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Abstract

In this thesis, we study the security of advanced cryptographic primitives against
adversaries that behave closer to real-life scenarios. Namely, they can adaptively
update their strategy during the attack, based on previously obtained informa-
tion, possible from external sources like corrupted users. We construct Distributed
Pseudorandom Functions that still output random-looking values, even when the
adversary can adaptively corrupt some servers. Such a system assumes that the se-
cret key is shared among multiple servers that have to combine their partial eval-
uations in order to obtain a pseudorandom value. We also prove security against
adaptive corruptions, in the stronger simulation-based security model, for Inner
Product Functional Encryption. Such a public-key scheme encrypts vectors x and
can issue multiple secret keys associated to key vectors y. The decryptor learns the
partial information <x,y> but nothing else. This primitive can compute statistics
(e.g., weighted sums or means) on a database, while keeping each individual in-
put private. We also construct a labeled variant, wherein each database entry is
encrypted by a different client, called Multi-Client Functional Encryption. We fi-
nally provide a new construction of Non-Interactive Zero-Knowledge proof, which
convinces a verifier of the validity of some NP statement without leaking anything
else. In addition, an adversary obtaining many simulated proofs for possibly false
statements cannot produce a valid proof of its own for a false statement. This
primitive is used as a building-block for public-key encryption schemes with ad-
vanced security properties.
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Resumé

Dans cette thèse, nous étudions la sécurité des primitives cryptographiques avan-
cées contre des adversaires qui se comportent plus près de scénarios réels. Plus
précisément, ils peuvent mettre à jour de manière adaptative leur stratégie pen-
dant l’attaque, en fonction des informations précédemment obtenues, à partir de
sources externes comme des utilisateurs corrompus. Nous construisons des fonc-
tions pseudo-aléatoires distribuées produisant des valeurs qui paraissent aléa-
toires, même si l’adversaire peut corrompre de manière adaptative certains ser-
veurs. Un tel système suppose que la clé secrète est partagée entre plusieurs ser-
veurs qui doivent combiner leurs évaluations partielles afin d’obtenir une valeur
pseudo-aléatoire. Nous prouvons également la sécurité contre les corruptions adap-
tatives, dans le modèle de sécurité renforcé basé sur la simulation, pour le chiffre-
ment fonctionnel des produits scalaires. Un tel schéma à clé publique chiffre les
vecteurs x et peut émettre plusieurs clés secrètes associées aux vecteurs clés y. Le
décrypteur apprend les informations partielles 〈x, y〉 mais rien d’autre. Cette pri-
mitive peut calculer des statistiques (par exemple, des sommes pondérées ou des
moyennes) sur une base de données, tout en gardant chaque entrée individuelle
confidentielle. Nous construisons également une variante étiquetée, dans laquelle
chaque entrée de la base de donnée est chiffrée par un client différent, appelé chif-
frement fonctionnel multi-client. Enfin, nous fournissons une nouvelle construc-
tion de preuve non interactive à divulgation nulle de connaissance, qui convainc
un vérificateur de l’appartenance d’un certain élément à un langage NP sans rien
divulguer d’autre. De plus, un adversaire qui obtient de nombreuses preuves si-
mulées pour d’éventuelles fausses affirmations ne peut pas produire lui-même
une preuve valide d’une fausse affirmation. Cette primitive est utilisée comme élé-
ment de base pour les schémas de chiffrement à clé publique avec des propriétés
de sécurité avancées.
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Résumé substantiel en Français

Contexte

Le mot « cryptographie » est généralement associé à la communication privée
de messages par écritures secrètes et leur déchiffrement, ou cryptage et décryp-
tage comme nous les appelons aujourd’hui. Cette signification prévaut même si
la science de la cryptographie résout une grande variété de problèmes en plus
de la confidentialité. Cela ne devrait pas être une surprise car pendant des mil-
liers d’années, son seul but était d’empêcher des intercepteurs ésirables de lire
et de comprendre les messages qui étaient envoyés. Habituellement, l’expéditeur
et le destinataire possédaient les mêmes informations secrètes, sur lesquelles ils
s’étaient mis d’accord avant la communication, en se rencontrant face à face ou
par d’autres moyens de confiance. Nous référons à de tels schémas de chiffrement,
où les mêmes informations secrètes doivent être utilisées pour chiffrer et déchif-
frer les messages, comme clé symétrique. Dès qu’une clé secrète est partagée entre
deux entités qui veulent communiquer (sur Internet, ceci est réalisé via les mé-
thodes à clé publique), la branche à clé symétrique de la cryptographie est capable
de résoudre d’autres problèmes que le cryptage, des problèmes liés à l’authentifi-
cation et à l’intégrité des messages. Cela se fait généralement en utilisant des algo-
rithmes heuristiquement sécurisés comme AES, qui sont des algorithmes extrême-
ment rapides. Une approche plus théorique, qui fournit une sécurité prouvable,
consiste à construire des primitives fondamentales à clé symétrique en utilisant
des fonctions pseudo-aléatoires [GGM86] comme blocs de construction.

Avec le développement des réseaux informatiques depuis le début des années
70, la cryptographie a dû faire face à de nouveaux problèmes liés à la vie privée,
à l’authentification et à l’intégrité des données. La révolution clé publique [DH76]
a introduit les nouvelles idées de cryptographie à clé publique et signatures élec-
troniques qui ont répondu à des questions comme : «comment protéger la confi-
dentialité des données contre les écoutes, lors de la communication avec des per-
sonnes à l’autre bout du continent, auxquelles nous n’avons jamais parlé aupara-
vant» ou «comment s’assurer que nous communiquons avec les personnes visées
et non avec quelqu’un qui se fait passer pour elles» et «comment s’assurer que les
données reçues n’ont pas été modifiées quelque part le long du canal de commu-
nication» ? Ce nouveau paradigme suppose de générer une paire de clés associées :
une clé publique, utilisée pour le cryptage, et une clé privée pour le décryptage. Le
cryptage à l’aide d’informations publiquement disponibles supprime la nécessité
d’un partage a priori de la clé secrète. La relation entre la clé publique et la clé
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privée, permet de récupérer la clé secrète mathématiquement à partir des infor-
mations encapsulées par la clé publique. Mais en pratique, la tâche de calculer
la clé secrète de cette manière est calculatoirement insoluble, même en utilisant
les ordinateurs les plus puissants actuellement disponibles. La sécurité de la cryp-
tographie à clé publique doit donc s’appuyer sur la difficulté conjecturée d’une
tâche de calcul, ou hypothèse calculatoire.

Ces idées puissantes ont fortement influencé le développement de l’Internet
tel que nous le connaissons aujourd’hui. En fait, le protocole d’échange de clés de
Diffie et Hellman [DH76] utilisé pour l’accord de clés entre de parfaits inconnus,
et le très répandu cryptage à clé publique et signature numérique RSA [RSA78],
sont aujourd’hui constamment utilisés.

Le boom de l’Internet des deux dernières décennies a entraîné des millions
de connexions quotidiennes à partir de petits appareils comme les téléphones
portables ou les tablettes. La faible capacité de stockage et la puissance de cal-
cul limitée de ces appareils ont entrainé l’essor de l’utilisation des services de
cloud computing par internautes et entreprises. L’inconvénient pour les clients
qui déléguent leur calcul au cloud est qu’ils doivent transmettre des données sen-
sibles en clair à des tiers auxquels ils ne font peut-être pas confiance. Cette tension
inhérente entre la confidentialité et la capacité d’effectuer des opérations utiles
avec les données peut être soulagée pour certaines applications en utilisant les
primitives cryptographiques avancées. Par exemple, le calcul multipartite sécu-
risé [Yao86, GMW87] donne un protocole interactif qui permet à plusieurs utilisa-
teurs de calculer et d’apprendre la sortie d’une fonction évaluée sur leurs entrées,
tout en gardant chaque entrée individuelle secrète. Le chiffrement homomorphe
[Gen09, BGV11, BV11, GSW13] permet à des parties, auxquels un utilisateur ne fe-
rait pas confiance, d’effectuer des calculs sur les données chiffrées de l’utilisateur,
après quoi l’utilisateur déchiffre le résultat du calcul. Le chiffrement fonctionnel
[O’N10, BSW11a] est un chiffrement à clé publique avec des fonctionnalités avan-
cées, où plusieurs clés de déchiffrement peuvent être émises. Chaque clé est asso-
ciée à un calcul tel que le décrypteur n’apprenne que le résultat du calcul sur les
données chiffrées, mais rien d’autre. Le chiffrement fonctionnel peut être consi-
déré comme une forme non interactive d’un protocole MPC avec seulement deux
participants, également connu sous le nom de 2-Party-Computation (2PC).

Cette thèse

Un objet que nous étudions dans cette thèse est la primitive cryptographique fon-
damentale qu’est la fonction pseudo-aléatoires (PRF) [GGM86], qui peut être ef-
ficacement utilisée pour obtenir des constructions essentielles de clé symétrique
telles que le chiffrement ou l’authentification des messages. Nous étudions cette
primitive dans le contexte de la cryptographie à seuil, dans laquelle la clé secrète
est partagée entre de nombreux serveurs de sorte que tout sous-ensemble suf-
fisamment grand puisse correctement évaluer le PRF. Cela améliore les proprié-
tés de tolérance aux pannes du système en le maintenant fonctionnel même si
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un petit nombre de serveurs défectueux possibles. Dans ce contexte où la clé se-
crète n’est pas stockée en un seul endroit, mais distribuée entre plusieurs entités, il
est moins probable qu’un adversaire puisse corrompre suffisamment de serveurs
pour compromettre l’ensemble du système. Pour ces raisons, nous pourrions uti-
liser cette primitive pour le chiffrement à long terme des données sensibles.

Dans la deuxième partie, nous considérons les schémas de chiffrement fonc-
tionnel pour la classe restreinte des fonctions linéaires, également appelé Inner-
Product Functional Encryption (IPFE) [ABDCP15], qui peuvent être utilisées pour
calculer des sommes pondérées ou des moyennes de certaines bases de données
chiffrées, en ne divulguant rien d’autre sur cette dernière. Lorsque les données
cryptées peuvent être fournies par plusieurs clients, chacun cryptant avec sa propre
clé secrète individuelle, nous appelons un tel schéma Multi-Client Functional En-
cryption (MCFE) [CDG+18a].

Dans une dernière contribution, nous portons notre attention sur les sché-
mas de chiffrement à clé publique fournissant une sécurité même lorsque le mes-
sage dépend de la clé (Key-Dependent Message, abrégé KDM) [BRS02] sous des
attaques adaptatives par texte chiffré choisi (Chosen-Chiphertext Attack, abrégé
CCA2). La sécurité KDM permet à un système de crypter les messages qui dé-
pendent de la clé secrète elle-même, tout en garantissant la confidentialité. Au-
delà de son attrait théorique, une telle sécurité avancée est souhaitable dans les
situations qui peuvent apparaître en raison d’une gestion négligente des clés ou
lors de l’utilisation d’utilitaires de chiffrement de disque [BHHO08].

Pour la construction du schéma KDM-CCA2, nous utilisons des systèmes de
preuves non interactives à divulgation nulle de connaissance [BFM88], qui per-
mettent à un prouveur de produire une preuve qu’une déclaration est vraie tout
en cachant tout le reste. Quiconque exécute la procédure de vérification doit être
convaincu de la validité de la déclaration, sans rien apprendre d’autre que ce fait.
Ce concept apparemment paradoxal a de nombreuses autres applications crypto-
graphiques. Par exemple, il peut être utilisé pour imposer un comportement hon-
nête aux utilisateurs d’un protocole, tout en assurant la confidentialité des utilisa-
teurs impliqués, ou il peut être utilisé comme brique de base pour construire des
signatures électroniques.

Dans cette thèse, nous fournissons de nouvelles constructions pour les pri-
mitives mentionnées ci-dessus, en mettant l’accent sur la sécurité contre des ad-
versaires qui se comportent plus près des scénarios de la vie réelle. à savoir, ils
peuvent adaptativement mettre à jour leur stratégie pendant l’attaque, en se ba-
sant sur des informations obtenues précédemment, par le biais de sources ex-
ternes comme des utilisateurs corrompus.

Sécurité prouvée

Il y a eu de nombreux exemples de schémas de chiffrement cassés à travers l’his-
toire, donc on peut se demander s’il est possible de construire des schémas pour
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lesquels on peut mathématiquement prouver qu’aucune attaque n’est possible,
quelles que soient les ressources de calcul des adversaires et leur stratégie d’at-
taque.

Shannon a montré dans son article fondateur [Sha48] que, à moins que la clé
secrète ne soit au moins aussi grande que le message à chiffrer, un système fuit in-
évitablement des informations sur le message, ce qu’un adversaire tout-puissant
pourrait apprendre. Le chiffrement offrant une confidentialité parfaite n’est donc
pas pratique car il nécessite des clés d’une taille prohibitive. Cela signifie que nous
ne pouvons espérer une cryptographie pratique qu’en supposant que les adver-
saires sont calculatoirement limités. Même si un système avec de courts secrets
fuit de l’ information, l’adversaire ne doit pas avoir une puissance de calcul suffi-
sante pour l’exploiter. Pour cette raison, nous ne considérons que des adversaires
efficaces qui ont des ressources limitées polynomialement (par exemple, leur du-
rée de fonctionnement est bornée par un polynôme en la longueur de l’entrée).
Cela peut paraitre une restriction forte, mais cela semble suffisant pour prendre
en compte tous les adversaires existant dans la réalité.

Comme mentionné plus haut, un système sécurisé est un système pour lequel
le problème de l’exploitation des informations divulguées devrait être insoluble
pour tout adversaire efficace. Par conséquent, afin de prouver la sécurité, il est né-
cessaire de présumer de la difficulté de certains problèmes calculatoires, dans la
classe des problèmes pour lesquels nous pouvons vérifier efficacement les solu-
tions (également connus sous le nom de classe NP), et qui ne peuvent être résolus
en un nombre polynomial d’étapes. Malheureusement, prouver l’existence d’un
tel problème insoluble permettrait de régler l’un des plus importants problèmes
ouverts en informatique, à savoir P vs. NP. Par conséquent, tant que ce problème
reste ouvert, nous ne pouvons pas espérer avoir des preuves de sécurité incondi-
tionnelles. Celles-ci doivent dépendre de la difficulté conjecturée de quelque pro-
blème de calcul (hypothèse calculatoire). L’hypothèse de l’existence de problèmes
durs est étayée à la fois par notre expérience de plusieurs décennies en matière
d’informatique et par des décennies de recherche sur la théorie de la complexité.

Preuves de sécurité

Afin de fournir une preuve de sécurité, nous devons d’abord définir ce que cela
signifie qu’un système est sûr. Les intuitions de sécurité pour un schéma doivent
être formalisées par une définition précise. Très souvent, cette définition est expri-
mée sous la forme d’un jeu interactif entre l’adversaire et le challenger. Le schéma
est alors considéré comme rompu si l’adversaire gagne la partie.

Une preuve de sécurité pour un schéma cryptographique est un théorème qui
montre formellement qu’il est impossible pour un adversaire efficace de gagner le
jeu de sécurité (le schéma ne peut donc pas être cassé) tant que certaines hypo-
thèses calculatoires tiennent. Un tel théorème est généralement prouvé en sup-
posant l’existence d’un adversaire efficace capable de briser le cryptosystème. La
preuve procède ensuite à la construction d’un autre algorithme efficace, qui exé-
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cute cet adversaire comme un sous-programme, et qui est capable de résoudre
l’hypothèse calculatoire sous-jacente, arrivant ainsi à une contradiction. L’algo-
rithme efficace, qui utilise l’adversaire comme sous-programme et casse l’hypo-
thèse calculatoire est connu sous le nom de réduction.

Hypothèses Standard

En cryptographie, le terme « hypothèses standard » fait référence à un ensemble de
problèmes de calcul qui ont été utilisés pour construire de nombreuses primitives
différentes et qui sont considérés comme insolubles par tout algorithme fonction-
nant en temp quasi-polynomial. La confiance que nous avons en ces hypothèses
provient de décennies de recherches effectuées par des mathématiciens, des cryp-
tanalystes et des informaticiens qui ont travaillé sur ces problèmes mais n’ont pas
réussi à les résoudre. Par exemple, peut-être l’une des hypothèses les plus connues
est celle du logarithme discret (DL) qui est utilisée quotidiennement sur Internet.
étant donné un groupe cyclique G d’ordre premier p et un générateur g , l’hypo-
thèse DL dans le groupe G , indique qu’il est difficile de calculer x ∈ Zp à partir
de g x . Evidemment, la difficulté du problème dépend du groupe G . La confiance
dans une hypothèse comme celle-ci ne fait qu’augmenter avec chaque jour qui
passe où elle n’est pas cassée.

Fonctions pseudo-aléatoires

Une famille de fonctions pseudo-aléatoires (Pseudo-Random Functions, abrégé
PRF) [GGM86] est une famille de fonctions F := {F : K ×X →Y }, indexé par l’es-
pace des clés, qui peut être évalué efficacement en entrée une clé secrète s ∈ K ,
et une valeur x ∈X du domaine de la fonction. La sécurité garantit qu’aucun ad-
versaire efficace n’est capable de faire la distinction entre les deux scénarios sui-
vants : s’il reçoit un accès oracle à une fonction Fs, pour une clé uniformément
aléatoire s ←-K , ou il a accès à un oracle calculant une fonction réellement aléa-
toire f ←- Y X , échantillonné uniformément dans l’ensemble de toutes les fonc-
tions de X vers Y .

Les PRF sont des éléments fondamentaux de la cryptographie, notamment
dans les schémas à clé symétrique, où ils peuvent être utilisés pour assurer des
tâches essentielles telles que le cryptage à clé secrète, l’authentification ou l’inté-
grité des messages.

Goldreich, Goldwasser et Micali [GGM86] ont montré comment construire un
PRF à partir de n’importe quel générateur pseudo-aléatoire doublant la longueur
de son entrée. Cependant, cette manière générique de les construire est particu-
lièrement inefficace. Des constructions beaucoup plus efficaces peuvent être ob-
tenues en s’appuyant directement sur des hypothèses de la théorie des nombres
plus standards comme l’hypothèse de Diffie-Hellman décisionnelle [NR97] et va-
riantes associées [DY05, LW09, BMR10, CM04] ou la difficulté de la factorisation
[NR97, NRR00]. Des constructions à partir d’hypothèses portant sur les réseaux
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euclidiens comme, Learning With Errors (LWE) [BPR12, BLMR13, BP14] sont éga-
lement possibles, mais la plupart d’entre elles sont plutôt inefficaces. Très souvent,
cela est dû à la nécessité d’un module super-polynomial.

Fonctions pseudo-aléatoires distribuées

Les fonctions pseudo-aléatoires distribuées (Distributed PRF ou DPRFs) [NPR00]
permettent de répartir entre N serveurs le calcul d’une fonction qui génère des va-
leurs indiscernables de l’aléatoire tant que la clé secrète n’est pas révélée. De plus,
seuls certains sous-ensembles autorisés de ces serveurs sont capables de calculer
la valeur correcte. Par exemple, dans le cas où les ensembles autorisés sont consti-
tués de tous les ensembles de cardinalité supérieure à un seuil t , un utilisateur
qui veut calculer la valeur FSK (x) envoie l’entrée x à un sous-ensemble des ser-
veurs t qui répondent avec les évaluations partielles correspondantes sur l’entrée
x. L’utilisateur combine toutes les évaluations partielles pour récupérer l’évalua-
tion FSK (x). Un attaquant ne devrait pas être capable de distinguer la valeur FSK (x)
d’une valeur uniformément aléatoire, même s’il a un contrôle total sur un nombre
maximum de t −1 serveurs.

Comme dans le cas général de la cryptographie à seuil [DF89], le principal
avantage d’avoir plusieurs serveurs gardant les partages secrets et de faire les éva-
luations partielles correspondantes est que les points de défaillance individuels
sont supprimés, gardant ainsi l’équivalent centralisé de la clé secrète plus sûr et
rendre l’ensemble du système plus fiable. Cela signifie que l’ensemble du sys-
tème continue de fonctionner malgré le dysfonctionnement d’un sous-ensemble
de serveurs.

Les fonctions pseudo-aléatoires distribuées ont été initialement suggérées par
Micali et Sidney [MS95] et ont reçu beaucoup d’attention depuis [NPR00, NR97,
Nie02, Dod03, DYY06]. Elles permettent la construction de schémas de chiffre-
ment symétriques distribués, de centres de distribution de clés distribués [NPR00],
le tirage au sort distribué, et la conception de protocoles d’accord byzantin asyn-
chrone [CKS00]. Elles fournissent également une source distribuée de bits aléa-
toires qui permettent de supprimer le caractère interactif des mécanismes de dé-
cryptage à seuil, comme celui de Canetti et Goldwasser [CG99].

Travaux antérieurs sur les fonctions pseudo-aléatoires distribuées

Les constructions de fonctions pseudo-aléatoires distribuées précédentes peuvent
être divisées en deux grandes catégories : interactives et non interactives. L’inter-
activité [Nie02, Dod03, DYY06] signifie que, pour calculer la fonction, les serveurs
doivent interagir non seulement avec l’utilisateur, mais aussi entre eux. Il est sou-
haitable d’avoir des schémas non interactifs [MS95, NPR00, BLMR13, BGG+18],
où les serveurs n’ont qu’une interaction à faire avec l’utilisateur. Certains des in-
convénients de ces premières constructions étaient qu’elles ne fonctionnaient que
pour de petites valeurs du seuil t par rapport au nombre de serveurs N [MS95],
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ou que la preuve de sécurité n’était pas uniquement basée sur des hypothèses
standards , mais utilisaient le modèle de l’oracle aléatoire (Random Oracle Mo-
del, en abrégé ROM) [NPR00]. La ROM [BR93] fait référence à un modèle de sécu-
rité heuristique dans lequel les fonctions de hachage utilisées dans la construction
d’un schéma sont modélisées comme des fonctions vraiment aléatoires. De plus,
l’adversaire ne calcule pas lui-même ces fonctions, mais invoque plutôt un oracle
(contrôlé par la réduction de la preuve de sécurité) chaque fois qu’il veut obtenir
une valeur de la fonction de hachage. Les preuves de sécurité qui n’utilisent pas
cette heuristique sont préférables, car il existe des exemples de schémas de chif-
frement sûrs dans le modèle oracle aléatoire, pour lesquels l’implémentations des
oracles aléatoires aboutit à des schémas non sécurisés [CGH98].

En 2013, Boneh et al. [BLMR13] ont donné une construction générique de
DPRF non interactif à partir de Key-Homomorphic PRF (KH-PRF), qui fonctionne
pour toutes les valeurs du seuil t, y compris le cas de la majorité honnête t = (n −
1)/2. Leur schéma est sûr sous l’hypothèse standard Learning With Errors (LWE),
sans oracles aléatoires. La même construction générique peut être instanciée en
utilisant le KH-PRF de [BP14, Kim20], avec des paramètres plus efficaces.

Les constructions existantes de DPRF génériques ont uniquement été prou-
vées sûres dans le modèle plus faible où les corruptions sont dites statiques. Cela
restraint l’attaquant, qui doit déclarer la liste des serveurs corrompus avant le dé-
but de l’attaque. Un modèle plus naturel et réaliste est le modèle adaptatif, dans
lequel l’attaquant peut choisir les serveurs à corrompre de manière adaptative, en
fonction des informations reçues tout au long de l’attaque. Il est facile de prou-
ver que le modèle de corruption adaptatif rend l’adversaire sjtrictement plus fort
car nous pouvons construire un schéma qui n’est pas sûr sous des corruptions
adaptatives, mais sûr sous des corruptions statiques (comme nous le montrons
au chapitre 3).

Contribution 1

Les résultats de [LSŢ18], présentés dans le chapitre 3, donnent la première construc-
tion non interactive d’une famille de fonctions pseudo-aléatoires distribuées sûre
contre les corruptions adaptatives. La sécurité est basée sur l’hypothèse de Lear-
ning With Errors (LWE), sans s’appuyer sur des oracles aléatoires. L’efficacité de
notre schéma pourrait être améliorée, car nous avons besoin d’un module LWE
super-polynomial. Les PRF basés sur les réseaux euclidiens [BPR12, BLMR13, BP14],
y compris notre construction, qui utilisent la technique d’arrondissement [BPR12],
ont cet inconvénient.
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Chiffrement fonctionnel

Le chiffrement fonctionnel (Functional Encryption, abrégé FE) est une primitive
cryptographique moderne qui offre un accès mesurè aux données chiffrées. Il gé-
néralise le cryptage à clé publique traditionnel, où le décrypteur récupère tout le
message ou rien.

Un schéma de chiffrement fonctionnel est généralement défini pour une classe
de fonctionnalités F définies sur l’espace des messages clairs du schéma. Le dé-
tenteur de la clé secrète maître est capable d’émettre plusieurs clés de déchiffre-
ment fonctionnelles sk f , chacune associée à une fonction f ∈ F . Un utilisateur
qui détient une telle clé de déchiffrement sk f et un texte chiffré correspondant au
message x peut récupérer f (x). La sécurité garantit que rien d’autre n’est divulgué
concernant le message x , à part l’évaluation f (x). Même lorsque plusieurs utilisa-
teurs complotent, ils ne devraient toujours rien apprendre sur le message, au-delà
de ce que révèle chaque clé individuelle.

L’étude de la notion abstraite de chiffrement fonctionnel a été initiée par Bo-
neh, Sahai et Waters [BSW11a] et O’Neill [O’N10]. De nombreuses constructions
qui correspondent à cette généralisation, comme le chiffrement basé sur l’iden-
tité (Identity-Based Encryption, abrégé IBE) [Coc01, BF01, GPV08, ABB10], le chif-
frement basé sur les attributs (Attribute-Based Encryption, abrégé ABE) [SW05,
GPSW06, LOS+10, GVW13] ou le chiffrement à prédicat (Predicate Encryption,
abrégé PE) [LOS+10, KSW08, GVW15a], ont été largement étudiés avant et après
la formulation générale de chiffrement fonctionnel.

Sécurité pour le chiffrement fonctionnel

D’intenses efforts ont été déployés pour formaliser la bonne définition de sécurité
qui capture l’intuition de sécurité de cette primitive. Dans [BSW11a] et [O’N10], il
a été montré que la notion habituelle de sécurité basée sur l’indiscernabilité (IND)
ne convient pas à certaines fonctionnalités. Plus précisément, ils ont donné une
construction peu sûre qui pourrait être prouvée sûre selon la définition de sécurité
IND. De manière informelle, le sécurité IND exige qu’aucun adversaire efficace —
disposant d’un accés à un oracle évaluant l’algorithme de génération de clé — ne
soit capable de faire la distinction entre les chiffrés de deux messages x0 et x1. Cela
comprends le scénario où plusieurs détenteurs de clés privées complotent afin
d’obtenir des informations sur le message chiffré. Dans le même travail, ils ont
initié l’étude de la sécurité basée sur la simulation (SIM) pour le chiffrement fonc-
tionnel. Ce modèle de sécurité, pour cette primitive, est plus fort que le modèle
IND ; il requiert que la vue de l’adversaire puisse être simulée par un simulateur
qui a accès aux paires ( f , f (x?)) constitués de fonctionnalités et de leur évaluation
sur le message challenge x?.

Selon que l’adversaire soit autorisé à effectuer des requêtes de clé après avoir
reçu le chiffré challenge ou pas, on considère la sécurité adaptative (AD) ou non-
adaptative (NA) pour les définitions IND et SIM. O’Neill [O’N10] a montré que

17



CONTENTS

dans le cas non adaptatif, les deux notions de sécurité NA-IND et NA-SIM sont
équivalentes pour la classe de fonctionnalités pour laquelle le calcul de pré-images
est facile.

