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Title: Mathematical programming methods for complex cutting problems
Abstract: This thesis deals with a two-dimensional bin-packing problem
with defects on bins from the glass industry. Cutting patterns have to be
exact 4-stage guillotine and items defect-free. A standard way to solve it is
to use Dantzig-Wolfe reformulation with column generation and branch-and-
price. This is impossible in our case due to large instance size. We first study
and solve the defect-free pricing problem with an incremental labelling algo-
rithm based on a dynamic program (DP), represented as a flow problem in a
hypergraph. Our method is generic for guillotine knapsack problems but fails
to solve large instance in a short amount of time. Instead we solve the defect-
free bin-packing problem with a DP and a diving heuristic. This DP generates
non-proper columns, cutting patterns that cannot be in an integer solution.
We adapt standard diving heuristic to this “non-proper” case while keeping its
effectiveness. We then extend the diving heuristic to deal with defects. Our
first proposal heuristically repairs a given defect-free solution. Secondly the
defect-free diving heuristic is adjusted to handle defects during column fixing.
Our industrial results outline the effectiveness of our methods.
Keywords: Decomposition, Column generation, Hypergraph, Labelling al-
gorithm, Diving heuristic, Cutting

Titre: Méthodes de programmation mathématiques pour des problèmes com-
plexes de découpe
Résumé: Cette thèse s’intéresse à un problème de bin-packing en deux di-
mensions avec des défauts sur les bins rencontré dans l’industrie verrière. Les
plans de découpe sont guillotine 4-stage exact, les objets à couper sans dé-
fauts. Une possible résolution utilise la décomposition de Dantzig-Wolfe puis
une génération de colonnes et un branch-and-price. Cela est impossible dans
notre cas du fait d’instances de trop grande taille. Nous résolvons d’abord le
problème de pricing sans défauts par un algorithme incrémental de labelling
basé sur un programme dynamique (DP), représenté par un problème de flot
dans un hypergraphe. Notre méthode est générique pour les problèmes de
sac-à-dos guillotine mais ne résout pas de larges instances en un temps de cal-
cul raisonnable. Nous résolvons alors le problème de bin-packing sans défauts
grâce à un DP et une heuristique de diving. Le DP génère des colonnes “non-
propres”, ne pouvant pas participer à une solution entière. Nous adaptons le
diving pour ce cas sans perte d’efficacité. Nous l’étendons alors au cas avec
défauts. Nous réparons d’abord heuristiquement une solution du problème
sans défauts. La fixation des colonnes dans le diving sans-défaut est ensuite
modifiée pour gérer les défauts. Les résultats industriels valident nos méthodes.
Mots-clés: Décomposition, Génération de colonnes, Hypergraphe, Algorithme
de labelling, Heuristique de diving, Découpe
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Titre: Méthodes de programmation mathématiques pour des problèmes com-
plexes de découpe
Résumé long:

Introduction

Le cadre de cette thèse est de proposer des méthodes efficaces de résolution
pour un problème industriel de découpe de verre. Ce dernier survient dans
les lignes de production de fenêtre à double-vitrage. Le problème en lui-même
est de concevoir un ensemble de plans de découpe pour des grandes plaques
rectangulaires en verre et ce afin de découper un ensemble de pièces rectangu-
laires d’après un carnet de commandes donné. Ces pièces sont ensuite utilisées
dans la fabrication de fenêtres. Ce problème s’inscrit dans la famille des prob-
lèmes d’optimisation de type découpe et placement. Dans ces derniers, le but
est d’utiliser efficacement un ensemble de contenants afin de maximiser leur
utilisation. Ces contenants peuvent être des rouleaux, des plaques rectangu-
laires, des fûts, des caisses . . .Mieux utiliser ces contenants, les remplir du
mieux possible, permet de maximiser le coût de découpe/de conditionnement.
Dans cette thèse, ceci se traduit par la réduction du nombre de plaques de
verre, ce qui permet de minimiser les chutes et la consommation de ressources.
Cette considération est très importante surtout quand le matériau a un taux
de production faible ou une haute valeur ajoutée. La plupart des problèmes
de découpe et placement sont difficiles à résoudre à la fois d’un point de vue
pratique et théorique. Les éléments qui rendent notre problème difficile mais
stimulant sont la grande quantité de pièces, les contraintes propres à la découpe
du verre et la présence de défauts dans les plaques de verre à considérer.

La production de fenêtre double-vitrage est divisée en deux grandes étapes:
celle de découpe et celle de production. La première vise à découper un ensem-
ble de grandes plaques rectangulaires en pièces rectangulaires de plus petite
taille. L’étape de production utilise cet ensemble de pièces et les assemble pour
fabriquer une fenêtre à double-vitrage. Dans cette thèse, nous nous intéressons
au processus de découpe. Le fonctionnement standard est de recevoir un en-
semble de plaques de verre. Chaque plaque est caractérisée par une longueur
et hauteur. La norme sur les plaques est de six mètres pour la longueur et
de trois mètres pour la hauteur. La qualité des plaques de verre produites est
variable, et dépend du processus de fabrication, et du transport. Du fait de
la complexité du processus de fabrication du verre, des bulles d’air peuvent
apparaître. Le transport et la manipulation du verre depuis l’usine de produc-
tion jusqu’à l’atelier de découpe peut conduire à l’apparition de microfissures.
Ces bulles et fissures sont considérées comme des défauts. De manière formelle
un défaut est approximé par un rectangle dont les coordonnées, la longueur et
la hauteur sont connues. Quand les plaques de verre sont reçues en usine, et
pour faciliter leur manipulation, elles sont stockées et empilées sur un support.
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La dernière plaque empilée sera donc la première à être découpée. Afin de
respecter les commandes de ses clients, l’usine doit découper différentes pièces
utilisées dans la fabrication de futures fenêtres. Chaque pièce de verre est
rectangulaire de longueur et hauteur données. Puisque le problème traité ici
est lié à la production de double-vitrage, la demande de chaque rectangle de
verre est d’environ deux.

A partir d’une commande client et d’un ensemble de plaques, le processus
de découpe est le suivant. Initialement, les plaques sont empilées près de
l’atelier de découpe. La première plaque disponible est dépilée et placée sur
une table de découpe. Un traçage est ensuite réalisé sur la plaque à l’aide d’une
molette. Ce marquage se décompose de plusieurs lignes droites traversant la
plaque d’un bord à l’autre et parallèle aux autres bords. Ces lignes forment
un plan de découpe. Après la phase de traçage, une pression est appliquée de
chaque côté d’un trait de découpe pour séparer le verre en deux sous-plaques.
Cette opération est appelée une coupe ou découpe guillotine. Par application
récursive de coupes guillotines le long des traits de découpe, la plaque initiale
est découpée en plaques plus petites. Celles-ci sont de deux types : soit une
pièce à produire, soit un déchet. Les pièces sont ensuite stockées, les déchets
sont jetés. Tant que toutes les pièces ne sont pas produites, une nouvelle plaque
est dépilée et le processus de découpe recommence.

Il y a bien entendu des contraintes sur la manière de découper le verre. La
principale est que n’importe quelle plaque ne peut être découpée que par une
découpe dite guillotine. Le trait de découpe marque la plaque et l’opération de
rompage permet de scinder un morceau de verre en deux morceaux de plus pe-
tites tailles. Cette façon de découper est obligatoire car découper d’une autre
manière peut entrainer un risque de création de fissure dans la plaque et con-
duirait à devoir la jeter entièrement. Le nombre de découpes à appliquer pour
obtenir une pièce peut être arbitrairement grand. Cependant plus ce nombre
est grand, plus il est complexe et long d’obtenir les pièces. Afin de limiter
la complexité des plans de découpe produits, une limite de quatre coupes est
fixée avant d’obtenir une pièce. Pour respecter un cahier des charges, chaque
pièce découpée doit d’être sans défaut. Il est également interdit de découper à
travers un défaut. Ceci conduit les plans de découpe à devoir localiser les dé-
fauts dans les chutes de verre. Il est toutefois autorisé d’effectuer une rotation
à 90˝ des pièces. D’un point de vue pratique, l’ordre d’extraction des pièces
est réalisé de gauche à droite et de bas en haut

Une solution valide à notre problème est de concevoir un ensemble de plans
de découpe respectant les contraintes de découpe des plaques et les contraintes
d’ordre entre les plaques. Notre objectif est de trouver un ensemble de plans
de découpe garantissant la plus faible perte de matière première. Pour une
solution donnée, sa qualité est mesurée en sommant la longueur des plaques
dans lesquelles au moins une pièce est découpée, et en soustrayant la longueur
du résiduel sur la dernière plaque, qu’on appelle longueur résiduelle. Plus cette
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dernière est longue, plus il est facile de pouvoir y redécouper des pièces. De la
manière dont les pièces sont extraites, ceci tend à positionner les pièces de la
dernière plaque le plus à gauche possible.

Le travail de la thèse est décomposé en quatre parties. La première in-
troduit les définitions des problèmes de découpe et placement. La seconde se
concentre sur la manière de concevoir un plan de découpe de bonne qualité
pour une plaque. La troisième détaille comment résoudre notre problème en
omettant les défauts. La dernière partie traitera du problème industriel tel
quel en utilisant les résultats des parties précédentes.

L’objectif du travail est de proposer des méthodes efficaces de résolution
pour notre problème. Les principaux enjeux sont d’être capables de traiter de
grande quantité de pièces à découper, les défauts présents sur les plaques et ce
en un temps de calcul raisonnable.

Etat de l’art

Avant de proposer de nouvelles méthodologies pour résoudre notre problème,
nous proposons un tour d’horizon des techniques utilisées dans la littérature.
Les problèmes de découpe et placement sont très souvent liés à des applica-
tions industrielles spécifiques. Du fait de cette grande diversité et richesse des
problèmes de découpe, il convient de définir une façon de les nommer. Deux
problèmes principaux sont traités dans ce document : le problème de sac-à-dos
guillotine en deux dimensions et le problème de bin-packing en deux dimen-
sions. Le premier consiste à trouver un multiensemble de pièces rectangulaires
de valeur donnée maximum qui peuvent être découpées dans une plaque rect-
angulaire donnée et tel que deux pièces ne se chevauchent pas. Pour obtenir
les pièces, la propriété de découpe guillotine doit également être satisfaite. Le
second problème minimise le nombre de plaques à utiliser pour découper un
ensemble de pièces. Nous considérons ici la variante de ces problèmes avec
défauts.

Une approche classique de résolution des problèmes de bin-packing par pro-
grammation mathématique est d’utiliser la reformulation de Dantzig-Wolfe. Le
problème initial de bin-packing est décomposé en deux problèmes : le prob-
lème maître et le problème de pricing. Le problème maître décide des plans de
découpe à choisir pour chaque plaque, le second a pour but de les générer et de
gérer les contraintes de découpe. Une façon de résoudre les problèmes obtenus
après reformulation est d’utiliser la génération de colonnes pour le problème
maître et de résoudre le problème de pricing par programmation dynamique. Si
les plaques sont supposés être différentes les unes des autres, chacune possède
son propre problème de pricing. Une solution réalisable est ensuite obtenue
par branch-and-price ou heuristique de diving. Cette reformulation et manière
de résoudre le problème ont fait leurs preuves sur le problème de bin-packing
à une dimension. De plus, l’application de la décomposition de Dantzig-Wolfe
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à ce problème met en évidence une formulation pseudo-polynomiale pour le
problème de pricing. Par réécriture il est possible d’obtenir une formulation
pseudo-polynomiale pour le problème initial. Ce genre d’approche peut en-
suite être étendu au problème en deux dimensions. Cependant, le principal
facteur limitant est la taille de la formulation. En pratique, il est difficile de
résoudre des problèmes de découpe considérant beaucoup de niveaux de dé-
coupe mais des approches ont réussi à gérer les problèmes en deux et trois
niveaux de coupe. La principale limitation reste cependant la taille des in-
stances des problèmes traités. Pour un passage à plus grande échelle, des
méthodes heuristiques basées sur le problème reformulé sont préférées. Les
plus efficaces sont les heuristiques dérivées de la génération de colonnes. Elles
ont l’avantage de s’appuyer sur l’information captée durant cette dernière. Cet
ensemble de méthodes donnent des résultats satisfaisants pour les problèmes
de découpe en deux dimensions mais sans défauts sur les plaques. Quand
ces derniers sont considérés, le problème devient beaucoup plus difficile et des
heuristiques sont souvent utilisées.

Au final, la reformulation de Dantzig-Wolfe se révèle très efficace pour des
problèmes où les pièces à découper sont peu nombreuses mais de quantité à
produire élevée. Dans notre cas, la quantité est faible et les dimensions des
pièces sont hétérogènes. Une utilisation directe des méthodes de l’état de l’art
se révèle donc difficile. Ajoutons à cela la difficulté induite par la présence
de défauts. Nous pouvons toutefois réécrire notre problème industriel en util-
isant la reformulation de Dantzig-Wolfe. La principale difficulté se situe alors
dans le problème de pricing, de type sac-à-dos guillotine en deux dimensions
avec défauts. De prime abord, il semble difficile de résoudre exactement notre
problème par branch-and-price. Toutefois, des heuristiques de diving pour-
raient nous permettre d’obtenir des solutions de bonne qualité.

L’approche retenue pour résoudre notre problème industriel se décompose
en deux étapes : résoudre le problème sans défaut puis étendre les résultats
obtenus au problème avec défauts. Dans le cas du problème sans défauts,
nous nous focalisons d’abord sur la résolution du problème de pricing obtenu
après reformulation de Dantzig-Wolfe. En effet, afin de générer des colonnes
rapidement il est primordial de mettre au point une résolution efficace de ce
dernier.

Problème de sac-à-dos guillotine en deux dimensions sans défauts

Notre problème de pricing est un problème de sac-à-dos guillotine en deux
dimensions. Nous proposons d’abord de résoudre un problème simplifié en
relâchant les contraintes de production maximum sur les pièces. Nous au-
torisons donc à surproduire certaines pièces. Ce problème relâché, dit “un-
bounded”, est résolu grâce à un programme dynamique ayant une représen-
tation par hypergraphe. Un sommet de l’hypergraphe représente un état du
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programme dynamique, un hyperarc représente une transition entre plusieurs
états. Afin de réduire la taille de l’hypergraphe et donc du programme dy-
namique, nous développons plusieurs techniques de simplification de ce dernier.
Les principales utilisent des règles de dominance sur la manière de découper
une plaque. L’une des plus efficaces est de supprimer les symétries. Une sec-
onde est de renforcer les contraintes de production des pièces directement dans
la structure de l’hypergraphe. Ceci est réalisé par énumération partielle de cer-
tains plans de découpe. Une dernière technique est d’effectuer un filtrage par
coûts Lagrangiens, développé pour le Problème de Plus Court Chemin Élé-
mentaire avec Ressources, et ici étendu aux hypergraphes. L’idée sous-jacente
est de supprimer des hyperarcs ne pouvant pas intervenir dans une solution op-
timale du problème de pricing. Une fois l’hypergraphe simplifié, le programme
dynamique associé est résolu. Bien entendu ce dernier résout une relaxation
de notre problème de pricing initial. Afin d’obtenir une solution réalisable,
nous proposons de réécrire le programme dynamique comme un problème de
flot dans l’hypergraphe. En y intégrant des contraintes annexes pour borner
la quantité de pièces à produire, cela donne lieu à un modèle mathématique.
Ce dernier est ensuite résolu par un solver de programmation linéaire en nom-
bre entiers. Cette façon de résoudre le problème est limitée par le nombre
de variables entières qui dépend de la taille de l’hypergraphe. En pratique,
elle ne permet donc pas de résoudre des problèmes de grande taille. Pour ce
faire, nous développons un algorithme de labelling. En théorie il est possible
d’écrire un programme dynamique qui assure d’obtenir un plan de découpe
valide sans surproduction de pièces. En pratique implémenter ce programme
se révèle impossible du fait de sa taille exponentielle. Notre idée est de dé-
marrer avec le programme dynamique “unbounded”. Une fois résolu, deux
cas sont possibles : soit la solution de ce programme dynamique respecte les
contraintes de production et donc la solution est optimale, soit il existe au
moins une pièce qui est surproduite. Quand le second cas se présente, nous
proposons d’intégrer une nouvelle dimension à notre programme dynamique.
L’idée est d’assurer que la pièce surproduite précédemment ne le soit plus.
Ceci fait cependant croitre la taille du programme dynamique initial. Notre
proposition est d’ajouter itérativement des dimensions. Pour essayer de con-
tenir l’explosion du nombre d’états de nos programmes dynamiques étendus,
nous intégrons le filtrage sur coût réduit Lagrangien et développons des règles
de dominances entre des solutions partielles.

La méthodologie proposée par nos travaux sur le problème de sac-à-dos
guillotine en deux dimensions peut être utilisée dans de nombreuses variantes
de ce problème. Nous testons nos algorithmes sur des données de la littéra-
ture et des données industrielles. Nos expérimentations numériques portent
premièrement sur les règles de simplification de l’hypergraphe. Dans un sec-
ond temps, nous testons trois approches de résolution exacte : la résolution
de notre problème comme un problème de flot de cout maximum avec con-
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traintes annexes pour assurer le respect des contraintes de production ; un
algorithme de labelling par extension de l’espace d’état et filtrage sur coût
réduit Lagrangien ; une variante de notre algorithme de labelling avec une
règle de dominance forte entre les états. Les premiers résultats expérimentaux
valident l’impact des techniques de réduction de la taille de l’hypergraphe, no-
tamment celle reposant sur l’énumération de plans de découpe partiels. Nos
algorithmes de labelling ont une bonne efficacité pour résoudre des problèmes
de taille industrielle.

Problème de bin-packing en deux dimensions sans défauts

De notre méthode exacte pour résoudre le problème de pricing, nous nous
focalisons ensuite sur le problème industriel de bin-packing en deux dimensions.
Dans un premier temps, nous travaillons sur une relaxation en ne considérant
pas les défauts présents dans les plaques. L’avantage est qu’il n’y a plus qu’un
seul problème de pricing à considérer puisque les plaques sont identiques. Les
défauts seront ensuite gérés en post-traitement. Nous nous intéressons alors
au problème de bin-packing en deux dimensions sans défauts.

De la reformulation de Dantzig-Wolfe, le problème de pricing à résoudre est
un problème de sac-à-dos guillotine en deux dimensions. Bien que nous ayons
un algorithme de résolution exacte pour ce problème, ce dernier peut parfois
être couteux en temps de calcul. Faire converger la génération de colonnes
avec cet algorithme pourrait se révéler extrêmement long. Cependant, ré-
soudre le programme dynamique “unbounded” associé au problème de pricing
se résout de manière très rapide. Afin d’obtenir une méthode de résolution
performante, notre proposition est de résoudre le problème de pricing grâce
au programme dynamique “unbounded” au lieu de le résoudre exactement. La
conséquence directe est que, dans la plupart des cas, l’oracle de pricing va
renvoyer une colonne non réalisable vis-à-vis des contraintes de production
des pièces. En effet, le programme dynamique autorise la surproduction. Ces
colonnes non réalisables sont dites non-propres. Notre idée est de forcer leurs
intégrations dans la formulation du maître et procéder au déroulement clas-
sique de la génération de colonnes. Nous remarquons que puisque des colonnes
non-propres sont insérées dans le problème maître, une dégradation de la qual-
ité de la relaxation linéaire du maître est à prévoir après convergence. De nos
expérimentations, cette dégradation est peu importante mais le gain en termes
de temps de calcul est toutefois non négligeable.

Une fois la convergence atteinte et afin d’obtenir une solution réalisable,
nous proposons d’appliquer une heuristique de diving. Le principe de cette
heuristique est de choisir une colonne et de lui attribuer une valeur entière,
de mettre à jour le problème maître associé et de refaire une génération de
colonnes. Le fonctionnement s’apparente à faire une recherche sur une branche
de l’arbre de branch-and-price. Il existe une particularité à prendre en compte
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en voulant fixer une colonne. Puisque que notre problème de pricing est ré-
solu de manière relâché, la solution fractionnaire du maître peut contenir des
colonnes non-propres. Toutefois fixer une colonne non-propre n’est pas autorisé
puisque que non réalisable vis-à-vis des contraintes du problème de pricing. Le
choix d’une colonne à fixer se fait donc en deux étapes. La première est de
choisir une colonne propre dans la solution fractionnaire du maître et la fixer.
Si aucune n’a pu être fixée, la seconde étape construit heuristiquement des
colonnes propres. Ceci nous garantit de toujours fixer une colonne propre
et de créer une solution partielle réalisable. Après fixation la génération de
colonnes non-propres redémarre. Ce procédé de fixation est utilisé tant que le
maître restreint est réalisable. Durant le processus de fixation, nous gardons
la meilleure solution entière. Afin d’améliorer nos chances de trouver une solu-
tion de bonne qualité, nous utilisons une heuristique dite de complétion. Cette
heuristique démarre après chaque fixation et construit une solution réalisable
à partir de la solution partielle déjà fixée. Pour diversifier nos solutions, nous
réalisons plusieurs explorations de l’arbre de branch-and-price en changeant
les colonnes fixées. Pour accélérer notre méthode, nous utilisons également la
stabilisation dans la génération de colonnes et autorisons à générer plusieurs
colonnes à chaque itération.

Une originalité de notre travail est de résoudre le problème avec une heuris-
tique de diving et ce en générant des colonnes non-propres. Cette simplifica-
tion dans la résolution du problème de pricing le rend beaucoup plus rapide
à résoudre. D’un point de vue global, la qualité de la solution finale est ex-
cellente. Nous avons testé notre méthode en changeant le nombre de « dive
» dans l’arbre de branch-and-price et la façon dont nous créons des solutions
heuristiques. Nos expérimentations sur des instances de la littérature et indus-
trielles montrent l’efficacité de nos approches. La méthodologie est également
générique et peut être réutilisée sur d’autres problèmes de découpe.

Problème de bin-packing en deux dimensions avec défauts

Dans la dernière partie de notre travail, nous résolvons notre problème indus-
triel de découpe. A partir des observations faites précédemment, il est possible
d’utiliser la reformulation de Dantzig-Wolfe et de le résoudre par génération de
colonnes en utilisant une heuristique de diving. En pratique, cela implique de
pouvoir écrire un programme dynamique “unbounded” pour chaque problème
de pricing et ce en prenant en compte les défauts associés à chaque plaque.
Ceci se révèle actuellement difficile à faire car cela impliquerait de pouvoir
écrire un tel programme sans que l’espace d’états ne soit de taille trop impor-
tante. Ensuite, il faudrait être capable de stocker en mémoire un programme
dynamique pour chaque problème de pricing. Pour parer à cela, nous dévelop-
pons deux alternatives. La première est de ne pas considérer les défauts et
de les traiter en post-traitement. La résolution s’effectue par l’heuristique de
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diving et des heuristiques de réparation. La seconde est de prendre en consid-
ération directement les défauts dans l’heuristique de diving.

Notre première approche est de résoudre le problème sans défauts par
l’heuristique de diving. Les défauts sont ensuite considérés en post-traitement
par des heuristiques de réparation. La méthode principale sur laquelle re-
posent les heuristiques de réparation est un algorithme de permutation. De la
contrainte de coupe guillotine, un plan de découpe peut se représenter par un
arbre. Cette représentation est utilisée par l’algorithme de permutation. De
la superposition entre un plan de découpe et une plaque, le but est de trouver
une permutation de ce plan tel que les défauts se retrouvent dans les chutes.
Puisque qu’il n’est pas toujours possible d’éliminer totalement les défauts entre
un plan et une plaque, l’algorithme de permutation est modifié pour garan-
tir à minima que l’aire totale des pièces chevauchant un défaut est minimale.
Ceci implique de devoir redécouper une ou des pièces mais à moindre coût.
Comme mentionné précédemment, cette routine de permutation est ensuite
intégrée dans une heuristique de réparation. La première consiste à prendre
chaque plan de découpe et chaque plaque à la suite. Une version plus évoluée
utilise une représentation par graphe biparti entre les plans de découpe et les
plaques. Le but est de trouver un couplage de coût minimum. Le poids d’un
arc de ce graphe est la perte engendrée par l’affectation d’un plan de découpe
à une plaque. Puisqu’il existe un risque de chevauchement entre une pièce et
un défaut, et ce même après application de la routine de permutation, nous
avons développé des heuristiques de réparation de manière à être capable de
reconnaître ce cas et de simplement redécouper la pièce dans une autre plaque.

Cette première approche pour le problème avec défaut se révèle capable
de résoudre des instances industrielles. Néanmoins elle est considérée comme
"myope" car l’information sur les défauts, connue a priori, n’est utilisée qu’a
posteriori. Afin de tirer avantage de cette dernière, nous modifions l’heuristique
de diving pour le problème sans défauts. Le problème de pricing est résolu
comme précédemment. La modification apportée se situe sur la manière dont
les colonnes sont fixées. Le processus de fixation se décompose en trois étapes.
La première sélectionne les colonnes propres dans la solution fractionnaire du
maître. Pour une colonne propre, la routine de permutation est utilisée pour
savoir la plaque à laquelle elle sera affectée. Dans le cas où il n’existe aucune
colonne propre, diverses heuristiques constructives sont utilisées. La colonne
et la plaque sélectionnées sont ensuite fixées et ce, en prenant en compte la
contrainte d’ordre entre les plaques.

Nous réalisons divers tests de sensibilité de nos méthodes en faisant varier
le nombre de défauts par plaques. Dans le cas industriel, ici traité, nos ap-
proches sont compétitives l’une avec l’autre. La différence d’efficacité dépend
du nombre de défauts présents dans chaque plaque. Quand ce dernier est petit,
il est en fait assez simple de pouvoir éliminer les défauts en les positionnant
dans des chutes. Quand le nombre de défauts par plaque est élevé, la version
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modifiée de l’heuristique de diving est à préférer.

Conclusion

Pour conclure, les travaux réalisés dans cette thèse ont permis de proposer
des méthodes pour résoudre un problème industriel de découpe de verre. Les
principales difficultés rencontrées se situaient dans le gestion des défauts sur les
plaques, cas peu traité dans l’industrie, des contraintes de découpe à considérer
ainsi que la volumétrie des problèmes à résoudre. Nous avons proposé une
approche de résolution basée sur la génération de colonnes pour résoudre le
problème sans défauts. Cependant, nous nous sommes heurtés à une difficulté
supplémentaire relative au problème de pricing de type sac-à-dos guillotine en
deux dimensions. Ce manuscrit traite de la résolution exacte de ce problème
de pricing, de la résolution par heuristique de diving pour le problème général
de découpe avec et sans défauts.

Le problème de pricing reste un problème difficile à résoudre surtout pour
des instances de grande taille. Pour ce dernier, nous avons développé une
méthode basée sur une reformulation par réseau et flot. Celle-ci est obtenue
par réécriture d’un programme dynamique représentant l’ensemble des plans
de découpe valides pour une plaque mais autorisant la surproduction de pièces.
Par ajout de contraintes supplémentaires pour limiter la production de pièces,
le modèle de flot permet de résoudre le problème de pricing. Ceci est cepen-
dant limité par la taille du modèle. Pour dépasser cette limitation, nous avons
développé et combiné le filtrage sur cout réduit Lagrangien, une stratégie in-
crémentale d’augmentation de l’espace d’état du programme dynamique ainsi
qu’un algorithme de labelling. Pour obtenir un hypergraphe de taille réduite,
nous avons aussi utilisé des techniques de simplifications basées sur la structure
des plans de découpe à produire. Nos expérimentations numériques soulignent
l’impact de nos méthodes sur des instances de la littérature et industrielles.

A partir des résultats sur le problème de pricing, nous avons développé
une méthode heuristique de résolution pour le problème de bin-packing sans
défauts. De résultats préliminaires, il a été observé que résoudre une version
relâchée du problème de pricing par programmation dynamique détériore peu
la qualité de la relaxation linéaire du maitre après convergence comparé à
résoudre exactement le problème de pricing. Ce faisant, nous avons implémenté
la génération de colonnes en autorisant la création de colonnes non-propres.
Celles-ci ont la particularité de ne pas respecter les contraintes du problème de
pricing, la surproduction de pièces étant autorisée. Afin d’obtenir une solution
entière, nous avons développé une heuristique de diving gérant cette spécificité.
Itérativement une colonne propre est sélectionnée et fixée. Si aucune n’existe,
nous en créons une heuristiquement. Notre implémentation se révèle capable
de traiter des instances de grande taille en un temps de calcul raisonnable.

Des bons résultats de notre heuristique de diving pour le problème sans
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défauts, nous l’avons étendue à notre problème industriel. Deux approches
ont été retenues. La première se base sur une résolution du problème de
découpe sans prise en compte des défauts et une opération de post-traitement
pour réparer la solution. Ce dernier utilise un algorithme de permutation
basé sur la structure des plans de découpe. Cette approche par réparation est
néanmoins restreinte. En effet, elle possède une forte dépendance à la solution
initiale du problème sans défauts pour construire une solution valide pour le
problème avec défauts. Pour prévenir ce comportement, nous avons modifié
notre heuristique pour directement gérer les défauts sur les plaques durant le
processus de fixation de colonne. Nos expérimentations sur des instances réelles
valident nos approches et soulignent des résultats exploitables industriellement.

Pour conclure, nous avons proposé des techniques avancées basées sur la
génération de colonnes et la programmation dynamique pour résoudre un prob-
lème industriel de découpe de verre. D’un point de vue industriel, il serait in-
téressant d’étudier des variantes du problème avec par exemple des contraintes
de date échue sur la production des pièces ou améliorer la conception des lots
de pièces à découper.
Mots-clés: Décomposition, Génération de colonnes, Hypergraphe, Algorithme
de labelling, Heuristique de diving, Découpe
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S’il n’y a pas de solution, c’est qu’il n’y a pas de problème.
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Introduction

The scope of this thesis is to propose efficient solution methods for an industrial
glass cutting problem, which arises in a double-paned windows production
line. The problem is to design cutting patterns for large rectangular glass
plates in order to cut a set of rectangular pieces, which are used to produce
windows. The problem discussed here belongs to the class of cutting and
packing problems. In these problems, the aim is to use effectively some initial
inputs and to reduce raw material losses. Finding good quality cutting patterns
is important since it contributes to reduce waste. Savings are even higher when
one considers raw material of high value or with a slow production rate. Most
packing problems are theoretically and practically difficult to solve. In our
problem, a large amount of pieces, the constraints related to the glass cutting
process, and the presence of defects on the glass plates present a real challenge
for state-of-the-art optimization algorithms.

The production process of double-paned windows is divided in two main
steps: the cutting process and the production process. The cutting process cuts
a set of large rectangular glass plates into smaller rectangular glass pieces. The
assemblage step uses this set of glass pieces and transforms them into double-
paned windows. In this thesis, we focus on the cutting part of the process.

The standard input of the factory is a set of large rectangular glass plates.
Each glass plate is characterized by its width and height. The norm on plate
size is 6 meters by 3 meters. Due to the complexity of the glass melting
process, air bubbles may appear on glass plates. Plates are transported from
a melting site to the cutting factory. The transportation and manipulation
of glass plates may lead to the apparition of tiny cracks on them. Bubbles
and cracks are considered as defects. Formally a defect is characterized by two
coordinates in the plan, a width and a height. For convenience if a defect has a
non rectangular form, it is approximated by drawing a minimum size rectangle
around it. When glass plates are received at the cutting factory and to ease
their manipulation, they are stored in a rack. This rack has the structure of a
stack. The last inserted plate is the first one to be out.

To ensure orders of its customers, the factory has to cut different rect-
angular glass pieces used later to create double-paned windows. Each glass
piece is characterized by its width and height. Since double-paned windows
are produced in the factory, the expected demand of each glass piece is two.
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Due to customer orders it may be higher or lower. From a practical point of
view, each glass piece after the cutting process is stored in a container. This
container is then used to create windows.

From a customer order and a set of glass plates, the cutting process is the
following. The first available plate is taken from the glass plate stack and
placed on a huge table. Then tracing is performed with a glass cutter to mark
the plate. These marks are edge-to-edge straight lines parallel to the edges
of the glass plate: they represent a cutting pattern. After the marking step,
an operator applies pressure to both sides of a straight line created with the
diamond. This propagates a crack in the glass along the line and divides the
glass plate in two smaller plates. This process is called a guillotine cut. By
recursively applying cuts along marked lines, an initial glass plate is cut into
smaller plates. Each of them is either a glass piece or a waste. When all
glass pieces and wastes are obtained after cutting a glass plate, a new one is
retrieved from the stack. This process is repeated as long as there are glass
pieces to cut.

There are constraints on how to cut the glass plates. The first one is
that only guillotine cuts can be performed on a glass plate. This cutting
constraint is mandatory for the glass. Performing non-guillotine cuts creates
cracks spreading through the whole glass plate. To simplify handling opera-
tions, there is a limit on the number of possible cuts to obtain a glass piece.
This limit is now set to four, i.e. each glass piece has to be obtained using
at most four guillotine cuts. It is obviously forbidden to cut trough a defect
and glass pieces have to be defect free. Consequently when a cutting pattern
is applied on a plate, defects of this plate have to be contained in wasted glass
parts. It is possible to make a 90˝ rotation of glass pieces. When a cutting
pattern is applied to a glass plate and due to guillotine cuts, pieces are always
extracted in a bottom-left fashion.

The overall goal of solving this cutting problem is to obtain good quality
solutions defined as follows. A solution is a set of cutting patterns. For a given
solution, its quality is measured by summing up the width of plates in which
a cutting pattern is applied minus the leftover of the last plate. This metric is
related to the fact that a long leftover in the last plate can be reused for the
next batch.

This document is decomposed in four parts. The first one introduces nota-
tion and definitions of cutting and packing problems. The second part focuses
on how to design a good quality pattern for a glass plate. The third part de-
tails how to solve the industrial glass cutting problem while ignoring defects.
The last part explains how to solve the industrial glass cutting problem based
on insights in the third part.

The main motivation to study this problem is that it is critical to have
an efficient solving procedure to handle large production plans or orders in
a short amount of time. An overview of solving methods for cutting and
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Introduction

packing problems is given in Chapter 1. An efficient way to solve them is
to apply the Dantzig-Wolfe reformulation. The problem can be tackled using
column generation and dynamic programming. A solution is then obtained
using branch-and-price or diving heuristic. In many cases, this approach gives
good results when many glass pieces of the same size have to be produced.
In our case, glass pieces are very heterogeneous, i.e. demands for glass pieces
of the same size are very small. Thus state-of-the-art methods are hardly
applicable.

The pricing problem in the above mentioned column generation approach is
the two-dimensional guillotine knapsack problem. The state-of-the-art meth-
ods to solve it are based on reformulation techniques and compact formulations.
In Chapter 2, new efficient exact methods to solve large scale instances of this
problem are proposed. They are based on a dynamic program to handle glass
cutting constraints. It can be represented by a hypergraph. Nevertheless, this
dynamic program does not handle glass piece production bounds. In practice
overproduction is not possible since it is forbidden to store glass pieces in the
factory. To overcome this limitation, the dynamic program is written as a
flow problem and enriched with side-constraints. Such flow problem may be
tackled with labelling algorithms in the case of a simple graph. An originality
of the work presented here is to extend this methodology to hypergraphs. To
speed up our algorithms, we use preprocessing rules and hyper-arc elimination
by Lagrangian costs. A partial enumeration of the dynamic program is also
proposed to enforce item production bounds. This results in a method that is
able to solve the two-dimensional guillotine knapsack problem in a reasonable
amount of time. However when the problem has to be solved repeatedly in the
context of column generation, it is too time consuming to solve exactly.

In a column generation method for the two-dimensional guillotine cutting
stock problem, two issues arise: the pricing problem is too hard to be solved ex-
actly at each iteration, and the number of nodes in a branch-and-price tree may
be large, since the number of possible patterns, and the number of constraints
are numerous. Ways to overcome these issues are discussed in Chapter 3. To
obtain a feasible solution, i.e. a set of cutting patterns, a diving heuristic is
used instead of a full branch-and-price method. One key ingredient of our div-
ing algorithm is that it first solves a relaxed subproblem in which glass piece
overproduction is possible. The motivation is that such patterns can be ob-
tained efficiently using dynamic programming. Since in practice it is forbidden
to overproduce a glass piece, the classical diving heuristic has to be adapted to
produce a feasible solution. This is achieved by iteratively selecting a suitable
pattern in the solution produced by column generation or, if such pattern does
not exist, heuristically creating a new one. The diving heuristic is also hy-
bridized with an evolutionary heuristic to increase its performance. Reported
results prove that the approach is efficient even for large scale problems. In the
same time, a study is done to measure the performance of our diving heuristic
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for a production day in the cutting factory.
In practice, the defect-free assumption may not match industrial constraints.

Since the diving heuristic obtains results of good quality, we propose to gener-
alize it to handle defects on plates in Chapter 4. Two extensions are proposed.
The first one is based on post-processing techniques. The idea is to solve the
problem without defect management and then to adjust the patterns produced
to repair the solution. The second proposed method is to integrate the defect
management directly in the diving heuristic, i.e. to assign generated patterns
to glass plates with defects each time a pattern is fixed. Different ways to fix
patterns are described and experimentally compared to each other.
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Chapter 1

State of the art

This chapter describes the current state of the art on cutting problems. This
literature review is used as a starting point for the work described in this
manuscript. The first part of this chapter details the most common variant of
cutting problems and notations used through the remainder of this manuscript.
These explanations are mandatory to well define the different variants of cut-
ting problems. Indeed, they are numerous since cutting problems are related
to many different industrial applications. Two main problems are analyzed
here: the two-dimensional knapsack problem and the two-dimensional bin-
packing problem. The first is related to find a multiset of rectangular pieces of
maximum given value which can be cut in a given rectangular plate such that
cut pieces do not overlap. The two-dimensional bin-packing problem aims to
minimize the number of rectangular plates required to pack a subset of rect-
angular pieces. The second part of this chapter details the commonly used
solving procedure for cutting problems based on Dantzig-Wolfe reformulation
and solved with column generation. Extra formulations and advanced tech-
niques for cutting problems are also detailed. Explanations are supported with
a standard cutting problem. Next parts of the chapter focus on solving meth-
ods for the two-dimensional knapsack problem and the two-dimensional bin-
packing problem. Exact and efficient solving methods are described for both
problems taking into account industrial constraints. Heuristic approaches are
also detailed. Finally a description of two-dimensional bin-packing problem
variants is given.

1.1 Definition and notations
Cutting and packing problems are common problems in combinatorial opti-
mization and have many variants and restrictions due to industrial require-
ments. The purpose of this section is to define notations that will be used
through this manuscript. First, the general definition of bin-packing problem
is given. Second, the same definition is given for the knapsack problem. This
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1.1. Definition and notations

section concludes by a description of bin-packing problem variants. Note that
a typology of cutting and packing problem already exists (see Wäscher et al.
[87]). The notation explained hereinafter does not used standard notations
defined in this typology since the latter is heavy and problems discussed here
are very specific.

1.1.1 Bin-packing problems

Bin-packing problems are combinatorial optimization problems and have a
practical importance since they arise as industrial problems in different con-
texts. Main applications are in the cutting industry of raw materials like paper,
wood, steel and glass. The purpose of this section is to describe classical bin-
packing problems.

The bin-packing problem (1BP) is an optimization problem which aims to
minimize the number of bins required to pack a subset of items of given width.
A problem instance is represented by a pair D “ pI,W q, where I is the set
of items to pack and W is the bin capacity. Bins are assumed identical and
in sufficient quantity to cut all items. Each item i has a fixed width wi and
has to be cut exactly di times. A packing for a given bin B is said to be
valid if the sum of the width of items cut in this bin does not exceed the bin
capacity. It is standard to consider that input data are integer. A standard
application is to cut items with different widths from rolls of fixed width. A
solution representation is depicted in Figure 1.1.

1 1 1

2

3

b3

b2

b1

Figure 1.1: Solution representation for a 1BP instance using three bins to cut
three times item 1, one time item 2 and one time item 3. Dashed lines represent
waste parts of bins.

The two-dimensional bin-packing problem (2BP) is the generalization of
the 1BP. It aims to minimize the number of rectangular containers (bins)
required to pack a subset of rectangular items of given dimensions. A problem
instance is represented by a pair D “ pI, Bq, where I is the set of rectangular
items to pack and B is the standard rectangular bin to use. Bins are assumed
identical and in sufficient quantity to cut all items. Each item i has a fixed
width and height pw, hq and has to be packed exactly di times. Each bin has a
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1. State of the art

fixed width and height pW,Hq. A packing for a given bin is said to be feasible
if items packed in it have their edges parallel to the bin edges, no items are
out of the bin and two distinct item copies do not overlap. It is standard to
consider that input data are integer. A solution to a 2BP instance is often
represented by a set of packings, one packing for one bin. An example of such
solution is given in Figure 1.2. A standard industrial application is to cut
rectangular planks to build furniture or to cut glass to manufacture windows.
In that case, the term cutting pattern (or pattern) is used instead of packing.

1 1 1

2

2

3 3

1 1

2

2

2

3

3

Figure 1.2: Solution representation for a 2BP instance using two bins to cut five
times item 1, five times item 2 and four times item 3. Dashed lines represent
waste parts of bins.

The main difference between the 1BP and 2BP is related to the following
feasibility problem. Given a multiset of items Ĩ Ď I packed in a bin B, is there
a feasible configuration to pack items Ĩ in bin B ? Remark that the multiset
Ĩ may contain several copies of an initial item i P I. This feasibility problem
is trivial for the 1BP. It requires to check if the sum of the width of packed
items does not exceed the bin capacity and if for each item i P I, the number
of copies of i contained in Ĩ does not exceed its availability di. For the 2BP
the feasibility problem is NP-complete.

1.1.2 Knapsack problems

There is a wide range of variants for packing problems. Most of them have
specific requirements due to different industrial machines used by companies.
In the following part of this section, a generic description is given for the one
and two-dimensional knapsack problems. Details are then given for standard
industrial requirements related to two-dimensional knapsack problems.

The one-dimensional integer knapsack problem (1KP) is the problem of
finding an item multiset of maximum value without exceeding a given capacity.
A problem instance is a pair D “ pI,W ), where I is the set of items to pack
and W is the bin capacity. Each item i has a fixed width wi, a given profit ei
and can be selected at most di times. The 1KP is sometimes called bounded
one-dimensional knapsack problem. The notation 1KP is preferred instead. A
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1.1. Definition and notations

special variant of this problem is the binary one-dimensional knapsack problem
(1KPb) in which an item can be selected at most one time.

The two-dimensional knapsack problem (2KP) is the generalization of the
1KP. The problem is to find a multiset of rectangular items of maximum value
which can be packed in a given rectangular bin such that packed items do not
overlap. A problem instance is represented by a pair D “ pI, Bq, where I is
the set of rectangular items to pack and B is the bin. Each item i has a fixed
width and height pwi, hiq, a given profit ei and can be packed at most di times.
The bin B has fixed width and height pW,Hq.

As mentioned previously, 2KP is often considered to match industrial re-
quirements especially in the cutting industry. The main related variant is the
guillotine cut property. From a practical point of view, a guillotine cut is an
edge-to-edge cut parallel to the edges of the bin. When cutting a plate or a bin
with such cuts, this always divides it into two subplates. Figure 1.3 shows an
example of guillotine and non guillotine cutting patterns. In Figure 1.3(a), the
pattern follows guillotine property because it is possible to cut the items with
vertical and then horizontal cuts. In Figure 1.3(b), items cannot be cut using
guillotine cuts only. Advantage of guillotine cuts is that they make handling
easier and they do not degrades quality of the raw material. Indeed a non
guillotine cut on some raw material such as glass can lead to cracks on the
plate. This results in raw material losses, which cost money for a company.

1 2

5

4

3

(a)

1

2
3

4
5

(b)

Figure 1.3: Guillotine (a) and non guillotine (b) cutting patterns

In addition to guillotine cuts, another possible requirement is to guarantee
that items are obtained after a certain number of recursive cuts. A cutting
pattern is often said to be staged when the number of stages (i.e. the number
of guillotine cuts) allowed to cut an item is bounded by an integer value. The
most common problems in the literature are two-stage and three-stage. The
two-stage restriction requires to cut each item in at most two guillotine cuts,
the three-stage restriction requires to cut each item in at most three guillotine
cuts, etc. A problem with k cutting stages is simply called k-stage. When the
number of stages is infinite, the problem is called any-stage. The direction of
first stage cuts may be either horizontal or vertical and the cuts of the same
stage have to be in the same direction. The cut directions of any two adjacent
stages must be perpendicular to each other. Figure 1.4 shows an example of
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1. State of the art

two and three-stage patterns. In Figure 1.4(a), items from 1 to 3 are produced
by horizontal and then vertical cuts (red and blue lines). Items 4 and 5 are
cut in the same way. In Figure 1.4(b), items from 1 to 4 are produced as in
Figure 1.4(a). Items 5 and 6 are cut by using one horizontal cut (red line),
one vertical cut (blue line) and then one horizontal cut (green line).

