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ABSTRACT

The thermodynamic properties and the dynamical behaviour of two-dimensional
systems differ notably from the ones in three dimensions. This work presents
experiments performed with ultracold clouds of uniform weakly interacting
bosons confined in two dimensions of space. These experiments explore some
specific features of the thermodynamics and the out-of equilibrium dynamics of
two-dimensional systems.

Working with ultracold atoms provides the experimentalist with a rich toolbox:
geometry, temperature and internal state of the system are well controlled, and
various methods to investigate their properties are available. In particular we
work with uniform Boses gases in highly tunable geometries. I describe the
set-up and our experimental toolbox in a first part.

In a second part I present experiments to investigate the Berezinskii-Kosterlitz-
Thouless transition of a two-dimensional Bose gas. It is a topological phase
transition for which the system displays a quasi-long range order below the
critical temperature. We have developed two experimental schemes to probe
this quasi-long range order.

In a third and final part I explain the symmetries that underlie the dynamics
of a cloud near zero temperature in a harmonic potential. These symmetries are
the hidden symmetries of the two-dimensional non-linear Schrödinger equation,
which describes many other physical systems. We could probe these symmetries
experimentally, and we also observed initial shapes whose evolution is periodic
in a harmonic potential in the presence of a non-linearity. They could constitute
new breathers of this non-linear equation.
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RÉSUMÉ

Les propriétés thermodynamiques ainsi que l’évolution temporelle des systè-
mes bidimensionnels sont nettement différentes de celles de systèmes à trois
dimensions. Ce travail de thèse présente des expériences réalisées avec des
gaz ultrafroids uniformes de bosons en interaction faible, et confinés à deux
dimensions d’espace. Ces expériences permettent de mettre en lumière certains
traits caractéristiques de l’équilibre thermique et de la dynamique hors équilibre
des systèmes à deux dimensions.
Un expérimentateur travaillant avec des atomes froids possède une boîte

à outils très fournie: la géométrie, la température, l’état interne des atomes
sont très bien contrôlés, et de nombreuses méthodes permettant d’étudier
leurs propriétés sont disponibles. En particulier, nous travaillons avec des gaz
de densité uniforme dont la géométrie peut être choisie à volonté. Je décris
l’installation expérimentale et les outils à notre disposition dans une première
partie.

Dans une deuxième partie, je présente une série d’expériences concernant la
transition de phase Berezinskii-Kosterlitz-Thouless d’un gaz de Bose bidimen-
sionnel. Il s’agit d’une transition de phase topologique pour laquelle le système
présente un ordre à quasi-longue portée en dessous de la température critique.
Nous avons développé deux méthodes expérimentales pour sonder cet ordre à
quasi-longue portée.

Dans une troisième et dernière partie, je détaille les symétries qui sous-tendent
la dynamique d’un gaz proche d’une température nulle dans un piège harmo-
nique. Ces symétries sont les symétries cachées de l’équation de Schrödinger
non-linéaire, qui décrit plusieurs autres systèmes physiques. Nous avons testé
ces symétries expérimentalement, et nous avons également observé des formes
dont l’évolution est périodique dans un potentiel harmonique en présence de
non-linéarités. Ces formes géométriques pourraient constituer un nouveau type
de solutions périodiques de cette équation non-linéaire.

ii



ACKNOWLEDGMENTS

Le travail de thèse que clôt le présent manuscrit résulte de l’effort combiné
de nombreuses personnes avec lesquelles j’ai eu le plaisir de travailler au cours
de mes quatre années de thèse. Tout le long de cette période, j’ai également
bénéficié de l’entourage et du soutien indéfectible de plusieurs cercles amicaux
et familiaux. Les paragraphes qui suivent sont consacrés à toutes ces personnes,
et si la part que ces quelques lignes représentent dans un manuscrit est infime,
celle qu’ont pris toutes ces individualités dans ma vie de doctorant est immense.

Je souhaite remercier mes deux directeurs de thèse, Jean Dalibard et Jérôme
Beugnon de m’avoir accueilli tout d’abord pour mon stage de Master, puis pour
ma thèse. Je les remercie de m’avoir confié dès le début la tâche de construire
l’accordéon optique, ce qui m’a permis de me convaincre que j’avais toute ma
place dans le laboratoire. Leur présence et leur soutien constant durant ces
années ont été très précieux. Les discussions avec Jean ont toujours été très
profitables, et l’apport qu’il a eu sur les projets présentés dans cette thèse sont
incalculables. Jérôme a été un chef d’orchestre impeccable et je te remercie
pour sa bonne gestion de l’expérience au quotidien, mais aussi pour ton accueil
dans ton bureau pour la rédaction de ce manuscrit lorsque le bureau Rubidium
a atteint une surpopulation critique.
Ce duo de directeurs de thèse est complété par Sylvain Nascimbène dont

l’implication dans l’expérience est souvent cruciale lorqu’il s’agit de s’attaquer
à des questions théoriques ouvertes. Je te remercie pour toutes les discussions
fructueuses que j’ai pu avoir avec toi.
Je remercie enfin Antoine Heidmann, directeur du laboratoire, de m’avoir

accueilli comme doctorant dans l’équipe Condensats de Bose-Einstein. Merci
aussi à Jakob Reichel pour son suivi tout le long de ma thèse.

La majeure partie du temps consacré à cette thèse s’est faite aux côtés de
plusieurs postdocs, doctorants, stagiaires avec qui j’ai partagé tous les moments
de labeur, de joie, de peine, de détente inhérents à tout travail expérimental.
C’est ainsi que je remercie chaleureusement les six thésards avec qui j’ai eu le
grand plaisir de travailler: Lauriane, Laura, Jean-Loup, Édouard, Brice et Chloé.
Le quotidien au labo a été très agréable à vos côtés, et je dois beaucoup à votre
patience et votre enthousiasme. Je remercie également les quatre postdocs qui
m’ont beaucoup appris: Tom, Monika, Patricia et Yiquan. Enfin, je souhaite
remercier les stagiaires de plus ou moins longue durée qui ont travaillé avec nous,
et avec qui j’ai eu beaucoup de plaisir à interagir : Victor, Charlie, Lorenzo,
Fabrizio, Marius, Andres et Alexandre.

Je veux ensuite remercier tout le deuxième étage du bâtiment E du Collège de
France, à commencer par les chercheurs permanents Fabrice, Alexei et Raphaël,
ainsi que les équipes Sodium, Ytterbium, Dysprosium, et Jeunes Chercheurs.
Sous ces dénominations se cachent quelques dizaines de doctorants, postdocs,
stagiaires avec qui j’ai eu le privilège de partager quelques mois ou années de

iii



ma vie. Les liens amicaux qui en ont résulté ont été très importants pour moi.
Merci aussi à touts les doctorants et postdocs du LKB avec qui j’ai pu discuter.

Je remercie Carmen pour son soutien administratif sans faille, ainsi que tout
le personnel du Collège de France, du Laboratoire Kastler Brossel, de l’ENS et
de l’EDPIF qui ont permi à cette thèse de suivre son cours. Merci également aux
ateliers mécaniques et électroniques du Collège et du département de physique
de l’ENS pour leur aide.
J’ai effectué des missions d’enseignement durant cette thèse et je remercie

toutes les personnes qui ont contribué à leur bon déroulement, en particulier
Pierre-François Cohadon, Nabil Garroum et François Pétrélis.

J’ai bénéficié durant ces années de thèse d’un entourage familial et amical
qui m’a toujours soutenu. Je remercie du fond du cœur toute ma famille proche:
mon père, Valérie, toutes mes sœurs, mes grands-parents, Nathalie, Ivan et les
cousins. Merci également à toute la troupe du théâtre pour les moments de
joie à Paris, Sarrebrück ou Konstanz, merci à toute l’équipe du Ciné-club de
l’ENS depuis 2012 pour les mardis et dimanches dans les salles obscures, merci
à Aurélien et à Katharina pour leur soutien indispensable.

Je souhaite enfin remercier les deux rapporteurs, Vincent Josse et Wilhelm
Zwerger pour leur lecture attentive de ce manuscrit, ainsi que les examinateurs
Anna Minguzzi et Rob Smith pour avoir accepté de faire partie de mon jury de
thèse et pour leurs questions lors de la soutenance.

iv



CONTENTS

1 introduction 1

i producing and manipulating 2d bose gases
2 experimental set-up 11

2.1 Overview of a cold atom experiment 11
2.1.1 General features 11
2.1.2 Taking pictures of atoms 15

2.2 How to produce a uniform 2D Bose gas 16
2.2.1 Cooling atoms down to quantum degeneracy 16
2.2.2 Confining the gas in two dimensions 17
2.2.3 Creating a cloud with a uniform atomic density 24

2.3 How to control the initial state of the cloud 27
2.3.1 The internal state of the atoms 27
2.3.2 The phase-space density of the cloud and its tempera-

ture 29
2.4 Conclusion 33

3 implementation of spatially-resolved spin trans-
fers 35
3.1 How to induce Raman processes on cold atoms 35

3.1.1 Elements of theory about two-photon transitions 35
3.1.2 Our experimental set-up 39

3.2 Raman transitions without momentum transfer 44
3.2.1 Measuring Rabi oscillations 44
3.2.2 Focus and size of the DMD 46
3.2.3 Local spin transfers 47

3.3 Raman transitions with momentum transfer 50
3.3.1 Calibrating the momentum transfer 50
3.3.2 Local spin transfers with a momentum kick 52

3.4 Conclusion 54

ii measuring the first correlation function of the
2d bose gas

4 theoretical considerations on the first correla-
tion function 57
4.1 The first-order correlation function of infinite 2D systems 58

4.1.1 The XY-model and the BKT transition 58
4.1.2 An ideal gas of bosons in 2D 64
4.1.3 Interacting bosons in 2D 66

4.2 Developments for realistic experimental measurements 70
4.2.1 Exciton-polaritons and out-of-equilibrium effects 70
4.2.2 Cold atoms and trapping effects 71
4.2.3 Finite-size effects 73
4.2.4 Conclusion 74

5 probing phase coherence by measuring a momentum
distribution 75

v



vi contents

5.1 Measuring the momentum distribution of our atomic clouds 75
5.1.1 Creating an harmonic potential with a magnetic field 75
5.1.2 Evolution of atoms in the harmonic potential 76

5.2 Investigating the width of the momentum distribution 80
5.2.1 Influence of the initial size of the cloud 80
5.2.2 Influence of the temperature of the cloud 82
5.2.3 Determining the first-order correlation function? 83

5.3 Conclusion 86
6 measuring g1 via atomic interferometry 89

6.1 Interference between two separated wave packets 90
6.1.1 Free expansion of two wave packets in one dimension 90
6.1.2 Free expansion of two wave packets in two dimensions 92

6.2 Setting up and characterising the experimental scheme 94
6.2.1 The experimental sequence 94
6.2.2 Measuring the expansion of one line 95
6.2.3 Measuring the expansion of two lines 97

6.3 Measuring the phase ordering across the BKT transition 97
6.3.1 Extracting the contrast of the averaged interference pat-

tern 98
6.3.2 Results of the measurements across the critical tempera-

ture 99
6.3.3 Discussion and effects that may affect the measurements 102

6.4 Conclusion 104

iii dynamical symmetry of the 2d bose gas
7 elements of theory on dynamical symmetries 109

7.1 Symmetries of a physical system 110
7.1.1 The symmetry group as a Lie group 110
7.1.2 Linking different solutions of a differential equation 111
7.1.3 Linking solutions of two differential equations 112

7.2 Dynamical symmetry of weakly interacting bosons in 2D 113
7.2.1 Symmetry group of the free Gross-Pitaevskii equation 113
7.2.2 Symmetry group with a harmonic trap 117
7.2.3 Link between different trap frequencies 119

7.3 More symmetries in the hydrodynamic regime 121
7.4 Conclusion 124

8 an experimental approach of dynamical symme-
tries 125
8.1 Experimental sequence 125

8.1.1 The course of events 125
8.1.2 The measured observables 127
8.1.3 Some calibrations 128

8.2 Verification of the SO(2,1) symmetry 129
8.2.1 Evolution of the potential energy 129
8.2.2 Evolution in traps of different frequency 131

8.3 Universal dynamics in the hydrodynamic regime 134
8.3.1 Evolution with different interaction parameters 135
8.3.2 Evolution with different sizes and atom numbers 138

8.4 Conclusion 140



contents vii

9 breathers of the 2d gross-pitaevski i equation 143
9.1 Experimental hints 145

9.1.1 Initial triangular shape 145
9.1.2 Initial disk shape 147

9.2 Numerical simulations 149
9.2.1 Initially triangular-shaped cloud 149
9.2.2 Initially disk-shaped cloud 153
9.2.3 Other initial shapes 155

9.3 Towards an analytical proof? 156
9.4 Conclusion 156

10 conclusion 159

Appendices
a coupling two hyperfine states with raman beams 167
b correlation function of an ideal 2d bose gas 175
c details on the interferometric measurements of

g1 179
d details on the scaling laws of the 2d bose gas 181

d.1 Free Gross-Pitaevskii equation 181
d.2 Gross-Pitaevskii equation with a harmonic trap 181

d.2.1 General case: a variable trap frequency 182
d.2.2 Particular case: a constant trap frequency 183
d.2.3 Invariant transformations 183

d.3 Hydrodynamic equations 185
e publications 187
f résumé en français 227

bibliography 245



ACRONYMS

2D bidimensional

2D MOT two-dimensional magneto-optical trap

AOM acousto-optic modulator

BKT Berezinskii–Kosterlitz–Thouless

DMD digital micro-mirror device

EOM electro-optic modulator

GPE Gross-Pitaevskii equation

HWHM half width at half-maximum

KPZ Kardar-Parisi-Zhang

MOT magneto-optical trap

PSD phase-space density

RMS root mean square

viii



1
INTRODUCTION

In modern physics, symmetries play an important role in the understanding
of phenomena. The most spectacular result was found one hundred years ago
by Emmy Noether [1], who linked the existence of continuous symmetries to
conserved quantities of a system. Symmetries are also at the heart of gauge
theories that are used to describe the structure of many physical models, ranging
from classical electrodynamics [2] to the Standard Model of particle physics [3].
The symmetries of a system form a mathematical group and, in the case

where this group is continuous, one can describe it thanks to Lie’s group theory
[4]. One important object is the Lie algebra that locally describes the structure
of this group and from which many properties of the system can be inferred
[5]. In this approach, not only geometrical symmetries are considered, but
also symmetries involving the time coordinate and/or the time derivative of
the parameters of the system. Such symmetries are thus called ‘dynamical
symmetries’, and they can give a profound insight in the understanding of
a system. The most celebrated examples are the Kepler problem [6] and its
quantum counterpart, the model of the hydrogen atom [7, 8], where the existence
of a dynamical symmetry allows one to demonstrate respectively that the orbit
of planets are closed, and that the energy levels of hydrogen are degenerate
with respect to the azimuthal quantum number [9].

The symmetry group of a model depends on the dimensionality of its under-
lying space. While some theories aiming at the description of particle physics
rely on a space with more than three dimensions [10, 11], rich symmetries can
be found in low-dimensional systems [12]. An interesting example is set by
the conformal group of the Euclidean space, which is the group of maps that
preserves the angles of this space. In dimensions higher or equal to three, this
conformal group is constrained to be a composition of translations, rotations,
dilatations and inversions. In two dimensions, the conformal group is much
richer and it contains all the holomorphic functions [13]. This conformal group
has many applications in physics [14]. Another feature that low-dimensional
systems are more prone to exhibiting is the property of integrability. This
happens when a system has as many invariants as degrees of freedom [15], and
such integrable systems have been the focus of many studies [16].

The dimensionality of a system also affects its properties. Many systems
in condensed matter are constrained in one or two dimensions and thus have
very interesting features, related for example to the conductivity of heat or
of electrons [17, 18]. An important family of problems relies on the particular
topology of these systems, such as gases of electrons in two dimensions where
the quantum Hall effect [19] and the fractional quantum Hall effect [20–22]
have been observed, or the band properties of graphene [23, 24].

Among these two-dimensional systems, a handful of them undergo a topologi-
cal phase transition that was first predicted by Berezinskii [25] and by Kosterlitz
and Thouless [26]. This particular phase transition has triggered many theo-
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2 introduction

retical and experimental studies [27]. It does not stem from the breaking of
any symmetry, but it comes from the existence of topological objects called
vortices that are paired on one side of the transition and that are unbound on
the other side. The transition from one phase to the other is of infinite order,
which means that the order parameter and all its derivatives are continuous.

Several experimental systems display this BKT transition: thin films of su-
perfluid 4He [28], two-dimensional arrays of Josephson junctions [29–32], thin
superconducting films [33–35], crystals growing on a surface [36], arrays of
Bose-Einstein condensates [37], and the weakly-interacting two-dimensional
Bose gas [38]. For all these systems, the BKT transition describes how a spatial
phase ordering emerges when their temperature is decreased.
An interesting quantity to illustrate this phase ordering is the first-order

correlation function g1(r). For systems with long-range order, this function
converges to a non-zero value when r → ∞. Above the BKT transition, this
correlation function decreases exponentially fast to zero, which indicates a
short-range order. Below the transition, g1(r) decreases to zero as well, but
as a power-law, which is much slower than an exponential decrease. Such a
behaviour is called a quasi-long range order.

The BKT transition has also the particularity of having a superfluid fraction
that is discontinuous at the critical point. I describe this phenomenon with
the vocabulary that is suited for fluids, but it can be translated for any other
system described by this physics. At zero temperature, the whole system is
superfluid and the flow of such a fluid around an obstacle can be frictionless if
the velocity of the flow is small enough [39]. When the temperature is increased,
a fraction of the gas becomes normal and can dissipate energy. The superfluid
fraction decreases until the temperature reaches the critical temperature of the
BKT transition. At this critical point, the superfluid fraction exhibits a sudden
jump to zero when the system is brought right above the transition. When
considered in terms of superfluid phase-space density, this jump is universal,
which means that it does not depend on the specific model that is considered.

The system of interest in this thesis is the two-dimensional weakly-interacting
Bose gas, and it provides a powerful platform to investigate the properties of
two-dimensional systems. In particular we will explore the symmetries of this
system and the phase-ordering that is described by the BKT transition.

Working with ultracold atoms comes with a rich experimental toolbox that
has been developed over the years in the cold-atoms community.
Laser and evaporative cooling [40] allow an ensemble of atoms to reach

quantum degeneracy where the thermal de Broglie wavelength becomes larger
than the interparticle distance [41]. Bosonic atoms then form a Bose-Einstein
condensate [42–45] and fermionic atoms form a degenerate Fermi gas [46, 47].
In this regime, three-dimensional clouds of bosons have a long-range phase
coherence [48]. Trapping methods such as magnetic traps [49] and optical
traps [50] allow one to shape the potential energy landscape of the atomic
cloud. Extremely rich situations can be created, such as harmonic traps, optical
lattices with various geometries [51–54], low-dimensional geometries [55–57],
disordered potentials [58], flat-bottom box potentials [59]. The interactions
between particles can also be tailored at will. Feshbach resonances allow one
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to vary the s-scattering length of the atoms [60], magnetic atoms can display
strong anisotropic dipolar interactions [61], and the coupling of a cloud with a
light field in a cavity can lead to the engineering of infinite-range interactions
[62].
Ultracold atomic gases thus constitute a very versatile platform and they

open many perspectives in the study of many-body physics [63].

Before introducing the content of this thesis and diving into the core of
this work, I first mention briefly what is not in this manuscript. The building
of our experimental set-up has started in 2014, and I arrived in the group in
January 2015. At the beginning of my Ph.D. thesis, I was involved in several
projects that are not discussed in this manuscript. I briefly summarize here
these projects and I refer the reader to the list of publications at the end of
this introduction and to the Ph.D. theses of Laura Corman [64] and Jean-Loup
Ville [65] for more details.

We first built the experimental set-up to efficiently produce dense uniform
pancakes of ultracold rubidium atoms. It is a great experimental advantage to
work with uniform samples, especially when the quantities of interest depend
on the atomic density, and this approach is followed by more and more exper-
imentalists [66–68]. Another advantage resides in the high versatility of the
shapes that we can give to our atomic pancakes [69]. A novelty of the design of
our set-up consists in the use of a so-called ‘optical accordion’ to confine the
atoms in two dimensions. The characterisation of the combination of an optical
accordion and a box potential is partly presented in this manuscript, and more
details can be found in the article that we published.

A first set of projects then aimed at studying some interesting properties of
light-matter interaction. Our atomic samples are not as dense as usual solids,
but their density is high enough so that the average distance between particles
is notably lower than the wavelength λ of their main electronic transitions,
which makes these samples interesting to study with resonant light. Several
mechanisms can occur. The first one is called multiple scattering: a photon
scattered by an atom can be scattered by other atoms. This happens when the
optical density of a sample is large compared to 1. The second process is called
recurrent scattering: in a classical picture, a photon scattered by an atom can
be later scattered by the same atom [70]. This happens when the density n of
a sample is large compared to λ−3. In a more realistic picture, neighbouring
atoms are coupled by a dipole-dipole interaction and the eigenstates of the
system are intrinsically many-body [71]. To understand properly the scattering
of light in such a medium, one also has to take into account the polarisation
degree of freedom of light [72] and the internal structure of the atoms [73].
Our atomic system is cold, so that the Doppler shift associated with the

temperature is much lower than the linewidth of the transitions. This makes
the regime of recurrent scattering easier to reach for a given atomic density. In
the vertical direction, our sample is thin, and multiple scattering is suppressed.
On the contrary, in the horizontal plane, the system is large and one can
study multiple scattering in two dimensions. In this respect our experimental
system is unique to study light-matter interactions. Previous studies had indeed
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been done with hot atomic vapours [74], with dilute systems with a large size
where the optical density of the cloud is large [75–77], or with very small and
non-degenerate systems [78, 79].
In a first study we measured the transmission of near-resonant light of our

two-dimensional pancake to see how the single-atom picture of the resonant line
was modified when increasing the atomic density. We found that the absorption
line measured via the transmission of light is broadened, has an amplitude
reduced and experiences a (small) blue shift. In a second study, we could
illuminate with near-resonant light only a small central portion of the cloud and
we could study radiation trapping by measuring the propagation of photons in
the transverse direction. We could demonstrate that this trapping is affected by
refractive index effects with opposite behaviours on each side of the resonance
frequency.

Another type of experiments probes the mechanisms with which several
independent Bose-Einstein condensates merge and reach a global coherence.
This question is closely linked to the Kibble-Zurek mechanism [80] where a
hot system is cooled down and crosses at a given rate the critical temperature
of a phase transition that spontaneously breaks a continuous symmetry. In a
uniform system, domains with different values of the order parameter grow, and
their size depends on the cooling rate. In the case of Bose-Einstein condensates,
the order parameter is the phase of the condensate. In this system, the phase
domains formed during a quench subsequently merge and the system relaxes.
This coarse-graining dynamics is expected to follow the geodesic rule that states
that the phase landscape established after the merging of two condensates
follows the path of minimal gradient. During this process, topological defects
can be created when the phase landscape whirls by a multiple of 2π around
a given point in the gas. The number of defects varies as a power law of the
cooling rate, with an exponent that depends notably on the dynamical exponent
of the phase transition. Several experiments have been performed with cold
atoms to measure dynamical exponents (see [81] and references therein).
We performed experiments to confirm this geodesic rule by merging inde-

pendent condensates in the shape of a ring and measuring the statistics of
supercurrents that are formed when the phase whirls by a multiple of 2π around
the ring. We could also measure the time scale on which the phase correlation
across the ring emerges. The study of such supercurrents in rings is also very
interesting for the development of atomtronic circuits, in continuous rings [82–
85] or in lattice rings [86, 87].

A last study focused on the propagation of sound waves in a two-dimensional
sample. The propagation of sound had already been measured a few years ago
in three-dimensional systems [88–92], but it is interesting to wonder how the
thermodynamics in low dimensions and the BKT physics affect this propagation
of sound [93]. The propagation of sound relies on the mode coupling between
the ‘normal’ and the superfluid part of the gas. Two sound modes emerge from
this coupling and their velocity depend on the thermodynamics of the two parts
of the fluid. The speed of sound was notably expected to display a discontinuity
at the BKT transition, as the superfluid fraction exhibits a sudden jump at this
point.
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We could measure the velocity of the second sound across the BKT transition.
Interestingly, we did not measure any discontinuity. These measurements have
been explained theoretically in reference [94], and the sound that we measure
above the critical temperature is thought to be a collisionless sound that takes
its roots in the mean-field interactions of the gas.

In this thesis, I focus on the last results that we obtained. Two main directions
are pursued.

The first one is the investigation of the BKT physics. It aims at measuring the
phase ordering across this transition and thus showing how the role of thermal
fluctuations is enhanced in a low-dimensional system, as well as pointing out
the specificities of this topological phase transition.
The second direction concentrates on the dynamical symmetries of weakly

interacting bosons in two dimensions. The symmetry group of this system is
very rich due to the low-dimension of space, and it has many consequences
on the dynamics of a cloud of atoms when they are placed in a harmonic
potential. Our experimental approach sheds light on these consequences, and it
also reveals surprising features of the dynamics of clouds with particular initial
conditions: wave functions that evolve periodically and that are thus called
‘breathers’.

detailed content of this thesis

This thesis is divided into three parts. In the first one I describe the important
technical aspects of our experimental set-up. The second one is dedicated to
the study of the spatial phase ordering of a uniform two-dimensional Bose
gas across the BKT transition. In the third part is presented the study of the
dynamical symmetries of weakly-interacting bosons in two dimensions. Here is
a detailed summary of the chapters of each of these parts:

I. Producing and manipulating 2D Bose gases

Chapter 1: I describe the experimental set-up that allows us to produce
uniform two-dimensional Bose gases. I detail the important experimental
techniques that we use to image the atomic samples, to control their
internal degree of freedom and to extract their temperature.

Chapter 2: I characterize in detail a new tool based on Raman beams,
with which we can perform manipulations of the internal state of the
atoms in a spatially-resolved way. This manipulation can be accompanied
with a tunable momentum transfer.

II. Measuring the first correlation function of the 2D Bose gas

Chapter 3: I present the basic theory of the Berezinskii-Kosterlitz-
Thouless transition with the XY-model, and I show how it applies to an
infinite two-dimensional Bose gas. I then discuss some measurements that
have been performed in the last years to measure first-order correlation
functions on 2D systems. These measurements raise issues due to the
out-of-equilibrium character of systems, to their spatial non-uniformity,
and to their finite size.
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Chapter 4: I present experiments that we have performed to measure
the first-order correlation function of our uniform two-dimensional Bose
gases. These experiments are based on the measurement of the momentum
distribution of the gas. They provide only a qualitative understanding
of how this correlation function evolves across the Berezinskii-Kosterlitz-
Thouless transition.

Chapter 5: I present a second set of experiments to have a more quan-
titative measurement of the first-order correlation function. They rely
on interferometric measurement of the relative phase between different
points of the gas, and provide a direct and more accurate access to this
correlation function.

III. Dynamical symmetry of the 2D Bose gas

Chapter 6: This chapter is dedicated to the theoretical study of the
dynamical symmetries of the two-dimensional Bose gas in the presence
of a harmonic trap. These symmetries allow one to determine scaling
laws linking the dynamics of clouds that do not have the same initial
conditions.

Chapter 7: The dynamical symmetries derived in the previous chapter
are investigated experimentally in this chapter. The link between the
dynamics of clouds initially at rest and with the same initial shape are
reconstructed and compared with the theoretical laws.

Chapter 8: In this last chapter I report the observation of two types
of wave functions that may be breathers of the two-dimensional Gross-
Pitaevskii equation with a harmonic potential. This experimental obser-
vation is compared with numerical simulations of the equation.
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2
EXPERIMENTAL SET -UP

The experimental set-up has been designed and built to produce ultracold
bidimensional uniform samples of rubidium atoms. This chapter aims at giving
an overview of this set-up.

When I arrived in the group, the experiment was being built for several
months, and I participated to the end of this building. Thorough descriptions
of the structure of the experiment have been delivered by previous Master
and Ph.D. students, and the reader can refer to these works to have detailed
information:

• The Masterarbeit of Katharina Kleinlein who worked on the early laser
system, the vacuum system and the first cooling steps [95].

• The Ph.D. thesis of Laura Corman, who detailed the whole scheme to
create a uniform bidimensional (2D) sample [64].

• The Ph.D. thesis of Jean-Loup Ville, who detailed the manipulation of
the internal state, as well as important calibrations of our 2D gas [65].

I develop here all the elements that are useful in order to understand the
experiments presented in this thesis. In particular I detail some features that
were not discussed in these works. In a first part, the basic functioning of the
experiment is presented without going too much into the technicalities. The
second part details how the cloud is confined in two dimensions and how a
uniform density is maintained. Finally, I explain how the internal state and the
temperature of the cloud are prepared prior to investigating its properties.

2.1 overview of a cold atom experiment

2.1.1 General features

2.1.1.1 Electronic structure of 87Rb

Rubidium belongs to the alkali group and has a simple electronic structure.
Lasers addressing its electronic transitions are easy to access, enabling cooling
schemes as well as optical trapping methods. All these advantages make this
atom a widely-spread tool in the cold atoms community.
The electronic ground state of the atom is 2S1/2 and its first excited state

has two fine levels: 2P1/2 and 2P3/2. The transition 2S1/2 → 2P1/2 (resp.
2S1/2 → 2P3/2) is called the D1 (resp. D2) line and has a wavelength of 795 nm
(resp. 780 nm).

We are only interested here in the 2S1/2 and 2P3/2 states, that we use for our
cooling scheme. Each of these levels experiences hyperfine splitting due to the
coupling between the electron and the spin of the nucleus: the 2S1/2 level splits

11



12 experimental set-up

2S1/2

2P1/2

2P3/2

F=2

F=1

F'=0

F'=1

F'=2

F'=3

2
1
0
-1
-2

-1
0
1

D
1:

uλ
u=

u7
95

un
m
 

D
2:

uλ
u=

u7
80

un
m
 

Δν=6.834uGHz
Δν/Bu=
0.7uMHz/G

fine
structure

hyperfine
structure

Zeeman
splitting

mF

mF

Δν=266.6uMHz

n=5

n=5

n=5

Figure 2.1: Electronic structure of rubidium atoms. The fine, hyperfine and Zeeman
structures are detailed only for the levels of interest in this work.

into the F = 1 and F = 2 level, separated by ≈ 6.834GHz, and the 2P3/2 level
splits into four levels labelled from F ′ = 0 to F ′ = 3.
The two hyperfine states of 2S1/2 are the ones in which we perform the

interesting physics. They experience Zeeman splitting in the presence of a
magnetic field B: the F = 1 state splits into three levels, labelled with mF =
−1, 0, 1, and the F = 2 state splits into five levels, labelled with mF =
−2,−1, 0, 1, 2. In the low magnetic field regime where the quadratic Zeeman shift
is negligible, the displacement of the energy of each level is ∆E = µBgFmFB,
with µB the Bohr magneton, and gF the Landé factor of the hyperfine state of
interest. For F = 1 (resp. F = 2), we have gF = −1/2 (resp. 1/2). For magnetic
fields around a few gauss, these displacements correspond to frequencies on the
order of a few megahertz.

All these features of the electronic structure of rubidium are summarized on
Fig. 2.1, where only the relevant states are depicted.

2.1.1.2 Lasers

We use lasers with four different optical wavelengths to reach the quantum
regime from a metallic sample, to trap them in a controlled geometry and to
probe the properties of 2D samples.:

• Two lasers at 780 nm to address the D2 line. They are used for the cooling
schemes summarized in 2.2.1, and for the imaging of the cloud explained
in 2.1.2. We use saturated absorption on a vapour of rubidium to lock the
frequency of these lasers with a precision of a few hundreds of kilohertz.
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• Two lasers at 1064 nm, red-detuned with respect to the D1 and D2 lines,
to create conservative attractive potentials (see 2.2.1), referred to as
optical dipole traps.

• A laser at 532 nm, blue-detuned with respect to the D1 and D2 lines, to
create conservative repulsive potentials and shape the final geometry of
the cloud (see 2.2.2 and 2.2.3).

• A laser at 790 nm, between the D1 and D2 lines, to perform Raman
transfers between the two lowest hyperfine states of the atom, as developed
in Chapter 3.

2.1.1.3 Vacuum system

The experiments are performed in a compact vacuum system where a high
vacuum is maintained. All experimental steps are performed in a single rect-
angular glass cell with high optical access and dimensions 25× 25× 105mm.
In particular, the early cooling steps to prepare the atomic sample and the
experiments performed on it are done at the same position, which prevents any
technical difficulty due to the transport of the cloud between different regions
of space.

Using a glass cell also allows to have coils and optical elements very near the
atoms and outside the cell. Having these tools near the atoms permits to reach
higher magnetic fields and optical numerical apertures, and not having them in
the vacuum cell is technically easier to develop.
The glass cell is represented seen from three sides on Fig. 2.2, and as many

elements as possible that are described in this chapter are depicted on these
drawings.

2.1.1.4 Magnetic fields

The magnetic field in the glass cell has to be well-controlled in order to
implement some of the cooling stages (see 2.2.1) and to control the energy
splitting between Zeeman states of the atoms (see 2.3.1) and reliably address
transitions between these states. There are several pairs of coils to achieve these
tasks:

• A pair of water-cooled coils in anti-Helmholtz configuration along the
vertical (z) axis. They produce a quadrupolar field for our quadrupole
magnetic trap with a maximal vertical gradient of 240 G/cm.

• A pair of water-cooled coils in anti-Helmholtz configuration along the y
axis. They produce a quadrupolar field for our magneto-optical trap (MOT)
with a maximal gradient of 22 G/cm.

• Three pairs of coils in Helmholtz configuration along the three axes, to
create bias fields. The pair on the vertical axis (resp. horizontal axes)
creates a maximum bias field of 2 G (resp. 1 G). These coils are located
around the glass cell, but they are not represented on Fig. 2.2. The
intensity is provided by power supplies (Delta Elektronika ES 030-5) with
a relative intensity noise of 10−4, which corresponds to a fluctuation of
magnetic field of 0.2 (resp. 0.1) mG.
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Figure 2.2: Scheme of the experimental set-up: Side, Front and Top views. The glass
cell is in the centre of each view (light blue rectangle). The vertical anti-
Helmholtz coils are represented in orange (Q1 and Q2). Inside them are
placed microscope objectives. On the first two panels, only a cut of the
top coils has been represented to better see the top microscope objective.
For the sake of clarity, the laser beams are represented only on the panels
that contain their propagation axis. The coils for the bias fields are not
depicted here.
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2.1.1.5 Control of the experiment

The whole experiment is computer-controlled. The free software Cicero-Word
generator is used to generate a series of instructions. These instructions are
transmitted to several National Instruments cards that send ‘analogical’ and
digital signals to all the instruments we use (lasers, power supplies, generator,
etc.). The different cards are synchronized by a FPGA module that acts as a
clock.

The temporal resolution of all the signals is 1 µs, and their temporal accuracy
is below 100 ns. The ‘analogical’ signals are in fact digitized with a resolution of
approximately 2mV, and they are bounded between −10 and 10V. The digital
signals provide 0 or 5V.

2.1.2 Taking pictures of atoms

The determination of the density distribution of the cloud is realised via
absorption imaging on the state F = 2. A laser pulse is tuned on the closed
transition from F = 2 to F ′ = 3, which has a frequency ωL, a linewidth Γ and
a wavelength λL = 2πc/ωL with c the speed of light. It is sent on the atoms
during a few tens of microseconds. The atoms scatter photons in all directions
of space and a camera collects the remaining ones in the forward direction.
In the regime of low saturation, where the intensity I of the laser probe is

small compared to the saturation intensity Isat = ~ω3
LΓ/(12πc2), and in the

regime of dilute clouds where the atomic density n3D is small compared to λ−3
L ,

the intensity collected on the camera is given by the Beer-Lambert law:

Iwith = I exp

(
−
∫

dl σ n3D

)
+ Ibgd, (2.1)

where σ is the scattering cross-section of the atoms, whose value is discussed in
2.2.3, and the integral is performed along the direction of the probe laser. Ibgd

represents any spurious light that can hit the camera and pollute our signal.
Another pulse of light without atoms is then sent to the camera to measure

Iwithout = I + Ibgd (2.2)

and acts as a reference, and an image is also taken without any light pulse to
measure Ibgd.
We then numerically compute the optical density OD of the cloud:

OD = − ln

(
Iwith − Ibgd

Iwithout − Ibgd

)
, (2.3)

and one should get from equation (2.1)

OD =

∫
dl σ n3D. (2.4)

Departing from the low saturation regime I � Isat broadens the absorption
line, and the number of photons each of the atoms scatter is not proportional
to I any more, which is an important hypothesis to get the Beer-Lambert law.
Moreover, having a too dense cloud where the condition n3Dλ

3
L � 1 is not
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fulfilled can lead the light field to excite collective modes of the cloud mediated
by dipole-dipole interactions, and the intensity Iwith that we would measure
can be very different from the single-atom picture given by the Beer-Lambert
law. These effects have been studied into more details during the beginning of
my Ph.D. They have been the subject of two publications [96, 97] and they are
discussed in the two previous Ph.D. works [64, 65].

In this thesis, we restrict ourselves to the regime where the Beer-Lambert
law is valid. More precisely, we use a probe light with I/Isat < 0.2, and we
measure optical densities that are always smaller than 1.5 to avoid leaving this
regime due to collective excitations. In order to do that, the experiments are
performed with the atoms in the F = 1 state, which is not sensitive to the
probe light. A controlled fraction of these atoms is transferred in the F = 2
state to be imaged. This fraction is adjusted to limit the optical density to
values lower than 1.5. The detail of how these transfers from F = 1 to F = 2
are done is explained in 2.3.1.

For quantitative measurements, we mainly use a vertical imaging to probe
the spatial distribution of the bidimensional cloud in the xy-plane. We use a
microscope objective with a numerical aperture of 0.45 to have a diffraction-
limited resolution around 1 µm on the atoms. We image the atoms with a
magnification of 11 with a low-noise CCD camera (Princeton Instruments, Pixis
1024 Excelon) that has an effective pixel size of 1.15 µm on the atoms. This
calibration has been performed by combining the imaging of atoms trapped
in a periodic potential and the diffraction of these atoms by a periodic lattice.
More details are given in [65].

2.2 how to produce a uniform 2d bose gas

2.2.1 Cooling atoms down to quantum degeneracy

In order to reach the quantum degeneracy from a hot vapour of rubidium,
we follow four successive cooling steps briefly detailed here. The geometrical
configuration of the various tools are shown on Fig. 2.2.

• In a primary glass cell separated from the science cell by approximately
30 cm, a two-dimensional magneto-optical trap (2D MOT) cools the initial
vapour of rubidium in two dimensions of space, y and z. A beam resonant
with the D2 line pushes the atoms to the science cell. The rest of the
experimental steps are performed in this science cell.

• A MOT confines and cools around 109 atoms down to approximately
250 µK. The quadrupolar magnetic field is provided by the horizontal
anti-Helmholtz coils. A first pair of laser beams propagates along the
y axis, and the two others are in the xz-plane, at an angle of 60◦ with
respect to the vertical axis. After this step, followed by a compressed-MOT
step and a molasses step, we are left with 6 · 108 atoms at a temperature
of 15 µK, and they are optically pumped in the F = 1 state.
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• A strong quadrupolar magnetic field provided by the vertical anti-Helmholtz
coils is ramped up (vertical gradient of 240 G/cm). Only the atoms in
the sub-state mF = −1 are trapped in this magnetic landscape, and
their temperature rises to ≈ 200 µK. We proceed to evaporative cooling
by sending a radio-frequency field to couple this sub-state to the other
Zeeman sub-states. We ramp the frequency from 35 to 2.5MHz during
12 s to transfer the most energetic atoms to the non-trapped Zeeman
states, eject them and let the residual ones rethermalize. At the end of
this step we have 2.5 · 107 atoms at a temperature of 20 µK.

• A crossed dipolar trap made of two red-detuned lasers located 50 µm below
the centre of the quadrupolar field is turned on. The quadrupolar magnetic
field is ramped down and the atoms fall into the optical dipolar trap.
We proceed to further evaporative cooling by lowering the depth of this
trap. Around 3 · 105 atoms reach quantum degeneracy at a temperature
of 200 nK and in the F = 1,mF = −1 state. A vertical magnetic field
around 1 G is maintained to keep the atoms polarised in this state.

All these steps last in total 26 s, and a few more seconds are needed to create a
2D gas and probe its properties.

2.2.2 Confining the gas in two dimensions

The construction of the vertical confinement of the atoms is crucial to have a
2D gas. The goal is to confine the atoms around a minimum of potential energy
in the z direction, to freeze the degrees of freedom along this axis and get a
system that effectively evolves in the two other dimensions only. This 2D regime
is attained when the vertical frequency ωz of the confinement corresponds to an
energy ~ωz much larger than both the interaction energy Eint and the thermal
energy kBT of the cloud. In that case, the atoms occupy only the lowest state
of the vertical potential. Their dynamics is frozen in this direction of space and
the gas is in the quasi-2D regime.

2.2.2.1 An optical accordion

We chose to build an ‘optical accordion’ following the scheme published in
[98], which is also close to the optical set-up described in [99] and implemented
with cold atoms in [100]. It consists in creating a vertical optical lattice with two
blue-detuned lasers beams interfering with an angle that can be dynamically
varied to change the lattice spacing. The same approach has also been used in
[101] by reflecting a beam on a surface with a variable angle.

The building and the optical testing of our accordion was the subject of my
master internship in the group, and it was followed by its implementation on
the experiment in the very beginning of my Ph.D. To our knowledge, it is the
first implementation of an optical accordion of this kind to produce 2D ultracold
gases.
I describe here the set-up and give some important technical details that

were not discussed in the previous Ph.D. theses.
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Figure 2.3: Optical set-up of the accordion. Two parallel beams come out of the two
polarising beam splitters (PBS) on the right of the figure. Lens L1 focuses
them on the atoms and lens L2 is used to image the interference pattern,
as shown on the inset. The position xb of the initial beam on mirror
M1 can be varied (blue arrow) and controls the angle of interference θ1

and the lattice spacing. This is done thanks to a mirror mounted on a
motorized translation stage (not represented here). Mirror M2 is mounted
on a piezoelectric stack to adjust the relative phase between the two beams.

When using a lattice made of repulsive light (wavelength λA = 532 nm),
the atoms sit in the dark fringes of the interference pattern. If the lattice is
deep enough, the potential that the atoms experience is well approximated by
a harmonic potential, with a vertical frequency

ωz =

√
2π2U

md2
, (2.5)

where U is the maximum potential height of the lattice, m is the mass of an
atom and d is the distance between two sites of the lattice. In order to have a
high confinement, one therefore needs a lattice with a high potential U and a
small lattice spacing d. For a given laser wavelength, the value of U depends
only on the intensity we use to create the lattice. In our case we are limited
to values of U/kB below ≈ 10 µK. If we want to have a vertical confinement
of several kilohertz (so that ~ωz > kBT ), we need to have a fringe spacing d
below 4 µm, so we aim at having d around 1 or 2 µm.
Efficiently loading a large cloud of atoms (size ≈ 10 µm) in a single node

of a lattice with such a small spacing is a difficult task. The accordion solves
this problem with the possibility to dynamically vary the lattice spacing: we
load the atoms in a large spacing configuration so that they populate only one
site of the lattice, and we adiabatically decrease the spacing to reach a high
confinement.
The scheme of the accordion set-up is presented on Fig. 2.3: a single laser

beam is separated into two by a first polarising beam splitter. The combination
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Figure 2.4: Optical measurements on the accordion. (a): Lattice spacing as a function
of the position xb of the translation stage. The solid line is a fit with
expression 2.6 with f and xb,0 as free parameters. We get ffit = 103(1)mm,
in agreement with the specification of the lens, and xb,0 = −2.46(3)mm.
(b): Vertical position of the centre of the two accordion beams as a function
of the lattice spacing: square (circles) correspond to the bottom (top) beam.
The shaded area represents the vertical size of the beams ±wz. Image
adapted from [102].

of a mirror, a quarter-wave plate and a second polarising beam splitter makes
the two beams parallel. Another polarising beam splitter is added to filter the
vertical polarisation and make sure that both beams have the same horizontal
polarisation. This element is not represented on Fig. 2.3. The two beams are
then sent on an aspherical lens (Asphericon ALL50-100-S-U, labelled ‘L1’ on
the figure) of focal length f = 100mm and they interfere in the glass cell. The
waists of the beams at the position of the atoms are wz ≈ 40 µm in the vertical
direction and wx ≈ 90 µm in the horizontal direction. A second aspherical
lens, identical to the first one, is used to image the interference pattern on a
control camera. The position xb of the incoming beam on the beam splitters
can be varied thanks to a mirror mounted on a motorized translation stage
(PI miCos LS-100), which changes the distance between the two beams before
the aspherical lens and then modifies the lattice spacing on the atoms. The
angle θ1 between the two interfering beams can be varied between 3◦ and 15◦.
The former is limited by the edge of the two polarising beam splitters, and the
latter is limited by the aperture of the MOT coils through which the beams
pass. The lattice spacing is

d =
λA

2 sin(θ1/2)
=
λA

2

√
1 +

(
f

xb − xb,0

)2

, (2.6)

which varies between 2 and 10 µm. In the second expression, the value xb,0

corresponds to the position of the stage where the two beams overlap perfectly.
We measured the lattice spacing d on the control camera as a function of xb.
The results are presented on Fig. 2.4a.

2.2.2.2 Limitation due to the quality of the focussing lens

The most important element in the set-up is the quality of the focussing lens.
When realising tests with a doublet, we observed that the aberrations of such a
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lens did not allow to make two beams with a waist smaller than 100 µm cross
at the same position when displacing the incoming beam with the translation
stage. We could have such beams overlapping and interfering properly on the
whole range of the translation stage only with an aspherical lens that corrects
for these aberrations.

For this aspherical lens as well, we observe that the centres of the two beams
are not exactly at the same vertical position in the focal plane of the lens when
varying the lattice spacing. On Fig. 2.4b are reported these vertical positions as
a function of the lattice spacing. The biggest distance between them is ≈ 20 µm,
which is why we chose the vertical waist of the beams wz to be larger than this
value.

The way the centres of the two beams are vertically displaced one with
respect to the other is very reproducible and is independent of the speed of the
translation stage that displaces the light beam. We found that it mostly depends
on the surface of the aspherical lens. We have indeed tested several lenses from
the same company and with the same specifications, and we measured different
relative motions. More precisely, we have purchased successively one pair of
lenses, then another pair, and then an additional single lens. These three sets of
lenses have been manufactured separately. When testing them, we found good
correlations between two lenses belonging to a pair, and much less correlations
between the pairs, and between a lens from a pair and the single lens.

We have also performed a simple numerical simulation to check whether
defects of the profile of the lens could lead to deflections of the beams on this
order of magnitude. The manufacturer provides the equation of the surface of
the lens and specifies the tolerance on this surface. The root mean square (RMS)
of the irregularities does not exceed 100 nm and the error on the slope of the
surface is smaller than 0.06mrad.
Thanks to Snell’s law, we compute the geometrical path of a ray of light

parallel to the optical axis of the lens and hitting it at various positions of the
surface and look at the position of the beam in the focal plane of the lens (see
Fig. 2.5a). We perform this computation either with the perfect surface profile,
or adding to it a small sinusoidal modulation within the specifications of the
manufacturer.
On Fig 2.5b we show the results of this computation. We find that the

displacement of a beam with respect to the optical axis does not exceed 5 µm,
which would translate into a distance smaller than 10 µm between two beams
symmetric with respect to the optical axis. This simple picture may not grasp
all the effects that we experimentally observe. For example a misalignment
between the first and the second aspherical lens that we use may increase the
measured displacements.

The conclusion is nevertheless that we have good indications that the minute
deviations from the optimal surface of the aspherical lens is limiting the accuracy
with which we are able to focus the two beams on the same spot. It also
constrains the minimal vertical waist of the accordion beams that we can have
in order to always maintain a good interference between the accordion beams
and keep the atoms in a dark fringe while varying the spacing of the vertical
lattice.
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Figure 2.5: Numerical simulations of the aspherical lens. (a): Scheme illustrating the
simulations: we compute the vertical position z0 of one beam on the focal
plane of a lens by adding small defects to its ideal surface (solid and
dashed line on the scheme). (b): We perform the calculation for the ideal
profile (dark-blue line), and for profiles where we add small sinusoidal
modulations with different k-vectors. The values for the three examples
here are k/(2π) = 0.16, 0.08, 0.04mm−1 for the three lines with increasing
colour intensity. For each value, the amplitude of the sinusoidal modulations
is adjusted to meet the specifications of the manufacturer.

2.2.2.3 Stabilisation of the interference pattern

Another important parameter to control is the relative phase between the
two accordion beams. This phase difference changes the vertical position of
the fringes. Since we need to load a cloud of atoms with radius ≈ 10 µm into
the dark fringe of a lattice with a spacing of the same order of magnitude, the
relative position of the cloud and the dark fringe of the lattice has to be stable
to much better than 10 µm.
We found that this relative phase drifts with a typical time scale of a few

hours. At each experimental sequence, we take a picture of the lattice with the
control camera. We select on this image a narrow region corresponding to a full
period of the lattice and determine the line of pixels on which the dark fringe
is located (see Fig. 2.6a, b and c).

If we monitor the position of this dark fringe, we see it drifting during the day
(see Fig. 2.6d, before the dashed line): the relative phase between the accordion
beams changes by 2π in approximately four hours. On top of this drift there
are oscillations that we correlate with the fluctuations of temperature in the
room.

In order to compensate for these variations, the retro-reflecting mirror of the
top accordion beam (labelled ‘M2’ on Fig. 2.3) is mounted on a piezo-electric
stack. After each experimental sequence we can determine the position pmin

of the dark fringe on the camera and, if necessary, compensate the mismatch
between the measurement and the target by changing the voltage sent to the
piezo-electric stack. The target is determined by looking at the atoms in the
lattice with an auxiliary horizontal imaging. When the lattice is well aligned
with the cloud, we see only one plane of atoms.
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Figure 2.6: Stability of the accordion. (a): After each experimental sequence we take a
picture of the vertical lattice. (b): We zoom on a region corresponding to
a full period of the lattice. (c): We determine the position pmin of the dark
fringe on the region chosen on (b). (d) We monitor pmin as a function of
time during the whole day. There is one point every 30 s approximately.
On that day, the feedback loop has been off until 5pm. It has then been
turned on, indicated by the vertical dashed line, and the position of the
dark fringe is stable until the end of the day.
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Figure 2.7: Vertical frequency of the accordion as a function of the inverse lattice spac-
ing. The solid line is the theoretical prediction obtained with the parameters
of the light beams measured independently. The shaded area represents the
uncertainty on these independent calibrations. The data points are below
the solid line, possibly because the contrast of the interference pattern
between the two beams is not perfect.

On Fig. 2.6(d), after the dashed line that indicates when this feedback loop
has been turned on on that day, we see that the dark fringe is stable over
several hours, except for a few points. The position of the dark fringe oscillates
between three pixels of the camera, but the loading of the atoms in a single
node of the lattice is good for all of these three positions.

2.2.2.4 Dynamical variation of the vertical confinement

The loading of the cloud in the large spacing lattice is very efficient and
the compression of this lattice is performed in a duration τ ≈ 0.2 s, which
corresponds to ωzτ � 1 with the smallest vertical frequency we use, as we will
see.
We measure the vertical frequency ωz by giving a vertical kick to the cloud

and observing its oscillation in the vertical harmonic trap. More precisely we
let the cloud evolve in this trap during a variable duration, then we release all
traps and let the atoms fall freely. After a few microseconds we look at the
vertical position of the atoms which is mostly sensitive to the velocity of the
atoms when they are released. A sinusoidal fit of this position as a function of
time provides ωz. On Fig. 2.7 is reported this measurement as a function of the
inverse lattice spacing. It is in good agreement with the expectation given by
equation 2.5.

In the following, we usually work with a lattice spacing of d = 2 µm, and
we reduce the power of the laser beams to decrease ωz around 4 kHz, which
corresponds to a lattice depth U ≈ kB · 4.2 µK. As a comparison, the potential
energy due to gravity on the length scale of one fringe is mgd = kB · 0.2 µK.

We found this configuration more favourable to obtain a uniform cloud than
keeping a high intensity. This uniformity is the subject of the next paragraph.
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2.2.3 Creating a cloud with a uniform atomic density

2.2.3.1 Implementation of a box potential

Having a cloud with a uniform density is a great advantage when investigating
properties of the gas that depend on its density. In cold atoms, the use of uniform
gases has developed for a few years, both for Bose and Fermi gases [59, 66–68,
103] with the development of box potentials.

We have implemented such a box potential, which also has a high tunability.
We use a blue-detuned laser beam (wavelength 532 nm) and send it on a
digital micro-mirror device (DMD). This device consists of an array of micro-
mirrors which can individually be turned on or off by modifying their spatial
orientation. We image the surface of this DMD onto the atomic plane by using
our microscope objective, and we obtain light only on the position of the ‘on’
pixels. We have a magnification of 1/70 between the DMD and the atoms (see
[65] for a precise calibration). This means that a single pixel of the DMD, which
measures 13.68 µm, represents 0.2 µm on the atoms, well below the resolution of
the microscope objective. The atoms are repelled by light at the wavelength we
use, and they are therefore trapped in the dark regions of the beams, where the
mirrors of the DMD are off. They are confined by walls of light whose maximal
height is around kB · 6 µK.

The beam has a waist of 45 µm on the atoms, which means that we are able
to create a box potential with an edge to edge distance up to 100 µm and with
a resolution of 1 µm. The DMD is easily programmable and the shape of the
cloud can be modified at will. Fig. 2.8 presents a few examples of absorption
images of the atomic density in this tunable box potential.

2.2.3.2 Back to the absorption imaging

The absorption images taken with the vertical imaging allow us to measure
the 2D atomic density n(x, y): in the quasi-2D regime, the wave function of the
atoms along the vertical direction is given by the lowest level of the harmonic
oscillator, therefore

n3D(x, y, z) =

√
mωz
π~

exp

(
−mωzz

2

~

)
n(x, y), (2.7)

and the optical density obtained with the vertical imaging is, after integration
of equation 2.4 along the z axis:

OD = σ n(x, y). (2.8)

The value of the scattering cross-section depends on the atomic transitions
involved in the imaging process, on the polarisation of the imaging light, and on
the magnetic field. A careful calibration of σ is necessary to extract reliable atom
numbers from the absorption imaging. It has been done thanks to projection
noise measurements, and the details are given in [65] (Chapter 7). We will use
the result of this calibration:

σ =
7

15

3λ2
L

2π
F , (2.9)
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Figure 2.8: Absorption images of atoms filling different types of potentials. (a),(b):
Simple shapes as a disk or a star are uniformly filled. (c): Small independent
clouds can be arranged in a regular way, as a Kagome lattice. (d): More
exotic and entertaining shapes can also be realised, such as a pig. The
horizontal black lines represent 20 µm.

where the factor 7/15 is an average of Clebsch-Gordan coefficients for the
transitions from F = 2 to F = 3, and F is an ad hoc factor to take into account
the linewidth of the laser, the broadening of the resonance line by the magnetic
field, etc. With our calibration, we determine F = 1.6(1).
The calibration of σ with projection noise turns out to be long to perform

and delicate to analyse. In chapter 8 we will see a more simple and robust
method to calibrate this scattering cross-section and reliably determine the
number of atoms from absorption images. Both methods give compatible results
for the value of F .

2.2.3.3 Additional features of the DMD

The tunability of the DMD allows us to go beyond static box potentials. Here
are two features that we have used in the past and can use in the future:

1. Dynamical potentials: The DMD can display different images at a rate up
to a few kilohertz, thus modifying the potential on the atoms. The fact
that the effective size of one pixel of the DMD on the atoms is smaller than
the resolution of the microscope objective helps to make the dynamics
of this potential smooth. We have used this feature when studying the
recombination of independent condensates published in [69].

2. Grey levels: By locally switching on a controlled fraction of the micro-
mirrors on the DMD, we can control the intensity we send on the atoms
at each position and spatially shape the local density of the cloud at will.



26 experimental set-up

This feature involves a simple algorithm to propagate errors due to the
pixelisation of the DMD.

These two possibilities have not been used for the experiments presented in
this thesis and I will not detail them.

2.2.3.4 Controlling and quantifying the uniformity of the cloud

A uniform filling of the box potential can be achieved by finely tuning the
parameters of the experiment:

• The focus of the DMD on the plane of the atoms has to be adjusted to
have edges as sharp as possible and as less spurious light in the dark
regions as possible.

• A gradient along the x direction (transverse to the propagation direction
of the accordion beams) can be compensated by slightly modifying the
relative power of the two accordion beams. These beams are on purpose
not perfectly overlapping in the x direction. Their centres are separated
by 10 to 20 µm, so that an intensity imbalance translates into a gradient
of potential in the x direction. We modify the relative power of the two
beams by rotating a half-wave plate before the first polarising beam
splitter of the accordion.

• A gradient along the y direction can be compensated by varying the
vertical position of the two interfering beams of the accordion on the
focussing lens. This is done thanks to two mirrors located between the
accordion and the focussing lens. Such a vertical displacement gives a
global tilt of the dark fringe in the y direction and the atoms feel a force
in this direction due to gravity.

In order to quantify the uniformity of the cloud, we take M images of the
cloud and average them pixel by pixel. Fig. 2.9a displays the average over 10
images of a cloud in a square box. On each pixel of the camera we get an
estimation of the local density n̄(xi, yj), where the bar represents the average
over the M images, and (xi, yj) denote the coordinates of the camera pixels.
The variance of the distribution is

σ2
M =

〈
n̄(xi, yj)

2 − 〈n̄(xi, yj)〉2
〉
, (2.10)

where 〈·〉 represents the average over the camera pixels that the cloud covers.
It contains information about the uniformity of the cloud, but also a statistical
fluctuation due to the photonic noise on the camera and the finite amount of
images we take. In order to extract the information about the uniformity, we
compute σ2

M for different numbers M of images. We expect that σ2
M is the sum

of the variance of the cloud’s density and the variance of the photonic noise,
that scales as 1/M . Fig. 2.9b shows the variance of the distribution σM as a
function of M , along with a fit with the function M 7→

√
α+ β/M , where α

and β are free parameters.
The estimator of the uniformity is

ε =
lim

M→+∞
σM

〈n̄(xi, yj)〉
, (2.11)



2.3 how to control the initial state of the cloud 27

0 2 4 6 8 10
M

0

5

10

15

20

σ
M

(µ
m
−

2
)

(b)

0 10 20 30 40 50
n (µm−2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ε

(c)(a)

Figure 2.9: Uniformity of the cloud. (a): Average of 10 images of a square-shaped cloud.
The dashed line indicates the region where we investigate the uniformity.
(b): Spatial standard deviation σM of the atomic density as a function of
the number of averaged images. The solid line is a fit with the function
M 7→

√
α+ β/M . We extract from it the limit value

√
α. On this example√

α = 5.8 µm−2. (c): Estimator of uniformity ε as the averaged density is
varied. The two figures (a-b) correspond to the data of the largest density.

where the average n̄(xi, yj) is taken over all the images we have taken. If the
density is uniform, then ε = 0. On the contrary, if the cloud is not uniform, then
ε increases. For example, if the atomic density is evenly distributed between 0
and nmax, then ε = 1/

√
3 ≈ 0.577.

For typical parameters of the experiment, we measure ε ≈ 0.1. Fig. 2.9c
shows how this estimator behaves as we vary the atomic density in the trap. For
high densities, ε stays around 0.1, and it increases as we decrease the density
enough so that the defects of the optical potential are not much smaller than
the chemical potential of the gas any more, which happens around n = 20 µm−2.
The measurements have been performed in the very degenerate regime, and
when the atoms have a density of 20 µm−2, we estimate the chemical potential
to be around h ·360Hz (see section 2.3.2 for more details). Therefore the defects
of the box potential have a root mean square around h · 40Hz, or equivalently
kB · 2 nK.
We estimate that these defects are mostly due to the accordion beams. In

order to improve the uniformity, one can adjust the position of the centre of
the accordion beams in the x direction.

2.3 how to control the initial state of the cloud

2.3.1 The internal state of the atoms

At the end of the cooling steps, the atomic cloud is polarised in the F =
1,mF = −1 state, as seen in 2.2.1. We are able to control this internal state
with pulses of microwave fields. I have built and installed a microwave chain
inspired from the Ph.D. thesis of Kenneth Maussang from the group of Jakob
Reichel [104]: a source (Nexyn NXPLOS 0680-02778, seeded by a 100MHz
generator Wenzel Associates 501-23588 A) provides a signal at 6.8GHz and an
I-Q mixer (Pulsar IMOH 03-458) mixes it with a signal with a frequency around
34MHz provided by a generator (Rigol DG1062Z). This generator sends to the
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I-Q mixer two signals in quadrature so that only one sideband is produced. The
signal is then amplified (amplifier Kuhne KU PA 7000) and sent to the atoms
via an antenna located near the glass cell. Fig. 2.10a presents a simplified scheme
of this chain. The frequency of the generator is chosen to address the required
transition between two Zeeman sub-states of the F = 1 and F = 2 manifold.
We keep a vertical magnetic field around 1 G to separate the frequencies of
these transitions. The transitions that can be addressed with the microwave
are those coupling two states with a difference of their quantum number mF

equal to −1, 0 or 1.
We can coherently drive these transitions with microwave pulses. When

sending a pulse of duration tMW, detuned by δ with respect to the frequency of
the transition from an initial state i to a final state f , each atom is brought
to the superposition state ci |i〉+ cf |f〉, where the probabilities Pi and Pf to
measure an atom in i or f are

Pi = |ci|2 = 1− Ω2
0

Ω2
0 + δ2

sin2

(√
Ω2

0 + δ2
tMW

2

)
,

Pf = |cf |2 =
Ω2

0

Ω2
0 + δ2

sin2

(√
Ω2

0 + δ2
tMW

2

)
,

(2.12)

where Ω0 is the frequency describing the coupling strength between the two
states and induced by the microwave pulse.

If the drive is resonant with the frequency (δ = 0), we can transfer the atoms
with a probability 1 by applying a pulse of duration π/Ω0. We illustrate this
on Fig. 2.10b: here, the atoms have been prepared in the state F = 2,mF = 0,
we couple it to the state F = 1,mF = 0 during a time tMW and we image
the atoms in the F = 2 manifold. The number of atoms detected in the state
F = 2,mF = 0 evolves sinusoidally with a full contrast, and a Rabi frequency
ω0 = 2π · 7.1(1) kHz. In particular, with a pulse of duration 70 µs, all the atoms
are transferred in F = 1,mF = 0.
In the following we will refer to the duration of the resonant pulses by the

value of Ω0tMW. For example a π-pulse corresponds to a full transfer from
F = 1,mF = 0 to F = 2,mF = 0.
The frequency Ω0 of the oscillation, called the Rabi frequency, depends on

the power of the microwave field sent to the atoms and to its projection on
the polarisation (here a π-polarisation) useful to drive this transition. On all
transitions (σ+, σ− and π), we reach Rabi frequencies on the order of 5 to
10 kHz, which means that we can transfer all the atoms from one state to the
other in less than 100 µs, much faster than the typical time scale on which the
motional dynamics of the atoms occur (≈ 1ms).

In order to reliably address each of the transitions, their frequencies have to
be stable with a precision of a fraction of Ω0, so that the detuning δ can always
be neglected in equation 2.12. By measuring the magnetic field with a probe,
we observe that the vertical component of the magnetic field fluctuates with a
RMS of 2.6mG. Since we keep a magnetic field in this direction, this fluctuation
induces an important shift of the transition frequencies. For example the
frequency of the transition from F = 1,mF = −1 to F = 2,mF = 0 fluctuates
with an RMS of 1.8 kHz.
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Figure 2.10: Microwave chain. (a): Simplified scheme of the microwave chain. A signal
at 6.8GHz is modulated by a signal around 34MHz with an ‘I-Q mixer’.
The latter signal is produced by any of the two generators depicted, with
a tunable frequency. The two sets of switches allow us to select one of
the generators (Sw 1) and to turn the signal on and off (Sw 2) very
rapidly. The signal is amplified and sent to the atoms with an antenna
located near the glass cell. (b): Example of a Rabi oscillation between
the states F = 2, mF = 0 and F = 1, mF = 0. The frequency of the
transition is 6.834684GHz, and the Rabi frequency induced on the atoms
is Ω0 = 2π · 7.1(1) kHz, as extracted from the fit (solid line).

