level of fidelity and
prediction.
Among them, the two-way coupling between the spray and the gas phase is critical.
Indeed, moment methods used to simulate sprays in burnurs are often based on the
Mesoscopic Eulerian Formalism (MEF) of Février et al. (2005), which considers the
ensemble-averaged statistics of the disperse phase conditioned to a unique gas phase.
This conditioning is required in order to solve the gas phase without any ensemble
averaging such as in RANS methods. Unfortunately, if the disperse phase affects the gas
phase, this conditioning may be at least impossible and at most strongly restricted.
In this context, the present work investigates the development of a statistical description
in the case of a reduced vision of the gas phase, such as the Large Eddy Simulation (LES),
and two-way coupling is taking place between the two phases. This solution is interesting
for two-way coupled disperse phase flows, as the retro-coupling can occur at the small
scales of the flow, with limited impact on the large scales, as suggested by Février et al.
(2005). Beyond the usual description of LES, following Pope (2010) and Fox (2003), we
consider a statistical framework of LES under which the statistics are taken as ensemble-
averaged over the possible unresolved features. To investigate this solution, a numerical
framework using synthetic turbulence is developed, based on a superposition of analytic
modes. By doing so, the distribution of modes can be easily controlled, thus enabling the
generation of fields with identical large scales. This framework is carefully evaluated to
ensure statistical and numerical convergence of the measures of interest, such as particle
dispersion. Our formalism is then investigated, focusing on the impact of choosing this
framework compared to the initial MEF, from the DNS to the RANS limit. We show that
the choice of the formalism has a negligible impact on the diffusion regime of particles
in turbulence, but still has a clear impact on the initial transport regime, during which
all physics could happen in spray combustion. We finally investigate Lagrangian LES
models of the literature in this framework and propose some perspective toward two-way
LES of turbulent particulate flows.

v
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Introduction

1 Context

1.1 Turbojets

According to their speed, planes are usually propelled by different kinds of engines.
From slow to fast, one can think of turboprop, turbojet and ramjet engines. For current
planes, the most usual engine is the turbojet, see Fig. 1 in which the different parts are
represented: the air inlet, the compressor, the combustion chambers, the turbine and
the exhaust part.

Figure 1. Sketch of a turbojet engine.
By Jeff Dahl, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3235265

In such turbojet, the air ideally follows an open Brayton cycle. The ideal thermodynamic
evolution of the gas during an open Brayton cycle is represented in Fig. 2, with steps
1-2-3-4. On the left is the evolution of the pressure against the specific volume, and on
the right is the evolution of the temperature against the entropy. The cycle is said to
be open because air from the turbojet outlet at step 4 does not loop to the turbojet
inlet step 1. The ideal open cycle starts with an isentropic compression through the
compressor (steps 1 to 2), then heat is added by an isobaric combustion (steps 2 to 3),
and the fluid is accelerated by an isentropic expansion through a nozzle (steps 3 to 4)1.
Thrust is produced by the difference in velocity between the engine intake and the engine

1In a real turbojet, a turbine usually recovers some work between the combustion chamber and the
nozzle in order to drive the compressor.

1



2 Introduction

exit. It is to be noticed that the rise of temperature between steps 2 and 3 highlights
the gain of enthalpy produced by combustion. Without combustion, the turbojet will
not generate any thrust, this is why this element is at the core of a turbojet.
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Figure 2. Brayton cycle: Clapeyron diagram (left) and temperature-entropy representation
(right). Black arrow indicate the compression (1-2), combustion (2-3) and expansion (3-4).

The grey arrows is purely notional, as the cycle is open.

1.2 Aeronautical combustion chambers

In the combustion chamber, the fuel of the engine is burned in order to generate the rise
in temperature. Combustion occurs when mixing the hot air of the combustion chamber
(Fig. 3) with a fuel vapour. The fuel is injected in the combustion chamber in a liquid
form and atomised into small droplets at the contact of intense shear layers of air. These
volatile fuel droplets vaporise and produce a fuel vapour which burns at the contact of
the hot air inside the combustion chamber.

Figure 3. Sketch of a combustion chamber in a turbojet engine.
By SidewinderX, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?crid=8965151

To design a combustion chamber, we can either decide to build real prototypes to evaluate
proposed designs, or to make use of numerical simulations to avoid the cost of experimen-
tal campaign and designs. Simulations are nowadays used at every level of conception in
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the aeronautical field. The modelling and simulation of combustion chambers requires
to reproduce several physical phenomena: high-speed aerodynamics, acoustics, fuel in-
jection, combustion, turbulence, radiation... Today, simulation strategies exist for all
these phenomena, but being able to simulate with a high precision all of them at the
same time is still a hard task. Still, simulations, even at low level of modelling, are now
able to give insightful and predictive results in engine-like conditions for global charac-
teristics such as flame shape or overall acoustic behaviour. As an example, Fig. 4 shows
the comparison between experiments and numerical simulations for the BIMER burner
of the EM2C laboratory (Providakis, Zimmer, Scouflaire, and Ducruix (2012); Renaud,
Ducruix, and Zimmer (2017); Cheneau (2019)). In this burner, depending on the flow
history, here increasing or decreasing staging factor2 Results reveal a good description
of the flame shape with the numerical simulation for two operating conditions. Interest-
ingly, the numerical simulation is far from being high-fidelity: mono-disperse Eulerian
description of the spray, two-step chemistry, coarse mesh... And even with such crude
description, the correct flames are retrieved.

Figure 4. Qualitative comparison between mean image of OH∗ in experiments and line-of-
sight integrated heat release simulations (Cheneau (2019)) for increasing (top) or decreasing
(bottom) staging factor α, for the BIMER combustor (Providakis, Zimmer, Scouflaire, and

Ducruix (2012); Renaud, Ducruix, and Zimmer (2017)).

2The staging factor α is the ratio between the fuel mass flow rate injected in the pilot stage and the
total fuel mass flow rate.



4 Introduction

However, there are still situations under which simulations have to be improved, which
is the reason why high-fidelity simulations are still required.

1.3 High-fidelity numerical simulations

To reduce pollutant emissions, combustion chambers are now designed with several
swirler stages and several injection systems. Furthermore, lean global operating con-
ditions are targeted to reach the optimal conditions for NOx and CO emissions. Such
designs are also expected to improve the operability limits of the engine, for instance
in high altitude or low temperature. In these extreme conditions, the flame is prone
to unstable phenomena, such as high acoustic activity or flame extinction and shape
transitions. These events are actually very hard to reproduce with current simulation
strategies because they requires the prediction of very fine phenomena that occur at the
scales of the smallest turbulent structures. Such physics cannot be captured by crude
simulation strategies, and requires high-fidelity simulations. Such high-fidelity simula-
tions are expected to be expensive at first glance, preventing form their use to be on a
day-to-day basis for conventional design. Therefore, they are more dedicated to solve
design issues under crisis situations for which low-fidelity tools have reached their limits.

2 Numerical simulation of the fuel spray

Providing a high-fidelity simulation of the combustion chamber must rely on a good
representation of the spray all along its lifetime. In Fig. 5, the different phases of the
spray evolution are depicted.

1. Primary breakup: The liquid fuel is injected in the combustion chamber as a liquid
core or a liquid sheet, depending on the injection technology. Due to strong aero-
dynamic stresses on the liquid interface, this coherent liquid core breaks-up into
ligaments.

2. Secondary breakup and transport: the ligaments continue to break-up. They gen-
erate aerodynamically stable droplets which are carried by the turbulent flow field.

3. Evaporation/Combustion region: Droplets encounter ambient conditions that are
sufficient to lead to their evaporation. This way, they feed the combustion with
the gaseous fuel and they thus enable to sustain a flame.

Theses three phases are obviously “porous” is the sense that there is no clear separation,
and they can all occur simultaneously. The first phase requires the description of the
tortuous interface between the gas and the fluid. At the opposite, droplets can be
assumed spherical in the second and third phases. This allows to use a framework
similar to kinetic theory, which drastically simplifies the modelling and simulation of
these two phases. In the following we give a brief overview of what is done today in
simulation for these last two regimes.
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Figure 5. Schematic representation of the different phases of the spray evolution.

2.1 Liquid jet atomisation

The simulation of the primary breakup reviewed here is the source of intense research to
be able to correctly capture the creation of the spray (see for instance Chiodi and Des-
jardins (2017); Vaudor, Ménard, Aniszewski, Doring, and Berlemont (2017); Movaghar,
Linne, Herrmann, Kerstein, and Oevermann (2018)), as well as ensuring a good transi-
tion between the coherent dense phase and the disperse phase. As an example, Figure 6
shows the simulation of a liquid jet in a high-speed gaseous cross flow (Leparoux, Mercier,
Moureau, and Musaefendic (2018)).

Figure 6. Simulation of a liquid jet in a crossflow simulated with the YALES2 solver
(Leparoux, Mercier, Moureau, and Musaefendic (2018)).

his kind of simulations requires large computational resources, as it is requires to sim-
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ulates scales of the domain size (centimetres), the nozzle injector (millimetres) down to
droplet size (micrometers). Nowadays, simulating on a day-to-day basis such processes
inside a realistic combustion chamber is not possible, and such simulations are only
aiming at giving input to injection modelling strategies or DNS to verify and/or design
reduced order models.
In fact, instead of simulating the atomisation process from the liquid core to the spray,
the classical solution for simulating the spray in a combustion chamber is to rely on an
injection model that will define the spray characteristic as a consequence of empirical
correlations (experimental or numerical). Example of this kind of model is the FIMUR
approach (Sanjosé, Senoner, Jaegle, Cuenot, Moreau, and Poinsot (2011); Vié, Jay,
Cuenot, and Massot (2013); Hannebique, Sierra, Riber, and Cuenot (2013)), which aims
at mimicking a pressure-swirl atomiser, and which has been used successfully in numer-
ous simulations of reactive flows in aeronautical-like burners. This kind of approach is
proven to be really useful, but still has to progress as some recent works exhibits a more
limited accuracy when external flow has a strong interaction with the nozzle atomisa-
tion (Mesquita, Vié, and Ducruix (2018); Vignat, R., Durox, Vié, Renaud, and Candel
(2020)).
Another promising solution is to develop new strategies based on various reduced-order
models, where the natural approach is a diffuse interface model near the injection nozzle
in order to resolve the interface (Cordesse, Remigi, Duret, Murrone, Ménard, Demoulin,
and Massot (2020)) and then to couple it to a spray either Lagrangian (Anez, Ahmed,
Hecht, Duret, Reveillon, and Demoulin (2019)) or Eulerian model in the disperse phase
zone (Cordesse, Remigi, Duret, Murrone, Ménard, Demoulin, and Massot (2020)) in
order to capture the details of the polydisperse spray generated through the atomisation
process. Such approaches suffer from the transition parameters, that are somewhat
arbitrary and rely on a list of assumptions. Some recent progress has been made in
order to design a unified Eulerian model able to cope with various zones, including the
the mixed zone, and relying on a geometrical approach of the spray polydispersion (Drui,
Larat, Kokh, and Massot (2019); Essadki, de Chaisemartin, Laurent, and Massot (2018);
Essadki, Drui, de Chaisemartin, Larat, Ménard, and Massot (2019); Cordesse (2020)).
Eventually, whatever the chosen methods, it will result in the generation of a spray
composed of small spherical droplets, with various sizes, velocities, temperatures. Fur-
thermore this spray is still coupled to the gas phase, and two-way interactions must be
accounted for.

2.2 Evolution of the spray

To describe the spray in combustion chambers, three kinds of approach can be envisaged:
• the deterministic Lagrangian approaches,
• the kinetic-based Lagrangian methods,
• the Eulerian moment methods.
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2.2.1 Deterministic Lagrangian approaches

The most widely used method is the point-particle Lagrangian description of the spray:
droplets are tracked individually or by small groups in the flow, and their evolution is
driven by their exchange with the gas phase through drag force, evaporation and heating.
Deterministic Lagrangian simulation are quite easy to implement numerically. However,
their associated numerical cost is difficult to balance evenly in the context of parallel
computations. Furthermore, the exchange terms between the fluid and the disperse phase
need to be treated with care, as information has to be transferred between the singular
point particles and the Eulerian mesh of the fluid. Evaluating the gas phase properties
to correctly account for the drag force is the source of recent contributions that suggest
corrections of the velocity Horwitz and Mani (2016); Ireland and Desjardins (2017);
Balachandar, Liu, and Lakhote (2019); Poustis, Senoner, Zuzio, and Villedieu (2019)).
Computing the feedback of droplets on the gas phase also requires regularisation to avoid
numerical issues, see Capecelatro and Desjardins (2013); Zamansky, Coletti, Massot, and
Mani (2016). Eventually, only one realisation of the disperse phase is computed at each
time. Therefore, the statistical convergence of the simulation is costly to obtain. Despite
these limitations, this strategy has led to numerous successful simulations, in the sense
that they retrieve well the experimental results for several configurations. Moreover,
the fact that Lagrangian simulations can simulated a unique realisation is sometimes an
advantage when it comes to rare events. For example, Fig. 7 presents the simulation of a
spray burner using two evaporation models for the droplet (one considering evaporation
only, the second switching to isolated combustion when it occurs, Paulhiac (2015)). It can
be seen that when a droplet crosses the flame, it leads to a strong local disturbance, here a
large heat release rate compared to the the rest of the flame. Such random “catastrophic”
events can be reproduced with a deterministic approach, but if the simulation method
uses any ensemble-averaging, capturing such phenomena is today hardly achieved.

Figure 7. Instanteneous heat release along with droplets in the simulation of a spray
burner (Paulhiac (2015)), with two evaporation models (left, ”classical” evaporation, right,

switching between evaporation and isolated combustion).
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2.2.2 Kinetic-based Lagrangian methods

If one is interested in statistically-converged quantities, a solution is to rely on a statis-
tical description of the disperse phase, which objective is to compute the evolution of
the Number Density Function (NDF) of the spray. The NDF gives the average number
of droplets at a given point in space and time and with given physical properties such
as temperature or size for instance. The NDF satisfies a Population Balance Equation
(PBE) which describes its evolution in the phase space. At this point, one of the two
possible strategies to compute the evolution of the NDF is to use a Lagrangian method,
in which elements of the NDF are randomly drawn and are computed according to the
PBE. For instance Bini and Jones (2008) develops a Lagrangian Stochastic Model based
on the addition of Wiener processes to drive droplet trajectories. They used this strategy
to compute sprays of droplets in Bini and Jones (2009). At this point, it is important
to point out that identifying what happens in a unique realisation is only possible if the
simulation is fully deterministic, either for the gas phase or for the disperse phase. If the
Lagrangian method is based on a kinetic description, the simulation cannot guarantee
that the local perturbations of the droplets correspond to what happens in a realisation,
because designing a forcing that represents turbulence is not straightforward.
Furthermore, even if the kinetic-based Lagrangian methods aim at solving the NDF,
they still have the same drawback as the deterministic Lagrangian approaches: a slow
convergence of the statistics. This is where Eulerian Moment methods become of interest.
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2.2.3 Eulerian moment methods

To the difference of Kinetic-based Lagrangian methods which draw Lagrangian elements
in order to reconstruct the NDF in a Monte-Carlo fashion, Eulerian moment methods
offer a different strategy for describing the NDF. As their name indicates, moment
methods do not consider the whole NDF, but only some of its first moments. These
moments can have a physical meaning, such as the overall droplet concentration for
instance. With moment methods, each moment is considered for itself, as a field, with
its own evolution equations. To the difference of Lagrangian methods for which it is
important to ensure that enough particles are drawn in order to converge the statistics
of interest, moment methods have the advantage of directly computing the converged
moments of the distribution of particle. Moreover, because moment methods share the
same Eulerian framework as the gas phase, it is easier to ensure consistent exchange terms
between phases and to design strategies for well balanced parallel codes. Compared to
Lagrangian approaches, there is only a small community of people that uses the Eulerian
moment method for describing the spray in aeronautical combustion chambers. The main
reason that limits the diffusion of this method is that they requires a specific attention to
numerical methods, as they lead to hyper-compressible fields (de Chaisemartin (2009)).
Moreover, describing important features of the spray such as poly-dispersion requires
to transport several moments, which makes their use even less straightforward. Despite
these difficulties, this method has been used to simulate successfully several burners, even
in annular burner context, see Fig. 8 (Lancien, Prieur, Durox, Candel, and Vicquelin
(2018)). In terms of engineer, the fact we can easily estimate the computational time,
whatever the number of droplets in the simulation, is surely and advantage compared to
Lagrangian methods. For example, a flame switching in a Lagrangian simulation could
lead to a great increase in droplet number and imbalances between computational cores
if the load is not dynamically updated.
To sum up the main strengths of moment methods, which make them of particular
interest for applicative simulations are:
• Their intrinsic statistical convergence.
• The ease to couple them with the gas phase, compared to the Lagrangian methods.
• The existence of shared framework with methods describing interface flows, mak-

ing them a preferred solution for solving the spray from its atomisation to its
combustion (Essadki, Drui, de Chaisemartin, Larat, Ménard, and Massot (2019);
Essadki, de Chaisemartin, Laurent, and Massot (2018)).
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Figure 8. Simulation of the multi-sector MICCA burner of EM2C (Lancien, Prieur, Durox,
Candel, and Vicquelin (2018)) using an Eulerian moment method for the spray.

2.3 Some open issues in the spray simulation

Looking at the landscape of possible solutions, it appears that we are today able to get
meaningful simulations with the available methods. However there are still some open
issues that are still to be tackled:
• Models for droplet evolution: whatever the framework for spray evolution is, models

such as drag force or evaporation laws are required, and the final result may be
highly dependent on the choice of the model. Unfortunately there is not necessary
a perfectly predictive model for all possible physics. For instance, in the case of
evaporation, there are several model available in the literature, and there are also
several ways of implementing the same model, depending on the way the mixture
is treated for instance. Furthermore, models are not necessary validated in the
conditions that droplets meet during combustion.

• Two-way coupling in Lagrangian framework: the coupling between the two-phase
may rise different questions depending on the framework of the simulation. For
Lagrangian simulations, attention must be given to the way the flow and the parti-
cle are coupled, how the gas phase properties are evaluated at the droplet location,
how the evolution models are applicable, and how the feedback of the droplet to
the carrier phase is computed.

• Two-way coupling in kinetic descriptions: for such simulations, Eulerian or La-
grangian, peculiar attention must be given to the targeted statistics which would
be impacted by the retro-coupling. For instance, the Mesoscopic Eulerian Formal-
ism (MEF) of Février, Simonin, and Squires (2005), which is the basis of the Eu-
lerian simulations previously presented (Cheneau (2019); Lancien, Prieur, Durox,
Candel, and Vicquelin (2018)), considers statistics averaged over several particle
phase realisations conditional to a unique gas phase realisation. Such conditioning
is possible only if the particles do not affect the gas phase. If so, unfortunately
each particles realisation may affect differently the gas phase, preventing from any
straightforward conditioning.

• Subgrid scale modelling: finally, industrial-like simulations cannot be performed
resolving all the turbulent scales and reduction techniques such as Large Eddy
Simulation (LES) are required. In this context, modelling the effect of sub-grid
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scale on droplet dynamics, but also the sub-grid feedback of these droplets on
the carrier phase is mandatory. Today, the simulations are limited to a “global”
feedback without sub-grid scale coupling, which requires far more attention, as
shown in Letournel, Laurent, Massot, and Vié (2020).
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3 A statistically-consistent framework for the simulation
of two-way coupled disperse phase flows

The challenge that is addressed in this PhD focuses on the last two issues, and aims
at providing a statistical description of coupled disperse phase flows in the context of
reduced simulation such as LES.
This focus has been chosen for the following reasons:
• Simulating of a full combustion chamber requires to gather a numerous modelling

approaches, which are always embedded into a Large Eddy Simulation framework.
This LES framework is always described in classical textbook as the sole filtering
operation applied to the evolution equations. However, LES models are always
validated against statistical quantities such as temporal or spatial averaged quan-
tities.

• A statistical description is key for the simulation of highly turbulent flow with
a large range of time and space scales, as one single realisation would be not
representative of the full behaviour of the burner.

• Two-way coupling imposes constraints on the statistical contents of the quantities
of interest, as any ensemble-average on the disperse phase will imply an ensemble-
averaged on the carrier phase. It is today primordial to push forward statistical
method, to investigate the existence of possible bottlenecks or fundamental limi-
tations of such strategies.

• Such research objective is justified at a first glance for Eulerian Moment methods
for sprays, but the implications are valid for any physical model coupled with the
carrier phase, such as soot description. Conclusions will also hold true for the
statistical description of interfacial flows.

To this aim, the present PhD work attempts to combine two elements:
• A statistical description of the disperse phase consistent with two-way coupling.
• A fluid reduction setting a framework where LES is to be found.

Let us briefly present these topics here in order to introduce the problematic of this
manuscript.

3.1 Choice of the statistical description

The starting point is to define the statistical characterisation of the resolved fields. The
problem at stake is a turbulent disperse phase flow. In such conditions, the number of
possible states for the full problem is very large, as it includes all possible spatial distri-
butions of the droplets and all possible s everywhere in the domain. Therefore this choice
is critical, as we will obviously not solve all possible states. For the simulation of spray
combustion, a possible statistical characterisation is the one suggested by MEF, but as
already mentioned, two-way coupling will prevent from using directly such statistics, as
they only include the particles. Fortunately, in Février, Simonin, and Squires (2005),
the authors conclude with interesting perspectives:
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• “Formally, extension of the MEF to regimes including two-way coupling could be
possible via definition of a conditional average using a single realisation of
the large-scale fluid flow, rather than the whole turbulent fluid velocity field as
developed in this manuscript”.

• “The basis of such an approach would take advantage of the fact that for small
particle diameters, the direct modification of the fluid flow occurs at very
small scales”.

• “While the smallest scales over a large number of ensembles would differ from
one realisation to the next, the large eddies of the fluid flow would exhibit
negligible variation, in turn providing the condition on which to define properties
of the particulate phase”.

Considering these perspectives it seems promising to explore conditional averaging on
the largest scales of the flow. However, in order to reach conditions where the two
phases are coupled, strong assumptions have to be made with respect to the interactions
between the disperse phase, the resolved scales of the fluid and the unresolved scales of
the fluid. The disperse phase has to affect at most the smallest scales of the fluid, while
the impact of the smallest fluid length scales of the flow on the resolved fluid has to be
independent of realisations.

3.2 Fluid reduction and large-scale conditioning

Fluid reductions such as LES are commonly used to reduce the computational cost of the
simulations, at the price of modelling efforts to recover the effects of sub-grid scales onto
the resolved large ones. LES particle models are in general constructed without taking
into account the effect of particles on the carrier phase, which unfortunately makes the
picture much more difficult:
• Classical models for point particles, such as the drag law, are widely used in a

one-way context. However, they often rely on the hypothesis that the particles are
much smaller than the smallest length scales of the fluid and that the particle load
is negligible (Stokes (1851)). The physical cases where particles produce turbulence
often push these approximations to the limit of their validity. In a two-way coupled
framework, it is much more difficult to derive consistent models (Horwitz and Mani
(2016)).
• Standard reduction techniques for turbulence such as LES are very consistent with

the picture given by Richardson of an energy cascade (Fig. 1.3). It assumes that
energy is generated at the largest scales of the flow and ripples down through wave-
numbers to be eventually dissipated at higher frequencies. However, in a two-way
coupled context, the mechanisms for energy production, transfer and dissipation
in the fluid are different (Letournel, Laurent, Massot, and Vié (2020)). Clusters
of particles, of various sizes and shapes, can appear and exchange momentum
with the turbulent fluid at a wide range of scales (Zamansky, Coletti, Massot, and
Mani (2016)). Therefore, in a two-way coupled, two-phase flow, the traditional
hypothesis of energy flowing unidirectionally from lowest wave-numbers to the
highest wave-numbers is dubious and cannot be used as a reliable basis for reduced
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models.
On top of the physical limitations of existing models, there are numerous issues to be
tackled if we want to follow the suggestions of Février, Simonin, and Squires (2005):
• The LES is generally seen as a sole filtering operation. However, here, because

of the presence of particles, the sub-grid scale can vary a lot between different
realisations. This leads to the idea of considering an ensemble-average over the
smallest scales of the flow and immediately rises the issue of performing such an
averaging operation.

• If an ensemble-averaging is taken over the small scales, how are the large scales
affected by the sub-grid scale averaging?

These questions ask for a broader vision of fluid reductions, which must include the
possibility of ensemble-averaging, and which is at the very end at the core of the present
PhD work.

4 Outline of the manuscript

The present manuscript is organised in the following way:
• Part I reviews various elements of reduced two-phase flow simulations. On each

aspect of the present work, it frames the manuscript in the context of a prolific
literature. It identifies key elements that reduced two-phase flow simulations must
account for in a broad perspective of successive reduced visions of reality. It also
sheds light on the bricks missing for deriving a statistically-consistent formalism
for two-way coupled disperse phase flows.

• Part II introduces an extended statistical formalism that we envision as a first
step on the road to statistically-consistent, two-way coupled, disperse phase flows
simulations. This extended formalism, called Extended Mesoscopic Eulerian For-
malism MEF (EMEF), is seen as an extension of the Mesoscopic Eulerian For-
malism (MEF) of Février, Simonin, and Squires (2005): it relies on an ensemble
average conditioned to the largest scales of the flow. Such conditioning requires a
specific attention to the reduction framework. We thus have suggested a general
classification for reduction strategies. This classification takes into account both
the injective and the self-contained character of a given reduction strategy. The
injective quality of a reduction indicates if, for one large-scale flow field, there is
only one unique corresponding small-scale flow field. The self-contained quality
of a reduction indicates if the evolution of the large scales is independent of the
choice of the corresponding residual field. In order to observe the numerical be-
haviour of the extended mesoscopic Eulerian formalism, a numerical set-up based
on Kinematic Simulations (KS) is presented in Chap. 6. Kinematic simulations are
synthetic flow fields built from the linear superposition of analytic modes. With
kinematic simulations we have full control on the probability distribution of the
flow field. This makes the computation of the extended mesoscopic Eulerian for-
malism possible, by sampling the probability space associated to self-contained
large eddy simulations. The numerical set-up is extensively validated in Chap. 7
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and 8, to ensure the statistical and numerical convergence of the proposed fluid
and computed particle statistics.

• In Part III, we assess the behaviour of the extended mesoscopic Eulerian formal-
ism with numerical simulations. The simulations performed rely on the kinematic
simulations presented earlier in this work (Chap. 9). This numerical implemen-
tation of the extended mesoscopic Eulerian formalism proves that this theoretical
construction is a statistically consistent representation of two-phase flows that can
be computed in practice. We show that since the extended mesoscopic Eulerian
formalism is a statistic, it does not alter the intrinsic physical properties of the
particles, such as their diffusion coefficient. However, we also show that this new
formalism offers new statistics for the transport regime. The transport regime is
key for the numerical simulation of combustion chambers as it is the main one
experienced by fuel droplets from their formation to their vaporisation. The new
statistics of the extended mesoscopic Eulerian formalism are intermediate between
DNS and RANS, which proves that it is at the level of large eddy simulations.
In the last chapter, we review different possible closures for the disperse phase in
one-way coupled large eddy simulations (Chap. 10). We show that existing models
may clearly differ in the transport part, and that by design, the tested models
cannot fit exactly the spectral properties of particle trajectories.
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Turbulent particulate flows
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Chapter 1

Turbulent flows

This chapter aims at presenting some modelling aspects of fluids which represent a
mandatory step before the conception of two-phase flow models, reduced or not.
• In Sec. 1.1, we start by describing the equations of reference for the fluids we wish

to consider in this study: the Navier-Stokes equations (Eq. 1.2).
• In a second time, in Sec. 1.2, we describe turbulence. This is a very difficult task,

because this regime is mostly referred to only by some characteristic properties and
not by a clear and precise definition. This is partly due to the difficulties raised by
the Navier-Stokes equations. Working on a loosely defined object makes the work
quite difficult. This is why some time is spent providing our angle on the topic.

• Finally, in Sec. 1.3, we present some properties of interest of turbulence.
– In Sec. 1.3.1, we describe a very basic and robust reference metric used for the

characterisation of turbulence. This metric is constantly used throughout this
work: spreading. The spreading characterises the rate at which particles are
dispersed. The spreading behaviour of the particles will help us understand
the dynamics of our different test cases.

– In Sec. 1.3.2, we briefly present more advanced characterisations of the tur-
bulence.
∗ Particle pair spreading in Sec. 1.3.2.1. This characterisation is respected

by the test case used in this work (Fig. 7.10).
∗ We briefly evoke intermittency, a more recent and active research topic on

the characterisation of turbulence, especially in the context of turbulent
disperse phase flows.
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1.1 The Navier-Stokes equations

In this section we present the Navier-Stokes equations.
• We start by presenting the variables of interest (Sec. 1.1.1),
• before introducing the system of equations (Sec. 1.1.2),
• and some of its limitations in (Sec. 1.1.3).

1.1.1 A macroscopic representation of the molecules

The Navier-Stokes equations are macroscopic equations which act on macroscopic vari-
ables. Establishing a relation between the representation of a fluid in terms of molecules
and the representation of a fluid in term of macroscopic variables is quite standard (Drew
and Passman (1999), Pope (2000), Chap. 2.1). It is best understood in the context of the
kinetic theory of gases (Ferziger and Kaper (1973), Lanford (1981), Chapman, Cowling,
and Burnett (1939), Lebowitz (1995)).
Discrete molecules are easily represented in terms of macroscopic variables when (Struchtrup
(2005)):
• the ratio of the mean free path of the molecules to a representative physical length

scale of the problem is small;
• the ratio of the mean frequency of the motion of the molecules to a representative

macroscopic frequency of the problem is large.
This is traditionally characterised in terms of the Knudsen number:

Kn =
`mean free path

`physical length
=
fmacroscopic

fmicroscopic
. (1.1)

When the Knudsen number is very small, the characteristic physical length scale of the
problem encompasses many molecules and these particles move fast with respect to the
characteristic time scale of the macroscopic problem. The high number of collisions
leads to a fast relaxation of the distribution of molecules velocity towards an equilib-
rium distribution. This distribution can be parametrized only by a limited number of
macroscopic quantities, such as the velocity uf , which offer a representative description
of the local fluid state. In this continuum mechanics approximation, evolution equations
for these macroscopic variables are expressed in the form of partial differential equations
such as Navier-Stokes equations that are presented in the next section.

Although Navier-Stokes equations are primarily derived as phenomenological equations,
it is possible, with many hypothesis along the way, to establish a path between the
Kinetic Theory of gases and incompressible Navier-Stokes equations (Bardos, Golse, and
Levermore (1993), Lions and Masmoudi (2001) and Golse and Saint-Raymond (2004)).
This derivation is quite complex and out of scope here, however, it is interesting to notice
at this point that Navier-Stokes equations are already a first level of reduction of the
reality at the molecular level. They offer a statistical description of a discrete set of
molecules in terms of the first moments of their velocity distribution. This approach is
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similar to the strategy adopted by moment methods for sprays, which offer a statistical
description of the first moments of the disperse phase in a Eulerian framework (Sec. 2.4).
Let us now introduce the Navier-Stokes equations.

1.1.2 Navier-Stokes equations, a representation of the fluid in the form
of a dynamical system

Fluids are everywhere. One of their main characteristic is that they flow under any
applied shear stress. They cannot resist to shear stress in a static equilibrium.
According to the case under consideration, different equations for describing a fluid
can be adopted, such as the Euler equations, the Navier-Stokes equations, or the Grad
equations (see for instance Struchtrup (2005)). In the present document, we are in-
terested in the interactions between inertial particles and turbulence. Turbulence is a
phenomenon already present and mostly studied in the context of incompressible flows
(Temam (2001)), even if the literature also addresses the modelling of compressible tur-
bulence (see Chassaing, Antonia, Anselmet, Joly, and Sarkar (2002) for instance). The
reference equations for studying the turbulence are thus the incompressible Navier-Stokes
equations (Eq. 1.2):

∇x · uf = 0, (1.2a)

∂tuf + (uf · ∇x)uf = − 1

ρf
∇xpf + νf∆xuf , (1.2b)

where uf is the fluid velocity, ρf the density and pf the hydrodynamic fluid pressure.
With the incompressible Navier-Stokes equations, the fluid evolution corresponds to a
causal deterministic system. We call this kind of description a dynamical system.

Definition 1. A dynamical system is a tuple (T,A,Φ), with:
• a monöıd T ,
• a set A called phase space
• the evolution function of the dynamical system:

Φ : U ⊂ T ×A→ A, (1.3)

such that

Φ (t2,Φ (t1, a)) = Φ (t2 + t1, a) , ∀a ∈ A, ∀t1, t2, (t1 + t2) ∈ I (a) , (1.4)

with I(a) = {t ∈ T : (t, a) ∈ U}

In the case of the Navier-Stokes equations,
• the monöıd is R+, which corresponds to the set of the times t,
• phase space is the set Af , which corresponds to the set of turbulent flow fields uf ,
• the evolution function of the dynamical system is the function Φf which gives the

evolution of the flow field following Navier-Stokes equations (Eq. 1.2).
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With the incompressible Navier-Stokes equations, the fluid is represented by a smooth
flow field uf . Indeed, uf for instance has to be at least twice differentiable in order to
be a physical (strong) solution of incompressible Navier-Stokes equations. Ensuring this
property for long times is not obvious as presented in the next section.

1.1.3 A smooth solution to Navier-Stokes equations

This section largely inspired by Temam (2001) focuses on the viability of smooth repre-
sentation in the context of Navier-Stokes equations. In order to do this let us first define
some terms:
• The fluid vorticity vector ω represents the local spinning motion of the fluid ve-

locity near some point:

ω = ∇× uf =


∂uf,z
∂y −

∂uf,y
∂z

∂uf,x
∂z −

∂uf,z
∂x

∂uf,y
∂x −

∂uf,x
∂y

 . (1.5)

• The fluid enstrophy is defined as the integral of the square of the fluid vorticity
vector over a surface S:

E (ω) =

∫
S
‖ω‖2.dS. (1.6)

It can be interpreted as a type of potential density directly related to the kinetic
energy in the flow that corresponds to dissipation effects in the fluid.

• We call a strong solution of the Navier-Stokes equations a solution for which the
enstrophy is finite at all times.

• We call a weak solution of the Navier-Stokes equations a solution for which the
enstrophy may become infinite at some instants of time.

From a physical point of view, it is much more natural to work with strong solutions,
because they are more intuitive (there is no need for a variational framework to derive
them) and because no flow experiment performed up to now has shown infinite enstro-
phy. However, from a mathematical point of view, it is expected since Leray (1933),
Leray (1934a), Leray (1934b) that the vorticity vector of solutions of the Navier-Stokes
equations could indeed become infinite. In fact, it is still a research topic today (Buck-
master and Vicol (2019)), and up to now, no one has been able to prove or give a
counter-example to the following statement (from Fefferman (2006)):

In three space dimensions and time, given an initial velocity field, there
exists a vector velocity and a scalar pressure field, which are both smooth and
globally defined, that solve the Navier-Stokes equations.

This lack of knowledge does not come from a lack of effort or interest, as there is a one
million dollars prize for whomever gives an answer to this challenge. In the meantime,
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as explained by Temam (2001) and briefly summed up in Tab. 1.1, a lot of work has
already been done on Navier-Stokes equations.

Weak solutions Strong solutions

2D Existence and uniqueness at all times

3D
Existence at all times Uniqueness

Uniqueness? Existence at all times?

Table 1.1. Current knowledge of existence and uniqueness of Navier-Stokes solutions ac-
cording to the dimension and to the type of solution (strong or weak).

As physicists, we are especially interested in having the existence of a single solution to
Navier-Stokes equations in three dimensions with finite enstrophy (strong solution). We
can clearly see in Table 1.1 that this is not the case yet. In three dimensions:
• Either we get a weak solution which exists but can have infinite enstrophy and is

not guaranteed to be the unique solution at all times,
• or we get a strong solution which is not guaranteed to exist at all times, but if it

does, is unique.
In this work, we are interested in reductions of two-phase flow models. By reduced model
we mean a model of lower dimension which still capture some elements of the dynamics
of the original system. Because we do not fully understand the nature of solutions of
Navier-Stokes equations, it is quite difficult to get optimal reduction strategies for the
numerical simulation of turbulence (Temam (1991)). This limited understanding makes
the present work useful (because there is still a lot to study), but at the same time
difficult (because many things are not known for certain).
In the context of practical numerical applications, Navier-Stokes equations are often
discretised and computed at a given finite spatiotemporal resolution. Such a strategy
has proven satisfactory with respect to experimental observations so far.
The question of weak or strong solutions is at stake when performing numerical solution
of Navier-Stokes equations, but also rises when it comes to the description of turbulence.
As turbulence is key to the context of this work, let us try to characterise it in the next
section.