1 2 3

4 5

(a)

1 2 3

4
5

6

(b)

Figure 1.4: Two-stage (a) and three-stage (b) guillotine cutting patterns

A less standard cut property occurs at the last stage of a k-stage problem.
If an additional cut is allowed only to separate an item from a waste area,
the problem is said to be with trimming or non-exact. If such extra cut is
not allowed the problem is called exact. An example is given in Figure 1.5 for
a two-stage pattern. Exact case pattern is depicted in Figure 1.5(a). Figure
1.5(b) is non-exact since an extra cut (trimming) has to be performed to obtain
items 2 and 5.

1

2 3

4

5

(a)

1

2
3

4

5

(b)

Figure 1.5: Exact (a) and non-exact (b) 2-stage guillotine cutting patterns

An additional cutting constraint is to restrict the set of possible cut lengths.
A cut is restricted if its length has to be equal to the width wi or the height
hi of some item i P I. In the case of restricted cuts, one of the two produced
subplates after such cut has to be initialized with an item of width or height
equal to the cut length. This forces to immediately extract an item after such
cut. Figure 1.6 shows an example of restricted and non-restricted patterns.
Figure 1.6(a) is restricted because cuts are related to item dimensions. Figure
1.6(b) is non-restricted since items can only be obtained with cut length larger
than item dimensions.
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1 2

3

4

5 6

(a)

1 2

3

4

5 6

(b)

Figure 1.6: Restricted (a) and non-restricted (b) guillotine cutting patterns

Standard properties of cutting problems are to allow the rotation of each
item i P I and to bound the number of times each item is cut. The first one
means that it is allowed to cut a duplicate phi, wiq of an initial item pwi, hiq.
When there exists no upper bound on the number of times an item can be cut
(i.e. di “ `8, @i P I), the problem is said to be unbounded or unconstrained.
The problem is called bounded or constrained otherwise.

Since the 2KP can accommodate several cutting constraints, the follow-
ing notations are used in this document to characterize the different problem
variants:

• C (resp. U) indicates that the demand of each item is bounded (resp.
unbounded)

• NR means that cut lengths are non-restricted and non-exact, NRE that
cuts are non-restricted and exact, R that cuts are restricted non-exact
and RE means restricted exact

• k is an integer which corresponds to the maximum number of stages,
while 8 is associated to the any-stage variant

• f (resp. r) does not allow item rotation (resp. allow item rotation)

Unless otherwise stated the guillotine cut requirement is assumed to be
always imposed. For instance, notation C-2KP-RE-4-f refers to the bounded
restricted exact 4-stage problem without item rotation, notation U-2KP-R-8-r
is related to the unbounded restricted non-exact any-stage problem with item
rotation.

1.1.3 Specific variants of bin-packing problems

Industrial requirements do not only restrict the way items are cut but also how
to use bins. A description of some common variants of 1BP and 2BP is given
hereinafter.

The most widespread variant of 2BP is the two-dimensional strip-packing
problem (2SP). In such problem an item set I has to be packed in a bin (or
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1. State of the art

roll) B of fixed height and infinite width. The objective is to minimize the
width of the bin. A problem instance is represented by a pair D “ pI, Bq,
where I is the set of rectangular items to pack and B is the single bin to use.
Bin has an infinite width and a fixed height p8, Hq. Each item i has a fixed
width and height pwi, hiq and has to be packed exactly di times. Input data
are considered integer. Figure 1.7 shows a 2SP solution representation.

1 1

2

3 3 3

4

5

5

Figure 1.7: Solution representation for a 2SP instance using two bins to cut
two times item 1, one time item 2, three times item 3, one time item 4 and
two times item 5. Dashed lines represent waste parts of strip, dotted lines
represent the unused part of the strip.

Other variants of the 2BP often modify the input data. A standard one
is the multiple size two-dimensional bin-packing problem (2BPs). The main
difference with the 2BP is that bins are distinct from each other. A problem
instance will be represented by a pair D “ pI,Bq, where I is the set of rectan-
gular items to pack and B is the set of available bins of given width and height
pWb, Hbq. Some cases of the 2BPs can limit the number of times a bin type is
available. This leads to a maximum availability for each bin type.

Another variant of the 2BP considers defects on bins (2BPd). Objective
is the same as for the 2BP but bins are considered to be different. All bins
b P B have the same dimension pW,Hq but are characterized by a specific set
of defects Db. In practice, defects may not be rectangular but with guillotine
cuts, only rectangular pieces will be removed anyway. Each defect d P Db is
then defined by two coordinates pxd, ydq and a width and height pwd, hdq. If a
defect has a non rectangular form it is approximated by drawing a minimum
size rectangle around it. If the defect set of a bin b is empty, the bin is defect
free. A possible pattern for one bin is represented in Figure 1.8.
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1 1

2

3 3 3

4

(a)

1 1

2

3 3 3

4

(b)

Figure 1.8: Infeasible (a) and feasible (b) cutting patterns for one bin with one
defect. Item cut in pattern on the left overlaps a defect which is not permitted.
Dashed lines represent waste parts of the bin, black box represents the defect.

The last variant of the 2BP is when the leftover of the last bin has to
be also maximized (2BPl). From a practical point of view such consideration
is important since a large leftover can potentially be reused to pack extra
items for a further command. The objective of the 2BPl is hierarchical, first
to minimize the number of bins to pack items as in the 2BP and second to
minimize the used length in the last bin. This forces packed items in the last
bin to be put to the left of it. Two equivalent solutions with and without
leftover consideration are represented in Figure 1.9.

1
2

3

4

(a)

1
2

3

4

(b)

Figure 1.9: Without leftover (a) and with leftover (b) consideration for a 2BP
instance. Solutions are equivalent for the 2BP since they both used two bins
but solution (b) is preferred for 2BPl because leftover part on the right of the
second bin can be reuse more easily. Dashed lines represent waste parts of the
bin.
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1. State of the art

Different 2BP variants can also be combined together. For instance, one
may want to solve a multiple size two-dimensional bin-packing problem with
defects and with leftover (2BPsdl). Through this document notations related
to defects and leftovers will be used also for the 2KP.

1.2 Generic solution methods for cutting and
packing problems

The 1BP and 2BP can be decomposed in two problems. The first one is to
assign items to bins and the other is to find feasible packings for each bin. A
straightforward way to tackle these problems is to solve their integer linear
programming (ILP) models by means of a commercial solver. However basic
formulations have one of the two drawbacks: either its linear relaxation is
weak (and thus the enumeration tree is huge) or its size is large and does
not scale well raising memory consumption problems. In addition, symmetry
problems occur. An approach to overcome these drawbacks is to exploit the
problem structure using decomposition techniques to solve larger instances
and obtain stronger formulations. The aim of this section is to explain the
generic procedure to obtain the optimal solution of a generic ILP model using
decomposition techniques. Explanations are supported with an application to
solve 1BP, a detailed survey can be found in Delorme et al. [20].

1.2.1 Initial formulation of 1BP

This section introduces the most straightforward and historically first ILP
formulation of 1BP by Kantorovich [46]. Let binary variable yb “ 1 if b P B is
used, 0 otherwise. Let also integer variables xib be the number of items i P I
cut from bin b. The formulation is:

min
ÿ

bPB
yb (1.1)

s.t.
ÿ

bPB
xib “ di, @i P I (1.2)

ÿ

iPI
wixib ď Wyb, @b P B (1.3)

xib P N, @i P I, @b P B (1.4)
yb P t0, 1u, @b P B (1.5)

Objective function (1.1) minimizes the number of used bins. Constraints
(1.2) check that the requested number of items is cut. Constraint set (1.3)
ensures that the total width of items cut in a bin do not exceed bin capacity.

Mathematical programming methods for complex cutting problems 13



1.2. Generic solution methods for cutting and packing problems

This formulation has two main drawbacks as outlined by Martello and Toth
[54]: poor quality of its linear relaxation and many symmetric solutions. Using
a modern ILP solver some medium size instances can be solved to optimality.
However, for large instances, the number of yb and xib variables grows very
quickly and even modern solvers may fail to solve them.

1.2.2 Pattern based formulation

Since the ILP formulation above may not be solved with modern solvers for
large instances, other formulations have to be studied. This section describes
a pattern based formulation for 1BP.

1.2.2.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition is a powerful tool to reformulate ILP models in
order to obtain a stronger linear programming (LP) relaxation. Assume a
generic ILP of the form:

min cx (1.6)
s.t. Ax “ b (1.7)

x P X (1.8)

with:

X “ tx P Zn|Dx ě du (1.9)

The LP relaxation of this model may be of a poor quality. The idea of
the reformulation is to exploit the structure of set X. Assume that X is
a non-empty bounded convex polyhedron. From Minkowski’s theorem (see
Nemhauser and Wolsey [61]), any point x P X can be expressed as a convex
combination of its extreme points P . Let xp P X be a solution vector for each
p P P , X can be expressed as follows:

X “

#

x “
ÿ

pPP
xpλp|

ÿ

pPP
λp “ 1, λp ě 0, @p P P

+

Dantzig-Wolfe decomposition, introduced by Dantzig and Wolfe [18], gives
rise to the following reformulation of the ILP model (1.6)-(1.8), in which each
variable λp corresponds to an extreme point p P P of X:

min
ÿ

pPP
pcxpqλp (1.10)
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s.t.
ÿ

pPP
pAxpqλp “ b (1.11)

ÿ

pPP
λp “ 1 (1.12)

λp P N, @p P P (1.13)

1.2.2.2 Column generation

The number of variables λ is often exponential and the formulation cannot
be solved directly. The usual way to solve it is to use column generation (see
Gilmore and Gomory [33] and Desaulniers et al. [21]). The LP relaxation
of (1.10)-(1.13) is called master problem (MP). Column generation aims to
solve a so-called restricted master problem (RMP) containing only a subset
of variables λp, p P P̄ , P̄ Ď P . The idea is to price variables λp (or columns)
that are out of the formulation and insert them in the RMP to improve its
objective value. Let π be the vector of dual variables related to (1.11), columns
are priced by solving the following pricing problem:

ζpπq “ min tpc´ πAqx|x P Xu (1.14)

An optimal solution to the pricing problem (or subproblem) corresponds
to a variable λp of reduced cost pc´ πAqxp. If it is negative, a new column λp
is added to the RMP. If no new column cannot be added to the RMP, method
stops. At the end of the process, the RMP is solved to optimality with only a
subset of variables. If the RMP optimal solution is integer, process stops be-
cause an optimal integer solution to the initial problem is found. Nevertheless
the obtained solution is usually fractional and therefore column generation is
coupled with the branch-and-bound method, resulting in the branch-and-price
approach. When the optimal solution is not integer, a branching is performed,
which creates child nodes and adds additional constraints to their RMP. The
LP relaxation of each child node is solved again by column generation. A
generic branching scheme has been developed by Vanderbeck [84]. For most
problems, specific branching schemes are preferred to achieve a better perfor-
mance.

1.2.2.3 Application of Dantzig-Wolfe decomposition to 1BP

In order to obtain a stronger LP relaxation, ILP formulation for 1BP given by
(1.1)-(1.5) is extended using Dantzig-Wolfe decomposition. Constraints (1.2)
can be viewed as coupling constraints since they link items among all opened
bins. Constraint set (1.3)-(1.5) is independent for each bin. Let Ppbq be the
set of feasible cutting patterns satisfying (1.3)-(1.5) for a given bin b P B. Let
binary variable λbp “ 1 if bin b P B uses pattern p P Ppbq, 0 otherwise. Let
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also aip be the number of times an item i P I is cut from a given pattern
p. According to Gilmore and Gomory [34] and Vance [81], the Dantzig-Wolfe
reformulation of 1BP is the following:

min
ÿ

bPB

ÿ

pPPpbq

λbp (1.15)

s.t.
ÿ

bPB

ÿ

pPPpbq

aipλ
b
p “ di, @i P I (1.16)

ÿ

pPPpbq

λbp ď 1, @b P B (1.17)

λbp P t0, 1u, @p P Ppbq, @b P B (1.18)

Objective function (1.15) aims to minimize the number of used bins (or
patterns). Constraints (1.16) ensure to cut the required number of items.
Constraint set (1.17) bounds the number of selected patterns for each bin to
one at most.

Since there are at most |B| bins in the solution and one needs to price
columns for each bin this leads to solve at most |B| pricing problems. However
an instance of 1BP assumes that bins are identical. This implies that solving
only one pricing problem is enough since bins are equivalent. This allows one to
merge all pattern sets Ppbq, @b P B in only one pattern set P . Thus, formulation
(1.3)-(1.5) can be written in a more compact way, using substitution λ̃p “
ř

bPB λ
b
p:

min
ÿ

pPP
λ̃p (1.19)

s.t.
ÿ

pPP
aipλ̃p “ di, @i P I (1.20)

λ̃p P N, @p P P (1.21)

Note that this time, variable λ̃p is the number of times pattern p P P
is used. As in the general Dantzig-Wolfe decomposition, linear relaxation of
formulation (1.19)-(1.21), called master problem (MP), is tackled using column
generation. Columns are generated by solving the pricing problem related to
(1.19)-(1.21). Comparison of quality of lower bounds obtained by solving LP
relaxations of several ILP formulation can be found in Valério de Carvalho
[80].

1.2.2.4 Solving the pricing problem

In a column generation context to solve the RMP related to (1.19)-(1.21), new
columns need to be generated. Let πi be the dual price associated to each
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demand constraint (1.20), the pricing problem used to find new columns takes
the form:

ζpπq “ min

#

1´
ÿ

iPI
πixi|wixi ď W,xi P r0, dis, xi P N, @i P I

+

(1.22)

This pricing problem is an instance of the bounded knapsack problem 1KP
in which one wants to select xi times items i P I such that profit of selected
items πi is maximized without exceeding bin widthW and item availability di.
A standard way to solve this 1KP is to transform it into the binary knapsack
problem 1KPb by creating di distinct copies of each item i P I. The number
of distinct items is g “

ř

iPI di, W “ r1, 2, . . . ,W s is the set of possible width
position in the bin. An optimal solution to the 1KPb can be obtained by
dynamic programming using Bellman’s equations:

Upi, wq “ max

"

Upi´ 1, wq,
Upi´ 1, w ´ wiq ` πi if wi ď w

*

, w PW , i ą 0 (1.23)

Up0, wq “ 0 (1.24)

In previous recurrence relations, each Upi, wq is the maximum value which
can be attained with a width less than or equal to w using first i items. The
optimal solution value is then equal to Upg,W q. The solution of this knapsack
problem defines a column with reduced cost ζpπq. If such cost is negative, the
column is inserted in the RMP, otherwise no more attractive columns can be
added to the RMP and the column generation stops.

The dynamic programming approach is a way to solve the 1KPb. To effi-
ciently solve large problems, specialized methods are preferred instead, such
as strengthened dynamic programming approach (see Martello et al. [53]) or
branch-and-bound method (see Pisinger [64]).

1.2.2.5 Branching schemes

A way to branch on formulation (1.15)-(1.18) is to consider the following con-
straint set (see Vance [81]) :

ÿ

pPPpbq

aipλ
b
p P N, @i P I, @b P B

Let αb “
ř

pPPpbq aipλ
b
p for a given b P B, a branching scheme is to separate

on the αb value:

ÿ

pPPpbq

aipλ
b
p ď tαbu,

ÿ

pPPpbq

aipλ
b
p ě rαbs
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Such branching scheme is enforced by deleting columns that violate upper
bound tαu on the first branch and lower bound rαs on the second branch. The
updated pricing problem after branching is a knapsack problem with upper
and lower bounds on item variables.

Another way to branch but this time on formulation (1.19)-(1.21) is to
impose bounds on a column subset. Assume a given subset P̄ Ă P and with
α “

ř

pPP̄ λ̃p, branching occurs on :

ÿ

pPP̄

λ̃p ď tαu,
ÿ

pPP̄

λ̃p ě rαs

This second branching scheme was initially proposed by Vanderbeck [82].
Branching schemes presented here focus only on the 1BP. More details as
well as techniques to increase branching efficiency can be found in Vance [81],
Vanderbeck [82] and Vanderbeck [83].

1.2.3 Dynamic programming and pseudo-polynomial for-
mulations

The branch-and-price method based on Dantzig-Wolfe decomposition allows
one to solve the 1BP to optimality. Nevertheless without an efficient branching
scheme and/or a pricing oracle, finding the optimal solution can take a large
computation time. Another efficient model is based on an arc-flow formulation
and was first proposed by Valério de Carvalho [79].

1.2.3.1 Max-cost flow pricing problem formulation

The pricing problem related to the 1BP is a bounded 1KP which can be solved
using dynamic programming as outlined in Section 1.2.2.4. According to the
paradigm of Martin et al. [56], the search of a maximum cost packing for
a bin with the dynamic program (1.23)-(1.24) is equivalent to the search of
a max-cost flow in the corresponding directed acyclic graph. The proposed
dynamic program can therefore be represented by means of a graph. Let G “
pV ,Aq be this graph. The vertex set V is composed of all positions between
t0, 1, . . . ,W u. Let s (resp. t) be the source (resp. sink) of G corresponding
to vertex 0 (resp. W ). An arc is created between each pair of vertices v
and w in V if their is an item i P I such that wi “ w ´ v. Formally A “

ta|0 ď T paq ă Hpaq ď W and Hpaq ´ T paq “ wi, @i P Iu. Hpaq (resp. T paq)
defines the head (resp. tail) set of arc a P A. There also exist additional arcs
between a vertex v and v ` 1, v P t0, 1, . . . ,W ´ 1u to represent unoccupied
portion of the bin. Let Γ`pvq be the set of successors of vertex v P V . and
Γ´pvq be the set of predecessors of vertex v P V . A solution to the pricing
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problem (i.e. a valid packing for a bin) is a path in graph G and the arcs in
this path correspond to the items to pack in the bin.

Since the problem is then transformed to the longest path problem in a
directed acyclic graph G, one can write the associated ILP model for this
problem. Let πi be the dual price associated to demand constraint (1.20). Let
also binary variable xa “ 1 if the arc a P A is in the path, 0 otherwise. The
set of arcs that cover item i P I is denoted by Apiq. Once graph G is built,
the pricing problem is formulated as the following longest path problem:

max
ÿ

iPI
πi

ÿ

aPApiq

xa (1.25)

s.t.
ÿ

aPΓ`psq

xa “ 1 (1.26)

ÿ

aPΓ´pvq

xa ´
ÿ

aPΓ`pvq

xa “ 0, @v P Vzts, tu (1.27)

ÿ

aPΓ´ptq

xa “ 1 (1.28)

xa P t0, 1u, @a P A (1.29)

The total value of the path in (1.25) has to be maximized. Constraints
(1.27) are related to flow conservation. Constraint (1.26) sends a flow of one
unit from sources s, constraint (1.28) receives it at the sink t. Note that
the proposed formulation has a pseudo-polynomial size related to the dynamic
program size. Some arcs in the graph can be removed without loss of optimality
by using preprocessing rules. Details of these rules can be found in Côté and
Iori [14].

1.2.3.2 Pseudo-polynomial size formulation for the 1BP

According to Valério de Carvalho [79] and from the pseudo-polynomial size
formulation for the 1KP, the 1BP can also be formulated as a min-cost flow
problem. Starting from graph G defined in Section 1.2.3.1, let integer variables
xa be equal to the flow value going through arc a P A. The pseudo-polynomial
size min-cost flow formulation of the 1BP is the following:

min z (1.30)

s.t.
ÿ

aPΓ`psq

xa “ z (1.31)

ÿ

aPΓ´pvq

xa ´
ÿ

aPΓ`pvq

xa “ 0, @v P Vzts, tu (1.32)
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ÿ

aPΓ´ptq

xa “ z (1.33)

ÿ

aPApiq

xa “ di, @i P I (1.34)

xa P N`, @a P A (1.35)

The total flow through the graph in (1.30) has to be minimized. This
corresponds to minimize the number of bins to use. Constraints (1.31)-(1.33)
are related to flow conservation. Constraints (1.34) ensure that each item
demand is fulfilled.

The previous flow formulation can be used in to obtain an optimal integer
solution to the 1BP. One just has to to write it directly within a commercial
solver and get the optimal solution. Since the flow formulation is pseudo-
polynomial, large problem instances can be computationally long to solve.

1.2.4 Classical heuristics for cutting and packing prob-
lems

The main focus of previous sections has been on how to solve the 1BP to
optimality. It happens sometimes that obtaining an optimal solution can be
time consuming or impossible due to the size of input data. In this case,
constructive and/or based ILP heuristics (or matheuristics) are used to ob-
tain good feasible solutions. Since the problems discussed in this manuscript
are two-dimensional, specialized classical constructive heuristics for them will
be discussed later. This section focuses on ILP based heuristics instead, on
rounding and specific diving heuristics. A complete review and numerical ex-
periments can be found in Sadykov et al. [72].

The motivation to use matheuristics is to exploit the tight lower bounds ob-
tained by the Dantzig-Wolfe decomposition on one hand. On a second hand,
they are useful to obtain good primal solutions for large scale problems for
which exact methods are problematic to apply. Moreover a good primal so-
lution can be used to avoid useless exploration of the branch-and-price tree if
one wants to obtain an optimal integer solution.

An intuitive way to obtain a feasible integer solution is to exploit the
structure of a fractional solution of the LP relaxation of the 1BP formula-
tion (1.19)-(1.21). By rounding variables λp to integer values, one can build a
partial solution. If a partial solution satisfies all master constraints, it defines
a valid feasible solution.

1.2.4.1 Basic rounding heuristics

Since an integer solution is composed of integer variables λp, a fractional vari-
able with a value close to an integer one is likely to be integer in an integer
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solution. Assume an instance of 1BP in which item overproduction is allows.
Under this assumption, by rounding λp variables to integer values, one can
build a partial solution. This is equivalent to select cutting patterns and use
them to form a feasible solution. However when item production cannot be
exceeded, this rounding-up process does not guarantee to get a feasible integer
solution. By rounding the wrong variables, this may results in infeasibility of
the partial solution.

To avoid the rounding-up procedure drawback, it may be possible to obtain
an integer solution from the MP after convergence using ILP. When column
generation ends, the MP is composed of columns having fractional values. A
technique to obtain an integer solution is to solve the ILP formulation of the
MP after convergence by forcing all λp variables to have an integer value.
Clearly this may produce an integer solution but only based on columns in the
MP.

These two methods may be efficient for some optimization problems but
they do not guarantee to obtain systematically a feasible integer solution.
Their main limitation is that they both only use columns in the MP after
convergence.

1.2.4.2 Pure diving heuristic

To avoid the limited scope of rounding heuristics, pure diving heuristic is
preferred instead. This heuristic is based on the exploration of the branch-and-
price tree in a depth first manner. The idea is to round fractional variables λp
in the LP relaxation of the MP after convergence to integer values. This fixing
procedure leads to obtain a smaller MP often called residual master problem.
The LP relaxation of the residual MP is then solved by column generation
as in branch-and-price. For instance the pure diving heuristic, used on the
1BP formulation (1.19)-(1.21), iteratively fix variables λp (i.e. select a cutting
pattern to add in a partial solution).

Since the diving heuristic iteratively fixes a column, one can write it as
a recursive function. At iteration j ą 0, let Pj´1 and dj´1 be the set of
columns and the residual demand which defines the residual master problem.
Let also λ̄ be the partial solution and λ̃ the rounding of the master problem
solution at iteration j ´ 1. The generic procedure is given in Algorithm 1. To
start the diving, one calls the procedure PURE-DIVING(P0, d,H,H). The
algorithm first starts by updating the residual master problem and the partial
solution (lines 1-2). Then due to column fixing, the master is updated and
only proper columns are kept (lines 3-4). A column is proper if it does not
violate residual master problem constraints. Note that the master problem
may become infeasible, which results in an early termination. The updated
residual master is then solved using column generation and the associated
solution λj is stored (lines 5-6). After solving the residual master problem,
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the set of non integer columns F are stored among the set of valid columns
Pj enriched with new columns obtained during residual master resolution. If
set F is empty, this implies that all columns have an integer value and the
algorithm stops. If this set is not empty, one needs to select a subset R of
columns from F and then heuristically round their values (lines 7-10). This
rounding operation is represented by notation rλjpu which rounds a column
λjp ą 0 to the least non-zero integer rλjps greater than λjp or to the greatest
integer tλjpu less than λjp. In the course of the algorithm, one looks for a primal
feasible solution using the partial fixed solution λ̄ and the integer columns in
PjzF (line 8). Finally the algorithm recursively calls itself to continue to fix
columns (line 11).

Algorithm 1: PURE-DIVING(Pj´1, dj´1, λ̄, λ̃)

1 dji Ð dj´1
i ´ aipλ̃p, @i P I

2 λ̄Ð λ̄` λ̃
3 preprocess the residual master problem by removing infeasible columns
from Pj´1

4 if master problem is infeasible then return let Pj be the set of
remaining valid columns after preprocessing

5 solve the LP relaxation of the residual master problem with column
generation

6 λj Ð solution of the LP relaxation of the residual master problem
7 let F “

 

p P Pj : tλjpu ă λjp ă rλjps
(

8 if λ̄` tλjpupPPjzF defines a primal solution, record it
9 λ̃p Ð 0

10 if F “ H then return heuristically choose a column set R Ď F and
heuristically round their values λ̃p Ð tλjps such that λ̃p ą 0, p P R

11 call PURE-DIVING(Pj, dj, λ̄, λ̃)

1.2.4.3 Diving heuristic with limited backtracking

Since a pure diving heuristic is a depth-first search, a possible improvement
is to use a limited backtracking procedure to perform multiple dives. This
backtracking relies on a Limited Discrepancy Search (LDS). The idea is to set
two parameters on the maximum depth maxDepth and discrepancy maxDisc
to consider. Backtracking in the diving tree occurs up to maxDepth and it
is managed by using a tabu list to store forbidden branching decisions. Back-
tracking branches are considered as long as the number of branching decisions
in the tabu list does not exceed maxDisc parameter.

Diving with LDS is formalized in Algorithm 2. One first calls the procedure
LDS-DIVING(P0, d0,H,HH, 0q. The first steps of the algorithm are the same
as in Algorithm 1. The main difference between the two algorithms is related
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to the management of tabu list Z and depth level depth. This is handled by
just selecting subset R of columns among the retained column set F but not
in the tabu list Z (lines 3-4). Then the diving with LDS is called (line 5) and
the tabu list is updated (line 6). The recursive calls to diving with LDS and
updates of the tabu list are performed while the size of the tabu list does not
exceed the maximum diving discrepancy maxDisc and the current depth level
depth does not exceed the maximum allowed depth maxDepth.

Algorithm 2: LDS-DIVING(Pj´1, dj´1, λ̄, λ̃,Z, depth)
1 execute lines 1-8 from Algorithm 1
2 do
3 λ̃p Ð 0
4 if FzZ “ H then return heuristically choose a column set

R Ď FzZ and heuristically round their values λ̃p Ð tλjps such that
λ̃p ą 0, p P R

5 LDS-DIVING(Pj, dj, λ̄, λ̃,Z, depth` 1)
6 Z Ð Z YR
7 while |Z| ď maxDisc and depth ď maxDepth

The diving procedure with LDS is dependent on the maximum discrepancy
and depth parameters. Clearly if both parameters are fixed to a huge value,
the tree exploration takes more computation time. Nevertheless a deeper ex-
ploration may lead to better quality primal solutions. Consequently there is a
trade-off between exploration and computation time. Figure 1.10 depicts trees
with pure diving and diving with LDS.
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(a) (b)

Figure 1.10: Example of pure diving (a) and diving with LDS (maxDepth “
3,maxDisc “ 2)

1.3 Two-dimensional knapsack problem

The 2KP is the pricing problem used to create columns when solving the 2BP.
Consequently one wants to design a method to solve it exactly and quickly.
This problem is the subject of a large number of scientific papers. A de-
scription is first given to explain the structure of literature instances used to
benchmark different approaches to solve 2KP. A focus is then done on dynamic
programming for the unbounded 2KP followed by exact methods to solve the
bounded 2KP. Finally some efficient heuristics are described. With respect to
the problems discussed in this manuscript and if not mentioned, the guillotine
cut requirement is assumed to be always used.

1.3.1 Problem instances

When a solving method is developed for an optimization problem, it is a com-
mon practice to test it on a set of problem instances. This set is often taken
from industrial applications and reflects the consideration of companies. Using
such data is twofold. On one hand it outlines the needs from companies to solve
optimization problems they face off. On a second hand it allows researchers
to benchmark their approaches and compare to each other.

The set of instances for the 2KP has grown with time. They are currently
divided in four categories. The first one is related to constrained problem in
which there exists a given item demand di. The second is for unconstrained
problem where an item can be selected an unlimited number of time. Each
of these two categories is then divided in two other subcategories. For some
problem instances, the value ei of each item is equal to its area wi ˆ hi. Such
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instances are called unweighted in this case. When the profit of items is not
equal to its area, the problem is called weighted. The retained notation to
distinguish problem instances is the following. The notation CW (resp. CU)
is used for constrained 2KP instances where the profit of items is weighted
(resp. unweighted). For unconstrained 2KP instances, the notation UW (resp.
UU) is used when profits are weighted (resp. unweighted).

The first contribution of 2KP instance has been done by Christofides and
Whitlock [10], Wang [86] and Beasley [5]. In Christofides and Whitlock [10]
and with collaboration to a wood cutting company, the authors made three CW
instances available, named CHW1 ´ 3. The bigger one is pW,Hq “ p40, 70q
and |I| “ 20 with an average item demand of 3. Later Wang [86] adapts one
of them and creates a CU instance instead, named W . To test its algorithms,
Beasley [5] creates 13 UU instances, named gcut1 ´ 13. The bigger one is
pW,Hq “ p3000, 3000q and |I| “ 32. There also exist instances with smaller
plate size pW,Hq “ p1000, 1000q but with higher number of items |I| “ 50.

Another contribution to the number of available instances is done by Hifi
[39]. The author defines CU instances derived from Christofides and Whitlock
[10], named 11,21 and 31. He also creates two new CW instances and three
CU instances, named A1 ´ 2 and A3 ´ A5. The biggest one has a size of
pW,Hq “ p132, 100q and |I| “ 20. He also adapts the UU instance of Herz [38]
and modifies it to obtain a CU instance, named H. In a second time in Hifi
[40], new large instances for the UU and UW problems are introduced, named
LU1 ´ 4 and LW1 ´ 4. They can have dimension up to p50.000, 20.000q and
|I| “ 200.

For constrained problems, two small CU instances were proposed by Oliveira
and Ferreira [62], named OF1´2, and five CW instances by Fekete and Schep-
ers [28],named okp1´5. For them, the maximum bin size is p100, 100q and the
number of items |I| “ 30. In Fayard et al. [27], authors created 10 instances
for both the CW and CU, named CW1 ´ 11 and CU1 ´ 11. The bin size
is randomly generated between r100, 1000s and the number of items between
r25, 60s. Alvarez-Valdés et al. [2] also proposed new random CU and CW in-
stances with size in range r100, 1000s, named APT30 ´ 39 and APT40 ´ 49,
Item sizes are in range r0.05W, 0.4W s and r0.05H, 0.4Hs, the demand of each
item is set to be the minimum value between the geometric bound of the
item (tW {wiutH{hiu) and a random integer number taken in range r1, 10s.
New CW and CU instances are also introduced in Cung et al. [17], named
CHL1 ´ CHL4,Hchl1 ´ 2,Hchl9 and CHL1s ´ 4s,CHL5 ´ 7,Hchl3s ´ 8s.
The bin size is at most p235, 210q and the number of items is at most |I| “ 35.

To summarize, the largest instances now available for the UW and UU are
the ones from Hifi [41]. For the CW and CU variants, the set introduced in
Alvarez-Valdés et al. [2] is a good one since bin are large enough. Remark that
the set of constrained instances implies to work on small bin compare to uncon-
strained variants. It is common usage to transform unconstrained instances in
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constrained one by setting a bound of one on each item. This gives larger in-
stances. Most of described instances are available at http://people.brunel.
ac.uk/~mastjjb/jeb/orlib/cgcutinfo.html and at ftp://cermsem.univ-
paris1.fr/pub/CERMSEM/hifi/2Dcutting/2Dcutting.html.

1.3.2 Dynamic programming for the unbounded 2KP

As previously described the 1KP can be solved with a dynamic programming.
A possible way to solve the 2KP is to extend this approach in two dimensions.

Pioneering work on the subject goes back to Gilmore and Gomory [34]
where a first dynamic program for the U-2KP-NR-2-f was introduced. This
one was latter extended by Beasley [5] to the k-stage variant. Assume a 2KP
instance and let F pk, w, hq (resp. Gpk, w, hq) be the value of an optimal k-
stage pattern related to a rectangle pw, hq where the first-stage cut direction
is parallel to the w-axis (resp. to the h-axis). The set of possible length for
any cuts parallel to the w-axis is W “ r1, 2, . . . ,W ´ 1s (resp. to the h-axis
is H “ r1, 2, . . . , H ´ 1s). From Beasley [5], the generic recurrence relation for
the U-2KP-NR-k-f is:

F pk, w, hq “max

$

&

%

F p0, w, hq,
F pk, w, h1q ` F pk, w, h´ h1q, h1 P H,
Gpk ´ 1, w, hq

,

.

-

(1.36)

Gpk, w, hq “max

$

&

%

Gp0, w, hq,
Gpk, w1, hq `Gpk, w ´ w1, hq, w1 PW ,
F pk ´ 1, w, hq

,

.

-

(1.37)

Gp0, w, hq “F p0, w, hq (1.38)
F p0, w, hq “max t0, ei|wi ď w, hi ď h, @i P Iu (1.39)

Note that F p0, w, hq represents the cut of an item and profit collection.
The optimal solution to this dynamic program is obtained by computing the
value F pk1,W,Hq or Gpk1,W,Hq depending on the first cut direction. Clearly
the main drawback of this dynamic program is its size. It becomes too large
when the number of cutting stages and/or when the size of the bin increase as
outlined by Gilmore and Gomory [34] and Beasley [5].

The state space size can be reduced without loss of optimality by using
cutting properties. A straightforward way to do it is to reduce sets W and
H. From observations of Christofides and Whitlock [10], it is possible to move
an item in a guillotine cutting pattern such that its bottom and left edges
are adjacent to a cut or to the bin border. Remark also that position w ą

W ´miniPItwiu (resp. h ą H ´miniPIthiu) cannot have a piece lying to the
right (resp. left) of the cut. Therefore a reachable position in a cutting pattern
is expressed as a combination of item widths (resp. heights). This process is
called pattern normalization. An example is given in Figure 1.11.
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(a)
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(b)

Figure 1.11: Example of a pattern without normalization (a) and with nor-
malization (b)

Consequently one can rewrite sets W and H as follows:

W “

#

w|w “
ÿ

iPI
wiai, 1 ď w ď W ´min

iPI
twiu, ai ě 0, ai P N

+

(1.40)

H “

#

h|h “
ÿ

iPI
hiai, 1 ď h ď H ´min

iPI
thiu, ai ě 0, ai P N

+

(1.41)

Let functions ppwq storing the width nearest from below to w in the new
set W and qphq storing the height nearest to h in the new set H:

rpwq “max t0, w1|w1 ď w,w1 PWu , w ă W (1.42)
qphq “max t0, h1|h1 ď h, h1 P Hu , h ă H (1.43)

The recurrence relations (1.36)-(1.39) are rewritten:

F pk, w, hq “max

$

&

%

F p0, w, hq,
F pk, w, h1q ` F pk, w, qph´ h1qq, h1 P H,
Gpk ´ 1, w, hq

,

.

-

(1.44)

Gpk, w, hq “max

$

&

%

Gp0, w, hq,
Gpk, w1, hq `Gpk, rpw ´ w1q, hq, w1 PW ,
F pk ´ 1, w, hq

,

.

-

(1.45)

Gp0, w, hq “F p0, w, hq (1.46)
F p0, w, hq “max t0, ei|wi ď w, hi ď h, @i P Iu (1.47)

Since setsW andH are smaller, the dynamic program size becomes smaller.
In the same way, the any-stage problem can be modelled with a dynamic

program. Let F p´, w, hq be the optimal value of a pattern related to a rectangle
pw, hq. According to Beasley [5], the recurrence relation for the U-2KP-NR-8-f
is the following:
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F p´, w, hq “max

$

&

%

F p0, w, hq,
F p´, w, h1q ` F p´, w, qph´ h1qq, h1 P H,
F p´, w1, hq ` F p´, rpw ´ w1q, hq, w1 PW

,

.

-

(1.48)

The dynamic program (1.48) has many symmetries. It is possible to remove
some of them by imposing a restriction on cuts. This was first outlined by
Christofides and Whitlock [10]. Assume a plate pw, hq and a cut of length
w1 ă w. Cutting the given plate with cut of length w1 produces to subplates
pw1, hq and pw ´w1, hq. Observe that the same two subplates can be obtained
by cutting plate pw, hq with a cut of length w2 “ w ´ w1. Cut lengths w1
and w2 are thus symmetric regarding pw, hq. To avoid such symmetries, one
can restrict the set of possible cut lengths without missing any patterns by
performing only cuts up to the half of the width of a plate. This also holds for
the cut performed horizontally. The any-stage dynamic program becomes:

F p´, w, hq “max

$

&

%

F p0, w, hq,
F p´, w, h1q ` F p´, w, qph´ h1qq, h1 P H, h1 ď h{2
F p´, w1, hq ` F p´, rpw ´ w1q, hq, w1 PW , w1 ď w{2

,

.

-

(1.49)

The dynamic programming approach has the advantage to handle well cut-
ting constraints of 2KP. Moreover it is also efficient to solve large instances
both for the k-stage and any-stage variants. In Beasley [5], the author com-
pares k-stage and any-stage variants solved by dynamic programming. He
solves all instances gcut1 ´ 12 in seconds and in the same time compares
1-stage, 2-stage, 3-stage and any-stage variants. Due to memory limitation
of the computer, author heuristically tackles the remaining instance gcut13.
The proposed heuristic is to truncate the complete dynamic program and only
works on a smaller one. Using a modern computer, it is possible to solve the
largest unconstrained instances, LU1 ´ LU4 and LW1 ´ LW4, in less than
five minutes as done by Russo et al. [70].

1.3.3 Exact methods for the bounded 2KP

Dynamic programming is a natural choice when an unbounded 2KP has to
be solved. It does not extend easily to the bounded case. However most
applications consider only two or three stages. ILP formulations to such special
cases may be efficient using modern solvers.

1.3.3.1 ILP based exact methods for two-stage 2KP

Initial works on ILP models for the C-2KP-R-2-f were done by Lodi and Monaci
[50]. Authors exploit cutting properties to write their formulations. From the

28 Quentin Viaud



1. State of the art

two-stage restriction, a valid solution to the cutting problem is represented by
a set of vertical strips. Each strip is initialized with an item with respect to
the restricted cut property. The idea is to find items to set up those vertical
strips and then pack extra items vertically without exceeding bin dimension.

Assume a 2KP instance where the number of items is m “ |I|. Authors
first consider each item i P I to be distinct by creating di identical items j
such that pwj, hjq “ pwi, hiq and ej “ ei. The number of distinct items is
n “

ř

iPI di. By sorting distinct items in decreasing width, authors assume
that n strips may be initialized (the k-th strip is initialized with the k-th
distinct item). By defining a binary variable xjk “ 1 if distinct item j is cut
from strip k, 0 otherwise, the following ILP model is obtained:

max
n
ÿ

j“1

ej

j
ÿ

k“1

xjk (1.50)

s.t.
j
ÿ

k“1

xjk ď 1, j P t1, . . . , nu (1.51)

n
ÿ

j“k`1

hjxjk ď pH ´ hkqxkk, k P t1, . . . , n´ 1u (1.52)

n
ÿ

k“1

wkxkk ď W (1.53)

xjk P t0, 1u, k P t1, . . . , nu, j P tk, . . . , nu (1.54)

Objective function (1.50) maximizes the profit of cut items. Constraint set
(1.51) ensures to cut each distinct item at most one time. Constraints (1.52)-
(1.53) are related to bin dimensions. Note that if variable xkk “ 1, this implies
that strip k is used and initialized with item k.

Secondly, the authors write another ILP model however this time decom-
position of items is done only by creating a mapping between items and strips.
Since cuts are restricted, the number of possible widths for vertical strips is
bounded by the number of different item widths. It is then possible to initialize
n “

ř

iPI di strips at most (by cutting one item copy in each strip). Assume
that items are sorted by decreasing width. The i-th item in I can be cut from
strips of width greater than or equal to wi. Any item i “ t1, . . . ,mu can be cut
from a strip in range t1, . . . , αiu where αi “

ři
s“1 ds represents the maximum

strip index in which it is possible to cut item j. Any strip can be used to cut
items in the range tβk, . . . ,mu with βk “ mintr|1 ď r ď m,αr ě ku the item
that must initialize strip k. Let integer variables xik be equal to the number of
items i cut from strip k if i ‰ βk and equal to the number of additional item
i cut from strip k otherwise. The second ILP model is:
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max
m
ÿ

i“1

eip
αi
ÿ

k“1

xik `
αi
ÿ

k“αi´1`1

qkq (1.55)

s.t.
αi
ÿ

k“1

xik `
αi
ÿ

k“αi´1`1

qk ď di, i P t1, . . . ,mu (1.56)

m
ÿ

i“βk

hixik ď pH ´ hβkqqk, k P t1, . . . , nu (1.57)

n
ÿ

k“1

wβkqk ď W (1.58)

αi
ÿ

s“k

xis ď di ´ pk ´ αi´1q, i P t1, . . . ,mu, k P tαi´1, . . . , αiu (1.59)

xik P t0, . . . , diu, i P t1, . . . ,mu, k P t1, . . . , αiu (1.60)
qk P t0, 1u, k P t1, . . . , nu (1.61)

Binary variable qk “ 1 if strip k is used, 0 otherwise. As in the previ-
ous model, objective function (1.55) and constraint set (1.56)-(1.58) ensure to
maximize the profit of cut items without exceeding item availabilities and bin
dimension. Redundant constraints (1.59) are used to strengthen the bound on
xik variables.

From these two ILP formulations, authors show how to pass from one to
the other. Models are then strengthened with linear inequalities to remove
symmetries and several problem variants are considered (rotation, exact case,
item lower bounds). Computational experiments outline that both models
are able to solve literature instances in a relative small amount of time on
average. Tested instances include all constrained literature instances except
CW1 ´ 10,CU1 ´ 11 and APT set. The approach is also suitable for some
unconstrained instances. For unconstrained problems, the authors point out
that their models is not the best approach compare to dynamic programming.
For constrained 2KP, it is not clear if large instances can be tackled with
2-stage ILP models.

1.3.3.2 ILP based exact methods for three-stage 2KP

Three stage variant is often considered in industrial applications. Indeed in-
creasing the number of cutting stages from two to three allows one to create
more patterns, which often results in better use of bin area. Obviously adding
an extra cutting stage also results in more complex formulations.

A first attempt on three stage industrial problem was done by Vanderbeck
[83] in a column generation context. Since Dantzig-Wolfe decomposition and
column generation strengthen ILP formulations for the 2BP, the author solved
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the C-2KP-R-3-f in the same way. Using the guillotine cut property, a cutting
pattern is decomposed in vertical strips. Each vertical strip is then cut in
horizontal sections, each section leads to item cut. The problem can therefore
be formulated using Dantzig-Wolfe decomposition. The master problem selects
vertical strips and the pricing problem creates them. Sections in vertical strips
are obtained using enumeration. Enumeration in this case is possible due to the
huge number of industrial requirements that really constrained the problem.
A cutting pattern is then obtained by selecting strips. With his approach, the
author solves industrial instances but does not mention their size.