We found that this fluctuation was mostly due to the Parisian Métropolitain.
In order to stabilize this magnetic field, we measure its vertical component
in another room, and subtract the fluctuations of this signal to the magnetic
field we ask for on the experiment. On Fig. 2.11 are shown measurements of
the magnetic field near the atoms without and with this compensation system.
With it, we are able to reduce the fluctuation of the magnetic field down to
0.27mG during several hours, which is slightly bigger that the noise attributed
to the power supply. It is however sufficient to address the transitions with the
microwave in a reliable way.

2.3.2 The phase-space density of the cloud and its temperature

2.3.2.1 The equation of state of the interacting 2D Bose gas

The last parameter that we can vary is the temperature of the gas. For
a cloud with atomic density n in a vertical confinement of strength ωz, an
important point is the critical temperature of the BKT transition [38, 105],
below which the system gets superfluid:

Tc ≈
2π~2

mkB

n

ln(C/g̃)
, (2.13)

where C = 380± 3 [106], and g̃ is the effective 2D interaction strength between
the atoms:

g̃ =

√
8πmωz

~
as, (2.14)

with as the 3D s-wave scattering length of the atoms. The relation 2.13 is only
valid in the regime g̃ � 1, in which we always are.
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Figure 2.11: Stabilisation of the vertical magnetic field. We measure the vertical
component of the magnetic field with a probe located near the atoms
at a given time during the sequence. We measure it for many sequences,
each lasting 30 s. Two sets of data are taken during four hours each: one
without the magnetic field stabilization (light-blue squares) and one with
the stabilization (dark-blue circles). The standard deviation of the latter is
seven times smaller than the one of the former. The stabilization induces
a small offset of 15mG which is very small and easy to compensate.

For a given confinement ωz, the thermodynamics of the gas depends only on
the ratio n/T via its phase-space density (PSD) D:

D = n
2π~2

mkBT
. (2.15)

Equivalently, the thermodynamics of the gas can be described with the single
parameter µ/(kBT ). This peculiar feature stems from the scale-invariance of
the system, that will be developed in Chapter 7.

Notably, the equation of state D(µ, T ) that links the density n to the chemical
potential µ of the gas does not depend on µ and T independently, but on the
ratio µ/(kBT ). This equation of state has been studied previously in the group
[107, 108], and in other groups [109]. Interestingly, this equation of state is also
universal around the critical point Dc = ln(C/g̃) [109, 110]: a single function
can describe the behaviour of the cloud for any interaction strength g̃ � 1.
In the following we will use this equation of state to measure the PSD of

the gas, and its temperature. The most important quantity to understand the
physics is the ratio Dc/D, or equivalently T/Tc, which gets lower than 1 when
the BKT transition is crossed.

There is no analytical expression for the equation of state that links µ/(kBT )
to D, but there are two limits where it can be approximated:
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1. The Hartree-Fock regime, where the cloud is far from degeneracy: D � 1.
In this case, the equation of state of a non-interacting 2D gas is

D = − ln

[
1− exp

(
µ

kBT

)]
. (2.16)

For a weakly-interacting gas, the Hartree-Fock approximation consists in
adding to the chemical potential µ the mean-field correction −2~2g̃n/m,
where the minus sign accounts for the repulsive character of the interac-
tions [111]. We then get:

D = − ln

[
1− exp

(
µ

kBT

)
exp

(
− g̃D
π

)]
, (2.17)

that we can re-write as

µ

kBT
=
g̃D
π
− ln [1− exp (−D)] , (2.18)

2. The Thomas-Fermi regime, where the cloud is deeply in the degenerate
regime: D � 1. In this regime the kinetic energy is much smaller than the
chemical potential. In that case, the gas is described by a classical field
that obeys hydrodynamic-like equations, as it will be seen in Chapter 7.
One can derive the equation of state when neglecting the kinetic energy
term of this equation:

µ

kBT
=
g̃D
2π

. (2.19)

These hydrodynamic equations supports Bogoliubov excitations. When
considering that these excitations are thermally occupied, one can deter-
mine the next term of the equation of state [105], and we get

µ

kBT
=
g̃D
2π
− g̃

2π
ln

(
g̃D
π

)
. (2.20)

These two regimes are connected by the full equation of state. Monte-Carlo
simulations have been realised by Prokof’ev and Svistunov [110] to compute
this equation of state near the critical point. We will use the results of these
simulations to fit our data.

The full equation of state is shown on Fig. 2.12. The left panel presents the
two limits detailed above (dashed lines), and the result of the Monte-Carlo
simulations taken from [110]. The right panel presents the function we use to
fit our experimental data: we take the result from the Monte-Carlo simulation
and add a few points in the Hartree-Fock regime. We then interpolate all these
points with an analytical function (solid line).

2.3.2.2 Controlling the PSD of the cloud

After having loaded the gas in the 2D trap, its PSD is already above Dc.
We can increase it by lowering the height of the box potential and further
evaporating the cloud. Both the temperature T and the atom number N
decrease, but in a way that makes the ratio N/T increase.
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Figure 2.12: Equation of state. (a): The Hartree-Fock and the Thomas-Fermi regime
are shown as dashed lines (light and dark blue respectively). The results
of the Monte-Carlo simulations are shown as points. The horizontal grey
line indicates the critical point Dc. (b): Determination of an interpolating
function. We interpolate the results of the Monte-Carlo simulations that
we extend with points in the Hartree-Fock regime. The solid line is the
interpolating function that we use in the following to fit the experimental
data. For both graphs, the inset is a zoom around the critical point. All
the curves here are plotted for g̃ = 0.15.

On the contrary, we can decrease the PSD of the gas by removing some atoms
from the gas. We proceed in the following way: a microwave pulse is sent to
transfer a fraction of the atoms in the F = 2,mF = 0 state. A short (40 µs)
pulse of light from the imaging beam is sent on the atoms. It is resonant only
with the transferred atoms, which absorb photons. The momentum kick they
experience is energetic enough to remove them from the trap. The remaining
atoms are the atoms in F = 1,mF = 0, which rethermalize during a few seconds.
Their final PSD is lower at the end of the process.

2.3.2.3 Measuring the PSD and the temperature of the cloud

We have developed a method to extract the PSD of a gas, inspired from
[67, 112]. We use a repulsive laser beam (wavelength 532 nm) whose intensity
landscape can be shaped with another DMD, in the same way as the box
potential is created. This new beam and the beam for the box potential have
orthogonal polarisations, they are mixed on a polarising beam splitter, and
the surface of both DMDs are focussed on the atoms with the top microscope
objective. With the second light beam we create on the centre of the cloud a
local potential (a disk of radius 5 µm) whose height V can be set independently
from the height of the box potential. At this position, the atomic density is
depleted due to the additional potential (see Fig. 2.13a).
The whole gas is at thermodynamic equilibrium, and the local density ap-

proximation ensures that, at the position of the local potential, the chemical
potential of the cloud is µ0 − V , where µ0 is the chemical potential of the rest
of the gas. By varying V and measuring the atomic density in the depleted
region n, we can get the relationship between n and µ. We can then search
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Figure 2.13: Measurement of the cloud’s PSD. (a): Example of image used for the
measurement of the PSD. An additional repulsive potential is sent on the
area delimited by the dashed line. The atomic density is measured in
and outside this region. The horizontal black line represents 20 µm. (b):
The atomic density is plotted as a function of the height of the applied
potential. Both axes for the data points are rescaled to match with the
equation of state (solid blue). The dashed blue line shows the density
outside of the small region, which gives the PSD of the cloud after rescaling.
The parameter used to fit the data contain the information about the
temperature. For the data shown here, D = 22(1), and T = 124(10)nK.

for the best parameter T so that the data points 2π~2n/(mkBT ) as a function
of µ/(kBT ) match with the equation of state. On Fig. 2.13b is presented an
example of these measurements, where both axes are rescaled to fall on the
equation of state. The particular elbow shape of the equation of state makes
the fitting procedure very robust and allows to determine the PSD of the gas
on a large range from 4 to 40, and with a 10% relative error. There might be
systematic errors inherent to the method, but we would need another type of
experiment to perform quantitative comparisons and estimate these errors. As
far as we can judge, this method gives values of the PSD which are compatible
with the physical phenomena that we observe, such as the dependence of the
speed of sound with the phase-space density [94, 113].

2.4 conclusion

In this chapter I have described the main features of the experimental set-up
that allows us to create, manipulate and probe ultracold atomic samples.
With this set-up we are able to create 2D slabs of rubidium atoms with an

optical accordion. In the plane, the cloud has a uniform density and its shape
is controlled with a high resolution thanks to a DMD. The internal state of the
atoms can be controlled with a high precision thanks to a microwave set-up.
The thermodynamic state of the atoms can be controlled, and the cloud can
be brought from above to below the critical point of the BKT transition. The
degeneracy of the cloud is extracted by measuring the equation of state of the
gas.





3
IMPLEMENTATION OF SPATIALLY -RESOLVED SP IN
TRANSFERS

In addition to the experimental tools presented in the previous chapter, I have
developed during my thesis a Raman beams set-up that allows to manipulate
coherently the internal state of the atoms in a spatially-resolved way. We
have seen in Chapter 2, section 2.3.1, that we are able to perform coherent
oscillations between two hyperfine ground states by applying microwave pulses.
The wavelength of these microwaves are on the order of a few centimetres,
and we address the whole cloud at once. The goal of the Raman beams that
I describe here is to perform the same kind of spin rotations but by spatially
selecting the atoms that undergo these rotations. Moreover, the Raman process
that we induce on the atoms is accompanied by a momentum transfer that we
can choose on a large range of momenta, including a zero momentum transfer.

This experimental tool is very versatile and it allows us to perform complex
manipulations of our atomic samples. It is for example at the heart of the
experimental sequence described in Chapter 6 with which we are able to
directly measure the first correlation function of the gas by interferometric
means.

In this chapter I first describe the theoretical background of Raman transi-
tions before explaining how they are implemented on our experiment. I then
present a characterisation of our set-up: how we perform the spatial shaping
of the Raman beams with a DMD and the two configurations in which we can
operate, with co-propagating beams to transfer zero momentum to the atoms
and with non co-propagating beams to have a finite momentum transfer to the
atoms.

3.1 how to induce raman processes on cold atoms

3.1.1 Elements of theory about two-photon transitions

Raman scattering describes the inelastic scattering of light by a system.
Such Raman processes are fundamental in many fields of natural science such
as chemistry and biology [114–116], due to the precision of the spectroscopic
measurements that allow to address specific chemical bounds in molecules, and
the spatial resolution they allow. In physics, stimulated Raman scattering is
widely used to probe the energy spectrum of systems, but also their structure
[117, 118].
In the community of atomic and molecular physics, Raman processes are

used to manipulate and probe the various systems of interest. They are used
to cool atoms or ions in tight traps thanks to the resolution of the different
vibration modes [119], and also to perform spectroscopy of these vibrational
modes [120]. Thanks to the possibility of exchanging momentum with the
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Figure 3.1: Level schemes for Raman transitions. (a): Simple scheme with a Λ-
configuration. The states |1〉 and |2〉 are coupled via a two-photon transition,
far-detuned from an excited state |3〉. (b): More accurate situation: the
states |1〉 and |2〉 correspond respectively to Zeeman states of the F = 1
and F = 2 levels of the ground state of rubidium, and the states |3〉 and
|4〉 correspond respectively to the levels 2P1/2 and 2P3/2.

studied system, it is possible to manipulate it and to implement sophisticated
experimental procedures [121], and to perform spectroscopy of the momentum
distribution of a cold gas [122, 123]. Raman processes also open rich possibilities
by coupling the momentum and the spin state of particles – also known as
spin-orbit coupling [124–126]. Finally, Raman beams can be used to prepare a
well-controlled phase profile of an atomic sample with a single component or
with a spinor condensate [127–129].

3.1.1.1 A simple model

The basic principle of Raman transfers is the following: two states |1〉 and |2〉
are separated by an energy ∆E and have respective momenta ~q1 and ~q2. They
are effectively coupled by two laser beams of respective frequency ωp and ωs

and wave vectors kp and ks, far-detuned from the resonance with a third state
|3〉 (detuning ∆1), as depicted on Fig. 3.1a. The indices p and s correspond to
the historical notations referring to ‘Pump’ and ‘Stokes’. Intuitively, the states
|1〉 and |2〉 are coupled when the conservation of energy and the conservation
of momentum are fulfilled:

ωp − ωs = ∆E, (3.1)
~(q2 − q1) = ~(kp − ks). (3.2)

In the rotating-wave approximation where ωp,s � ∆1, and assuming that
level |1〉 is not affected by the laser labelled s nor level |2〉 by the laser labelled
p, such a three-level system evolves under the following Hamiltonian, expressed
in the basis {|1〉 , |2〉 , |3〉}:

H =
~
2




0 0 Ωp

0 2δ Ωs

Ω∗p Ω∗s 2∆1


 , (3.3)
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where δ = ωp − ωs −∆E, and Ωp,s are the Rabi frequencies associated with
each of the laser beams.
When the detuning ∆1 is much larger than the Rabi frequencies Ωp,s and

the linewidth Γ of the state |3〉, this excited state is weakly populated, and one
can adiabatically eliminate the population in this state. We are left with an
effective 2-level system {|1〉 , |2〉} that evolves under the effective Hamiltonian:

Heff =
~
2

[
0 ΩpΩ∗s/(2∆1)

Ω∗pΩs/(2∆1) 2δ + (|Ωp|2 − |Ωs|2)/(2∆)

]
. (3.4)

This corresponds to having the two states coupled with a two-photon Rabi
frequency ΩpΩ∗s/(2∆1), and with an effective detuning that has an additional
term corresponding to light shifts created by the two laser beams on the levels
|1〉 and |2〉.

3.1.1.2 A more realistic picture

When applying this formalism with the states |1〉 and |2〉 being two Zeeman
states of the hyperfine states of 2S1/2, one needs to take into account the multi-
level structure of the excited states of rubidium and the polarisation degree of
freedom of light. There are indeed two main transition lines: D1 and D2, as
represented on Fig. 3.1b. The energy levels corresponding to each of these lines
are both degenerate. One has then to consider the interference between the
contributions of all the virtual transitions to these excited states.
The polarisation of the light beams constrains the number of virtual tran-

sitions that we have to consider. In our case the two beams have orthogonal
polarisation and they propagate along the quantization axis. In other words
their polarisation is respectively (σ+ + σ−)/

√
2 and (σ+ − σ−)/

√
2.

The derivation of the effective coupling that these two Raman beams induce
between the hyperfine states of 2S1/2 in the limit where ∆1,2 is much larger
than the hyperfine splitting of the excited states is presented in Appendix A.
The results are the following. If we start with atoms in the state F = 1,mF = 0,
these atoms are coherently coupled to the state F = 2,mF = 0 with an effective
Rabi frequency

ΩR =
ΩpΩ∗s

4

(
1

3∆2
− 1

3∆1

)
, (3.5)

where the Rabi frequency of each beam is defined from the amplitude of the elec-
tric field Ep,s of the laser and the reduced dipole matrix element

〈
P1/2

∣∣∣∣d
∣∣∣∣S1/2

〉

by

Ωp,s =
Ep,s

∣∣ 〈P1/2

∣∣∣∣d
∣∣∣∣S1/2

〉 ∣∣
~

, (3.6)

and the process has an effective detuning δeff = δ. Each of the states also
experiences a light shift Vshift:

Vshift =
~(|Ωp|2 + |Ωs|2)

4

(
1

3∆2
+

2

3∆1

)
. (3.7)

No other Zeeman state is populated, either because their mF number is odd and
cannot be coupled via two σ±-polarised photons, or because the contribution
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of all the couplings via the excited states interfere destructively in the limit
∆ � ∆E (states F = 2,mF = ±2). Moreover, the choice of non-parallel
polarisations for the two Raman beams is crucial to couple the two desired
states. One can show that two beams with the same polarisation would not
couple them.
The resonance condition is still ~(ωp − ωs) = ∆E, where ∆E has two

contributions: the hyperfine splitting ~ωh with ωh = 2π · 6.834682GHz and the
difference of kinetic energy ∆Ec between the two states:

∆Ec =
~2

2m

(
q2

2 − q2
1

)
. (3.8)

The difference ωp − ωs and the difference kr = k2 − k1 are fixed by the laser
beams, therefore, with equation 3.2, the resonance condition on the energy
reads

~(ωp − ωs) = ~ωh +
~2

2m
kr · (2q1 + kr). (3.9)

This equation has to be fulfilled with a precision given by the Fourier broadening
of the pulse we apply on the atoms with the Raman beams. If the duration of
this pulse corresponds to a π-pulse, then the resonance condition 3.9 has to be
fulfilled with a precision ~ΩR. This means that the Raman beams address a
velocity class that has a width

∆v =
ΩR

kr
. (3.10)

3.1.1.3 Avoiding any light shift and photon scattering

Since we want to perform local transfers, any light shift due to the Raman
beams could induce spurious dephasing between the region of the gas where
the beams are shone and where they are not. In order to limit this effect, we
choose the frequency of the Raman laser beams to cancel the light shift Vshift:

1

∆2
+

2

∆1
= 0, (3.11)

which translates into an equation for the wavelength λR = 2πc/ωR of the
Raman laser (with ωh � ∆1,2):

1

λR
=

1

3

(
1

λD2
+

2

λD1

)
, (3.12)

and we obtain λR = 789.9 nm. With such a wavelength, we have a non-zero
effective Rabi frequency with equation 3.5. In practice we will have Rabi
frequencies ΩR/(2π) on the order of a several tens of kilohertz so that the
duration of a full oscillation is larger than the resolution of our time sequence
(1µs) and smaller than the time scale of the spatial dynamics of the atoms
(≈ 1ms). Obtaining such a frequency requires a laser intensity of several
hundreds of kW/m2, which is possible with a reasonable power (a few milliwatts)
focussed on a small region (40× 40 µm2).
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Due to the precision with which we are able to choose the wavelength of
the laser, this wavelength is not exactly at λR, and there is a small light shift.
With an imprecision of 0.1 nm on λR and a Rabi frequency of 2π · 50 kHz, the
light shift is around h · 1 kHz, which is on the order of the chemical potential
of the clouds we are creating. We estimate that our precision on λR is better
than 0.1 nm, but not much below. This means that a Raman transfer may
be accompanied with a non-negligible dephasing between the transferred and
non-transferred atoms. This will however not be an issue for the experiments
described in this thesis.

Finally, we have to estimate the rate Γsc at which the atoms scatter photons
from the Raman beams. It is given by

Γsc =
3πc2Γ2

2~ω3
R

(
1

∆2
1

+
1

∆2
2

)
Itot, (3.13)

where Itot is the total intensity that the atoms receive. With the previous values
and Itot = 2 · 106, which is one order of magnitude above the required intensity
to have a Rabi frequency of 50 kHz, we get Γsc ≈ 5 s−1, which means that
during a pulse of light lasting 20 µs, approximately one atom out of 104 will
scatter a photon. With this order of magnitude we can safely manipulate the
spin of the atoms without heating significantly the sample.

3.1.2 Our experimental set-up

3.1.2.1 Generation of two laser beams with a proper detuning

A naive approach to create Raman beams consists in using a laser source
(wavelength λR, frequency ωR) and modulating it with an electro-optic mod-
ulator (EOM) at a frequency ωE ≈ 2π · 6.83468GHz. It creates a sideband at
frequency ωR + ωE that can be used with the carrier at ωR to induce Raman
transitions between the two hyperfine states.

However, there are two sidebands created by the EOM, and the second one is
at frequency ωR − ωE. It can also induce Raman transitions with the carrier at
ωR. The total Rabi frequency is the sum of the Rabi frequency of each pair of
beams. Given the fact that the two sidebands have a difference of phase of π
due to the EOM, they interfere destructively, and the total Rabi frequency is
much lower than the individual ones [120].

A solution is proposed in [120]: the laser source is first separated into two
beams. The first one is modulated with a frequency ωE = 2π · 6.8GHz slightly
different from ∆E/~ by a few tens of megahertz. We compensate it by shifting
the frequency of the two beams with an acousto-optic modulator (AOM) on
each of them. More precisely, the first beam has a carrier at ωE and sidebands
at ωR ± ωE, and we shift their frequency by ωA,1 = 2π · 115MHz with an
AOM. The frequency of the second beam is shifted with a second AOM by
ωA,2 = 2π · 80.32MHz. The set-up to produce these beams is drawn on Fig.
3.2a, and Fig. 3.2b summarizes the frequencies we have, and illustrates the
resonance conditions between these frequencies.
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Figure 3.2: Generation of a pair of resonant beams. (a) Optical set-up that allows us
to produce two beams with frequencies that can resonate to induce Raman
transfers. The first path is modulated with an EOM and an AOM (path on
the left, in red) and the second one is modulated with an AOM only (path
on the right, in orange). The two beams are mixed with a polarising beam
splitter and coupled in a fibre to be brought to the main experimental
table. (b) Scheme of the four frequencies present in the two beams and that
could resonate two by two with the atoms. The choice of the frequency
modulations of the EOM and the two AOMs is such that only one pair of
frequencies can resonate with the atoms, indicated with the thicker arrows.

There are sixteen pairs of frequencies that could lead to a resonance with
the atoms. The pair that is important here is the one composed of the first
sideband of the first beam and the second beam (arrows labelled 1d and 2a on
Fig. 3.2b). The resonance condition between these two frequencies is

~(ωE + ωA,1 − ωA,2) = ∆E, (3.14)

which is met in our case.
There are fifteen other pairs of frequencies. One frequency cannot resonate

with itself (e.g. arrows labelled 1a and 2a on the figure) because of the hyperfine
splitting of 2π · 6.8GHz. Among the eleven other ones, there are eight whose
resonance condition is not met by more than this hyperfine splitting. The three
other ones are:

• The second sideband and the carrier of the first beam (arrows labelled 1d
and 2c). They are detuned from resonance by ∆E − ~ωE ≈ h · 35MHz.
This quantity is much larger than the Rabi frequency of the Raman
beams, and these two frequencies will not affect the atoms.

• The first sideband and the carrier of the first beam (arrows labelled 1c
and 2b). They are also detuned from resonance by ∆E − ~ωE, and these
two frequencies will not affect the atoms.

• The second sideband and the second beam (arrows labelled 1a and 2b).
They are detuned from resonance by ∆E−~ωE+~ωA,1−~ωA,2 ≈ h·69MHz.
For the same reason, these two frequencies will not affect the atoms.

The two beams are then mixed on a polarising beam splitter with orthogonal
polarisations and they are coupled into a polarisation-maintaining optical fibre.
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The set-up having been built on a table separated from the main experimental
one, the two beams are transported to the main experiment with this fibre.

The power of the laser beams is not the limiting factor here since our source
provides more than 1W of light whereas we need a few tens of milliwatts on
the atoms. However it has to be noted that the EOM has an efficiency around
15%, each AOM has an efficiency around 70− 80%, and the coupling of the fibre
allowes to transport 70% of the light to the main table.

3.1.2.2 Spatial shaping and choice of the momentum transfer

The two resonant frequencies can now be sent on the atoms. There are two
important features:

• The direction in which each of them are sent. The difference between
their wave vectors gives rise to a momentum transfer to the atoms.

• The spatial shaping of the intensity of the beams, which allows us to
select the region where the Raman transfers will occur.

Concerning the direction of propagation of the two Raman beams, we can
choose between two configurations:

1. The two beams are co-propagating: the vectors kp,s are positively co-linear
and oriented along the vertical direction. The velocity transfer is

~
m
kr =

~ωh

mc
ẑ, (3.15)

which is on the order of 0.1 µm/s, which is smaller than all the veloc-
ity scales involved in the system. The Raman processes are therefore
considered to be done without the atoms experiencing any momentum
transfer.

2. The two Raman beams are separated and sent on the atoms with an angle
with respect to the vertical direction. In this case the atoms experience a
non negligible momentum transfer, that we characterize in the following.

In the first case, the scheme is simple (see Fig. 3.3a): the two polarisations
of the light transported with the fibre are sent on a DMD to spatially shape
the intensity of the beam. In order to take advantage of a large surface of the
DMD, the size of the beam is increased with a telescope (lenses of focal lengths
−50mm and 200mm) to get a waist of 1.4mm, which represents the size of
100 pixels of the DMD. Due to multi-order diffraction, the power that we get
out of the DMD is half of the power we send on it. Again, this is not a limiting
factor for us.
The surface of the DMD is then imaged on the atoms with a magnification

around 1/37.5 through our microscope objective of high numerical aperture.
The beam thus has a measured waist of 40 µm on the atoms, and each pixel
has an effective size of approximately 0.4 µm (see 3.2.2). The regions where the
Raman transfer will happen are selected thanks to the DMD. Its precise focus
on the atoms is done with lens L4 of Fig. 3.3a which is mounted on a motorized
translation stage. The method to determine the focus is described in 3.2.2.
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Figure 3.3: Scheme of the two configurations. (a) Configuration to induce no momen-
tum transfer with the Raman beams. The beam is shone on a DMD to
shape the intensity distribution and focused on the atomic plane with the
microscope objective. The elements in grey are not used. (b) Configuration
to induce a momentum transfer. We switch from one configuration to
the other by flipping mirrors M3 and M4. In this configuration, the two
orthogonal polarisations are separated in an optical accordion that allows
us to vary their relative angle on the atomic plane. The focal lengths of
the lenses of the telescope are −50 and 200mm. The focal lengths of L3,
L4, L5 are respectively 750, 400 and 200mm.

It has to be noted that there are several light beams sent on the atoms
through the microscope objective: the imaging beam at 780 nm (see 2.1.2), the
two independent DMD beams at 532 nm that have orthogonal polarisations (see
2.2.3.1 and 2.3.2.3), and now the Raman beams at 790 nm.

The Raman beams are mixed with the imaging beam with an interference
filter (Semrock LL01-780-12.5). Light at 780 nm has a transmission coefficient
above 98%, and light at 790 nm has a transmission coefficient below 2 · 10−5.
The filter is oriented so that the imaging beam passes through it and the Raman
beams are reflected and exit in the same direction as the imaging beam. Both
beams are then mixed with the two DMD beams at 532 nm with a dichroic filter
that transmit the former and reflects the latter.

From equation 3.10, the width of the velocity class in the z direction ad-
dressed with a π-pulse of the Raman beams is ∆v = ΩR/kr. In this case, it is
approximately equal to 2 · 103 m/s. As a comparison, the width of the velocity
distribution in the vertical direction is

√
~ωz/(2m) < 5mm/s, which is much

smaller than ∆v. The Raman beams therefore address all the cloud at once.

If we choose to have the Raman process accompanied with a momentum
transfer, we have implemented another path with an optical accordion, similar
to the one presented in 2.2.2.1. We manually flip mirror M3 on and mirror
M4 off (see Fig. 3.3a), and we get the configuration of Fig. 3.3b. The Raman
beams are sent on a polarising beam splitter that separate the two orthogonal
polarisations corresponding to the two paths of Fig. 3.2a. In order to make sure
that this separation is done properly, we have a λ/2 and a λ/4 plate before
the beam splitter to correct for any rotation of the polarisation or ellipticity
that could happen in the fibre. To check this experimentally, we block one path
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before the fibre and check that the remaining light goes out only on one output
of the beam splitter.
The two beams are made parallel with the two mirrors labelled M6 and

M7 on Fig. 3.3, and they are then sent to the atoms following the same path
as described previously. They reach the atoms with a relative angle θ2 that
depends on the initial spacing of the two beams. This angle can be varied at
will with the mirror labelled M5 that is mounted on a motorized translation
stage, symbolized on Fig. 3.3 by the blue arrow. We can vary θ2 between
approximately 1.4◦ and 30◦. The biggest angle we can have is limited by the
diameter of lens L4 and of the interference filter.
The momentum transfer is expected to be

~kr = 2~kR sin

(
θ2

2

)
, (3.16)

where kR = 2π/λR is the wave vector of the laser.
This momentum corresponds to an energy of ~2k2

r /2m. It is at most ~ · 1 kHz,
which is smaller than the Rabi frequency. This means that we will not need
to change the frequency of the AOMs to fulfil the resonance condition when
varying the angle θ2.

Moreover, the width of the velocity class in the xy-plane addressed by the
beams is given by equation 3.10. In our case it is always larger than 80mm/s.
We now compare this value to the width of the velocity distribution of the gas
in the xy-plane.

• For a degenerate gas in a box potential of size L, a lower bound of the
width of the velocity distribution is given by the Heisenberg limit [123]:
h/(mL). For a small box of size 10 µm this width is on the order of
0.5mm/s.

• For a thermal gas at a temperature T , the width of the velocity distribution
can be estimated from the thermal energy:

√
kBT/m. For a temperature

as high as 200 nK, it is around 4mm/s.

Both of these estimated widths are smaller than the width of the velocity class
that the Raman process addresses, therefore the entire momentum distribution
of the cloud will be affected by these processes. If one wishes to resolve this
velocity width, one needs to reduce the effective Rabi frequency so that ~ΩR/kr

is below the width of the velocity distribution.

It is to be noted that the optical accordion described here is slightly different
from the one providing the 2D confinement because we need here to have two
beams with orthogonal polarisations. We tried to find the minimal modifications
to add to the scheme of 2.2.2.1 in order to meet this requisite. For example,
the two mirrors M6 and M7 are necessary in order to vary the angle θ2 when
displacing mirror M5.
Moreover, the optical paths of the two independent set-ups have been built

on the experiment so that their length is approximately the same, with a few
centimeters precision. This is to keep the DMD approximately on focus on the
atoms when switching from one to the other configuration. A finer adjustment
has then to be made, as later explained in 3.2.2.
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Figure 3.4: A Rabi oscillation with the Raman beams. A small cloud of radius 5 µm
in the F = 1,mF = 0 state is illuminated during a time t with the
Raman beams. The number of atoms transferred in F = 2,mF = 0 is
measured. The results are fitted with an exponentially attenuated squared
sine function. The fitted Rabi frequency is ΩR = 2π · 21.7(2) kHz, and the
decay time of the amplitude is γ−1 = 110(10) µs.

The values of the focal lengths of the different lenses have been chosen so that
the illuminated region is slightly larger than the atomic clouds we work with,
and so that the Rayleigh length of the beams at the level of the accordion is
the largest possible. Indeed, the two beams follow paths with a different length
in the accordion (several centimetres of difference). In order to have the pattern
of the DMD on the two beams overlapping properly on the atoms, we need
the Rayleigh length zR to be large compared to the difference of optical path.
We managed to have zR ≈ 7 cm, which is on the same order as the difference
of path lengths. It is sufficient to have a very good overlap between the DMD
patterns of the two beams.

A last detail worth to be noted is that the accordion reverses one beam
with respect to the other. The region on the atoms that will be illuminated
by both beams will be the intersection of the DMD pattern with its mirror
reflection along a given axis.1 For simplicity we will restrict to patterns that
are symmetric with respect to this axis.

3.2 raman transitions without momentum transfer

We characterize here the possibilities of our set-up in the configuration of
co-propagating beams.

3.2.1 Measuring Rabi oscillations

We prepare a small atomic sample in a disk of radius 5 µm and in the
state F = 1,mF = 0. During a time t we shine the Raman beams on the

1 The symmetry axis is the vertical axis on the absorption images that are shown in this thesis.
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entire sample by having all the pixels of the DMD on. We image and count
the atoms in F = 2 while varying the illumination time, as shown on Fig. 3.4.
The data is fitted with a sine function whose amplitude decays exponentially:
x 7→ a+ a

[
2 sin2(Ωt/2)− 1

]
exp(−γt). We can discuss the value of the fitted

parameters:

• The frequency of this oscillation is, on this particular example, ΩR =
2π ·21.7(2) kHz. We estimate the powers of the two Raman beams to be 15
and 20mW. For the latter, only 15% of the light has the proper frequency
due to the EOM. With these values, equation 3.5 gives a Rabi frequency
on the order of 2π · 25 kHz, which is on the same order of magnitude as
the measured frequency.

• At short times, the amplitude of the oscillation coincides with the total
atom number, demonstrating that we are able to perform a full rotation
of the collective atomic spin. We can check this by performing a π-pulse
with the Raman beams and subsequently performing a π-pulse with the
microwave. In that case, we always measure a number of atoms compatible
with zero, within the noise of our imaging system.

• The decay of the oscillation is fitted to be γ−1 = 110(10) µs. We attribute
this decay to inhomogeneous broadening due to the non-uniformity of the
Raman beams. On top of the Gaussian shape of the beams, which has little
influence on a cloud of 5 µm of size, there are spatial intensity fluctuations
that induce slightly different Rabi frequencies on different parts of the
cloud. The Rabi oscillations of the whole cloud thus has an inhomogeneous
dephasing that leads to a damping. With γ−1 = 110(10) µs, this means
that the statistical distribution of the Rabi frequency over the whole cloud
would have a standard deviation on the order of 10− 20% of its average
value. This is compatible with the intensity profile of the Raman beams
that we measure. We also measured γ−1 when increasing the power of
the Raman beams, and we found that it increases proportionally to the
Rabi frequency ΩR, which is consistent with this interpretation.

Since we want to use the Raman beams to perform pulses of less than 2π,
these measurements show that this tool is sufficient to accomplish this task in
a reliable manner – at least on a small region of space.

For completeness we have checked that the Raman beams do not transfer
the atoms to another state than F = 2,mF = 0. In order to do that, we
performed a Stern-Gerlach experiment with an expansion of the cloud during a
few milliseconds in the presence of a vertical magnetic field gradient around
30 G/cm. The Zeeman states separate according to the value of the product
gFmF and we image them with an auxiliary horizontal imaging. No atoms have
been detected in the states other than F = 2,mF = 0, as far as the sensitivity
of this imaging system allow us – several tens of atoms over 104.

Finally, it is important to mention that the two set-ups that perform spin
manipulations between the hyperfine states of 2S1/2 – the microwave and
the Raman beams – are not locked in phase. This means that performing



46 implementation of spatially-resolved spin transfers

5 10 15 20 25
`L4 (mm)

1.5

2.0

2.5

3.0

3.5

σ
fi

t
(µ

m
)

(c)(a)

0

1

2

3

O
D

0 10 20 30 40 50 60
y (µm)

0

1

2

3

O
D

(b)

Figure 3.5: Focusing the DMD of the Raman beams on the atoms. (a): We transfer
the atoms with the Raman beams to the F = 2,mF = 0 state uniformly,
except on a small region selected with the DMD. The image is the average
of two experimental realisations. The horizontal black line represents 20 µm.
(b): The density profile of this region is fitted with a 1D inverted Gaussian
shape and the size along the y-direction σfit is extracted. On this example,
σfit = 1.8(1) µm. (c): We plot σfit as a function of the position `L4 of lens
L4. The position where a minimum is reached is where the DMD is on focus.
With a parabolic fit of the data points we determine that this focus is at
`L4 = 16.5(5)mm. The origin of this axis is arbitrary, and the important
quantity to extract from the fit is the ratio between the error bar of this
minimum and the focal length of the lens, here 400mm.

consecutive rotations with one and the other in the same sequence does not
produce accurately the same spin state, except if at least one of the rotations
corresponds to a multiple of a π-pulse.

3.2.2 Focus and size of the DMD

The surface of the DMD has to be focused on the atomic plane with precision
so that the patterns we imprint are as sharp as possible. The resolution of the
microscope objective is around 1 µm, and the associated depth of field is on
the order of several micrometers. We focus the DMD by displacing one of the
lenses that affects only this element – displacing the microscope objective itself
would put the two other DMDs out of focus. The lens labelled L4 on Fig. 3.3
is mounted on a motorized translation stage2 and we search for its optimal
position.
We prepare a cloud in the shape of a disk of radius 20 µm and in the

F = 1,mF = 0 state. On the DMD for the Raman beams we have all the pixels
on, except a small region that corresponds to a disk of radius around 2 µm
on the atoms. We apply a Raman pulse of 10 µs to transfer the atoms to the
F = 2,mF = 0 state and image these atoms for various positions `L4 of the

2 Newport, CONEX-AG-LS25-27P
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lens. If the DMD is on focus, the density distribution we get is a full disk with a
sharp hole corresponding to the ‘off’ pixels. If the DMD is slightly out of focus,
this dark region will be more blurry and the hole in the density distribution
will be at the same time less deep and broader.

On Fig. 3.5a is displayed one of the density distribution that we obtain,
averaged over two experimental realisations. We cut this density distribution
along one axis or the other and get a profile such as the one presented on
Fig. 3.5b. We fit the central region of this profile with a Gaussian function
x 7→ cfit − afit · exp

[
−(x− x0)2/(2σ2

fit)
]
, where cfit, afit, x0 and σfit are free

parameters, with afit > 0 to account for the central depletion of atoms.
The values of σfit as a function of `L4 are shown on Fig. 3.5c, and they are

fitted with a parabola. The size of the density hole has a clear minimum around
16mm, which indicates the position of the focus of the DMD. We also note that
the values of the amplitudes afit present a maximum at this position.
With this analysis, we are able to determine the position of the lens L4 to

focus the DMD with a precision better than 0.5% of the focal length of this lens.
This also represents a displacement below 2 µm of the focus of the pattern of
the atoms, which is lower than the Rayleigh length of the beam.

In order to imprint patterns with the proper size on the atoms we calibrate
the effective size of the pixels of the DMD. We display on the DMD a striped
pattern where alternatively Npix/2 pixels are on and Npix/2 pixels are off. The
whole pattern has a periodicity of Npix pixels. We perform a short Raman
pulse of 4 µs with such a pattern, we measure the density distribution of the
transferred atoms, and we obtain a picture such as presented on Fig. 3.6a.
Note that the stripes appear at 45◦ because the axes of the DMD array are
oriented with this angle compared to the axes of the camera. When averaging
this density distribution along the x+ y direction, we can fit the profile we get
with a sinusoidal function, as displayed on Fig. 3.6b. The period dcam of the
sine function indicates the effective size of the pixels on the atoms. For more
precision we do the same measurement by varying the periodicity Npix. The
results are shown on Fig. 3.6c, and they are fitted with a linear function, whose
slope indicates that the effective pixel size of one pixel of the DMD represents
0.36(1) µm. The real size of a DMD pixel is 13.68 µm, which means that we have
a magnification of 1/38(1), compatible with the expected value of 1/37.5.

3.2.3 Local spin transfers

According to the previous calibration measurements, we know that we are able
to create a very rich and precise spin landscape in our atomic sample:

• We control the regions where we manipulate the spin with a spatial
precision around 1 µm.

• In the selected regions we can bring the atomic spin in a superposition
c1 |1〉 + c2 |2〉 of the two hyperfine states |1〉 ≡ |F = 1,mF = 0〉, and
|2〉 ≡ |F = 2,mF = 0〉 with any relative weights |c1|2 and |c2|2 between
the two components.



48 implementation of spatially-resolved spin transfers

0 5 10 15 20 25 30
Npix

0

2

4

6

8

10

12

d
ca

m
(µ

m
)

(c)(a)

0

1

2

O
D

0 10 20 30 40 50 60
x− y (µm)

0
50

100
150

ar
b

.
u

n
it

(b)

Figure 3.6: Calibration of the effective size of the DMD. (a): A striped pattern with
an integer number of DMD pixels is shone on the atoms. We measure the
density distribution of transferred atoms by averaging five experimental
realisations. On the image shown here, the periodicity of the pattern is
Npix = 20. The horizontal black line represents 20 µm. (b): This distribution
is summed along the axis of the stripes, and the obtained signal is fitted
with a sine function. The fitted periodicity is here dcam = 7.0(2) µm. (c):
The periodicity dcam as a function of Npix is plotted and fitted with a
linear function. The slope is 0.36(1) µm.
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Figure 3.7: Spatially-selected π-pulse with the Raman beams. The atoms are initially
in a square box represented with the dashed lines, and in the F = 1,mF = 0
state. We select with the DMD a region in the shape of two stripes of width
8 µm and with a distance of 18 µm between their centres. The Raman
beams are shown to induce a π-pulse on this region. (a) Average of two
images of the atoms in the F = 1,mF = 0 state. (b) Average of two images
of the atoms in the F = 2,mF = 0 state. On both pictures, the horizontal
black line represents 20 µm.

• We can even spatially vary the weight of this superposition by displaying
on the DMD an image where the local fraction of mirrors turned on is
not simply 0 or 1. This is possible because the effective size of a pixel is
below the resolution of our imaging system. The spin state of the cloud is
then c1(r) |1〉+ c2(r) |2〉, where c1,2(r) vary over the cloud. The relative
phase between c1 and c2 is the same over the whole atomic cloud since it
is fixed by the relative phase between the Raman beams. I will not use
this feature in this thesis, but it may be very useful in the future.

We illustrate the high flexibility and precision of our spatially-resolved
Raman beams on Fig. 3.7. On the DMD, an image with two stripes of width of
8 µm on the atoms and whose central axes are distant from 18 µm. We perform
a π-pulse with the Raman beams, and we can either directly image the atoms
in F = 2 (see panel b), or add a π-pulse with the microwave to image the atoms
in F = 1 (see panel a).
We observe that the spatial selectivity of the Raman beams is very precise

and the π-pulse is well controlled on the whole selected region: on Fig. 3.7a,
the atomic density in the region of the two stripes is zero within the accuracy
of the absorption imaging, and on Fig. 3.7b, we see that we transfer atoms only
on the region of the two stripes.3

3 The imaging is performed here with a very high atomic density, and the absorption images
are saturating. The measured optical depths are therefore not reliable and can even diverge,
which we see on the pixels displayed in white on the figure.
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3.3 raman transitions with momentum transfer

We now turn to the second configuration: the two polarisations of the Raman
beams are separated with the optical accordion and they reach the atoms with
a non-zero angle. The Raman transfer is thus accompanied with a momentum
transfer.

3.3.1 Calibrating the momentum transfer

We start by optically calibrating the momentum transfer that we expect to
occur on the atoms. In order to do that, we wish to measure the size of the
lattice created by the two beams. However, the polarisation of the two beams
are orthogonal and they do not interfere. And even if their polarisation were not
perfectly orthogonal, the interference pattern would be a running one because
of the frequency difference of the beams, so it would not be easy to image it.

We therefore block one of the polarisations before the fibre that mixes them
(see Fig. 3.2) and we rotate the half wave plate right after the output of this
fibre (see Fig. 3.3) so that light passes in both paths of the accordion. We then
image the interference pattern with the camera. This camera is on focus with
the atoms for the imaging light at 780 nm, but the chromatic shift due to the
microscope objective, which is the largest shift we expect on this optical path,
is estimated around 2 µm, which is much smaller than the Rayleigh length of
the Raman beams on the atoms (≈ 6mm).

Such an image is shown on Fig. 3.8a. We take its Fourier transform, as shown
on Fig. 3.8b, and we determine the wave vector kr of the peak corresponding
to the periodic modulation. We vary the position of the translational stage on
which the mirror of the accordion (labelled M5) is mounted and extract the
velocity ~kr/m associated with the momentum transfer that we expect on the
atoms. We also measure with a ruler the distance db between the two beams
right after the accordion for all the positions of the stage. Fig. 3.8c presents the
measurements of the velocity ~kr/m as a function of the distance db. Following
equation 2.6, we expect the velocity transfer to be

~kr

m
=

2~kR

m

(
1 +

4f2
eff

d2
b

)−1/2

, (3.17)

where feff is the effective focal length of the optical system composed of the
two last lenses (L4 and L5) and the microscope objective. Numerically we have
feff = 20mm. This equation is plotted on the figure and the agreement with the
optical measurements is very good. The two last points may deviate because
of the aberrations of the microscope objective since the two beams are hitting
the microscope very near its edges. The first one also deviates because the
theoretical size of the interference fringes λR/[2 sin(θ2/2)] becomes on the same
order as the size of the beams, and the Gouy phase of these beams also has to
be taken into account, which modifies the interference pattern and increases its
average wave vector kr.

The velocity kick that we can give to the transferred atoms therefore ranges
from 1 to 3.5mm/s. An important quantity to compare these values with is the
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Figure 3.8: Calibration of the momentum transfer. (a): The interference pattern formed
by one laser frequency passing through the two paths of the accordion is
imaged on the camera. (b): We compute its Fourier transform where the
two peaks on both side of the central one indicate the wave vector of the
lattice. (c): We infer the velocity transfer that the atoms should experience
as a function of the distance between the two beams after the accordion.
The grey dashed line is what we expect following equation 3.17, in good
agreement with the measurements.
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speed of sound, which is in our case on the order of 1− 2mm/s [113]. With our
set-up, we can therefore go from the regime where the transferred atoms get a
subsonic velocity kick to the regime where this kick is supersonic. This provides
a precise tool for probing the superfluid behaviour of a cloud of atoms [130].

3.3.2 Local spin transfers with a momentum kick

We can also test the action of the Raman beams on the atoms in this
configuration with a momentum transfer. I describe here a first experiment and
extract the relevant quantities that describe it. These are preliminary tests for
a future project. I only give here a few elements to understand the phenomena
at play.

We prepare a cloud of atoms in a disk-shaped box potential (radius 20 µm)
in the state F = 1,mF = 0 and illuminate a small disk of radius 3 µm with the
Raman beams in the centre of the cloud. We induce a pulse shorter than a π-
pulse and approximately 300 atoms are transferred to the state F = 2,mF = 0.
We vary the duration t of the subsequent evolution and image the atoms in
F = 2. A few pictures of this evolution are shown on Fig. 3.9a. These atoms
move in the x direction, reach the edge of the box potential and bounce on it to
go back in the opposite direction. We observe three of these bounces until the
radial expansion of the transferred atoms is too large and the optical density is
too low to detect them properly. This bouncing behaviour is expected because
the kinetic energy transferred to the atoms 2~2k2

r /m is lower than kB · 50 nK
and the height of the box potential is on the order of several times kBT , where
T is the temperature of the gas. This temperature is typically between 50 and
100 nK. The transferred atoms thus do not have enough energy to cross the
potential barrier of the box.
For each duration t we find the position of the centre of mass xc of the

transferred atoms as well as the spread σx of these atoms in the x direction.
These quantities are presented on Fig. 3.9b and c. The evolution of the position
xc is fitted with a triangular function:

t 7→ ax

[
1

2
−
∣∣∣∣2
{
t− t0
bx

}∣∣∣∣
]
, (3.18)

where {x} represents the fractional part of the real number x and ax, bx and t0
are free parameters. The fitted amplitude is ax = 38(2) µm, compatible with the
diameter of the full box. The velocity that we extract is ax/bx = 0.94(10)mm/s.

Unfortunately, these data have been taken before calibrating the momentum
transfer, therefore we cannot compare the value of the velocity ax/bx with the
expected velocity. We will take these measurements again very soon in order to
perform this comparison.

The radial expansion of the cloud can be fitted with a branch of hyperbola:
t 7→

√
a2
σt

2 + σ2
0, where aσ and σ0 are free parameters. We exclude from the

fit the points corresponding to the bounces. We find aσ = 0.13(2)mm/s and
σ0 = 2.9(5) µm.

The measured value of aσ is well below the value that would be expected for
the expansion of an isolated ensemble of atoms. Indeed, the total energy Etot
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Figure 3.9: Evolution of the atoms transferred from F = 1 to F = 2 with a momentum
transfer. (a) From top to bottom and from left to right: Average of a
few images after a variable evolution duration t from 0 to 40ms. The
atoms move to the right of the picture and bounce on the box potential
(represented by the black circle). This box is filled with atoms in F = 1
which are not resonant with the imaging beam. For each duration t we
extract the position of the centre of mass xc and the spread σx along the
x direction. (b): Evolution of xc with the evolution duration. The data
points are fitted with a triangular function (dashed grey line) whose slope
gives the velocity of the cloud. We get a velocity of 0.94(10)mm/s. The
shaded areas mark the moments when the atoms bounce on the edge of the
box. (c): Evolution of the spread σx. This spread is increasing with time,
except during the bounces (shaded areas) where the spread is reduced. It
is fitted with a branch of hyperbola (dashed grey line).
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of an isolated gas would be converted into kinetic energy after the expansion,
leading to an expansion

σ2
x(t) ≈ σ2

x(t = 0) +
2Etott

2

m
. (3.19)

An estimate of a lower bound of
√

2Etot/m is obtained by taking into account
only the interaction energy. It gives 0.1m/s, which is much higher than the
measured aσ.

Here indeed, the atoms interact with the atoms in F = 1 that fill the box
potential. These interactions are described by the inter-species scattering length
a12, while the interactions between atoms in the same hyperfine state are
described by the scattering lengths a11 and a22. These parameters are estimated
to be a11 = 100.9(1)a0 [131], a22 = 94.6(0.2)a0 [132], and a12 ≈ 98.9a0 [133].

In this particular case, a11a22 < a2
12, which means it is energetically favourable

to have the two species spatially separated rather than overlapping. These two
species are said to be immiscible. The presence of atoms in F = 1 all around
the transferred atoms in F = 2 intuitively reduces the expansion rate of these
atoms.

The study of this phenomenon with a more quantitative approach still has
to be made and it is a project of the team for the near future.

3.4 conclusion

In this chapter I have described and characterised the Raman set-up that I
have developed during my thesis. Two Raman beams with proper frequencies
and polarisation are produced to perform transitions between the two hyperfine
states of the ground level of the atoms with a very good precision. The intensity
of the two beams is shaped thanks to a DMD to select with a high resolution (≈
1 µm) the atoms that will undergo these transitions. The direction of propagation
of the two beams can be chosen:

1. Either they propagate in the same direction and the atoms experience no
momentum transfer.

2. Or they reach the atoms with a relative angle than can be varied con-
tinuously thanks to an optical accordion. In that case they induce a
momentum transfer on the atoms. This transfer corresponds to a velocity
kick that can be chosen below or above the speed of sound.

This new experimental tool opens many possibilities in the way we manipulate
the atoms. For example it is used in Chapter 6 to measure the first correlation
function of the 2D Bose gas. It is also an excellent tool to create binary mixtures
of two hyperfine states with a versatile spatial distribution. This may allow us
to study interesting properties of these mixtures, as developed in the conclusion
of this thesis.
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4
THEORETICAL CONS IDERATIONS ON THE F IRST
CORRELATION FUNCTION

Phase transitions are at the heart of many physical systems such as the
transition of matter from gaseous to liquid to solid phases. This framework
also describes magnetic systems, superconducting materials, or the percolation
of disordered systems [134, 135]. All these examples answer in a different
manner the following question: How does a spatially extended system go from
a disordered to an ordered state when an external parameter (e.g. magnetic
field, temperature) is changed? Interestingly, in spite of the rich variety of
systems undergoing phase transitions, all of them can be grouped into a few
universality classes [136, 137]. For second-order transitions, these classes are
characterized by critical exponents that describe their behaviour at the vicinity
of their critical point [138]. One important aspect is that the physics of phase
transitions does not depend on the details of their description, but rather on
the general features of the models they rely on.
In this respect, the dimensionality of a physical system plays an important

role in the way this system can be ordered [139]. While models in three
and higher dimensions can display infinitely long-range phase ordering at
non-zero temperatures (for cold atom systems see [48, 140]), the physics of
low-dimensional systems is different. For example, infinite systems with local
interactions cannot have long-range ordering at non-zero temperatures if their
order parameter is continuous. This statement is called the Mermin-Wagner-
Hohenberg theorem [141, 142].

However, in two dimensions there are phase transitions that lead to a quasi-
long range ordering, such as the Berezinskii–Kosterlitz–Thouless (BKT) phase
transition [25, 26]. Such a phase transition, contrary to many other ones, is
a topological phase transition, for reasons that I detail in this chapter. It is
also an infinite order phase transition, meaning that all the derivatives of the
thermodynamic quantities are continuous at the critical point. This phase
transition describes 2D systems such as the XY-model [26], the Coulomb gas
[143] or the two-dimensional Bose gas at low temperatures [111].

Many aspects of this BKT transition have been explored with 2D atomic Bose
gases, such as the appearance of a quasi-condensate phase where the density
fluctuations are suppressed and a pre-superfluid state is observed [144–146]. The
proliferation of vortices around the critical temperature has also been observed,
confirming the nature of this phase transition [37, 147].

An important feature of the BKT transition that still needs to be observed
is the behaviour of the first-order correlation function, g1(r). This function is
central in the understanding of the transition, as we will see.
This chapter aims at presenting the main properties of this correlation

function of several 2D systems across the BKT transition. We first consider the
case of infinite systems and focus on three important models: the XY- model
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for magnetic systems, the ideal Bose gas and the weakly interacting Bose gas.
Then we turn to the various effects that one needs to take into account when
studying 2D systems produced in a laboratory that depart from ideal theoretical
systems: their out-of-equilibrium character, their spatial inhomogeneity and
their finite size.

4.1 the first-order correlation function of infinite 2d
systems

In order to understand the important features of the first-order correlation
function of a two dimensional Bose gas I separate the theoretical analysis in
three steps. First I present briefly the XY-model that grasps the physics of
the BKT transition. Then I explain the case of non-interacting bosons in two
dimensions to introduce with this simple example the notations and concepts
that are useful for such a system. Finally I develop the case of interacting
bosons on an infinite plane.

4.1.1 The XY-model and the BKT transition

4.1.1.1 Definition of the model

The XY-model consists in a two-dimensional array of classical arrows whose
orientation stays in this plane. We consider a system of size L×L covered with a
square array of arrows separated by the distance a, with a� L. The orientation
of an arrow at site i located in (xi, yi) is given by an angle ϕi = ϕ(xi, yi). Each
arrow interacts with its nearest neighbours only and wants to align with them.
The Hamiltonian of the system is therefore

HXY = J
∑

〈i,j〉
[1− cos(ϕi − ϕj)] (4.1)

= 2J
∑

〈i,j〉
sin2

(
ϕi − ϕj

2

)
, (4.2)

where J > 0 is the strength of the interactions and the notation 〈i, j〉 designates
the pairs of nearest neighbour sites. We consider periodic boundary conditions
here for simplicity. The ground state of this Hamiltonian is obtained when
all the arrows have the same orientation, and its energy is null. This ground
state is infinitely degenerate, as the common orientation of the arrows can be
arbitrarily chosen between 0 and 2π.
There are two types of excitations that we will consider in the following:

phonons, which are the excitations with the lowest energy, and vortices, whose
contribution matters at higher temperatures.

4.1.1.2 High-temperature behaviour and lack of ordering

I summarise here the high-temperature development of the model. More
detailed calculations can be found for example in [148, 149].
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In the high temperature limit, the interaction energy is not strong enough
to keep neighbouring arrows aligning one with another. Therefore we expect to
have no long-range ordering. More precisely, the correlation between two spins
at sites i and j is g1(i, j) = 〈exp [i(ϕi − ϕj)]〉, where 〈·〉 denotes the statistical
average in the canonical ensemble. We then have

g1(i, j) =
1

Z

∫ 2π

0

∏

k

dϕk exp [i(ϕi − ϕj)]
∏

〈i′,j′〉
exp

[
− 2J

kBT
sin2

(
ϕi′−ϕj′

2

)]
,

(4.3)
where Z is the partition function of the system.

At high temperature, J � kBT and one can expand the exponentials in the
product at first order in J/(kBT ):

exp

[
− 2J

kBT
sin2

(
ϕi′ − ϕj′

2

)]
≈ 1− 2J

kBT
sin2

(
ϕi′ − ϕj′

2

)
. (4.4)

When developing the product over the links 〈i′, j′〉, we get a sum over all subsets
S of links of the system:

∏

〈i′,j′〉
exp

[
− 2J

kBT
sin2

(
ϕi′−ϕj′

2

)]
=
∑

{S}

∏

{i′,j′}∈S

[
− 2J

kBT
sin2

(
ϕi′ − ϕj′

2

)]
,

(4.5)
where {S} denotes the set of all the subsets S of links in the system.

Many of these terms average to zero when integrated over the angles ϕk. The
terms that do not average to zero are terms from the subsets S that involve
links connecting sites i and j. Since J/(kBT )� 1, the main contributions come
from the subsets S with the least amount of links. The leading term then has
r/a links, where r is the distance between sites i and j.
Finally, we have the scaling

g1(i, j) ∝
(

2J

kBT

)r/a
(4.6)

∝ exp

[
−r
a

ln

(
kBT

2J

)]
. (4.7)

The correlation between two arrows separated by a distance r thus decays
exponentially with a correlation length ` given by

` =
a

ln
(
kBT
2J

) , (4.8)

which is smaller than the distance between two arrows as soon as the condition
kBT > 2Je is met, where e ≈ 2.718 · · · .

4.1.1.3 Low-temperature behaviour and quasi-long range order

I summarise here the low-temperature limit of the model. More detailed
calculations can be found in [149, 150]. In this limit, only phononic modes
are considered and their thermodynamics is derived to obtain the correlation
function.



60 theoretical considerations on the first correlation function

Let us consider the system in the low-temperature limit: kBT � J so that
two neighbouring arrows have almost the same orientation. The Hamiltonian
can be written as

HXY =
J

2

∑

〈i,j〉
(ϕi − ϕj)2. (4.9)

The two-dimensional sequence of angles {ϕ(xi, yi)} can be decomposed in
a cosine and sine Fourier series of respective amplitudes ϕ̃c;kx,ky and ϕ̃s;kx,ky ,
where kx, ky are integers between 0 and L/a. However the quantities ϕ(xi, yy)
are real, therefore we can restrict kx to the positive integers.
The Hamiltonian given by equation 4.9 is diagonal in the Fourier basis:

HXY =
J

2

L/2a∑

kx=0,
ky=−L/2a

k2
(
|ϕ̃c;kx,ky |2 + |ϕ̃s;kx,ky |2

)
, (4.10)

where we have defined the vector k = (kx, ky). Each mode (kx, ky) with kx > 0 is
independent from the others. The value of their amplitude is sampled according
to a Boltzmann distribution:

P(ϕ̃c,s;kx,ky) ∝ exp

(
− Jk

2

kBT
|ϕ̃c,s;kx,ky |2

)
, (4.11)

where ϕ̃c,s;kx,ky is a short notation that can refer to ϕ̃c;kx,ky or ϕ̃s;kx,ky . The
amplitudes are therefore independent Gaussian variables. It is then easy to
compute interesting quantities of the model.

For example one can obtain the average value of the mismatch between
two arrows ϕ(0) and ϕ(r). The sum over the modes (kx, ky) is replaced by an
integral, which is valid when L/a� 1:

〈
[ϕ(0)− ϕ(r)]2

〉
=

kBT

2π2J

∫ 1/a

0
d2k

1− cos(k · r)

k2 . (4.12)

One can also determine the first-order correlation function g1(r), defined as

g1(r) = 〈exp [i(ϕ(0)− ϕ(r))]〉 . (4.13)

Because the amplitudes of the Fourier modes are independent Gaussian variables,
we get:

g1(r) = exp

(
−1

2

〈
|ϕ(0)− ϕ(r)|2

〉)
(4.14)

= exp

(
− kBT

4π2J

∫
d2k

1− cos(k · r)

k2

)
. (4.15)

Until this point, the method would be the same for systems of spins in a space
of any dimensionality. The following would differ depending on this dimension,
because the integral that appears in equation 4.12 behaves differently in different
dimensions.
In two dimensions, the computation of this integral gives

∫ 1/a

0
d2k

1− cos(k · r)

k2 = 2π ln
(r
a

)
, (4.16)
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(a) (b)

Figure 4.1: Representation of two important configurations of an array of arrows. (a):
A vortex configuration. The centre of the vortex is indicated with the red
cross. Here the arrows whirl counter-clockwise around this centre, and
the vortex has a charge +1 (b): A pair vortex anti-vortex configuration.
A vortex of charge +1 is centred around the red cross, and a vortex of
opposite charge −1 is centred around the red circle.

which means that
g1(r) =

(a
r

)η
, (4.17)

with the exponent

η =
kBT

2πJ
. (4.18)

The correlation function goes to 0 as the distance r increases, but this decay
is not as fast as an exponential decay as we had in the high temperature limit.
This slow decay is called a quasi-long range order.

4.1.1.4 Contribution of vortices

In order to understand the connection between the high temperature limit
where g1 decays exponentially and the low temperature limit where g1 decays
as a power law, we need to take into account the role of vortices, which are
topological defects. I present here the broad lines of their important role which
give to the BKT transition its qualifying adjective ’topological’. More detailed
discussions can be found in [26, 149, 150].

A vortex centred at the centre of the system is described by the orientation
of the arrows:

ϕ(xi, yi) = θ(xi, yi) + q
π

2
, (4.19)

where θ(xi, yi) is the azimuthal angle of point (xi, yi) with respect to the centre
of the system, and q = ±1 defines the sign of the charge of the vortex. An
illustration of a vortex with charge q = +1 is presented on Fig. 4.1a.

The energy Ev of this configuration is

Ev = πJ ln

(
L

a

)
, (4.20)



62 theoretical considerations on the first correlation function

which depends on the size L of the whole system. Qualitatively, if this energy
is larger than the thermal energy kBT , then it will not be favourable to form
such a vortex and the system will only have phonons, as described in the low
temperature limit. In the opposite case, vortices may form in the system, which
will break the phase correlation between arrows located on opposite sides of
the centre of the vortex.
More quantitatively, the proper thermodynamic quantity to consider is the

free energy F = Ev−TS associated with a vortex. The centre of the vortex can
be located at each site of the dual lattice of the system, which contains (L/a)2

sites. The entropy associated with this random positioning is S = 2kB ln(L/a).
We thus have

F = (πJ − 2kBT ) ln

(
L

a

)
. (4.21)

The free energy changes sign at the temperature Tc = πJ/(2kB). There are
then two different behaviours:

• T < Tc: The free energy of one vortex is positive. It is then not favourable
to create such a vortex, and the system keeps a quasi-long range order.

• T > Tc: The free energy of one vortex is negative, and it is favourable to
create at least one vortex. The quasi-long range order is destroyed.

This reasoning cannot grasp all the physics of the system, since it does not
consider the interaction between vortices, nor between a vortex and a phonon.
Moreover, only pairs of vortices with opposite charges can be created [148] to
conserve the total angular momentum of the system. The physics associated to
these pairs therefore needs to be described: whether two vortices of a pair stay
close to one another or if they separate and act as two single vortices.

4.1.1.5 Renormalization group

A more complete approach relies on the renormalization group. I will not
enter the details of the derivation, which can be found in various references
[148, 149, 151, 152].

The idea is to separate the contribution of the phonons and the contribution
of the pairs of vortices. The phononic part is described by the energy J as
before, and the energy of the vortices is described by the energy of a pair of
vortices E2v = π2J/2 and an interaction energy that depends on the position
of all the vortices.

The renormalization group describes how this problem on a lattice of size a
can be described by an equivalent problem on a lattice of larger scale a′. When
performing this operation, the contribution of pairs of vortices whose distance
is smaller than a′ is inserted in the contribution of the phonons, and the energy
J is modified to become J ′, which is smaller than J . The rest of the vortices
has a contribution that is also modified, in particular the energy of a pair E2v

becomes E′2v.
The process is summarized by the renormalization functions fa,a′ and ga,a′ :

J ′ = fa,a′(J,E2v) (4.22)
E′2v = ga,a′(J,E2v), (4.23)
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Figure 4.2: Renormalization flow of the equations 4.26 and 4.27. The solid blue lines
indicate the trajectory of several initial points (x0, y0). The dashed black
lines are the separatrices of the different regimes. The solid grey line
indicates the set of physical starting points determined by equations 4.24
and 4.25, where J/T is the free parameter that determines the position of
the starting point on the grey line.

and many features of the model can be derived from these equations. In the
limit where a′/a = 1 + ε with ε� 1, these equations may be expressed via the
two variables

x =
2πJ

kBT
, (4.24)

y = exp

(
− E2v

kBT

)
. (4.25)

The variable x is the nearest neighbour interaction energy normalized by
temperature, and the variable y is the fugacity of a pair of vortices. The two
renormalization functions on x and y are given by

dx

dε
= −2π2x2y2 (4.26)

dy

dε
=

1

2
(4− x) y. (4.27)

A graph presenting a few solutions of these equations is shown on Fig. 4.2.
There are many interesting features on this graph:

• If we start with J � kBT , which means x � 1 and y � 1, we start on
the bottom right of the graph and the renormalization process shows us
that, when changing the scale of the system, we end up with an equivalent
system with a null fugacity of the vortices and a finite interaction energy.
This is the low temperature limit that we detailed above.