1.2 Turbulence

Without getting lost into the details of turbulent flows, it is fundamental to get a clear
idea of the basic principles underlying how turbulence is understood in this work. Here,
we will first characterise some of the properties of turbulence, before describing the
so-called inertial range into more details.
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Figure 1.1. Sketches illustrating the influence of the Reynolds number on the flow be-
haviour from Reynolds (1883). A fluid is flowing in a tube and some ink is injected on the
centreline at the entrance of the tube in order to visualise the flow. When the Reynolds
number is low (top image), the ink draws a straight line and the regime is called laminar.
When the Reynolds number is high (bottom image), the ink is dispersed in eddies after a

given point and the regime is called turbulent.

1.2.1 Turbulence, an unstable regime

In the Navier-Stokes equations (Eq. 1.2), aside from the pressure term, the temporal
evolution of the fluid velocity is controlled by two terms:
• a term (uf · ∇x)uf corresponding to the inertial effects of the fluid on its motion,

with characteristic dimension U2
∗
L∗

,
• and a term νf∆xuf corresponding to the effect of viscosity on the fluid dynamic,

with characteristic dimension
νfU∗
L2
∗

.

The balance between inertial and viscous effects of a fluid is named the Reynolds number:

Re =
L∗U∗
νf

, (1.7)

with a reference length scale L∗, and U∗ a velocity such that U∗T∗ = L∗, with T∗ a
reference time scale.
When the Reynolds number is low (top of Fig. 1.1), the viscous term is dominant and
the flow regime is called laminar. When the Reynolds number becomes large (bottom
of Fig. 1.1), the flow regime becomes turbulent. Motions appear unstable, erratic and
difficult to characterise in terms of shapes or patterns. There is no precise value of
Reynolds number which corresponds to a turbulent flow. It depends on each specific
case at hand and on the choice of the characteristic scales used to define the Reynolds
number. But whatever the case under consideration and the method used to define
the characteristic scales of the flow, the flow becomes turbulent as one increases the
Reynolds number (Lesne and Laguës (2012), Chap. 9.5.2). Turbulence is a state of the
flow which is highly sensitive to initial conditions, with a wide range of scales mixing the
fluid (illustration of the wide range of scales, in wave-number space, from experiments
Fig. 1.2).
If we now focus on the energy of a turbulent flow, the traditional picture of reference is
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Figure 1.2. Stream wise turbulence energy spectra for various flows (from Chapman
(1979)).
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κ
κ0 κEI κID

1
η

Production Transfer Dissipation

Figure 1.3. Sketch of the principle of the energy cascade described in Richardson (1922),
p. 66 (adapted from Pope (2000), Fig. 6.2).

given by the energy cascade (described in Richardson (1922), p. 66, Fig. 1.3). Simply
put, energy is injected at low frequencies (κ ∈ [κ0, κEI ]) through interaction at the
boundaries and is dissipated at high frequencies (κ ∈ [κID, κη]) through viscosity. This
mechanism defines three different ranges:
• The energy-containing range at the lowest wave-numbers (κ ∈ [κ0, κEI ]) which

usually contains most of the fluid kinetic energy and where kinetic energy is also
produced.
• The dissipation range at the highest wave-numbers (κ ∈ [κID, κη]) which usually

dissipates most of the fluid kinetic energy. κη is the wave-number associated with
the Kolmogorov length scale η:

η =

(
ν3
f

ε

)1/4

. (1.8)

The Kolmogorov length scale corresponds to the characteristic scale of the smallest
turbulent motions.

• In-between is an intermediate range of scales (κ ∈ [κEI , κID]), called inertial range,
where energy flows from the energy containing range to the dissipation range.

After having briefly presented the conditions for a fluid to be turbulent in this section,
let us now focus on the inertial range which is a specific region of interest of the turbulent
flow field for this study.

1.2.2 The inertial range, a quest for universality

In order to apprehend turbulent flows, one is looking for universal properties of turbu-
lence. This is difficult, because a turbulent flow is an open system, far from equilibrium.
Navier-Stokes equations being dissipative, energy has to be continuously fed to the sys-
tem at the largest scales of the flow. Nonetheless, it is expected to have some stable
universal properties, independent of the details of the external forcing (Farge (1992)).
Following on the average energy cascade picture of Richardson (Fig. 1.3), energy is
mostly injected in the flow from the constraints given at the boundaries. These con-
straints generate large scale motions in the domain, which feed progressively smaller
scales in the flow. For very high Reynolds numbers, far away from the boundary condi-
tions, as the energy gets successively transferred from one scale to an other, it somehow
loses any information specific to the case (Leslie (1973), p.25). Therefore, behaviour of
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the flow becomes in a sense universal. This is the realm of the inertial range. These
properties are limited to a given range of scales which is called the universal equilibrium
range (Pope (2000), p. 185). The universal equilibrium range encompasses the inertial
range and the dissipation range. In the universal range, Kolmogorov (1941) made some
key hypothesis, which are at the basis of most of current works on turbulence (see for
instance Lesne and Laguës (2012), Chap. 9.5.5 or Pope (2000), Chap. 6.1.2):
• the universal range is statistically isotropic;
• the statistical properties of the inertial range are only function of the dissipation;
• the statistical properties of the dissipative range are only function of the dissipation

and the viscosity;
from which a dimensional analysis gives Kolmogorov’s law which states that the average
energy density spectrum is of the form:

E(κ) ∼ ε2/3κ−5/3, (1.9)

with κ the wave-number, ε the rate of dissipation of turbulent kinetic energy and E(κ)
the average fluid energy density spectrum.
It is possible to observe in Fig. 1.2, which represents stream-wise turbulence energy
spectra for various flows, that the relation given by Eq. 1.9 is well verified in practical
experiments.
While Navier-Stokes equations are deterministic, characterisation of the inertial range,
and of turbulence in general, is usually done in a statistical way. This means that a
probability measure can be associated to the turbulent flow. This is what is presented
in the next section.

1.2.3 Probability spaces and Navier-Stokes equations

This section presents how to build a probability measure associated to turbulence. It is
the necessary foundation of a consistent probabilistic framework for deriving statistical
models of the disperse phase consistent with fluid reductions, such as large eddy simula-
tion, and with two-way coupling between phases. Let us start by defining a probability
space.

Definition 2. A probability space is a tuple (Ω, E ,P) of three elements:
• the set of possible outcomes Ω,
• the set of events, which is a σ-algebra E ⊆ 2Ω:

– Ω ∈ E ,
– E is closed under complements, ∀e ∈ E , (Ω/e) ∈ E ,
– and E is closed under countable unions

∀ (ei)i∈N ∈ EN,
( N⋃
i=1

ei

)
∈ E . (1.10)
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• and P, the probability measure on E :
– P [Ω] = 1 and
– ∀ (ei)i∈N ∈ EN, such that

i 6= j =⇒ ei ∩ ei = ∅, i, j ∈ N, (1.11)

P

[ N⋃
i=1

ei

]
=

N∑
i=1

P [ei] . (1.12)

Elements of Ω are only individual realisations, whereas E include individual realisations,
but also sets of individual realisations. For any element e in E , P [e] gives the probability
of e.
Let us see how to associate a probability measure P to turbulence (this section can be
found in Drew and Passman (1999), Chap. 9-10).

1.2.3.1 A deterministic dynamical system with random initial conditions

For a deterministic system of equations such as the Navier-Stokes equations, one way to
introduce a probability space is through the choice of initial conditions. Let us call Af

the set of turbulent s uf,0. In practice, we can consider that Af = R3R3

.
We consider that initial conditions are a measurable function which depends on the
outcome of a random phenomenon:

uf,0 : Ω →Af
ω 7→uf,0 (ω) .

(1.13)

Definition 3. A random variable Y is a measurable function from a set of possible
outcomes Ω to a measurable space.

Therefore, the initial conditions of the fluid uf,0 define a random variable.

Definition 4. When it exists, the expectation of a random variable Y is given by:

E [Y ] =

∫
Ω
Y (ω) dP [ω] . (1.14)

Definition 5. When it exists, the conditional expectation of a random variable Y
on e ⊂ Ω is given by:

E [Y |e] =
1

P [e]

∫
e
Y (ω) dP [ω] . (1.15)
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Definition 6. When it exists, the variance of a random variable Y is given by:

Var [Y ] = E
[
(Y − E [Y ])2

]
. (1.16)

Definition 7. When it exists, the conditional variance of a random variable Y on
e ⊂ Ω is given by:

Var [Y |e] = E
[

(Y − E [Y |e])2
∣∣∣ e] . (1.17)

Because uf,0 is measurable, we extend the probability measure P to Af such that

∀ω ∈ Ω, P [uf,0 (ω)] = P0

[
u←f,0 (ω)

]
. (1.18)

Therefore, we extend the initial probability measure P0 to ulterior time:

∀ω ∈ Ω, ∀t ∈ R, Pt [uf,t (ω)] = P0

[
Φ←f,t (uf,t (ω))

]
. (1.19)

1.2.3.2 Ergodicity - a probability space for time

The erratic behaviour of turbulence is reminiscent of a chaotic dynamical system. Chaos
is when the present determines the future, but the approximate present does not approx-
imately determine the future as Edward Lorenz puts it (Danforth (2020)).
Let us present here some definitions to explicit the notion chaos.

Definition 8. The flow Φ of the dynamical system (T,A,Φ) is sensitive to initial
conditions when, ∀a1 ∈ A,∀ε ∈ R+∗, ∃a2 ∈ A, ∃a ∈ R+∗, s.t.:

0 < ‖a2 − a1‖ < ε and ‖Φ (t, a2)− Φ (t, a1) ‖ > ea.t‖a2 − a1‖. (1.20)

Definition 9. The dynamical system (T,A,Φ) is topologically mixing when, ∀a1, a2

non-empty open sets of A,

∃t ∈ T, s.t. Φ (t, a1) ∩ a2 6= ∅. (1.21)

Definition 10. Let (T,A,Φ) be a dynamical system. For any point a ∈ A, the set
γa is called orbit through a.

Definition 11. Let (T,A,Φ) be a dynamical system. The point a ∈ A is periodic
if it exists t ∈ T such that Φ (t, a) = a.

Property 1. Let (T,A,Φ) be a dynamical system. Let a ∈ A by a periodic point of the
system. Then all points on the orbit through a, γa are periodic.
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Definition 12. The dynamical system (T,A,Φ) has dense periodic orbits if every
point in the space is approached arbitrarily closely by periodic orbits.

Definition 13. A dynamical system is chaotic when:
• it is sensitive to initial conditions,
• it is topologically mixing,
• and it has dense periodic orbits.

Because of the very unstable nature of such systems, two different trajectories starting
from very close initial conditions always have a very different future. In this context, if
one is interested in a representative description of the system, focusing on the evolution
of a single trajectory, may not be the most appealing.
The concept of attractor provides a solution to such a difficulty.

Definition 14. Let (T,A,Φ) be a dynamical system. The subset a ∈ A is an
attractor when:
• a is forward invariant under Φ:

∀a ∈ a,∀t ∈ T,Φ (t, a) ∈ A. (1.22)

• There exists an open set B(a) called basin of attraction of a such that: For
any open neighbourhood N of a, there is a time t0 ∈ T such that ∀t > t0,
Φ (t,N) ⊂ B(a).

An attractor corresponds to the subset of solutions which attracts all the possible trajec-
tories of the system (Temam (2001)). Therefore, if an attractor exists, characterising this
set of solutions guaranties to provide representative information about the permanent
regime of the flow.
Interestingly, the Navier-Stokes equations in dimension three possess a global attractor
(of finite dimension). Because the system is chaotic and the attractor is global, any
single trajectory explores all the attractor of the system over time. In the limit of an
infinite timespan, the permanent regime of a single trajectory becomes representative of
the permanent regime of any trajectory.
This is the reason why it is extremely interesting to study turbulence through the lens of
the probability space inferred by the temporal evolution of one given trajectory. There-
fore, the temporal evolution of the fluid described by deterministic Navier-Stokes equa-
tions calls for a stochastic treatment (Reynolds (1895), Kolmogorov (1941)).
This leads us naturally to a key concept: ergodicity.

Definition 15. Let (A,A,P) be a probability space and (T,A,Φ) be a dynamical
system. The dynamical system is measure-preserving on the probability space if:

∀a ∈ A,∀t ∈ T,P [Φ←t (a)] = P [a] . (1.23)
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Definition 16. Let (T,A,Φ) be a measure preserving dynamical system on the
probability space (A,A,P). Φ is ergodic when:

∀t ∈ T, ∀a ∈ A, Φ←t (a) = a =⇒ P [a] ∈ {0, 1} . (1.24)

Property 2. Let (T,A,Φ) be a measure preserving dynamical system on the probability
space (A,A,P). For all integrable f , for almost all a ∈ A:

P [f (A)] = lim
t→∞

1

t

∫ t

0
f (Φt (a)) dt. (1.25)

Therefore, for an ergodic dynamical system, its time average is the same as its average
over its probability space. In the case of turbulence theories, the inertial range is often
assumed to be ergodic (Farge (1992)). Therefore, this leads to an equivalence for the
inertial range of turbulence between:
• the probability measure associated of realizations of the permanent regime, and
• the probability measure built from the temporal evolution of turbulence.

1.2.3.3 Physical probability space and autocorrelation

Following Drew and Passman (1999), Chap. 10.3, the spatial fluctuations of the turbu-
lent field at any given time can also be seen as a random variable. In the context of
Kolmogorov (1941) hypothesis, in the inertial range, where turbulence is assumed sta-
tionary, homogeneous and isotropic, for quantities which possess a volume average, it is
often assumed that
• the spatial averages over large volumes and
• temporal averages

are the same.
This equivalence between spatial and temporal averages is very interesting for building
models based on volume averages. It allows to estimate unknown volume averaged
quantities in terms of well known time averaged quantities.

1.2.3.4 Turbulence and probability spaces

Therefore, thanks to the ergodicity hypothesis and following many authors (Monin and
Yaglom (1971), Chap. 4.4.7, Crowe, Sommerfeld, and Tsuji (1998), Chap. 6.1, Drew
and Passman (1999), Chap. III, Pope (2000), 3.8), we will consider that the probability
spaces implied by fully developed turbulence over
• realizations,
• time, or
• space

are the same.
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1.3 Some properties of turbulence

This section focuses on describing some common properties of turbulence. It goes grad-
ually,
• starting from a very basic, global one-point metric (Sec. 1.3.1), which characterises

dispersion,
• then moving to a more advanced but standard, global two-point metric (Sec. 1.3.2.1),

which characterises two-point dispersion,
• and finally, a local two-point metric (Sec. 1.3.2.2): intermittency.

Because it is already a vast topic, we will only focus on spreading in this work. The
notions and mechanisms of spreading in turbulence are used constantly in the next parts
of this manuscript. This is why it is presented quite extensively in Sec. 1.3.1.

1.3.1 Spreading, a basic metric of turbulence

The lack of a full understanding of turbulence does not prevent us from characterising its
behaviour on some specific aspects. For instance, the previous section briefly presented
considerations on topology (chaotic behaviour) and energy. An other characterisation is
done through the spreading of fluid parcels. It is one of the earliest characterisations of
turbulence, starting with Reynolds (1883), and treated in the seminal works of Taylor
(1921) and Richardson (1926). The spreading of fluid parcels is of interest to this work
because in the universal regime of isotropic homogeneous turbulence, spreading is the
first order effect of the fluid on particles.

1.3.1.1 Spreading of fluid parcels

In the context of the equations of Navier-Stokes, fluid parcels (Landau and Lifshitz
(1959), p. 1) are notional particles which move according to the fluid velocity field at
their location. They correspond to a Lagrangian description of the fluid. It is interesting
to study their behaviour in the context of disperse two-phase flows because in the limit of
null inertial, the disperse phase behaves as fluid parcels (Balachandar and Eaton (2010)).
A detailed analysis of the behaviour of fluid parcels in a turbulent fluid is given by
Falkovich, Gawedzki, and Vergassola (2001) (for shorter material, one can also refer to
Eyink (2008), Chap. 5.b.). Since the study of inertial particles done in this work has
many similarities with the properties of the fluid parcels in turbulence, some essential
properties of fluid parcels in turbulence are stated hereafter.
When using Navier-Stokes equations, deriving the evolution of fluid parcels simply cor-
responds to the Lagrangian point of view of the fluid. The acceleration of fluid parcels
is given by taking the material derivative of the fluid flow field at the location of the
parcel.

Although the actual motion of fluid parcels is intrinsically local, one can be interested
in deriving some global properties representative of a given flow field. One interesting
quantity is the evolution with time of the squared distance of a fluid particle from its
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original position:

t ∈ R+ 7→ ‖xp(t+ t0)− xp(t0)‖2, (1.26)

with xp a particle trajectory function of time t, and t0 a time of reference. For a reference
see for instance Pope (2000), Chap. 12.4. This quantity is of prime importance for sub-
grid modelling of inertial particles because it is usually this quantity that closure models
attempt to reproduce in the first place (see Sec. 10).
In fact, instead of considering only xp(t+ t0), the evolution with time of one particle on
one fluid realization, it is possible to consider the quantity:

t, t0,xp,0, ωf 7→ xp,t0,xp,0(t), (1.27)

which is a function of the time t, but also:
• the initial time t0,
• the initial particle position xp,0 := xp(t0),
• and the fluid realization ωf .

Consistently with the probability space associated with turbulence, the deterministic
quantity corresponding to the particle position xp,t0,xp,0(t) can be interpreted as a
random variable Xp(t) of initial time, position and/or realization without distinction
(Fig. 1.4). This vision makes possible the computation of global properties representa-
tive of the flow field.
One such global properties representative of the flow field is the relative mean square
displacement:

E
[
‖Xp(t)−Xp(0)‖2

]
. (1.28)

The time evolution of the relative mean square displacement (Eq. 1.29) was studied in
particular by Taylor (1921):

t ∈ R+ 7→ E
[
‖Xp(t)−Xp(0)‖2

]
. (1.29)



34 CHAPTER 1. TURBULENT FLOWS

t01

t+ t01

t02

t+ t02

x01 x02

T
im

e
(s

)

Position (m)

Realisation 1
Realisation 2

Figure 1.4. Illustration of how ergodicity makes time, space and realizations similar for
the statistical study of stationary isotropic homogeneous turbulence.

Statistical properties of the mean square displacement after a time t are the same when
considering different initial positions (x01 vs x02), or different initial stating times (t01 vs

t02), or different realizations (- vs -).
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1.3.1.2 Short time transport behaviour

If the process Xp(t) is differentiable, of velocity V p(t), Eq. 1.29 is equivalent to a
quadratic function as t→ 0:

E
[
‖Xp(t)−Xp(0)‖2

]
∼0 Var [V p(0)] t2. (1.30)

1.3.1.3 Long time diffusive behaviour

When
∫ t
t0
E [V p(s).V p(t0)] ds has a finite limit D as t goes to +∞, the fluid parcel

spreading is asymptotically diffusive:

E
[
‖Xp(t)−Xp(0)‖2

]
∼+∞ 2Dt. (1.31)

The limit D is called the diffusion coefficient of the particle.
The Lagrangian integral time-scale is the characteristic time scale to get to this asymp-
totic diffusive regime:

TL =
D

Var [V p(0)]
. (1.32)

For times much smaller than the correlation time TL, the particle velocity has a strong
correlation with its initial velocity. On the contrary, for times much longer than the
correlation time TL, the particle velocity is independent of its initial velocity. Therefore,
at an observation time scale larger than the correlation time TL, the particle trajectory
can be represented by a sum of independent paths, like a diffusion process. However,
with such a representation of a particle trajectory, the strongly correlated short time
transport behaviour is lost (Fig. 1.5).
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Figure 1.5. Asymptotic spreading behaviour of fluid parcels
Asymptotically short times correspond to a transport regime, whereas asymptotically long

times correspond to a diffusion regime.

1.3.2 More advanced characterisations of turbulence

Short time and long time regimes are very important one-point statistics used for the
description of turbulence and the design of reduced models. The starting point of a
closure model for particles in an industrial context is often to match these statistics, and
recovering the correct behaviour of these statistics is already quite involved (Minier and
Profeta (2015), Reeks, Swailes, and Bragg (2018)).
However, although fundamental, these regimes do not entirely characterise turbulence.
It is quite the opposite. Furthermore, the long time diffusive behaviour describes a
regime at a much larger time scale than the largest time scales of particle trajectories,
for which practical interest in the case of liquid fuel injection in turbo-reactors may not
always be very clear.

1.3.2.1 Fluid parcels pair spreading

One of the fundamental feature of fully developed turbulence is its inertial range. This
fluid structure is best explored in terms of two point statistics such as fluid parcel pair
dispersion. As noticed by Richardson (1926), in the inertial regime, fluid parcel pair
dispersion is a function of the relative distance between the parcels. If one considers two
fluid parcels such that η < |Xp,2(t)−Xp,1(t)| < L, the scaling given by Kolmogorov
(1941) implies Eq. 1.33, with C0 being Richardson’s constant:

|Xp,2(t)−Xp,1(t)|2 (t) ' C0E [ε] t3. (1.33)

This scaling correspond to a velocity field of very low regularity. More on this can be
found in Falkovich, Gawedzki, and Vergassola (2001) or Eyink (2008) for instance.
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1.3.2.2 Intermittency

It is difficult to present turbulence scaling without a word on intermittency, which is
currently the state of the art in terms of turbulence analysis.
The inertial range, as described by Kolmogorov (1962) possesses properties of self-
similarity across time-scales and across length-scales. This behaviour is reminiscent
of a fractal object. Describing the inertial range as self-similar is already a good approx-
imation. We will keep with this level of description in this manuscript.
Current works refine this fractal representation by observing that self-similarities in
turbulence are not homogeneous. They conclude that turbulence is more adequately
described by a multi-fractal object as described in Dubrulle (2019). This is the concept
of intermittency in turbulence. More details on intermittency can be found for instance
in Frisch (1995), Chap. 8.
Among other effects, intermittency has a direct impact on the acceleration distribution
of fluid parcels.
• In the context of turbulence as described by Kolmogorov (1962), the acceleration

distribution of fluid parcels is close to a normal distribution.
• However, in the context of an intermittent flow, the acceleration distribution of

fluid parcels deviate from normality and show heavier tails.
This leads to more precise LES models for particles (see for instance Gorokhovski and
Zamansky (2018)).
It is important to keep in mind that intermittency characterises the turbulent flow field
at a much higher order than position spreading (high order moments of the acceleration
of low inertia particles) and will not be the base of this manuscript (work is currently
done on the topic, for instance by Letournel (2022)).

Highlights and conclusions

In this chapter we have introduced the carrier phase for the particles as well as
essential notions which will follow us along the manuscript. The carrier phase
of reference for this work is given by a turbulent fluid following Navier-Stokes
equations. It corresponds to a deterministic dynamical system. It is possible to
consider this fluid as a random variable. Thanks to the properties of turbulence,
the law of this random variable is obtained indifferently from the temporal evo-
lution of the fluid or from different realisations. With Taylor (1921), we have
also reviewed the concept of spreading: fluid particles are dispersed in the flow
following an initial ballistic regime before switching to a diffusion regime.
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Chapter 2

Modelling of particles in a
turbulent flow

In this chapter, we briefly review the available methods to describe droplets or particles
dynamics in a turbulent gaseous carrier phase:
• The first section focuses on available methods for describing an individual droplet,

from the resolution of its interface to the point-particle approach.
• The second section describes elementary physics of such particulate flows
• The third section presents the interest of a statistical point of view, and how to

derive it, leading to the Mesoscopic Eulerian Formalism (MEF).
• The last section shows how to solve a Population Balance Equation using a Macro-

scopic Moment Method.

2.1 Describing droplets or particles dynamics

In this section, we briefly detail the available solutions to describe a droplet or particle
dynamics in a gaseous carrier flow, turbulent or not.

2.1.1 Different levels of modelling

Inside a combustion chamber, liquid fuel droplets can be described by different proper-
ties. Usual properties for one droplet would be for instance its shape, its composition
field, its temperature field and its velocity field. Many physical phenomena can influ-
ence the evolution of each droplet: they can vaporise, they can collide with each other
or with surfaces, they can be advected, accelerated, distorted and even broken apart
by the surrounding fluid. Furthermore, their enthalpy changes through phase change,
conduction, convection and radiation.

Let us briefly present different levels of representation of liquid fluid droplets in numerical
simulations ordered by decreasing numerical cost.
• Resolved interface: one way to represent a particle is by carefully reproducing
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the full particle as a liquid droplet. With such a representation, the particle shape
changes with time, due to its interaction with the surrounding fluid (see for instance
the work by Ménard, Tanguy, and Berlemont (2007)). Such a strategy is very
expensive since it requires to solve the flow inside and outside each droplet, as well
as the dynamics of the interfaces along with their jump conditions.

• Imposed interface: when a droplet is small enough (small Weber number), its
shape is nearly spherical. In this case, it is reasonable to assimilate a droplet to
a spherical particle. Its physical extension is only parametrised by the position
of its centre of mass and its diameter. The interaction of the particle with the
surrounding fluid is done by computing accurately the flow around the particle
(see for instance Homann, Bec, and Grauer (2013), Botto and Prosperetti (2012),
Chadil, Vincent, and Estivalèzes (2019)).

• Point-particle simulations: when the particle is small compared with the length
scale of fluid fluctuations, the fluid is assumed to be uniform in the vicinity of
the particle. In this case, the particle can be represented only by the position of
its center. Because the fluid is not resolved around the particle, and because the
particle has a negligible volumetric occupation in the fluid, it is possible to use
a simple model for the evolution law of the particle in the fluid. An example of
evolution law is given by the Basset-Boussinest-Oseen equation for particles with
a small relative velocity with respect to the unperturbed fluid. When the parti-
cle is much denser than the surrounding fluid, Basset-Boussinest-Oseen equation
becomes Stokes’ drag law (Stokes (1851))1.

The main concern of this work is the interaction of small liquid droplets with gaseous
turbulence, we thus restrict ourselves to a point-particle representation. Furthermore,
our interest is mainly on the droplets’ dynamics. Therefore, we neglect collisions, break-
up and vaporisation, leading to a model in which the sole interaction between the gas
phase and the disperse phase is through the aerodynamics force, here solely the drag
force.

2.1.2 Point-particle modelling under Stokes’ drag law

In this section, let us present Stokes’ drag law. When one particle q, (q ∈ [[1,Np]]) is
represented at a time t by a position xq(t), a velocity vq(t) and a characteristic relaxation
time τq = ρqd

2
q/ (18µf ), with ρq the particle density, dq the particle diameter and µf the

fluid cinematic viscosity, the evolution equation of this particle with Stokes’ drag law
reads:

dtxq(t) = vq(t), (2.1a)

dtvq(t) =
1

τq
(uf@q (t)− vq(t)) . (2.1b)

1According to the case at hand, it is possible to consider alternate drag laws such as the popular one
proposed by Naumann and Schiller (1935) for instance.
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In this work, τq is the same for all the particles in a given simulation, therefore it is
named τp. The linear acceleration term in the second equation of Eqs. 2.1 is named
Stokes’ drag law. It corresponds to the force exerted by a uniform incompressible steady
flow of velocity uf@q on a solid sphere of velocity vq. The system of Eqs. 2.1 has to be
closed for the quantity uf@q. In general, it is taken as the fluid velocity in the vicinity
of the particle. In the context of a point particle approximation, this quantity is the
fluid velocity at the position of the particle uq (t) = uf (t,xq(t)). When one computes
Navier-Stokes equations, this quantity is readily accessible. However, when one only
computes a reduced vision of the fluid, giving a meaning to Eqs. 2.1 is challenging
(Sec. 3.3). Furthermore, these equations are valid in a one-way context, when the fluid
velocity uf is not impacted by the presence of the particle. In a two-way case, uf is
impacted by the presence of the particle. Therefore, this formulation may not hold true
(Zeren (2010), Sec. 2.4.1 and 2.4.2, Capecelatro and Desjardins (2013), Horwitz and
Mani (2016), Ireland and Desjardins (2017), Zwick and Balachandar (2017), Poustis,
Senoner, Zuzio, and Villedieu (2019), Zwick and Balachandar (2020)).
Interestingly, the term uf (t,xq(t)) induces a coupling between the particle position and
the particle velocity. Indeed, if one introduces a corrective model for the particle position
(in the form of a Wiener process for instance), it changes the particle trajectory, which
impacts on the fluid velocity seen at the position of the particle, therefore changing
the particle acceleration and thus modifying the particle position. The same coupling
phenomena happens when altering the particle velocity.

2.1.3 Inertial particles as a dynamical system

Similarly to the approach derived for the fluid ruled by the Navier-Stokes equations
(Sec. 1.1), the system of the fluid and the particles is a dynamical system. Phase space

A = Af × A
Np
p is now given by the conjunction of the fluid state in Af and the Np

particle states in Ap, with Ap ⊂ R6.
The deterministic flow of the dynamical system Φ is now given by Navier-Stokes equa-
tions (Eq. 1.2) and the evolutions equations of the particles (Eq. 2.1). For any initial
point in phase space s0 ∈ A, Φt (s0) is the state of the system after some time t ∈ R+.
This modelling choice is interesting because it gives deterministic trajectories for the
particles.
However, when particle trajectories in turbulence are chaotic, accurately reproducing
the deterministic nature of particle trajectories can be secondary. One may be more
interested in more global properties such as the measure of an attractor. Furthermore,
adopting a deterministic evolution law for the particles is not always a suitable strategy.
As an example, think of Brownian motion for instance (Einstein (1905)).
With discrete particle simulation, one may want to describe each point particle with
many different state variables when applicable (such as position, velocity, size, temper-
ature and composition for instance). In the context of this work, the representation of
each point particle will only include its position, size and velocity. This minimal descrip-
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tion possesses the key quantities controlling the dynamical behaviour of each particle.
Therefore, it is a good starting point when designing a consistent two-way coupled LES
model.

2.1.4 Eulerian formulation of a Discrete Particle Simulation

The Lagrangian representation of a particle q, (q ∈ [[1,Np]]) simply consists in the list of
its state variables at a time t. In our case, its position xq(t), and its velocity vq(t). In
this work, the evolution equations of these variables is given by the evolution equations
presented in Sec. 2.1.2 (Eq. 2.1).

The Eulerian representation of the same reality for one particle is given by the fine-grain
distribution (Pope and Ching (1993)):

∀q ∈ [[1,Np]], fq,DPS = δxq(t)δvq(t). (2.2)

The evolution equation for fq,DPS equivalent to Eq. 2.1 is given by (Struchtrup (2005),
Chap. 3.1):

∀q ∈ [[1,Np]], ∂tfq,DPS +∇x · (dtxq .fq,DPS) +∇v · (dtvq .fq,DPS) = 0. (2.3)

This equation has to be understood in the sense of measures. Note that because we are
considering the specific case of collision-less point-particles, Eq. 2.3 does not include a
collision kernel. When particles follow the same evolution behaviour as in Eqs. 2.1, by
replacing the acceleration in Eq. 2.3, one gets:

∀q ∈ [[1,Np]], ∂tfq,DPS +v ·∇x (fq,DPS) +
1

τp
∇v ·

(
(uf (t,x)− v) fq,DPS

)
= 0. (2.4)

When considering several particles, one has to compute the evolution of the whole family
(fq,DPS)q∈[[1,Np]].

In the one-way coupled context, when the particles do not interact between each other,
the normalised counting measure (NCM) (Baddeley (2007)):

fNCM =
1

Np

Np∑
q=1

δxqδvq (2.5)

contains as much information as the whole family (fq,DPS)q∈[[1,Np]] but in only 6 dimen-
sions. fNCM follows the same equation as fq,DPS:

∂tfNCM + v · ∇x (fNCM) +
1

τp
∇v ·

(
(uf (t,x)− v) fNCM

)
= 0. (2.6)
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The computation of the normalised counting measure is often done in a Lagrangian
manner (see for instance the work presented by Zamansky, Coletti, Massot, and Mani
(2014)2).

2.2 Dynamics of point-particles in a turbulent flow

In this section, we focus on the dynamics of inertial particle in a turbulent flow.

2.2.1 Non-dimensional numbers

In the context of two-way coupling derived by Letournel, Laurent, Massot, and Vié
(2020)), the parameters of the system are:
• for the gas phase, the scale of turbulence can be parametrised by the small scale,

unambiguously the Kolmogorov length scale η. We also need a turbulent intensity
through the turbulent velocity uf , the molecular viscosity νf and the fluid density
ρf ;

• for the disperse phase, the first parameter is the relaxation time τp. A stated in
Letournel, Laurent, Massot, and Vié (2020), we also need the particle mass mp

and a number density n0.
In total, we have 7 parameters and 3 fundamental units (mass, time and space). We
thus end up with 4 non-dimensional parameters:
• The turbulent Reynolds number Ret =

ufLt
ν : it quantifies the intensity of turbu-

lence, but also the scale separation between the small and large ones.
• The Stokes number based on the Kolmogorov scale Stη =

τp
τη

, which quantifies the
ability of particles to react to small scale fluctuations.

• the mass loading φ, which is a first driver of the impact of the particles on the
gaseous carrier phase.
• the dimensionless particle number nη = n0η

3, which is the number of particle in a
small eddy of the turbulence, which is a second driver of the impact of the particles
on the gaseous carrier phase.

In the present work, we will focus on regimes for which the particles do not affect the
gas phase3. Therefore we are only concerned by the effect of Stokes number on particle
dynamics.

2 This work has been performed with a source term from the particles to the fluid. In order to ensure
convergence, the punctual source term has been convoluted by a truncated Gaussian kernel before being
applied to the fluid phase.

3The reader can refer to Letournel, Laurent, Massot, and Vié (2020), Letournel (2022) and references
therein for specific studies with two-way coupling.
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2.2.2 Segregation and uncorrelated motion

In the one-way coupled case, the only control parameter of the particles is their relax-
ation time, as the others control the retro-action of the disperse phase on the gas phase.
The relaxation time is closely associated to the Stokes number Stη. In the following we
detail the impact of the Stokes number by going from the tracer limit to the infinite
Stokes number limit.

In the case where τp, is close to 0, the Stokes number is also close to 0. The particles
closely follow the gas phase. In this situation the behaviour of the particles is similar to
the behaviour of fluid parcels. For instance, they share the same dispersion properties
as the fluid parcels.

For 0 < Stη < 1, the particle trajectories tend to depart from fluid particle trajectories.
In this situation, the particles are slowly ejected from vortices because of their inertia.
However, they are not able to cross the low-vorticity high-strain-rate zones that separates
the vortices. Therefore, they accumulate in these separating regions, generating the so-
called segregation or preferential concentration (Eaton and Fessler (1994)). In Fig. 2.1,
examples of the segregation obtained in the case of frozen turbulence illustrates this
effect (de Chaisemartin (2009)).

Figure 2.1. 3D frozen homogeneous isotropic turbulence: position of particles for a mid-
plane for Stη = 0.17 (left) and Stη = 1.05 (right).

This effect of preferential concentration is maximum at Stη ≈ 1. When this limit is
crossed, particles are able to cross the high-strain-rate regions. Because particles do
not have to accumulate in specific regions anymore, preferential concentration tends to
decrease. As the Stokes number increases, the particle velocity is less and less correlated
to the local velocity of the carrier phase. Actually, when Stη > 1, particles trajectories
become very different than fluid parcels trajectories. Inertial particles can come close to
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other particles that originate from different vortices and may have had a significantly
different trajectory in the flow. In a probabilistic context such as the MEF (See Sec. 2.3),
this leads to an increase of the local particle velocity variance or uncorrelated motion
(Février, Simonin, and Squires (2005), Sabat, Vié, Larat, and Massot (2019)). In the
limit of an infinite Stokes number, the particle energy is mainly given by the uncorre-
lated motion.