A way to solve the C-2KP-NRE-3-f is to write its ILP formulation. Based
on the strip decomposition proposed by Lodi and Monaci [50], Puchinger and
Raidl [66] extend it to the three stage problem. Formulation uses staged de-
composition induced by guillotine cuts. A cutting pattern is decomposed in
vertical strips decomposed themselves in horizontal sections containing items
of same height. Assume a 2KP instance and as done by Lodi and Monaci
[50], each item i P I is considered to be distinct leading to the creation of
di identical items j such that pwj, hjq “ pw, hq and ej “ ei. The number of
distinct items is n “

ř

iPI di. By sorting distinct items in decreasing width, n
strips and n sections may be initialized. Let binary variable αji “ 1 if item i
is contained in section j, 0 otherwise and binary variable βkj “ 1 if section j
is contained in strip k, 0 otherwise. The ILP model for the C-2KP-R-3-f is:

max
n
ÿ

i“1

ei

i
ÿ

j“1

αji (1.62)

s.t.
i
ÿ

j“1

αji ď 1, i P t1, . . . , nu (1.63)

n
ÿ

k“1

wkβkk ď W (1.64)

n
ÿ

j“k

hjβkj ď Hβkk, k P t1, . . . , n´ 1u (1.65)

j
ÿ

k“1

βkj “ αjj, j P t1, . . . , nu (1.66)

n
ÿ

i“j

wiαji ď
j
ÿ

k“1

wkβkj, j P t1, . . . , nu (1.67)

αji “ 0,
j P t1, . . . , n´ 1u, i P tj, . . . , nu,
i ą j|hi ‰ hj _ wi ` wj ą W

(1.68)

αji P t0, 1u, j P t1, . . . , nu, i P tj, . . . , nu (1.69)
βkj P t0, 1u, k P t1, . . . , nu, j P tk, . . . , nu (1.70)
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Objective function (1.62) ensures that profit of cut items is maximized.
Item production is bounded by constraints (1.63). Constraint (1.64) limits
the width of opened vertical strips to the bin width. Constraint set (1.65)
bounds the total height of sections attached to a given strip to not exceed
bin height. Constraint set (1.66) forces to cut exactly once an item j in an
opened strip k assuming that if section j is opened item j is automatically cut
in it. Constraints (1.67) limit the width of opened sections j, represented by
the sum of the width of cut items in it, attached to an opened strip k to not
exceed strip width. Constraints (1.68) enforce the fact that items cut in the
same section must have the same height and that their widths do not exceed
bin width due to the restricted cut property. This is mainly used to reduce
the number of α variables.

Authors do not report specific results on the behaviour of the 2KP model.
Indeed they use it to price columns in a branch-and-price for the 2BP. However
tested bin-packing instances up to B “ p300, 300q and |I| “ 100 are solved by
authors. One can assume that three-stage ILP model for the 2KP is able to
solve such instances.

1.3.3.3 ILP based exact methods for any-stage 2KP

Models proposed by Lodi and Monaci [50] exploit the structure of the two-stage
cutting process. In a more general context authors focus also on solving the
C-2KP-NRE-8-f. A generic way is to formulate this problem as an ILP. Since
a guillotine cut divides a plate in two subplates and the number of possible
subplates is finite, one can enumerate them as noticed by Furini et al. [30].
Assume a plate j “ pwj, hjq in which a guillotine cut is performed at position
q starting from the bottom left corner of j with vertical v or horizontal h
orientation. Possible orientations are grouped in O “ tv, hu. The set J
is used to define the set of all possible plates j with dimension pwj, hjq P
t1, . . . ,W u ˆ t1, . . . , Hu. The initial plate pW,Hq is indexed by 0 in set J .
The set J̄ represents the set of plates j P J having the same dimension of
an item i P I. (i.e. the set of plates such that pwj, hjq “ pwi, hiq, @i P I)
For a plate j P J , let Qpj, vq (resp. Qpj, hq) be the set of cutting positions
t1, . . . , wj ´ 1u (resp. t1, . . . , hj ´ 1u) which can be performed on plate j with
orientation v (resp orientation h). Let integer variables xoqj be equal to the
number of times a plate j is cut at position q with orientation o and with
binary coefficient aoqkj “ 1 if a plate k is obtained after cutting a plate j at
position q with orientation o, 0 otherwise. Using previous notations and with
variable yj the number of times a plate j P J̄ is used, an ILP model for the
C-2KP-NRE-8-f is:

max
ÿ

jPJ̄

ejyj (1.71)
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s.t.
ÿ

j1PJ

ÿ

oPO

ÿ

qPQpj1,oq

aoqj1jx
o
qj1 ´

ÿ

oPO

ÿ

qPQpj,oq

xoqj ´ yj ě 0, j P J̄ , j ‰ 0 (1.72)

ÿ

j1PJ

ÿ

oPO

ÿ

qPQpj1,oq

aoqj1jx
o
qj1 ´

ÿ

oPO

ÿ

qPQpj,oq

xoqj ě 0, j P JzJ̄ (1.73)

ÿ

oPO

ÿ

qPQp0,oq

xoq0 ` y0 ď 1 (1.74)

yj ď dj, j P J̄ (1.75)
xoqj ě 0, xoqj P N, j P J, o P O, q P Qpj, oq

(1.76)
yj ě 0, yj P N, j P J̄ (1.77)

Objective function (1.71) maximizes the profit of cut items. Item produc-
tion is bounded by (1.75). Constraint set (1.72) imposes that the number of
plates j that are cut as items does not exceed the number of plates j obtained
trough the cut of some other plates. Constraint set (1.73) is the same as the
previous one except that a plate cannot be converted into an item. Constraint
(1.74) ensures that the initial plate is not used or cut at most one time. Con-
straint set (1.75) bounds the production of item.

This ILP formulation has a pseudo-polynomial number of variables x de-
pending on possible ways to cut a plate. A straightforward way to reduce
this number is to apply pattern normalization. However this reduction proce-
dure cannot reduce the number of variables sufficiently. To solve their cutting
problem, the authors propose to first use a reduced formulation by using the
restricted cut property. A C-2KP-RE-8-f is solved instead of a C-2KP-NRE-
8-f. This reduces the number of positions where the plate can be cut, and
the number of variables. The drawback is that suboptimal solutions for where
the plate can be cut.he initial problem can be obtained. Since authors want
to solve the C-2KP-NRE-8-f but are limited by the number of variables, they
propose to incrementally solve it using variable pricing. The idea is to incre-
mentally add x variables with a positive reduced profit when solving the linear
relaxation of (1.71)-(1.77).

Model (1.71)-(1.77) is first initialized with xoqj variables related to restricted
cuts. Then by solving the linear relaxation of (1.71)-(1.77), dual variables πj
are obtained for constraints (1.72)-(1.73) and one computes for all xoqj variables
its reduced profit:

p̄pxoqjq “ πj1 ` πj2 ´ πj (1.78)

The computed reduced profit p̄pxoqjq corresponds to the change in the objec-
tive function for a unitary increase in the value of the corresponding variable.
Variables with positive reduced profit are then added to the restricted model
(1.71)-(1.77). Process is repeated until no more variable with positive reduced
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profit can be added to the model. Finally the last pricing is done for variables
xoqj such that:

 

xoqj, j P J, o P O, q P Qpj, oq|tp̄px
o
qjq ` LP u ą LB

(

(1.79)

LP is the optimal solution of the linear relaxation of (1.71)-(1.77) after
variable pricing procedure and LB a problem lower bound obtained with a
heuristic. The reduced model is then solved with a commercial solver.

Computational experiments show that the variable pricing approach per-
forms well and reduces the model size. Authors test their approach on all
constrained literature instances except APT set. They also test it on uncon-
strained set gcut by setting a demand of one to each item. They are able
to solve gcut10 ´ 12, i.e. instances with a B “ p1000, 1000q and

ř

iPI di “
50. However they fail to outperform existing state-of-the-art approach of
Dolatabadi et al. [23] due to a too large model size and computational time
limit.

1.3.3.4 Recursive exact algorithm for any-stage 2KP

Best performances on the C-2KP-NRE-8-f are obtained by Dolatabadi et al.
[23]. Their algorithm is based on a dynamic program combined with an implicit
enumeration of patterns. Implicit pattern enumeration uses the definition of
a feasible packing and maximal packing for a plate. Given a 2KP instance,
the number of different items in the instance is equal to m “ |I|. By abuse
of notations, items are assumed to be indexed by position j “ t1, . . . ,mu. A
feasible packing f is represented by a non negative vector rf1, f2, . . . , fms. Each
value fj ď dj is the number of cut items of index j P t1, . . . ,mu in packing f .
The profit of a feasible packing f is the sum of profits of cut items in it:

ppfq “
m
ÿ

j“1

ejfj (1.80)

A feasible packing is said to be maximal if there are no other feasible
packing f 1 such that ppf 1q ě ppfq. For two feasible packings f and f 1, a new
packing f̃ “ f ` f 1 is defined as follows:

f̃j “ min
 

fj ` f
1
j, dj

(

, j “ t1, . . . ,mu (1.81)

Using packing definition, one can define the set F pw, h, zq containing all
feasible packings of profit larger than or equal to z for a plate pw, hq. Let the
pairwise sum F 1 ‘ F 2 of two feasible packings be:
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F 1
‘ F 2

“
 

f ` f 1, @f P F 1, @f 1 P F 2
(

(1.82)

Since cuts are guillotine, the algorithm proposed by the authors recursively
computes sets F pw, h, zq for all w P W and h P H. Indeed feasible packings
contained in F pw, h, zq, w ą 0, h ą 0 are obtained by combining feasible pack-
ings from F pw1, h, zq and F pw ´ w1, h, zq with w ą w1 ą 0 or from F pw, h1, zq
and F pw, h´h1, zq with h ą h1 ą 0. To reduce the dynamic program size, sets
W and H are normalized (see Christofides and Whitlock [10]).

A drawback of the algorithm is its long running time since all feasible
packings are enumerated for each F pw, h, zq. A straightforward improvement is
to compute an upper bound Upfq on the maximum profit that can be obtained
in the residual area of the plate for a feasible packing f P F pw, h, zq. Such
bound is obtained by solving a 1KP instance where each item i is available
di ´ fi times with a profit ei and a weight wi ˆ hi, bin capacity is set to
WˆH´wˆh. A feasible packing f is then discarded if inequality ppfq`Upfq ă
z holds, where z represents the value of a known feasible solution. In other
words, packing f cannot be used to obtain a solution of value larger than z.

Using the pattern enumeration algorithm, the whole method proceeds by
trial-and-error on the objective value estimate. Assuming a given threshold
value th to be a valid lower bound, feasible cutting patterns are enumerated by
the recursive method, using value th to fathom patterns. If a feasible packing
is found using this threshold value, the associated cutting pattern is optimal.
Otherwise the threshold value is too high and all optimal packings have been
discarded by fathoming. One needs to solve the problem again after decreasing
the threshold value. Authors start their algorithm using an initial threshold
value th equal to a problem upper bound UB. If algorithm fails to find an
optimal feasible packing, threshold value is decreased by pUB ´ LBq{10 with
LB a heuristic problem lower bound.

Computational experiments outperform all existing approaches for the C-
2KP-NRE-8-f. The algorithm is able to provide the optimal solution for al-
most all instances APT30´39 and APT40´49. They also test their algorithm
onW and okp set and transformed gcut instances. The maximum running time
is set to one hour but most of instances are solved in less than 50 seconds. The
main drawback of the algorithm is its dependence to initial lower and upper
bounds.

1.3.3.5 Branch-and-bound approaches

A way to solve 2KP is to apply a branch-and-bound algorithm using the guil-
lotine property. Since a guillotine cut divides a plate in two subplates, an
intuitive branching decision is to decide on the position to perform such cut.
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By iteratively branching on vertical and horizontal positions, the optimal cut-
ting pattern can be obtained. This branching is done in a top-down way. Initial
branching decision is done on plate pW,Hq and then on produced subplates.
However the tree size is exponential and one needs to select a good branching
strategy to avoid useless exploration of the tree. This first attempt was made
by Christofides and Whitlock [10] and then improved by Christofides and Had-
jiconstantinou [9]. Later Morabito and Arenales [58] solved the C-2KP-NR-k-f
using an AND/OR graph representation. Each vertex in this graph represents
a possible plate of given dimension. Each arc in this type of graph is called
an AND arc. Formally it is an oriented connection between one vertex and a
set of vertices. Applied to cutting problem, such an arc represents a cutting
decision. An AND arc gives indication on how to cut a given plate into two
subplates. The OR part of this graph, close to the logical OR operator, is used
to limit the number of AND arcs to select for a given vertex in the AND/OR
graph. Among the set of possible AND arcs for a given vertex, only one can be
selected. Concretely this forces to perform only one guillotine cut on a given
plate. Consequently among the set of possible cuts which can be performed on
a given plate, only one can be retained. A representation of AND/OR graph is
given in Figure 1.12. The problem representation with AND/OR graph gives
rise to a classical top-down branch-and-bound.

1

2 3 4 5

Figure 1.12: Representation of two AND/OR arcs. The first one is between
plate 1 and subplates 2 and 3. The second is between plate 1 and subplate 4
and 5.

Another way to perform branching is to do it in a bottom-up fashion. The
idea is to maintain a list of valid patterns, initialized with item set |I|, and to
try to create new patterns by combining two previously created patterns. The
creation of a new pattern is performed in two steps. First the two patterns
to combine are checked to ensure that items are not overproduced. Then one
has to ensure that the two patterns put side by side or on top of the other
do not exceed the bin dimension. The bottom-up branch-and-bound was first
proposed by Hifi and Roucairol [42] on C-2KP-NR-2-f and C-2KP-NRE-2-f
and then used by G et al. [31] for U-2KP-NRE-2-f.

Computational experiments conducted by previous authors show that branch-
and-bound is an efficient way to obtain optimal solutions. Nevertheless, con-
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sidered instances in Hifi and Roucairol [42] and Morabito and Arenales [58]
are OF1´ 2, Hchl, CHL, A1´ 5. For these instances, the bin size is around
200ˆ200. Their approaches sometimes fail to find the optimal solution within
a given time limit. Some instances are not solved to optimality for the 2-stage
problem in less than two hours in Hifi and Roucairol [42]. For the unbounded
variant considered by G et al. [31] results are better. Authors provide optimal
solutions for UW1´ 11 and UU1´ 11 instances in few seconds.

1.3.3.6 Constraint programming

In addition of ILP techniques, the constraint programming is also a way to
solve 2KP. In Clautiaux et al. [12], authors outline a paradigm based on graph
representation of a cutting pattern and constraint programming. They focus
on deciding if a given item set I can be cut from a given bin B using only
guillotine cuts. This decision problem is important since it is used when one
wants to solve 2SP and 2KP.

The constraint programming approach relies on defining a set of variables,
a set of possible values for each variable and a set of constraints between vari-
ables. If one finds a set of values for each variable ensuring that constraints
are satisfied, the associated problem is solved. A strength of the constraint
programming is to use constraint propagation. The idea is to do certain deduc-
tions from the domain of variables leading to deduce new constraints or detect
inconsistencies. Valid deductions allow to reduce the required computational
effort. In order to do a strong and efficient constraint propagation, the authors
defined a new graph representation of a guillotine pattern.

Computational experiments show that constraint programming and guillo-
tine graph outperform existing state-of-the-art methods for the 2SP. However
used benchmarks only considered small item sets (|I| “ 23 at most) and small
bins (H “ 175 at most).

1.3.4 Heuristic approaches

Exact methods for the bounded 2KP can be slow. Moreover, those methods
often need to be initialized with a good quality incumbent solution. To obtain
such incumbent heuristics are used. Heuristics for the 2KP are often divided
in two categories: top-down and bottom-up. In top-down heuristics, an initial
bin is cut iteratively to obtain items. In bottom-up heuristics, initial items
are combined together to create partial valid patterns, which are themselves
combined to obtain a feasible pattern for the initial bin. This section is de-
composed in two parts, one for each approach.
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1.3.4.1 Bottom-up heuristics

The first bottom-up heuristic has been proposed by Wang [86] for the C-2KP-
NR-8-f. In this work, the author notices that when a guillotine cutting pattern
is built, items to cut are just put next to each other. Therefore blocks of items
can be merged recursively to create a complete cutting pattern for a given bin.
An example of block building is represented in Figure 1.13

a
b

(a)

a

b

(b)

a
b

(c)

Figure 1.13: Partial plates (a) can be put on top of each other or next to each
other to obtain plates (c) and (d)

Some partial patterns can be easily discarded because of item overpro-
duction or because they are larger than the bin dimension. Nevertheless the
number of possible partial patterns which can be created or merged remains
exponential. Wang [86] proposes to set an acceptance parameter on the waste
contained in a partial pattern to avoid the exponential growth This forces the
building procedure to only consider partial patterns with a waste value lower
than a given parameter. Later works of Oliveira and Ferreira [62] improve the
condition on how to discard pattern.

The bottom-up approach for any-stage problem can be modified to handle
3-stage problem, as outlined by Cui et al. [16]. Since an item has to be cut in
at most three cuts, authors observe that a cutting pattern decomposes itself
in vertical strips, which are themselves decomposed in horizontal segments.
Segments are then cut to produce items. Authors decide to solve this problem
in a bottom-up way by solving three dynamic programs, one for each cutting
stage. Initial strips are produced using an exact dynamic program, then seg-
ments and items are created by heuristic dynamic programs. They are used
by authors to handle item upper bounds and also to work on a smaller state
space size.

The bottom-up approach for three-stage problem is a suitable approach.
Indeed authors in Cui et al. [16] solve APT instances in seconds. They also
test their approach on a custom set with a bin size B “ p3000, 1500q and a
number of different items |I| “ 150.
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1.3.4.2 Top-down heuristics

Top-down heuristics aim to divide a given plate in two subplates recursively.
The standard way to solve a cutting problem with a top-down approach is to
first design a heuristic to produce a feasible pattern and then to include it in
a meta-heuristic.

A first application is due to Alvarez-Valdés et al. [2] and uses a Greedy
Randomized Adaptive Search Procedure (GRASP), a Tabu Search (TS) and
a Path-Relinking (PR) for the U-2KP-NRE-8-f and C-2KP-NRE-8-f. The
initial constructive heuristic cuts iteratively items in I. Given a plate, the
selected item to cut is the one which has the best upper bound. When a given
item is cut in a given plate, at most two subplates are produced. An upper
bound on the value of a solution that can be obtained by this cut is computed
by summing up the item value and the upper bound of each obtained subplates.
To compute such upper bound, the 1KP relaxation of the 2KP is used. A direct
GRASP to obtain different cutting patterns consists in randomly selecting an
item to cut depending on some parameters. Starting from an initial cutting
pattern p the authors defined a Tabu Search procedure. The idea is to start
from pattern p, select some subpatterns and remove them from p. This creates
holes in pattern p. They are then filled by using the GRASP procedure. Since
one wants to avoid to recreate the same subpatterns that the one which have
been removed, they are stored in a tabu list. When the GRASP is used to
fill the holes, only partial patterns not stored in the tabu list are considered
to be valid. This diversifies produced cutting patterns. Better solutions are
also obtained by mean of a PR procedure in which an initial pattern p is
transformed into a second one p1. The initial cutting pattern p is obtained by
a set of guillotine cut. The PR procedure creates an initial empty pattern and
then applies on it a subset of guillotine cuts used to obtain p. This gives a
partial pattern which is then filled using the GRASP procedure to obtain a
new complete cutting pattern p1.

Computational experiments of Alvarez-Valdés et al. [2] show that their
approaches are suitable for APT sets. Nevertheless for large instances with
pW,Hq “ p1000, 1000q, average computation times for TS are high. Thus,
the initial constructive heuristic or only the GRASP are preferred to obtain
solution in a reasonable amount of time.

1.3.4.3 Primal-dual heuristics

Constructive heuristics start from an empty solution and iteratively construct
a valid one. Some solutions can be difficult to find using pure primal heuristics
like constructive ones or meta-heuristics. To avoid this drawback and to in-
crease the chance to obtain good quality solutions and in some cases prove the
solution optimality, a suitable approach is to use primal-dual heuristics. The
aim of this type of heuristics is to combine constructive process as in classical
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heuristics but also exploit dual information to drive constructive choices in a
promising direction.

The initial contribution for the 2KP problem was first done by Christofides
and Whitlock [10] for C-2KP-RE-8-f. In their first attempt to solve the con-
strained 2KP, authors outline that the standard dynamic programming ap-
proach is not suited when the number of items is large. The authors state that
it is possible to write a dynamic program for the bounded 2KP based on the
unbounded one. Each state of the unbounded dynamic program is extended
by one extra dimension for each possible item to cut. An initial state repre-
sented by two components (i.e. the plate dimension pw, hq) is now represented
by 2 ` |I| components (i.e. the plate dimension pw, hq and one extra dimen-
sion for each item). Clearly the bounded dynamic program for the 2KP is
intractable due to its size. To avoid the combinatorial explosion, an approach
called Decremental State Space Relaxation (DSSR) is used. The starting point
is a weak relaxation of an initial problem to solve. Since the problem is re-
laxed it is easier to solve compared to the original one. Nevertheless since it
is a weak relaxation, its optimal solution may be of poor quality. The idea of
the DSSR is to iteratively strengthen this weak relaxation by including some
relaxed constraint. At each iteration, the new relaxed problem becomes closer
to the initial one, but also harder to solve. The main motivation of the DSSR
is to solve optimally relaxed problems and then prove that the optimal re-
laxed solution is also optimal for the initial problem. In the case discussed in
Christofides and Hadjiconstantinou [9], the authors relax the initial bounded
2KP by first solving the unbounded 2KP with dynamic programming. They
then extend the unbounded dynamic program by adding an extra dimension
to it. This gives a better relaxation of the bounded 2KP. The purpose of this
extra dimension is to bound the total item production by a value D “

ř

iPI diqi
using a non negative weight qi for each item. Initial weights are set to zero and
are then adjusted using a subgradient method. At each subgradient iteration,
the optimal relaxed solution from the extended dynamic program is checked
to ensure its validity regarding item demand constraints. This may improve a
best known incumbent. Thus, at the end of the subgradient, the best found
primal solution as well as the best dual solution are stored among the ones
found during subgradient iterations. Authors use this information to initialize
their top-down branch-and-bound to obtain optimal solution. Authors outline
that during subgradient process, it is possible to prove optimality of the primal
solution if the primal solution value matches the dual bound value.

The primal-dual heuristic using subgradient for the 2KP is able to solve
problem instances. Nevertheless it suffers from the lack of efficient method for
subgradient weight adjustment. For example at a given subgradient iteration,
the weight adjustment may lead to a solution of the dynamic program already
found some iterations ago. To avoid this effect and to obtain stronger dual
bounds, Velasco and Uchoa [85] improve the previous primal-dual heuristic by
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forbidding previous dual solutions to appear again. The subgradient weight
adjustment is substituted with solving an ILP model instead. The purpose
of this ILP is to find new weights for all items which exclude previous found
infeasible solutions and to minimize the value D. In a second step the authors
strengthen their own approach by adding two weight vectors and consequently
two extra dimensions to the dynamic program. They therefore extend the ILP
model used to find weight vectors. Authors also develop a heuristic which
looks for a feasible primal solution based on the relaxed dynamic program.
They bound their algorithm by a limited number of iterations and a threshold
value on D. Computational experiments on C-2KP-RE-8-f outlined that the
method provides near optimal solutions.

The idea of introducing a feasibility heuristic when finding iteratively weight
vector has also been used by Morabito and Pureza [59]. The retained ap-
proach of authors is the one of Christofides and Hadjiconstantinou [9] but for
each weight vector a feasibility heuristic starts to find a better primal solution.
Contrary to Velasco and Uchoa [85], the feasibility heuristic aims to repair the
infeasible solution obtained at a given subgradient iteration.

Results mentioned by Velasco and Uchoa [85] are mitigated. Indeed for
instances CU1´ 11,CW1´ 11,OF1´ 2 and CHW1´ 3, their method clearly
outperforms the best known one of Dolatabadi et al. [23]. However, on average
it cannot solve large instances (ATP30´39 and APT40´49) in a short amount
of time.

1.4 Two-dimensional bin-packing problem
There are different ways to solve 2BP such as exact and heuristic methods.
This section describes the main ones. An overview of 2BP instances is first
done. A description of exact methods to solve the 2BP is given next. This is
then followed by a description of heuristic strategies.

1.4.1 Problem instances

The major dataset to computationally compare methods for solving 2BP has
been proposed for the classical non-guillotine 2BP. But these instances are
also used for the guillotine variant of the problem by adding the corresponding
constraint. Instances are divided in ten classes. Let χ „ U rα, βs denote that
value χ is uniformly generated in interval rα, βs. Six instance classes were
proposed by Berkey and Wang [7] and are built as follows:

Class 1: W “ H “ 10, wi, hi „ U r1, 10s

Class 2: W “ H “ 30, wi, hi „ U r1, 10s

Class 3: W “ H “ 40, wi, hi „ U r1, 35s
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Class 4: W “ H “ 100, wi, hi „ U r1, 35s

Class 5: W “ H “ 100, wi, hi „ U r1, 100s

Class 6: W “ H “ 300, wi, hi „ U r1, 100s

The four remaining classes with W “ H “ 100 were created by Martello
and Vigo [55]. Authors divided items in types:

Type 1: wi „ U r2{3W,W s, hi „ U r1, 1{2Hs

Type 2: wi „ U r1, 1{2W s, hi „ U r2{3H,Hs

Type 3: wi „ U r1{2W,W s, hi „ U r1{2H,Hs

Type 4: wi „ U r1, 1{2W s, hi „ U r1, 1{2Hs

The four classes are:

Class 7: Type 1 with probability 70%, Type 2, 3, 4 with probability 10%
each

Class 8: Type 2 with probability 70%, Type 1, 3, 4 with probability 10%
each

Class 9: Type 3 with probability 70%, Type 1, 2, 4 with probability 10%
each

Class 10: Type 4 with probability 70%, Type 1, 2, 3 with probability
10% each

In these instances, the total number of item copies (
ř

iPI di) in each instance
belongs to t20, 40, 60, 80, 100u. Remark that for Class 2,4,6,7,8,10, the size of
items is small compare to the bin dimension. 10 instances for each class are gen-
erated. Thus, the dataset contains 500 instances. They are available at http:
//or.dei.unibo.it/library/two-dimensional-bin-packing-problem.

1.4.2 Pseudo-polynomial size ILP formulations

A possible way to solve 2BP is to extend 2KP formulations. The modified ob-
jective function is to minimize the number of bins to use instead of maximizing
the profit of one bin. In Lodi and Monaci [50], the authors introduce two-stage
2KP formulations. In later works described in Lodi et al. [49], they rewrite the
objective function of their initial 2KP models to match the objective function
of 2BP. The rewriting of the objective function from a 2KP model to a 2BP
model is also outlined in Furini et al. [30]. The considered 2BP is any-stage in
their case.
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There also exist pseudo-polynomial size ILP formulations not based on
existing ones for the 2KP. In Silva et al. [75], the authors enumerate the whole
set of ways to cut a given plate into subplates. Starting from this set, the
authors write ILP formulations for the two-stage and three-stage 2BP. Each
variable in their models corresponds to a way to cut a plate into subplates. In
Puchinger and Raidl [66], the proposed ILP formulation is similar to the one
described in Lodi et al. [49]. The main difference is that considered problem
is three-stage instead of two-stage leading to more variables in the proposed
model.

An original problem formulation is proposed by Macedo et al. [52]. Starting
from the flow formulation of Valério de Carvalho [79] for the 1BP, they extend
it to the two-stage problem. An oriented acyclic graph is created to represent
the sequence of different vertical strips to cut from a bin. Then for each
possible vertical strip of given width, extra oriented acyclic graphs are created
to represent the different items to cut. Using variables to link graphs between
them, authors write a flow formulation to solve the 2BP.

Experiments done in Lodi et al. [49] focus on literature instances. Their
model obtains good results. Nevertheless for instances in which the size of
items is small compared to the bin size, they do not find the optimal solution
in five minutes. In Puchinger and Raidl [66], the authors compared their
models for the three-stage variant with the two-stage ones in Lodi et al. [49]
on literature instances. Results are nice since their three-stage model solves to
optimality as many instances as the two-stage model in around one minute on
average. Puchinger and Raidl [66] then compared their three-stage models for
the restricted and unrestricted cases. The unrestricted model has worse results
than the restricted one. This is mainly due to the number of variables which
is larger when cuts are unrestricted. In Silva et al. [75], the computational
experiments have not been done on 2BP literature instances. The authors use
modified 2KP literature instances instead. Nevertheless, they compare their
two and three-stage models based on plate enumeration with the ones of Lodi
et al. [49] and Puchinger and Raidl [66]. Results are competitive for both
methods without clear dominance of one models compared to the others. In
the ILP formulation based on graphs introduced in Macedo et al. [52], the
authors conduct experiments on instances taken from the furniture industry.
They divide their instance in two sets A and B. For the first one, on average,
the bin size is p1875, 2600q, the number of different items |I| “ 29 and the
total number of items to cut

ř

iPI di “ 199. The dataset B has larger bin
size B “ p1935, 4030q and total number of items to cut

ř

iPI di “ 1759 but
smaller different items |I| “ 9 on average. For both datasets, a comparison is
done with the two-stage model from Lodi et al. [49]. The flow formulation is
clearly the best one to solve two-stage 2BP both in terms of number of solved
instances and computation time.
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1.4.3 Heuristic approaches

When the 2BP has be to be solved quickly for example to initialize an exact
method, one needs to obtain good heuristic solutions. Most heuristics in the
literature are greedy and are classified in two types: one-phase heuristics which
directly pack items into bins, and two-phase heuristics which start by packing
items in strips and then assign strips to bins. First, standard one-phase and
two-phase 2BP heuristic are described. Then some meta-heuristics and heuris-
tics based on ILP are detailed. A more complete review of most popular 2BP
heuristics can be found in Lodi et al. [48].

1.4.3.1 One-phase heuristics

One-phase heuristics aim to directly pack items into bins. This is typically
achieved by selecting an empty plate in which the item fits. Recall that a
guillotine cut always divide a given plate in at most two plates of smaller
dimensions or subplates. The term subplate used hereinafter represents both
an initial plate of size equal to a given bin size and the obtained subplates
after performing a guillotine cut on some plate. Difference between heuristics
is therefore located in the way a subplate is selected to pack an item. Most
heuristics described here were initially developed by Berkey and Wang [7].

A straightforward way to obtain quickly a feasible packing is the Next-Fit
heuristic: among a set of empty subplates, a given item is packed in the next
subplate in which it fits. Subplates in which the item does not fit are discarded
and never used for inspection of other items. If the item does not fit in any
subplate, a new bin is opened. The initial set of subplates is initialized with
a plate related to a bin. This heuristic is very fast in practice but is very
dependent on the initial item order. To correct this behaviour, the First-Fit
heuristic is often preferred: among a set of empty subplates, a given item is
packed in the first subplate in which it fits. Subplates in which the item does
not fit are kept and can be used for inspection of other items. If the item
does not fit in any subplate, a new bin is opened. This second heuristic is less
myopic since subplates are kept for further inspection. A last strategy to pack
items is to use a Best-Fit strategy: among a set of empty subplates, a given
item is packed in the subplate in which it fits the best. If the item does not fit
in any subplate, a new bin is opened. The main difference with the First-Fit
heuristic is the choice of the subplate to use. The notion of best subplate may
depend on the residual area obtained if the item is cut or if the item area is
not so small compare to the subplate area for example. Finally a Bottom-Left
heuristic can also be used to obtain a feasible packing. As mentioned by its
name, its purpose is to pack an item among subplates in which it fits such
that the item is packed in the lowest and left position. Note that heuristics
described here can easily been adapted to solve 2KP variants.

Experiments from Berkey and Wang [7] have been done on Class 1-6 from
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the 2BP literature instance set. They are no strict comparison between each
method in term of computation time. It is not very critical since described
one-phase heuristics run in at most Opn2q, n “

ř

iPI di. Nevertheless best
solution quality are obtained by First-Fit and Best-Fit heuristics.

1.4.3.2 Two-phase heuristics

Unlike one-phase heuristics, two-phase heuristics aim to first create good strips
in which items are packed and then assign them to bins in order to create a
feasible packing for a 2BP instance.

A standard way to create strips is to transform the initial 2BP instance to
a 2SP instance. Strips are then obtained by using a one-phase heuristic on the
2SP instance. When all items are packed, the obtained solution is decomposed
in a set of vertical strips. They are then assigned to bins by applying one-
phase heuristic for a 1BP instance. Strips are characterized by their width and
assigned to bin of capacity W . There are therefore two possible parameters
to change heuristic behaviour. The first one is related to the 2BP one-phase
heuristic used to create strips. The second is related to the way to assign strips
to bins by mean of a 1BP one-phase heuristic. Common two-phase heuristics
are Hybrid First-Fit and Hybrid Best-Fit heuristics proposed by Berkey and
Wang [7]. Strips are first created and then assigned to bins using a First-Fit
(resp. Best-Fit) strategy.

Another way to create strips is to solve knapsack problems instead of using
heuristics as proposed by Lodi et al. [47]. In the proposed heuristics, the
authors first initialized a strip by packing an item i in it. This gives a strip of
width wi and height H. Then they solve the packing problem related to the
unused space in this strip as a 1KPb with a bin of capacity H ´ hi and item
set Ī “ ti1 P I ´ tiu|hi1 ď H ´ hi, wi1 ď wiu. The strip filling is related to
solve a NP-hard optimization problem which can be long in practice. Authors
defined a time limit for that case but their experiments outlined that this was
not required since solving the 1KPb subroutine turned to be fast in practice.

Experiments done in Lodi et al. [47] compare the proposed heuristic us-
ing knapsack subroutine with the Hybrid First-Fit and Hybrid Best-Fit from
Berkey and Wang [7]. To benchmark the heuristics, all 2BP literature instance
are used. There are no clear dominance of one heuristic compare to the others
but computation time for all of them is around some seconds.

1.4.3.3 Meta-heuristics

The drawback of pure heuristics is that the output solution quality may be far
from the optimal solution. To avoid this behaviour, meta-heuristics are used.
They embed fast pure heuristics to explore more solutions. If more solutions
are explored, the probability to find an improving solution increases.
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Purpose of a meta-heuristic is to explore the solution space in a clever
manner. An efficient procedure to do it proposed by Polyakovsky and M’Hallah
[65]. Authors first define a bottom-left subroutine to solve 2KP. Then by
using agent-based methods from simulation theory, an incumbent solution is
improved. Agent-based approaches aim to simulate a complex behaviour of a
given system starting from an initial simple behaviour from all agents in the
system. Authors implement this model by defining two types of agents: an
agent-initiator which wants to attract as many as possible other agents to it
and an individual-agent which is either free or attached to an agent-initiator.
Each individual-agent in the system corresponds to an item to pack. The
system is initialized with

ř

iPI di individual-agents and spontaneously some
agents decide to become agent-initiator. Those agents try then to attract
individual-agents to them in order to create a feasible 2KP solution of best
value. Since the system is dynamic, a group composed of an agent-initiator
and its following individual-agents can be broken. In that case all agents
in the group become free individual-agents. A group breaking only occurs
when the quality of the packing using agents in this group is weak. The
system is said to be stable when there are no more free individual-agents. In
that case using all agent-initiators, a 2BP solution is obtained. Authors run
their system many times to diversify the quality of the solution by means of
group breaking. Computational experiments shown good results and small
computational times are obtained. Authors also outlined that their method is
less sensitive to problem parameters.

Another type of meta-heuristic is proposed by Cui et al. [15] based on cre-
ation and selection of different 2BP solutions. The idea is to create iteratively
z different 2BP solutions and record the best one. A valid solution is created
by finding one cutting pattern for each bin. A cutting pattern for a bin is
obtained using unbounded dynamic programming to create vertical strips and
truncated bounded dynamic programming for each strip. When a complete
solution for the 2BP is built, profit ei of each item is changed to generate dif-
ferent solution at the next iteration. The best found solution is then returned
after creation of z solutions.

Some meta-heuristics also rely on partial enumeration to obtain a feasible
solution. In Lodi et al. [51] authors develop a method based on an enumeration
tree. At each level of the tree a feasible packing for a bin is created. When a leaf
is reached a complete 2BP solution is obtained. To obtain a feasible packing for
one bin authors implement the Bottom-Left heuristic. To avoid same patterns
creation by the Bottom-Left heuristic different packing strategies are used.
Their aim is to influence the order in which items will be packed by the heuristic
and how the cut will be performed. Since the size of the enumeration tree can
be huge, authors also define rules to removed duplicate patterns and heuristic
pruning rules.

Computational experiments of all mentioned authors in this section outline
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that all approaches are efficient to solve all 2BP literature instances both in
term of solution quality and computation time.

1.4.3.4 ILP based heuristics

The Dantzig-Wolfe decomposition applied on 2BP gives a strong lower bound
on the optimal integer solution value. A drawback is that after column gen-
eration convergence, the obtained solution may be fractional. Since branching
to find the optimum one can be long, one wants to use heuristics instead. ILP
based heuristics use information from a fractional solution to build an integer
one.

A classical way to obtain an integer solution from a fractional solution is
achieved by simply rounding up or down some fractional variables to integer
values. This approach was tested by Alvarez-Valdes et al. [3] for the 2BP with
any-stage patterns. The authors first write the Dantzig-Wolfe reformulation
of the 2BP and solve it by column generation. Since the pricing problem to
deal with is NP-hard, the authors create heuristic patterns instead. They are
obtained using heuristics previously detailed in Alvarez-Valdés et al. [2]. After
column generation convergence, the fractional master solution is analysed and
all fractional variables are rounded-down. This leads to have some uncut items.
To obtain a valid solution, the authors start a heuristic on the fixed solution
and cut remaining items.

The round-down strategy is also used in Cintra et al. [11] to solve the 2BP
with two-stage and four-stage cutting patterns. The difference with the ap-
proach described in Alvarez-Valdes et al. [3] is that authors relax the pricing
problem. Usually it is a bounded 2KP but authors solve its unbounded variant.
This may produce non-proper columns, meaning that the found pattern does
not satisfy bounds on the item production. The main motivation is that using
dynamic programming to solve the unbounded 2KP instead of solving to op-
timality the bounded 2KP is much faster. However since non-proper columns
are inserted in the master problem, they cannot be part of any feasible solu-
tion for the 2BP. To avoid that, they round-down each column in the optimal
fractional solution of the master problem after convergence. The described
algorithm is globally similar to the diving heuristic with a main difference re-
lated on how to handle the subproblem. The authors notice that when all
rounded-down fractional columns are equal to zero, no more columns can be
fixed. A modified Hybrid First-Fit heuristic starts in that case to complete
the partial fixed master solution.

A direct application of the diving heuristic for the 2BP with two-stage
patterns is described in Furini et al. [29]. The retained way to deal with the
two-stage pricing problem is to first solve it heuristically and then use the
ILP formulation from Lodi et al. [48]. After column generation convergence,
the diving heuristic rounds up the fractional variable with the largest value in
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the master problem. In the proposed diving heuristic, the master problem is
only solved to optimality at the root node. The pricing problem is only solved
heuristically in the diving heuristic. Authors also described a way to solve the
problem by performing diving heuristic with heuristic columns and then solved
the 2BP as an MILP with all columns found during the diving.

Computational experiments in Alvarez-Valdes et al. [3] were done on a
randomly set of instances. The largest proposed instances is related to a bin of
size p2000, 1000q, |I| “ 50. An item has dimension at most equal to p1000, 500q
and a random demand in range r100, 200s. On the proposed dataset, authors
outline that the time required to find a solution is highly dependant on the
heuristic used to price the columns. Simple constructive heuristics take a
small computation time but the quality of the found solution is bad. Using
a GRASP heuristic to price columns is the best trade-off found by authors
between solution quality and computation time.

The dataset used in Cintra et al. [11] is also different from the standard one
of the literature. It is inspired from instances gcut1´ 12 described in Beasley
[5]. They are modified by setting a random demand in range r1, 100s to each
item. The authors from Cintra et al. [11] outline that using non-proper columns
to solve the master problem to optimality decreases only slightly its value in
comparison to the case when only proper columns are used. The approach is
suitable for large instances for 2BP with both two-stage and four-stage cutting
patterns with rotation. Authors in Furini et al. [29] benchmark their diving
heuristic with the one from Cintra et al. [11] for the two-stage 2BP with rota-
tion. They outline that the diving heuristic with heuristic columns obtained
worse results than the approach described in Cintra et al. [11]. Nevertheless
using diving heuristic followed by MILP solving gives the best results.

1.5 Variants of two-dimensional cutting prob-
lems

Although the 2BP is a well-studied problem in the literature, most papers
consider the objective function that is far from industrial considerations. Bins
are often pieces of raw material which can be expensive to produce and/or
contain defects related to the production process.

In its standard application, the 2BP minimizes the number of bins required
to cut an item set. Implicitly this reduces the waste among used bins. For
low quality raw material, wastes are often discarded and/or recycled. For high
quality material, it is interesting to keep them for another usage such as cutting
future items. Nevertheless at an industrial scale, it may be time consuming
to keep track of all wastes produced during the cutting process. Since most
industrial applications consider guillotine cuts, the widespread waste consid-
eration is the one related to wastes obtained after first stage cuts. In other
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words and if cuts are assumed to be done from left to right, cutting patterns
have to ensure that the unused right bin part or leftover is maximal. This has
the advantage to require a small effort to handle. This variant of the 2BP is
called the 2BP with leftover (2BPl). Remark that leftovers can be considered
for all used bins or only the last used one in a 2BPl solution. If not mentioned,
the notation 2BPl refers to the leftover maximization of only the last cut bin.

To ensure a good quality of service, it is important to cut defect free prod-
ucts. Indeed due to production process, some bins may contain defects. To
guarantee that customers are satisfied, the creation of cutting patterns has to
handle the set of defects which may occur on bins. In other words, the cutting
process has to guarantee that all cut items are defect free and that defects are
located in waste bin parts. This variant of the 2BP is called the 2BP with
defects (2BPd).

Having the leftover and defect consideration in mind, a company wants to
reduce the waste in the cutting process to save money and also sell products
of good quality to its customers. The goal is therefore twofold. On one hand
the raw material losses after cutting have to be minimized, on a second hand
to match customer specifications sold products have to be defect free. This
corresponds to solve the 2BPl and 2BPd problems respectively. The following
section is split in two parts. One describes 2BPl and the second focuses on
2BPd.

1.5.1 Two-dimensional cutting problems with leftover

The 2BPl is important from a practical point of view since it maximizes the
residual part of the last cut bin. The main motivation is that the residual part
can be reused afterwards. Having a long residual part saves more raw material
for future usage. For example it may be used to cut some extra items. In other
words since the residual length of the last cut bin has to be maximized this
is equivalent to minimize the used length of the last bin. The residual length
corresponds to the largest remaining waste strip, the used length refers to the
shortest used strip width. This section first focuses on how to handle leftover
for the one dimensional case. A more precise description is then given for the
2BP since it is the main interest of this section.

First works on the bin-packing problem with leftover mainly focus on the
1BP. The main approach is to rewrite the ILP model (1.19)-(1.21) for the 1BP
by extending it to consider leftover. Leftover is integrated in the objective
function and this leads to solve two pricing problems. The first one is exactly
the same as the one for the 1BP, the second one is a modified version to consider
leftover. Optimal integer solutions are then obtained using the branching
schemes explained in Section 1.2.2.5.

For the two dimension case, an initial heuristic approach is proposed by
Puchinger et al. [67] considering three-stage patterns. The problem considered
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by the authors has a special requirement concerning the output patterns. In
their case, items cut in a solution have to respect a certain order. This order is
related to wagons collecting cut items and sending them to another production
unit in the factory. Authors solve the 2BPl using First-Fit heuristic, heuristic
branch-and-bound and a genetic algorithm. From computational tests on real-
world instances, their genetic algorithm is the best suited approach to solve
their problem.

Meta-heuristics perform well to solve the 2BPl with three-stage patterns. In
another work on the subject, Dusberger and Raidl [24] develop heuristics based
on the Variable Neighbourhood Search (VNS). Initial heuristics aim to provide
an initial solution to the problem. VNS meta-heuristic is based on a ruin-and-
recreate principle. Since a 2BPl solution is a set of cutting patterns, authors
evaluate with predefined fitness functions the quality of a cutting pattern.
If the quality is weak, the cutting pattern is partially destroyed. Then a
valid solution is rebuilt using constructive heuristics. Results on standard
literature instances demonstrate the efficiency of the approach compared to
the exact method of Puchinger and Raidl [66]. In later works presented in
Dusberger and Raidl [25], the authors adapt the recreate part using dynamic
programming instead of heuristics leading to better results. Experiments are
made on modified literature instances. The dynamic programming approach
provides better results than the heuristic one but reported computation times
are high on average.

Exact methods also exist to solve the 2BPl but are not numerous. One of
the contributions on the subject was proposed by Andrade et al. [4]. Starting
from the two ILP models described in Lodi et al. [49] for the two-stage 2BP,
the authors extend them to deal with bins of multiple size and handle left-
overs for all of them. This results in two formulations based on the two ones
in Lodi et al. [49] with many extra constraints and variables. Computational
experiments were made on randomly generated small instances to compare
both formulations. Authors compare them and results show that their sec-
ond model, inspired from the second one described in Section 1.3.3.1, has the
smallest computation time on average. Authors clearly state that their models
are not suitable to solve large problem instances.