Boneh, Sahai et Waters [BSW11a] ont montré que la sécurité AD-SIM est im-
possible à réaliser pour de nombreux messages challenge pour la fonctionnalité
du chiffrement basé sur l’identité (IBE). Le même argument s’étend facilement au
chiffrement fonctionnel pour la classe des fonctions linéaires (IPFE). Un autre ré-
sultat d’impossibilité a été donné par Agrawal et al. [AGVW13] où ils ont prouvé
que nous ne pouvons pas espérer construire un schéma de chiffrement fonction-
nel pour la classe des circuits généraux atteignant la sécurité NA-SIM pour un
message challenge.

De l’autre côté du spectre, en termes de résultats positifs, Gorbunov, Vaikun-
tanathan et Wee [GVW12] ont donné une construction pour la classe des circuits
généraux atteignant la sécurité AD-SIM pour un message sous collusion bornée.
Cela signifie qu’il existe une limite a priori sur le nombre de requêtes clés effec-
tuées par l’adversaire. Une autre construction pour les circuits généraux est ap-
parue dans [GKP+13] réalisant la sécurité NA-SIM lorsque l’adversaire est limité
à une seule requête clé. Le chiffrement fonctionnel entièrement sécurisé (AD-
IND) pour les circuits généraux peut être construit en utilisant des outils puissants
comme l’obfuscation (Indistinguishability Obfuscation) et des applications mul-
tilinéaires (Multi-linear maps) [GGH+13, GGHZ14, Wat15]. Pour le moment, ces
outils ne sont pas connus pour être instanciables sous des hypothèses de dureté
bien étudiées.

Chiffrement fonctionnel pour les fonctions linéaires

Lorsque nous limitons la classe de fonctionnalités aux fonctions linéaires, éva-
luant des produits scalaires de vecteurs sur un certain anneau R (R ∈ {Z,Zp }),
la primitive résultante s’appelle le chiffrement fonctionnel pour les produits sca-
laires (Innner-Product Functional Encryption, abrégé IPFE). Concrètement, l’IPFE
chiffre les vecteurs x ∈ R` en utilisant la clé publique. En utilisant la clé secrète
principale, il peut également émettre plusieurs clés secrètes associées à des vec-
teurs clés y ∈ R`. Le déchiffrement d’un chiffré de x avec une clé associée à y révèle
l’information partielle 〈x , y〉 ∈ R mais rien d’autre.

Travaux antérieurs sur les schémas IPFE

Au lieu de tenter de construire un chiffrement fonctionnel pour les circuits gé-
néraux à partir d’hypothèses standard, une autre approche a été adoptée par Ab-
dalla, Bourse, De Caro et Pointcheval dans [ABDCP15]. Ils ont eu l’idée de créer des
schémas efficaces, en commençant par des classes de fonctionnalités plus petites
au lieu de viser des circuits généraux, avec une sécurité basée sur des hypothèses
standard. En particulier, pour la classe restreinte des fonctions linéaires (produits
scalaires), ils ont réussi à obtenir des schémas plus pratiques sous des hypothèses
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de difficulté bien étudiées comme le Decisional Diffie-Hellman (DDH) et Lear-
ning With Errors (LWE). Leurs constructions ne sont prouvées que sélectivement
sûres dans le modèle IND. Cela signifie que l’adversaire doit annoncer les mes-
sages challenges avant même de voir la clé publique du système. Ce résultat a été
amélioré par Agrawal, Libert et Stehlé [ALS16] en construisant un cryptage fonc-
tionnel adaptatif AD-IND pour la même classe de fonctions linéaires, sous DDH ,
LWE et à partir de l’hypothèse décisionnelle de la résiduosité composite (Decisio-
nal Composite Residuosity, en abrégé DCR) de Paillier [Pai99]. Pour aller encore
plus loin, Wee [Wee17] a prouvé que le schéma basé sur DDH de [ALS16] satisfait
une notion de sécurité SIM appelée sécurité simulation semi-adaptative. Dans ce
contexte, l’adversaire n’est pas autorisé à effectuer des requêtes clés avant le défi.

Contribution 2

Pour notre deuxième contribution, nous nous concentrons sur nos résultats de
[ALMŢ20]. Dans le chapitre 4, nous montrons que les schémas IPFE de [ALS16],
basés sur DDH, DCR [Pai99] de Paillier et LWE, qui évaluent les produits scalaires
sur les entiers, atteignent une sécurité AD-SIM. Cela améliore également le résul-
tat de [Wee17], où le schéma basé sur DDH n’atteint qu’une sécurité simulation
semi-adaptative. Pour prouver ces résultats, nous devons augmenter la taille des
clés secrètes du schéma original basé sur DCR. Nous devons également agrandir
le module q , du schéma basé sur LWE de [ALS16] d’un facteur exponentiellement
grand. Dans le cas DDH, nous pouvons prouver nos résultats sans aucune modi-
fication au schéma d’origine.

Puisque le résultat d’impossibilité de [BSW11a] peut être adapté aux fonctions
linéaires, il exclut la possibilité d’atteindre la sécurité AD-SIM lorsque l’adversaire
est autorisé à émettre plusieurs messages challenge. Cependant, aucune des im-
possibilités résultant de [BSW11a, O’N10, AGVW13] ne s’applique à notre cas où
l’on considére un seul chiffré challenge, et un nombre illimité de requêtes clés. Par
conséquent, nous prouvons que les schémas IPFE basés sur DDH, DCR et LWE de
[ALS16] atteignent la notion de sécurité la plus forte que l’on puisse espérer parmi
les définitions basées sur IND et SIM, à savoir qu’il fournit une sécurité AD-SIM
pour un unique chiffré challenge et un nombre illimité 1 de requêtes de clé.

Chiffrement fonctionnel multi-client

Le chiffrement fonctionnel multi-entrées (Multi-Input Functional Encryption, ou
MIFE) [GGG+14] permet le calcul de fonctions sur plusieurs entrées qui peuvent
être chiffrées indépendamment en utilisant la même clé. Lorsque chaque entrée

1Le nombre de requêtes clés est en fait limité par la fonctionnalité elle-même, mais cela est
intrinsèque à chiffrement fonctionnel. Par exemple, la sécurité IPFE devient nulle après ` requêtes
de clé linéairement indépendantes, où ` est la dimension des vecteurs de message
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est chiffrée par un client ou un parti différent, sous sa propre clé privée, ce sont
des schémas de chiffrement fonctionnel multi-client (Multi- Client Functional En-
cryption, en abrégé MCFE) [GGG+14, CDG+18a]. Dans ce cas, il est naturel de
supposer que les clients corrompus peuvent collaborer afin d’obtenir plus d’infor-
mations sur les entrées de clients non corrompus. En revanche, dans un schéma
MIFE, il n’y a pas de sécurité contre la corruption, puisque tous les partis chiffrent
en utilisant la même clé.

Étiquettes

Dans les cas d’utilisation à entrées multiples et multi-clients, la fuite d’informa-
tions inhérente pourrait être un problème dans les applications, en particulier
lorsque de nombreuses clés de déchiffrement fonctionnelles sont distribuées. Pour
illustrer ce point, considérons le cas simple de deux clients. Quiconque possède
une clé de déchiffrement fonctionnelle sk f pour la fonction à deux entrées f et les
chiffrés de x1, z1 et x2, z2, respectivement calculés par le premier et le deuxième
client, peut apprendre n’importe quel f (xi , z j ) des quatre combinaisons. Notez
que, pour ` clients, la fuite d’informations induite par une clé de déchiffrement
fonctionnelle sur deux vecteurs de texte chiffré croît exponentiellement avec `.

Pour limiter cette fuite «mix-and-match», l’idée d’utiliser des étiquettes (labels)
a été introduite dans [GGG+14]. Cela signifie que chaque parti chiffre son message
en utilisant une étiquette t comme paramètre supplémentaire (par exemple un
horodatage) et qu’une clé de déchiffrement fonctionnelle donnée ne peut fonc-
tionner que sur des vecteurs de chiffrés ayant été chiffrés avec la même étiquette.
Chotard et al. ont proposé dans [CDG+18a] le premier schéma MCFE efficace sous
hypothèses standard, qui utilise également des étiquettes. Leur construction fonc-
tionne pour la classe restreinte des fonctions linéaires. Notez que de tels schémas
avec des étiquettes peuvent être obtenus auprès des MCFE pour les fonctionna-
lités générales. Malheureusement, ces constructions sont vraiment inefficaces et
sont basées sur des hypothèses exotiques comme Indistinguishability Obfuscation
[GGG+14].

Travaux précédents sur le chiffrement fonctionnel multi-client

Le premier chiffrement fonctionnel multi-client avec des étiquettes de [CDG+18a]
est prouvé sûr sous l’hypothèse standard DDH, mais dans le modèle de l’oracle
aléatoire, et fonctionne pour la classe restreinte des fonctions linéaires. Dans leur
modèle de sécurité (Définition 5.2), chaque client est supposé chiffrer un seul
message par étiquette. De plus, l’adversaire est supposé connaître tous les textes
chiffrés chiffrés sous la même étiquette, correspondant à chaque client. Cela si-
gnifie que la sécurité n’est pas garantie lorsque l’adversaire est autorisé à obtenir
des textes chiffrés pour un sous-ensemble approprié de clients pour une étiquette
particulière. Nous discuterons plus en détail de ces limitations dans la section 5.1.
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Dans [CDG+18b], les mêmes auteurs renforcent la sécurité des schémas men-
tionnés précédemment en donnant deux transformations qui suppriment le be-
soin de ces conditions apparemment artificielles. Malheureusement, leurs tech-
niques ne sont pas génériques et ne fonctionnent que pour leur schéma initial. Ils
traitent des textes chiffrés partiels en utilisant une couche de partage de secret,
ou «Secret Sharing Layer» (SSL), qui est utilisé pour encapsuler les textes chiffrés
de telle sorte que la récupération n’est possible que lorsque les contributions de
tous les clients sont disponibles. De plus, en utilisant une couche de chiffrement
IPFE [ALS16], similaire au compilateur IPFE vers MIFE de [ACF+18], ils ont sup-
primé la restriction imposée aux clients clients de n’avoir qu’un seul texte chiffré
par étiquette.

Un résultat similaire dans [ABKW19] montre comment améliorer générique-
ment les schémas MCFE afin d’étendre la sécurité au cas de textes chiffrés incom-
plets. Pour les schémas qui n’utilisent pas d’étiquettes, leur compilateur peut être
instancié avec un schéma de cryptage symétrique sécurisé IND-CPA et est simi-
laire à celui de [AGRW17]. Dans le cas d’un MCFE étiqueté, l’utilisation du chiffre-
ment symétrique n’est pas suffisante, car la sécurité du compilateur est prouvée
dans le modèle de l’oracle aléatoire. Un autre résultat de [ABKW19] montre que les
schémas MIFE de modèle standard de [ACF+18] restent protégés contre les cor-
ruptions adaptatives. Nous pouvons donc les appeler des schémas multi-clients.

Enfin, dans le travail concurrent de [ABG19], les auteurs donnent un compila-
teur général qui prend n’importe quel IPFE à entrée unique (qui satisfait certaines
conditions souples) et donne un MCFE à étiquettes sécurisé contre les corruptions
adaptatives. De manière analogue à la transformation de [ACF+18], en instanciant
ce compilateur avec les schémas IPFE de [ALS16], ils ont obtenu des MCFE éti-
quetés sous les hypothèses LWE / DDH / DCR. Ils mettent également à jour la
preuve du compilateur dans [ABKW19] afin qu’il fonctionne dans le modèle stan-
dard, assurant ainsi la sécurité lorsque des vecteurs de texte chiffré incomplets
sont autorisés.

Contribution 3

Nos contributions de [LŢ19] sont présentées dans le chapitre 5 de cette thèse. La
construction de la section 5.3 donne le premier schéma MCFE pour les fonctions
linéaires, sécurisé contre les corruptions adaptatives, qui supporte les étiquettes.
La sécurité est garantie par l’hypothèse LWE et ne nécessite pas d’oracles aléa-
toires.

Une autre contribution est détaillée dans la section 5.4 où un compilateur
étend la sécurité de base de notre schéma MCFE afin qu’il gère les chiffrés par-
tiels. La preuve de sécurité est faite dans le modèle standard et utilise des PRFs
multi-instance adaptatifs, dont la sécurité peut être prouvée en exploitant le ca-
ractère pseudo-aléatoire de tout PRF. Pour obtenir de meilleurs facteurs d’étan-
chéité dans la preuve de sécurité, nous utilisons le PRF particulier basé sur les
LWE de la section 3.4.2.
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Systèmes de preuve non interactifs à divulgation nulle de
connaissance

Les systèmes de preuve non interactifs à divulgation nulle de connaissance (Non-
Interactive Zero-Knowledge, ou NIZK) sont des protocoles dans lesquels un prou-
veur veut convaincre un vérificateur efficace qu’une déclaration NP est vraie, sans
rien divulguer d’autre. Le protocole ne nécessite aucune conversation interactive
entre le prouveur et le vérificateur, car le prouveur calcule une preuve qui devrait
convaincre le vérificateur de la validité de l’énoncé. Leur existence a été démon-
trée [BFM88] dans le modèle Common Reference String (CRS, en français chaîne
de caractères commune de référence), où le prouveur et le vérificateur partagent
une chaîne de caractères aléatoire. Dans le modèle simple, les NIZK ne sont pos-
sibles que pour les langages de la classe de complexité du temps polynomial pro-
babiliste borné (BPP) [Ore87], donc le CRS partagé est en fait nécessaire.

Une approche courante pour construire des systèmes de preuve NIZK consiste
à appliquer la transformation Fiat-Shamir (FS) [FS86] à des protocoles interactifs à
3 mouvements et à divulgation nulle de connaissance pour les vérificateurs hon-
nêtes, également connus sous le nom de protocoles Σ. Concrètement, l’interac-
tion du protocole Σ est supprimée en remplaçant le défi aléatoire du vérificateur
par une valeur calculée via. une fonction de hachage déterministe, lorsqu’elle est
appliquée à la transcription établie jusqu’à cet instant. Bellare et Rogaway [BR93]
ont montré que le schéma non interactif est sûr face à des procureurs malicieux,
à condition que la fonction de hachage soit modélisée comme un oracle aléa-
toire. Cependant, l’heuristique Fiat-Shamir peut ne pas être prouvée sûre dans
le modèle standard, lorsque la fonction de hachage n’est plus la fonction aléatoire
idéale [GTK03]. Des résultats négatifs tels que [GTK03] n’excluent pas la validité
des preuves NIZK basées sur Fiat-Shamir lorsqu’une fonction de hachage spéci-
fique est appliquée à des protocols Σ spécifiques.

Jusqu’à récemment, on ne savait pas comment instancier le paradigme Fiat-
Shamir dans le modèle standard. Cela a changé avec les travaux récents de Canetti
et al. [CLW19] et Peikert et Shienhian [PS19], qui ont donné la première famille de
fonctions de hachage à corrélation inextricable, ou Correlation-Intractable (CI),
sûres sous des hypothèses standard sur les réseaux. Ils ont montré que CI pour les
relations recherchables est suffisant pour instancier le paradigme FS de manière
sûre contre des prouveurs malhonnêtes, pour une classe suffisamment grande de
protocolesΣ de telle sorte que NIZK pour toutes les relations NP soit possible sous
des hypothèses standard sur les réseaux.

Travaux antérieurs sur les NIZK multi-preuves

Sahai a montré [Sah99] que, lorsque le paradigme de chiffrement double de Naor
et Yung [NY90] est instancié en utilisant un NIZK sûr contre des prouveurs mal-
honnêtes dans le modèle de la simulation, appelé simulation-sound NIZK, nous
obtenons un schéma de chiffrement à clé publique sûr contre contre les attaques à
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texte chiffré choisi (CCA2). à cette fin, nous montrons comment transformer n’im-
porte quel NIZK ordinaire pour obtenir la simulation-soundness. Intuitivement,
la simulation-soundness empêche un adversaire de produire une preuve valide
d’une déclaration fausse, même s’il est en possession d’une autre preuve pour une
déclaration de son choix, obtenue à partir d’autres sources.

Ce résultat a été amélioré plus tard pour le cas multi-preuve dans [SCO+01],
qui donne une transformation générale des NIZK ordinaires en NIZK à simulation-
soundness illimitée, ou unbounded simulation-soundness. Intuitivement, cela em-
pêche l’adversaire de produire une preuve valide correspondant à une fausse dé-
claration, même après avoir vu un nombre polynomial d’autres preuves de son
choix.

Encore une fois, dans le cadre multi-preuve, les résultats de [FLS99] donnent
une transformation générale de n’importe quel NIZK ordinaire en systèmes de
preuve multi-théorème à divulgation nulle de connaissance. Cela signifie que la
propriété de divulgation nulle de connaissance du schéma est préservée même
lorsque de nombreuses preuves polynomiales sont données à l’adversaire.

Contribution 4

Dans la dernière partie de la thèse, nous présentons certains de nos résultats de
[LNPŢ19], qui concernent des instanciations plus efficaces du paradigme Naor-
Yung, pour des langages spécifiques.

Notre premier résultat (Section 6.3.2) donne une construction générique d’un
argument 2 NIZK multi-théorème , directement à partir de protocoles Σ à trappes,
en supposant l’existence de fonctions de hachage Correlation Intractable (CI) et
une primitive appelée chiffrement à perte avec ouverture efficace, ou lossy en-
cryption with efficient opening [BHY09]. Nous utilisons les fonctions de hachage
CI pour rendre le système de preuve non interactif, tout en préservant la sound-
ness (sécurité contre les prouveurs malhonnêtes). Le fait que les textes chiffrés
à perte peuvent facilement être révoqués est exploité de manière cruciale par le
simulateur NIZK et c’est l’ingrédient qui nous permet de prouver la divulgation
nulle de connaissance lorsque l’adversaire a accès à de nombreuses preuves po-
lynomiales. Comme déjà mentionné, il est également possible d’obtenir un NIZK
multi-théorème par la transformation FLS [FLS99]. Nos résultats donnent une autre
façon de faire cela, directement à partir de protocols Σ. Ainsi grace à nos tech-
niques, nous pouvons obtenir des NIZK multi-théorèmes statistiquement sûrs pour
tous les langages NP sous l’hypothèse standard LWE (voir Section 6.3.4, ceci pré-
sente un avantage par rapport au même résultat obtenu en combinant les résul-
tats de [FLS99] et [PS19]. A savoir, dans notre cas, nous obtenons un CRS unifor-
mément distribué alors que le CRS obtenu par la transformation FLS n’est que
pseudo-aléatoire.

2Un argument est une preuve dont la sécurité contre des prouveurs malhonnêtes repose sur des
hypothèses calculatoires.
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Notre deuxième contribution, donnée dans la section 6.4, montre comment
améliorer la construction multi-théorème mentionnée précédemment (section
6.3.2) pour obtenir également l’unbounded simulation-soundness. Pour ce faire,
nous devons également utiliser des signatures à usage unique comme élément
constitutif. Malheureusement, le chiffrement à perte avec ouverture efficace ne
suffit pas pour prouver la soundness de la simulation. Pour pallier à cela, nous
généralisons la définition du chiffrement à perte-R [BSW11b] et prouvons (dans
la section 6.2) qu’une variante du schéma original de Regev satisfait toutes les
propriétés requises. Il en résulte un compilateur générique qui prend n’importe
quel protocole Σ avec une trappe et le transforme en un argument NIZK multi-
théorème qui satisfait la propriété de unbounded simulation-soundness. Encore
une fois, nos résultats peuvent être considérés comme une alternative à [SCO+01]
pour obtenir des NIZK avec unbounded simulation-soundness.

Enfin, dans la section 6.4.5, nous donnons une construction pour un protocole
Σ avec trappe, qui prouve deux textes chiffrés du schéma sécurisé KDM-CPA basé
sur LWE de [ACPS09], chiffrent le même message. Avec le compilateur générique
de la section 6.4, il nous permet d’appliquer la transformation de Naor-Yung au
schéma ACPS. Cela donne le schéma de clé publique le plus efficace, qui est à la
fois sûr même lorsque les messages dépendent de la clé (KDM), et qui soit sûr
contre les attaques à texte chiffré choisi (CCA2), sous l’hypothèse LWE. Ce résultat
est discuté dans la section 6.4.4.
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Chapter

1
Introduction

1.1 Background

The word "cryptography" is typically associated with the private communication
of messages through secret writings and their deciphering, or encryption and de-
cryption as we call them today. This meaning prevails even though the science
of cryptography solves a wide variety of problems besides privacy. This should
not come as a surprise since for thousands of years its only purpose was to pre-
vent unintended interceptors from reading and understanding the messages that
were being sent. Usually both the sender and the receiver possessed the same
secret information, that they had agreed upon prior to the communication, by
meeting face to face or through other trusted means. We refer to such encryption
schemes, where the same secret information must be used to encrypt and decrypt
messages, as symmetric-key. Once a secret key is shared between two entities
that want to communicate (on the Internet, this is achieved through public-key
methods), the symmetric-key branch of cryptography is able to solve other prob-
lems beside encryption, problems related to authentication and message integrity.
This is usually done through the use of heuristically secure, but extremly fast algo-
rithms like AES. A more theoretical approach, that provides provable security, is
to construct fundamental symmetric-key primitives using Pseudo-Random Func-
tions (PRFs) [GGM86] as building blocks. While AES is conjectured to be a PRF,
the construction from [GGM86] gives a PRF from simpler building blocks, namely
from pseudo-random generators.

With the development of computer networks from the beginning of the ’70s,
cryptography had to deal with new problems related to privacy, authentication
and data integrity. The public-key revolution [DH76] introduced the new ideas
of public-key cryptography and digital signatures which answered questions like:
"how to protect the privacy of the data against eavesdroppers, when communicat-
ing with people on the other side of the continent, whom we have never spoken
to before?" or "how to make sure we are communicating with the intended peo-
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ple and not with someone impersonating them?" and "how do we make sure that
the received data was not modified somewhere along the communication chan-
nel?" This new paradigm assumed generating a pair of related keys: a public key,
used for encryption, and a private key for decryption. Encrypting using publicly
available information removes the need for an a priori sharing of the secret key.
The relation between the public and the private key, allows for the secret key to be
mathematically recovered from the information encapsulated by the public key.
But in practice, the task of computing the secret key in this manner is computa-
tionally intractable, even using the most powerful computers currently available.
So the security of public-key cryptography has to rely on the conjectured hardness
of some computational task, or computational assumption.

These powerful ideas heavily influenced the development of the Internet as
we know it today. In fact, the key-exchange protocol of Diffie and Hellman [DH76]
used for key agreement by complete strangers, and the popular RSA public-key
encryption and digital signature [RSA78], are nowadays in constant use.

The Internet boom from the last couple of decades brought about millions
of everyday connections from small devices like mobile phones of tablets. The
small storage capabilities and restricted computational power of such devices en-
abled cloud computing services to become very popular among individual inter-
net users and companies alike. The drawback for clients moving their computa-
tion to the cloud is that they need to hand over sensitive data in clear to third par-
ties they might not trust. This inherent tension between privacy and the ability of
performing useful operations with the data can be relieved for some applications
using advanced cryptographic primitives. For example, secure Multi-Party Com-
putation (MPC) [Yao86, GMW87] gives an interactive protocol that allows multi-
ple users to compute and learn the output of a function evaluated on their in-
puts, while keeping each individual input private. Fully Homomorphic Encryp-
tion (FHE) [Gen09, BGV11, BV11, GSW13] allows untrusted parties to compute on
user’s encrypted data, after which the user decrypts the result of the computation.
Functional Encryption (FE) [O’N10, BSW11a] is a public-key encryption with ad-
vanced functionality, where multiple decryption keys can be issued. Each key is
associated to a computation such that the decryptor learns only the result of the
computation on the encrypted data, but nothing else. Functional Encryption can
be seen as a non-interactive form of a MPC protocol with only two participants,
also known as 2-Party-Computation (2PC).

This thesis

One object that we study in this thesis is the fundamental cryptographic primi-
tive of Pseudo-Random Functions (PRFs) [GGM86], which can be efficiently used
to get essential symmetric-key constructions such as encryption or message au-
thentication. We study this primitive in the context of threshold cryptography, in
which the secret key is shared among many servers such that any sufficiently large
subset can correctly evaluate the PRF. This improves the fault-tolerance proper-
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ties of the system by keeping it functional despite some small number of possible
faulty servers. In this setting where the secret key is not stored in one place, but
distributed among multiple entities, it is less likely that an adversary will ever be
able to corrupt sufficiently many servers to compromise the whole system. For
these reasons, we could use this primitive for long-term encryption of sensitive
data.

In the second part, we consider Functional Encryption schemes for the re-
stricted class of linear functions, also called Inner-Product Functional Encryption
(IPFE) [ABDCP15], which can be applied to compute weighted sums or means of
some encrypted database, while nothing else is leaked about it. When the en-
crypted data can be supplied by multiple clients, each one encrypting with its
own individual secret key, we call such scheme Multi-Client Functional Encryp-
tion (MCFE) [CDG+18a].

In a final contribution, we pay attention to public-key encryption schemes
providing key-dependent message (KDM) [BRS02] security under adaptive chosen-
ciphertext attacks (CCA2). KDM security allows a scheme to encrypt messages
that depend on the secret key itself, while still guaranteeing privacy. Beyond its
theoretical appeal, such an advanced security is desirable in situations that may
appear due to careless key management or when using disk encryption utilities
[BHHO08].

For the construction of the KDM-CCA2 scheme, we use non-interactive zero-
knowledge (NIZK) [BFM88] proof systems, which enable a prover to produce a
proof that some statement is true while hiding everything else. Anyone who runs
the verification procedure must be convinced of the validity of the statement,
while learning nothing else beyond this fact. This seemingly paradoxical concept
has many other cryptographic applications. For instance, it can be used to enforce
honest protocol behavior, while providing privacy for the involved users, or it can
be used as a building-block to obtain digital signatures.

In this thesis, we provide new constructions for the above-mentioned primi-
tives, with focus on security against adversaries that behave closer to real-life sce-
narios. Namely, they can adaptively update their strategy during the attack, based
on previously obtained information, possible from external sources like corrupted
users.

1.2 Provable Security

There have been many examples of broken encryption schemes throughout his-
tory, so one may wonder if it is possible to build schemes for which we can math-
ematically prove that no attacks are possible, regardless of the computational re-
sources of the adversaries and their attack strategies.

Shannon showed in his seminal paper [Sha48] that, unless the secret key is
at least as large as the message to be encrypted, a scheme inevitably leaks in-
formation about the message, which an all-powerful adversary could learn. So
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encryption with perfect secrecy is not really practical as it requires prohibitively
large keys. This means that we can only hope for practical cryptography by mak-
ing the assumption that adversaries are not all-powerful, but are computationally
bounded. Even though a scheme with short secrets leaks information, the ad-
versary might not have the necessary computational power to exploit this. For
this reason, we consider only efficient adversaries that have bounded polynomial
resources (e.g., their running time is bounded by some polynomial in the input
length). This might appear like a powerful restriction, but seems enough to cap-
ture all real world adversaries.

As we have already mentioned, a secure scheme is one for which the problem
of exploiting the leaked information should be computationally intractable for any
efficient adversary. Therefore if we want to prove security, it is necessary to at least
assume hard computational problems, in the class of problems for which we can
efficiently verify solutions (also known as NP), that cannot be solved in a polyno-
mial number of steps. Unfortunately, proving the existence of such an intractable
problem would settle one of the most important open problems in computer sci-
ence, namely P versus NP. Hence, as long as this problem remains open, we can-
not hope to have unconditional security proofs, but they must depend on the con-
jectured hardness of some computational problem (computational assumption).
The assumption that hard problems exist is supported by both our decades-long
experience with computers and decades of complexity theory research.