• On the contrary, if we start with J � kBT on the left of the graph, we end
up with an equivalent system with an infinite fugacity of the vortices and
a null interaction between neighbours. In this high temperature limit, it is
favourable to create pairs of vortices, and there is no coherence between
spatially distant arrows.
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• In the regime where spatial coherence subsists, the effective interaction
energy 2πJeff/(kBT ) is never lower than 4. This value coincides with the
critical temperature that we found when crudely describing the role of
the vortices. This has important consequences, notably for the power law
exponent of the first-order correlation function expressed in equation 4.18.
This exponent is always between 0 and 1/4.

• A more careful analysis shows [151] that the critical temperature Tc is
given by the implicit equation

2kBTc

πJ
=

1

1 + π exp
(
−π2J
2kBTc

) , (4.28)

which is close to the estimate we found in 4.1.1.4.

• The phase transition is reflected on the correlation function g1(r): below
the critical temperature it has a power law decay with an exponent η
below 1/4. Above the critical temperature, the first-order correlation
function decays exponentially with a characteristic length ` given by
equation 4.8.

4.1.2 An ideal gas of bosons in 2D

We now turn to the case of bosonic particles in two dimensions. I give the
main results of this simple case so that the important notions that will be used
in the case of interacting particles are introduced. Details of the calculations
are given in Appendix B. The whole discussion is largely inspired from [150].

4.1.2.1 General relations

We consider a square box of size L× L with periodic boundary conditions.
The Hamiltonian of one particle is

Ĥ =
p̂2

2m
, (4.29)

whose eigenstates are the plane waves with quantized momenta p: p = 2π~j/L,
with j = (jx, jy) a vector with integer coordinates. The energy of this state is
Ep = p2/(2m).
A system of non-interacting bosons at temperature T and fugacity z =

exp(µ/kBT ) occupies each momentum state with an occupation number follow-
ing the Bose-Einstein statistics:

Np =
1

z−1 exp
(

p2

2mkBT

)
− 1

, (4.30)

which can be written as

Np =
+∞∑

l=1

zl exp

(
− lp2

2mkBT

)
. (4.31)
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The correlation function G1 of the gas is defined following [153]:

G1(r, r′) =
〈
r′
∣∣ ρ̂1 |r〉 , (4.32)

where ρ̂1 is the one-particle density matrix of the system.
We first remark that the population of the momentum state p can be written

as

Np = 〈p| ρ̂1 |p〉 (4.33)

=

∫∫
d2r d2r′

〈
p
∣∣r′
〉 〈
r′
∣∣ ρ̂1 |r〉 〈r|p〉 (4.34)

=
1

L2

∫∫
d2r d2r′ exp

(
ip · (r − r′)

~

)〈
r′
∣∣ ρ̂1 |r〉 . (4.35)

Since the system has a translational invariance, the quantity 〈r′| ρ̂1 |r〉 de-
pends only on the relative distance u = r − r′. The integral over r is then
straightforward:

Np =

∫
d2u exp

(
ip · u
~

)
G1(0,u). (4.36)

The momentum distribution Np is therefore the Fourier transform of the
correlation function G1(0, r). An inverse Fourier transform thus provides the
correlation function from the knowledge of the momentum distribution:

G1(0, r) =
1

(2π~)2

∫
d2p exp

(
− ip · r

~

)
Np. (4.37)

This general relation does not depend on the momentum distribution, it only
relies on the translational invariance of the problem. When we use it for the case
of the ideal gas of bosons in two dimensions with the momentum distribution
found in equation 4.31, we get:

G1(0, r) =
1

λ2
T

+∞∑

l=1

zl

l
exp

(
−πr

2

lλ2
T

)
, (4.38)

where λT is the thermal wavelength of the gas, defined by

λT =

√
2π~2

mkBT
. (4.39)

We can define a normalized version of this correlation function:

g1(r) ≡ G1(0, r)√
G1(0,0)

√
G1(r, r)

(4.40)

=

+∞∑

l=1

zl

l
exp

(
−πr

2

lλ2
T

)
. (4.41)

In particular, this first-order correlation function g1(r) is always smaller than
1.

We can now examine this relation in the two limits of low and high degree of
degeneracy for the gas.
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4.1.2.2 Limits of the first-order correlation function

In the limit where the gas is far from quantum degeneracy, we have z � 1,
or equivalently |µ| � kBT , and the first-order correlation function in given by

g1(r) ≈ exp

(
−πr

2

λ2
T

)
. (4.42)

The spatial extension of this Gaussian-shaped first-order correlation function is
given by the thermal wavelength λT of the gas.

In the limit where the gas is degenerate, we have z ≈ 1 the first-order
correlation function in given by

G1(0, r) ≈ 1

(2πλT )2
K0

( |r|
`

)
, (4.43)

where K0(x) is the Bessel function of the second kind and order zero, and the
length ` is

` =
~√

2m|µ|
. (4.44)

The derivation of this expression is given in Appendix B.
When the argument of the Bessel function is large compared to 1, we have

G1(0, r) ≈ 1

(2πλT )2

√
π`

2|r| exp

(
−|r|
`

)
. (4.45)

The correlation function decays slightly faster than an exponential, with a
characteristic length scale ` that is much larger compared to the thermal
wavelength λT , since |µ| � kBT .

The two limits of low and high degree of degeneracy are therefore very
different one from the other, but in all cases, there is no long range order for
an infinite system with no interactions at non-zero temperatures.

4.1.3 Interacting bosons in 2D

We now turn to the case of an interacting Bose gas. I first briefly present
the mathematical description of this problem before examining the correlation
function in this case.

4.1.3.1 Description with a classical field

We consider a system of N interacting particles in two dimensions. The
full wave function of N particles is Ψ(r1, r2, · · · , rN ). It is fully symmetric
with respect to the positions of the particles r1, · · · , rN , and we choose its
normalisation to be the number of particles N :

∫
· · ·
∫

d2r1 · · · d2rN |Ψ(r1, r2, · · · , rN )|2 = N. (4.46)
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The Lagrangian density of the system is

L[Ψ] = Ψ∗


−i~

∂

∂t
+

N∑

i=1


− ~2

2m
∇2
i + Vext(ri) +

1

2

∑

j 6=i
V (rj − ri)




Ψ,

(4.47)
where Vext is an external potential and V is the interaction potential between
the particles.

We use the Hartree ansatz, which consists in restraining the wave function Ψ
to be a product of the same wave function ψ:

Ψ(r1, · · · , rN ) =
√
N

N∏

i=1

ψ(ri), (4.48)

where ψ(r) is a classical field normalised at 1:
∫

d2r|ψ(r)|2 = 1. (4.49)

The system is now described by the Lagrangian density

L[ψ] = ψ∗(r)N

[
−i~

∂

∂t
− ~2∇2

2m
+ Vext(r) +

N

2

∫
d2r′ V (r′−r)|ψ(r′)|2

]
ψ(r),

(4.50)
where the atom number is large compared to 1, therefore N − 1, N − 2 ≈ N .

In the case of weakly interacting bosons, the interaction between these
particles can be described by a contact interaction, which leads to the following
Euler-Lagrange equation:

i~
∂ψ

∂t
+

~2

2m
∇2ψ − Vext(r)ψ − ~2

m
g̃N |ψ|2ψ = 0. (4.51)

This equation is called the Gross-Pitaevskii equation, and in the following we
will consider it with a null external potential: Vext = 0.

The description with a classical field is valid only if the parameter g̃ is small
compared to 1. We will stay in this regime, since experimentally we always
have g̃ ≤ 0.15.

4.1.3.2 Mapping on the XY-model

The density of interaction energy is ~2g̃n2/2m, where n = |ψ|2 is the atomic
density. It is proportional to the square of this atomic density, which means
that the minimal interaction energy is reached when the gas has a uniform
density. At T = 0, the gas is uniform and only on the edge of the box its density
goes to zero, on a length scale given by the healing length ξ, with

ξ =
1√
2g̃n

. (4.52)

At finite temperature, departing from a uniform density costs energy, which
can come from the thermal energy of the gas. One can estimate the fluctuation
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of density with a Bogoliubov approach, that is detailed for example in [38]. The
relative density fluctuation is given by

δn

n
≈
√

2

nλ2
T

ln

(
2π

g̃nλ2
T

)
. (4.53)

The right-hand side is on the order of 1 when the phase-space density nλ2
T ≈ 4.

The regime where these density fluctuations are suppressed is called the quasi-
condensate regime, or pre-superfluid regime. This regime arises for lower phase-
space densities than the ones predicted by equation 4.53 [110, 144, 154]. Already
when D . 1, the density fluctuations are reduced.

In these conditions, the only degree of freedom that is left for the classical
field ψ(r) is its phase φ(r). We are then left with a continuous version of the
XY-model presented above, and the physics of both versions is exactly the
same. In particular, the system displays a BKT transition. More generally we
can translate all of the results of section 4.1.1 with the vocabulary adapted for
a quantum fluid.
Importantly, the interaction energy J between the arrows in the XY-model

is replaced here by a quantity proportional to the superfluid density ns. This
superfluid density describes how easily the phase profile φ(r) can be deformed.
It can also be linked to the correlations of the velocity field [155, 156].
More precisely, the results of the XY-model is transposed by replacing the

effective interaction Jeff by ~2ns/m. The critical temperature is given by

2π~2ns

mkBTc
= 4, (4.54)

and this relation can also be translated in terms of superfluid phase-space
density Ds = λ2

Tns:
Ds,(c) = 4. (4.55)

There are two regimes separated by this critical temperature, as shown by
the renormalization group:

1. At temperatures lower than this critical temperature, the system has a
non zero effective superfluid density ns, and its first-order correlation
function decays as a power law:

g1(r) =

(
λT
r

)η
, η =

1

λ2
Tns

. (4.56)

The exponent η is therefore always smaller than 1/4.

2. At temperatures higher than the critical temperature, the system has
a null superfluid density: ns = 0 and the correlation function decays
exponentially fast. The correlation length ` of this decay diverges as the
temperature comes closer to Tc [149].
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Figure 4.3: Results of the Monte-Carlo simulations from [110], plotted for g̃ = 0.15. (a):
Phase-space density D (light squares) and superfluid phase-space density
Ds (dark circles) as a function of the dimensionless parameter µ/kBT . The
horizontal grey dashed line indicates the critical phase-space density, and
the vertical grey dashed line indicates the critical point of the transition.
(b): Superfluid fraction ns/n as a function of the reduced temperature
T/Tc, which is proportional to the inverse of the x-axis of the graph in (a).

We can now turn to the Monte-Carlo numerical simulations performed by
Prokof’ev and Svistunov [110]. The relation between n and the ratio µ/kBT
has already been presented on Fig. 2.13a. These simulations also provide the
dependence of the superfluid density ns on µ/kBT . This is shown on Fig. 4.3a.
On Fig. 4.3b is shown how the superfluid fraction ns/n depends on T/Tc.
It is to note that the superfluid fraction is null for temperatures above Tc,

and that it jumps to approximately 1/2 at the critical temperature. When the
temperature decreases to zero, the superfluid fraction continuously increases to
1. The amplitude of this jump depends on the value of g̃. On the contrary, the
jump of Ds from 0 to 4 is universal.
While all thermodynamic quantities are continuous at Tc, the superfluid

fraction displays a discontinuity which stems from the disappearance of the quasi-
long range ordering of the system, as described by the BKT phase transition.
It is therefore an important quantity to measure experimentally. It has for
example been the case with superfluid helium confined in 2D [157], where the
measurement has been performed in a dynamical way. In other systems, the
access to this superfluid density is much more difficult, and the measurement of
the first-order correlation function may provide a way to access it. This was for
example a motivation that we had to measure the second sound, as proposed
in [158]. The measurements we have performed and reported in [113] could not
reveal the behaviour of the superfluid fraction near the critical temperature
due to the emergence of a collisionless sound, as explained in [94].

The observation of a quasi-long range order and its disappearance by the
measurement of the first-order correlation function is a challenge that has been
undertaken with various physical systems. The rest of the chapter is dedicated
to these measurements and how the theory of infinite 2D systems translates in
the laboratories.
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4.2 developments for realistic experimental measure-
ments

There have been several recent measurements of observables linked to the
first-order correlation function of interacting 2D systems, with various experi-
mental realizations. Some important issues are raised when comparing these
measurements to the ideal theory.

• Several experiments with polaritons have been performed to measure
spatial, but also temporal correlation functions. Some experiments are
reported in [159–161]. Polaritons are open quantum systems and their
study is interesting to understand the physics of driven and out-of equi-
librium systems. The particularities of these systems and their link with
equilibrium physics are discussed in 4.2.1.

• Some experiments have been performed with 2D systems of atoms in an
external harmonic potential, reported in [144, 162, 163]. The presence of
a harmonic in-plane confinement also changes the behaviour compared to
an infinite uniform system. This point is discussed in 4.2.2.

Finally, the effects of finite size for uniform systems are briefly discussed in
4.2.3.

4.2.1 Exciton-polaritons and out-of-equilibrium effects

Polaritons are bosonic particles that arise from the coupling between electron-
hole excitons of a semiconductor and photons of a light field in a cavity [164].
These hybrid particles are produced in two-dimensional quantum wells and
their effective mass is low enough so that the temperature to reach quantum
degeneracy can be above room temperature. The lifetime of polaritons is
typically on the same order of magnitude as their thermalisation time [165],
which means that, in order to reach a steady-state, one needs to drive the
system to counterbalance the losses. This is referred to as a driven-dissipative
system.
Such systems are therefore different from closed systems at equilibrium,

and the properties of both systems can be very different. For example their
universality class is not the same: for isotropic systems, an isolated system
at equilibrium is described by the XY-model, as we have seen above, while a
driven-dissipative system falls in the Kardar-Parisi-Zhang (KPZ) class [166]. It
has also been shown that a strongly anisotropic system can recover a description
with the XY-model [166, 167], but this regime is not the one in which the
experiments are operating.

However, experiments show that the decay of the first-order correlation
function is compatible with a power law [159–161]. From a theoretical point of
view, this behaviour is expected only for a finite range of distances. If measured
with large enough systems the first-order correlation function is not expected
to follow such a power-law decay [167].
The exponent of the power law that are measured in the three cited experi-

ments do not agree with one another, due to the different excitation procedures.
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The exponents reported in [159, 161] are higher than what the BKT theory
predicts, but this difference is well-explained by numerical simulations [168],
and may be due to spatial inhomogeneities of the samples. The exponents
reported in [160] agree with the BKT prediction.

The measurement of the first-order correlation function is not the only
experimental observation that one can perform in order to clarify the link
between gases of polaritons and the BKT transition. Another interesting direction
would be the observation of vortex pairing below the BKT transition and
the proliferation of isolated vortices above it. While theoretical findings and
numerical simulation support this scenario [166, 168], such a mechanism has
not yet been observed experimentally [169].

4.2.2 Cold atoms and trapping effects

We now turn to atomic systems, which are more reliably linked to the BKT
physics: their thermalisation timescale is on the order of several milliseconds,
whereas their lifetime is on the order of a few seconds. They do not need any
pumping and they are hence much closer to a system at thermal equilibrium.

At least three experiments have measured quantities linked to the first-order
correlation function in a 2D Bose gas, and all of them were using a harmonic
potential to confine the atoms in the xy plane. In the first one [162], the authors
measure the interference pattern between two identically prepared 2D clouds,
as initially proposed in [170]. These interference patterns have a local contrast
c(x) and a local phase θ(x). The images they have are taken in the xz plane,
and the quantities c(x) and θ(x) are an average over the y direction. They
compute a spatially-averaged contrast C(x) defined as

C(x) =
1

x

∣∣∣∣∣

∫ x/2

−x/2
du c(x) exp[iθ(x)]

∣∣∣∣∣ , (4.57)

and they average its square over several experimental realizations. One expects
to have

〈
C2(x)

〉
=

1

x

∫ x/2

−x/2
du[g1(0, u)]2, (4.58)

where 〈·〉 denotes this average. If g1 decays algebraically with an exponent η,
one gets 〈

C2(x)
〉
∝ x−2η. (4.59)

The authors measure the exponent of the decay of
〈
C2(x)

〉
around the critical

temperature and report the coincidence between a jump of this exponent from
0.5 and 1 and the appearance of dislocations in their interference patterns
indicating the presence of vortices. This indicates that right below the critical
temperature, g1(r) has a decay compatible with an algebraic decay of expo-
nent 1/4, and that right above the critical temperature, g1(r) has a different
behaviour, due to the vortices that appear and break the quasi long-range
order.
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In the second study (reference [144]), the authors measure the contrast of
the interference between two copies of the same initial cloud. These copies are
produced thanks to Raman beams with a momentum transfer. The measured
contrast is directly linked to the first-order correlation function, as I will develop
in more details in Chapter 6. The authors observe qualitatively the increase
of the range of the coherence of phase when the phase-space density of the
gas is increased. This is a very interesting complement to the study of the
multi-modal shape of the cloud after a short time-of-flight developed in the
first pages of their article. However the cloud is not very deep in the degenerate
regime, as they work with atomic densities lower than 20 µm−2, a temperature
around 100 nK and an interaction parameter with a low value: g̃ ≈ 0.02. While
the effects of the in-plane trapping (ωr = 2π · 20Hz) are visible in the first part
of the study, their importance in the second part is not clear.

In the third study, reported in [163], the authors measure the momentum
distribution of a cloud, which is the Fourier transform of the first-order corre-
lation function for translational invariant systems. They compute the inverse
Fourier transform of this momentum distribution to determine the g1 function,
and perform this procedure for different temperatures.

They observe that below the critical temperature, g1(r) decays algebraically,
and above the critical temperature it decays exponentially. However, the expo-
nents of the power laws they measure are always above 0.5 and can go up to
1.5, which is not compatible with the theoretical prediction.

This discrepancy has been explained in [171], and it is based on the non-
uniform character of the cloud: while measuring the momentum distribution of
the cloud, all the regions of the cloud interfere and contribute to the quantity Np.
Over the whole cloud, the product λ2

Tns spans a large interval between 0 and
λ2
Tns,max, which then blurs the measurement of Np and then the determination

of g1(r).
By taking into account the non-uniformity of the cloud, the authors of [171]

are able to reproduce numerically the exponents measured in [163]. It is to note
that these considerations also apply to the previous experiment [162], but there,
the quantity measured was more directly linked to g1(r), and the effect of the
non-uniformity of the cloud has a much smaller effect.

These three experiments provide important information about the 2D Bose
gas and its BKT phase transition, but they do not provide a proper measurement
of g1(r) from which one could extract exponents that are directly linked to an
infinite and uniform system. Our experimental system provides uniform samples,
which is a major improvement compared to the experimental conditions of
[163].
We now need to understand whether our finite-sized sample allows us to

measure quantities that are related to the physics of infinite systems. This is
the object of the next paragraph.
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Figure 4.4: Effect of the finite size of the system. (a): The first-order correlation
function between the centre of the gas and a point at distance r is plotted
for different values of T/Tc. From dark blue to light blue, the value of this
ratio is 0.22, 0.28, 0.36, 0.52, 0.68, 0.81, 0.91, 0.96 and 0.996. Each of these
curves are fitted with a straight line, corresponding with a power law. (b):
The exponent of the fitted power laws is plotted as a function of T/Tc

for two values of L/ξ: 100 (dark circles) and 10 (light squares). The black
solid line indicates the theoretical prediction given by equation 4.56.

4.2.3 Finite-size effects

One can evaluate numerically the effect of the finite-size of the cloud by
computing the phase fluctuations due to phonons. The expression of these phase
fluctuations is given by equation 4.15 that, in the context of a 2D Bose gas in a
square box of size L with periodic boundary conditions, can be written as

g1(r,0) = ns exp


− 2

πDs
∑

jx,jy

1− cos(2π/L j · r)

j2
x + j2

y


 , (4.60)

where Ds is the superfluid phase-space density, ns is the superfluid fraction and
j = (jx, jy) is a vector of integers.
The sum in equation 4.60 diverges if the indices jx,y are allowed to be

arbitrarily large. We therefore introduce a cut-off for the momenta kx,y at 1/ξ,
where ξ is the healing length of the gas [38]. This restricts the sum on jx,y
to the integers between 1 and L/ξ. The first-order correlation g1(r,0) thus
depends only on this ratio between the size L of the system and the healing
length of the gas.

The results of this computation are presented on Fig. 4.4. On Fig. 4.4a are
shown the phase correlation g1(r) between the centre of the square and the
point on the x-axis at distance r from this centre, for different values of T/Tc.
The data are computed here for L/ξ = 100.

At very low temperatures (T = 0.22 Tc for the top curve), the phase corre-
lation decreases very slowly with the distance r, much slower than at higher
temperatures (T = Tc for the bottom curve). Both axes of the graph have a
logarithmic scale, and the function g1(r) follows a straight line when r � L/2,
indicated on the graph with dashed lines. This behaviour is the same as for the
infinite system. However, when r is close to L/2, the phase correlation deviates
from this power law.
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These lines are fitted on the range 2r/L = [0.01, 0.4], and their slopes −η
are extracted. The value of η as a function of T/Tc is shown on Fig. 4.4b. Two
values of L/ξ are tested: 100 (dark circles) and 10 (light squares). The solid line
is the prediction for the infinite system: η = 1/Ds. The exponents corresponding
to L/ξ = 10 are smaller than the ones for L/ξ = 100 because the finite-size
effects appear on smaller distances r for smaller values of L/ξ and affect the
slope of the fit.

This analysis shows that a system with a finite size reproduces well the
physics of an infinite 2D plane, as long as the ratio L/ξ is much larger than
1, and as long as the probed regions are not distant by a length close to the
full size of the system. Typically, the ratio L/ξ is on the order of 100 on our
experiment.

4.2.4 Conclusion

In this chapter I have presented the main features of the BKT transition with
the XY-model before showing how it adapts to the case of weakly interacting
bosons in two dimensions. This transition is well illustrated by the behaviour
of the first-order correlation function g1, which decays exponentially above the
critical temperature, and as a power law below it with an exponent depending
on the superfluid density of the system.

I have also discussed several recent experiments that were linked to this first-
order correlation function across the BKT transition. There are some experiments
with polaritons, whose out-of-equilibrium character makes the link with the
BKT physics difficult to draw unambiguously. There are also experiments with
atomic gases in harmonic potentials. In a first one, the coincidence between the
appearance of vortices and a change of behaviour in the g1 function has been
demonstrated without measuring this correlation function. In a second one,
the range of the phase ordering is qualitatively shown to be increased when
the degeneracy of the gas is increased, but the in-plane trapping may have
played an important role in these measurements. In the third one, the measured
momentum distribution shows the two different behaviours of g1 across the
transition. However, the fitted exponents of the power law decays cannot be
linked to a superfluid fraction due to the inhomogeneities of the system.
Finally I have shown that, with a uniform system, working with a finite-

size system did not mask the effects of the BKT physics below the critical
temperature, when working with reasonable parameters.

This analysis seems very promising for the perspective of performing experi-
ments with our experimental set-up, since it can produce large uniform Bose
gases in two dimensions. The goal of such experiments would be to properly
measure the correlation function g1(r) and, below the critical temperature, to
link the exponent of their power law decay to the exponents predicted by the
BKT theory.

The experiments that we have performed are presented and discussed in the
next two chapters.



5
PROBING PHASE COHERENCE BY MEASURING A
MOMENTUM DISTR IBUT ION

As we have seen in the previous Chapter, uniform Bose gases constitute
a very promising platform to measure the first-order correlation function of
a system described by the BKT physics, and extract proper exponents of a
power-law decay below the critical temperature. We have performed a set of
experiments inspired by reference [163] and based on the measurement of the
momentum distribution of the gas. I detail these experiments in this chapter.
However, due to several reasons that I will develop, these measurements did
not allow us to determine the first-order correlation function with a satisfying
reliability.

In a first part I explain our experimental scheme to measure the momentum
distribution of a cloud of atoms, and I present the results that we have obtained.
In a second part I detail the reasons why these measurements are not able to
provide us with a proper estimate of the first-order correlation function.

5.1 measuring the momentum distribution of our atomic
clouds

The method that we use to measure the momentum distribution of a cloud
is similar to the one used in [163]. It is explained in detail in [172], and it is a
technique that has been used in many previous cold atom experiments [145,
173–176].

It consists in letting a cloud evolve without interactions in an isotropic
harmonic potential of frequency ω and measuring its density distribution after
a duration of evolution of π/2ω, which corresponds to a quarter of period in
the harmonic potential. At this time in the evolution, the spatial distribution
of the cloud reflects exactly the initial momentum distribution, similarly to a
classical system.
More precisely, we have

ψ
(
r, t =

π

2ω

)
= ψp (p = mωr, t = 0) , (5.1)

where ψ and ψp are the wave function expressed respectively in the position and
momentum basis. Measuring the density distribution of the atoms at t = π/2ω
and at position r thus provides a direct measurement of the initial momentum
distribution of the cloud at momentum mωr.

5.1.1 Creating an harmonic potential with a magnetic field

We create a harmonic potential with a magnetic field thanks to the coils
that are used for the quadrupole trap (see Chapter 2, section 2.1.1.4). These
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coils are in an anti-Helmholtz configuration and the magnetic field they create
is a quadrupolar field:

B(x, y, z) = b′



−x/2
−y/2
z


 , (5.2)

where the origin of the reference frame is chosen here at the zero of the
quadrupole and b′ > 0 is the vertical gradient on the axis of the coils.

The atoms are in the plane z = −dQ with dQ ≈ 450 µm. In this plane, atoms
in the state F = 1,mF = −1 feel a potential energy

V (x, y) = −gFµB|B(x, y)|, (5.3)

where the Landé factor is here gF = −1/2.
The cloud is located near the axis, with |x|, |y| � dQ, so that this potential

is

V (x, y) =
µBb

′dQ

2

(
1 +

x2 + y2

4d2
Q

)1/2

(5.4)

≈ µBb
′dQ

2
+
µBb

′

16dQ
(x2 + y2). (5.5)

The gradient b′ is chosen so that the vertical force compensates gravity: b′ =
2mg/µB, with g = 9.81m/s2. The potential in the plane is then, up to a
constant term:

V (x, y) =
1

2
mω2r2, (5.6)

with
ω =

√
g

4dQ
. (5.7)

With our value of dQ, we get ω ≈ 2π · 11.7Hz.

Due to experimental imperfections, the harmonic potential that we obtain
with the quadrupole coils is not perfectly isotropic. By observing the evolution
of the atoms in this potential, we will be able to correct this anisotropy with
suitable compensation coils, as explained in the next paragraphs.

5.1.2 Evolution of atoms in the harmonic potential

The experimental sequence is illustrated on Fig. 5.1 and goes as follows.

• The cloud of atoms is prepared in the optical box potential, in the state
F = 1,mF = 0 whose energy does not depend on the magnetic field for
low fields (Fig 5.1a).

• At t = 0 we apply two consecutive microwave pulses to transfer a controlled
fraction of atoms first to the state F = 2,mF = 0 and then to the state
F = 1,mF = −1. We also remove the optical traps to keep only the
magnetic potential (Fig 5.1b).
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Figure 5.1: Scheme of the experimental sequence, as viewed in the xz plane. (a):
Initially the gas is prepared in the 2D box potential in the F = 1,mF =
0 state, and its temperature and atom number are controlled. (b): A
fraction of the atoms are transferred to the F = 1,mF = −1 state by
two consecutive microwave pulses. The box potential is switched off. (c):
The atoms expand vertically and separate due to the vertical gradient
of magnetic field. The atoms in F = 1,mF = −1 evolve in a magnetic
harmonic potential of frequency ω ≈ 2π · 10Hz. (d): A slice of atoms
(in red) is transferred in the state F = 2,mF = 0 thanks to a chirped
microwave pulse. These atoms are then imaged.

• The atoms transferred to F = 1,mF = −1 evolve in this magnetic
potential during a chosen duration. Their centre of mass does not move
vertically because the vertical magnetic gradient compensates their weight.
The atoms that are left in the state F = 1,mF = 0 are not sensitive
to the magnetic field and fall due to gravity. In a few milliseconds they
are spatially separated from the atoms in F = 1,mF = −1 (Fig 5.1c).
Both clouds expand vertically due to the high initial confinement. This
expansion occurs with a velocity of a few micrometers per millisecond.

• After the evolution in the harmonic potential, we apply a final microwave
pulse to transfer atoms in F = 2,mF = 0. Due to the vertical gradient,
this microwave pulse is resonant only with the atoms located in a given
horizontal plane. During 1ms, we sweep the frequency of the microwave
to induce adiabatic transfers for atoms located in a slice of controllable
thickness. This allows us to image only atoms that are on focus with our
camera. The thickness of this slice depends on the frequency range we
sweep. Typically this range is of a few tens of kilohertz, and the thickness
we obtain is around ten micrometers (Fig 5.1d).

• The atoms that are transferred to the state F = 2,mF = 0 are imaged
with our vertical imaging system.

We choose to let the atoms expand in the vertical direction so that the atomic
density decreases, and with it the strength of the interactions. The evolution
in the harmonic potential indeed has to be performed without interactions
in order to measure the initial momentum distribution. We do not have any
Feshbach resonance at our disposal that could lower the interaction parameter
[172]. As a consequence, the number of atoms that are imaged in the slice
is much lower than the initial atom number. The expansion in the vertical
direction is approximately linear with time, therefore the number of atoms that
we image is inversely proportional to the evolution duration. We want to take
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Figure 5.2: Size of the cloud along the x and y directions during the evolution in the
harmonic potential. (a): The density distribution of the cloud is integrated
over the two directions x and y, and both profiles are fitted with a Gaussian
function. The half widths at half-maximum in the x and y directions σx
(dark circles) and σy (light squares) are plotted as a function of the evolution
duration. The errorbars represent the confidence interval of the Gaussian fit.
The two curves display a minimum at 24.4(2) and 22.7(2)ms respectively.
(b): The same measurement are performed after having adjusted the
current in the horizontal coils. The minima of the two curves in x and y
are respectively at 23.3(1) and 23.4(1)ms.

images of the atoms after a quarter of period in the harmonic potential, which
means that the number of atoms we image is proportional to ω. We then need
to have ω as large as possible to increase the signal-to-noise ratio.
Equation 5.1 indicates that the size of the cloud after an evolution during

π/2ω is inversely proportional to ω. In order to have the best resolution in the
measurement of the momentum distribution, we thus need to have the smallest
value of ω possible.

We need to find a good compromise between the two last requirements. We
found that a value of ω around 2π · 10Hz allowed us to have a high enough
atomic signal and a region covered by the atoms large enough to be captured
by our imaging system. We will come back to the size of the cloud in a more
quantitative way in the following.

We measure the size of the slice in the x and y directions as a function of
the evolution time in the harmonic potential. An example of this measurement
is given on Fig. 5.2a, where the initial cloud is a uniform disk of radius 20 µm.
We find that the size in both directions reach a minimum, but not at the same
time. This reflects the anisotropy of the harmonic potential, which is here

ωx
ωy
− 1 ≈ 7%. (5.8)

We found that we could reduce this anisotropy by using the pair of coils in
the y direction that creates a quadrupole field for the MOT in the early stages
of the experimental sequence. We adjust the current in these coils so that the
harmonic potential becomes isotropic. On Fig. 5.2b are shown the measurements
we obtain after this optimisation. In the end, we bring the anisotropy under
1%.
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Figure 5.3: Investigating the role of the interactions. (a): A cloud in a box potential
with the shape of an equilateral triangle is prepared. Its temperature is as
low as possible, and its atom number is chosen so that the atomic signal
after a quarter of oscillation in the harmonic potential is well above our
detection noise. (b): Density distribution of this cloud after an evolution
of half a period in the harmonic potential. This distribution has the shape
of an inverted triangle, which is what one expects when the atoms evolve
with negligible interactions.

We finally need to have an indication whether the evolution in the harmonic
potential is affected by interactions or not. The density of the cloud is the largest
at t = π/(2ω), and we need to evaluate for which densities these interactions
are negligible at this time of the evolution and always work with densities on
this order of magnitude or below.
We let the atoms evolve during half a period, corresponding to a duration

π/ω, and we measure the density distribution of the atoms. If the interactions
do not have any effect on the evolution, we expect the density distribution of
the cloud to be exactly the initial one, but with an inversion symmetry with
respect to the centre of the potential. In a classical picture, every atom has
performed half a period in the potential and its position is the symmetric of
the initial one with respect to this centre.
On Fig. 5.3a is shown the initial density distribution, and on Fig. 5.3b

is shown the density distribution after an evolution during π/ω. The initial
distribution is chosen to be a equilateral triangle so that the inversion symmetry
appears more clearly. An evolution with interactions playing an important role
would not give such a density distribution1.

We measure the optical density of this cloud after an evolution of duration
π/2ω, when the density is the highest. This provides us with an indication of
the density for which the interactions are not relevant. In the following, we
make sure that the maximal density of the cloud is always on this order of
magnitude or below.

1 The last part of this thesis (chapters 7, 8 and 9) is entirely devoted to the properties of
an evolution with interactions. In particular, section 9.1.1 shows how different the density
distribution of the cloud would be if the interactions played a role in the evolution.
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5.2 investigating the width of the momentum distribution

The size and shape of the momentum distribution we measure is influenced
by several factors. Some are technical, such as the finite optical resolution
(≈ 1 µm) and the thickness of the atomic slice that we image. More interestingly,
this momentum distribution depends on the initial size of the cloud and on
its temperature. In this section I detail both factors, and I explain why these
measurements do not provide reliable estimates of the first-order correlation,
but only give general trends concerning the range of the spatial correlations.

5.2.1 Influence of the initial size of the cloud

We start with a cloud filling uniformly a disk of variable radius R. At zero
temperature, the wave function of the cloud has a uniform phase:

ψ(r) =
1√
πR2

1D(r), (5.9)

where 1D(r) is the indicator function of the disk. The wave function in the
momentum basis of this cloud is easily computed via the Fourier transform of
this spatial wave function:

ψp(p) =
1√
π|p| J1

(
R|p|
~

)
, (5.10)

where J1 is the Bessel function of the first kind and first order.
The half width at half-maximum (HWHM) of this momentum distribution
|ψp|2 is thus:

σp =
1.62~
R

, (5.11)

where the factor 1.62 is the HWHM of the function x 7→ (J1(x)/x)2. When
measuring this momentum distribution with our method, we expect the spatial
HWHM σr of the density distribution to be

σr =
1.62~
mωR

. (5.12)

We test this on the experiment: we vary the radius R from 4 to 30 µm, and
fix the temperature of the cloud as low as possible, corresponding to T/Tc < 0.2.
We measure the HWHM of its momentum distribution with a Gaussian fit. The
results are presented on Fig. 5.4, along with the zero temperature prediction.
The width of the momentum distribution increases when the radius of the
initial disk decreases, accordingly to the Heisenberg limit set by equation 5.12.
The data points are always above this zero temperature prediction, which may
be attributed to the resolution of our imaging system and to the non-zero
temperature of the cloud.

Under the assumption that the correlation function between two points
of the gas is not affected by the finite size of the system, one can decouple
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Figure 5.4: Half width at half-maximum of a cloud as a function of its initial radius
R. The cloud is initially at T/Tc < 0.2 to minimize the thermal effects as
much as possible. The errorbars represent the confidence interval of the fit.
The solid line is the zero temperature prediction given by the Heisenberg
limit (equation 5.12). The data points are consistently above this line,
which may be due to residual temperature effects, and/or to the finite
resolution of our imaging system. The rightmost point has a large errorbar
because the signal is much lower than for the other points.

the contribution of the size of the initial cloud from the contribution of this
correlation function: We assume that

〈
r′
∣∣ ρ̂1 |r〉 =

1

πR2
g∞1 (r − r′) 1D(r) 1D(r′), (5.13)

where g∞1 (r) is the correlation function of an infinite system, in which case the
correlations between two points depend only on their relative position. The
expression of the momentum distribution is then adapted from equation 4.35:

Np =
1

πR2

∫∫
d2r d2r′ exp

(
ip · (r − r′)

~

)
g∞1 (r−r′) 1D(r) 1D(r′), (5.14)

which can be written under the form:

Np =

∫
d2r exp

(
ip · r
~

)
g∞1 (r)F (r), (5.15)

where the function F is the convolution of the indicator function of the disk
with itself:

F (r) =
1

πR2

∫
d2u 1D(u) 1D(u+ r) (5.16)

=
2

π

[
arccos

( r
2R

)
− r

2R

√
1− r2

4R2

]
1D
(r

2

)
. (5.17)

The Fourier transform of the momentum distribution Np is then simply the
product between g∞1 and F .2

2 At T = 0, g∞1 = 1, and the equations 5.10 and 5.15 allow one to demonstrate the identity:

∀α ∈ R,
∫ +∞

0

du
J2
1 (u)J0(αu)

u
=

1

π

[
arccos

( |α|
2

)
− |α|

2

√
1− α2

4

]
1[−2,2](α),
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Figure 5.5: Measurement of a momentum distribution. The data presented here are
taken at T/Tc = 1.3(1). (a): Average of 100 experimental realisations
in the same conditions. The black line indicates the scale of 5 µm. (b):
We determine the centre of this momentum distribution and we display
the density as a function of the distance r to this center. The data are
fitted with a Gaussian function (solid line) to determine the HWHM of this
distribution. On this particular example we obtain a width of 1.55(12) µm.

5.2.2 Influence of the temperature of the cloud

We now fix the radius of the initial disk at R = 20 µm to investigate the effect
of temperature on the momentum distribution. The initial cloud is prepared
in this disk, and its temperature is adjusted by varying the height of the box
potential. In these conditions, we always end up with a temperature below the
critical temperature Tc. Indeed, we always load a Bose-Einstein condensate in
the 2D potential, which does not allow us to prepare a cloud with a high enough
temperature. In order to have samples with T/Tc > 1, we remove a controlled
fraction of the atoms to reduce the value of Tc, as explained in Chapter 2,
paragraph 2.3.2.2. The gas we prepare then has a ratio T/Tc from 0.2 to 1.8.

For each of these initial clouds we measure the ratio T/Tc and we measure
the HWHM of their momentum distribution by averaging the images of 100
experimental realisations. An example of the obtained density distributions
with the determination of this width is presented on Fig. 5.5. All the results
are summarized on Fig. 5.6, that shows the width σH of the momentum
distribution as a function of T/Tc. Below the critical temperature, the width
of the momentum distribution does not significantly vary. It increases when T
gets above Tc, which indicates that the range of the correlation function g∞1
gets smaller, which is in agreement with what we expect.

Due to the small amount of pixels that the atoms cover and due to the
experimental imperfections, such as the finite optical resolution, it is difficult

where 1[−2,2](x) is the indicator function of the interval [−2, 2]. This identity will not be
useful in the work presented in this thesis.
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Figure 5.6: Half width at half-maximum σH of the momentum distribution of the
cloud as a function of the ratio T/Tc. This width stays around 1.3 µm
when T < Tc. When the temperature is increased above Tc, the momentum
distribution gets wider, with a HWHM as high as 2 µm.

to determine the exact shape of these momentum distributions. Their width is
essentially the only reliable quantity that we can extract from them.

5.2.3 Determining the first-order correlation function?

The method we use to measure the momentum distribution has two main
limitations due to the presence of interactions between the atoms during their
evolution in the harmonic potential: the small spatial extent of the cloud when
we image it, and the low atom number that we image. Since the level of the
experimental noise cannot be reduced below a few percent if we want to keep
the required number of experimental realisations at a reasonable value, both of
these limitations do not allow us to have signal on a large range of momenta.
One can therefore wonder whether it is possible to reliably determine the
correlation function by measuring this momentum distribution.

The momentum distribution that we measure is the Fourier transform of
the product between g∞1 and F , as expressed in equation 5.15. Since the initial
cloud is a disk, all the functions involved have a rotational invariance, and we
have

Np ∝
∫ +∞

0
du u J0

(
iup

~

)
g∞1 (u)F (u). (5.18)

We can also include a contribution due to the resolution of the imaging system
by introducing the Fourier transform of a point-spread function (PSF) in the
integral of 5.18:

Np ∝
∫ +∞

0
du u J0

(
iup

~

)
g∞1 (u)F (u) FT [PSF ](u), (5.19)

where PSF is chosen to be a Gaussian with a width that is adapted to reproduce
the smallest widths that we measure on Fig. 5.6. This width is on the order of
1.2 µm, which is compatible with the numerical aperture of our imaging system.
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Figure 5.7: Numerical computations of the momentum distribution measurement using
our experimental method from equation 5.19 and for a disk of radius 20 µm.
(a): The correlation function is a power law r−η for η = 0.05, 0.1, 0.15, 0.2
and 0.25 from dark blue to light blue, solid lines. The five curves are
very close to one another. The dashed line is the result we obtain with
η = 1, which is not in the range theoretically allowed. The dotted black
line is the momentum distribution we would measure when η = 0 and a
perfect optical resolution. (b): The correlation function is an exponential
decay exp(−r/`) with ` = 5, 10, 15, 20, 25 µm from light green to dark
green. A correlation function with a short range gives a broad momentum
distribution. The dotted black line is the momentum distribution we would
measure when ` = 100 and a perfect optical resolution.

The density distribution n(r) that we measure on the images is then linked
to this momentum distribution via

n(r) = Np=mωr. (5.20)

One can numerically evaluate the expected density distribution n(r) with
two different shapes for the correlation function g∞1 (r): either a power law r−η,
or an exponential decay exp(−r/`), as suggested by the theoretical analysis of
the BKT transition. These computations are shown respectively on Fig. 5.7a and
5.7b, and they have been performed with parameters close to the experimental
ones: ω = 2π · 10Hz and R = 20 µm.

The curves of Fig. 5.7a indicate that the difference between power laws with
exponents η between 0 and 0.25 are very difficult to determine with a spatial
resolution on the order of 1 µm. This difference is below the experimental noise,
as the typical experimental curve shown on Fig. 5.5 illustrates. It is also difficult
to distinguish a power law behaviour from an exponential decay with a large `
by looking at the shape of the momentum distribution: the narrowest of Fig.
5.7a and 5.7b have very similar shapes, that are mostly determined by the
Fourier transform of F .

For each of the computed momentum distributions, we can determine their
HWHM σH. These quantities are reported on Fig.5.8. The exponent η for the
power law is chosen between 0 and 1.5, and the characteristic length ` of the
exponential decay is chosen between 1 and 50 µm.
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Figure 5.8: Half width at half-maximum σH of the computed momentum distributions
for a disk of radius 20 µm. (a): The function g∞1 is modelled by a power
law of exponent η. The graph shows the width of the obtained momentum
distribution as a function of η. The interesting region for the BKT transition
is for 0 ≤ η ≤ 0.25, delimited by the dashed grey line. (b): The function
g∞1 is modelled by an exponential with characteristic length `. The graph
shows the width of the obtained momentum distribution as a function of `.

One can now try to compare the experimental data with these numerical
computations. For each experimental point of Fig. 5.6, we determine on one
hand the values of the exponents η that are compatible with the measured
value of the width of the momentum distribution if it is modelled with a power
law. We take as a criterion for compatibility the error bar on the measured
width, which is the confidence interval at one standard deviation of the fit.
On the other hand we determine the values of the length ` compatible with
this measurement if it is modelled with an exponential law. The results are
presented respectively on Fig. 5.9a and Fig. 5.9b. Each vertical bar represents
the range of parameters that are compatible with the experimental data.

One can first observe that the results do not provide an accurate determination
of the parameters η or `. For example, at very low temperature, the width of
the momentum distribution is compatible with a power law with exponent η
going from 0 to 0.3 or 0.4, and with an exponential decay with a correlation
length larger than 30 µm. This shows however that the correlation of the gas
extends from one side to the other of the full system.
When the temperature is increased above Tc, the width of the momentum

distribution increases and it becomes incompatible with low values of η, and
with high values of `. We cannot say whether the correlation function g∞1 is a
power low or an exponential, but in the first case, its exponent would be larger
than 0.25, and in the second case, the coherence length would become smaller
than the full size of the system.
It is to note that the ratio T/Tc is determined independently from the

measurements of the momentum distribution. The width of the momentum
distribution changes of behaviour when this ratio is around 1, which is a direct
hint that this effect is due to the change of behaviour of the phase coherence
across the gas.
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Figure 5.9: Comparison between the experimental data presented on Fig. 5.6 and the
computations summarized on Figs. 5.7 and 5.8. (a): For each experimental
point, assuming that the correlation function is a power law, the range
of exponents η that are compatible with the measurement is indicated
as a vertical bar. (b): For each experimental point, assuming that the
correlation function is an exponential, the range of characteristic lengths `
that are compatible with the measurement is indicated as a vertical bar.

When performing the same numerical simulations with different parameters,
for example with a disk of larger radius, one finds that the ability to distinguish
a power law from an exponential decay, or to determine the parameter of any
of these functions is not improved. The shape of the momentum distribution is
mostly given by the function F describing the finite size of the system, and our
experiment is limited by the small size of the momentum distribution and the
low number of atoms that we allow ourselves to image.
This picture is slightly different if one uses a different atomic species. The

ability to tune the interactions with a Feshbach resonance could allow one to
work with a higher number of atoms, and using a lighter atom such as Lithium
increases the size of the region that the cloud occupies after the evolution in the
harmonic potential. The data reported in [163] indeed show that for a frequency
similar to the one we have, the atomic signal has a much larger range than
ours, with a factor given by the mass ratio mRb/mLi = 87/6 ≈ 15.

5.3 conclusion

In this chapter, I have presented a method to measure the momentum
distribution of a uniform 2D Bose gas and I have explained how the measurement
of such distributions can be linked to the size of the initial gas and to its first-
order correlation function. Due to the limitations of the experimental scheme,
which come from the interactions between the atoms that we need to avoid,
this method does not allow us to determine the exact shape of the first-order
correlation function - power law or exponential decay, nor to extract precise
parameters of any of these two laws if one assumes which describes the best
the system.
However, some trends can be extracted by measuring the width of the

momentum distribution. This width indeed increases when increasing the
temperature T of the gas, which indicates that the range of the first-order
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correlation function decreases. If one assumes that this correlation function is a
power law, its exponent is below 0.3 when T is below the critical temperature
Tc, as expected from the BKT theory. This exponent increases notably above
0.25 when T gets larger than Tc. If one assumes that the correlation function
is a decaying exponential, its characteristic length ` is larger than the size of
the system when T < Tc, which means that the system has a full coherence,
and it decreases to values smaller than the system size when T > Tc. This is
compatible with the BKT theory for which g1 is a power law with an exponent
smaller than 0.25 when T < Tc, and an exponential with a coherence length
diverging at the critical temperature when T > Tc.

These measurements are not accurate enough to assert stronger statements,
and this particular experimental method does not seem to be precise enough,
at least not with our experimental constraints. Alternative methods need to be
used in order to determine more precisely the first-order correlation function,
methods that are more direct and not relying on the measurement of np. This
is the subject of the next chapter.





6
MEASURING g 1 VIA ATOMIC INTERFEROMETRY

To measure the first-order correlation function with a precision better than
what has been presented in the previous chapter, one can turn to the direct
measurement of the phase correlation between points of the gas separated by a
variable distance. The correlation G 1 for a classical field ψ is defined as

G1(0, r) = 〈ψ(0)|ψ(r)〉 , (6.1)

and such a measurement of phase correlations can be achieved by interferometric
methods.

A possible scheme, illustrated for example in [177, 178], consists in creating
a copy of the gas with a pulse of Bragg beams. This copy is given a momentum
kick and moves with respect to the original cloud. A second pulse recombines
the two copies, and varying the relative phase between the two pulses allows
one to determine the contrast of the local interference between the two clouds.
The time interval ∆t between the two pulses controls the relative distance that
is probed, and one can reconstruct the phase coherence of the cloud.
This scheme could be implemented on our experimental set-up with the

Bragg beams that I presented in Chapter 3. We tried to perform such a scheme,
but we were limited by the fact that the two copies of the cloud interact while
one moves with respect to the other. Their relative phase gets a large spurious
term due to this interaction and masks the initial relative phase that we wish
to probe. This is the case as soon as the phase

φd =
Eint∆t

~
(6.2)

is not small compared to 1. In our case, the time interval ∆t has to be on the
order of several milliseconds if we want to probe distances on the order of the
system size, and Eint/h is on the order of a few hundreds of hertz. We have
φd on the order of unity, which is detrimental to measure the initial relative
phase of the two copies of the cloud. In reference [178], the atomic density, and
thus the interaction energy, is much lower than ours, which explains why this
method is well-suited in one case and not in the other.

We have nevertheless determined an experimental scheme that could allow
us to measure the phase correlation between different points of the gas. This
scheme relies on an interferometric measurement, similarly to experiments with
polaritons [159–161], and to the experiments in three-dimensional gases reported
in [48, 140]. We select two regions of the gas with the Raman beams, we remove
the atoms in the other regions and we let the atoms in the two selected regions
interfere, very similarly to Young’s slits experiment. With this scheme, we have
recently performed a set of experiments to measure the first-order correlation
function across the BKT transition.

I first develop a few elements of theory to describe how two initially separated
wave functions expand and interfere. I then describe the experimental sequence
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that we use to extract the first-order correlation function. Finally, I present a
preliminary method of analysis of the obtained data, I show the results that
we get with this method, and I discuss the various effects that we need to take
into account to increase the confidence we have in these results.

6.1 interference between two separated wave packets

I describe here how two separate wave packets freely expand and interfere,
and how we can extract information from such an interference. In the first
paragraph I present a simple one-dimensional model, and in the following one I
include a second dimension to be closer to the experimental situation.

6.1.1 Free expansion of two wave packets in one dimension

Let us consider two wave packets in a one-dimensional space, that have an
initial Gaussian shape of waist σl, and separated by a distance dl > σl. The
initial wave functions of the two wave packets, labelled as ψ1 and ψ2 are

ψ1(x, t = 0) =

√
2

πσ2
l

exp

[
−2(x− dl/2)2

σ2
l

+ iφ1

]
, (6.3)

ψ2(x, t = 0) =

√
2

πσ2
l

exp

[
−2(x+ dl/2)2

σ2
l

+ iφ2

]
. (6.4)

The two lines are centred on ±dl/2 and φ1,2 are the initial phases of the two
wave packets.

In the absence of interactions one can compute the evolution of the wave
function of each packet thanks to the propagator K of a free particle in a
one-dimensional space [179]. For example for the first packet:

ψ1(x, t) =

∫ +∞

−∞
dx′K(x, x′, t) ψ1(x′, t = 0), (6.5)

with

K(x, x′, t) =

√
m

2πi~t
exp

[
−m(x− x′)2

2i~t

]
. (6.6)

We find that the wave function of the initial line at time t is

ψ1(x, t) = A(x, t) exp


−

(
imx
~t −

2dl
σ2
l

)2

2im
~t − 8

σ2
l

+ iφ1


 , (6.7)

with the amplitude

A(x, t) =
−i

√
π

√
σ2
l
2 + 2i~t

m

exp

(
imx2

2~t
− 4d2

l

σ2
l

)
(6.8)

that is common to ψ1 and ψ2. The width σl(t) of this wave function is

σ2
l (t) = σ2

l +
16~2t2

m2σ2
l

. (6.9)
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The evolution of the full initial wave function ψ1D = (ψ1 + ψ2)/
√

2 is given
by the superposition of their individual evolutions:

ψ1D(x, t) =
A(x, t)√

2





exp


−

(
imx
~t −

2dl
σ2
l

)2

im
2~t − 2

σ2
l

+ iφ1


+ exp


−

(
imx
~t + 2dl

σ2
l

)2

im
2~t − 2

σ2
l

+ iφ2







.

(6.10)
The two parts will interfere when their width σl(t) is on the order of dl. When
this time is reached, and in the limit where x� dl, the wave function can be
written as

ψ1D(x, t) = A′(x, t) cos


 x

2~t
mdl

+
mσ4

l
8~tdl

+
φ1 − φ2

2


 , (6.11)

where

A′(x, t) =
A(x, t)√

2
exp


−

m2x2σ4
l

~2t2 + 4d2
l

2σ2
l −

imσ4
l

2~t

+ i
φ1 + φ2

2


 . (6.12)

The modulus square of this wave function gives the interference between the
two initial packets:

|ψ1D(x, t)|2 ∝ exp


− 2x2

σ2
l
8 + 2~2t2

m2σ2
l


 cos2

(
klx+

φ1 − φ2

2

)
, (6.13)

where
kl =

1

2~t
mdl

+
mσ4

l
8~tdl

(6.14)

is the wave vector of the cosine function involved here. Around x = 0, the
interference pattern is therefore well approximated by a Gaussian envelope
modulated by a squared cosine function whose phase depends on the initial
phase difference φ1 − φ2 between the two initial packets.

If the evolution time is large enough, the second term of the denominator in
equation 6.14 can be neglected. The wave vector kl is thus inversely proportional
to t and does not depend on the width σl of the initial wave functions:

kl ≈
mdl
2~t

. (6.15)

If the phase difference φ1 − φ2 fluctuates from one experimental realisation
to the other due to the non-perfect phase correlation between the two initial
lines, then the interference pattern will change from one realisation to the other.
This fluctuation is directly linked to the first-order correlation function g1 that
we want to measure. Equivalently, one can average the interference pattern over
several experimental realisations and the contrast of this averaged pattern will
reflect the fluctuation of relative phase. This is the approach that we have in
the following, and a more accurate description of the experimental situation is
developed in the next paragraph.
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6.1.2 Free expansion of two wave packets in two dimensions

Let us now consider a two-dimensional geometry. We denote as ψ(x, y) the
classical field describing a two-dimensional Bose gas on an infinite plane. We
suppose that we are able to isolate two parts from this classical field, and we
choose to isolate two lines with a Gaussian shape in the x direction with a
width σl, separated by a distance d, and infinite in the y direction. The initial
wave function of the two isolated lines is then

ψ1(x, y) = ψ(x, y) ·
√

2

πσ2
l

exp

(
−2(x− dl/2)2

σ2
l

)
, (6.16)

ψ2(x, y) = ψ(x, y) ·
√

2

πσ2
l

exp

(
−2(x+ dl/2)2

σ2
l

)
. (6.17)

We derive the subsequent evolution of these two lines thanks to the two-
dimensional propagator K(x, y, x′, y′, t), given by:

K(x, y, x′, y′, t) =
m

2πi~t
exp

[
−(x− x′)2 + (y − y′)2

2i~t/m

]
. (6.18)

We perform the calculation in the limit where the width σl is smaller than
the length on which the wave function ψ fluctuates. We obtain for ψ1 and ψ2

considered separately:

ψ1(x, y, t) = B1(x, t) I1(y, t), (6.19)
ψ2(x, y, t) = B2(x, t) I2(y, t), (6.20)

where

B1(x, t) =
−i

√
π

√
σ2
l
2 + 2i~t

m
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−(x− dl/2)2

σ2
l
2 + 2i~t
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]
, (6.21)

B2(x, t) =
−i

√
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√
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l
2 + 2i~t

m

exp
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−(x+ dl/2)2

σ2
l
2 + 2i~t
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]
, (6.22)

I1(y, t) =

∫
dy′ ψ

(
dl
2
, y′
)

exp

[
im

2~t
(y − y′)2

]
, (6.23)

I2(y, t) =

∫
dy′ ψ

(
−dl

2
, y′
)

exp

[
im

2~t
(y − y′)2

]
. (6.24)

The interference pattern is the modulus square of the sum of the two wave
functions ψ1 and ψ2:

|ψ2D(x, y, t)|2 =
1

2
|ψ1(x, y, t) + ψ2(x, y, t)|2. (6.25)

Since the lines are infinite in the y direction we choose to evaluate this interfer-
ence pattern when y = 0:

|ψ2D(x, 0, t)|2 = |ψ1(x, 0, t)|2 + |ψ2(x, 0, t)|2 + 2Re [ψ∗1(x, 0, t)ψ2(x, 0, t)] .
(6.26)
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More precisely we will be interested in this interference pattern averaged over
many experimental realisations:

〈
|ψ2D(x, 0, t)|2

〉
. In this expression there are

terms involving products of B1(x, t) and B2(x, t), which will give terms similar
to the ones obtained in the previous paragraph. There are also averaged values
of products of I1,2(0, t). We evaluate one of them separately:

〈I∗1 (0, t)I2(0, t)〉 =

∫∫
dy′dy′′

〈
ψ∗
(
dl
2
, y′
)
ψ

(
−dl

2
, y′′
)〉

exp

[
im

2~t
(y′2 − y′′2)

]
,

(6.27)
and we perform the change of variable y′ = Y − yr/2, y′′ = Y + yr/2 of unit
Jacobian:

〈I∗1 (0, t)I2(0, t)〉 =

∫∫
dY dyr

〈
ψ∗
(
dl
2
, Y − yr

2

)
ψ

(
−dl

2
, Y +

yr
2

)〉

× exp

[
im

~t
Y yr

]
. (6.28)

The averaged value does not depend on Y because the problem has a transla-
tional invariance in the y direction. The integration over Y is then straightfor-
ward:

〈I∗1 (0, t)I2(0, t)〉 =
2π~t
m

∫
dyr

〈
ψ∗
(
dl
2
,−yr

2

)
ψ

(
−dl

2
,
yr
2

)〉
δ(yr), (6.29)

which in turn gives

〈I∗1 (0, t)I2(0, t)〉 =
2π~t
m

〈
ψ∗
(
dl
2
, 0

)
ψ

(
−dl

2
, 0

)〉
(6.30)

=
2π~t
m

G1(dl), (6.31)

where G1(dl) is the correlation function of the classical field ψ at distance dl.
The other terms in the expression of

〈
|ψ2D(x, 0, t)|2

〉
are obtained similarly.

We use the same assumptions as in 6.1.1: the expansion duration t is large
enough so that the two initial lines overlap and we stay in the limit x� dl. In
the end we get:

〈
|ψ2D(x, 0, t)|2

〉
∝ exp


− 2x2

σ2
l
8 + 2~2t2

m2σ2
l


 [G1(0) +G1(dl) cos(2klx)] . (6.32)

The centre of the interference pattern is thus a Gaussian envelope with a cosine
modulation whose contrast C is

C =
G1(dl)

G1(0)
= g1(dl). (6.33)

Measuring the average value of the interference pattern between two lines
isolated from a 2D Bose gas and extracting the contrast of this pattern thus
provide an estimate of the first-order correlation function. This is what we want
to achieve with the experimental scheme that I present in the next section.
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Figure 6.1: Experimental procedure. (a) The gas is prepared in a square of side 40 µm
and its ratio T/Tc is controlled and can be measured independently. (b):
All the atoms are transferred to the state F = 2,mF = 0 with a microwave
pulse. A controlled fraction of the atoms contained in the region of two
lines is transferred back to the state F = 1,mF = 0 with the Raman
beams. We send a beam resonant with the transition F = 2→ F ′ = 3 on
the sample, and the atoms that have stayed in the state F = 2 are expelled
from the trap. The picture shows the two lines that we isolate with this
method. Their expected full-width is al and the distance between their
centre is dl. (c): The two lines expand and interfere. On all the images, the
solid black line corresponds to 10 µm.

6.2 setting up and characterising the experimental scheme

I explain here how we experimentally implement the interferometric scheme
described above: isolating two lines from an initial gas, and letting them interfere.
I characterise the expansion of these two lines and compare it to the previous
calculations.

6.2.1 The experimental sequence

The main steps of the experimental sequence are illustrated on Fig. 6.1, and
they happen as follows:

1. We start with a uniform cloud in a square-shaped optical box potential
of side L = 40 µm (Fig. 6.1a). We control the number of atoms and the
height of the box potential to fix the ratio T/Tc. We measure this ratio
independently.

2. We transfer all the atoms to the state F = 2,mF = 0 with a microwave
pulse. We then spatially transfer a controlled fraction of atoms in a chosen
region of space back to the state F = 1,mF = 0 thanks to the Raman
beams presented in Chapter 3. This region where we want the atoms to
be transferred has the shape of two uniform lines of full-width al and
their centre is separated by a distance dl that can vary from 3 to 22 µm,
as shown on Fig. 6.1b. When dl > 4 µm, we choose al ≈ 4 µm, and if
dl = 4 µm (resp. 3 µm) we reduce it to 2 µm (resp. 1 µm). An example of
the density distribution of the atoms transferred back in F = 1,mF = 0
is presented on Fig. 6.1b. The profile of the two lines in the x direction is
not exactly flat due to the optical resolution of the microscope objectives:
the edges of the two lines are smoothed on a range on the order of 1 µm.
On the picture, this profile is well fitted with a Gaussian with a full-width
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at 1/e2 of ≈ 5 µm, but this picture is taken after almost 1ms of free
expansion, and therefore does not represent well the initial profile of the
two lines.

3. At t = 0 we send a pulse of light resonant with the closed transition
F = 2 → F ′ = 3 during 40 µs in the vertical direction. The atoms that
are in F = 2 absorb several photons and receive a momentum kick in the
z direction. Each photon gives a kinetic energy Ekin to the atoms:

Ekin

kB
≈ 200 nK. (6.34)

The vertical confinement is lowered to a height U that is on the order of

U

kB
≈ 100 nK. (6.35)

This height is not strong enough to keep the atoms that have absorbed
photons. These atoms then leave the trap. If we image the atoms in F = 2
that have stayed in the trap after a few milliseconds, the signal is below
the noise of our imaging system. Shortly after t = 0, the atoms in the
two lines that have been transferred to F = 1 are thus left without any
neighbours.

4. At t = 0, we also remove the confining walls of the box potential and we
let the atoms in F = 1 expand in the vertical confinement during a few
milliseconds. The interaction parameter g̃ during this expansion is 0.08.
These two lines interfere, as shown on Fig. 6.1c.

6.2.2 Measuring the expansion of one line

The expansion of the two lines does not exactly match the description of the
previous section, mostly because of interactions. We experimentally quantify
this by preparing a single line with a full-width al = 4 µm and measuring its
full-width at 1/e2 σx as a function of the evolution time. This experiment is
performed for several numbers of atoms transferred to the state F = 1,mF = 0
by the Raman beams. This is achieved by changing the duration of the Raman
pulse. These measurements are presented on Fig. 6.2a. The expansion of the
lines is fairly linear with time and a velocity of expansion can be extracted
from these curves.
This velocity is larger when the initial density is larger, as shown on Fig.

6.2b. When extrapolating this velocity to zero density, we get vx ≈ 1mm/s,
which would be the expansion velocity of an initial Gaussian with a full-width
at 1/e2 of 4 µm.
Qualitatively, the extra energy due to the initial interactions is converted

into kinetic energy during the expansion, which explains why the asymptotic
velocity increases when increasing the initial atom number. One can try to
quantitatively take into account this initial interaction energy, and naively
estimate the asymptotic expansion velocity that we can expect:

vint =

√
16~2

m2σ2
l

+
~2g̃n

m2
, (6.36)
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Figure 6.2: Expansion of a single line of initial full-width al = 4 µm. (a): A single line
is isolated with the method presented above, with a variable number of
atoms. The width of this line is measured as a function of the time of
expansion. The expansion is faster when the initial density is larger. The
value of the initial densities span from 20 to 100 µm−2, as reported in the
legend. (b): The velocity of expansion is extracted from the graph on the
left, as a function of the initial density. The dashed line represents the
simple model 6.36 that takes into account the initial interactions.

(a) (b) (c) (d)

Figure 6.3: Interference of two lines. The two initial lines are separated by 10 µm and
have an initial full-width of 4 µm. The four images correspond respectively
to an expansion time of 1.9, 5.8, 9.8 and 13.8ms from left to right. The
solid black line corresponds to 10 µm.

where the first term is the asymptotic velocity without interactions obtained
from equation 6.9 and the second term is the contribution of the initial inter-
actions. This simple estimate is shown on Fig. 6.2b as a dashed line. It does
not describe very accurately the data points, but it provides the good order of
magnitude of the increase of velocity that we have on the experiment.