In an industrial context where item sets have to be cut consecutively, re-
searchers focus on the importance to carry leftovers after cutting a given item
set to use them in the cutting process of the next item set. This can be re-
duced to solve consecutively a cutting problem for each item set to cut. From a
practical point of view, using leftovers saves raw material but a large amount
of available leftovers increases both handling time and problem complexity.
Moreover sometimes next item sets to handle are not known in advance. More
details on this type of problem are found in Trkman and Gradisar [77] and
Tomat and Gradisar [76]. In Birgin et al. [8], author
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1.5.2 Two-dimensional cutting problems with defects

The problem of cutting items considering defects is not an easy task but has a
major impact in the industry. For example no one would like to buy a wind-
shield with a bubble in the middle of it for obvious security reasons. In this
case a sold product or a cut item has to be defect free. Nevertheless in some
industry customers allow defective pieces. Since generic cutting problems with
defects have not been studied a lot in the literature, the section first describes
the 2KP with defects and then the 2BP with defects.

A first way to solve the 2KPd is to use dynamic programming as done by
Hahn [36] and Scheithauer and Terno [74]. The main drawback of the dynamic
programming approach is its huge size since each state stores a plate dimension
pw, hq and coordinates px, yq. To reduce the number of states, one can only
create a heuristic subset of states as outlined by Afsharian et al. [1]. This
proves to be efficient to solve the unbounded 2KPd. Instead of using dynamic
programming, an attempt to solve the 2KPd with heuristic branch-and-bound
has been done by Neidlein et al. [60]. The proposed approach is an extension
of the one from Morabito and Arenales [58] for the defect free case.

In addition to the 2KPd, researchers also focus on the 2BPd. The online
problem version was considered in De Gelder and Wagelmans [19]. A bin of
unlimited width and fixed height is considered. The authors then solve the
problem with a two step heuristic. An initial set of patterns is produced until
item productions are satisfied. Then patterns are assigned to bins with goal
to avoid defects. The idea is to use waste in created patterns and swap items
in a pattern to avoid defects. The defect avoiding subroutine was also used by
Jin et al. [45] to heuristically solve the 2BPsd.

Very specific cutting problems from textile, steel and forest industries have
also been studied by researchers (see Twisselmann [78], Sarker [73], Ozdamar
[63] and Rönnqvist and Ȧstrand [69]).

1.6 Conclusion

Among the large number of variants of cutting problems, a common solv-
ing procedure rises. This one is based on the reformulation of 2BP using
Dantzig-Wolfe reformulation. This gives a master problem which has to select
cutting patterns commonly tackled with column generation and pricing prob-
lems which have to build cutting patterns. Pricing problems handle industrial
constraints.

Pricing problems after Dantzig-Wolfe decomposition are a special 2KP with
industrial cutting constraints. When 2KP is considered in its unbounded ver-
sion (di “ 8, @i P I), dynamic programming provides the optimal solution
regardless of cutting constraints. This approach is also able to tackle large
scales instances. When 2KP is bounded, the optimal solution can be obtained
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using pseudo-polynomial size ILP models when the number of cutting stages is
two or three. For any-stage problem such models do not perform well and im-
plicit enumeration is preferred instead. In many cases, solution space of 2KP
variants can be reduced exploiting cutting constraints to eliminate redundant
patterns. Nevertheless in a column generation context pricing problems have
to be solved very quickly. This limits the complexity of built cutting patterns.

The bottleneck of the column generation is pricing problems. Performing
a branch-and-price to solve large scale instances is out of range due to high
computation time. Even if exact solving with branch-and-price is prohibited,
good quality solutions can be obtained using diving heuristics. When one
wants to solve the 2BP to optimality, based 2KP pseudo-polynomial size ILP
models have to be used. Best results are achieved using pseudo-polynomial
flow formulations. For special cases of the 2BP handling defects and/or left-
over, heuristic approaches are preferred since the problem becomes much more
harder to solve than the classical 2BP. In the present state of the art, it is
hard to solve to optimality large scale instances of 2BP and its variants.
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Chapter 2

Knapsack problem

In this chapter, new exact methods for guillotine 2KP are presented. The
retained approach is to start from the dynamic program used to solve the un-
bounded guillotine 2KP. Using the paradigm of Martin et al. [56], hypergraph
formalism is introduced and a hypergraph representation of the dynamic pro-
gram is then detailed. The dynamic program is then written as a max-cost
flow problem based on the hypergraph. This flow formulation is then enriched
with side constraints to solve the initial guillotine 2KP. In parallel, forward
labelling dynamic programming recursion are derived from the hypergraph
model. Since the hypergraph is the main support of described methods, dom-
inance rules and filtering procedure based on Lagrangian reduced costs fixing
are used to reduce its size. Exact methods are then benchmarked on a set of
instances from the literature and on datasets derived from the glass industry.
This chapter is partially based on Clautiaux et al. [13].

2.1 A dynamic program for the unbounded 2KP
The dynamic programming is the one of the most effective methods to solve
unbounded 2KP as outlined in Section 1.3.2. Idea of such program is to
enumerate implicitly the set of all feasible cutting patterns for a given bin.
Nevertheless this is possible in practice only when the cutting problem is un-
bounded. The dynamic program hereinafter is an adaptation of the recursion
of Beasley [5]. Furthermore preprocessing techniques are outlined to reduce
the number of states of this dynamic program. Since the considered problem
here admit item rotation, one needs to handle it. Recall that I is the initial
item set to cut for a 2KP instance. The number of available items is fixed
to m “ |I|. Let I 1 be the set of initial items with rotation based on I (i.e.
I 1 “ ti1 : wi1 “ hi, hi1 “ wi, ei1 “ ei, @i P Iu). Note that there is a correspon-
dence between sets I and I 1. If items are indexed by their positions from 1
to m in I and I 1, the i-th item in I refers to the initial item, while the i-th
item in I 1 refers to its rotated version. To be valid a cutting pattern has to
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respect cutting constraints and also that the number of times an item and its
rotated version are cut does not exceed the demand for item di. Finally the
set containing all possible items to cut is given by Ī “ I Y I 1.

2.1.1 Dynamic program for the U-2KP-RE-4-r

According to the guillotine cut and since the problem discussed here is staged,
a cut of level j P t2, 3u has to be parallel to an edge and orthogonal to cuts of
levels j ´ 1 and j ` 1. Note also that each cut length has to be equal to the
height or the width of an item in I since the cut lengths are restricted. First
cut is always performed along the width W of the bin.

Let pw, hqj be the state related to cutting the plate of size pw, hq from stage
j P t1, . . . , 4u. Let also pw, hqj be the same state in which it is mandatory to
cut an item with the next cut. For a given state s, let Upsq be the maximum
profit/utility that can be obtained from this state. The optimal value that can
be obtained when a bin of size pW,Hq is considered is obtained by computing
UppW,Hq1q. Let Wpw, hq and Hpw, hq be the set of all possible widths and
heights of items in Ī which fit into rectangle w ˆ h:

Wpw, hq “
ď

iPĪ:wiďw,hiďh

twiu, Hpw, hq “
ď

iPĪ:wiďw,hiďh

thiu

The set of all possible cutting patterns considering four stages of cuts is
generated by the following recurrence relations:

Uppw, hq1q “ max

"

0, max
w1PWpw,hq

!

Uppw1, hq2q ` Uppw ´ w1, hq1q
)

*

(2.1)

Uppw, hq2q “ max

"

0, max
h1PHpw,hq

!

Uppw, h1q3q ` Uppw, h´ h1q2q
)

*

(2.2)

Uppw, hq3q “ max

"

0, max
w1PWpw,hq

!

Uppw1, hq4q ` Uppw ´ w1, hq3q
)

*

(2.3)

Uppw, hq2q “ max
iPĪ:wi“w,hiďh

 

ei ` Uppw, h´ hiq
2
q
(

(2.4)

Uppw, hq3q “ max
iPĪ:hi“h,wiďw

 

ei ` Uppw ´ wi, hq
3
q
(

(2.5)

Uppw, hq4q “ max

"

0, max
iPĪ:wi“w,hiďh

!

ei ` Uppw, h´ hiq4q
)

*

(2.6)

Note that in a state pw, hqj, it is always possible to transform the plate
into waste (as it is modelled by maxt0, .u). In a state pw, hqj, it is mandatory
to cut an item first. At stage 4, either one cuts an item, or waste is produced.
The state space has a pseudo-polynomial size depending on the size of the
considered bin pW,Hq and the item set Ī.
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2.1.2 Hypergraph representation of the dynamic program

The dynamic program (2.1)-(2.6) allows one to represent the set of all cut-
ting patterns, when the demand of each item is unbounded. According to
the paradigm of Martin et al. [56], the search of a maximum profit cutting
pattern using this dynamic program is equivalent to the search for a max-cost
flow in the corresponding directed acyclic hypergraph with a single sink. This
directed acyclic hypergraph is denoted by G0 “ pV0,A0q. The vertex set V0 is
composed of all states from the previous dynamic program but also of so-called
boundary states that are used for initialization of the recursion and which cor-
respond to single item i P I or wasteH. These boundary states are the sources
of the hypergraph. Its sink t corresponds to state pW,Hq1, it stands for the
bin. Each hyperarc a has a head set Hpaq, which contains a unique vertex, and
a tail multiset T paq, which contains one or more vertices. In the hypergraph
corresponding to dynamic program (2.1)-(2.6), every hyperarc tail is a simple
set. However in the following part of this manuscript, hypergraph simplifi-
cation rules will transform the set structure into a multiset. Particularity of
multiset is that a vertex can occur more than once. The notation napvq is used
to denote the number of times a vertex v P V0 is contained in T paq, a P A0.
Formally a hyperarc a represents a cutting decision that turns state (i.e. plate)
v P Hpaq into states (i.e. subplates) in v P T paq. The hyperarc set A0 con-
tains the set of all those cutting decisions. An example of a hypergraph is
given in Figure 2.1. When rotation is considered as described here, one needs
to create a hyperarc a with boundary state i P I in its tail multiset and the
corresponding item with rotation i1 P I 1 in its head set.

p7, 5q1

p4, 5q1

p3, 5q1
p1, 5q1

p4, 5q2

p4, 3q2

p4, 1q2

p3, 5q2

p3, 2q2 ab

Figure 2.1: The hypergraph related to a bin of size p7, 5q and two items: a
of size p4, 2q and b of size p3, 3q. Rotations are not permitted and only two
cutting stages are allowed, therefore states of level 2 are only pw, hq states.
The waste vertex and related hyperarcs are not represented.

The dynamic program (2.1)-(2.6) can then be solved to optimality by re-
cursion using Bellman’s method. Equivalently, using the hypergraph repre-
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2.1. A dynamic program for the unbounded 2KP

sentation, the optimal solution can be obtained by a forward traversal of the
hypergraph vertices. Such traversal imposes to cross hypergraph vertices in
topological order from its sources to its sink. More explicitly, considering each
vertex v P V0 in topological order, the maximum cost flow value Upvq is com-
puted using:

Upvq “ max
aPΓ´pvq

$

&

%

ÿ

v1PT paq

napv
1
qUpv1q

,

.

-

(2.7)

Set Γ´pvq represents the incoming hyperarc set of vertex v. The forward
dynamic program is initialized with Upvq “ 0 for boundary state representing
waste and Upvq “ ei for boundary states representing an item. The problem
optimal solution is obtained by computing Uptq “ UppW,Hq1q.

Parallels can be drawn with existing models of 2KP. There is equivalence
between the hypergraph and the AND/OR graph defined by Morabito and
Arenales [58]. A directed AND/OR graph is defined by its particular arc type.
An OR arc is an arc with a head and connected to an intermediate vertex.
An AND arc is an connection between this intermediate vertex and a set of
vertices. Clearly this is equivalent to the previous defined notion of hyperarc,
one needs to remove the intermediate vertex.

With respect to a more general definition of Berge [6], a hyperarc a has a
head multiset and a tail multiset containing one or more vertices (i.e. |Hpaq| ě
1 and |T paq| ě 1). In the hypergraph definition retained by Gallo et al.
[32], authors distinguished two types of hyperarcs. The first ones are called
backward hyperarcs (B-arcs) and have the particularity to contain only a single
vertex in their head set (i.e. |Hpaq| “ 1 and |T paq| ě 1). The second type
of defined hyerarcs are called forward hyperarcs (F-arcs) and contained only a
single vertex in their tail set (i.e. |Hpaq| ě 1 and |T paq| “ 1). From definition
of Gallo et al. [32], the AND/OR graph notation of Morabito and Arenales
[58] is equivalent to the one of F-hypergraph, a hypergraph composed of only
forward hyperarcs. The notation retained through the rest of this manuscript
will be a B-hypergraph, a hypergraph composed of only backward hyperarcs.
A representation of hyperarcs is given in Figure 2.2.

There is a second equivalence between the hypergraph representation and
enumerative methods proposed by Silva et al. [75] and Furini et al. [30]. Each
author tackled their respective problem by means of a pseudo-polynomial size
ILP model in which each variable is related to a way to cut a plate into sub-
plates. A graphical representation of such cutting decision is related to use of
a hyperarc. A plate is divided into two subplates which matches the previous
definition of a hyperarc. Therefore the set of all cutting decisions is represented
by a hypergraph but none of the authors used this formalism.

Through the rest of this manuscript and using definitions of Gallo et al.
[32], the proposed representation of the unbounded 2KP is achieved by means
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u v

w x

(a)

u

v

x

(b)

u

v

w

(c)

Figure 2.2: Different type of hyperarcs: generic hyperarc (a) from Berge [6],
forward hyperarc (b) from Gallo et al. [32] and used by Morabito and Arenales
[58], backward hyperarc (c) from Gallo et al. [32]

of a B-hypergraph, to match with the paradigm of Martin et al. [56]. To make
reading easier, the term hypergraph will be used to refer to the proposed B-
hypergraph representation instead. The hypergraph formalism is also preferred
since it allows one to use classical network-flow models.

2.1.3 Hypergraph preprocessing

The hypergraph size determines the number of operations needed to solve the
corresponding dynamic program. Therefore reducing its size decreases the
dynamic program solution time. The following simplification rules help to
reduce the hypergraph size.

2.1.3.1 Simple pattern enumeration

The following rule is dedicated only when restricted cuts are used. The pur-
pose is to first reformulate recurrence relation (2.6) since its models a one-
dimensional knapsack problem. The latter admits many symmetric solutions
associated to different permutation of the position of items in a strip. A way to
remove such symmetries is to enumerate all possible solutions of the associated
one-dimensional knapsack problem. A hyperarc is added in the hypergraph for
each of these solutions. Since the proposed dynamic program models the un-
bounded 2KP, this solution enumeration allows to enforce the bound di of each
item i P I.

LetKPppw, hq4q be the set of all one-dimensional knapsack solutions related
to a plate pw, hq4 and using items in Ī such that the bound di on each item
i P I is not exceeded. Each solution is denoted by an item set Î P KPppw, hq4q,
where Î represents the set of items used in this solution. Hence, the recurrence
relation (2.6) can be rewritten as:
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2.1. A dynamic program for the unbounded 2KP

Uppw, hq4q “ max
ÎPKPppw,hq4q

#

ÿ

iPÎ

ei

+

(2.8)

When applying enumeration at the last cutting stage, the hyperarc a asso-
ciated with the cutting decision has a special structure regarding T paq. In Sec-
tion 2.1.2, T paq has been defined as a multiset instead of a set. This definition
is related to the special structure of T paq obtained after using the rewriting
of (2.6) with (2.8). Indeed using an enumerated one-dimensional knapsack
solution in KPppw, hq4q, an item boundary state can occur more than once.
For instance one can cut from a state pw, hq4, w times an item of size p1, hq.
Therefore the definition of T paq as a set does not hold since a vertex v can be
contained more than one time. The definition of multiset allows this type of
behaviour. The previous defined notation napvq gives the number of times a
vertex v occurs in T paq.

Remark that its is not mandatory to enumerate solutions for all possible
states pw, hq4. From restricted and exact cuts in the considered problem here,
the maximum width of states pw, hq4 is bounded by wmax “ maxiPĪ twiu. In
the same way only positions h “ hi, i P Ī are relevant.

2.1.3.2 Symmetry breaking

A simplification to apply on the hypergraph is to remove symmetry between
cutting patterns. Since the dynamic program enumerates all possible cutting
patterns, some of them can be equivalent. According to Valério de Carvalho
[79] for the one-dimensional case, two cutting patterns c and c1 are symmetric
if c is obtained from c1 by a sequence of swapping of same stage strips. An
example of two symmetric patterns is depicted in Figure 2.3.

1

2

3

4

(a)

1

2

3

4

(b)

Figure 2.3: Representation of two equivalent patterns

This type of symmetry can be partially removed from the hypergraph.
Practically speaking for each vertex v related to state pw, hqj, a value lv P N` is
stored, which represents the largest cut length that produced this state starting

58 Quentin Viaud



2. Knapsack problem

from an equivalent stage vertex. Then we can remove hyperarcs Γ´pvq related
to a cut of length greater than lv. Although this technique does not exclude
all possible symmetries, it reduces significantly the size of the hypergraph.

If one is interested to remove all possible symmetries between patterns at
a given cutting stage, the dynamic program has to be rewritten. Each state
is enriched with a new attribute l referring to the maximum cut length which
can be performed on this vertex. For instance each state pw, hq1 will be of the
form pw, h, lq1 and obtained as follows:

Uppw, h, lq1q “ max

"

0, max
w1PWpw,hq:w1ďl

!

Uppw1, hq2q ` Uppw ´ w1, h, w1q1q
)

*

(2.9)

This new recurrence relation completely removes symmetries for the first
cutting stage. Nevertheless an extra dimension is added to the dynamic pro-
gram and this results in an increasing of its size. Removing all symmetries
does not seem pertinent since the hypergraph size want to be reduced. One
will prefer the partial symmetry breaking instead since it is easier to use in
practice.

2.1.3.3 Simple plate reduction

A way to reduce the hypergraph size is to merge states that are associated with
the same set of cutting patterns. Idea is to use all possible cut length combi-
nations and to show that some positions w P t0, . . . ,W u and h P t0, . . . , Hu
are not reachable. The purpose is to decrease the number of vertices as well
as the number of hyperarcs in the hypergraph. This technique is largely in-
spired of the one developed by Christofides and Whitlock [10] as detailed in
Section 1.3.2.

Let Wc (resp. Hc) be the set of all cut length combinations which can be
applied up to W (resp. H):

Wc “

$

&

%

w|w “
řm
o“1wIpoqαo ` wI1poqβo :

1 ď w ă W,αo ` βo ď dIpoq,
αo P N, βo P N, o “ t1, . . . ,mu

,

.

-

Hc “

$

&

%

h|h “
řm
o“1 hIpoqαo ` hI1poqβo :

1 ď h ă H,αo ` βo ď dIpoq,
αo P N, βo P N, o “ t1, . . . ,mu

,

.

-

Notation Ipoq and I 1poq gives the item at index o P t1, . . . ,mu in sets I
and I 1. If item rotation is not allowed, I 1 and βo values have to be omitted.

Let ppwq (resp. qphq) be the width (resp. height) nearest from below to w
(resp. h) in the new set Wc (resp. Hc):
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ppwq “ max t0, w1|w1 ď w,w1 PWcu , w ă W

qphq “ max t0, h1|h1 ď h, h1 P Hcu , h ă H

Therefore one can reduce the number of states in the dynamic program
(2.1)-(2.6) by using ppwq instead of w and pphq instead of h:

Uppw, hq1q “ max

"

0, max
w1PWpw,hq

!

Uppw1, qphqq2q ` Uppppw ´ w1q, qphqq1q
)

*

(2.10)

Uppw, hq2q “ max

"

0, max
h1PHpw,hq

!

Uppppwq, h1q3q ` Uppppwq, qph´ h1qq2q
)

*

(2.11)

Uppw, hq3q “ max

"

0, max
w1PWpw,hq

!

Uppw1, qphqq4q ` Uppppw ´ w1q, qphqq3q
)

*

(2.12)

Uppw, hq2q “ max
iPĪ:wi“w,hiďh

 

ei ` Uppppwq, qph´ hiqq
2
q
(

(2.13)

Uppw, hq3q “ max
iPĪ:hi“h,wiďw

 

ei ` Uppppw ´ wiq, qphqq
3
q
(

(2.14)

Uppw, hq4q “ max

"

0, max
iPĪ:wi“w,hiďh

!

ei ` Uppppwq, qph´ hiqq4q
)

*

(2.15)

2.1.3.4 Enhanced plate reduction

Simplification based on cut length described in Section 2.1.3.3 can be extended
to handle more precisely item dimensions and bounds. This implies to redefine
sets Wc and Hc. Idea is to compute for each w1 P WpW,Hq (resp. h1 P
HpW,Hq) the set Hcpwq (resp. Wcphq) of possible cut length combinations
using only item i P Ī with a width wi ď w1 (resp. a height hi ď h1). This gives
rise to the two new sets:

Wcphq “

$

’

’

’

’

&

’

’

’

’

%

w|w “
řm
o“1wIpoqαo ` wI1poqβo :

hIpoq ą hñ αo “ 0,
hI1poq ą hñ βo “ 0,
1 ď w ă W,αo ` βo ď dIpoq,
αo P N, βo P N, o “ t1, . . . ,mu

,

/

/

/

/

.

/

/

/

/

-

Hcpwq “

$

’

’

’

’

&

’

’

’

’

%

h|h “
řm
o“1 hIpoqαo ` hI1poqβo :

wIpoq ą w ñ αo “ 0,
wI1poq ą w ñ βo “ 0,
1 ď h ă H,αo ` βo ď dIpoq,
αo P N, βo P N, o “ t1, . . . ,mu

,

/

/

/

/

.

/

/

/

/

-
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Let define two new functions ppw, hq (resp. qph,wq) storing the width (resp.
height) nearest from below to w (resp. h) in the new setWcphq (resp. Hcpwq):

ppw, hq “ max t0, w1|w1 ď w,w1 PWcphqu , w ă W

qph,wq “ max t0, h1|h1 ď h, h1 P Hcpwqu , h ă H

Let also be w̄ and h̄ storing the item width and item height nearest to w
and h in WpW,Hq and HpW,Hq:

w̄pwq “ max t0, w1|w1 PWpW,Hqu , w ă W

h̄phq “ max t0, h1|h1 P HpW,Hqu , h ă H

Using these new definitions the dynamic program (2.1)-(2.6) is now written
as follows:

Uppw, hq1q “ max

"

0, max
w1PWpw,hq

"

Uppw1, qph,w1qq2q`
Uppppw ´ w1, h̄phqq, qph, w̄pw ´ w1qqq1q

**

(2.16)

Uppw, hq2q “ max

"

0, max
h1PHpw,hq

"

Uppppw, h1q, h1q3q`
Uppppw, h̄ph´ h1qq, qph´ h1, w̄pwqqq2q

**

(2.17)

Uppw, hq3q “ max

"

0, max
w1PWpw,hq

"

Uppw1, qph,w1qq4q`
Uppppw ´ w1, h̄phqq, qph, w̄pw ´ w1qqq3q

**

(2.18)

Uppw, hq2q “ max
iPĪ:wi“w,hiďh

 

ei ` Uppppwi, h̄ph´ hiqq, qph´ hi, wiq
2
qq
(

(2.19)

Uppw, hq3q “ max
iPĪ:hi“h,wiďw

 

ei ` Uppppw ´ wi, hiq, qphi, w̄pw ´ wiqqq
3
q
(

(2.20)

Uppw, hq4q “ max

"

0, max
iPĪ:wi“w,hiďh

!

ei ` Uppwi, qph´ hi, wiqq4q
)

*

(2.21)

The drawback of this simplification rule is that all presented cut length sets
should be computed before creating the hypergraph. This increases hypergraph
building time.

2.1.3.5 Hypergraph simplification

The following hypergraph simplification rule is generic, as does not rely on the
structure of the problem. The proposed reduction is inspired from the vertex
and edge contraction used in graphs. This reduction aims to compact vertex
and hyperarc based on the following observation. One vertex which has only
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one incoming hyperarc can be removed from the hypergraph without any loss
of information, as illustrated in Figure 2.4. Let v be a vertex in V0. If v has
only one incoming hyperarc a, v and a are deleted from V0 and A0. Then, the
tail multiset T paq is added to the tail multiset T pa1q for all outgoing hyperarcs
a1 P Γ`pvq, where Γ`pvq represents the outgoing hyperarc set of vertex v. The
total number of tails may increase if v has several incoming hyperarcs.

x

u v

y z

(a)

x

u

y z

(b)

Figure 2.4: Hypergraph before (a) and after (b) vertex contraction. Vertex x
has only one incoming hyperarc and then is deleted.

2.1.3.6 Enhanced pattern enumeration

The pattern enumeration at the last cutting stage described in Section 2.1.3.1
is simple since its implies to solve small 1KP instances. This idea can be
generalized to enumerate partial patterns when building the hypergraph. Main
advantage of the complete enumeration of patterns is that it takes into account
the item bound constraints, but the computational cost is huge. On the other
hand, the dynamic program has a reasonable computational cost, but it does
not take into account the bound constraints. The proposed idea is to mix
both approaches by replacing some part of the dynamic program by partially
enumerated patterns.

This partial enumeration is implemented using meta-items, each one rep-
resenting a partial vertical or horizontal stack of item copies satisfying item
bounds. When restricted states pw, hqj, j P t2, 3, 4u are considered, instead of
choosing one item to initiate the strip, a meta-item (or equivalently the items
that it represents) is selected instead. There is potentially an exponential num-
ber of possible meta-items to initiate a given strip. To restrict this number an
additional parameter δ is introduced.

Formally, let αri (resp. βri ) be the number of copies of item i P I (resp.
i P I 1) included into meta-item r. Given three values 0 ă w ď W , 0 ă h ď H,
and 0 ă δ ď miniPĪ twiu, the following set Rxpw, h, δq of vertical meta-items
is defined. Each meta-item r P MIxpw, h, δq forms in the cutting pattern a
partial vertical stack of width w containing copies of items i P I and copies of
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items i P I 1 such that w ´ δ ă wi ď w and hi ď h. Items that do not belong
to r may only be cut in other vertical stacks or in the same stack above the
item copies in r. This is formally given by the following definition:

r PMIxpw, h, δq ô

$

’

’

’

’

&

’

’

’

’

%

pDi P I, wi “ w : αri ą 0q
Ž

pDi P I 1, wi “ w : βri q,
αri ą 0 ñ w ´ δ ă wi ď w and hi ď h, @i P I,
βri ą 0 ñ w ´ δ ă wi ď w and hi ď h, @i P I 1,
αrIpoq ` β

r
I1poq ď dIpoq, o “ t1, . . . ,mu

řm
o“1 α

r
IpoqhIpoq ` β

r
I1poqhI1poq ď H

The first condition ensures that one item has width w (and thus a restricted
pattern is built). The second and third conditions ensure that the size of the
items in the meta-item satisfies the requested limitations. The fourth condition
ensures that the meta-item satisfies item bound constraints. The last condition
ensures that the meta-item height does not exceed the plate height.

Analogously, given values 0 ă w ď W , 0 ă h ď H, and 0 ă δ ď miniPĪ thiu,
we define the following setMIyph,w, δq of horizontal meta-items:

r PMIyph,w, δq ô

$

’

’

’

’

&

’

’

’

’

%

pDi P I, hi “ h : αri ą 0q
Ž

pDi P I 1, hi “ h : βri ą 0q,
αri ą 0 ñ h´ δ ă hi ď h and wi ď w, @i P I,
βri ą 0 ñ h´ δ ă hi ď h and wi ď w, @i P I 1,
αrIpoq ` β

r
I1poq ď dIpoq, o “ t1, . . . ,mu

řm
o“1 α

r
IpoqwIpoq ` β

r
I1poqwI1poq ď W

Let MIx (resp. MIy) be the whole set of vertical (resp. horizontal)
meta-items:

MIx “
ď

w “ t1, . . . ,W u ,
h “ t1, . . . , Hu ,
δ P N

MIxpw, h, δq

MIy “
ď

w “ t1, . . . ,W u ,
h “ t1, . . . , Hu ,
δ P N

MIypw, h, δq

For a meta-item r, one can obtained its total value p̄r , total height h̄r
and/or total width w̄r:
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p̄r “
m
ÿ

o“1

αrIpoqpIpoq ` β
r
I1poqpI1poq, @r PMIx YMIy

h̄r “
m
ÿ

o“1

αrIpoqhIpoq ` β
r
I1poqhI1poq, @r PMIx

w̄r “
m
ÿ

o“1

αrIpoqwIpoq ` β
r
I1poqwI1poq, @r PMIy

Note that, by definition,MIxpw, h, δq “ H if w RWpW,Hq, andMIyph,w, δq “
H if h R HpW,Hq. Suppose now that for each w P WpW,Hq a value δw,
0 ď δw ď miniPĪ twiu, is fixed, and for each h P HpW,Hq a value δh, 0 ď
δh ď miniPĪ thiu, is fixed. Then the recursive formulae for states pw, hqk can
be rewritten in the following way without loss of any proper patterns from the
set of feasible solutions:

Uppw, hq2q “

$

&

%

max
rPMIxpw,h,δwq:h̄rďh

 

p̄r ` Uppw, h´ h̄rq
2
q
(

, if δw ą 0,

max
iPĪ:wi“w,hiďh

 

ei ` Uppw, h´ hiq
2
q
(

, if δw “ 0,

Uppw, hq3q “

$

&

%

max
rPMIyph,w´δw,δhq:w̄rďw

 

p̄r ` Uppw ´ w̄r, hq
3
q
(

, if δh ą 0,

max
iPĪ:hi“h,wiďw´δw

 

ei ` Uppw ´ wi, hq
3
q
(

, if δh “ 0,

Uppw, hq4q “

$

’

’

&

’

’

%

max

"

0, max
rPMIxpw,h´δh,1q

tp̄ru

*

, if δw ą 0,

max

"

0, max
iPĪ:wi“w,hiďh´δh

!

ei ` Uppw, h´ hiq4q
)

*

if δw “ 0,

If all values δ are fixed to zero, the modified dynamic program reduces to
the original one presented in Section 2.1.1. The larger the values δ are, the
larger is the number of meta-items. One needs to find a trade-off between
the complexity (or the size) of the dynamic program and the strength of the
approximation of the space of valid cutting patterns by the space of feasible
solutions of the dynamic program. This trade-off is parametrized by defining
thresholds ∆size ě 0 on the size of the sets of meta-items and ∆diff ě 0 on
values δ, respectively for dimension w and h. Given these thresholds, values
δ are determined the following way. For each w P WpW,Hq, δw is the largest
value δ ď min

 

∆diff
w ,miniPĪ twiu

(

such that | MIxpw,H, δq |ď ∆size
w . As

Wxpw,H, 0q “ H for any w, such value δ always exists. Analogously, for each
h P HpW,Hq, δh is the largest value δ ď min

 

∆diff
h ,miniPĪ thiu

(

such that
| MIyph,W, δq |ď ∆size

h . Note again that Wyph,W, 0q “ H for any h. The
sets of meta-items are computed by enumeration.
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To illustrate such generation of meta-items, consider an instance with a
bin of size p4, 3q and three items 1ˆ i1 “ p4, 1q, 2ˆ i2 “ p3, 1q, 1ˆ i3 “ p2, 1q.
Set MIxp4, 3, δq is computed with δ “ 2. Initially meta-items composed of
only items i1 are created (see Figure 2.5(b)). Secondly extra items are added
to meta-items derived from item i1. Since δ “ 2, only item i2 is added (see
Figure 2.5(c) and Figure 2.5(d)). From each created meta-item, a valid cutting
pattern can be obtained (see Figure 2.6). At this point, item i3 is not cut
because δ “ 2. If the cutting process continues with horizontal cuts it will be
possible to cut item i3. A representation of the resulting patterns is given in
Figure 2.7. Note that all meta-items containing item i2 are created, therefore
it is impossible to add it again to patterns of Figure 2.6(a) and Figure 2.6(b).

1

2

2

3

(a)

1

(b)

1
2

(c)

1
2
2

(d)

Figure 2.5: Vertical meta-items generation for three items: initial items (a),
meta-items obtained with item i1 only pδ “ 1q (b), extra meta-item obtained
by adding one copy of item i2 to meta-item in composed of item i1 pδ “ 2q
(c), extra meta-item obtained by adding two copies of item i2 to meta-item
composed of item i1 pδ “ 2q (d)

1

(a)

1
2

(b)

1
2
2

(c)

Figure 2.6: Vertical cutting patterns for a bin p4, 3q using meta-items (b),(c)
and (d) from Figure 2.5
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1
3

(a)

1
2

3

(b)

Figure 2.7: Complete cutting patterns for a bin p4, 3q using vertical patterns
from Figure 2.6 and adding missing item i3. Since all meta-items containing
item i2 are created, it is impossible to add it again to patterns from Figure
2.6(a) and Figure 2.6(b)

2.2 A direct ILP formulation for the bounded
2KP

As proposed by Martin et al. [56], the hypergraph representation underlying
the dynamic programming recursion can give rise to an ILP flow-model. This
ILP model can be augmented with side-constraints which allow to enforce item
upper bounds if needed. A solution to the dynamic program is a selection of
hyperarcs that gives rise to the maximum value in Bellman’s recursive for-
mula (2.7). This selection of hyperarcs forms a directed acyclic hypergraph.
Equivalently this combinatorial structure can be identified as the set of hyper-
arcs carrying a flow of max-cost value into the sink node. Therefore solving
the dynamic program is equivalent to solve a max-cost flow problem in this hy-
pergraph. One can derive an ILP formulation for this flow problem. However
the formulation has pseudo-polynomial size as is the size of the hypergraph.

The formulation is in terms of integer variables xa representing the flow
value going through hyperarc a P A0. Let A0piq be the multiset of hyperarcs
whose tail sets include a boundary vertex representing item i P I. Note that
since T paq is a multiset, one needs to know the number of times (multiplicity)
napvq vertex v P V0 is cut when choosing hyperarc a P A0. The vector of
variables xa, a P A0 is denoted by x. The ILP formulation takes the form:

max
ÿ

iPI
ei

ÿ

aPA0piq

napiqxa (2.22)

s.t.
ÿ

aPΓ´pvq

xa ´
ÿ

a1PΓ`pvq

na1pvqxa1 “ 0, @v P V0
zttY I YHu (2.23)

ÿ

aPΓ´ptq

xa “ 1 (2.24)

xa P N, @a P A0 (2.25)

Objective function (2.22) aims to maximize the total profit of the selected
items. Constraints (2.23) are classical flow conservation constraints. They
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ensure that a valid pattern is built. Constraint (2.24) ensures that the total flow
coming to the sink vertex t is one and thus that only one plate is used. Based
on the results of Martin et al. [56], if x variables are unbounded, all extreme
points of (2.22)-(2.25) are integer. This implies that integrality restriction of
x variables can be relaxed. Note that the flow value going through hyperarcs
although integer can be larger than one as illustrated in Figure 2.8.

v

u x

y z w

1

1 1

1 2 1

Figure 2.8: Representation of flow values going through hyperarcs

The ILP above can be adapted for the C-2KP-RE-4-r by enforcing item
upper bounds, adding the following constraints:

ÿ

aPA0piq

napiqxa ď di, @i P I (2.26)

Constraint set (2.26) limits the number of items which is possible to cut (i.e.
the sum of flow values going through each hyperarc in A0piq that cover an item
i P I should not exceed the item upper bound di). Such bound enforcement
constraints were also used in Valério de Carvalho [79] and Macedo et al. [52]
for the cutting stock problem. Note that when variables x are unbounded by
adding side-constraints to the model, the integrality of the LP model relaxation
optimal solution is not guaranteed anymore, and therefore one needs to tackle
the integer problem which is much harder to solve.

2.3 Lagrangian filtering
The size of the ILP model (2.22)-(2.26) grows too large to be solved directly
by commercial solver as soon as one gets on realistic instances. Simplifications
rules described in Section 2.1.3 aim to reduce the hypergraph by enforcing
item bounds or using cut length properties. Another way to reduce it is to
use so-called Lagrangian cost filtering (or simply filtering). The procedure
aims to fix a large number of variables to zero by proving that they cannot be
part of an optimal solution. In the approach presented here, purpose will be
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to remove a large number of variables by fixing them to zero in formulation
(2.22)-(2.26). Since each variable carries the flow going through a hyperarc, a
variable fixed to zero implies that the variable will not be part of an optimal
solution. Consequently the associated hyperarc will not be part of any optimal
solution and can be safely removed from the hypergraph.

The Lagrangian cost filtering technique has proved to be a key asset in
solving routing or scheduling problems, when using (constrained) path prob-
lems as Lagrangian subproblems (see Irnich et al. [44] and Detienne et al. [22]).
To introduce the technique, a simple case of a directed acyclic graph is first
described. The methodology is then extended to handle hypergraph formal-
ism. As filtering relies on Lagrangian multipliers, several techniques to obtain
those multipliers are also detailed.

2.3.1 Standard resource constrained longest path prob-
lem

The Resource Constrained Longest Path Problem (RCLPP) entails finding
a path from a source s to a sink t in a directed acyclic graph G “ pV ,Aq
with maximum cost, while obeying a threshold constraint on the cumulative
resource consumption. Considering R resources, such cumulative consumption
to not exceed is given by a vector R “ pR1, . . . ,RRq. Let ca “ pc1

a, . . . , c
r
aq be

the resource consumption vector of arc a P A (where cra represents the amount
of resource r consumed by arc a), while pa is its cost. Using binary variables
xa “ 1 if the arc a P A is in the solution, 0 otherwise, an ILP formulation to
the RCLPP is given by:

max
ÿ

aPA
paxa (2.27)

s.t.
ÿ

aPΓ´pvq

xa ´
ÿ

aPΓ`pvq

xa “ 0, @v P VztsY tu (2.28)

ÿ

aPΓ´ptq

xa “ 1 (2.29)

ÿ

aPA
craxa ď Rr, r P t1, . . . , Ru (2.30)

xa P t0, 1u, @a P A (2.31)

Observe the similarity of the above RCLPP formulation and our formula-
tion given in (2.22)-(2.26).

Filtering for the RCLPP is performed as follows. One applies a Lagrangian
relaxation of the resource constraints (2.30) with Lagrangian multipliers π and
then derives the associated Lagrangian bound Lpπq by solving the resulting
longest path problem:
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L̃pπq “ max

#

ÿ

aPA
ppa ´

R
ÿ

r“1

πrc
r
aqxa `

R
ÿ

r“1

πrRr s.t. (2.28)-(2.29) and (2.31)

+

The Lagrangian dual problem consists in adjusting the Lagrangian mul-
tipliers π to get the tightest Lagrangian bound Lpπq by solving minπ Lpπq.
This can be done approximatively using for instance a subgradient approach.
At each iteration of such subgradient algorithm, one can perform filtering to
remove arcs from the graph G. Observe that the longest path solution that
yields Lpπq defines a unit flow from source s to sink t in the directed acyclic
graph G “ pV ,Aq. The flow value going through an arc is simply zero or one.

The above longest path problem can be solved by a forward labelling algo-
rithm using Bellman’s equations. For each vertex v P V , let Ũπpvq be the best
cost value of a path from source s to vertex v:

Ũπ
pvq “ max

aPΓ´pvq

#

Ũπ
pT paqq ` ppa ´

R
ÿ

r“1

πcc
r
aq

+

Ũπ
psq “ 0

The Ũπpvq values are the so-called forward labels. Note that in the case of
directed acyclic graph, sets T paq and Hpaq contain only one vertex. Symmet-
rically a backward labelling algorithm can be implemented to compute C̃πpvq
that denotes the reverse longest path from sink t to vertex v:

C̃π
pvq “ max

aPΓ`pvq

#

C̃π
pHpaqq ` ppa ´

R
ÿ

r“1

πrc
r
aq

+

C̃π
ptq “ 0

Using the above longest path values, the cost of the best path which con-
tains arc a for any given arc a P A can be evaluated as follows:

F̃ π
paq “ Ũπ

pT paqq ` ppa ´
R
ÿ

r“1

πrc
r
aq ` C̃

π
pHpaqq `

R
ÿ

r“1

πrRr

Now assume a given lower bound value LBRCLPP on the RCLPP problem.
Then for each arc a P A which does not take part in any optimal solution,
one can try to filter it out. If the condition F̃ πpaq ă LBRCLPP holds, arc a
can be removed from the network. Equivalently, its associated variable xa can
be set to zero and this no matter the value of multipliers π. Indeed, if the
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previous condition holds, this implies that the best value of a longest path
which contains a is worst than a known incumbent solution associated to our
lower bound. An illustration is provided in Figure 2.9. At a given iteration
of some procedure to obtain valid Lagrangian multiplier vector π, the forward
labelling procedure is first executes to obtain Ũπpvq, @v P V and then follows
by the backward labelling procedure to compute C̃πpvq, @v P V . Then for each
arc a P A, the value F̃ πpaq is computed and compared with LBRCLPP . Arc
a P A such that F̃ πpaq ă LBRCLPP are then removed from graph G.

s

t

v u
a

Ũπpvq
C̃πpuq

Figure 2.9: Filtering representation on graph for a given Lagrangian multiplier
vector π. If the best value of a path which contains a is lower than a best known
lower bound (i.e. if Ũπpvq`ppa´

řR
r“1 πrc

r
aq` C̃

πpuq`
řR
r“1 πrRr ă LBRCLPP

holds), arc a can be removed from the graph

2.3.2 Extension to the case of a hypergraph

The generic network flow problem formulation can be expressed in term of
binary variables in directed acyclic graph. In a hypergraph however the flow
variables are integer and one also has to consider the way flows are recombined
in a hyperarc. This leads to a different mode of computation of the C values.

Consider the hypergraph flow model (2.22)-(2.26). Applying a Lagrangian
relaxation on constraints (2.26) with multipliers π leads to the Lagrangian
subproblem:

Lpπq “ max

$

&

%

ÿ

iPI
pei ´ πiq

ÿ

aPA0piq

napiqxa `
ÿ

iPI
πidi s.t. (2.23)-(2.25)

,

.

-

Just as in the case of the longest path in a graph, the computation of the
Lagrangian bound on hypergraphs can be performed by a forward dynamic
program starting from the sources to the unique sink. For a given v P V0,
Uπpvq is the best value flow value from sources to vertex v:

Uπ
pvq “ max

aPΓ´pvq

$

&

%

ÿ

v1PT paq

napv
1
qUπ

pv1q

,

.

-
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Uπ
piq “ ei ´ πi, @i P I

This forward dynamic program is initialized with values Uπpiq “ ei´πi, @i P
I. Note that each hyperarc has no cost as the cost carries only on the boundary
states.

Deriving Cπ values is more complex in the hypergraph case. Let Cπpvq be
the maximum cost of a flow when v P V0 is a hypergraph source. Cπpvq is an
evaluation of the remaining cost to the sink t and defined as follows:

Cπ
pvq “ max

aPΓ`pvq

$

&

%

Cπ
pHpaqq `

ÿ

v1PT paq

napv
1
qUπ

pv1q ´ Uπ
pvq

,

.

-

Since T paq is a multiset, it is mandatory to sum up all Uπpv1q, v1 P T paq
and then to subtract Uπpvq. This is implied by the fact that v can occur more
than once in T paq. The standard computation of Cπpvq values is performed
by a backward dynamic program once the forward recursion on Uπ has been
performed.

Once Uπ and Cπ values are obtained, filtering starts. Contrary to directed
acyclic graphs, evaluation of the solution cost is done under the assumption
that a hyperarc in this solution carries a flow of value at least equal to one.
This difference comes from the fact that hyperarc variables are integer in a
hypergraph and not binary as in a simple graph. Let F πpaq be the maximum
cost of a flow solution containing hyperarc a P A0 carrying a flow of value at
least one:

F π
paq “

ÿ

vPT paq

napvqU
π
pvq ` Cπ

pHpaqq `
ÿ

iPI
πidi

Assume now a valid lower bound value LB for the C-2KP-RE-4-r. If
F πpaq ă LB holds then hyperarc a cannot take part in any solution of the
problem that is better than the incumbent one associated to LB. Conse-
quently xa variable can be fixed to zero or equivalently hyperarc a can be
removed from the hypergraph. An illustration is given in Figure 2.10. Note
that the impact of filtering depends on the quality of the lower bound value
LB, and the quality of the Lagrangian multipliers.

2.3.3 Optimizing Lagrangian multipliers

The quality of Lagrangian multiplier vector π is important to have a good qual-
ity filtering. To adjust them a subgradient algorithm or a column generation
or a column-and-row generation can be used.
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I

v

u

y

x

t

Uπpvq

Uπpuq

Uπpxq

a

Figure 2.10: Filtering representation on hypergraph. If the best value of a flow
which contains at least one time a is lower than a best known lower bound (i.e.
if Uπpuq`Uπpvq`Cπpyq`

ř

iPI πidi ă LB holds), hyperarc a can be removed
from the hypergraph.