Security Proofs

In order to give a security proof, we should first define what it means for a scheme
to be secure. The security intuitions for a scheme must be formalized into a pre-
cise definition. Very often, such a definition is given as an interactive game be-
tween the adversary and the challenger. The scheme is then considered broken if
the adversary wins the game.

A security proof for a cryptographic scheme is a theorem which formally shows
that it is impossible for an efficient adversary to win the security game (thus the
scheme cannot be broken) as long as some computational assumption holds. Such
a theorem is usually proved by assuming the existence of an efficient adversary
that is able to break the cryptosystem. The proof then proceeds to construct an-
other efficient algorithm, that runs this adversary as a subroutine, and that is able
to solve the underlying computational assumption, arriving at a contradiction.
The efficient algorithm, that uses the adversary as a subroutine, and breaks the
computational assumption is known as the reduction.

Standard Assumptions

In cryptography, the term standard assumptions refers to a set of computational
problems that have been used for constructing many different primitives and that
are believed to be intractable by quasi-polynomial time algorithms. The confi-
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dence that we have in these assumptions comes from decades of research done
by mathematicians, cryptanalysts and computer scientists that worked on these
problems but failed to solve them. For example, maybe one of the most popular
assumptions, is the Discrete Logarithm (DL) assumption which is used on the In-
ternet on a daily basis. Given a cyclic group G of prime order p and a generator g ,
the DL assumption in group G , states that it is computationally hard to compute
x ∈ Zp from g x . Obviously the difficulty of the problem depends on the group G .
The confidence in an assumption like this only grows with each passing day that
remains unbroken.

1.3 Pseudo-Random Functions

A Pseudo-Random Function (PRF) family [GGM86] is a family of keyed functions
F := {F : K ×X → Y }, that can be efficiently evaluated on input a secret key s ∈
K , and a value x ∈ X from the domain of the function. Security guarantees that
no efficient adversary is able to distinguish between the following two scenarios:
if it is given oracle access to a function Fs, for a uniformly random key s ←- K ,
or oracle access to a truly random function f ←-Y X , sampled uniformly random
from the set of all functions that map X to Y .

PRFs are fundamental building blocks in cryptography, notably in symmetric-
key schemes, where they can be used for solving essential tasks like secret-key
encryption, authentication or message integrity.

Goldreich, Goldwasser and Micali [GGM86] showed how to build a PRF from
any length-doubling pseudo-random generator (PRG). In turn, PRGs are known
[HILL99] to exist under the sole assumption that one-way functions exist. How-
ever, this generic way of constructing them is particulary inefficient. Much more
efficient constructions can be obtained by directly relying on more standard num-
ber theoretic assumptions like the Decision Diffie-Hellman assumption [NR97]
and related variants [DY05, LW09, BMR10, CM04] or the hardness of factoring
[NR97, NRR00]. Constructions from lattice-based assumptions like, Learning With
Errors (LWE) [BPR12, BLMR13, BP14] are also possible, but most of them are rather
inefficient. Very often this is due to to the need for a super-polynomial modulus.

Distributed PRFs

Distributed Pseudo-Random Functions (DPRFs) [NPR00] allow distributing be-
tween N servers the computation of a function that outputs values that are in-
distinguishable from random as long as the secret key is not revealed. Moreover,
only authorized subsets of the servers are able to compute the correct value. For
instance, in the case where the authorized sets consists of all the sets of cardinality
above a threshold t , a user who wants to compute the value FSK (x) sends the input
x to a subset of t servers which reply with the corresponding partial evaluations
on the input x. The user combines all the partial evaluations to recover the evalu-
ation FSK (x). An attacker should not be able to distinguish the value FSK (x) from
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a uniformly random value, even if it has full control over a maximum number of
t −1 servers.

As in the general case of threshold cryptography [DF89], the main advantage
of having mutiple servers keeping the secret shares and doing the corresponding
partial evaluations is that single points of failure are removed, thus keeping the
centralized equivalent of the secret key safer and making the whole system more
dependable. This means that the whole system continues to function despide the
malfunctioning of a subset of the servers.

Distributed pseudo-random functions were initially suggested by Micali and
Sidney [MS95] and received a lot of attention since then [NPR00, NR97, Nie02,
Dod03, DYY06]. They are motivated by the construction of distributed symmetric
encryption schemes, distributed key distribution centers [NPR00], or distributed
coin tossing and asynchronous byzantine agreement protocols [CKS00]. They also
provide a distributed source of random coins that allows removing interaction
from threshold decryption mechanisms, such as the one of Canetti and Gold-
wasser [CG99].

Previous Work on DPRFs

All the previous DPRF constructions can be divided into two broad categories: in-
teractive and non-interactive. Interactive [Nie02, Dod03, DYY06] means that, in
order to compute the function, servers need to interact not only with the user,
but also between themselves. It is desirable to a have non-interactive schemes
[MS95, NPR00, BLMR13, BGG+18], where the servers only have a one round in-
teraction with the user. Some of the drawbacks of these first constructions were
that they worked only for small values of the threshold t in relation to the num-
ber of servers N [MS95], or that the security proof was not solely based on stan-
dard assumptions, but used the Random Oracle Model (ROM) [NPR00]. The ROM
[BR93] refers to a heuristic security model in which the hash functions used in
the scheme are modeled as truly random functions. Moreover, the adversary does
not compute these functions itself, but rather invokes an oracle (controlled by the
reduction in the security proof) whenever it wants to obtain a value of the hash
function. Security proofs that do not use this heuristic are preferred, as there are
examples of secure encryption schemes in the random oracle model, for which
implementations of the random oracles yield insecure schemes [CGH98].

In 2013, Boneh et al [BLMR13] gave a generic construction of non-interactive
DPRFs from Key-Homomorphic PRFs, that works for any threshold values of t ,
including the honest majority case t = (n−1)/2. Their scheme is secure under the
standard Learning With Errors assumption, without random oracles. The same
generic construction can be instantiated using the KH-PRF from [BP14, Kim20],
with more efficient parameters.

Generic DPRF constructions are only proven to be secure in the weaker static
corruption model. This means that an attacker is restricted to declaring the list
of corrupted servers before the attack starts. A more natural and realistic model
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would be the adaptive one, in which the attacker can choose which servers to cor-
rupt in an adaptive manner, based on information received throughout the attack.
It is easy to prove that the adaptive corruption model makes the adversary strictly
stronger as we can build a scheme which is insecure under adaptive corruptions,
but secure under static corruptions (as we show in Chapter 3).

Contribution 1

The results from [LSŢ18], presented in Chapter 3, give the first non-interactive
construction of a Distributed Pseudo-Random Functions (DPRF) family that si-
multaneously achieves security against adaptive corruptions. Security is based
on the Learning With Errors assumption, without relying on random oracles. The
efficiency of our scheme could be improved, as we need a super-polynomial LWE
modulus. Lattice-based PRFs [BPR12, BLMR13, BP14], that use the rounding tech-
nique of [BPR12], suffer from this, including our construction.

1.4 Functional Encryption

Functional Encryption (FE) is a modern cryptographic primitive that offers fine-
grained access to the encrypted data. It generalizes traditional public-key encryp-
tion, where the decryptor either recovers the whole message or nothing.

An FE scheme is usually defined over a class of functionalities F that take in-
put from the message space of the scheme. The holder of the master secret key is
able to issue multiple functional decryption keys sk f , each associated with some
function f ∈F . A user that holds such a decryption key sk f and a ciphertext corre-
sponding to the message x can recover f (x). Security guarantees that nothing else
is leaked about the message x , besides the evaluation f (x). Even when multiple
users collude, they should still not learn anything else about the message, beyond
what each individual key reveals.

The study of the abstract notion of Functional Encryption (FE) was initiated by
Boneh, Sahai and Waters [BSW11a] and O’Neil [O’N10]. Many constructions that
fit this generalization, like Identity-Based Encryption (IBE) [Coc01, BF01, GPV08,
ABB10], Attribute-Based Encryption (ABE) [SW05, GPSW06, LOS+10, GVW13] or
Predicate-Encryption (PE) [LOS+10, KSW08, GVW15a], have been extensively stud-
ied before and after the general formulation of FE.

Security for FE

Intensive efforts have been put into formalizing the correct security definition that
captures the security intuition for this primitive. In [BSW11a] and [O’N10], it was
shown that the usual indistinguishability-based (IND) security notion is not suit-
able for certain functionalities. More precisely, they gave a trivially insecure FE
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construction that could be proven secure with respect to the IND security require-
ment. Informally, the IND-security requires that no efficient adversary that has
oracle access to the key generation algorithm should be able to distinguish be-
tween encryptions of two messages x0 and x1. This covers the scenario when
multiple private key holders collude in order to learn information about the en-
crypted message. In the same work, they initiated the study of simulation-based
(SIM) security for FE, a stronger model for this primitive, compared to IND, which
asks that the view of the adversary can be simulated by a simulator that is given
access to pairs ( f , f (x?)) of functionalities together with their evaluation on the
challenge message x?.

Depending on whether the adversary is allowed to make key queries after the
challenge, we consider adaptive (AD) and non-adaptive (NA) security for both
IND and SIM definitions. O’Neill [O’N10] showed in the non-adaptive case, the
two notions of security NA-IND and NA-SIM are equivalent for the class of func-
tionalities for which computing preimages is easy.

It was shown by Boneh, Sahai and Waters [BSW11a] that AD-SIM-security is
impossible to achieve for many challenge messages for the Identity Based Encryp-
tion (IBE) functionality. The same argument easily extends to Inner-Product Func-
tional Encryption (IPFE). Another impossibility result was given by Agrawal et al.
[AGVW13] where they proved that we cannot hope to construct an FE scheme for
general circuits that achieves NA-SIM security for one challenge message.

At the other side of the spectrum, in terms of positive results, Gorbunov, Vaikun-
tanathan and Wee [GVW12] gave a construction for the class of general circuits
that is AD-SIM secure for one message under bounded collusion. This means that
there is an a priori bound on the number of key queries made by the adversary.
Another construction for general circuits appeared in [GKP+13] achieving NA-
SIM security when the adversary is restricted to only one key query. Fully secure
(AD-IND) FE for general circuits can be constructed using the powerful machin-
ery of indistinguishability obfuscation and multi-linear maps [GGH+13, GGHZ14,
Wat15]. For the time being, these tools are not known to be instantiable under
well-studied hardness assumptions.

Inner-Product Functional Encryption

When we restrict the class of functionalities to linear functions, that evaluate inner-
products of vectors over some ring R (R ∈ {Z,Zp }), we call the resulting Inner-
Product Functional Encryption (IPFE). Concretely, IPFE encrypts vectors x ∈ R`

using the public key. Using the master secret key, it can also issue multiple secret
keys associated with key vectors y ∈ R`. The decryptor learns the partial informa-
tion 〈x , y〉 ∈ R but nothing else.
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Previous Work on IPFE

Instead of aiming at building FE for general circuits from standard assumptions,
another approach was adopted by Abdalla, Bourse, De Caro and Pointcheval in
[ABDCP15]. They considered building efficient FE, starting with smaller classes of
functionalities instead of aiming for general circuits, with security based on stan-
dard assumptions. In particular, for the restricted class of linear functions (inner
products) they managed to get more practical schemes under well studied hard-
ness assumptions like the Decisional Diffie-Hellman (DDH) and Learning With
Errors (LWE). Their constructions are only proven to be selectively secure in the
IND model. This means that the adversary has to announce the challenge mes-
sages before it even sees the public key of the scheme. This result was improved
by Agrawal, Libert and Stehlé [ALS16] by constructing adaptive AD-IND functional
encryption for the same class of linear functions, under DDH , LWE and from Pail-
lier’s Decision Composite Residuosity (DCR) assumption [Pai99]. Going even fur-
ther, Wee [Wee17] proved that the DDH based FE scheme from [ALS16] satisfies a
SIM security notion called semi-adaptive simulation security. In this setting, the
adversary is not allowed to make any key queries before the challenge.

Contribution 2

For our second contribution, we focus on our results from [ALMŢ20]. In Chap-
ter 4, we show the IPFE schemes of [ALS16], based on DDH, Paillier’s DCR [Pai99]
and LWE, that evaluate inner products over the integers, are in fact AD-SIM se-
cure. This also improves the result from [Wee17], where the DDH-based scheme
was proved to be semi-adaptive simulation secure. To prove these results, we have
to increase the size of the secret keys of the original DCR-based scheme. We also
need to enlarge the modulus q , of the LWE-based scheme of [ALS16], by an ex-
ponentially large factor. In the DDH case, we can prove our results without any
modifications in the original scheme.

Since the impossibility result of [BSW11a] can be adapted to the inner-product
functionality, it excludes the possibility of achieving AD-SIM security when the
adversary is allowed to issue multiple challenge messages. However, none of the
impossibility results from [BSW11a, O’N10, AGVW13] applies to our case of a sin-
gle ciphertext challenge and unbounded number of key queries. Therefore, we
prove that the DDH, DCR and LWE-based IPFE schemes from [ALS16] achieve the
strongest security notion that we can hope for among the IND and SIM based def-
initions, namely it provides AD-SIM security for single challenge ciphertexts for
unbounded 1 number of key queries.

1The number of key queries is actually bounded by the functionality itself, but this is intrinsic
to FE. For instance, IPFE security becomes void after ` linearly independent key queries, where ` is
the dimension of the message vectors
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Multi-Client Functional Encryption

Multi-Input Functional Encryption (MIFE) [GGG+14] allows the computation of
functions over several inputs that can be encrypted independently using the same
key. When each input is encrypted by a different client or party, under its own
private key, we refer to such schemes as multi-client (MC) [GGG+14, CDG+18a].
In this scenario it is natural to assume that corrupt clients may collude in order to
learn more information about the remaining inputs. On the other hand, in a MIFE
scheme there is no security against corruption, since all parties encrypt using the
same key.

Labels

Both in the multi-input and multi-client settings, the inherent information leak-
age could be a problem in applications, especially when many functional decryp-
tion keys are given out. To illustrate this point, consider the simple 2-client case.
Anyone who possesses a functional decryption key sk f for the two-input function
f and the encryptions of x1, z1 and x2, z2, computed by the first and the second
client, respectively, can learn any f (xi , z j ) of the four combinations. Notice that,
for ` clients, the information leakage induced by one functional decryption key on
two ciphertext vectors grows exponentially with `, the number of clients.

To limit this "mix-and-match" leakage, the idea of using labels was introduced
in [GGG+14]. This means that each party encrypts its message using a label t as an
additional parameter (for example a timestamp) and any given functional decryp-
tion key can only operate over ciphertext vectors encrypted over the same label.
Chotard et al. proposed in [CDG+18a] the first efficient MCFE scheme under stan-
dard assumptions, that also supports labels. Their construction works for the re-
stricted class of linear functions. Notice that such schemes with labels can be ob-
tained from MCFEs for general functionalities. Unfortunately, such constructions
are terribly inefficient and are based on exotic assumptions like Indistinguishabil-
ity Obfuscation [GGG+14].

Previous Work on MCFE

The first standard model MCFE with labels from [CDG+18a] is secure under the
DDH assumption, but in the Random Oracle Model, and works for the restricted
class of linear functions. In their security model (Definition 5.2), each client is
assumed to encrypt only one message per label. Moreover, the adversary is as-
sumed to know all the ciphertexts encrypted under the same label, corresponding
to each client. This means that the security is not guaranteed when the adversary
is allowed to obtain ciphertexts for a proper subset of the clients for a particular
label. We will discuss more about these limitations in Section 5.1.

In [CDG+18b], the same authors enhance the security of the previously men-
tioned [CDG+18a] schemes by giving two transformations that remove the need
for these seemingly artificial conditions. Unfortunately their techniques are not
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generic and only work for their initial scheme. They deal with partial ciphertexts
by using a Secret Sharing Layer (SSL), which is used to encapsulate the ciphertexts
such that the recovery is possible only when the contributions of all the clients are
available. In addition, by using an IPFE [ALS16] encryption layer, similarly to the
IPFE to MIFE compiler of [ACF+18], they removed the clients’ restriction of one
ciphertext per label.

A similar result in [ABKW19] shows how to generically upgrade MCFE schemes
so as to prove security in the case of incomplete ciphertexts. For schemes that do
not support labels, their compiler can be instantiated with an IND-CPA symmet-
ric encryption scheme and is similar to the one in [AGRW17]. In case of labeled
MCFE, the use of symmetric encryption is not sufficient, as the compiler’s security
is proven in the Random Oracle Model. Another result from [ABKW19] shows that
the standard model MIFE schemes of [ACF+18] remain secure against adaptive
corruptions. Thus we may refer to them as MCFE schemes.

Finally, in the concurrent work of [ABG19] the authors give a general compiler
that takes any single-input IPFE (that satisfies some mild conditions) and gives
an MCFE with labels with security under adaptive corruptions. Analogously to
the transformation from [ACF+18], by instantiating the compiler with the IPFE
schemes from [ALS16], they obtained labeled MCFEs under the LWE/DDH/DCR
assumptions. They also upgrade the proof of the compiler in [ABKW19] to work
in in standard model, thus providing security when incomplete ciphertext vectors
are allowed.

Contribution 3

Our contributions of [LŢ19] are presented in Chapter 5 of this thesis. The con-
struction from Section 5.3 gives the first MCFE scheme for linear functions, secure
under adaptive corruptions, that supports labels. The security is guaranteed by
the LWE assumption and does not require random oracles. See also Figure 1.1.

Another contribution is detailed in Section 5.4 where a compiler upgrades the
basic security of our MCFE scheme so that it supports partial ciphertexts. The se-
curity proof is in the standard model and makes use of the adaptive multi-instance
PRFs, which can be proved secure by leveraging the pseudo-randomness of any
PRF. To get better tightness factors in the security proof, we use the particular LWE-
based PRF from section 3.4.2.

1.5 Non-Interactive Zero-Knowledge Argument Systems

Non-Interactive Zero-Knowledge (NIZK) proof systems are protocols in which a
prover can convince an efficient verifier that some NP statement is true, while not
leaking anything else. The protocol requires no interactive conversation between
the prover and the verifier, as the prover computes a proof that should convince
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Figure 1.1: Contribution 3

the verifier of the validity of the statement. They were shown to exist [BFM88] in
the Common Reference String (CRS) model, where the prover and the verifier share
a string of randomness. In the plain model, NIZKs are only possible for languages
in the complexity class of bounded probabilistic polynomial time (BPP) [Ore87],
so the shared CRS is in fact necessary.

One popular approach to construct non-interactive zero-knowledge (NIZK)
proof systems is to apply the Fiat-Shamir (FS) transform [FS86] to 3-move interac-
tive, honest-verifier zero-knowledge protocols, also known as Σ-protocols. Con-
cretely, the interaction from the Σ-protocol is removed by replacing the verifier’s
random challenge by a value computed by a deterministic hash function, when
applied to the transcript up to that point. Bellare and Rogaway [BR93] showed
that the non-interactive scheme is sound, provided the hash function is modeled
as a random oracle. However, the Fiat-Shamir heuristic may be insecure in the
standard model, when the hash function is no longer the ideal random function
[GTK03]. Negative results like [GTK03] did not rule out the soundness of Fiat-
Shamir-based NIZK proofs when a specific hash function is applied to specific
Σ-protocols.

Until recently, it was not known how to instantiate the Fiat-Shamir paradigm
in the standard model. This changed with the recent works of Canetti et al. [CLW19]
and Peikert and Shienhian [PS19], who gave the first Correlation-Intractable (CI)
hash functions family, secure under standard lattice assumptions. They showed
that CI for searchable relations is sufficient to soundly instantiate the FS paradigm
for a sufficiently large class of Σ-protocols such that NIZK for all NP relations is
possible under standard lattice assumptions.
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Previous Work on Multi-Proof NIZKs

Sahai showed [Sah99] that, when the double-encryption paradigm of Naor and
Yung [NY90] is instantiated using a simulation-sound NIZK, we obtain a public-
key encryption scheme that is secure against chosen-ciphertext attacks (CCA2).
To this end, he showed how to transform any ordinary NIZK to obtain simulation-
soundness. Intuitively, simulation-soundness prevents an adversary from produc-
ing a valid proof for a false statement, even if it is in possession of one other proof
for a statement of his choosing, obtained from other sources.

This result was later improved for the multi-proof case in [SCO+01], which
gives a general transformation from ordinary NIZKs to unbounded simulation-
sound NIZKs. Intuitively, this prevents the adversary from producing a valid proof
corresponding to a false statement, even after seeing polynomially many other
proofs of its choosing.

Again, in the multi-proof setting, the results from [FLS99] give a general trans-
formation from any ordinary NIZK to multi-theorem zero-knowledge proof sys-
tems. This means that the zero-knowledge property of the scheme is preserved
even when polynomially many proofs are given to the adversary.

Contribution 4

In the last part of the thesis we present some of our results from [LNPŢ19], which
are concerned with more efficient instantiations of the Naor-Yung paradigm, for
specific languages.

Our first result (Section 6.3.2) gives a generic construction of a multi-theorem
NIZK argument 2, directly from trapdoor Σ-protocols, assuming CI hash functions
and a primitive called "lossy encryption with efficient opening" [BHY09]. We use
the CI hash functions to make the proof system non-interactive, while preserving
soundness. The fact that lossy ciphertexts can be easily equivocated 3 is crucially
exploited by the NIZK simulator and it is the ingredient that allows us to prove
zero-knowledge when the adversary has access to polynomially many proofs. As
already mentioned, it is also possible to obtain multi-theorem NIZK through the
FLS transformation [FLS99]. Our results give an alternative way of doing that, di-
rectly fromΣ-protocols. As a consequence of our techniques, we can obtain multi-
theorem statistical NIZKs for all NP languages under the standard LWE assump-
tion (see Section 6.3.4), which has an advantage over the same result obtained by
combining the results from [FLS99] and [PS19]. Namely, in our case we obtain a
uniformly distributed CRS while the CRS obtained by the FLS transformation is
only pseudo-random.

Our second contribution, given in Section 6.4, shows how to upgrade the previ-
ously mentioned multi-theorem construction (Section 6.3.2) to obtain unbounded

2An argument is a proof with computational soundness
3A ciphertext is not committed to any particular message. In fact, it can be explained as the

encryption of any message from the set of all possible messages
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simulation-soundness as well. In order to do this, we need to also use one-time
signatures as a building block. Unfortunately, standard lossy encryption with ef-
ficient opening is not enough to prove simulation-soundness. For this purpose,
we generalize the definition of R-lossy encryption [BSW11b] and prove (in Section
6.2) that a variant of Regev’s primal scheme satisfies all the requirements. This
results in a generic compiler that takes any trapdoor Σ-protocol and transforms
it into a multi-theorem NIZK argument that satisfies the unbounded simulation-
soundness property. Again, our results can be seen as an alternative to [SCO+01]
of obtaining unbounded simulation-sound NIZKs. Both of our constructions pro-
vide statistical zero-knowledge if the underlyingΣ-protocol satisfies statistical spe-
cial zero-knowledge. Moreover, in both cases, the language of the underlying trap-
door Σ-protocol is exactly the same as that of the resulting NIZK argument.

Finally, in Section 6.4.5 we give a construction for a trapdoor Σ-protocol, that
proves two ciphertexts of the LWE-based KDM-CPA secure scheme of [ACPS09],
encrypt the same message. Together with the generic compiler from Section 6.4,
it allows us to apply the Naor-Yung transform to the ACPS scheme. This yields
the most efficient public-key scheme, key-dependent message (KDM) secure un-
der chosen-ciphertext attacks (CCA2), under the LWE assumption. This result is
discussed in Section 6.4.4.
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Chapter

2
Preliminaries

In this chapter, we recall some basic notation, definitions and some results from
the literature that we will use in this thesis.

2.1 Notation

For any q ≥ 2, we let Zq denote the ring of integers with addition and multiplica-
tion modulo q . For 2 ≤ p < q and x ∈ Zq , we define bxcp := b(p/q) · xc ∈ Zp . This
notation is extended componentwise to vectors over Zp . If x is a vector over R,

then ‖x‖denotes its Euclidean norm ‖x‖ =
√

x2
1 +x2

2 +·· ·x2
n . If M is a matrix overR,

then ‖M‖ := supx6=0
‖Mx‖
‖x‖ denotes its induced norm. We can also define the infinity

norm ‖x‖∞ := maxi |xi | and its induced matrix norm ‖M‖∞ := supx6=0
‖Mx‖∞
‖x‖∞ . We

let σn(M) and σ1(M) denote the least singular value and the largest singular value
of M, respectively, where n is the rank of M.

For a finite set S, we let U (S) denote the uniform distribution over S. If X is a ran-
dom variable over a countable domain, the min-entropy of X is defined as H∞(X ) =
minx (− log2 Pr[X = x]). If X and Y are distributions over the same domain, then
∆(X ,Y ) denotes their statistical distance.

Let
p
Σ ∈ Rn×n be a non-degenerate matrix, and c ∈ Rn . We define the Gaussian

function on Rn by ρp
Σ,c(x) = exp(−π(x−c)>Σ−1(x−c)), for Σ :=p

Σ ·pΣ>
. If

p
Σ=

σ · In we denote it by ρσ,c. In addition if c = 0 as well we denote it by ρσ.
By PPT, we refer to a probabilistic polynomial time algorithm.

2.2 Lattices

Given n linearly independent vectors b1,b2, . . . ,bn ∈ Rn , the lattice generated by
them is defined as the set of all the integer linear combinations:

Λ(b1,b2, . . . ,bn) :=Z ·b1 +Z ·b2 +·· ·+Z ·bn ,
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or we can write this in a compact manner as Λ(B) = B ·Zn , where the matrix B =
[b1|b2| · · · |bn] ∈ Rn×n . We call the matrix B a basis of the lattice. A lattice has an
infinite number of bases. Any two bases are related through a unimodular matrix.

For a matrix A ∈Zn×m
q , we define the modular lattices

Λ⊥(A) = {x ∈Zm : A ·x = 0 mod q}, Λ(A) = A> ·Zn +qZm .

For an n dimensional lattice Λ ⊂ Rn and for any lattice vector x ∈ Λ, the dis-

crete Gaussian is defined ρΛ,
p
Σ,c(x) = ρp

Σ,c(x)
ρp

Σ,c(Λ) . For an n-dimensional lattice Λ, we

define the smoothing parameter ηε(Λ) as the smallest r > 0 such that ρ1/r (Λ̂\0) ≤ ε
with Λ̂ := {y ∈ Rn : 〈x,y〉 ∈ Z for all x ∈ Λ} denoting the dual of Λ, for any ε ∈ (0,1).

The notation
p
Σ ≥ ηε(Λ) means that 1 ≥ ηε(

p
Σ
−1 ·Λ). We also define λ∞

1 (Λ) =
min(‖x‖∞ : x ∈Λ\ 0).

Below we recall some useful lattice-related lemmas.

Lemma 2.1 ([MR07, Lemma 4.4]). For an n-dimensional latticeΛ ∈Rn any vectors
c,u ∈Rn , ε ∈ (0,1) and a positive definite matrix Σ such that

p
Σ≥ ηε(Λ) we have:

Pr
x←-DΛ+u,

p
Σ,c

[
‖x−c‖ >σ1(

p
Σ) ·pn

]
≤ 2−n · 1+ε

1−ε

Lemma 2.2 ([GPV08, Theorem 4.1]). There is a PPT algorithm that, given a basis B
of an n-dimensionalΛ=Λ(B), a parameter s > ‖B̃‖·ω(

√
logn), and a center c ∈Rn ,

outputs a sample from a distribution statistically close to DΛ,s,c.