If we look at inertia from a dynamical system perspective, to the difference of fluid
particles, which are fully determined with their position at a given time, inertial particles
are defined at any time t by both their position and velocity. Therefore, phase-space
for inertial particles has twice the dimensions of phase-space for fluid particles. Both
fluid and inertial particles are modelled as a deterministic dynamical system. Therefore,
for both, their trajectories cannot cross in phase space. This means that fluid particles
cannot cross in physical space. However, inertial particles can because their phase space
includes velocity. Therefore, they can be at the same point in space with different
velocities and still not cross in phase space.

2.3 Average mesoscopic approach

When one is not interested in a unique realisation of the disperse phase, but in con-
verged statistics, he can rely on an average mesoscopic approach which offers a statisti-
cal description of the particles. This strategy is of particular interest when the particle
concentration is high and tracking individual particles is expensive. In the following, we
detail the basis of a average mesoscopic approach. The interested reader can also refer
to the work of Subramaniam (2013). The principle of this approach is to compute the
evolution of the law of the particles. When this law is a function, it is called a Proba-
bility Density Function (PDF). The associated evolution equation is called a Population
Balance Equation (PBE).

2.3.1 Probability space

The two-phase flow system is considered as a deterministic dynamical system. For the
fluid, we have already defined in Sec. 1.1:
• phase space Af , which corresponds to the set of all the different fluids possible,
• the fluids uf (t, .), which belong to Af ,
• Af , the set of subsets of Af ,
• and the elements of Af : af . The variable af corresponds to an ensemble of possible

fluids.
By analogy, for each particle q ∈ [[1,Np]] we name:
• Ap the phase space of each particle,

• a(q)
p (t) =

(
x

(q)
p (t) ,v

(q)
p (t)

)
the state variable at time t,

• Ap the set of subsets of Ap,

• and a(q)
p ∈ Ap an ensemble of particle positions.
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Similarly to single phase flows (Sec. 1.2.3), a probability space is introduced in the system
with the initial conditions. We consider that the initial conditions of the deterministic
dynamical system are random variables of a probability space (Ω, E ,P). In our case,
initial conditions are given by:
• the intial fluid velocity field uf,0 ∈ Af ,
• the initial positions and velocities of the Np particles:

–
(
x

(q)
p,0,v

(q)
p,0

)
∈ Ap, q ∈ [[1,Np]].

Therefore, the initial conditions are defined in A, with A = Af ×ANp
p .

We name Φ the deterministic flow of the dynamical system given by Navier-Stokes
equations (Eq. 1.2) and the evolutions equations of the particles (Eq. 2.1).
For any initial point in phase space s0 ∈ A, Φt (s0) is the state of the system after some
time t ∈ R+. Assuming that ∀t ∈ R+, Φt is measurable, we naturally extend set of
random variables to any time t ∈ R+, by considering the probability measure:

Pt [st] = P [Φ←t (st)] , (2.7)

where Φ←t (st) = {s0 |Φt (s0) = st }.

2.3.2 Probability Density Functions

In the following, we consider a series of probability density functions (PDF) that are of
interest for two-phase flows, based on different measures on the probability space. It is
first possible to consider the joint distribution of the particles and the fluid:

∀t ∈ R+, ∀a(q)
p ∈ Ap with q ∈ 1 . . .Np, ∀af ∈ Af ,∫

a(1)
p ∪···∪a(Np)

p ∪af
fall

(
t, a(1)

p , . . . , a
(Np)
p ,uf (t, .)

)
da(1)

p . . . da
(Np)
p duf =

Pt
[
a(q)
p ∈ a(q)

p with q ∈ 1 . . .Np,uf (t, .) ∈ af
]
. (2.8)

This distribution fall gives the probability of having each particle at a given position in
their phase space, with a given state for the whole fluid. Such distribution has too high
a dimensionality, we therefore want to reduce it. We treat by two means: averaging over
the particle space, or averaging over the fluid space

2.3.2.1 Fluid space reduction

Let us start by considering reductions along the fluid space. The conditional distribution
on a subset af of the set of fluids Af is given by:

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
=∫

af
fall

(
t, a(1)

p , . . . , a
(Np)
p ,uf (t, .)

)
da(1)

p . . . da
(Np)
p duf∫

A
(1)
p ∪···∪A

(Np)
p ∪af

fall

(
t, a(1)

p , . . . , a
(Np)
p ,uf (t, .)

)
da(1)

p . . . da
(Np)
p duf

. (2.9)



CHAPTER 2. MODELLING OF PARTICLES IN A TURBULENT FLOW 47

Specific cases are given by:
• The marginal distribution of the particles fall,Af . This distribution is obtained by

integrating the joint distribution of the particles and the fluid over the whole fluid
space.

• The conditional distribution on one fluid uf : fall,uf . Integrating this distribution
gives the probability of having all particles at a given state for a unique fluid
realization.

2.3.2.2 Particle space reduction

All these distributions consider the whole setting of particles. Let us now try to reduce
the dimensionality of the particle space part. In this section, let us consider a fixed
subset af of the set of fluids Af .
The marginal distribution of one particle q ∈ [[1,Np]] is given by:

f
(q)
af

(
t, a(q)

p

)
=

∫
⋃
d 6=q A

(d)
p

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
da(1)

p . . . da
(Np)
p . (2.10)

Computing the distribution of each particle is costly. Therefore, it is customary to
consider the average distribution over the particles:

faf (t, ap) =
1

Np

Np∑
q=1

f
(q)
af

(
t, a(q)

p

)
. (2.11)

2.3.2.3 Exchangeable particles

Definition 17. We say that particles are exchangeable when the joint distribution
of a permuted sequence is equal to the distribution of the original sequence:

∀t ∈ R+, ∀a(q)
p ∈ Ap with q ∈ 1 . . .Np,∫

a(1)
p ∪···∪a(Np)

p

fall,af

(
t, aσ(1)

p , . . . , a
σ(Np)
p

)
da(1)

p . . . da
(Np)
p =∫

a(1)
p ∪···∪a(Np)

p

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
da(1)

p . . . da
(Np)
p (2.12)

for all possible permutations of the indices σ.

If we consider that particles are exchangeable, the expression of faf simplifies to:

faf (t, ap) = f
(q)
af

(
t, a(q)

p

)
, (2.13)

for any q ∈ [[1,Np]]. In this case, faf does not only give the average distribution of the
particles, but the actual distribution of each particles.
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2.3.2.4 Exchangeable and independent particles

Definition 18. We say that particles are independent when the joint distribution
is equal to the product of the marginals:

∫
a(1)
p ∪···∪a(Np)

p

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
da(1)

p . . . da
(Np)
p =∫

a(1)
p ∪···∪a(Np)

p

f
(1)
af

(
t, a(1)

p

)
. . . f

(Np)
af

(
t, a

(Np)
p

)
da(1)

p . . . da
(Np)
p . (2.14)

In the specific case where particles are independent, we can represent the full joint
distribution of the particles by the product of the single-particle distributions:

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
=

Np⊗
q=1

f
(q)
af

(
t, a(q)

p

)
. (2.15)

In the specific case where particles are exchangeable and independent, we can represent
the full joint distribution of the particles by the sole single-particle distribution:

fall,af

(
t, a(1)

p , . . . , a
(Np)
p

)
=
[
faf

(
t, a(q)

p

)]Np
. (2.16)

In this case, the distribution faf is enough to give the full joint distribution of the
particles.

2.3.3 Mesoscopic Eulerian Formalism

Looking at the reduction of the distribution we have presented faf , let us discuss the
consequence of these choices. First let us dive into the question of the fluid space
reduction: average over all fluid realisation af = Af or conditional on one fluid af = uf .
Choosing af = Af has the advantage of giving the full statistics of the disperse phase,
which is the first reason why we are interested in statistical methods. However there
is a drawback to this method: such a distribution leads to a formalism in which the
dynamics of the carrier phase will be seen as an ensemble average, thus loosing every
realization details. These kind of details will be discussed in the next chapter, but for
now, it must be noted that, as the particle dynamics is mainly driven by the carrier force
aerodynamic coupling, the most detail in the flow we have, the less effort we have to do
in the modelling of the disperse phase.
Therefore, it appears of interest to work with the distribution conditioned to one gas
phase realisation uf . This is what the Mesoscopic Eulerian Formalism (MEF) of Février,
Simonin, and Squires (2005) is suggesting to do.
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Definition 19. The Mesoscopic Eulerian Formalism (MEF), as derived in Février,
Simonin, and Squires (2005), considers the specific cases of faf , where af is a fluid
uf .

Given one fluid realization uf ∈ Af , when the evolution of the fluid is not impacted by
the disperse phase, the MEF distribution fuf follows the same equation as (Eq. 2.3):

∂tfuf + v · ∇x
(
fuf
)

+
1

τp
∇v ·

(
(uf (t,x)− v) fuf

)
= 0. (2.17)

This is an equation in six dimensions which is quite costly to compute on a mesh.
Computation of fuf is usually done with Monte-Carlo simulations. Contrarily to a fluid
flow, where one can define a Knudsen number, point particles considered here do not
interact between themselves, with collisions for instance. Thus, fuf is a distribution and
can still be a Dirac or a sum of Dirac distributions.

2.4 Macroscopic approaches

In the previously introduced statistical mesoscopic approach, the ending point is a PBE
that describes the evolution of the PDF. To solve this PBE, three methods can be
envisaged:
• Direct resolution: the equation is discretized in the phase space. This method

cannot be envisaged for simulations that are multidimensional in space, as at least 6
dimensions must be discretized for the sole space-velocity phase space in 3 physical
dimensions. It is only possible for a reduced number of dimensions (1 or 2).
• Lagrangian sampling: the PDF is computed by sampling the PDF and tracking

these elements using a Lagrangian techniques. Using such strategy is going back
to the initial problem of statistical convergence.
• Macroscopic Moment methods: instead of tracking the PDF itself, we look at its

moments. By doing so, we can solve quantities that leave in the physical space
only, thus being easily discretized by classical methods such as finite volume. This
is the method that is described here.

Let us first define the moments Mk(t,x) of order k of the PDF (we focus here on the
velocity space, but this can be extended to any other state variable of a particle):

Mk(t,x) =

∫
R3

(
⊗kv

)
f (t,x,v) dv, (2.18)

with ⊗k the tensorial product of order k and The similar notation for the terms Mk

should not be misleading as to their different respective dimensions (the term Mk is
a tensor of order k). A physical insight can be given to moments: the zeroth order
moment corresponds to the particle total number density, the first order moment to the
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momentum (if multiplied by particle individual mass). It is possible to get an equation
for the moments from Eq. 2.17 by integration over the phase space:

∂tMk +∇x · Mk+1 −
k

τp
(Mk−1 � uf ) = 0, k ∈ N. (2.19)

with � the symmetric tensor product (which gives to the symmetric part of a normal
tensor product). In this equation, we see that for a moment of order k, we need a
moment of order k + 1. So whatever the moment set we solve, we always need an
additional moment. Unfortunately, for a given finite moment vector, there is an infinity
of possible PDFs. Therefore we need to make some assumptions to close the evolution
equations of the moments. Furthermore, such moment system requires attention in terms
of numerical, as we need to solve a system of PDEs. The interested reader could refer to
Kaufmann, Moreau, Simonin, and Helie (2008); Laurent, Vié, Chalons, Fox, and Massot
(2013); Masi and Simonin (2014); Sabat (2016); Sabat, Vié, Larat, and Massot (2019)
and references therein.

Highlights and conclusions

• The reference point-particle model of this thesis has been presented, which
is limited to Stokes drag.
• Main physics of particles in turbulent flows has been identified.
• The statistical mesoscopic viewpoint has been detailed, with an emphasis

on the Mesoscopic Eulerian Formalism (MEF).
• Macroscopic moment methods have been finally briefly presented.



Chapter 3

Reduction strategies for turbulent
flows

In this chapter, we present the reduction techniques that are used to make reachable the
computation of high-Reynolds-number flows. We first show how the high-dimensionality
of turbulent flows makes their computation over-expensive even with the most powerful
supercomputer. We then present reduction techniques classically based either on aver-
aging or filtering. We expand the explanations about the Large Eddy Simulation at the
core of the present work.

3.1 The high-dimensionality of turbulent flows

[...] inasmuch as those who do not understand the nature of things do not
verify phenomena in any way, but merely imagine them after a fashion, and
mistake their imagination for understanding, such persons firmly believe
that there is an order in things, being really ignorant both of things and their
own nature. When phenomena are of such a kind, that the impression they
make on our senses requires little effort of imagination, and can
consequently be easily remembered, we say that they are well-ordered ; if the
contrary, that they are ill-ordered or confused. Spinoza (1842), Part 1

Although turbulent flows have a finite number of degrees of freedom (Temam (2001),
p.150), the way they are currently described with the Navier-Stokes equations requires
a very large number of dimensions (see Pope (2000), Chap. 9.1.2 for an estimation
of the numerical cost of a turbulence computation). High dimensional problems can
be investigated with the recent development of computers. However, even with the
current computational power available (Fig. 3.1), direct numerical simulation (DNS) of
the Navier-Stokes equations for industrial applications is not reachable even for the most
powerful supercomputers.
Our current representation of turbulence is too complex to be computed as such. But as
Spinoza (1842) puts it, a reality is only as complex as the representation one has of it.
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Therefore, this section is dedicated to understanding some classical strategies devised to
get some simpler descriptions of turbulent flows, which are more easily computed.
With the Navier-Stokes equations, the fluid is described by its velocity and pressure
fields. These fields have a low regularity, with features over a very wide range of scales.
This gives this problem a very high dimensionality when represented with conventional
quadratures techniques. The numerical computation of these low regularity fields on a
mesh requires a large number of cells and makes the computation very expensive.
To get an idea, the left hand-side of Fig. 3.1 represents the amount of time required
to compute homogeneous isotropic turbulence (HIT) with ReL = 107 (Reλ = 8000)
according to years. An example of a HIT simulation is presented in Fig. 3.2. We have
previously seen the Reynolds number as an indicator of the state of the flow -laminar
or turbulent, see Sec. 1.2.1-, but it also gives an estimate of the physical dimensionality
of the flow (Temam (2001), Chap. 3) and of the numerical cost of the problem (Pope
(2000), Sec. 9.1.2)). It is possible to see that the best computers become exponentially
faster with time. However, the time deemed reasonable even for research remain out of
reach for the time being.
The right hand-side of Fig. 3.1 represents differently the same dilemma. It shows the
time needed for the best computers in the world to perform increasingly larger turbulence
computations. We see, even to their fullest power, the biggest computers are very limited
in the range of turbulence cases they are able to tackle.
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Figure 3.1. On the left, evolution of CPU time (s) with years to compute homogeneous
isotropic turbulence at ReL = 107 or Reλ = 8000.

On the right, evolution of CPU time (s) in mai 2018 to compute homogeneous isotropic
turbulence according to the Reynolds number.

These figures are drawn following Pope (2000), Eq. 9.12 updated with data from
https:www.top500.org

. Times deemed acceptables for research (200 hours), applications (15 minutes) and
repetitive computations (1 minute) according to Peterson, Kim, Holst, Deiwert,

Cooper, Watson, and Bailey (1989) are indicated as a reference.



CHAPTER 3. REDUCTION STRATEGIES FOR TURBULENT FLOWS 53

Figure 3.2. Homogeneous Isotropic Turbulence simulated the code OpenFoam (Open-
Foam (2008)): velocity field (left) and isosurfaces of Q-criterion identifying the turbulence

structure (right).

3.2 Dimensionality reductions for turbulent flows

In order to lower the dimensionality (and thus the numerical cost) of the problem, one
strategy is to derive alternate fields with more regularity than the original ones. This
is traditionally attempted with operations implying different levels of filtering and/or
averaging. With respect to the reference flow described by Navier-Stokes equations,
these alternate fields are designated here as a reduced description of the fluid. Standard
reduced descriptions do not usually have in mind coupled two-phase flow cases. This is
why our challenge is to find a way to create a description of the fluid flow which has a
lower dimensionality and is compatible with coupled two-phase scenarii. The difficulty
is to keep all the characteristics of the system essential for describing its physics. The
term essential is emphasized because it is function of the properties of the system of
interest (existence of symmetries in the geometry, regime of operation, evolution of the
energy of the system for instance) and of what is expected as an output of the simulation
(time averaged data or time resolved data for instance).
In this following, we present two classical reduction strategies for turbulent flows: Reynolds
averaging and Large Eddy Simulation (LES). For the interested reader, Sagaut (2006)
is a reference of choice on the matter.

3.2.1 Reynolds averaging

Reynolds averaging is the decomposition of quantities between a mean and a fluctuating
part:

uf = GRe (uf ) + u′f , (3.1)

with GRe a Reynolds operator, uf a quantity of interest, and u′f = uf − GRe (uf ) its
fluctuating part.
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Definition 20. A Reynolds operator GRe is an averaging operator with the following
properties:
• GRe is linear.
• GRe (GRe (u1)× u2) = GRe (u1)×GRe (u2), with u1 and u2 two quantities of

interest.
• GRe commutes with partial derivatives in space and time.

This set of properties allows Reynolds operators to work well with the Navier-Stokes
equations. Reynolds decomposition can be done in different spaces. Classical ones are:
• temporal when GRe is a time average,
• or statistical when GRe is the expectation operator.

In the context of this work, we consider the statistical space as being the most general
case. Therefore, in the following, we will simply name the equations obtained by sta-
tistically averaging Navier-Stokes equations: Reynolds Averaged Navier-Stokes (RANS)
(Heinz (2003), Sagaut (2006), Chaouat (2017)). However, when the flow regime is per-
manent, owing to ergodicity, Reynolds averaged Navier-Stokes equations are identical to
time averaged Navier-Stokes equations.
Averaging is interesting because it is a convex operation which smooths out quantities,
diminishing the amount of detail and information, thus making computations less ex-
pensive. However, it does not offer any control on the resulting regularity of the solution
(Pope (2010)). For instance, very fine structures which are constantly present in every
flow realization, such as boundary layers, are preserved by averaging. This difficulty is
adressed by the Large Eddy Simulation strategy that we present in the next section.

3.2.2 Coarsening - Large Eddy Simulation

RANS is an interesting reduction technique. However, it does not offer an explicit control
on the regularisation of the flow field (and thus its associated cost). One of the most
straightforward strategy to deal with this difficulty is to start the reduction process
by specifying the level of regularization wanted. The method is named Large-Eddy
Simulation (LES) in this work.
In LES, the regularisation of the flow field is traditionally perceived as a convolution of
the field by a given kernel (Eq. 3.2, Pope (2000), 1.3.2).

GLES(•) := ∆ ∗ •, (3.2)

with GLES the reduction operator, ∆ a normalised convolution kernel and ∗ the convo-
lution operator. Usually, in physical space, the kernel is either a boxcar, a gaussian or a
cardinal sine. They each have their pros and cons:
• The boxcar and the gaussian do not remove all the high frequencies in the field.

Thus they do not really regularize the field. Because they preserve some high
frequencies, they can lead to aliasing (frequency folding) when represented on a
low resolution mesh.
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• The cardinal sine acts as a sharp spectral cut-off in wavenumber space. Thus it is
effective at regularising the flow. However, it is not local (thus difficult to envision
in realistic wall bounded flows for instance) and not positive (a positive value such
a density is not guaranteed to preserve its positivity with this kernel).

A detailed discussion about filtering can be found in Pope (2000), Sec. 13.2.

3.2.3 RANS versus LES

To get an idea of the impact of the reduction strategy on the resulting flow, Fig. 3.3 com-
pares three simulations: a DNS (a), an LES (b) and a RANS simulation (c). Compared
to DNS, all reduced simulations imply a lost of fine structures. However, comparing
RANS to LES, we obviously see that intermediate scale features are kept in the LES,
along with an unsteady trend, while the RANS simulation is highly diffuse and in this
specific case will not present any unsteadiness.
However, it has to be kept in mind that resolving finer scales and capturing unsteadiness
will necessary come with an increased computational cost: while RANS simulations
can in some cases be envisaged on a desktop computer and can make use of physical
space reductions such as planar symmetry or axisymmetry, LES requires supercomputing
because it cannot use any physical space reduction, as the fine scales do not present any
symmetry instantaneously, and requires a fine time-space representation.
At this point, it is worth remembering the context of this work: aiming at high-fidelity
simulations. For such a perspective, it seems obvious that the preferred strategy would be
to go for LES, as it will give us high-resolution statistics along with a way of controlling
the level of precision through the adjustment of the filtering length scale.

Figure 3.3. Comparison of a DNS (a), LES (b) and RANS (c) simulation of a jet flow
(Italian Agency For New Energy Technologies (2006)).
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3.3 Equation of the reduced variables and closures

3.3.1 Equation of the reduced variables

In order to compute the evolution of the reduced variables presented above (Sec. 3.2), a
classical strategy is to apply the reduction operator directly to the evolution equations
of the original variables (Eq. 1.2).
A usual reduction operator G, such as the operator used for RANS: GRe, or the operator
used for LES: GLES, is usually assumed to behave like a Reynolds operator (3.2.1) when it
comes to commutation with derivatives. Thus, when applied to Navier-Stokes equations,
G gives the equalities:

∇x ·G (uf ) = 0, (3.3a)

∂tG (uf ) +G ((uf · ∇x)uf ) = − 1

ρf
∇xG (pf ) + νf .∆xG (uf ) . (3.3b)

Eq. 3.3 is only the filtered version of Eq. 1.2. What is desired is an evolution equation
for the reduced variable uf = G (uf ). However, starting with Eq. 3.3 and changing
variables, we only get the set of unclosed equations Eq. 3.4.

∇x · uf = 0, (3.4a)

∂tuf +G ((uf · ∇x)uf ) = − 1

ρf
∇xG (pf ) + νf .∆xuf . (3.4b)

With the hypothesis taken here for G, the difficult terms remaining in Eq. 3.4 to get
a closed equation are the non-linear term G ((uf · ∇x)uf ) and G (pf ). In the present
context of incompressible flow, closing G (pf ) is not an issue, as this term only appears
as a Lagrangian multiplier that is here to ensure the mass conservation equation. Such
term is however of great importance for compressible flows (Garnier, Adams, and Sagaut
(2009)).
On the other hand, the inertial term G ((uf · ∇x)uf ) requires much more attention.
Actually, this is this term that contains the non-linearities of the Navier-Stokes equations.
It is usually expanded in the form

G ((uf · ∇x)uf ) = (uf · ∇x)uf +R (uf ) ,

where R (uf ) has to be modelled.
Expressing R (uf ) in terms of uf is the essence of the closure problem and is discussed
in the next section.

3.3.2 Closures for LES models

A very good account on classical closures techniques is presented by Pope (2000), Part
II and in Sagaut (2006). They can be roughly sorted in two categories according to the
way they are derived.
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• Structural models, usually start from the exact unclosed expression of the term
to model. Each unknown variable is then approximated in terms of the resolved
variables (through asymptotic expansions for instance). The advantage of starting
from the exact unclosed expression of the term to model is that the resulting closure
often shares a similar structure with the exact term.

• Functional models, usually start from the expected dynamics of the system and
its interactions with the unclosed term. They propose a substitute for the implicit
term which has a similar effect on the resolved physics. The advantage of functional
models is that they are specifically designed to reproduce the same effect as the
exact term on the resolved physic. The disadvantage of functional models is that
their expression is not directly derived from an approximation of the expression of
the exact term. Therefore, there is not direct connection between the expression
of the closure term and the expression of the exact term. In these circumstances,
it is may be difficult to guarantee the good behaviour of the closure for the full
range of different dynamics the system can experience.

Despite its limitations, the functional strategy is the most widely used in industrial
applications, the most famous model being the one of Smagorinsky (1963):

R (uf ) = 2νSGSSij (3.5)

where Sij is the resolved deformation tensor and νSGS is the turbulent viscosity:

νSGS = (CS∆)2 |Sij |−1/2 (3.6)

where ∆ is the filter scale and CS the Smagorinsky constant usually taken as CS = 0.18.
This model is based on the eddy-dissipation concept, in which the effect of sub-grid scale
is expected to be dissipative. This is a key trend in eddy-dissipation model which makes
them very powerful for complex simulations as the physical closure helps to stabilize the
computation. This model structure is shared with several models in the literature, see
for instance Nicoud and Ducros (1999); Nicoud, Toda, Cabrit, Bose, and Lee (2011).

Highlights and conclusions

• The requirements of dimensionality reduction have been highlighted on the
HIT case based on computational cost.
• Two reduction techniques have been introduced, and focus has been made

on the Large Eddy Simulation because of the ability to control its accuracy.
• Closure methods have been briefly reviewed.
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Chapter 4

Reduction strategies for particles
in turbulent flows

The previous chapter was dedicated to fluid reductions in the context of single phase
flows. We are here interested in reduction technique for disperse phase flows. This
chapter is organised as follows:
• The first section (Sec. 4.1) presents the effects of the fluid reduction on the equa-

tions of inertial particles.
• The second section (Sec. 4.2) presents an illustration of some of the effects of the

fluid reduction on the dynamics of inertial particle, and why these effects justify a
non-trivial closure. The quantities observed are particle kinetic energy and particle
diffusion coefficient.

• The third section (Sec. 4.3) presents a class of closures which is able to recover
the effects of fluid reduction on the particle kinetic energy and particle diffusion
coefficient. These closures are also used and studied more extensively in Chap. 10.

4.1 Inertial particle equations under fluid reduction

In this section, let us observe the effect of fluid reduction on the disperse phase. This
is the first step before proposing some fluid closure for the disperse phase Sec. 4.3.
Reductions in the fluid representation impact the particle evolution equations. This is
especially the case for fully resolved particles. But it is also the case for point particles.
In the specific case of Stokes’ drag law (Eqs. 2.1), the fluid velocity at the position of
the particle is used to compute the particle acceleration. When the fluid representation
is reduced (see Sec. 3.3), this velocity is not readily accessible anymore. Ideally, if the
fluid regularisation operator G was invertible, one would want to get:

dtxp(t) = vp(t), (4.1a)

dtvp(t) =
1

τp

(
G−1 ◦G ◦ uf (t,xp(t))− vp(t)

)
, (4.1b)
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with xp(t) and vp(t) respectively the particle position and velocity at time t, uf (t,xp(t))
the fluid velocity at the position of the particle, and τp the characteristic inertial time
of the particle.
However, in reality, we do not know how to inverse the fluid regularisation operator G,
especially when reducing the number of degree of freedom that represent the fluid (such
as a coarser mesh). Expressing uf (t,xp(t)) in terms of regularized field and fluctuation,
one gets:

uf (t,xp(t)) = G ◦ uf (t,xp(t)) + uf (t,xp(t))
′ . (4.2)

The regularised fluid G ◦ uf (t,xp(t)) is a known quantity. However, the reduced fluid
simulation does not give the residual fluid velocity uf (t,xp(t))

′. Thus, the goal of re-
duction techniques for particulate flows is to retrieve this fluctuations, but not only.
Actually, what is required is the history of fluctuations along the particle path, which is
different from the fluid path when inertia effects take place. To highlight this require-
ments, we must look at the integrated equations of the particle evolution:

xp(t+ ∆t) =xp(t) +

∫ t+∆t

t
vp(τ)dτ, (4.3a)

vp(t+ ∆t) =vp(t) +
1

τp

t+∆t∫
t

(G ◦ uf (τ,xp(τ))− vp(τ)) dτ

+
1

τp

t+∆t∫
t

uf (τ,xp(τ))′ dτ, (4.3b)

Therefore, we not only need to reconstruct the instanteneous spatial structure of the
fluid, but also its time evolution.
In order to understand the impact of uf (t,xp(t))

′, on the dynamic of inertial particles,
let us observe in the next section what happens when uf (t,xp(t))

′ is taken to be 0.

4.2 Diffusion of inertial particles under fluid reduction

In this section, we propose to observe the impact of uf (t,xp(t))
′, on the dynamic of

inertial particles. This is done in the following setting:
• the fluid reduction operation is assumed to remove the smallest spatial scales of

the flow field,
• the dynamics of the resolved scales is not impacted by the reduction operation (the

study is done by filtering a posteriori on a resolved fluid simulation). This lets us
focus on the particles, without having to consider the potential influence of a fluid
closure.

The impact of fluid reduction on the behaviour of inertial point particles has already been
widely studied (Armenio, Piomelli, and Fiorotto (1999), Yamamoto, Potthoff, Tanaka,
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Kajishima, and Tsuji (2001), Fede and Simonin (2006), Gorokhovski and Zamansky
(2018)). A key quantity defining the dynamics of interital particles is diffusion (see
Sec. 1.3.1.3). It is a metric of reference in this work and it is constantly observed
throughout Parts II and III. Furthermore, diffusion is a quantity strongly affected by
some classical closures presented in this work (see Sec. 10), therefore, the diffusion of
small inertial particles is expected to be strongly altered by the fluid flow reduction
operation. This is why we briefly present here the impact of fluid flow reduction operation
on the diffusion of small inertial particle. The article by Fede and Simonin (2006) already
proposes an extensive study of the impact of the fluid flow reduction operation on the
diffusion of small inertial particles. This is why it is used as a reference in this section.
Because dispersion of the particle is driven by their kinetic energy (on diffusion, see
Sec. 1.3.1.3) we start by presenting the impact of filtering the fluid on the level of kinetic
energy of the disperse phase before presenting its impact on particle dispersion.

4.2.1 Simulation set-up

Fede and Simonin (2006) studied the impact of removing the small scales of a DNS on
the dynamics of small collisional particles. Their carrier phase of reference is a box of
homogeneous isotropic turbulence forced by a stochastic spectral scheme by Eswaran
and Pope (1988). They modelled particles as inertial collisional point particles with the
drag law from Naumann and Schiller (1935). No retroaction from the disperse phase to
the carrier phase is taken into account. They assessed the influence of the higher wave-
numbers of the fluid flow on the disperse phase behaviour by computing the evolution
of the disperse phase on the reduced fluid. For this study it is considered that the fluid
given by a LES is exactly the spatially filtered field of a fluid DNS. They performed
several computations with different levels of reduction of the fluid and different levels of
inertia of the particles.

4.2.2 Effect of reducing the fluid on inertial particle kinetic energy

The study by Fede and Simonin (2006) shows the effects of closing the particle evolu-
tion equations directly with the reduced fluid on the disperse phase behaviour. This is
illustrated in Fig. 4.1.
• The left hand-side of Fig. 4.1 represents the disperse phase kinetic energy (nor-

malised by disperse phase kinetic energy for fluid DNS) with respect to the filtered
fluid kinetic energy (normalised by DNS fluid kinetic energy) for different Stokes
numbers. It can be seen Fig. 4.1 that filtering has a strong impact on the par-
ticle properties, such as kinetic energy. The amount of energy removed from the
disperse phase varies linearly with the amount of energy not represented in the
reduced description of the flow.

• The right hand-side of Fig. 4.1 represents the disperse phase kinetic energy (nor-
malised by disperse phase kinetic energy for fluid DNS) with respect to particle
inertia for one level of fluid filtering. It can be seen that the linear coefficient varies
as a decreasing function of the Stokes number. It is close to 1 for a Stokes number
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Figure 4.1. On the left, particle kinetic energy (normalised by disperse phase kinetic energy
for fluid DNS) as a function of the filtered fluid kinetic energy measured at fixed locations

(normalised by DNS fluid kinetic energy).
On the right, particle kinetic energy (normalised by disperse phase kinetic energy for fluid

DNS), as a function of Stokes number, for 86% of filtered fluid kinetic energy.
Data from Fede and Simonin (2006).

based on Kolmogorov time scale around 1. For a Stokes number of 1, when the
fluid reduction removes 20% of the fluid energy, the disperse phase kinetic energy
is also decreased by 20% (20% is the guideline given by Pope (2000) for energy
filtering in LES).

Let us now observe the effect of reducing the fluid on inertial particle diffusion coefficient.

4.2.3 Effect of reducing the fluid on inertial particle diffusion coeffi-
cient

The left hand-side of Fig. 4.2 presents the impact of filtering on the diffusion coefficient
of the inertial particles for different Stokes numbers. The behaviour of the diffusion
coefficient of the disperse phase with filtering seems more complex than the behaviour
of the kinetic energy. The diffusion coefficient of the particles of high Stokes number
does not appear to be affected by the filtering. However, the diffusion coefficient of low
inertia particles seems to be linearly affected by the filtering.
Still in Fede and Simonin (2006), the right hand-side of Fig. 4.2 shows a non-monotonous
dependency of the diffusion coefficient on the Stokes number. This observation is differ-
ent from the results presented by Reeks, Swailes, and Bragg (2018) for whom diffusion
is not influenced by the particle inertia.
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Figure 4.2. On the left, particle diffusion coefficient (normalised by the diffusion coefficient
en DNS) as a function of the filtered fluid kinetic energy measured at fixed locations. Each

line represents a different of Stokes numbers.
On the right, particle diffusion coefficient (normalised by the diffusion coefficient en DNS)

as a function of Stokes number for 86% of filtered fluid kinetic energy.
Data from Fede and Simonin (2006).

4.3 Closures techniques for the Point-Particle Lagrangian
trajectories

After having presented how fluid reduction alters the inertial particle behaviour in the
previous section, let present here some strategies to recover a correct particle dynamics.
In the literature, different models are derived in order to reproduce the resolved particle
dynamics when only the reduced fluid flow is available. Extensive reviews of these models
can be found in Kramer (2001), or in Marchioli (2017). Following Kramer (2001), it is
possible to sort these models in two classes:
• Eulerian closures,
• and Lagrangian closures.

Let us briefly present here some examples for each of these two classes. For Lagrangian
closures, we focus on stochastic modelling because this class of stochastic closures are
used in Chap. 10, to close the disperse phase equations according to the formalism
derived in Chap.5.4.

4.3.1 Eulerian fluid reconstructions

Some strategies try to reconstruct a fully resolved velocity field for the particles to evolve
on. This is the Eulerian class of reconstruction. It is interesting because it preserves
the correlation in the driving force of neighbouring particles. Meaning that different
particles at the same location and experience the fluid velocity. Let us briefly evoke
some of them here.
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4.3.1.1 Approximate deconvolution

With this strategy one tries to recover the original fluid flow field. This is done by
inverting as much as possible the effects of the reduction operator on the fluid field.
However, if the fluid flow reduction is a true reduction operation (not injective), some
of the fluid flow information is lost when performing the reduction. Therefore, this
technique does not create any information about the resolved fluid from the reduced
fluid (otherwise, no reduction would have been performed) However it is able to ensures
that the energy spectrum of the reduced fluid is close to the energy spectrum of the
resolved fluid on the wave-numbers they share in common. For more on approximate
deconvolution techniques, see for instance Shotorban and Balachandar (2007), Kuerten
(2006) or Wang, Zhao, and Ihme (2019)).

4.3.1.2 Kinematic simulation

With this strategy, the sub-grid fluid is reconstructed by a sum of independant modes.
This approach is developped in Fung, Hunt, Malik, and Perkins (1992), Khan, Luo,
Nicolleau, Tucker, and Lo Iacono (2010), Ray and Collins (2014), and Zhou, Wang, and
Jin (2018). In this work, the fluid flow field is generated with this strategy (see Sec. 6.1).

4.3.1.3 Fractal interpolation

Similarly to Germano identity, this strategy uses the fractal understanding of the inertial
range to propose a reconstruction of the higher wave-numbers of the fluids such as in
Scotti and Meneveau (1999), Salvetti, Marchioli, and Soldati (2006), Marchioli, Salvetti,
and Soldati (2008) and Knorps and Pozorski (2018).

4.3.2 Lagrangian fluid closures

In this section let us evoke the Lagrangian class of reconstruction. We focus on some
strategies that treat inertial particle trajectories as a stochastic process, with Langevin
equations of different orders (Langevin (1908), Pope (2000), Chap. 12.3), because this
is what is used in Chap. 10 (Minier and Profeta (2015)).
In the models presented here, the influence of the unresolved fluid is not treated as a
four dimensional field any more, but only as a stochastic process seen along each particle
trajectory. This is a natural extension of standard modelling techniques. Let us briefly
draw a parallel here.
• From physical particles, was derived the mesoscopic approach (Sec. 2.3). The

mesoscopic approach does not describes individual physical particles any more, but
rather the evolution of a law. One drawback of such modelling is that it assumes
that particle trajectories are not correlated between each other (other than though
the fluid). Therefore, the mesoscopic approach loses a level of correlation in the
description of the system.