2.3.3.1 Using a subgradient algorithm

The proposed subgradient algorithm is the standard one proposed by Held
et al. [37]. Starting from model (2.22)-(2.26), a Lagrangian relaxation is ap-
plied on complicated constraints (2.26). Lagrangian multipliers related to
(2.26) are then obtained by computing a subgradient.

At each iteration j, for a given multiplier vector πj, the Lagrangian bound
Lpπjq is computed by solving the forward unbounded dynamic program in
which each item profit value ei is replaced with ei ´ πji . Vector π is updated
using:

πj`1
“ max

"

0, πj ` α
pLpπjq ´ LBq

‖gj‖2
gj
*

where α is a fixed parameter in s0, 2s, LB is an incumbent solution value,
while gj is a subgradient. Specifically, gjo represents the violation of (2.26)
constraint for item of index o “ t1, . . . ,mu:

gjo “
ÿ

aPA0pIpoqq

napIpoqqxja ´ dIpoq

The subgradient procedure is stopped either after a finite number of iter-
ations or when the best problem dual bound (i.e. minj tLpπ

jqu) has not been
improved for a parametrized number of iterations. Before each π updates,
filtering occurs on G0.
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2.3.3.2 Using column generation

A way to optimize Lagrangian multipliers π is to apply column generation to
the Dantzig-Wolfe reformulation of the ILP model (2.23)-(2.26). The master
program assumes a set J of cutting patterns which can be applied on the
initial stock sheet. Each cutting pattern j P J is defined by its cost cj and the
number aij of items i P I cut into it. The cost of pattern j is simply the sum
of the profits of the cut items cj “

ř

iPI eiaij. Let binary variable yj “ 1 if
pattern j is used, 0 otherwise. Using these definitions, the problem is rewritten
as follows:

max
ÿ

jPJ
cjyj (2.32)

s.t.
ÿ

jPJ
yj “ 1 (2.33)

ÿ

jPJ
aijyj ď di, @i P I (2.34)

yj P t0, 1u, @j P J (2.35)

The objective function (2.32) is to find the combination of patterns of
highest cost. Constraint (2.33) ensures that only one pattern is selected and
constraint set (2.34) requires that the selected pattern does not imply item
overproduction. Note that the pattern definition allows item overproduction
since a pattern is obtained by solving the unbounded dynamic program related
to the U-2KP-RE-4-r.

As the size of J is exponential, it is not practical to enumerate all patterns
j P J . Therefore, a delayed column generation is used to solve the linear
relaxation of model (2.32)-(2.35) which, in this approach, defines the master
program (denoted MPcg). A restricted master problem, denoted RMPcg, is
defined by a subset of patterns J̄ Ă J . To identify if a new pattern j should
be added into J̄ in the hope of improving the objective value, one solves a so-
called pricing problem. Its objective is the so-called reduced cost of a pattern
rj “ cj ´

ř

iPI aijπi where πi are duals associated to constraint set (2.34)
in the solution to RMPcg. This pricing problem is solved using the forward
unbounded dynamic program in which each item profit value ei is replaced
with ei ´ πi. The method stops when the RMPcg is solved to optimality. The
filtering occurs after each forward dynamic program solving.

2.3.3.3 Using row-and-column generation

The column generation procedure can show slow convergence, a drawback
which addressed by using row-and-column instead. The latter approach can

Mathematical programming methods for complex cutting problems 73



2.4. A label setting algorithm for the bounded 2KP

accelerate convergence thanks to better recombination of previously generated
pricing problem solutions as outlined by Sadykov and Vanderbeck [71].

The method is applied to the LP relaxation of the ILP model given by
(2.22)-(2.26), where (2.25) are replaced by setting xa P R, @a P A0. Let LPcg
be this linear program. At each iteration, LPcg is solved with a restricted
number of variables and constraints. The optimal dual values associated with
constraints (2.26) are then used to obtain a positive reduced cost pattern (still
using the forward dynamic program) as in the standard column generation
approach of the previous section. Then, the flow associated to the pattern
is decomposed into its hyperarcs, and the latter are added to the restricted
formulation, if absent. Missing flow conservation constraints (2.23), in which
the added variables participate, are also added to the restricted formulation.
The validity of this algorithm follows from the fact that there exists a positive
reduced cost variable xa if and only if there is a positive reduced cost solution
to the pricing problem (as proved in Sadykov and Vanderbeck [71]). Filtering
is then executed using dual values π associated with constraints (2.26). The
method stops when no more variables and constraints can be added to LPcg.

2.4 A label setting algorithm for the bounded
2KP

Even after filtering, the size of the ILP model (2.22)-(2.26) is typically too
large to be solved efficiently by a general purpose MIP solver. The alterna-
tive approach considered here is to adapt the dynamic programming solver
to account for bounds on item. This is done by extending the state space by
including the current usage of each item. It results in an exponential growth of
the state space, which makes impractical a direct Bellman’s algorithm. How-
ever specific techniques have emerged in the the last decade to tackle such
large size dynamic programs, specifically in the literature on the Elementary
Resource Constrained Shortest Path Problem (ERCSPP). The most efficient
ones combined so-called label setting algorithms and Decremental State Space
Relaxation (DSSR) (see e.g. Righini and Salani [68] and Martinelli et al. [57]).
These methods iteratively consider a sequence of dynamic programs related to
relaxations of some resource constraints. The state space is then enriched by
adding a currently violated resource constraint in the state space until a feasi-
ble solution is found. A possible enhancement consists in using a variable fixing
procedure (or filtering procedure) to speed up solution time (see Irnich et al.
[44] and Detienne et al. [22]). Although these methods proved their strength
on graphs, applying them to large hypergraphs is not straightforward.

The purpose of this section is to describe a generic procedure to solve
hypergraph flow problem with side-constraints. First, a description is done on
how the unbounded dynamic program can be extended to take into account the
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item upper bounds resulting in an extended dynamic program. This extended
dynamic program is then solved by a forward labelling algorithm. Finally an
exact algorithm combining the forward labelling algorithm with DSSR strategy
together with Lagrangian cost filtering to solve the C-2KP-RE-4-r problem to
optimality is detailed.

2.4.1 Dynamic program for the bounded case

As outlined by Christofides and Whitlock [10] and Velasco and Uchoa [85],
it is possible to write a dynamic program which handles item upper bounds.
Consequently with this new dynamic program, one needs to perform a for-
ward search to obtain the optimal solution of the associated bounded 2KP.
Hereinafter, the dynamic program (2.1)-(2.6) is extended in the same fashion.

Given m “ |I|, each defined state pw, hqj and pw, hqj in the unbounded
dynamic program (2.1)-(2.6) is enriched with a vector Q P Nm. This vector
models the number of items which are cut in the residual cutting problem
associated with the considered state. This leads to define new states pw, h,Qqj
and pw, h,Qqj. Each of them corresponds to a plate of dimension w ˆ h at
cutting stage j where items are cut exactly Qi times. Thus Uppw, h,Qqjq
and Uppw, h,Qqjq are the maximum values related to states pw, h,Qqj and
pw, h,Qqj. The initial bound vector is defined by D “ pd1, . . . , dmq. To ease
the presentation, let consider notations Q1 ´ Q2 and Q1 ` Q2 to indicate
the component-wise difference and sum, and Q1 ď Q2 to indicate that Q1i ď
Q2i, @i P I. The bold-face notation i indicates the vector in t0, 1un with
component i equal to 1 and the others to 0. Notation 0 refers to the vector
with all components equal to zero. The extended recursion takes the form:

Uppw, h,Qq1q “ max

$

’

&

’

%

0, max
iPĪ:hiďh,wiďw,

Q1iě1,Q1ďQ

"

Uppwi, h,Q1q2q`

Uppw ´ wi, h,Q´Q1q1q

*

,

/

.

/

-

(2.36)

Uppw, h,Qq2q “ max

$

’

&

’

%

0, max
iPĪ:hiďh,wiďw,

Q1iě1,Q1ďQ

"

Uppw, hi,Q1q3q`

Uppw, h´ hi,Q´Q1q2q

*

,

/

.

/

-

(2.37)

Uppw, h,Qq3q “ max

$

’

&

’

%

0, max
iPĪ:hiďh,wiďw,

Q1iě1,Q1ďQ

"

Uppwi, h,Q1q4q`

Uppw ´ wi, h,Q´Q1q3q

*

,

/

.

/

-

(2.38)

Uppw, h,Qq2q “ max
iPĪ:wi“w,hiďh,

Qiě1

 

ei ` Uppw, h´ hi,Q´ iq2q
(

(2.39)

Uppw, h,Qq3q “ max
iPĪ:hi“h,wiďw,

Qiě1

 

ei ` Uppw ´ wi, h,Q´ iq3q
(

(2.40)
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Uppw, h,Qq4q “ max

$

’

&

’

%

0, max
iPĪ:wi“w,hiďh,

Qiě1

!

ei ` Uppw, h´ hi,Q´ iq4q
)

,

/

.

/

-

(2.41)

The optimal solution to the dynamic program of the bounded 2KP is ob-
tained by computing maxQďD tUppW,H,Qq

1qu. Note that all possible Q1 ď Q
have to be considered in recurrence relations (2.36)-(2.41). This contributes to
increase the state space size. This extended dynamic program size is multiplied
by

ś

iPIpdi ` 1q in comparison with the its unbounded variant. Clearly this
extended dynamic program is not computational when the number of items is
large.

Using the paradigm of Martin et al. [56] and as shown in Section 2.1.2,
the hypergrah representation of this extended dynamic program entails an ex-
tended hypergraph. The used notation for this hypergraph is Gm “ pVm,Amq,
where superscript m represents the dimension of vector Q. Note that hy-
pergraph G0 “ pV0,A0q representing the unbounded dynamic program is a
projection of hypergraph Gn. This projection maps each vertex vm P Vm,
which corresponds to a state pw, h,Qqj or to a state pw, h,Qqj, to a vertex
v0 P V0, which corresponding to state pw, hqj or pw, hqj respectively. Such
projection is obtained by simply dropping the vector Q of a state pw, h,Qqj
and consequently this state reduces itself to pw, hqj. Note that this projection
is surjective since two states pw, h,Qqj and pw, h,Q1qj projects into the same
state pw, hqj. Thus every vertex vm P Vm can be denoted as pv0,Qq, where v0

is its projection into the state space of (2.1)-(2.6). In the same way hyperarc
a0 P A0 is the projection of hyperarc am P Am if Hpa0q is the projection of
vertex Hpamq, while each vertex in T pamq has its respective projection on a
vertex in T pa0q.

2.4.2 Forward labelling in the extended space

The bounded dynamic program is intractable due to its size when a large
number of items are considered. Nevertheless a way to solve it is to use a
forward labelling algorithm. This type of algorithm is a dynamic program
implementation in which states are created recursively as labels starting from
an empty solution. The focus is to create only states that correspond to feasible
partial solutions.

A feasible partial solution is defined by a label L that takes the form of a
tuple ppL, v0

L,QLq. pL denotes its profit computed using QL, v0
L P V0 is the

plate status, and QL is the item status related to the partial solution L. One
can store labels in a bucket based on their corresponding plate v0

L. For a given
vertex v0 P V0, let Lpv0q be the set of labels L such that v0

L “ v0. For each
label L, there exists a vertex vm P Vm such that vm “ pv0

L,QLq. Note that QL

is one of the possible Q1 ď Q considered in (2.36)-(2.41).
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To avoid complete exploration of all labels (i.e. partial solutions), one can
avoid some of them by application of a dominance principle. The purpose of
such dominance is to establish that a partial solution can be discarded without
optimality loss. Consider two labels L and L1 taken from Lpv0q, v0 P V0.
Formally, label L dominates label L1 (i.e. L ľ L1) if one can guarantee that
any extension of L1 cannot be strictly better than the best extension of L.
One can define a weak dominance check L ľweak L1 related to verify that
pL ě pL1 , v

0
L “ v0

L1 ,QL “ QL1 . One can also define a strong dominance check
L ľ L1 related to verify that pL ě pL1 , v

0
L “ v0

L1 ,QL ď QL1 . Observe that both
rules are to be applied within a label bucket for a fixed vertex v0. In other
words, a label may dominate another one only if both labels are in the same
bucket. While strong dominance is applied only in some algorithms, the weak
dominance check is maintained at all time. For a given hypergraph vertex vm “
pv0,Qq, a unique label L “ Lpvmq, which is the one of largest profit pL amongst
all those with pv0

L,QLq “ pv
0,Qq. Note that, since pL “

ř

iPI eiQL,i, weak and
strong dominances reduce to pL “ pL1 , v

0
L “ v0

L1 ,QL “ QL1 . The reason why
such distinction is made here is that below the state-space relaxation method
is introduced, in which vector QL has a dimension lower than m. In that case,
pL ‰

ř

iPI eiQL,i, and the strong dominance may hold between a pair of labels
when the weak dominance does not.

Instead of explicitly generating hypergraph Gm, the forward recursion is
implemented in the projected hypergraph G0. The recursion is initialized by
defining the sources of the extended hypergraph. This correspond to create
item labels pei, v0, iq and waste label p0, v0,0q which are then put in the bucket
associated to the original vertex v0 P V0. Then vertices v0 P V0 are considered
in topological order. For each vertex v0 P V0, labels related to this vertex are
built using all hyperarcs a0 P Γ´pv0q and the previously built labels for each
tail in T pa0q. Observe, indeed, that selecting a0 induces a recombination of
labels associated with each of the tail vertices of a0. This is formalized below.

Given hyperarc a0 P Γ´pv0q, assume that T pa0q takes the explicit form
tv0

1, v
0
2, . . . , v

0
fu where the same vertex may occur several times. Let Empa0q

be the set of possible transitions defined as recombinations of partial solutions
that are induced by a0:

Empa0
q “ Lpv0

1q ˆ Lpv0
2q ˆ . . .ˆ Lpv0

f q (2.42)

An element Empa0q P Empa0q is called a transition. It consists in se-
lecting a label for each tail vertex in

 

v0
1, v

0
2, . . . , v

0
f

(

using related buckets
 

Lpv0
1q,Lpv0

2q, . . . ,Lpv0
f q
(

. Observe that the associated tail multiset T pa0qmay
contain more than one time the same vertex (i.e. there exists f 1 and f2 such
that v0

f 1 = v0
f2). However this does not imply that the selected labels Lpv0

f 1q

and Lpv0
f2q in buckets Lpv0

f 1q and Lpv0
f2q for the f 1-th and f2-th vertices in

T pa0q are necessarily the same.
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A transition Empa0q P Empa0q (or using simpler notation E P Empa0q)
defines a combination of labels L1 P E used to create a new label L of the
form:

ppL, v
0
L,QLq “

˜

ÿ

L1PE

pL1 ,Hpa0
q,

ÿ

L1PE

QL1

¸

(2.43)

A transition E is said to be valid if the created label L ensures that item
bound constraints are valid (i.e. QL ď D). The obtained label L from transi-
tion E defines a hyperarc am P Am of the form:

Hpamq “
 

pv0
L,QLq

(

and T pamq “
 

pv0
L1 ,QL1q

(

L1PE
(2.44)

From the definition of am, observe that Hpamq defines the vertex vm “

pv0
L,QLq, v

m P Vm. Since a valid transition E implies to create a hyperarc
am, let Epamq be the set of labels in transition E defining the tail vertices of
am. One can also observe that there is a mapping between hyperarcs am and
a0. For further reference, this hyperarc-mapping Mmpa0q Ă Am is the set of
hyperarcs am that project onto a0:

Mm
pa0
q “

 

am P Am : tv0
L1uL1PEpamq “ T pa0

q and tv0
LpHpamqqu “ Hpa0

q
(

(2.45)

From previous notations, a pseudo-code of the forward labelling algorithm
is given in Algorithm 3. The algorithm considers all vertices v0 P V0 in topo-
logical order. If the vertex v0 is a boundary states it is initialized. Otherwise
new labels are created using predecessor set Γ´pv0q. For a given predecessor
a0 P Γ´pv0q, the set of transitions Empa0q is computed. For each valid tran-
sition E, the associated label L is created and then stored in bucket Lpv0q.
Finally some labels are removed from Lpv0q using the weak dominance check.
At the end of the algorithm, the label L P Lptq of maximum value (i.e. the
optimal solution) with t the sink of G0 is returned. This labelling algorithm
can be used in practice when the size of Q is small. Since the size of Q is
related to the number of items in a 2KP instance, it does not seem practical at
all to solve directly the problem using Algorithm 3. Indeed difficulties will be
encountered due to huge state space size and computation time. To avoid this
drawback, the forward labelling algorithm is embedded in the Decremental
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State Space Relaxation.
Algorithm 3: Forward Labelling Algorithm for Hypergraph Gm

1 for v0 P V0 in topological order do
2 if Γ´pv0q “ H then
3 if v0 corresponds to an item i P I then Lpv0q Ð tpei, v

0, iqu
else Lpv0q Ð tp0, v0,0qu

4 else
5 for a0 P Γ´pv0q do
6 compute Empa0q

7 for E P Empa0q do
8 LÐ p

ř

L1PE pL1 , v
0,
ř

L1PE QL1q

9 if QL ď D then Lpv0q Ð Lpv0q
Ť

tLu

10 apply weak dominance check on Lpv0q

11 return maxLPLptq pL for t being the sink of G0 and optimal solution S˚.

2.4.3 Decremental State Space Relaxation

Running the above forward labelling algorithm becomes quickly impractical
even on medium size instances, given the huge size of the extended state space.
The strongly exponential growth in the state space is induced by the size of Q
that is used to keep track of the number of items that have been cut.

The main motivation to avoid to work in the extended state space Sm
given by (2.36)-(2.41) is that in a valid solution only some items in I are
attractive and will be in an optimal solution. Hence an active strategy can
be used to identify those attractive items and only keep track of them. Idea
is to work with an item usage vector Qm1 P Nm1 with m1 ă m, related to
considering only a subset Im1 Ă I. Main advantage is that working with Qm1

leads to a state space size smaller than the one related to use Qm. Drawback
is that the problem to solve is a relaxation of the initial one since only a subset
Im1 Ă I is considered. The generic strategy that underlies this state-space
reduction method is known as Decremental State Space Relaxation (DSSR).
Such approach has proved to be efficient on C-2KP-NR-k-f (see Christofides
and Hadjiconstantinou [9] and Velasco and Uchoa [85]) and on Vehicle Routing
Problems (see Righini and Salani [68] and Martinelli et al. [57]) among others.

Formally the technique works as follows. In the extended state space Sm
defined by equations (2.36)-(2.41), the state associated to a label is a pair
pv,Qmq of dimension m` 1 (m for the item usage vector and 1 for the vertex
identification). In a projected state space Sm1 , with m1 ă n1, a state is defined
by a pair pv,Qm1q of dimension m1 ` 1 (m1 for the item usage vector and 1 for
the vertex identification). Then, the number of states to explore is reduced.
The size of state space Sm is O p|V0| ¨ Pimi“1pdi ` 1qq. For its projection in
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dimension m1 ` 1, the size of the state space becomes O p|V0| ¨ ΠiPIm1 pdi ` 1qq
with |Im1 | “ m1.

Working in the projected state space Sm amounts to considering a relax-
ation of the bounded 2KP problem, as one cannot guarantee the feasibility
of the solution regarding demand constraints (2.26). Some partial solutions
associated to a projected state pv,Qm1q of Sm1 can yield an item production
higher than the demand for items i P IzIm1 . Although the optimal solution
of the relaxation on Sm1 may not be feasible, it provides a valid dual bound.
But, interestingly, if the optimal solution in state space Sm1 is feasible in state
space Sm, then it is also optimal in Sm. Figure 2.11 pictures a mapping of
states sm P Sm into states sm1 P Sm1 , some are feasible, others are infeasible.
Observe that definitions of extensions (2.43), extended hyperarcs (2.44), and
mappings (2.45) can easily be recasted for any m1 with 0 ď m1 ď m, so are the
associated definitions of Empa0q. Hence, Algorithm 3 can be used to solve the
relaxed problem for a given state space relaxation Sm1 , simply by replacing m
by m1.

A natural dynamic strategy to update the state space derives from the
above discussion. If the optimal solution to the problem related to a smaller
state space Sm1 is feasible for the original problem this solution is also optimum
and problem optimality is reached. Otherwise, when the best solution in Sm1

is not feasible in Sm, the state space Sm1 is expanded. Indeed having the best
solution in Sm1 not feasible in Sm implies that at least one item i P IzIm1

is cut more than di times. The state space expansion is then dictated by
violated demand constraints (2.26). An extra dimension is added to Sm1 by
considering Im1`1 “ Im1 Y tiu. Such dynamic state space expansion is a well-
known technique used on scheduling problem (see Ibaraki and Nakamura [43]).

Sm

sm1 •

sm2 •
sm3 •

sm4 •
sm5 •

sm6 •

F
NF

Sm1

•sm1

1

•sm1

2

•sm1

3

F
NF

Figure 2.11: Example of the projection of feasible (F) and non feasible (NF)
states in Sm to Sm1 . In this example, non feasible state sm4 becomes a feasible
state in Sm1 .

The proposed approach starts with Im1 “ H,m1 “ 0. The associated map-
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ping function projects extended state space given by (2.36)-(2.41) into state
space of the unbounded dynamic program given by (2.1)-(2.6). At iteration
m1, a new set Im1`1 is obtained by adding one overproduced item to Im1 . The
process is repeated until the solution produced at iterationm1 admits a feasible
expansion in Sm. The method converges toward the optimal value after at most
m` 1 iterations leading to solve the extended dynamic program (2.36)-(2.41).
The dynamic program used at iterationm1 can be represented by a hypergraph
Gm1 “ pVm1 ,Am1q in which every vertex is of the form vm

1

“ pv0,Qm1q P Vm1 .
A possible implementation for vector Qm1 is to consider this vector as having
m dimensions, but fixing Qm

i “ 0 for all i R Im1 , while keeping track of an
index set Im1 associated to the current iteration m1. Although such procedure
could rely on applying Algorithm 3 with m replaced by m1, one can do better
than restart from scratch at each iteration. Moreover, one can take advantage
of filtering methods to reduce the hypergraph size at each iteration.

2.4.4 Iterative labelling algorithm

In the DSSR strategy context, it is better to avoid hypergraph creation from
scratch at iteration m1, 1 ă m1 ď m. Nevertheless, one can use hypergraph
of iteration pm1 ´ 1q to create the one at iteration m1. The idea is to warm
start creation of hypergraph Gm1 at iteration m1 with input hypergraph Gm1´1

from iteration pm1´1q. Note that the projection relation between hypergraphs
Gm1´1 and Gm1 is simply defined by associating a vertex vm

1

“ pv0,Qm1q to
its projection vm

1´1 “ pv0,Qm1´1q by setting Qm1´1
i “ Qm1

i for all i P Im1´1

and Qm1´1
i “ 0 otherwise. Similarly, a hyperarc am1 can be projected on the

hyperarc am1´1 that is defined by its projected tails and head. Moreover, as
a reminder, each vertex vm1 (resp. vm1´1) is associated to a unique label Lm1

(resp. Lm1´1) given that weak dominance is maintained at all time, recording
only the partial solution of best profit value.

The main motivation for warm starting is to take advantage of filtering done
up to iteration pm´ 1q to limit the hypergraph building effort at iteration m.
However, there are two important remarks to be aware of in such incremental
scheme:

1. The dominance rule is valid only within the current iteration: i.e. labels
that are dominated at iteration pm1 ´ 1q can become non-dominated at
iteration m1, once a new item is recorded in the vector Q. Hence, domi-
nated labels L from iteration pm1 ´ 1q have to be kept in order to build
extensions at iteration m. In practice, instead of keeping track of a dom-
inated label L from iteration pm1´1q, all hyperarcs which allow to reach
label L from iteration pm1 ´ 1q are stored, having both dominated and
non-dominated labels as heads, but only non-dominated labels as tails.
These hyperarcs are recorded in containersMm1´1pa0q if they projected
to a0 P A0. All of them are considered in building extensions.
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2. Elimination of labels by the strong dominance check is not compati-
ble with Lagrangian filtering when Lagrangian multipliers are used (i.e.
when π ‰ 0). Indeed, dominance is evaluated based on the true profit
value with π “ 0. While in Lagrangian filtering, the profit becomes
the reduced cost for Lagrangian multipliers π up to the tails and be-
yond the head node. This evaluation became wrong if intermediate
vertices have been eliminated through dominance using the true cost
measure. Hence, when the strong dominance check is used (i.e. when
the parameter enforceStrongDominance is true), one can only apply
plain filtering for π “ 0 to ensure compatibility between cost measures.
Thus, two implementation strategies are considered whether parameter
enforceStrongDominance is true or not.

This being said observe that filtering done in iteration pm1 ´ 1q, for a
fixed set of Lagrangian multipliers π, remains valid in iteration m1 and further
iterations for the same π. Consider that Lagrangian cost filtering is applied
to Gm1 ,m1 ą 0 in the same way as for G0. If a hyperarc am1´1 P Am1´1

is filtered out, then any hyperarc ar P Ar for r ě m1, that projects onto
am

1´1 can be filtered out too. First, observe that if vm1´1 P Vm1´1 is the
projection at iteration pm1 ´ 1q of vr P Vr, for any iteration r,m1 ď r ď m,
then Uπpvm

1´1q ě Uπpvrq because iteration pm1 ´ 1q defines a relaxation of
iteration r. The equation defining Cπpvm

1´1q can be rewritten as:

Cπ
pvm

1´1
q “ max

am1´1PΓ`pvm1´1q

$

&

%

Cπ
pHpam1´1

qq `
ÿ

v1PT pam1´1q

nam1´1pv1qUπ
pv1q ´ Uπ

pvq

,

.

-

In the same way as Uπpvm
1´1q ě Uπpvrq, it follows that Cπpvm

1´1q ě

Cπpvrq, and F πpam
1´1q ě F πparq which explains why any filtering at itera-

tion m1 ´ 1 remains valid for any further iteration r,m1 ď r ď m.
Hence, when building hypergraph Gm1 from hypergraph Gm1´1, preprocess-

ing and filtering done up to iteration pm1´1q are used to speed up hypergraph
Gm1 building process. Since hypergraph Gm1´1 is used to construct hypergraph
Gm1 and strong dominance have to be ensured, previous notations about tran-
sitions have to be extended. When the weak dominance check is used, all labels
in Lm1pv0q, v0 P V0 cannot be dominated by another label in this bucket. This
is no longer tru when the strong dominance check is applied. When strong
dominance is used, one can have two labels considered as non-dominated ac-
cording to the weak dominance but not regarding the strong one. This implies
to redefine generator Em1pam1´1q to handle strong dominance. As a reminder,
Lm1pv0q is the set of labels at iteration m1 related to vertex v0 P V0. Let
L̂m1pvm1´1

f q be a subset of non-dominated labels extract from Lm1pv0
f q such

that vm
1´1

f projects to v0
f , and v0

f is the f -th tail of arc a0 PMm1´1pa0q. The
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set Êm1pam1´1q of transitions as recombinations of non-dominated labels at it-
eration m1 is defined as follows:

Êm1pam1´1
q “ L̂m1pvm1´1

1 q ˆ L̂m1pvm1´1
2 q ˆ . . .ˆ L̂m1pvm1´1

f q (2.46)

Each non-dominated label in L̂m1pvm1´1
f 1 q projects on a non-dominated label

associated to a vertex vm
1´1

f 1 that is a f 1-th tail of hyperarc am1´1 with f tails
that was not filtered out.

When the strong dominance rule is used, recall that non-dominated labels
which are associated to dominated labels in Gm´1 have to be extended. Let
L̄m1pv0q be the subset of labels in Lm1pv0q associated to non-dominated labels
in Gm1´1. The set of transitions Ēm1pa0q as combinations of labels at iteration
m1 is define as follows:

Ēm1pa0
q “

!

Lm1pv0
1q ˆ . . .ˆ Lm

1

pv0
f q

)

z
 

L̄mpv0
1q ˆ . . .ˆ L̄mpv0

f q
(

(2.47)

Algorithm 4 details how to build iteratively hypergraphs. First, parameters
are initialized and the unbounded problem is solved using dynamic program-
ming (lines 2-4). If the optimal solution related to hypergraph G0 is feasible
regarding demand constraints (2.26), the method stops since optimal solution
is found. Otherwise, some preprocessing occurs before building an extended
hypergraph. A heuristic is first used to obtain a feasible solution S. Then us-
ing solution S, filtering or Lagrangian filtering starts depending on m1 value.
This choice is motivated by the fact that performing Lagrangian filtering on
an extended hypergraph is time consuming since the hypergraph size depends
on the size of Im1 . Since the optimal solution S˚ is not feasible, an overpro-
duced item i in this solution is added to Im1 (lines 5-8). Since a new item
to not overproduce has been added in Im1 , the hypergraph Gm1 can be built.
Vertices v0 P V0 are then crossed in topological order. If the vertex is a bound-
ary state related to an item or to the waste vertex, the corresponding label is
initialized (lines 10-11). Otherwise, labels are created using Γ´pv0q. For each
a0 P Γ´pv0q, the mapping container is set to H. Then for each hyperarc am1´1

which projects into a0 using Mm1´1pa0q, the set of transitions Êm1pam1´1q is
built. For each transition E P Êm1pam1´1q, if the associated label L is valid,
it is stored in bucket Lm1pv0q. The valid transition E or its hyperarc repre-
sentation am

1 is then stored in Mm1pa0q for further expansion (lines 17-21).
If the strong dominance check is applied, new labels from dominated labels
at previous iteration have to be built. The set of transitions Ēm1pa0q related
to combinations of labels which are not related to a non-dominated at iter-
ation pm1 ´ 1q is built. As previously, each label L obtained by a transition
E P Ēm1pa0q is built and its validity checked. Valid labels are stored in Lm1pv0q

and associated transition in Mm1pa0q (lines 23-29). Once all labels are built
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and stored in Lm1pv0q, dominated ones are removed from Lm1pv0q using the
strong or weak dominance check. When all vertices v0 P V0 are crossed, the
label of best profit in Lm1ptq and the associated solution S˚ are retrieved. If
S˚ is feasible regarding demand constraints (2.26), the method stops since S˚
is optimal, a new hypergraph is built otherwise since it implies that at least
an item is still overproduced.
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Algorithm 4: Iterative Forward Labelling Algorithm
1 build hypergraph G0

2 m1 Ð 0, Im1 ÐH,M0pa0q “ ta0u @a0 P A0

3 run Algorithm 3 on G0 and record obtained optimal solution S˚
4 record singleton label bucket L0pv0q “ tpp0, v0, 0qu, @v0 P G0

5 while S˚ is not feasible do
6 start a heuristic to find a feasible solution S
7 if m1 “ 0 then perform Lagrangian filtering on Gm1 using S else

perform filtering on Gm1 using S remove filtered hyperarcs am1 from
Mm1pa0q, @a0 P A0

8 m1 Ð m1 ` 1 and add to Im1 an item which bound is violated in S˚
9 for v0 P V0 in topological order do

10 if Γ´pv0q “ H then
11 if v0 is a boundary state i P Im1 then Lm1pv0q Ð tpei, v

0, iqu

else if v0 is a boundary state i R Im1 then
Lm1pv0q Ð tpei, v

0,0qu else if v0 corresponds to waste then
Lm1pv0q Ð tp0, v0,0qu

12 else
13 for a0 P Γ´pv0q do
14 Mm1pa0q Ð H

15 for am1´1 PMm1´1pa0q do
16 compute Êm1pam1´1q

17 for E P Êm1pam1´1q do
18 LÐ

`
ř

L1PE pL1 , v
0,
ř

L1PE Qm1

L1

˘

19 if Qm1

L ď D then
20 Lm1pv0q Ð Lm1pv0q Y tLu

21 Mm1pa0q ÐMm1pa0q Y tEu

22 if enforceStrongDominance then
23 compute Ēm1pa0q

24 for E P Ēm1pa0q do
25 LÐ

`
ř

L1PE pL1 , v
0,
ř

L1PE Qm1

L1

˘

26 if Qm1

L ď D then
27 Lm1pv0q Ð Lm1pv0q Y tLu

28 Mm1pa0q ÐMm1pa0q Y tEu

29 apply strong dominance check on Lm1pv0q

30 else
31 apply weak dominance check on Lm1pv0q

32 S˚ Ð best solution in Lm1ptq with t the sink of G0
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2.5 Heuristics for the bounded 2KP
Due to the large size of instances to solve and to initialize the Lagrangian cost
filtering, a natural approach is to use heuristics to obtain an initial feasible
solution. Since the 2KP can be represented using a hypergraph, a heuristic
based on it is first described hereinafter. In a second part, an evolutionary
algorithm is detailed.

2.5.1 Hypergraph based heuristic

As described in Section 2.2, the dynamic program seeks a max-cost flow to the
sink in the acyclic hypergraph, where vertices correspond to plate status and
hyperarcs correspond to combinations of them. Thus a cutting pattern can
be represented by a set of hyperarcs and a set of vertices. As a first step of
the heuristic, the unbounded dynamic program is run. It allows to compute
the best value Upvq associated with each vertex v P V0 (i.e. the dynamic
programming value associated to the corresponding state). The value V paq of
a hyperarc a P A0 is simply the sum of the cost of its tails:

V paq “
ÿ

vPT paq

napvqUpvq

Let define as ypA1q P Z|I|` the partial solution corresponding to the source
vertices in the tail sets of hyperarcs in multiset A1:

yipA1q “| A1 XApiq |, @i P I

The constructive stage of the first heuristic is run for a given hyperarc
a1 P A0 and a given partial solution y1 P Z|I|` ,y1 ď D. The heuristic starts by
adding ypta1uq to y1. At any time, the current set K of open vertices, initialized
with all non-source vertices in the tail set of hyperarc a1. In every iteration of
the algorithm, a vertex v1 is selected inK and removed from it. Then a hyperarc
a P Γ´pvq incoming to v1 with the best value such that y1 ` yptauq ď D is
chosen, all non-source vertices in the tail set of a are added to K, and next
iteration starts. The algorithm stops when set K becomes empty. It returns
the obtained solution y1 and the corresponding multiset of hyperarcs A1. The
pseudocode of this heuristic is presented as Function HG-Constr-Heur.

The constructive heuristic function HG-Constr-Heur can then be embedded
in a local search method. First the constructive heuristic find the best feasible
solution among all hyperarc a1 P Γ´ptq incoming to the sink node t P V0, and
best solution py˚,A˚q is obtained. Then the following local search algorithm
is applied to this solution. At every iteration, each hyperarc â P A1 is replaced
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Function HG-Constr-Heur(a1, y1)
1 KÐH; A1 ÐH;
2 if y1 ` ypta1uq ď D then
3 y1 Ð y1 ` ypta1uq; A1 Ð ta1u; KÐ K Y tT pa1qzIu;
4 while K ‰ H do
5 Pick v P K; KÐ Kztvu;
6 A2 Ð ta P Γ´pvq : y1 ` yptauq ď Du;
7 if A2 ‰ H then
8 a2 Ð argmaxaPA2 tV paqu;
9 y1 Ð y1 ` ypta2uq; A1 Ð A1 Y ta2u; KÐ K Y tT pa2qzIu ;

10 return py1,A1q

by another hyperarc ã P Γ´pHpâqq, ã ‰ â incoming to the same vertex as
â, and solution y1 is modified accordingly. If an improved solution is found,
next iteration starts. The process stops when no improvement occurred or the
iteration number limit is reached (minimum between |I| and 50). The formal
presentation of this heuristic is given as Algorithm 5.

2.5.2 Evolutionary heuristic

The second heuristic is an evolutionary algorithm inspired from Hadjiconstanti-
nou and Iori [35]. Purpose is to start from an initial population (representing
solutions to a given optimization problem) and then combine them together
in order to obtain better individuals (better solutions). This type of meta-
heuristic is inspired from the evolutionary theory.

Let Ĩ be an unary representation of item set i P I, i.e. di copies of each
item i are created. In a classical evolutionary algorithm, one needs to define
an encoding to represent a valid solution. Such individual or genome g is
represented by a sequence of integers g1, . . . , gnpgq, each of them refers to the
gj-th item to cut in Ĩ. Size npgq of a genome g is usually smaller than |Ĩ|, since,
generally, not all item copies fit into the bin pW,Hq. To obtain the solution and
its value from a genome, the genome is decoded with the First-Fit heuristic.

Purpose of the First-Fit heuristics is to cut items by their order given by
genome g. Let X be the stack of available plates initialized with initial plate
pW,Hq. First-Fit heuristic takes the first available plate in X , removes it from
X , and then tries to cut the first available item of index j in the order given
by the genome g. Since guillotine cuts are considered here, this implies that
this cut always divides the current plate r into two smaller subplates r1 and
r2 which are then added to stack X . Note that if no remaining item in the
genome fits in a given plate r, it is allowed to look among other available items
to fill this plate, thus increasing the solution quality. This is related to the fact
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Algorithm 5: Hypergraph based heuristic
1 h py˚,A˚q “ p0,Hq;
2 for a1 P Γ´ptq do
3 py,Aq Ð HG-Constr-Heurpa1,0q;
4 if

ř

iPI eiyi ą
ř

iPI eiy
˚
i then py˚,A˚q “ py,Aq

5 k Ð 0;
6 repeat
7 improveÐ false; k Ð k ` 1;
8 py1,A1q “ py˚,A˚q;
9 for â P A1 do

10 Let Â be the part of solution (flow) A1 coming to Hpâq;
11 for ã P Γ´pHpâqq, ã ‰ â do
12 pỹ, Ãq Ð HG-Constr-Heur

`

ã,y1 ´ ypÂq
˘

;
13 if

ř

iPI eipy
1
i ´ yipÂq ` ỹiq ą

ř

iPI eiy
˚
i then

14 y˚ Ð y1 ´ ypÂq ` ỹ; A˚ Ð A1zÂY Ã;
15 improveÐ true;

16 until  improve or k “ mint|I|, 50u;
17 Store solution py˚,A˚q;

that the genome size is smaller than the number of total items. If no items fit
into a subplate, it is discarded. The process stops when X “ H.

Once one has the decoding heuristic for a given genome g, new popula-
tion has to be created. Idea is to start from an initial population and create
successively new ones containing improving solutions The initial population is
initialized by applying the First-Fit heuristic with |I| different random permu-
tations of Ĩ. To ensure good quality solutions, the initial population is then
reduced using an elitist strategy. This one aims to keep the pool F of psize
best individuals from the initial population. Starting from this pool, a new
population is created in two phases: new individual generation and crossover
operation. The first phase is the same as the initial population generation.
This enriches the pool by psize new individuals. In the second phase, the off-
spring set O of individuals is produced using a two-point crossover where only
25% of offspring individuals are randomly kept.

Two-point crossover uses as input two parent individuals represented by
their genomes g1 and g2 and create a new one g3 by selecting parts of parent
genomes. Two positions in the genome of the first parent p1 and p2 are ran-
domly picked. The offspring is then created by merging genome of parent g1

between positions 0 and p1, genome of parent g2 between positions p1 and p2

and then genome of parent g1 between positions p2 and npg1q.
After the crossover phase, all remaining individuals solutions are moved in
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pool F . Then only the psize best individuals in F are kept for the next popula-
tion generation. To have enough solutions from one population generation to
another, the population size psize is set to 20. The total number of population
generations is set to |I|{2.

2.6 Computational experiments

To measure the efficiency of exact methods described in this chapter, computa-
tional experiments are performed both on literature instances and on real-world
instances.

The first set of test problems are two-dimensional packing instances from
the literature available on Beasley [5] (http://people.brunel.ac.uk/~mastjjb/
jeb/orlib/cgcutinfo.html) and Hifi and Roucairol [42] (ftp://cermsem.
univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/2Dcutting.html). They al-
ready have been described in Section 1.3.1. The instance set is partitioned into
two datasets, named CU and CW. In CU dataset, the profit of each item is
unweighted (i.e. equal to its area). In CW dataset, the profit of each item is
weighted (i.e. not equal to its area). The CU dataset includes 46 instances:
2s, 3s, A1s, A2s, A3-5, STS2s, STS4s, OF1-2, W, CHL1s-4s, CHL5-7, ATP30-
39, CU1-11, Hchl3s-8s. The CW dataset includes 41 instances: HH, cgcut1-3,
A1-2, STS2, STS4, CHL1-4, CW1-11, ATP40-49, Hchl1-2, Hchl9, okp1-5.

The second set of instances are extracted from glass industry cutting prob-
lems. The bin size is set to p3000, 1500q and p6000, 3000q. The number of
different items |I| in an instance can be 50, 100 and 150. The average demand
of an item is two. When the bin size is p6000, 3000q, the average maximum item
size is around p2000, 1100q, its average minimum size is around p500, 200q. For
bin size equal to p3000, 1500q, item maximum and minimum dimensions are di-
vided by half. Two sets of instances are built, called A and P. In the A set, the
profit of each item is unweighted; while in the P datasets the profit of each item
is weighted. For P dataset, the profit of an item i is set to rβiˆwiˆhis where
βi is the product of two random real numbers in interval s0, 2s. An instance
named A6000I50 corresponds an instance with B “ p6000, 3000q, |I| “ 50
and item profits are unweighted. Respectively, an instance named P3000I150
corresponds an instance with B “ p3000, 1500q, |I| “ 150 and item profits are
weighted. Each instance type is created 50 times. This gives a total of 300
instances for the P and also 300 instances for the A dataset.

The goal of the lead experiments is fourfold: piq to evaluate the impact
of the hypergraph preprocessing rules; piiq to see how Lagrangian filtering
performs; piiiq to compare the different exact methods; and pivq to compare
methods described here with best known approaches from the literature. To
measure the impact of hypergraph building rules, this section is split in three
parts. The first one compares all hypergraph simplifications discussed in Sec-
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tions 2.1.3.1-2.1.3.5. Once the best configuration is found, experiments are
done to evaluate the efficiency of both Lagrangian cost filtering and exact
methods. The second part starts from the results of the first one and compare
them with hypergraphs built using pattern enumeration from Section 2.1.3.6.
This choice is motivated by the fact that the pattern enumeration is not a
trivial hypergraph simplification compared to the other. It will be shown that
it has an impact on the behaviour of Lagrangian cost filtering and exact meth-
ods also. The last part compares exact methods detailed here with best known
literature approaches.

All experiments are done on a 2.5 Ghz Haswell Intel Xeon E5-2680 with
128Go of RAM. To solve linear programs, CPLEX 12.6. solver is used. The
running time limit for each instance is one hour.

2.6.1 Computational experiments for basic hypergraph
simplifications

The aim of this section is to measure the impact on the hypergraph size when
this one is built with different simplifications rules explained in Sections 2.1.3.1-
2.1.3.5. Once a hypergraph building configuration is found, a comparison of
the different way to perform Lagrangian cost filtering is outlined. This is then
followed by a comparison of exact methods.

2.6.1.1 Hypergraph simplifications

In this section, the impact of the hypergraph size reduction techniques of
Section 2.1.3 is analysed. The purpose is to measure variations of hypergraph
size depending on simplification rules.

Let (init) define the initial hypergraph size associated with dynamic pro-
gramming (2.1)-(2.5) and (2.8). Configuration (SB) is the hypergraph built
with configuration (init) and using symmetry breaking techniques from Sec-
tion 2.1.3.2. Configuration (PR) represents the hypergraph built with configu-
ration (SB) and using plate reductions from Section 2.1.3.3 and Section 2.1.3.4.
Finally configuration (V S) indicates the hypergraph build with configuration
(PR) and vertex smoothing technique from Section 2.1.3.5.