Lemma 2.3 ([GPV08, Lemma 5.3]). If m ≥ 2n · log q and q ≥ 2 is a prime, then

Pr
A←-U (Zn×m

q )

[
λ∞

1 (Λ(A)) ≥ q/4
]≥ 1−2−Ω(n).

Corollary 2.3.1. For m ≥ 2n log q, q > p > 4 and A ←-U (Zn×m
q ) the function that

maps x ∈Zn
q to bA> ·xcp is injective with overwhelming probability.

Proof. Assume we have x,y ∈ Zn
q such that they map to the same value. This is

equivalent to A>(x−y) ∈ (−q/p, q/p
)m ∩Zm . For x 6= y this gives a point from the

lattice Λ(A) of infinity norm strictly less than q/p, but this contradicts the lemma.

Lemma 2.4 (Adapted from [GPV08, Lemma 5.3]). Let q ≥ 2 be prime and let inte-
gers m > n ≥ 1. Let a matrix A ∈Zn×m

q . Then, we have the inequality:

Pr
A←-U (Zn×m

q )
[η2−m

(
Λ⊥(A)

)≤O(
p

m)qn/m] ≥ 1−2−m .
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Lemma 2.5 (Adapted from [MR07, Lemma 4.4]). For any n-dimensional lattice Λ,
x′,c ∈ Rn and symmetric positive definite Σ ∈ Rn×n satisfying σn(

p
Σ) ≥ η2−n (Λ), we

have
ρΣ,c(Λ+x′) ∈ [1−2−n ,1+2−n] ·det(Σ)1/2/det(Λ).

Lemma 2.6. Let ε ∈ (0,1), c ∈R and σ> 0 such that σ≥p
ln2(1+1/ε)/π. Then

H∞(DZ,σ,c ) ≥ log(σ)− log

(
1+ 2ε

1−ε
)

Proof. From [MR07, Lemma 3.3] we know that ηε(Z) ≤ p
ln2(1+1/ε)/π. So σ ≥

ηε(Z). By [MP12, Lemma 2.5], this implies that 1−ε
1+ε ·ρσ(Z) ≤ ρσ,c (Z), which trans-

lates into

H∞(DZ,σ,c ) ≥ H∞(DZ,σ)− log

(
1+ε
1−ε

)
By Poisson’s summation formula, we have ρσ(Z) = σ

det(Z) ·ρ1/σ(Ẑ). Since det(Z) = 1

and Ẑ=Zwe can conclude that ρσ(Z) ≥σ, so H∞(DZ,σ) ≥ logσ.

Note that for σ=Ω(
p

n), we get H∞(DZ,σ,c ) ≥ log(σ)−2−n .

Lemma 2.7 ([Lyu12, Th. 4.6]). Let V be a subset of Zm in which all elements have
norms less than T , let σ be a real number such that σ =ω(T

√
logm), and h : V →

R be a probability distribution. Then, there exists a real number M such that the
distribution of the following algorithm A :

1: v ←- h

2: z ←-DZm ,σ,v

3: output (z,v) with probability min
(

DZm ,σ(z)
MDZm ,σ,v(z) ,1

)
is within statistical distance 2−ω(logm)

M from the distribution of the following algo-
rithm F :

1: v ←- h

2: z ←-DZm ,σ

3: output (z,v) with probability 1/M.

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M . More con-

cretely, ifσ=αT for any positiveα, then M = e12/α+1/(2α2), the output of A is within
statistical distance 2−100/M of the output of F , and the probability that A outputs
something is at least 1−2−100

M .

Micciancio and Peikert [MP12] described a trapdoor mechanism forLWE. Their
technique uses a “gadget” matrix G ∈Zn×w

q , with w = n log q , for which anyone can
publicly sample short vectors x ∈Zw such that G ·x = 0.
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Lemma 2.8 ([MP12, Section 5]). Let m = 2ndlog qe+O(λ). There exists a PPT al-
gorithm TrapGen(1m ,1n) that outputs a statistically uniform matrix A ∈Zn×m

q , to-

gether with a trapdoor basis TA ∈Zm×m forΛ⊥(A), such that max j ‖t̃ j‖ ≤O(
√

n log q),
where t̃ j are the corresponding Gram-Schmidt vectors.

It is known [MP12] that, for any u ∈ Zn
q , a trapdoor for A ∈ Zn×m

q allows sam-

pling from D
Λu(A),s·ω

(p
logm

) for s =O(
√

n log q). Since

η2−m
(
Λ⊥(A)

)≤ max
j

‖t̃ j‖ ·ω(
√

logm) ≤ s ·ω(
√

logm)

for large enough s = O(
√

n log q), the magnitude of a vector x sampled from the
discrete Gaussian D

Λu(A),s·ω
(p

logm
), is bounded by ‖x‖ ≤ s

p
m ·ω(

√
logm).

Remark 1. For m ≥ 3n log q , we can thus sample a statistically uniform matrix A
fromZn×m

q together with a trapdoor, which allows finding small solutions of A ·x =
u mod q , with ‖x‖ ≤ s

p
m ·ω(

√
logm) =O(

√
mn log q) ·ω(

√
logm).

2.3 Some Useful Lemmas

Lemma 2.9 ([GKPV10, Lemma 3]). Let y ∈ Zm . The statistical distance between
DZm ,σ and y +DZm ,σ is at most ∆

(
DZm ,σ, y +DZm ,σ

)≤ m · ‖y‖∞
σ .

Lemma 2.10 ([AKPW13, Lemma 2.7]). Let p, q be positive integers such that p < q.
Given R > 0 an integer, the probability that there exists e ∈ [−R,R] such that bycp 6=
by +ecp , when y ←-U (Zq ), is smaller than 2Rp

q .

Lemma 2.11. If q is prime and M be a distribution overZm×n
q , and V a distribution

over Zn
q such that ∆

(
M ,U (Zm×n

q )
)
≤ ε. We have ∆

(
M ·V ,U (Zm

q )
)
≤ ε+α · (1− 1

qm

)
,

where α := Pr[V = 0].

Proof. Let M ←U (Zm×n
q ). The statistical distance ∆

(
M ·V ,U (Zm

q )
)

equals

1

2

∑
y∈Zm

q

∣∣∣∣Pr[MV = y |V 6= 0] ·Pr[V 6= 0]+Pr[MV = y |V = 0] ·Pr[V = 0]− 1

qm

∣∣∣∣
By considering the sum for all terms such that y 6= 0 and then y = 0, we have

2∆
(
M ·V ,U (Zm

q )
)
= (qm −1)

∣∣∣∣ 1

qm (1−α)− 1

qm

∣∣∣∣+ ∣∣∣∣ 1

qm (1−α)+α− 1

qm

∣∣∣∣ ,

so that ∆
(
M ·V ,U (Zm

q )
)
≤α

(
1− 1

qm

)
. The claim follows from the triangle inequal-

ity:

∆
(
M ·V ,U (Zm

q )
)
≤∆ (M ·V ,M ·V )+∆

(
M ·V ,U (Zm

q )
)

.
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Lemma 2.12. Let M ,m be positive integers, M = m ·q + r with 0 ≤ r < m. The sta-
tistical distance between the distributions (U (ZM ) mod m) and U (Zm) is bounded
by ∆(U (ZM ) mod m,U (Zm)) ≤ r

M .

Proof. Let M = mq+r , with 0 ≤ r < m. Observe that for i ∈Zm we can compute the
number of integers of the form i + j m, smaller than M −1, by bM−1−i

m c+1 which

is also equal to bq + r−1−i
m c+ 1. So the probability of getting i ∈ Zm by sampling

from U (ZM ) mod m is equal to q+1
M if i < r or equal to q

M if i ≥ r . So the statistical
distance that we want to evaluate is equal to:

∆= 1

2

(∑
i<r

∣∣∣∣ q +1

M
− 1

m

∣∣∣∣+ ∑
i≥r

∣∣∣∣ q

M
− 1

m

∣∣∣∣
)
= r (m − r )

Mm
≤ r

M
.

Lemma 2.13. Let a,b,c ∈ Z such that b > a. We have ∆
(
U[a,b],Uc+[a,b]

) ≤ |c|
b−a ,

where U[α,β] is the uniform distribution on [α,β]∩Z.

Lemma 2.14. For any A ∈Rm×n , let α := maxi , j |ai , j |. Then, we have the inequality
det(AA>) ≤ (n ·α2)m .

Proof. Since AA> ∈Rm×m is positive definite, we know that it has positive eigenval-
ues λ1,λ2, . . . ,λm ≥ 0. By the mean inequality, we have m

√
λ1λ2 · · ·λm ≤ λ1+···+λm

m .

This can be interpreted as det(AA>) ≤
(
TrAA>

m

)m
and the right hand side term can

be bounded by (nα2)m .

Lemma 2.15. Let `0 < ` and a full rank matrix Y ∈ Z`0×` such that |yi j | ≤ Y and
z ∈ Z`0 . If the system Y ·x = z has an integer solution, then there exists an efficient
algorithm that computes a solution x ∈Z` such that:

‖x‖∞ ≤ ‖z‖∞ ·`0 · (Y
√
`0)`0 + (`−`0) · (Y

√
`0)`0 .

Proof. We assume w.l.o.g. that Y = [A|B], for a full rank matrix A ∈ Z`0×`0 and for
some B ∈Z`0×(`−`0) such that maxi , j |ai , j | ≤ Y and maxi , j |bi , j | ≤ Y . Denoting x> =
[x>0 ,x>1 ], with x0 ∈ Z`0 and x1 ∈ Z`−`0 , the system is equivalent to A ·x0 = z−B ·x1

which is the same as

x0 = 1

detA
· (adj(A) ·z−adj(A) ·B ·x1

) ∈Z`0 ,

where adj(A) ∈Z`0×`0 denotes the adjugate matrix. Since the system has an integer
solution, there must exist x1 ∈Z`−`0 such that:

adj(A) ·B ·x1 = adj(A) ·z mod detA.

By solving the above modular linear system, we get a vector x1 ∈ Z`−`0 such that
‖x1‖∞ < |detA|. By Lemma 2.14 we know that |detA| ≤ (Y

√
`0)`0 , so ‖x1‖∞ <

(Y
√
`0)`0 .
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Moreover, such an x1 ∈Z`−`0 implies that ‖x0‖∞ ≤ ‖adj(A) ·z‖∞+‖adj(A) ·B‖∞.
Since the entries of the matrix adj(A) are (`0−1)-minors of the matrix A we can use

Lemma 2.14 to obtain: ‖adj(A) ·z‖∞ ≤ `0 ·
(
Y ·

√
`0 −1

)`0−1 · ‖z‖∞.

Notice that the entry at the intersection of row i ∈ [`0] and column j ∈ [`−`0] of
the matrix adj(A) ·B ∈Z`0×(`−`0) is equal to the determinant of the matrix A whose
i -th column is replaced by the b j ∈ Z`0 , the j -th column in B. Thus each entry of
adj(A) ·B ∈Z`0×(`−`0) is a `0 ×`0 determinant. Thus, by Lemma 2.14, we also have
the bound

‖adj(A) ·B‖∞ ≤ (`−`0) · (
√
`0Y )`0 .

2.4 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [BB04] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. gave a
simplified definition [FHPS13]. Jager [Jag15] considered the following generaliza-
tion in order to simplify the analysis of reductions under decisional assumption.

Definition 2.1 ([Jag15]). Let `(λ),L(λ) ∈N be functions of a security parameter λ ∈
N. Let AHF : {0,1}` → {0,1}L be an efficiently computable function. For every K ∈
{0,1,⊥}L , let the partitioning function PK : {0,1}`→ {0,1} be defined as

PK (X ) :=
{

0 if ∀i ∈ [L] (AHF(X )i = Ki ) ∨ (Ki =⊥)
1 otherwise

We say that AHF is a balanced admissible hash function if there exists an efficient
algorithm AdmSmp(1λ,Q,δ) that takes as input Q ∈ poly(λ) and a non-negligible
δ(λ) ∈ (0,1] and outputs a key K ∈ {0,1,⊥}L such that, for all X (1), . . . , X (Q), X? ∈
{0,1}` such that X? 6∈ {X (1), . . . , X (Q)}, we have

γmax(λ) ≥ PrK

[
PK (X (1)) = ·· · = PK (X (Q)) = 1 ∧ PK (X?) = 0

]≥ γmin(λ),

where γmax(λ) and γmin(λ) are functions such that

τ(λ) = γmin(λ) ·δ(λ)− γmax(λ)−γmin(λ)

2

is a non-negligible function of λ.

Intuitively, the condition that τ(λ) be non-negligible requires γmin(λ) to be no-
ticeable and the difference of γmax(λ)−γmin(λ) to be small.

It is known [Jag15] that balanced admissible hash functions exist for `,L =
Θ(λ).
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Theorem 2.16 ([Jag15, Theorem 1]). Let (C`)`∈N be a family of codes C` : {0,1}` →
{0,1}L with minimal distance c · L for a constant c ∈ (0,1/2). Then, (C`)`∈N is a
family of balanced admissible hash functions. Moreover, AdmSmp(1λ,Q,δ) outputs
a key K ∈ {0,1,⊥}L for which η= b ln(2Q+Q/δ)

− ln((1−c)) c components are not ⊥ and

γmax = 2−η, γmin = (
1−Q(1− c)

)η ·2−η,

so that τ= (2δ− (2δ+1) ·Q · (1− c)η)/2η+1 ≥ δ is a non-negligible function of λ.

Lemma 2.17 ([KY16, Lemma 8],[ABB10, Lemma 28]). Let K ←AdmSmp(1λ,Q,δ),
an input space X and the mapping γ that maps a (Q +1)-uple (X?, X1, . . . , XQ ) in
X Q+1 to a probability value in [0,1], given by:

γ(X?, X1, . . . , XQ ) := PrK

[
PK (X (1)) = ·· · = PK (X (Q)) = 1 ∧ PK (X?) = 0

]
.

We consider the following experiment where we first execute the PRF security game,
in which the adversary eventually outputs a guess b̂ ∈ {0,1} of the challenger’s bit b ∈
{0,1} and wins with advantage ε. We denote by X? ∈ X the challenge input and
X1, . . . , XQ ∈X the evaluation queries. At the end of the game, we flip a fair random
coin b′′ ←-U ({0,1}). If the condition PK (X (1)) = ·· · = PK (X (Q)) = 1 ∧ PK (X?) = 0 is
satisfied we define b′ = b̂. Otherwise, we define b′ = b′′. Then, we have

|Pr[b′ = b]−1/2| ≥ γmin ·ε− γmax −γmin

2
,

where γmin and γmax are the maximum and minimum of γ(X) for any X ∈X Q+1.

2.5 (Deterministic) Randomness Extractors

Informally, a randomness extractor is a family of efficiently computable and effi-
ciently sampleable hash functions H , such that when we apply a uniformly sam-
pled h ←-U (H ) on a "random enough" source X , the resulting distribution, h(X ),
is statistically close to the uniform distribution. An example of such a family is
given by the Leftover Hash Lemma, which is given below.

Lemma 2.18. Let integers m,n,` such that m > 2(n +`) · log q, for some prime q >
2. Let B, B̃ ←- U (Zm×`

q ) and R ←- U ({−1,1}m×m). For any matrix F ∈ Zm×n
q , the

distributions (B,R ·B,R ·F) and (B, B̃,R ·F) are within 2−Ω(n) statistical distance.

Notice that in the case of the Leftover Hash Lemma, we need to sample a fresh
hash function for every new source that we want to use. Also the distribution of the
source must be independent of the hash function. A deterministic extractor refers
to a function that works as an extractor for a large collection of sources. Also the
source may depend on the function, as long as it has the right amount of entropy. It
turns out that a uniformly sampled function from a family of ξ-wise independent
functions is a good deterministic extractor.
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Definition 2.2. A family F ⊂
{

f : {0,1}m̄ → {0,1}k̄
}

of efficiently sampleable and

efficiently computable functions is called ξ-wise independent if for any x1, x2, . . . , xξ
∈ {0,1}m̄ and y1, y2, . . . yξ ∈ {0,1}k̄ we have:

Pr
f ←-U (F )

[
( f (x1) = y1)∧ ( f (x2) = y2)∧·· ·∧ ( f (xξ) = yξ)

]= ξ∏
i=1

Pr
f ←-U (F )

[
f (xi ) = yi

]
It is well-known that ξ-wise independent functions can be obtained by choos-

ing random polynomials of degree ξ−1 over the finite field with 2m̄ elements, F2m̄ ,
(which cost O(ξm̄) bits to describe) and truncating their evaluations to their first
k̄ bits.

The following Lemma gives the concrete parameters when working with de-
terministic extractors for a finite collection X of distribution of high enough min-
entropy.

Lemma 2.19 ([Dod00, Corollary 3]). Fix any integers n̄, m, M, any real ε < 1 and
any collection X of M distributions over {0,1}m̄ of min-entropy n̄ each. Define

ξ= n̄ + log M , k̄ = n̄ −
(
2log

1

ε
+ loglog M + log n̄ +O(1)

)
,

and let F be any family of ξ-wise independent functions from m̄ bits to k̄ bits. With
probability at least (1−1/M), a random function f ←-U (F ) is a good deterministic

extractor for the collection X . Namely, the distribution f (X ) is ε-close to U ({0,1}k̄ )
for any distribution X ∈X .

Pr
f ←-U (F )

[
∆

(
f (X ),U ({0,1}k̄ )

)
≤ ε for all X ∈X

]
≥ 1− 1

M

2.6 Secret Sharing

In a secret sharing scheme, a dealer distributes individual shares to a set of share-
holders such that certain qualified subsets can reconstruct the secret, while the
forbidden sets learn nothing about it. We are concerned only with schemes where
the collection of qualified sets, which is also called the access structure, is given by
all the sets of cardinality greater than some given threshold t .

2.6.1 Shamir’s Secret Sharing Scheme

For t ≤ N we recall the (t , N )-threshold secret sharing scheme from [Sha79], which
is used to secret share k ∈ Fq among N players, such that any t of them can jointly
reconstruct the secret, but any set less than t learn nothing about the secret.

To this end, the dealer samples a uniform polynomial p(z) ∈ Fq [z], of degree
t −1 such that p(0) = k. The shares are computed as ki = p(i ) ∈ Fq , for all i ∈ [N ].
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We write (k1,k2, . . . ,kN ) ← ShamirSS(t , N ,k) to specify that the ki ’s are obtained as
described above.

By polynomial interpolation, it is possible to reconstruct the degree t−1 secret
polynomial p(z) ∈ Fq [z] from any subset of shares {ki }i∈S , |S | = t . In particular,
we are able to recover the initial secret k ∈ Fq , as follows:

• Compute the reconstruction coefficientsλi ,S ∈ Fq , that can be obtained just
by knowing the set S :

λi ,S = ∏
k∈S \{i }

k

k − i
∈ Fq

• Output k := ∑
i∈S

ki ·λi ,S ∈ Fq

2.6.2 Linear Integer Secret Sharing (LISS)

This section recalls the concept of linear integer secret sharing (LISS), as defined
by Damgård and Thorbek [DT06]. The definitions below are taken from [Tho09]
where the secret to be shared lives in an interval [−2l ,2l ] centered in 0, for some
l ∈N.

Definition 2.3. A monotone access structure on [N ] is a non-empty collection A of
sets A ⊆ [N ] such that ; 6∈A and, for all A ∈A and all sets B such that A ⊆ B ⊆ [N ],
we have B ∈ A. For an integer t ∈ [N ], the threshold-t access structure Tt ,N is the
collection of sets A ⊆ [N ] such that |A| ≥ t .

Let P = [N ] be a set of shareholders. In a LISS scheme, a dealer D wants to
share a secret s from a publicly known interval [−2l ,2l ]. To this end, D uses a
share generating matrix M ∈ Zd×e and a random vector ρ = (s,ρ2, . . . ,ρe )>, where
s is the secret to be shared {ρi }e

i=2 are chosen uniformly in [−2l0+λ,2l0+λ]e , for a
large enough l0 ∈N. The dealer D computes a vector s = (s1, . . . , sd )> of share units
as

s = (s1, . . . , sd )> = M ·ρ ∈Zd .

Each party in P = {1, . . . , N } is assigned a set of share units. Letting ψ : {1, . . . ,d} →
P be a surjective function, the i -th share unit si is assigned to the shareholder
ψ(i ) ∈ P , in which case player ψ(i ) is said to own the i -th row of M. If A ⊆ P is a
set of shareholders, MA ∈ ZdA×e denotes the set of rows jointly owned by A. Like-
wise, s A ∈ ZdA denotes the restriction of s ∈ Zd to the coordinates jointly owned
by the parties in A. The j -th shareholder’s share consists of sψ−1( j ) ∈ Zd j , so that
it receives d j = |ψ−1( j )| out of the d = ∑n

j=1 d j share units. Sets A ∈ A are called
qualified and A ∉A are called forbidden.

Definition 2.4 ([DT06]). A LISS scheme is correct if the secret can be reconstructed
from any set of shares {si : i ∈ A} where A is a qualified set of shareholders. The secret
is computed as a linear integer combination of the shares, with the coefficients that
depend only on the set A.
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Definition 2.5 ([DT06]). A LISS scheme is private if, for any two secrets s, s′, any
independent random coins ρ = (s,ρ2, . . . ,ρe ), ρ′ = (s′,ρ′

2, . . . ,ρ′
e ) and any forbidden

set A of shareholders, the distributions sA := MA ·ρ and s′A := MA ·ρ′ are 2−Ω(λ) apart
in terms of statistical distance.

Damgård and Thorbek [DT06] showed how to construct LISS schemes from
integer span programs [CF02].

Definition 2.6 ([CF02]). An integer span program (ISP) is a tuple M = (M,ψ,ε),
where M ∈Zd×e is an integer matrix whose rows are labeled by a surjective function
ψ : {1, . . . ,d} → {1, . . . , N } and ε= (1,0, . . . ,0)> ∈Ze is called target vector. The size of
M is the number of rows d in M.

Definition 2.7. Let Γ be a monotone access structure and let M = (M,ψ,ε) an in-
teger span program. Then, M is an ISP for Γ if it computes Γ: namely, for all
A ⊆ {1, . . . , N }, the following conditions hold:

1. If A ∈ Γ, there exists a reconstruction vectorλA ∈ZdA such that λ>
A ·MA = ε>.

2. If A 6∈ Γ, there existsκ= (κ1, . . . ,κe )> ∈Ze such that MA ·κ= 0 ∈Zd andκ>·ε=
1 (i.e., κ1 = 1). In this case, the vector κ is called a sweeping vector for A.

We also define κmax = max{|a| | a is an entry in some sweeping vector}.

Damgård and Thorbek showed [DT06] that, if we have an ISP M = (M,ψ,ε)
that computes the access structure Γ, a statistically private LISS scheme for Γ
can be obtained by using M as the share generating matrix and setting l0 = l +
dlog2(κmax(e −1))e+1, where l is the length of the secret.

A LISS scheme L = (M = (M,ψ,ε),Γ,R,K ) is thus specified by an ISP for the
access structure Γ, a space R of reconstruction vectors satisfying Condition 1 of
Definition 2.7, and a space K of sweeping vectors satisfying Condition 2.

Lemma 2.20 ([Tho09, Lemma 3.1]). Let l0 = l+dlog2(κmax(e−1))e+1. If s ∈ [−2l ,2l ]
is the secret to be shared and ρ is randomly sampled from [−2l0+λ,2l0+λ]e condi-
tionally on 〈ρ,ε〉 = s, the LISS scheme derived from M is private. For any arbi-
trary s, s′ ∈ [−2l ,2l ] and any forbidden set of shareholders A ⊂ [N ], the two distri-
butions {sA = MA ·ρ |ρ←-U ([−2l0+λ,2l0+λ]e ) s.t. 〈ρ,ε〉 = s}, and {s′A = MA ·ρ |ρ←-
U ([−2l0+λ,2l0+λ]e ) s.t. 〈ρ,ε〉 = s′} are within statistical distance 2−λ.

Benaloh-Leichter LISS

Damgård and Thorbek [DT06] generalized the Benaloh-Leichter secret sharing
scheme [BL88], which initially could work only in finite abelian groups, in order to
use it over the integers. They gave an ISP construction based on Benaloh-Leichter
for any access structure corresponding to monotone boolean formulas. As seen
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above, this implies LISS schemes for such access structures. Since monotone ac-
cess structures are in one-to-one correspondence with monotone boolean formu-
las, their construction implies LISS schemes for any monotone access structure,
but not necessarily efficient schemes. The details of the construction can be found
in [DT06]. We present here only its properties.

For an access structure given by some monotone formula f , there is an effi-
ciently computable distribution matrix M ∈ Zd×e , with d ,e ≤ size( f ). Moreover,
the entries of the matrix M are only 0 and 1, i.e. M ∈ {0,1}d×e and the number of
non-zero entries from each row is less than depth( f ). The sweeping vectors live in
{−1,0,1}e .

Valiant’s result [Val84] implies the existence of a monotone Boolean formula
for the threshold-t function Tt ,N , which has size O(N 5.3) and depth O(log N ). This
was improved by Hoory et al. [HHP06] who gave a monotone formula of size

O(N 1+p2) and depth O(log N ) for the majority function.1

In general, the size of one share unit is bounded by l0 +λ+ logdepth( f ) bits.
Since each player receives on average d/N share units, we estimate that the aver-
age size of a share to be O

(
size( f )/N · (l0+λ+ logdepth( f ))

)
bits. When we instan-

tiate the scheme for the threshold function Tt ,N using the bounds from [HHP06],

we get an average share size of O
(
N

p
2 · (l0 +λ+ loglog N )

)
bits.

2.7 Hardness Assumptions

We define below the computational assumptions that we will use in the security
proofs of this thesis.

2.7.1 Learning With Errors (LWE)

Definition 2.8 ([Reg05]). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0,1) be functions of a secu-
rity parameterλ. The LWE problem consists in distinguishing between the distribu-
tions (A,As+e) and U (Zm×n

q ×Zm
q ), where A ∼U (Zm×n

q ), s ∼U (Zn
q ) and e ∼ DZm ,αq .

For an algorithm A :Zm×n
q ×Zm

q → {0,1}, we define:

AdvLWE
q,m,n,α(A ) = |Pr[A (A,As+e) = 1]−Pr[A (A,u) = 1| ,

where the probabilities are over A ∼U (Zm×n
q ), s ∼U (Zn

q ), u ∼U (Zm
q ) and e ∼ DZm ,αq

and the internal randomness of A . We say that LWEq,m,n,α is hard if for all PPT

algorithm A , the advantage AdvLWE
q,m,n,α(A ) is negligible.

1Note that a threshold-t function can be obtained from the majority function by fixing the de-
sired number of input bits, so that we need a majority function of size ≤ 2N to construct a threshold
function Tt ,N .
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2.7.2 Decisional Diffie Hellman (DDH)

Definition 2.9. In a cyclic groupG of prime order p, with a generator g , the Decision
Diffie-Hellman Problem in G, is to distinguish the following distributions:

{(g , g a , g b , g ab) : a,b,c ←-U (Zp )} and {(g , g a , g b , g c ) : a,b,c ←-U (Zp )}.

The Decision Diffie-Hellman assumption (DDH) in a group G, generated by g , is
that the above distributions are computationally indistinguishable. For any PPT
adversary A we define the advantage:

AdvDD H
A (λ) =

∣∣∣Pr[A (g , g a , g b , g ab) = 1]−Pr[A (g , g a , g b , g c ) = 1]
∣∣∣ ,

where probabilities are taken over a,b,c ←- U (Zp ) and the internal randomness
of A . The DDH assumption holds if for any PPT adversary A the advantage is
negligible.