Interactions between atoms play a role only at the beginning of the expansion:
after a few milliseconds, the atomic density drops, and the expansion is a single-
particle expansion, which justifies that we will use the form of the wave function
given by the expansion presented above. The fact that the initial wave function
is not exactly a Gaussian should not be very important, and the width of
the whole cloud after a few milliseconds of expansions is well described by a
Gaussian envelope.
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Figure 6.4: The period 2π/kl of the interference fringes shown on Fig. 6.3 is measured
and plotted as a function of the duration of expansion. This period is linear
with time, as shown by the fit represented as a solid dark line. It slightly
differs from the theoretical prediction given by equation 6.14 represented
as a dashed light line.

6.2.3 Measuring the expansion of two lines

We now perform experiments with two lines isolated from the initial square.
On Fig. 6.3 are shown a few images of the expansion of two lines separated
by 10 µm. The two lines overlap after 5ms approximately (see Fig. 6.4b), and
interference fringes appear [180] with a fringe spacing that increases with time,
as shown on Fig. 6.4c and d.
We can measure the periodicity of the interference pattern as a function of

the time of evolution. These measurements can only be done when the two
lines overlap and when this periodicity can be resolved by our imaging system.
The results for the two lines separated by dl = 10 µm are shown on Fig. 6.4.
The period of the pattern is fairly linear with the duration t of the evolution,
as the limit of equation 6.14 predicts. However, the fitted slope (indicated as a
solid dark blue line) does not match the predicted one. The dashed light blue
line represents the non-interacting model given by equation 6.14. At present,
we do not have a quantitative explanation for this ≈ 25% difference.

For the following experiments, we fix the fraction of atoms transferred in the
state F = 1,mF = 0. We adjust the time of expansion to have the periodicity
of the interference pattern around 5 µm. This value of the periodicity is chosen
so that the duration of expansion is not too large, and so that it is well resolved
by our optical system.

6.3 measuring the phase ordering across the bkt transi-
tion

I detail here a still preliminary method to estimate the first-order correlation
function from the average of a finite number of experimental realisations. I then
present the results of our measurements of the phase correlation when varying
the temperature from below to above the critical temperature. Finally, I discuss
the effects that could affect these measurements.
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Figure 6.5: Determining the average contrast of the interference fringes. (a): The
interference pattern between the two lines is averaged over Nav images.
The graph shows the profile along x of the density distribution averaged
over five pixels in the y direction. On this particular example, the initial
distance between the two lines is dl = 10 µm, and Nav = 59. (b): The
contrast cf of the interference pattern is measured as a function of Nav,
for three values of dl: 4, 12 and 18 µm, respectively represented by disks,
squares and diamonds. The asymptote of each curve is determined and is
our estimate of the value of g1(dl). On these examples we already see that
the phase coherence decreases when increasing the distance dl.

6.3.1 Extracting the contrast of the averaged interference pattern

When averaging several experimental realisations of the interference between
the same two lines, we saw that the pattern we obtain along the x direction is

n(x) =
n0

2
exp

(
−x

2

σ2
e

)
[1 + g1(dl) cos(2kex)] , (6.37)

where n0 is the average density in the centre of the pattern, σe is the experimental
width of the Gaussian envelope and ke is the experimental wave vector of the
interference pattern.
An example is given on Fig. 6.5a, where is shown the profile integrated

along five pixels of the camera in the y direction. This profile is fitted with the
function

x 7→ Af exp

(
−x

2

σ2
e

)
[1 + cf cos(2kex+ φ)] , (6.38)

where φ is an adjustable phase.
Due to the finite number of experimental realisations that we can perform,

the contrast cf we measure is not exactly g1(dl). In order to better estimate
g1(dl), we vary the number of images Nav that we average, and we extract the
contrast cf(Nav) of the averaged interference pattern. This contrast is plotted
as a function of Nav on Fig. 6.5b, for the same initial gas and different values
of d. The contrast of the fringes decreases when averaging more and more
images, and we expect it to converge to g1(dl) when averaging a larger and
larger number of images.
The data points are then fitted with the function x 7→ C +A/

√
Nav, where

A and C are free parameters of the fit. The value of C that we obtain is the
limit of the contrast when Nav goes to infinity, and it is our estimate of g1(dl).
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Figure 6.6: Correlation between two independent boxes. (a): Two independent clouds
are prepared. Their relative phase is expected to uniformly sample the
interval from 0 to 2π. (b): Two lines of full-width 4 µm are isolated, one
from each cloud. (c): The two lines interfere. The density distribution
obtained with a single experimental realisation is integrated over a few
pixels in the y direction. The contrast of the interference pattern is large,
on the order of 0.4. (d): The profiles obtained from 100 experimental
realisations are averaged. The contrast of the fringes is much lower, around
0.05. (e): The measured contrast is plotted as a function of the number of
averaged images Nav (blue circles). It is fitted to obtain the correlation
between the two initial lines. The limit of contrast when Nav → ∞ is
0.002(5), which is compatible with an absence of correlations between the
two initial clouds.

We check our method, with the interference between two independent clouds
that have no phase correlation. These clouds are shown on Fig. 6.6a. The two
box potentials are first filled by a thermal cloud, and then we proceed to the
evaporation step. In these conditions, we expect that the relative phase between
the two clouds is uniformly sampled between 0 and 2π. Then, we isolate two
lines of full-width al = 4 µm, one from each cloud and let them interfere.
On Fig. 6.6b and 6.6c are shown respectively the profile of this interference

pattern along the x direction of a single image and of the average of 100 images
taken in the same conditions. The limit C of the average contrast is extracted.
It is estimated to be C = 0.002(5), which is compatible with the absence of
correlations between the two clouds.

We note that the contrast of a single image is not equal to 1, which could be
due to several effects, which are discussed in paragraph 6.3.3.

6.3.2 Results of the measurements across the critical temperature

We now come back to the interference between two lines from an initial
single square-shaped cloud of side 40 µm. We vary the ratio T/Tc of the system
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Figure 6.7: Variation of the contrast C with the distance dl between the two lines. Five
curves are presented, with T/Tc = 0.49(5) (filled circles), 0.93(3) (empty
circles), 1.01(5) (filled squares), 1.29(4) (empty squares) and 1.63(7) (filled
diamonds). The curves with low values of T/Tc are the flattest. (a): The
data points are represented in a graph with axes that have a logarithmic
scale. The dashed lines are the fits of the curves with power laws. (b):
The same data points are represented in a graph where only the y axis
has a logarithmic scale. The dashed lines are the fits of the curves with
exponential decays.

between 0.3 and 1.6. For each value of this ratio, we measure the averaged
contrast C of the interference pattern for different distances dl between the
lines. Typically, dl varies from 3 to 22 µm. The results of a few curves are shown
on Fig. 6.7.

The contrast C decreases when the distance dl between the two lines increases,
and this decrease is much faster when the ratio T/Tc is large, which shows that
the phase coherence between distant points decreases when the temperature
increases. On Fig. 6.7a, these data are presented in log-log graph, and they
are fitted with a straight line. The slope −η of this line corresponds to the
exponent of the algebraic law that fits the best the measurements.

The same data points are plotted on Fig. 6.7b in a semi-log graph, and fitted
with a straight line. This corresponds to the exponential A exp(−dl/`) that
best fits the measurements. We can extract a characteristic length ` from the
slope of this line.

The data points are too scattered for us to be able to determine whether
a power law or an exponential decay describe better any of the curves. For
example, computing the χ2 of the fits does not provide interesting information.
With such a quality of data, a larger range of probed distances dl would be
necessary to distinguish between the two behaviours. We are limited here to
dl ≥ 3 µm because of the resolution of the Raman beams that create the slits,
and to dl ≤ 22 µm to keep a good signal-to-noise ratio and to prevent edge
effects – we recall that the box has a side of 40 µm.
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Figure 6.8: Parameters of the fits presented on Fig. 6.7. (a): The exponent η of the
power-law fits shown on Fig. 6.7a are plotted as a function of T/Tc. The
prediction below the critical temperature given by equation 6.39, is shown
as a solid line. The vertical dashed represents T = Tc, and the horizontal
line indicates the value η = 0.25. (b): The characteristic length ` of the
exponential fit shown on Fig. 6.7b is plotted as a function of T/Tc. The
vertical dashed line represents T = Tc.

The parameters that we extract from the two types of fits are presented on
Fig. 6.8. The slope η of the power-law fits is plotted as a function of T/Tc on
Fig. 6.8a. When the temperature is lower than the critical temperature, the
fitted exponents are lower than 0.25, as predicted by the theory of the BKT
transition. The theoretical prediction is

η = 1/Ds, (6.39)

where Ds is the superfluid phase-space density, which decreases from +∞ to 4
when T increases from 0 to Tc. The exponent η thus goes from 0 to 0.25. This
prediction is shown as a solid line on the graph, and is in good agreement with
the data points. The leftmost point corresponds to data spanning a smaller
range of distances, which goes against a proper determination of a slope in a
logarithmic graph, and is reflected on its larger errorbar. When the temperature
is higher than Tc, a fit with a power law gives an exponent which is significantly
larger than 0.25, and increases with T/Tc. This is in good agreement with
recent numerical simulations reported in [156, 181].

These results are compatible with the ones found in the previous chapter with
the measurement of the momentum distribution, but here the measurements
are more precise when determining the best exponent η that can describe
the data. Moreover, around the critical temperature, while the width of the
momentum distribution was not varying a lot, we found that the contrast of
the interference fringes was very sensitive to the experimental fluctuations of
T/Tc. This critical temperature is determined independently by measuring the
equation of state of the gas, and the coincidence between T ≈ Tc and a high
sensitivity of the experiment with respect to small fluctuations of temperature
is a good qualitative sign that we are probing the physics of the BKT transition
around its critical point.
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The agreement between the data and the theory might however be only
fortuitous, since we did not take into account several effects, as discussed in
the next paragraph.

If we try to model the data with an exponential decay as on Fig. 6.7b, we
can extract the parameter ` corresponding to the characteristic length of the
decay. The dependence of this length with T/Tc is shown on Fig. 6.8b. For
temperatures below the critical temperature, the contrast C decreases very
slowly with the distance between the lines, and an exponential fit returns a
large value of `. The large error bars are due to the small range of distances
probed (less than a decade) and to the scattering of the data. The characteristic
lengths that we obtain are compatible with values larger than the full size of
the system, which shows that there is phase ordering across the whole cloud.

As soon as the temperature is above the critical temperature, the contrast of
the interference fringes decays faster with dl, therefore an exponential fit gives
a lower characteristic length `. The values of these lengths get smaller than
the size of the system, and go down to a few micrometers for T/Tc above 1.5,
which shows that there is no phase ordering across the system any more.

6.3.3 Discussion and effects that may affect the measurements

The preliminary analysis that I have presented above does not take into
account several effects that may change the result of the measurements. These
effects are the following ones:

1. Finite resolution of the imaging system: This resolution has two contri-
butions. First, the resolution of the microscope objective with which we
image the atoms. It may blur the interference pattern that we image, and
artificially decrease the contrast of the interference patterns. Second, the
pixellisation of the camera. The period of the interference pattern covers
a bit more than 4 pixels of the camera, which can reduce the measured
contrast of the pattern. These two effects are the same for all the data
points, since we chose the evolution time of the expansion of the lines
so that this period is always the same. With an effective point-spread
function of 1.2 µm, and a pixel size of 1.15 µm, the contrast is reduced
by approximately 20%, which can account for a part of the reduction of
contrast that we measure.

2. Relative fluctuation of the atom number in the lines : A possible effect that
could prevent us to measure very accurately the relative phase between
the two initial lines is the phase shift induced by interactions. A single line
with an atomic density n indeed has a dynamical phase φd that evolves
as

φd =
~g̃nt
m

. (6.40)

During the expansion of the lines, the density decreases in the first
milliseconds and the interaction energy gets much smaller than the kinetic
energy, therefore this dynamical phase is important only during the time
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scale tint . 1ms. The interference pattern has a position that depends on
the total relative phase φtot between the two lines:

φtot = ∆φ+ ∆φd, (6.41)

where ∆φ is the initial phase difference between the two lines, and
∆φd = ~g̃tint(n2 − n1)/m and n1,2 is the density of each of the lines.

If the relative atom number fluctuates from one experimental realisation
to the other, then the fluctuation of the position of the bright fringes
will not only depend on ∆φ, but also on ∆φd. We have measured the
atom number N1 and N2 in each of the two lines for 100 experimental
realisations in the same conditions. While the relative fluctuation of the
atom number in each of the lines is

〈N1〉
N1

=
〈N2〉
N2

≈ 10%, (6.42)

the relative fluctuation of the difference in atom numbers in the two lines
is on the order of

〈N2 −N1〉
N1 +N2

≈ 4%. (6.43)

This means that the number of the atoms that we transfer with the
Raman beams can fluctuate, but this fluctuation partly affects the two
lines in the same way. For a density below 50 µm−2, we estimate that the
induced phase fluctuation is

〈∆φd〉 < 10%, (6.44)

and if one assumes that the statistical distribution of ∆φd is Gaussian,
then one gets

〈cos(∆φd)〉 > 0.995. (6.45)

The estimation of 〈∆φd〉 is sufficiently low to have a signal dominated
by the fluctuation of ∆φ. Note that this effect is important only for the
samples with the largest density. Moreover, it does not depend on the
distance between the two lines.

3. Finite width of the lines : The lines that interfere have a width al of a few
micrometers, and the phase of the initial wave function may fluctuate on
this range. The interference pattern thus may have an averaged contrast
that does not reflect only the phase ordering at distance d, but also the
lack of phase ordering at distances lower than al. This effect should be
small when T/Tc < 1 and we indeed measure a large correlation between
the phase of distant regions. However, for the point with the largest
T/Tc for which we measure a correlation length on the order of a few
micrometers, the low values of the contrast may be reduced due to the
width of the lines, and it may even reduce the measured value of such a
correlation length. This question could be settled by performing numerical
simulations to estimate this effect.
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4. Phase fluctuation along the lines: Since the length of the two lines in the
y direction is 40 µm, the phase can fluctuate in the y direction, especially
when T > Tc. However, the expansion of the lines happens mostly in
the x direction during the probed times of evolution. The position of the
dark fringe may vary with y, and indeed there are images for which it is
the case and where the fringes look curvy. However, the contrast that we
extract is averaged over only a few pixels of the camera in the y direction.
When T/Tc is lower than 1.5, the phase fluctuation is not too important
over this distance.

5. Other effects of the interactions : As shown in the beginning of this chapter,
the way the two lines expand in the presence of initial interactions is
not completely understood. We have assumed that the contrast of the
interference pattern is not affected by these interactions for a single exper-
imental realisation. Numerical simulations could also give an answer to
the questions whether the contrast is decreased by the initial interactions,
and if this decrease depends on the distance between the two lines once
the periodicity of the pattern is fixed, as we do experimentally.

In order to check whether the physics that we are probing here depends
on the finite size of our experimental sample, we have performed the same
procedure on a square of side 28 µm, and for a ratio T/Tc around 1. For distances
dl lower than ≈ 17 µm, the contrast of the interference fringes is very similar
to the one in a square of side 40 µm. When dl & 18 µm, the contrast is much
lower than the one measured in the large square, which is probably due to the
proximity of the edges of the cloud.

6.4 conclusion

In this chapter, I have presented an experimental method to measure the
first-order correlation function of a uniform 2D Bose gas across the Berezinskii-
Kosterlitz-Thouless transition. This method relies on the interference between
distant regions of the gas that are isolated from the rest of the gas thanks to
the spatially resolved Raman beams that we have developed. The statistically-
averaged contrast of the interference pattern gives a direct estimate of the phase
correlation between these two regions.
The recent measurements that we have performed give very encouraging

preliminary results. Below the critical temperature, the phase correlation does
not decrease much with the distance, and it is compatible with a power-law
decay with an exponent below 0.25, as predicted by the theory of the BKT
transition. Around the critical temperature, this behaviour changes significantly,
and above Tc, the phase correlation decreases faster with the distance than at
low temperatures. This decay may be described by an exponential decay with
a characteristic length `. When T decreases from a high value down to Tc, `
grows to a value on the order of the size of the system.

These measurements are compatible with the results obtained with the first
method presented in the previous chapter, and they provide a direct access to
g1(dl) and give a more reliable picture of the phase ordering across the phase
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transition. However, because of the relatively small range of distances that could
be probed, we cannot determine the exact form of this first-order correlation
function, in particular to favour either a power-law decay or an exponential
one.
The analysis is still preliminary and there are still several effects that we

need to understand in order to confirm and publish these results. Among them,
the finite resolution of the imaging system and the pixellisation of the camera,
the finite width of the lines that interfere and the spurious phase fluctuation
due to atom number imbalance, and finally the role of the interactions during
the first milliseconds of the expansion of the lines.





Part III

DYNAMICAL SYMMETRY OF THE 2D BOSE GAS

Most of the results presented in this part have been published
in Saint-Jalm et al., Physical Review X 9, 021035 (2019) [182]. I
develop in slightly more details the content of this article in the
next three chapters.





7
ELEMENTS OF THEORY ON DYNAMICAL
SYMMETRIES

Symmetries are ubiquitous in physics and their study is of great help in
order to understand various physical phenomena. The most famous example is
Noether’s first theorem [1]: if a system is described by an action that is invariant
under a continuous symmetry, then this system exhibits invariant quantities.
One can apply this theorem to an action that is invariant under the trans-

formation of the special Euclidean group, composed of the translations and
rotations of space. One then deduces that the linear momentum and the angular
momentum of the system of interest are conserved. The transformations of this
group are purely geometric: they only act on the spatial coordinates of the
system.
Other invariant quantities can be found when considering more subtle sym-

metry groups with transformations that involve the time coordinate. They are
thus called dynamical symmetries. An important example is the Kepler problem
that describes a single particle of mass m in a central force field proportional
to 1/r2:

F = −mk
r2
r̂, (7.1)

where r̂ is the unitary radial vector of the particle. In that case, the action in
invariant under a rotation group acting on space and time, and the Laplace-
Runge-Lenz vector A, defined as

A = p×L−mkr̂, (7.2)

is found to be invariant, where p is the momentum of the particle and L = r×p
is its (constant) angular momentum.

In this chapter I present the theoretical tools that are useful to study the
symmetries of a physical system. These tools are also extended to map two
similar physical systems and their solutions. The dynamical symmetries of
weakly interacting bosons in 2D are then determined: first the symmetries of N
bosons without any external potential, and then in the presence of an external
harmonic trap. I also show that these two different systems can be mapped
one onto the other. Finally, I show that, in a certain regime, systems with
different atom numbers and different interaction parameters can be linked one
with another, leading to a universal dynamics of a large class of systems.

109
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7.1 symmetries of a physical system

7.1.1 The symmetry group as a Lie group

A physical system is characterised by its action S. In the case of particles
described by their coordinates q, q̇, this action is

S =

∫
dtL(q, q̇, t), (7.3)

where L is the Lagrangian of the system. In the case of a field ψ(r), the action
reads

S =

∫∫
dt dDrL

(
ψ,∇ψ, ∂ψ

∂t
, r, t

)
, (7.4)

where L is the Lagrangian density of the system and D is the dimension of
space.
The symmetries of the system are the transformations on the coordinates

(space, time, etc.) and on the variables describing the state of the system (for
example the field ψ) that leave the action invariant. Mathematically, these
transformations g are such that

gS = Sg. (7.5)

With such a definition, it is clear that these transformations form a group G.
In many cases, this group is continuous. There may be discrete symmetries in
it, such as the inversion symmetry. The properties in which we are interested
here are due to the fact that the group is continuous, and we therefore will
omit these discrete symmetries in the following.
In general, the group G is also differentiable. Such groups are called Lie

groups.
It is important to note that the transformations of G are not necessarily

restricted to geometrical transformations (also called Lie point-symmetries),
but they may include more general ones that involves time and the derivatives
of the coordinates of the system. These general transformations are called Lie-
Bäcklund transformations [183]. In that respect, this framework is an extension
of the one initially considered at the time of Lie and Noether.

The properties of this type of groups are gathered in the structure of their
underlying Lie algebra: one can determine the infinitesimal transformations
{Li}. 1 For example, in the case of the rotation symmetry in three dimensions,
the infinitesimal transformations are proportional to the components of the
angular momentum Lx, Ly, Lz.

The structure of the algebra generated by the elements {Li} is fully charac-
terised by the commutation relations [Li, Lj ], and interesting properties of the
system can be inferred from this structure. In the case of the rotation symmetry,
we have the commutation relations

[Lα, Lβ] = i~
∑

γ

εαβγLγ , (7.6)

1 It is a minimal set that generate the tangent space of G around the identity. This set can be
finite or infinite.
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for α, β, γ ∈ {1, 2, 3}, and where εαβγ is the Levi-Civita symbol. This algebra
is called SO(3) and it represents the rotations in three dimensions.

The Zassenhaus formula illustrates the importance of these commutation
relations. This formula is closely linked to the Campbell-Baker-Hausdorff for-
mula. The exponentiation of infinitesimal generators exp(iLj) provide explicit
elements of the group G, and the Zassenhaus formula allows to determine the
exponential of the sum of two generators:

exp(iL1 + iL2) = exp(iL1) ∗ exp(iL2) ∗ exp

(
[L1, L2]

2

)

∗ exp

(
− i

6
(2[L2, [L1, L2]] + [L1, [L1, L2]])

)
∗ · · ·

(7.7)

where ∗ denotes the composition of elements of G.

Another example of symmetry is found in the Kepler problem. It has a
dynamical symmetry group with a Lie algebra that has the structure of the
rotation group in four dimensions SO(4) when it is restricted to the orbits with
the same negative energy [6].

This symmetry group can be used to derive invariant quantities of the system
[5] by applying Noether’s first theorem. Again, this statement is broader than
the original theorem by Noether because the class of transformations that can
be used is larger. For example, the dynamical symmetry group of the Kepler
problem provides the invariance of the Laplace-Runge-Lenz vector, even if it
was for a long time considered as not being grasped by Noether’s theorem [184,
185].

Note that Noether’s theorem does not always provide interesting conserved
quantities and can sometimes lead to trivial ones. For example it is the case for
the symmetries that will be presented in this chapter.

7.1.2 Linking different solutions of a differential equation

The dynamics of a system can be derived from its action to obtain an
Euler-Lagrange equation:

∂L
∂q
− d

dt

∂L
∂q̇

= 0, (7.8)

or in the case of a field ψ:

∂L
∂ψ
−
∑

µ

∂

∂xµ

∂L

∂

(
∂ψ

∂xµ

) = 0, (7.9)

where the coordinates {xµ} include the spatial and temporal coordinates. In the
following, I will refer to the field version of the Euler-Lagrange equation 7.9 since
it is the one which is developed in section 7.2 and investigated experimentally
in Chapter 8.
The elements of the symmetry group G also leave this equation invariant

since it is directly obtained from the action of the system. We can now slightly
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change the point of view that we have on the transformations of the group G
and let them act on a solution of the Euler-Lagrange equation.

If the field ψ(r, t) is a solution of the Euler-Lagrange equation 7.9 and g is a
transformation that leaves the action invariant, then gψ is also a solution of
the Euler-Lagrange equation.

This property explains the denomination of the Lie-Bäcklund transformations.
In the field of non-linear differential equations, a Bäcklund transformation is a
transformation that allows one to construct from the solution of a differential
equation another solution of the same equation [186]. Here the Bäcklund
transformations have the structure of the Lie group G, hence the use of Lie’s
name.

A step further can be made to get closer to the experimental situations
that are discussed in Chapter 8. Let us consider two wave functions at t = 0:
ψ1(r, 0) and ψ2(r, 0), along with their derivatives ∂ψ1,2

∂t

∣∣∣
t=0

and ∇ψ1,2(t = 0).
These two situations correspond to two initial conditions of the Euler-Lagrange
equation 7.9. Suppose that there exists a Lie-Bäcklund transformation g of this
equation that maps the first situation to the second one at t = 0:





r

t

ψ1(r, 0)
∂ψ1

∂t

∣∣∣∣
t=0

∇ψ1(t = 0)

g−→





r′

t′

ψ2(r′, 0)
∂ψ2

∂t′

∣∣∣∣
t′=0

∇′ψ2(t′ = 0)

(7.10)

where the notation ∇′ denotes the gradient with respect to the coordinate r′.
Then the subsequent evolutions of ψ1 and ψ2, which are fully determined by

these initial conditions and the Euler-Lagrange equation, will be linked by the
Lie-Bäcklund transformation g for all times: ψ1(r, t)

g−→ ψ2(r′, t′)

7.1.3 Linking solutions of two differential equations

The previous paragraph can be generalized to the solutions of two differential
equations [4]:

P
[
ψ,
∂ψ

∂t
,∇ψ, r, t

]
= 0, (7.11)

Q
[
ψ,
∂ψ

∂t
,∇ψ, r, t

]
= 0. (7.12)

There can exist a transformation on the coordinates r, t and the variables
ψ, ∂ψ∂t ,∇ψ such that any solution ψ1(r, t) of equation 7.11 is transformed into
ψ2(r′, t′), a solution of equation 7.12.
In that case, the solution spaces of the two differential equations have the

same algebraic structure (e.g. the same Lie group and the same Lie algebra).
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Such a relationship between two differential equations is stronger than if
they only have the same Lie algebra, for example. Indeed, two equations with
the same Lie algebra are only locally similar, whereas two equations whose
solutions are linked by a transformation are globally similar.

The transformations that link the solutions of equations 7.11 and 7.12 are also
called Bäcklund transformations. When the transformations link a differential
equation with itself, such as in equation 7.10, they are called auto-Bäcklund or
invariant Bäcklund transformations.

7.2 dynamical symmetry of weakly interacting bosons in
2d

In this section I present the dynamical symmetry group of the Gross-
Pitaevskii equation for bosons in two dimensions, first without a trap and
then with a harmonic trap. The solutions in the two cases are then linked by
Bäcklund transformations. Finally, when a gas is in the hydrodynamic regime,
the solutions of equations with different atoms numbers are also linked.

7.2.1 Symmetry group of the free Gross-Pitaevskii equation

7.2.1.1 The Gross-Pitaevskii equation and its associated action

We have seen in Chapter 4 that a ensemble of N weakly interacting bosons
in two dimensions can be described by a classical field ψ(r, t) whose evolution
is given by the Gross-Pitaevskii equation:

i~
∂ψ

∂t
+

~2

2m
∇2ψ − Vext(r)ψ − ~2

m
g̃N |ψ|2ψ = 0, (7.13)

where Vext is an external potential, and g̃ is the dimensionless interaction
parameter.
This equation is associated with the following action:

S =

∫∫
dt d2r N

[
−i~ψ∗

∂ψ

∂t
+

~2

2m
|∇ψ|2 + Vext(r)|ψ|2 +

~2

2m
g̃N |ψ|4

]
,

(7.14)
which is the time integral of a Lagrangian density.

Note that this description with a classical field is valid in two dimensions
only if the interaction parameter g̃ is small compared to 1 [187]. If it is not the
case, a quantum anomaly may appear [188, 189] and the system will not have
the same symmetry group.

7.2.1.2 Lie-Bäcklund transformations of the free GPE

In this section we are interested in the symmetry group of a system with no
external potential, which means that we consider the Gross-Pitaevskii equation:

i~
∂ψ

∂t
+

~2

2m
∇2ψ − ~2

m
g̃N |ψ|2ψ = 0, (7.15)
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which is associated with the action

S =

∫∫
dt d2r N

[
−i~ψ∗

∂ψ

∂t
+

~2

2m
|∇ψ|2 +

~2

2m
g̃N |ψ|4

]
. (7.16)

The case with an external potential will be discussed in section 7.2.2, in the
particular case where this external potential is harmonic.

We now determine the transformations that keep the action of free particles
7.16, and therefore the free GPE given by equation 7.15, invariant, in other
words the Lie-Bäcklund transformations of the system. A full derivation can be
found in [190] for non interacting particles, and the reasoning can be adapted
easily to our case. I present here the most important lines and some tedious
justifications are done in Appendix D.

Transformations that trivially leave the action invariant are all the trans-
formations of the Galilean group: the translations and rotations of space, the
uniform motions (r −→ r−vt for any constant velocity v), and all the composi-
tions of these transformations. It is not very surprising, as S is a non-relativistic
action that describe a physical system which has to respect Galilean invariance.
These transformations are not the ones in which we are interested here.

The first transformation that we consider is simply a time translation without
changing the space coordinates nor the wave function:





r

t

ψ(r)

−→





r′ = r

t′ = t+ β

ψ′(r′) = ψ(r).

(7.17)

The action is obviously invariant under this transformation, and Noether’s first
theorem applied to it guarantees the conservation of the total energy Etot of
the system:

Etot =

∫∫
d2r N

[
~2

2m
|∇ψ|2 +

~2

2m
g̃N |ψ|4

]
. (7.18)

More interestingly, the action is kept invariant by any dilation defined for
any parameter λ > 0 as





r

t

ψ(r)

−→





r′ = r/λ

t′ = t/λ2

ψ′(r′) = λψ(r).

(7.19)

The verification of this statement is straightforward. This property is true
because the interaction parameter g̃ is dimensionless, and therefore there is no
characteristic length associated with the interaction between the particles.
The system is invariant under any dilation, it is therefore scale invariant.

This is not the case for interacting bosons described by the GPE in one or three
dimensions where the interaction parameter has a dimension and leads to the
definition of a characteristic length scale.
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Finally, another transformation that keeps the action invariant is the so-called
expansion, defined for any parameter γ > 0 as





r

t

ψ(r)

−→





r′ =
r

γt+ 1

t′ =
t

γt+ 1

ψ′(r′) = fγ,1(r, t)ψ(r),

(7.20)

with

fγ,1(r, t) = (γt+ 1) exp

(
− im

2~
γr2

γt+ 1

)
. (7.21)

A proof of this statement is given in Appendix D section D.1.
Unlike the previous transformation, this one mixes space and time in the

transformation of space, which makes it a non-purely geometric dynamical
symmetry.

It can be shown (e.g. [190]) that all the transformations that leave the action
and the GPE invariant are a composition of these three transformations and of
the Galilean transformations.

The three above transformations can be composed one with another, which
gives the following general transformation, denoted as Tα,β,γ,δ:

Tα,β,γ,δ :





r

t

ψ(r)

−→





r′ =
r

γt+ δ

t′ =
αt+ β

γt+ δ

ψ′(r′) = fγ,δ(r, t)ψ(r),

(7.22)

where

fγ,δ(r, t) = (γt+ δ) exp

(
− im

2~
γr2

γt+ δ

)
, (7.23)

and the four parameters α, β, γ and δ are not independent and fulfil the
constraint αδ − βγ = 1.
When applying the transformation Tα,β,γ,δ right after the transformation
Tα′,β′,γ′,δ′ , one can show that it amounts to the transformation Tα′′,β′′,γ′′,δ′′ ,
where the parameters α′′, β′′, γ′′, δ′′ are defined by the matrix equation

(
α′′ β′′

γ′′ δ′′

)
=

(
α β

γ δ

)
×
(
α′ β′

γ′ δ′

)
. (7.24)

The set of transformations that one can apply on time is therefore homomorphic
to the matrix group

SL(2,R) =

{(
α β

γ δ

)
∈M2(R)

∣∣∣∣∣αδ − βγ = 1

}
, (7.25)

and the dynamical symmetry group of the system is also homomorphic to this
group.
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7.2.1.3 Lie algebra of the free GPE

We can now determine the Lie algebra of this dynamical symmetry group.
One can either look up the mathematical literature to find the Lie algebra of
SL(2,R), for example [191], or fully perform the calculations from the expression
of the Lie-Bäcklund transformations. For the reader to get an better insight
of the structure of the dynamical symmetry group, I present here the full
calculations.

We first determine the infinitesimal transformations associated with the
three transformations 7.19, 7.20 and 7.17. When applying an infinitesimal
transformation of small parameter ε� 1, the wave function ψ is transformed
into ψ − iεLψ, where L is the generator of the transformation.

(a) We apply transformation 7.17 to the wave function ψ(r, t) with β = εt0,
where ε � 1 and t0 is an arbitrary time scale that can be chosen as a
typical time scale of the evolution of the wave function. The wave function
ψ(r, t) is transformed into

ψ(r, t) + εt0
∂ψ

∂t
, (7.26)

and the associated generator is simply

La = it0
∂

∂t
. (7.27)

(b) We apply transformation 7.19 to the wave function ψ(r, t) with λ = 1 + ε
and ε� 1. It is transformed into

ψ(r, t) + ε

(
1 + r ·∇+ 2t

∂

∂t

)
ψ(r, t), (7.28)

therefore the associated generator is

Lb = i

(
1 + r ·∇+ 2t

∂

∂t

)
. (7.29)

(c) We apply transformation 7.20 to the wave function ψ(r, t) with γ = ε/t0,
where t0 is an arbitrary time scale and ε� 1. It is transformed into

ψ(r, t) + ε

(
t

t0
+

t

t0
r ·∇+

t2

t0

∂

∂t
− i

mr2

2~t0

)
ψ(r, t), (7.30)

and the associated generator is

Lc = i
t

t0

(
1 + r ·∇+ t

∂

∂t

)
+
mr2

2~t0
. (7.31)

The three generators that we obtained are not the most convenient ones to
recognise the structure of the Lie algebra. We define the three new generators:

L1 = Lb/2,

L2 = (Lc − La)/2,
L3 = (Lc + La)/2.

(7.32)
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The commutation relations between these three generators are then straight-
forwardly calculated, and we obtain:

[L1, L2] = iL3, (7.33)
[L2, L3] = −iL1, (7.34)
[L3, L1] = −iL2. (7.35)

This algebra has the structure of SO(2, 1). The commutation relations are
close to the ones of the rotation group SO(3), except that there are two minus
signs and one plus sign, hence the indication (2, 1) in the name of the group.

7.2.2 Symmetry group with a harmonic trap

Let us now turn to the case of a gas trapped in a harmonic potential. The
action of the system is now

S =

∫∫
dt d2r N

[
−i~ψ∗

∂ψ

∂t
+

~2

2m
|∇ψ|2 +

~2

2m
g̃N |ψ|4 +

mω2r2

2
|ψ|2

]
,

(7.36)
where ω is the frequency of the harmonic potential. The GPE also gets an
additional term:

i~
∂ψ

∂t
+

~2

2m
∇2ψ − ~2

m
g̃N |ψ|2ψ − 1

2
mω2r2ψ = 0. (7.37)

7.2.2.1 Lie-Bäcklund transformations

The transformations 7.19 and 7.20 do not conserve this action, in particular
the system is not scale invariant any more. However, the system still has Lie-
Bäcklund transformations outside the Galilean group [192]. The most general
transformation is given by





r

t

ψ(r)

−→





r′ = r/λ(t)

t′ = τ(t)

ψ′(r′) = f(r, t)ψ(r),

(7.38)

where

λ(t) =
[
(α sin(ωt) + β cos(ωt))2 + (γ sin(ωt) + δ cos(ωt))2

]1/2
, (7.39)

ωτ(t) = arctan

(
α tan(ωt) + β

γ tan(ωt) + δ

)
+ π

⌊
ωt

π
− 1

π
arctan

(
− δ
γ

)⌋
, (7.40)

f(r, t) = λ(t) exp

(
− imλ̇r2

2~λ

)
. (7.41)

In 7.40, the second term makes sure that the function is continuous, and bxc
is the largest integer that is smaller than x. In the expression of f(r, t), the
notation λ̇ represents dλ

dt . The four real parameters α, β, γ, δ are not independent
and fulfil the condition αδ − βγ = 1. A proof of this general transformation is
given in Appendix D.2.
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It is to note that equation 7.40 can be written in the form

η′ =
αη + β

γη + δ
(7.42)

with η = tan(ωt) and η′ = tan(ωτ(t)). This form is reminiscent of the one of
the time transformation in equation 7.22. It hints at the fact that the structure
of the Lie group of the harmonically trapped gas is the same as the one of the
free gas.

7.2.2.2 Lie algebra

We follow the method used in 7.2.1.3. In total, the symmetry group of the
equation has eight independent generators [192], but we are interested here in
three of them. They stem from the transformations defined by the following
parameters:

(a) α = 1/δ = exp(−s1/2), β = γ = 0,

(b) α = δ = cosh(s2/2), β = γ = − sinh(s2/2),

(c) α = δ = cos(s3/2), β = −γ = sin(s3/2).

The three generators associated with these transformations are

L1 =
i

2
cos(2ωt)(1 + r ·∇)− 1

2ω
sin(2ωt)

(
mω2r2

~
− i

∂

∂t

)
, (7.43)

L2 = − 1

2ω
cos(2ωt)

(
mω2r2

~
− i

∂

∂t

)
− i

2
sin(2ωt)(1 + r ·∇), (7.44)

L3 = − i

2ω

∂

∂t
. (7.45)

The commutation relations between these three generators are tedious but easy
to determine, and one gets

[L1, L2] = iL3, (7.46)
[L2, L3] = −iL1, (7.47)
[L3, L1] = −iL2, (7.48)

which are the exact same ones as the commutation relations found in 7.2.1.3.

These commutation relations have an important consequence here, as stated
in [193]. Consider the operator mω2r2/2 associated with the potential energy
per particle of the system:

1

2
mω2r2 = −~ω (L3 + cos(2ωt)L2 + sin(2ωt)L1) . (7.49)

The potential energy per particle is

Epot

N
=

〈
1

2
mω2r2

〉
, (7.50)
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where the notation 〈A〉 applied to an operator A represents
∫

d2r ψ∗Aψ. In a
Heisenberg-like picture, the derivative of the potential energy per particle of
the system is obtained via

∂

∂t

〈
1

2
mω2r2

〉
=

〈[
∂

∂t
,
1

2
mω2r2

]〉
. (7.51)

Therefore we get

∂

∂t

〈
1

2
mω2r2

〉
= −2~ω2i 〈[L3, L3 + cos(2ωt)L2 + sin(2ωt)L1]〉 (7.52)

= 2~ω2 〈cos(2ωt)L1 − sin(2ωt)L2〉 (7.53)

= i~ω2 〈1 +∇ · r〉 . (7.54)

The second derivative of the potential energy per particle is then

∂2

∂t2

〈
1

2
mω2r2

〉
= 4~ω3i 〈[L3, cos(2ωt)L1 − sin(2ωt)L2]〉 (7.55)

= −4ω2

〈
1

2
mω2r2

〉
+ 2ω2

〈
i~
∂

∂t

〉
, (7.56)

and the last term is equal to the total energy per particle of the system Etot/N ,
which is conserved, therefore

∂2Epot

∂t2
+ (2ω)2Epot = 2ω2Etot. (7.57)

This solution of this equation is

Epot(t) =
1

2
Etot +

1

2
∆E cos(2ωt) +

1

2ω
Ėpot(0) sin(2ωt), (7.58)

where ∆E = 2Epot(0)− Etot.
The potential energy thus oscillates sinusoidally at twice the frequency

ω of the harmonic potential. This behaviour is a direct consequence of the
algebraic structure of the differential operators involved in the problem, as
the demonstration shows. Such a property also holds for other scale invariant
systems, since it depends only on the algebraic structure of the operators and
not on the detail of their expression. It has thus already been observed in [194]
for an elongated cloud of bosons effectively described by a two-dimensional scale
invariant equation, and in [195] for a two-dimensional Fermi gas at unitarity.

7.2.3 Link between different trap frequencies

The Gross-Pitaevskii equations of a free cloud (equation 7.15) and of a
harmonically trapped one (equation 7.37) can be linked via a Bäcklund transfor-
mation. It is therefore not a surprise if we find that their respective Lie groups
have the same algebraic structure.
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The Bäcklund transformation, denoted as T0,ω, is defined by the following
expressions: if ψ0(r, t) is a solution of the free GPE, then the function

ψω(r′, t′) = f0,ω(r, t)ψ0(r, t), (7.59)

is a solution of the GPE with a harmonic trap of frequency ω, with

r′ = r/λ0,ω(t), (7.60)
tan
(
ωt′
)

= ωt, (7.61)

λ0,ω(t) =
(
1 + ω2t2

)1/2
, (7.62)

f0,ω(r, t) = λ0,ω(t) exp

(
− imλ̇0,ωr

2

2~λ0,ω

)
, (7.63)

where in the last expression, λ̇0,ω = dλ0,ω/dt. A proof of this statement is given
in the Appendix D.2.

One can also extend these relations to link the solution ψω1 of the GPE with
a harmonic trap of frequency ω1 to a solution ψω2 of the GPE with a harmonic
trap of frequency ω2. It is easily done by using twice the formulas 7.59 to
7.63 and using an intermediate function ψ0 that is solution of the free GPE. It
amounts to applying the transformation T0,ω2 ◦ T −1

0,ω1
:

ψω2(r′, t′) = fω1,ω2(r, t)ψω1(r, t), (7.64)

with

r′ = r/λω1,ω2(t), (7.65)

tan
(
ω2t
′) =

ω2

ω1
tan(ω1t), (7.66)

λω1,ω2(t) =

[(
ω2

ω1

)2

sin2(ω1t) + cos2(ω1t)

]1/2

, (7.67)

fω1,ω2(r, t) = λω1,ω2(t) exp

(
− imλ̇ω1,ω2r

2

2~λω1,ω2

)
. (7.68)

It is not surprising either that two GPEs with different trap frequencies have
the same Lie group, but it is much more surprising that their solutions can be
mapped one onto the other in this way.

This analysis is valid only in two dimensions, however there are similar results
for three dimensional gases [196].

The properties of these families of equations can be extended to Gross-
Pitaevskii equations where the frequency of the harmonic trap can vary with
time, similarly to what is derived in [196–200].
Let ψ(r, t) be a solution of the Gross-Pitaevskii equation with a harmonic

trap of frequency ω (equation 7.37). Then we can construct a solution ψω̃ of
the equation

i~
∂ψ

∂t
+

~2

2m
∇2ψ − ~2

m
g̃N |ψ|2ψ − 1

2
mω̃(t)2r2ψ = 0, (7.69)
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where ω̃(t) is a smooth function of time. We set

ψω̃(r′, t′) = fω̃(r, t)ψ(r, t), (7.70)

where the new coordinates are

r′ =
r

λω̃(t)
, (7.71)

t′ =
∫ t

0

du

λ2
ω̃(u)

, (7.72)

with

fω̃(r, t) = λω̃ exp

(
− imλ̇ω̃r

2

2~λω̃

)
, (7.73)

and λω̃ is a solution of the differential equation

λ̈ =
ω̃2(t)

λ3
− ω2λ (7.74)

with any initial conditions. A proof of this statement is given in Appendix D.2.
Note that the case where ω̃(t) is constant has been treated above, where we

had chosen the initial conditions λω̃(0) = 1 and λ̇ω̃(0) = 0.

The differential equation 7.74 is called a Ermakov equation and it is at
the origin of many developments about the dynamical symmetries of physical
systems [201–204].
We will not investigate further this last property of the Gross-Pitaevskii

equations, in particular it will not be tested experimentally in the next Chapter.

7.3 more symmetries in the hydrodynamic regime

In the previous section we could link the solutions of Gross-Pitaevskii equa-
tions with different trap frequencies, while keeping the same atom number and
the same interaction parameter. We focus here on these two other parameters
of the GPE that can experimentally be varied: N and g̃. It is possible to link
the solutions of equations with different values of these parameters, but only in
a particular regime, as discussed in the following.
First we note that the two parameters N and g̃ appear in the GPE only as

their product. Changing one is therefore equivalent to changing the other.

We then translate the Gross-Pitaevskii equation in terms of density field
n(r, t) and velocity field v(r, t), with

n(r, t) = N |ψ(r, t)|2, (7.75)

v(r, t) =
~
m

Im(ψ∗∇ψ)

|ψ(r, t)|2 . (7.76)
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We get two equations, one for the density field and one for the velocity field.
These two equations on real fields are equivalent to the GPE that acts on a
complex field:

∂n

∂t
+∇ · (nv) = 0, (7.77)

∂v

∂t
+∇

(
1

2
mv2 +

~2

m
g̃n+

1

2
mω2r2 + P (n)

)
= 0, (7.78)

where

P (n) =
~2

2m

∇2√n√
n

(7.79)

is the quantum pressure term. This term describes a pressure that arises from
the curvature of the density field. In the case of uniform gases, this pressure is
non zero only near the edges of the gas, where the density goes from zero to
the density of the bulk. The order of magnitude of this quantum pressure term
is then ~2/2mξ2 where ξ is the typical size on which the density varies near the
edge. The length ξ is called the healing length of the gas and it is defined as

ξ =

√
~2N

2mEint
, (7.80)

where Eint is the interaction energy of the gas, given by

Eint =
~2N2

2m
g̃

∫
d2r |ψ(r)|4. (7.81)

In the case where the density of the cloud varies on length scales given by the
typical size L of the gas, |ψ| ≈ 1/L, the interaction energy and the healing
length have the following orders of magnitude

Eint ≈
~2g̃N2

2mL2
, (7.82)

ξ ≈ L√
g̃N

. (7.83)

In the hydrodynamic regime (or Thomas-Fermi regime), the healing length is
much smaller than the typical size L of the gas, which means that g̃N � 1. The
density and velocity fields vary on length scales comparable with L. Then the
ratio between the interaction term and the quantum pressure term in equation
7.78 is ∣∣∣∇

(
~2g̃n
m

)∣∣∣
|∇P (n)| ≈ g̃nL

2 ≈ g̃N. (7.84)

The quantum pressure term can therefore be neglected compared to the inter-
action term.

The equations 7.77 and 7.78 then simplify into

∂n

∂t
+∇ · (nv) = 0, (7.85)

∂v

∂t
+∇

(
1

2
mv2 +

~2

m
g̃n+

1

2
mω2r2

)
= 0. (7.86)
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These two equations are invariant under the transformations presented in
7.2.2.1 when they are translated to act on n and v, and solutions of this equation
can also be mapped onto the solutions of an equation with a different trap
frequency as explained in 7.2.3. Thanks to the simplification of the quantum
pressure term, it is now possible to map a solution of this equation onto a
solution of an equation with a different product g̃N .
Let n1(r, t), v1(r, t) be a solution of equations 7.85 and 7.86, where the

interaction parameter and the atom number have the values g̃1 and N1. Then
we can define a solution of equations 7.85 and 7.86 with parameters g̃2 and N2

by setting

n2(r′, t′) =
N2

N1
n1(r, t), (7.87)

v2(r′, t′) = µλµ(t)v1(r, t)− µλ̇µ(t)r, (7.88)

where µ2 = g̃2N2/g̃1N1, and the new coordinates are

r′ =
r

λµ(t)
, (7.89)

tan
(
ωt′
)

=
1

µ
tan(ωt), (7.90)

and the scaling function λµ is

λµ(t) =

[
cos2(ωt) +

1

µ2
sin2(ωt)

]1/2

. (7.91)

A proof of this statement is given in Appendix D.3.

In this particular regime, thanks to the previous scaling laws that also apply
here, the solutions of the Gross-Pitaevskii equation with parameters ω, g̃ and
N can therefore be linked to the solutions of a Gross-Pitaevskii equation with
any other parameters ω′, g̃′ and N ′, as long as g̃′N ′ � 1. More precisely, if
n1(r, t) and v1(r, t) are solutions of the hydrodynamic equations 7.85 and 7.86
with parameters ω1 and g̃1N1, then n2(r′, t′) and v1(r, t), as defined below, are
solutions of these equations with parameters ω2 = ζω1 and g̃2N2 = µ2g̃1N1:

n2(r′, t′) =
N2

N1
λζ,µ(t)n1(r, t), (7.92)

v2(r′, t′) = µλζ,µ(t)v1(r, t)− µλ̇ζ,µ(t)r, (7.93)

with

r′ =
r

λζ,µ(t)
, (7.94)

tan
(
ω2t
′) =

ζ

µ

α tan(ω1t) + β

γ tan(ω1t) + δ
, (7.95)

λζ,µ(t) =

[
ζ2

µ2
(α sin(ω1t) + β cos(ω1t))

2 + (γ sin(ω1t) + δ cos(ω1t))
2

]1/2

,

(7.96)

and αδ − βγ = 1.
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7.4 conclusion

In this chapter I have detailed some mathematical tools to study the contin-
uous dynamical symmetries of a physical system. In particular, the algebraic
structure of its Lie group is very important to infer consequences on the dy-
namics of this system. Moreover, if there exists a link that maps a physical
system onto another, many properties of the first one can be transported to
the other one, notably the Lie group.
I have then applied this formalism on two different systems: N weakly

interacting, free bosons in two dimensions (interaction parameter g̃) and the
N weakly interacting, harmonically trapped bosons in two dimensions (same
interaction parameter g̃). The first one displays the property of scale-invariance
and its Lie group has the structure of SO(2,1). The second one has a more
subtle symmetry group with the same algebraic structure. It strikingly leads to
a periodic evolution of the potential energy of the system at twice the frequency
of the harmonic trap. These two systems are in fact linked by a map that
can also be extended to systems with a time-dependent trap frequency. The
existence of such a map ensures that all these systems are captured by the
same physics.
Finally, I have shown that in the hydrodynamic regime, two systems with

different atom numbers and interacting with different interaction parameters
can also be mapped one onto the other. In this particular regime, the dynamics
of the system is basically the same, regardless of the number of particles, the
interaction parameter, the size of the system and the (possibly time-dependent)
frequency of the external harmonic potential.



8
AN EXPERIMENTAL APPROACH OF DYNAMICAL
SYMMETRIES

The goal of this chapter is to experimentally probe the dynamical symmetries
presented in the previous Chapter. We are indeed able to produce a cloud of
weakly interacting bosons in two dimensions with various initial conditions,
such as its initial size and atom number. When the temperature of this cloud is
much lower than the critical temperature of the BKT transition, its dynamics
is well-captured by a Gross-Pitaevskii equation [111]. Moreover, we can put
the atoms either in a flat potential, or in an isotropic harmonic potential, thus
realizing the two types of evolutions described in Chapter 7.

I first describe the experimental sequence by detailing its different steps and
by introducing the observables that are accessible and that we use in this study.
I also present the main calibrations of the parameters of the experiment.

Then I detail the experimental investigation of the symmetries of the system
in the case where the atom number and the interaction parameter are fixed,
corresponding to the sections 7.2.1, 7.2.2 and 7.2.3.
Finally I present the experimental study corresponding to the scaling laws

explained in section 7.3, where the atom number and the interaction parameter
of the system may vary.

8.1 experimental sequence

8.1.1 The course of events

We use two different experimental sequences, according to the potential in
which we want the atoms to evolve: a flat potential or a harmonic potential. I
start by describing the former, which is simpler.

8.1.1.1 Evolution in a flat potential

As in Chapters 5 and 6, we start with a cloud of atoms at equilibrium
in a box-like potential of arbitrary shape. There are typically several tens of
thousands of atoms and we choose their temperature T much lower than the
critical temperature Tc. We extract the ratio T/Tc with the method presented
in 2.3.2.3 and we estimate it to be below 0.3, which correspond to a PSD & 30.
We cannot have a better estimate because our method is not reliable any more
for such high PSDs.
The atoms are initially in the ground state S1/2, in the hyperfine state

F = 1,mF = 0. At t = 0 the confining walls of the box potential are removed
and the cloud evolves during a variable duration in the potential given by the
vertical confinement. The spatial expansion of the cloud is small compared to
the size of the light beams creating this vertical confinement. The corrugations
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of this potential are small enough compared to the chemical potential so that we
can safely consider that the atoms evolve in a flat potential in two dimensions.

At time t we take an absorption image of the cloud: a controlled fraction of
the atoms is transferred to the state F = 2,mF = 0 and imaged.

The atom number is fixed by the loading process in the initial box-potential.
We do not try to control this value. On the contrary, the interaction parameter
g̃ can be chosen in a large range of values (from 0.07 to 0.16 approximately)
by changing the intensity of the beams creating the vertical potential. Indeed,
equations 2.14 and 2.5 indicate respectively how the parameter g̃ depends on
the vertical frequency ωz and how this frequency depends on the height of the
potential of the vertical optical lattice. We find that g̃ is proportional to the
fourth root of the power of the light beams. To span the range indicated above
we have to vary this power by a factor ≈ 30. We note that the lattice depths
we use remain always large enough to hold the atoms against gravity.

The determination of the value of g̃ is detailed in 8.1.3. It is based on the
measurement of the vertical frequency ωz.

8.1.1.2 Evolution in a harmonic potential

If we wish to have the atoms evolve in a harmonic potential, the experimental
sequence is slightly more complex. It is however very similar to the one detailed
in Chapter 5.

We start with a cloud in the same conditions as in the previous case. We
additionally create a static magnetic field with the vertical anti-Helmholtz coils.
As in Chapter 5, the vertical gradient b′ is chosen so that it compensates gravity
for atoms in the state F = 1,mF = −1:

b′ =
2mg

µB
, (8.1)

which gives b′ ≈ 30 G/cm. The zero of the field is located around 160 µm above
the plane of atoms, which gives in the xy-plane a residual harmonic potential
of frequency ω ≈ 2π · 20Hz.

Initially, the atoms are not sensitive to this harmonic potential since they
are in the state F = 1,mF = 0 whose energy does not appreciably depend on
the magnetic field for such low values. At time t = 0, we apply successively
two microwave pulses with two different frequencies. The first one transfers all
the atoms to the state F = 2,mF = 0 and the second one brings them to the
state F = 1,mF = −1. We also remove the walls of the box potential. The
atoms can then evolve in the combination of the vertical confinement and the
harmonic potential. After a given duration of evolution we take an absorption
image after having transferred a controlled fraction of the atoms in the state
F = 2,mF = 0 with a final microwave pulse.
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8.1.2 The measured observables

With the absorption images we take, we have a direct access to the density
distribution n(r, t). There are several interesting quantities that we can extract
from it:

1. We determine the atom number N :

N =

∫∫
d2r n(r, t). (8.2)

2. We determine the position of the centre of mass (xc, yc):

xc =
1

N

∫∫
d2r x n(r, t) (8.3)

yc =
1

N

∫∫
d2r y n(r, t). (8.4)

One can separate the motion of this centre of mass from the dynamics
of the rest of the degrees of freedom [192]. In the following we will thus
work in the reference frame of this centre of mass. Experimentally, we
make sure that the motion of the centre of mass has a small amplitude
(less than 2 µm) to reduce the effect of the anharmonicity of the potential
as much as possible.

3. We then determine the mean square radius of this distribution
〈
r2
〉
:

〈
r2
〉

=
1

N

∫∫
d2r

[
(x− xc)

2 + (y − yc)
2
]
n(r, t). (8.5)

This quantity allows us to determine the potential energy per particle
Epot

N
=

1

2
mω2

〈
r2
〉
. (8.6)

4. We finally extract the interaction energy per particle:

Eint

N
=

~2g̃

2mN

∫∫
d2r n2(r, t). (8.7)

We do not attempt to extract the kinetic energy from the evolution of the
density distribution. It is in principle possible to do so: we have

Ekin =
~2

2m

∫∫
d2r |∇ψ|2 (8.8)

=

∫∫
d2r

(
1

2
mv2 + P (n)

)
n(r, t). (8.9)

The second term can be determined from the density distribution at a given
time t by computing the spatial derivative of the square root of this density
distribution. The first term is accessible from the hydrodynamic equation 7.77:

∇(nv) = −∂n
∂t
. (8.10)

One could measure the right hand side from the evolution of the density
distribution, and integrate it over space to extract the velocity v. However the
precision of our measurements both in terms of spatial resolution, of signal to
noise ratio and of time resolution is not sufficient to reliably determine any of
the two terms of the kinetic energy.
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Figure 8.1: Frequency of the harmonic potential. The position of the centre of mass
xc (filled disks) and yc (empty squares) in the two directions of space
are calculated from the density distribution. The error bars represent the
statistical error on the ten experimental realisations. The evolution of xc

and yc is fitted with a sinusoidal function. We get the frequencies in the
two directions, here ωx = 2π · 19.4(2)Hz and ωx = 2π · 19.3(1)Hz. The
anisotropy of the potential is in this case around 1%.

8.1.3 Some calibrations

8.1.3.1 Frequency and anisotropy of the harmonic trap

We measure the two frequencies ωx,y by measuring the position of the centre
of mass as a function of time. We compensate the experimental anisotropy
of the harmonic potential with the MOT coils, as we did in Chapter 5. On
Fig. 8.1 is presented the oscillation of the two components of the centre of
mass of an initially square-shaped cloud. The oscillations are each fitted with
a sinusoidal function whose respective frequency are ωx = 2π · 19.4(2)Hz and
ωy = 2π · 19.3(1)Hz. The anisotropy ωx/ωy − 1 is in this case around 1%, and
it is below 2% for all the data presented here.

For practical reasons we do not change the value of the in-plane frequency ω.
In particular we do not test the scaling laws associated with a time-dependent
trap frequency (see the end of section 7.2.3) because this would require to
compensate at each time for the anisotropy of the harmonic trap, which is
technically difficult.

8.1.3.2 Value of the vertical confinement

We determine the value of the vertical frequency ωz similarly to the mea-
surements presented in section 2.2.2.4. We prepare the sample with a high
vertical confinement. This is achieved by having a high laser intensity. At
t = 0 we decrease in 1ms this intensity to a chosen value. The minimum of
the potential energy in the vertical direction is displaced due to gravity, the
atoms get a vertical kick due to this displacement and they oscillate in the
vertical harmonic potential. After a variable duration of oscillation we remove
the vertical confinement and let the atoms expand freely during 12ms.
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Figure 8.2: Frequency of the vertical confinement. (a): We give a vertical kick to the
atoms and let them evolve in the vertical harmonic trap during a variable
duration t. Their vertical position zc is measured after a time of flight
of 12ms as a function of time, and it is fitted with a sine function. On
the example shown here the fitted vertical frequency is ωz = 1.39(26) kHz.
(b): The vertical frequency of the harmonic confinement is measured for
different values of the intensity of the laser beams, and plotted as a function
of the square root of this intensity. The data points are fitted with a linear
function. We can thus operate with any intensity in this range and infer
the value of the vertical confinement with an accuracy of a few percent.

We then measure the vertical position of the centre of mass as a function of
the oscillation duration. An example of the evolution of this vertical position
is shown on Fig. 8.2a. The oscillations are fitted with a sine function, and we
extract its frequency. On Fig 8.2b are shown the fitted frequencies as a function
of the square root of the intensity of the laser. The data points form a line,
which confirms the relation 2.5:

ωz =

√
2π2U

md2
, (8.11)

where the potential height U is proportional to the intensity I. From these
measurements we are able to determine the value of g̃.

8.2 verification of the so(2,1) symmetry

In this section I describe two experiments to test predictions of the dynamical
symmetries of the system: the oscillation of the potential energy and one of the
scaling laws presented in Chapter 7.

8.2.1 Evolution of the potential energy

We prepare a cloud of N = 4.1(2) · 104 atoms initially in a square-shaped
box potential of side L = 27.6(5) µm. After switching off the box potential,
we let it evolve in the xy-plane in the presence of the harmonic potential, as
described above. We probe the first 120ms of this evolution. For each duration
we perform several realisations (typically 10) that we average to measure the
density distribution. We then extract the potential energy per particle Epot/N
and the interaction energy Eint/N .
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Figure 8.3: Potential and interaction energy per particle of a cloud evolving in a
harmonic potential. An initial uniform cloud is prepared in a box potential,
and released in a harmonic potential. The potential energy (dark squares)
and interaction energy (light circles) per particle are extracted from the
density distribution. The error bars represent the statistical error on the
ten experimental realisations. (a): The initial cloud has N = 4.1(2) · 104

atoms and has the shape of a square of side 27.6(5) µm. (b): The initial
cloud has N = 6.3(4) · 104 and has the shape of a disk of radius 23.6(5) µm.
In both cases, the potential energy is fitted with a sinusoidal function. The
fitted frequencies are respectively 2π · 38.4(1)Hz and 2π · 38.8(2)Hz, which
is compatible with twice the frequency of their centre of mass.

The results are shown on Fig. 8.3a. The potential energy per particle (dark
squares) is oscillating periodically. We fit the data points with a sine function
and an additional negative slope. The frequency of the oscillation is ωfit =
2π · 38.4(2)Hz, which is compatible with twice the frequency of the harmonic
oscillator ω = 2π · 19.3(1)Hz. The additional slope accounts for the small loss
of atoms that leave the plane. The fit gives a slope of −0.25(4)Hz/s, which is
compatible with the atom loss rate that we measure.

The interaction energy per particle (light circles) varies in opposition with the
potential energy, and the higher and lower values correspond approximatively
to the higher and lower values of the potential energy per particle.

We perform the same experiment with N = 6.3(4) · 104 atoms initially in a
disk-shaped box potential of radius 23.6(5) µm. The potential and interaction
energies as a function of the evolution time are shown on Fig. 8.3b. The
oscillation frequency of the potential energy is very similar to the one of the
previous experiment: we get here 2π · 38.8(2)Hz, and the frequency of the
centre of mass is 2π · 19.4(2)Hz. The interaction energy per particle varies in
opposition with the potential energy per particle, as for the previous example.
What is more interesting here is that for the first experiment the potential

energy starts by increasing, whereas it starts by decreasing for the second one.
This is because the ratio between the initial potential and interaction energies
is not the same in the two experiments. This behaviour is captured in the
expression of the potential energy:

Epot(t) =
1

2
Etot +

1

2
∆E cos(2ωt) +

1

2ω
Ėpot(0) sin(2ωt), (8.12)
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Figure 8.4: Evolution of a cloud in different potentials. A cloud with N = 3.9(3) · 104

atoms is prepared in a triangular box-potential of side 40.2(3) µm. Two
different experiments are performed. (a): The box potential is removed
and the cloud evolves in a flat potential. The density distribution n1(t)
is displayed (b): The atoms are transferred in a harmonic potential of
frequency ω = 19.6(2)Hz and they evolve in it. The density distribution
n2(t′) is displayed. For both experiments, the evolution time is multiplied
by the frequency of the harmonic potential of the second experiment. The
images that are shown are chosen so that they look similar two by two, up
to a scaling of space.

where ∆E can be written as:

∆E = Epot(0)− Eint(0)− Ekin(0). (8.13)

In our case, the initial kinetic energy is negligible. In the first experiment,
the initial interaction energy is larger than the initial potential energy, ∆E is
negative and the cloud starts by expanding when it is released in the harmonic
potential. In the second experiment, it is the contrary: the initial interaction
energy is lower than the initial potential energy. We have ∆E > 0, and the
cloud thus starts by shrinking in the harmonic potential.

8.2.2 Evolution in traps of different frequency

We now turn to the experimental verification of the scaling law derived in
the last Chapter and that links the evolution of a cloud in a harmonic trap to
the free evolution of a cloud. This scaling law is summarized from equation
7.59 to equation 7.63:

ψω(r′, t′) = f0,ω(r, t)ψ0(r, t), (8.14)
r′ = r/λ0,ω(t), (8.15)
tan
(
ωt′
)

= ωt, (8.16)

λ0,ω(t) =
(
1 + ω2t2

)1/2
, (8.17)

f0,ω(r, t) = λ0,ω(t) exp

(
− imλ̇0,ωr

2

2~λ0,ω

)
, (8.18)

In order to probe this scaling law, we prepare a cloud of N = 3.9(3) · 104

atoms initially in a box potential with the shape of an equilateral triangle
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of side 40.2(3) µm. In a first experiment we measure the evolution n1(r, t) of
this cloud in a flat potential during the first 20ms. In order to have a proper
estimate of this density distribution, we average the measurements of a few
experimental realisations. A few images of this evolution are shown on Fig. 8.4a.
We are limited to this range of evolution times because the atoms expand in a
large region. This first leads to a diminution of the signal to noise ratio since
the density gets lower when the cloud is expanding, but, more detrimentally, a
part of the cloud gets out of the region that we are able to image.

In a second experiment, we measure the evolution n2(r′, t′) of the same initial
cloud in the harmonic trap. As relation 8.16 indicates, the free evolution of
the cloud between t = 0 and t = +∞ maps on its evolution in the harmonic
potential during the first quarter of period, which means between t′ = 0 and
t′ = π/(2ω). For this evolution we therefore limit its duration to the first 12ms.
A few images of this evolution are shown on Fig. 8.4b.