In Table 2.1 and for each dataset, the geometric means on the number
of vertices V0 and hyperarcs A0 are reported for the column related to build
the hypergraph with configuration init. For columns related to configurations
SB,PR and V S, the percentages of reduction from initial hypergraph size
are reported instead. The geometric mean on hypergraph building time t (in
seconds) for all configurations is given in the right-hand part of the table. All
reported times are rounded-up.
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V0 A0 t
Dataset init SB PR V S init SB PR V S init SB PR V S
CU 3,911 0% 46% 53% 36,714 37% 53% 53% 0.1 0.1 0.1 0.1
CW 4,766 0% 48% 55% 45,528 36% 51% 52% 0.1 0.1 0.1 0.1
A1500I50 48,361 0% 58% 60% 1,100,534 50% 67% 67% 0.4 0.3 0.4 0.4
A1500I100 132,371 0% 50% 54% 5,018,939 50% 62% 62% 1.5 0.9 1.2 1.6
A1500I150 222,187 0% 46% 50% 11,193,590 50% 58% 58% 3.5 1.9 2.7 3.8
A3000I50 75,831 0% 64% 66% 1,844,530 52% 72% 72% 0.8 0.6 0.6 0.7
A3000I100 225,238 0% 56% 58% 9,280,704 53% 68% 68% 3.1 1.7 2.2 2.9
A3000I150 385,223 0% 50% 52% 21,885,919 53% 64% 64% 7.3 3.7 4.9 7.3
P1500I50 49,160 0% 57% 60% 1,155,488 49% 66% 66% 0.4 0.3 0.4 0.4
P1500I100 135,727 0% 49% 52% 5,250,292 50% 61% 61% 1.6 1.0 1.3 1.7
P1500I150 231,862 0% 45% 48% 11,861,637 50% 57% 57% 3.7 2.0 2.8 4.0
P3000I50 68,116 0% 67% 68% 1,565,716 52% 72% 72% 0.7 0.5 0.6 0.7
P3000I100 217,716 0% 56% 58% 8,679,053 53% 68% 69% 2.9 1.6 2.0 2.7
P3000I150 386,981 0% 50% 53% 21,623,473 53% 64% 64% 7.0 3.6 4.8 7.2

Table 2.1: Hypergraph creation results for all datasets

Observe that on average the number of hyperarcs decreases by half when
the symmetry breaking (SB) rule is used. Since less hyperarcs are created,
the hypergraph building time decreases. Observe that for large instances with
B “ p6000, 3000q and |I| “ 150, even if symmetry breaking is used, there are
still millions of hyperarcs in the hypergraph. Hence the symmetry breaking
rule is a key asset to create smaller hypergraph in a shorter amount of time.

When the plate size reduction (PR) is used, both vertices and hyperarcs are
not created. Remark that the number of vertices is reduced on average by half.
Using configuration (PR) implies to do some preprocessing before building
the hypergraph. This explains with the building time increases compare to
configuration (SB). However it remains smaller that configuration (init).

Finally the vertex smoothing rule (V S) does not contribute to reduce the
hypergraph size. Indeed the number of vertices decreases but the number of
hyperarcs is nearly the same as when using configuration (PR).

Nevertheless hypergraph building is a one time operation and it is worth-
while to work at obtaining the most compact one as hypergraph traversals
are performed many times during Lagrangian cost filtering or labelling algo-
rithms. In the light of those results, all further experiments are realized with
hypergraphs built using configuration (V S).

2.6.1.2 Lagrangian cost filtering procedure

This section establishes a comparison of Lagrangian filtering methods pre-
sented in Section 2.3 on the initial hypergraph G0. Let notation (cg) (resp.
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(rcg)) refers to the way to compute Lagrangian multipliers using column gen-
eration (resp. column-and-row generation). The subgradient is not discussed
here since produced implementation was not enough effective. Results are
given in Table 2.2. For each dataset, the average gap (gap) between the dual
bound after column generation and a primal bound is first reported. The lat-
ter is computed with the hypergraph heuristic from Section 2.5.1 for CU and
A datasets and with the evolutionary algorithm from Section 2.5.2 for CW
and P datasets. In the left part of the table, for filtering procedures (cg) and
(rcg), the average percentages of filtered hyperarcs are given when filtering is
performed only in preprocessing with null multipliers (π0 “ 0), when filtering
occurs in preprocessing and with optimal multipliers (π˚) and thirdly when
filtering is applied for each multipliers (@π). During column generation and
row-and-column generation after solving the unbounded dynamic program for
a given multipliers π, a heuristic starts to check if the dynamic programming
solution is feasible and improving compare to the current best known primal
solution. In the right-hand part of the table, the average total time required
to filter the hypergraph is reported for each way to filter it. Notation (tpp)
denotes the average time required to build the hypergraph and to obtain a
primal bound. All reported times are rounded-up. In column generation and
row-and-column generation, linear programs are solved by CPLEX 12.6.

% filtered hyperarcs t
cg rcg cg rcg

Dataset gap π0 π˚ @π π˚ @π tpp π0 π˚ @π π˚ @π
CU 1.8% 50 54 55 54 54 0.1 0.1 0.1 0.1 0.1 0.1
CW 3.4% 37 52 54 52 54 0.1 0.1 0.1 0.1 0.1 0.1
A1500I50 0.8% 66 68 68 68 68 0.5 0.1 0.2 0.2 0.2 0.2
A1500I100 0.4% 83 84 85 85 85 1.8 0.1 0.4 0.7 0.5 0.7
A1500I150 0.2% 88 88 88 88 88 3.9 0.2 0.9 1.5 1.1 1.6
A3000I50 0.8% 63 64 65 64 65 0.8 0.1 0.2 0.3 0.3 0.3
A3000I100 0.4% 82 82 82 82 82 3.1 0.2 0.7 1.1 0.8 1.3
A3000I150 0.2% 90 90 91 90 91 7.8 0.4 1.4 2.5 1.8 2.7
P1500I50 4.6% 2 43 46 43 45 0.6 0.1 0.4 0.5 0.4 0.5
P1500I100 4.8% 4 55 57 55 57 2.6 0.2 1.4 2.1 1.3 1.9
P1500I150 5.5% 8 63 65 63 64 6.6 0.3 3.5 5.6 3 4.5
P3000I50 4.8% 3 46 49 46 48 0.9 0.1 0.4 0.5 0.4 0.5
P3000I100 5.1% 8 65 67 65 67 3.7 0.2 1.8 2.6 1.6 2.3
P3000I150 5.5% 7 62 64 62 63 9.9 0.5 5.1 7.9 4.3 6.4

Table 2.2: Percentage of filtered hyperarcs for each filtering procedurewhen
hypergraph is built with configuration (V S)

From results in Table 2.2, it is enough to perform only one filtering pass (π0)
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on CU and A datasets. Indeed with such configuration, half of the hypergraph
is filtered in a small computation time. For CW and P datasets, it becomes
relevant to perform filtering with optimal multipliers value or with different
multiplier values (π˚, @π). But, performing filtering with different multiplier
values (@π) does not improve considerably the number of filtered hyperarcs
compared to performing filtering with only optimal multipliers (π˚). It also
increases the computation time.

For CU and A datasets, using (cg) or (rcg) does not increase the number
of filtered hyperarcs compare to using null multipliers only. For CW and
P datasets, (cg) and (rcg) methods have equivalent computation time but
because of slow convergence of the first one, (rcg) method is preferred.

In summary, using all multipliers (@π) to filter the initial hypergraph G0

is rarely useful; filtering with null multipliers (π0) is enough to get a reduced
hypergraph for CU and A datasets; while when working on CW and P datasets,
it is best to use (π˚) and compute it with row-and-column generation (rcg).
In the sequel, hypergraph G0 is preprocessed according to these conclusions.

2.6.1.3 Exact methods

In this section, exact methods described in this chapter are compared to each
other. The aim is to look at their efficiencies. In Table 2.3, (mip) refers to solv-
ing the problem directly by feeding the ILP formulation given in Section 2.2
to the MIP solver of CPLEX 12.6. Notation (rls) (resp. (dls)) refers to solv-
ing the problem with the iterative labelling algorithm without (resp. with)
strong dominance check. The table is divided in two parts. On the left one,
the reported results are obtained without performing Lagrangian cost filtering.
The right part reports the same results but filtering is allowed in preprocessing
and in labelling algorithms. For each part, the geometric mean on the pre-
processing time ptppq and the geometric mean on the time required to solve
a given dataset are reported pttmip, ttdls, ttrlsq. Reported times are in seconds
and round-up. When an instance is not solved within the one hour time limit,
the time limit value is used to calculation of reported values.

When using iterative labelling, a basic heuristic looks for an improving
incumbent solution among generated labels after each hypergraph building. At
the end of every iterationm, this heuristic retrieves the solutions corresponding
to all labels L P Lmpt0q, t0 being the sink of G0, such that pL is greater
than the current primal (lower) bound. If a solution from this set is feasible,
the primal bound is updated. Note that if the solution is associated to an
optimal label (i.e. the one of maximum profit in Lmpt0q) is feasible, then this
solution is optimal for the initial problem. Note also that initial hypergraph
G0 was preprocessed with Lagrangian filtering with π0 (resp. π˚) for CU and
A datasets (resp. CW and P datasets). During iterations of dls and rls, only
filtering with π “ 0 was used.
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no filtering filtering
Dataset tpp ttmip ttdls ttrls tpp ttmip ttdls ttrls
CU 0.1 4.1 0.5 1.9 0.1 0.3 0.1 0.1
CW 0.1 6.0 0.4 0.7 0.2 0.8 0.2 0.2
A1500I50 0.5 219.9 45.4 1077.3 0.5 21.9 2.2 1.6
A1500I100 1.6 1884.6 64.6 1042.7 1.9 53.6 5.9 3.7
A1500I150 3.9 3175.3 138.3 1957.3 4.3 75.5 11.5 7.4
A3000I50 0.8 464.2 71.0 1221.1 0.9 43.7 4.4 3.6
A3000I100 3.2 2654.7 185.8 1852.3 3.4 125.0 11.1 7.8
A3000I150 7.8 3419.1 370.2 2440.5 8.4 221.3 22.1 13.4
P1500I50 0.5 522.5 282.9 341.2 1.1 97.5 44.2 24.9
P1500I100 1.8 2302.5 400.7 544.4 4.4 279.3 60.8 44.2
P1500I150 4.0 3418.6 988.2 1624.0 10.3 1262.7 90.9 64.7
P3000I50 0.7 637.3 280.1 342.9 1.4 141.2 43.0 25.3
P3000I100 2.9 2663.4 381.5 552.4 5.8 344.2 51.9 41.0
P3000I150 7.7 3478.6 872.1 1358.7 15.5 877.5 160.6 144.2

Table 2.3: Solving time for each exact methods

When the filtering is not used, computation time are very high for A and P
datasets. In this case, the best method to use is the labelling algorithm with
strong dominance check (dls). It seems better to use Lagrangian cost filtering
since it greatly improves the computation time. Although extra computation
time is required to obtain an incumbent solution and to perform filtering, the
number of filtered hyperarcs leads to an advantage for the exact methods. For
CU and CW datasets, both exact methods are competitive since computation
time is short. For A and P datasets, it is better to use labelling algorithms.
The best one to use is the one without strong dominance check (rls). The
ILP formulation has the worst results and it is clearly not the best approach
to retain.

Beyond computation time comparison, it is interesting to count the number
of solved instances by each method. Such results are reported in Table 2.4.
Notations nbs, nbf and nbns are the number of solved instances for a given
method, the number of cases where the method is the fastest and the number
of instances that are not solved by any of the methods.

When no filtering occurs, the method dls solves most of the problem in-
stances for A dataset. The ILP formulation mip is able to solve most of
instances only for datasets with a small number of items. Results are not
very conclusive on P datasets because between one and two thirds of the in-
stances are not solved. Without Lagrangian cost filtering, the method dls is
the fastest method to use. Nevertheless, when filtering is used, the method rls
is preferred. Note also that filtering increases the number of solved instances
for all exact methods. Labelling algorithms are efficient to solve the problem
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no filtering filtering
mip dls rls mip dls rls

Dataset nbs nbf nbs nbf nbs nbf nbns nbs nbf nbs nbf nbs nbf nbns
CU (46) 46 7 42 28 35 11 0 46 2 44 6 44 31 0
CW (41) 41 2 39 25 37 14 0 41 0 41 3 41 31 0
A1500I50 (50) 48 11 44 38 10 0 1 48 0 50 7 50 43 0
A1500I100 (50) 23 0 50 50 11 0 0 50 0 50 1 50 49 0
A1500I150 (50) 8 0 49 49 8 0 1 44 0 50 1 50 49 0
A3000I50 (50) 46 7 41 40 9 0 3 49 1 50 13 50 35 0
A3000I100 (50) 15 1 41 40 7 1 8 42 0 50 7 50 43 0
A3000I150 (50) 5 0 47 47 4 0 3 44 0 50 0 50 50 0
P1500I50 (50) 39 19 25 15 23 5 11 40 3 36 0 41 38 7
P1500I100 (50) 20 0 25 22 21 3 25 28 0 39 0 40 39 10
P1500I150 (50) 4 1 22 21 11 1 27 23 0 46 8 47 41 1
P3000I50 (50) 38 16 28 16 21 7 11 40 2 39 1 44 42 4
P3000I100 (50) 16 0 27 24 23 3 23 30 0 44 5 44 40 5
P3000I150 (50) 3 0 21 19 13 2 29 18 0 37 8 38 32 10

Table 2.4: Number of solved instances for all exact methods

contrary to the MILP approach.
To further analyse the performance of labelling algorithms, it is interesting

to have a look on the number of labels and hyperarcs created during the
solution process. Results are reported in Table 2.5. For each dataset, the
number of instances (nbs) solved by both labelling algorithms is first reported.
Note that this number is smaller than in Table 2.4 since it may happen that
an instance is solved in preprocessing when incumbent solution is equal to the
dual bound from filtering. The comparison of Table 2.5 carries on those solved
instances. The geometric mean of the number of iterations (nbit), the number
of labels (nbl), and the number of hyperarcs (nbh) are reported in this table.
All values are rounded-up.

As observed from Table 2.5, the dls method produces more labels than rls
method but the number of hyperarcs is smaller on average. This is somehow
conter-intuitive that the strong dominance produces more labels than the weak
dominance. The explanation is to be found in the combination with filtering.
Having more labels and thus more hyperarcs in first iterations allows one to
filter more hyperarcs. Then, every additional filtered hyperarc in a "smaller
dimension" iteration, filters implicitly many hyperarcs in a "larger dimension"
iterations which project on the former. Thus, filtering combined with the weak
dominance may be more efficient in comparison with the strong dominance.
The difference between the number of iterations for both methods is explained
by the heuristic used to improve current best solution. Indeed, having more
labels in Lmpt0q increases the probability to find a primal feasible solution.
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dls rls
Dataset nbs nbit nblp/105q nbhp/106q nbit nblp/105q nbhp/106q

CU 36 6.0 2.8 0.6 6.0 0.5 0.9
CW 34 4.2 0.4 0.2 4.2 0.3 0.5
A1500I50 50 16.0 18.6 5.1 16.0 5.4 16.1
A1500I100 50 19.0 18.1 7.6 19.0 3.8 7.6
A1500I150 50 21.7 23.3 12.5 21.6 5.8 16.9
A3000I50 49 16.6 44.8 12.8 16.5 14.0 32.1
A3000I100 50 21.0 27.9 13.3 21.0 9.0 24.1
A3000I150 50 22.3 28.1 15.3 22.2 6.7 13.0
P1500I50 34 7.7 33.1 106.0 7.7 13.7 95.7
P1500I100 38 7.8 42.9 145.6 7.8 18.6 184.6
P1500I150 44 8.8 49.4 125.9 8.8 24.3 189.6
P3000I50 38 7.3 46.8 126.6 7.3 22.8 123.1
P3000I100 43 7.2 47.8 146.1 7.2 25.5 221.6
P3000I150 35 8.0 57.1 138.3 8.0 28.6 188.9

Table 2.5: Number of labels and hyperarcs for both label setting algorithms

2.6.2 Computational experiments for partial pattern enu-
meration

Results in Section 2.6.1.1 outline the viability of the iterative labelling algo-
rithm to solve guillotine 2KP. Nevertheless only basic hypergraph simplifica-
tion has been considered. In this section, the scope is extended to measure
now the impact of partial enumeration technique from Section 2.1.3.6. As pre-
viously, a first inspection of the best hypergraph configuration is done. Once
retained, it is used to measure the efficiency of Lagrangian cost filtering and
exact methods.

2.6.2.1 Hypergraph simplifications

In previous experiments, the configuration (V S) was retained to build the
hypergraph. In this section, the enhanced pattern enumeration is compared
with the configuration (V S). Remember that the configuration of the par-
tial enumeration is characterized by four values: ∆size

w , ∆size
h , ∆diff

w , and ∆diff
h .

Three settings are considered here. The first one corresponds to the hyper-
graph building using configuration (V S) with no enumeration: ∆1 “ p∆

size
w “

0,∆size
h “ 0,∆diff

w “ 0,∆diff
h “ 0q. Notation ∆1 is equivalent to build the

hypergraph with configuration (V S). The second one corresponds to the hy-
pergraph building using configuration (V S) and enumeration of items with the
same hi for odd cutting stages and with the same wi for even cutting stages:
∆2 “ p∆

size
w “ 1000,∆size

h “ 1000,∆diff
w “ 1,∆diff

h “ 1q. The last setting corre-
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sponds to the hypergraph building using configuration (V S) and enumeration
of items with the same hi for odd cutting stages and enumeration of items
with different wi at the second cutting stage: ∆3 “ p∆size

w “ 1000,∆size
h “

1000,∆diff
w “ 8,∆diff

h “ 1q.
In Table 2.6 and for each dataset, the geometric means on the number

of vertices V0 and hyperarcs A0 are reported for the column related to build
the hypergraph with configuration init. For columns related to configurations
(∆1), (∆2) and (∆3), the percentages of reduction from initial hypergraph size
are reported instead. The geometric mean on hypergraph building time t (in
seconds) for all configurations is given in the right-hand part of the table. All
reported times are rounded-up.

V0 A0 t
Dataset init ∆1 ∆2 ∆3 init ∆1 ∆2 ∆3 init ∆1 ∆2 ∆3

CU 3,911 53% 21% 32% 36,714 53% 45% 33% 0.1 0.1 0.1 0.1
CW 4,766 55% 20% 32% 45,528 52% 44% 34% 0.1 0.1 0.1 0.1
A1500I50 48,361 60% 47% 50% 1,100,534 67% 66% 61% 0.4 0.4 0.4 0.5
A1500I100 132,371 54% 36% 38% 5,018,939 62% 60% 54% 1.5 1.6 1.2 2
A1500I150 222,187 50% 30% 32% 11,193,590 58% 56% 51% 3.5 3.8 2.6 4.4
A3000I50 75,831 66% 56% 58% 1,844,530 72% 71% 68% 0.8 0.7 0.6 0.7
A3000I100 225,238 58% 45% 47% 9,280,704 68% 67% 63% 3.1 2.9 2.2 3.1
A3000I150 385,223 52% 38% 40% 21,885,919 64% 62% 58% 7.3 7.3 4.9 7
P1500I50 49,160 60% 45% 48% 1,155,488 66% 64% 60% 0.4 0.4 0.4 0.5
P1500I100 135,727 52% 34% 37% 5,250,292 61% 59% 54% 1.6 1.7 1.3 2.1
P1500I150 231,862 48% 29% 31% 11,861,637 57% 55% 50% 3.7 4.0 2.7 4.7
P3000I50 68,116 68% 58% 60% 1,565,716 72% 71% 68% 0.7 0.7 0.6 0.7
P3000I100 217,716 58% 46% 48% 8,679,053 69% 67% 64% 2.9 2.7 2.1 2.9
P3000I150 386,981 53% 39% 40% 21,623,473 64% 63% 59% 7.0 7.2 4.8 6.7

Table 2.6: Hypergraph creation results for all datasets

From Table 2.6, it is clear that using the partial enumeration with (∆2) and
(∆3) increases the hypergraph size compare to configuration (∆1). Building
time has the same order of magnitude that using configuration (init). In theory
the enumeration enforces item production constraints directly by modifying
the hypergraph structure. It may seem odd to keep configuration (∆3) but the
hope is to strengthen the item production constraints. Thus, more experiments
are required to ensure that it is worth to enumerate pattern. This is outlined
in the next section.

2.6.2.2 Lagrangian cost filtering procedure

In Section 2.6.2.1, using the configuration (∆3) to build the hypergraph G0

seems strange because it leads to a bigger hypergraph compare to using the
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configuration (V S). In this section, the impact of the partial pattern enumer-
ation is outlined by applying Lagrangian cost filtering on the hypergraph built
with configuration (∆3). Results are reported in Table 2.7. Experiments are
done in the same manner as described in Section 2.6.1.2. Consequently same
notations are reused here and Table 2.7 has the same structure that Table 2.2.
As a reminder, before starting filtering, an initial primal bound is obtained
with the hypergraph heuristic from Section 2.5.1 for CU and A datasets and
with the evolutionary algorithm from Section 2.5.2 for CW and P datasets.
During column generation and row-and-column generation after solving the
unbounded dynamic program for a given multipliers π, a heuristic starts to
check if the dynamic programming solution is feasible and improving compare
to the current best known primal solution. All reported times are rounded-
up. In column generation and row-and-column generation, linear programs are
solved by CPLEX 12.6.

% filtered hyperarcs t
cg rcg cg rcg

Dataset gap π0 π˚ @π π˚ @π tpp π0 π˚ @π π˚ @π
CU 0.6% 93 95 95 95 95 0.2 0.1 0.1 0.1 0.1 0.1
CW 2.7% 63 74 75 74 75 0.2 0.1 0.1 0.1 0.1 0.1
A1500I50 0.2% 96 97 97 97 97 0.6 0.1 0.1 0.2 0.2 0.2
A1500I100 0.1% 99 99 99 99 99 2.2 0.2 0.3 0.5 0.5 0.6
A1500I150 0.1% 99 99 99 99 99 5 0.3 0.6 0.9 0.8 1.1
A3000I50 0.2% 94 95 95 95 95 0.9 0.1 0.2 0.3 0.2 0.3
A3000I100 0.1% 99 99 99 99 99 3.4 0.2 0.5 0.8 0.7 0.9
A3000I150 0.1% 99 99 99 99 99 7.6 0.5 1 1.6 1.3 1.9
P1500I50 3.9% 17 56 58 56 57 0.8 0.1 0.9 1.3 0.6 0.9
P1500I100 4.1% 25 67 68 67 68 3.2 0.2 3 4.7 2.1 3.3
P1500I150 4.8% 28 75 77 75 76 7.4 0.5 5.3 8.1 3.8 5.8
P3000I50 4.1% 10 54 57 54 56 1 0.1 0.9 1.4 0.8 1.1
P3000I100 4.4% 30 72 74 72 73 4.1 0.3 3.4 5.6 2.7 3.9
P3000I150 4.8% 24 70 72 70 72 9.8 0.7 9.1 14.1 6.6 10.5

Table 2.7: Percentage of filtered hyperarcs for each filtering procedure when
hypergraph is built with configuration (∆3)

From results in Table 2.7, the same conclusion when hypergraph is built
with configuration (∆3) or (V S) is done about filtering The Lagrangian cost
filtering with null multipliers (π0) is enough to get a reduced hypergraph for
CU and A datasets. It is best to use (π˚) and compute it with row-and-
column generation (rcg) for CW and P datasets. Nevertheless, it is important
to remark that filtering with null multipliers removes near all hyperarcs for
CU and A datasets. The gap between primal and dual bounds is close to
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zero. Results for CW and P datasets outline that the initial filtering with null
multipliers remove more hyperarcs compare to results from Table 2.2.

A comparison of hypergraph size after filtering is given in Table 2.8. Nota-
tion |A0| is the round-up geometric mean on the number of hyperarcs, notation
|Ã0| is the round-down geometric mean on number of hyperarcs after filtering.
Reported time t (in seconds) is the round-up geometric mean required to build
the hypergraph and to compute a primal bound. Each measure is done for
configurations (V S) and (∆3).

V S ∆3

Dataset |A0| |Ã0| t |A0| |Ã0| t
CU 17277 8578 0.2 115017 7130 0.3
CW 21936 10409 0.2 115107 29294 0.3
A1500I50 366588 123795 0.6 509107 16398 0.7
A1500I100 1949677 317038 1.9 2635457 14716 2.4
A1500I150 4753812 553348 4.1 6116738 7244 5.3
A3000I50 521408 189364 0.9 721779 37797 1
A3000I100 3015578 534710 3.3 3938741 22982 3.6
A3000I150 8049202 753518 8.2 10192619 26529 8.1
P1500I50 396350 223001 1 556820 243200 1.4
P1500I100 2082839 921163 3.9 2739695 902371 5.3
P1500I150 5104638 1877492 9.6 6383063 1559034 11.2
P3000I50 439947 235735 1.3 619052 282697 1.8
P3000I100 2774874 955921 5.3 3702391 1012000 6.8
P3000I150 7844847 2957148 14.2 10000778 2903615 16.4

Table 2.8: Number of filtered hyperarcs for configurations (V S) and (∆3)

For CU and A datasets, the effect of Lagrangian cost filtering for configura-
tion (V S) reduces the hypergraph size by half as mentioned previously. Using
configuration (∆3), the reduction is more important and the hypergraph after
filtering is smaller than the one obtained from configuration (V S). For CW
and P datasets, it is not clear if using one configuration dominates the other.
Indeed after Lagrangian cost filtering, the sizes of filtered hypergraphs have
the same order of magnitude. Computation times on both configurations are
equivalent.

2.6.2.3 Exact methods

From Section 2.6.2.1 and Section 2.6.2.2, using the hypergraph configuration
(∆3) allows one to obtain a filtered hypergraph of equivalent size compare to
using configuration (V S). In this section, exact methods for hypergraph build
with configuration (∆3) are compare to each other. Results are then compared
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with the results from Section 2.6.1.3. Tables 2.9-2.11 have the same structure
that Tables 2.3-2.5. Reported values are also done in the same way.

no filtering filtering
Dataset tpp ttmip ttdls ttrls tpp ttmip ttdls ttrls
CU 0.1 4.1 0.2 0.6 0.0 0.1 0.1 0.1
CW 0.1 6.2 0.3 0.5 0.1 0.5 0.2 0.2
A1500I50 0.5 181.4 5.6 82.6 0.6 1.5 0.7 0.6
A1500I100 2.1 1852.4 9.6 94.1 2.4 3.7 2.8 2.5
A1500I150 4.7 3312.6 22.6 141.2 5.3 7.0 6.2 5.6
A3000I50 0.7 343.6 7.2 107.3 0.9 3.3 1.2 1.0
A3000I100 3.2 2782.5 22.6 217.0 3.6 6.6 4.4 3.9
A3000I150 7.4 3583.3 49.8 343.0 8.3 13.3 10.0 8.9
P1500I50 0.7 355.3 166.8 191.6 1.2 51.4 32.7 18.3
P1500I100 3.1 2152.4 254.8 344.3 4.9 163.8 44.0 33.9
P1500I150 7.8 3436.3 662.8 1075.5 11.5 624.1 61.8 49.2
P3000I50 0.9 477.6 195.2 225.8 1.5 75.1 34.9 18.3
P3000I100 4.1 2591.3 215.3 297.6 6.1 185.4 37.9 28.5
P3000I150 9.8 3569.3 529.2 736.5 15.9 660.3 115.7 95.8

Table 2.9: Solving time for each exact methods

From results in Table 2.9, the same conclusions are drawn that from Ta-
ble 2.3. Nevertheless, the main difference between the two tables is the com-
putation time required for each method. Indeed without filtering, the average
computation time to solve instances is smaller with configuration (∆3) com-
pared to configuration (V S). When filtering occurs, the computation time
decreases again.

In Table 2.10, the new hypergraph configuration increases the number of
solved instances with filtering compare to results in Table 2.4. When no fil-
tering, the partial pattern enumeration benefits to labelling algorithms. Using
the configuration (∆3) allows one to solve more problem instances on average.

From the comparison of Tables 2.5 and 2.11, the application of the partial
pattern enumeration leads to perform less iterations on average in labelling
algorithms. At the same time, the average number of labels and hyperarcs
becomes smaller.

As outlined in previous tables, the usage of partial pattern enumeration
improves the resolution of the problem. This seems logical since the partial
pattern enumeration enforces item production constraints directly in the hy-
pergraph representation. To establish a fair comparison, the best results from
Section 2.6.1.3 and the one presented here are compared hereinafter. The first
comparison is shown in Table 2.12 and presents the average computation time
required to solve all datasets when the hypergraph is built with configurations
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no filtering filtering
mip dls rls mip dls rls

Dataset nbs nbf nbs nbf nbs nbf nbns nbs nbf nbs nbf nbs nbf nbns
CU (46) 46 4 44 28 39 14 0 46 2 44 2 44 27 0
CW (41) 41 2 39 22 38 17 0 41 0 41 1 41 34 0
A1500I50 (50) 50 2 49 47 32 1 0 50 0 50 2 50 47 0
A1500I100 (50) 26 0 50 46 31 4 0 50 0 50 0 50 45 0
A1500I150 (50) 7 0 50 45 30 5 0 50 0 50 2 50 45 0
A3000I50 (50) 50 1 49 45 30 4 0 50 0 50 2 50 44 0
A3000I100 (50) 15 0 50 47 30 3 0 50 0 50 0 50 48 0
A3000I150 (50) 1 0 50 43 25 7 0 50 0 50 1 50 41 0
P1500I50 (50) 41 20 28 9 25 12 9 43 6 38 0 42 36 6
P1500I100 (50) 27 2 28 21 23 7 20 38 1 40 1 40 39 8
P1500I150 (50) 5 0 25 22 14 3 25 38 0 47 10 47 38 2
P3000I50 (50) 42 18 28 11 24 13 8 42 3 39 0 47 43 2
P3000I100 (50) 20 0 30 18 23 12 20 37 0 44 4 46 41 4
P3000I150 (50) 2 0 26 20 18 6 24 24 1 38 5 39 33 10

Table 2.10: Number of solved instances for all exact methods

dls rls
Dataset nbs nbit nblp/105q nbhp/106q nbit nblp/105q nbhp/106q

CU 29 3.6 0.2 0.1 3.5 0.1 0.1
CW 35 3.5 0.2 0.1 3.5 0.2 0.2
A1500I50 49 6.2 0.3 0.1 6.1 0.1 0.1
A1500I100 45 5.0 0.1 0.0 5.0 0.1 0.0
A1500I150 47 5.3 0.1 0.0 5.3 0.1 0.0
A3000I50 46 6.0 0.7 0.4 5.9 0.4 0.4
A3000I100 48 6.0 0.2 0.1 6.0 0.1 0.0
A3000I150 42 6.8 0.2 0.1 6.6 0.2 0.1
P1500I50 36 7.2 22.4 87.1 7.2 11.1 65.4
P1500I100 38 6.9 16.1 79.6 6.9 8.8 70.0
P1500I150 46 8.0 30.1 102.6 8.0 18.1 142.9
P3000I50 37 6.9 37.4 118.3 6.9 17.2 84.9
P3000I100 43 6.6 27.9 114.3 6.6 18.9 166.5
P3000I150 37 7.5 31.2 94.6 7.5 18.0 118.0

Table 2.11: Number of labels and hyperarcs for both label setting algorithms

(V S) and (∆3). Reported times are in seconds and rounded up. When an
instance is not solved within the one hour time limit, the time limit value is
used to calculation of reported values.

The configuration (∆3) greatly contributes to reducing the computation
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V S ∆3

Dataset ttmip ttdls ttrls ttmip ttdls ttrls
CU 0.3 0.1 0.1 0.1 0.1 0.1
CW 0.7 0.2 0.1 0.5 0.2 0.2
A1500I50 21.8 2.1 1.6 1.5 0.7 0.6
A1500I100 53.6 5.8 3.7 3.7 2.8 2.5
A1500I150 75.4 11.4 7.3 7.0 6.2 5.6
A3000I50 43.6 4.3 3.6 3.3 1.2 1.0
A3000I100 124.9 11.0 7.8 6.6 4.4 3.9
A3000I150 221.2 22.0 13.4 13.3 10.0 8.9
P1500I50 97.4 44.1 24.8 51.4 32.7 18.3
P1500I100 279.3 60.7 44.1 163.8 44.0 33.9
P1500I150 1262.7 90.9 64.7 624.1 61.8 49.2
P3000I50 141.2 42.9 25.3 75.1 34.9 18.3
P3000I100 344.1 51.8 40.9 185.4 37.9 28.5
P3000I150 877.4 160.5 144.2 660.3 115.7 95.8

Table 2.12: Solving time for each exact methods for configurations V S and ∆3

time to solve the problem with (mip) especially for dataset A. For both la-
belling algorithms, the partial pattern enumeration also leads to smaller com-
putation time. In conclusion even if more time is spent to build the hypergraph
with (∆3), this globally decreases the computation time required to solve the
problem. The number of instances solved in each dataset for both methods
are shown in Table 2.13. Again configuration (∆3) contributes to increase the
number of solved instances for all exact methods. The pattern enumeration
benefits the most to the labelling algorithm without strong dominance (rls).
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V S ∆3

mip dls rls mip dls rls
Dataset nbs nbf nbs nbf nbs nbf nbns nbs nbf nbs nbf nbs nbf nbns
CU (46) 46 2 44 6 44 31 0 46 2 44 2 44 27 0
CW (41) 41 0 41 3 41 31 0 41 0 41 1 41 34 0
A1500I50 (50) 48 0 50 7 50 43 0 50 0 50 2 50 47 0
A1500I100 (50) 50 0 50 1 50 49 0 50 0 50 0 50 45 0
A1500I150 (50) 44 0 50 1 50 49 0 50 0 50 2 50 45 0
A3000I50 (50) 49 1 50 13 50 35 0 50 0 50 2 50 44 0
A3000I100 (50) 42 0 50 7 50 43 0 50 0 50 0 50 48 0
A3000I150 (50) 44 0 50 0 50 50 0 50 0 50 1 50 41 0
P1500I50 (50) 40 3 36 0 41 38 7 43 6 38 0 42 36 6
P1500I100 (50) 28 0 39 0 40 39 10 38 1 40 1 40 39 8
P1500I150 (50) 23 0 46 8 47 41 1 38 0 47 10 47 38 2
P3000I50 (50) 40 2 39 1 44 42 4 42 3 39 0 47 43 2
P3000I100 (50) 30 0 44 5 44 40 5 37 0 44 4 46 41 4
P3000I150 (50) 18 0 37 8 38 32 10 24 1 38 5 39 33 10

Table 2.13: Number of solved instances for all exact methods for configurations
V S and ∆3

2.7 Conclusion
In this chapter, a mixed integer programming and a dynamic programming
based exact solution method for the two-dimensional knapsack problem are
presented. The labelling algorithm for the unbounded case is shown to admit
a network flow representation in a hypergraph. To handle the huge size of the
hypergraph, preprocessing techniques such a partial pattern enumeration and
a filtering procedure are developed. The latter fixes hyperarcs by reduced cost
after a Lagrangian relaxation of the production bounds. From there, three
algorithms are derived: piq solving a max-cost flow formulation in the reduced
size hypergraph with side constraints to enforce production bounds; piiq adapt-
ing the dynamic programming recursion to the bounded case, by extending
the state space dynamically and applying filtering; piiiq a variant of the latter
where a strong dominance rule is applied at the expense of using a weaker
filtering procedure. Computational experiments demonstrate the positive im-
pact of preprocessing, filtering and dominance procedures. Obtained results
are even better when partial patterns are enumerated within the hypergraph.
The dynamic programs are shown to provide exact solution to relatively large
size industrial instances in most cases. This chapter used the C-2KP-RE-4-r to
support explanations of designed methods. Nevertheless, methods described
here are generic and can be used to solve variants of guillotine 2KP.
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Chapter 3

Bin-packing problems

A way to remove a part of the initial industrial problem difficulty is to not
consider defects at all. This relaxed the initial problem to the 2BPl. An
advantage of this relaxation is that there is no need to differentiate patterns
from one bin to another since all bins are identical. Defects can then be handled
by using a post-processing methods of an obtained 2BPl solution. The first
half of this chapter details how to solve the 2BPl. In the second half, solving
methods for the 2BPl are modified to be able to handle consecutive 2BPl
instances. This comes a simple observation. In the cutting industry, item sets
have often to be cut consecutively in a given order. This order is derived from
due date of customer orders. For a given batch of items, a cutting problem is
solved with leftover consideration to save raw material from the last cut bin.
The saved bin part can then be used to cut the next item batch. The main
motivation is to write and solve ILP formulations to describe the behavior of
a factory in which different item batches have to be cut one after the other.

3.1 Solving the 2BPl

In this section, the Dantzig-Wolfe reformulation of the 2BPl is first outlined.
Then a diving heuristic to obtain good solutions to this problem is proposed.
Finally, computational results are presented and show that the obtained heuris-
tic solutions are indeed close to optimality.

3.1.1 Formulations of the 2BPl

The standard way to solve the 2BPl is to apply Dantzig-Wolfe decomposition.
The resulting ILP formulation can then be tackled with column generation and
branch-and-price to obtain an optimal integer solution. Such formulation is
explained in the first part of this section. According to the works of Valério de
Carvalho [79], the 2BPl can also be formulated with a pseudo-polynomial size
formulation. This is the second subject discussed in this section.
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3.1.1.1 Standard formulation

The ILP formulation of the 2BPl is every similar to the one for the 2BP. Recall
that in the 2BPl, there are two subproblems to deal with. One related to use
entirely a bin and one related to minimize the residual used length. Let P1

(resp. P2) be the set of valid cutting patterns for standard bins (resp. the last
used bin) in a 2BPl instance. Let integer variable λp be the number of times
a pattern p is used. Since all bins have the same size, the set of patterns P1

and P2 are valid for all bins. Notation aip is the number of items i P I cut
in pattern p P P1 Y P2, wp is the total width of first stage cuts in a pattern
p P P2. An ILP formulation for the 2BPl is the following:

min
ÿ

pPP1

Wλp `
ÿ

pPP2

wpλp (3.1)

s.t.
ÿ

pPP1

aipλp `
ÿ

pPP2

aipλp “ di, @i P I (3.2)

ÿ

pPP2

λp “ 1 (3.3)

λp P N, @p P P1 (3.4)
λp P t0, 1u, @p P P2 (3.5)

Objective function (3.1) ensures to minimize the total used width among
bins. First part of the function is related to complete used width for standard
bins. Second objective part is related to the total used width for last bin.
Constraints (3.2) ensure to cut ordered items. Constraint (3.3) forces to use
exactly one cutting pattern for the last bin. The number of pricing problems
to solve at each column generation iteration is 2. Let π the set of dual vari-
ables associated with constraints (3.2) and ι the dual variable associated with
constraint (3.3). The reduces costs of finding a pattern p are:

ζpλpq “ ´
ÿ

iPI
aipπi `

#

W, p P P1

wp ´ ι, p P P2
(3.6)

If one is interested in solving the 2BP instead of the 2BPl, one has to
remove all references to P2 in formulation (3.1)-(3.5). Consequently, only one
subproblem remains.

The ILP formulation (3.1)-(3.5) is tackled with column generation. Pricing
a new column corresponds to solve to optimality a C-2KP-RE-4-r instance.
From results presented in Section 2.2 and Section 2.4, such pricing problem
can be solved to optimality. Consequently, one can solve the linear relax-
ation of (3.1)-(3.5) with column generation and then starts a branch-and-price
to obtain integer solution. Using the generic branching scheme described in

106 Quentin Viaud



3. Bin-packing problems

Vanderbeck [82], the subproblem has to be updated with side constraints to
respect branching decisions. Nevertheless in practice and according to results
from Section 2.6, the computation time required to solve only one subproblem,
i.e. one C-2KP-RE-4-r instance, may be long. Therefore exact methods for the
C-2KP-RE-4-r are not a good choice in a column generation context since it
will require a huge computation time.

3.1.1.2 Pseudo-polynomial size formulation

From the works of Valério de Carvalho [79], it is possible to write a pseudo-
polynomial size formulation for the 2BPl. For the 1BP, author writes the
1KP as a flow problem in a directed acyclic graph. The pseudo-polynomial
MILP flow formulation of this pricing problem is then rewritten to obtain a
pseudo-polynomial size formulation for the 1BP. More details can be found in
Section 1.2.3.2. Using the same methodology and since the C-2KP-RE-4-r can
be solved to optimality with a pseudo-polynomial size formulation as outlined
in Section 2.2, one can derive a pseudo-polynomial size formulation for the
2BPl.

Since the 2BPl has two subproblems, let define two hypergraphs indexed
by k. k “ 2 stands for the standard bin subproblem and k “ 3 for the last bin
subproblem. Let Gk “ pVk,Akq be the hypergraph associated to subproblem
k P t2, 3u. Let zk be the total number of patterns of type k that are used.
Integer variables xa represent the flow value going through hyperarc a P Ak, k P
t2, 3u. The number of times (multiplicity) of vertex v P Vk, k P t2, 3u is cut
when choosing hyperarc a P Ak, k P t2, 3u is represented by notation napvq.
Notation Akpiq, k P t2, 3u, defines the multiset of hyperarcs whose tail sets
include a boundary vertex representing item i P I. The extended pseudo-
polynomial size ILP formulation for the 2BPl is given by:

minWz2 ` z3

ÿ

aPĀ3

waxa (3.7)

s.t.
ÿ

aPΓ´pvq

xa ´
ÿ

a1PΓ`pvq

na1pvqxa1 “ 0, @v P Vkzttk Y I YHu, @k P t2, 3u

(3.8)
ÿ

aPΓ´ptkq

xa “ zk, @k P t2, 3u (3.9)

ÿ

kPt2,3u

ÿ

aPAkpiq

napiqxa “ di, @i P I (3.10)

z3 “ 1, z2 P N (3.11)
xa P N, @a P Ak, @k P t2, 3u (3.12)

The ILP formulation (3.7)-(3.12) is derived from the one used for the 2KP
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defined in Section 2.2. Objective function (3.7) minimizes the number of pat-
terns for standard bins and the length of the pattern selected for the last bin.
The contribution to the objective function is given by the sum of the widths wa
of hyperarcs a P Ā3, with Ā3 the set of hyperarcs associated to cuts performed
only at the first cutting stage. Note that only one pattern can be created for
the last bin subproblem according to constraint (3.11) and problem definition.
Constraints (3.8) ensure flow conservation in both hypergraphs. Constraints
(3.9) bound the flow quantity in both hypergraphs. Constraint set (3.10) en-
sure that the right amount of items i P I are cut among all patterns. Note that
in order to solve the 2BP only, the parts of the formulation related to k “ 3
have to be omitted. The optimal solution of a 2BPl instance can be found
by solving the formulation (3.7)-(3.12) using a MILP solver. Note that, since
this formulation is based on the hypergraph representation, a huge hypergraph
will induce a huge formulation which may be not solved within a reasonable
amount of time.

3.1.2 Diving heuristic with non-proper columns

Using Dantzig-Wolfe decomposition or a pseudo-polynomial size formulation
for the 2BPl does not seem to be a pertinent choice to solve large instances.
However one can exploit the block angular structure before applying Dantzig-
Wolfe decomposition and apply a diving heuristic. To achieve primal feasibility,
the basic diving heuristic requires to use so-called proper columns (i.e. variables
that could take a non-zero value in an integer solution of the residual master
problem). In the 2BPl, a variable λp, p P P1 Y P2 is proper if aip ď di, @i P
I. Therefore, in each pricing subproblem, there are upper bounds on the
number of copies of items in the cutting pattern. In the presence of these
upper bounds, the pricing problem becomes significantly harder to solve to
optimality as discussed in Chapter 2. A possible solution to this issue is to
solve the pricing problem only heuristically using algorithms from Section 2.5.
A second approach is to use diving heuristics with non-proper columns. Cintra
et al. [11] have shown that the lower bound obtained by solving the master
problem with non-proper columns is close to the one obtained when using
exclusively proper columns. As the quality of diving heuristics depends mainly
on the strength of the master problem bound, it is expected that a "non-
proper" diving heuristics will be efficient to solve the 2BPl.

3.1.2.1 "Non-proper" diving heuristic

The proposed "non-proper" diving heuristic proceeds as the standard diving
heuristic previously detailed in Section 1.2.4. Remember that at each diving
iteration, the residual master problem (RMP) is solved by column generation.
In the proposed modified diving heuristic, columns are priced thanks to the
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unbounded dynamic program only described in Section 2.1.1. Both proper and
non-proper columns may be generated. However a partial solution can only
be augmented with proper columns. Therefore, given the optimal fractional
solution λ̄ of the RMP after column generation, only a variable λ̄p associated
with a proper column has to be selected. If such variable exists, the variable
is heuristically fixed to an integer value. If there is no such proper variable,
another column λp is selected. This one has the smallest reduced cost with
respect to the optimal dual solution of the RMP among all proper columns
contained in the current RMP and proper columns generated by solving the
bounded pricing problem with heuristics. The selected column is then added
to the partial solution with the value equal to the nearest non-zero integer.
Note that if λ̄p “ 0 then λp “ 1 is included in the partial solution.