2.7.3 Decisional Composite Residuosity (DCR)

Definition 2.10 ([Pai99]). Let p, q be prime numbers and N = pq. The Decision
Composite Residuosity (DCR) assumption states that the following two distribu-
tions are computationally indistinguishable:{

t N
0 mod N 2 | t0 ←U (Z?N )

} c≈ {
t | t ←U (Z?N 2 )

}
2.8 Pseudo-Random Functions (PRFs)

The standard security definition for a pseudo-random function requires that the
adversary is unable to distinguish an oracle that always outputs function evalua-
tions values from an oracle that outputs truly random values.

Definition 2.11 (Real-or-random security). Let λ be a security parameter. Let F :
K ×X → Y be an efficiently computable function and Y X be the set of all func-
tions that map X to Y . The advantage of a PRF distinguisher A , making Q eval-
uation queries is defined as:

AdvPRFA ,Q (λ) := |Pr[A F (K ,·)(1λ) = 1 | K ←-K ]

−Pr[A R(·)(1λ) = 1 | R ←-U (Y X )]|,
where the probability is taken over all coin tosses. The function F is called pseudo-
random if for any PPT adversary A the advantage AdvPRFA ,Q (λ) is negligible.

In some cases, it is convenient to work with the following equivalent definition.

Definition 2.12 (Find-then-guess security). Let λ be a security parameter. A func-
tion F : K ×X → Y is a secure PRF if every PPT adversary A has only negligible
advantage in the following game:
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Init. The challenger initially chooses a random key K ←-K and also flips a random
coin b ←-U ({0,1}).

Queries 1. On polynomially-many occasions, the adversary A chooses an arbi-
trary input X ∈ X and the challenger returns F (K , X ). These queries may
be adaptive and depend on responses to previous queries.

Challenge. The adversary chooses an input X? ∈ X that differs from all queries
of the previous stage. The challenger computes Y1 = F (K , X?) and randomly
samples Y0 ←-Y . Then, it returns Yb to the adversary.

Queries 2. The adversary adaptively makes another series of queries for arbitrary
inputs X 6= X?.

Guess. The adversary outputs a bit b̂ ∈ {0,1} and wins if b̂ = b. Its advantage is
defined as

AdvFG
A (λ) := |Pr[b̂ = b]−1/2| = 1

2
· |Pr[b̂ = 1 | b = 1]−Pr[b̂ = 1 | b = 0]|.

A standard hybrid argument over evaluation queries shows that – up to a mul-
tiplicative gap Θ(Q) between the advantage functions, where Q is the number of
evaluation queries – find-then-guess security is equivalent to real-or-random se-
curity.
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Chapter

3
Adaptively Secure Distributed
PRFs from LWE

In this chapter we present our contribution from [LSŢ18], which gives the first
non-interactive construction of a Distributed Pseudo-Random Function family
that simultaneously achieves security against adaptive corruptions. The security
proof relies on the LWE assumption with super-polynomial modulus, without the
use of random oracles. All lattice-based PRFs [BPR12, BLMR13, BP14], that use the
rounding technique of [BPR12], suffer from this, including our construction.

The main insight of our result is a new security proof for the lattice-based Key-
Homomorphic PRF of [BLMR13], which gives a reduction that knows the secret
key of the PRF. This property carries over to the distributed case, where the re-
duction knows all the secret keys corresponding to each server. Hence, it can
consistently answer both evaluation and corruption queries that the adversary
adaptively makes. The result is not generic, as it cannot be applied to any Key-
Homomorphic PRF. Instead we exploit the particular functionality of the [BLMR13]
PRF.
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3.1. Definitions

Organization

In section 3.1 we give the formal syntax and security definitions for DPRFs. Next,
in section 3.2 we show that the adaptive security model is strictly stronger than the
static corruption model, emphasizing that obtaining a DPRF construction secure
under adaptive corruptions is non-trivial. Section 3.3 presents the starting point
of our results, namely the generic construction based on KH-PRFs from [BLMR13],
that gives statically secure DPRFs. Before we present the adaptively secure DPRF
in section 3.5.1, we first discuss its centralized version, for a better understand-
ing of our main results. We end the discussion about DPRFs with section 3.6 by
showing how to use homomorphic signatures to upgrade the scheme to satisfy
robustness against faulty servers.

3.1 Definitions

In this section we give the DPRF syntax along with both the adaptive and the static
security model.

3.1.1 Distributed Pseudo-Random Functions (DPRFs)

Definition 3.1 (DPRFs). A distributed pseudo-random function (DPRF) is a tuple
of efficient algorithms (Setup,Keygen, Share, PEval, Eval, Combine) with the fol-
lowing specification.

Setup(1λ,1`,1t ,1N ): Takes as input a security parameter 1λ, a number of servers
1N , a threshold 1t and a desired input length 1` and outputs public param-
eters pp. It also specifies the key space K , the domain X := {0,1}` and the
range Y of the evaluation function.

Keygen(pp): Takes as input the public parameters pp and returns a secret evalua-
tion key SK ∈K .

Share(pp,SK ): The key sharing algorithm inputs a random master secret key SK ∈
K and outputs a tuple of shares (SK1, . . . ,SKN ) ∈ K N , which form a (t , N )-
threshold secret sharing of SK .

PEval(pp,SKi , X ): Takes as input the public parameters, a share of the secret key
and input X ∈X . It outputs a partial evaluation Yi ∈Y .

Eval(pp,SK , X ): Takes as input the public parameters, the master secret key and
input X ∈X . It outputs the evaluation Y ∈Y .

Combine(S , (Yi1 ,Yi2 , . . . ,Yi t )): Takes as input a t-subset S ⊂ [N ], a set {Yi }i∈S of t
partial evaluations and returns an evaluation Y ∈Y .
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3. ADAPTIVELY SECURE DISTRIBUTED PRFS FROM LWE

Correctness. We require that for pp ← Setup(1λ,1`,1t ,1N ), SK ← Keygen(pp),
(SK1,SK2, . . . ,SKN ) ← Share(pp,SK ), for any message X ∈X , Y ← Eval(pp,SK , X ),{
Y j ←PEval(pp,SK j , X )

}N
j=1 and any subset S ⊂ [N ] such that |S | = t there exists

a negligible function negl such that:

Pr[Combine (S , {Yi }i∈S ) 6= Y ] ≤ negl(λ)

3.1.2 Security

We say that a DPRF provides adaptive security if it remains secure against an ad-
versary that can corrupt users in an adaptive manner. In particular, the adversary
can arbitrarily interleave evaluation and corruption queries. The formal definition
is the following.

Definition 3.2 (Adaptive DPRF security). Let λ be a security parameter and let in-
tegers `, t , N ∈ poly(λ). We say that the DPRF is secure under adaptive corruptions
if no PPT adversary has non-negligible advantage in the following game:

1. The challenger generates pp ← Setup(1λ,1`,1t ,1N ) and a secret key SK ←
Keygen(pp), which is broken into N shares (SK1, . . . ,SKN ) ← Share(SK ). It
also initializes the empty set C ← ; and flips a random coin b ←-U ({0,1}).
The public parameters are given to the adversary.

2. The adversary A adaptively interleaves the following kinds of queries.

Corruption: A chooses an index i ∈ [N ]\C . The challenger returns SKi to
A and sets C :=C ∪ {i }.

It is required that |C | < t at any time.

Evaluation: A chooses a pair (i , X ) ∈ [N ]×X , the challenger returns Yi =
PEval(SKi , X ).

3. The adversary chooses an input X? such that |C ?| < t , where C ? is the set
of indices that were corrupted by A or such that an evaluation query of the
form (i , X?) was made. At this point, the challenger randomly samples Y ?

0 ←-
U (Y ) and computes Y ?

1 =Eval(SK , X?). Then, it returns Y ?
b to the adversary.

4. The adversary A adaptively makes more queries as in Stage 2 under the re-
striction that, at any time, we should have |C ?| < t .

5. A outputs a bit b̂ ∈ {0,1} and wins if b̂ = b. Its advantage is defined to be
AdvDPRF

A (λ) := |Pr[b̂ = b]−1/2|.
We also recall the static corruption security model, that was used in [BLMR13],

in which the adversary has to announce the set of corruptions at the start of the
attack, before making any evaluation queries.
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Definition 3.3 (Static DPRF security). Let λ be a security parameter and let integers
`, t , N ∈ poly(λ). We say that the DPRF is pseudo-random under static corruptions
if no PPT adversary has non-negligible advantage in the following game:

1. The challenger generates pp ← Setup(1λ,1`,1t ,1N ) and a secret key SK ←
Keygen(pp), which is broken into N shares (SK1, . . . ,SKN ) ← Share(SK ). The
public parameters are given to the adversary. It also initializes the empty set
V ←; and flips a random coin b ←-U ({0,1}).

2. The adversary A chooses the set of corruptions C ? := {i1, i2, . . . , it−1} and the
challenger responds with {SKi1 ,SKi2 , . . . ,SKi t−1 }.

3. The adversary adaptively makes evaluation queries X to which the challenger
answers with {Yi =PEval(SKi , X )}i∈[N ]\C ? and sets V := V ∪ {X }.

4. The adversary chooses an input X? that was never queried before, i.e. X? ∉ V .
At this point, the challenger randomly samples Y ?

0 ←- U (Y ) and computes
Y ?

1 =Eval(SK , X?). Then, it returns Y ?
b to the adversary.

5. The adversary A adaptively makes more queries as in Stage 3 under the re-
striction that, at any time, we should have X? ∉ V .

6. A outputs a bit b̂ ∈ {0,1} and wins if b̂ = b. Its advantage is defined to be
AdvDPRF

A (λ) := |Pr[b̂ = b]−1/2|.

3.2 Adaptive vs Static Corruptions

This section gives a separation between Definition 3.2 and the definition of static
security used in [BLMR13] (which is recalled in Definition 3.3). It is well-known
that static security does not imply adaptive security in distributed threshold proto-
cols (see, e.g., [CDD+99]). In the case of DPRFs, we show that allowing even a single
evaluation query before any corruption query already gives a stronger game-based
definition than Definition 3.3.

Theorem 3.1. For any t , N ∈ poly(λ) such that t < N /2, there exists a DPRF which
is secure in the sense of Definition 3.3 but insecure in the sense of Definition 3.2.

Proof. LetΠ= (Setup,Keygen,Share,PEval,Eval,Combine) be a DPRF family which
provides static security as captured by Definition 3.3. We assume that secret keys
live in a large finite field Fp (the key-homomorphic-based constructions implied
by [BLMR13, BP14] can be modified to satisfy this). We modify the DPRF family Π
into:

Π∗ = (Setup∗,Keygen∗,Share∗,PEval∗,Eval∗,Combine∗) which is insecure in
the experiment of Definition 3.2 but remains secure under Definition 3.3 for the
same threshold t . The construction Π∗ goes as follows.
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3. ADAPTIVELY SECURE DISTRIBUTED PRFS FROM LWE

Setup∗(1λ,1`,1t ,1N ): Run pp← Setup(1λ,1`,1t ,1N ) and output pp.

Keygen∗(pp): Run SK ←Keygen(pp).

Share∗(pp,SK ): Given SK = k, conduct the following steps.

1. Run (k1, . . . ,kN ) ← Share(pp,k).

2. Generate an independent (t −1, N ) Shamir secret sharing of k and let
(k ′

1, . . . ,k ′
N ) be the resulting shares.

3. Choose a random subset T ⊂ [N ] of cardinality |T | = N−t+1. Choose
uniformly random vector (k ′′

1 , . . . ,k ′′
N ) ←-U (FN

p ) and define (k̃1, . . . , k̃N )
in the following way

k̃i :=
{

k ′
i if i 6∈T

k ′′
i if i ∈T

For each i ∈ [N ] define the i -th secret key share as SKi := (
ki , k̃i ,T

)
.

Output (SK1, . . . ,SKN ).

PEval∗(pp,SKi , X ): Given the secret key share SKi =
(
ki , k̃i ,T

)
, compute Fki (X ) =

PEval(pp,ki , X ) and output Yi =
(
Fki (X ),T

)
.

Eval∗(pp,SK , X ): Compute Y ←Eval(pp,k, X ) and output Y .

Combine∗(S , (Yi1 , . . . ,Yi t )): For each κ ∈ [t ], parse Yiκ as Yiκ = (
Ỹiκ ,T

)
, where

Ỹiκ = Fkiκ
(X ). Run Y ←Combine(S , (Ỹi1 , . . . , Ỹi t )) and return Y .

It is easy to see that Π∗ is trivially insecure in the sense of Definition 3.2. Be-
fore corrupting any server, the adversary can make a single evaluation query on
an arbitrary server to learn T . By corrupting all servers i ∈ [N ] \T , the adversary
can then obtain t −1 shares of SK = k so as to reconstruct it.

The proof thatΠ∗ remains statically secure relies on the idea that, in the game
of Definition 3.3, the adversary has to choose the set S ? of corrupted servers
before making any evaluation query. Hence, with overwhelming probability 1−
1/

( N
t−1

)> 1−( t
N−t

)t−1, we have S ? 6= [N ]\T , in which case {k̃i }i∈S ? is information-
theoretically independent of SK . We give a reduction below.

Assuming that we have a DPRF adversary A against Π∗, we build a DPRF ad-
versary B against Π as follows. First B relays to A the public parameters that
are received from its challenger C . Then, B chooses a random subset T ⊂ [N ]
of cardinality |T | = N − t +1. Then, B starts interacting with A that chooses an
arbitrary (t −1)-subset S ? = {i?1 , . . . , i?t−1} ∈ [N ]. If S ? = [N ] \ T , B halts and the
attack is unsuccessful. Otherwise, we have |S ?∩T | ≥ 1, which means that at least
one of the {k̃i?κ }t−1

κ=1 is supposed to have been obtained by replacing a coordinate
of (k ′

i?1
, . . . ,k ′

i?t−1
) with a random element of Fp . Since {k ′

i?κ
}t−1
κ=1 form a Shamir secret
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3.3. DPRF from KH-PRF

sharing over a finite field, replacing at least one of the shares {k ′
i?κ

}t−1
κ=1 with a ran-

dom value results in a randomly distributed (k̃i?1
, . . . , k̃i?t−1

) which is uncorrelated to
k.

In this case, B sends S ? to its own DPRF challenger and obtains the key
share ki?1

, . . . ,ki?t−1
. It also chooses (k̃i?1

, . . . , k̃i?t−1
) ←- U (Ft−1

p ) uniformly and gives

{(ki?κ , k̃i?κ ,T )}t−1
κ=1 to A . Then, B answers A ’s evaluation queries by invoking its

own challenger on the same inputs and constructing the responses in the obvious
way. At the end of the experiment, B outputs whatever A outputs.

If εdenotes the advantage of A andGuessdenotes the event that S ? = [N ]\T ,
we know that Pr[B wins|¬Guess] = 1

2 +ε. This implies

Pr[B wins] = Pr[B wins |Guess] ·Pr[Guess]+Pr[B wins | ¬Guess] ·Pr[¬Guess]
> Pr[B wins | ¬Guess] ·Pr[¬Guess]
=

(1

2
+ε

)
· (1−Pr[Guess])

>
(1

2
+ε

)
·
(
1−

( t

N − t

)t−1)> (1

2
+ε

)
−

(
t

N − t

)t−1

.

Since t , N ∈ poly(λ), we have
( t

N−t

)t−1 < 2−Ω(λ). Consequently, if ε > 0 is notice-
able, so is |Pr[B wins]− 1

2 | > ε−2−Ω(λ).

Note that the above separation still holds for small non-constant values of
t and N if we assume polynomial or slightly super-polynomial adversaries. In-
deed, if t = Θ(logλ) and N = Θ(log2λ), for example, the adversary’s probability
to guess T is 1/

( N
t−1

) < ( t
N−t

)t−1, which is roughly 1/(logλ)logλ = λ−ω(1). For any
constant c > 0, if t = Θ(λ1/c ) and N = Θ(λ2/c ), the guessing probability becomes
sub-exponentially small.

3.3 DPRF from KH-PRF

In this section we recall the generic DPRF construction that is obtained from Key-
Homomorphic PRFs, given in [BLMR13]. We also remark that this modular ap-
proach can only achieve static security.

3.3.1 Key-homomorphic PRFs

Informally, a key-homomorphic PRF is a secure pseudo-random function family
F : K ×X → Y that is homomorphic with respect to the key space i.e., given
F (K1, X ) and F (K2, X ) there is an efficient algorithm that computes F (K1 ⊕K2, X ).
Here we assumed K has a group structure with respect to the operation ⊕. For
simplicity assume also that the range Y is endowed with group structure ⊗ as well.
Next we give the formal definition from [BLMR13].

Definition 3.4. Let F : K ×X →Y be an efficiently computable function such that:
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3. ADAPTIVELY SECURE DISTRIBUTED PRFS FROM LWE

• F is a secure PRF

• for any k1,k2 ∈K and any X ∈X we have

F (k1 ⊕k2, X ) = F (k1, X )⊗F (k2, X )

When the homomorphic property is not exact, i.e. F (k1 ⊕ k2, X ) needs only
to be sufficiently "close" to F (k1, X )⊗F (k2, X ) we say that the PRF is almost key-
homomorphic. Formally, we give the definition below for the particular key space
K =Zm

q and range Y =Zm
p , where p < q are integers.

Definition 3.5. An efficiently computable function F : Zm
q ×X → Zm

p is called an
γ-almost key-homomorphic PRF if:

• F is a secure PRF

• for any k1,k2 ∈Zm
q and any X ∈X we have:

F (k1 +k2, X ) = F (k1, X )+F (k2, X )+e such that the error ‖e‖∞ ≤ γ.

Naor, Pinaks and Reingold have given the following simple DPRF construction
in [NPR00]. Assume H : X → G is a hash function that maps the set X to a finite
cyclic group (G, ·) of prime order q . Define the function FDD H :Zq ×X →G as:

FDD H (k, X ) := H(X )k ∈G

The key-homomorphic property FDD H (k1 +k2, X ) = FDD H (k1, X ) ·FDD H (k2, X ) is
true as well. The function FDD H was proved to be a secure DPRF in the random
oracle model, assuming the DDH assumption holds in the multiplicative group G
[NPR00].

The BLMR Key-Homomorphic PRF

The first (almost) key-homomorphic PRF from standard assumptions was pro-
posed by Boneh, Lewi, Montgomery and Raghunathan in [BLMR13]. The security
of the construction was proved under the LWE assumption with super-polynomial
approximation factors. We will briefly recall the construction below.

Let m,n, p, q be integers such that m = n · dlog qe and p divides q . Sample full
rank binary matrices A0,A1 ← {0,1}m×m . For any key k ∈Zm

q and any binary input

X = x1x2 . . . x` ∈ {0,1}`, define FLW E :Zm
q × {0,1}`→Zm

p as:

FLW E (k, X ) =
⌊∏̀

i=1
Axi ·k

⌋
p
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3.3. DPRF from KH-PRF

where bzcp := bz ·p/qc ∈Zp for any z ∈Zq , is the rounding function introduced in
[BPR12]. Because of the rounding we don’t have an exact key-homomorphic prop-
erty, but an almost key-homomorphic property [BLMR13]: for any keys k1,k2 ∈Zm

q

and any input X ∈ {0,1}` we have:

FLW E (k1 +k2, X ) = FLW E (k1, X )+FLW E (k2, X )+err

for some small error err ∈ {0,1}m .
A more efficient variant of the above almost key-homomorphic PRF was later

given in [BP14], under an even weaker LWE assumption.

3.3.2 The Generic Construction

Assume for some input length ` there is a secure key-homomorphic PRF, F : Fq ×
X → Y , with input space X = {0,1}`, key space Fq , and the set Y has a group
structure with respect to some operation ⊗ : Y ×Y → Y . Recall from Definition
3.4 that for any keys k1,k2 ∈ Fq and any input X ∈X we must have

F (k1 +k2, X ) = F (k1, X )⊗F (k2, X )

In order to obtain a t-threshold DPRF for N users, we use Shamir’s Secret Shar-
ing scheme recalled in Section 2.6.1. The idea is to (t , N )-secret share the evalua-
tion key k ∈ Fq to get (k1,k2, . . . ,kN ) and compute partial evaluations as F (ki , X ).
Notice that we can recover the evaluation F (k, X ) of the PRF from any set of par-
tial evaluations {F (ki , X )}i∈S , S ⊂ [N ], |S | = t , using the public reconstruction
coefficients as:

F (k, X ) = ∑
i∈S

λi ,S ·F (ki , X )

Given a secure key-homomorphic PRF family F : Fq ×X → Y , we give the
formal construction by the following algorithms:

Setup(1λ,1`,1t ,1N ): Outputs the public parameters, pp, used by F : Fq ×X →Y ,
the key-homomorphic PRF.

Keygen(pp): Samples a uniform key k ←-U (Fq ) and sets SK := k.

Share(pp,SK ): Given the SK = k, it runs (k1,k2, . . . ,kN ) ← ShamirSS(t , N ,k) and
sets SKi := ki for all i ∈ [N ].

PEval(pp,SK j , X ): For SKi = ki and X ∈X , the algorithm outputs Yi := F (ki , X ).

Eval(pp,SK , X ): For SK = k, X ∈X , outputs F (k, X ).
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3. ADAPTIVELY SECURE DISTRIBUTED PRFS FROM LWE

Combine(S , {Yi }i∈S ): Given the set S ⊂ [N ] such that |S | = t and the partial
evaluations {Yi }i∈S , the algorithm computes the reconstruction coefficients
λi ,S (as in Section 2.6.1), which are publicly computable. Outputs

Y := ∑
i∈S

λi ,S ·Yi

Theorem 3.2. [BLMR13, Theorem 7.2] If F is a secure Key-HomomorphicPRF, then
the above DPRF construction is statically secure (Definition 3.3).

The PRF that was proposed in [BLMR13] is actually almost key-homomorphic,
meaning that the homomorhic property holds up to a small error term. The same
work shows how to adapt the construction and the proof to work in the case of an
γ-almost key-homomorphic PRF. Recall that a γ-almost key-homomorphic PRF
(Def. 3.5) refers to an efficiently computable F : Zq ×X → Zp such that for any
k1,k2 ∈Zq any X ∈X there is a small error term e ∈Zp such that |e| ≤ γ and:

F (k1 +k2, X ) = F (k1, X )+F (k2, X )+e

The issue that has to be fixed for this variant is that when we do the reconstruc-
tion from the partial evaluations we get an error term because the homomorphic
property of the PRF is not exact.

To make this work we would need to round off the error at the end of the com-
putation. One problem that occurs when using the Lagrange coefficients λi ,S as
elements from Zp , is that they do not remain small relative to p, so we cannot ap-
ply the rounding successfully. To solve this problem, the authors of [BLMR13] used
the technique of "clearing the denominators" [Sho00, ABV+12]. The observation
is that N ! ·λi ,S ∈ Z for all reconstruction coefficients, thus their size does not de-
pend on p anymore. So the combining algorithm multiplies all the reconstruction
coefficients by N !. By doing this, some control over the size of the error is gained.
Now we can compute a bound, independent of p, on the final error term. There-
fore for the reconstruction to work correctly we would need a rounding parameter
u such that the error incurred by applying the γ-almost key-homomorphic PRF
can be correctly rounded off. Notice that

N ! ·F (k, X ) = ∑
i∈S

N ! ·λi ,S F (ki , X )+err

where err can be bounded by |err| ≤ γ · |S | ·maxi∈S |N ! ·λi ,S | ≤ γt (N !)2

By Lemma 2.10, the final error can be removed for as long as p/u > 2γt · (N !)2,
thus making the reconstruction possible.

3.4 A Centralized Version

Before we present the DPRF construction in section 3.5, we believe it is instruc-
tive to first discuss its centralized version, which can be seen as a variant of the
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3.4. A Centralized Version

key-homomorphic PRF proposed by Boneh et al. [BLMR13] and later improved by
Banerjee and Peikert [BP14].

3.4.1 Overview

Despite the resemblance with the above-mentioned PRFs, the security proof is
very different in that it does not use a hybrid argument over the input bits. Instead,
we partition the input space (analogously to proof techniques for, e.g., identity-
based encryption [Wat05]) and use the hardness assumption through the lossy
mode of LWE [GKPV10].

One important characteristic of our centralized construction is that, unlike the
ones from [BLMR13] or [BP14], in our new security proof the reduction always
has access to the secret evaluation keys of the PRF. This is a very useful feature
when analyzing the decentralized version, because now the reduction is able to
easily answer adaptive evaluations and corruption queries in a consistent man-
ner. These ideas have been used to construct standard-model adaptively secure
Constrained PRFs as well [DKN+20].

Recall from subsection 3.3.1 that in [BLMR13, BP14], a PRF evaluation of an
input x is of the form y = bA(x)> ·scp ∈Zm

p , where s ∈Zn
q is the secret key and A(x) ∈

Zn×m
q is an input-dependent matrix obtained from public matrices A0,A1 ∈Zn×m

q .
Our variant is similar at a high level, with two main differences. First, we derive
A(x) from a set of 2L public matrices {Ai ,0,Ai ,1}L

i=1. Second, bA(x)> ·scp is not quite
our PRF evaluation. Instead, we obtain the PRF value by using z := bA(x)> · scp as
a source of entropy for a deterministic randomness extractor π. So the actual PRF
output is y :=π(z).

The security proof departs from [BLMR13, BP14] by exploiting the connec-
tion between the schemes and the Gentry-Sahai-Waters FHE [GSW13]. For each
i ∈ [L] and b ∈ {0,1}, we interpret the matrix Ai ,b ∈ Zn×m

q as a GSW ciphertext
Ai ,b = A ·Ri ,b +µi ,b ·G, where Ri ,b ∈ {−1,1}m×m , µi ,b ∈ {0,1} and G ∈ Zn×m

q is the
gadget matrix of [MP12]. Before evaluating the PRF on an input X , we encode
X ∈ {0,1}` into x ∈ {0,1}L using an admissible hash function. Then, we homomor-
phically derive A(x) as a GSW ciphertext A(x) = A ·Rx + (

∏L
i=1µi ,x[i ]) ·G, for some

small-norm Rx ∈ Zm×m . By carefully choosing {µi ,b}i∈[L],b∈{0,1}, the properties of
admissible hash functions ensure that the product

∏L
i=1µi ,x[i ] cancels out in all

evaluation queries but evaluates to 1 on the challenge input X?.
In the next step of the proof, we move to a modified experiment where the

random matrix A ∈ Zn×m
q is replaced by a lossy matrix A> = Ā> · C + E, where

Ā ←-U (Zn′×m
q ), C ←-U (Zn′×n

q ) and E ∈Zm×n is a short Gaussian matrix. This modi-

fication has the consequence of turning bA(x)> ·scp into a lossy function of s on all
inputs X for which

∏L
i=1µi ,x[i ] = 0. At the same time, the function remains injec-

tive whenever
∏L

i=1µi ,x[i ] = 1. Using the properties of admissible hash functions,
we still have a noticeable probability that the function be lossy in all evaluation
queries and injective in the challenge phase. Moreover, by using a small-norm
secret s ∈ Zn and setting the ratio q/p large enough, we can actually make sure
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that evaluation queries always reveal the same information (namely, the product
C · s) about s. As long as we have

∏L
i=1µi ,x?[i ] = 1 for the challenge input X?, the

rounded value z? = bA(x?)> · scp = b(A ·Rx? +G)> · scp is guaranteed to have a lot
of entropy as an injective function of an unpredictable s. At this point, we can ex-
tract statistically uniform bits from the source z?. Since the latter depends on x?