• Then, from the mesoscopic approach where trajectories are deterministic, to a
closure in the form of a stochastic processes, one also loses a level of correlation in
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the description of the system. This time, it is related to the temporal evolution of
individual particle trajectories.

With this stochastic vision, different particles can be at the same point in phase-space
and experience different evolutions. This means that the particles computed with this
technique are not the particles of one fluid, but all the particles of an ensemble of different
fluids. This ensemble of fluids could be for instance all the fluids which share the same
reduction. This vision is already consistent with the formalism introduced in Chap. 5.4.
Let us now present these models by increasing dimensionality (these models can be
found with more details in Minier and Peirano (2001), Eq. 353 and Heinz (2003), p.92).
Because we only use these models here for Monte-Carlo simulations, they are presented
in a Lagrangian form. However, it is also possible to derive the Eulerian equation giving
the evolution of the probability law of the particles (the Fokker–Planck equation).

4.3.2.1 One variable diffusion model

The first model presented is the simplest one. It focuses only on the particle position. It
describes particles with only one variable: their physical position. The closure consists
in compensating for the missing fluid energy with the addition of a Wiener process
to the particle trajectory. A Wiener process is a continuous stochastic process with
normally distributed and independent increments. For closing the one variable model,
it is interesting to use a Wiener process process as a closure because it mimics the
dispersive effect of the unresolved turbulent flow field on the particle position. One of
the limitations of this closure is that it is not possible to differentiate the particle position
to get a particle velocity any more.

dX1(t) = uf (t,X1(t)) dt+ σ1dBt (4.4)

This description is used for instance in Taylor (1921), Batchelor (1952), Tchen (1959),
Mols and Oliemans (1998) and Shotorban and Balachandar (2007).

4.3.2.2 Two variables diffusion model

The second model adds some complexity to (Eq. 4.4). With this model, particles are
described by their position and velocity. The missing fluid energy is accounted for at the
level of the particle velocity. Its form is very close to the original linear model for inertial
particles (Eqs. 2.1). Adopting the two equations model Eq. 4.5 only has an interest over
the one equation model Eq. 4.4 when the relaxation time scale τV 2 is large in comparison
with the smallest time scales of the reduced fluid uf .

dX2(t) = V 2(t) dt, (4.5a)

dV 2(t) =
1

τV 2
(uf (t,X2(t))− V 2(t)) dt+ σ2dBt. (4.5b)
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Derivations of this model are presented, for instance by Reeks (1977), or Bini and Jones
(2008)

4.3.2.3 Three variables diffusion model

The three variables model keeps the same strategy, but goes one step further. The aim
is to better reproduce the particle trajectory statistics. Adopting the three equations
model Eq. 4.6 has most interest over the two equations model Eq. 4.5 when
• τV 3 and τU3 are of the same order of magnitude, to justify modelling by a third

order,
• and both τV 3 and τU3 are large in comparison with the smallest time scales of the

reduced fluid uf .
In the case where τV 3 and τU3 are different by an order of magnitude, this third order
model is very well represented by a second order model (Eq. 4.5), with τV 2 = τV 3 + τU3.
With this perspective in mind, it is important to note that in the second order model
model, τV 2 does not have to be τp, but rather a characteristic time which is specific to
the behaviour of the inertial particle within the reduced fluid.

dX3(t) = V 3(t) dt, (4.6a)

dV 3(t) =
1

τV 3
(U3(t)− V 3(t)) dt, (4.6b)

dU3(t) =
1

τU3
(uf (t,X3(t))−U3(t)) dt+ σ3dBt. (4.6c)

Derivations of this model are presented, for instance by Minier, Peirano, and Chibbaro
(2004), Fede, Simonin, Villedieu, and Squires (2006), Shotorban and Mashayek (2006),
Vinkovic, Aguirre, Ayrault, and Simoëns (2006) and Minier and Profeta (2015).

4.3.2.4 More advanced models

Ultimately, this class of stochastic trajectory closures can be used to reproduce state
of the art statistical trajectory properties such as intermittency characteristics like in
Bini and Jones (2007), Gorokhovski and Zamansky (2014) or Zhang, Legendre, and
Zamansky (2019). Note that intermittency is mostly relevant for fluid parcels or very low
inertia particles, because it disappears as inertia increases. However, because statistical
trajectory closure strategies only reproduces average particle trajectory statistics, they
can never take into account effects of the local fluid structure on neighbouring particles
such as particle pair separation and segregation.

4.4 Reduced statistical description of disperse phase flows

The previous sections were focusing on the Lagrangian evolution of particles. Here we
are interested in their statistical description. Therefore, we work with a PDF and its
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balance equation, which is an evolution equation in time and space. In this section, we
first investigate the impact of reduction on the PBE, and then we look at solutions for
macroscopic moment methods.

4.4.1 Reduced PBEs

Let us consider a PBE:

∂tf + v · ∇xf +
1

τp
∇v · ((uf (t,x)− v) f) = 0. (4.7)

Here two solutions for considering reductions can be envisaged. Like for the Lagrangian
particle trajectory, the first solution is to consider that the fluid velocity is decomposed
in two components:

∂tf + v · ∇xf +
1

τp
∇v · ((G ◦ uf (t,x)− v) f) = − 1

τp
∇v ·

(
uf (t,x)′ f

)
. (4.8)

To close this equation we need to recover the fluid fluctuations, but apparently no effort
is required for the disperse phase, as it is still fully resolved, in the sense that such
equation could generate structures as fine as possible, as there is no reduction to avoid
such details. However it must be kept in mind that the constructed fluctuations must
belong to a unique fluid realisation.
Another solution is to directly filter the PBE:

∂tG ◦ f + v · ∇xG ◦ f +
1

τp
∇v · ((G ◦ uf (t,x)− v)G ◦ f) =

− 1

τp
∇v · (G ◦ (uf (t,x) f)−G ◦ uf (t,x)G ◦ f) . (4.9)

This is this solution that has been adopted in the literature. Actually, there is two works
that investigated the filtering of the PBE:
• Pandya and Mashayek (2002) who uses an analogy with the work of Reeks (1991)

based on Lagrangian History Direct Interaction (LHDI);
• Zaichik, Simonin, and Alipchenkov (2009) which is based on the work of Zaichik

(1999) that considers a Gaussian process to close the equation.
The two methods give the following closed form:

∂tG ◦ f + v · ∇xG ◦ f +
1

τp
∇v · ((G ◦ uf (t,x)− v)G ◦ f) =

∇v · (µ∇vG ◦ f + λ∇xG ◦ f) . (4.10)

In which is exhibited a phase space diffusion due to the subgrid scales. Both methods
end with the derivation a macroscopic moment methods based on the filtered PBE.
To the author’s knowledge, the previous statistical methods have not been used to sim-
ulate turbulent disperse phase flows, and are limited to theoretical derivations. Another
solution also investigated in the literature was to use a Lagrangian Filtered Mass Den-
sity Function (Innocenti, Marchioli, and Chibbaro (2016)), but it has not reached the
application level.
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4.4.2 Reduced Moment methods

There is another solution to derive a reduced statistical model: filtering the moment
equations, in analogy with reduced strategies for gaseous flows. Here are two works that
investigated this idea:
• Shotorban and Balachandar (2007) suggested a filtered version of the equilibrium

model of Ferry and Balachandar (2001); Ferry and Balachandar (2002). In this
model, the sole number density equation is transported, and the turbulent trans-
port is modelled through a diffusion-like closure, in analogy with what is done for
turbulent scalar transport.

• Moreau, Simonin, and Bédat (2010) filtered the moment equations derived from
the MEF: droplet number density, momentum and internal energy. To close the
equations, they use approximations inspired from gaseous compressible flows, as
the moment equations exhibited a similar structure.

Highlights and conclusions

• The inertial particle equations under fluid reduction has been presented
• The impact of fluid reduction on the particle dynamics has been highlighted
• Lagrangian modelling techniques focuses on the reconstruction of the accu-

rate trajectories, without specific attention on the corresponding statistical
description
• Reduced statistical methods have also been presented, which always end

with diffusion-like closures, either in the phase space or in the physical space.
• None of the presented methods have been derived in the context of two-way

coupled flows
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Chapter 5

General reduction framework and
introduction of a new MEF
formalism adapted to LES

As we have seen in Sec. 3.3, working with the reduced variables leads us to an unclosed
equation, for which we presented classical closures in Sec. 3.3.2. These closures rely
on some key properties of the reduced variables which are bound to be different in a
strongly coupled two-phase flow.
In order to move forward, let us propose a formalism for the concept of reduction. This
new formalism will help us understand the classical reductions performed in the literature
for single phase flows and two-phase flows. We will then envision designing a consistent
reduction operation for strongly-coupled two-phase flows in the context of LES under the
MEF. This will lead us to a new MEF formalism that we propose to evaluate according
to some metrics that will be defined. Eventually, we present the expected behaviour of
these metrics.

5.1 General reduction framework

To put in a broader perspective the reduction techniques, we propose a description in
terms of dynamical system.
In this work, the system of reference is a deterministic dynamical system Dref . It is
made of:
• a flow field, solution of the Navier-Stokes equations (Eq. 1.2),
• and a set of inertial point-particles, following Stokes’ drag law (Eq. 2.1).

For simplicity, in this section, we will consider the system autonomous (independent of
time). This is only to make notations lighter, as the same reasoning could be extended
to non autonomous systems.
The space of all the possible states of Dref is called phase space. Let us name it Sref . In
our context, a point in phase space describes the whole system. It is made of:

71
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• the fluid, described at each time by a velocity field uf ,
• and the set of inertial point-particles, described at each time by a family of positions

and velocities (xp,i,vp,i)i∈[[1,Np]].

Therefore, elements of Sref are in R3+3+2·Np .
We name Φref the flow associated to Dref :

∀t ∈ R+, if sref ∈ Sref , Φref(sref , t) is the state of the system solution of Dref ,

with initial condition sref , after a time t.
(5.1)

The flow is the function which gives the evolution of any point in phase-space Sref

through the dynamical system Dref after some time t.
Let us now introduce a reduction operator on the phase space Sref of the dynamical
system Dref :

G : Sref → Sred

sref 7→ G (sref) ,
(5.2)

with Sred = G (Sref). G can be a reduction operator of the fluid velocity field like in
Sec. 3.3.1, or of the disperse phase, or of both. It is defined on the phase space Sref .
Therefore, it does not act on the temporal dimension of the system (it does not include
time averages for instance). We are aware that it is not representative of all the reduction
techniques available in the literature, but it is enough to work with those presented in
this manuscript, and is in accordance with the classical LES methods, which solely act
on the physical space.
Because G is defined on the phase space, it does not automatically give a new dynamical
system. It only transforms the phase space. In the general case, it is necessary to define
new evolutions equations associated with the new phase space Sred. Different options
are possible, according to the case at hand. Let us review them in the following section.

5.1.1 Injective reduction operator

The simplest case is when G is injective. G is said injective when:

∀ (sref,1, sref,2) ∈ S2
ref , G (sref,1) = G (sref,2) =⇒ sref,1 = sref,2. (5.3)

Note that the injectivity of G relies:
• on the transformation performed by G: ζ 7→ G (ζ),
• but also on the domain of G: Sref .

The same transformation can be injective on a domain and non injective on an other:
take for instance x 7→ ‖x‖ which is not injective on R but is injective on R+.

When G is injective, it is possible to define the inverse of G as a function:

G−1 : Sred → Sref

sred 7→ sref ,
(5.4)
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where G−1 ◦ G = Id. Note that the inverse G−1 is a theoretical construction and does
not always have an explicit expression.

When G is injective, it is simple to define a new flow ΦSref ,Gred,inj on Sred such that:

∀t ∈ R+, ∀sred ∈ Sred, ΦSref ,Gred,inj(sred, t) = G ◦ Φref

(
G−1 (sred) , t

)
. (5.5)

However, if G−1 is not explicitly known, ΦSref ,Gred,inj is only a formal construction and it does
not give an explicit formulation for the associated dynamical system Dred,inj.

When G is injective, Sred and Sref have the same cardinality. Therefore, G is not really
a reduction operator in the sense that it does not remove information from solutions of
the system of reference.

5.1.2 Non-injective reduction operator

This leaves us with the interesting case where G is not injective. This means that:

∃ (sref,1, sref,2) ∈ S2
ref , such that G (sref,1) = G (sref,2) and sref,1 6= sref,2. (5.6)

Now, two cases are possible.

5.1.2.1 The reduced system is self-contained

The first case is when the reduction G of the system G is self-contained. We say that
the reduced system is self-contained when:

∀ (sref,1, sref,2) ∈ S2
ref ,

G (sref,1) = G (sref,2) =⇒
(
∀t ∈ R+, G ◦ Φref (sref,1, t) = G ◦ Φref

(
sref,2, t

))
.

(5.7)

This means that different points in phase space can have the same image by the reduction
operator. However, if they do share the same reduction at one time, they will keep on
sharing the same reduction at ulterior times.
Note that the fact that the reduction operator G is self-contained depends on:
• the transformation performed by G: x 7→ G (x),
• the domain of G: Sref ,
• and also the reference flow Φref .

In this case, because G is not injective, the preimages of G given by the operator G←

are not in Sref any more, but in the power set of Sref : P (Sref). G← gives a subset of
Sref . However, thanks to the self-contained property (Eq. 5.7), for all t in R+, for all
sred in Sred, the set G ◦ Φref (G← (sref) , t) is reduced to only one element.
Therefore, when the system is self-contained, it is still possible to define a new flow
ΦSref ,G,Φref

red,s−c on Sred such that:

∀t ∈ R+, ∀sred ∈ Sred, ΦSref ,G,Φref
red,s−c (sred, t) = G ◦ Φref (G← (sred) , t) . (5.8)
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ΦSref ,G,Φref
red,s−c is a formal construction. This flow does not give an explicit formulation for

the associated reduced and self-contained dynamical system Dred,s−c.

5.1.2.2 The reduced system is not self-contained

When the reduction G is not self-contained:

∃ (sref,1, sref,2) ∈ S2
ref and t ∈ R+,

such that G (sref,1) = G (sref,2) and G
(
Φref (sref,1, t)

)
6= G

(
Φref (sref,2, t)

)
. (5.9)

We call a system which is not self-contained, uncontained. In this case, the reduction
operation does not lead to a single evolution of the reduced system. Therefore, it is not
possible to simply define a reduced dynamical system like in the other cases.
For the reduced system, one gets a set of different possible evolutions going in different
directions:

∀t ∈ R+, ∀sred ∈ Sred, G ◦ Φref (G← (sref) , t) . (5.10)

5.1.3 Summary of the possible impact of the reduction operation on
deterministic dynamical system

We have seen in the beginning of this chapter that it is possible to sort the reduction
operators of dynamical systems according to their effect on the dynamical system. The
different scenario are summed up in Tab. 5.1:
• The first aspect, represented by the rows of the table, focuses on the impact of the

reduction operator on phase space. It distinguishes operators which are invertible
in phase space from those which are not. Usually, if the operator corresponds to a
reduction, it is not an injective function of phase space.
• The second aspect, represented by the columns of the table, deals with the in-

teraction of the operator on the original dynamic of the system. If the original
evolution of the original system is still adapted to the reduced variable, the system
is self-contained. Otherwise, building a consistent system of the reduced variable
is not straightforward and needs some investigations.
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Possible evolution(s) of

a reduced representation

one many

Number of

realisation(s)
one injective

.

.

with the same

reduced description
many

non-injective

self-contained

non-injective

uncontained

Table 5.1. Possible evolutions of the phase space of a deterministic dynamical system when
applying an arbitrary reduction operator.

In the next section, we present the classical reduction operations of single and two phase
flows under the light of the reduction formalism we have introduced.

5.2 Classification of usual reduction strategies for turbu-
lent two-phase flows

In this section, we propose to review the reduction operation performed in some classical
contexts: starting with single phase turbulence, before moving to two-phase flows in one-
way and two-way coupled contexts.

5.2.1 Reduction of single phase turbulence

In the context of single phase turbulence, the most consistent vision is that current
reductions techniques are self-contained (McComb (1990), Chap. 1.5.1). Although this
choice corresponds to what would be expected from ideal reductions (Langford and
Moser (1999)), it is not obvious from an experimental perspective. Indeed, Akbari and
Montazerin (2013), show that, conditioning to the locally resolved scales the effect of
the unresolved scales on the resolved scales, does not give a unique value but a whole
distribution. Nonetheless, some authors try to give a theoretical justification to the self-
contained vision by resorting for instance to the theory of renormalisation (Yakhot and
Orszag (1986)). Other authors focus on providing new reduction formalisms which are
naturally self-contained (Pope (2010)). In the context of this work, we will assume that
we can work with a non-injective self-contained representation of the flow field. This is
exactly the object which is built in Chap. 6 for the study performed in Chap. 9. Since
we are interested in the dynamics of two-phase flows in the context of this work, let us
now present the reductions performed in this scenario.
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5.2.2 Reduction of disperse two-phase flows

In this section, we present the nature of the equations on the reduced variables in the
context of disperse two-phase flows.

5.2.2.1 With no retroaction of the particles on the fluid

In the context of turbulent disperse two-phase flows with no retroaction of the particles
on the fluid, the type of the fluid reduction is the same as in single phase flows.
There are two reduction cases:
• The reduction operation is applied to both phases, as in Shotorban and Balachan-

dar (2007); Moreau, Simonin, and Bédat (2010):
• The reduction operator only acts on the fluid field and does not alter the phase

space of inertial particles (Marchioli (2017)): in this case, the level of description
of the disperse phase is not reduced. However, the dynamics of the disperse phase
can be impacted because of the forcing term coming from the fluid phase which is
altered by the reduction operation (Sec. 4.1).

Therefore, reducing the model of the fluid phase, even with a self-contained fluid field
reduction, can lead to a model for the disperse phase which is uncontained. This is why,
in this work, we propose a new representation of the disperse phase which is guaranteed
to remain contained, even for LES. This representation is presented in Sec. 5.4.

5.2.2.2 With two-way coupling

We have seen in the previous section that even a self-contained fluid reduction leads to a
model for the disperse phase which is uncontained. In the context of two-way coupling,
the disperse phase retroacts on the fluid dynamics, and in some extreme in cases, the
fluid is even entirely driven by the dynamics of the particles (Capecelatro, Desjardins,
and Fox (2016a) and Zamansky, Coletti, Massot, and Mani (2016)). Therefore, following
the disperse phase evolution, the fluid phase also becomes uncontained. Modelling two-
way coupling presents a difficulty of the same nature as one-way LES. Because one-way
LES involves less equations to close, we will start with this scenario in Sec. 5.4.

After having briefly presented how usual reduction techniques for two-phase flows can
be sorted according to the reduction framework presented in Sec. 5.1, we now propose to
see how to derive the mesoscopic Eulerian formalism in the context of LES, and suggest
what could be done in the context of two-way coupled LES.
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5.3 Derivation of the mesoscopic Eulerian formalism in the
context of reduced two-phase flows

The objective of this research project was to derive an average mesoscopic description of
the disperse phase compatible with LES and strong two-way coupling. In this section,
we present how we approached this challenge. Let us start by presenting the one-way
coupled context before moving on the the two-way coupled scenario.

5.3.1 With no retroaction of the particles on the fluid

In a one-way coupled scenario, the fluid evolution is independent to the level of descrip-
tion of the particles.
However, for the disperse phase, it is a different story. Let us derive again the meso-
scopic formalism in the context of a reduced fluid. For simplicity, let us consider that
particles are exchangeable. When the fluid is fully resolved the MEF distribution, is the
conditional law of one particle on one fluid realisation.
A classical fluid reduction is assumed self-contained, but cannot reasonably be injective
(Sec. 5.2.1). Therefore, when one computes a reduced fluid, it is not possible to have ac-
cess to one fluid realisation, but only to a set of fluid realisations G←◦G (uf ). Therefore,
it is not possible to derive the classical MEF distribution.
At this point, two strategies are possible:
• Use a representation of the disperse phase at the mesoscopic level different from

the MEF, such as a stochastic processes (Bini and Jones (2008)). This option has
not been chosen in the work performed here and remains to be explored.

• Extend the definition of MEF to make it compatible with fluid reductions. This is
the strategy chosen in this work. Let us present it briefly in the next few lines.

The MEF is based on the conditional law of one particle on one fluid realisation. As
presented in Février, Simonin, and Squires (2005), extending the MEF consists in taking
the conditional law of one particle on a set of fluid realisations:

Definition 21. The Extended Mesoscopic Eulerian Formalism (EMEF) considers
the specific cases of faf , where af is the fluid ensemble determined by G← ◦G (uf ),
i.e. the ensemble of possible fluids that share the same reduced description.

It is an extension of the MEF introduced by Février, Simonin, and Squires (2005) in
order to take into account weak two-way coupling. It is a very interesting object because
it has an unambiguous definition on the reduced flow field G (uf ), even when the fluid
reduction is not injective. This is different from the standard MEF which is based
on a full unique fluid realisation of the case. However, computing the evolution of the
distribution of the EMEF is difficult because it is the average evolution of the distribution
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of the MEF on all the different fluids from the set G← ◦G (uf ). Therefore, theoretically,
we need to know all the different fluids of the set G← ◦G (uf ) in order to compute the
evolution of faf . This is quite different from the usual MEF. As a consequence, in the
following of this work, starting Chap. 6, we propose to build a numerical set-up in order
to investigate the behaviour of the EMEF, and how it differs form the MEF.
Let us now present the challenges we would encounter when adding two-way coupling
to the mix.

5.3.2 With two-way coupling

With two-way coupling, deriving the MEF becomes even more difficult to derive because
the disperse phase retroacts on the fluid. Each particle realization leads to a different
fluid evolution. These discrepancies are enhanced with time by the mixing nature of
the turbulence. Realisations of the fluid and of the disperse phase are strongly intercon-
nected. It is not possible to consider them individually anymore.
In this context two options are readily possible:
• One option is to consider a global average formalism for both phases. This is a

RANS approach (for deriving such models, see for instance Emre, Fox, Massot,
De Chaisemartin, Jay, and Laurent (2014), Emre (2014), Fox (2014), Capecelatro,
Desjardins, and Fox (2016a) and Capecelatro, Desjardins, and Fox (2016b)).

• The other option would be to avoid using any averaging in the formalism and
try to model the evolution of one realisation of the system, with point-particle
simulations and a stochastic closure for instance (Pai and Subramaniam (2012)),
or even using an Eulerian formalism (Goudenège, Larat, Llobell, Massot, Mercier,
Thomine, and Vié (2019)).

Some refuse to limit their horizons to these two restrictive perspectives and try to find a
way to extend the MEF to two-way coupling in the spirit of LES, in-between DNS and
RANS. Here are some options:
• Zeren (2010) considers a conditional average over close initial particle positions.

This allows realizations to have a similar structure for initial times. This structure
being consistent throughout realizations, it is preserved by the averaging process
of the MEF. However, due to the mixing nature of turbulence, the average is likely
to make the simulation become closer to RANS averages as time increases.

• Février, Simonin, and Squires (2005) propose to take a conditional average over
the large scales of the flow (similarly to the approach proposed by Pope (2010) in
a single phase context). Indeed, with the traditional scaling of the Kolmogorov
energy spectrum in mind (Sec. 1.2.2), the largest scales of the flow contain most of
the energy and can be thought to be more stable to the effect of the small particles.
However, with two-way coupling, the energy spectrum is altered and energy trans-
fers are modified so that standard turbulence characterisations such as Kolmogorov
hypothesis are not guaranteed to be reasonable any more. In particular, this strat-
egy is not reasonable in the context of the works of Capecelatro, Desjardins, and
Fox (2016a) and Zamansky, Coletti, Massot, and Mani (2016), where the small
particles are the source of all the flow energy and interact with the fluid energy at
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all the scales through the formation of large clusters.
Eventually, there is still the option to represent both phases at a mesoscopic level, but
which does not rely on the hypothesis of the MEF. It was not an option in the context
of this work, but it could be an promising strategy for deriving LES models for coupled
two-phase flow. Let us however present some examples of such alternatives:
• One of the possibilities is to consider both phases as a stochastic processes at the

mesoscopic level. This is maybe the simplest option for capturing the dynamics of
strongly diverging configurations, evolving far from the mean.

• An other possibility is to consider mesoscopic visions of two-phase flows derived
from Euler-Euler simulations (resolved interface simulations and imposed inter-
face simulations). In this case, as explained in Pai and Subramaniam (2009), the
mesoscopic density fEE representing the disperse phase is the probability of liquid
presence function of time and space. Conveniently, this approach is valid, even
when the hypothesis necessary to consider point particles are not valid any more
(Eaton (2009)). However, a clear formalism does not guarantee closed equations,
and expressions for the source terms still have to be derived (such as in the work
of Tenneti, Garg, and Subramaniam (2011) for instance).

We have seen in this section that extending the MEF outside of the context of DNS is
not obvious. There is still a long way to go before proposing a MEF framework able
to withstand strongly coupled LES simulation. In the perimeter of this work, we will
focus on studying the extension of the MEF to LES in a one-way coupled presented in
Sec. 5.3.1.
In the next section let us present how we envision to analyse this new formalism in this
work.

5.4 Investigation of the Extended MEF in one-way coupled
LES

The mesoscopic Eulerian formalism (MEF) has been derived in the context of one-way
coupled fully-resolved simulations (Février, Simonin, and Squires (2005)). Extending the
mesoscopic formalism to LES is not straightforward. One of the biggest difficulties is to
ensure consistency between the spatial reduction operation of the fluid and the statistical
average operation of the dispersed phase. This is already a challenge for one-way coupled
cases. In this section:
• we present metrics of interest for understanding the difference in behaviour between

the MEF and the EMEF introduced in Sec. 5.3.1,
• we describe the results expected from this study.



80
CHAPTER 5. GENERAL REDUCTION FRAMEWORK AND INTRODUCTION OF A NEW

MEF FORMALISM ADAPTED TO LES

5.4.1 Metrics of interest

Two metrics are defined here:
• First, we define a metric for measuring on each scenario, how different the local

definition of the EMEF is different from the usual MEF (Sec. 5.4.1.1).
• Then, we define a metric for assessing how far is the resulting distribution given

by the EMEF from the distribution given by the MEF (Sec. 5.4.1.2).

5.4.1.1 Metric for the reduction operation

Here we define a metric for understanding on each set of fluids, how far the definition of
the EMEF is from the MEF.
Both the MEF and the EMEF distribution are written faf . The difference is in the
cardinality of af . In the context of the MEF, af represents only one fluid uf , whereas
in the context of the EMEF, af can represent any probable set of fluids. Therefore, one
of the way to characterize the distance between the MEF and the EMEF is in terms of
the relative energy of the set af with respect to the reduced flow field corresponding to
the set af . The average energy k of a fluid uf is given by:

k (uf ) =

∫
time

∫
space

||uf (t,x)||2 dtdx∫
time

∫
space

dtdx

, (5.11)

with time and space intervals of sensible extension with respect to the phase space Af
and the time span of evolution of the fluid. When the set of the sub-grid scales is centred,
E [af −G (af )] = 0. Hence, expanding the expression of the average energy of the set of
fluids af , one gets:

E [k (af )] = E [k (af −G (af ))] + k (G (af )) . (5.12)

In order to clarify the notations:
• The set of fields af −G (af ) corresponds to the set of the sub-grid scales, or unre-

solved flow field, or lowest eddies.
• The field G (af ) correspond to the resolved flow field or largest eddies.

We propose to consider that the size of af is measurable in terms of the proportion of
unresolved energy:

E [k (af −G (af ))]

E [k (af )]
. (5.13)

The complementary term is the proportion of resolved energy:

k (G (af ))

E [k (af )]
. (5.14)
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Figure 5.1. Energy in the fluid with respect to the residual fluid energy.

Extending the MEF to non-injective LES is quite interesting because it offers a complete
formalism of which DNS and RANS are only limit cases1. DNS corresponds to a LES
with 100% of the energy of the flow in the reduced flow field, whereas RANS corresponds
to a LES with 0% of the energy of the flow in the reduced flow field (Fig. 5.1).
Now that we have proposed a metric for assessing how different is the definition of the
EMEF from the MEF, let us define a metric for assessing how different are the resulting
distributions of these two formalisms.

5.4.1.2 Metric of the resulting distribution

For assessing the impact of non-injective LES on the MEF, one needs a metric to assess
the difference. For combustion applications, knowing the position of the droplets is
one of the most important quantities, because it controls where the fuel vaporises hence
where the localization of the flame. Thus, when investigating the extended MEF, special
focus will be given to particles position.
The main difference between, the MEF in a DNS context, and the extension of the MEF
to LES, is that the EMEF distribution represents a set of particles affected by a variety
of different fluids sharing the same reduced description. The plurality of sub-grid scales
implied by non-injective LES is expected to act primarily as a dispersive force on the
particles. If particles were not affected by sub-grid scales, it is likely that there would not
be much difference between the EMEF distribution and a standard MEF distribution.
However, since inertial point-particles are affected by sub-grid scales removal (Chap. 4),

1For reference, Pope (2000), p. 560 Table 13.1 considers that 80% of the total energy has to be
resolved by the large scales of the flow for LES.
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it appears relevant to think that the EMEF could lead to a different distribution than
the standard MEF.
As an illustration of this concept, on can have a look at the contrast between both sides
of Fig. 5.2.
• The left of Fig. 5.2 represents the MEF paradigm. It this case, only one fluid

realization is involved. The available information is enough to give one and only
one deterministic trajectory for each particle. Time evolution of non-colliding
inertial point particles with Stokes drag law is bijective in time.

• By contrast, the right of Fig. 5.2 represents the EMEF paradigm. In this case, a
set of different fluid flows is involved. This example represents a finite discrete set
of ten fluid flow fields. With the Kinematic Simulations used for this work, this
set is an infinite set of finite dimension. In the case of real turbulence, this set is
not known. For the sake of being consistent with the theme of LES, the synthetic
fluids presented here share 80% of their lower modes, which accounts on average
for 80% of their energy. As observed on the right of Fig. 5.2, for one given initial
particle, there is not one single trajectory, but a set of different trajectories.
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Figure 5.2. The beginning of the trajectory of one inertial particle (τp = 1s) on one fluid
on the left and on ten different fluids conditioned by 80% of their energy (synthetic fluids,
presented in Sec. 6.1, of 200 modes, meaning that the 160 lowest wave-numbers modes are
constants across fluids) on the right. The initial particle velocity is taken as the fluid velocity

at the particle position.

As observed in Fig. 5.2, one of the main difference between the MEF and the EMEF is
that the EMEF is more dispersive than the MEF. This is only a visual observation.
Thus, the first quantity of interest which is studied here in the context of non-injective
LES is the particle relative position variance. This is a very standard property widely
studied when trying to characterise the behaviour of particles in a flow (Taylor (1921)).
Investigating this property is very consistent with the objective of this work, as standard
closure models for particle behaviour in LES usually have a major effect on dispersion
(see for instance models given by Minier and Peirano (2001) or Reeks (1991)).

Now that we have defined a metric for measuring the difference between the EMEF and
the MEF and a metric for measuring the distance between the evolution of the resulting
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distributions, let us discuss what we expect to observe with respect to these quantities
in the next section.

5.4.2 Expected results - A priori study in the case of fluid parcels

It is interesting to start by performing a small a priori study on fluid parcels to get an
idea of what is likely to happen. Following on the work of Taylor (1921) (see Sec. 1.3.1.1),
the behaviour of the relative fluid parcel position variance is expected to exhibit two
regimes: an inertial regime and a diffusion regime. In the inertial regime, the fluid
parcel relative position variance is a direct function of the initial fluid parcel velocity
variance Var [V f (0)] (cf. Eq. 1.29):

E
[
‖Xf (t)−Xf (0)‖2

]
∼0 Var [V f (0)] t2.

If one considers one fixed position in the domain, for a DNS, particle trajectories are
deterministic, the local fluid velocity is known, so Var

[
V DNS
f (0)

]
is equal to 0 (left of

Fig. 5.1). Thus, there is no dispersion. On the opposite, for a RANS computation, except
for its mean, nothing is known about the local fluid velocity (right of Fig. 5.1). Thus,
Var

[
V RANS
f (0)

]
encompasses all the energy of the flow and is equal to whole fluctuations

of the flow Var [V f ]. As implied by its formalism, non-injective LES is in-between. The
amount of resolved energy accounts for deterministic motion, whereas the amount of
unresolved energy acts as a dispersive force on the fluid parcels. It corresponds to the
slope of the initial ballistic regime of dispersion Var [V f (0)].
In the case of non-injective LES, only 80% of the fluid energy is known at a particle
location (Pope (2000), p. 560 Table 13.1). The remaining 20% are not only not resolved,
but also not specified by the residual field. This is very different from DNS, where
the residual scales are unique. This implies that the MEF extended to non-injective
LES is forced by a for which 20% of the energy is unknown and not fixed. Therefore,
contrarily to DNS, the non-injective LES derivation of the MEF has to take into account
a stochastic dispersive force implied by this range of different residual velocity fields
possibly accounting for the unresolved energy. As such, when 20% of the fluid energy is
unresolved, we have seen in Chap. 4 that it could also alter the disperse phase energy up
to 20%. Therefore, following Taylor (1921), a non-injective LES derivation of the MEF
could be up to 20% more dispersive than the MEF in DNS.
It is expected that standard MEF behaves differently than its extension to non-injective
LES. It is very important to assess this difference precisely in order to characterise MEF
in non-injective LES simulations cases and pave the way to coupled cases. Furthermore,
in the perspective of deriving closures for reduced simulations, properly apprehending
the reference behaviour of the quantity to close is essential.
The next chapters of this work are dedicated to defining the setup for investigating the
evolution of the MEF in the context of non-injective LES. Although the evolution at
the initial time for fluid particles are quite clear with Taylor analysis, mixed effects of
long time behaviours, inertia and filtering can be quite complex. Therefore, a numerical
setup was devised in order to be able to investigate these effects.
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Figure 5.3. Impact of non-injective LES on the MEF on relative position variance of an
initial Dirac distribution as predicted by Taylor. Injective LES (in blue) and non-injective

LES (in red).

Highlights and conclusions

In this chapter, we have introduced a new formalism in order to understand the
challenges of designing an average mesoscopic model for strongly coupled two-
phase flows in the context of LES. We have found that, before introducing the two-
way coupling, it was already necessary to introduce a new mesoscopic formalism in
order to have a consistent LES approach for two-phase flow. This new formalism
is reference under the name EMEF in the context of this work. In order to assess
the effect of adopting this new paradigm for the disperse phase, we propose two
metrics:
• the energy of the unresolved flow fields for measuring the distance between

the definition of the EMEF and the definition of the usual MEF,
• and the spatial variance of the respective distributions of the EMEF and

of the MEF for assessing the effect of these two different definitions on the
actual evolution of the resulting distributions.

In the end, we have presented from an a priori analysis the relation that we
expect between these two metrics of interest: we expect the spatial variance of
the distribution to be positively correlated with the energy of the unresolved flow
field. This is what we propose to confirm in the following of this work.



Chapter 6

Numerical set-up for investigation

For numerically characterising the impact of the extension of the MEF to non-injective
LES (introduced in Sec. 5.3.1), a probability space of fluids for performing the conditional
averaging operation is needed.
• Ideally, one would want to work with turbulent solutions of the Navier-Stokes

equations. However, today, to our knowledge, there is no explicit formulation of the
probability space associated to turbulent solutions of the Navier-Stokes equations.

• A solution could be to build an empirical measure. However, the dimensionality of
turbulent solutions of the Navier-Stokes equations is very large (Sec. 3). Therefore,
it seems unreasonable to converge such an empirical measure in the perspective of
this work.

• The strategy chosen in this work is to resort to a model of the probability space
of turbulence. The model giving the set of turbulent flows comes from Kraichnan
(1970). In this work, the probability measure we chose to consider on this set has
been derived from numerical simulations of the Navier-Stokes equations by Hunt,
Buell, and Wray (1987).

Such simulations are named Kinematic Simulations (KS) in the literature and are already
widely studied although not in the context of non-injective LES. Let us review here some
examples of the literature.
• Some studies focus on the fluid field given by the KS, such as:

– Kraichnan (1970) studied the diffusion and directed-interaction approxima-
tion of fluid particles in 2 and 3 dimensions for different energy spectrum.

– Fung, Hunt, Malik, Perkins, Vassilicos, Wray, Buell, and Bertoglio (1991),
Murray, Lightstone, and Tullis (2016) investigated Eulerian and Lagrangian
statistics of the flow field given by Kinematic Simulations.