The two evolutions are very similar: the images of the figure have been chosen
so that they approximately correspond two by two. These pairs of images only
differ by a spatial scaling factor and by the duration of the evolution after
which the image has been taken. This is exactly what the scaling laws predict:
an initial cloud with a given wave function ψ(r, 0) will evolve as ψ1(r, t) in a
flat potential and as ψ2(r′, t′) in a harmonic potential with

r′ =
r√

1 + ω2t2
, (8.19)

tan
(
ωt′
)

= ωt, (8.20)

and the same laws apply for the density distributions n1(r, t) and n2(r′, t′).

We experimentally reconstruct the scaling laws 8.19 and 8.20 in the following
way. For two density distributions n1(r, t1) and n2(r, t′2) taken at respective
times t1 and t2, we need to define their overlap O [n1(t1), n2(t′2)] to quantify
how similar they are, irrespective of a scaling factor on space there might be
between them.

We first define the scalar product (n1|n2) between two density distributions
n1 and n2:

(n1|n2) =

∫
d2r n1(r)n2(r). (8.21)

For a scaling factor λ > 0, we then define the quantity

p [n1, n2, λ] =
(n

(λ)
1 |n2)

||n(λ)
1 || ||n2||

, (8.22)

where ||n||2 = (n|n) is the norm of a density distribution, and n(λ)(r) = λ2n(λr)
is the density distribution n(r) rescaled by the spatial scaling factor λ. The
quantity p [n1, n2, λ] is between 0 and 1, and is equal to 1 if and only if the
density distributions n1 and n2 differ only by the scaling factor λ.
We then define the overlap between n1(r, t1) and n2(r, t′2) by

O
[
n1(t1), n2(t′2)

]
= max

λ
p[n1(t1), n2(t′2), λ]. (8.23)
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Figure 8.5: Method of analysis to reconstruct a scaling law on space and time. A specific
time of the first evolution is picked to illustrate this method: t1 = 5.9ms.
(a) The quantity p[n1(t1), n2(t′), λ] is plotted as a function of λ for two
values of t′: 4ms for the dark circles and 5ms for the light squares. The
maxima of each of these curves, determined by a parabolic fit, give the
value of O [n1(t1), n2(t′)]. (b): The overlap between the density distribution
n1(t1) and the density distribution n2(t′) is plotted as a function of ωt′. A
maximum at 0.94 is found around ωt′ = 0.53, and is determined with a
parabolic fit, shown as a solid line. It is the value we assign to t′(t1). Going
back to the graph (a), we can then determine Λ(t1), which is the value for
which p[n1(t1), n2(t′(t1)), λ] is maximum. Here, Λ(t1) = 0.82(6).

With these tools we can reconstruct the scaling laws: for a given time t1
of the free evolution, we compute p [n1(t1), n2(t′), λ] for all times t′ and var-
ious scaling factors λ. For every time t′, we can then determine the overlap
O [n1(t1), n2(t′)] by maximising p [n1(t1), n2(t′), λ] over λ. This overlap is max-
imum for t′ = t′(t1), and the scaling factor λ for which p [n1(t1), n2(t′(t1)), λ]
reaches O [n1(t1), n2(t′(t1))] is denoted as Λ(t1).

If this overlap between n1(t1) and n2(t′(t1)) is close to 1, then these density
distributions are similar, up to the scaling factor Λ(t1).

An example of this analysis is presented on Fig. 8.5, for the density distribution
n1(t1) at the specific time t1 = 5.9ms. The first graph presents the values of
p [n1(t1), n2(t′), λ] for two values of t′. The maximum of each curves is the
overlap between n1(t1) and n2(t′). These overlaps are reported on the second
graph as a function of t′. A maximum is reached around ωt′ = 0.53 with an
overlap at about 0.94. The overlap is reached for λ ≈ 0.8, as shown on the first
graph, and it is the value we assign to Λ(t1).

We perform this analysis for all the density distributions of the first evolution.
The results are summarized on Fig. 8.6. The first graph shows t′(t1), which
represents the corresponding times between the free evolution of the cloud and
its evolution in the harmonic trap. The theoretical prediction 8.20 is shown as
a solid line and is in good agreement with the experimental data.
The second graph displays the behaviour of the scaling factor Λ(t) between

the first and the second evolutions. The theoretical prediction

Λ(t) =
√

1 + ω2t2 (8.24)
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Figure 8.6: Reconstructing the scaling law between a free evolution and an evolution
with a harmonic potential. (a): The time ωt′(t) of the evolution in the
harmonic trap is linked to the time t of the free evolution. (b): Scaling factor
Λ(t) on space that links these two evolutions. On these two first graphs, the
theoretical curves 8.20 and 8.24 are shown as solid lines and do not have
any adjustable parameters. (c): The overlap between corresponding density
distributions of the two evolutions is plotted. This overlap is always above
0.95, to be compared with the value of 0.98 to 0.99 between two density
distributions taken in the same experimental conditions. This confirms
that the two evolutions are similar up to a scaling law on space and time.
On the three graphs the error bars represent the confidence interval within
2 standard deviations of the fits we use.

is shown as a solid line. Here again the agreement between theory and experiment
is very good.
Finally, the overlap O [n1(t), n2(t′(t))] is plotted on the third graph. It is

always around 0.95, which confirms the fact that the two evolutions are indeed
similar. This value can be compared to the overlap between two density distri-
butions measured with the same experimental conditions and each averaged
over a few realisations. Such an overlap is not exactly 1, but rather on the order
of 0.98 to 0.99 due to experimental imperfections.

It is experimentally challenging to verify the other scaling laws presented in
7.2.2, because it would require to initially prepare clouds with different sizes
and the same atom number. Instead, we now probe the scaling laws in which
the atom number and the interaction parameter can be changed.

8.3 universal dynamics in the hydrodynamic regime

The scaling laws that allow to link the evolution of clouds with a different
product g̃N are valid in the hydrodynamic regime, where this product is large
compared to 1. In this regime, the scaling laws that can link the evolution of
different clouds contain the ones which are valid in any regime, and they are
richer.

I present here two complementary experiments to test these scaling laws. On
the first one only the product g̃N is varied, and on the second one, both this
product and the initial size of the cloud are changed.
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(a) (b) (c) (d)

Figure 8.7: Evolution a cloud after a quarter of oscillation in a harmonic potential. (a):
A cloud is prepared in a triangular-shaped box potential of side 38.2(3) µm,
and the initial density distribution is displayed. The initial cloud evolves
during a quarter of period in a harmonic potential with various interaction
parameters. Images (b), (c), (d) display the density distribution after this
evolution for g̃N = 2.5(3) · 102, 2.3(2) · 103 and 3.5(2) · 103 respectively.

8.3.1 Evolution with different interaction parameters

We explore here the evolution in the harmonic potential of a cloud whose
initial shape is an equilateral triangle of side 38.2(3) µm. Fig. 8.7a shows the
average of a few absorption images to illustrate this initial density distribution.
We prepare this cloud with various values of the vertical confinement frequency
ωz. The corresponding values of g̃ range from 0.07 to 0.16. The number of
atoms that we trap in the initial box potential also varies slightly, depending
on this vertical confinement, and we extract it from absorption images. In the
end, the product g̃N varies approximately from 2.5 · 102 to 4.3 · 103.

The scaling laws on space and time that link the evolution of two of these
initial clouds are the equations 7.90 and 7.91:

n2(r′, t′) =
N2

N1
n1(r, t), (8.25)

r′ =
r

λµ(t)
, λµ(t) =

[
cos2(ωt) +

1

µ2
sin2(ωt)

]1/2

(8.26)

tan
(
ωt′
)

=
1

µ
tan(ωt), (8.27)

(8.28)

where µ2 = g̃2N2/g̃1N1. In particular, the times ωt = π/2 and ωt′ = π/2
verify the equation on time 8.27. We can therefore perform the evolution of
two different clouds with this duration and their density distributions will be
similar one with the other, up to the scaling factor

λ
(
t =

π

2ω

)
=

1

µ
, (8.29)

where µ2 is the ratio between the products g̃N of these clouds.

For each value of the product g̃N we let the cloud evolve during π/(2ω) and
measure its density distribution by averaging a few experimental realisations.
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Figure 8.8: Size of an initially uniform triangle-shaped cloud after a quarter of os-
cillation in a harmonic potential. The density distribution shown on Fig.
8.7c is taken as a reference. All the other density distributions measured
after a quarter of oscillation in the harmonic trap are compared to this
reference by allowing for a scaling factor on space. (a): Overlap between
the reference density distribution and the density distributions for each
of the other values of g̃N . These overlaps are above 0.95, except for the
first point, probably because of the low number of pixels of the camera
that the cloud covers. (b): Scaling factor between the reference density
distribution and the density distributions for the other values of g̃N . The
red point corresponding to the reference is fixed at 1. The theoretical curve
is the solid line, passing through the origin and the reference point. The
shaded area represents the uncertainty on the slope of this line, due to
the uncertainty we have on g̃N for the reference point. On both graphs
the vertical error bars represent the confidence interval within 2 standard
deviations of the fits that we use.

A few examples are shown on Fig. 8.7b,c and d, and one can directly see that
the density distributions are all similar. The particularity that the cloud seems
to be a triangular shape with a uniform density after a quarter of oscillation is
very surprising and it is discussed in Chapter 9. In the following we will only be
interested in the size of these different density distributions and their similarity.
We perform the analysis as follows. We choose the density distribution

corresponding to (g̃N)ref ≈ 2.3 · 103 as a reference, and we compute the overlap
as defined in equation 8.23 between this distribution and each of the other
density distributions. We also determine the scaling factor λ for which this
overlap is reached, that we denote as Λ(g̃N). The choice of the reference is
arbitrary, and choosing another one would give similar results.
On Fig. 8.8a are shown the values of the overlap between the reference

distribution and the density distributions corresponding to the other values
of g̃N . They are all higher than 0.95, except for the first point, which may
be explained because of the low number of camera pixels on which the atoms
are located. On Fig. 8.8b is plotted the value of Λ−2(g̃N). The value for the
reference point is fixed at 1 (red square on the graph). The theory predicts that

Λ−2 (g̃N) =
g̃N

(g̃N)ref
, (8.30)
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which is represented as the solid line, and the shaded area indicates the uncer-
tainty on the denominator of this prediction.
The data points are in very good agreement with the theory, except maybe

for the rightmost point. We attribute it to the fact that, at such a large value
of g̃, the defects of the light potential creating the vertical confinement start to
play a significant role in the evolution of the cloud.

This particular behaviour that, after a quarter of period in a harmonic
potential, the area of the cloud is proportional to its number of atoms is at the
same time very surprising and very interesting. We can understand it from the
fact that, at this specific time, the initial potential and interaction energies have
been exchanged: when the initial kinetic energy is neglected in equation 8.121,
and with the initial condition Ėpot(0) = 0 that we have on the experiment, we
get

Epot

( π
2ω

)
= Eint(0). (8.31)

For a given initial shape of the cloud, the initial interaction energy per particle
is proportional to the product g̃N and the potential energy per particle at
t = π/(2ω) is proportional to the mean square radius of the density distribution.
This reasoning does not explain that the density distributions shown on Fig.
8.7b, c and d are similar, but it captures the expression of the scaling factor
(equation 8.30).

This property can be used to perform a very reliable and robust method to
calibrate the scattering cross-section of the absorption imaging (see Chapter 2,
section 2.2.3.2). One can indeed prepare a cloud with a uniform density in a
box potential of surface S and measure both the optical density of a controlled
fraction ε of this cloud and the potential energy of the cloud after a quarter of
period in the harmonic potential.
The initial interaction energy is

Eint(0) =
~2

2m

g̃N2

S
, (8.32)

which means that at t = π/(2ω), the mean radius square reads

〈
r2
〉
π
2ω

=
~2g̃N

m2ω2S
. (8.33)

This provides us with a very good estimate of the absolute atom number N , as
long as the calibration of the magnification of the imaging system is proper,
and if the measurement of the parameters g̃ and ω are accurate.
On the other hand, as we saw in Chapter 2 section 2.2.3.2, the measured

optical density of a fraction ε of the cloud in the initial box potential is

OD =
7

15

3λ2
L

2π
F εN

S
, (8.34)

1 For an initially triangular shape, the kinetic energy is null after a quarter of period of
oscillation because of the particular dynamics of this shape. This dynamics is studied in the
next chapter.
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Figure 8.9: Evolution of two initially uniform square-shaped clouds with a different
initial size and a different atom number. (a): Evolution in a harmonic
potential during the first half period of a cloud of N1 = 3.7(3) · 104 atoms
initially in a square-shaped box potential of side L1 = 27.0(5) µm. (b):
Evolution in the same harmonic potential during the first half period of a
cloud of N2 = 5.4(3) · 104 atoms initially in a square-shaped box potential
of side L1 = 36.8(5) µm.

where the factor F depends on the experimental conditions in which the
absorption imaging is performed. It is then determined by

F =
15

7

2π

3λ2
L

~2OD

εm2ω2

g̃

〈r2〉 π
2ω

. (8.35)

When performing these measurements on the density distributions of Fig.
8.7, we get a factor F of 1.6(2), which is compatible with the estimate that
we did with projection noise measurements [65]. This new method is however
much easier to implement and requires much less data than the previous one.
Moreover it is robust with respect to parameters of the imaging system such as
the point-spread function, contrary to the projection noise method.

8.3.2 Evolution with different sizes and atom numbers

Finally, we probe a last type of scaling law by looking at the evolution in
a given harmonic trap of two clouds that have the same initial shape, but a
different size, and a different atom number.
We prepare two clouds that are initially in a square-shaped box potential.

The first one has a side L1 = 27.0(5) µm and contains N1 = 3.7(3) · 104, and
the second one has a side L2 = 36.8(5) µm and contains N2 = 5.4(3) · 104

atoms. The interaction parameter is g̃ = 0.15, therefore the product g̃N is large
compared to 1 for both clouds, which are thus in the hydrodynamic regime.
We let these two clouds evolve in the harmonic potential of frequency ω =

2π · 19.6(2)Hz and measure their respective density distributions n1(r, t) and
n2(r′, t′) during more than one full period of the potential (from 0 to 60ms). A
few images of these two evolutions are displayed on Fig. 8.9.
We perform the exact same analysis as the one developed in section 8.2.2:

we extract the corresponding times between the first evolution and the second
one, the scaling factor between the images at these corresponding times, and
the overlap between the corresponding images. These three graphs are shown
on Fig. 8.10.



8.3 universal dynamics in the hydrodynamic regime 139

0 π 2π
ωt

0

π/2

π

3π/2

2π

5π/2

ω
t′

(t
)

(a)

0 π 2π
ωt

0.6

0.8

1.0

1.2

Λ
(t

)

(b)

0 π 2π
ωt

0.90

0.92

0.94

0.96

0.98

1.00

O
[n

1(
t)
,n

2(
t′

(t
))

]

(c)

Figure 8.10: Reconstruction of the scaling law between two initially uniform square-
shaped clouds with different size and atom number. (a): Correspondence
between the time t of the evolution of the first cloud and the time t′
of the evolution of the second cloud. (b): Scaling factor between the
corresponding images of the first and second evolutions. On these two
graphs, the theoretical predictions are plotted as solid lines and have no
adjustable parameters. (c): Overlap between corresponding images of the
two evolutions. This overlap is larger than 0.97, confirming that the two
evolutions are similar up to a scaling law on space and time. On the three
graphs the error bars represent the confidence interval within 2 standard
deviations of the fits we use.

The overlaps between corresponding images, displayed on the last graph, are
always above 0.97, which confirms that the evolutions of the two clouds are
captured by the same dynamics.
The theoretical predictions are given by equations 7.92 to 7.96 with α =

1/δ = L2/L1, and β = γ = 0. This choice of β and γ is imposed by the facts
that the wave functions at t = 0 and t′ = 0 are similar up to a dilation and
that their initial velocity is null. The choice of α and δ is imposed by the ratio
of the sizes of the initial shapes and the constraint αδ − βγ = 1. We also have
µ2 = N2/N1, because the interaction parameter of the two evolution is chosen
to be the same, and ζ = 1.
In the end, the relationship between n1 and n2 is

n1(r, t) = µ2λ2(t)n2(r′, t′), (8.36)

with

r′ = r/λ(t), (8.37)

λ(t) =

[
1

α2
cos2(ωt) +

(
α

µ

)2

sin2(ωt)

]1/2

, (8.38)

tan
(
ωt′
)

=
α2

µ
tan(ωt). (8.39)

These two laws are completely determined by the values of L1,2, N1,2 and ω,
which are measured independently from the evolution of n1(t) and n2(t′). They
are plotted on Fig. 8.10b, and c as solid lines. The shaded areas represent the
uncertainties on the measurement of the atom numbers and the initial sizes.
The theory and the experimental data are in excellent agreement.
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With the three last experiments, we have experimentally explored the three
parameters that the scaling laws derived in the previous chapter allow to vary
in order to link the evolution of two different clouds: the size of the cloud,
the frequency of the harmonic trap and the product between the interaction
parameter and the total atom number.

8.4 conclusion

In this chapter, I have presented the experimental investigation of the
dynamical symmetries and scaling laws presented in the previous chapter.
First, the evolution of the potential energy is measured to be oscillating at

a frequency twice the frequency of the harmonic trap, which is an important
consequence of the algebraic structure of the dynamical symmetry group.

Then, the evolution of different clouds with the same shape are shown to be
linked by simple scaling laws on space and time. Three independent experiments
demonstrate that, in the hydrodynamic regime, two clouds that have the same
shape, but different sizes and a different atom number, and that evolve in
potentials of different frequencies and that interact with a different strength,
share the same universal dynamics.

These very robust properties are the consequence of the dynamical symmetries
of the 2D Bose gas, and their rich structure can be used for example to calibrate
in a very efficient way the number of particles in an ultracold two-dimensional
sample of atoms.
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9
BREATHERS OF THE 2D GROSS -P ITAEVSK I I
EQUATION

The study of non-linear equations constitutes entire fields in mathematics
and physics [205–207]. The study of their properties, such as chaotic behaviour,
is important in many branches of science, from biology [208] to meteorology
[209], from optics [210] to hydrodynamics [211]. We will be interested here in
particular solutions of such equations that do not deform, or that have periodic
behaviour, in spite of the non-linearity of the equations.
One important non-linear equation that displays many of these solutions is

the sine-Gordon equation [186]:

∂2φ

∂t2
=
∂2φ

∂x2
− sin(φ). (9.1)

This equation looks similar to the Klein-Gordon equation, except for the second
term of the right-hand side that gives its name to the equation and provides its
non-linearity. This one-dimensional equation supports very interesting solutions,
called solitons, i.e. solutions of the form

φ(x, t) = φ0(x− vt), (9.2)

where φ0 is a form function and v is a propagation velocity. In the case of the
sine-Gordon equation, this soliton is given by

φs(x, t) = 4 arctan [exp(γx− γvt)] , (9.3)

with γ = (1− v2)−1 and |v| < 1. This solution is a waveform that propagates at
velocity v and that does not deform. The existence of a soliton whose expression
is analytic is surprising and has drawn the interest of many mathematicians
and physicists.
Interestingly, this solution can be obtained thanks to an auto-Bäcklund

transformation of the equation and using it on the trivial solution ψ(x, t) = 0
[212–214]. Contrary to the Bäcklund transformations that we have studied in
Chapter 7, this transformation has no continuous parameter that could link it
to a Lie group and a Lie algebra. This symmetry is a discrete symmetry, such
as a mirror symmetry.

Other non-linear equations also have solutions that are referred to as solitons:
the Korteweg-de Vries equation and the 1D non-linear Schrödinger equation
[186]. In the case of equations on complex fields, a solution with an amplitude
that does not deform and propagates is also called a soliton, even if its phase
may oscillate in time. When these equations apply to an electric field (resp.
to a wave function), the associated intensity (resp. the associated density of
probability) propagates without being deformed, which is why such solutions
are given the name of solitons.
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The Korteweg-de Vries equation describes for example the propagation of
waves at the surface of shallow waters, which is the system for which solitons
have been first observed by John Scott Russell in the 19th century [215].

For the 1D non-linear Schrödinger equation, such a soliton is predicted [216]
and it has been observed in an optical fibre [217], but also in glass waveguides
[218], and with polaritons [219]. Another soliton is predicted, called a dark-
soliton [216]. It has been observed for example in optical fibres [220] and
cigar-shaped Bose gases [221].

Another type of spectacular solutions of non-linear equations is constituted
by so-called breathers. These are solutions whose form oscillates periodically in
time or in space and may propagate. For example, the sine-Gordon equation
has such breathers:

φb = 4 arctan



√

1− ω2

ω

sin (ωγ(t− vx))

cosh
(
γ
√

1− ω2(x− vt)
)


 , (9.4)

where ω is the characteristic frequency of the breather, v is its velocity and
γ = (1− v2)−1 as above. A stationary breather is obtained for v = 0.
The 1D non-linear Schrödinger equation has breather solutions of several

types [222]:

• The Akhmediev breather which is periodic in time and localised in space.
It has not been observed, but there are proposals for optical fibres [223].

• The Kuznetsov-Ma breather which is periodic in space and localised in
time. It has been observed in optical fibers [224] and optomechanical
systems [225].

Finally there may exist solutions of non-linear equations that are both
localized in space and time, such as rogue waves that are observed in the ocean
[226]. The 1D non-linear Schrödinger equation has such a solution, which is
called the Peregrine soliton [222]. It has been observed in optical fibres [227],
in hydrodynamics systems [228] and in plasmas [229].

Many other non-linear equations have been studied in the hope of discovering
solitons and breathers and of understanding the conditions in which these
solutions may exist. For example, one can add a linear and/or a harmonic
potential term to the 1D non-linear Schrödinger equation [230, 231].
One can also wonder whether solitons and breathers may exist for the 2D

non-linear Schrödinger equation. Few studies have been reported, but solitonic
solutions have been predicted and observed [232–234]. Vortices may also be
considered as dark solitons [235].
This is of direct relevance for our experiment, since the 2D non-linear

Schrödinger equation describes the evolution of the wave function of our Bose
gas with the name of ’2D Gross-Pitaevskii equation’ that we will keep in the
following of the chapter.

In this chapter I present evidence that the 2D Gross-Pitaevskii equation with
a harmonic potential term may sustain at least two families of yet-unsuspected
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Figure 9.1: Evolution of an initially uniform triangle-shaped cloud. The initial cloud
has 4.0(2) · 104 atoms and is prepared in a box potential with the shape of
an equilateral triangle of side 41.7(5) µm. It is transferred and released in a
harmonic potential at t = 0. The images show the density distribution for
different evolution times, indicated in units of the period T of the potential.
All the images have the same scale, given by the horizontal black line in
the first image that represents 20 µm. Each line spans half a period of the
harmonic potential, and the four lines are very similar one to the other,
indicating a T/2 periodicity.

breathers. In a first part I present the experimental measurements indicating
that two different initial wave functions evolve periodically. In a second part I
show the numerical simulations that we performed to confirm these experiments.
We have found no analytical proof of this periodicities, and I briefly mention in
a last part some of the difficulties to provide such a proof.

9.1 experimental hints

9.1.1 Initial triangular shape

As in the previous chapter, the Gross-Pitaevskii equation with a harmonic
potential term is considered. A first glimpse of the periodic behaviour of a wave
function evolving with this equation has been given in Chapter 8, paragraph
8.3.1: a cloud with an initial uniform density and the shape of an equilateral
triangle, after an evolution of a quarter of oscillation in the harmonic potential
seems to have the shape of an equilateral triangle with an inversion symmetry
compared to the initial one. The size of this triangle depends on the initial
interaction energy, as it was explained in 8.2.1.
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Figure 9.2: Quantifying the periodicity of the dynamics for the dataset presented on
Fig. 9.1. We compute the quantity p[n(0), n(t), λ = 1] between the initial
and the subsequent density distributions, with a unity scaling factor on
space. We observe that for times multiple of T/2 indicated by the vertical
dashed lines, this quantity is close to 1.

We observe the evolution of this cloud beyond T/4 and we go up to t = 2T .
We prepare a cloud of N = 4.0(2) · 104 atoms in a triangular-shaped box
potential of side L = 41.7(5) µm and let it evolve in a harmonic potential. A
few images of the density distribution at several times are shown on Fig. 9.1.
After half a period in the harmonic trap, the density distribution seems to
be the same as the initial one. This is compatible with the periodicity of the
potential energy. Indeed, at t = T/2, the potential energy should be equal to
the initial potential energy, which is fulfilled if the density distribution is the
same as the initial one.

We recover this behaviour after a time evolution of T , 3T/2 and 2T . Already
after one period in the harmonic potential, the density distribution seems
not to recover a perfect triangular shape. This may be due to experimental
imperfections, such as the anisotropy of the potential, its anharmonicity, or the
finite temperature of the gas.

The initial size and atom number of the cloud do not matter because of the
scaling laws presented in Chapter 8. We start here with a uniform cloud in the
Thomas-Fermi regime, and we can apply all the scaling laws. If a cloud with a
given size and atom number evolves periodically, then the evolution of another
cloud with the same initial shape and density distribution, but with a different
size and a different atom number can be mapped onto the one of the first cloud,
and it is found to be also periodic.

In order to quantify better the similarity between the initial density distri-
bution n(r, 0) and the density distributions n(r, t) obtained after the evolution,
we compute the quantity p[n(r, 0), n(r, t), λ = 1], as defined in equation 8.22.
Fig. 9.2 shows the evolution of this quantity as a function of t. Here we do not
allow for dilations of space: the computed quantity is close to 1 when the two
distributions are the same, up to a translation in space.
The data points start at 1 and decrease below 0.8 at times between 0 and

T/4. Then they increase again and reach values around 0.96 for times around
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Figure 9.3: Evolution of an initially uniform disk-shaped cloud. The initial cloud has
5.7(2) · 104 atoms and is prepared in a box potential with the shape of
a disk of radius 19.5(5) µm. The images show the density distribution
for different evolution times in the harmonic potential. These times are
indicated in units of the period T of the potential. All the images have
the same scale, given by the horizontal black line in the first image that
represents 20 µm. For each time t close to a multiple of 2T/7, the density
distribution seems to recover the initial one. These multiples are indicated
in bold letters between the experimental images.

T/2, T , 3T/2 and 2T . This confirms the visual impression given by the images
of Fig. 9.1, but this does not constitute a strong evidence that an initially
uniform equilateral triangle is a breather of the GPE. We may indeed be limited
here by experimental imperfections such as deviations from uniformity of the
initial density distribution, finite temperature effects, or imprecisions in the
measurement of the density distribution due to the absorption imaging.

9.1.2 Initial disk shape

Another shape seems to evolve in a periodic way: an initially disk-shaped
cloud with a uniform density. We prepare N = 5.7(2) · 104 in a disk-shaped box
potential of radius R = 19.5(5) µm, and let it evolve in a harmonic potential of
frequency ω = 2π · 19.6(2)Hz. A few images of the density distribution from
t = 0 to t = 2T are shown on Fig. 9.3. The overall features that can be noted
are the following:

1. The size of the cloud does not vary a lot during the evolution. This is
because the initial size and the atom number have been chosen so that the
potential and interaction energy per particle at t = 0 are approximately
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Figure 9.4: Evolution of an initially uniform disk-shaped cloud: radial density. On this
figure are presented cuts in the y direction of the density distributions
shown on Fig. 9.3. When t/T is close to a multiple of 2/7 (indicated in
bold), the flatness of the density over the whole disk appears more clearly.

equal. Indeed the density is close to n(r, t = 0) = N/(2πR2) in the disk,
which gives

Epot

N
=

1

2
mω2R

2

2
, (9.5)

Eint

N
=

~2g̃

2m

N

πR2
, (9.6)

which are respectively equal to h · 0.314(32) kHz and h · 0.275(45) kHz.

2. The density distribution seems to be flat for eight different times between
t = 0 and t = 2T , corresponding to the times 2T/7×k, with k = 0, 1, · · · , 7.
This is illustrated on Fig. 9.4, that displays cuts of the density distributions
presented on Fig. 9.3.

We proceed to the same analysis as for the triangular shape: we evaluate
the quantity p[n(0), n(t), λ = 1] to study the similarity between the initial
distribution and the subsequent ones. The results are shown on Fig. 9.5. We
recover more quantitatively the features described above. The data points reach
values as high as 0.96 when t/T is a multiple of 2/7, as indicated by the dashed
lines.
A periodic behaviour with a period equal to 2T/7 could not be generalized

to any initially disk-shaped cloud with any atom number and any size, but
only to the ones for which the potential energy stays constant. If this potential
energy is not constant, then an initial cloud can recover its initial shape only
if it also recovers its initial potential energy. This can happen only at a time
multiple of T/2, which is not the case for 2T/7. The smaller common multiple
between these two numbers is 2T , which would be the period of any initially
uniform disk-shaped cloud.
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Figure 9.5: Quantifying the periodicity of the dynamics for the dataset presented on
Fig. 9.3. We compute the quantity p[n(0), n(t), λ = 1] between the initial
and the subsequent density distributions, with a unity scaling factor on
space. We observe that for times multiple of 2T/7 indicated by the vertical
dashed lines, this quantity is close to 1. The vertical solid line indicates
2T , which is the time that we will consider in the next paragraph.

These two initial shapes - a uniform triangle and a uniform disk - seem to
have a periodic dynamics when investigating it experimentally. We have also
tried several other initial shapes filled uniformly, such as a square, a pentagon,
a hexagon, and a right-angled isosceles triangle. None of these shapes seemed
to evolve periodically, at least on the course of two periods in the harmonic
potential.
The precision of the experiment is however not infinite, and the evolution

of the density distribution that we measure does not simulate a perfect Gross-
Pitaevskii equation at zero temperature. If we want to determine with more
confidence whether a wave function evolves periodically, we need to turn to
numerical simulations.

9.2 numerical simulations

9.2.1 Initially triangular-shaped cloud

We perform numerical simulations of the full 2D GPE in order to have more
evidence concerning the possible periodic evolution of the two shapes described
above.
In order to simulate the evolution of a physical system, we translate the

GPE in terms of dimensionless parameters. We first define a dimensionless scale
coordinate ρ = Nsr/L, where L is the size of the region that the grid simulates.
The length L/Ns thus represents the physical size of one pixel of the simulation.
We then define:

τ =
N2
s ~t

mL2
, (9.7)

Ω =
mωL2

N2
s ~

, (9.8)

Ψ(ρ, τ) =
L

Ns
ψ(r, t). (9.9)
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The GPE then reads:

i
∂Ψ

∂τ
= −1

2
∇2Ψ + g̃N |Ψ|2Ψ +

1

2
Ω2ρ2Ψ, (9.10)

where the nabla operator represents the derivative with respect to the spatial
coordinate ρ. There are then several parameters to adjust for these numerical
simulations:

1. The grid has a number of pixels Ns × Ns, where Ns is an adjustable
parameter of the simulation.

2. The box potential in which the wave function will be initialized is chosen
with a full length approximately equal to L/2. For a triangular box, the
side of the triangle is chosen to be half of the grid size, and for a disk box,
the diameter is chosen to be half of the grid size. In both cases, the centre
of mass of the box is positioned on the origin of the harmonic potential,
in the centre of the grid.

3. The product g̃N is chosen so that the healing length of the initial cloud
ξ = L/2

√
g̃N is small compared to the box size L/2, which corresponds

to having the cloud in the Thomas-Fermi regime, but ξ should not be
small compared to the size of a pixel L/Ns, so that the edge of the cloud
is well sampled by the pixelisation of space. In practice we fix the value
of the parameter α which is the number of pixels that cover the healing
length:

α =
Ns

2
√
g̃N

, (9.11)

This parameter has to be at least on the order of 1, and it has to be small
compared to Ns.

4. The frequency Ω of the harmonic potential is chosen so that the initial
potential and interaction energies are equal. With such a choice, we make
sure that the value of the wave function near the edge of the grid is small
at all times.

5. The time step τ of the evolution is chosen so that 1/τ is much smaller
than all the energy scales involved.

The choice of Ω does not restrict the validity of the future conclusions to this
value only, because of the scaling laws of the GPE: we can infer the properties
of the evolution of a cloud in a harmonic potential of any frequency Ω′ from
the evolution of the same cloud in a harmonic potential with a given value of
its frequency.

The simulation is performed by calculating the wave function at each time
step from its value at the previous time step. We first apply the kinetic energy
term in the Fourier space where it is diagonal, and then apply the interaction
and the potential energy terms in the real space.
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t = 0 T/8 T/4 3T/8 T/2 5T/8 3T/4 7T/8

T 9T/8 5T/4 11T/8 3T/2 13T/8 7T/4 15T/8

2T 17T/8 9T/4 19T/8 5T/2 21T/8 11T/4 23T/8

Figure 9.6: Numerical simulation with an initially uniform triangle-shaped cloud, for
the parameters Ns = 512 and α = 2. The initial wave function is the
ground state of a triangular box-potential. The images show the density
distribution of this wave function during an evolution according to the full
Gross-Pitaevskii equation. The same density distribution seems to appear
every T/2, in agreement with the experimental observation.

The initial wave function is obtained after an imaginary time evolution of
a uniform wave function in the desired box potential, without the harmonic
potential. The state ψ that we get is the ground state of a Hamiltonian, therefore
it can be chosen real. In particular, its initial phase is flat. This wave function
is normalized to unity. The evolution of this initial wave function is then
performed without the box potential and with the harmonic potential, exactly
as the experiment is done. We do not add any phase noise to the initial wave
function, which simulates the evolution of a cloud at zero temperature.

We first perform simulations with an initially triangle-shaped cloud. An
example of the evolution of the density distribution of such a cloud is shown on
Fig. 9.6 over more than two periods in the harmonic potential. The parameters
of this simulation are Ns = 512 and α = 2.
Already we can notice that the density distribution seems to evolve period-

ically with a period of T/2. The images reproduce all the features that the
experiment was showing, and here all the imperfections due to the experimental
issues and the temperature effects are absent.

The question we want to answer is whether the wave function Ψ evolves
periodically in the harmonic potential. Instead of comparing the density dis-
tributions to quantify their similarity as we did with the experimental data,
we compare directly the wave functions: we compute the modulus of the scalar
product between the initial wave function and the subsequent wave functions:
|〈Ψ(0)|Ψ(t)〉|. The evolution of this quantity is displayed on Fig. 9.7.
This scalar product starts at 1, and, since the information of the phase is

also taken into account in this observable, it rapidly falls to a low value. Then
at times multiple of T/2, it goes up to a value very close to 1 (0.994 on this
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Figure 9.7: Scalar product between the initial and the subsequent wave functions for
an initially triangle-shaped cloud. We quantify the similarity between the
wave function |Ψ(t)〉 and the initial one |Ψ(0)〉 by computing the modulus
of their scalar product. This scalar product is sensitive to the difference
between the density distributions, but also to the spatial variations of the
phase of the wave function. From this curve, it seems that the dynamics is
periodic with a period T/2.

example), indicating that the wave function is the same as the initial one, up
to a global phase.
We also notice that, at t = T/4, the plotted scalar product reaches a value

around 0.66. This is the value we expect if the cloud has a wave function that
is obtained from the initial one by a central symmetry around the centre of the
grid. In particular, we deduce that the cloud has a uniform phase at this time.

A single numerical simulation cannot constitute a proper proof of the peri-
odicity of a cloud, since it may be limited by the discretisation of space and of
time. We verified that the duration of the time step did not limit the accuracy
of the numerical simulations, and we focus here on the size of the grid Ns and
the parameter α describing the healing length.
We perform several simulations with various values of Ns and α. We are

interested in the value of the scalar product |〈Ψ(0)|Ψ(T/2)〉|, and Fig. 9.8 shows
this value for all the simulations.

The same physical system is simulated when two simulations have the
same ratio Ns/α. The accuracy of the simulation is increasing when Ns (and
therefore α) is increased. When increasing the accuracy of a simulation, the
scalar product between the initial wave function and the wave function at T/2
gets systematically closer to 1.
There is a more efficient way for this scalar product to approach 1: by

increasing Ns and increasing α while also increasing the ratio Ns/α. This
corresponds to considering physical systems that are more and more in the
Thomas-Fermi regime. The highest scalar product we found is slightly above
0.995.
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Figure 9.8: Finite-size scaling of the numerical simulations for the triangle-shaped cloud.
The scalar product between |Ψ(0)〉 and |Ψ(T/2)〉 is shown for different
values of the grid size Ns and the ratio α between the healing length and
the physical size of a pixel.

These numerical simulations do not provide a proof that an initially uniform
triangle-shaped cloud evolves periodically in a harmonic potential, but it gives
a better idea of what can be expected: the motion of such a cloud may converge
to a periodic motion when increasing the accuracy of the simulation for a given
value of the healing length ξ, and this convergence seems to be faster when
decreasing ξ.

9.2.2 Initially disk-shaped cloud

A similar treatment is performed for an initially disk-shaped cloud. On
Fig. 9.9 are shown the evolution of the density distribution for the parameters
Ns = 512 and α = 4. On these images we observe the same features as on
the experiment: the radial distribution oscillates between a distribution that is
close to flat and a distribution with more atoms in the centre. There are seven
oscillations in two periods of the harmonic potential.

The modulus of the scalar product between the initial and the subsequent
wave functions |〈ψ(0)|ψ(t)〉| is displayed on Fig. 9.10. It illustrates better the
fact that every 2T/7, the wave function is very close to the initial one. Between
these peaks, there are other peaks that almost reach 0.9. They correspond to
the points where the radial density is the least flat and reaches a turning point
in its evolution. The phase is also flat at these times, which is why the scalar
product with the initial wave function is high.
When looking more carefully at this scalar product, one can see that it is

not symmetric with respect to the time 2T/7, nor to its first multiples. There
is such a symmetry only around t = 2T , and around t = T . This indicates that,
even for a cloud with a constant potential energy, 2T/7 is not a period of the
motion, but that t = 2T is a much better candidate.

Finally, we turn to the finite-size scaling analysis to see if the features we
conjecture from a single simulation are robust.
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Figure 9.9: Numerical simulation with an initially uniform disk-shaped cloud, for
the parameters Ns = 512 and α = 4. The initial wave function is the
ground state of a disk-shaped box-potential. The images show the density
distribution of this wave function during an evolution according to the full
Gross-Pitaevskii equation. The same density distribution seems to appear
every 2T/7.
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Figure 9.10: Scalar product between the initial and the subsequent wave functions
for an initially disk-shaped cloud. We compute the modulus of the scalar
product between the wave function |ψ(t)〉 and the initial one |ψ(0)〉. From
this curve, it seems that the dynamics is periodic with a period 2T .
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Figure 9.11: Finite-size scaling of the numerical simulations for the disk-shaped cloud.
The scalar product between |ψ(0)〉 and |ψ(2T )〉 is shown for different
values of the grid size Ns and the ratio α between the healing length and
the pixel size.

When looking at the overlap between the initial wave function and the wave
function at t = 2T/7, we find that it is close to 1, but does not always get closer
to it when increasing the size of the grid or decreasing the healing length. We
therefore have more evidence that an initially uniform disk-shaped cloud with
a constant potential energy does not evolve periodically with a period 2T/7.

We therefore concentrate on the time t = 2T , which is also more interesting
since it applies in all cases, whether the potential energy is constant or not. On
Fig. 9.11 are represented the overlap between |ψ(0)〉 and |ψ(2T )〉 for various
values of the grid size Ns and the ratio α between the healing length and the
pixel size.

Here, simulating the same physical system and increasing the size of the grid
does not always provide an overlap closer to 1. However, when performing the
simulation with a larger grid, there is always a value of α that provides a better
overlap between the two wave functions. The highest value that we obtain is
0.9986, corresponding to Ns = 1024 and α = 2.8.
These simulations indicate that the evolution of an initially uniform disk-

shaped cloud may be periodic with a period 2T . The same conclusion as for
the triangle-shaped cloud apply here: the convergence of the dynamics to a
periodic motion seems to be faster when decreasing the healing length ξ.

9.2.3 Other initial shapes

We have run these numerical simulations starting from wave functions with
several other shapes. These simulations have been performed until an evolution
time of t = 5T .

We have tried several uniformly-filled regular polygons: a square, a pentagon,
an hexagon. We have also tried more shapes with a 3-fold rotational symmetry
and a uniform initial density: a six-pointed star and a triangle with a triangular
hole in its centre, similar to the first iteration of the Sierpiński triangle.

None of these shapes seemed to evolve in a periodic way. Of course this does
not exclude the possibility that one of them recovers its initial wave function
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after a time larger than 5T . On the evolution of the overlap with the initial
wave function, we saw no symmetry point similar to the point at t = T for
the disk, which indicates that no periodicity is to be expected for these shapes
between 0 and 10T .

9.3 towards an analytical proof?

We found no analytical proof that either of the two investigated initial shapes
(triangle and disk) should evolve periodically in a harmonic potential.

The two-dimensional Gross-Pitaevskii equation does not have a general
analytical solution due to its non-linear character and its dimensionality. Any
attempt to solve it based on linear algebra is vowed to fail, except in the
perturbative regime. In this case, one can identify small oscillation modes, such
as the breathing mode at 2ω, but it is not useful when searching for solutions
where several modes have a large amplitude.

The eigenfunctions of a cloud trapped in a harmonic potential are indexed
by two integer numbers, n1 and n2 [236, 237], and their eigenfrequency is

ωn1,n2 = ω
√

2n2
1 + 2n1n2 + 2n1 + n2. (9.12)

Most of these frequencies are not commensurate with 2ω. The decomposition of
a uniform shape in this basis involves many modes. When deriving the evolution
of the wave function with the GPE, all these modes are coupled with the non-
linear term, and the set of coupled differential equations that we obtain are as
hard to solve as the original problem. However, the non-linearity could lead to
the synchronisation of all these coupled modes and to a periodic behaviour.

The disk shape has a rotational symmetry, which indicates that the evolution
can be described with only one dimension of space, the distance to the centre.
One-dimensional systems are much easier to solve, and it could be a way to
prove that this shape evolves periodically. Another possibility could be to
determine differential equations on the moments

〈
r2k
〉
of the distribution, with

k ∈ N∗. Such a differential equation has been derived for k = 1, and it has a
closed form. The equations for k > 1 do not have such a simple form, but they
could be useful to prove that an initial disk is periodic.
The triangular shapes raises even more questions: it does not respect the

rotational symmetry of the GPE, which excludes certain solving methods. For
example, methods to find particular solutions via the dynamical symmetries of
the equation will probably not grasp this shape.

9.4 conclusion

In this chapter I have shown experiments and numerical simulations to study
the evolution under the GPE with a harmonic potential term of two different
Bose gases. The first one is an initially uniform triangular-shaped cloud and
the second one is an initially uniform disk-shaped cloud. Both are at rest at
t = 0. These two clouds seem, both experimentally and numerically to evolve
periodically with respective periods T/2 and 2T , where T is the period of the
harmonic trap.
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We have not proved analytically that these clouds indeed evolve periodically,
but such a proof could be difficult to provide.

If these are indeed breathers, they would constitute new and interesting
objects for mathematicians and physicists to consider in the study of two-
dimensional non-linear equations. Applications to other fields of physics are
direct, since the 2D GPE describes several different physical systems, such as
the propagation of light in an optical fibre. If there exist fibres exhibiting a
harmonic potential such as the one we have introduced, then the breathers
could be observed and used in this system as well.
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CONCLUS ION

summary

In this thesis I have presented experiments that explore the physics of two-
dimensional systems. Two main directions have motivated these experiments:

1. The measurement of the first-order correlation function in a uniform
atomic sample across the Berezinskii-Kosterlitz-Thouless transition.

2. The dynamical symmetries of the two-dimensional Gross-Pitaevskii equa-
tion and their consequences on the evolution of a cloud in a harmonic
potential.

In the first part of this thesis, I have described the experimental set-up that
has allowed us to investigate these two rich and fundamental subjects. I have
explained how we are able to create two-dimensional uniform degenerate clouds
of Rubidium atoms, with a full characterisation of the ‘optical accordion’ that
I have developed. I have introduced the detection methods that are used in
the rest of the thesis: the determination of the density distribution and the
determination of the phase-space density of the clouds of atoms (Chapter 2).
I have also explained the methods that we use to control their internal and
external degrees of freedom. I have notably characterised a new tool based
on Raman beams with which we are now able to perform spatially-dependent
coherent control between two internal states of the atoms (Chapter 3)

In the second part I have presented the particular topological phase transition
that occurs for a gas in two dimensions: the Berezinskii-Kosterlitz-Thouless
transition that describes several other two-dimensional systems. One important
feature of this transition is the phase ordering that has a quasi-long range below
the critical temperature and a short range above it. This phase ordering is
described by the first-order correlation function (Chapter 4).

I have developed two methods to estimate this first-order correlation function
in a uniform gas. The first one is based on the measurement of the momentum
distribution of the cloud, but technical issues limit the interpretation of the
results to qualitative statements (Chapter 5). The second one is a more direct
measurement of the phase correlation by interferometric means. This second
method provides more precise and reliable results. While further analysis is
needed to support our preliminary conclusions, it seems that we are able to
measure how the first-order correlation function decreases with the distance both
below and above the critical temperature. These measurements are compatible
with the theoretical prediction (Chapter 6).

The results of this part will be summed up in an article which is currently
under preparation.

159
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In a third part I have presented the symmetries of a weakly interacting Bose
gas (Chapter 7). These symmetries constitute a continuous Lie group whose
algebra is SO(2, 1). Their existence have been known for several decades, but
many of their consequences have not been tested as thoroughly as what we
have been able to do. In particular, we have demonstrated the ability, when the
cloud is in the Thomas-Fermi regime, to link the evolution of two clouds with
the same initial shape but different lengths and atom numbers, and evolving
with different external parameters (Chapter 8).

We have also found two types of initial wave functions that seem to evolve
periodically in an isotropic harmonic potential when they are deep in the
Thomas-Fermi regime: clouds that uniformly fill a triangle or a disk (Chapter 9).
They could constitute breathers of the two-dimensional non-linear Schrödinger
equation and could be relevant for several systems described by this equation,
but also for theoreticians who study the properties of non-linear differential
equations.
The results of this part have been gathered in an article that has been

published in May 2019.

outlook

On the phase ordering of the 2D Bose gas

Our measurements constitute an important step in the understanding the
specificities of two-dimensional phase transitions such as the BKT transition.
They are focussed on the equilibrium properties of the gas, but further interest-
ing experiments can be performed on a uniform 2D system to investigate its
dynamical properties.
For example, a sudden quench of the ratio T/Tc from above to below 1

leads to the disappearance of vortices with time, following a power law with
an exponent that depends on the dynamical exponent of the transition z
[181]. The investigation of this dynamical exponent has already been started
in two-dimensional Bose gases with experiments based on the Kibble-Zurek
mechanism [103], and the access to the first-order correlation function could be
an interesting tool to understand the dynamics of a quench [238] and thus to
probe the critical properties of the transition.
The experimental methods that we have developed are readily available

for such measurements, although they require a certain amount of data tak-
ing. These methods and the counting of topological defects constitute two
complementary tools to probe the physics of out-of-equilibrium dynamics.

On the dynamical symmetries of 2D systems

The experiments we performed demonstrate the consistency of the dynamics
of a weakly-interacting Bose gas with the dynamical symmetries of the two-
dimensional Gross-Pitaevskii equation. A possible direction, in which references
[239, 240] and also [241] are already heading with fermionic gases, is to observe
how these dynamical symmetries are broken when increasing the interaction
parameter g̃ to values at least on the order of unity. In this regime, a contact
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interaction is introduced and with it a length scale which breaks the scale
invariance of the system [242, 243].

Our methods to reconstruct scaling laws could be used to determine experi-
mentally whether such laws still exist in the strongly interacting regime and
could pave the way to the understanding of quantum anomalies. In particular,
the use of uniform initial clouds with simple shapes proved to be very powerful
to reliably extract these scaling laws.

More questions arise concerning the possible breathers that we observed,
assuming that it can be proven that their behaviour is periodic.
First comes the question whether their existence is a consequence of the

dynamical symmetries of the system. Such a question could be investigated
by testing different types of interactions that fulfil or not the scale invariance
of the system. For example, a system of classical particles in two dimensions,
interacting with a potential in 1/r2 is scale invariant. It could also be experi-
mentally explored by looking at the evolution of a two-dimensional gas in the
regime where the scale invariance is expected to be broken.
Another question is whether such breathers could exist in scale invariant

systems in other dimensions. In three dimensions, the pseudo-spin 1/2 Fermi
gas at unitarity is also scale invariant [244], with the same underlying algebra as
the weakly-interacting Bose gas. One could then consider a unitary Fermi gas
in three dimensions and test whether an initially uniform sphere or an initially
uniform tetrahedron evolves periodically in an isotropic harmonic potential.

The question whether we observed breathers of the Gross-Pitaevskii equation
is still open, and it might be a subject of interest for mathematicians and
theoretical physicists involved in the study of nonlinear equations. In particular,
one may wonder whether other initial clouds with more complicated shapes
and/or a non-uniform density could also have such a behaviour.

On the dynamics of mixtures in two dimensions

With the recent development of versatile experimental tools, such as the
spatially-resolved Raman beams described in Chapter 3, our set-up constitutes
an excellent platform to investigate the physics of mixtures in two dimensions.
Let us consider the two internal states F = 1,mF = 0 and F = 2,mF = 0,

labelled 1 and 2 here. The intraspecies scattering length a11 = 100.9(1)a0,
a22 = 94.60(2)a0 [132] and the interspecies scattering length a12 = 98.9(3)a0

[133], where a0 is the Bohr radius, are such that
a11a22

a2
12

< 1.

The two species are thus immiscible [41]. It is then interesting to initially prepare
the system in a state where the components of the two species overlap, and
observe how these two components subsequently evolve to spatially separate. An
example is given on Fig. 10.1, where the initial state is a uniform superposition
of the two species obtained with a π/2 microwave pulse. The dynamics is very
reproducible at short evolution times (t . 40ms on the given example) and
shows the formation of regular patterns, whose shape follow the geometry of



162 conclusion
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Figure 10.1: Dynamics of an initially balanced and uniform mixture of F = 1,mF = 0
and F = 2,mF = 0 atoms. The first row shows the density distribution
of the first species and the second row shows the density distribution of
the second species. The different columns refer to the following evolution
durations, as indicated on top of each of them.

the box potential and whose size depends on the atomic density. The evolution
of these patterns is the result of a non-linear coupling between different density
modes.

We can also prepare the cloud in a superposition of both species that has a
spatial modulation at a precise wave vector and look at the evolution of a single
of the density modes. This may allow us to probe the Bogoliubov dispersion
relation of the mixture [111].

The dynamics is grasped by coupled Gross-Pitaevskii equations that describe
a gas at zero temperature. One can then include the effects of a non-zero
temperature in order to better describe the experimental observations. At long
times indeed, the density distribution of a single realisation fluctuates a lot
probably due to the temperature, and the system reaches a disordered state as
shown on the last column of Fig. 10.1. There are also losses of atoms in F = 2
with a typical time scale on the order of several tens of milliseconds that occur
on such an experiment.

One can also wonder what kind of symmetries these coupled Gross-Pitaevskii
equations have. The spin degree of freedom enriches the system and could
result in a more complex symmetry group that could be investigated both
experimentally and theoretically. A first partial answer can already be given:
the coupled equations stay scale-invariant and in the presence of a harmonic
potential of frequency ω they still have a SO(2,1) symmetry. In particular the
total potential energy oscillates sinusoidally at frequency 2ω.

There is also the question of the existence of breathers. In the case a11 = a22, a
mixture where the two components initially share the same spatial wavefunction
has the same breathers as a one-component cloud. The question is open if
a11 6= a22.

Another direction that the team has already begun to follow is to study the
dynamics of small impurities composed of atoms of one component immersed
in a large sea of atoms of the other component. This dynamics can be studied
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in different regimes, from a coherent regime where the two components are
well-described by a wave function and coupled Gross-Pitaevskii equations to a
regime described by the physics of the Bose polaron [245], where the impurity
consists in only a few or a few tens of atoms that would be dilute enough
not to interact one with another, and whose dynamics could be captured by a
quantum Brownian model [246].
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A
COUPL ING TWO HYPERF INE STATES WITH
RAMAN BEAMS

Consider two light fields with respective frequency ωp and ωs, and with
respective polarisation εp and εs. The Hamiltonian induced by the light field is
therefore Hp +Hs, with

Hα = −1

2
(d · εα) Eα exp(iωαt) + h.c., (A.1)

where d is the electrical dipole moment of the atom and Ep,s are the electric
fields of each of the laser beams.
The frequencies ωp,s are chosen so that they are between the frequencies of

the D1 and the D2 lines, and so that their difference ωp − ωs is close to the
ground state hyperfine splitting ωh.

We want to couple the states
∣∣S1/2, F = 1,mF

〉
to the states

∣∣S1/2, F = 2,mF

〉
,

and we have to consider the following excited states:

•
∣∣P1/2, F,mF

〉
with F = 1, 2 and mF = −F, · · · , F

•
∣∣P3/2, F,mF

〉
with F = 0, 1, 2, 3 and mF = −F, · · · , F .

We decompose the state of the system on this basis. We denote as AF,mF its
amplitude for the state

∣∣S1/2, F,mF

〉
, BF,mF the one for

∣∣P1/2, F,mF

〉
and

CF,mF the one for
∣∣P3/2, F,mF

〉
.

In the rotating frame associated with the frequency ωp, we can project the
Schrödinger equation on the states that we consider. The detunings ∆1,2 are
much larger than the hyperfine splitting within each of the 2P states, which
gives:

2i~ Ȧ1,mF =−
∑

F ′,m′F
∈P1/2

〈
S1/2, 1,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P1/2, F

′,m′F
〉
BF ′,m′F

−
∑

F ′,m′F
∈P1/2

〈
S1/2, 1,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P1/2, F

′,m′F
〉
BF ′,m′F

−
∑

F ′,m′F
∈P3/2

〈
S1/2, 1,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P3/2, F

′,m′F
〉
CF ′,m′F

−
∑

F ′,m′F
∈P3/2

〈
S1/2, 1,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P3/2, F

′,m′F
〉
CF ′,m′F ,

(A.2)
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Figure A.1: Electronic structure of the lowest states of rubidium and representation
of the two Raman beams.

2i~ Ȧ2,mF =−
∑

F ′,m′F
∈P1/2

〈
S1/2, 2,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P1/2, F

′,m′F
〉
BF ′,m′F

−
∑

F ′,m′F
∈P1/2

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P1/2, F

′,m′F
〉
BF ′,m′F

−
∑

F ′,m′F
∈P3/2

〈
S1/2, 2,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P3/2, F

′,m′F
〉
CF ′,m′F

−
∑

F ′,m′F
∈P3/2

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P3/2, F

′,m′F
〉
CF ′,m′F

+ 2~δ A2,mF .

(A.3)

2i~ ḂF ′,m′F =−
∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,mF

〉
A1,mF

−
∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 1,mF

〉
A1,mF

−
∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,mF

〉
A2,mF

−
∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,mF

〉
A2,mF

+ 2~∆2BF ′,m′F ,

(A.4)
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2i~ ĊF ′,m′F =−
∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,mF

〉
A1,mF

−
∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 1,mF

〉
A1,mF

−
∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,mF

〉
A2,mF

−
∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,mF

〉
A2,mF

+ 2~∆1CF ′,m′F ,

(A.5)

Since the detunings ∆1,2 are much larger than the line widths of the excited
states and than the Rabi frequencies induced by the laser beams, we can
adiabatically eliminate the populations in the excited states: ḂF ′,m′F ≈ 0 and
ĊF ′,m′F ≈ 0. We get from A.4 andA.5:

BF ′,m′F =
1

2~∆2

(∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,mF

〉
A1,mF

∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 1,mF

〉
A1,mF

∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,mF

〉
A2,mF

∑

mF

〈
P1/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,mF

〉
A2,mF

)
,

(A.6)

CF ′,m′F =
1

2~∆1

(∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,mF

〉
A1,mF

∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 1,mF

〉
A1,mF

∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,mF

〉
A2,mF

∑

mF

〈
P3/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,mF

〉
A2,mF

)
.

(A.7)

We insert these expressions in the differential equations for the states S1/2,
although it does not look friendly. We also remove all the terms that are
not resonant, such as terms describing the coupling of

∣∣S1/2, F = 1,mF

〉
and∣∣S1/2, F = 2,mF

〉
via two photons from the same laser beam.
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i~ Ȧ2,mF =

1

4~∆2



∑

F ′,m′F
∈P1/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P1/2, F

′,m′F
〉

×
〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,m
′′
F

〉
A2,m′′F

+
∑

F ′,m′F
∈P1/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P1/2, F

′,m′F
〉

×
〈
P1/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,m
′′
F

〉
A1,m′′F

+
∑

F ′,m′F
∈P1/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P1/2, F

′,m′F
〉

×
〈
P1/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,m
′′
F

〉
A2,m′′F




+
1

4~∆1



∑

F ′,m′F
∈P3/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗p) E∗p
∣∣P3/2, F

′,m′F
〉

×
〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 2,m
′′
F

〉
A2,m′′F

+
∑

F ′,m′F
∈P3/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P3/2, F

′,m′F
〉

×
〈
P3/2, F

′,m′F
∣∣(d · εp) Ep

∣∣S1/2, 1,m
′′
F

〉
A1,m′′F

+
∑

F ′,m′F
∈P3/2

∑

m′′F

〈
S1/2, 2,mF

∣∣(d∗ · ε∗s ) E∗s
∣∣P3/2, F

′,m′F
〉

×
〈
P3/2, F

′,m′F
∣∣(d · εs) Es

∣∣S1/2, 2,m
′′
F

〉
A2,m′′F




+ ~δ A2,mF , (A.8)

and we have a similar equation for Ȧ1,mF .
For each of these terms, the sum over the indices m′F and m′′F depends on

the polarisation of the light: the matrix elements are null if the light does not
contain the polarisation that links the two considered states. There are also
terms that are null because the numbers F and F ′ they involve do not fulfill
|F ′ − F | ≤ 1.

In our case we chose the two following polarisations: (σ+ + σ−)/
√

2 and
(σ+ − σ−)/

√
2, which means that we can only couple states of 2S1/2 that have

mF numbers of the same parity.
If we initially have atoms in

∣∣2S1/2, F = 1,mF = 0
〉
, then we can populate

only the states
∣∣2S1/2, F = 2,mF = −2, 0, 2

〉
. Let us first demonstrate that the
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states with mF = −2, 2 cannot be populated by developing the expression of
Ȧ2,2 at t = 0, when A2,mF = 0:

i~2 Ȧ2,2 = − 1

4∆2


 ∑

F ′=1,2

〈
S1/2, 2, 2

∣∣d+E∗s
∣∣P1/2, F

′, 1
〉

×
〈
P1/2, F

′, 1
∣∣d+ Ep

∣∣S1/2, 1, 0
〉
A1,0

)

− 1

4∆1


 ∑

F ′=1,2

〈
S1/2, 2, 2

∣∣d+E∗s
∣∣P3/2, F

′, 1
〉

×
〈
P3/2, F

′, 1
∣∣d+ Ep

∣∣S1/2, 1, 0
〉
A1,0

)
.

(A.9)

In this last expression we have only kept the processes allowed by the selection
rules: a light with polarisation σ+ (resp. σ−) can couple states with quantum
numbers F = 1,mF and F ′ = 2,m′F only if m′F = mF +1 (resp. m′F = mF −1).
The operator d+ denotes here the component of the dipole operator associated
with a σ+ polarisation.

Each matrix element can be decomposed into a product of two terms thanks
to the Wigner-Eckhart theorem [247].

For example a matrix element
〈
S1/2, F,mF

∣∣d+E
∣∣P1/2, F

′,m′F
〉
is equal to the

product of a reduced matrix element
〈
S1/2, F

∣∣∣∣d
∣∣∣∣P1/2, F

′〉 and of a Clebsch-
Gordan coefficient 〈F, 1,mF ,+1|F ′,m′F 〉 describing the composition of a spin
F with a photon of spin 1 to obtain a spin F ′, and quantifying the transition
probability between the states of respective quantum numbers mF , m′F with a
photon of polarisation σ+.
The reduced matrix element can be further decomposed:

〈
S1/2, F

∣∣∣∣d
∣∣∣∣P1/2, F

′〉 =
〈
S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉
× (−1)F

′+J+1+I

×
√

(2F ′ + 1)(2J + 1)

{
J J ′ 1

F ′ F I

}
, (A.10)

where J is the quantum number associated here with the state S1/2, J ′ is the
one associated here with the state P1/2, I = 3/2 is the nuclear spin of the atom,
and the last term is a Wigner 6-j symbol.
We regroup some of these terms by defining the coefficient

〈
S1/2, 2, 2

∣∣P1/2, F
′, 1
〉

= (−1)F
′+J+1+I

√
(2F ′ + 1)(2J + 1)

×
{
J J ′ 1

F ′ F I

}
〈
F, 1,mF ,+1

∣∣F ′,m′F
〉

(A.11)

that are tabulated in [248].
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Equation A.9 can therefore be rewritten as

i~2 Ȧ2,2 = − 1

4∆2

∑

F ′=1,2

〈
S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 〈
S1/2, 2, 2

∣∣P1/2, F
′, 1
〉

×
〈
P1/2

∣∣∣∣d
∣∣∣∣S1/2

〉 〈
P1/2, F

′, 1
∣∣S1/2, 1, 0

〉
E∗s EpA1,0

− 1

4∆1

∑

F ′=1,2

〈
S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 〈
S1/2, 2, 2

∣∣P3/2, F
′, 1
〉

×
〈
P3/2

∣∣∣∣d
∣∣∣∣S1/2

〉 〈
P3/2, F

′, 1
∣∣S1/2, 1, 0

〉
E∗s EpA1,0,

(A.12)

and we can factor terms out of the sums:

i~2 Ȧ2,2 =
(
− 1

4∆2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2

×
∑

F ′=1,2

〈
S1/2, 2, 2

∣∣P1/2, F
′, 1
〉 〈
P1/2, F

′, 1
∣∣S1/2, 1, 0

〉

− 1

4∆1

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2

×
∑

F ′=1,2

〈
S1/2, 2, 2

∣∣P3/2, F
′, 1
〉 〈
P3/2, F

′, 1
∣∣S1/2, 1, 0

〉

 E∗s EpA1,0. (A.13)

The two sums can be computed with the tables of [248]:

∑

F ′=1,2

〈
S1/2, 2, 2

∣∣P1/2, F
′, 1
〉 〈
P1/2, F

′, 1
∣∣S1/2, 1, 0

〉
= − 1√

4

1√
6

+
1√
12

1√
2

= 0
(A.14)

∑

F ′=1,2

〈
S1/2, 2, 2

∣∣P3/2, F
′, 1
〉 〈
P3/2, F

′, 1
∣∣S1/2, 1, 0

〉
= − 1√

8

1√
12
−
√

5√
24

1√
20

= 0
(A.15)

Therefore Ȧ2,2(t = 0) = 0 and the state
∣∣S1/2, 2, 2

〉
cannot be populated. By

symmetry it is the same for
∣∣S1/2, 2,−2

〉
. This is true because we are in the

limit where the detunings ∆1,2 are much larger than the hyperfine splitting of
the ground and excited states and they can be factored out of the sums over
the hyperfine states.

The only states that can be coupled are then
∣∣S1/2, 1, 0

〉
and

∣∣S1/2, 2, 0
〉
.