(which can be correlated with the seed included in public parameters), we need an
extractor that can operate on seed-dependent sources. Fortunately, deterministic
extractors come in handy for this purpose.

3.4.2 The Centralized Construction

Let λ be a security parameter and let ` ∈Θ(λ), L ∈Θ(λ). We use parameters con-
sisting of prime moduli p and q such that q = 2Θ(λ), p > 2log q and q/p > 2L+λ · r ,
dimensions n,m,k ∈ poly(λ) such that m ≥ 2n · dlog qe and r = L ·m2 ·n ·αq ·β,
where σ = O(

p
n) · qn′/n , β = σ

p
n and α ∈ (0,1). The integer n′ < n and α ∈ (0,1)

are chosen such that the LWEq,m,n′,α problem is hard.
We define the entropy bound n̄ = bn · logσ−n′ · log qc−1 and choose k such

that k · log p = n̄ −2 · (λ+ log`+ log n̄).
The Gaussian parameter σ> 0, will specify an interval [−β,β] = [−σpn,σ

p
n]

where the coordinates of the secret will be confined (with probability exponen-
tially close to 1). We also rely on the following ingredients:

• A balanced admissible hash function AHF : {0,1}`→ {0,1}L (Def. 2.1).

• A family Πλ of ξ-wise independent hash functions(Def. 2.2) π :Zm
p →Zk

p for
ξ= n̄+`. Let a random member π ofΠλ. For example, the function π can be
a random polynomial π(Z ) ∈ Fpm [Z ] of degree ξ−1 with outputs truncated
to their k first coordinates.

The pseudo-random function family assumes the availability of public param-
eters

pp :=
(
q, p, π, U0, {Ai ,0,Ai ,1 ∈Zn×m

q }L
i=1, AHF, σ

)
,

where U0 ←-U (Zn×m) and Ai ,0,Ai ,1 ←-U (Zn×m
q ) for each i ∈ [L].

Keygen(pp): Given pp, sample a vector s ←- DZn ,σ so that ‖s‖∞ < β = σ
p

n with
overwhelming probability. The secret key is SK := s ∈ [−β,β]n .

Eval(pp,SK , X ): Given SK = s ∈Zn and an input X ∈ {0,1}`,

1. Compute x =AHF(X ) ∈ {0,1}L and parse it as x = x1 . . . xL .

2. Compute

z =
⌊(

A(x)
)> ·s

⌋
p
∈Zm

p , (3.1)
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where

A(x) = U0 +A1,x1 ·G−1(A2,x2 ·G−1(A3,x3 · · · · ·G−1(AL−1,xL−1 ·G−1(AL,xL

)) · · ·),

and output y =π(z) ∈Zk
p .

Unlike [BLMR13, BP14], our security proof requires the secret s to have small
entries. Another difference is the presence of the uniformly random matrix U0 in
the expression of A(x), which guarantees that the roundings from the proof behave
in a predictable manner. Also, our PRF is not key-homomorphic as the output is
y = π(z) ∈ Zk

p , thus the key-homomorphic property is ruined by the deterministic
extractor. Fortunately, losing the key-homomorphic property does not prevent us
from building a DPRF since the randomness extraction step is only applied to the
result of combining t partial evaluations in the Combine algorithm.

Theorem 3.3. The construction above is a secure PRF family under the LWEq,m,n′,α
assumption.

The complete security proof for the above result can be found in [LSŢ18]. We
skip the details since the same ideas will be used in the decentralized case, for the
proof of Theorem 3.5.

3.5 The DPRF Construction

We design the distributed PRF by doing secret sharing over the integers instead
of a finite field. We use a LISS (section 2.6.2) inside the PRF construction of Sec-
tion 3.4. As mentioned earlier, the latter is well-suited to our purposes because,
in the security proof, the secret key is known to the reduction at any time. When
the secret key s is shared using a LISS, the reduction is always able to consistently
answer corruption queries because it has all shares at disposal.

In the construction, we rely on the specific LISS construction of Damgård and
Thorbek [DT06], which is based on the Benaloh-Leichter secret sharing [BL88].
This particular LISS scheme is well-suited to our needs for several reasons. First,
it has binary share generating matrices, which allows obtaining relatively short
shares of s ∈ Zn : in the security proof, this is necessary to ensure that the ad-
versary always obtains the same information about uncorrupted shares in partial
evaluation queries. Another advantage of the Benaloh-Leichter-based LISS is that
its reconstruction coefficients live in {−1,0,1}, which avoids blowing up the ho-
momorphism errors when partial evaluations are combined together. Finally, its
sweeping vectors also have their coordinates in {−1,0,1} (whereas they may be ex-
ponentially large in the number N of servers in the construction based on Cramer-
Fehr [CF02]) and we precisely need sweeping vectors κ to be small in the proof of
our Lemma 3.7.
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3. ADAPTIVELY SECURE DISTRIBUTED PRFS FROM LWE

When using the LISS scheme we do not rely on the result of Lemma 2.20, which
ensures the privacy of the scheme. We share vectors sampled from Gaussian (in-
stead of uniform) distributions and also depart from Lemma 2.20 in that the ran-
dom coins (ρ2, . . . ,ρe ) are not sampled from a wider distribution than the secret:
the standard deviation of (ρ2, . . . ,ρe ) will be the same as that of s. While this choice
does not guarantee the LISS to be private in general, we will show that it suffices
in our setting because we only need the secret to have sufficient min-entropy con-
ditionally on the shares observed by the adversary. Aside from the distribution
of secrets and random coins, we rely on the technique of Damgård and Thorbek
[DT06] for building share generating matrices.

3.5.1 The Construction

Setup(1λ,1`,1t ,1N ): On input of a security parameter λ, a number of servers N , a

threshold t ∈ [1, N ] and an input length ` ∈Θ(λ), set d ,e =O(N 1+p2).

Next, do the following.

1. Choose prime moduli p, q and u such that q = 2Ω(λ) that also satisfy
p/u > d ·m·2λ+L and q/p > m·N ·d ·r ·2λ+L , where dimensions n,m,k ∈
poly(λ) such that m ≥ 2n · dlog qe, and r = L ·m2 ·nαq ·β∗ with β∗ :=
O(β · log N ) where [−β,β]n is the space from where the secret key is
sampled, and it is defined below.

2. Choose integer n′ ¿ n and the Gaussian parameter α ∈ (0,1) such that
the LWEq,m,n′,α problem is hard and then define the Gaussian param-

eter σ := 2
p

e ·qn′/n .

We also set the entropy bound n̄ := n · log
(
σ/

p
e
)−n′ · log q , which has

O(n) order of magnitude (by the choice ofσ). We also choose integer k
such that k · logu = n̄ −2 · (λ+ log`+ log n̄ +O(1)

)
3. Choose a balanced admissible hash function AHF : {0,1}`→ {0,1}L , for

a suitable L ∈ Θ(λ). Choose a family Πλ of ξ-wise independent (Def-
inition 2.2) hash functions π : Zm

u → Zk
u , for ξ = n̄ + `, and sample a

uniformly random function π←-U (Πλ).

4. Choose random matrices U0 ←-U (Zn×m
q ) and Ai , j ←-U (Zn×m

q ), for each
i ∈ [L], j ∈ {0,1}.

Output

pp :=
(
q, p, u, π, U0, {Ai ,0,Ai ,1 ∈Zn×m

q }L
i=1, AHF,σ

)
,

Keygen(pp): Sample a Gaussian vector s ←- DZn ,σ and return ⊥ if s 6∈ [−β,β]n ,
where β=σpn. Otherwise set SK := s ∈Zn .

Share(pp,SK ): Given pp and a key SK = s ∈Zn , generate a LISS of s as follows.
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1. Using the Benaloh-Leichter-based LISS scheme (2.6.2), construct the
matrix M ∈ {0,1}d×e that computes the Boolean formula associated
with the Tt ,N threshold function. By using [HHP06], we obtain a ma-
trix M ∈ {0,1}d×e , so that each row of M contains O(log N ) non-zero
entries.

2. For each k ∈ [n], generate a LISS of the k-th coordinate sk of s ∈Zn . To
this end, define a vector ρk = (sk ,ρk,2, . . . ,ρk,e )>, with Gaussian entries
ρk,2, . . . ,ρk,e ←-DZ,σ, and compute

sk = (sk,1, . . . , sk,d )> = M ·ρk ∈Zd ,

whose entries are smaller than ‖sk‖∞ =β∗ =O(β · log N ).

3. Define the matrix S = [s1 | . . . | sn] ∈ Zd×n . For each j ∈ [N ], define the
share of server P j to be the sub-matrix SI j = MI j · [ρ1 | . . . |ρn] ∈Zd j×n ,
where I j =ψ−1( j ) ⊂ {1, . . . ,d} is the set of indexes such that P j owns the
sub-matrix MI j ∈ {0,1}d j×e .

For each j ∈ [N ], the share SK j = SI j ∈Zd j×n is privately sent to P j .

PEval(pp,SK j , X ): Given SK j as SI j = MI j · [ρ1 | . . . | ρn] ∈ Zd j×n and an input X ∈
{0,1}`,

1. Compute x =AHF(X ) ∈ {0,1}L and parse it as x = x1 . . . xL .

2. Compute

Y j =
⌊(

A(x)
)> ·S>

I j

⌋
p
∈Zm×d j

p , (3.2)

where

A(x) = U0 +A1,x1 ·G−1(A2,x2 ·G−1(A3,x3 · · ·G−1(AL−1,xL−1 ·G−1(AL,xL

)) · · ·)),

and output the partial evaluation Y j ∈Zm×d j
p .

Eval(pp,SK , X ): Given SK = s ∈Zn and an input X ∈ {0,1}`,

1. Compute x =AHF(X ) ∈ {0,1}L and write it as x = x1 . . . xL .

2. Compute

z =
⌊⌊(

A(x)
)> ·s

⌋
p

⌋
u
∈Zm

u ,

where

A(x) = U0+A1,x1 ·G−1
(
A2,x2 ·G−1

(
A3,x3 · · ·G−1

(
AL−1,xL−1 ·G−1

(
AL,xL

)) · · ·)),
and output y =π(z) ∈Zk

u .
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Combine(S , (Y j1 , . . . ,Y jt )): Let S = { j1, . . . , jt } be a qualified set.

1. Determine the vectorλS ∈ {−1,0,1}dS such thatλ>
S
·MS = (1,0, . . . ,0)>,

where MS ∈ {0,1}dS ×e is the sub-matrix of M owned by the parties in
S and dS = ∑t

κ=1 d jκ with d jκ = |ψ−1( jκ)| for all κ ∈ [t ]. Then, parse
λS as [λ>

j1
| . . . |λ>

jt
]>, whereλ jκ ∈ {−1,0,1}d jκ for all κ ∈ [t ].

2. Compute z̃ =∑t
κ=1 Y jκ ·λ jκ ∈Zm

p , which equals

z̃ =
⌊(

A(x)
)> ·s

⌋
p
+ez ∈Zm

p ,

for some ez ∈ {−dS , . . . ,dS }m .

3. Compute z = bz̃cu ∈Zm
u , which equals

z =
⌊⌊(

A(x)
)> ·s

⌋
p

⌋
u
∈Zm

u

with overwhelming probability. Finally, output y =π(z) ∈Zk
u .

By setting σ = 2
p

e · qn′/n = O(N
1+p2

2 ) · qn′/n as allowed by [HHP06], we have

share units of magnitude β∗ = Θ(σ
p

n · log N ). Since d = O(N 1+p2), the average

share size amounts to d ·n·logβ?

N =O(n ·N
p

2 · log N )+O(N
p

2 ·n′ · log q)) bits.

We note that is necessary for our construction to have the modulus q exponen-
tially large in the security parameter. This inconveniece appears because we use
the rounding technique of [BPR12] both for correctness (for this we need p/u =
2O(λ)) and for the security proof (for this we require q/p = 2O(λ)). Unfortunately
our proofs crucially rely on the rounding technique, so for the moment we don’t
know how to reduce the size of the parameters of the constrction.

To get exponential security for the LWEq,m,n′,α problem, we set the parameters
as suggested in [APS15]: αq = O(

p
n′) and n′ · log q/log2(1/α) =Ω(λ). This allows

us to set a small quadratic dimention n′ = O(λ2), which implies an exponentially
large inverse rate 1/α, in order for the above conditions to hold. Notice that since
n = poly(λ) such that n′ < n, we can choose n as small as O(λ2). With this parame-
ters, the entropy bound n̄ := n · log

(
σ/

p
e
)−n′ · log q is at least O(λ2) and it is large

enough to choose the parameter k, corresponding to the ξ-wise independent hash
function.

We remark that our modulus q is exponential in the security parameter λ, but
not in the number of server N . In contrast, the DPRF of [BLMR13] requires an
exponential modulus in N incurred by the use of Shamir’s secret sharing and the
technique of clearing out the denominators [Sho00, ABV+12].

66



3.5. The DPRF Construction

3.5.2 Correctness and Security

We now show that the construction provides statistical consistency.

Lemma 3.4. Let pp ← Setup(1λ,1`,1t ,1N ) and let a secret key SK = s ← DZn ,σ,
which is shared as (SK1, . . . ,SKN ) ← Share(pp,SK ). For any t-subset S = { j1, . . . , jt } ⊂
[N ] and input X ∈ {0,1}`, if Y jk =PEval(pp,SK jk , X ) for all κ ∈ [t ], we have

Combine(S , (Y j1 , . . . ,Y jt )) =Eval(pp,SK , X )

with probability exponentially close to 1.

Proof. Let λS ∈ {−1,0,1}dS such that λ>
S

·MS = (1,0, . . . ,0) ∈ Ze . If we parse λS

as [λ>
j1
| . . . |λ>

jt
]> we have

s = [ρ1 | · · · |ρn]> ·M>
S ·λS =

t∑
k=1

S>
I jk

·λ jk .

In turn, this implies

bA(x)> ·scp =
⌊

t∑
k=1

A(x)> ·S>
I jk

·λ jk

⌋
p

=
t∑

k=1

⌊
A(x)> ·S>

I jk

⌋
p
·λ jk +e, (3.3)

where the last equality of (3.3) stems from fact that, for any two vectors v 1, v 2 ∈Zm
q ,

we have bv 1 + v 2cp = bv 1cp + bv 2cp + e+, for some vector e+ ∈ {0,1}m , and bv 1 −
v 2cp = bv 1cp − bv 2cp + e−, where e− ∈ {−1,0}m . The error vector e of (3.3) thus
lives in {−dS , . . . ,dS }m . By the definition of Y jk = bA(x)> ·S>

I jk
cp , if we define z̃ :=∑t

k=1 Y jk ·λ jk and ez :=−e ∈ {−dS , . . . ,dS }m , we have

z̃ =
⌊(

A(x)
)> ·s

⌋
p
+ez ∈Zm

p .

Remember that A(x)> · s contains the term U>
0 · s, where the public matrix U0 is

uniformly sampled over Zn×m
q . By Lemma 2.11 it follows that U>

0 · s is statistically

close to U (Zm
q ). Thus the vector A(x)>·s is itself statistically close to U (Zm

q ). Hence,

the vector bA(x)> · scp is statistically close to U (Zm
p ) since the statistical distance

between bU (Zm
q )cp and U (Zm

p ) is at most m ·(p/q). Therefore we can apply Lemma
2.10, which implies that⌊bA(x)> · scp

⌋
u = ⌊bA(x)> · scp +ez

⌋
u

except with probability 2L ·m · 2dS ·u
p ≤ 2L ·m · 2d ·u

p ≤ ·2−λ.

This shows that the equality bz̃cu = ⌊bA(x)> · scp
⌋

u holds with overwhelming
probability if the vector z̃ := ∑t

k=1 Y jk ·λ jk in the left-hand-side member is com-
puted by the Combine algorithm and the right-hand-side member is the bz̃cu com-
puted by Eval.
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Theorem 3.5. The construction above is an adaptively secure DPRF family under
the LWEq,m,n′,α assumption.

Proof. The proof considers a sequence of hybrid games. In each game, we call Wi

the event that b′ = b.

Game0: This is the experiment, as described by Definition 3.2. Namely, the chal-
lenger initially samples a secret Gaussian vector SK = s ←- DZn ,σ, which is
shared by computing

SI j = MI j · [ρ1 | . . . |ρn] = MI j ·Γ ∈Zd j×n ∀ j ∈ [N ],

where

Γ= [
ρ1 | . . . |ρn

]=


s>

ρ1,2 . . . ρn,2
...

. . .
...

ρ1,e . . . ρn,e

 ∈Ze×n ,

with ρk,ν←-DZ,σ for all (k,ν) ∈ [1,n]×[2,e]. At each partial evaluation query
( j , X (i )) ∈ [N ]× {0,1}`, the adversary A obtains

Y j =
⌊

(A(x))> ·S>
I j

⌋
p
∈Zm×d j

p . (3.4)

In the challenge phase, the adversary chooses an input X? ∈ {0,1}`. It ob-
tains a random vector y? ←-U (Zk

u) if the challenger’s bit is b = 0. If b = 1, it
obtains the real evaluation y? =π(bz̃?cu) ∈Zk

u , where

z̃? =
⌊(

A(x?)
)> ·s

⌋
p
∈Zm

p ,

with A(x?) = U0+A1,x?1
·G−1

(
A2,x?2

·G−1
(
A3,x?3

· · ·G−1
(
AL−1,x?L−1

·G−1
(
AL,x?L

)) · · ·)).

At the end of the game, we define C ? ⊂ [N ] as in Definition 3.2, to be the
set of servers that were corrupted by A or such that an evaluation query
of the form (i , X?) was made. By hypothesis, we have |C ?| < t . When the
adversary halts, it outputs b̂ ∈ {0,1} and the challenger defines b′ := b̂. The
adversary’s advantage is AdvA (λ) := |Pr[W0]− 1/2|, where W0 is event that
b′ = b.

Game1: This game is identical to Game0 with the following changes. First, the
challenger runs K ← AdmSmp(1λ,Qmax,δ) to generate a key K ∈ {0,1,⊥}L

for a balanced admissible hash function AHF : {0,1}` → {0,1}L , with δ :=
AdvA (λ) and Qmax is an upper bound on the number of queries that the
adversary makes. When the adversary halts and outputs b̂ ∈ {0,1}, the chal-
lenger checks if the conditions

PK (X (1)) = ·· · = PK (X (Q)) = 1 ∧ PK (X?) = 0 (3.5)
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are satisfied, where X? is the challenge input and X (1), . . . , X (Q) are the ad-
versarial queries. If these conditions do not hold, the challenger ignores A ’s
output b̂ ∈ {0,1} and overwrites it with a random bit b′′ ←- {0,1} to define
b′ = b′′. If conditions (3.5) are satisfied, the challenger sets b′ = b̂. By Lemma
2.17, we have

|Pr[W1]−1/2| = |Pr[b′ = b]−1/2|
≥ γmin ·AdvA (λ)− 1

2
· (γmax −γmin) = τ(λ),

where τ(λ) is a noticeable function.

Game2: In this game, we modify the generation of pp in the following way. Ini-
tially, the challenger samples a uniformly random matrix A ←- U (Zn×m

q ).
Next, for each i ∈ [L], it samples Ri ,0,Ri ,1 ←-U ({−1,1})m×m and defines the
matrices {Ai ,0,Ai ,1}L

i=1 as follows for all i ∈ [L] and j ∈ {0,1}:

Ai , j :=
{

A ·Ri , j if ( j 6= Ki ) ∧ (Ki 6=⊥)
A ·Ri , j +G if ( j = Ki ) ∨ (Ki =⊥)

(3.6)

It also defines U0 = A ·V0 for V0 ←-U ({−1,1}m×m). Since A ∈ Zn×m
q was cho-

sen uniformly, the Leftover Hash Lemma 2.18 ensures that {Ai ,0,Ai ,1}L
i=1, U0

are all statistically independent and uniformly distributed over Zn×m
q . It fol-

lows that |Pr[W2]−Pr[W1]| ≤ L ·2−λ since the distribution of pp is statistically
unchanged.

We note that, at each query X , we can view A(x) as a shifted by U0, GSW en-
cryption

A(x) = U0 +A ·Rx + (
n∏

i=1
µi ) ·G,

which is also equal to:

A(x) = A · (V0 +Rx
)+ (

n∏
i=1

µi ) ·G,

for some small norm Rx ∈Zm×m , where

µi :=
{

0 if (AHF(X )i 6= Ki ) ∧ (Ki 6=⊥)
1 if (AHF(X )i = Ki ) ∨ (Ki =⊥)

If conditions (3.5) are satisfied, at each query X (i ), the admissible hash function
ensures that x(i ) =AHF(X (i )) satisfies

A(x(i )) = A · (V0 +Rx(i )

)
, (3.7)

for some small norm Rx(i ) ∈ Zm×m . Moreover, the admissible hash function maps
the challenge input X? to an L-bit string x? =AHF(X?) such that

A(x?) = A · (V0 +Rx?
)+G, (3.8)

for some small norm Rx? ∈Zm×m
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Game3: In this game, we modify the distribution of pp and replace the uniform
matrix A ∈Zn×m

q by a lossy matrix such that

A> = Ā> ·C+E ∈Zm×n
q , (3.9)

where Ā ←-U (Zn′×m
q ), C ←-U (Zn′×n

q ) and E ←- DZm×n ,αq , for n′ significantly
smaller than n. The matrix in (3.9) is thus “computationally close” to a ma-
trix Ā> ·C of much lower rank than n. Under the LWE assumption in di-
mension n′, this change should not significantly alter A ’s behavior and a

straightforward reduction B shows that |Pr[W3]−Pr[W2]| ≤ n·Adv
LWEq,m,n′ ,α
B

(λ),
where the factor n comes from the use of an LWE assumption with n secrets.

The modification introduced in Game3 has the following consequence. Assuming
that conditions (3.5) are satisfied, for each partial evaluation query X (i ) such that
X (i ) 6= X?, the response is of the form

Y j =
⌊(

A ·V0 +A ·Rx(i )

)> ·S>
I j

⌋
p

=
⌊(

V>
0 +R>

x(i )

) · (Ā> ·C+·E) ·S>
I j

⌋
p

∀θ ∈ [d j ].

Game4: In this game, we modify the evaluation oracle and the challenge oracle
by introducing a bad event. We define BAD to be the event that the adver-
sary makes a partial evaluation query ( j , X ) or a challenge query X? such
that the AHF-encoded inputs x = AHF(X ) and x? = AHF(X?) ∈ {0,1}L cor-
responding to matrices A(x) = A ·Rx , and A(x?) = A ·Rx? +G respectively, for
some small-norm matrices Rx and Rx? ∈Zm×m , satisfy either

Y j =
⌊(

A ·V0 +A ·Rx
)> ·S>

I j

⌋
p
6=

⌊(
V>

0 +R>
x

) · Ā> ·C ·S>
I j

⌋
p

. (3.10)

or

z̃? =
⌊(

A ·V0 +A ·Rx? +G
)> ·s

⌋
p
6= ⌊(

V>
0 +R>

x?
) · Ā> ·C ·s+G> ·s

⌋
p . (3.11)

Note that the challenger can detect this event since it knows Ā ∈ Zn′×m
q , C ∈

Zn′×n
q and E ∈Zm×n satisfying (3.9). IfBAD occurs, the challenger overwrites

A ’s output b̂ with a random bit b′′ ←- {0,1} and sets b′ = b′′ (otherwise, it sets
b′ = b̂ as before). Lemma 3.6 shows that we have the inequality |Pr[W4]−
Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

We note that, if BAD does not occur, we have⌊(
A ·V0 +A ·Rx(i )

)> ·S>
I j

⌋
p
=

⌊(
V>

0 +R>
x(i )

) · Ā> ·C ·S>
I j

⌋
p

(3.12)
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at each query ( j , X (i )) for which X (i ) 6= X? . We note that the right-hand-side mem-

ber of (3.12) is fully determined by
(
V>

0 +R>
x(i )

) · Ā> and the product C ·S>
I j
∈Zn′×d j

q .

Conversely, the right-hand-side member of (3.12) uniquely determines C ·S>
I j

with

high probability: observe that
(
V>

0 +R>
x(i )

)·Ā> is statistically uniform overZm×n′
q , so

by Corollary 2.3.1, the quantity b(V>
0 +R>

x(i ) ) · Ā> · (C ·S>
I j

)cp is an injective function

of C ·S>
I j

mod q .

This means that partial evaluation queries ( j , X (i )) such that X (i ) 6= X? always

reveal the same information (namely, C ·S>
I j
∈ Zn′×d j

q ) about S>
I j
∈ Zn×d j . It comes

that partial evaluation queries information-theoretically reveal C · S> mod q , in
particular they reveal C ·s mod q . But we will show that s still retains high entropy
in A ’s view.

Game5: In this game, we modify the challenge value for which, if b = 1, the adver-
sary is given a random y? ←-U (Zk

u). Clearly, we have Pr[W5] = 1/2 since the
distribution of the challenge value does not depend on b ∈ {0,1}. Moreover,
we will show that |Pr[W5]−Pr[W4]| ≤ 2−Ω(λ).

Indeed, we claim that, conditionally on A ’s view, the vector y? is already statisti-
cally uniform over Zk

u in Game4. Indeed, the source bz̃?cu depends on an injective
function G> · s ∈ Zm

q of the vector s. In Lemma 3.7, we show that this vector has
high min-entropy if BAD does not occur.

We observe that the source bz̃?cu can be written

bz̃?cu =
⌊⌊(

A ·V0 +A ·Rx? +G
)> ·s

⌋
p

⌋
u

(3.13)

=
⌊(

A ·V0 +A ·Rx? +G
)> ·s

⌋
u
+es,x,u with es,x,u ∈ {−1,0}m

= b(V>
0 +R>

x?) ·A> ·scu +bG> ·scu +es,x,u +es,x , with es,x ∈ {0,1}m

= b(V>
0 +R>

x?) ·A> ·scu +bG> ·scu +e′s,x , with e′s,x ∈ {−1,0,1}m . (3.14)

Recall that the equality b(V>
0 +R>

x?)·A> ·scu = b(V>
0 +R>

x?)·Ā> ·C·scu , corresponding
to the challenge query, holds as long as the event BAD does not occur.

This implies H∞
(b(V>

0 +R>
x?) ·A> ·scu | C ·s

)= 0 as long as BAD does not occur.
In the expression of z̃? in (3.14), we also remark that bG> · scu +e′s,x is an injective
function of s ∈Zn . To see this, observe that

bG> ·scu +e′s,x = (u/q) ·G> ·s− ts,x +e′s,x

for some ts,x ∈ (0,1)m , so that

(q/u) · (bG> ·scu +e′s,x ) = G> ·s+e′′s,x (3.15)

for some e′′s,x ∈ (−q/u, q/u)m . The vector s is thus uniquely determined by (3.15),
using the public trapdoor of G, when u > 2log q .
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Consider the entropy of z? := bz̃?cu conditionally on A ’s view. We have

H∞
(bz̃?cu | C ·Γ>, {SI j } j∈C ?

)
= H∞

(b(V>
0 +R>

x?) ·A> ·scu +bG> ·scu +e′s,x | C ·Γ>, {SI j } j∈C ?

)
= H∞

(bG> ·scu +e′s,x | C ·Γ>, {SI j } j∈C ?

)
= H∞

(
s | C ·Γ>, {SI j } j∈C ?

)≥ n · logσ− n

2
· loge −n′ · log q −1.

Here, the last inequality is given by Lemma 3.7. The second equality follows from
the fact that, for any random variables X ,Y , Z defined over an additive group, we
have H∞(Y +Z | X ) = H∞(Z |X ) if H∞(Y |X ) = 0.