– Fung and Vassilicos (1998), Thomson and Devenish (2005) and Bec, Biferale,
Lanotte, Scagliarini, and Toschi (2010) studied fluid particle pair dispersion.

• Other studies used KS to study the effects of a turbulent-like flow on inertial
particles:

– Reeks (1980) studied Eulerian direct interaction.
– Maxey (1987), Wang and Maxey (1993) and Stafford, Swailes, and Chakraborty

85
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(2016) studied the gravitational settling of aerosol particles.
– Fung and Vassilicos (1991) studied the fractal dimensions of lines advected

by the flow.
– Bec (2003), Fung and Vassilicos (2003), Bec, Biferale, Cencini, Lanotte,

Musacchio, and Toschi (2007), Ijzermans, Meneguz, and Reeks (2010) studied
the fractal clustering of inertial particles.

We present the selected fluid in Sec. 6.1 and then detail its numerical implementation
in Sec. 6.2.

6.1 Selected fluid

In this section, let us present the fluid used for kinematic simulation.

Definition 22. Let κmin, κmax and k be positive real numbers such that κmin <
κmax. We define k0 such that:

k0 = κ
−2/3
min − κ−2/3

max , (6.1)

and

k′ = k/k0. (6.2)

Let Nκ ∈ N+. For n ∈ [[1,Nκ]], we define:
• the array an ∈ R3:

– of norm ‖an‖ ∼ NR
(

0, 2k
Nκ

)
, with NR, the folded normal distribution,

– and of direction random on a sphere.
• the array κn ∈ R3:

– of norm

‖κn‖ =
(
κ
−2/3
min − ((n− 0.5)/Nκ).k0

)−3/2
, (6.3)

– and of direction random on a circle orthogonal to an.
• ϕn ∼ U (0, 2π), with U the uniform distribution.

• ωn ∼ N
(

0, (a‖κn‖)2 k
)

, with N the normal distribution, and a = 0.4.

The synthetic flow field is given by:

uf (t,x) =

Nκ∑
n=1

an cos (ωnt+ κn · x+ ϕn) . (6.4)
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Let Econtinuous be the energy spectrum of the form:

κ ∈ R+ 7→

 2k′/3.κ−5/3 for κmin < κ < κmax,

0 otherwise,
(6.5)

Remark. Instead of Econtinuous, we could have chosen the model spectrum of Pope
(2000), Chap. 6.5.3. A simpler choice has been made for this work. As the focus is
on LES, it implicitly assumes that one is most likely to be confronted with a turbulent
flow at very high Reynolds number (large range of scales, vast inertial range). Fur-
thermore, ideally, the flow reduction has to remove flow scales in a regime considered
as universal (inertial and dissipation ranges). Thus only a flow similar to the inertial
range is considered in this work.

Now, let us state some properties of our flow field.

Property 3. The numbers kn =
(
κ
−2/3
min − ((n− 1) /Nκ)).k0

)−3/2
, n ∈ [[1,Nκ]] subdivide

the energy spectrum Econtinuous (κ) in Nκ intervals of equal energy.

Proof.∫ kn

κmin

Econtinuous (κ) dκ = 2k′/3 · 1

−2/3

[
κ−2/3

]kn
κmin

= k′ ·
(
κ
−2/3
min − k−2/3

n

)
= k′ ·

(
κ
−2/3
min −

(
κ
−2/3
min − ((n− 1) /Nκ) .k0

))
=

(n− 1) .k

Nκ

(6.6)

Therefore, for n ∈ [[1,Nκ]]∫ kn

kn−1

Econtinuous (κ) dκ =
k

Nκ
(6.7)

Property 4. The total energy of the spectrum Econtinuous is k.

Proof.∫ κmax

κmin

Econtinuous (κ) dκ = 2k′/3 · 1

−2/3

[
κ−2/3

]κmax

κmin

= k′ ·
(
κ
−2/3
min − κ−2/3

max

)
= k

(6.8)
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Property 5. The modes ‖κn‖ of the fluid (Eq. 6.4) represent a quadrature of the energy
spectrum Econtinuous at the barycentre of segments of constant energy.

Proof. For n ∈ [[1,Nκ]], the wave-number of average energy on the interval [kn−1, kn] is:

‖κn‖ =
(
κ
−2/3
min − ((n− 0.5)/Nκ).k0

)−3/2
(6.9)

∫ ‖κn‖
kn

Econtinuous (κ) dκ =
1

2
· k

Nκ
(6.10)

Property 6. The flow field has null divergence.

Proof.

∇xuf =

Nκ∑
n=1

κn · an sin (ωnt+ κn · x+ ϕn) . (6.11)

Because κn is chosen orthogonal to an,

κn · an = 0, (6.12)

therefore,

∇xuf = 0. (6.13)

Property 7. The flow field is statistically homogeneous.

Proof. Let us consider z ∈ R3.

uf (t,x+ z) =

Nκ∑
n=1

an cos (ωnt+ κn · (x+ z) + ϕn)

=

Nκ∑
n=1

an cos (ωnt+ κn · x+ (κn · z + ϕn)) .

(6.14)

Let a call ∆ϕn = κn · z. Because ϕn are independent random variables uniformly
distributed on [0, 2π], ∆ϕn+ϕn are independent random variables uniformly distributed
on [∆ϕ, 2π + ∆ϕ]. Because cos is 2π-periodic, the random field uf (t,x+ z) has the same
distribution as the random field uf (t,x).

Property 8. For each wave-number ‖κn‖, the distribution of frequencies directly follows
the work of Ijzermans, Meneguz, and Reeks (2010), where the spectral components of the
energy spectrum are chosen in order to respect the numerical simulations performed by
Hunt, Buell, and Wray (1987).
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Proof. By definition of the distribution of the wave-numbers of the synthetic fluid.

Property 9.∫ kn

κmin

Econtinuous (κ) dκ = E

[
n∑

m=1

1

2
a2
mδ|κm|

]
. (6.15)

Proof.

E

[
n∑

m=1

1

2
a2
mδ|κm|

]
=

n∑
m=1

k

Nκ
δ|κm|

=
n.k

Nκ
.

(6.16)

Remark. the synthetic flow field is such that its spectral representation is very hollow.
It only has energy on one wave-vector κn in one direction per wave-number κn. Only
a limited number of wave-numbers are represented. They are scattered in a geometric
fashion. Similarly to Ijzermans, Meneguz, and Reeks (2010), each mode carries on
average the same amount of energy k

Nκ
, with k the total amount of fluid energy on

average.
The hollowness of the synthetic flow field allows to represent of a vast range of fluid
scales with a very limited amount data. This property is very useful when investigating
LES.
Property 10. The case has only two dimensionless parameters.

Proof. The free physical parameters of the fluid are the minimal wave-number κmin, the
maximal wave-number κmax and the total energy k. Therefore, the only free physical
parameters of the two-phase flow simulation are κmin, κmax, k and τp. With Buckingham
π theorem it is possible to make only two dimensionless parameters from these variables.

In this work, we have chosen to express them in terms of Stokes numbers:
• one for the largest scales of the flow: Stlarge = τpκmin/

√
k,

• and one for the smallest scales of the flow: Stsmall = τpκmax/
√
k.

In the following, we will mostly consider the Stokes number based on the largest scales
of the flow: St = Stlarge.
To get a idea of the fluid in physical space, the left hand-side of Fig. 6.1 represents the
intensity of the fluid velocity field along a plane, and the right hand-side of Fig. 6.1
represents a particle trajectory on this fluid.
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Figure 6.1. On the left hand-side, colormap of the intensity of the fluid velocity field in the
plane z = 0 superimposed to a quiver plot of fluid velocities projected on the plane z = 0..

On the right hand-side, example of a fluid particle trajectory
Fluid of 200 modes with wave numbers between 1m−1 and 10000m−1 and total energy of

1m2.s−2. The size of the colormap presented here is 1m×1m.

6.1.1 Limitations of the chosen synthetic fluid

For someone who would want to study turbulence, the main limitations of the synthetic
fluid chosen are that:
• The fluid does not follow Navier-Stokes equations, which are usually the reference

for turbulence simulation,
• The Eulerian spectrum of the synthetic fluid is sparse by construction of the syn-

thetic fluid, which is not the case for real turbulence.
• Correlations are imposed a priori to the fluid from the work of Hunt, Buell, and

Wray (1987). We do not expect to get more correlations in the fluid than the ones
we have already included in the design of the fluid.
• The average spectra is fixed to follow Kolmogorov’s law. Therefore, it is not

straightforward to simulate phenomena which are likely to have an impact on the
turbulent spectra, such as coupling.

For more works on the ability of Kinematic Simulations to reproduce some properties
of turbulence, it is possible to refer to Thomson and Devenish (2005) and Nicolleau and
Aly (2012).
These limitations, stated in the general sense, do not affect the work presented here.
Indeed, this study does not intend to provide fundamentally new understandings of
turbulence. The focus is on providing some understanding on the implications of a non-
injective fluid reduction on the derivation of a MEF for inertial particles. For this study,
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a flow similar to fluid turbulence and easily compatible with non-injective self-contained
reductions is devised. The synthetic flow field is only here for illustration purposes. The
choice of this synthetic flow field helps to present illustrations in a context similar to
turbulence. In fact, a posteriori, any sort of mixing flow with a known probability space
would have been enough to derive the results presented in Chap. 9.

6.2 Numerical implementation

In this section, the choice of architecture for the code used in this work is presented. It
is implemented in Fortran 90.

6.2.1 Numerical integration of particle trajectories

Numerical integration is done with Euler-Maruyama or fourth order Runge-Kutta schemes,
depending on the case at hand. Stochastic integration is done with the Euler-Maruyama
scheme. Deterministic integration is done preferably with the fourth order Runge-Kutta
scheme, except when comparison with a stochastic case is needed.
Forward Euler method is a first order integration technique for ordinary differential
equations (ODE), whereas Runge-Kutta method (RK4) is fourth order. That is why
RK4 integration is used preferably to Euler integration in the context of ODE.
For stochastic differential equations (SDE), accuracy of numerical schemes is specified
in terms of laws. The Euler-Maruyama method converges with strong order 1/2 to the
true solution. Under specific conditions on the SDE, higher order algorithms exist, but
they are not used in the context of this work. The maximum theoretical strong order is
1 (Rüemelin (1982)).

6.2.2 Parallelisation

The code aims at computing efficiently statistics of the trajectories of particles on syn-
thetic fluids. A synthetic fluid is made of a number of modes Nκ. These modes are
labelled as small eddies (SE) or large eddies (LE) according to the choice of the amount
of energy resolved by the large scales. The small eddies represent represent the portion
of the fluid which is removed by the regularisation operation, while the large eddies rep-
resent the reduced flow field. For the simulation, statistical parameters are given, such
as the number of particles Np, the number of large scales NLE, and the number of small
scales NSE to be computed in the simulation. The total number of synthetic fluids for
the simulation is then NSE ×NLE. The total number of particle trajectories is given by
Np ×NSE ×NLE.
Each particle trajectory requires access to the corresponding synthetic fluid and to the
state variables of the particle. Information for each fluid is quite large (9 × Nκ double
precision real numbers, with Nκ up to 200) compared with that of the particles. Indeed
each particle is represented by 3 × 5 × 6 (dimensions × number of state variables ×
(current state + number of increments + future state)) double precision real numbers
for RK4 scheme or by 3 × 5 × 2 double precision real numbers for Euler-Maruyama
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Figure 6.2. Parallel scaling of the computation of 16 particles on different numbers of
cores. With a constant number of 8 fluids per core. Fluids of 200 modes and computation
of 1000 integration time steps. Parallelisation in the dimension of the fluids. Reference time

taken for one core (28 cores).

scheme. Therefore parallelisation is done in the dimension of the fluids first and 6.2),
and next in the dimension of the particles and 6.3). This strategy naturally degenerates
to a parallelisation only on the particles when the number of fluids falls to 1.
When parallelisation is done only in the dimension of the fluids , several fluids on the
same core can share the same large scales/small scales. Therefore, in a memory opti-
misation strategy, it could be useful in the future to gather the fluid parameters which
are the same for different fluids on a given core (this problematic is similar to the work
done by de Chaisemartin (2009)).
By default, not much communication between the processes is needed during the com-
putation (except for data processing). The number of particle trajectories is quite large
and they evolve independently from each other. Therefore, MPI is quite an obvious
choice for parallelisation (as opposed to an OpenMP strategy in this context).
Parallelisation is performed with a message passing interface (MPI) and works seamlessly
on computers as different as a personal workstation (with a maximum of 4 core/job),
Moulon mésocentre (with a maximum of 240 core/job) and the national cluster Occigen
(tested with a maximum of 2800 core/job).
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Figure 6.3. Parallel scaling of the computation of 256 particles per cores for different
numbers of cores on 1 fluid of 100 modes for 1000 time steps. Parallelisation in the dimension

of the particles.

6.2.3 Random number generation

For the numerical simulations, the random number generator chosen is ran2 presented
in Press, Flannery, Teukolsky, and Vetterling (1989). Each process has to start from
a different point in the sequence of pseudo-random numbers, so that processes do not
get overlapping sequences (Fig. 6.4). If different processes use the same numbers in
the sequence of pseudo-random numbers, their evolution is correlated. Therefore, this
is to be avoided. For the time being, each process iterates through the sequence of
pseudo-random number until it reaches a region where it is guaranteed that there will
not be any overlapping during the simulation (among other things, this is function of
the number of particles on each core and of the number of integration time steps the
simulation is required to perform). This implies that each core has a different initial
workload according to the region it aims for in the sequence of pseudo-random number.
Optimisations exists for better balancing this initial workload and could be implemented
in the future of this work. For more insight on how to optimise number generation for
parallel processes, one can have a look for instance at L’Ecuyer (2015).
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Sequence of pseudo-random numbers

Proc. i− 1

Proc. i

Proc. i+ 1

Figure 6.4. Illustration of pseudo-random number management in a parallel context. Each
process uses a non-overlapping regions of the sequence of pseudo-random numbers given by
a given pseudo-random number generator (for this purpose, the algorithm ran2 is used in

this work).

6.2.4 Data processing

The two main data processing integrated to the parallelised code are:
• variance of particle state variables,
• and power spectral densities along particle trajectories.

In order to get converged quantities, the constraints are quite different. The convergence
of time resolved variances of the disperse phase requires the computation of a very large
set of particles during the time of interest. On the contrary, the convergence of power
spectral densities on wide range of time scales requires the computation of a limited
number of particles for an extended amount of time.
Computation of the variance of particle state variables is done across cores on the fly,
only for some time steps of interest, with the expanded formula which is very easy to
parallelise (Eq. 6.17):

Var (X) = E
[
X2
]
− E [X]2 , (6.17)

with X a random variable. This numerical strategy could be upgraded for more stability
(Chan, Golub, and LeVeque (1982)). Indeed, computing a large sum of small floating
point variables is not recommanded for numerical precision.

Computation of power spectral densities is done using fixed length arrays of various
resolution. In order to get the spectral content of particle trajectories over a wide range
of scales and at an affordable cost, different arrays collect data points along particle
trajectories at various constant frequencies (multiples of the integration frequency, see
Fig. 6.5). This data is windowed according to the analysis to be performed (Scholl
(2016)). Windowing consists in convoluting the original signal by a normalised kernel.
It aims to attenuate the effects of observing an permanent signal only during a finite
time-span. Each window has its pros and cons: a square window preserves the energy
of the signal, a flattop window preserves the energy in modes, and a Hann window is a
good compromise for a priori observation of the signal.
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Figure 6.5. Chosen strategy for computing the discrete Fourier transform of a signal over
a wide range of scales at a reasonable cost.

Fourier transform is then performed over each array with a fast Fourier transform algo-
rithm. The data from several windows can be averaged in order to increase the signal
to noise ratio.
Power spectral densities are used here to study the permanent regime. In order to do
so, computations are run during 5τp before collecting any data for the computation of
the Fourier transforms.
Further optimisation could be envisioned with the parallelisation of the fast Fourier
transform algorithm. When possible, it could also be desirable to increase the integration
time step when the high frequency Fourier transform is already performed and only the
low frequency content of trajectories remains to be sampled. Furthermore, it could be
possible to optimise the size of the arrays used for storing the data used as input for the
FFT algorithm so that is consistent with the fast memory available on each core for a
given cluster.
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Highlights and conclusions

• We have presented a numerical set-up adapted to the study of the EMEF
proposed in Chap. 9.
• This numerical set-up is based on kinetic simulations of turbulence, which

fluid:
– presents properties similar to turbulence such as a power spectral den-

sity following the scaling of Kolmogorov and,
– also allows an explicit access to the whole probability space associated

to the fluid, which is crucial for studying the EMEF.
• Because we envision to compute converge statistics over a large number

of dimensions, we presented a numerical implementation of the numerical
integration of inertial particles on a compiled code adapted to parallel com-
puting.



Chapter 7

Characterisation of the behaviour
of the fluid

The objective of this chapter is to characterize the dispersive behaviour of the flow field
given by Kinematic Simulations (KS). It is useful because KS are subsequently used to
compute the evolution of inertial particles in Chap. 8 and eventually to study the EMEF
in Chap. 9. We focus our analysis on three aspects:
• The similarity of KS with the picture of turbulence given by Kolmogorov. This

is mainly asserted by the reproduction of an average distribution of energy close
to the scaling of the inertial range given by Kolmogorov. This is investigated
by representing the power spectral density of the flow field, and also confirmed
indirectly by the observation of particle pair dispersion.

• The one-point dispersive properties of the field. The corresponding quantities are
the temporal evolution of variance of tracers, the Lagrangian fluid velocity auto-
correlation and the autocorrelation time scale. These metrics correspond to the
quantities observed in the analysis of the EMEF conducted in Chap. 9.

• The characteristic scales of the dynamics of the flow field. This is for instance
the case of the autocorrelation time scale or of the average power spectral density
which gives an average representation of the relative magnitude of the scales of the
flow field.

Some works (such as Kraichnan (1970) and Murray, Lightstone, and Tullis (2016)) have
already presented some results of dispersion in a flow field given by KS. However, to
our knowledge, an extensive study focused on the influence of the sampling range and
sampling frequency of KS on the dispersive properties of the flow field has not been
conducted in the literature.
Therefore, in this chapter we observe the following properties of the flow field in this
order, according to the number of modes of KS:
• the power spectral density,
• one-point dispersion,
• and two-points dispersion.

97
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7.1 Influence of the range and number of modes used in
the representation of the fluid

In this section, we present the power spectral density of the flow field for different ranges
and numbers of fluid modes. The objective is to get:
• a range of modes which is wide enough to be convincingly representative of the

spectrum of fully developed turbulence,
• a number of modes large enough to cover this spectrum and still but remains

computationally tractable.

7.1.1 Range of modes

We first investigate the influence of the range of modes ]κmin, κmax[ used for representing
the fluid on the norm of the wave-numbers κn, for n ∈ [[1,Nκ]] (Eq. 6.3). When keeping
κmin = 1.m−1, the range of modes ]κmin, κmax[ is controlled by the value of κmax.
Fig. 7.1 represents the influence of the range of fluid wave-numbers, given by the value
of κmax, on a fixed number Nκ of ten modes. Asymptotes are represented in dotted lines
and κmax is represented with a lighter shade. We can see that when κmax increases, the
norm of the fluid modes κn, for n ∈ [[1,Nκ]] also increases. When κmax goes towards
infinity, each κn tends towards a fixed limit represented in Fig. 7.1 with dashed lines.
Because κNκ tends towards a finite limit when κmax goes to infinity, this means that the
range of higher wave-numbers of the range ]κmin, κmax[ not represented by fluid modes
in the KS [κNκ , κmax] diverges as κmax increases. This is perfectly consistent in terms of
energy, because the scaling of the power spectral density in κ−5/3 makes the energy of the
range [κNκ , κmax] very small. However, it has a strong impact in terms of the regularity
of the flow field because it constrains the magnitude of the higher wave-numbers.
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Figure 7.1. Influence of the range of fluid wave-numbers on the modes (here for 10 modes).
Asymptotes are represented in dotted lines, and the first bisector with a lighter shade.
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Now, let us observe the impact of range of modes ]κmin, κmax[ on the power spectral
density of the velocity of fluid parcels along their trajectory. It is represented in Fig. 7.2
for different ranges of fluid wave-numbers: 2, 10, 102, 103, 104 and 105, each represented
in a distinct sub-figure. In this figure, the number of modes in the KS is kept constant
and equal to Nκ =200. The lines in blue are computed for only one realisation of the KS
field whereas the lines in black represent an average over several KS realisations. Blue
lines are represented in order to visualise the variability of the power spectral density to
individual KS realisations. Therefore, blue lines are naturally more tortuous than their
black counterparts. For numeral tractability, each PSD is represented by the combination
of different PSD computed at different resolutions and represented by the superposition
of different lines of the same colour. It is possible to see their respective extremities
pointing out of the superposition of the other levels of resolution. It is considered that
these deviations are caused by the finite time span of the samples. In order to mitigate
this effect, the samples are convoluted by a Hann window.
We observe that as the range of fluid wave-numbers is increased, the range of velocity
fluctuation experienced by a fluid parcel also increases. When the range of fluid wave-
numbers becomes large enough, above a decade, the scaling in κ−5/3 starts to appear
clearly in the PSD. Above three decades, the scaling in κ−5/3 extends to the highest
wave-numbers of the particle trajectory at the given resolution of the particle trajectory
chosen for this figure. This is why for the following simulations, a range of four decades
is usually considered.
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Figure 7.2. Influence of the range of fluid wave-numbers (indicated above each graph
{2,10,102,103,104,105}) on the power spectral density of the velocity of a fluid parcel along
its trajectory on 240 fields in black (and of 240 particles on 1 fluid in blue) of energy 1m2.s−2

for 200 modes wave-number averaged 10 times. Graph shows the superposition of 6 PSD
of 214 points with Hann windowing of different resolutions in order to get a visualisation
of a wide spectrum range. Trajectories computed with RK4 integration and a time step of

8.10−4s.
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7.1.2 Number of modes

After having observed the influence of the range of the wave-numbers on the amplitude
of the modes and on the PSD of the flow field, let us now look at the influence of the
number of modes on the value of wave-numbers given by Eq. 6.3. Studying the influence
of the number of modes of KS as also been performed in Fung and Vassilicos (1998) and
Fung and Vassilicos (2003), although these articles are more focused on particle pair
dispersion and particle segregation respectively.
Figure 7.3 represents the influence of the number of modes on the mode wave numbers.
For this figure, the range of modes ]κmin, κmax[ is chosen as ]1,+∞[. As can be observed
on the left of Fig. 7.3 there is no convergence with the number of modes. This is better
seen on the right of Fig. 7.3 which represents the norm of the wave-number of the first
mode κ1 and the last mode κNκ according to the number of modes Nκ used for the
representation of the fluid.
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Figure 7.3. On the left: Influence of the number of modes on the mode wave numbers
with κmax = ∞. In full lines with symbols are the nth modes, whereas in dotted lines are

the Nκ-nth modes. Only modes with an index multiple of 10 are represented here.
On the right: Influence of the number of modes on the mode wave numbers with κmax =∞.
Here are only represented the first mode (in continuous black line) and the last mode (in

dashed grey line).

Similarly to the Fig. 7.2, Fig. 7.4 represents the PSD of the velocity of fluid parcels
along their trajectory. It is represented in Fig. 7.4 for different numbers of fluid modes:
respectively 1, 4, 10, 25, 50, 100 and 200, each represented in a distinct sub-figure. In
this figure, the range of modes in the KS is kept constant and equal to as ]κmin, κmax[ =
]1,+∞[. The lines in blue are computed for only one realisation of the KS field whereas
the lines in black represent an average over several KS realisations.
We observe that for a very low number of modes (1, 2, 4), the shape of the PSD is
difficult to converge. As the number of fluid wave-numbers is increased, from 10 modes
onwards, the scaling in κ−5/3 appears more clearly. Simultaneously, the range of velocity
fluctuation experienced by a fluid parcel also increases and the scaling in κ−5/3 extends
well into the higher frequencies of the PSD. The PSD are more oscillatory at high wave-



102 CHAPTER 7. CHARACTERISATION OF THE BEHAVIOUR OF THE FLUID

numbers because they are much sparser as the wave-number increases. For 50 modes,
the scaling in κ−5/3 already extends over more than two decades. This is why for the
following simulations, we will always consider sets of modes with at least 20 modes in
them. This means that in order conduct an analysis of the EMEF for with different
percentages of fluid energy resolved, by steps of 10% of the total energy, we consider an
overall KS with a total of 200 modes.
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Figure 7.4. Influence of the number of fluid modes (indicated above each graph
{1,4,10,25,50,100,200}) on the power spectral density of the velocity of a fluid parcels along
its trajectory on a fluid of energy 1m2.s−2 wave-number range between 1m−1 and 104m−1

averaged 10 times. In black lines, a particle on 240 different fluids. In blue lines, PSD of 240
particles on one fluid realization. Graph shows the superposition of 6 PSD of 214 points with
Hann windowing of different resolutions in order to get a visualisation of a wide spectrum

range. Trajectories computed with RK4 integration and a time step of 8.10−4s.
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7.2 Fluid representation and scrambling behaviour

Definition 23. We consider that the flow field is scrambling for particles of finite
inertia when:
• particle trajectories are sensible to initial conditions on this flow field,
• and particle trajectories are diffusive for long times.

These two properties are expected from turbulent flows (Taylor (1921), Farge (1992))
and impact the results presented in Chap. 9. Therefore, we investigate the influence of
the number and the range of modes of the KS on these aspects. This chapter is only
about the fluid, hence, the results presented in this section only focus on fluid particles.
Results about inertial particles are presented in the next chapter.
In the case where the fluid is limited to only one mode, the case is one-dimensional, and
not scrambling (Goudenège, Larat, Llobell, Massot, Mercier, Thomine, and Vié (2019)).
As the number of mode increases, the flow becomes more and more intricate. It is
expected that it can lead to a scrambling behaviour (as in Fung and Vassilicos (1998)
for instance).
It is interesting to note that an alternate strategy to scrambling could have been to
work with Arnold-Beltrami-Childress flow (ABC flow), which is known to be chaotic,
and use it as a base element of kinematic simulations instead of simple sines. How-
ever, it has a super-diffusive behaviour which is not consistent with standard diffusive
characterisations of turbulence. Therefore, we stick to standard KS for this work.
In order to find an adequate number of modes in the KS to get a diffusive behaviour of
the particles, Fig. 7.5 presents the dispersion of tracers for different numbers of modes.
Let us first present the figure and analyse the results observed. On the left of Fig. 7.5,
logarithmic scales are chosen in order to distinguish the different regimes of the dispersion
of the disperse phase. In this figure, three regimes can be observed:
• In the first regime (approximatively from 0s to 1s), dispersion is quadratic with

time. This corresponds to a time when the motion of the tracers is still correlated
to their initial velocity. It corresponds to the short time transport behaviour. From
this figure, we deduce that this regime is not affected by the number of modes of
the KS.

• After 1s, particles start to be dispersed at a linear rate. A linear dispersion rate
is characteristic of diffusion. It corresponds to an erratic motion of the particles.
Particle motion is not correlated to their initial state any more. This is exactly
the kind of behaviour we are expecting from turbulence and that we are looking
for in these KS.
Observing Fig. 7.5, it appears that the time span of this regime is directly impacted
by the number of modes of the fluid. When the fluid is represented by a very low
number of modes (1, 2 or 3), diffusion is quasi non-existent. As the number of
fluid modes increases (from 7 onwards), the diffusion regime exists for a longer
time span. This behaviour is well understood when considering that the diffusion
regime is representative of the erratic movements of the flow. When the fluid is
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made of a low number of modes, its field is very simple, structured and correlated;
far from scrambling. The fluid velocity seen by the particles is not intricate enough
to lead to convincing diffusion. As the number of fluid modes increases, it resembles
more and more closely a field which could lead to decorrelated motions. Therefore,
the fluid particles tend to behaves as such for longer time spans.

• The last dispersion regime observed is again quadratic in time (transport), and lasts
forever. From Fig. 7.5, its behaviour is also clearly a function of the number of fluid
modes involved. As the number of modes increases, it appears later. Nonetheless,
whatever the number of fluid modes tested, it is always present. This means that
there is always a tiny amount of the particle energy which is correlated along the
particle trajectory. Transport always becomes predominant with time, no matter
how small its magnitude is, relative to the actual particle velocity. This is because
correlation in time along a particle trajectory leads to a quadratic effect on the
measure of dispersion represented in Fig. 7.5, as opposed to diffusion which is
linear. This final transport regime is at a scale much larger than the largest scales
of the flow. To our current knowledge, it is not referenced in the literature nor of
interest for practical applications. Therefore, it is not the object of study of this
work, which focuses mostly on the first two dispersion regimes: initial transport
and diffusion. In the following, we take a number of fluid modes high enough so
that during the timespan of observation, only the first two regimes are present:
transport followed by diffusion.

The right of Fig. 7.5 represents exactly the same quantities as the left side, but with
linear scales. This figure is here to stress out that although on the left of Fig. 7.5, the
regimes of dispersion get closer to one-another as the number of fluid modes is increased,
the actual dispersion does not converge as illustrated on the right of Fig. 7.5. Therefore,
in the following, when studying models, each comparison will be done on the basis of
one fluid representation, with a given number of modes.
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Figure 7.5. Evolution of the average dispersion of Np=1024 fluid parcels over 1200 different
fluids of different number of modes Nκ (indicated on the graph) between κmin = 1 m−1 and
κmax = 105 m−1, for a constant total fluid energy. Time step integration of dt=10−4s.

Fluid parcel motion can sometimes be characterised by an autocorrelation time along
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their trajectories.

Definition 24. When the integral of the autocorrelation of the particle velocity

RV p (t) =
1

Var [V p]

∫ t

t0

E [V p(s)V p(t0)] ds (7.1)

has a finite limit when t goes to +∞, this finite limit is called autocorrelation time.

This autocorrelation time gives the average time it takes for a fluid parcel to be entirely
uncorrelated from its initial velocity. It is the characteristic time of diffusion. For more
on this measure and related concepts, one can have a look at Pope (2000), Appendix E
and F.
In the case chosen here, we have already seen in Fig. 7.5, representing the dispersion of the
particles by the flow field, that the final diffusion regime is always transport, which means
that fluid particles always stay correlated to their initial state, although the magnitude
of this correlation decreases as the number of modes in the KS increases. Therefore, the
autocorrelation time of such fluid particles is not well defined (it is infinite).
In spite of these strict and theoretical considerations, let us nonetheless observe the
autocorrelation of the velocity of fluid parcels along their trajectory. This quantity is
represented in Fig. 7.6 for different numbers of modes: 1, 2, 4, 10, 25, 50, 100 and 200.
The autocorrelation represented in Fig. 7.6 is simply computed as the inverse Fourier
transform of the PSD in Fig. 7.4. We observe in Fig. 7.6 that the autocorrelation starts
at 1, decreases rapidly, and then converges to a strictly positive constant in all the
cases. Therefore, RV p diverges as t goes to +∞ (Fig. 7.7). This is the reason why the
autocorrelation time has no meaning in this case in the strict sense.
Even when the fluid is represented by 200 modes, RV p diverges (Fig. 7.7).
However, the speed of this divergence is directly related to the number of modes in the
fluid (left of Fig. 7.8).
On the right of Fig. 7.8 (and also in Fig. 7.7), it is possible to identify two behaviours
in the evolution of RV p (t). The first one starts at t = 0s and is marked by a very
strong increase for t = 0.25s. After 0.25s, there is a breaking point and RV p (t) increases
linearly at a slower pace. This change in behaviour corresponds to the time when RV p (t)
converges towards a constant positive value (Fig. 7.8). This is a characteristic time of
the fluid. It corresponds to the time when the dispersion regime changes from transport
to diffusion.
The impact of the range of fluid modes in the temporal evolution of RV p (t) is repre-
sented in Fig. 7.9. This figure shows that the value of RV p (t) at the breaking point
converges when increasing the range of wave-numbers for the modes representing the
fluids. Therefore, this characteristic time of the fluid converges as the fluid range of
representation increases.
The section was the opportunity to observe the scrambling characteristic of the flow
from a frequency perspective. The results corroborate the observation of the previous
section which focused on diffusion. We observe that strictly speaking, the particles have
an infinite autocorrelation time. The divergence of RV p (t) with time is slower as the
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number of modes increases. However, form a physical perspective, it is reasonable to
consider that it is possible to define a time characteristic of the autocorrelation of the
fluid particle velocity. The value of this time is around 0.25s for 200 modes (Fig. 7.7).
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Figure 7.6. Influence of the number of fluid modes (indicated above each graph
{1,2,4,10,25,50,100,200}) on the autocorrelation of the velocity of a fluid parcels along their
trajectory on a fluid of energy 1m2.s−2 wave-number range between 1m−1 and 104m−1 aver-
aged 10 times. Graph shows the superposition of 6 autocorrelation of 214 points with Hann
windowing of different resolutions in order to get a visualisation of a wide range. Trajecto-
ries computed with RK4 integration and a time step of 8.10−4s. For statistical consistency,

autocorrelation of a particle on 240 different fluids is averaged.
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visualisation of a wide range. Trajectories computed with RK4 integration and a time step
of 8.10−4s. For statistical consistency, autocorrelation of a particle on 240 different fluids is
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Figure 7.9. Evolution of the quantity RV p against time, for different range of fluid modes
(κmax/κmin ∈

{
3, 10, 102, 103, 104, 105

}
) represented by 200 modes. On the right curves

are increasingly shifted on the x-axis with to the number of fluid modes, in order to get
a better visualisation of the breaking point. Graph shows the superposition of 6 curves of
different resolutions in order to get a visualisation of a wide range. Trajectories computed
with RK4 integration and a time step of 8.10−4s. For statistical consistency, autocorrelation

of a particle on 240 different fluids is averaged.
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7.3 Convergence and scaling in the inertial range

The frequency content of a turbulent flow can be divided into three ranges: energy
containing range, inertial range and dissipation range (Pope (2000), Fig. 6.1). In this
study, the main focus is on the inertial range because
• it is assumed universal (contrarily to the energy containing range),
• it represents most of the universal range (made of the inertial and of the dissipation

range) for high Reynolds numbers. In the limit of infinitely high Reynolds numbers
(fully developed turbulence), the universal range only consists of the inertial range:
the dissipation range disappears.