The differential equations on their amplitudes can be expressed in the same
way as we did for Ȧ2,2:
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i~2 Ȧ2,0 = − 1

4∆2


 ∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P1/2, F

′, 1
〉

×
〈
P1/2, F

′, 1
∣∣S1/2, 2, 0

〉 ∣∣Ep

∣∣2A2,0

+
∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P1/2, F

′, 1
〉

×
〈
P1/2, F

′, 1
∣∣S1/2, 1, 0

〉
E∗s EpA1,0

+
∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P1/2, F

′, 1
〉

×
〈
P1/2, F

′, 1
∣∣S1/2, 2, 0

〉 ∣∣Es

∣∣2A2,0




− 1

4∆1


 ∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P3/2, F

′, 1
〉

×
〈
P3/2, F

′, 1
∣∣S1/2, 2, 0

〉 ∣∣Ep

∣∣2A2,0

+
∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P3/2, F

′, 1
〉

×
〈
P3/2, F

′, 1
∣∣S1/2, 1, 0

〉
E∗s EpA1,0

+
∑

F ′=1,2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2 〈S1/2, 2, 0
∣∣P3/2, F

′, 1
〉

×
〈
P3/2, F

′, 1
∣∣S1/2, 2, 0

〉 ∣∣Es

∣∣2A2,0




+ ~2δA2,0, (A.16)

where the contributions of the σ+ and σ− of each beams interfere construc-
tively. If we had chosen the same polarisations for the two beams, they would
have interfered destructively and there would be no coupling between the two
hyperfine states. We can perform the sums over the coefficients separately:

∑

F ′=1,2

∣∣ 〈S1/2, 2, 0
∣∣P1/2, F

′, 1
〉 ∣∣2 =

1

4
+

1

12

=
1

3
, (A.17)

∑

F ′=1,2

∣∣ 〈S1/2, 2, 0
∣∣P3/2, F

′, 1
〉 ∣∣2 =

1

5
+

1

8
+

1

120

=
1

3
, (A.18)
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∑

F ′=1,2

〈
S1/2, 2, 0

∣∣P1/2, F
′, 1
〉 〈
P1/2, F

′, 1
∣∣S1/2, 1, 0

〉
= − 1√

4

1√
4
− 1√

12

1√
12

= −1

3
,

(A.19)

∑

F ′=1,2

〈
S1/2, 2, 0

∣∣P3/2, F
′, 1
〉 〈
P3/2, F

′, 1
∣∣S1/2, 1, 0

〉
=

1√
8

1√
8

+
1√
120

√
5√
24

=
1

6
.

(A.20)
And finally we get

i~2 Ȧ2,0 = − 1

4∆2

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2
(∣∣Ep

∣∣2 +
∣∣Es

∣∣2

3
A2,0 −

E∗s Ep

3
A1,0

)

− 1

4∆1

∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2
(∣∣Ep

∣∣2 +
∣∣Es

∣∣2

3
A2,0 +

E∗s Ep

6
A1,0

)

+ ~2δA2,0, (A.21)

We also have
∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P3/2

〉 ∣∣2 = 2
∣∣ 〈S1/2

∣∣∣∣d
∣∣∣∣P1/2

〉 ∣∣2 due to the degeneracy
of the excited states, therefore we obtain

i Ȧ2,0 =

[
δ −

(
1

3∆2
+

2

3∆1

) ∣∣Ωp

∣∣2 +
∣∣Ωs

∣∣2

4

]
A2,0

−
(

1

3∆1
− 1

3∆2

)
Ω∗s Ωp

4
A1,0, (A.22)

where Ωp,s are the Rabi frequencies associated with each of the laser beams.
Similarly we have

i Ȧ1,0 = −
(

1

3∆2
+

2

3∆1

) ∣∣Ωp

∣∣2 +
∣∣Ωs

∣∣2

4
A1,0

−
(

1

3∆1
− 1

3∆2

)
Ω∗pΩs

4
A2,0. (A.23)

We therefore obtain from the two light beams an effective coupling between
the states

∣∣S1/2, F = 1,mF = 0
〉
and

∣∣S1/2, F = 2,mF = 0
〉
with an effective

Rabi frequency

ΩR =

(
1

3∆2
− 1

3∆1

)
Ω∗pΩs

4
, (A.24)

and with an effective detuning δeff = δ. Moreover, each of the states experiences
a light shift Vshift:

Vshift = −
(

1

3∆2
+

2

3∆1

) ∣∣Ωp

∣∣2 +
∣∣Ωs

∣∣2

4
. (A.25)



B
CORRELATION FUNCTION OF AN IDEAL 2D BOSE
GAS

I detail here the calculations that provide the results discussed in Chapter 4,
section 4.1.2.

The eigenfunctions of a square box of size L are the plane waves

ψp(r) =
1

L
exp

(
ip · r
~

)
, (B.1)

where the momentum p is quantized:

p = 2π~k/L, (B.2)
k = (kx, ky), kx,y ∈ Z. (B.3)

The energy of a state with momentum p is

Ep = p2/(2m). (B.4)

In the grand-canonical ensemble, the Bose-Einstein distribution provides the
occupation number Np of the state labelled by the momentum p for a system
characterized by its temperature T and its chemical temperature µ:

Np =
1

exp
(
Ep−µ
kBT

)
− 1

. (B.5)

In this expression, the chemical potential µ has to stay negative. We introduce
the fugacity z of the system: z = exp (µ/(kBT )), and we can write the last
equation as

Np =
+∞∑

l=1

zl exp

(
− lp2

2mkBT

)
. (B.6)

To get the total atom number N , we sum this quantity over all the momentum
states:

N =
∑

kx,ky

+∞∑

l=1

zl exp

(
−2π2l~2k2

mL2kBT

)
. (B.7)

In the regime where the thermal wave length λT =
√

2π~2/(mkBT ) is smaller
than the size L of the box, one can replace the sum over the discrete modes k
by an integral over R2:

N =
+∞∑

l=1

zl
∫

d2k exp

(
−2π2l~2k2

mL2kBT

)
(B.8)

=
mL2kBT

2π2~2

+∞∑

l=1

zl

l

∫
d2u exp

(
−u2

)
. (B.9)
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We finally replace the integral by its value π, and we use the identity ln(1− z) =
−∑+∞

l=1 z
l/l to express the 2D density n = N/L2:

n = − 1

λ2
T

ln(1− z). (B.10)

We also express the PSD D = nλ2
T of the gas:

D = − ln(1− z). (B.11)

The total number of atoms is not bounded, such as in three dimensions,
which means that there is no Bose-Einstein condensation at the thermodynamic
limit in two dimensions.

We have shown in Chapter 4 that the correlation function G1 of a trans-
lational invariant system can be obtained via the Fourier transform of the
momentum distribution Np. In the case of the ideal 2D Bose gas, Np is a sum
of Gaussian functions, therefore G1 is also the sum of Gaussian functions:

G1(0, r) =
1

λ2
T

+∞∑

l=1

zl

l
exp

(
−πr

2

lλ2
T

)
. (B.12)

In the limit where the gas is far from quantum degeneracy, we have |µ| � 1
and µ < 0, which means a fugacity z � 1, and all the sums over the index
l can be evaluated with their first term only. The momentum distribution in
equation B.6 is then a simple Gaussian, and so is the first-order correlation
function in equation B.12:

g1(r) = exp

(
−πr

2

λ2
T

)
. (B.13)

In the limit where the gas is degenerate, we have z ≈ 1, and 1−z ≈ |µ|/(kBT ).
The expression B.12 is not easy to interpret. However, we can develop the
expression of the momentum distribution from equation B.5:

Np =
z

1− z∑+∞
l=1

1
l!

(
p2

2mkBT

)l . (B.14)

For the momenta p verifying p2 < 2mkBT , we can approximate Np by keeping
only the first term in the sum:

Np =
2mkBT

2m|µ|+ p2
. (B.15)

When counting the number of atoms N1 that have a momentum verifying
p2 < 2mkBT , we obtain:

N1 =
L2

(2π~)2

∫ √2mkBT

p=0
2πpdp

2mkBT

2m|µ|+ p2
(B.16)

=
L2

λ2
T

ln

(
1 +

kBT

|µ|

)
(B.17)

≈ 2πL2

λ2
T

D (B.18)

≈ N. (B.19)
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Almost all the atoms are considered when limiting p to an amplitude lower
than 2mkBT , and we can therefore neglect the momenta exceeding 2mkBT .
The momentum distribution is then simply given by equation B.15. Its Fourier
transform in two dimensions is a modified Bessel function of the second kind,
denoted as K0. Therefore we have

G1(0, r) =
1

(2πλT )2
K0

( |r|
`

)
, (B.20)

with
` =

~√
2m|µ|

. (B.21)





C
DETAILS ON THE INTERFEROMETRIC
MEASUREMENTS OF g 1

In this appendix are summarized all the curves that we have measured to
probe the first-order correlation function g 1 of a 2D Bose gas across the BKT
transition, and that are discussed in Chapter 6.
The curves are shown in logarithmic graphs on Fig. C.1. Each of them is

fitted with a power law. The same curves are shown in semi-logarithmic graphs
on Fig. C.2, and each of them is fitted with an exponential decay.
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Figure C.1: The contrast C is plotted as a function of the distance dl (in micrometers)
between the two lines that interfere. The value of T/Tc is written on top
of each graph. The horizontal and vertical scales are the same for all the
graphs. The curves are presented with their power-law fit, represented as
solid lines.
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Figure C.2: The same data as Fig. C.1 are shown in semi-logarithmic graphs. The
horizontal axis represents dl in micrometers, and the vertical one represents
the contrast C(dl). The horizontal and vertical scales are the same for all
graphs. The exponential fit of each curve is shown as a solid line.



D
DETAILS ON THE SCAL ING LAWS OF THE 2D BOSE
GAS

d.1 free gross-pitaevski i equation

I prove here that an expansion, as presented in 7.2.1.2, keeps the free GPE
(equation 7.15) invariant. The function ψ′ is defined as stated in equation 7.20.
The different terms of the GPE are expressed in terms of the initial function ψ
and coordinates r and t:

i~
∂ψ′

∂t′
=

[
i~(γt+ 1)2γψ − m

2
(γt+ 1)γ2r2ψ − ~2

2m
(γt+ 1)3∇2ψ

+
~2

m
g̃N(γt+ 1)3|ψ|2ψ +m(γt+ 1)γ2r2ψ

+ i~(γt+ 1)2γr ·∇ψ
]

exp

(
− imγr2

2~(γt+ 1)

)
,

(D.1)
~2

2m
∇′2ψ′ =

[
− i~(γt+ 1)2γψ − i~(γt+ 1)2γr ·∇ψ − m

2
(γt+ 1)γr2ψ

+
~2

2m
(γt+ 1)3∇2ψ

]
exp

(
− imγr2

2~(γt+ 1)

)
,

(D.2)

−~2

m
g̃N |ψ′|2ψ′ = − ~2

m
g̃N(γt+ 1)3|ψ|2ψ exp

(
− imγr2

2~(γt+ 1)

)
. (D.3)

In the first term we have used the GPE that the wave function ψ fulfils.
The sum of these three terms is equal to zero, which means that the wave

function ψ′ is indeed a solution of the same Gross-Pitaevskii equation.

d.2 gross-pitaevski i equation with a harmonic trap

I prove here the different properties of the GPE with a harmonic trap in
the reverse order compared to their presentation in the main text. First, in
D.2.1, I demonstrate how a solution of an equation with a time-dependent
trap frequency can be derived from the solution of an equation with a time-
independent trap frequency. Then, in D.2.2, I use it to link the solution of the
free GPE (which has a fixed trap frequency ω = 0) to the solution of a GPE with
a fixed trap frequency. Finally, in D.2.3, I derive the Lie group of the GPE with
a harmonic trap by using the Lie group of the free GPE and the link between
these two equations.
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d.2.1 General case: a variable trap frequency

Let ψ1 be a solution of the equation

i~
∂ψ

∂t
+

~2

2m
∇2ψ − ~2

m
g̃N |ψ|2ψ − 1

2
mω2r2ψ = 0. (D.4)

We consider the function

ψ2(r′, t′) = fω̃(r, t)ψ1(r, t), (D.5)

with

r′ =
r

λω̃(t)
, (D.6)

t′ =
∫ t

0

du

λ2
ω̃(u)

, (D.7)

fω̃ = λω̃(t) exp

(
− imλ̇ω̃r

2

2~λω̃

)
, (D.8)

where the function λω̃ is a solution of the differential equation

λ̈ =
ω2(t)

λ3
− ω2λ. (D.9)

The function ω̃(t) is any smooth function.

Let us prove that ψ2 is a solution of the equation

i~
∂ψ

∂t
+

~2

2m
∇2ψ − ~2

m
g̃N |ψ|2ψ − 1

2
mω2r2ψ = 0. (D.10)

We express each of the terms of equation D.10:

i~
∂ψ2

∂t′
=

[
i~λ̇ω̃λ2

ω̃ψ1 +
m

2
λ̈ω̃λ

2
ω̃r

2ψ1 +
m

2
λ̇2
ω̃λω̃r

2ψ1

− ~2

2m
λ3
ω̃∇2ψ1 +

~2

m
g̃Nλ3

ω̃|ψ1|2ψ1 +
mω2

2
λ3
ω̃r

2ψ1

+mλ̇2
ω̃λω̃r

2ψ1 + i~λ̇ω̃λ2
ω̃ r ·∇ψ1

]
exp

(
− imλ̇ω̃r

2

2~λω̃

)
,

(D.11)

~2

2m
∇′2ψ2 = −

[
i~λ̇ω̃λ2

ω̃ψ1 +
m

2
λ̇2
ω̃λω̃r

2ψ1 + i~λ̇ω̃λ2
ω̃ r ·∇ψ1

− ~2

2m
λ3
ω̃∇2ψ1

]
exp

(
− imλ̇ω̃r

2

2~λω̃

)
,

(D.12)

−~2

m
g̃N |ψ2|2ψ2 = − ~2

m
g̃Nλ3

ω̃|ψ1|2ψ1 exp

(
− imλ̇ω̃r

2

2~λω̃

)
, (D.13)

−m
2
ω2(t) r′2ψ2 = − m

2

ω2(t)

λω̃
r2ψ1 exp

(
− imλ̇ω̃r

2

2~λω̃

)
. (D.14)

The sum of these four terms above is equal to zero if and only if

m

2

(
λ̈ω̃λ

2
ω̃ + ω2λ3

ω̃ −
ω2(t)

λω̃

)
r2ψ1 = 0, (D.15)

which is the case if λ satisfies equation D.9.
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d.2.2 Particular case: a constant trap frequency

We apply the previous section with ω = 0 and ω̃(t) = ω0 which is a constant.
The equation D.9 is now

λ̈ =
ω2

0

λ3
. (D.16)

We integrate it a first time with the initial conditions λ̇(0) = 0 and λ(0) = 1:

λ̇2 = ω2
0

(
1− 1

λ2

)
, (D.17)

which then integrates in

λ(t) =
√

1 + ω2
0t

2. (D.18)

The relation D.7 between the times is then

t′ =
∫ t

0

du

1 + ω2
0u

2
, (D.19)

which means that
tan
(
ω0t
′) = ω0t. (D.20)

With this we have demonstrated the link between the free GPE and the GPE
with a harmonic trap of frequency ω0.

d.2.3 Invariant transformations

Since the solutions of the free GPE can be mapped onto the solutions of the
GPE with a harmonic trap, the Lie group of the two equations are homeomorphic.
We can use the expression of the transformations of the first group along with the
link between the two equations to deduce the expression of the transformations
of the second group. We prove here the equations 7.39, 7.40 and 7.41.
Let ψ0,1(r, t) a solution of the free GPE. A transformation Tα,β,γ,δ with

parameters α, β, γ, δ allows us to construct another solution of this equation,
as defined in equations 7.22 and 7.23. Thanks to the transformation T0,ω

defined in equations 7.59 to 7.63, we can then construct two wave functions
ψω,1(ρ, τ) and ψω,2(ρ′, τ ′) that are solutions of the GPE with a harmonic trap
with frequency ω. We only need to express the coordinates of ρ′, τ ′ in terms of
the coordinates ρ, τ and to determine how to transform ψω,1 into ψω,2. This
scheme is summarised on Fig. D.1.

We start with the rescaling of time. We have three equations to combine:

tan
(
ωτ ′
)

= ωt′, (D.21)

t′ =
αt+ β

γt+ δ
, (D.22)

tan(ωτ) = ωt. (D.23)

We get directly

tan
(
ωτ ′
)

=
α tan(ωτ) + βω
γ
ω tan(ωτ) + δ

. (D.24)
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ψ0,1(r, t)

ψω,1(ρ, τ)

ψ0,2(r′, t′)

ψω,2(ρ′, τ ′)

T0,ω

Tα,β,γ,δ

?

T0,ω

Figure D.1: Determining the Lie-Bäcklund transformations of the GPE with a harmonic
potential. We use the Bäcklund transformation T0,ω that links this equation
to the free GPE, and the Lie-Bäcklund transformations of this free GPE.

We define the new parameters α̃ = α, β̃ = βω, γ̃ = γ/ω and δ̃ = δ, which
satisfy the constraint α̃δ̃ − β̃γ̃ = 1 and give

tan
(
ωτ ′
)

=
α̃ tan(ωτ) + β̃

γ̃ tan(ωτ) + δ̃
, (D.25)

which proves equation 7.42, which is equivalent to equation 7.40 with the
assumption that τ ′ is a continuous and monotonous function.

We continue with the rescaling of space. We have three equations as well:

ρ′ =
r′

(1 + ω2t′2)1/2
, (D.26)

r′ =
r

γt+ δ
, (D.27)

ρ =
r

(1 + ω2t2)1/2
. (D.28)

We translate them in terms of τ instead of t and t′:

ρ′ =

( γ
ω tan(ωτ) + δ

)
r′

[
(α tan(ωτ) + βω)2 +

( γ
ω tan(ωτ) + δ

)2]1/2
, (D.29)

r′ =
r

γ
ω tan(ωτ) + δ

, (D.30)

ρ =
r

(1 + tan2(ωτ))1/2
. (D.31)

And we finally combine them to get, with the parameters α̃, β̃, γ̃, δ̃:

ρ′ =
ρ

λ(τ)
, (D.32)

with

λ(τ) =

[(
α̃ sin(ωτ) + β̃ cos(ωτ)

)2
+
(
γ̃ sin(ωτ) + δ̃ cos(ωτ)

)2
]1/2

(D.33)

which demonstrates equation 7.39.
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Finally, we prove the expression of the function f(ρ, τ) in equation 7.41.
From the definitions of f0,ω (equation 7.63) and fγ,δ (equation 7.23), we have

ψω,2 = f(ρ, τ)ψω,1 (D.34)

with

f(ρ, τ) =
f0,ω(r′, t′) fγ,δ(r, t)

f0,ω(r, t)
(D.35)

=
(1 + ω2t′2)1/2(γt+ δ)

(1 + ω2t2)1/2
exp

[
− im

2~

(
ω2t′r′2

1 + ω2t′2
+

γr2

γt+ δ
− ω2tr2

1 + ω2t2

)]
.

(D.36)

With the new parameters α̃, β̃, γ̃, δ̃ and with the previous relations between the
times t, t′, τ and the spatial coordinates r, r′,ρ, we get

f(ρ, τ) =

[
1 +

(
α̃ tan(ωτ)+β̃

γ̃ tan(ωτ)+δ̃

)2
]1/2 [

γ̃ tan(ωτ) + δ̃
]

(1 + tan2(ωτ))1/2

×exp


− imρ2

2~




α̃ω tan(ωτ)+β̃ω

γ̃ tan(ωτ)+δ̃
(1 + tan2(ωτ))

1 +
(
α̃ tan(ωτ)+β̃

γ̃ tan(ωτ)+δ̃

)2 +
ωγ̃(1 + tan2(ωτ))

γ̃ tan(ωτ) + δ̃
− ω tan(ωτ)





 .

(D.37)

One can show after a tedious but easy calculation that

f(ρ, τ) = λ(τ) exp

(
− imdλ

dτ ρ
2

2~λ(τ)

)
. (D.38)

This demonstrates equation 7.41 and ends the proof.

d.3 hydrodynamic equations

I demonstrate here how one can deduce a solution of a GPE with parameters ω,
g̃2,N2 from the solution of a GPE with parameters ω, g̃1,N1 in the hydrodynamic
regime.
In this regime, the GPE is equivalent to the two equations

∂n

∂t
+∇ · (nv) = 0, (D.39)

∂v

∂t
+∇

(
1

2
mv2 +

~2

m
g̃n+

1

2
mω2r2

)
= 0. (D.40)

Let n1(r, t),v1(r, t) be a solution of these equations for the parameters ω, g̃1,
N1. Then one can easily check that the functions

n′(r′, t′) = µ2n1(r, t), (D.41)
v′(r′, t′) = µv1(r, t), (D.42)

where r′ = r and t′ = t/µ, are a solution of the GPE with parameters µω, g̃2,
N2, where g̃2N2 = µ2g̃1N1.
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We can then apply a transformation on this solution to obtain a solution of
the GPE with parameters ω, g̃2, N2. This transformation is given by equations
7.64 to 7.68, with ω2 = ω and ω1 = µω.

This transformation acts on n′ and v′ which are transformed into n2(r′′, t′′)
and v2(r′′, t′′) with

n2(r′′, t′′) = µ2λ2
µω,ω(t′)n1(r, t), (D.43)

v2(r′′, t′′) = µλµω,ω(t′)v1(r, t)− µdλµω,ω
dt′

(D.44)

and

r′′ =
r

λµω,ω(t′)
, (D.45)

tan
(
ω2t
′′) =

1

µ
tan

(
µωt

µ

)
. (D.46)

These formula are exactly the same as equations 7.87 to 7.91, since

λµω,ω(t′) =

[
1

µ2
sin2(ωt) + cos2(ωt)

]1/2

. (D.47)
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Loading and compression of a single two-dimensional Bose gas in an optical accordion
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The experimental realization of two-dimensional (2D) Bose gases with a tunable interaction strength is an
important challenge for the study of ultracold quantum matter. Here we report on the realization of an optical
accordion creating a lattice potential with a spacing that can be dynamically tuned between 11 and 2 μm. We show
that we can load ultracold 87Rb atoms into a single node of this optical lattice in the large spacing configuration
and then decrease nearly adiabatically the spacing to reach a strong harmonic confinement with frequencies larger
than ωz/2π =10 kHz. Atoms are trapped in an additional flat-bottom in-plane potential that is shaped with a high
resolution. By combining these tools we create custom-shaped uniform 2D Bose gases with tunable confinement
along the transverse direction and hence with a tunable interaction strength.

DOI: 10.1103/PhysRevA.95.013632

I. INTRODUCTION

Thanks to their high degree of isolation from the environ-
ment and the rich toolbox developed from atomic physics,
quantum gases are ideal platforms to study strongly correlated
systems [1] or to develop new metrology devices [2]. A
key ingredient is the development of custom-shaped optical
potentials allowing one to confine atoms in tunable geometries.
Atoms are routinely trapped in low-dimensional setups, optical
lattices, or, as recently demonstrated, flat-bottom potentials
for three-dimensional (3D) [3] and two-dimensional (2D)
[4,5] gases.

Low-dimensional systems are of particular interest for
several reasons. The role of thermal and quantum fluctuations
is enhanced compared to 3D and leads to rich physics such as
the existence of the Berezinskii-Kosterlitz-Thouless superfluid
phase in two dimensions [6,7]. When placed in (artificial)
magnetic fields, they can give rise to topological phases of
matter similar to those appearing in the quantum Hall effect [8].
From a more technical point of view, 2D systems, now
routinely used in “atomic microscope” experiments [9,10],
are well suited to implement high-resolution imaging or trap
shaping with a resolution typically better than 1 μm, without
being limited by a short focal depth or line-of-sight integration.

In 2D cold atomic clouds the interparticle interactions are
characterized by a dimensionless parameter g̃ = √

8πa/�z,
where a is the s-wave scattering length and �z is the harmonic
oscillator length along the strongly confining direction [11].
Varying the confinement (hence �z) thus opens the possibility
of controlling the interaction strength for a fixed value of a

and eventually entering the strongly interacting regime for
large values of g̃ [12,13].

One of the challenges of realizing 2D systems is to load
a large fraction of an initial (3D) Bose-Einstein condensate

*beugnon@lkb.ens.fr

(BEC) in a single highly anisotropic trap with relatively weak
confinement in the xy plane and a strong one along the third
(z) direction. A possible approach consists of making a single
potential minimum using either phase plates, creating a node
of intensity of blue-detuned light [14], or a tightly focused
red-detuned single beam [15]. Another approach consists of
making an optical lattice by crossing two interfering beams
at a fixed angle. In that case, the lattice spacing and hence
the achievable strength of the confinement along the z axis are
limited by the requirement of a single node loading [16,17]. Yet
another possibility is to use a small-spacing lattice, load several
planes, and then remove atoms in all the planes but one [18].
This procedure may lead to an important atom loss that is
detrimental for exploring large systems. Single-plane 2D Bose
gases have also been demonstrated in radio-frequency-dressed
magnetic traps with a moderate transverse confinement [19] or
in more complex setups involving an evanescent optical field
close to a dielectric surface [20].

In this paper we create a single 2D cloud with a large
number of atoms and a tunable confinement using a so-called
“optical accordion.” It consists of loading atoms in a single
node of a large-spacing lattice and then increasing the angle
between the two interfering beams to make the confinement
stronger. This technique has been demonstrated optically, but
not implemented on an atomic cloud, in Refs. [21,22] and
used to increase the spacing of a lattice trapping ultracold
atoms [23]. Compression of quantum gases has been reported
in Ref. [24] using a different technique involving a reflexion
on a dielectric surface. It has also recently been mentioned
in Ref. [25], without any technical detail or study of the
compression process. In this work we demonstrate single-
plane loading and a fivefold increase of the trapping frequency
of a Bose gas in an optical accordion and study the adiabaticity
of the compression stage. With far-detuned light and moderate
power we obtain clouds of 105 87Rb atoms confined with
frequencies ωz/2π higher than 10 kHz. We show that this
compression can be realized in about 100 ms with a small

2469-9926/2017/95(1)/013632(7) 013632-1 ©2017 American Physical Society
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amount of additional heating compared to the ideal adiabatic
evolution. These experiments are carried out with a flat-bottom
in-plane potential.

II. ACCORDION OPTICAL SETUP

The design of our accordion lattice is inspired from [22] and
depicted in Fig. 1(a). A single laser beam of wavelength λ =
532 nm is split by a pair of polarizing beam splitters (PBSs) into
two parallel beams propagating along the y axis. These two
beams cross in the focal plane of a lens, and their interference
forms a one-dimensional (1D) optical lattice. The position of
the incoming beam on the PBSs is moved thanks to a motorized
translation stage. This position controls the distance between
the two beams reflected by the PBSs, hence the angle between
the beams in the focal plane and the fringe spacing. The relative
phase between the two beams, which determines the absolute
position of the fringes, is controlled by a piezoelectric stack
glued on the mirror reflecting the top beam. The two beams
are transmitted through a common polarizing beam-splitter
cube positioned just before the lens [not shown in Fig. 1(a)]
to ensure that they have identical polarization. In this work
we use an elliptical beam with measured waists at atom
positions of wx = 88(2) μm and wz = 38(6) μm in the hor-
izontal and vertical directions, respectively. The uncertainty
corresponds to the standard deviation of the measurement
for the different lattice spacings studied here. The choice
of these values for the waists results from the compromise
between getting the highest intensity with the available power
and having a large enough horizontal waist to get a uniform
confinement over the sample size (see next section) and a
large enough vertical one to ensure a robust overlap between
the two beams when changing the lattice spacing, as discussed
below.

In our setup we change the full angle θ between the two
interfering beams from 3◦ to 15◦. The maximum angle is
limited by the available numerical aperture on this axis, and
the minimum angle is constrained by the finite size of the
beams, which should not be clipped by the edges of the PBSs.
We measure the lattice period i resulting from the interference
of the two beams by imaging the intensity pattern in the atom
plane on a camera, and we obtain the results shown in Fig. 1(b).
By translating the initial beam by 11.5 mm, we vary i from
11.0(1) to 1.9(1) μm. The data points are fitted by

i = λ

2

√
1 + [f/(d + d0)]2, (1)

where d is the displacement of the stage from the position
giving our largest lattice period. Here, d0 is an arbitrary offset,
and f is the focal length of the lens.

The main challenge for realizing the accordion lattice is
to avoid displacements of the beams in the focal plane when
changing their angle. A large displacement of the two beams
decreases their overlap and leads to a lower lattice depth and
hence to a reduction of the trapping frequency or even to atom
loss. In our setup, the main limitation is the imperfect quality
of the lens. For instance, spherical aberrations and surface
irregularities induce variations of the beam positions. We have
tested standard achromatic doublets and an aspherical lens
(Asphericon A50-100) and have found that the displacement

/4 waveplate
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FIG. 1. (a) Sketch of the optical design allowing one to change
the angle between the two interfering beams as proposed in [22]. The
initial beam is moved (bottom arrow) by a distance d with a motorized
translation stage (model LS-110 from PI miCos) that changes the
distance between the two beams reflected by the polarizing beam
splitters (PBS) of 25 mm size. These two beams are then focused
on the atomic cloud by an aspherical 2-inch-diameter lens of focal
length f0 = 100 mm. The top beam is reflected on a mirror glued on
a piezoelectric stack and goes twice through a quarter-wave plate. (b)
Measured lattice spacing i of the vertical lattice at the atom position
for different positions d of the translation stage. The data points
are fitted by Eq. (1) with f and d0 as free parameters. We obtain
f = 103(1) mm and d0 = 2.46(3) mm. The one-standard-deviation
errors obtained from the fit on the measured lattice spacing are smaller
than the size of the points.

is much smaller for the aspherical lens [26]. We show in
Fig. 2 the positions of the centers of both beams in the z

direction. The beams move by typically less than 20 μm in
both directions, justifying our choice of wz = 39 μm. We
measure a displacement with a similar amplitude along the
horizontal axis. We note that this motion of relatively small
amplitude of the beams could induce irregular variations of the
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FIG. 2. Variation of the vertical positions z0 with respect to their
initial positions of the two interfering beams for different values of
the lattice spacing i. Squares (circles) correspond to the bottom (top)
beam. The shaded area corresponds to ±wz, where wz is the averaged
measured vertical waist over all the lattice spacings.

trap depth and center that may induce heating when changing
the lattice spacing as discussed in Sec. IV.

III. MAKING A UNIFORM 2D BOSE GAS

We now describe the experimental system and the pro-
cedure used to realize 2D uniform gases. A sketch of the
setup is shown in Fig. 3. We use two identical microscope
objectives (numerical aperture of 0.45) above and below a
glass cell. The bottom objective is used for absorption imaging
of the cloud on a CCD camera with a typical resolution of
1 μm. The top objective allows us to image, with a similar
resolution and a magnification of 1/70, a trapping potential
programmed on a digital micromirror device (DMD). This
spatial light modulator is an array of 1024 × 784 square
mirrors of size 13.8 μm. The orientation of each of these
mirrors can be chosen between two states. In this work, all
the mirrors are set in a state reflecting light towards the atomic
cloud except the ones from a central disk-shaped area whose
image in the atomic plane has a radius of 20 μm. The DMD
reflects a blue-detuned beam at a wavelength of 532 nm with a
maximum power of about 300 mW and a waist of 45 μm at the
atom position. These parameters correspond to a maximum
potential height at the edge of the disk of kB × 4 μK. In
all the experiments described in the following, atoms are
confined in the optical potential created by the combination
of this box-potential beam and the accordion beams described
in the previous section. The cloud is imaged using standard
absorption imaging techniques either along the vertical axis or
along the horizontal axis common with the accordion beams.

To load the 2D box potential we first prepare a 3D BEC
using standard methods. We start from a 3D magneto-optical
trap of 87Rb atoms which contains 109 atoms. After cooling,
compression, and optical pumping into the F = 1 manifold
we load the atoms in the F = 1, mF = −1 state in a
magnetic quadrupole trap realized by a pair of conical coils
along the vertical axis. After compression we proceed to

FIG. 3. Sketch of the experimental setup. The vacuum cell,
simply depicted here as two horizontal glass plates, is surrounded by
a pair of identical microscope objectives with a numerical aperture of
0.45. Atoms (in blue in the center) are trapped in the combination of
blue-detuned dipole traps. Confinement along the vertical direction
is realized by the interference of two beams at an angle (on the right)
that create the accordion lattice. In-plane confinement is ensured by
imaging the surface of a DMD on the atomic plane thanks to the
top microscope objective. Here we created a disk-shaped uniform
potential. This trap is loaded from a 3D BEC.

forced evaporative cooling using a radio-frequency field ramp.
Afterward, we decompress the magnetic trap to load atoms
in an optical dipole trap consisting of two beams operating at
a wavelength around 1064 nm and crossing at a right angle
in the horizontal plane. Their vertical and horizontal waists
are, respectively, 30 and 90 μm, and the depth potential is
calculated to be around 70 μK. We then lower the trap depth
to realize forced evaporative cooling, and we get almost pure
BECs with typically 3 × 105 atoms.

We now detail the loading of the 3D BEC in the box
potential. We first ramp the box potential beam to full power
in 300 ms. We then compress the BEC vertically to obtain a
robust single-plane loading by increasing the power of one of
the red-detuned dipole trap beams back to its maximum initial
value in 125 ms while decreasing the other dipole trap power to
zero. We then ramp the power of the accordion beams to their
maximal value of 325 mW per beam in 25 ms with a maximum
spacing of the accordion lattice of 11 μm. Finally, we ramp
off the crossed dipole trap beams. The global spatial phase
of the accordion lattice is adjusted thanks to the piezoelectric
stack to get a dark fringe centered on the initial position of the
atomic cloud. The optical alignment of the accordion beams
is optimized so as to load the atoms in a fringe which is not
moving when compressing the accordion lattice. We can then
reliably load the atoms in a single plane [see Fig. 4(a)] [27].
Further evaporative cooling can be performed by lowering the
power of the box potential beam and/or of the accordion beam
to reach the 2D regime for which the thermal energy and the
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FIG. 4. In situ absorption images of the trapped cloud before
compression with ωz/2π = 2.1 kHz and T = 800 nK. The cloud
diameter is 40 μm. To avoid saturation of the absorption signal, we
transfer, using a microwave field, only a small fraction of the 105

atoms from the F = 1 state to the F = 2 state before imaging atoms
in F = 2. (a) Side view (transferred fraction: 100%, average of five
pictures). The weak signals above and below the main cloud are
fringes due to the propagation of light through our dense sample. We
have checked that their position is independent of the lattice spacing
of the accordion lattice. (b) Top view (transferred fraction: 2.4%,
average of 35 pictures).

interaction energy are smaller than �ωz. A typical picture of
the cloud taken along the vertical axis is presented in Fig. 4(b).

IV. COMPRESSION IN THE ACCORDION

The main feature of this setup is the possibility to compress
the gas along the z direction once the atoms are loaded in
a single node of the lattice. In this section we describe our
characterization of the compression process starting from
atoms loaded in the largest-spacing configuration. First, we
measure the oscillation frequency of the cloud in the vertical
direction for different lattice spacings at maximum power.
This frequency is determined as follows. We excite the
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FIG. 5. Measured oscillation frequency along the vertical direc-
tion for different lattice spacings. The solid line is the calculated
frequency with the independently measured parameters of the beams,
and the shaded area corresponds to the uncertainty on the calibration
of the beam parameters. The error bars represent the standard
deviation given by the fit algorithm on the measured frequency and
are close to the size of the data points and not visible for the low
frequencies.

center-of-mass motion of the cloud along the z direction by
suddenly changing the power in the accordion beams, we
let the cloud oscillate, and, finally, we measure the vertical
position of the atomic cloud after a short free expansion. The
trapping frequency is given by a sinusoidal fit of the data. The
results are shown in Fig. 5. By compressing the lattice spacing
from 11 to 2 μm we observe an increase of the oscillation
frequency from 2.15(5) to 11.2(3) kHz. We also plot in Fig. 5
the expected frequency calculated with the measured power,
waists, and lattice spacing. Our measurements are consistently
below this calculation. We attribute this effect to the inaccurate
calibration of the beam waists and powers and the imperfect
overlap of the beams.

We now discuss the effect of compression on the cloud’s
temperature T , which is measured with a method detailed in
Appendix A. In order to avoid evaporation of atoms during this
compression, we first proceed to a cooling stage. It consists of
lowering the power of the in-plane confining laser to evaporate
the cloud and then setting it back to its initial value. After this
evaporation cooling, we typically obtain N = 3 × 104 atoms
in the large-spacing lattice at a temperature of T0 = 180 nK.
With these parameters, the total 2D phase-space density,
defined as D = Nλ2

T /A, with A being the disk area and λT

being the thermal de Broglie wavelength, is D = 4.8, which
corresponds to a noncondensed gas [5]. We then compress
the cloud to various final vertical confinements at a constant
velocity of the translation stage (90 mm/s) within 0.13 s while
keeping the overall sequence duration constant. We show in
Fig. 6(a) the measured final temperature (blue circles) for
various final trapping frequencies. We observe a significant
increase in the cloud’s temperature by a factor of about 2 for
the largest final frequency. The atom number is unchanged
during this compression, and thus it rules out any evaporation
process.
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FIG. 6. Compression in the optical accordion. (a) Temperature
measured after compression to a final frequency ωz (circles) and
corrected by the fit of the measured heating displayed in (b) (squares).
The solid line is a calculation for an adiabatic compression of an ideal
Bose gas with our trap geometry (see Appendix B). (b) Temperature
Tf measured after a compression to the intermediate frequency ωi

and decompression to the initial frequency. The solid line is a linear
fit to the data. The measured heating is divided by 2 before subtraction
to the data in (a), considering that the heating for a full cycle is two
times larger than the heating for the single compression.

The measured increase of temperature during the compres-
sion process could have two origins. (i) It could simply result
from the change in density of states in a purely adiabatic
process [solid line in Fig. 6(a)]. (ii) There may be an additional
heating process due to imperfections in the trap compression
as discussed in Sec. II. In order to test the adiabaticity of the
process we realize a compression up to a given intermediate
frequency ωi followed by a decompression to the initial
frequency. The measured final temperatures Tf are reported in
Fig. 6(b). For a purely adiabatic compression-decompression
cycle we expect no increase in temperature. We observe a
deviation from adiabaticity which can reach 90 nK for a
full compression-decompression sequence or, assuming the
same amount of additional heating for compression and
decompression, 45 nK for the compression stage. This heating
remains small compared to the 150 nK increase in temperature
expected for a purely adiabatic process as described in the next
paragraph. This heating varies approximately linearly with the
target frequency ωi . We have measured a similar heating for
lower velocities of the translation stage.

To further explore the origin of the temperature increase
observed here, we compare our results to the prediction
for adiabatic compression of an ideal Bose gas confined in
our trap geometry. The result of this calculation, detailed in
Appendix B and applied to the measured initial temperature
and frequency, is shown in Fig. 6(a) as a solid line. We also
show the measured temperatures corrected by half the heating
measured for the compression-decompression cycle [Fig. 6(b)]
as squares. They are in good agreement with the calculated
temperature. We conclude that the deviation from adiabaticity
in our experimental setup leads to an additional heating
that remains small compared to the increase of temperature
expected in the adiabatic case.

V. OUTLOOK: AN ADJUSTABLE INTERACTION
STRENGTH

We have realized a 2D uniform Bose gas with a tunable
confinement. As discussed in the Introduction, in such gases
the role of interactions is described, up to logarithmic cor-
rections [11], by the dimensionless parameter g̃ = √

8πa/�z,
where �z = √

�/(mωz) is the harmonic oscillator ground-state
length for a particle of mass m in the harmonic potential
of frequency ωz. Tuning the confinement thus allows one to
control the strength of interaction in such systems without
tuning the scattering length via a Feshbach resonance [13] or
adding an in-plane lattice potential to control the effective
mass of the atoms [12]. In our setup, by varying ωz/2π

between 1 and 11 kHz by tuning the lattice spacing or the
laser power, we can adjust g̃ between 0.08 and 0.26. Obtaining
such comparatively large values of g̃ is of great interest for
realizing strongly correlated states for which the gap between
the ground state and the excited states usually scales linearly
with g̃ [28]. The demonstration of such an optical accordion
is thus a significant step in this direction.

Our system is compatible with the realization of flat-bottom
potentials with a shape that can be changed, potentially in a
dynamic way, thanks to the use of DMDs. Our system is thus
an ideal platform to study in- and out-of-equilibrium many-
body physics in two-dimensional systems. Another asset of
this geometry is the possibility to realize evaporative cooling
with this accordion lattice. In the usual evaporation schemes
a particle is evaporated when it has a high enough energy
and when it reaches a position in the trap where it could be
lost (like the edge of the box potential in the work described
here). In this situation temperature gradients might be created
in the sample. Lowering the depth of the accordion lattice by
decreasing its intensity or by adding a magnetic field gradient
allows for an evaporation independent of the atom position and
could lead to more efficient evaporative cooling. This feature
is particularly interesting when studying quench cooling of 2D
quantum gases [5].
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APPENDIX A: TEMPERATURE MEASUREMENT

The temperatures reported in the main text were measured
using the following procedure. Immediately after loading the
atoms in the optical box potential, we send a short pulse of
a microwave field that transfers a small fraction of about
10% of the atoms from the |1〉 = |F = 1,m = −1〉 state to
the |2〉 = |F = 2,m = −2〉 state. We then proceed to forced
evaporation by lowering the power of the box potential beam
and realize the experimental sequences discussed in the main
text. We assume that the atoms in state |2〉 thermalize with
the main cloud of atoms in |1〉. By choosing the fraction
of atoms in state |2〉 to be small enough we always prevent
the formation of a Bose-Einstein condensate in this state. To
extract the temperature of the sample we release the atoms
from the trap and image the density distribution of atoms in
state |2〉 integrated along the vertical direction and after a
time-of-flight of 8.7 ms. For each point we average typically
10 images with the same experimental conditions.

We compare the radially averaged profile of these dis-
tributions to a numerically computed profile considering an
ideal gas with an initial velocity distribution given by the
Bose distribution and an initial uniform position in the box
potential and assuming an expansion without any interparticle
interaction. The theoretical profile has two free parameters,
the temperature T and the fugacity z, which we optimize to
obtain the best fit to the experimental data points. With our
signal-to-noise ratio, there is a continuous set of (z,T ) that
fits almost equally well a given experimental profile, making
a robust estimate of the temperature difficult. We circumvent
this issue by using the independently measured atom number
as an additional input parameter to compute z(T ), leaving T

as the only free parameter.
From the distribution of temperature measurements for

a fixed experimental sequence, we estimate that the one-
standard-deviation statistical error bars on the temperature
measurement are around ±3% of the measured temperature.
The main source of uncertainty is given by the uncertainty on
the atom number that we use to estimate the temperature. In
our range of parameters, the estimated uncertainty of 25% in
the atom number calibration leads to an uncertainty of about
15% in the temperature. In the main text, we display error bars
corresponding to only the ±3% statistical uncertainty.

APPENDIX B: ADIABATIC COMPRESSION

We consider a gas of noncondensed bosons of mass m

confined in the xy plane in a box potential of surface A

and along the vertical direction in a harmonic potential of
frequency ωz. We set ρ0 = mA/(2π�2) for the in-plane density
of states and zj = z exp(−jβ�ωz), where z is the gas fugacity,
β = 1/kBT , and j is the integer labeling the j th state of the
vertical harmonic oscillator. The average occupation number

2 4 6 8 10
ωz/2π (kHz)

150

200

250

300

350

400

T
(n

K
)

FIG. 7. Adiabatic compression. We show, for an initial tempera-
ture of 180 nK and an initial frequency of 2.1 kHz, the temperature
increase during compression calculated numerically for different
models. The thick solid line corresponds to the bosonic case. The
green solid line is given by an analytical result obtained in the classical
case with a weak confinement along z and scales as ω1/2

z . The dashed
line and the dot-dashed line are associated with the fermionic and the
Maxwell-Boltzmann statistics cases, respectively.

n̄j,k of a given energy state with an in-plane wave number k is

n̄j,k =
{
z−1 exp

[
β

(
j�ωz + �2k2

2m

)
− 1

]}−1

. (B1)

Introducing the polylogarithm function gα(z) = ∑∞
k=1 zk/kα ,

we compute Nj , Jj , and SJ , which are, respectively, the atom
number, the grand-canonical potential, and the entropy of
state j .

Nj = ρ0kBT g1(zj ),

Jj = −ρ0(kBT )2g2(zj ),

Sj = −∂Jj

∂T

∣∣∣∣
μ,ωz

= ρ0kBT [2g2(zj ) − g1(zj ) ln(zj )]. (B2)

We compute the temperature evolution for an adiabatic com-
pression by evaluating, for each value of the final compression
frequency ωz, the temperature and the fugacity, keeping
S = ∑

j Sj and N = ∑
j Nj constant. The result of this

calculation is shown in the main text in Fig. 6 and is reproduced
in Fig. 7.

The previous calculation can be straightforwardly extended
to fermionic statistics and to the classical Maxwell-Boltzmann
statistics by replacing gα(z) by fα(z) = −gα(−z) and by
z, respectively. The results for these cases are also repre-
sented in Fig. 7 as a dotted line and a dot-dashed line
respectively, and show that, in all cases, the increase in
temperature during adiabatic compression is larger than for
the bosonic case. Indeed, Bose statistics leads to a larger
population of the low-lying states of the vertical harmonic
oscillator than the classical distribution and thus to a smaller
increase of temperature when increasing the confinement
frequency.

013632-6



LOADING AND COMPRESSION OF A SINGLE TWO- . . . PHYSICAL REVIEW A 95, 013632 (2017)

Finally, we also plot in Fig. 7 an analytical result obtained
for the classical Maxwell-Boltzmann statistics but assuming a
weak confinement along the vertical direction (β�ωz � 1). In
this case the 3D density of states is given by ρ(ε) = ρ0/(�ωz) ε,
and the entropy reads

S/(NkB) = 3 + ln[ρ0(kBT )2/(N�ωz)]. (B3)

An adiabatic compression thus leads to an increase in tem-
perature as T ∝ √

ωz, which corresponds to the green solid
line shown in Fig. 7 and which is very close to the numerical
calculation for the Maxwell-Boltzmann statistics. We note that
in the experiments presented here the fugacity is close to 1 and
the Maxwell-Boltzmann approximation is clearly not valid.
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Controlled quantum systems such as ultracold atoms can provide powerful platforms to study
nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical
description is generally challenging. In this Letter, we present a detailed study of the rich out-of-
equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a
ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of
their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the
microscopic mechanism that underlies the smoothening of the phase profile.
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Thermalization of closed out-of-equilibrium many-body
systems lies at the heart of statistical physics. Because of the
recent progress in the preparation of well-controlled isolated
quantum systems, this question can now be revisited in a
quantum context [1]. Whereas most systems are expected to
reach thermal equilibrium, nontrivial situations can occur in
integrable systems [2], in the presence of disorder [3] or
due to the formation of long-lived topological defects [4,5].
Out-of-equilibrium dynamics are also central to the study
of dynamical crossings of phase transitions. Indeed, the
divergence of the relaxation time at the critical point for a
second-order phase transition entails that the system cannot
follow adiabatically the external perturbation. The relaxation
dynamics can be used in that case to determine the critical
exponents of the phase transition [5].
A rich situation occurs when N condensates, charac-

terized by independent initial phase factors, are coupled
together. Let us consider, for instance, the case where the
condensates are placed along a ring and connections are
suddenly established between neighboring condensates.
One expects that, after some transient dynamics, stochastic
metastable supercurrents are formed. This ring geometry
was put forward by Zurek in a seminal paper [6] drawing a
parallel between laboratory experiments with liquid helium
and classes of early universe theories. More recently this
gedankenexperiment inspired experiments with supercon-
ducting loops [7–9] and cold atoms [10]. A key ingredient
of Zurek’s study is the relation between the winding
number of the supercurrent and the number of initial
condensates N according to the geodesic rule. In essence,
it enables a computation of the winding number based on
the minimization of the kinetic energy of the system.
In this Letter we investigate the relaxation dynamics of

up to N ¼ 12 uncorrelated Bose-Einstein condensates
(BECs) after merging them in a ring-shaped optical trap.
We measure the statistical distribution of metastable super-
currents and relate their emergence to the evolution of the
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FIG. 1. Experimental protocol. (a) Illustration of the exper-
imental sequence. An annular trap is partitioned into N seg-
ments of equal length. Uncorrelated BECs are prepared in these
segments with random phase differences δϕi, i ¼ 1;…; N,
between adjacent condensates. After merging into a single
annular condensate, supercurrents with winding number ν ∈ Z
are formed. (b) In situ density distribution in the ring trap for
N ¼ 9 at different times t during the merging. The outer ring
has a mean radius of 19.5 μm and a width of 5 μm. The inner
ring serves as a phase reference for the detection as described
in the main text. It has a mean radius of 13 μm and a width of
4 μm. Each image is an average over 5 or 6 experimental
realizations. (c) Matter-wave interference after a 2D time of
flight (TOF) of 6 ms. The chirality of the pattern and the
number of spiral arms reveal the winding number ν of the
supercurrent in the outer ring.
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phase defects generated at the boundaries of the BECs. The
experimental protocol is depicted in Fig. 1(a). Initially the
condensates are characterized by random phase differences
δϕi (i ¼ 1;…; N) between condensates i and iþ 1, that
can lead to a net phase accumulation around the ring after
merging [Fig. 1(b)]. Because of the single-valuedness of
the wave function, the phase winding around the ring has
to be equal to 2πν, with winding number ν ∈ Z. This
corresponds to the formation of supercurrents with quan-
tized velocities, which we detect through matter-wave
interference [Fig. 1(c)] with an additional ring-shaped
condensate with uniform phase [10,11]. Our results show
that the magnitude of the supercurrent scales in quantitative
agreement with the geodesic rule. This extends earlier
works on the merging of two [12] and three [13] con-
densates in a harmonic trap and on the dynamics of a large
number of condensates in a two-dimensional (2D) optical
lattice [14]. Complementary results have been obtained
with a large number of Josephson junctions, where the
scaling with N appears to be modified compared to the
one studied in our work [7]. Additionally we explore
the underlying dynamics by merging pairs of neighboring
condensates. First, we study it globally by monitoring the
evolution of the winding-number distribution as a function
of time. Second, we detect local phase defects and study
their dynamics in a time-resolved manner. The observed
relaxation time scales are compatible with the evolution of
solitonlike phase defects.
The experiment started by loading a cold cloud of

1.4ð2Þ × 105 87Rb atoms in the jF ¼ 1; mF ¼ 0i state into
a pancake-type dipole trap with tight harmonic confinement
along the vertical direction, ωz ¼ 2π × 1.58ð1Þ kHz, and
negligible confinement in the xy-plane [15,16]. The in-
plane trap was shaped using a digital micromirror device
(DMD) in direct imaging with an optical resolution of
∼1 μm to create a uniform double-ring trap as illustrated in
Fig. 1(b). All experimental studies were performed in the
outer ring, which was partitioned into several segments,
while the inner ring served as a uniform phase reference for
detection [10,11]. The distance between the segments as
well as between the two rings was 2.5ð2Þ μm, defined as
the full width at half maximum of the density dip in the
measured in situ distributions [Fig. 1(b)]. This separation
is large enough to enable the formation of uncorrelated
condensates [16].
After 2 s evaporative cooling, we reached a final temper-

ature of T < 20 nK, thereby entering the quasi-2D regime
kBT < ℏωz, with kB the Boltzmann constant and ℏ the
reduced Planck constant. The upper temperature limit
of 20 nK is the smallest detectable temperature using our
calibration method. This corresponds to 2D phase-space
densities D ¼ λ2Tn > 80 deeply in the superfluid regime
[18]; here n ¼ 36ð4Þ=μm2 is the 2D atomic density, λT ¼
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ðmkBTÞ

p
the thermal wavelength and m the mass of

one atom.

Subsequently, we merged the BECs in the outer ring
within 10ms by decreasing thewidth of the potential barriers
[Fig. 1(b)] using our dynamically configurable DMD. The
velocity at which the barriers were closed was chosen small
compared to the speed of sound c0 in order to prevent the
formation of shock waves and high-energy excitations
[19,20]. For our experimental parameters c0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng2D=m

p
≈

1.4ð1Þmm=s, where g2D¼g3D=ð
ffiffiffiffiffiffi
2π

p
lzÞ is the 2D interac-

tion parameter, g3D ¼ 4πℏ2a=m, a ¼ 5.3 nm the scattering
length, and lz¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p ¼ 0.27 μm the harmonic oscil-
lator length.
After a typical relaxation time of 0.5 s, we detected the

phase winding after 2D time of flight by releasing the in-
plane confinement abruptly while keeping the vertical one.
We recorded the resulting interference pattern after 6 ms
using standard absorption imaging along the z direction
[Fig. 1(c)]. The chirality of the pattern and the number of
spiral arms are a direct measure of the winding number ν of
the supercurrent that was formed in the outer ring [10,11].
In an independent calibration measurement we found that
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FIG. 2. Formation of supercurrents as a function of the number
of BECs N. (a) Probability distributions pðνÞ for N ¼ 1, 3 and 9
obtained from M ¼ 202, 238, and 388 measurements, respec-
tively. The insets display in situ images before the merging
averaged over 4–6 realizations. (b) Measured rms width νrms of
the probability distributions as a function of N. Each data point
consists of M > 200 independent measurements. The corre-
sponding mean values ν̄ are displayed in the inset. The solid line
is the predicted scaling given in Eq. (1). All error bars display the
combined uncertainty from the experimental determination of the
winding number and the statistical error due to a finite number of
measurements M, which was evaluated using a bootstrapping
approach.
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the probability of creating a supercurrent in the inner ring
was ≲0.6% [16].
Each repetition of the experiment results in a different set

of random phase differences δϕi that leads to the formation
of a supercurrent with winding number ν¼P

N
i¼1 δϕi=ð2πÞ,

where −π < δϕi ≤ π. The interval for the phase differences
δϕi is chosen according to the geodesic rule, which
expresses the fact that the system tends to minimize the
absolute value of the relative phase between neighboring
condensates due to energetic reasons [21,22]. By repeating
the measurement M times we extracted the corresponding
probability distributions pðνÞ as illustrated in Fig. 2(a). We
observe an increase of the probability for nonzero winding
numbers with N resulting in a broadening of the distribu-
tion. The measured center ν̄ ¼ P

νpðνÞν and rms width
νrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ðM − 1ÞPνpðνÞðν − ν̄Þ2

p
of the individual

distributions are depicted in Fig. 2(b).
Ideally the smallest number of domains that allows for

the formation of topological defects is three. In this case
the probabilities pthðνÞ can be computed following simple
arguments [13,23]. There are three possible cases: if
δϕ1 þ δϕ2 > π, the total sum of all phase differences
has to amount to 2π, if δϕ1 þ δϕ2 < −π the total sum
amounts to −2π and for all other cases it vanishes.
The resulting probabilities are pthðþ1Þ ¼ pthð−1Þ ¼ 1=8,
which is compatible with our experimental results pðþ1Þ ¼
0.15ð2Þ and pð−1Þ ¼ 0.13ð2Þ displayed in Fig. 2(a). In
general the probability distribution is determined by the
Euler-Frobenius distribution [24] and we obtain

νrmsðNÞ ¼
�

0; if N < 3

1

2
ffiffi
3

p
ffiffiffiffi
N

p
; if N ≥ 3:

ð1Þ

The distribution is symmetric around ν ¼ 0, with ν̄ ¼ 0,
which is in agreement with our experimental data obtained
for small N [Fig. 2(b)]. For N ≥ 9 there seems to be a small
systematic shift to positive values.
Our experimental results shown in Fig. 2(b) are in

agreement with the predicted scaling for N ≥ 3. There is
a discrepancy for N ¼ 1, where we measure a nonzero
probability for the formation of supercurrents pðν ≠ 0Þ ¼
1.5ð8Þ%. We attribute this to phase fluctuations of the
condensate due to finite temperature effects, which are
enhanced for larger systems. We tested that reducing the
radius of the condensate by one-third significantly reduces
the probability for nonzero winding numbers. For N ≥ 3
thermal fluctuations are not expected to have a large
influence because the length of the condensates is smaller.
Regarding the case of N ¼ 2 we found that this particular
configuration was very sensitive to the alignment of our
trap. Small trap inhomogeneities had a significant impact
on the obtained distributions.
For the largest number of condensates N ¼ 12 we

measure slightly smaller values than expected, most
likely due to an increased sensitivity to experimental

imperfections and overlapping time scales. If the merging
of the BECs is performed too slowly, there are two main
effects that can lead to a reduction of νrms. If supercurrents
are already formed during the merging, their lifetime could
be reduced substantially due to the presence of residual
weak potential barriers [25]. At the same time an asyn-
chronous merging of the barriers could effectively reduce
the total number of initial condensates, if the phase of
neighboring condensates homogenizes before the merging
is complete. We have investigated this in more detail for
N ¼ 9 and found a significant reduction of the winding
numbers for merging times larger than 50 ms [16]. Both
effects are expected to be more critical for increasing N.
We typically wait 0.5 s after merging the condensates

before detecting the supercurrents. This waiting time is
short compared to the lifetime of the supercurrents in our
trap [16]. Indeed we observe no significant decay of the
supercurrents for waiting times on the order of 10 s. On the
other hand it is long enough to let the system relax to a
steady state with a smoothened phase profile, without a
significant number of defects in the interference pattern.
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FIG. 3. Relaxation dynamics fromN to N=2 condensates, when
merging them in two successive steps. The in situ images above
the main graph illustrate the experimental sequence for N ¼ 12.
Each image is an average over five individual measurements. The
main graph depicts our experimental results for N ¼ 12 (black)
and N ¼ 6 (blue). Each data point consists of M > 200
measurements. The corresponding mean values ν̄ are shown in
the Supplemental Material [16]. The error bars depict the
uncertainty obtained from our finite number of measurements
M and the experimental uncertainty in the determination of the
winding numbers. The dashed lines indicate the measured values
shown in Fig. 2(b) and the shaded areas illustrate the correspond-
ing error bars. The solid lines are fits of exponential functions
fjðtwaitÞ ¼ Aje−twait=τj þ Bj, j ¼ f6; 12g, to our data, where τj is
the only free fit parameter and the other variables are determined
by the dashed lines extracted from Fig. 2(b).
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In order to gain a deeper insight into the underlying
relaxation dynamics, we performed two separate experi-
ments. First, we probed the evolution of the winding
number distribution by merging the BECs on the ring in
two successive steps. The sequence started by merging
pairs of neighboring condensates within 10 ms to reduce
the number of condensates by a factor of 2, then we let the
system relax for a variable time twait and subsequently
merged the remaining N=2 condensates in 10 ms into a
single annular BEC (Fig. 3). After an additional evolution
time of 0.5 s we detected the probability distributions pðνÞ
using the detection method explained above.
We identify two limiting cases for the data shown in

Fig. 3. If there is no additional wait time (twait ¼ 0) between
the two merging steps, the system has not enough time to
relax and the probability distribution resembles the one
discussed in Fig. 2, where all condensates were merged in a
single step. On the other hand, if twait is longer than the
relaxation time, the phase of neighboring condensates
homogenizes after the first step, so that we effectively
reduce the number of initial phase domains to N=2 and the
distribution approaches the one for N=2 initial BECs
merged in a single step. The measurements were performed
for N ¼ 12 and N ¼ 6 and the dashed lines indicate the
limiting cases explained above. In order to extract a time
scale for the relaxation, we fit an exponential decay to
each of the two data sets. The amplitude and offset of
the fitting function are determined by the data points
displayed in Fig. 2(b). One can infer two different time
scales τ12 ¼ 52ð17Þ ms and τ6 ¼ 90ð30Þ ms associated
with the relaxation dynamics, which most likely depend
on the spatial extent of the condensates, that differ by
almost a factor of 2 for the two data sets.
In a second set of measurements we focus on the

microscopic relaxation dynamics via the time-resolved
detection of local phase defects. We merged two conden-
sates and probed the evolution of the phase profile through
interference with a reference condensate [Fig. 4(a)]. The
length of each condensate is comparable to the length of
one segment studied in the relaxation dynamics discussed
above for N ¼ 6. At short times (∼1 ms), we observe a
phase defect in the center of the fringes, at the original
position of the potential barrier [Fig. 4(b)]. With increasing
time more phase defects appear and also start to propagate.
After 5 ms the number of defects decays and we find an
almost uniform distribution of their positions [26]. At long
times (>100 ms) almost all defects have disappeared in
agreement with the results displayed in Fig. 3.
We interpret the observed dynamics by the formation

of dark solitons at the position of the potential barrier,
whereby their shape depends on the random phase
differences between neighboring condensates [27–29].
Subsequently, the generated excitations propagate, interact
with each other, and eventually decay [29,30] to form a
steady state with a smoothened phase profile [Figs. 3(b)

and 3(c)]. Note, that the lifetime of solitonic excitations is
typically short for 3D systems but can be strongly enhanced
in low-dimensional geometries [31–33]. The propagation
speed of dark solitons depends on their depth and is at
maximum equal to the speed of sound c0, which is
compatible with the observed relaxation time scales. The
round-trip time at c0 in the ring trap is about 90 ms for the
configuration studied in Fig. 2.
In conclusion, we have reported the first quantitative

study of the
ffiffiffiffi
N

p
scaling as predicted by the geodesic rule

and show that the underlying relaxation dynamics is
consistent with the formation of solitonlike defects.
Future experiments could benefit from phase-imprinting
techniques [27–29] to study the dynamics in a fully
deterministic manner. In particular, it would be interesting
to study the dynamics as a function of temperature and
geometry.
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Lamporesi, and G. Ferrari, Creation and counting of defects
in a temperature-quenched Bose-Einstein condensate, Phys.
Rev. A 94, 023628 (2016).

PRL 119, 190403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 NOVEMBER 2017

190403-6



PHYSICAL REVIEW A 96, 053629 (2017)

Transmission of near-resonant light through a dense slab of cold atoms

L. Corman,* J. L. Ville, R. Saint-Jalm, M. Aidelsburger,† T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon‡

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités,
11 place Marcelin-Berthelot, 75005 Paris, France

(Received 30 June 2017; revised manuscript received 4 October 2017; published 27 November 2017)

The optical properties of randomly positioned, resonant scatterers is a fundamentally difficult problem to
address across a wide range of densities and geometries. We investigate it experimentally using a dense cloud of
rubidium atoms probed with near-resonant light. The atoms are confined in a slab geometry with a subwavelength
thickness. We probe the optical response of the cloud as its density and hence the strength of the light-induced
dipole-dipole interactions are increased. We also describe a theoretical study based on a coupled dipole simulation
which is further complemented by a perturbative approach. This model reproduces qualitatively the experimental
observation of a saturation of the optical depth, a broadening of the transition, and a blueshift of the resonance.

DOI: 10.1103/PhysRevA.96.053629

I. INTRODUCTION

The interaction of light with matter is a fundamental
problem which is relevant for simple systems, such as an atom
strongly coupled to photons [1–3], as well as for complex
materials, whose optical properties provide information on
their electronic structure and geometry [4]. This interaction
can also be harnessed to create materials and devices with
tailored properties, from quantum information systems such
as memories [5] and nanophotonic optical isolators [6] to solar
cells combining highly absorptive materials with transparent
electrodes [7].

The slab geometry is especially appropriate to study
light-matter interaction [8,9]. In the limit of a monolayer,
two-dimensional (2D) materials exhibit fascinating optical
properties. For simple direct band gap 2D semiconductors,
the single-particle band structure implies that the transmission
coefficient takes a universal value [10,11]. This was first
measured for single-layer graphene samples [12], which have
an optical transmission independent of the light frequency in
the eV range, |T |2 = 1 − πα, where α is the fine-structure
constant [13,14]. The same value was recovered in InAs
semiconductors [15]. This universality does not hold for
more complex 2D materials, for instance when the Coulomb
interaction plays a more important role [16].

Atomic gases represent in many respects an ideal test bed
for investigating light-matter interaction. First, they can be
arranged in regular arrays [17,18] or randomly placed [19] to
tailor the optical properties of the system. Second, an atom
always scatters light, in contrast with solid-state materials
where the optical excitation can be absorbed and dissipated in a
nonradiative way. Even for thin and much more dilute samples
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than solid-state systems, strong attenuation of the transmission
can be observed at resonance. Third, inhomogeneous Doppler
broadening can be made negligible using ultracold atomic
clouds. Finally, the geometry and the density of the gases
can be varied over a broad range.

In the dilute limit, such that the three-dimensional (3D)
atomic density ρ and the light wave number k verify ρk−3 � 1,
and for low optical depths, a photon entering the atomic
medium does not recurrently interact with the same atom.
Then, for a two-level atom, the transmission of a resonant
probe beam propagating along the z axis is given by the
Beer-Lambert law: |T |2 = e−σ0

∫
ρ dz, where σ0 = 6πk−2 is

the light cross section at the optical resonance [20]. At larger
densities the transmission is strongly affected by the light-
induced dipole-dipole coupling between neighboring atoms.