The 2BPl has a special structure regarding its subproblems. Standard bin
subproblem solutions have a constant contribution to the objective function
whereas last bin subproblem solutions are more flexible. Fixing early a column
related to a pattern p P P2 can have a negative impact on the quality of the final
master solution as shown by preliminary experiments. Therefore, the diving
heuristic is slightly modified to handle this particularity. Cutting patterns
p P P2 are never added to the partial solution before patterns p P P1. As
there is exactly one pattern p P P2 in any feasible solution, once it is added
to a partial solution, the latter should become complete. Therefore each time
the partial solution is augmented with a cutting pattern from P1, a heuristic
starts to check whether the remaining item copies can be cut into one plate
of dimension W ˆH. If it is possible, this produces a cutting pattern p P P2

including all remaining item copies and minimizing heuristically its width wp.
Then this pattern is used to complete the solution, and the diving heuristic
terminates. This approach of partial solution completion can be extended to
be less dependent of the columns fixed during diving. Each time a partial
solution is augmented, the whole residual 2BPl instance is heuristically solved.
Calls to these heuristics are done iteratively for each plate until the complete
solution of the residual problem is obtained. This modification can be seen as
a combination of diving and pricing heuristics.

The diving heuristic is formally represented in Algorithm 6 and starts by
calling NON-PROPER-PURE-DIVING(d,H,H,P˚). The pattern set P˚ de-
scribes an initial solution to the 2BPl and can be obtained as described in
Section 3.1.3.1. The first step of the algorithm updates the partial fixed solu-
tion and the residual demand using previous found pattern p (line 1). After
fixing of pattern p, the completion heuristic starts (lines 2-4). A boolean
parameter lastP lateOnly is used to set how to evaluate the residual 2BPl in-
stance, building only a solution for the last bin or a complete solution to the
residual instance. If this solution improves on the best found one, it is stored.
After completion heuristic, the current residual master problem is solved with
column generation and unbounded dynamic programming. The obtained frac-
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tional solution after convergence is stored in λ̄. The set of patterns related
to proper columns Pprop is then extracted from columns in fractional solu-
tion λ̄ (lines 5-6). If there is at least one proper pattern in Pprop, the one of
value closest to its nearest non-zero integer value is fixed. This is achieved
using operator rλ̄pu (line 7). In the case of there are no proper columns in the
fractional solution λ̄p, they should be retrieved elsewhere. Firstly, the set of
proper columns PRMP from the RMP is obtained. Secondly, a set of heuristic
patterns Pheur for subproblem P1 is built. The fixed pattern is then the one
of best reduced cost among PRMP Y Pheur (lines 8-10). Once a pattern p1 to
fix has been found, the NON-PROPER-PURE-DIVING recursively calls itself
(line 11).

Algorithm 6: NON-PROPER-PURE-DIVING(d, p,Ppart,P˚)
1 if p ‰ H then d1 Ð d´ ap, Ppart Ð Ppart Y tpu
2 Pr Ð COMPLETION-HEURISTIC(d1, lastP lateOnly)
3 if d´

ř

p1PPr ap
1

“ 0 and cost pPpart Y Prq ă costpP˚q then
4 P˚ Ð Ppart Y Pr

5 solve the RMP with demand bounds d1 by column generation and
record solution λ̄

6 Pprop Ð tp P P1 : λ̄p ą 0, ap ď d1u
7 if Pprop ‰ H then p1 Ð argminpPPpropt| λ̄p ´ rλ̄pu |u else
8 PRMP Ð set of proper patterns P1 in the RMP
9 Pheur Ð set of heuristic solutions to the pricing problem P1

10 p1 Ð argminpPPRMPYPheurtc̄pu

11 NON-PROPER-PURE-DIVING(d1, p1,Ppart,P˚)

The "non-proper" diving with Limited Discrepancy Search (LDS) is given
in Algorithm 7 and starts by calling NON-PROPER-LDS-DIVING(d,H,H,P˚,H, 0).
First steps of the algorithm are the same as the one in NON-PROPER-PURE-
DIVING. The main difference is related to the Limited Discrepancy Search.
Instead of fixing a proper column in the fractional solution λ̄ of the RMP or
a heuristic one, a check has to be done regarding the tabu list Z (lines 3-
6). In other words, one needs to ensure that at least one non tabu column
is produced by the pricing problem heuristic. This can be achieved by gener-
ating a sufficient number of different cutting patterns. The size of set Pheur
at line 6 has to be strictly larger than the current size of the tabu list. The
NON-PROPER-LDS-DIVING is parametrized with a maximum discrepancy
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maxDisc and a maximum depth maxDepth.

Algorithm 7: NON-PROPER-LDS-DIVING(d, p,Ppart,P˚,Z, depth)
1 execute lines 1-6 from Algorithm 6
2 do
3 if PpropzZ ‰ H then p1 Ð argminpPPpropzZt| λ̄p ´ rλ̄pu |u else
4 PRMP Ð set of proper patterns P1 in the RMP
5 Pheur Ð set of heuristic solutions to the pricing problem P1

6 p1 Ð argminpPPRMPYPheurzZtc̄pu

7 NON-PROPER-LDS-DIVING(d1, p1,Ppart,P˚,Z, depth` 1)
8 Z Ð Z Y tp1u
9 while |Z| ď maxDisc and depth ď maxDepth

Note that if the 2BP has to be solved, the only modification to perform on
Algorithms 6 and 7 is to change how patterns are created with the completion
heuristic.

3.1.2.2 Completion heuristic

The completion heuristic is a key point in Algorithms 6 and 7. Its aim is to
provide a set of valid cutting patterns such that combining this set with a
partial solution gives a valid solution for the 2BPl. This heuristic is a modified
version of a list heuristic for the 2BP and uses heuristics for the 2KP.

The general framework of the completion heuristic is to take iteratively
each bin, build a valid pattern for it and repeat those steps while there is at
least an item to cut. An overview of the procedure is given in Algorithm 8. At
each iteration, the hypergraph corresponding to the bin is selected. Then two
valid patterns are created using the evolutionary algorithm and the hypergraph
constructive heuristic, mentioned in Section 2.5. Each heuristic returns one
feasible pattern. The best one among the two is then kept (lines 4-6). The
residual demand, area of item to cut and found pattern set are then updated
(lines 6-7). When all items are cut, all found patterns are marked as a valid
solution for the subproblem P1. The last found pattern is however marked as
a valid solution for the subproblem P2 (lines 10-11). From a practical point
of view, the only difference between creating a pattern related to P1 or P2 is
based on the way to evaluate its value. In the first case, its value is just the
total area of cut items in it. In the second case, its value is the total area of
cut items but also takes into account the total cut length. Clearly, one can
convert a pattern related to P1 in a pattern for P2. This is why the two last
steps of the algorithm mark all patterns as belonging to P1 and then only the
last created one to P2. The behaviour of the completion heuristic depends on
the input boolean parameter lastP lateOnly. When it is set to true, only one
pattern for the last bin subproblem is created and the method exits returning
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only this pattern.
Algorithm 8: COMPLETION-HEURISTIC(d, lastP lateOnly)
1 Pr ÐH, AÐ

ř

iPI wihidi
2 GÐ hypergraph related to P1

3 do
4 if A ď W ˆH or lastP lateOnly then GÐ hypergraph related to

P2 pÐ pattern from evolutionary algorithm on bin pW,Hq with
demand d

5 p1 Ð pattern using hypergraph heuristic on G
6 if valpp1q ą valppq then pÐ p1 dÐ d´ ap, AÐ A´

ř

iPI wihia
p
i

7 Pr Ð Pr Y tpu
8 if lastP lateOnly then break
9 while d ‰ 0

10 mark all patterns in Pr as related to P1

11 mark the last inserted pattern in Pr as related to P2

12 return Pr

3.1.3 Initial bounds

To avoid starting diving heuristic and hypergraph building for easy instances,
initial primal and duals bounds can be first computed for the 2BPl. If one
finds a primal bound equal to a dual bound, one can state that optimality is
reached and stop immediately. If not then one can use the primal solution to
initialize columns for the 2BPl. A good primal bound also helps the diving
heuristic by avoiding the exploration of non promising branches in the diving
tree. This section describes both primal and dual bounds for the 2BPl but
also valid for the 2BP.

3.1.3.1 Initial primal bounds

A direct way to obtain a primal solution for the 2BPl is to use the evolutionary
algorithm described in Section 2.5.2 iteratively for each bin until there is no
more items to cut. This heuristic is called peaq.

Alternatively one can use standard bin-packing list heuristics described in
Section 1.4.3. These heuristics run in polynomial time and produce a feasible
packing for the 2BPl. To exploit the fast running time of list heuristics, they
are used as a subroutine in a metaheuristic called piubq. This one combines
both list heuristics and the evolutionary algorithm. Let consider 10˚|I| random
permutations of set Ī. List heuristics mentioned in Section 1.4.3 are applied
for each of these permutations. These heuristics can be used in several ways.
The first option is to fill one bin at a time, the next bin is opened when
there are no items in the current list that fit into the current bin. The second
option is to open all bins at the same time and fill them. A third option is to
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implement the two-phase heuristics described in Section 1.4.3.2. At the same
time, an extra bin-packing solution is obtained by solving iteratively 2KPs
with the evolutionary algorithm. For the latter, 10 initial random populations
are generated and each of them is improved during |I|{10 iterations.

Using the three described options as well as the evolutionary algorithm, a
set of feasible bin-packing solutions for each random permutation of set Ī is
obtained. The best solution providing a valid primal bound for the 2BPl is
first recorded. Then, among all bin-packing solutions, the bin of smallest waste
is selected and added to a partial bin-packing solution. The whole process is
then reiterated on the residual problem. The algorithm terminates when there
are no more items to cut.

3.1.3.2 Initial dual bounds

To have an estimation of the quality of an initial primal bound, bin-packing
dual bounds are computed. If the gap between dual and primal bounds is
small, this gives a good assessment of the value of an optimal solution.

A trivial dual bound for the 2BPl is obtained in the same fashion as the
2BP. Since all bins are identical in a 2BPl instance, a trivial dual bound on
the total length of a solution is given by:

DB1 “ W ˆ

Zř

iPI wihidi
W ˆH

^

(3.13)

This bound does not take into account the used length of the last bin. It
can be strengthen by computing a dual bound as done for the 2SP:

DB2 “

Rř

iPI wihidi
H

V

(3.14)

This bound gives an approximation of the value of an optimal solution.
Clearly these dual bounds are dominated by the one obtained using column
generation.

3.1.4 Computational experiments

This section reports results for the different ways to solve the 2BP and 2BPl.
Datasets used for experiments are the ones from the literature, named C1´10.
They were introduced in Berkey and Wang [7] and Martello and Vigo [55].
More details can be found in Section 1.4.1. To ease reading, instances in
datasets C1 ´ 10 are grouped by number of items |I|. The notation C ´ I20
refers to all instances containing 20 items among datasets C1 ´ 10. Experi-
ments also consider real-world instances. Their configuration is the same as
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the one detailed in Chapter 2. A reminder is given here. The bin size is
set to p3000, 1500q and p6000, 3000q. The number of different items |I| in an
instance can be 50, 100 and 150. The average demand of an item is two.
When the bin size is p6000, 3000q, the average maximum item size is around
p2000, 1100q, its average minimum size is around p500, 200q. For bin size equal
to p3000, 1500q, item maximum and minimum dimensions are divided by half.
A dataset named B6000I50 corresponds an instance with B “ p6000, 3000q and
|I| “ 50. Respectively, a dataset named B3000I150 corresponds an instance
with B “ p3000, 1500q and |I| “ 150. Each dataset contains 50 instances,
this gives a total of 300 instances. Datasets are grouped by their number of
items |I|. The notation B ´ I50 refers to all instances containing 50 items in
datasets B3000I50 and B6000I150.

The goal of experiments for the 2BP and 2BPl is twofold: piq to evaluate
the impact of the pricing problem with partial enumeration on lower and upper
bounds produced with the column generation; piiq to evaluate the quality of
the solutions produced by different variants of the diving heuristic and compare
them to heuristics described in Section 3.1.3.1.

All experiments are run using a 2.5 Ghz Haswell Intel Xeon E5-2680 with
128Go of RAM. CPLEX 12.6 is used to solve linear programs. The time limit
to solve one instance is set to one hour.

3.1.4.1 Impact of the partial enumeration

From the hypergraph representation defined in Chapter 2, it has been outlined
that using different configurations to build it gives different results regarding
the efficiency of exact methods. In practice, the partial pattern enumeration
strengthens the item production bounds with modification of the hypergraph
structure. The goal of this section is twofold. The first one is to check the
impact of the partial pattern enumeration when solving pricing problems in a
column generation context for 2BP and 2BPl. The second is to validate that
solving the unbounded pricing problem instead of the bounded one does not
degrade the quality of the master linear relaxation after column generation
convergence.

Remember that the configuration of the partial enumeration is charac-
terized by four values: ∆size

w , ∆size
h , ∆diff

w , and ∆diff
h . Three ways configu-

rations are retained. The first one corresponds to the hypergraph building
using all basic simplifications and no pattern enumeration: ∆1 “ p∆size

w “

0,∆size
h “ 0,∆diff

w “ 0,∆diff
h “ 0q. The second one corresponds to the hy-

pergraph building with enumeration of items with the same hi for odd cut-
ting stages and with the same wi for even cutting stages: ∆2 “ p∆size

w “

1000,∆size
h “ 1000,∆diff

w “ 1,∆diff
h “ 1q. The last setting corresponds to the

hypergraph building with enumeration of items with the same hi for odd cut-
ting stages and enumeration of items with different wi at the second cutting
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stage: ∆3 “ p∆
size
w “ 1000,∆size

h “ 1000,∆diff
w “ 8,∆diff

h “ 1q. The retained
configurations are the one already described in Section 2.6.2.

Results are reported in Tables 3.1 for the 2BP and in Table 3.2 for the
2BPl. In both tables, the first column reports the instance class and its total
number of instances between brackets. The column #pp shows the number
of instances solved to optimality in preprocessing using the fast heuristic peaq
from Section 3.1.3.1. Optimality is proved if the obtained primal solution
value is equal to the value of a trivial dual bound from Section 3.1.3.2. The
next three columns present results for the variant cgmip. For this variant,
pricing problems are solved with MILP using hypergraph and configuration
∆1. The reported values are the number of instances not solved by peaq for
which the column generation converged within one hour, the average time t
and the average primal-dual gap gap in percentage from a best known solution.
Next three columns give the average gap gap#opt for other three variants (∆1,
∆2, ∆3) of column generation using unbounded dynamic program as pricing
oracle. In order to have a correct comparison, averages in columns gap#opt are
calculated only for instances for which the variant cgmip converged. Note that
the column generation variants with dynamic programming as pricing oracle
converged within the time limit for all instances. Thus in columns gapall
and tall, the average gap and the average computation time are computed
among all instances not solved optimally by heuristic peaq for all hypergraph
configurations. Column generation is initialized with columns from primal
solution. Reported times are in seconds and round-up. In Table 3.2 column
(#pp) is omitted since no instances are solved in preprocessing.

cgmip gap#opt,% gapall, % tall
Instances #pp #opt t gap, % cg∆1 cg∆2 cg∆3 cg∆1 cg∆2 cg∆3 cg∆1 cg∆2 cg∆3

C-I20 (100) 63 37 71 6.9 8.7 8.4 8.3 8.7 8.4 8.3 0.2 0.1 0.1
C-I40 (100) 37 52 460 2.6 3.1 2.9 2.9 6.0 5.8 5.8 0.6 0.6 0.6
C-I60 (100) 35 32 853 0.9 1.3 1.1 1.1 3.3 3.1 3.1 1.4 1.3 1.3
C-I80 (100) 29 24 760 0.7 1.0 0.8 0.8 2.9 2.8 2.8 2.7 2.6 2.5
C-I100 (100) 31 20 705 0.5 0.7 0.6 0.6 2.9 2.8 2.8 4.8 4.8 4.7
B-I50 (100) 76 0 - - - - - 13.8 13.7 13.7 1.8 1.7 1.8
B-I100 (100) 61 0 - - - - - 6.9 6.9 6.9 12.3 12.0 12.5
B-I150 (100) 50 0 - - - - - 4.7 4.7 4.7 52.8 47.7 51.3

Table 3.1: Comparison of different column generation variants for the 2BP

From Table 3.1, a direct observation is that the dynamic program is orders
of magnitude faster than MIP for solving the pricing problem. The partial
enumeration increases the running time of column generation only marginally.
In the same time, performing an enumeration with configuration ∆3 allows one
to obtain a lower bound which is close to the "proper" lower bound, at least
for the easiest instances that can be tackled by cgmip. The "proper" bound for
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cgmip gap#opt,% gapall, % tall
Instances #opt t gap, % cg∆1 cg∆2 cg∆3 cg∆1 cg∆2 cg∆3 cg∆1 cg∆2 cg∆3

C-I20 (100) 62 239 2.0 3.9 3.2 3.1 3.8 3.1 3.0 0.3 0.4 0.3
C-I40 (100) 58 1391 1.2 1.8 1.5 1.5 2.7 2.4 2.4 1.6 1.6 1.6
C-I60 (100) 25 881 0.6 0.9 0.7 0.7 1.8 1.6 1.6 3.6 3.8 3.7
C-I80 (100) 19 616 0.6 0.8 0.6 0.6 1.4 1.3 1.3 6.4 6.6 6.4
C-I100 (100) 15 562 0.5 0.6 0.6 0.6 1.3 1.1 1.1 10.6 11.4 10.9
B-I50 (100) 0 - - - - - 1.4 1.2 1.2 6.8 6.3 6.7
B-I100 (100) 0 - - - - - 0.7 0.7 0.7 43.0 37.2 40.6
B-I150 (100) 0 - - - - - 0.6 0.5 0.5 129.6 109.6 116.7

Table 3.2: Comparison of different column generation variants for the 2BPl

larger instances is not obtained within the time limit. Consequently, it is not
possible to measure how close is the lower bound obtained by cgdp∆3 to the
"proper" one. Note that at least a third of the instances in each dataset are
solved to optimality in preprocessing for literature instances, it is a half for
real-world dataset. Remark also that the shown gap is high in practice. This
is related to the flat objective function of the 2BP.

From Table 3.2, the same observations about dynamic program is done.
It is still faster than using MIP solver for pricing problems. More advanced
pattern enumerations also lead to a lower bound which is close to the "proper"
lower bound.

Application of the partial enumeration technique significantly increases the
quality of lower bounds obtained by column generation at virtually no cost.
Therefore, it offers a good trade-off between the quality of lower bounds and the
column generation running time. It can also be seen that column generation is
slower for real-life instances. This is logical as the running time of the dynamic
program depends on the plate size, which is larger for the instances in datasets
B.

3.1.4.2 Comparison of exact methods and heuristics

In this section, an estimation of the impact of the partial enumeration on
the pseudo-polynomial formulation (3.7)–(3.12) is done. From results of Mar-
tin et al. [56], in the absence of constraints (3.10), this formulation has the
integrality property. Thus the value of its linear programming relaxation is
equal to the lower bound obtained by column generation with "non-proper"
columns. As outlined in Section 3.1.4.1, the latter may be increased using
partial enumeration. Thus, the strength of the linear programming relaxation
of formulation (3.7)–(3.12) based on partly enumerated hypergraph may be
improved too. Moreover, variables x may have coefficients greater than one
if there are hyperarcs which correspond to cutting several copies of one item,
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as in the case of cutting a meta-item. Thus, partial enumeration enables the
possibility of adding knapsack cutting planes when solving the formulation by
a MIP solver.

The results for direct solution by the CPLEX MIP solver of formulation
(3.7)–(3.12) with different settings of the partial enumeration of hypergraph are
shown in Tables 3.3 and 3.4. The first reported value is the number of instances
solved in preprocessing #pp. Then for each hypergraph configuration, the
number of remaining instances solved in one hour #opt with MIP formulation
is reported. In the last part of the table, the average time t required to solve
all instances is reported. If an instance is not solved within the time limit, the
time limit value is used in the calculation of the average time. Reported times
are in seconds and round-up. In Table 3.4 column (#pp) is omitted since no
instances are solved in preprocessing.

#opt t
Instances (#) #pp MIP∆1 MIP∆2 MIP∆3 MIP∆1 MIP∆2 MIP∆3

C-I20 (100) 63 37 37 37 0.6 0.4 0.4
C-I40 (100) 37 60 61 61 126.7 87.9 92.3
C-I60 (100) 35 60 62 62 283.8 164.8 171.7
C-I80 (100) 29 60 62 62 514.8 446.6 457.3
C-I100 (100) 31 56 57 56 747.2 646.5 646.3
B-I50 (100) 76 3 4 4 807.3 777.8 781.3
B-I100 (100) 61 0 0 0 1408 1407.9 1407.9
B-I150 (100) 50 0 0 0 1810.3 1809.8 1809.9

Table 3.3: Comparison of hypergraph-based MIP formulations for the 2BP
with different partial enumeration

#opt t
Instances (#) MIP∆1 MIP∆2 MIP∆3 MIP∆1 MIP∆2 MIP∆3

C-I20 (100) 91 98 97 434.8 237.2 253.7
C-I40 (100) 72 74 75 1238.6 1220.9 1196.6
C-I60 (100) 53 59 57 1862.9 1827.1 1823.7
C-I80 (100) 48 47 47 2050.4 2059.2 2063.4
C-I100 (100) 40 42 41 2287.8 2212.7 2234
B-I50 (100) 0 0 0 3600 3600 3600
B-I100 (100) 0 0 0 3600 3600 3600
B-I150 (100) 0 0 0 3600 3600 3600

Table 3.4: Comparison of hypergraph-based MIP formulations for the 2BPl
with different partial enumeration

According to the results in Table 3.3, 2BP can be solved to optimality with
hypergraph based MIP formulations. When more patterns are enumerated
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in the hypergraph, the average computation time decreases. Nevertheless, it
does not seem to be the best method to find solution for B datasets. Indeed
among instances not solved in preprocessing, almost none of them are solved
with MIP formulations. The same conclusions are made from results reported
in Table 3.4. The pseudo-polynomial size ILP formulation using hypergraph
is a possible way to solve both 2BP and 2BPl. When more patterns are
enumerated, the average computation time decreases and more instances are
solved. However, the improvement is not radical. One can also notice that,
when the 2BP and the 2BPl are solved, B datasets are significantly harder to
solve. As a general observation, the 2BPl is much harder to solve compare to
the 2BP.

Since exact methods do not guarantee to solve all problem instances in
a reasonable amount of time, heuristics are preferred. Results using some of
them are discussed hereinafter. In this experiments, five heuristics are used:

• evolutionary algorithm peaq;

• algorithm piubq, which combines evolutionary algorithm with list heuris-
tics;

• a diving heuristic denoted pdivHq without partial enumeration in the
pricing problem and with simple evaluation of the residual problem in
the diving (parameter lastP lateOnly “ true);

• a diving heuristic denoted pdivq with partial enumeration ∆3 in the pric-
ing problem and with simple evaluation of the residual problem in the
diving (parameter lastP lateOnly “ true);

• a combination of the diving heuristic and the evolutionary algorithm with
complete evaluation of the residual problem in the diving (parameter
lastP lateOnly “ false), called pedivq.

The first two heuristics are presented in Section 3.1.3.1. The other three
heuristics are described in Section 3.1.2. Variants with Limited Discrepancy
Search for the last two heuristics and denoted as pdiv32q and pediv32q are also
used. In these variants, the backtrack is allowed up to the depth of 2 of the
search tree and the maximum size of the tabu list is 3. This LDS parametri-
sation results in at most ten dives in the search tree. Diving heuristics are
initialized with the solution produced by heuristic peaq.

In Tables 3.5 and 3.6, the average gap gap in percentage from a best known
solution and the average time t for all heuristics and their variants are reported.
Times are in seconds and round-up.

For the 2BP and from Table 3.5, the initial heuristic peaq provides good re-
sults in a short computation time. The combination of peaq with list heuristics
obtains better results but require more computation time. From a global point
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ea iub divH div div32 ediv ediv32

Instances gap t gap t gap t gap t gap t gap t gap t
C-I20 (100) 1.13 1 0.20 1 0.82 1 0.78 1 0.00 1 0.78 1 0.00 1
C-I40 (100) 2.63 1 1.24 3 1.80 1 1.94 1 1.27 1 1.94 1 1.27 1
C-I60 (100) 3.47 2 1.77 8 1.86 2 2.02 2 1.06 2 2.02 2 1.06 2
C-I80 (100) 3.76 3 1.29 21 1.28 3 1.14 3 0.28 4 1.14 3 0.28 4
C-I100 (100) 3.79 4 1.25 39 0.75 5 0.79 6 0.45 7 0.79 5 0.45 7
B-I50 (100) 0.08 2 0.08 3 0.08 2 0.08 2 0.08 3 0.08 2 0.08 2
B-I100 (100) 0.04 7 0.00 24 0.04 12 0.04 13 0.00 23 0.04 13 0.00 23
B-I150 (100) 0.06 21 0.00 128 0.06 47 0.03 50 0.03 83 0.03 48 0.03 84

Table 3.5: Comparison of heuristics for the 2BP

ea iub divH div div32 ediv ediv32

Instances gap t gap t gap t gap t gap t gap t gap t
C-I20 (100) 3.47 1 2.11 1 2.13 1 2.20 1 1.68 1 1.88 1 1.61 1
C-I40 (100) 3.65 1 1.80 4 1.43 2 1.12 2 0.53 5 0.84 3 0.38 10
C-I60 (100) 3.68 2 1.80 13 1.22 4 0.95 4 0.31 10 0.65 9 0.19 30
C-I80 (100) 4.18 3 1.97 32 1.00 6 0.66 6 0.17 20 0.33 19 0.07 77
C-I100 (100) 4.47 4 1.84 64 0.57 10 0.60 10 0.13 34 0.32 38 0.05 178
B-I50 (100) 2.35 2 2.24 16 1.10 12 0.63 13 0.12 63 0.32 17 0.00 95
B-I100 (100) 1.90 7 1.80 179 0.61 99 0.34 104 0.09 662 0.18 154 0.00 1077
B-I150 (100) 1.54 21 1.46 750 0.43 342 0.15 347 - 3600 0.07 581 - 3600

Table 3.6: Comparison of heuristics for the 2BPl

of view, diving heuristics outperform constructive ones. When looking closer,
heuristics pdivHq and pdivq are close to each other both in term of computation
time and gap. It seems that using the diving heuristic with total completion
heuristic pedivq is not improving compare to pdivq. Moreover, using diving
heuristics with LDS achieve the best results. For literature datasets, computa-
tion time of all diving heuristics are pretty much the same, so the diving with
LDS is the best method to keep. Nevertheless, for B datasets, gaps are close
to each other for all methods. It seems that their is no real gain to obtain to
select diving with LDS in that case. Solution quality from initial heuristic peaq
is enough in that case.

On the opposite from Table 3.6 for the 2BPl, the diving heuristic is clearly
the method to choose. Indeed the initial heuristic peaq is the fastest method
but produce solutions of worst quality. Its variant piubq improves the solution
quality at the expense of much larger running time. However, it struggles
with B datasets, as the solution improvement over peaq is very small. Diving
algorithms pdivHq and pdivq significantly outperform heuristic piubq both in
terms of running time and solution quality. The partial enumeration tech-
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nique increases the effectiveness of the diving heuristic for most instances at
a very small cost. This technique is especially useful for large instances. The
combination pedivq of the diving heuristic and the evolutionary algorithm fur-
ther improves the quality of the obtained solutions at a cost of a reasonable
increase of running time except for instance with |I| “ 150. The best solutions
on average are obtained by diving heuristics with Limited Discrepancy Search.
However the running time of these heuristics is quite long especially for large
instances. It is also not possible to solve within one hour the instance with the
largest number of items. Thus, the heuristics pdivq and pedivq offer the best
tradeoff between solution quality and running time.

3.2 Solving consecutive 2BP and 2BPl

The subject of this chapter is to solve the 2BPl for a given item batch. A more
global problem and also to benchmark 2BPl solving methods is to consider
the problem in its consecutive variant. This variant is related to the factory
organization where different item batches are cut one after each other during
the day. This is the main topic of this section. The problem is first described
and its formulations given. Then the "non-proper" diving heuristic is adapted
for this problem and results are outlined on real-world instances.

3.2.1 Problem description

The consecutive 2BPl has two uncommon specificities. The first is that pro-
duction is decomposed into item batches. This is due to the fact that there
is a limited intermediate storage area between the cutting and assemblage
production units. Thus the set of glass pieces to produce during a day is pre-
decomposed into batches such that each batch fits to the storage. Batches are
cut in a predetermined specific order that takes into account the due dates of
customer orders. In a given batch, the exact specified quantity of ordered glass
pieces has to be cut. It is forbidden to have overproduction or underproduc-
tion. The number of plates is always sufficient to cut all ordered pieces. The
second specificity is the way leftovers are handled. There is no specific area
to store leftovers from previous cutting patterns, mostly because there is no
standard size for the orders, and organization costs that would be entailed are
expected to be larger than the cost of the raw material saved by reusing all
leftovers. Therefore, almost all leftovers are recycled, and cannot be used for
subsequent batches. Only one leftover piece is kept from each batch: the one
related to the last plate used. This subplate remains on the cutting device.
Its height must be equal to the height of the large plates. Figure 3.1 depicts
feasible/infeasible solutions.
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I1 I1 I1 Y I2 I2 I2 I2

(a)

I1 I1 I1 I2 I2 I2 I2

(b)

Figure 3.1: Representation of a solution for two batches I1 and I2. The first
solution (a) is infeasible since it is not allowed to mix items from different
batches in a cutting pattern. The second solution (b) is feasible. The leftover
from batch I1 is used to cut items from batch I2.

Formally a consecutive 2BP (C-2BP) is a modified version of the 2BP. A
problem instance is represented by a pair D “ pI, Bq, where I “ tI1, . . . , Inu
is an ordered set of batches to cut and B is the standard bin to use of fixed
width and height pW,Hq. Bins are assumed to be identical and in a quantity
large enough to cut all items in I. Each item i has a fixed width and height
pwi, hiq and has to be cut exactly di times, Each batch is cut in the order in
which it occurs in I. The problem objective is to minimize the number of bins
to use in order to cut all batches. Since to cut each item batch, the problem
is to minimize the number of bins, solving an instance of C-2BP is equivalent
to solve one 2BP for each batch in I.

The consecutive 2BPl (C-2BPl) is an extension of C-2BP. A problem in-
stance is still represented by a pair D “ pI, Bq, where I “ tI1, . . . , Inu is an
ordered set of batches to cut and B is the standard bin to use of fixed width
and height pW,Hq. Bins are assumed identical and in a quantity large enough
to cut all items in I. Each item i has a fixed width and height pwi, hiq and
has to be cut exactly di times, Each item batch has to be cut in the order in
which it occurs in I. Problem objective is to minimize the number of bins to
use in order to cut all batches. To reduce the loss of material, it is allowed
to use the leftover from the last cut bin of the previous batch to initialize the
current batch. Assume a batch Is, s ą 2 to process. Possible bins to use are
the residual bin from batch s´1 of given size W̃ ˆH and an unlimited number
of standard bins of size W ˆH. Since leftovers are considered, the total used
width in the last bin has to be minimized. Contrary to C-2BP, obtained so-
lutions for each batch for the C-2BPl are linked together. Indeed the solution
related to a given batch Is, s ą 2 is dependant of the solution obtained for
batch Is´1.

The main difference between C-2BP and C-2BPl is the possibility to use
residual plates from the previous batch. From a practical point of view, dis-
carding residual plates in the C-2BP is interesting since it requires less handling
from the operator. It clearly implies to throw away a large quantity of raw
material. Considering residual plates in the C-2BPl requires more handling
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from the operator but may lead to save more raw material.
Such problem is not very common but an application has been proposed in

Birgin et al. [8]. Authors consider a non-guillotine multiperiod 2BPl problem
where items have to be cut at different time period and with varying costs
from one period to another. Leftovers from previous period are available to
cut items in current and next periods. The described problem aims to minimize
the overall cost of cut items and maximizing the value of usable leftovers at the
last time period. A parallel can be drawn with the C-2BPl. Firstly the notion
of period in problem described in Birgin et al. [8] is similar to the notion of
item batches. Batches are cut one after each other and thus this corresponds to
a period. Secondly it is possible to use leftovers between periods. Nevertheless
there exist some differences. Indeed in the C-2BPl, each item among all batches
has no varying cost. The main of objective for each period is to find feasible
cutting patterns to cut all items in considered batch. Moreover to avoid a too
important storage of leftovers and to reduce handling from operators, the C-
2BPl only considers the last residual plate from the previous period as usable
to cut batch for the current period.

3.2.2 Problem formulations

From the definition of C-2BP and C-2BPl, direct ILPs can be written using
the existing ones for the 2BP and 2BPl. Since no residual bin parts are carried
from one batch to another in C-2BP, this leads to solve an independent 2BP
for each batch in I. The optimum of C-2BP is then achieved by finding the
optimal solution of each 2BPs. A straightforward ILP model for the C-2BP is
to write |I| 2BP formulations, one for each batch I P I. Thus, the formulation
of the C-2BP is not reported since it just a simple rewriting.

On the contrary, the C-2BPl has to handle residual bin from one batch to
another. The data for the 2BPl for a batch Is, s ą 2 depends therefore on the
residual bin obtained after cutting batch Is´1. The optimal solution of the
C-2BPl is obtained by solving consecutively 2BPl, one for each batch I P I.
A slight modification occurs on the 2BPl formulation however. Since residual
bin part is used for a given batch, the ILP formulation of the 2BPl has to be
enhanced to handle this case. This expresses by adding a new subproblem to
the 2BPl ILP model (3.1)-(3.5). Let P0 be the set of valid patterns related to
the residual bin of width W̃ obtained from the cut of a previous batch. The
ILP model of the nested 2BPl for a given batch Is, s ą 2 in order to solve the
C-2BPl is the following:

min W̃
ÿ

pPP0

λp `
ÿ

pPP1

Wλp `
ÿ

pPP2

wpλp (3.15)

s.t.
ÿ

pPP0

aipλp `
ÿ

pPP1

aipλp `
ÿ

pPP2

aipλp “ di, @i P Is (3.16)
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ÿ

pPP0

λp “ 1 (3.17)

ÿ

pPP2

λp “ 1 (3.18)

λp P t0, 1u, @p P P0 (3.19)
λp P N, @p P P1 (3.20)

λp P t0, 1u, @p P P2 (3.21)

Objective function (3.15) minimizes the total used length to cut batch Is.
Constraints (3.16) ensure to cut all items among residual bin, standard bins
and the last bin. Convexity constraint (3.17) (resp. (3.18)) imposes to apply
one cutting pattern exactly to the residual bin (resp. the last bin).

The ILP formulation (3.15)-(3.21) is very close to the one defined by (3.1)-
(3.5). When the first batch I1 P I is cut, formulations are equivalent since
there is no residual from previous batch. The main difference is related to the
new pricing problem related to pattern p P P0 for a bin of width W̃ . Let κ be
the dual variable related to (3.17), the reduced cost of the pricing problem is:

ζpλpq “ W̃ ´
ÿ

iPI
aipπi ´ κ (3.22)

Finding a pattern p P P0 is equivalent to solve a C-2KP-RE-4-r with an
input bin pW̃ ,Hq.

It is also possible to obtain a pseudo-polynomial size formulation for the
C-2BPl derived from the one outlined in Section 3.1.1.2. In that case, one
needs to index a new hypergraph by k “ 1 related to the residual bin pW̃ ,Hq.
Using the notations used for (3.7)-(3.12), the extended pseudo-polynomial size
ILP formulation for the C-2BPl is given by:

min W̃z1 `Wz2 ` z3

ÿ

aPĀ3

waxa (3.23)

s.t.
ÿ

aPΓ´pvq

xa ´
ÿ

a1PΓ`pvq

na1pvqxa1 “ 0, @v P Vkzttk Y I YHu, @k P t1, 2, 3u

(3.24)
ÿ

aPΓ´ptkq

xa “ zk, @k P t1, 2, 3u (3.25)

ÿ

kPt2,3u

ÿ

aPAkpiq

napiqxa “ di, @i P I (3.26)

z1 “ z3 “ 1, z2 P N (3.27)
xa P N, @a P Ak, @k P t1, 2, 3u (3.28)
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Objective function (3.23) minimizes the number of patterns for the residual
bin, standard bins and the length of the pattern selected for the last bin. The
contribution to the objective function is given by the sum of the width wa of
hyperarcs a P Ā3 where Ā3 is the set of hyperarcs associated to cuts performed
only at the first cutting stage. Note that only one pattern can be created
for the residual and the last bin subproblem according to constraint (3.27)
and problem definition. Constraints (3.8)-(3.9) are classical flow conservation
constraints. Constraint set (3.10) ensures that the right amount of item i P I
are cut among all patterns.

3.2.3 Modified diving heuristic

When solving the pure 2BPl by column generation, there are two pricing sub-
problems. The first is related for standard bins and the second for the last bin
to minimize its used length. When the 2BPl is solved as subroutine for the
C-2BPl, one needs to consider the third subproblem related to the residual bin
pW̃ ,Hq of the previous batch. A way to tackle the C-2BPl is to solve one 2BPl
instance for each batch in I. Therefore one just needs to embed the diving pro-
cedure for the 2BPl in an iterative method. The diving heuristic introduced in
Section 3.1.2 is slightly modified for that case. The modified diving heuristic,
given in Algorithm 6, is then used as a subroutine to derive a valid solution
for the C-2BPl. In the context of solving the C-2BPl, this algorithm has to be
modified to handle the pricing subproblem related to residual plate P0. This
is formally represented in Algorithm 9 which contains simple modifications in
comparisons to Algorithm 6. Indeed, sets of patterns Pprop and PRMP contain
now both patterns from P1 and P0.

Algorithm 9: NON-PROPER-PURE-DIVINGm(d, p,Ppart,P˚)
1 call lines 1-4 from Algorithm 6
2 solve the RMP with demand bounds d1 by column generation and
record solution λ̄

3 Pprop Ð tp P P0 Y P1 : λ̄p ą 0, ap ď d1u
4 if Pprop ‰ H then p1 Ð argminpPPpropt| λ̄p ´ rλ̄pu |u else
5 PRMP Ð set of proper patterns P0 Y P1 in the RMP
6 Pheur Ð set of heuristic solutions to the pricing problems P0 and P1

7 p1 Ð argminpPPRMPYPheurtc̄pu

8 NON-PROPER-PURE-DIVINGm(d1, p1,Ppart,P˚)

Note also that the completion heuristic has also to be modified. Indeed,
when a complete partial solution has to be built, one needs to solve also the
subproblem for the residual bin by considering bin pW̃ ,Hq and hypergraph
associated to P0. This modification is straightforward.
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3.2.4 Diving heuristic for the C-2BPl

To solve the C-2BPl by solving consecutive 2BPl, the subroutine NON-PROPER-
PURE-DIVINGm is used as shown in Algorithm 10. In the first step of the
algorithm, the number of used bins and the item set to work are initialized
(line 1). The main part of the algorithm is iterative. The first step is to obtain
the set of available bins. It is enriched with a new bin B1 if there is a leftover
bin from the previous batch (lines 3-7). The current instance is solved as a
2BPl using Algorithm 6 (line 8). From the obtained solution for the current
item set, the number of used bins is recorded. Note that if the batch is not the
first, the number of bins is decreases by one since the leftover bin for this set
has already been counted when solving previous batch (lines 9-10). Finally,
the algorithm passes on the next batch. The process is repeated until there is
no more batch to cut. At the end of the process, a complete solution to the
C-2BPl is obtained as well as the total number of bins to use.
Algorithm 10: Heuristic for the C-2BPl
1 nbbin Ð 0, sÐ 1
2 do
3 B Ð set of available bins
4 if s ą 1 then
5 W 1 Ð last bin used length from solution Ss´1

6 create a new bin B1 “ pW ´W 1, Hq
7 put B1 as the first element in B
8 Ss Ð solution of the 2BPl using B, Is and

NON-PROPER-PURE-DIVINGm

9 nbbin Ð nbbin ` |Ss|
10 if s ą 1 then nbbin Ð nbbin ´ 1 sÐ s` 1

11 while s ă“ |I|

If one is interested in solving the C-2BP, two modifications have to be
applied to Algorithm 10. The first one is to remove line 10. The second is to
solve the problem at a given iteration as 2BP (line 8). To solve the C-2BPl
by diving heuristic with LDS, the diving heuristic to call at line 8 has to be
modified.

3.2.5 Computational experiments

In an industrial context, C-2BP and C-2BPl are solved iteratively for different
item batches. To validate the methodology described in this section, real-world
instances with batches are considered. The standard bin dimension to work on
is pW,Hq “ p6000, 3000q. Each instance is composed of 10 or 15 batches (i.e.
|I| “ 10 or |I| “ 15). Each batch I P I is composed of |Is| P t100, 150u items.
Average demand of each item is between 2 and 3. An instance class named
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LXIY contains instances with X batches, each of which having Y items. Each
class is composed of 50 instances.

The retained way to solve both C-2BP and C-2BPl uses Algorithm 10 from
Section 3.2.4. This algorithm iteratively solves the 2BP or 2BPl related to each
item batch in a C-2BP or C-2BPl instance. The retained way to solve each
cutting problem for each batch uses methods described in Section 3.1. From
results shown in Section 3.1.4.2, the most efficient are only consider hereinafter:

• the evolutionary algorithm peaq;

• the algorithm piubq, which combines evolutionary algorithm with list
heuristics;

• the "non-proper" diving heuristic, denoted pdivq, with partial enumera-
tion ∆3 in the pricing problem and with simple evaluation of the residual
problem in the diving (parameter lastP lateOnly “ true);

• a combination of the "non-proper" diving heuristic and the evolutionary
algorithm with complete evaluation of the residual problem in the diving
(parameter lastP lateOnly “ false), called pedivq.

Results are not reported for heuristic pdivHq as it was shown to be domi-
nated by pdivq. Results are also not obtained by div32 and ediv32 since required
computation time is very long and obtained solutions are only slightly better
than the solutions obtained after only one dive.

In the left part of Table 3.7 and for each heuristic, the average number of
bins needed to cut items from all batches are first reported. The average lower
bound plbq is also outlined. This value is obtained by iteratively computing the
rounded-up column generation lower bound for each batch and determining the
length of the leftover plate for the next bin based on this bound. To measure
the impact of solving C-2BPl, in column "w/o lo", the average of the best
solution values obtained by the propose methodology for the C-2BP variant is
reported. The right part of the table contains the average computation time.

Solution value t, min.
Instances w/o lo lb ea iub div ediv ea iub div ediv
L10I100 132.1 124.7 127.8 127.5 125.8 125.7 1 29 24 32
L10I150 174.0 182.3 186.2 186.0 183.6 183.4 3 127 80 119
L15I100 203.0 192.1 196.8 196.5 193.8 193.5 2 46 35 47
L15I150 290.0 281.7 287.6 287.4 283.6 283.4 5 184 127 176

Table 3.7: Comparison of heuristics on the real-world instances with batches

As observed in Table 3.7, solving the C-2BPl instead of the C-2BP allows
one to save up to 10 plates. As shown in Section 3.1.4.2, heuristic peaq is the
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fastest. The more expensive heuristic piubq improves on peaq only marginally.
Better results are obtained by diving heuristics. The standard diving heuristic
pdivq saves up to 4 plates or 1.4% of plates on average. The extended diving
heuristic pedivq saves up to 4.2 plates or 1.5% of plates on average. Moreover
the gap with the lower bound is at most 1.9 plates or 0.8% of plates on average
using pdivq. For the pedivq this drops to 1.7 plates or 0.7% on average. The
"non-proper" diving heuristic pdivq offers the best solution quality – running
time trade-off. Even if its running time reaches 2 hours for the largest in-
stances, its application in practice is still realistic. Indeed a C-2BPl instance
corresponds to a one day planning horizon. Therefore, spending two hours to
obtain a solution seems to be reasonable.

3.3 Conclusion
In this chapter, the 2BPl was solved with column generation based diving
heuristics. An originality of this work is that these heuristics use non-proper
cutting patterns. This variant simplifies the pricing problem but makes it
more difficult to obtain feasible solutions. Several ways to overcome this diffi-
culty are proposed including combination with an evolutionary algorithm and
partial enumeration technique. The latter reduces the number of generated
non-proper cutting patterns, tightens the column generation lower bounds and
improves the quality of solutions obtained by the diving heuristics. The com-
putational experiments on the literature and real-life instances revealed that
the proposed diving heuristics for the 2BPl outperformed significantly the con-
structive and evolutionary heuristics. The largest improvements are achieved
on real-life large instances. This diving heuristic with non-proper columns is
generic and can be applied to other cutting problems. In a second time, the C-
2BPl was studied in order to measure the impact of the diving heuristic when
consecutive item batches are cut. The main motivation is to measure sav-
ings for a production day. Experiments on real-life production plant instances
showed that diving heuristics run in a reasonable time and allow the decision
maker to save raw material on average compared to constructive heuristics.
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Chapter 4

Bin-packing problems with defects

Works done in previous chapters only consider defect-free cutting problems
and does not totally match industrial expectations. From its definition, the
structure of the industrial cutting problem, called hereinafter 2BPdpl, is close
to its defect-free relaxation. Thus, one can use solving methods described
in Chapter 3. The straightforward way is to reformulate the 2BPdpl using
Dantzig-Wolfe decomposition and to tackle it with column generation. The
main difficulty of such reformulation is that pricing problems to deal with are
difficult to solve in a short amount of time. In theory, one can use the generic
procedure detailed in Chapter 2 to solve them starting from the unbounded
dynamic program for the defect case. Nevertheless, even if it is possible to write
such dynamic program, it remains huge in practice as outlined by Afsharian
et al. [1]. An attempt was made to write it but the approach failed to have
exploiting results. To overcome the pricing problem difficulty, two alternatives
are described in this chapter. The first solves the defect-free relaxation of
2BPdpl. The relaxed solution is modified with post-processing methods to
ensure its feasibility regarding 2BPdpl constraints. A second way to solve the
2BPdpl is to start from the non-proper diving heuristic and to modify it to
handle defects in the fixing procedure. Before explanation of solving methods,
the 2BPdpl is introduced mathematically.