In order to extract statistically random bits from z?, we must take into ac-
count that it possibly depends on x? which may depend on the public param-
eters. As long as PK (X?) = 0, the source z? is taken from a distribution deter-
mined by the challenge input X? ∈ {0,1}` within a collection of less than 2` distri-
butions (namely, those inputs X for which PK (X ) = 0), which all have min-entropy
n̄ ≥ n logσ− n

2 · loge −n′ log q −1. By applying Lemma 2.19 with ε= 2−λ for a col-
lection X of at most M = 2` distributions, we obtain that the distribution of π(z?)
is 2−Ω(λ)-close to the uniform distribution over Zk

u .

Lemma 3.6. Assume that q/p > 2L+λ · r ·m ·N ·d, where r = L ·m2 ·n ·αq ·β∗ with
β∗ =O(β · log N ). Then, we have the inequality

|Pr[W4]−Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

Proof. For each query x = x1 . . . xL , the matrix Rx ∈Zm×m is of the form

Rx = R1,x1 ·G−1 (
A2,x2 ·G−1 (

A3,x3 ·
(· · ·G−1 (

AL,xL

))))
+x1 ·R2 ·G−1 (

A3,x3 ·
(· · ·G−1 (

AL,xL

)))
+x1 · x2 ·R3 ·G−1 (

A4,x4 ·
(· · ·G−1 (

AL,xL

)))
...

+x1 · x2 · · ·xL−2 ·RL−1 ·G−1(AL,xL

)
+x1 · x2 · · ·xL−1 ·RL

Since Rx is the sum of L products of at most two binary matrices, the following
bound can be established: ‖R>

x ‖∞ ≤ (L −1) ·m2 +m. Moreover, for every column
s̄ j ,θ ∈ Zn , θ ∈ [d j ] of the matrix S>

I j
∈ Zn×d j , we have ‖s̄ j ,θ‖∞ ≤ β∗. We also have

‖V>
0 ‖∞ ≤ m and

‖E‖∞ = max
i∈[m]

(
n∑

j=1
|ei , j |

)
≤p

n max
i∈[m]

‖ei‖ ≤ n ·αq
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so we can conclude that for every column s̄ j ,θ of S>
I j

we have:

‖(V>
0 +R>

x

)·E·s̄ j ,θ‖∞ ≤ (‖V>
0 ‖∞+‖R>

x ‖∞
)·‖E‖∞·‖s̄ j ,θ‖∞ ≤ (

(L−1)m2+2m
)·n·αq ·β∗,

which is smaller than r , for r = L ·m2 ·n ·αq ·β∗.
By the Leftover Hash Lemma 2.18, we know that V>

0 · Ā> is statistically close to
the uniform over Zm×n

q . Thus by Lemma 2.11, we conclude that (V>
0 · Ā>) · (C · s̄ j ,θ)

is close to the uniform distribution overZm
q . This implies that (V>

0 +R>
x )·Ā> ·C· s̄ j ,θ

is statistically close to the uniform distribution over Zm
q .

So we can apply Lemma 2.10 to establish the following bound on Pr[badx, j ,θ] :

Pr

[⌊(
A ·V0 +A ·Rx

)> · s̄ j ,θ

⌋
p
6= ⌊(

V>
0 +R>

x

) · Ā> ·C · s̄ j ,θ
⌋

p

]
≤ m · 2r p

q
. (3.16)

where r = L ·m2 ·n ·αq ·β∗, with β∗ =O(β · log N ) .
An almost identical argument can be used to establish a similar bound for the

challenge query:

Pr

[⌊(
A ·V0 +A ·Rx? +G

)> ·s
⌋

p
6= ⌊(

V>
0 +R>

x?
) · Ā> ·C ·s+G> ·s

⌋
p

]
≤ m · 2r p

q
(3.17)

By taking a union bound over all possible inputs x ∈ {0,1}L and all possible
pairs ( j ,θ) ∈ [N ]× [d j ], we obtain the upper bound Pr[BAD] ≤ 2L ·m ·N ·d · 2r p

q .
Since Game3 and Game4 are identical if BAD does not occur, we finally obtain

|Pr[W4]−Pr[W3]| ≤ Pr[BAD] ≤ 2L ·m ·N ·d · 2r p

q
≤ 2−λ,

which completes the proof of the lemma.

Lemma 3.7. In Game4, the min-entropy of s conditionally on A ’s view is at least
n · logσ− n

2 · loge −n′ · log q − n
2n .

Proof. Let us assume that BAD does not occur in Game4 since, if it does, the
challenger replaces the adversary’s output with a random bit, in which case both
games have the same outcome. We show that, assuming ¬BAD, the shared secret
vector s retains high min-entropy conditionally on the adversary’s view.

Let us first recap what the adversary can see in Game4. For each partial eval-

uation query ( j , X?), the response
⌊(

A ·V0 +A ·Rx? +G
)> ·S>

I j

⌋
p

consists of non-

lossy functions of S>
I j
∈ Zn×d j . We thus consider partial evaluation queries of the

form ( j , X?) as if they were corruption queries and assume that they information-
theoretically reveal SI j (i.e. we assume C ? from Definition 3.2 consists only of cor-
rupted indices). As for uncorrupted shares {SI j } j∈[N ]\C ? , partial evaluation queries

( j , X (i )) for which X (i ) 6= X? only reveal the information {C ·S>
I j

} j∈[N ]\C ? . More pre-

cisely, those partial evaluations {Y j } j∈[N ]\C ? can be written

Y j =
⌊

(A(x(i )))> ·S>
I j

⌋
p
=

⌊(
V>

0 +R>
x(i )

) · Ā> ·C ·S>
I j

⌋
p

(3.18)
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where

S>
I j
=

ρ
>
1
...
ρ>

n

 ·M>
I j

∈Zn×d j

is a product of M>
I j

with the matrix [ρ1 | . . . | ρn]> ∈Zn×e whose first column is the

secret SK = s ∈ Zn . Hence, the information revealed by (3.18) for j ∈ [N ] \ C ? is
only a lossy function C ·S>

I j
of the share SI j : namely,

C ·

ρ
>
1
...
ρ>

n

 ·M>
I j

=

 C ·s C ·

ρ1,2
...

ρn,2

 . . . C ·

ρ1,e
...

ρn,e


 ·M>

I j
, (3.19)

= C ·Γ> ·M>
I j

,

where

Γ= [
ρ1 | . . . |ρn

]=


s>

ρ1,2 . . . ρn,2
...

. . .
...

ρ1,e . . . ρn,e

 ∈Ze×n

is the matrix of Gaussian entries which is used to compute secret key shares

SI j = MI j ·Γ ∀ j ∈ [N ].

The information revealed by exposed shares {SI j } j∈C ? can thus be written

SI j = [sI j ,1 | . . . | sI j ,n] = MI j ·Γ ∈Zd j×n ∀ j ∈C ?. (3.20)

At this stage, we see that proving the following fact on distributions is sufficient to
complete the proof of the lemma.

Claim. Let MC ? to be the sub-matrix of M obtained by stacking up the rows as-
signed to corrupted parties j ∈C ?. Conditionally on(

C, C ·Γ> ·M>, MC ? , MC ? ·Γ)
, (3.21)

the vector s> = (1,0, . . . ,0)> ·Γ has min-entropy ≥ n · logσ− n
2 · loge −n′ · log q − n

2n .

To prove this statement, we apply arguments inspired from [ALS16, Lemma 1].
First, we observe that conditioning on (3.21) is the same as conditioning on

(
C,C ·

Γ> ·M>
[N ]\C ? , MC ? , MC ? ·Γ)

since MC ? ·Γ and C are given. In fact, it is sufficient to
prove the result when conditioning on(

C,C ·Γ>, MC ? , MC ? ·Γ)
,

as C ·Γ> ·M>
[N ]\C ? is computable from C ·Γ>. By the definition of an Integer Span

Program, we know that there exists a sweeping vector κ ∈ Ze whose first coordi-
nate is κ1 = 1 and such that MC ? ·κ = 0. The rows of MC ? thus live in the lattice
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LC ? = {m ∈ Ze : 〈m,κ〉 = 0}. Hence, if we define a matrix LC ? ∈ Z(e−1)×e whose
rows form a basis of LC ? , we may prove the min-entropy lower bound condi-
tioned on (

C,C ·Γ>,LC ? ,LC ? ·Γ)
.

This is because LC ? ·Γ provides at least as much information as MC ? ·Γ.
We first consider the distribution of Γ, conditioned on (LC ? ,LC ? ·Γ). Since the

columns of Γ are statistically independent, we may look at them individually. For
each i ∈ [n], we let ρ∗

i ∈ Ze be an arbitrary solution of LC ? ·ρ∗
i = LC ? ·ρi ∈ Ze−1

q .
The distribution of ρi ∈Ze conditionally on

(
LC ? ,LC ? ·ρi

)
is ρ∗

i +DΛ,σ,−ρ∗
i
, where

Λ= {
x ∈Ze | LC ? · x = 0

}
is the 1-dimensional lattice Λ=κ ·Z.

At this stage, we know each row ρi = (si ,ρi ,2, . . . ,ρi ,e )> of Γ>, conditioned on
(LC ? ,LC ? · Γ), is Gaussian over an affine line. We use this observation to show
that conditioning on (C,C ·Γ>,LC ? ,LC ? ·Γ) is the same as conditioning on (C,C ·
s,LC ? ,LC ? ·Γ). In fact, we claim that, conditioned on (LC ? ,LC ? ·Γ), the last e −1
columns of Γ> do not reveal any more information than its first column. Indeed,
conditioned on (LC ? ,LC ? ·Γ), each ρi can be written ρi = ξi ·κ+ρ∗

i for some in-
teger ξi ∈ Z. We may assume that the shifting vector ρ∗

i = (ρ∗
i ,1, . . . ,ρ∗

i ,e )> ∈ Ze
q is

known to A as it can be obtained from LC ? ·ρi via de-randomized Gaussian elim-
ination. Writing κ= (κ1, . . . ,κe ), the j -th column (Γ>) j of Γ> is

(Γ>) j = κ j ·

ξ1
...
ξn

+


ρ∗

1, j
...

ρ∗
n, j

 ∀ j ∈ [e].

As κ1 = 1, we have

(Γ>) j = κ j · (Γ>)1 −κ j ·


ρ∗

1,1
...

ρ∗
n,1

+


ρ∗

1, j
...

ρ∗
n, j

 ∀ j ∈ [e].

In the latter, the last two terms are information-theoretically known to A (once we
have conditioned on (LC ? ,LC ? ·Γ)) and so is κ j .

We now study the distribution of s = (Γ>)1 conditioned on (LC ? ,LC ? ·Γ). By
statistical independence, we may consider each coordinate si = (1,0, . . . ,0)> ·ρi

of s individually. Recall that, conditioned on (LC ? ,LC ? ·Γ), each ρi is distributed
as ρ∗

i +DκZ,σ,−ρ∗
i
. Write ρ∗

i = y ·κ+ (ρ∗
i )⊥, with y ∈ R and (ρ∗

i )⊥ orthogonal to κ.
Then,

ρ∗
i +DκZ,σ,−ρ∗

i
= ρ∗

i +DκZ,σ,−y ·κ−(ρ∗
i )⊥

= ρ∗
i +κ ·DZ,σ/‖κ‖,−y

We now take the inner product with (1,0, . . . ,0) and use the fact that κ1 = 1 to ob-
tain that, conditioned on (LC ? ,LC ? ·Γ), the coordinate si is distributed as (ρ∗

i )⊥1 +
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y +DZ,σ/‖κ‖,−y . As κ ∈ {−1,0,1}e with the Benaloh-Leichter-based LISS scheme
of [DT06], and by our choice ofσ, we have thatσ/‖κ‖ =Ω(

p
n). Using Lemma 2.6,

this implies that each si has min-entropy ≥ log(σ/‖κ‖)−2−n ≥ logσ− 1
2 loge−2−n

. Overall, we obtain

H∞
(
s | LC ? ,LC ? ·Γ)≥ n · logσ− n

2
· loge − n

2n .

We are now ready to conclude. By the above, to prove the claim (and hence the
lemma), it suffices to obtain a lower bound on the min-entropy of s conditioned
on (C,C·s,LC ? ,LC ? ·Γ). We then use the above min-entropy lower bound on s con-
ditioned on (LC ? ,LC ? ·Γ) and the fact that given C, the quantity C · s ∈Zn′

q reveals
at most n′ log q bits.

3.6 Robustness from Homomorphic Signatures

In this section, we show how to extend our DPRF so as to achieve robustness
against faulty servers at the expense of assuming reliable erasures on behalf of
the servers. Note that relying on erasures is common in the context of adaptive
corruptions (see, e.g., [CGJ+99]). To this end, we follow the approach of [BGGK17,
BGG+18] which relies on homomorphic signatures to obtain a mechanism allow-
ing to verify that servers’ computations are carried out correctly.

In short, a leveled homomorphic signature makes it possible to publicly derive
a signatureΦC on a circuit evaluation C (M), given a signatureΦ on an initial mes-
sage M . In our setting, as well as in [BGGK17, BGG+18], we need a homomorphic
signature which is context-hiding, meaning that a homomorphically evaluated
signature ΦC is statistically independent of the initial message M : more formally,
there should be a simulator that creates ΦC from scratch from the signing key sk
and the value C (M) and, yet, the joint distribution of (C (M),ΦC ) should be statis-
tically close to that obtained by homomorphically deriving ΦC from (M ,Φ). One
difficulty is that the fully homomorphic signatures of [GVW15b] are not known to
be simultaneously context-hiding and adaptively unforgeable (i.e., context-hiding
security was only achieved for selectively unforgeable schemes). Fortunately, se-
lective unforgeability is sufficient for our purposes (and those of [BGGK17]). We
can thus instantiate our construction using the context-hiding construction of
Gorbunov, Vaikuntanathan and Wichs [GVW15b], which relies on the Short-Integer-
Solution (SIS) assumption. Since the LWE assumption implies the SIS assump-
tion, we can achieve robustness without introducing any additional assumption,
analogously to [BGGK17, BGG+18].

A Robust DPRF is a DPRF endowed with an additional verification algorithm
Rob.Verify that takes as input the public parameters of the DPRF along with an
input X and a candidate partial evaluation Y j on behalf of server j ∈ [N ], together
with a corresponding label φ j . It outputs 1 or 0 depending on whether (Y j ,φ j ) is
deemed valid or not. For correctness, we require that Rob.Verify(pp,Y j ,φ j , X ) = 1
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for all j ∈ [N ], pp ← Rob.Setup(1λ,1`,1t,1N), any input X ∈ X and any evalu-
ation (Y j ,φ j ) ← Rob.PEval(pp,SK j , X ), for (SK1, . . . ,SKN ) ← Rob.Share(SK0) ob-
tained by sharing SK0 ← K . The robustness property requires that it be unfea-
sible for a corrupted server j ∈ [N ] holding the secret share SK j to produce an
incorrect partial evaluation Y j , for some input X , that still passes the verification
Rob.Verify(pp,Y j , X ) = 1.

Definition 3.6 (Robust DPRF). A robust DPRF family is specified by the algorithms:
(Rob.Setup,Rob.Keygen,Rob.Share,Rob.PEval,Rob.Eval,Rob.Combine),
together with a polynomial-time verification algorithm, Rob.Verify, such that:

Correctness: For any pp← Rob.Setup(1λ,1`,1t ,1N ), SK0 ← Rob.Keygen(pp), any
sharing (SK1, . . . ,SKN ) ←Rob.Share(SK0), any index j ∈ [N ], any X ∈X and
any (Y j ,φ j ) ← Rob.PEval(pp,SK j , X ), we have Rob.Verify(pp, j ,Y j ,φ j , X ) =
1.

Robustness: For any j ∈ [N ] and any PPT adversary A , there exists a negligible
function negl(λ) such that:

Pr

Rob.Verify(pp, j , Ỹ j , φ̃ j , X̃ ) = 1

∣∣∣∣∣∣
(Ỹ j , φ̃ j , X̃ ) ←A (pp,SK )

∧
Ỹ j 6= Y j

≤ negl(λ)

where the probability is taken over: the randomness of A , and over the ran-
domness: (Y j ,φ j ) ← Rob.PEval(SK j , X̃ ), pp ← Rob.Setup(1λ,1`,1t ,1N ) and
SK0 ←Rob.Keygen(pp) and SK := (SK1, . . . ,SKN ) ←Rob.Share(SK0).

3.6.1 Homomorphic Signatures

In this section we recall the definition of leveled homomorphic signature [GVW15b].
We use the simplified version presented in [BGGK17].

Definition 3.7 (Context-Hiding Homomorphic Signature). A (leveled) context-hiding
homomorphic signature scheme is a tuple of efficient algorithms (KeyGen,Sign,SignEval,Verify,
Hide,HVerify) with the following specifications.

KeyGen(1λ,1d ,1K ) → (sk, vk): On input the security parameter λ, a circuit depth
bound d and a data set bound K , the algorithm outputs a signing key and a
verification key.

Sign(sk,m) →Φ: On input of the signing key sk and a message m ∈ {0,1}K , the al-
gorithm outputs a signature Φ.

SignEval(C ,Φ) →Φ?: On input of a circuit C : {0,1}K → {0,1} and a signature, the
algorithm outputs a homomorphically evaluated signature Φ?.
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Verify(vk,C , y,Φ?) → 0/1: Given a verification key vk, a circuit C : {0,1}K → {0,1},
an output value y and a signature Φ?, the algorithm outputs 1 or 0.

Hide(vk, y,Φ) → Φ̃: On input of a verification key vk, an output value y, and a
signature Φ, this (randomized) algorithm outputs a transformed signature
Φ̃.

HVerify(vk,C , y,Φ̃) → 0/1: Given a verification key vk, a circuit C : {0,1}K → {0,1},
an output value y and a transformed signature Φ̃, the algorithm outputs 1 or
0.

Correctness: For all λ,d ,K ∈ N, (sk, vk) ← KeyGen(1λ,1d,1K), m ∈ {0,1}K , Φ ←
Sign(sk,m), C : {0,1}K → {0,1} a circuit of depth at most d and y = C (m), if
Φ?← SignEval(C ,Φ), thenVerify(vk,C , y,Φ?) = 1. Moreover, for any (C , y,Φ)
such thatVerify(vk,C , y,Φ) = 1 and any Φ̃←Hide(vk, y,Φ), we haveHVerify(vk,C , y,Φ̃) =
1 w.h.p. over the randomness of Hide.

For our purposes, we need a homomorphic signature that satisfies two security
definitions called unforgeability and context-hiding [GVW15b].

Definition 3.8 (Selective Unforgeability). We say that a leveled context-hiding ho-
momorphic signature scheme HS = (KeyGen,Sign,SignEval,Verify,Hide,HVerify)
provides selective unforgeability if, for any PPT adversary A , there is a negligible
function negl(λ) such that

AdvufHS,A (λ) := Pr[ExpufHS,A (λ) = 1] ≤ negl(λ),

where ExpufHS,A (λ) is defined below:

1. (sk, vk) ←KeyGen(1λ,1d,1K)

2. m?←A (1λ)

3. Φ← Sign(sk,m?)

4. (C?, y?,Φ̃?) ←A (Φ, vk)

The experiment outputs 1 if and only if the following conditions are satisfied:

• The depth of C? is at most d

• C?(m?) 6= y?

• HVerify(vk,C?, y?,Φ̃?) = 1.
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We need a homomorphic signature satisfying a notion of context-hiding secu-
rity capturing that derived signatures hide everything but the result C (m) of the
circuit evaluation. This notion is achieved via the Hide algorithm that takes as in-
put a derived signatureΦ (which is not context hiding) and applies some sanitiza-
tion procedure that makes the resulting signature context hiding. More precisely,
the “hiding” signature Φ̃ can be simulated given only C and y = C (m), no mat-
ter which original signature was used to create it. Our Definition 3.9 hereunder is
formulated in a slightly different way than (and is actually implied by) [GVW15b,
Definition 6.1]. We chose this formulation to make it explicit that indistinguisha-
bility holds even when the original signatures are given.

Definition 3.9 (Context-hiding). A leveled homomorphic signature HS= (KeyGen,
Sign,SignEval,Verify,Hide,HVerify) is statistically context-hiding if there exists a
simulator Sim such that no (computationally unbounded) adversary has notice-
able advantage in the following game:

1. The challenger flips a coin b ←-U ({0,1}), generates (sk, vk) ←KeyGen(1λ,1d ,1K )
and gives (sk, vk) to the adversary A .

2. On polynomially-many occasions, A submits adaptive queries, each of which
consists of a message y, a circuit C : {0,1}K → {0,1}, and a signature Φ. If
Verify(vk,C , y,Φ) = 0, the challenger returns ⊥. Otherwise, the challenger re-
sponds as follows:

• If b = 0, the challenger evaluates Φ̃←Hide(vk, y,Φ) and returns Φ̃.

• If b = 1, the challenger computes Φ̃← Sim(sk,C , y) and returns Φ̃ to A .

3. Finally, the adversary outputs a bit b′ ∈ {0,1} and its advantage is measured
by the distance Advch

A (λ) := |Pr[b′ = b]−1/2|.

The context-hiding construction of Gorbunov et al. [GVW15b, Section 6] is
easily seen to satisfy the above security definition.

3.6.2 A Robust DPRF Construction

In this section, we use homomorphic signatures to make our DPRF construction
of Section 3.5 robust against malicious servers. For this purpose, we need a lev-
eled homomorphic signatures [GVW15b] that is context-hiding. Following the
approach of [BGGK17, BGG+18], we have the trusted dealer provide each server
j ∈ [N ] with a secret key share SK j together with a homomorphic signature Φ j of
that secret share. By leveraging the homomorphism of the signature scheme, each
server j can derive (without knowing the signing key) valid signatures for circuits
CX that evaluate Y j = PEval(SK j , X ) on input of SK j . Each server can thus pro-
duce a valid signature for the partial evaluation of the PRF on any input X using
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its own share SK j and the corresponding signature. The unforgeability of homo-
morphic signatures makes it unfeasible to come up with a valid signature on an
incorrect partial evaluation of the PRF for the input X .

Let a DPRF specified by algorithms (DPRF.Setup,DPRF.Share,DPRF.PEval,
DPRF.Eval,DPRF.Combine), as described in Section 3.5. Let a homomorphic sig-
nature scheme (KeyGen,Sign,SignEval,Verify,Hide,HVerify) that is context-hiding.
We now describe a robust DPRF as follows.

Rob.Setup(1λ,1`,1t ,1N ): Run pp← DPRF.Setup(1λ,1`,1t ,1N ). Define the input
space X and the key space K to be the same as in the underlying DPRF. Let
K the number of bits to represent any element of K and d is the maximal
depth of any Boolean circuit that computes CX (·) := DPRF.PEval(·, X ) for
any input X ∈ X . Also run (sk j , vk j ) ← HS.KeyGen(1λ,1d ,1K ) for each j ∈
[N ].

Return Rob.pp= (
pp, {vk j } j∈[N ],1d

)
.

Rob.Keygen(pp): Run SK0 ←DPRF.Keygen(pp), output SK0.

Rob.Share(SK0): In order to share SK0 ∈K , and do the following.

1. Run (SK1, . . . ,SKN ) ←DPRF.Share(SK0).

2. Compute Φ j ←HS.Sign(sk j ,SK j ) for all j ∈ [N ].

Output
(
(SK1,Φ1), . . . , (SKN ,ΦN )

)
For each j ∈ [N ], server j receives the pair (SK j ,Φ j ). The signing keys sk j

are the ones generated by the Rob.Setup algorithm.

Rob.PEval((SK j ,Φ j ), X ): Given its secret key share (SK j ,Φ j ), the j -th server com-
putes a partial evaluation on X by conducting the following steps:

1. Compute Y j ←DPRF.PEval(SK j , X ).

2. Compute Φ j ,X ← HS.SignEval(CX ,Φ j ), where CX is a Boolean circuit
such that CX (·) =DPRF.PEval(·, X ).

3. Compute Φ̃ j ,X ← HS.Hide(vk j ,Y j ,Φ j ,X ) and erase the random coins
used by HS.Hide.

Then, return (Y j ,Φ̃ j ,X ).

Rob.Eval(SK0, X ): Compute Y ←DPRF.Eval(SK0, X ).

Rob.Combine(S , (Y j1 ,Φ j1 ), . . . , (Y jt ,Φ jt )): On input a t-subset of [N ] and t partial
evaluations, output Y ←DPRF.Combine(S , (Y j1 , . . . ,Y jt )).

Robust.Verify(Rob.pp, j , (Y j ,Φ̃ j ,X ), X ): IfHS.HVerify
(
vk j ,CX ,Y j ,Φ̃ j ,X

)= 1, return
1. Otherwise, return 0.
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The correctness of the Rob.Verify algorithm follows from the correctness of
the homomorphic signature scheme. The robustness of the DPRF is implied by
the selective unforgeability of the homomorphic signature. From a robustness ad-
versary, we can easily construct a selective forger in the sense of Definition 3.8 as
the only way for the adversary to trick the verification algorithm into accepting an
incorrect partial evaluation is to break the unforgeability of the homomorphic sig-
nature. Moreover, the latter only needs to provide selective unforgeability since,
in the reduction, the adversary only needs to see one verification key vk after the
generation of signatures on secret key shares {SK j } j∈[N ].

Theorem 3.8. Assuming that the homomorphic signature scheme provides selective
unforgeability, the above construction satisfies the robustness property.

Proof. Towards a contradiction, suppose that there exists a polynomial-time ad-
versary A that breaks the robustness for the index j ∈ [N ](in the sense of Defi-
nition 3.6) of the Rob.DPRF. We build a polynomial-time adversary B that can
forge signatures, thus breaking the selective unforgeability of the homomorphic
signature HS.

The reduction B starts by running pp← DPRF.Setup(1λ,1`,1t ,1N ) such that
any key in K can be represented using K bits and, for any input X ∈ X , the
Boolean circuit CX (·) :=DPRF.PEval(·, X ) has depth at most d . Next, the reduction
B generates a master secret key SK0 ← DPRF.Keygen(pp) and computes SK =
(SK1, . . . ,SKN ) by running the sharing algorithm DPRF.Share(SK0).

To finalize step 2 of the selective unforgeability game, B sends m? := SK j ∈
{0,1}K to the challenger as the signing query. The challenger runs (vk j , sk j ) ←
HS.KeyGen(1λ,1d ,1K ) and provides B with the public verification key vk j together
withΦ j ←HS.Sign(sk j ,m?). Moreover, B runs (ski , vki ) ←HS.KeyGen(1λ,1d ,1K )
for all i ∈ [N ] \ { j } and computes the rest of the signatures Φi ←HE.Sign(ski ,SKi ),
for all i ∈ [N ] \ { j }. Now, B is able to compute both the public parameters of the
Rob.DPRF as (pp, {vk j } j∈[N ] and the vector SK := ((SK1,Φ1), . . . , (SKN ,ΦN )), which
corresponds to all the secret shares of the Rob.DPRF scheme. Then it gives both
to the attacker A .

Since A can break robustness, by hypothesis, it has non-negligible probability
of outputting (Ỹ j ,Φ̃?j , X̃ ) such that Rob.Verify(pp, j , (Ỹ j ,Φ̃?j ), X̃ ) = 1 and Ỹ j is not

obtained by running Rob.PEval((SK j ,φ j ), X̃ ). By construction, this translates for
the homomorphic signature scheme into:

HS.Verify(vk j ,C X̃ , Ỹ j ,Φ̃?j ) = 1 ∧ Ỹ j 6=DPRF.PEval(SK j , X̃ ),

where the second condition is equivalent to Ỹ j 6=C X̃ (SK j ).
At step 4 of the selective unforgeability game, algorithm B outputs a triple

(C X̃ , Ỹ j ,Φ̃?j ), which constitutes a forgery for the signature scheme since the verifi-

cation algorithm accepts even though C X̃ (m?) 6= Ỹ j . The probability that B out-
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puts a forgery is the same as the probability of A in breaking the robustness of the
Rob.DPRF.