Modification of the atomic resonance line shape or super-
and subradiance in dilute (but usually optically dense) and cold
atomic samples have been largely investigated experimentally
[21–30]. Recently, experiments have been performed in the
dense regime studying nanometer-thick hot vapors [31] and
mesoscopic cold clouds [32–35]. Interestingly, it has been
found that the mean-field Lorentz-Lorenz shift is absent in
cold systems where the scatterers remain fixed during the
measurement. A small redshift is still observed for dense
clouds in Refs. [32,34] but could be specific to the geometry
of the system.

Achieving large densities is concomitant with a vanishingly
small transmission T . It is therefore desirable to switch
to a 2D or thin slab geometry in order to investigate the
physical consequences of these resonant interaction effects
at the macroscopic level. Using a 2D geometry also raises
a fundamental question inspired by the monolayer semi-
conductor case: can the light extinction through a plane of
randomly positioned atoms be made arbitrarily large when
increasing the atom density or does it remain finite, potentially
introducing a maximum of light extinction through 2D random
atomic samples independent of the atomic species of identical
electronic spin?

In this article, we study the transmission of nearly resonant
light through uniform slabs of atoms. We report experiments
realized on a dense layer of atoms with a tunable density
and thickness. For dense clouds, the transmission is strongly
enhanced compared to the one expected from the single-atom
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response. We also observe a broadening and a blueshift of
the resonance line on the order of the natural linewidth. This
blueshift contrasts with the mean-field Lorentz-Lorenz redshift
and is a signature of the stronglycorrelated regime reached
in our system because of dipole-dipole interactions [36]. In
addition, we observe deviations of the resonance line shape
from the single-atom Lorentzian behavior, especially in the
wings where the transmission decays more slowly. We model
this system with coupled dipole simulations complemented
by a perturbative approach which qualitatively supports our
observations. After describing our experimental system in
Sec. II, we investigate theoretically light scattering for the
geometry explored in the experiment in Sec. III. In Sec. IV
we present our experimental results and compare them with
theory. We conclude in Sec. V.

II. EXPERIMENTAL METHODS

A. Cloud preparation

We prepare a cloud of 87Rb atoms with typically N =
1.3(2) × 105 atoms in the |F = 1,mF = −1〉 state. The atoms
are confined in an all-optical trap, described in more detail
in [37], with a strong harmonic confinement in the vertical
direction z with frequency ωz/2π = 2.3(2) kHz leading to a
Gaussian density profile along this direction. The transverse
confinement along the x and y directions is produced by a
flat-bottom disk-shaped potential of diameter 2R = 40 μm.
For our initial cloud temperature �300 nK, there is no
extended phase coherence in the cloud [38]. Taking into
account this finite temperature, we compute for an ideal Bose
gas a rms thickness �z = 0.25(1) μm, or equivalently k�z =
2.0(1). This situation corresponds to nk−2 ≈ 1.5, where n =
N/(πR2) is the surface density and to a maximum density
ρk−3 ≈ 0.3 at the trap center along z where ρ is the volume
density. We tune the number of atoms that interact with light
by partially transferring them to the |F = 2,mF = −2〉 state
using a resonant microwave transition. Atoms in this state
are sensitive to the probe excitation, contrary to the ones in the
|F = 1,mF = −1〉 state. In this temperature range the Doppler
broadening is about three orders of magnitude smaller than the
natural linewidth of the atomic transition.

The cloud thickness is varied in a controlled way using
mainly the following two techniques. (i) Varying the vertical
harmonic confinement by modifying the laser power in the
blue-detuned lattice that traps the atoms, thus changing its
frequency from ωz/2π = 1.1(2) kHz to ωz/2π = 2.3(2) kHz.
Using the ideal Bose gas statistics in the tight harmonic trap,
for a gas of N = 1.3(2) × 105 atoms at a temperature of T �
300 nK, this corresponds to rms thicknesses between 0.3 μm
and 0.6 μm. (ii) Allowing the atoms to expand for a short time
after all traps have been switched off. The extent of the gas in
the xy direction does not vary significantly during the time of
flight (duration between 0.7 ms and 4.7 ms). In that case, the
rms thickness varies between 3 μm and 25 μm. For the densest
clouds, the thickness is also influenced by the measurement
itself. Indeed, the light-induced dipole-dipole forces between
atoms lead to an increase of the size of the cloud during the
probing. In the densest case, we estimate from measurements
of the velocity distribution after an excitation with a duration of

(a)

(b)

FIG. 1. (a) Schematic representation of the imaging setup. The
atoms are confined by a single, disk-shaped potential which is imaged
using a microscope objective onto a back-illuminated CCD camera.
The numerical aperture of the system is limited to ≈0.2 using an iris in
the Fourier plane of the atoms to limit the collected fluorescence light.
(b) Typical in situ image obtained on a back illuminated CCD camera
of the in-plane density distribution averaged over three individual
measurements. For this example, the atom surface density is n =
25 μm−2. We extract a region of interest with uniform density for our
analysis with a typical area of 200 μm2.

τ = 10 μs that the thickness averaged over the pulse duration
is increased by ∼20%. In some experiments, in which the
signal is large enough, we limit this effect by reducing the
probe duration τ to 3 μs.

B. Transmission measurement

We probe the response of the cloud by measuring the trans-
mission of a laser beam propagating along the z direction (See
Fig. 1). The light is linearly polarized along the x axis and tuned
close to the |F = 2〉 → |F ′ = 3〉 D2 transition. The duration
of the light pulse is fixed to 10 μs for most experiments and we
limit the imaging intensity I to the weakly saturating regime
with 0.075 < I/Isat < 0.2, where Isat � 1.67 mW/cm2 is the
resonant saturation intensity. We define �ν as the detuning of
the laser beam with respect to the single-atom resonance. The
cloud intensity transmission |T |2 is extracted by comparing
images with and without atoms and we compute the optical
depth D = − ln |T |2 (see Sec. II C). The numerical aperture
of the optical system is limited on purpose to minimize the
collection of fluorescence light from directions different from
the propagation direction of the light beam.

C. Computation of the optical depth

We extract the optical depth (D) of the clouds by comparing
pictures with and without atoms. The readout noise on the
count number Ncount is dNcount ∼ 5 per pixel. We subtract from
these images equivalent pictures without any imaging pulse to
remove the background counts and obtain two pictures Mwith

and Mwithout. The typical noise on the count number per pixel
is thus dN = √

2 dNcount ∼ 7.
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The magnification of the optical system is 11.25, leading to
an effective pixel size in the plane of the atoms of 1.16 μm. The
typical mean number of counts per pixel accumulated during
the 10 μs imaging pulse is 80 on the picture without atoms. We
optimize the signal-to-noise ratio by summing all the pixels
in the region of interest for Mwith and Mwithout. This yields a
total count number in the picture with atoms Nwith and without
atoms Nwithout from which we compute the optical depth: D =
− ln(Nwith/Nwithout). The region of interest varies with the time
of flight of the cloud. This region is a disk that ensures that
we consider a part of the cloud with approximately constant
density (with 15% rms fluctuations), comprising typically 200
pixels. With these imaging parameters we can reliably measure
optical depths up to 4 but we conservatively fit only data for
which D < 3. At low densities, the statistical error on D due
to the readout noise is about 0.01. At D ∼ 3, it reaches 0.12.

D. Atom number calibration

As demonstrated in this article, dipole-dipole interactions
strongly modify the response of the atomic cloud to resonant
light and make an atom number calibration difficult. In
this work, we measure the atom number with absorption
imaging for different amounts of atoms transferred by a
coherent microwave field from the |F = 1,mF = −1〉 “dark”
state to the |F = 2,mF = −2〉 state in which the atoms are
resonant with the linearly polarized probe light. We perform
resonant Rabi oscillations for this coherent transfer and fit
the measured atom number as a function of time by a sinus
square function. We select points with an optical depth below
1, to limit the influence of dipole-dipole interactions. This
corresponds to small microwave pulse area or to an area
close to a 2π pulse, to make the fit more robust. From the
measured optical depth D, we extract nk−2 = (15/7)D/(6π ).
The factor 7/15 corresponds to the average of equally weighted
squared Clebsch-Gordan coefficients for linearly polarized
light resonant with the F = 2 to F ′ = 3 transition. This model
does not take into account possible optical pumping effects
that could lead to an unequal contribution from the different
transitions and hence a systematic error on the determination
of the atom number.

E. Experimental protocol

Our basic transmission measurements consist in scanning
the detuning �ν close to the F = 2 to F ′ = 3 resonance
(|�ν| < 30 MHz) and in measuring the optical depth at a fixed
density. The other hyperfine levels F ′ = 2,1,0 of the excited
5P3/2 level play a negligible role for this detuning range.
The position of the single-atom resonance is independently
calibrated using a dilute cloud. The precision on this calibration
is of 0.03 
0, where 
0/2π = 6.1 MHz is the atomic linewidth.
The measured resonance curves are fitted with a Lorentzian
function:

�ν 
→ Dmax/[1 + 4(�ν − ν0)2/
2]. (1)

This function captures well the central shape of the curve for
thin gases, as seen in the examples of Fig. 2. When increasing
the atomic density we observe a broadening of the line 
 > 
0,
a nonlinear increase of the maximal optical depth Dmax, and

−6 −4 −2 0 2 4 6
Δν/Γ0

0.0
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3.5

4.0

D

FIG. 2. Example of resonance curves. Symbols represent the
experimental data and the corresponding dashed lines are Lorentzian
fits. All curves are taken with the cloud thickness k�z = 2.4(6) and
for surface densities of nk−2 = 0.06(1) (circles), 0.38(6) (squares),
and 1.5(2) (diamonds). The errors on the fitted parameters are
determined using a basic bootstrap analysis, repeating the fitting
procedure 100 times on a set of random points drawn from the original
set of data, of the same length as this original set.

a blueshift ν0 > 0. In Sec. IV we present the evolution of
these fitted parameters for different densities and thicknesses.
Note that in our analysis all points with values of D above 3
are discarded to avoid potential systematic errors. Whereas this
threshold has little influence for thin clouds (as shown in Fig. 2)
for which the maximal optical depths are not large compared
to the threshold, for thick gases this typically removes the
measurements at detunings smaller than 1.5
0. Hence, in this
case, we consider the amplitude and the width of the fits to be
not reliable and we use the position of the maximum of the
resonance ν0 with caution.

We investigate the dependence of the fit parameters Dmax,

, and ν0 for different atomic clouds in Sec. IV. These results
are compared to the prediction from a theoretical model that
we describe in the following section.

III. THEORETICAL DESCRIPTION

Light scattering by a dense sample of emitters is a complex
many-body problem and it is quite challenging to describe.
The slab geometry is a textbook situation which has been
largely explored. A recent detailed study of the slab geometry
can be found in Ref. [39]. We focus in this section first
on a perturbative approach which is valid for low enough
densities. We then report coupled dipole simulations following
the method presented in [19] but extended with a finite-size
scaling approach to address the situation of large slabs. We
also discuss the regime of validity for these two approaches.

A. Perturbative approach

We describe here a semianalytical model accounting for the
multiple scattering of light by a dilute atom sample, inspired
from Ref. [40]. By taking into account multiple scattering
processes between atom pairs, it provides the first correction
to the Beer-Lambert law when decreasing the mean distance l

between nearest neighbors towards k−3.
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1. Index of refraction of a homogeneous system

In Ref. [40], the index of refraction of a homogeneous
dilute atomic gas was calculated, taking into account the
first nonlinear effects occurring when increasing the volume
atom density. The small parameter governing the perturbative
expansion is ρk−3, where ρ is the atom density. At second
order in ρk−3 two physical effects contribute to the refraction
index, namely the effect of the quantum statistics of atoms on
their position distribution and the dipole-dipole interactions
occurring between nearby atoms after one photon absorption.
Here we expect the effect of quantum statistics to remain
small, and thus neglect it hereafter (see Ref. [41] for a
recent measurement of this effect). Including the effect of
multiple scattering processes between atom pairs, one obtains
the following expression for the refractive index:

nr = 1 + αρ

1 − αρ/3 + βρ
, (2)

β = −
∫

dr
[
α2G′2 + α3G′3e−ikz

1 − α2G′2

]
xx

(r), (3)

where we introduced the atom polarizability α =
6πik−3/(1 − 2iδ/
) and the Green function [G] of an
oscillating dipole,

Gαβ(r) = −1

3
δ(r)δαβ + G′

αβ(r),

G′
αβ(r) = − k3

4π

eikr

kr

[(
1 + 3i

kr
− 3

(kr)2

)
rαrβ

r2

−
(

1 + i

kr
− 1

(kr)2

)
δαβ

]
, (4)

in which retardation effects are neglected [42]. Note that for
a thermal atomic sample of Doppler width larger than 
, we
expect an averaging of the coherent term β to zero due to
the random Doppler shifts. When setting β = 0 in Eq. (2)
we recover the common Lorentz-Lorenz shift of the atomic
resonance [43]. We plot in Fig. 3 the imaginary part of the
index of refraction as a function of the detuning δ, for a typical
atom density used in the experiment (solid line), and compare
with the single-atom response with (dotted line) and without
(dashed line) Lorentz-Lorenz correction. The resonance line
is modified by dipole-dipole interactions and we observe a
blueshift of the position of the maximum of the resonance
[44].

2. Transmission through an infinite slab with a Gaussian
density profile

In order to account more precisely for the light absorption
occurring in the experiment, we extend the perturbative anal-
ysis of light scattering to inhomogeneous atom distributions,
for which the notion of index of refraction may not be well
defined. The atom distribution is modeled by an average
density distribution ρ(z) of infinite extent along x and y,
and depending on z only, as ρ(z) = ρ0 exp[−z2/(2�z2)]. We
describe the propagation of light along z in the atomic sample.
The incoming electric field is denoted as E0e

i(kz−ωt)ex. The
total electric field, written as E(z)e−iωt , is given by the sum of
the incoming field and the field radiated by the excited atomic
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FIG. 3. Imaginary part of the index of refraction of a homoge-
neous atomic sample of density ρk−3 � 0.026. The three curves
correspond to the absorption of independent atoms (dashed black
line), to the resonance line taking into account the Lorentz-Lorenz
correction (dotted blue line), and to the perturbative analysis discussed
in the text (solid black line), which takes into account multiple
scattering of photons between pairs of atoms [40].

dipoles:

E(z) = E0e
ikzex +

∫
d3r′ ρ(z′)

[G(r − r′)]
ε0

d(z′), (5)

where d(z) is the dipole amplitude of an atom located at z and
ε0 is the vacuum permittivity. The integral over x and y can be
performed analytically, leading to the expression

E(z) = E0e
ikzex + ik

2ε0

∫
dz′ ρ(z′)eik|z−z′ |d⊥(z′), (6)

where d⊥(z) is the dipole amplitude projected in the x,y plane.
The dipole amplitude can be calculated from the atom

polarizability α and the electric field at the atom position.
Taking into account multiple light scattering between atom
pairs, we obtain a self-consistent expression for the dipole
amplitude, valid up to first order in atom density, as d(z) =
d(z)ex, with

d(z) = αε0E0e
ikz +

∫
dr′ ρ(z′)

{[
αG

1 − α2G2

]
xx

(r − r′)d(z′)

+
[

α2G2

1 − α2G2

]
xx

(r − r′)d(z)

}
. (7)

Note that the dipole amplitude also features a component along
z, but it would appear in the perturbative expansion in the atom
density at higher orders.

The electric field and dipole amplitude are numerically
computed by solving the linear system (6) and (7). The
optical depth is then calculated as D = − ln(|E(z)|2/|E0|2)
for z � �z. The results of this approach will be displayed and
quantitatively compared to coupled dipole simulations in the
next subsection.

B. Coupled dipole simulations

1. Methods

Our second approach to simulate the experiments follows
the description in Ref. [19] and uses a coupled dipole model.
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We consider atoms with a J = 0 to J = 1 transition. For a
given surface density n and thickness �z we draw the positions
of the N atoms with a uniform distribution in the xy plane and
a Gaussian distribution along the z direction. The number of
atoms and hence the disk radius is varied to perform finite-size
scaling. For a given detuning and a linear polarization along
x of the incoming field, we compute the steady-state value of
each dipole dj which is induced by the sum of the contributions
from the laser field and from all the other dipoles in the system.
The second contribution is obtained thanks to the tensor Green
function G giving the field radiated at position r by a dipole
located at origin.

Practically, the values of the N dipoles are obtained by
numerically solving a set of 3N linear equations, which limits
the atom number to a few thousands, a much lower value than
in the experiment (where we have up to 105 atoms). From
the values of the dipoles we obtain the transmission T of the
sample:

T = 1 − i

2
σ

nk−2

N

∑
j

k3

6πε0EL

dj,xe
−ikzj , (8)

where zj is the vertical coordinate of the j th atom, EL the
incoming electric field, and dj,x is the x component of the
dipole of the j th atom. From the transmission, we compute
the optical depth D = − ln |T |2 and fit the resonance line with
a Lorentzian line shape to extract, as for the experimental
results, the maximum, the position, and the width of the line.

As the number of atoms used in the simulations is limited,
it is important to verify the result of the simulations is
independent of the atom number. In this work, we are mostly
interested in the response of an infinitely large system in
the xy plane. It is indeed the situation considered in the
perturbative approach and in the experimental system for
which the diameter is larger than 300k−1 and where finite-size
effects should be small. The atom number in the simulations is
typically two orders of magnitude lower than in the experiment
and finite-size effects could become important. For instance,
some diffraction effects due to the sharp edge of the disk could
play a role [39]. Consequently, we varied the atom number in
the simulations and observed, for simulated clouds with small
radii, a significant dependence of the simulation results on the
atom number. We have developed a finite-size scaling approach
to circumvent this limitation. We focus in the following on
transmission measurements as in the experiment.

We show two examples of this finite-size scaling approach
for k�z = 1.6 in Fig. 4 and k�z = 80 in Fig. 5. For
low enough surface densities, the results of the simulations
(maximal optical depth, width, shift, etc.) for different atom
numbers in the simulation are aligned, when plotted as a
function of 1/

√
Nsim, and allow for the desired finite-size

scaling. All the results presented in this section and in Sec. IV
[45] are obtained by taking the extrapolation to an infinite
system size, which corresponds to the offset of the linear fit in
Figs. 4 and 5.

Interestingly, we observe in Fig. 4 for a thin cloud
that considering a finite-size system only leads to a small
underestimate of the blueshift of the resonance. However, for
thicker slabs, such as in Fig. 5, we get, for finite systems, a
small redshift and a narrowing of the line. Considering our
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FIG. 4. Example of finite-size scaling to determine (a) the
position of the maximum of the resonance and (b) the width of the
resonance. Here k�z = 1.6 and (from bottom to top) nk−2 = 0.05,
0.11, and 0.21. Simulations are repeated for different atom number
Nsim. The number of averages ranges from 75 (left points, Nsim =
2000) to 25 000 (right points, Nsim = 100). When plotting the shift
as a function of 1/

√
Nsim ∝ 1/R, and for low enough densities, data

points are aligned and allow for a finite-size scaling. Vertical error
bars represent the standard error obtained when averaging the results
over many random atomic distributions.

experimental system, we have 1/
√

N ≈ 0.003, leading to a
small correction according to the fits in Fig. 5. However, for
such thick systems we are able to simulate only systems with
low nk−2, typically 0.1, whereas we can reach densities 15
times larger in the experiment, which could enhance finite-size
effects. Simulation of thick and optically dense slabs is thus
challenging and the crossover between the thin slab situation
explored in this article and the thick regime is an interesting
perspective of this work.

2. Role of the thickness and density of the cloud

We now investigate the results of coupled dipole
simulations for different densities and thicknesses of the
atomic cloud. We limit the study to low densities, for which
the finite-size scaling approach works. It is important to note
that the computed line shapes deviate significantly from a
Lorentzian shape and become asymmetric. Consequently
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FIG. 5. Example of finite-size scaling to determine (a) the
position of the maximum of the resonance ν0 and (b) the width

 of the resonance. Here, k�z = 80 and (from top to bottom)
nk−2 = 0.027, 0.08, and 0.13. Simulations are repeated for different
atom number Nsim. The number of averages ranges from 75 (left
points, Nsim = 2000) to 25 000 (right points, Nsim = 100). Vertical
error bars represent the standard error obtained when averaging the
result over many random atomic distributions.
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FIG. 6. Coupled dipole simulations for different thicknesses. (a) Maximal optical depth; (b) position of the maximum of the line; (c) width
of the resonance line. We report results for k�z = 0, 1.6, and 8, the darkest lines corresponding to the smallest thicknesses. The black dashed
lines correspond to the single-atom response.

there is not a unique definition for the center of the line and
for its width. In our analysis, we fit the resonance lines around
their maximum with a typical range of ±0.5 
. The shift thus
corresponds to a variation of the position of the maximum of
the line and the “width” characterizes the curvature of the line
around its maximum. The results of these fits are reported in
Fig. 6 as a function of surface density for different thicknesses.
In these plots, we observe the same features as qualitatively
described in Sec. II: a decrease of the maximal optical
depth with respect to the single-atom response [Fig. 6(a)], a
blueshift of the position of the maximum [Fig. 6(b)], and a
broadening of the line [Fig. 6(c)]. For a fixed thickness, these
effects increase with surface density and for a fixed surface
density they are more pronounced for lower thicknesses. Note
that we only explore here surface densities lower than 0.25
which is quite lower than the maximum experimental value
(∼1.5). Whereas our finite-size scaling approach can be well
extended for very thin systems (k�z < 1) it fails for thick
and optically dense systems [46].

3. Comparison with the perturbative model

The perturbative approach is limited to low densities
ρk−3 � 1 but it gives the response of an infinitely expanded
cloud in the transverse direction. Coupled dipole simulations
can in principle address arbitrarily large densities but the
number of atoms considered in a simulation is limited, and
thus for a given density the size of the system is limited.
Coupled dipole simulations are thus more relevant for thin and
dense samples and the perturbative approach more suited for
nonzero thickness samples.

In Fig. 7 we choose two illustrative examples to confirm,
in the regime where both models could be used, that these
two approaches are in quantitative agreement. In Fig. 7(a) we
compare the maximum optical depth as a function of surface
density for three different thicknesses. The perturbative
approach is typically valid, for this set of thicknesses, up to
nk−2 ∼ 0.1. We investigate the shift of the position of the
maximum in Fig. 7(b). We report, as a function of the inverse
thickness (1/k�z), the slope γ of the shift with density,
ν0 = γ nk−2, computed for surface densities below 0.1. The
dotted line is the result from the perturbative approach, the
solid line corresponds to coupled dipole simulations, and
the dash-dotted line to the result for zero thickness. The
perturbative approach approximates well coupled dipole

simulations. This result also confirms that the finite-size
scaling approach provides a good determination of the
response of an infinite system in the xy direction.

We have identified in this section the specific features of
the transmission of light through a dense slab of atoms. We
focus here on the transmission coefficient to show that we
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FIG. 7. Comparison between the coupled dipole simulations
and the perturbative model. (a) Behavior of the optical depth at
the single-atom resonance D0 with surface density for different
thicknesses (k�z = 0, 1.6, and 3.2, from bottom to top). Coupled
dipole simulations are shown as solid lines, perturbative approach
as dotted lines, and the dashed line is the Beer-Lambert prediction.
(b) Slope γ of the blueshift ν0 = γ nk−2 as a function of the inverse
thickness 1/k�z. The solid line is the result of the coupled dipole
model, the dash-dotted line is the zero-thickness coupled dipole result
(1/k�z → ∞), and the dotted line is the perturbative model.
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FIG. 8. Maximum optical depth (a), broadening (b), and fre-
quency shift (c) of the resonance line for our thinnest samples with
k�z = 2.4(6) (circles) and for thicker samples with k�z = 30(8)
(squares). In (a) the shaded area represents the uncertainty in the
frequency calibration of the single-atom resonance. In (a) and (b),
the dark black solid (light blue dotted) line is the prediction of the
coupled dipole model for k�z = 0 (k�z = 2.4) in its accessible range
of densities. The dashed lines represent the single-atom response.

observe the same features in the experiment and we will make
a quantitative comparison between our experimental findings
and the results obtained with coupled dipole simulations.
Our theoretical analysis is complemented by a study of the
reflection coefficient of a strictly 2D gas detailed in Appendix.

IV. EXPERIMENTAL RESULTS

We show in Fig. 8 the results of the experiments introduced
in Sec. II. The fitted Dmax for different surface densities
is shown in Fig. 8(a). We compare these results to the

Beer-Lambert prediction (narrow dashes) DBL = nσ0 and
to the same prediction corrected by a factor 7/15 (large
dashes). This factor is the average of the Clebsch-Gordan
coefficients relevant for π -polarized light tuned close to the
|F = 2〉 → |F ′ = 3〉 transition and, as discussed previously,
it is included in the calibration of the atom number. At large
surface densities, we observe an important deviation from
this corrected Beer-Lambert prediction: we measure that Dmax

seems to saturate around Dmax ≈ 3.5, whereas DBL ≈ 13 [47].
We also show the prediction of the coupled dipole model, as
a solid line for the full range of surface densities at k�z = 0
and as a dotted line for the numerically accessible range of
surface densities at k�z = 2.4. The coupled dipole simulation
at k�z = 0 shows the same trend as in the experiment but
with Dmax now bounded by 2. A reason could be the nonzero
thickness of the atomic slab. In order to test this hypothesis,
we investigated the influence of probing duration for the
largest density. For such a density we could decrease the pulse
duration while keeping a good enough signal-to-noise ratio
[see inset in Fig. 2(b)]. For a shorter probing duration, hence for
a smaller expansion of the cloud, Dmax decreases, in qualitative
agreement with the expected effect of the finite thickness.

The saturation of the optical depth with density is a
counterintuitive feature. It shows that increasing the surface
density of an atomic layer does not lead to an increase of its
optical depth. Coupled dipole simulations at k�z = 0 even
show that the system becomes slightly more transparent as the
surface density is increased. This behavior may be explained
qualitatively by the broadening of the distribution of resonance
frequencies of the eigenmodes of this many-body system. A
dense system scatters light for a large range of detunings but
the cross section at a given detuning saturates or becomes
lower as the surface density is increased.

We display in Fig. 8(b) the width 
 of the Lorentzian
fits for k�z = 2.4(6) along with coupled dipole simulation
results [46]. We observe a broadening of the resonance line
up to more than 3
0. This broadening is confirmed by the
simulation results for k�z = 0 (solid line). Note that the exact
agreement with the experimental data should be considered
as coincidental. The range on which we can compute the
broadening for k�z = 2.4 (light dotted line) is too small to
discuss a possible agreement.

We show in Fig. 8(c) the evolution of ν0 with density. A
blueshift, reaching 0.2
0 for the largest density, is observed.
At the largest density, an even larger shift is observed when
decreasing the pulse duration (≈0.4
0, not shown here). We
also display the result of the coupled dipole model for the
cases k�z = 2.4 and k�z = 0. Both simulations confirm the
blueshift but predict a different behavior and a larger effect.
In addition, we show the variation of ν0 for a thick cloud with
k�z = 30(8). In that case we observe a marginally significant
redshift [48].

The experimental observation of a blueshift is in stark
contrast, both in amplitude and in sign, with the mean-
field prediction of the Lorentz-Lorenz redshift νMF

0 /
0 =
−πρk−3 = −√

π/2 nk−2/(k�z), written here at the center
of the cloud along z. The failure of the Lorentz-Lorenz
prediction for cold atom systems has already been observed
and discussed for instance in Refs. [30,34,36]. As discussed
with the perturbative approach in Sec. III, the Lorentz-Lorenz
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contribution is still present but it is (over)compensated by
multiple scattering effects for a set of fixed scatterers. In hot
vapors, where the Doppler effect is large, the contribution
of multiple scattering vanishes and thus the Lorentz-Lorenz
contribution alone is observed. The related cooperative Lamb
shift has been recently demonstrated in hot vapor of atoms
confined in a thin slab in Ref. [31]. In the cold regime
where scatterers are fixed, such effects are not expected
[39]. However, in these recent studies with dense and cold
samples a small redshift is still observed [30,34,36]. This
difference on the sign of the frequency shift with respect to
the results obtained in this work may be explained by residual
inhomogeneous broadening induced by the finite temperature
or the diluteness of the sample in Ref. [30] and by the specific
geometry in Ref. [34], where the size of the atomic cloud is
comparable to λ and where diffraction effects may play an
important role. As discussed in Sec. III, our observation of a
blueshift is a general result which applies to the infinite slab.
It is robust to a wide range of thicknesses and density, and
while we computed it theoretically for a two-level system,
it also shows up experimentally in a more complex atomic
level structure. It was also predicted in Ref. [39] but for a
uniform distribution along the z axis instead of the Gaussian
profile considered in this work, and also discussed in [44].
Consequently, we believe that it is an important and generic
feature of light scattering in a extended cloud of fixed randomly
distributed scatterers.

Finally, we compare the line shape of the resonance with
the Lorentzian shape expected for a single atom. We measure
for nk−2 = 1.5(2), the optical depth at large detunings, and for
various cloud thicknesses. We fit it with a power law on the
red-detuned (blue-detuned) frequency interval with exponent
ηr (ηb) as shown, for two examples, in Fig. 9(a). If the behavior
were indeed Lorentzian, the exponents should be −2 in the
limit of large detuning. As seen in Fig. 4(c), for the thinnest
gases, the fitted exponents are significantly different from the
expected value and can reach values up to −1.3, showing the
strong influence of dipole-dipole interactions in our system.
We show the result of coupled dipole simulations for k�z = 0
in Fig. 4(b) along with their power-law fit. We extract the
exponents ηr = −0.36(1) and ηb = −0.70(1) that are reported
as solid lines in Fig. 4(c). Our experimental results interpolate
between the single-atom case and the simulated 2D situation.

V. CONCLUSION

In summary we have studied the transmission of a macro-
scopic dense slab of atoms with uniform in-plane density and a
transverse Gaussian density distribution. We observed a strong
reduction of the maximum optical density and a broadening of
the resonance line. More surprisingly, we showed the presence
of a large blueshift of the resonance line and a deviation
from Lorentzian behavior in the wings of the resonance line.
These results are qualitatively confirmed by coupled dipole
simulations and a perturbative approach of this scattering
problem. We also confirm the difficulty already observed
to obtain a quantitative agreement between coupled dipole
simulations and experimental results in the dense regime
[32,34]. Possible explanations for this discrepancy are (i)
residual motion of the atoms during the probing due to the
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FIG. 9. Non-Lorentzian wings of the resonance line. (a) Two
examples of the scaling of optical depth with �ν (blue side), in
log-log scale, for k�z = 2.4(6) (circles) and for k�z = 350(90)
(squares) and their power-law fit. (b) Coupled dipole simulations at
zero thickness and for nk−2 = 1.5(2). The optical depth is plotted as a
function of detuning (minus the detuning) from the resonance line, for
the blue (circles) [red (squares)] side. The solid lines are power-law
fits. (c) Experimental results for nk−2 = 1.5(2). Circles (squares)
represent the fitted exponents ηr (ηb) to the far-detuned regions of the
resonance line on the red and blue side, respectively. The fit function
is �ν 
→ D(�ν) = A (�ν − ν0)η. The error on the fitted exponents
is also determined using a bootstrap analysis. The horizontal dashed
black line (η = −2) emphasizes the expected asymptotic value for
low densities for a Lorentzian line (at large detunings).

strong light-induced dipole-dipole interactions, (ii) a too large
intensity used in the experiment which goes beyond the validity
of the coupled dipole approach, and (iii) the influence of
the complex atomic level structure. We were careful in this
work to limit the influence of the two first explanations
and the last possibility is likely to be the main limitation.
The complex level structure leads to optical pumping effects
during the probing and thus the scattering cross section of
the sample is not well defined. A simple way to take into
account the level structure is, as discussed in Sec. IV, to
renormalize the scattering cross section by the average of the
Clebsch-Gordan coefficients involved in the process. For 87Rb
atoms this amounts to the factor 7/15 already discussed earlier.
However, this is a crude approximation which neglects optical
pumping effects during scattering and whose validity in the
dense regime is not clear. Two approaches can be considered
to remove this limitation. First, one can use another atomic
species such as strontium or ytterbium bosonic isotopes which
have a spin singlet ground state and in which almost exact
two-level systems are available for some optical transitions.

053629-8



TRANSMISSION OF NEAR-RESONANT LIGHT THROUGH A . . . PHYSICAL REVIEW A 96, 053629 (2017)

Scattering experiments on strontium clouds have been reported
[25,30,49] but they did not explore the dense regime tackled in
this work. The comparison with theory thus relies on modeling
their inhomogeneous density distribution accurately. Second,
an effective two-level system can be created in the widely used
alkali-metal atoms by imposing a strong magnetic field which
could separate the different transitions by several times the
natural linewidth as demonstrated in some recent experiments
on three-level systems [50,51]. This method could be in
principle applied on our setup to create an effective two-level
system and could help one to understand the aforementioned
discrepancies.

Finally, we note that this article focuses on the steady-state
transmission of a cloud illuminated by a uniform monochro-
matic beam. The slab geometry that we have developed
here is of great interest for comparison between theory and
experiments and our work opens interesting perspectives for
extending this study to time-resolved experiments, to fluores-
cence measurements, or to spatially resolved propagation of
light studies.
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APPENDIX: REFLECTION COEFFICIENT OF A 2D GAS

Thanks to their large scattering cross section at resonance,
arrays of atoms can be used to emit light with a controlled spa-
tial pattern [52]. A single-atom mirror has been demonstrated
[53] and, more generally, regular two-dimensional arrays of
atoms have been considered for realizing controllable light
absorbers [17] or mirrors [18] with atomic-sized thicknesses.
For the disordered atomic samples considered in this article the
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FIG. 10. Intensity reflection coefficient as a function of surface
density for k�z = 0 (solid line). For comparison we show the
corresponding optical depth D (dotted line, right axis) and the lower
bound for the reflection coefficient deduced from this optical depth
(dashed line).

strong decrease of the transmission because of dipole-dipole
interactions could lead to a large reflection coefficient. For
a strictly two-dimensional gas we show as a solid line in
Fig. 10 the result of the coupled dipole model for the intensity
reflection coefficient |R|2 at resonance and at normal incidence
as a function of density. This intensity reflection coefficient has
a behavior with density similar to the optical depth D (dotted
line). The relation between these two quantities depends on the
relative phase between the incoming and the reflected field.
For a transmitted field in phase with the incident field we
find, using the boundary condition R + T = 1, a lower bound
for this reflection coefficient, |R|2 � (1 − |T |)2, shown as a
dashed line in Fig. 10. The intensity reflection coefficient is
close to this lower bound in the regime explored in this work.
The maximum computed value for the reflection coefficient
is close to 40%, which shows that a single disordered layer
of individual atoms can significantly reflect an incoming light
beam [54]. Note that for a non-2D sample light can be diffused
at any angle. For our experimental thickness and the relevant
densities the reflection coefficient is in practice much lower
than the above prediction.
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Light scattering in dense media is a fundamental problem of many-body physics, which is also relevant for the
development of optical devices. In this work we investigate experimentally light propagation in a dense sample
of randomly positioned resonant scatterers confined in a layer of subwavelength thickness. We locally illuminate
the atomic cloud and monitor spatially resolved fluorescence away from the excitation region. We show that light
spreading is well described by a diffusion process, involving many scattering events in the dense regime. For
light detuned from resonance we find evidence that the atomic layer behaves as a graded-index planar waveguide.
These features are reproduced by a simple geometrical model and numerical simulations of coupled dipoles.
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Multiple scattering in disordered materials is currently the
focus of intense investigations in many different contexts such
as electron transport in solids [1], sound wave propagation
[2], matter waves in optical potentials [3], and light prop-
agation in dielectric materials [4]. Multiple light scattering
is of paramount importance to understand light transport,
for instance, in biological tissues, planetary atmospheres, or
interstellar clouds [5]. In addition, the development of custom
photonic materials allows one to engineer disordered materials
in a controlled way and opens new applications in random
lasing [6] or in the development of solar cells [7].

Cold atomic gases offer a unique platform to investigate
light scattering. Due to the simple atomic level structure, all
photons incident on the gas are scattered without absorption.
Cooling techniques can bring the atoms to a temperature where
their residual motion is so small that Doppler broadening
is negligible. Additionally, the gas dimensionality can be
changed rather easily by shaping the trapping potential. Finally,
the tunability of the scattering cross section and the atomic
density allows one to explore light scattering from the dilute
to the dense regime.

In the multiple-scattering regime, light is scattered several
times before exiting the material in random directions. In
sufficiently dilute atomic clouds, this process is known to be
well captured by a random-walk-type diffusive model [1]. This
regime has been explored in several experiments, achieving, for
instance, the observation of coherent backscattering [8,9], sub-
radiant and superradiant modes [10–12], cooperative radiation
pressure force [13], or collective light scattering [14,15]. At

*Present address: Fakultät für Physik, Ludwig-Maximilians-
Universität München, Schellingstraße 4, 80799 Munich, Germany.

†Present address: Institute for Quantum Electronics, ETH Zurich,
8093 Zurich, Switzerland.
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higher densities ρ where the product of the light wave number
k and the interatomic spacing ρ−1/3 becomes of the order of
unity, the situation is still poorly understood. Indeed, scatterers
are no longer independent of each other and significant induced
dipole-dipole interactions occur [16–20]. These interactions
are responsible for cooperative effects such as broadening and
a shift of the resonance line [21–26].

Here we explore the phenomenon of multiple scattering of
light in a dense and large cloud of atoms. In our ultracold sam-
ple the motion of the atoms is negligible on the timescale of the
experiment, so they act as a gas of fixed, randomly distributed
point scatterers. Atoms are confined in a layer geometry in the
focal plane of a high-resolution imaging system, which allows
us to inject light in a region with sharp boundaries and monitor
its spreading away from this region [see Fig. 1(a)]. We observed
that the fluorescence intensity, which measures the local photon
escape rate, decays exponentially with the distance from the
excitation zone. We show that this behavior is compatible with
a two-dimensional (2D) diffusive model. For resonant light,
we measured the decay length of the fluorescence signal as a
function of the atomic density, all the way from the dilute to
the dense regime. This decay length, or equivalently the escape
radius of the photons, represents the distance the photons
travel before escaping the sample. It decreases with increasing
density and then saturates in the regime of high density where
photons undergo a few tens of scattering events before leaving
the cloud. For detuned light and in the dense regime, the photon
escape rate is significantly modified in a way that suggests a
light-guiding mechanism reminiscent of a graded-index planar
waveguide. We also observed these phenomena in numerical
simulations based on a model of coupled dipoles and explained
them in a semiquantitative way by an analytical model of light
guiding in an open, disordered 2D slab.

We use a dense layer of 87Rb atoms as previously described
in Refs. [26,27]. In the xy plane, we produce a uniform disk-
shaped atomic layer of radius R = 20 μm with a controllable
surface density up to ρ2D = 135(15) μm−2 and a temperature

2469-9926/2018/97(6)/061801(6) 061801-1 ©2018 American Physical Society
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FIG. 1. Experimental setup. A layer of atoms is illuminated at
its center with a resonant light beam of radius R0. Photons initially
emitted in the excitation region can be scattered several times in
the atomic layer before exiting the system and being collected and
imaged. (b) Typical fluorescence image at resonance and maximum
density. The black circle, of diameter of 2R0 = 5 μm, delineates
the excitation region. Intensity is not uniform inside the excitation
region partially because of finite optical resolution but also, and
more importantly, because of the light diffusion process itself, as
described in the text. (c) Schematic of the imaging system. A pinhole
is imaged on the atomic cloud using a microscope objective (MO1).
The atomic fluorescence is imaged on a camera (CCD) using a second
and identical objective (MO2) and a set of lenses. Fluorescence
is spatially filtered using an iris and the detected polarization is
chosen by adjusting a combination of a half-wave plate (HWP) and a
polarization beam splitter (PBS).

T0 = 270(10) nK. Atoms are strongly confined along the
vertical z direction with an approximately Gaussian density
distribution of rms thickness �z ≈ 0.3 μm < λ0, with λ0 =
2π/k = 0.78 μm the resonant wavelength for the |F = 2〉 to
|F ′ = 3〉 D2 transition of rubidium atoms. This corresponds
to a maximum density at the center of the Gaussian profile of
ρ3Dk−3 = 0.35(5) where ρ3D = ρ2D/

√
2π�z.

We tune this density by varying the number of atoms in the
|F = 2,mF = −2〉 hyperfine ground state, which is sensitive
to our light probe. The population in this state is controlled
using partial transfer from the |F = 1,mF = −1〉 state in
which the atoms are initially spin polarized. As discussed in
Ref. [26], dipole-dipole interactions play a dominant role at the
densities achieved in our setup. Because of these interactions,
the thickness of the cloud could increase, depending on its
density, during the light excitation. We estimate that the
effective cloud thickness, in the illuminated region, could reach
a maximum value of 0.4 μm at the end of the excitation.

The atomic cloud is locally excited by light at a wavelength
λ0, propagating perpendicular to the atomic plane along the z

axis, as illustrated in Fig. 1(a), and linearly polarized along x. In
the illuminated region, the intensity of the beam is on the order
of 7Isat, where Isat = 1.6 mW cm−2 is the saturation intensity
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FIG. 2. Fluorescence decay. Binned and azimuthally averaged
profile for the measured atomic fluorescence (squares). Circles show
the small background signal observed without atoms. The shaded
area represents the excitation region. Statistical errors bars due
to photon counting are smaller than the size of the points. The
solid lines are broken lines linking the points. The inset shows the
same data outside the excitation region in a semilogarithmic plot
to emphasize the exponential decay of the fluorescence signal. We
attribute the deviation of the last two points from the exponential
fit to the contribution from stray light. Data are averaged over 100
measurements.

for this transition (with a linewidth � = 2π × 6.0 MHz).1 The
light beam profile on the atomic cloud is given by the image of
a pinhole whose diameter on the atomic cloud is 2R0 = 5 μm.
The excitation duration is τ = 10 μs. The atomic fluorescence
is collected, spatially filtered, and imaged on a CCD camera,
as shown in Fig. 1(c). We detect only photons with a linear
polarization perpendicular to the excitation polarization and
block the residual light transmitted in the spatial mode of
the incident beam. The optical resolution of our system
(∼1 μm) is characterized in the Supplemental Material [28].
Atoms outside the illuminated region are only excited by
scattered light and experience a much lower intensity than
in the illuminated region. Taking into account our collection
and detection efficiencies, assuming that the scatterers are
independent and that polarization is randomized for photons
emitted from outside the excitation region, we obtain a rough
estimate for the intensity experienced by atoms at 1 μm from
the edge of the illuminated region of approximately 0.1Isat. It
is important to operate in this low-saturation regime to enable
comparison with the simulations described below.

We show in Fig. 1(b) a typical measurement of the atomic
fluorescence signal integrated over the full duration of the
excitation. The circle indicates the illuminated region. Photons
are detected up to several microns away from this region. We
show in Fig. 2 a binned and azimuthally averaged profile
of the fluorescence image. There is a large ratio between
the atomic signal and residual stray light over the explored
experimental range. Outside the illuminated region we observe
an exponential decay with distance of the atomic fluorescence

1The intensity we used is large enough to ensure that, even if our
samples have large optical depths, the cloud is well excited for all
positions along the z direction.
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FIG. 3. (a) Measured escape radius Re for different densities at
resonance (� = 0). Vertical error bars correspond to the standard
deviation of the results of exponential fits to the data obtained
with a bootstrap approach [29]. Each data set is obtained from
the average of 100 measurements. Horizontal error bars represent
the statistical uncertainty on the atom number. The inset shows
the relevant parameters of the simple model described in the main
text. (b) Escape radius Re obtained from the analytical result of
Eq. (4) (solid curve) and numerical simulations of a model of
classical coupled dipoles (squares) as a function of density. Statistical
error bars on Re obtained from the fitting procedure of the coupled
dipole simulations are smaller than the size of the points. The
inset shows the fluorescence signal computed with coupled dipole
simulations for ρ3Dk−3 = 0.12 and averaged over more than 1000
atomic distributions. The solid line is the exponential fit outside the
illuminated region.

over almost two decades (see the inset in Fig. 2). The typical
distance over which the photons travel is of a few microns.

We first focus on the experimental results for a resonant
excitation. We fit the experimental fluorescence signal for
various densities by Ae−r/Re and obtain the escape radius Re

as a function of density [see Fig. 3(a)]. The escape radius
decreases for increasing densities and reaches an approxi-
mately constant value for ρ3Dk−3 > 0.1. The measurements in
the low-density regime (lower values of ρ3Dk−3) correspond
to a single-scattering-event regime where a photon typically
leaves the sample after the first scattering event outside the
illuminated region. In this case the escape radius is on the
order of the scattering mean free path � = 1/ρ3Dσ , where σ

is the light cross section and we expect Re ∼ �, in agreement
with the observed decrease of Re with density.

In the opposite regime of large densities, photons are
scattered several times before leaving the sample and we
observe a saturation of the escape radius. It remains around
kRe ≈ 12 while varying the density by a factor of about 3. We
checked that this saturation is not due to the finite resolution
of our imaging system, which allows us to measure spatial
structures with a size below 1 μm (kRe � 8). In this regime the
system can be described by a diffusion model of light transport.
In the steady-state regime, the light energy density I (r) at a
point r in the sample obeys a diffusion equation with losses

−D0∇2I (r) = −γ I (r) + S(r), (1)

whereD0 is the diffusion constant,γ the escape rate of photons,
and S(r) the source term describing the laser excitation. We
consider the situation where the source term is S(r) = S0 for
r < R0 and 0 otherwise. The solution of this equation in two

dimensions is given by

I (r) = S0

2πD0

∫∫
|r′|<R0

K0

( |r − r′|
Re

)
d2r ′ ∝

r	R0+Re

e−r/Re

√
r

,

(2)

where K0 is the modified Bessel function of the second kind of
order zero and Re = √

D0/γ . Outside the illuminated region,
at large r , the function I (r) decays almost exponentially,2 in
agreement with our measurements. These results allow us to
relate the measured photon escape radius Re to the diffusion
constant D0 and to the escape rate γ that we cannot measure
individually in a direct way. In this diffusive regime, the escape
radius Re can also be related to the microscopic parameters
describing the propagation of a photon in a random-walk
picture. Introducing p, the probability of escaping the cloud
after a scattering event, and using �, the (already defined)
scattering mean free path, one gets, for large r ,

Re ∼ �/
√

p. (3)

We have developed a simple geometrical model to estimate
the escape probability p and to explain the main features of
the curve in Fig. 3(a). Consider an atom in a 2D gas emitting
a photon as being placed at the center of a vertical cylinder
of radius �, corresponding to the typical distance to the next
scatterer. The photon will escape the cloud if its emission angle
θ0 is small enough so that it would meet the next scatterer at
a height larger than

√
σ/π . Emitted photons that escape the

medium are then effectively contained within a cone of half
angle θ0 [see the inset of Fig. 3(a)]. This gives a probability p ∼
2 × 2π (1 − cos θ0)/4π with tan θ0 = �/

√
σ/π and in turn

kRe = k�√
1 − (1 + �2π/σ )−1/2

. (4)

We display Eq. (4) computed for the resonant scattering cross
section 3λ2

0/2π in Fig. 3(b) (solid line). At large densities,
p ∼ �2π/2σ so that Re becomes independent of the density
and much larger than the mean free path. This saturation of
Re with increasing density thus stems from the compensation
of two antagonistic effects: (i) the decrease of �, which tends
to make the escape radius smaller, and (ii) the decrease of p.
The extension of Eq. (3) to low densities (large �) is consistent
with Re ∝ � and this simple model thus reproduces roughly
the behavior of the ensemble of the experimental points.

Using the random-walk picture and this estimate of p, we
find that the typical number of scattering events before a photon
leaves the sample is Nscatt = 1/p = 2σ/π�2. Considering an
atomic density of ρ3Dk−3 = 0.07, in the plateau of Fig. 3(b)
but not too large so that � could still be interpreted with the
classical picture of a mean free path, we get a typical value of
about 20 scattering events. This value justifies the diffusion
model and confirms that we investigate experimentally a
steady-state situation (the total duration of a photon random
walk, approximately equal to Nscatt�

−1, is much shorter than
the duration τ of the illumination pulse).

2We neglect the
√

r dependence, which has almost no influence on
the shape of the signal in the range of distance we explore in this
work.
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FIG. 4. Escape radius versus detuning. (a) Experimental results
obtained for a dense cloud with ρ3Dk−3 
 0.35. The insets show the
bending of the trajectories which depends on the sign of the detuning.
The dashed lines in the insets correspond to the maximal emission
angle a photon leaving the sample could have without considering
the bending effect. Taking into account the bending effect, this
maximal angle is smaller for negative detuning and larger for positive
detunings. Each point is the average result of 100 measurements. (b)
Escape radius computed from a numerical model of coupled dipoles
(squares), with the escape radius Re = �/

√
1 − cos θ0 obtained by

solving Eq. (5) for θ0 (solid line). All theory curves are computed
for the largest density we are able to handle ρ3Dk−3 = 0.1. Statistical
error bars obtained from the fitting procedure for the coupled dipole
simulations are smaller than the size of the points.

As shown in Fig. 3(b), the variation of escape radius with
density is also reproduced by numerical simulations based on
the method of coupled dipoles. As described in Ref. [30], we
model our atomic system by a random ensemble of randomly
positioned classical coupled dipoles (with the transition from
J = 0 to J = 1) in a layer geometry with the same thickness
as in the experiment. We compute the exact radiated field from
these dipoles for a given excitation field taking into account
simultaneously all effects related to dipole-dipole interactions
and interferences. Fluorescence signals are obtained from the
modulus square of each dipole and escape radii from an
exponential fit to the fluorescence signal in the range from
r1 = 2.7 μm to r2 = 4 μm, where r is the distance from
the center. For each density we adapt the atom number in
the simulations (from 100 up to 4000) and the number of
repetitions over which the result of the simulations are averaged
(from 20 to more than 105).

The two models that we have developed are in good agree-
ment with each other. However, although these predictions
qualitatively reproduce the measurements in Fig. 3(a), note
the difference by a factor approximately equal to 3 between the
scales of the two graphs. Possible reasons for this difference
are discussed below.

An interesting feature of atomic systems is the possibility
to change dramatically the response of the system by varying
the detuning � of the excitation light with respect to the
resonance. We report in Fig. 4(a) the influence of the detuning
on the experimental escape radius Re for the cloud of highest
density. We observe a clear asymmetry around � = 0: The
escape radius is larger for negative than for positive detunings,
which indicates that photons are escaping more easily the
sample when � > 0. Clearly, the results of Fig. 4(a) cannot be
explained by the dependence of Eq. (4) on �, which originates

only from the photon scattering cross section by a single atom
and is thus symmetric with respect to � = 0.

We attribute the asymmetry mainly to a refractive-index
gradient effect and we developed a simple model to describe
this effect. We approximate the atomic slab by a continuous
medium with a spatially varying index of refraction n(z) along
the vertical direction and use the low-density expression for
this index: n(z) = 1 − [6πρ3D(z)�/�]/[k3(1 + 4�2/�2)]. It
is thus either larger than one below the resonance (� < 0) or
lower than one above the resonance (� > 0). In our system,
the density distribution ρ3D(z) has an approximately Gaussian
shape with a maximum at z = 0 leading to a gradient of
the index of refraction. For negative detuning, n(z) decreases
with |z| from the center of the cloud. This gives rise to a
phenomenon of light guiding close to the one encountered in
optical waveguides, explaining qualitatively why the escape
radius gets larger. For � > 0, the opposite effect is expected,
with a decrease of the escape radius.

More quantitatively, the effect of the refractive-index gra-
dient on Re can be estimated by modifying the geometrical
picture of the inset in Fig. 3(a) to account for the bending
of photon trajectories that escape the layer, as illustrated in
the insets of Fig. 4(a) for � > 0 and � < 0. For negative
detunings, this bending leads to a decrease of the maximum
value of the emission angle θ0 for which a photon leaves
the cloud. Similarly, it leads to an increase of θ0 for positive
detunings. The principle of the calculation is the following.
We compute the equation for the trajectory z(r) of a photon
emitted in z = 0 and r = 0 and determine the emission angle
θ0 that fulfills the escape condition

z(�) =
√

σ/π, (5)

where σ = (3λ2
0/2π )/(1 + 4�2/�2). To find z(r), we use the

low-density expression of n(z) given above and approximate
the density profile ρ3D(z) of the atomic layer by an inverted
parabola. Details of the calculation and complementary data
for other densities are available in the Supplemental Material
[28]. The escape radius obtained from this model is displayed in
Fig. 4(b) as a function of � and shows a significant asymmetric
behavior with detuning.

A similar asymmetry is also visible in our numerical
simulations of coupled dipoles [see Fig. 4(b)]. Note that
differences show up between the numerical simulations and
our geometrical model. In particular, the simulations display
a weaker variation with � than the one predicted by Eq. (5).
This effect could be attributed to light-induced dipole-dipole
interactions between atoms. These interactions are known to
give rise to a broadening and a blueshift of the line [26], present
in the simulations but not taken into account in Eq. (5). More
generally, cooperative effects could be taken into account by
modifying also the mean free path and the cross section, which
are fundamental parameters of our model. Calculation of these
parameters in the dense regime is however a difficult task that
we leave for future work.

Since the measured escape radii are on the order of the
optical wavelength, their measurement is rather challenging.
We discuss two possible experimental limitations for this
measurement. First, the finite resolution of the imaging system
leads to an overestimate of the escape radius, but our setup
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benefits from a good spatial resolution, and we estimate that
this correction should be at most on the order of 10%. Second,
light-induced forces caused by dipole-dipole interactions are
strong when operating in the dense regime. We have thus
chosen the duration of the excitation short enough to limit the
atomic motion while being long enough to probe the steady-
state regime. With these parameters dipole-dipole interactions
still lead to a small increase of the cloud size along the
vertical axis. This increase of the cloud thickness (only in the
illuminated region where the scattering rate is large) could
favor the propagation of photons to a larger distance. For a
pulse duration twice as long,3 we observed an increase of the
escape radius Re by about 20%.

Both the coupled dipole simulations and the geometrical
model predict a variation of Re with density and detuning
qualitatively similar to the experimental results, but with a
factor ∼3 difference in the absolute value for Re. A possible
explanation for this discrepancy is the complex level structure
of the rubidium atom. For instance, the averaging of the
Clebsch-Gordan coefficients over all possible π transitions
relevant for our incident linearly polarized light should at least
lead to a correction of the effective single-atom scattering cross
section which is not taken into account in our expression of the
mean free path �.4 Taking into account this level structure on
the determination of Re requires complex simulations beyond
the scope of this article [25]. An alternative approach would
be to reproduce this study with atomic species like ytterbium
and strontium, which present well-isolated J = 0 to J = 1
transitions. One could also couple our method for producing
thin slabs with the method to isolate an effective two-level
system in a multilevel atom discussed in Refs. [31–33] and
based on the large Zeeman effect produced by an external
magnetic field.

3The amplitude of the signal becomes too low for shorter pulses.
4An average with equal weight on all the transitions gives a cross section decreased by a factor 7/15 but neglects any optical pumping effects

during the excitation. The scattering cross section should also be modified to take into account the spectrum of the photons emitted by the
illuminated region. Indeed, as the Rabi frequency of our excitation beam is on the order of �, we expect a modification of the fluorescence
spectrum.

In summary, we have explored the diffusion of light in a dense
and extended sample of fixed scatterers. Experiments with
cold atomic systems are usually limited to lower densities.
Still, the dense regime was explored in Refs. [23–25], but
with a microscopic sample where light propagation cannot
be investigated, and also in Ref. [21], but with a hot and
thus Doppler-broadened cloud. Complementary studies on
light transport in photonic planar waveguides have also been
reported, for instance, in Ref. [34]. However, our system
reveals a unique combination of multiple scattering, high
densities, and guiding effects which can be tuned rather easily.
Our experiment paves the way to a deeper understanding of
the propagation of light in dense samples and possibly on
the role of interference-induced (localization) effects in this
geometry [35,36]. Indeed, while the observation of photon
localization is still elusive [35], presumably due to the vector
nature of light detrimental to interference [36], the problem
could be circumvented in a 2D system illuminated by a light
field linearly polarized perpendicular to the disordered plane.
Our atomic system could constitute a good candidate for that
objective, using the escape radius, which is directly controlled
by the diffusion coefficient, as a probe for localization [37].
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In superfluid systems several sound modes can be excited, such as, for example, first and second sound
in liquid helium. Here, we excite running and standing waves in a uniform two-dimensional Bose gas and
we characterize the propagation of sound in both the superfluid and normal regimes. In the superfluid
phase, the measured speed of sound is in good agreement with the prediction of a two-fluid hydrodynamic
model, and the weak damping is well explained by the scattering with thermal excitations. In the normal
phase we observe a stronger damping, which we attribute to a departure from hydrodynamic behavior.

DOI: 10.1103/PhysRevLett.121.145301

Propagation of sound waves is at the heart of our
understanding of quantum fluids. In liquid helium, the
celebrated two-fluid model was confirmed by the obser-
vation of first and second sound modes [1,2]. There, first
sound stands for the usual sound appellation, namely, a
density wave for which normal and superfluid fractions
oscillate in phase. Second sound corresponds to a pure
entropy wave with no perturbation in density (normal
and superfluid components oscillating out of phase),
and is generally considered as conclusive evidence of
superfluidity.
Sound wave propagation is also central to the study of

dilute quantum gases, providing information on thermo-
dynamic properties, relaxation mechanisms, and superfluid
behavior. In ultracold strongly interacting Fermi gases, the
existence of first and second sound modes in the superfluid
phase was predicted [3] and observed in experiments [4,5],
with a behavior similar to liquid helium. In three-dimen-
sional (3D) weakly interacting Bose-Einstein condensates
(BECs), one still expects two branches of sound with
speeds cð1Þ > cð2Þ but the nature of first and second sound is
strongly modified because of their large compressibility
[6]. At zero temperature the gas is fully superfluid and the
only relevant mode corresponds to Bogoliubov excitations,
i.e., density oscillations. At nonzero temperature, an
isothermal density perturbation is expected to excite mostly
the second sound mode, propagating at a velocity approx-
imately proportional to the square root of the superfluid
fraction [6,7]. This contrasts to the usual picture for liquid
helium where second sound is excited via local heating
[1,2]. Sound waves in an elongated 3D BEC were observed
in Refs. [8–10] in a regime where the sound speed remains
close to the Bogoliubov sound speed.
The study of sound propagation can be very insightful

for two-dimensional (2D) Bose fluids, where superfluidity
does not result from a Bose-Einstein condensation, but
occurs instead via a Berezinskii-Kosterlitz-Thouless (BKT)

transition [11]. This transition is associated with a jump of
the superfluid density but as the transition is of infinite
order, the jump cannot be revealed by the thermodynamic
properties of the fluid. However, the presence of a super-
fluid component is predicted to lead to two distinct sound
modes, whose velocities cð1ÞHD and cð2ÞHD were calculated
within a hydrodynamic model in Refs. [12,13]. These
velocities are functions of the superfluid density and thus
both exhibit a discontinuity associated with the superfluid
jump at the critical point. In particular, the second sound
velocity is expected to remain nonzero just below the
critical point of the superfluid to normal transition and to
disappear just above. Experimentally, 2D Bose fluids were
first realized with liquid helium films adsorbed on a
substrate [14]; in this case the presence of the substrate
blocks the motion of the normal component and thus
prevents the investigation of such phenomena.
In this Letter, we report on the first observation of sound

propagation in a 2D Bose fluid. We observe a single density
sound mode both in the superfluid and normal regimes.
Deep in the superfluid regime, the measured sound speed
agrees well with the Bogoliubov prediction. We measure a
weak damping rate compatible with Landau damping, a
fundamental mechanism for the understanding of collective
modes of superfluids at finite temperature [15]. For higher
temperatures, we observe a decrease of the sound velocity
consistent with the second sound speed variation predicted
in Ref. [12] from two-fluid hydrodynamics. The damping
of sound increases with temperature and, above the critical
point, we still observe strongly damped density waves with
no discernable discontinuity at the critical point. The
discrepancy with the two-fluid model predictions could
be due to a departure from hydrodynamic behavior.
Our experimental setup has been described in

Refs. [16,17] and more details can be found in
Ref. [18]. Briefly, we confine 87Rb atoms in the jF ¼
1; m ¼ 0i ground state into a 2D rectangular box potential
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of size Lx × Ly ¼ 30ð1Þ × 38ð1Þ μm [see Fig. 1(a)]. The
confinement along the vertical z direction can be appro-
ximated by a harmonic potential of frequency
ωz=ð2πÞ ¼ 4.59ð4Þ kHz. We always operate in the
quasi-2D regime where interaction and thermal energies
are smaller than ℏωz. The gas is characterized by the
effective coupling constant g¼ℏ2g̃=m¼ðℏ2=mÞ ffiffiffiffiffiffi

8π
p

as=lz,
where as is the s-wave scattering length, lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωzÞ
p

,
and m the atomic mass [11]. We operate here in the weakly
interacting regime: g̃ ¼ 0.16ð1Þ. In the quasi-2D regime
and for a given g̃, the equilibrium state of the cloud is
only characterized by a dimensionless combination of T
and n2D, thanks to an approximate scale invariance [11].
In the following we use the ratio T=Tc, where Tc ¼
2πn2Dℏ2=½mkB lnð380=g̃Þ� is the calculated critical temper-
ature for the BKT phase transition [25]. In this work, we
study Bose gases from the highly degenerate regime
(T=Tc ≈ 0.2) to the normal regime (T=Tc ≈ 1.4).
We first investigate propagating waves which we excite

by a density perturbation. Prior to evaporative cooling in
the box potential, we apply to the cloud a repulsive
potential, which creates a density dip on one side of the
rectangle [see Fig. 1(a)]. The extension of this dip is about
1=4 of the length of the box and its amplitude is chosen so
that the density in this region is decreased by a factor of
1=3. After equilibration, we abruptly remove the additional
potential and monitor the propagation of this density dip.
We show in Fig. 1(b) a typical time evolution of the density
profile integrated along the transverse direction to the
perturbation for a strongly degenerate gas. In this regime,
the density perturbation propagates at constant speed
and bounces several times off the walls of the box.
Using the calibrated size of the box, we extract a speed
c ¼ 1.49ð3Þ mm=s. This value is slightly lower than the
Bogoliubov sound speed cB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gn2D=m
p ¼ 1.6ð1Þ mm=s

expected at zero temperature for the measured density
n2D ¼ 29ð3Þ μm−2. The measured speed is also close to the

second sound mode velocity cð2ÞHD ¼ 1.4ð1Þ mm=s, esti-
mated from two-fluid hydrodynamics at our experimental
value of T=Tc ¼ 0.37ð12Þ [12]. The first sound, expected

to propagate at a much higher speed cð1ÞHD ¼ 3.3ð3Þ mm=s
[12], does not appear in our measurements that feature a
single wave front only. The absence of first sound in our
experiments can be explained by its very small coupling to
isothermal density excitations in a weakly interacting
gas [12].
In order to probe the role of the cloud degeneracy on the

sound wave propagation, we vary both n2D and T. For each
configuration, we excite the cloud with the protocol
described above, while adjusting the intensity of the
depleting laser beam to keep the density dip around 1=3
of nonperturbed density. At lower degeneracies, sound
waves are strongly damped and the aforementioned mea-
surements of the density dip position become inadequate.
We thus focus on the time evolution of the lowest-energy
mode [26]. We decompose the density profiles integrated
along x as

nðy; tÞ ¼ n̄þ
X

∞

j¼1

AjðtÞ cosðjπy=LyÞ; ð1Þ

where n̄ is the average density along y and the Aj are the
amplitudes of the modes. The choice of the cosine basis
ensures the cancellation of the velocity field on the edges of
the box. Our excitation protocol mainly couples to the
lowest energy modes. We keep the excitation to a low value
to be in the linear regime while still observing a clear signal
for the lowest-energy mode, which in return provides a too
weak signal for a quantitative analysis of higher modes
[27]. For each duration of the evolution, we compute the
overlap of the atomic density profile with the lowest-energy
mode. Examples of the time evolution of the normalized
amplitude Ã1ðtÞ ¼ A1ðtÞ=A1ð0Þ for different degrees of
degeneracy are shown in Fig. 2. We observe damped
oscillations with a damping rate increasing with T=Tc.
We fit the experimental data by an exponentially damped
sinusoidal curve e−Γt=2½Γ=2ω sinðωtÞ þ cosðωtÞ� to deter-
mine the energy damping rate Γ and the frequency ω [28].
We then determine the speed of sound c ¼ Lyω=π and the
quality factor of this mode Q ¼ 2ω=Γ.
We consolidate all our measurements of speed of sound

and quality factors in Fig. 3. To facilitate comparison with
theory, we show in Fig. 3(a) the values of c normalized to
cB. The non-normalized results are reported in Ref. [18] for
completeness. In the temperature range T ≲ 0.9Tc, we
measure weakly damped density oscillations, correspond-
ing to a well-defined sound mode (Q≳ 10). In this regime,
we observe a significant decrease by about ≈25% of
the sound velocity for increasing values of T=Tc. The

(a) (b)

FIG. 1. Experimental protocol and observation of propagating
waves. (a) Absorption image of the cloud perturbed by a local
additional potential. The excitation is delimited by the horizontal
dashed line and depletes the atomic density by a factor around
1=3. (b) Example of time evolution of the variation of the density
profile n2D with respect to its spatial mean value (integrated along
x) obtained after abruptly removing the additional potential. For
this example T=Tc ¼ 0.37ð12Þ and n2D ¼ 29ð3Þ μm−2. The
position of the dip is fitted by a triangle function (black solid
line) which gives, c ¼ 1.49ð3Þ mm=s.
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measured velocities agree well with the prediction from
two-fluid hydrodynamics [12] combined with the equation
of state of the 2D Bose gas [29]. According to the analysis
of Ref. [12] for weakly interacting gases, the change of
speed of sound is mainly due to the variation of the
superfluid fraction fs from ≈1 at T ¼ 0 to ≈0.5 close to
T ¼ Tc with the approximate scaling cð2ÞHD ∝ f1=2s [13]. We
note the absence of a discernable discontinuity of sound
velocity at Tc, in disagreement with the two-fluid hydro-
dynamic approach.
In order to explain this disagreement, we first note that

collective excitations in ultracold Bose gases can be of
different nature depending on the relative amplitude of
mean-field effects and collisions between particles
[9,31,32]. In the very degenerate regime T ≪ Tc, the
system is naturally described within quantum hydrody-
namics [33], where interactions between particles occur via
a mean-field energy Eint. This is valid for ω ≪ Eint=ℏ,
which is satisfied for our setup. In this regime we expect
sound waves propagating at cB, as observed in the experi-
ment. For larger temperatures, but still below Tc, the normal
fraction becomes significant. In order to use an hydro-
dynamic two-fluid model in that case, the local equilibrium
condition also requires ω ≪ Γcoll, where Γcoll ¼
ℏg̃2n=ð2mÞ is the collision rate [34]. The same condition
holds for the single fluid case above Tc. The opposite
“collisionless” regime has been recently studied in
Refs. [35,36]. It also leads to the existence of a sound
mode, originating solely from mean-field interactions

described, e.g., by a Landau-Vlasov kinetic equation.
For T ≳ Tc this collisionless sound mode has a velocity
notably smaller than the hydrodynamic result and close to
the prediction of Ref. [12] for the second sound velocity at
Tc. For our data above Tc we estimate Γcoll=ω to be in the
range 1.6–3.4, which indicates that we are in a crossover
between these limiting hydrodynamic and collisionless
regimes.
The distinction between the quantum hydrodynamics

regime and the crossover regime (Γcoll ∼ ω) is supported by
the study of the measured quality factors [see Fig. 3(b)]. For
T ≪ Tc, damping can be described at first order by the
decay of low-lying collective excitations via scattering on
thermal excitations [15,37], the so-called Landau damping

(a)

(b) (c)

FIG. 2. Time evolution of the normalized amplitude of the
lowest-energy mode for (a) T=Tc ¼ 0.21ð11Þ, (b) T=Tc ¼
0.95ð5Þ, (c) T=Tc ¼ 1.38ð18Þ. The solid line is a fit of an
exponentially damped sinusoidal oscillation. For (b) and
(c) graphs, each data point is the average of three measurements
and the error bars represent the associated standard deviation. In
(a) each point corresponds to a single measurement.