4.1 Problem formulation
From the problem description mentioned in the introduction of this manuscript,
the industrial cutting problem is close to 2BPl. The extra considerations to
keep in mind is that bins may have defects and are stacked in the factory. This
allows one to extend the 2BPl notation.

The two-dimensional bin-packing problem with leftover and with prece-
dence constraints between bins that might have defects (2BPdpl) is a variant
of 2BPl and 2BPd. The 2BPdpl is an optimization problem which aims to min-
imize the total length of used bins required to pack a subset of rectangular
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items. All bins b P B have the same dimension pW,Hq but are characterized
by a specific set of defects Db. In practice, defects may not be rectangular but
with guillotine cuts, only rectangular pieces will be removed anyway. Each de-
fect d P Db is then defined by two coordinates pxd, ydq and a width and height
pwd, hdq. If a defect has a non rectangular form it is approximated by drawing
a minimum size rectangle around it. If the defect set of a bin b is empty, the
bin is defect free. Each item i P I to cut has a fixed width and height pwi, hiq
and has to be cut exactly di times. A solution to such problem is a set of
cutting patterns ensuring precedence constraints between bins. Each cutting
pattern applied on a bin has to ensure that no items are cut in a defective area
and no cuts are made through a defect.

Assume a 2BPdpl instance. Let P1pbq be the set of valid patterns without
leftover consideration and P2pbq be the set of valid patterns with leftover con-
sideration for a bin b P B. Let binary variable λbp “ 1 if bin b is cut using
pattern p P P1pbq Y P2pbq, 0 otherwise. Let also binary variable yb “ 1 if bin
b is used, 0 otherwise. Similarly, binary variable zb “ 1 if bin b P B is the last
bin in the solution, 0 otherwise. Notation aip is the number of items i P I cut
in pattern p P P1pbq YP2pbq, b P B. Let also npbq be bin b1 P B which precedes
bin b P B. If bin b is the first bin to use, npbq is set to H. Note that p P P2pbq
has an extra information wp related to the total width of first stage cuts in the
associated pattern p. The ILP formulation of the 2BPdpl is:

min
ÿ

bPB

ÿ

pPP1pbq

Wλbp `
ÿ

bPB

ÿ

pPP2pbq

wpλ
b
p (4.1)

s.t.
ÿ

bPB

ÿ

pPP1pbq

aipλ
b
p `

ÿ

bPB

ÿ

pPP2pbq

aipλ
b
p “ di, @i P I (4.2)

ÿ

pPP1pbq

λbp “ yb, @b P B (4.3)

ÿ

pPP2pbq

λbp “ zb, @b P B (4.4)

ÿ

bPB
zb “ 1, (4.5)

yb ´ ynpbq ď 0, @b P B, npbq ‰ H (4.6)
zb ´ ynpbq ď 0, @b P B, npbq ‰ H (4.7)

yb P t0, 1u, zb P t0, 1u, @b P B (4.8)
λbp P t0, 1u, @p P P1

pbq Y P2
pbq, @b P B

(4.9)

Objective function (4.1) sums up the width of all standard bins plus the
used length of the last bin. A standard bin is considered to be used completely,
its contribution to the objective function is set toW , even if the selected cutting
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pattern has a total width smaller than the bin width. Constraints (4.2) ensure
to cut all items among selected patterns. Constraint sets (4.3)-(4.4) limit the
number of patterns to select for each standard bin and for the last bin to be
one. Constraint (4.5) is here to impose that only one bin can be considered as
the last one. Constraints (4.6) are classical precedence constraints for standard
bins. Constraints (4.7) are precedence constraints between standard bins and
the last bin.

Since the previous formulation has an exponential number of variables λ,
a classical way to deal with it is to generate them dynamically using column
generation. The proposed formulation implies to solve at most 2|B| pricing
problems. This comes from the fact that bins are assumed to be distinct from
each other in a 2BPdpl instance because of their defects. Let π the set of
dual variables associated with constraints (4.2) and θ (resp. ι) the set of dual
variables associated with the constraints (4.3) (resp. (4.4)). The reduced cost
of a variable λbp related to a given bin b is:

ζpλbpq “ ´
ÿ

iPI
aipπi `

#

W ´ θb, p P P1pbq

wp ´ ιb, p P P2pbq
(4.10)

The first pricing problem is related to solve a C-2KP-RE-4-rd. The second
one is a C-2KP-RE-4-rdl where items have to be packed to the left of the bin.

Note that if lower and upper bounds lb and ub on the number of bins to
use are known, variables yb (resp. zb) for all bins up to the bin at position lb
in the stack can be fixed to one (resp. zero). In the same time the number
of maximum bins to consider is set to ub instead of |B|. This contributes to
reduce the number of constraints and variables in the model.

The Dantzig-Wolfe decomposition applied to 2BPdpl entails solving many
pricing problems at each column generation iteration. In theory branch-and-
price can be used to find the optimal solution of formulation (4.1)-(4.9). In
practice this is difficult to large size of problem instances. Nevertheless since
the 2BPdpl can be relaxed to the 2BPl but just ignoring defects, one can use
solving methods from Chapter 3 to tackle the 2BPdpl.

4.2 Post-processing methods

The 2BPdpl implies to deal with C-2KP-RE-4-rd and C-2KP-RE-4-rdl as pricing
problems. Since it is not possible to solve such problems to optimality in a short
computation time for large instances even when defects are not considered, one
needs to find another solution approach.

From an observation of the 2BPdpl structure, one can see that a straightfor-
ward relaxation of this problem is to not considering defects. This relaxation
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is equivalent to solve the 2BPl, which is solved quickly and efficiently from re-
sults of the "non-proper" diving heuristic shown in Chapter 3. Since a problem
relaxation is solved instead, the obtained 2BPl solution may be infeasible for
the initial 2BPdpl instance because defects are not considered. The retained
strategy in this section is a repairing procedure of a 2BPl solution to make it
feasible for the 2BPdpl. This section details such procedures.

In the remainder of this section, notation S (resp. S̃) is used to denote a
solution to the 2BPl (resp. 2BPdpl). Notation PpSq (resp. PpS̃q) denotes the
set of patterns in solution S (resp. S̃). Patterns p P PpSq (resp. p P PpS̃q) are
assumed to be indexed by q, pq refers to the q-th pattern in PpSq (resp. PpS̃q).
By convention the pattern of index q “ |PpSq| (resp. q “ |PpS̃q|) refers to
the pattern related to the last used bin in the associated solution S (resp. S̃).
Bins in set B are also indexed by j. This indexation is used to assign patterns
to bin to respect bin precedence constraint in the 2BPdpl.

4.2.1 Naive reparation

A naive way to transform a solution S into a solution S̃ is to remove items which
overlap a defect in S. Indeed after solving the 2BPl, the obtained solution S is
decomposed into a set of patterns PpSq. Each pattern p P PpSq corresponds
to a feasible cutting pattern without defect consideration. Since both bins in B
and patterns in PpSq are indexed, a naive way to obtain an infeasible solution
S̃ for the 2BPdpl is to assign the q-th pattern from PpSq to the q-th bin in B.
This may produce an infeasible assignment between patterns and bins PpS̃q.
Since some items may overlap a defect, a way to obtain a feasible assignment
is to simply remove overlapping items and then iteratively cut them starting
from the bin of index |PpS̃q|. This is possible since the number of bins to cut
all items is assumed to be in a quantity large enough to cut all items.

Let Î be a set of items which overlap a defect in patterns stored in PpS̃q
after simple assignment from initial solution PpSq. First all items i P Î from
PpS̃q are removed. This automatically makes all patterns in PpS̃q feasible
regarding defects but not regarding item production constraints. Using the
assumption that bins are in a quantity large enough to cut all items, items
from Î can be cut according to the following procedure. Consider the last
pattern p|PpS̃q| of index |PpS̃q|. This pattern is applied on bin b|PpS̃q|. By using
list heuristics as the ones mentioned in Section 1.4.3, one can try to cut items
in Î from b|PpS̃q| starting from given pattern p|PpS̃q|. If all items can be cut in
b|PpS̃q| avoiding defects, the pattern set PpS̃q is feasible for the 2BPdpl. If there
are some remaining items, one needs to create an empty pattern for the bin
of index |PpS̃q| ` 1 and try to pack the remaining items. To be more generic,
this is equivalent to solve a 2BPdpl starting from bin of index |PpS̃q| and using
new bins as long as there are items to cut. This repairing heuristic is called
PUSHBACK.
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To be less myopic than heuristic PUSHBACK, one can exploit holes created
in different patterns from PpS̃q. Let still Î be the set of items which overlap a
defect after simple assignment and all items i P Î are removed from patterns
in PpS̃q. Then for each pattern pq, q “ t1, . . . , |PpS̃q| ´ 1u, using a heuristic,
one can try to fill empty spaces with items from Î. Finally the solution is
made feasible using heuristic PUSHBACK. This extended repairing process is
called FILLING.

Heuristics PUSHBACK and FILLING rely on the fact that a subroutine
can find a packing for a given pattern p using only items in Î. This subrou-
tine uses modified version of Best-Fit, Bottom-Left-Fit, First-Fit, Next-Fit list
heuristics for different order of items in Î. For each item, its profit is equal to
its area. In the standard heuristics, i.e. without defect consideration, a chosen
item is always packed in the bottom left position of a given plate. The built
pattern also ensures to be at most four stages from cutting constraints. In
the modified version, this check is enhanced to deal with defects. Instead of
only checking if an item can be packed in the bottom left corner of the plate,
bottom right, top left and top right corners are also considered. This gives
more flexibility to the heuristic and increases the odds to pack an item. The
idea is to apply list heuristics on Î when items are ordered differently. At each
iteration, the item set Î is randomly sorted. Then for the given order on Î,
Best-Fit, Bottom-Left-Fit, First-Fit and Next-Fit heuristics are called. The
obtained result is a pattern p1 and a set of packed items Î 1 Ď Î. During the
run of list heuristics, the best pattern and associated packed items are stored.

4.2.2 Reparation by subplates permutation

A way to make an infeasible cutting pattern, i.e. when items overlap defects,
feasible is to use the structure of this cutting pattern. Indeed since cuts are
staged, a given cutting pattern can be decomposed into a set of vertical strips
obtained after first stage cuts. Each of these strips can itself be divided into
horizontal strips after second stage cuts and so on . . . This gives a tree repre-
sentation of a cutting pattern. Each node in this tree is a plate with bottom
left corner at point px, yq with dimension w ˆ h obtained after a cut of stage
s. The root of this tree is the initial plate p0, 0,W,H, 0q. An example of the
tree representation is given in Figure 4.1.

Remember that PpS̃q is obtained by assigning the q-th pattern from PpSq
to the q-th bin in B. The pattern set PpS̃q may contain infeasible patterns.
However, a feasible pattern contains subplates where no overlaps occurs. Us-
ing the tree representation, one can identify them as depicted in Figure 4.1.
Consequently for a given pattern, some subplates are valid because they are
cut at the right coordinates in the bin. From the tree representation and us-
ing the fact that cuts are staged, it is possible to turn an infeasible pattern
into a feasible one by swapping some subplates inside it. This corresponds to
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exchange coordinates of some subtrees.

1
2

3

4

(a)

0,0,10,5,0

0,0,2,5,1

0,0,2,3,2

1

0,3,2,2,2

H

2,0,3,5,1

2

5,0,5,5,1

5,0,5,1,2

3

5,1,5,4,2

4

(b)

Figure 4.1: Example of a cutting pattern with a defect (a) and its tree rep-
resentation (b). Each node represents a plate px, y, w, h, sq. The pattern is
infeasible since item 3 overlaps a defect.

Let T ppq be the tree representation of pattern p P PpS̃q. Each node v P T ppq
has a father hpvq and one or more children T pvq. A node v is related to a plate
of coordinates pxv, yvq “ px, yq with dimension wv ˆ hv “ w ˆ h obtained
after a cut of stage sv “ s. A node v has also a value pv computed as the
sum of the profits of cut items in the subtree of v which do not overlap a
defect. The root node of T ppq is denoted by r and by definition hprq “ H.
The permutation procedure recursively swaps children T pvq of a given node
v P T ppq to ensure feasibility regarding defects. Each node in T pvq is considered
to be distinct. A permutation ς of a given son set T pvq is a sequence of all
nodes in T pvq. Each permutation ς of T pvq corresponds to a cutting pattern in
which coordinates are updated accordingly. By convention, coordinates from
nodes tv1, v2, . . . , v|T pvq|u P ς are updated from left to right if v is obtained by a
cut of even stage or v is the root node r. In other words, the leftmost node v1

in ς has coordinates pxv, yvq, the second one v2 has coordinates pxv ` wv1 , yvq,
the third one v3 has coordinates pxv ` wv1 ` wv2 , yvq and so on. Note that
coordinates of descendants of each node in ς have also to be updated. Nodes
in ς are updated from down to top if v is obtained by a cut of odd stage. The
leftmost node v1 has coordinates pxv, yvq, the second one v2 has coordinates
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pxv, yv ` hv1q, the third one v3 has coordinates pxv, yv ` hv1 ` hv2q and so on.
A way to compute the set of all permutations of T pvq, denoted by σpT pvqq,

is to use a brute force enumeration. Nevertheless some permutations can be
considered as equivalent under certain assumptions. Consider a node v P T ppq
and a permutation ς P σpT pvqq with order on nodes tv1, v2, . . . , vk, . . . , v|T pvq|u.
Consider that sv is even. Using permutation ς, the x-coordinate of fixed node
vk is xvk “ xv `

řk´1
l“1 wvl . Now assume that the bin associated to the current

pattern p has no defects inside the rectangle between coordinates rxv, xvks and
ryv, yv ` hvs. Consequently the order of nodes tv1, v2, . . . , vk´1u does not have
any impact on defects overlapping. From this observation, all permutations
ς 1 P σpT pvqq, ς 1 ‰ ς such that the order on nodes of ς 1 up to the k ´ 1-th node
is a permutation of tv1, v2, . . . , vk´1u in ς can be discarded. Equivalently, this
observation also holds when sv is odd and the bin has no defects inside the
rectangle between coordinates rxv, xv`wvs and ryv, yvks with yvk “ yv`

řk´1
l“1 hvl

for ς P σpT pvqq.

Algorithm 11: PERMUTATION(v)
1 pvalbest, ςbestq Ð p0,Hq
2 compute set σpT pvqq of permutations
3 for ς P σpT pvqq do
4 for v1 P ς do
5 if there is an overlapping in v1 then PERMUTATION(v1)

6 val Ð
ř

v1Pς valv1
7 if val ą valbest then pvalbest, ςbestq Ð pval, ςq

8 update subtree of v using ςbest

From the definition of permutation between strips, a recursive procedure,
called PERMUTATION(v) and outlined in Algorithm 11, is used to find the
permutation of best value for a given pattern p. The permutation procedure
uses as input a node v P T ppq. First, the best permutation and its value
pvalbest, ςbestq are set to zero. The set of all permutations σpT pvqq is then
computed with a brute force enumeration. Equivalent patterns are used to
reduce the number of permutations by removing equivalent ones. For each
permutation ς P σpT pvqq, one first checks if the order of nodes in ς does not
lead to an overlap between items and defects. If an overlap is detected for a
node v1 P ς, PERMUTATION(v1) is called. Then for the current permutation
ς, its value val is computed by summing up the value of each node v1 P ς.
During exploration of all ς P σpT pvqq, the permutation of best value is stored.
Finally the node v is updated according to node order in ςbest. By definition,
since the amount of wasted area in a cutting pattern has to be minimized,
the value of nodes v in the tree representation T ppq is linked to the area of
cut items. For all terminal nodes v in the tree representation T ppq, if the
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node leads to a waste or an item cut but overlaps a defect, its value is zero,
its value is the area of the cut item otherwise. Pattern from Figure 4.1 after
permutation is depicted in Figure 4.2.

1
2

3

4

(a)

0,0,10,5,0

0,0,5,5,1

0,0,5,1,2

3

0,1,5,4,2

4

5,0,3,5,1

2

8,0,2,5,1

8,0,2,2,2

H

8,2,2,3,2

1

(b)

Figure 4.2: Transformation of the infeasible pattern from Figure 4.1 into a
feasible one with strip permutation.

From the permutation which can be performed inside a pattern p, one
can define a repairing heuristic to make patterns in PpS̃q feasible. For each
pattern p P PpS̃q, one has to represent it as a tree T ppq rooted at r and then
calls PERMUTATION(r). The permutation subroutine has two properties.
The first one is that if there is a permutation which turns the pattern into
a feasible one, the subroutine will find it. The second property is that if no
feasible permutation exists, the pattern will be rearranged such that the set
of items which overlap defects has the minimum total area. If the pattern
remains infeasible after permutation, the procedure FILLING is used to make
it feasible.

Using the permutation subroutine, one can design a more global method.
For all previous repairing heuristics, it is supposed that patterns in PpS̃q are
already assigned to a bin. One can avoid to be dependant of this prefixed order
by evaluating, for each pattern p P PpSq and each bin b P B, the value of the
best permutation when pattern p is applied on bin b. This can be represented
as an assignment problem between patterns and bins.

Let G “ pVp,Vb,Aq be a bipartite graph. Vp contains nodes pq referring
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to the pattern of index q “ t1, . . . , |PpSq|u. Vb contains nodes bj referring to
the j-th bin in B, j “ t1, . . . , |PpSq|u. The edge set A is composed of edges
connecting a node in Vp to a node in Vb. Each edge a P A has a weight wa
equal to the value of the best permutation when bin bj is cut using pattern
pq. A feasible assignment between patterns and bins is obtained by finding
a matching of size |PpSq| in graph G. The maximum weighted matching
corresponds to the best assignment. Such problem can be solved in polynomial
time using algorithms from Edmonds [26].

The edge set in the obtained maximum weighted matching is then used
to assign each pattern pq to each bin bj. This gives a new way to create the
pattern set PpS̃q and a solution S̃. Note that some patterns in PpS̃q can
still be infeasible. Consequently, a reparation heuristic has to be used. The
procedure to define the matching problem is given in Algorithm 12.
Algorithm 12: Matching heuristic
1 G “ pVp,Vb,Aq “ pH,H,Hq
2 for j “ 1 to |PpSq| do
3 Vp Ð Vp Y tpju, Vb Ð Vb Y tbju
4 for j1 “ 1 to |PpSq| do
5 aÐ edge between pj and bj1
6 AÐ AY tau
7 p1 Ð apply pattern pj on bin bj1
8 r Ð root of tree representation of p1
9 PERMUTATION(r)

10 wa Ð value of best permutation of p1

11 find maximum weighted matching on G
12 PpS̃q Ð assign patterns to bins using the matching
13 FILLING(PpS̃q,H)

4.2.3 Reparation by solving the 1BP

When one wants to assign patterns from PpSq to bins with defects, there is
another way to exploit the recursive structure of the patterns. A given pattern
p P PpSq can be decomposed into a set of vertical strips τppq of different widths
and fixed height H. Let τ be the set of all vertical strips obtained after first
stage cuts among all patterns p P PpSq, τ “

Ť

pPPpSq τppq. Using strips in τ ,
the 2BPdpl can be transformed as a 1BPdpl in which items to assign are strips
from τ . This restriction aims to assign strips in τ to different bins with defects.
As in the classical 1BP, each strip can be assigned to only one bin and total
width of strips assigned to a bin cannot exceed the bin width. An interest of
this restriction is to break the structure of initial patterns from PpSq and then
recombine the different vertical strips together in order to create new cutting
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patterns.
For example, one can use a fast heuristic to obtain an assignment of strips

to bins. If this assignment is valid (non-overlapping defects), one has obtained
a feasible solution to the 1BPdpl and consequently to the 2BPdpl. For this,
a modified First-Fit heuristic is used. It takes a given order on strips τ and
assigns them to bins without taking into account defects. This assignment
is then evaluated: total value of items overlapping defects is computed. To
diversify obtained assignments, the First-Fit heuristic is called with different
orders on τ as input. This building phase is repeated until a threshold on
the number of different orders on τ is reached. The best assignment is stored
until the threshold is reached. Note that this best assignment may still be
infeasible. To make the solution feasible, the function FILLING is then called.
The procedure is described in Algorithm 13 and one has to called FIRST-
FIT(PpSq) to start it.

Algorithm 13: FIRST-FIT(PpSq)
1 τ Ð

Ť

pPPpSq τppq

2 pvalbest,PpS̃qq Ð p0,Hq
3 for it “ 0 to maxIt do
4 randomly sort τ
5 pval,Pq Ð FirstFit(τ)
6 if val ą valbest then pvalbest,PpS̃qq Ð pval,Pq
7 FILLING(PpS̃q,H)

4.3 Diving heuristic with non-proper columns

Post-processing methods from Section 4.2 are myopic since they are highly
dependent on the solution found for the 2BPl in order to find a feasible solution
for the 2BPdpl. An alternative can be to start from the diving heuristic with
"non-proper" columns used to solve the 2BPl. Computational experiments
in Section 3.1.4 outline good solution quality when "non-proper" columns are
considered. At the same time, the heuristic runs in a short computation time.

However, to be used to solve a 2BPdpl instance, here are two main particu-
larities to have in mind. The first one is that the set of valid cutting patterns
Ppbq for a given bin b P B is in general different from Ppb1q, b1 P B, b ‰ b1 since
bins may have different defects. A cutting pattern can be valid for a bin but
not valid for another one. The second particularity is that bins are ordered
using a stack. If a pattern is used for a bin b P B, it implies that valid patterns
should exist for all bins stacked above bin b.

In theory, one can directly use the diving heuristic used for the 2BPl to
solve the 2BPdpl. This implies to write a dynamic program for each pricing
problems, i.e. each bin. In practice, this is impossible due to the huge size of
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each dynamic program as outlined by Afsharian et al. [1]. An attempt was
made to write them but the approach failed to give exploiting results.

The retained approach is start from the diving heuristic for the defect-free
problem and slightly modify it. However, the structure of the pricing problem
should be kept as simple as possible. The main discussion here is on how
to modify the diving heuristic to handle 2BPdpl constraints and how to find
feasible columns to fix. The diving heuristic for the problem with defects is first
described. Second, the way to fix columns is outlined. This section ends with a
description of the completion heuristic when bins with defects are considered.

4.3.1 "Non-proper" diving heuristic

To be use for the 2BPdpl, the fixing subroutine of the "non-proper" diving
heuristic, described in Section 3.1.2.1, is modified. In the diving heuristic for
the 2BPl, bins are defect-free and thus a cutting pattern is valid for all of them.
In a 2BPdpl instance, bins are assumed to be distinct due to their defect sets.
The modification to perform on the diving heuristic is related to the way to
fix columns. An extra decision to take is to find a column and assigns it to a
bin b P B. To let pricing problem structure as simple as possible, it is solves
without defect consideration.

Let j be the index of bins in B, bj refers to the j-th bin in B. Let variable
bp be equal to j if pattern p is assigned to bin bj. By convention for a given
pattern p, the value of bp is 0 if the pattern is not assigned to a bin. The
column fixing procedure uses as input a set of patterns such that for each
pattern p, bp “ 0. The process tries to find an assignment of a pattern p to an
available bin. If such assignment is found, variable bp is fixed. As the number
of fixed patterns increases, the number of available bins becomes smaller. To
reduce the search of an assignment of a given pattern p to an available bin,
a lower bound lb should be first computed to know the minimum number of
bins in a valid solution for the 2BPdpl. Note that if the lower bound quality
is not good, the diving can be stuck in that all bins up to the bin of index
lb are fixed but the fixing procedure cannot provide a new assignment. To
avoid this, the fixing procedure can fix sequentially the bin of index lb ` 1,
lb` 2 and so on. This two step fixing is mandatory because of the completion
heuristic. Indeed, the completion heuristic only considers bins of indices lb` 1
and greater when trying to build a feasible solution. The idea is to do the
assignment of mandatory bins in the fixing procedure and assignment of extra
bins is done by the completion heuristic.

The proposed modified "non-proper" diving heuristic for the problem with
bins with defects is represented in Algorithm 14. Let assume that J is the
set of available bin indices. Since a primal feasible solution P˚ is known,
J “ t1, . . . , |P˚|u. Let set J̃ containing bin indices t1, . . . , lbu. The first step
of the heuristic is to update the partial solution with the previous fixed pattern
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(line 2). The second step of the algorithm is the completion heuristic (lines
3-5). Following the completion heuristic, the residual master problem is solved
(line 6). Set P of feasible patterns is then obtained from the residual master
problem and given to the fixing subroutine. The fixing subroutine uses P and
also the set of available bins. It returns the pattern p1 which has to be fixed
(line 7). Note that if P is empty, the fixing procedure generates a heuristic
pattern. This is mandatory to ensure that a valid cutting pattern is fixed. At
the end of the fixing process, the method is called recursively (line 8).

Algorithm 14: NON-PROPER-PURE-DIVINGd(d, p,Ppart,P˚,J , J̃ )
1 if p ‰ H then
2 d1 Ð d´ ap, J 1 Ð J ztbpu, J̃ 1 Ð J̃ ztbpu, Ppart Ð Ppart Y tpu
3 Pr Ð COMPLETION-HEURISTICd(d1, lastP lateOnly,J 1)
4 if d´

ř

p1PPr ap
1

“ 0 and cost pPpart Y Prq ă costpP˚q then
5 P˚ Ð Pr Y Pr

6 solve the RMP of (3.1)-(3.5) with demand bounds d1 by column
generation and store the set of proper patterns P

7 p1 Ð FIXING(d1,P ,J , J̃ ,H)
8 NON-PROPER-PURE-DIVINGd(d1, p1,Ppart,P˚,J 1, J̃ 1)
Note that the last parameter of procedure FIXING is empty. This is related

to the fact that this parameter is used for the tabu list management for the
diving heuristic with LDS. The latter is not outlined here.

4.3.2 Column fixing

The key ingredient of the "non-proper" diving heuristic is the column fixing.
Indeed it has a major influence on the search in the diving tree. It is performed
under assumption that a set of cutting patterns P , a set J of available bin
indexes t1, . . . , ubu and a set J̃ of bin indexes t1, . . . , lbu are given as input of
the fixing subroutine. ub (resp. lb) is an upper (resp. a lower) bound on the
number of bins to fix. P may contain non-proper patterns.

The proposed fixing procedure is the following. For each available bin
j P J̃ , a set of heuristic patterns is obtained by the evolutionary algorithm.
Then each proper pattern p P P is assigned to bin bj and rearranged by
the permutation subroutine. Remark that function PERMUTATION does
not necessarily output a feasible pattern. To make the pattern feasible, all
items which overlap defects are removed from it. The pattern obtained after
a permutation is then stored (lines 1-9). Secondly, if there are not enough
created patterns compared to the tabu list size, heuristic ones are created for
the first available bin in J (lines 9-12). The choice to consider only the first
available bin is to be able to create enough different patterns for that bin to
help the diving going ahead. After that, the set of created patterns is then
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sorted and the best one is returned.

Algorithm 15: FIXING(d,P ,J , J̃ )
1 Pfix ÐH

2 for j P J̃ do
3 Pfix Ð PfixY patterns found by the evolutionary algorithm applied

for bin bj with defects and with demand d
4 for p P P do
5 p1 Ð copy of pattern p assigned to bin bj
6 r Ð root of tree representation of p1
7 PERMUTATION(r)
8 remove overlapping items from p1

9 Pfix Ð Pfix Y tp1u

10 if Pfix “ H or not enough patterns regarding Z then
11 j1 Ð minjPJ tju
12 Pfix Ð PsetfixY patterns from evolutionary algorithm for bin bj1

with defects and with demand d

13 Pfix Ð PfixzZ
14 SORT(Pfix)
15 pbest Ð pattern of best value in Pfix
16 return pbest

There are several ways to select the pattern to fix in SORT function. Let
p be a pattern from the available set of patterns to fix Pfix. Function valppq
gives the value of pattern p computed depending on the set of items it contains.
As mentioned in the basic fixing procedure, the value of an item is either its
reduced cost or its area. This changes the value of a pattern and possibly the
fixed bins during diving heuristic.

The intuitive way to find the pattern to fix is to sort them by non-decreasing
values . If two patterns have the same value, the selected pattern is the one
associated to the bin with the maximum number of avoided defects. This
selection process is also naive since patterns assigned to defect-free bins will
probably be chosen first.

A simple statement regarding patterns is that a given cutting pattern is
always valid for a defect-free bin but it usually requires some rearrangements
to make it feasible for a bin with defects. Thus, the difficulty of finding a
cutting pattern of a good value for a bin with many defects is harder. This
observation suggests a third way to select a pattern. Here both its value and
the number of avoided defects are used to sort them. Patterns are sorted in
non-decreasing order by their values times the number of avoided defects.

The previous sorting procedures consider both defect-free bins and bins
with defects at the same time. It is more "difficult" to find a good value
pattern for a bin with defects. One can consider them first and then the
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defect-free ones since all patterns are valid for defect-free bins. The retained
way to do it is a two-step sorting of patterns. First all patterns attached to a
bin with defects are sorted in non-decreasing order of their values. The one of
best value is then fixed. Second if there are no bins with defects, all patterns
attached to a defect-free bin are sorted in non-decreasing order of their values
and the one of best value if then fixed.

4.3.3 Completion heuristic

The aim of the completion heuristic used in Algorithm 14 is to build a good
quality cutting pattern for a set of bins. It is done here in two phases. The
completion heuristic is formalized in Algorithm 16.

The first phase is based on the completion heuristic for the defect-free case
(lines 6-12). For a given bin b, a set of patterns is built using the hypergraph
heuristic and the evolutionary algorithm. If the bin has at least one defect,
the permutation subroutine is called on each pattern to try to make it feasible
if needed. At the end of the first step, patterns may be infeasible.

The second phase is to directly take into account defects for a given bin b
(line 13). This is achieved by calling the evolutionary algorithm adapted for
the case with defects. When a subplate pw, hq is defect-free, an item i P I
such that wi ď w, hi ď h can always be cut in its bottom left corner. When a
subplate contains defects, items are cut also from the top left corner, bottom
right corner or top right corner.

After the second phase, the set of infeasible patterns is discarded. Then
the pattern of best value is kept and is used for bin b (lines 15-18). The set of
obtained patterns Pr is then returned as a valid partial solution.

If one is interested in finding a solution to the pricing problem P2, i.e. when
lastP lateOnly is set to true in Algorithm 14, only lines 6-15 from Algorithm 16
have to be called. The hypergraph to consider is the one related to P2 instead.
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Algorithm 16: COMPLETION-HEURISTICd(d, lastP lateOnly,J )
1 Pr ÐH, AÐ

ř

iPI wihidi
2 GÐ hypergraph related to P1

3 do
4 P 1 ÐH

5 if A ď W ˆH then GÐ hypergraph related to P2

j Ð minj1PJ tj
1u

6 p1 Ð pattern from evolutionary algorithm on bin bj with demand d
7 p2 Ð pattern using hypergraph heuristic
8 P 1 Ð P 1 Y tp1u Y tp2u

9 for p1 P P 1 do
10 r Ð root of tree representation of p1
11 PERMUTATION(r)
12 if p1 infeasible for bin bj then P 1 Ð P 1ztp1u
13 p3 Ð pattern from evolutionary algorithm on bin bj with defects and

with demand d
14 P 1 Ð P 1 Y tp3u

15 pÐ argmaxp1PP 1tvalpp
1qu

16 J Ð J ztbpu
17 dÐ d´ ap, AÐ A´

ř

iPI wihia
p
i

18 Pr Ð Pr Y tpu
19 if lastP lateOnly then break
20 while d ‰ 0
21 mark all patterns in Pr as related to P1

22 mark the last inserted pattern in Pr as related to P2

23 return Pr

4.4 Computational experiments

This section reports results from computational experiments to solve the 2BPdpl.
Used datasets used are taken from industrial data. The bin size in an instance
is set to p6000, 3000q, the number of different items |I| can be either 100 or
150. The average demand of an item is two. Since the number of defects is not
known a priori, it is difficult to have an estimation of their positions and sizes.
To simulate such behaviour and test the limit of described approaches, defects
are generated randomly. The number of defects for each bin is obtained using a
Poisson distribution with parameter µ. Different values of µ are used to create
more or less defects t0.33, 1, 3u. The size of defects is randomly generated in
interval r1, 10s for both dimensions. A dataset named I100D0.33 corresponds
to an instance with B “ p6000, 3000q, |I| “ 100 and the Poisson distribution
set with parameter µ “ 0.33. Respectively, a dataset named I150D3 is an
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instance with B “ p6000, 3000q, |I| “ 150 and µ “ 3. Each created dataset
contains 50 instances, this gives a total of 150 instances.

The goal of lead experiments for the 2BPdpl is twofold: piq to evaluate the
quality of post-processing methods piiq to evaluate the impact of the different
variants of column fixing

All experiments are run using a 2.5 Ghz Haswell Intel Xeon E5-2680 with
128Go of RAM. CPLEX 12.6 is used to solve linear programs. The time limit
to solve one instance is set to two hours.

4.4.1 Impact of post-processing methods

As mentioned previously, a way to solve the 2BPdpl is to initially solve its relax-
ation by not taking defects into account. Such relaxation is equivalent to solve
the 2BPl. In the following part of this section, the retained method to solve
the 2BPl relaxation is the "non-proper" diving heuristic pdivq. This choice is
motivated by its good tradeoff between solution quality and computation time
as outlined in Section 3.1.4.2. To obtain a feasible solution for the 2BPdpl, all
post processing methods outlined in Section 4.2 are used:

• PUSHBACK heuristic ppbq;

• FILLING heuristic pfiq;

• PERMUTATION subroutine followed by FILLING heuristic ppeq;

• matching representation outlined in Algorithm 12 pmaq;

• FIRST-FIT heuristic pffq

The evolutionary algorithm modified to handle bin with defects is also
tested peadq. Results are reported in Table 4.1. In the right part of the table,
the reported value is the average gap from the value of the column generation
for the 2BPl. The left part outlines the average computation time for each
method.

gap,% t,sec.
Instances ead pb fi pe ma ff ead pb fi pe ma ff
I100D0.33 2.8 4.2 3.6 2.1 1.5 2.1 7 118 116 117 118 120
I100D1 3.1 9.5 6.4 3.8 2.8 3.8 7 129 130 130 131 148
I100D3 4.4 22.3 14.7 8.3 6.0 8.2 8 129 129 130 161 366
I150D0.33 2.4 3.6 3.0 1.8 1.4 1.9 21 443 446 437 441 457
I150D1 2.6 9.5 6.1 3.1 2.0 3.1 22 431 440 432 439 495
I150D3 3.8 23.8 14.0 7.2 5.3 7.3 24 461 459 461 478 732

Table 4.1: Comparison of post processing heuristics
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In Table 4.1, naive heuristics ppbq and pfiq have the worst solution quality.
Using permutation subroutine with filling heuristic ppeq provides better solu-
tions but the gap remains high in particular for instances with many defects
per bin. Best results are obtained using the matching representation pmaq.
Computation time for all post processing methods have the same order of mag-
nitude except for heuristic pffq. This heuristic has the longest computation
time due to the threshold value (set to |I|). Post-processing heuristic pmaq has
a good trade off between solution quality and computation time. Nevertheless
when compared to peadq, solution quality is good for datasets D0.33 and D1.
When there are more defects on bins, the evolutionary algorithm handling bins
with defects is preferred. One can also observe that heuristic peadq has always
the smallest computation time.

It can be observed from those results that for instances with many defects
per bin, post processing methods are not the best approach to use. However,
for instance with a small number of defects per bin, post processing with
matching representation is preferred.

4.4.2 Impact of modified diving heuristic

Instead of using post-processing heuristics, the diving heuristic can be modified
to handle bin with defects by modifying the column fixing procedure. Table 4.2
outlines results using column fixing procedure from Section 4.3. Retained ways
to fix columns are:

• fix the one of best value pf 1q

• fix the one of best value times number of avoided defects pf 2q

• first fix the one of best value among bins with defects. If all bins are
defect-free, fix the one of best value pf 3q

Notations pfaq and pfπq denote the way to fix columns using item areas or
reduced costs. Results are also reported for the constructive heuristic peadq,
its variant with a longest computation time plhq and the best post-processing
heuristic pmaq. The table is divided in two parts; the left one shows average
gap from the value of the column generation for the 2BPl; the right one the
average computation time in seconds.

Results in Table 4.2 outline that doing more iterations of the constructive
heuristic plhq improves slightly results compared to the standard construc-
tive heuristic peadq. The column fixing procedure pfq outperforms the re-
sults obtained by constructive heuristics no matter the way to select columns.
When the value of each item is equal to its area, the best method is to se-
lect columns as done with procedure pf 2

a q. Its also outperforms heuristic pmaq
for all datasets except I100D0.33 where results are close. Computation time
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gap,% t,sec.
Instances ead lh ma f 1

a f 2
a f 3

a f 1
π f 2

π f 3
π ead lh ma f 1

a f 2
a f 3

a f 1
π f 2

π f 3
π

I100D0.33 2.7 2.7 1.5 1.7 1.7 1.7 1.8 1.7 1.8 6 128 118 149 139 140 143 140 139
I100D1 3.1 3.0 2.8 2.1 2.2 2.4 2.3 2.1 2.4 6 128 131 203 175 182 188 176 184
I100D3 4.3 4.3 6.0 3.9 3.8 3.8 3.8 3.8 3.8 7 167 161 303 249 293 333 254 324
I150D0.33 2.4 2.3 1.4 1.4 1.4 1.5 1.6 1.3 1.6 21 587 441 583 516 508 533 526 525
I150D1 2.6 2.5 2.0 1.7 1.5 1.8 1.9 1.4 1.9 21 666 439 817 648 689 729 656 698
I150D3 3.8 3.9 5.3 3.5 3.5 3.4 3.5 3.4 3.5 24 815 478 1225 924 1097 1181 981 1156

Table 4.2: Comparison of fixing procedure

is reasonable since it takes around 15 minutes to find a solution for hardest
dataset I150D3. When the value of each item is equal to its reduced cost, the
best method is to select columns as done with procedure pf 2

πq. As previously,
it outperforms heuristic pmaq and has a reasonable computation time.

Results and computation times obtained by methods pf 2
a q and pf 2

πq are
close to each other. Consequently there is no real "best" method to select.
Nevertheless, the column fixing procedure handling bins with defects ensures
good quality results and has to be preferred to constructive or post-processing
heuristics.

4.5 Conclusion
In this chapter, two ways to solve the the 2BPdpl have been introduced. The
first one used different post-processing heuristics. The 2BPdpl is relaxed by
removing defect consideration and this leads to solve a 2BPl instead. The 2BPl
is solved with the "non-proper" diving heuristic detailed in Chapter 3. Since
the obtained solution may be infeasible for the initial 2BPdpl, post-processing
heuristics are used. They match patterns and bins with defects by modifying
pattern structure. The second way to solve the 2BPdpl is to use the "non-
proper" diving heuristic with a modified column fixing step. The idea is to use
cutting patterns obtained during column fixing and assign them to bins with
defects on the fly. Both methods are computationally compared with each
other on a set of real industrial instances. They are competitive to solve the
2BPdpl but best results are obtained with the modified "non-proper" diving
heuristic.
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Conclusion

In this thesis, we have studied an industrial glass cutting problem, denoted as
a two-dimensional bin-packing problem with leftovers, precedence constraints
between bins and defects on bins (2BPdpl). The main difficulties were to deal
with defects on bins, industrial constraints and large instance size. We have
proposed approaches based on column generation to solve the problem without
defects consideration, reducing the problem to a two-dimensional bin-packing
problem with leftovers (2BPl). However a bottleneck of a direct column gener-
ation approach is the pricing subproblem, a two-dimensional 4-stage restricted
exact guillotine knapsack problem (C-2KP-RE-4-r). In this document, we
have focused on three different problems: the full pricing problem 2KP, which
is solved by iterative dynamic programs, the 2BPl without defects, and the
2BPdpl with defects on bins, which are solved by diving heuristics.

The C-2KP-RE-4-r remains a challenge for exact methods when large size
of instances are considered. For this problem, we have designed methods based
on a network-flow formulation in hypergraphs, which is obtained by rewriting
the dynamic program representing the set of all cutting patterns allowing item
overproduction. By adding side-constraints to limit item production to this
flow formulation, the C-2KP-RE-4-r can be solved with a generic MILP solver.
However a limitation occurs quickly when large scale problem instances are
considered. We use a more efficient method. Our original approach combines
Lagrangian filtering, DSSR strategy and labelling algorithms on hypergraphs.
To reduce hypergraph size and speed up algorithms, preprocessing techniques
based on simple observations from cutting restrictions and partial pattern enu-
merations are also developed. Computational experiments demonstrate the
efficiency of exact labelling methods.

New methods are designed to tackle the 2BPl from results of 2KP solving.
The main one is a so-called "non-proper" diving heuristic. From preliminary
experimental computation, it was observed that solving a relaxed pricing prob-
lem with dynamic programming did not weaken too much the linear relaxation
of the 2BPl compared to solving the bounded knapsack problem. It is also
faster to solve the dynamic program than solving the pricing problem with
item bounds. The main drawback of this diving heuristic is that "non-proper"
columns are added into the master problem. They are considered as unfeasible
since they imply to cut multiple times an item whereas 2BPl does not allow
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item overproduction by definition. In order to obtain an integer solution, a
described "non-proper" diving heuristic is used after column generation con-
vergence. It iteratively fixes a proper column at each iteration. When the
master problem only contains non-proper columns, a heuristic solution is built
taking into account the dual costs. To keep short computation time efficiency
of dynamic program, it is used to price columns after each variable fixing.
Thus new found columns may be also "non-proper". Computational experi-
ments outline the pertinence of this diving heuristic both in terms of solution
quality and computation time.

From results obtained for the 2BPl, the industrial 2BPdpl, subject of this
thesis, is then solved in two ways. First, the relaxed defect-free problem, i.e.
2BPl, is tackled with the "non-proper" diving heuristic and then different post-
processing methods are used to obtain a feasible solution to the 2BPdpl. Most
of post-processing methods use the structure of cutting patterns and mainly
the guillotine cut property. However this approach is limited in term of solution
quality since it only relies of a given 2BPl solution. To avoid this behavior,
the way to fix columns in the "non-proper" diving heuristic is modified to
handle directly bin with defects. Each time a column is fixed, the bin to cut is
also selected. Computational experiments are performed on different industrial
instances with different defect distributions per bin. Results outline the good
results of the "non-proper" diving heuristic handling bin with defects when
columns are fixed.

To conclude, we proposed advanced techniques based on column generation
and dynamic programming for solving heuristically our industrial glass cutting
problem. The gap between the dual and primal bounds obtained is small, but
the state-of-the-art methods do not allow to solve exactly real-size problems
with defects.

From an industrial point of view, several variants of the problem could
be addressed, including inventory constraints, time windows for orders, or
optimizing the conception of batches.

Solving exactly the problem is a hard scientific challenge. Although it
is easy to extend theoretically the dynamic program to account for defects,
the size of the hypergraphs produced (one per different plate) would be huge.
Even an approach based on relaxing item bounds would lead to models that
would be too large for a regular computer memory. Several ideas can be used.
The first one is to dynamically generate dynamic programs. The idea is first
to work on a small but relaxed dynamic program and then extend it when
needed. The difficulty of this approach is to solve the separation problem and
to avoid a too fast expansion of the network created. If one is able to produce
effective results using this approach, the "non-proper" diving heuristic can be
used directly without modifying the way to fix columns. Since pricing problems
are represented as flow problem in hypergraphs, it should also be possible to
combine branch-and-price and consecutive branching on hyperarcs. It aims
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to fix consecutive arc variables in pricing problems and is used to explore the
branching tree. However extend consecutive branching to hypergraphs is not
straightforward.
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