The inertial range has some invariant properties across scales (similarly to a fractal ob-
ject). For more on fractals, one can refer to Bishop and Peres (2016). This auto-similarity
properties make the inertial range very interesting and at the same time difficult to deal
with. Recent studies characterise these scaling more precisely with multi-fractal descrip-
tions in order to take into account effects such as intermittency (Mandelbrot (1974),
Frisch and Parisi (1985), Meneveau and Sreenivasan (1987)). For this study, we will
first start by working with a simple fractal description of the inertial range following
Richardson (1922). With this description, the energy spectrum density of the inertial
range scales as E (κ) ∝ κ−5/3, κ ∈ [κEI , κID] and its velocity fields scales as:

‖uf (t,x1)− uf (t,x2)‖ ≤ C ‖x1 − x2‖
1
3 , κEI < ‖x2 − x1‖−1 < κID, (7.2)

with C a real constant. These scaling are only limited to the inertial range. They lead
to characteristic behaviour. For instance, the temporal evolution of the mean square
distance between two fluid elements is cubic in the inertial range (Fung and Vassilicos
(1998), Eq. 1). This is verified in the KS chosen in this work.
Fig. 7.10 presents the temporal evolution of the mean square distance between two
fluid elements for different numbers of fluid modes (left) and for different ranges of fluid
modes (right). It is indeed possible to observe a range of times for which the mean square
distance between two fluid elements scales as the cube of time. However, observing this
regime requires to have a sufficient number of modes (at least 100) and a sufficiently
large mode spanning (over 104). The terminal regime seems not strongly affected for the
time span we have observed here.
When the Reynolds number becomes infinite (Onsager (1949)), the dissipation range
disappears and the velocity field becomes 1/3-Hölder continuous. For reference, standard
Brownian motion is 0.5-Hölder continuous. To get a better feeling of what a 1/3-Hölder
continuous velocity field means, Fig. 7.11 represents sample paths of processes with
regularity.
These processes should be compared with actual particle trajectories Fig. 7.12.
Almost-all trajectories of such a 1/3-Hölder continuous process are locally Hölder con-
tinuous. However, they are almost nowhere differentiable. Thus, they cannot be the
strong solution of a partial differential equation (such as Navier-Stokes equations for
instance). For comparison, bounded differentiable functions are 1-Hölder continuous,
which is more regular (or smooth) than 1/3-Hölder continuous functions. As explained



112 CHAPTER 7. CHARACTERISATION OF THE BEHAVIOUR OF THE FLUID

10−10

10−5

100

105

1010

10−3 10−2 10−1 100 101 102 103

10−10

10−5

100

105

1010

10−3 10−2 10−1 100 101 102 103

E
[ ‖X

p
,i
(t

)
−
X

p
,j

(t
)‖

2
] (m

2
)

Time (s)

t3

t
0.1

1

10

100

1000

N
u
m

b
er

of
fl

u
id

m
o
d
es

E
[ ‖X

p
,i
(t

)
−
X

p
,j

(t
)‖

2
] (m

2
)

Time (s)

t3

t
1

10

100

1000

10000

100000

1× 106

W
av

en
u
m

b
er

ra
n
ge

(κ
m

a
x
/
κ

m
in

)

Figure 7.10. Left: Temporal evolution of the mean square distance between two fluid
elements for different numbers of fluid modes (Nκ ∈ {1, 2, 3, 7, 10, 18, 32, 56, 100, 178, 316})
on a range κmax/κmin = 105. Distance between 1024 parcels initially in a cube of length

10−5m, averaged over 1200 fluids.
Right: Temporal evolution of the mean square distance between two fluid elements for
different ranges of fluid modes (κmax/κmin ∈ {3, 10, 102, 103, 104, 105}) represented by 200
fluid modes. Distance between 1024 parcels initially in a cube of length 10−5m, averaged

over 1200 fluids.

in Falkovich, Gawedzki, and Vergassola (2001), Chap. II.C.2, it is difficult to consider
deterministic particle trajectories in this case. This is due to a problem of limits referred
to as spontaneous stochasticity and that we propose to briefly sketch out in the following
lines (Eyink (2008), Chap. 5d).
Let us take a characteristic example of spontaneous stochasticity which deals with the
dispersion of the law of one particle in turbulence. Let us consider that the particle
has an initial probability distribution bounded in space. Whenever the support of the
distribution is initially non-singular, it gets extended by turbulence. Here, two limits
are of specific interest.
• The limit of fully developed turbulence (Re →∞).
• The limit when the diameter of the law goes to 0 (Dirac distribution).

If one considers first the limit of the particle law to a Dirac distribution, one gets the
deterministic trajectory of one particle in a turbulent field with a finite Reynolds number.
Taking afterwards the limit Re →∞ is not expected to change the deterministic nature
of the trajectory of this particle.
However, if we do the opposite and start by considering the action of fully developed
turbulence on the law of one particle with a finite extension, it always gets dispersed by
turbulence, whatever the initial finite size of the law. Therefore, considering the limit of
a law of size zero (Dirac distribution) can difficultly lead to a deterministic trajectory.
This is the concept of spontaneous stochasticity, where the initial Dirac distribution of
a particle gets dispersed by the low regularity of fully developed turbulence.

Both limits are physically consistent. In order to avoid conceptual difficulties, the work
done here is presented as much as possible without taking any of the above-mentioned
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Figure 7.11. Illustration of the concept of regularity with sample paths of fractional
Brownian motion with different values of the Hurst exponent H. They intend to represent
different levels of Hölder continuity as a fractional Brownian motion admits a version whose
sample paths are almost surely Hölder continuous of order strictly inferior to its Hurst

exponent.
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limits. Most computations will only involve statistical properties of the particles, where
spontaneous stochasticity does not present any conceptual difficulties. The law of the
particles is described with an initial law of finite extension and the fluid is represented
with a high but finite Reynolds number. The choice of working with a finite Reynolds
number is actually imposed by the finite resolution inherent to the numerical represen-
tation of the fluid as a finite set of modes.
When computing individual particle trajectories, the number of modes representing the
synthetic fluid and the range of these modes is fixed. Then the time step is decreased
in order to get converged deterministic particle trajectories. Thus, by first setting the
fluid field, and then decreasing the time step, particles are confronted with a continuous
velocity field which is not 1/3-Hölder continuous at the time scale of integration. This
prevents spontaneous stochasticity. This deterministic behaviour is consistent with what
would be obtained for a finite Reynolds number turbulence, where the inertial range is
bounded (by the dissipation range).

Highlights and conclusions

In this chapter, we have observed the influence of the number of modes and the
range of these modes on the characteristics of the flow field given by KS. After
studying the behaviour of fluid parcels through different angles:
• the PSD and the autocorrelation of their velocity,
• and their one and two-points dispersions,

we have found that a fluid of 200 modes spread across four decades allows to get:
• a PSD with a convincing scaling in κ−5/3 extending over a wide range and

easy to converge,
• interesting regimes of transport and diffusion of the fluid parcels.

It was shown that whatever the number of modes in the KS, the velocity of fluid
particles always keeps a positive level of correlation with itself leading to a long
time transport behaviour of the dispersion of the particles. For what is commonly
described in the literature about turbulence we would not expect this regime to
exist. Therefore, in the following, we chose to focus our study on time ranges
which do not involve this last transport regime.



Chapter 8

Particle trajectories

In the previous chapter, we have studied the effect of the parameters of the KS on the
properties of the resulting flow field. We have seen that for 200 modes spread across
4 decades, the KS shows very interesting properties such as a wide PSD following the
inertial scaling of turbulence described by Kolmogorov and a clear diffusion regime.
Because we want to study the statistical description of inertial particles in turbulent
flow, this section focuses more on the convergence of the description of inertial effects
and on the impact of inertia on the dynamics of the disperse phase.

We start by studying the numerical convergence with respect to the integration time-
step.
• We present first the convergence of an individual particle trajectory,
• before looking at the convergence of averaged quantities such as the PSD and

particle velocity variance.
After having presented the convergence of the numerical integration scheme, we present
the convergence of statistical estimators such as the particle position variance in the
dimension of the particles and in the dimension of the fluids.
In numerical simulations, ensuring the convergence of the quantities of interest is very
standard. The specificity of this work is that the number of different quantities to
converge in order to ensure convincing results is quite large:
• As seen in the previous chapter, the number of fluid modes has to be large enough

to obtain diffusion.
• As presented in this chapter, the time step has to be small enough for numerical

integration,
• the number of inertial particles has to be large enough for statistical convergence,
• and the number of fluids has to be large enough for statistical convergence.

The main difficulty is that each dimension impacts the others. Changing the number
of fluid modes changes the frequencies of the flow, thus the resolution needed for tem-
poral integration of particle trajectories. However, because the fluid is better defined
with more modes, it decreases the number of fluids and particles required for statistical
convergence. Therefore, convergence has been approached as an iterative process in this

115
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work. This coupled process is not highlighted in this manuscript, because for clarity, we
have chosen to always present the results of convergence along one dimension with all
other dimensions already converged.
The high dimensionality of the space involved by this configuration has rapidly required
the development of a MPI code in order to tackle the computations needed. This code
has already been presented in Chap. 6.

The second section of this chapter is dedicated to the impact of inertial on the behaviour
of the particles. We present how particle variances and PSD are affected by inertia.
Having these scaling in mind is important because the results presented in the following
chapters only consider one inertia of reference.

8.1 Convergence of particle trajectory with numerical time
step

Let us present the convergence of particle trajectories with the numerical integration
time-step. It has been seen in the previous section (Sec. 7.3) that the limit behaviour
of a point density on a fractal field is not very clear. The auto-similar energy spectrum
is discretized by a finite number of smooth modes (Sec. 6.1). Therefore, the fluid is
represented by a smooth field (consistent with the smallest scales of turbulence in the
limit of the hydrodynamic regime). Let us observe convergence of particle trajectories
with respect to numerical integration time step on this smooth field.

8.1.1 Error on the final particle position

This section focuses on the deterministic convergence with the integration time step of
one particle trajectory on one fluid field.
Fig. 8.1 presents particle trajectories integrated with a fourth order Runge-Kutta scheme
(Hairer, Nørsett, and Wanner (1987), Ch. II) for different integration time steps accord-
ing to equation Eqs. 2.1. The fluid velocity along the trajectory is computed analytically
(more on the expression of the fluid Sec. 6.1).
As explained in the previous section (Sec. 7.3), each fluid realization is smooth, with
a finite maximum wave-number and frequency. This is the direct consequence of its
representation by a finite sum of smooth modes. On this smooth field (curvature bounded
by L), for any finite time T > 0, the error E := ‖xp,∆t (T )− xp (T )‖ on each particle
trajectory is expected to converge to zero as the integration time step ∆t goes to zero
(Hairer, Nørsett, and Wanner (1987), p. 160, Th. 3.4), with C a positive constant:

‖E‖ ≤ ∆t4
C

L
(exp (LT )− 1) . (8.1)

However, given a particle and a fluid field, for any integration time step ∆t1 > 0 (even
two orders of magnitude smaller than the smallest time scale of the flow in Fig. 8.1),
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for any positive number B1 > 0, there is a time T1 > 0 for which the position of the
numerical particle xp,∆t1 (T1) cannot be guaranteed to be less than B1 away from the
position of the exact particle xp (T1): ‖xp,∆t1 (T1)− xp (T1)‖ � B1 (Hairer, Nørsett, and
Wanner (1987), p. 160, Th. 3.4). The reasoning is valid for any numerical integration
scheme when the integrated numerical error of the numerical scheme becomes larger
than Kolmogorov scale after some finite time.
If one wants to assess the long time behaviour of particles (for diffusion regime of fluid
parcels for instance, see Sec. 1.3.1.1), the cost of point-wise convergence can become
astoundingly expensive. However, for such long times, one may not be interested in the
actual position of each particle, but on the statistical properties of some particular be-
haviour (Février, Simonin, and Squires (2005)). It is key to observe how these quantities
of interest converge with the time step (Sec. 8.2). This is what is done in the following
sections. Aside from the mere practical ease, such a strategy is all the more relevant with
respect to the previous section (Sec. 7.3) which illustrates the difficulty of considering a
point particle by itself, without any statistical treatment.
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Figure 8.1. Time evolution of one velocity component of one particle trajectory for different
integration time steps (in the legend) on one synthetic fluid. Time integration with analytical
evaluation of the fluid velocity and Runge-Kutta scheme of order four. Relaxation time
constant of the particle τp = 1s. Synthetic fluid of 200 modes between κmin = 1.m−1 and
κmax = 100m−1. The fluid realization represented in the figure has 3.9 10−4s−1 < 1

2πωi <
2.7 10−1s−1, and 1.1 101s−1 < |κi|/|ai| < 8.7 104s−1, i ∈ [[1,Nκ]].
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8.1.2 Metrics for stationary processes

As seen previously (Eq. 8.1) no finite time step can guarantee that a particle trajectory is
within a given error bound for arbitrarily long times. In Fig. 8.1, the particle trajectory
drifts away as time increases, no matter how small the time step. For a constant error
bound, as the time horizon increases, the time step rapidly decreases and the compu-
tational cost skyrockets (Fig. 8.5). Therefore, convergence based on particle position is
quite impractical for asymptotically long time simulations. Furthermore, one may not
be particularly interested in the precise position of one particle (which meaning can be
questioned in this context, Sec. 7.3) but rather on statistical properties of particle trajec-
tories. It is crucial to ensure that these statistical properties are converged, whether the
actual particle trajectories are themselves converged or not. In permanent regime, one
important physical property of a particle trajectory the reproduction of its frequency
content. Here, we associate this property to the term resolved. A numerical particle
trajectory is said well resolved when its frequency content is well reproduced and poorly
resolved in the alternate case.
Fig. 8.2 represents the Fourier transform of one particle trajectory for different integra-
tion time steps. The simulation setup is the same as the one of Fig. 8.1. It is clearly seen
(Fig. 8.2) that as the time step is decreased from 10−1s to 10−2s, more physical elements
of the trajectory frequency spectrum are recovered (steadily decreasing energy spectrum
on the left side of the graph). However, as one decreases the time step further (from
10−4s to 10−5s for instance), the increase in the energy of the signal recovered becomes
negligible. This increase in the numerical cost of the simulation improves the precision
of the particle position, but it does not add any physics to the frequency content of its
trajectory. Thus, in this case, the physical properties of the trajectory can be assumed
to be well resolved for a time step of 10−3s or even 10−2s, even though these time steps
do not ensure a converged trajectory for arbitrarily long times.

If one has a specific metric in mind, convergence can be even faster. For instance, one
can observe in Fig. 8.3 the velocity variance of one component of one particle trajectory
for different integration time steps. Even though the trajectory does not have all the
frequency content expected from the converged case, as with an integration time step of
10−1s for instance (for the frequency content, see in Sec. 8.2), a given metric of interest
can be already converged (see Fig. 8.3).
Based on these results, in this work, convergence is assessed for each result with respect
to the specific metric studied.
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Figure 8.2. PSD of a particle velocity trajectory on a fluid for different integration time
steps (10−1,10−2,10−3,10−4,10−5). Time integration with analytical evaluation of the fluid
velocity and Runge-Kutta scheme of order four. Relaxation time constant of the particle
τp = 1s. Synthetic fluid of 200 modes between κmin = 1.m−1 and κmax = 100m−1. The fluid
realization represented in the figure has 3.9 10−4s−1 < 1

2πωi < 2.7 10−1s−1, and 1.1 101s−1 <
|κi|/|ai| < 8.7 104s−1, i ∈ [[1,Nκ]]. Fourier transform was performed on the signal, with
Hann windowing, between times t = 10 τp and t = 100 τp so as to focus on the long time

permanent regime. 100 PSD of the same particle trajectory are averaged in the plot.
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Figure 8.3. Velocity variance of one component of one particle trajectory according to the
integration time step on one synthetic fluid. Time integration with analytical evaluation of
the fluid velocity and Runge-Kutta scheme of order four. Particle time relaxation constant
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8.1.3 Numerical convergence of average quantities

Previous results were on the trajectory of only one particle on only one fluid. However,
in the context of this work, several particle evolutions are computed on several fluids
taken at random on a distribution of fluids (defined in Sec. 6.1). Although each fluid
is smooth with a fixed maximum frequency, pulsations (ωn)n∈[[1,Nκ]] are taken from a
centred normal distribution. Thus, for n ∈ [[1,Nκ]], whatever B2 > 0, it is sure that
among all possible fluids, an infinity of fluids has modes with pulsations higher than
B2: P (ωn > B2) > 0. In other words, although for each fluid, the frequency range is
bounded, the frequency range of the set of fluids is unbounded. As the error on particle
trajectory is directly dependant on the fluid frequency, this implies that for any number
B3 > 0 and for any positive time interval T3 > 0, there is no time step ∆t3 > 0 small
enough to ensure that ‖xp,∆t3 (T3)− xp (T3)‖ ≤ B3 for all fluids.
In this spirit, Fig. 8.4 treats convergence as a statistical quantity. It is different from
Fig. 8.1 where only one particle trajectory is computed on one fluid. For different
integration time steps, Fig. 8.4 presents the percentage of particle trajectories which
have always been at less than 1/κmax = 0.01m away from the trajectory computed with
a time step of dt0 = 0.004s. This figure is to understand with the assumption that
the trajectory computed with time step of dt0 = 0.004s is close to the exact trajectory
(which is consistent with the results presented in Fig. 8.1).
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Figure 8.4. Time evolution of the percentage of particle trajectories which have always been
at less than 1/κmax = 0.01m of the trajectory computed with time step of dt0 = 2.10−5s,
for different integration time steps. Computed for a particle on 1024 different fluid flows.
Time integration with analytical evaluation of the fluid velocity and Runge-Kutta scheme
of order four. Particle time relaxation constant of τp = 1s. Synthetic fluid of 200 modes

between κmin = 1.m−1 and κmax = 100m−1.

Similarly to the deterministic case, it is possible to consider different metrics in a statis-
tical setting (Fig. 8.5). One still observes that the convergence drastically depends on
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the metric observed. For instance, Fig. 8.5 which represents the variance in position of
one particle for 219 different initial positions on one fluid is converged for dt=0.1s, on a
time span of 40 s, although Fig. 8.4 clearly shows that for this time resolution, a signifi-
cant proportion of individual particle trajectories differ from the converged trajectories
as soon as t =4s. The metrics represented in Fig. 8.5 start to diverge as the integration
scheme becomes of the scale of the largest scales of the system (∆t=1s). The velocity
of the particles is very badly represented (on the right of Fig. 8.5, the particle velocity
variance is under-estimated) and this has a direct impact on the relative dispersion of
the particles (on the left of Fig. 8.5) which is slower than for converged computations.
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Figure 8.5. Time evolution of the variance in position of 219 particles on one fluid for
different integration time steps. Time integration with analytical evaluation of the fluid
velocity and Runge-Kutta scheme of order four. Particle time relaxation constant of τp = 1s.

Synthetic fluid of 200 modes between κmin = 1.m−1 and κmax = 100m−1.

8.2 Statistical convergence

Previous section (Sec. 8.1) is focused on convergence with the numerical integration time
step. This section focuses on statistical convergence.
The concept of statistical convergence is very important when working with a phe-
nomenon modelled as a random variable (or with some numerical/experimental results
one wants to consider as a random variable). For a reference on Statistics, one can have
a look at Freedman, Pisani, and Purves (1978) for instance. For estimating a property
(referred to as a parameter) of this random variable one can try to design a sequence of

estimators
(
θ̂n

)
n∈N

. An estimator is a statistic (function of the sample data). One of the

key desired properties of the sequence of estimators is that they converge in probability
towards the parameter θ one wants to estimate. This is called consistency:

lim
n→∞

P
(∣∣∣θ̂n − θ∣∣∣ < ε

)
= 1, ∀ε > 0. (8.2)
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In this section, the random variable taken as an example is the particle position X(t).
The parameter chosen for illustration is the particle position variance. What is inves-
tigated in this section is how estimators of particle position variance converge and give
a satisfactory result. The expression of the sample variance of the particle position is
computed as:

V̂ar
N̂p,N̂f

(t) =
1

N̂
N̂p,N̂f

N̂f∑
f=1

N̂p∑
p=1

3∑
i=1

(
[Xi (t)−Xi (0)]− M̂ean

N̂p,N̂f
(t)
)2
, (8.3)

with

M̂ean
N̂p,N̂f

(t) =
1

3 N̂p N̂f

N̂f∑
f=1

N̂p∑
p=1

3∑
i=1

[Xi (t)−Xi (0)] , (8.4)

Xi(t) the component along the direction i of the position X(t) at time t, and

N̂
N̂p,N̂f

= max
(

1, 3 N̂p − 1
)

max
(

1, N̂f − 1
)
, (8.5)

N̂p > 0 and N̂f > 0.
This expression gives an isotropic measure of the dispersion. With the sample variance
V̂ar

N̂p,N̂f
, one wants to compute the limit as N̂p and N̂f go to infinity. Fig. 8.6 illustrates

the dependency of V̂ar
N̂p,N̂f

on N̂p and N̂f . It represents the convergence of sample

variance (Eq. 8.3) with respect to N̂p, for N̂f = 1 on the left and with respect to N̂f , for

N̂p = 1 on the right.

• On the left, we observe convergence with N̂p. Lines are superposed when N̂p >
1000. Interestingly, the initial behaviour is uneven. This is because convergence
is done with only one fluid. It is the trace of the temporal evolution of the fluid
itself.
• On the right, we observe convergence with N̂f . Lines are superposed when N̂p >

100. Convergence is much faster than when working with particles on the same
fluid. Furthermore, the evolution of the converged variance is initially much
smoother and satisfactory with respect to what is expected from theory (Taylor
(1921)).
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Figure 8.6. On the left: Time evolution of the variance of the dispersion of one particle
starting on different fluids. Time integration with analytical evaluation of the fluid velocity
and Runge-Kutta scheme of order four, with time step of 0.1s. Particle time relaxation
constant of τp = 1s. Synthetic fluid of 200 modes between κmin = 1.m−1 and κmax =

105m−1.
On the right: Time evolution of the dispersion of one particle for different samplings of
the initial positions law (in the legend) on one fluid. The initial position law of the par-
ticle is uniform in a cube of 10−15 m3. Time integration with analytical evaluation of the
fluid velocity and Runge-Kutta scheme of order four, with time step of 0.1s. Particle time
relaxation constant of τp = 1s. Synthetic fluid of 200 modes between κmin = 1.m−1 and

κmax = 105m−1.

8.3 Influence of the Stokes number

In this section, let us investigate the relation between the fluid and the particles.
Fig. 8.7 shows the impact of the particle inertia on second order moments of an ensemble
of inertial particles. As observed on the left figure, inertia does not change asymptotic
dispersion behaviours. The initial transport behaviour and the final diffusion evolution
are unchanged. The only impact is on the transition between these two regimes which
happens later for high inertia particles which manifest a resonance between transport and
diffusion regimes. This resonance corresponds to the increase of the ballistic time with
particle inertia. This is confirmed when observing the left of Fig. 8.8, which shows an
affine evolution for particle dispersion of any inertia. Furthermore, the linear coefficient
is the same for any inertia (plotted on the right of Fig. 8.8). This result is also observed
in the model proposed by Reeks, Swailes, and Bragg (2018). However, the offset of the
dispersion observed in Fig. 8.8 changes according to inertia. This is readily explained by
the duration of the ballistic regime which differs with particle inertia (see the resonance
Fig. 8.7).
Fig. 8.7 also presents the impact of particle inertia on the temporal evolution of the
velocity variance. It is shown to have two major impacts :
• one on the long time asymptotic value of particle velocity variance,
• the other on the characteristic time associated with the temporal evolution of the

velocity variance.
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Figure 8.7. Evolution of second order moments of Np=1024 particles averaged over 1200
different fluids of 200 modes Nκ between κmin = 1 m−1 and κmax = 105 m−1, with relaxation
time τp. On the left, relative position variance, and and on right, velocity variance. Particle
time relaxation constant of τp indicated in the graphs. Maximal integration time step of
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Figure 8.8. On the left, evolution of the relative position variance of Np=1024 par-
ticles averaged over 1200 different fluids of 200 modes Nκ between κmin = 1 m−1 and
κmax = 105 m−1. Particle time relaxation constant of τp indicated in the graphs. Maxi-
mal integration time step of dt=0.01s. On the right, slope of the relative position variance

according to particle inertia τp.

Let us now briefly review these impacts.
Fig. 8.9 presents the asymptotic value of the particle velocity variance according to par-
ticle inertia on the left. It is seen on the left of Fig. 8.9 that the asymptotic value of
particle velocity variance decreases steadily as the particle inertia increases. The average
velocity variance of the particles along their trajectory is the same as the velocity vari-
ance of an ensemble of particles taken at a given time. This is a very strong property. It
is consistent with the scrambling behaviour of particle trajectories on the fluid. One par-
ticle trajectory is somehow representative of all the particle trajectories possible on the
fluid. Furthermore, particle velocities are not correlated with fluid velocity realizations
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(to the limitation of the tiny residual correlation measurable Fig. 7.9).
Otherwise, the two variances would be different, as it can be seen by applying the law
of total variance Eq. 8.6 (the term Var [E [V p |Af ]] has to be very small).

Var [V p] = E [Var [V p |Af ]] + Var [E [V p |Af ]] (8.6)

Remarkably, the fluid velocity variance seen by particles is insensitive to particle inertia
(on the right of Fig. 8.9).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.1 1 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.1 1 10

P
ar

ti
cl

e
v
el

o
ci

ty
va

ri
an

ce
(m

2
.s
−

2
)

Particle inertia (s)

F
lu

id
va

ri
a
n
ce

se
en

b
y

th
e

p
ar

ti
cl

es
(m

2
.s
−

2
)

Particle inertia (s)

Figure 8.9. Second order moment of particle velocity (on the left) and of fluid velocity seen
by particles (on the right) according to inertia computed along particle trajectories (black

+) and for a ensemble of particles on an ensemble of particles (grey x).

The second aspect is the characteristic time of particle velocity variance fluctuations. In
Fig. 8.10 which represents on the left the particle velocity autocorrelation with respect
to particle inertia, it is seen that inertia increases particle velocity autocorrelation. We
recover well the scaling proposed by Tchen (1947) and Hinze (1975) (also in Zeren (2010))
(Eq. 8.7):

τv ' τp + τu. (8.7)

Namely that the particle velocity autocorrelation time is close (in a sense let to the
appreciation of the reader) to the sum of the particle relaxation time and of the auto-
correlation time of the fluid seen by the particles. Interestingly, inertia has no impact on
the fluid velocity seen by the particles autocorrelation time (on the right of Fig. 8.10).
The particle velocity variance and the particle velocity autocorrelation time are one point
statistics which allow the estimation of the asymptotic diffusive behaviour of the parti-
cles. Fig. 8.11 represents the asymptotic dispersion observed in Fig. 8.8, alongside the
asymptotic dispersion estimated exclusively with particles velocity and autocorrelation
time. This property is very useful for building models. Indeed, if the model respects
the particle energy and the particle autocorrelation time, it is bound to give the correct
asymptotic diffusion.
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Figure 8.10. Autocorrelation of particle velocity (on the left) and of fluid velocity seen by
particles (on the right) according to inertia computed.
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Figure 8.11. Asymptotic dispersion observed Fig. 8.8 alongside the asymptotic dispersion
estimated with particles velocity and autocorrelation time.

Fig. 8.12 shows the transfer function vision of the signal experienced by the particles
following Hinze (1975). From top to bottom are represented on Fig. 8.12 the power
spectral density (PSD) of the fluid velocity seen by the particle, its velocity and its
position. They represent different levels of signal integration. The initial signal is given
by the fluid velocity seen by the particle. It does not appear to be influenced by the
particle inertia. Given its variance Var[up,x], and its autocorrelation time τu, the simple
expression PSD∗(up,x) of the power spectral density (PSD) of up,x (Eq. 8.8) approximates
well with the asymptotes for low and high frequencies of PSD(up,x). This expression was
found empirically. The measured and approximated power spectral density of the fluid
velocity seen by the particle are represented in Fig. 8.12.

PSD∗(up,x) (ω) ' 3

5

Var [up,x](
1 + 5

3τuω
)5/3 . (8.8)

In order to get the particle velocity power spectral density, one only needs to low-pass
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filter the fluid velocity seen by the particle, with a low pass filter of characteristic time
τp. This gives Eq. 8.9, which fits well with the measured power spectral density of the
particle velocity represented Fig. 8.12.

PSD∗(vp,x) (ω) ' 1

(1 + τp ω)2

3

5

Var [up,x](
1 + 5

3τuω
)5/3 . (8.9)

In order to get the particle position power spectral density, one only needs to integrate
the fluid velocity seen by the particle. This gives the expression Eq. 8.10, which fits well
with the measured power spectral density of the particle position represented Fig. 8.12.

PSD∗(xp,x) (ω) ' 1

ω2

1

(1 + τp ω)2

3

5

Var [up,x](
1 + 5

3τuω
)5/3 . (8.10)

With Fig. 8.12, the reader can easily understand that the linear Stokes drag law allows
for an easy and straightforward relation between the fluid behaviour and inertial particle
trajectories. Therefore, when the linear Stokes drag law is valid, the main challenge for
reproducing the energy spectrum of inertial particles comes directly from turbulence.
Turbulence is difficult because of its characteristic energy profile which we have diffi-
culties in incorporating easily in standard particle models. Indeed, the energy profile
proportional to frequencies to the power −5/3 is characteristic of a low regularity field.
In order to reproduce such behaviour, the simplest method is to use fractional Brownian
motion. However, the use of fractional Brownian motion is computationally expensive
and not straightforward in complex simulation as it requires particle increments to be
dependent of themselves in the past (which is easy to do) and the future (which is more
problematic).
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Figure 8.12. PSD of 200 particle trajectories for different relaxation times τp in the legend.
Fluid of energy 1m2.s−2 wave-number range between 1m−1 and 105m−1 averaged 10 times.
Graph shows the superposition of 10 PSD of 214 points with Hann windowing of different
resolutions in order to get a visualisation of a wide spectrum range. Trajectories computed

with RK4 integration and a time step of 8.10−4s.
Approximated PSD for τp = 1s are represented on overlay with dotted line and crosses.
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Highlights and conclusions

In this chapter, we have studied the convergence of particle trajectories and par-
ticle statistics.
• We have seen that trying to converge the actual physical position of the

particles for arbitrary long times is illusory. However, this work only focuses
on describing statistical quantities representative of the behaviour of the
particles which may be converged for a much larger time step. For instance,
the particle velocity variance is converges for ∆t ≤ 0.1s (Fig. 8.3) and the
PSD of the particle velocity is converged for ∆t ≤ 0.01s (Fig. 8.2).
• We have also studied the convergence of statistical estimators. The estima-

tor chosen for the particle position variance is converged:
– on one KS for more that 1000 realisations of one particles,
– and for one particle on more that 100 KS realisations.

These values are used when presenting statistical results.
• We have also studied the impact of inertia on the behaviour of the particles

governed by Stokes drag law. We have shown that the scaling proposed by
Tchen (1959) and Hinze (1975) coincide very well with the results obtained
numerically.
It was also shown that:

– inertia increases the duration of the initial transport regime,
– and that inertia does not alter the diffusion coefficient.

Although the first point is very well documented in the literature, the sec-
ond point was unclear. Eventually, we have presented some models which
reproduce very well the influence of inertia on the PSD of the particles.
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Statistically consistent LES of
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Chapter 9

Numerical study of the influence
of the level of fluid reduction on
the EMEF

In the previous part, we have proposed an extended formalism for the statistical descrip-
tion of turbulent particulate flows. In order to investigate this formalism, we have also
designed a numerical framework based on synthetic flow fields. The use of synthetic flow
fields enables an explicit control of the probability space, which is essential for studying
the extension of the MEF to LES.
In this chapter, we present a numerical investigation of the extension of the MEF pre-
sented in Sec. 5.3.1. The work is organised as follows:
• We start by introducing the specific set-up based on KS, which makes the study

of the EMEF possible.
• Secondly, with this set-up, we observe the numerical results of this formalism which

has never been applied before.
• Eventually, we discuss the implications of these observations.

9.1 Objective of the numerical study of the EMEF

In this section, we first present the context chosen in this chapter for performing nu-
merical simulations of the EMEF. Let us recall the definition EMEF distribution in the
context of LES.
LES involves a fluid field uf and a reduction operator G. Computing a LES gives the
evolution of the reduced flow field G (uf ). This reduced flow field corresponds to the
set of fully resolved flow fields G← ◦ G (uf ). In the context of a probability space, the
MEF distribution fuf is defined as the average particle distribution over only one fluid
field uf . In contrast, the distribution of the extension of the MEF to LES fG←◦G(uf) is

defined as the average particle distribution over the entire set of fluid fields G← ◦G (uf ).
In order to get access to fG←◦G(uf), we need:

133
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• a fluid uf , defined as a random variable on a probability space,
• a reduction operator on the fluid G,
• and an easy access to the pre-image of the reduction operation on the fluid G← ◦

G (uf ).
For the current study, we have chosen the following conditions:
• In order to have access to the pre-image of a reduced flow field, the fluid uf is

given by the field of KS, as presented in Chap. 6.
• KS also provides an explicit probability space to work with.
• For simplicity, the reduction operator G is a sharp cut-off filter.

In the following, based on this set-up, the objective is to compare the reference evolu-
tion of each formalism. Considering that the differences between these formalisms lie
in the dimensions over which averaging is performed, we schematically represent these
dimensions in Fig. 9.1. In this figure, each formalism is represented by a different box.
This box gathers the dimensions over which an average is taken in the formalism con-
sidered. Each column represents a random variable of the probability space: the large
scales of the flow, the small scales of the flow, and the initial position of the particles.
Each line corresponds to a realisation. Therefore, when the box gathers multiple lines, it
means that the formalism corresponds to the expectancy over all realisations of the cor-
responding random variable. Having that in mind, let us recall the different formalisms
by successive increases of the probability space:
• The DPS has no ensemble-average: it is a unique realisation.
• The MEF has an ensemble-average over the particle initial positions.
• The self-contained LES considers an ensemble-average over the particle positions

and the small scales of the flow.
• Finally, the RANS formalism considers the ensemble-average over the full proba-

bility space.
In this chapter, we want to investigate the differences in the results of each of these for-
malisms, in order to see what is the impact of the choice of the probability space. Before
heading to the results, we first present the chosen fluid in our numerical framework.
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Figure 9.1. Schematic representation of the different possible formalisms embedded in the
EMEF: DPS (black box), MEF (Green box), self-contained LES (purple box) and RANS
(red box). Each column represents a random variable corresponding to the large scales (left),

the small scales (centre) and the particle initial positions (right).

9.2 Choice of the fluid

Based on the outcomes of the previous part, we have chosen a fluid of reference that
ensures statistical convergence over the metrics of interest. The parameters of the chosen
fluid are listed in Tab. 9.1. These parameters give a fluid with the properties summed
up in Tab. 9.2.

Physical name Symbol Value

Number of modes Nκ 200

Total average Eulerian energy k 1. m2.s−2

Minimum of the range of wave-numbers κmin 10. m−1

Maximal of the range of wave-numbers κmax 10.5 m−1

Table 9.1. Free parameters chosen for the fluid for Part. III
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Physical name Value Reference

Fluid velocity variance 0.1 m2.s−2 Fig. 8.9

Autocorrelation time of the fluid 0.25 s Fig. 7.7

Table 9.2. Properties of the fluid chosen for Part. III

Now, in the context presented Sec. 9.1, let us show with the following figures, different
elements of the set G← ◦G (uf ), for one given field uf . These figures illustrate the sets
of fluids used for assessing the behaviour of the EMEF in the next section.
Let us start with Fig. 9.2, which is a visual illustration of two fields. The top graph
represents the fully resolved fields of two different realisations conditioned on the same
reduced scales presented in the second graph. The residual scales are on the bottom
graphs. They are entirely de-correlated between both realisations.
Now let us have a look at the modes themselves. The amplitudes of the modes of
two different realisations uf,1 and uf,2 of a KS according to the amplitude of the wave
number of the modes are represented in Fig. 9.3. Each realisation is represented by
a different colour, respectively black and red. These two realisations share the same
reduction: G (uf,1) = G (uf,2), therefore they both belong to the set G← ◦G (uf,1). We
say that they are conditioned on their largest scales. The vertical grey line on the graph
corresponds to the cut-off frequency of the reduction operator G. Hence, the amplitudes
of the largest scales have the same values for both realisations: the value of the points
to the left of the grey line are equal. However, although the amplitudes of the smallest
scales still follow the same probability law, they are independent for each realisation:
the values of the points to the right of the grey line are different.
Fig. 9.4 represents the frequencies of two different realisations of a fluid conditioned on
its largest scales. Similarly to Fig. 9.3, it illustrates the principle of conditioning: the
frequencies of the largest scales have the same values for both realisations whereas the
amplitudes of the smallest scales are independent of each other.
Finally, Fig. 9.5 is a 1D cut of the fields presented in Fig. 9.2. It helps to get a better
visualisation of the velocity profiles. The first row presents two different velocity profile
realisations conditioned on their lowest scales presented on the graph of the second row.
The two graphs of the third row present the residual velocity profiles of both realisations.
It clearly illustrates that a fluid particle or an inertial particle will “see” the same large
scales, but will encounter different small scale fluctuations, which is at the core of the
construction of our formalism.
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Figure 9.2. Colormaps of the intensity of self-conditioned fluid velocity fields in the plane
z = 0 superimposed to a quiver plot of fluid velocities projected on the plane z = 0. Fluid
conditioned by 80% of its lower wave-number modes. The two realisations share the lower
frequency modes (80% in energy) and have their own lower frequency modes (20% in energy).