(a)

(b)

FIG. 3. Speed of sound and quality factor. (a) Measured speed
of sound c normalized to cB. The vertical dashed line shows the
position of the critical point. The solid line shows the result from
the two-fluid hydrodynamic model applied to the 2D Bose gas
[12]. A fit to the data points below Tc by this hydrodynamic
model with a free multiplicative factor shows that the measure-
ments are globally 3% above the theoretical prediction. This
could correspond to a 6% systematic error in the calibration of
n2D used to determine cB ∝ n1=22D . Our estimated uncertainty on
n2D is on the order of 11% (see Ref. [18]) and our measurements
are thus compatible with the predicted value of the speed of

second sound cð2ÞHD. (b) Quality factor Q ¼ 2ω=Γ of the lowest-
energy mode. The solid line is the prediction for Landau damping
[30] (continued as a dashed line for T > Tc). For both graphs, the
error bars represent the statistical uncertainty extracted from the
fitting procedures used to determine c, Γ and T=Tc.
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mechanism. It predicts an increase of the quality factor
when decreasing temperature due to the reduction of the
number of thermal excitations available for scattering with
the sound mode [38]. This perturbative approach is mean-
ingful for large enough quality factors and does not take
into account interactions between phonon modes. The solid
line in Fig. 3(b) corresponds to Landau prediction for a 2D
system [30]. It shows an overall good agreement with our
data, even close to Tc, where it gradually looses its validity.
Finally, above Tc, we measured low quality factors,
showing that the observed sound mode is strongly damped,
in agreement with the predictions of the collisionless sound
mode [35].
In the highly degenerate regime, the low damping rate

allows us to observe standing waves. To study them, we
modulate sinusoidally the amplitude of the potential
creating the dip of density on one edge of the box [39].
After ≈1 s we extract, for each frequency ν of the
excitation, the amplitude of the (time-dependent) density
modulation induced on the cloud (see Ref. [18] for details).
We show in Fig. 4 the contribution of the three lowest-
energy modes to the amplitude of the modulation as a
function of the excitation frequency. For each mode j we
observe a clear resonance peak centered at a frequency νj.
We display in the insets the resonance frequencies and
width of the modes. The νj’s are equally spaced, as
confirmed by the linear fit. In addition, the right inset
shows the widths of the peaks. They also increase approx-
imately linearly with j [40], meaning that the quality factor

associated with these peaks is almost the same, as expected
for Landau damping.
We focus in this work on a weakly interacting Bose gas

which features a large compressibility compared to liquid
helium or strongly interacting Fermi gases. A natural
extension of this work would thus be to investigate second
sound propagation for increasing interactions [13]. It would
also be interesting to investigate first sound, e.g., by
applying a localized temperature excitation [5]. During
the completion of this work we were informed that a related
study with a homogeneous 3D Fermi gas was currently
performed at MIT [41].
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RÉSUMÉ EN FRANÇAIS

Chapitre 1: Introduction

Ce travail de thèse est consacré à l’étude expérimentale de gaz de Bose bidimen-
sionnels en faible interaction, et se concentre sur les propriétés de cohérence
spatiale ainsi que sur les symétries fondamentales de ce système.
L’étude des symétries d’un système physique est en effet au cœur de la

compréhension que l’on peut en avoir, et cette approche a apporté de nombreuses
avancées dans des domaines variés de la physique au cours du dernier siècle. Le
résultat le plus éclatant est dû à Emmy Noether qui a démontré que l’existence
d’une symétrie continue procure à un système une quantité conservée au cours
du temps [1]. Ces symétries continues peuvent être étudiées à la lumière de la
théorie de Lie qui permet d’en comprendre la structure algébrique [5].
Le choix d’étudier un système de basse dimension spatiale peut se justifier

par le fait que les systèmes à une ou deux dimensions présentent des symétries
qui sont très riches [12], comme par exemple le groupe de symétrie conforme
[14]. Les systèmes de basse dimension sont également susceptibles de présenter
autant de quantités invariantes que de degrés de liberté, et l’étude de ces
problèmes intégrables a été le sujet de nombreux travaux [16].

La thermodynamique d’un système est aussi affectée par le faible nombre
de dimensions, comme l’illustre par exemple le théorème de Mermin-Wagner-
Hohenberg. Ce théorème affirme qu’un ordre à longue portée ne peut s’établir
à température non nulle dans un système à une ou deux dimensions d’espace
présentant des interactions à courte portée [141, 142]. La raison en est que les
fluctuations thermiques ont une importance accrue par rapport à une situation
à trois dimensions (ou plus).

Une particularité s’ajoute avec l’existence d’une transition de phase topologique
pour certains systèmes bidimensionnels. Cette transition, prédite par Berezinskii
[25] ainsi que par Kosterlitz et Thouless [26], provient de l’appariement de
défauts topologiques, les vortex, et non de la brisure spontanée d’une symétrie.
Il s’agit d’une transition d’ordre infini qui a été intensivement étudiée [27]. Une
propriété intéressante est la discontinuité de la fraction superfluide au point
critique de la transition. Cette discontinuité est universelle et s’accompagne d’un
changement de comportement à grande distance de la fonction de corrélation
du premier ordre.

Le gaz de Bose à deux dimensions en faible interaction est sujet à cette tran-
sition de phase Berezinskii-Kosterlitz-Thouless (BKT) [38]. L’un des objectifs
de cette thèse est de mesurer pour un gaz uniforme les propriétés de cohérence
spatiale qui sont dues à la physique particulière de cette transition de phase.
Le second objectif est de déterminer les symétries fondamentales de ce système
lorsque celui-ci est soumis à un potentiel harmonique, ainsi que de mesurer les
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conséquences de ces symétries dites « dynamiques » sur l’évolution temporelle
d’un gaz.

Le plan de cette thèse est le suivant. Dans un premier temps je présente le
montage expérimental qui nous permet de produire des gaz de Bose uniformes
à deux dimensions en faible interaction, de contrôler leur état, et de mesurer
leurs propriétés. Dans une deuxième partie j’explique quelles sont les propriétés
de cohérence spatiale de part et d’autre de la transition BKT, et je montre deux
méthodes expérimentales qui visent à mesurer la fonction de corrélation du
premier ordre. Dans une troisième et dernière partie, je présente les symétries
dynamiques du gaz de Bose à deux dimensions et j’expose l’approche expéri-
mentale qui nous permet de mettre en lumière les conséquences de ces symétries.
Ces expériences, de façon surprenante, révèlent des propriétés dynamiques
particulières de certains nuages pris dans des conditions initiales bien choisies:
ces nuages ont une évolution temporelle qui semble être périodique.

partie i: création et manipulation de gaz de bose en deux
dimensions

Chapitre 2: Le montage expérimental

Ce chapitre présente le protocole expérimental qui nous permet de refroidir
des atomes de rubidium afin de créer des gaz de Bose à deux dimensions.
Les premières étapes sont des étapes standard dans la communauté des

atomes froids et utilisent les méthodes de refroidissement par laser développées
pendant ces dernières décennies. Une succession de pièges magnéto-optiques,
d’évaporation dans un piège magnétique quadripolaire et d’évaporation dans
un piège optique amène un échantillon d’atomes de rubidium jusqu’à un régime
de dégénérescence quantique: un condensat de Bose-Einstein à trois dimensions
est formé.
Une particularité de notre montage expérimental est l’utilisation d’un «

accordéon optique » permettant de piéger ce condensat dans un site unique
d’un réseau optique unidimensionnel de pas dynamiquement variable. La con-
struction de cet accordéon a constitué le sujet de mon stage de Master, et
son implémentation sur le dispositif expérimental s’est déroulée durant les
premiers mois de ma thèse. Grâce à cet outil, nous pouvons capturer un grand
nombre d’atomes (de l’ordre de 105) et leur imposer un confinement fort dans
la direction verticale (z), ce qui crée une crêpe d’atomes dont la dynamique est
gelée selon l’axe z. La taille verticale du nuage est inférieure au micromètre.
Je développe dans le manuscrit de thèse certaines caractérisations de notre
accordéon optique, comme par exemple le mécanisme de stabilisation spatiale
du réseau optique.

Une deuxième particularité provient de la création de potentiels à fond plat
dans le plan xy. La surface d’une matrice de micro-miroirs est imagée sur
les atomes grâce à un objectif de microscope avec de la lumière répulsive et
permet, grâce à la versatilité de cette matrice, de contrôler la géométrie du
nuage d’atomes avec une grande résolution optique. La taille de nos échantillons
est de l’ordre de 50 µm de diamètre.
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La densité atomique des nuages ainsi créés peut être mesurée grâce à une
imagerie par absorption utilisant un second objectif de microscope. Ces mesures
permettent par exemple de caractériser le degré d’uniformité de la densité
atomique. Un exemple d’images obtenues est montré sur la figure 2.81, et
illustre la polyvalence de notre dispositif.

Les atomes de rubidium ont un degré interne de spin qui provient essentielle-
ment du spin de leur électron de valence et du spin de leur noyau. L’état fonda-
mental comporte deux niveaux séparés par environ 6, 8GHz. Le niveau le plus
bas (F = 1, où F désigne le spin total de l’atome) possède trois niveaux Zeeman
(mF = −1, 0, 1), et l’autre niveau (F = 2) en possède cinq (mF = −2, · · · , 2).
L’énergie de ces niveaux Zeeman dépend du nombre quantique mF , du facteur
de Landé gF = ±1 et du champ magnétique local B. Initialement les atomes
sont tous dans l’état F = 1,mF = −1, seul état piégé par le piège magnétique
quadripolaire utilisé lors des étapes de refroidissement.

Durant ma thèse j’ai développé un outil inspiré de la thèse de K. Maussang
[104] permettant d’effectuer des rotations cohérentes entre ces différents états
de spin grâce à des impulsions micro-ondes. Je présente les détails techniques
de cet outil dans le manuscrit. Une limitation importante que nous avons du
surmonter provient du bruit magnétique du Métropolitain parisien, et nous
avons pu compenser activement le champ magnétique local pour nous affranchir
de ce bruit. Ces rotations de spin nous permettent de préparer les atomes
dans un état interne différent de F = 1,mF = −1, comme par exemple dans
l’état F = 1,mF = 0 qui est insensible au champ magnétique, ou dans un état
superposé entre F = 1,mF = 0 et F = 2,mF = 0.

Enfin, l’équation d’état du gaz de Bose à deux dimensions reliant le potentiel
chimique du gaz, sa température et sa densité dans l’espace des phases est
détaillée. Une caractéristique de ce système est que ses propriétés thermody-
namiques ne dépendent de son potentiel chimique et de sa température que via
leur rapport. Nous avons développé une méthode expérimentale, inspirée de la
référence [67] permettant de mesurer cette équation d’état, et une comparaison à
des simulations de Monte-Carlo permettent d’en déduire la densité dans l’espace
des phases de notre gaz, ainsi que le rapport T/Tc, où Tc est la température
critique de la transition BKT. Le degré de dégénérescence du gaz peut être
varié en modifiant la hauteur du potentiel optique de piégeage ou en retirant
une fraction contrôlée des atomes du piège. Le rapport T/Tc peut ainsi être
varié et mesuré de façon fiable entre environ 0,2 et 2. Il est ainsi possible de
mesurer les propriétés du gaz de part et d’autre de la transition de phase.

1 Version française de la légende: Images d’absorption de nuages atomiques dans différents
types de potentiels à fond plat. La quantité tracée est la densité optique (OD) qui est
proportionnelle à la densité atomique. La ligne noire représente une échelle de 20µm. (a):
Disque de rayon 20 µm. (b): Étoile inscrite dans un cercle de rayon 24 µm. (c): Soixante-douze
nuages indépendants arrangés en un réseau de Kagomé. (d): Nuage ayant la forme plus
exotique de la silhouette d’un cochon.
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Chapitre 3: Réalisation de rotations de spin spatialement résolues

Les rotations de spin présentées dans le chapitre précédent sont effectuées
grâce à des micro-ondes dont la longueur d’onde surpasse largement la taille de
notre échantillon atomique. Ces rotations affectent donc les différentes régions
du nuage de façon identique. J’ai développé durant ma thèse un outil permettant
de réaliser des rotations de spin résolues spatialement. Il s’agit de faisceaux
Raman qui permettent d’effectuer des transferts cohérents entre les deux états
internes F = 1,mF = 0 et F = 2,mF = 0 de l’atome. Le profil d’intensité de
ces faisceaux peut être façonné pour s’adresser à des régions du nuage bien
choisies. Ce chapitre décrit cet outil et caractérise quelques uns de nos résultats.

Une première partie du chapitre détaille comment l’on peut changer l’état
interne d’un atome par effet Raman. Deux faisceaux laser de fréquence différente
et non-résonants avec les transitions électroniques du rubidium sont accordés
pour que leur différence de fréquence corresponde à la différence d’énergie entre
les deux états internes considérés. Un photon de l’un des lasers est diffusé par
un atome dans le mode du second laser, et au cours de ce processus, l’atome
change d’état interne. Ce changement d’état interne peut être accompagné d’un
transfert d’impulsion selon l’angle d’incidence relatif des deux faisceaux laser.
La longueur d’onde que nous avons choisie est précisément située entre les deux
transitions électroniques principales du rubidium, de sorte à annuler le décalage
lumineux différentiel entre le niveau F = 1 et le niveau F = 2.

Les deux faisceaux de fréquence différente sont issus d’un même laser qui est
séparé en deux. L’un des faisceaux obtenus est modulé grâce à un modulateur
électro-optique afin de décaler sa fréquence d’environ 6, 8GHz. La fréquence
des deux faisceaux est également décalée de quelques dizaines de mégahertz à
l’aide de modulateurs acousto-optiques afin de prévenir tout effet d’interférence
destructive entre les deux bandes latérales créées par le modulateur électro-
optique, en suivant les conclusions de la référence [120]. On obtient ainsi deux
faisceaux qui permettent, lorsque utilisés avec des polarisations orthogonales, de
réaliser des rotations de spin entre les états F = 1,mF = 0 et F = 2,mF = 0.
Les deux faisceaux peuvent ensuite, au choix de l’expérimentateur, être

envoyés sur les atomes avec le même mode spatial, en particulier avec des direc-
tions de propagation parallèles, ou bien être envoyés avec un angle d’incidence
relatif non nul. Le premier cas correspond à un transfert d’impulsion nul, et le
second permet un transfert d’impulsion non nul dans l’une des directions du
plan atomique. La valeur de ce transfert d’impulsion peut être choisi sur une
plage variable grâce à un accordéon optique, et correspond à un recul variant
entre 0 et une vitesse supérieure à la vitesse du son du gaz, qui est de l’ordre
de 1 ou 2mm/s.
Dans les deux cas, les deux faisceaux sont au préalable réfléchis sur la

surface d’une matrice de micro-miroirs similaire à celle décrite dans le chapitre
précédent, qui permet de façonner le profil d’intensité des deux faisceaux. Le
plan de la matrice est optiquement conjugué au plan atomique, ce qui nous
permet de sélectionner avec une précision de l’ordre du micromètre les zones
du nuages qui sont affectés par ces rotations de spin.
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Le reste du chapitre présente quelques uns des résultats obtenus lorsque l’on
effectue ces rotations de spin localisées, et dans un premier temps lorsque le
transfert d’impulsion est nul. Le contrôle cohérent de l’état de spin est démontré,
et la fréquence de Rabi associée à ce contrôle est de l’ordre de quelques dizaines
de kilohertz. La calibration de la taille effective de la matrice de micro-miroirs
ainsi que la mise au focus de cette matrice sont présentées. La précision de nos
faisceaux Raman tant dans le contrôle de l’état interne de spin que dans la
sélection spatiale des atomes affectés est illustrée sur la figure 3.72: initialement
un gaz d’atomes dans l’état F = 1,mF = 0 remplit un carré de côté 40 µm. Les
faisceaux Raman illuminent deux lignes durant une durée correspondant à un
transfert total vers l’état F = 2,mF = 0. La figure présente les densités des
deux états et montre le degré de précision avec lequel nous sommes capables de
sélectionner une région du gaz et de contrôler l’état interne des atomes dans
cette région.
Dans le cas où les deux faisceaux Raman ne sont pas co-propageants, nous

avons pu calibrer le transfert d’impulsion attendu en observant la figure
d’interférence statique obtenue lorsque ces faisceaux ont la même fréquence. Ce
transfert d’impulsion est varié en déplaçant un seul miroir à l’aide d’une platine
de translation, et est très reproductible. Je présente dans le manuscrit une
expérience préliminaire où une fraction des atomes situés dans une petite région
circulaire au centre du nuage est transférée dans l’état F = 2,mF = 0 avec
une certaine vitesse de recul. La dynamique de ces atomes est observée durant
une centaine de millisecondes. Les atomes se déplacent vers le bord du nuage,
rebondissent contre les murs du potentiel optique confinant le gaz, repartent
dans la direction opposée et ainsi de suite. L’étalement de ces atomes augmente
également au cours du temps, de sorte qu’après trois ou quatre rebonds, ils se
diluent dans le nuage d’atomes dans l’état F = 1 et leur dynamique ne peut plus
être observée par manque de signal. Cette expérience préliminaire démontre la
richesse des phénomènes que l’on peut observer grâce à notre nouvel outil, et
nous incite à nous diriger vers la physique des mélanges. Dans le cadre de cette
thèse, les faisceaux Raman nous ne serviront cependant qu’à l’étude d’un gaz à
une composante, comme par exemple dans le chapitre 6.

partie i i: mesures de la fonction de corrélation du pre-
mier ordre

Chapitre 4: Considérations théoriques

La physique de la transition BKT est bien illustrée par un modèle simple de
physique statistique: le modèle XY. C’est en considérant ce modèle que cette
transition de phase a été initialement découverte. Dans ce chapitre je présente
les propriétés thermodynamiques de ce modèle et celles de la transition BKT.
Je présente ensuite le cas du gaz de bosons en deux dimensions et comment

2 Version française de la légende: Les atomes sont préparés dans un carré de côté 40 µm et
dans l’état F = 1,mF = 0. Les faisceaux Raman illuminent une zone délimitée par deux
lignes de largeur 8 µm et dont les centres respectifs sont séparés de 18µm pendant une durée
correspondant à un transfert total vers l’état F = 2,mF = 0. (a): Densité optique des atomes
dans l’état F = 1. (b): Densité optique dans l’état F = 2. Le transfert est effectivement total
dans la région des deux lignes, et la résolution spatiale des faisceaux est excellente.
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il se relie au modèle XY à basse température. Enfin, j’aborde la question de
l’observation de la physique BKT dans les laboratoires: différents systèmes sont
réputés être décrits par cette physique, mais chacun présente des difficultés
théoriques ou expérimentales pour mesurer les propriétés de cette transition
de phase. La fin du chapitre passe brièvement en revue ces systèmes et les
limitations des mesures qui ont été effectuées ces dernières années.

Le modèle XY consiste en un réseau bidimensionnel d’aimants qui peuvent
s’orienter dans n’importe quelle direction du plan. Des interactions entre plus
proches voisins sont ajoutées et favorisent énergétiquement les configurations où
les aimants sont orientés dans la même direction. L’énergie d’interaction associée
est notée J . À température nulle, le système se place dans l’état fondamental où
tous les aimants sont alignés dans une même direction. Lorsque la température
T augmente, les aimants dévient de cette direction commune. Le théorème de
Mermin-Wagner-Hohenberg affirme que deux aimants arbitrairement lointains
ont une corrélation arbitrairement faible dès que la température n’est pas nulle.
Deux types d’excitations collectives sont mises en jeu et qui sont importantes
pour comprendre la thermodynamique du système: les phonons et les vortex.
Une quantité importante pour mesurer l’ordre spatial est la fonction de

corrélation du premier ordre g1(r), qui détermine le degré de corrélation entre
la direction de deux aimants séparés par une certaine distance r. Il est possible
de déterminer cette fonction de corrélation dans la limite des températures
très basses (kBT � J où kB est ma constante de Boltzmann) ou très hautes
(kBT � J) grâce à des arguments simples. À haute température, g1(r) décroît
exponentiellement avec la distance r, et la longueur caractéristique de cette
décroissance est plus petite que la distance entre aimants voisins dès que la
température correspond à une énergie plus grande que l’énergie d’interaction. À
basse température, la contribution des phonons est évaluée, et on peut montrer
que la fonction de corrélation décroît avec la distance selon une loi algébrique:
g1(r) ∝ r−α où l’exposant α augmente linéairement avec la température. On
désigne ce type de décroissance de la cohérence par le terme d’« ordre à
quasi-longue portée ».
Afin de déterminer comment l’on passe du régime de basse température au

régime de haute température, il faut tenir compte de l’existence des vortex. Un
vortex de charge topologique unité est une configuration où les aimants ont une
orientation qui est orthoradiale par rapport au centre de ce vortex. La figure
4.1a3 illustre une telle configuration. Un vortex peut « tourner » dans un sens ou
dans l’autre, définissant le signe de sa charge topologique. Lorsque l’on somme
la configuration de plusieurs vortex de charge topologique unité centrés sur le
même point, on peut obtenir un vortex de charge topologique supérieure à 1.
De tels vortex ont une énergie supérieure à celle de vortex spatialement séparés,
et ne seront pas pris en compte. En revanche, les configurations contenant des
paires de vortex de charge topologique respective +1 et −1 ont une contribution
importante. Une telle configuration est illustrée sur la figure 4.1b.

3 Version française de la légende: Deux configurations particulières du modèle XY. (a): Un
vortex centré sur la croix rouge. L’orientation des aimants « tourne » dans le sens anti-horaire
autour de ce centre, et le vortex a une charge topologique +1. (b): Une paire de vortex de
charge topologique respective +1 et -1, et centrés respectivement autour de la croix et du
cercle rouges.
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Une analyse par un groupe de renormalisation permet de prendre en compte
les principaux effets dus à la création de paires de vortex. On peut alors identifier
une température critique Tc en dessous de laquelle il n’est pas favorable de
créer des paires de vortex, et où le système conserve une cohérence décroissant
algébriquement avec la distance. L’exposant de cette loi algébrique est compris
entre 0 et 1/4. Au dessus de Tc, des paires de vortex apparaissent et cet ordre
à quasi-longue portée disparaît au profit d’une décroissance exponentielle de
la fonction de corrélation du premier ordre. Le fait que la transition de phase
existe du fait de la création de paires de vortex explique pourquoi l’on parle de
transition de phase topologique.

Un gaz de bosons en faible interaction peut être décrit par un champ
classique complexe ψ(r), et pour des densités dans l’espace des phases D & 1,
l’amplitude de ce champ complexe est uniforme car des variations spatiales
de cette amplitude ont un coût énergétique supérieur à l’énergie thermique
disponible. On parle alors de régime pré-superfluide ou de quasi-condensat.
Dans ce régime, seule la phase du champ ψ(r) varie, et le système est similaire
à une version continue du modèle XY. Cela explique pourquoi une transition
de type BKT est présente pour un tel gaz. Sous la température critique, le gaz
possède également une fraction superfluide ns, associée à une densité superfluide
dans l’espace des phases Ds = nsλ

2
T . Pour un système de taille infinie, cette

fraction superfluide est discontinue à Tc. L’étude de la fonction de corrélation
du premier ordre g1(r) = 〈ψ∗(0)ψ(r)〉 est intéressante, car l’exposant α de la
loi algébrique décrivant sa décroissance est reliée à la densité superfluide dans
l’espace des phases via α = 1/Ds. Notamment au point critique, on trouve que
α = 1/4.

Plusieurs dispositifs expérimentaux ont été utilisés dans les dernières années
pour explorer la transition de phase BKT, et notamment pour tenter de mesurer
la fonction de corrélation du premier ordre g1(r):

• Des systèmes d’excitons-polaritons ont été étudiés (voir par exemple
les références [159–161]). Cependant, ces systèmes possèdent des pertes
importantes, et nécessitent d’être excités continûment par une source
extérieure. L’existence d’une transition de phase de type BKT pour ces
systèmes est débattue, et des mesures de la fonction de corrélation du
premier ordre sont intéressantes dans le cadre de ces discussions.

• Des nuages d’atomes ultra-froids piégés dans un piège harmonique ont
été étudiés (voir par exemple les références [144, 162, 163]). Le fait que
la densité de ces nuages n’est pas uniforme modifie significativement le
comportement de la fonction de corrélation du premier ordre et notamment
change l’exposant de la loi algébrique décrivant sa décroissance en dessous
de Tc.

Il est donc intéressant d’étudier des nuages atomiques qui sont à l’équilibre
thermodynamique, et préparés dans des potentiels à fond plat pour mesurer des
quantités directement comparables à la théorie BKT. Une différence notable avec
cette théorie idéale est la taille finie des échantillons étudiés expérimentalement.
L’effet de cette taille finie peut être évalué, et pour les paramètres de notre
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expérience, cet effet est suffisamment faible pour que des mesures puissent être
comparées aux propriétés d’un système infini.

Les deux chapitres qui suivent sont consacrés à la présentation de mesures de
la fonction de corrélation du premier ordre de part et d’autre de la température
critique du système.

Chapitre 5: Mesures de cohérence en phase via la distribution d’impulsion

Ce chapitre détaille une première série de mesures qui vise à déterminer
la fonction de corrélation du premier ordre g1(r). Cette fonction est en effet
reliée à la distribution d’impulsion via une simple transformée de Fourier, à
une convolution près, qui est due à la taille finie des échantillons étudiés.

Nous avons implémenté une méthode pour mesurer cette distribution d’impulsion,
inspirée de la référence [163]. Cette méthode repose sur le fait qu’une particule
quantique évoluant dans un potentiel harmonique de pulsation ω durant un
quart de période a une distribution en position qui coïncide avec sa distribu-
tion d’impulsion initiale. La mesure de cette distribution en position s’effectue
simplement grâce à une imagerie par absorption du nuage.
La séquence expérimentale est la suivante:

• Un nuage est préparé dans un potentiel optique ayant la forme d’un
disque de rayon 20 µm. Ce nuage est à l’équilibre thermodynamique et
sa température et son nombre d’atomes sont choisis pour que la densité
dans l’espace des phases de ce nuage ait une valeur déterminée, que l’on
mesure via l’équation d’état du gaz (voir Chapitre 2). Les atomes sont
initalement dans l’état F = 1,mF = 0.

• Un champ magnétique quadripolaire est créé, et induit un potentiel
harmonique dans le plan xy pour des atomes dans l’état F = 1,mF = −1.
La pulsation de ce potentiel est ω ≈ 2π · 10Hz. Selon l’axe vertical z, ce
champ magnétique crée un potentiel linéaire qui compense la gravité pour
des atomes dans ce même état interne.

• À t = 0, une petite fraction des atomes est transférée de l’état F = 1,mF = 0
vers l’état F = 1,mF = −1 grâce à deux impulsions micro-ondes de
fréquence et de durée bien choisies. Au même instant, les potentiels
optiques créant le confinement des atomes sont éteints.

• Aux temps ultérieurs, les atomes qui sont restés dans l’état interne initial
tombent sous l’effet de la gravité tandis que les atomes transférés lévitent.
Ces deux différents nuages sont spatialement séparés au bout de quelques
millisecondes. Les atomes dans l’état F = 1,mF = −1 évoluent dans le
potentiel harmonique, et si la densité atomique est suffisamment faible,
les interactions sont négligeables, et cette évolution est la même que celle
d’une particule unique.

• Au temps t, les atomes situés dans le plan initial sont transférés vers
l’état F = 2,mF = 0 pour être imagés. Seule une fraction des atomes sont
imagés, car le nuage s’étend également selon la direction verticale. La
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tranche imagée a une épaisseur inférieure à la profondeur de champ de
notre imagerie.

Dans un premier temps je caractérise l’évolution des atomes dans le potentiel
harmonique. La taille du nuage dans le plan xy permet de constater que ce
potentiel n’est pas isotrope, mais cette anisotropie est corrigée grâce à une paire
de bobines auxiliaire orientée selon l’axe y et branchée en configuration anti-
Helmholtz. Le fait que les interactions peuvent être négligées durant l’évolution
du gaz est expérimentalement vérifiée en mesurant sa distribution spatiale après
une demi-période d’évolution: on s’attend à mesurer ψ(r, T/2) = ψ(−r, 0), et
c’est ce que l’on obtient.

La distribution spatiale des atomes mesurée après un quart de période
d’évolution (t = T/4) est la convolution entre la transformée de Fourier de
la fonction de corrélation du premier ordre et d’une fonction dépendant de la
taille et de la forme du nuage initial. Plus la portée des corrélations de phase
est petite, plus cette taille sera grande. De même, plus le nuage initial est petit,
plus la taille du nuage à t = T/4 sera grande. Cette dernière affirmation est bien
confirmée expérimentalement. Cependant la présence de cette convolution dans
le signal mesuré nous empêche de remonter à la fonction de corrélation g1(r)
avec une précision satisfaisante, notamment pour pouvoir mesurer l’exposant
d’une loi algébrique ou pour discriminer une décroissance algébrique d’une
décroissance exponentielle, ceci s’expliquant également par la faible étendue
spatiale sur laquelle le signal atomique est détectable.

Dans ces conditions, la seule observable qui soit quantitativement mesurable
est l’extension spatiale du nuage après un quart de période d’évolution dans le
piège harmonique. Cette taille dépend de la portée de la cohérence de phase du
nuage d’atomes, de son extension initiale ainsi que, dans une moindre mesure,
de la résolution optique de notre système d’imagerie. Ces deux derniers facteurs
étant fixés, on peut varier la densité dans l’espace des phases du nuage initial
et observer l’évolution de cette observable.

La figure 5.64 présente la demi-largeur à mi-hauteur σH du nuage à t = T/4.
Cette largeur varie peu lorsque la température du gaz reste sous la température
critique, mais elle augmente significativement lorsque T est au dessus de Tc, ce
qui indique que la portée de la cohérence en phase décroît lorsque la température
est augmentée. En prenant compte la taille initiale du nuage et la résolution de
notre système d’imagerie, on constate que, en dessous de Tc, ces mesures sont
compatibles avec une fonction de corrélation g1(r) qui décroît algébriquement
avec un exposant α compris entre 0 et 0,3, et avec une décroissance exponentielle
dont la longueur caractéristique surpasse la dimension initiale du gaz. Lorsque
la température croît au dessus de Tc, ces mesures sont compatibles avec une
décroissance algébrique d’exposant α qui croît de 0,2 à environ 1, ainsi qu’avec
une décroissance exponentielle de longueur caractéristique qui décroît de plus
de 40 à quelques micromètres. Cela démontre qu’en franchissant la température
critique, le gaz perd en cohérence de phase à l’échelle de son extension spatiale.

4 Version française de la légende: Demi-largeur à mi-hauteur du nuage après un quart de
période dans un potentiel harmonique. Le rapport T/Tc est varié. Lorsqu’il est inférieur
à 1, la largeur mesurée reste autour de 1.3 µm, et lorsqu’il est supérieur à 1, cette largeur
augmente jusqu’à environ 2µm.
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Ces mesures ne peuvent malheureusement pas fournir de conclusions plus
précises, et il nous faut employer une autre méthode de mesure afin de mieux
connaître la fonction de corrélation g1(r) de part et d’autre de la transition de
phase. C’est ce qui est développé dans le chapitre qui suit.

Chapitre 6: Mesures de la fonction de corrélation par interférométrie atomique

Nous avons développé une méthode qui nous permet de mesurer plus directe-
ment la fonction de corrélation g1(r). Cette méthode utilise de façon cruciale les
faisceaux Raman présentés dans le chapitre 3, et est similaire à une expérience
de fentes d’Young. Elle repose sur l’interférence de deux régions distantes de
r du gaz d’atomes, et le contraste moyen de la figure d’interférence obtenue
est directement g1(r). Dans ce chapitre je présente cette méthode ainsi qu’une
analyse préliminaire des mesures effectuées.
La séquence expérimentale est la suivante:

• Un nuage est préparé dans un potentiel ayant la forme d’un carré de côté
40 µm. Tout comme dans le chapitre précédent, le rapport T/Tc, ou de
façon équivalente la densité dans l’espace des phases D, est choisi et fixé.
L’état interne des atomes est F = 1,mF = 0.

• La totalité du nuage est transféré dans l’état F = 2,mF = 0 grâce à une
impulsion micro-ondes. Une fraction des atomes compris dans la région
formée par deux bandes de largeur 4 µm et distantes de d est de nouveau
transférée dans l’état F = 1,mF = 0 grâce à nos faisceaux Raman. La
géométrie de la région en question est très similaire à celle présentée sur
la figure 3.7.

• À t = 0, une impulsion laser résonante avec la transition F = 2→ F ′ = 3
est envoyée selon la direction verticale sur les atomes. Seuls les atomes
dans l’état F = 2 absorbent des photons, et l’énergie de recul associée à
ces absorptions est suffisante pour les chasser du potentiel de piégeage.
Ne restent dans le potentiel optique que les atomes dans l’état F = 1.

• Ces atomes s’étendent dans le plan xy. Après une certaine durée d’expansion,
les atomes issus de chacune des deux bandes initiales interfèrent. Lorsque
la période de la figure d’interférence est de l’ordre de 4 à 5 µm, une image
par absorption est enregistrée.

On effectue cette même séquence expérimentale une centaine de fois, et la
moyenne des figures d’interférences obtenues a un contraste qui correspond
à g1(d). Cette affirmation est confirmée par un calcul analytique négligeant
l’énergie d’interaction lors de l’expansion des deux bandes, ce qui est justifié
étant donnée la densité d’atomes initialement transférés.
Une caractérisation approfondie de l’expansion d’une et de deux bandes

d’atomes est présentée dans le manuscrit et correspond qualitativement à ce
que l’on attend théoriquement.

Le contraste moyen d’une figure d’interférence peut-être déterminé à partir
d’un nombre fini de réalisations expérimentales. On peut alors varier la distance
d entre les deux bandes d’atomes qui interfèrent. Typiquement, d est variée
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entre 3 et 20 µm. On observe que la cohérence de phase diminue lorsque
cette distance augmente, et que cette diminution est d’autant plus importante
que le rapport T/Tc est élevé. La faible gamme de distances d qui peut être
explorée ne nous permet pas d’affirmer avec certitude que g1(d) suit une
loi algébrique ou exponentielle, cependant on peut déterminer les meilleurs
paramètres permettant de décrire cette fonction par de telles lois.

La figure 6.85 montre comment ces paramètres optimaux dépendent de T/Tc,
et constitue le résultat central de ce chapitre. En dessous de la température
critique, nos mesures sont compatibles avec une loi algébrique d’exposant
compris entre 0 et 1/4. Cet exposant croît avec la température, et est proche de
prédictions obtenues par des simulations Monte-Carlo [110]. Les mesures sont
également compatibles avec une loi exponentielle de longueur caractéristique
surpassant la taille de notre échantillon, et qui diminue légèrement lorsque T
s’approche de Tc. Lorsque la température augmente au delà de Tc, la décroissance
de la cohérence de phase est compatible avec une loi algébrique d’exposant qui
croît au delà de 1/4, et avec une loi exponentielle dont la longueur caractéristique
est inférieure à la taille totale du système et décroît jusqu’à atteindre quelques
micromètres.

Ces mesures représentent une avancée importante pour l’étude expérimentale
des propriétés d’équilibre de systèmes présentant une transition de phase de type
BKT. Il subsiste cependant quelques points qui nécessitent d’être éclaircis pour
confirmer la validité de nos résultats: l’influence de la résolution de notre système
d’imagerie sur le contraste des figures d’interférence, l’éventuelle réduction de
ce contraste due à la fluctuation du nombre d’atomes dans les bandes qui
interfèrent, l’effet qu’a la largeur non nulle de ces bandes, ou encore l’effet des
interactions au début de l’expansion des atomes qui interfèrent.

partie i i i: symétries dynamiques du gaz de bose en deux
dimensions

Chapitre 7: Éléments de théorie sur les symétries dynamiques

Les symétries d’un système physique correspondent aux transformations
d’espace, de temps et des variables décrivant le problème qui laissent invariant
ce système. Par exemple, de nombreux problèmes physiques possèdent des
symétries spatiales comme l’invariance par translation ou l’invariance par ro-
tation, et des symétries temporelles comme l’invariance par translation dans
le temps. Des symétries plus subtiles qui font intervenir à la fois les variables
d’espace et de temps peuvent aussi exister, et sont appelées symétries dy-
namiques. Un exemple important est la symétrie dynamique du problème de
Kepler décrivant le mouvement d’une planète autour de son étoile, symétrie
qui conduit à l’invariance dans le temps du vecteur de Laplace-Runge-Lenz.

5 Version française de la légende: La décroissance avec la distance d du contraste de la figure
d’interférence de deux bandes initialement distantes de d peut être décrite par une décroissance
algébrique ou une décroissance exponentielle. (a): L’exposant α de la loi algébrique décrivant
le mieux nos mesures est tracée en fonction de T/Tc. La ligne continue représente la prédiction
α = 1/Ds. (b): La longueur caractéristique ` de la loi exponentielle décrivant le mieux nos
mesures est tracée en fonction de T/Tc.
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Dans ce chapitre je détaille quelques éléments de la théorie permettant
un traitement mathématique de ces symétries. J’expose ensuite les symétries
dynamiques du gaz de Bose à deux dimensions en faible interaction et certaines
de leurs conséquences importantes.

Les symétries d’un système sont définies plus formellement par l’ensemble
des transformations qui laissent invariante l’action de ce système, ou de façon
équivalente l’équation d’Euler-Lagrange décrivant la dynamique du système.
L’ensemble de ces transformations forment un groupe qui, dans de nombreux
cas, est aussi une variété différentielle. On appelle ces groupes des groupes de
Lie, et, dans le contexte des symétries d’un système physique, leurs éléments
sont appelés des transformations de Lie-Bäcklund. Des objets importants pour
décrire un groupe de Lie sont ses générateurs infinitésimaux. Ces générateurs
forment une algèbre appelée algèbre de Lie. La structure algébrique du groupe
de Lie est résumée dans la donnée des commutateurs entre les éléments de cette
algèbre de Lie.
On peut adopter un point de vue différent sur les transformations de Lie-

Bäcklund d’un système. Lorsque ces transformations sont appliquées sur une
solution de l’équation d’Euler-Lagrange du système, on obtient une autre
solution de cette équation. L’ensemble des solutions de cette équation possède
donc la même structure de groupe de Lie.
Une généralisation de ces concepts permet d’établir des liens entre deux

systèmes physiques différents. S’il existe une transformation qui, appliquée à
l’action du premier système, permet d’obtenir celle du second système, alors
les groupes de Lie des deux systèmes sont identiques, et en particulier leur
structure algébrique est la même. Une telle transformation reliant deux systèmes
physiques est appelée une transformation de Bäcklund. En adoptant le second
point de vue, il est possible de déduire les solutions de l’équation d’Euler-
Lagrange du second système à partir de la connaissance de celles de l’équation
du premier système. Conceptuellement, la capacité de tisser un tel lien entre
deux systèmes physiques différents est très intéressant, car la compréhension
de l’un permet d’éclairer la compréhension que l’on a de l’autre.

La seconde partie du chapitre est consacrée à la détermination du groupe
de Lie d’un gaz de N bosons à deux dimensions en faible interaction, dans
deux situations distinctes: dans un potentiel extérieur nul, et dans un potentiel
extérieur harmonique. Cette discussion est très similaire à celle que l’on trouve
dans les références [190, 192]: il s’agit de trouver les symétries dynamiques de
l’équation de Schrödinger pour le champ classique décrivant la fonction d’onde
des atomes. Cette équation possède un terme non-linéaire dû aux interactions,
et porte également le nom d’équation de Gross-Pitaevskii.
Que le potentiel extérieur soit uniforme ou harmonique, le groupe de Lie

possède toujours douze générateurs infinitésimaux. Neuf d’entre eux proviennent
de symétries qui sont peu intéressantes, comme par exemple celui associé à
l’invariance par rotation. Les trois derniers forment un sous-groupe dont la
structure est plus riche. Ces trois générateurs sont liés à l’invariance par trans-
lation temporelle, l’invariance par dilatation spatio-temporelle, et l’invariance
par une transformation appelée « expansion ». La structure algébrique associée
à ces trois générateurs est celle du groupe SO(2, 1).
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Dans le cas où un potentiel harmonique est présent, cette structure a une
conséquence remarquable: l’énergie potentielle du système a une évolution
temporelle exactement sinusoïdale, de fréquence double de la fréquence du
potentiel harmonique. Cette propriété n’est pas surprenante si les atomes
n’interagissent pas, mais elle l’est bien plus dans notre cas où ils interagissent
via une interaction de contact qui introduit un terme non-linéaire dans l’équation
d’Euler-Lagrange.
Enfin, les deux cas considérés, avec ou sans potentiel harmonique extérieur,

sont deux systèmes physiques qui peuvent être reliés via une transformation
de Bäcklund. Ils sont donc décrits par la même physique, et l’on peut déduire
l’évolution d’un nuage atomique dans un potentiel harmonique de son évolution
libre. De façon plus générale, on peut connaître l’évolution de ce nuage atomique
évoluant dans un potentiel harmonique dont la fréquence peut varier dans le
temps de façon arbitraire. Les symétries dynamiques de chacun des cas permet
également de relier entre elles les évolutions de deux nuages initiaux de forme
identique, possédant le même nombre d’atomes, mais de taille initiale différente.

Lorsque les nuages atomiques se situent dans le régime hydrodynamique,
qui correspond à la limite où la longueur de cicatrisation du gaz est très faible
devant la dimension du gaz, une symétrie supplémentaire apparaît. Dans cette
limite, il existe en effet des transformations de Bäcklund reliant deux systèmes
atomiques ayant un nombre d’atomes N différent, ou de façon équivalente un
paramètre d’interaction différent.
En combinant ce résultat avec le précédent, on en déduit que la connais-

sance de l’évolution de N atomes dans un potentiel harmonique de fréquence
donnée et interagissant avec un certain paramètre d’interaction permet de
connaître l’évolution d’un nombre différent d’atomes dans un potentiel har-
monique de fréquence différente, éventuellement variable, et interagissant avec
un paramètre d’interaction différent, et ce tant que les nuages restent dans le
régime hydrodynamique.

Ce résultat est frappant du fait de la présence d’un terme non-linéaire dans
l’équation d’évolution du système qui, a priori, empêche de relier l’évolution
d’un système de N atomes à celle d’un système possédant un nombre différent
d’atomes. Cela est permis grâce à la présence de symétries particulières du
système.

Chapitre 8: Approche expérimentale des symétries dynamiques

Ce chapitre est consacré à l’étude expérimentale des conséquences de l’existence
des symétries dynamiques pour un gaz de bosons à deux dimensions en faible in-
teraction. Il s’agit donc de vérifier expérimentalement les résultats théoriques du
chapitre précédent. Connaissant l’évolution d’un gaz donné dans des conditions
expérimentales données, ces résultats permettent de déduire l’évolution d’un
gaz de forme initiale identique, mais de taille initiale différente, avec un nombre
d’atomes différents, un paramètre d’interaction différent, et une fréquence du
potentiel harmonique extérieur différent.

La séquence expérimentale est très similaire à celle du chapitre 5:
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• Un gaz est préparé dans un potentiel à fond plat et dont on peut choisir
la forme. Sa température est fixée à une valeur la plus basse possible, et
correspond à un rapport T/Tc < 0, 3. Initialement, ce gaz est au repos.

• À t = 0, le confinement optique dans le plan est éteint, et le confinement
vertical est maintenu. Il y a deux choix pour le potentiel externe auquel est
soumis le gaz. Soit les atomes sont transférés dans l’état F = 1,mF = −1
et sont soumis à un potentiel harmonique similaire à celui du chapitre
5, soit ils restent dans l’état F = 1,mF = 0 et le potentiel extérieur est
uniforme.

• Après une évolution pendant la durée t dans le potentiel choisi, on mesure
la distribution spatiale des atomes grâce à notre imagerie par absorption.

Avec ces images nous pouvons déterminer le nombre d’atomes du gaz, le
premier et le second moment de la distribution spatiale, ainsi que l’énergie
d’interaction du gaz. Dans le cas d’une évolution dans un potentiel harmonique,
le second moment de la distribution permet d’obtenir l’énergie potentielle du
gaz.

La première conséquence de la symétrie dynamique est l’évolution sinusoïdale
de cette énergie potentielle. On vérifie effectivement que cette énergie oscille
avec une fréquence double de la fréquence du potentiel harmonique.

La deuxième vérification que l’on fait est la correspondance entre l’évolution
d’un gaz initialement au repos en présence d’un potentiel uniforme et celle du
même gaz en présence d’un potentiel harmonique. La mesure de l’évolution
temporelle de la distribution spatiale d’un gaz initial dans ces deux cas permet
de reconstruire expérimentalement les lois d’échelles sur le temps et l’espace
qui permettent de relier les deux évolutions. Les lois d’échelle que l’on obtient
sont en excellent accord avec la prédiction théorique déterminée au chapitre
précédent.

La troisième expérience permet de relier, dans le régime hydrodynamique,
l’évolution de deux gaz initialement au repos de forme et de taille initiales iden-
tiques, avec une fréquence de potentiel harmonique identique, mais possédant
un nombre d’atomes différent. Ici encore, les résultats expérimentaux sont en
très bon accord avec la théorie.
De façon intéressante, la taille d’un nuage après une évolution d’un quart

de période dans un potentiel harmonique dépend du nombre d’atomes dans ce
nuage. Dans le cas d’un nuage dans le régime hydrodynamique dont la forme
initiale est un triangle équilatéral, l’énergie cinétique du gaz est négligeable après
une évolution d’un quart de période, et la taille du nuage est proportionnelle à
son nombre d’atomes. Cette propriété remarquable fournit une méthode simple
et robuste pour calibrer l’imagerie par absorption et déterminer précisément le
nombre d’atomes que l’on mesure. Le résultat de cette méthode est compatible
avec une méthode de calibration utilisée antérieurement, mais qui était bien
plus longue à mettre en place. Les particularités d’une forme initiale triangulaire
sont détaillées dans le chapitre suivant.
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Enfin, la dernière vérification permet d’explorer le dernier paramètre per-
tinent: la taille initiale du gaz. On relie ici l’évolution de deux gaz de taille
initiale et de nombre d’atomes différents, avec la même fréquence du potentiel
harmonique. Ceci est également réalisé dans le régime hydrodynamique. Ces
expériences sont illustrées par la figure 8.96, où l’évolution de la distribution
spatiale des deux gaz initiaux est montrée. Les lois d’échelles expérimentales et
théoriques coïncident également.

Ce chapitre permet de valider les prédictions théoriques du chapitre précédent,
et montre que, dans le régime hydrodynamique, l’évolution d’un gaz initialement
au repos est universelle dans la mesure où elle ne dépend que de la forme initiale
du gaz. Sa taille initiale, son nombre d’atomes, le paramètre d’interaction et la
fréquence du potentiel harmonique extérieur n’introduisent que des lois d’échelle
sur l’espace et le temps par rapport à cette dynamique universelle.

Chapitre 9: Solutions périodiques de l’équation de Gross-Pitaevskii à deux
dimensions

L’étude de l’équation de Gross-Pitaevskii à deux dimensions est pertinente
dans d’autres domaines de la physique que celui des atomes froids. En effet,
elle peut également décrire la propagation d’une onde électromagnétique dans
une fibre optique non-linéaire, ou dans un gaz thermique dilué d’atomes qui
joue le rôle de milieu propagateur non-linéaire. Dans ces deux cas, la variable
temporelle de l’équation correspond à la variable d’espace dans la direction de
propagation de l’onde. Plus généralement, cette équation est une des équations
emblématiques de la physique non-linéaire, et ses propriétés intéressent tout
autant les physiciens que les mathématiciens.
Les équations différentielles non-linéaires peuvent présenter des propriétés

remarquables, comme par exemple l’équation de sine-Gordon. Cette équation
possède des solutions appelées « solitons », qui sont des solutions qui se propa-
gent sans se déformer. D’autres solutions sont appelés des solitons à respirations.
Ces solutions se propagent en ayant un comportement oscillatoire.

Pour l’équation de Schrödinger à une dimension, des solitons et des solitons
à respirations existent et sont observés expérimentalement. Pour l’équation de
Schrödinger à deux dimensions, aucune solution de ce type n’a été prédite à
notre connaissance.

En observant l’évolution temporelle de différents nuages dans un potentiel
harmonique de pulsation ω, deux formes spécifiques semblent avoir un com-
portement particulier: un gaz dont la distribution initiale est celle d’un triangle

6 Version française de la légende: Évolution de deux gaz de même forme initiale, mais de
taille différente et ayant un nombre d’atomes différents. Les deux nuages évoluent dans un
potentiel harmonique de même pulsation ω. (a): Le gaz initial possède 3, 7(3) · 104 atomes
et les atomes remplissent initialement un carré de côté 27, 0(5)µm de façon uniforme. (b):
Le gaz initial possède 5, 4(3) · 104 atomes et les atomes remplissent initialement un carré
de côté 36, 8(5)µm de façon uniforme. Les deux évolutions semblent similaires, à ceci près
que la taille respective des nuages n’est pas la même, et que deux distributions spatiales
similaires ne sont pas nécessairement obtenues à des temps identiques. Ces mesures de densité
permettent cependant de reconstruire les lois d’échelle spatiale et temporelle qui relient ces
deux évolutions.
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équilatéral rempli uniformément, et un gaz dont la distribution initiale est celle
d’un disque rempli uniformément. Dans les deux cas, le gaz se trouve dans le
régime hydrodynamique.
Dans le premier cas, l’évolution du gaz est présenté sur la figure 9.17. Le

nombre indiqué au dessus de chaque image correspond au rapport entre le temps
d’évolution t dans le potentiel harmonique et la période du potentiel T = 2π/ω.
On constate que l’évolution du nuage semble être périodique de période T/2.
De façon surprenante, le gaz semble retrouver une forme triangulaire à t = T/4,
inversée par rapport à la forme initiale. Au bout d’un certain temps d’évolution,
la forme triangulaire du gaz est moins marquée, ce qui peut être dû à des
imperfections expérimentales, à des effets dus à la température, ou au fait que
cette évolution n’est pas périodique.

Dans le second cas, on constate que le nuage a une évolution qui semble être
périodique de période 2T . Dans ce cas également, les données expérimentales ne
permettent pas d’affirmer avec certitude que cette évolution est effectivement
périodique.8

Lorsque diverses autres formes initiales remplies uniformément sont testées,
on n’observe pas le même comportement, du moins sur les deux premières
périodes. Nous avons essayé les polygones réguliers à n côtés jusque n = 6, ainsi
qu’un triangle isocèle rectangle.

Afin de savoir plus précisément si les deux formes déterminées ont effective-
ment une évolution périodique, une étude numérique est menée pour simuler
un système à température nulle. Un exemple d’une simulation numérique est
montrée sur la figure 9.69 où l’évolution d’un gaz initialement triangulaire est
calculée sur une grille de taille 512× 512 de t = 0 jusqu’à t = 3T .
Ces simulations numériques sont effectuées sur des grilles dont le nombre

de pixels peut être augmenté jusqu’à une certaine valeur au delà de laquelle
les calculs numériques deviennent trop longs, ici 1024× 1024. On peut égale-
ment simuler différents gaz initiaux qui se trouvent de plus en plus dans le
régime hydrodynamique. Les simulations permettent un accès à une information
plus complète que les données expérimentales, puisque ces dernières ne nous
renseignent que sur l’amplitude de la fonction d’onde du gaz, tandis que les
simulations nous donnent également accès à sa phase. L’observable qui nous
intéresse est ainsi le produit scalaire entre la fonction d’onde initiale et la
fonction d’onde au temps correspondant à la période supposée de la forme
étudiée. Cette observable n’est pas accessible avec nos mesures expérimentales.

7 Version française de la légende: Images expérimentales de l’évolution dans un potentiel
harmonique d’un gaz remplissant initialement un triangle équilatéral de façon uniforme et au
repos. Au bout d’une demi-période dans ce potentiel (t/T = 0, 5), la distribution spatiale
semble identique à la distribution initiale. Ce motif se répète plusieurs fois, indiquant que
cette évolution est périodique.

8 Il est à noter que, en l’absence d’interactions, tout nuage évolue périodiquement dans le
potentiel avec une période T . En présence d’interactions, l’existence d’orbites périodiques de
période différente de T serait ainsi surprenante.

9 Version française de la légende: Un exemple de simulation numérique sur une grille de taille
512× 512. La fonction d’onde initiale est l’état fondamental d’un potentiel triangulaire en
présence d’interactions. La possible périodicité de l’évolution est claire, et correspond à ce
que l’on observe expérimentalement.
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Dans les deux cas qui nous intéresse, ce produit scalaire est proche de 1, au
mieux à moins de 5%�. Il se rapproche de 1 lorsque l’on augmente le nombre
de pixels et que l’on augmente le « degré d’hydrodynamicité » du gaz. Ceci
ne constitue pas une preuve de la périodicité de l’évolution de ces formes,
mais donnent une bonne indication que cette évolution se rapproche d’une
évolution périodique lorsque le gaz se trouve de plus en plus dans le régime
hydrodynamique.
Nous n’avons pas trouvé de preuve mathématique qui pourrait établir que

l’une ou l’autre des formes étudiées évoluent effectivement de façon périodique
dans un potentiel harmonique. Certaines pistes peuvent être explorées, mais
n’ont abouti à aucun résultat, du moins lors de nos tentatives limitées dans
le temps. Cela n’exclut en rien qu’une voie vers une telle preuve puisse être
découverte.

Ces résultats expérimentaux et numériques, s’ils sont confirmés par des
simulations plus poussées et éventuellement par des démonstrations mathé-
matiques rigoureuses, seraient à la fois surprenants et intéressants pour de
nombreux domaines de la physique et pour les mathématiciens qui étudient les
équations différentielles non-linéaires. L’équation de Schrödinger non-linéaire
à deux dimensions pourrait ainsi rejoindre la famille restreinte des équations
possédant des solutions de type « solitons ».

Chapitre 10: Conclusion et perspectives

Cette thèse explore certaines caractéristiques de l’équilibre thermique et
de la dynamique hors équilibre de gaz de bosons à deux dimensions en faible
interaction. Les résultats présentés constituent une avancée importante pour
ces deux thématiques.
Les mesures de cohérence de phase de part et d’autre de la transition BKT

apportent une confirmation solide de la théorie découverte il y a quarante-cinq
ans, bien que les résultats présentés dans ce manuscrit soient préliminaires et
nécessitent probablement la confirmation qu’ils ne sont pas sujets à certains
biais systématiques. Ces mesures pourraient à l’avenir être complétées par des
expériences de trempe où le système est subitement amené sous la température
critique et où la dynamique pourrait être sondée grâce à l’accès à la fonction
de corrélation du premier ordre.
Les expériences concernant les symétries dynamiques permettent d’établir

solidement les résultats théoriques déjà connus relatifs à l’équation de Schrödinger
non-linéaire à deux dimensions. Elles montrent aussi la possible existence de
solitons à respiration pour cette équation, qui n’avaient jusque maintenant pas
été prédits ni observés. De nombreuses questions se posent à leur sujet: leur
existence est-elle reliée aux symétries dynamiques du système ? D’autres sys-
tèmes possédant les mêmes symétries dynamiques, telles que le gaz de fermions
unitaire à trois dimensions, possèdent-ils des solitons similaires ? Et que devi-
ennent les solitons de notre système lorsque les interactions sont augmentées
jusqu’au point où les symétries dynamiques ne sont plus valables ?
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Les outils expérimentaux développés au cours de cette thèse ouvrent égale-
ment tout un champ d’expériences mettant en jeu des mélanges d’espèces
de spin, en particulier les états F = 1,mF = 0 et F = 2,mF = 0. Ces deux
espèces ne sont pas miscibles, et l’on peut par exemple étudier la dynamique
de leur séparation lorsqu’elles sont initialement superposées. L’utilisation des
rotations de spin résolues spatialement, présentées dans le chapitre 3, permet
également de mesurer la relation de dispersion de Bogoliubov de ce système à
deux composantes. Ces mesures sont actuellement en cours.

Dans un futur plus ou moins proche, il sera également possible d’étudier sur
notre système expérimental la dynamique de quelques atomes dans un état
de spin lorsqu’ils sont immergés dans un gaz d’atomes ayant l’autre état de
spin. De telles expériences permettront peut-être d’atteindre un régime où la
dynamique de ces atomes est décrite par un modèle de mouvement brownien
quantique.
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RÉSUMÉ

Les propriétés thermodynamiques ainsi que l’évolution temporelle des systèmes bidimensionnels sont nettement dif-
férentes de celles de systèmes à trois dimensions. Ce travail de thèse présente des expériences réalisées avec des
gaz ultrafroids uniformes de bosons en interaction faible, et confinés à deux dimensions d’espace. Ces expériences per-
mettent de mettre en lumière certains traits caractéristiques de l’équilibre thermique et de la dynamique hors équilibre
des systèmes à deux dimensions. Un expérimentateur travaillant avec des atomes froids possède une boîte à outils
très fournie: la géométrie, la température, l’état interne des atomes sont très bien contrôlés, et de nombreuses méth-
odes permettant d’étudier leurs propriétés sont disponibles. En particulier, nous travaillons avec des gaz de densité
uniforme dont la géométrie peut être choisie à volonté. Je décris l’installation expérimentale et les outils à notre disposi-
tion dans une première partie. Dans une deuxième partie, je présente une série d’expériences concernant la transition
de phase Berezinskii-Kosterlitz-Thouless d’un gaz de Bose bidimensionnel. Il s’agit d’une transition de phase topologique
pour laquelle le système présente un ordre à quasi-longue portée en dessous de la température critique. Nous avons
développé deux méthodes expérimentales pour sonder cet ordre à quasi-longue portée. Dans une troisième et dernière
partie, je détaille les symétries qui sous-tendent la dynamique d’un gaz proche d’une température nulle dans un piège har-
monique. Ces symétries sont les symétries cachées de l’équation de Schrödinger non-linéaire, qui décrit plusieurs autres
systèmes physiques. Nous avons testé ces symétries expérimentalement, et nous avons également observé des formes
dont l’évolution est périodique dans un potentiel harmonique en présence de non-linéarités. Ces formes géométriques
pourraient constituer un nouveau type de solutions périodiques de cette équation non-linéaire.

MOTS CLÉS

Condensats de Bose-Einstein, gaz bidimensionnels, ordre en phase, symétrie dynamique

ABSTRACT

The thermodynamic properties and the dynamical behaviour of two-dimensional systems differ notably from the ones in
three dimensions. This work presents experiments performed with ultracold clouds of uniform weakly interacting bosons
confined in two dimensions of space. These experiments explore some specific features of the thermodynamics and the
out-of equilibrium dynamics of two-dimensional systems. Working with ultracold atoms provides the experimentalist with a
rich toolbox: geometry, temperature and internal state of the system are well controlled, and various methods to investigate
their properties are available. In particular we work with uniform Boses gases in highly tunable geometries. I describe the
set-up and our experimental toolbox in a first part. In a second part I present experiments to investigate the Berezinskii-
Kosterlitz-Thouless transition of a two-dimensional Bose gas. It is a topological phase transition for which the system
displays a quasi-long range order below the critical temperature. We have developed two experimental schemes to probe
this quasi-long range order. In a third and final part I explain the symmetries that underlie the dynamics of a cloud near
zero temperature in a harmonic potential. These symmetries are the hidden symmetries of the two-dimensional non-linear
Schrödinger equation, which describes many other physical systems. We could probe these symmetries experimentally,
and we also observed initial shapes whose evolution is periodic in a harmonic potential in the presence of a non-linearity.
They could constitute new breathers of this non-linear equation.

KEYWORDS

Bose-Einstein condensates, two-dimensional gases, phase ordering, dynamical symmetry
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