The size of the domain is 1m×1m.
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Figure 9.3. Two fluid realisations: amplitudes of the modes against the wavenumber. The
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scales, representing on average 80% of the total energy of the fluid.
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Figure 9.5. Intensity of self-conditioned fluid velocity fields on the line y = 0 and z = 0.
Fluid conditioned by 80% of its lower wave-number modes.
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9.3 Influence of the level of fluid reduction on the EMEF
This chapter presents numerical illustrations of the EMEF introduced in Sec. 5.3.1,
based on the influence of the fluid reduction level. The objective is to get an idea of
the behaviour of reference of the MEF when extended to LES with the EMEF. Once
this behaviour is known it is possible to design closure models, which reproduce this
behaviour (Chap. 10).
We focus on second order moments of the particle distribution in space and velocity
and compare the results given by the EMEF for different levels of fluid reduction. We
observed in Sec. 5.4.1.2 (Fig. 5.2) that the EMEF tends to disperse the particle positions.
That is why we have chosen the variance as a measure of particle dispersion and as a
metric to compare the disperse phase evolution under the EMEF.
The metric of interest is the sample variance of particle relative positions, which is the
expectancy of the squared relative displacement of each particle of each realisation with
respect to its initial position. In the following, we first present a result of spreading
of particles for a given sub-grid scale energy. We then investigate the impact of the
probability space on the EMEF distribution, and we look further at the origin of the
observed trends through the particle velocity variance and the decomposition of the
sample variance of particle relative positions.

9.3.1 Expected spreading of particle

The left-hand side of Fig. 9.6 represents the time evolution of the sample variance of
the particle relative positions under the EMEF. One observes that the sample variance
of particle relative positions under the EMEF is a monotonously increasing function of
time. It is one characterisation of the spreading of the distribution of particles. This
is consistent with Fig. 5.2 which shows sample trajectories being dispersed by different
self-conditioned fluid realisations.
Adopting a log-log scaling on the right side of Fig. 9.6, we find back the traditional fluid
regimes identified by Taylor (1921):
• At initial times, particles are still correlated to their initial conditions. It is the

initial transport regime, characterised by a slope of 2.
• As time goes by, their motion becomes more erratic and the transport regime is

replaced by diffusion, identified by a slope of 1.
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Figure 9.6. Time evolution of the sample variance of particle relative positions under the
EMEF, with linear (left) or log (right) scales.

Relative variance of one physical particle position on 240 sub-grids, averaged over 240 large
eddies. The sub-grid amounts for 20% of the total fluid energy. Particle relaxation time

scale of 1s. Initial particle velocity set to fluid velocity.

9.3.2 Influence of the random subspace on the spreading of inertial
particles

Fig 9.7 presents the behaviour of the time evolution of the sample variance of particle
relative positions under the EMEF for different levels of fluid resolution:
• For 0% of resolved energy, the simulation is RANS. All possible particle trajectories

over realisations are averaged. No conditioning is performed.
• For 100% of resolved energy, the simulation is a DNS. Only one particle trajectory

is computed. There is no dispersion. It is in this context that the traditional MEF
is defined (Sec. 2.3.3).

• For intermediary percentages of resolved energy, the dispersion represented corre-
sponds to the EMEF. The particle evolution is represented by the distribution of
all possible trajectories on all the fluids, which share the same large scales.

Interestingly, the limit case of DNS is a degenerate case as it does not present any
dispersion. On the opposite, as soon as some strictly positive amount of statistical
averaging on the fluid is involved in the definition of the MEF, the evolution of the
particle distributions are quite similar (on the right of Fig 9.7): they all fall into the
very standard pattern: a transport regime followed by a diffusion regime. Two important
conclusions can be drawn at this point:
• The transport regime appears to be directly influenced by the amount of resolved

fluid energy. Following Taylor (1921) analysis, the increase in relative particle
position variance in the transport regime is directly proportional to the particle
velocity variance.

• The diffusion regime is not affected by the percentage of resolved energy. The
only difference is in the time needed to reach this regime, which is increasing when
increasing the amount of unresolved scales.
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Figure 9.7. Time evolution of the sample variance of particle relative positions with EMEF.
Relative variance of one physical particle position on 240 sub-grids, averaged over 240 large
eddies. Different amounts of fluid energy resolution are represented (0, 20, 50, 80 and 100%).

Particle relaxation time scale of 1s. Initial particle velocity set to fluid velocity.

9.3.3 Particle velocity variance

To better understand the origin of such trends, let us have a closer look at the particle
state. First, Fig. 9.8 represents the fluid velocity variance associated with one point in
space. On the right, when 100% of the fluid energy is resolved, there is no uncertainty
in the fluid field. It is perfectly determined at each given position in space. This is true,
even to the limit case of low regularity fields such as the ones presented 7.11. This is
the context of fluid DNS.
On the opposite, on the left, 0% of the fluid energy is resolved. This corresponds to
a situation where the fluid realisation is undefined. This is the entirely statistically
averaged scenario of the isotropic context presented here. It is equivalent to RANS for
NS equations. At one given point in space, the fluid velocity in not known at all. The
uncertainty in the fluid velocity amounts to the entire fluid energy.
The level of resolution of the fluid does not have to be binary. It is possible to con-
tinuously vary the fluid resolution from 0 to 1. By increasing the fluid resolution, the
fluid field becomes more and more defined. Uncertainty is decreased progressively from a
RANS state, to a DNS state. These intermediate states correspond to what is commonly
named LES for NS equations.
Initially starting from the fluid velocity distribution of variance presented Fig. 9.8, in-
ertial particles evolve in time. The temporal evolution of particle velocity variance is
presented Fig. 9.9. Aside from the DNS case, all particle velocity variances converge to
the same stationary velocity for long times. The combination of two factors explain this
behaviour :
• The fluid is mixing the particles. Therefore, changing the fluid ever so slightly,

drastically changes the particle trajectory. This is why, after some time, the par-
ticle distribution is dispersed in physical space, progressively forgetting its initial
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Figure 9.8. Initial particle velocity variance under the EMEF according to the amount of
resolved energy, with our choice of KS.

240 sub-grids, averaged over 240 large eddies. Initial particle velocity set to fluid velocity.

conditions.
• The second factor is that all sample particles evolve on fluids with the same phys-

ical characteristics. The fluids are not filtered. They all have similar statistical
properties. For instance, they have the same energy, same autocorrelation time,
and same energy spectrum. The only difference is the size of the statistical set of
fluids associated with the particle distribution.

Therefore, after some time, sample particles forget their initial conditions and sample
different regions of different fluid with the same statistical properties. On average and
after some time, the statistical properties sampled by the particles do not depend on the
size of the set of fluids chosen, as long as this set contains more that one element.
This explanation of the convergence of long time particle velocity variance observed on
the right of Fig. 9.9, helps us understand the right hand side of Fig. 9.7 better: it was
observed in the log-log scale representation of the particle sample variance (Fig. 9.7), that
all dispersive distributions fall back on the same diffusion regime. Indeed, the reasoning
above highlights that on average, particle trajectories evolve with the same statistical
properties whatever the size of the set of fluids chosen. The diffusion regime is only
defined by such statistical properties which are velocity variance and autocorrelation
time. This is why we observe that the diffusion coefficient of the terminal regime is
identical, whatever the size of the set of fluids chosen, as long as it is greater than 1 (size
1 is DNS where the fluid is certain).
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Figure 9.9. Time evolution of the sample variance of particle velocity under the EMEF.
Relative variance of one physical particle position on 240 sub-grids, averaged over 240 large
eddies. Different amounts of fluid energy resolution are represented (0, 20, 50, 80 and 100%).

Particle relaxation time scale of 1s. Initial particle velocity set to fluid velocity.

9.3.4 Decomposition of the sample variance

Let us first note that although all positive levels of fluid reduction lead to a diffusion
regime with the same diffusion coefficient, the sample variance of the particle relative
positions is still function of the level of fluid reduction. Indeed, the sample variance of
the particle relative positions depends on the integrated effect of the initial transport
regime which is affected by the size of the set of fluids implied by the reduction operation
G← ◦G (uf ).
Let us get a bit more insight on the physical dispersion of the distribution of particles by
decomposing the relative position variance of sample particles between resolved scales
(LE) and unresolved scales (SE). This is done in Fig. 9.10 by applying the law of total
variance (Eq. 8.6). With this decomposition, the law of total variance reads:

Var = Var ◦ E [ · |LE] + E ◦Var [ · |LE] , (9.1)

with ◦ the composition operator. Let us present these different terms:
• Var represents the overall variance of all particles on all possible fluids.
• Var ◦ E [ · |LE] represents the variance of the mean particle position conditioned

on a resolved field. For one reduced fluid field, there is a set of fluid sharing
the same reduced field. This creates an ensemble of different fluids conditioned
on a common characteristic: the reduced field. Sample particle trajectories go
in different directions according to the residual fluid field. However, they can be
correlated through the resolved fluid scales which are common to all the sample
trajectories. One way to assess this correlation is to observe the evolution of the
mean position of sample particles. This quantity is null on average because it is
algebraic and the distribution of fluids is isotropic on average. But its variance
gives an idea of its order of magnitude.
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• E◦Var [ · |LE] is the average dispersion of particles over all sets of self-conditioned
fluids. It is the quantity we have been interested in so far, because it characterises
the growing uncertainty of the particle position of the EMEF distribution which
is absent in the standard MEF. The increase of E ◦ Var [ · |LE] is caused by the
uncertainty of the unresolved fluid field.

We observe in Fig. 9.10 that during the initial inertial regime, the term Var ◦ E [ · |LE]
represents most of the overall variance Var. During this period of time, sample particle
velocities are still correlated to their initial conditions. As they originate from the
same physical location, they initially undergo exactly the same resolved fluid field. This
resolved fluid field gives them a mean motion measured by the quantity Var ◦E [ · |LE].
After the ballistic regime, particles lose the correlation to their initial position. They
get dispersed by the added effects of the fluctuating sub-grid scales across realisations
and the chaotic nature of their trajectories. Therefore, the term Var◦E [ · |LE] does not
increase further.
By complementarity, the evolution of the term E ◦ Var [ · |LE] is the exact opposite.
Because at the beginning of the dispersion, sample particles are correlated to their initial
condition, and thus to the resolved scales, the motion is characterised by synchronised
transport, and diffusion is absent. However, after some time, sample particle motions
become erratic and E ◦Var [ · |LE] starts to increase steadily. At this stage, it becomes
the major contribution to the overall variance Var.
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Figure 9.10. Decomposition of the variance of particles over different realisations according
to the law of total variances.

Relative variance of one physical particle position on 240 sub-grids, averaged over 240 large
eddies. For 80% resolved fluid energy. Particle relaxation time scale of 1s. Initial particle

velocity set to fluid velocity.

To conclude, we have presented in this section the impact of LES on the extended MEF
distribution. We have shown that reducing the fluid prevents a deterministic treatment
of particle trajectories. As soon as the fluid is not perfectly known, particle have to
be treated as distributions. A specific quantity of interest if the spatial variance of
this distribution. It characterises the uncertainty of the particle position caused by the
reduction of the fluid. It is crucial in a context where we would want to enforce coupling



146
CHAPTER 9. NUMERICAL STUDY OF THE INFLUENCE OF THE LEVEL OF FLUID

REDUCTION ON THE EMEF

because it corresponds to the location in the fluid where the coupling would take place:
• For short times, in the ballistic regime, the increase in the spatial variance of the

distribution of the particle is directly proportional to the level of reduction of the
fluid.

• For long times, in the diffusion regime, the main contributor to the growth of
uncertainty in the particle position is turbulence itself.

9.4 About the limitations of our study

Let us review the hypothesis considered in this work and the implication of the obser-
vations made in the previous section. We have seen that the EMEF offers a unified
description of particles distributions from DNS up to RANS. This is made possible by
gradually changing the set of fluids associated to the particle distribution. It is possible
to assert that in the context where this work was conducted, switching from a DNS
physical particle trajectory to the behaviour of a particle with some uncertainty in the
fluid has a very strong impact on the particle distribution. This impact is proportional to
the fluid uncertainty for times close to initial conditions. For these early times, physical
correlation still takes into account the initial statistical correlation. However, for long
times, uncertainty growth is directly controlled by the physical properties of turbulence
itself, whatever the initial amount of fluid resolution. The behaviour is the same for all
the cases including some positive amount of uncertainty.
At this point, it is important to look back at the hypothesis we used in order to derive
these observations, so that we can assess their impact on the results observed in the
previous section.
• Stability of the large scales. In the case presented here, with kinematic simula-

tions, the fluid was in a way ruled out. The largest scales of the flow were assumed
to be stable in time whatever the different choices of the smallest scales. If we
were to work with NS this stability would be removed. There is no formalism yet
able to take into account this instability in the context of NS equations although
some ideas have already been suggested by Pope (2010). As we have seen in the
previous section, increasing the uncertainty of the fluid description is only bound
to increase the dispersion of the distribution of the particles in position.

• Independence of the small scales. In the case presented here, the small scales
where assumed independent of the largest scales of the flow. If we consider cases
where the small scales are dependent on the largest scales of the flow, this decreases
the size of the probability space associated to the small scales. It does not change
the principle of the results presented here, but decreases the span of the maximum
dispersion of the ballistic regime. In the limit where the small scales are uniquely
defined for one large scales realisation, we fall back into the DNS case.

• No coupling. In the case studied here, the particles did not impact the fluid phase.
We have seen in the previous section that the reduction of the fluid implies that
the unresolved fluid scales are not well known. This uncertainty in the definition of
the fluid field translates into an uncertainty of position of the particles. In a case
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where the particle retroact on the fluid, this means that the location of the force
exerted by the disperse phase on the fluid is not located precisely. This causes
even more uncertainty of the fluid field. Thus, following on the first point, in a
coupled configuration, we expect an increase of the dispersion of the distribution
of the particles in position.

• Initial particle velocity. The effect of choosing different fluids was artificially
amplified by setting the initial particle velocity at the fluid velocity. In the results
presented in the previous sections, the relaxation time scale of the particles was
τp = 1s. Let us now present what we expect from changing this value.

– When working with fluid parcels with no inertia τp = 0, the ballistic regime
corresponds to the ballistic regime of the fluid which is shorter than the
ballistic regime of inertial particles. Therefore, fluid parcels are expected to
have a shorter initial ballistic regime than the results presented in the previous
section.

– On the contrary, for particles with more inertia, the initial ballistic regime
is expected to be longer. Furthermore, if one were to work with thermalised
inertial particles, these would be less and less correlated to the fluid as their
inertia is high (Février, Simonin, and Squires (2005)). This would tend to de-
creases and delay the span of the maximum dispersion in the ballistic regime.

Impact on two-way coupling modelling strategy. Now, let us review the impact
of these observations on possibilities for modelling two-way coupled two-phase flows.
• After the autocorrelation time scale of the system, an approach involving statistical

averaging such as MEF cannot possibly aim at giving a result different than RANS.
In this sense, it could still be interesting to derive a time-evolving model which
degenerate to RANS after the correlation regime.
• For someone willing to capture non-permanent dynamics, the favoured route seems

to compute trajectories of the system, where no averaging is done, but uncertainty
is sorted out through random selection.

However let us stress out that this is quite preliminary, as consistent coupled models,
even for DNS simulation are still under development today (Zeren (2010), Sec. 2.4.1 and
2.4.2, Horwitz and Mani (2016), Poustis, Senoner, Zuzio, and Villedieu (2019)).
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Highlights and conclusions

A numerical study of the EMEF has been presented, based on the use of kinetic
simulations of turbulence. The differences between the MEF in a DNS context for
the fluid, and the EMEF in the context of reduced fluids, have been investigated:
• The main difference is that the EMEF is always dispersive, even for a delta

Dirac distributions.
• The level of initial dispersion of the EMEF is proportional to the uncertainty

in the resolved energy of the reduced fluid.
• The long time dispersion of the EMEF is not impacted by the uncertainty

in the resolved energy of the reduced fluid, by only by the physical charac-
teristics of the carrier field.



Chapter 10

Evaluation of diffusive closures for
LES in the context of the EMEF

In the previous chapter, we have presented the reference behaviour of the EMEF in the
context of self-contained fluid reductions based on KS. This is the behaviour we wish for
when computing the evolution of inertial particles on a reduced flow field.
Now, the next step is to try to model the dynamics of particles in the context of the
EMEF. Unfortunately, we do not have access to the EMEF distribution in the context
of the NS equations, because in LES, the sub-grid scales are not known. Furthermore,
we have already shown in Sec. 4.2 that computing the evolution of the particles on the
reduced fluid alters the behaviour of the disperse phase, but these results were presented
in the context of Navier-Stokes equations, and not in our KS context.
This chapter aims at assessing the relevance of diffusive closures for LES in the context
of the EMEF. In order to do so, this chapter is divided into three contributions:
• Before performing LES, we first evaluate the effect of fluid reduction in the context

of KS, to see the consistency with the real physics encountered when using Navier-
Stokes equations for the fluid.

• Then, we investigate what we could expect of Lagrangian diffusive closures, i.e.
closures based on the addition of a Wiener process in one equation of evolution of
the particles.

• We finally evaluate this class of models for LES under our numerical framework,
and we open the discussion to more complex models of the literature.

10.1 Effect of fluid reduction on particle dynamics in KS

For inertial point particle models, the particle dynamics relies on the fluid velocity at
the particle location. We have already seen in Sec. 4.2, that altering this fluid velocity
alters the particle behaviour. Therefore, the particle evolution on the reduced fluid is
different from the particle evolution on the resolved fluid. In this section, we want to
assess this impact in the context of KS. The fluid is the one presented in Sec. 6.1. The
reductions are the same as those presented in Sec. 10.1. In order to ensure consistency

149
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the fluid and the reduction operation chosen here are the same as in Chap. 9.
We will start by presenting the effect of filtering KS on the dynamic of inertial particles,
before observing the impact of inertia on the dynamic of particles on a filtered fluid field.

10.1.1 Impact of fluid reduction on particles of fixed finite inertia

The reduction of the velocity field affects the disperse phase through the fluid velocity
seen by the inertial particles. Therefore, we chose to start by presenting the PSD of the
fluid velocity seen by inertial particles for different levels of fluid reduction in Fig. 10.1.
We can observe the impact of different levels of reduction on the fluid frequencies seen
by the particles. Removing the fluid modes of higher frequencies also removes the higher
frequencies of the fluid velocity seen by the particles. This result is fully expected and
this is just a preliminary step in the assessment of the effect of fluid reduction in our KS
context.
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Figure 10.1. Power spectral densities of the fluid velocity seen by an inertial particle of
relaxation time τp=1s along its trajectory on 240 fields of different resolution. Each PSD
is the superposition of 6 PSD of 214 points with Hann windowing of different sampling

frequencies in order to get a visualisation of a wide spectrum range.

The fluid velocity seen by inertial particles appears in the acceleration term of Stokes’
drag law (Eq. 2.1). Therefore, as a consequence, filtering the fluid velocity field is
expected to have an impact on the velocity of inertial particles as we have seen in
Sec. 4.2.2 for NS equations. In order to observe this effect, we chose to represent the
power spectral densities of the velocity of the particle themselves for different levels of
reduction on the frequencies of its velocity in Fig. 10.2. We can observe in Fig. 10.2
that, as higher frequencies are removed in the fluid, they also disappear in the particle
trajectories. The less energy in the fluid, the less energy in the particles.
In order to get a more quantitative representation of the impact of fluid reduction,
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Figure 10.2. Power spectral densities of the velocity of an inertial particle of relaxation time
τp=1s along its trajectory on 240 fields of different resolution. Each PSD is the superposition
of 6 PSD of 214 points with Hann windowing averaged 10 times, of different sampling

frequencies in order to get a visualisation of a wide spectrum range.

Fig. 10.3 represents the energy of the fluid velocity seen by the particles (right) and
the energy of the particles themselves (left). We can see that, as the resolved fluid
energy is decreased, so is the fluid energy seen by the particles. The relation between
the fluid energy and the fluid energy seen by the particles is linear. These observations
are consistent with the right hand side of Fig. 8.9 representing the energy of the fluid
velocity seen by inertial particles according to their inertia. We have seen with Fig. 8.9
that the energy of the fluid velocity seen by inertial particles is independent of inertia
of the particles. Therefore, the energy seen by inertial particles is equal to the energy
of fluid parcels. We can thus conclude that reducing the energy of the fluid field has a
direct impact on the energy of the fluid velocity seen by inertial particles. Let us now
focus on the particle velocity variance, represented on the left of Fig. 10.3. We observe
that the less energy in the fluid, the less energy in the particles. This observation is
consistent with Fig. 4.1 from Fede and Simonin (2006), giving then a first confirmation
that reduced simulation in our KS context can give results consistent with realistic
Navier-Stokes simulations.
Integrating the velocity velocity of the particles gives the position of the particles. There-
fore, we expect an impact of the fluid reduction on the dispersion of inertial particles.
The variance of particle position as a function of time for different levels of fluid reduc-
tion is represented in Fig. 10.4. We can see on the left hand-side of Fig. 10.4 that fluid
reduction does not alter the characteristic regimes of particle dispersion:
• we can always observe an initial ballistic regime where the temporal evolution of

the variance of the particular position is quadratic,
• followed by a diffusion regime where the temporal evolution of the variance of the
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Figure 10.3. Second order moment of particle velocity (on the left) and of fluid velocity seen
by particles (on the right) according to fluid resolution (particle relaxation time τp = 1s).

particular position is linear.
However, the right hand-side of Fig. 10.4 clearly shows fluid reduction has a strong
impact on the level of particle dispersion: the more the fluid is reduced, the less the
particles are dispersed. In order to get a more quantitative vision of this phenomenon,
the particle dispersion coefficient according to the level of fluid reduction is represented
on the left hand-side of Fig; 10.5. We can observe that the less energy in the fluid, the
less important the dispersion of the particles, the lower the dispersion coefficient. This
is consistent with the observation made with NS equations in Fig. 4.2 from Fede and
Simonin (2006).
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Figure 10.4. Particular dispersion (with logarithmic scaling on the left and with linear
scaling on the right) for different levels of fluid resolution. Variance of 1024 particles averaged

over 280 different fluid realizations. Particle of relaxation time τp=1s.

We have seen in Sec. 1.3.1.3 that diffusion is a function of the particle velocity variance,
but also of the autocorrelation time of the particle velocity. Therefore, the autocorrela-
tion time of the particle velocity is represented as a function of the level of fluid reduction
on the right hand-side of Fig. 10.5. We observe in this figure that fluid reduction does
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not have a significant impact on the particle autocorrelation. Therefore, the impact of
fluid reduction on the particle dispersion is solely given by the influence of fluid reduction
on the particle velocity variance.
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Figure 10.5. On the left, dispersion coefficient.
On the right, Particular autocorrelation time.

Each quantity is represented for different levels of fluid resolution. Variance of 1024 particles
averaged over 280 different fluid realizations. Particle of relaxation time τp=1s.

We have presented the impact of fluid reduction on the second order moments of in-
ertial particles in the context of KS. We have seen that fluid reduction decreases the
variance of the fluid velocity seen by the particles, the variance of the particles and also
the dispersion in space of the same particles. However, fluid reduction does not affect
the autocorrelation time of the particle velocity. These results obtained with KS are
consistent with Fede and Simonin (2006) in the context of the NS equations. Let us now
present the effect of inertia on the behaviour of particles on a reduced fluid.

10.1.2 The role of inertia in the impact of fluid reduction of particles

We now present how inertia alters the effect of fluid reduction on the particles dynamics.
For this section, we consider a fluid reduction which accounts for 80% of the fully resolved
fluid energy. Similarly to the previous section, we will observe successively, the fluid
velocity seen by the particles, the velocity of the particles and the dispersion of the
particles.
The PSD of the fluid velocity seen by particles of different inertia is presented with and
without fluid reduction in Fig. 10.6. We see that particles of all inertia seem affected
similarly by the fluid reduction.
Because the fluid velocity seen by the particles influences the fluid velocity of the par-
ticles, we have chosen to represent the PSD of the velocity of particles of particles of
different inertia, with and without fluid reduction in Fig. 10.7. Lines of the same colour



154
CHAPTER 10. EVALUATION OF DIFFUSIVE CLOSURES FOR LES IN THE CONTEXT

OF THE EMEF

1.10−10

1.10−9

1.10−8

1.10−7

1.10−6

1.10−5

1.10−4

1.10−3

1.10−2

1.10−1

0.1 1 10 100 1000

P
S

D
o
f
v
f
,x

(m
2
.s
−

1
)

Frequencies (s−1)

0.1

1

10

P
ar

ti
cl

e
re

la
x
a
ti

o
n

ti
m

e
τ p

(s
)

80%

100%

Figure 10.6. Power spectral densities of the fluid velocity seen by an inertial particle of
different relaxation times along their trajectory on 240 fields of two resolutions: 100% and
80%. Each PSD is the superposition of 6 PSD of 214 points with Hann windowing of different

sampling frequencies in order to get a visualisation of a wide spectrum range.

corresponds to particles of same inertia. When the fluid is reduced, the corresponding
PSD shows a lower energy content in the higher wave-numbers.
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Figure 10.7. Power spectral densities of the particle velocity of inertial particle of different
relaxation times along their trajectory on 240 fields of two resolutions: 100% and 80%. Each
PSD is the superposition of 6 PSD of 214 points with Hann windowing of different sampling

frequencies in order to get a visualisation of a wide spectrum range.

To provide a more quantitative analysis, the influence of fluid filtering on the energy
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of the particles of different inertia (left) and the corresponding fluid velocity energy
(right) are represented in Fig. 10.8. The blue ’x’ correspond to the fully resolved fluid
whereas the black ’+’ correspond to the reduced fluid. We observe that the fluid energy
seen by the particles is lower when the fluid is reduced than when it is fully resolved.
Furthermore, as seen in the previous section, for a given level of fluid resolution, the fluid
energy seen by the particles is independent of inertia. If we now look at the percentage of
particle velocity variance on the fully resolved fluid represented by the particle velocity
variance after reduction of 20% of the fluid energy for different inertia (left of Fig. 10.8),
we can observe that inertia does not influence the proportion of particle energy removed
by fluid reduction.
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Figure 10.8. Second order moment of particle velocity on the reduced fluid normalised by
the second order moment of particle velocity on the fully resolved fluid (on the left) and of
fluid velocity seen by particles (on the right) according to particle inertia (100% and 80%

fluid resolutions).

We then observe particular dispersion in Fig. 10.9 which represents the temporal evolu-
tion of the particle position variance with time for different inertia on the reduced fluid.
Fig. 10.9 gives exactly the same behaviour as the one obtained on the fully resolved fluid
represented in Figs. 8.7 and 8.8. We can observe on the left-hand side, which offers a
representation with a logarithmic scale, the initial ballistic regime, which is quadratic,
followed by the diffusion regime, which is linear. Inertia has an impact on the time-
span of the ballistic regime. On the right-hand side which presents the same quantities
with linear scales, we can observe the inertia impacts the actual level of diffusion of the
particles.
The diffusion coefficient for different particle inertia is represented in Fig. 10.10. Com-
paring with the right-hand side of Fig. 8.8, when filtering only 20% of the total fluid
energy, the fluid reduction does not appear to have a significant impact on the diffusion
coefficient of inertial particles.
Particle diffusion can be expressed as a function of the particle velocity variance and
the particle velocity autocorrelation time. Let us now look at the particle velocity
autocorrelation time as a function of inertia on a filtered fluid represented Fig. 10.11.
This figure is very similar with the left hand-side of Fig. 8.10 with represents the same
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Figure 10.9. Particular dispersion (with logarithmic scaling on the left and with linear
scaling on the right) for different levels of particle inertia. Variance of 1024 particles averaged

over 280 different fluid realisations. Fluid resolution of 80%.
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Figure 10.10. Dispersion coefficient for different levels of particle inertia. Variance of 1024
particles averaged over 280 different fluid realisations. Fluid resolution of 80%.

quantity on a resolved fluid. This is very consistent with Fig. 10.10 which shows that
filtering has no significant impact on the particle autocorrelation time.

In this section, we have presented the impact of fluid reduction on the dynamics of
inertial particles in the context of KS chosen for this work, and we have shown the
consistency of our results with the literature based on Navier-Stokes. Therefore, we
can consider that our framework can be used for validation of LES particle models. In
the next section, we inspect a simple class of closures for the disperse phase from the
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Figure 10.11. Particular autocorrelation time Var [vp] / (2.D) for different levels of particle
inertia. Variance of 1024 particles averaged over 280 different fluid realisations. Fluid

resolution of 80%.

literature. We will observe and assess how they affect the dynamics of inertial particles
computed on a reduced flow field of KS.

10.2 Theoretical analysis of Lagrangian diffusive closures

Now that we have validated our numerical framework, we can expect to use and validate
LES models for particle trajectories. Before going directly to LES, we want to understand
the influence of LES closures for particles on the variables of interest: the second order
moments of the distribution of the particles. This will allow us to determine what to
expect at most from these models, thus enabling us to use them efficiently in order to
close the evolution of inertial particles on a reduced fluid flow field. To this end, we
perform a theoretical analysis of classical models of the literature, based on the addition
of a Wiener process to the particle trajectories, and which differ only by the location
of this forcing, as presented in Sec. 4.3.2. We focus on theses models because they are
somehow the simplest Lagrangian models in a LES context, and have a strong similarity
with classical eddy-dissipation models for gas phase dynamics for instance.
In order to study the effect of the models, let us start by studying the set of equations
when uf = 0, or equivalently, when the fluid is fully reduced. Corresponding variables
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are indexed by 0. When uf = 0, all three models share the same generic formulation:

dX0(t) = V 0(t) dt+ σX · dBt,X , (10.1a)

dV 0(t) =
1

τV
(U0(t)− V 0(t)) dt+ σV · dBt,V , (10.1b)

dU0(t) = − 1

τU
U0(t) dt+ σU · dBt,U . (10.1c)

What distinguishes the three models is the level at which the reduced fluid uf and the
Wiener process are added.
In order to study the system of Eq. 10.1, we start by deriving the behaviour of the terms
without noise, and then introduce the stochastic process.
Let us note that this class of closures is a change of formalism. When the fluid is fully
resolved, it allows to compute physical inertial point particles compatible with the MEF:
xp(t). When the fluid is not fully resolved, it can only be understood as Monte-Carlo
sample particles of the EMEF distribution: X(t). Specific equations are introduced in
Sec. 4.3.2: Eq. 4.4, Eq. 4.5 and Eq. 4.6.

10.2.1 Solution of the homogeneous deterministic system

Keeping only the deterministic part of the system Eq. 10.1, we get:

dx0(t) = v0(t) dt, (10.2a)

dv0(t) =
1

τV
(u0(t)− v0(t)) dt, (10.2b)

du0(t) = − 1

τU
u0(t) dt. (10.2c)

By writing z0 = [x0,v0,u0], one gets:

dz0 = µz0 dt, (10.3)

with

µ =


0 1 0

0 − 1
τV

1
τV

0 0 − 1
τU

 . (10.4)

Therefore:

z0(t) = eµtz0(0). (10.5)
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As a reminder:

µ = PDP−1, (10.6)

with the diagonal matrix D and transfer matrix P :

D =


0 0 0

0 − 1
τV

0

0 0 − 1
τU

 , P =


1 1 1

0 − 1
τV

− 1
τU

0 0 − τV −τU
τ2U

 . (10.7)

We thus get:

eµt = P


1 0 0

0 e
− t
τV 0

0 0 e
− t
τU

P−1. (10.8)

Now that we have solved the deterministic part of the system Eq. 10.1, let us add some
noise.

10.2.2 Solution of the homogeneous stochastic system

By addition of a Wiener process to the deterministic system (10.2) one gets:

dZ0 = µZ0 dt+ σdB, (10.9)

with σ ∈ R3, which integrates as:

Z0(t) = eµtZ0(0) +

∫ t

0
eµ(t−s)σdB(s). (10.10)

The mean evolution of Z0(t) is given by:

dE [Z0(t)] = µE [Z0(t)] dt. (10.11)

The covariance matrix ρ(t) = E
[
Z0(t)Z>0 (t)

]
has the following behaviour:

dρ =
(
µρ+ ρµ> + σσ>

)
dt, (10.12)

ρ(t) =

∫ t

0
e(t−s)µσσ>e(t−s)µ>ds. (10.13)
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Now, let us look at the dynamics of the system, with the assumption that the noise is
not correlated (σ is diagonal with diagonal (σX , σV , σU )):

ρ11 = R11 +R12 +R13 +R21 +R22 +R23 +R31 +R32 +R33,

ρ12 = −R12 +R22 +R32

τV
− R13 +R23 +R33

τU
,

ρ13 =
τV − τU
τ2
U

(R13 +R23 +R33) ,

ρ22 =
R22

τ2
V

+
R23 +R32

τV τU
+
R33

τ2
U

,

ρ23 = −τV − τU
τ2
U

(
R23

τV
+
R33

τU

)
,

ρ33 =
(τV − τU )2

τ4
U

R33, (10.14)

with

R11 =
(
σ2
X + τ2

V σ
2
V + τ2

Uσ
2
U

)
t+R11(0),

R12 = τ2
V

(
τ2
Uσ

2
U

τV − τU
− τV σ2

V

)(
1− e−

t
τV

)
+R12(0)e

− t
τV ,

R13 =
τ4
Uσ

2
U

τV − τU

(
1− e−

t
τU

)
+R13(0)e

− t
τU ,

R22 =
τ3
V

2

(
σ2
V +

τ2
Uσ

2
U

(τV − τU )2

)(
1− e−2 t

τV

)
+R22(0)e

−2 t
τV ,

R23 = − τ2
V τ

4
Uσ

2
U

(τV + τU ) (τV − τU )2

(
1− e−t

τV +τU
τV τU

)
+R23(0)e

−t τV +τU
τV τU ,

R33 =
τ5
Uσ

2
U

2 (τV − τU )2

(
1− e−2 t

τU

)
+R33(0)e

−2 t
τU . (10.15)

The set of Eq. 10.14 corresponds to the analytical evolution of the moments of the
distribution of the solutions of the system Eq. 10.9. It allows to analyse the influence
of each of the parameters of the model, without having to run countless numerical
simulations. With these expressions at hand, one of the quantities of particular interest
that we have consistently observed throughout this work is the asymptotic long time
behaviour of these second order moments. We present them in the next section.
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10.2.3 Long time consistency

Now that we have derived the evolution of the second order moments of the solution of
the system Eq. 10.9, we are able to focus on any specific property of these solutions. For
instance, one aspect of particular interest for physical systems is the asymptotic limit
for long times. This limit is given by:

ρ11 ∼
t→∞

(
σ2
X + τ2

V σ
2
V + τ2

Uσ
2
U

)
t+ ρ11(0),

lim
t→∞

ρ12 =
τ2
V σ

2
V

2
+
τ2
Uσ

2
U

2
,

lim
t→∞

ρ13 =
τ3
Uσ

2
U

2 (τV + τU )
,

lim
t→∞

ρ22 =
τV
2
σ2
V +

τ2
Uσ

2
U

2 (τV + τU )
,

lim
t→∞

ρ23 =
τ2
Uσ

2
U

2 (τV + τU )
,

lim
t→∞

ρ33 =
τUσ

2
U

2
. (10.16)

With the limits given by Eqs. 10.16 we are able to understand the ability of each order
of modelling, given respectively by Eq. 4.4, Eq. 4.5 and Eq. 4.6, to reproduce the long
time asymptotic behaviour of the system of reference.
• With the first order model, we have only one variable, σX1, thus it is possible to

get an asymptotic equivalent of ρ11 for long times.
• With the second order model, we have two variables, τV 2 and σV 2, thus it is possible

to get an equivalent of ρ11 and ρ22 towards infinity.
• With the third order model, we have three variables, τV 3, τU3 and σU3, thus it is

possible to get an equivalent of ρ11, ρ22 and ρ33 towards infinity.
In order to get a given long time behaviour for particle dispersion, one has to chose one
of the three models given that σ2

X1 = τV 2σ
2
V 2 = τU3σ

2
U3. It is the same for the particle

velocity variance, which can be identical for the two and three variable models, given
that τV 2 = (τV 3 + τU3).
Once all the different orders of modelling have been scaled to give the same long time
behaviour, let us compare numerically how they behave in the next section.

10.2.4 Numerical illustration

In this section, we propose to observe numerical illustrations of each order of modelling,
in order to understand how their dynamics differ from each other. To do so, we perform
Lagrangian simulations with imposed variances, and we do statistics over 30720 particles.
The three orders of modelling have been chosen such that they have the same long
time asymptotic behaviour in ρ11, ρ22 and ρ33 where applicable. The particle position
variance for the three orders of modelling is represented in Fig. 10.12. It is interesting
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to note that when the third order of modelling has a characteristic time scale of the
modelled fluid τU3 = 1s and a characteristic relaxation time for the particles τV 3 = 1s,
we get the same long time asymptotic values with the second order model for ρ11 and
ρ22 when τV 2 = τV 3 + τU3, meaning τV 2 = 2s. Thus, τV 2 = 2 is not an intrinsic physical
property of the particles, but rather a composite term given by both the particle and
unresolved fluid characteristics.
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Figure 10.12. Position variance (left) and velocity variance (right) of model III with
σU3 = 1,τV 3 = 1 and σV 3 = 1, model II with with σV 2 = 0.5 and τV 2 = 2 and model I with

σX1 = 1. Integration of 30720 Monte-Carlo particles with Euler-Maruyama scheme.

After having assessed the long time behaviour of the three orders of modelling, let us
now observe their asymptotic equivalent as t goes to zero. If we focus on the particle
position variance ρ11, we get Eq. 10.17:

ρ11,I = σ2
Xt,

ρ11,II =
1

3
σ2
V t

3 + o
(
t4
)
,

ρ11,III =
1

20
σ2
U

t5

τ2
V 3

+ o
(
t5
)
. (10.17)

What is interesting is that the asymptotic equivalent of the first order model as t goes
to zero is linear. As the number of variables increases, the order of the asymptotic
equivalent as t goes to zero increases linearly: the second order model has an asymptotic
equivalent of order three as t goes to zero and the third order model has an asymptotic
equivalent of order five as t goes to zero. Interestingly, in the case of inertial particles
evolving on a resolved fluid (Fig. 1.5) the particle variance has an asymptotic equivalent
as t goes to zero of order two. Thus, it does not seem possible to reproduce the ini-
tial transport behaviour with any of these models. However, the asymptotic long time
diffusive behaviour is perfectly reproduced by all the models presented.
We also represent the PSD of the position and the velocity of the different orders of
modelling where applicable in Fig. 10.13. Similarly to physical particle trajectories
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(Fig. 8.12), the energy content decreases with increasing frequencies. The decrease in
the spatial PSD is directly related to the order of the model. The first order model, the
asymptote follows a slope in t−2, the second order model a slope in t−4 and the third
order model a slope in t−6. Remarkably, none of these model reproduces the reference
slope in t−5/3 given for physical particles.
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Figure 10.13. Power spectral density in position (left) and velocity (right) of model III
with σU3 = 1,τU3 = 1 and σV 3 = 1, model II with with σV 2 = 0.5 and τV 2 = 2 and model I
with σX1 = 1. Integration of 30720 Monte-Carlo particles with Euler-Maruyama scheme.

In this section, we have presented the expected behaviour of the different orders of mod-
elling. We have first derived analytical expressions for the second order moments of the
disperse phase. We have then observed numerical simulations, focusing particularly on
the asymptotic behaviour for long times and as t goes to zero. We have also presented the
PSD in space and velocity of particle trajectories. These observations were done without
any underlying fluid flow field in order to apprehend the properties of the homogeneous
system of equations. In the next section, we will present numerical simulations of the
same models in the context of the reduced flow field given by KS.

10.3 Evaluation of Lagrangian diffusive closures in our frame-
work

Now that we have validated the use of KS, and we have assessed what to expect for
diffusive closures, here we want to assess the models in practice, i.e. by performing
LES in our KS context, and under the EMEF. We will observe the class of diffusive
closures presented in the second section, to see if they helps to reproduce the behaviour
of reference of the distribution of particles when only the reduced flow field is available.
We have seen in the right hand-side of Fig. 4.1, representing the proportion of energy of
the disperse phase preserved after the fluid reduction, that in the context of NS presented
by Fede and Simonin (2006), reducing the fluid energy by 14% could lower the particle
energy by 17% for St=0.19. However, in the context of KS presented in this work, we
can observe in Fig. 10.3 representing the particle velocity variance for different amounts



164
CHAPTER 10. EVALUATION OF DIFFUSIVE CLOSURES FOR LES IN THE CONTEXT

OF THE EMEF

of fluid resolution, that low levels of fluid reduction lead to a very weak effect on the
disperse phase: 30% of reduction of the energy of the fluid only leads to 5% less energy
for the disperse phase. With only 5% less energy for the disperse phase, it is difficult to
precision of the different closures presented in this section. Therefore, in order to be in
a more realistic setting for assessing the effects of the closures on the disperse phase, in
this section, the reference fluid filtering is 50%, which leads to 20% less energy for the
disperse phase. Note that 50% of fluid reduction is high with respect to the standard
order of magnitude advised by Pope for LES simulations which is around 80%.
As a starting point, let us present the dispersion of inertial particles under different
formalisms in Fig. 10.14:
• When computing physical deterministic point particle trajectories on one fluid

under the DNS formalism, the point dispersion is null. This is the MEF dispersion
of a Dirac distribution.

• When considering the EMEF distribution, DNS particles from a single point are
dispersed with time. In the EMEF presented Fig. 10.14, 50% of the energy of the
fluid stays identical across realisations.

• When reducing the fluid to 50% of its energy, both the MEF and the 50%-EMEF
give the same result: the line with the label 50% resolved. This is because the
fluctuating fluid part of the 50%-EMEF corresponds to the 50% of fluid energy
removed when reducing the fluid.

The objective of the stochastic models is not to fit exactly every single DNS trajectory.
It is impossible because the formalism is different. The DNS trajectories of physical
particles are deterministic and tractable whereas stochastic trajectories of sample par-
ticles are only an intermediate step in order to compute a distribution, the reference
distribution in the context of LES being the EMEF distribution.
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Figure 10.14. Comparison of time evolution of the sample variance of particle relative
positions: DNS, 50% EMEF and when 50% of the fluid is resolved. Linear scale (left),

logarithmic scale (right). Initial particle velocity set to fluid velocity.

Now, let us try to recover the behaviour of the EMEF from the 50%-EMEF with the
models presented in Sec. 10.2. The second order moments of the particle distribution
with the different stochastic models presented earlier is shown in Fig. 10.15. Let us
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introduce this figure:
• The DNS distribution is a Dirac along all variables. Therefore, its second moment

is null.
• The reference distribution is the EMEF distribution corresponding to the reduction

operation chosen for the fluid. Here, the fluid underwent a 50% sharp spectral cut-
off. The reference EMEF distribution is represented with a black line in Fig. 10.15.

• Here we have set the different closures only with constant parameters. Therefore,
we have calibrated them in order to match an asymptotic long time behaviour.

• The higher the order of the model, the more dynamic state variables are repre-
sented. Other variables are not part of the dynamical system and do not need to
be represented to get its evolution, but they can still be modelled independently.
This modelling is not done here, and only state variables are represented.

• The first order model only reproduces the dynamics of the distribution in position.
The second order model reproduces the dynamics of the distribution in position
and velocity. The third order model considers particle position, particle velocity,
and fluid velocity seen by the particle as state variables.

From this figure, we can conclude that:
• none of the models give a correct transient behaviour for any of the state variables.

As it is this transient behaviour which differentiates the different levels of spatial
filtering and statistical filtering, one can understand why not much attention is
given to this aspect for closures in one-way coupled flows.

• The asymptotic long time behaviour is respected for particle velocity and fluid
velocity seen by the particles for models II and III. This does not come as a
surprise as closure coefficients have been tuned to match this behaviour.

• The asymptotic long time behaviour of the particle position has the correct trend
for all models. However, the precise value at any given time has an offset caused
by the poor reproduction of the initial ballistic regime.

Now, let us look at the frequency components of the particle trajectories Fig. 10.16.
The reference here in black is the PSD of DNS particle trajectories. This is because
the EMEF is a specific distribution built with DNS particles. It does not change the
frequency components of the particle trajectories. Particles on the reduced fluid see a
strong alteration in their energy spectrum. Models aim at reducing the gap between
the particle behaviour on the reduced fluid and the particle behaviour on the DNS
fluid. None of the models exactly reproduces the DNS behaviour. This is because
standard diffusion models only give access to negative powers of two for their high
frequencies asymptotes and the DNS high frequency asymptote is a rational number.
Bypassing this limitation would require the use of fractional Brownian motion, which is
significantly more advanced: not commonly used for industrial applications and severely
more computationally expensive (Letournel (2022)). However, given this limitation, the
third order model gives a pretty good approximation of the DNS frequency content.
It is nonetheless important to remember that third order modelling technique involves a
characteristic time scale of 0.081s in the specific case chosen here, and that integration
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Figure 10.15. Temporal evolution of particle variance in relative position, velocity and
modelled fluid velocity (respectively on the first, second and third line) with a linear scaling
on the left hand side and a logarithmic scaling on the right hand side. Are represented, the

50% EMEF (reference) and three orders of modelling when 50% of the fluid is resolved.

of the stochastic differential equation requires an explicit scheme. Therefore, the third
order model requires the computation of time scales which are one order of magnitude
lower than the lower frequency modes of the reduced fluid (around 0.3s).
In this section, we have shown how the use a simple class of diffusive models offers the
possibility to recover the long time asymptotic behaviour of the second order moments of
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Figure 10.16. Power spectral density of particle position (top) and velocity (bottom). Are
represented, DNS (reference), 50% filtered and three orders of modelling when 50% of the

fluid is resolved.

the distribution of the particles. The higher the order of the model, the more moments
of the disperse phase distribution can be reproduced. However, this class of diffusive
closures still possesses some intrinsic limitations which make the reproduction of a step
response difficult and prevent them from having the correct energy spectrum.
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10.3.1 More advanced closures

The closures that we have presented in the previous section are simplistic compared
to the literature because they are considering constant coefficient. These models are
perfectly adapted when the level of energy reduction of the fluid is stable. This is the
case in the context of KS that we have chosen for this work. However, in practice, when
the average fluid characteristics change with space and time, it can be useful to adapt
this coefficient to the local conditions of the flow field. Therefore, some models based
on the second order model (Eq. 4.5), propose to adapt the energy of the Brownian force
to the surrounding fluid. The resulting relations usually take the form σv,II′ ∝ kSGS/τt.
Let us consider three examples of such closures for τt taken from Bini and Jones (2008):

• Bini1: 1/τt = |vp|∆−
1
3

• Bini2: 1/τt =
√
kSGS∆−

1
3

• Bini3: 1/τt =
(
∆/
√
kSGS

)2α−1
τ−2α
p

One of the key challenges resides in computing kSGS. According to the fluid reduction
strategy chosen, it can be readily available, which is the case when the reduction model
encompasses an evolution equation for kSGS, or it has to be estimated. In our case,
because we have access to the whole fluid, kSGS was estimated as

1

2
·
∑

G
(
uf (t,xp(t))−G (uf (t,xp(t)))

2
)
. (10.18)

Because all of these closures are defined respective to a constant to be set by the user, it
is easy to tune them for a specific case where they will obviously match the asymptotic
behaviour. However, the modelling accuracy provided remains identical to model II.
Therefore, in order to challenge these models a bit more, we have chosen to test them
for different fluid resolutions. All the second order models were fine tuned to give the
correct asymptotic particle energy when 50% of the fluid is filtered. Keeping this tuning
constant, we have then changed the level of fluid filtering to see the robustness of each
model. The Fig. 10.17 represents the asymptotic particle energy of all the second order
models, fined tuned at 50% of fluid filtering, for various levels of fluid resolution. The
reference value is given by the 50% EMEF represented with a dashed line. All models
give the correct energy for the disperse phase when 50% of the fluid energy has been
removed. This is to be expected because the parameters of each of the models have been
tune to match this value. However, when the fluid reduction is different from 50%, the
models start to give values which do not correspond to the EMEF. Interestingly, models
with σv,II′ variable are more stable to off design conditions than the static model.
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Highlights and conclusions

In this chapter, we have benchmarked Lagrangian diffusive models under the
EMEF using KS:
• We have shown that diffusive models reproduce very well the long time

behaviour of the second order moments of the distribution of the disperse
phase.
• However, they cannot reproduce the initial transport regime correctly.
• This difficulty of simple diffusive models to reproduce the correct transient

dynamics appears very clearly in their inability to reproduce the PSD of
particle trajectories in turbulence .

In order to better capture the behaviour of particles in turbulence, more elabo-
rate models are required. It could be interesting to explore the use of fractional
Brownian motion in order to better reproduce the PSD of particles in turbulence
(Letournel (2022)).



170 Conclusion



Conclusion

In this PhD work, we have investigated the definition of a statistical description of turbu-
lent particle-laden flows that is consistent with two-way coupling and large eddy simula-
tion. To this aim, a comprehensive bibliographic review has highlighted the weaknesses
of the available formalisms in the literature, with a focus on the Mesoscopic Eulerian
Formalism of Février et al. (2005). Following some suggestions of the authors, we have
rigorously constructed an Extended Mesoscopic Eulerian Formalism, which considers a
random space not only composed of the particles but also composed of the unresolved
scales of turbulence, conditioned to a unique realisation of the resolved fluid scales. For
the sake of evaluating the impact of such an extended probability space, we have pro-
posed to use synthetic fluids to avoid the resolution of Navier-Stokes equations, and to
give an explicit control on the realisations of the gas phase. We have carefully anal-
ysed the numerical convergence of our fluid with respect to its parameters, as well as
the numerical convergence of particle trajectories and statistics. We have finally used
this numerical framework to validate the impact of the Extended MEF on the measured
statistics, showing a clear dependency in the initial transport part but a weak impact on
the terminal diffusion regime. We have also benchmarked a class of diffusive closures,
showing intrinsic limitations in terms of spectral description of the particle trajectories.
At the very end, we can emphasise on some key achievements of this work.

Main constructions

A statistically-consistent formalism

In this work, we have given a rigorous theoretical framework to the notion of reduc-
tion for two-phase flows (Chap. 5.1), from the perspective of dynamical systems. This
strategy is not the most common in the community. It has made possible the precise
definition a formalism able to extend the MEF to non-injective fluid reductions: the
EMEF (Chap. 5.2). This strategy has been suggested in Février, Simonin, and Squires
(2005), but never developed any further. One of the key difficulty has been to find a
framework in which to perform actual simulations of this formalism.
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A numerical framework for investigation

To investigate the proposed formalism, we have crafted an original numerical set-up
(Chap. 6). The numerical setup relies on Kinematic Simulations. It is a standard tech-
nique used for mimicking turbulence and studying the behaviour of inertial particles
in turbulence, which has not been used so far for studying the impact of conditional
averaging on inertial particle distributions. This new setup has been thoroughly vali-
dated and characterised (Chap. 7 and 8). Eventually, this has led us to actually study
numerical simulations of the EMEF thanks to this unique numerical set-up (Chap. 9).
The numerical results have helped us characterise the behaviour of the EMEF.

Main conclusions

An unaffected terminal diffusion regime

The diffusion regime is reached when particles have lost memory of their initial condi-
tions. This terminal regime is the one that is targeted by all diffusive models for particles,
scalars, turbulence... Our study has demonstrated that this long-time diffusion regime
is not affected by the chosen formalism. This conclusion is of primary importance for
the sake of re-validating existing models in the spirit of our formalism, as it would mean
that all these models can still be validated in the classical way, i.e. using a unique fluid
instead of a full collection of fluids.

A high sensitivity of the initial transport regime

As opposed to the MEF, the distribution of the EMEF experiences some dispersion,
even when the initial position of the inertial particles is perfectly known. This dispersive
behaviour is controlled for short times by the energy of probability space associated to
the fluid reduction. Whereas for the long-time behaviour, there is no impact of the chosen
formalism, this initial regime is highly impacted. This is somehow fully expected, as the
level of dispersion is directly related to the level of “uncertainty” in the formalism: where
the MEF is not able to disperse an initial Dirac distribution, the EMEF can because
of its ensemble of probable fluids. One would say that, as all models are validated on
the diffusion regime, there is no need to worry. Unfortunately this initial regime is
potentially the main regime encountered by droplets in a combustion chamber, as they
could have no time to reach this long-time regime before being evaporated. Furthermore,
during this transport phase, the two-way coupling between the two phases may be more
intense because of the non-equilibrium, and thus requires a specific attention in terms
of applications.

A intrinsic limitation of diffusive closures for spectral representation

We have finally evaluated the use of diffusive closures for LES. We have theoretically and
numerically highlighted that, even if such models can control some large-time properties
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such as the equilibrium velocity variance, they are intrinsically not able to retrieve the
correct spectral behaviour as such, as they could only recover power of 2 exponents for
the decay of energy at high frequencies, where the right limit is a fraction of 3. This
limitation clearly calls for more advanced models for sub-grid scale forcing. We also recall
that these models have been evaluated in a Lagrangian framework, but the implications
are the same for their Eulerian counterpart, i.e. their associated Fokker-Planck equation.

Perspectives

Navier-Stokes fluids

One of the main limitations of our work is the use of synthetic fluids. Even if we have
proven a strong similarity between our fluid and turbulence, there are still features that
we are not able to reproduce, such as intermittency. Moreover, our fluid cannot be
coupled, and our final goal is two-way coupled flows. To this aim, would want to use
Navier-Stokes equations. In order to use these equations, we have to be able to:
• generate fluids with the same large scales and different small scales: a solution is

to use kinematic simulations as an initialisation;
• assess the independence between the largest scales and the smallest scales: see

how two different initial solutions sharing the same largest scales evolve with time.
However, assuming that the largest scales of the flow fields have the same evolution,
independent of the smallest scales is a strong assumption.

While conducting this study, we would have to remember that one synthetic fluid is based
on 8 fixed parameters per mode, whereas an homogeneous isotropic turbulent flow, even
at low Reynolds would require at least 4∗643 ≈ 1M degrees of freedom1. Therefore, the
computational cost with Navier-Stokes simulations can become too high, and we would
have to envision the use of higher order statistic instead of a simple random sampling,
in order to limit the number of required fluids.

Two-way coupled cases

Even if the large-scale independence is generally assumed in the one-way coupled case,
it is not necessarily the case when their is a two-way coupling between the particles and
the carrier phase. Three scenarios can be envisaged:
• Particles affect the carrier phase only at scales smaller that the cut-off length

scale of the reduction operator. In this kind of a case, the two-way extension is
straightforward, as long as small scale fluctuations do not affect large scales of the
flow.

• Particles affect the carrier phase at all scales, but with negligible variations at large
scales between realisations. In this scenario, the conditioning simulations to the
largest-scales of the flow is possible.

1Velocity and pressure at each point
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• Particles affect the carrier phase at all scales, with substantial variations at all
scales between realisations. In this case, considering the EMEF in the scope of
resolving large-scale while modelling small scales is not possible, and we would
have to redefine the ensemble-averaging by considering also the large scales.

More advanced LES closures for particles

Finally, because we have shown that diffusive closures are not expected to retrieve the
right spectral behaviour of particles, we need to use more advanced model, such as the
one of Gorokhovski and Zamansky (2018). More precisely, advanced statistics, such as
intermittency, are mandatory to validate models of the literature, as this is an impor-
tant trends of developed turbulent flows. This property has several definitions if seen
from a mathematical or a physical perspective. Investigating the ability of stochastic
Lagrangian models to reproduce it will be investigated in the thesis of Letournel (2022).
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Scientific Outreach

The present thesis has been founded by the DGA and supervised by Vincent Plana.
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Vié (2019). Statistical and probabilistic modeling of a cloud of particles coupled
with a turbulent fluid. ESAIM: Proceedings and Surveys 65, 401-424. (p. 78, 104)

Papers in preparation:

• Mercier, D., A. Vié, M. Massot Influence of probability space on Large Eddy Sim-
ulation of turbulent particulate flows, Journal of Fluid Mechanics

• Mercier, D., A. Vié, M. Massot A review of diffusive closures and their limits for
inertial particles in Large Eddy Simulation of turbulent particulate flows, Flow,
Turbulence and Combustion
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Nomenclature

Latin characters

•′ fluctuating part of • in the context of a reduction operator

•−1 when • is a function, corresponds to the inverse of •
•← pre-image of •
• reduced variable •
•x, •y, •z Cartesian components of the vector •
•> transpose of matrix •
∇v notation for

(
∂vx , ∂vy , ∂vz

)
∇x notation for (∂x, ∂y, ∂z)

an amplitude of mode n in KS

a
(q)
p position in phase space for a particle q

af measurable set of fluid flow fields

ap measurable set of phase space for a particle

A Phase space

Af set of fluid flow fields

Ap phase space for the particles

Af set of measurable sets of fluid flow fields

Ap set of measurable subsets of phase space for the particles

B bassin of attraction

C0 Richardson’s constant

CS Smagorinsky constant

d• differential of •
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dBt 3D Wiener process increment

dp particle diameter

dt• derivative of •
D diffusion coefficient

D diagonal matrix

Dred reduced dynamical system

Dref dynamical system of reference

Dred,s−c self-contained reduced dynamical system

∂• partial derivative with respect to the variable •
Kn Knudsen number

e event

E numerical integration error

E (κ) average fluid energy density spectrum

Econtinuous reference continuous average fluid energy density spectrum for KS

E set of events

E enstrophy

E expectancy

f distribution of the MEF

fall joint distribution of the fluid and the particles

fall,af conditional distribution of the particles on the set of fluids af

faf average distribution of the particles averaged over the set of fluids af

f
(q)
af marginal distribution of the particle q on the set of fluids af

fEE mesoscopic density

fmacroscopic characteristic frequency of the macroscopic problem

fmicroscopic characteristic frequency of the microscopic problem

fNCM normalised counting measure

fNp product distribution of Np particles

fq,DPS fine-grain distribution of the particle q

fuf distribution of the MEF on the fluid uf
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G arbitrary reduction operator of the fluid field

GLES LES reduction operator of the fluid field

GRe RANS reduction operator of the fluid field

G arbitrary reduction operator

k reference energy of KS

k′ normalised KS reference energy

k0 normalisation factor for KS energy

kSGS sub-grid scale energy

`mean free path mean free path of fluid molecules

`physical length characteristic physical length scale of the problem

L length scale of the largest turbulent eddies

L bound in the curvature of a field

L∗ characteristic length scale

log natural logarithm

Mk moment of f of order k in the velocity direction

n index

n0 dimensionless particle number density

nη dimensionless particle number

Np number of particles

N normal distribution

NR folded normal distribution

N̂f statistical number of fluids

NLE number of large eddy realisations

N̂p statistical number of particles

NSE number of small eddy realisations

Nκ number of modes in KS

‖ • ‖ norm 2 of •
pf Fluid pressure

P transfer matrix
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P probability measure

Pt probability measure transported at time t

PSD*(up,x) model of the PSD of up,x

q ∈ [[1,Np]] index for the particles

R (uf ) G ((uf · ∇x)uf )− (uf · ∇x)uf

R(V p) primitive of the autocorrelation of V p

R real numbers

Re = U∗L∗
ν Reynolds number

Ret =
ufLt
ν turbulent Reynolds number

s element of time

sref position in the phase space of reference

st global state variable of the two-phase flow system in phase space at time t

Sref phase space of reference

S element of surface

Sij resolved deformation tensor

Stlarge Stokes number based on the largest scales of the flow

Stsmall Stokes number based on the smallest scales of the flow

Stη =
τp
τη

Stokes number based on the Kolmogorov scale

t time

t0 reference time

t01, t02 initial times∫
integral

T∗ characteristic time scale

TL Lagrangian autocorrelation time

U∗ characteristic velocity scale

U3 random variable of the fluid velocity seen for the third order model

u0 fluid velocity variable of the homogeneous system

u1, u2 arbitrary fluid velocity fields

uf (t,x) Eulerian fluid velocity
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uf , t Eulerian fluid velocity field at time t

v variable representing the velocity in phase-space

v0 velocity variable of the homogeneous system

vf@p (t) fluid velocity around a particle

vf (t) fluid velocity at the particle position

vp particle velocity

Var variance

V 2, V 3 random variable of the particle velocity

for the second and third order model

V p random variable of the particle velocity

x variable representing the position in phase-space

x0 position variable of the homogeneous system

x01, x02 initial positions

xp particle position

X1, X2 et X3 random variable of the particle position respectively

for the first, second and third order model

Xp random variable of the particle position

xp,0 particle position at time t0

xp,t0,xp,0 position at t of the particle which was in xp,0 at t0

xp,∆t particle position integrated with a time step ∆t

z0 global variable of the deterministic homogeneous system

Z0 global variable of the stochastic homogeneous system
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Greek characters

δ• delta measure at •
∆ normalised convolution kernel

∆x Laplacian according to the variable x

ε rate of dissipation of turbulent kinetic energy

ε small positive value

η Kolmogorov length-scale

θ parameter(
θ̂n

)
n∈N

sequence of estimators of the parameter θ

κ wave-number

κ0 lowest wave-number

κEI wave-number between the energy-containing range and the inertial sub-range

κID wave-number between the inertial sub-range and the dissipation range

κmax maximum of the wave-number range

κmin minimum of the wave-number range

κn wave-vectors of KS

κη wave-number at Kolmogorov length-scale

µf fluid cinematic viscosity

νf Fluid dynamic viscosity

νSGS turbulent viscosity

ρ covariance matrix

ρf Fluid density

ρp particle density

σ vectorial brownian energy

σ1, σ2, σ3 brownian energy respectively of the first, second, and third model

τp characteristic time of the particle

τt characteristic time-scale of sub-grid scale fluctuations

τu autocorrelation time of the fluid velocity seen along a particle trajectory



Nomenclature 195

τU3 characteristic time of the fluid velocity seen of the third order model

τv autocorrelation time of a particle velocity

τV 2, τV 3 characteristic time of the velocity of the second and third order model

τη characteristic time scale associated to Kolmogorov length-scale

φ particle mass loading

ϕn phase of the mode in KS

Φ evolution function of a dynamical system

Φf evolution function for the Navier-Stokes equations

Φref flux of the dynamical system of reference

ΦSref ,G,Φref
red,s−c flow adapted to a self-contained reduction operator

ΦSref ,Gred,inj flow adapted to an injective reduction operator

Φt function giving the state of the fluid and the particles after a time t

ω pulsation

ω realisation

ω fluid vorticity vector

ωf fluid realisation

ωn pulsation of the mode in KS

Ω set of possible outcomes

Abbreviations

CO Carbon Monoxide

DNE Does Not Exist

DNS Direct Numerical Simulation

EMEF Extended mesoscopic Eulerian Formalism

EM2C Laboratoire Énergétique Moléculaire et Macroscopique, Combustion

HIT Homogeneous Isotropic Turbulence

KS Kinematic Simulation

LES Large Eddy Simulation

MEF Mesoscopic Eulerian Formalism
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MPI Message Passing Interface

NDF Number Density Function

NCM Normalised Counting Measure

LE Large Eddies

NOx Nitrogen Oxide

NS Navier-Stokes

PBE Population Balance Equation

PDF Probability Density Function

PSD Power Spectral Density

RANS Reynolds Averaged Navier-Stokes

RK4 Runge-Kutta of order four

SE Small Eddies

URANS Unsteady Reynolds Averaged Navier-Stokes



Appendix

Synthèse en Français

Le spray de carburant constitue un des éléments clefs des moteurs aéronautiques. Afin
de reproduire fidèlement le comportement de tels moteurs par simulation numérique,
la modélisation de sprays de carburant aux gouttes de tailles variées est d’importance
primordiale. Parmi les différentes stratégies envisageables, les méthodes de moment
eulériennes offrent une option très intéressante car en s’intéressant directement à la dis-
tribution de gouttes de la phase dispersée, elles permettent naturellement de représenter
l’évolution de statistiques convergées. Ces méthodes sont déjà utilisées avec succès pour
reproduire des tendances macroscopiques telles que la forme de la flamme. Il reste toute-
fois de nombreux défis à relever afin d’améliorer le niveau de précision et de prédiction
de ces méthodes.
Parmi ces challenges, le couplage réciproque entre le spray et la phase gazeuse constitue
un élément majeur. En effet, les méthodes de moments utilisées pour la simulation
de sprays de chambres de combustion reposent souvent sur le formalisme mésoscopique
eulérien formalisé par Février et al. (2005). Ce formalisme envisage la distribution de
gouttes de carburant correspondant à une seule réalisation de la phase gazeuse. Le fluide
porteur est supposé unique et connu, de sorte qu’une telle approche n’est principalement
envisageable que dans un contexte où la phase dispersée ne rétroagit pas sur la phase
gazeuse.
Le travail proposé au cours de cette thèse s’attaque à cette limitation et propose une
dérivation étendue du formalisme mésoscopique eulérien. Cette dérivation permet de
prendre en compte certains cas de couplage entre la phase dispersée et la phase gazeuse
grâce à une approche de simulations aux grandes échelles (LES). Cette solution est par-
ticulièrement adaptée aux cas où la phase dispersée agit principalement sur les plus
petites échelles de la phase gazeuse. Comme le suggère Février et al. (2005), c’est un
scénario qui apparâıt très pertinent au regard de ce qui est souvent observé en pratique.
C’est pourquoi, dans la lignée de Fox (2003) et de Pope (2010), nous sommes amenés
à considérer une moyenne conditionnelle du spray par rapport aux éléments résolus de
l’écoulement. Cette approche permet de concilier, au sein d’une formulation aux grandes
échelles, la vision moyenne du brouillard de gouttes conditionnée à une unique réalisation
des grandes échelles du fluide porteur, comme dans le formalisme mésoscopique eulérien
classique, et un couplage fort entre la phase dispersée et le fluide à petite échelle. Afin
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d’étudier cette construction originale et difficile à approcher de façon pratique, un envi-
ronnement numérique basé sur des simulations cinématiques a été développé. Les simu-
lations cinématiques permettent de mâıtriser l’espace de probabilité associé à l’ensemble
des fluides turbulents, ce qui n’aurait pas été possible avec les solutions des équations
de Navier-Stokes. Cet outil de simulation a été validé consciencieusement afin d’assurer
la convergence des quantités d’intérêt pour l’étude proposée : notamment les moments
d’ordre deux de la distribution de particules, ainsi que le contenu fréquentiel de leurs
trajectoires. Cet outil a ensuite permis d’évaluer numériquement le comportement du
formalisme proposé, en variant le niveau de réduction du champ fluide, de DNS à RANS.
On observe alors que dès que l’on travaille avec un champ porteur réduit, ce nouveau for-
malisme introduit un effet diffusif sur la trajectoire de particules ponctuelles. Pour des
temps asymptotiquement longs, les caractéristiques de cette dispersion sont entièrement
pilotées par les propriétés du champ turbulent. En revanche, pour les temps courts, cette
dispersion est directement impactée par le niveau de réduction du champ fluide. Cette
observation est particulièrement intéressante car les gouttes de carburant d’une cham-
bre s’évaporent très rapidement et sont principalement impactées par le régime initial.
Pour conclure ce travail, quelques fermetures diffusives pour la phase dispersée, qui sont
adaptées au nouveau formalisme que nous avons introduit, sont étudiées et quelques per-
spectives quant à la simulation d’écoulement diphasiques couplés aux grandes échelles
sont présentées.



Titre: Simulation aux grandes échelles d’écoulements à phase dispersée avec prise en compte du
couplage inverse: un formalisme statistiquement cohérent

Mots clés: spray, turbuelnce, simulation aux grandes échelles, couplage, formalisme mésoscopique eulérien, simulation
cinématique

Résumé: La simulation de sprays de carburant est
d’importance primordiale pour reproduire fidèlement le
comportement des moteurs aéronautiques. À cette fin, les
méthodes de moment eulériennes sont déjà été utilisées avec
succès pour reproduire des tendances macroscopiques telles
que la forme de la flamme. Pour les améliorer, il reste toute-
fois de nombreux challenges, tels que la prise en compte du
couplage entre le spray et la phase gazeuse. En effet, le
formalisme mésoscopique eulérien formalisé par Février et
al. (2005) s’appuie sur une moyenne d’ensemble du spray
conditionnée à une réalisation de la phase gazeuse pleine-
ment résolue. Une telle approche est envisageable princi-
palement dans un contexte où la phase dispersée ne rétroagit
pas sur la phase gazeuse. Le travail proposé au cours de
cette thèse s’attache à étendre le formalisme mésoscopique
eulérien pour prendre en compte certains cas de couplage
entre la phase dispersée et la phase gazeuse grâce à une ap-
proche de simulations aux grandes échelles (LES). Cette so-
lution est particulièrement pertinente car comme le suggère
Février et al. (2005), il est souvent observé que la phase
dispersée agit en priorité sur les plus petites échelles de
la phase gazeuse. C’est pourquoi, dans la lignée de Fox
(2003) et Pope (2010), nous sommes amenés à considérer une
moyenne conditionnelle du spray par rapport aux éléments
résolus de l’écoulement. Afin d’étudier cette construction
originale et difficile à approcher de façon pratique, un envi-
ronnement numérique basé sur des simulations cinématiques

a été développé. Les simulations cinématiques permettent
de mâıtriser l’espace de probabilité associé à l’ensemble des
fluides turbulents, ce qui n’aurait pas été possible avec des
solutions des équations de Navier-Stokes. Cet outil de simu-
lation a été validé consciencieusement afin d’assurer la con-
vergence des quantités d’intérêt pour l’étude proposée : no-
tamment les moments d’ordre deux de la distribution de
particules, ainsi que le contenu fréquentiel de leurs trajec-
toires. Cet outil a ensuite permis d’évaluer numériquement
le comportement du formalisme proposé, en variant le niveau
de réduction du champ fluide, de DNS à RANS. On ob-
serve alors que dès que l’on travaille avec un champ por-
teur réduit, ce nouveau formalisme introduit un effet dif-
fusif sur la trajectoire de particules ponctuelles. Pour des
temps asymptotiquement longs, les caractéristiques de cette
dispersion sont entièrement pilotées par les propriétés du
champ turbulent. En revanche, pour les temps courts,
cette dispersion est directement impactée par le niveau de
réduction du champ fluide. Cette observation est partic-
ulièrement intéressante car les gouttes de carburant d’une
chambre s’évaporent très rapidement et sont principalement
impactées par le régime initial. Pour conclure cette étude,
nous étudions quelques fermetures diffusives pour la phase
dispersée qui sont adaptées au nouveau formalisme que nous
avons introduit et nous présentons quelques perspectives
quant à la simulation d’écoulement diphasiques couplés aux
grandes échelles.

Title: Large eddy simulation of coupled dispersed phase flows: a statistically-consistent formalism.

Keywords: spray, turbulence, large eddy simulation, coupling, mesoscopic Eulerian formalism, Kinematic Simulation

Abstract: The simulation of the polydisperse fuel
sprays is of tremendous importance for high-fidelity descrip-
tions of aeronautical burners. To this end, the Eulerian Mo-
ment Methods are an interesting strategy, because of their
intrinsic statistical convergence. Such methods have been
successfully used to represent macroscopic trends such as
the flame shape, but there are still some issues to be tack-
led in order to increase their level of fidelity and prediction.
Among them, the two-way coupling between the spray and
the gas phase is critical. Indeed, moment methods used to
simulate sprays in burners are often based on the Mesoscopic
Eulerian Formalism (MEF) of Février et al. (2005), which
considers the ensemble-averaged statistics of the disperse
phase conditioned to a unique gas phase. This conditioning
is required in order to solve the gas phase without any en-
semble averaging such as in RANS methods. Unfortunately,
if the disperse phase affects the gas phase, this conditioning
may be at least impossible and at most strongly restricted.
In this context, the present work investigates the develop-
ment of a statistical description in the case of a reduced
vision of the gas phase, such as the Large Eddy Simulation
(LES), and when two-way coupling is taking place between
the two phases. This solution is interesting for two-way cou-

pled disperse phase flows, as the retro-coupling can occur at
the smallest scales of the flow, with limited impact on the
largest scales, as suggested by Février et al. (2005). Beyond
the usual description of LES, following Pope (2010) and Fox
(2003), we consider a statistical framework of LES under
which the statistics are taken as ensemble-averaged over the
possible unresolved features. To investigate this solution,
a numerical framework using synthetic turbulence is devel-
oped, based on a superposition of analytic modes. By doing
so, the distribution of modes can be easily controlled, thus
enabling the generation of fields with identical large scales.
This framework is carefully evaluated to ensure statistical
and numerical convergence of the measures of interest, such
as particle dispersion. Our formalism is then investigated,
focusing on the impact of choosing this framework compared
to the initial MEF, from the DNS to the RANS limit. We
show that the choice of the formalism has a negligible impact
on the diffusion regime of particles in turbulence, but still
has a clear impact on the initial transport regime, during
which all physics could happen in spray combustion. We fi-
nally investigate Lagrangian LES models of the literature in
this framework and propose some perspective toward two-
way LES of turbulent particulate flows.
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