We still have to prove that above construction preserves the security of the un-
derlying DPRF under adaptive corruptions. For this purpose, we need to assume
that the servers can reliably erase the random coins of the Hide procedure after
the computation of Φ̃ j ,X at step 3 of PEval.

Theorem 3.9. The above construction is an adaptively secure robust DPRF assum-
ing that: (i) The underlying DPRF is adaptively secure; (ii) The homomorphic signa-
ture scheme is context-hiding; (iii) Each server can reliably erase its random coins.

Proof. To prove the result, we first consider two indistinguishable games where
Game0 is the real adaptive security experiment and Game1 makes it easier to give
a reduction from the security of the underlying DPRF.

Game0: This is the real adaptive security experiment of Definition 3.2.

Game1: This game is identical to Game0 with a modification in the partial eval-
uation oracle at each partial evaluation query ( j , X ). At step 3 of PEval, in-
stead of computing Φ̃ j ,X ←HS.Hide(vk j ,Y j ,Φ j ,X ), the challenger computes
Φ̃ j ,X ← Sim(sk j ,CX ,Y j ). As long as the servers can erase their local ran-
domness after each execution of PEval,1 we can meaningfully rely on the
context-hiding security ofHS to show thatGame1 andGame0 are statistically
indistinguishable. Note that the derived signatureΦ j ,X obtained at step 2 of
PEval is now independent of the adversary’s view.

Now, assuming that there exists a PPT adversary A with noticeable advantage
in Game1, we build an efficient adversary B with the same advantage in the adap-
tive security game for the underlying (non-robust) DPRF.

Algorithm B runs A on input of the public parameters pp that it receives from
its own challenger. Before answering A ’s queries, B generates N homomorphic
signature key pairs (ski , vki ) ← HS.KeyGen(1λ,1d ,1K ), for i ∈ [N ], where d is the
maximum depth of the Boolean circuits CX (·) = PEval(·, X ), for any input X ∈ X .
(The input space and the key space are known from the public parameters pp).
The verification keys vki , are also given to A .

At each corruption query j ∈ [N ] made by A , the reduction B relays the query
to its DPRF challenger. Upon receiving SK j from the latter, B computes Φ j :=
HS.Sign(sk j ,SK j ) and hands (SK j ,Φ j ) to A . At each partial evaluation query (i , X ) ∈
[N ]×{0,1}` made by A , B sends the same query to its challenger and, upon receiv-
ing the response Yi , it computes Φ̃?i = Sim(sk,CX ,Yi ) and returns the pair (Yi ,Φ̃?i )
to A .

1Without this assumption, an adaptive adversary could distinguish the two games by corrupting
a server after having obtained a partial evaluation from it.
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For the challenge query X? made by A , B sends the same query to its own
DPRF challenger and forwards the latter’s challenge Y ? to A . At the end of the
game, B outputs whatever A outputs. It is easy to see that, by construction, B

succeeds whenever A does.
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Chapter

4
Adaptive Simulation Security of
Inner Product Functional
Encryption

In this chapter we present the work from [ALMŢ20] which shows that the DDH-
based scheme of [ALS16] and some variants of the DCR-based and the LWE-based
Inner Product Functional Encryption schemes of [ALS16] can actually be proved
secure in the adaptive-simulation security model, for an unbounded number of
key queries.

Since the impossibility result of [BSW11a] can be adapted to the inner-product
functionality, it excludes the possibility of achieving AD-SIM security when the ad-
versary is allowed to issue multiple challenge messages. However, none of the im-
possibility results from [BSW11a, O’N10, AGVW13] applies to our case. Therefore,
we prove that the above-mentioned DDH, DCR and LWE-based IPFE schemes
achieve the strongest security notion that we can hope for among the IND and
SIM based definitions, namely it provides AD-SIM security for single challenge ci-
phertexts and unbounded number of key queries. Simulation-based security has
been proven before for the DDH-based scheme of [ALS16], but only in the selec-
tive case [AGRW17] or the semi-adaptive case [Wee17].

Our main insight is that the semi-adaptive simulator of [Wee17], that worked
only for the DDH-based scheme of [ALS16], can be modified to answer any pre-
challenge key-queries as well, thus, proving AD-SIM security for the same scheme.
We show that the same ideas can be used to prove AD-SIM security for the DCR
and LWE-based schemes of [ALS16], with some modifications. It is worth men-
tioning that these modified schemes have asymptotically larger keys that the orig-
inal ALS schemes and that their key sizes increase quadratically with the plaintext
dimension `. This is not the case for the DDH-based scheme, for which we can
make the proof without any modifications to the original ALS scheme.
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Organization

We begin this chapter with Section 4.1, where we give the syntax and the security
definitions for IPFE. In Section 4.2 we recall the DDH-based scheme of [ALS16]
and prove its AD-SIM security. Next, we show in Section 4.3 that a variant of the
DCR-based scheme from the same work, satisfies AD-SIM security. Finally, Sec-
tion 4.4 deals with similar results for a modified LWE-based scheme of [ALS16].

4.1 Definitions

In this section we recall the syntax of Functional Encryption [BSW11a] as well as
both the IND and SIM security security definitions.

4.1.1 Functional Encryption (FE)

Definition 4.1. A Functional Encryption (FE) scheme over a class of functions F =
{ f : X →Z } consists of the PPT algorithms (Setup,Keygen,Encrypt,Decrypt):

Setup(1λ,F ) : Outputs a public key mpk and a master secret key msk.

Keygen(msk, f ) : Given the master secret key and a functionality f ∈ F , the algo-
rithm outpus a secret key sk f .

Encrypt(mpk, x) : On input the public key and a message x ∈ X from the message
space, the algorithm outputs a ciphertext c .

Decrypt(mpk,sk f ,c) : Given a ciphertext and a secret key corresponding to some
functionality f ∈F , the algorithm outputs z ∈Z .

Correctness. For (mpk,msk) ← Setup(1λ,F ), for any x ∈ X , any f ∈ F , c ←
Encrypt(mpk, x) and sk f ←Keygen(msk, f ), we require that Decrypt(mpk,sk f ,c) =
f (x), with overwhelming probability.

4.1.2 Security

Next, we define security of functional encryption. Security comes in two flavors –
indistinguishability-based and simulation-based – we define each in turn.

We first define the weaker indistinguishability-based security [BSW11a]. In
this notion, one asks that no efficient adversary be able to differentiate encryp-
tions of x0 and x1 without obtaining secret keys sk f such that f (x0) 6= f (x1).

Definition 4.2 (AD-IND). A functional encryption scheme is given by four PPT al-
gorithms FE = (Setup, Keygen,Encrypt,Decrypt) provides semantic security un-
der chosen-plaintext attacks (or IND-CPA security) if no PPT adversary has non-
negligible advantage in the following game:
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1. The challenger runs (mpk,msk) ← Setup(1λ) and the master public key mpk
is given to the adversary A .

2. The adversary adaptively makes secret key queries to the challenger. At each
query, adversary A chooses f ∈F and obtains the key sk f ← Keygen(msk, f ).

3. Adversary A chooses distinct messages x0, x1 subject to the restriction that
f (x0) = f (x1), for any f queried in Stage 2. Then, the challenger flips a fair
coin b ←- {0,1} and computes c?← Encrypt(mpk, xb) which is sent as a chal-
lenge to A .

4. Adversary A makes further secret key queries for arbitrary functions f ∈ F .
However, it is required that f (x0) = f (x1) at each query.

5. Adversary A eventually outputs a bit b′ ∈ {0,1} and wins if b′ = b.

The adversary’s advantage is defined to be AdvA (λ) := |Pr[b′ = b]−1/2|, where the
probability is taken over all coin tosses.

Definition 4.2 captures adaptive security in that the adversary is allowed to
choose the messages x0, x1 at Stage 3.

As pointed out in [BSW11a], indistinguishability-based security is not fully sat-
isfactory in general as it may fail to rule out constructions that are intuitively inse-
cure. They argue that, whenever it is possible at all, one should prefer a stronger
notion of simulation-based security. We recall this notion hereunder.

Definition 4.3 (AD-SIM). For a FE scheme defined as above, a PPT adversary A =
(A1, A2) and a PPT simulator Sim = (Setup?,Keygen?0 ,Encrypt?,Keygen?1 ), we de-
fine the following experiments:

ExpRealFE,A (1λ)

1. (mpk,msk) ← Setup(1λ,F )

2. (x?,st) ← AKeygen(msk,·)
1 (mpk)

3. c ←Encrypt(mpk, x?)

4. α← AKeyGen(msk,·)
2 (mpk,c ,st)

5. Output α

ExpIdealFE,A (1λ)

1. (mpk?,msk?) ← Setup?(1λ,F )

2. (x?,st) ← A
Keygen?0 (msk?,·)
1 (mpk?)

Let V = {
( fi , fi (x?),sk fi )

}k
i=1

3. (c?,st′) ← Encrypt?(msk?,V ,1|x?|)

4. α← A
KeyGen?1 (msk?,st′,·)
2 (mpk?,c?,st)

5. Output α

86



4.2. Adaptive Simulation Security from DDH

In the Ideal experiment above, the { fi ∈ F }k
i=1 are the functionalities for which the

adversary requests their corresponding keys, {sk fi }k
i=1. An FE scheme achieves adap-

tive simulation-based (AD-SIM) security if there exists a PPT simulator Sim such
that, for any PPT adversary A , the distributions ExpRealFE,A (1λ) and ExpIdealFE,A (1λ) are
computationally indistinguishable.

4.2 Adaptive Simulation Security from DDH

In this section, we first recall the IPFE scheme of [ALS16]. Abdalla et al. [AGRW17]
previously showed that this construction provides simulation-based security for
selective adversaries. In [Wee17], Wee gave a proof of simulation-based secu-
rity for semi-adaptive adversaries. In the semi-adaptive model adversaries are re-
stricted to make all of the key queries after the challenge. We provide a proof that
handles adaptive adversaries without any modification in the original scheme.

4.2.1 Overview

In the proof of [Wee17] the simulator creates the dummy message by encrypt-
ing the zero vector. To answer a post-challenge key query (the only type of key
query allowed in the semi-adaptive model), the simulator has to embed the value
zy = fy (x?) = 〈x?, y〉, where x? is the challenge message, in the simulated key
(s′y , t ′y ) in order to correctly explain decryption. This is done through a linear shift
of the keys that are used in the real scheme. Namely if the master secret key, cor-
responding to the master public key g s ·ht , is given by (s, t ) ∈ Z`q ×Z`q , then the
functional decryption key used in the real scheme is composed of (〈s, y〉,〈t , y〉).
The simulated functional secret keys are computed as:

s′y := 〈s, y〉+α · 〈x?, y〉 and t ′y := 〈t , y〉+β · 〈x?, y〉,

where α,β ∈Zq are carefully chosen.
In the view of this adversary this is the same as replacing the master secret key

with s ′ := s+α·x? and t ′ := t+β·x?, while keeping invariant the master public key
and also keeping the responses to key queries consistent. The proof from [Wee17]
shows that the under the DDH assumption the real and the ideal experiment are
indistinguishable in the semi-adaptive model. This means that the adversary can
adaptively chose the challenge message x?, after seeing the public parameters,
but before making any of the key queries.

To prove security in the stronger AD-SIM model, where the adversary is al-
lowed to choose the challenge after making key queries, we follow the same ap-
proach as [Wee17], but in the simulation we need to encrypt a dummy message,
without having access to the challenge x?, that is consistent not only with post-
challenge keys, but also with the pre-challenge keys. We do this by answering pre-
challenge key queries as in the real scheme and we have the simulator answer the
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challenge by encrypting a dummy message x̄ ∈Z`q (instead of the zero vector as in
[Wee17]) that is compatible with the challenge message x? when decrypting with
any pre-challenge key. Namely, we compute x̄ such that 〈x̄ , y〉 = 〈x?, y〉 mod q for
all the pre-challenge key queries y ∈ Z`q . This is equivalent to solving the system
Ypre · x̄ = zpre, which can easily be done by doing linear algebra over Zq .

Once the simulator is committed to the challenge ciphertext, it has to “pro-
gram” the post-challenge keys such that they decrypt the dummy ciphertext to
the real function evaluations zy = fy (x?) = 〈x?, y〉. Given a post-challenge query
y ∈Z`q and the corresponding function evaluation zy = 〈x?, y〉, the value zy is em-
bedded in the simulated functional key in such a way that the difference zy −〈x̄ , y〉
between zy and the function evaluation fy (x̄) serves as a shift of the real actual
key: namely, the simulator returns sky = (s′y , t ′y ), where

s ′y := 〈s, y〉+α · (zy −〈x̄ , y〉) mod q (4.1)

t ′y := 〈t , y〉+β · (zy −〈x̄ , y〉) mod q.

By exploiting the linearity properties of the scheme, the shift terms α · (zy −〈x̄ , y〉)
and α · (zy − 〈x̄ , y〉) ensure that sky = (s′y , t ′y ) will decrypt the dummy ciphertext
to the oracle-supplied zy . As in [Wee17], we can prove that this shift of post-
challenge keys is equivalent to a shift of the master secret key from the adversary’s
view: namely, msk= (s, t ) is traded for msk′ = (s ′, t ′), where s ′ = s +α · (x?− x̃) and
t ′ = t +β · (x? − x̃). By applying complexity leveraging to a statistical argument
[Wee14, BBL17], we can prove that the two master secret keys of (s ′, t ′) and (s, t )
are identically distributed in the adversary’s view, even if x? is chosen adaptively
after it has seen the public parameters and pre-challenge queries.

4.2.2 The DDH-based Construction

Below we recall the description of the [ALS16] IPFE scheme that works for the class
of bounded inner-product functionalities:

F =
{

fy : ([−X , X ]∩Z)`→Z : y ∈ ([−Y ,Y ]∩Z)` and fy (x) = 〈x , y〉
}

.

It’s worth mentioning that the only reason we need bounded inner-products
for this scheme is to be able to solve the discrete logarithm when decrypting.

Setup(1λ,1`): Choose a cyclic group G of prime order q > 2λ and the generators
g ,h ←-U (G). Then, for each i ∈ {1, . . . ,`}, sample si , ti ←-U (Zq ) and compute
hi = g si ·hti . Define msk := {si , ti }`i=1 and

mpk :=
(
G, g ,h, {hi }`i=1

)
.

Keygen(msk, y): To generate a key for the vector y = (y1, . . . , y`) ∈ Z` such that
‖y‖∞ ≤ Y , compute (sy , ty ) = (

∑`
i=1 si · yi ,

∑`
i=1 ti · yi ) = (〈s, y〉,〈t , y〉) and re-

turn sky := (y , sy , ty ).
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Encrypt(mpk, x): To encrypt a vector x = (x1, . . . , x`) ∈ Z` that satisfies ‖x‖∞ ≤ X ,
sample r ←-Zq and compute

C = g r , D = hr , {Ei = g xi ·hr
i }`i=1.

Return Cx = (C ,D,E1, . . . ,E`).

Decrypt(mpk,sky ,Cx ): Given sky = (y , sy , ty ), compute

Ey = (
∏̀
i=1

E yi

i )/(C sy ·D ty ).

Then, compute and output logg (Ey ).

Correctness. Note that
∏`

i=1 E yi

i = g 〈x ,y〉 · g r 〈s,y〉 ·hr 〈t ,y〉 = g 〈x ,y〉 ·C sy ·D ty , which
implies Ey = g 〈x ,y〉. The decryption algorithm can thus recover 〈x , y〉 mod q by
solving a discrete logarithm instance in a small interval, by restricting messages
and keys so as to have |〈x , y〉| ≤ L, for some polynomially bounded L = ` · X Y ∈
poly(λ). In this case, the inner product 〈x , y〉 can be recovered in Õ(L1/2) time
using [Pol00].

4.2.3 The Security Proof

Theorem 4.1. The scheme provides simulation-based security against adaptive ad-
versaries under the DDH assumption.

Proof. To prove the result, we first describe a PPT simulator before showing that,
under the DDH assumption, the adversary cannot distinguish the ideal experi-
ment from the real experiment.

In both experiments, we know that the adversary A can obtain private keys
for up to `− 1 linearly independent vectors. We assume w.l.o.g. that A makes
private keys queries for exactly `−1 = `0 +`1 independent vectors, which we de-
note by y 1, . . . , y`−1 ∈ Z`q . Among these vectors, we denote by y 1, . . . , y`0 the vec-
tors queried by A before the challenge phase while y`0+1, . . . , y`0+`1 stand for the
post-challenge private key queries. In the challenge phase, we denote by x? =
(x?1 , . . . , x?

`
) ∈Z`q the message chosen by A . The simulator, given by the four algo-

rithms (Setup?,Keygen?0 ,Encrypt?,Keygen?1 ), proceeds in the following way.

Setup?(1λ,1`): This algorithm is identical to Setup except that h is computed as
gω for some uniformly random ω←-U (Zq ). Also ω = logg (h) is included in
the master secret key. It outputs

mpk? :=
(
G, g ,h, {hi }`i=1

)
.

and msk? = (ω, s, t ).
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Keygen?0 (msk?, y): This algorithm is used to answer private key queries before
the challenge phase and proceeds exactly like Keygen in the real scheme.

Encrypt?(mpk?,msk?,V , {1|x?i |}`i=1): This algorithm takes as inputmpk?,msk?, the

lengths {1|x
?
i |}`i=1 of all coordinates of x? and a set

V =
{

{y j , z j = 〈x?, y j 〉,sky j }`0

j=1

}
containing all pre-challenge independent queries {y j }`0

j=1, the returned keys

and the corresponding linear function evaluations {z j = 〈x?, y j 〉}`0

j=1 for the

challenge message x?. The challenge ciphertext (C?,D?,E?
1 , . . . ,E?

`
) is sim-

ulated as follows.

1. Letting zpre = (z1, . . . , z`0 )> ∈Z`0
q , compute an arbitrary x̄ ∈Z`q such that

Ypre · x̄ = zpre mod q , where

Ypre =


y>

1
...

y>
`0

 ∈Z`0×`
q .

Note that x̄ = (x̄1, . . . , x̄`)> does not have to be small and can be ob-
tained via Gaussian elimination.

2. Compute the ciphertext by sampling r,r ′ ←-U (Zq ) uniformly and com-

puting (C?,D?) = (g r ,hr ′
) as well as

E?
i = g x̄i ·C?si ·D?ti ∀i ∈ [`].

Output the simulated ciphertext (C?,D?,E?
1 , . . . ,E?

`
) together with the state

information st′ = (x̄ ,r,r ′).

Keygen?1 (msk?, y , z = 〈x?, y〉,st′): On input of msk? = (ω, s, t ), a post-challenge
query y ∈Z`q , the evaluation z = 〈x?, y〉 of the linear function fy (x?) on the

message x? and the state information st′ = (x̄ ,r,r ′) ∈Z`q ×Z2
q , this algorithm

computes

t ′y = 〈t , y〉+ 1

ω · (r ′− r )
· (〈x̄ , y〉− z) mod q. (4.2)

s′y = 〈s, y〉− 1

(r ′− r )
· (〈x̄ , y〉− z) mod q.

and returns sky = (s′y , t ′y ).

Observe that the ciphertext (C?,D?,E?
1 , . . . ,E?

`
) produced by Encrypt? is dis-

tributed in such a way that (C?,D?) = (g r , gω·(r+(r ′−r ))) and

(E?
1 , . . . ,E?

` ) = g x̄+ω·(r ′−r )·t · (h1, . . . ,h`)r ,
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so that, for any y = (y1, . . . , y`)> ∈Z`q , we have

∏̀
i=1

E?
i

yi = g 〈x̄ ,y〉+ω·(r ′−r )·〈t ,y〉 · (g 〈s,y〉 ·h〈t ,y〉)r ,

which implies ∏̀
i=1

E?
i

yi /(C?s′y ·D?t ′y ) = g z .

This shows that decrypting the simulated ciphertext (C?,D?,E?
1 , . . . ,E?

`
) using the

simulated key sky = (s′y , t ′y ) yields z = 〈x?, y〉, as required.

We now proceed to show that the simulation is computationally indistinguish-
able from the real experiment under the DDH assumption.

The proof uses a sequence of games that begins with a game in which the chal-
lenger interacts with the adversary as in real experiment and ends with a game
where the challenger interacts with the adversary as in the ideal experiment. For

Gamei and Game j we denote by Advi j
A

(λ) the advantage of a PPT algorithm A in
distinguishing between Gamei and Game j . Formally the challenger C flips a coin
b ←- {0,1}. If b = 0 it interacts with the adversary as in Gamei , else it interacts as in
Game j . At the end of the interaction A will have to make its guess b′ ∈ {0,1}. We

define Adv
i j
A

(λ) := ∣∣Pr[b′ = b]− 1
2

∣∣.
Game0: In this game the challenger interacts with the adversary as in the real ex-

periment.

Game1: We modify the generation of the ciphertext C?
x = (C?,D?,E?

1 , . . . ,E?
`

), such
that the experiment first computes

C? = g r and D? = hr , (4.3)

for a randomly sampled r ←-Zq . Then, it uses msk := {si , ti }`i=1 to compute

E?
i = g x?i ·C?si ·D?ti . (4.4)

It can be observed that C?
x = (C?,D?,E?

1 , . . . ,E?
`

) has the same distribution

as in Game 0. We hence have Adv01
A (λ) = 0.

Game2: We modify again the generation of C?
x = (C?,D?,E?

1 , . . . ,E?
`

). Namely, in-
stead of computing the pair (C?,D?) as in (4.3), the experiment samples
r,r ′ ←-U (Zq ) and sets

C? = g r and D? = hr ′
.

The ciphertext components (E?
1 , . . . ,E?

`
) are still computed as per (4.4). Un-

der the DDH assumption, this modification should not significantly affect
A ’s view and we have Adv12

A (λ) ≤AdvDDH
B (λ).

91



4. ADAPTIVE SIMULATION SECURITY OF INNER PRODUCT FUNCTIONAL

ENCRYPTION

Game3: In this game, the experiment runs exactly as in the ideal case. Lemma 4.2
shows that Adv23

A (λ) = 0.

Combining the above, we find

|Pr[1 ← ExpReal
A (1λ)]−Pr[1 ← ExpIdeal

A (1λ)]| ≤ AdvDDH
B (1λ),

as claimed.

Lemma 4.2. The advantage of an adversary A in distinguishing between Game2

and Game3 is 0.

Proof. To prove the result, we define the following two variants of these games.

Game′
2: This game is identical to Game2 except that, at the outset of the game,
the challenger chooses a random vector∆x ←-U (Z`q ). It interacts with A as
in Game2 until the challenge phase, at which point it computes an arbitrary
vector x̄ ∈ Z`q satisfying Ypre · x̄ = Ypre · x? mod q , where Ypre ∈ Z`0×`

q is the
matrix whose rows are the first `0 independent key queries. At this point,
the challenger checks whether∆x = x̄−x? mod q (we call Guess this event).
If not, it aborts the interaction with A and replaces A ’s output with 0. Oth-
erwise, it proceeds like Game2 and outputs whatever A outputs. Since∆x is
drawn uniformly and independently of A ’s view, we have Pr[Guess] = 1/q`.

Game′
3: This game is like Game3, except that, at the very beginning of the game,
the challenger chooses a random∆x ←-U (Z`q ). It proceeds like Game3 until

the challenge phase, at which point it samples an arbitrary x̄ ∈Z`q satisfying
Ypre · x̄ = zpre mod q . Then, it checks whether ∆x = x̄ − x? mod q (we call
Guess this event). If not, it aborts and replaces A ’s output with 0. Otherwise,
it proceeds identically to Game3 and outputs the same result as A .

Now, we claim that Game′
2 and Game′3 are identical. To see this, we first note that,

conditionally on ¬Guess, both games output 0. If Guess occurs, we observe that
Game′3 is identical to Game′2 when the master secret key is replaced by (s ′, t ′) ∈
Z`q ×Z`q , where

t ′i = ti + 1

ω · (r ′− r )
·∆x

= ti + 1

ω · (r ′− r )
· (x̄i −x?i ) mod q ∀i ∈ [`]

s′i = si − 1

r ′− r
·∆x

= si − 1

r ′− r
· (x̄i −x?i ) mod q.
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Indeed, (s ′, t ′) has the same distribution as (s, t ) conditionally on mpk. By con-
struction, we also have 〈s ′, y〉 = 〈s, y〉 and 〈t ′, y〉 = 〈t , y〉 in all pre-challenge queries
y ∈Z`q . Moreover, we have

g x̄+ω·(r ′−r )·t · (h1, . . . ,h`)r = g x?+ω·(r ′−r )·t ′ · (h1, . . . ,h`)r .

Finally, answering post-challenge queries y ∈Z`q using (s ′, t ′) gives exactly the dis-

tribution (4.2). This implies the games are indeed identical, therefore Adv2′3′
A (λ) =

0.
To conclude, notice that any adversary A that can distinguish between Game2

and Game3 can be used to distinguish between Game′
2 and Game′

3, with a loss
factor of q` in the advantage:

Adv2′3′
A (λ) = 1

q`
·Adv23

A (λ)

This holds since the probability that A outputs the correct bit b′ when distinguish-
ing between Game′

2 and Game′
3 is equal to:

Pr[b′ = b] = Pr[b′ = b|Guess] ·Pr[Guess]+Pr[b′ = b|Guess] ·Pr[Guess]

which is equivalent to:

Pr[b′ = b]− 1

2
=

(
Pr[b′ = b|Guess]− 1

2

)
·Pr[Guess]

By considering the equality in absolute value, we get the desired relation between
the advantages.

4.3 Adaptive Simulation Security for Inner Products overZ
from DCR

Another result of [ALMŢ20], for which we will not give details in this work, con-
structs a generic compiler that transforms any AD-IND secure IPFE, that satisfies
some mild conditions, into an AD-SIM secure IPFE, when the IPFE evaluates inner
products mod an integer. Unfortunately, the resulting IPFE scheme has a stateful
key generation algorithm. This means that a trusted authority has to keep track
of all the keys that are issued. We can apply this general result to the DCR-based
scheme from [ALS16], that evaluates inner products over ZN to obtain a stateful
scheme.

However, in this section we show that a variant of the Paillier-based scheme of
Agrawal et al. [ALS16], that evaluates inner products over the integers, can also be
proved simulation-secure against adaptive adversaries. In this construction, the
key generation algorithm is stateless.
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4.3.1 Overview

To proof strategy for this result is the same as the one discussed in section 4.2.1.
Our variant of the [ALS16] scheme differs from the original in that the master se-
cret keys are no longer sampled from a Gaussian distribution but are rather sam-
pled uniformly in a large interval.

The reason why we need larger master secret keys is that, in the challenge
phase, our simulator has to sample a dummy message x̄ ∈ Z` that should sat-
isfy an equation of the form Ypre · x̄ = zpre ∈ Z`0 , for some given Ypre ∈ Z`0×` and
zpre ∈ Z`0 , in order to be consistent with responses zpre = (z1, . . . , z`0 ) to all pre-
challenge queries. Because we don’t know how to compute small integer solutions
to the system Ypre · x̄ = zpre ∈ Z`0 , our simulator can only sample a dummy mes-
sage x̄ ∈Z` with large entries. At each post-challenge query y ∈Z`, the simulator
has to “program” the returned functional secret key in such a way that it decrypts
the simulated ciphertext to the value z = 〈x?, y〉 dictated by the oracle. For this
purpose, the “programmed” key s′y must consist of the sum (overZ) of the real key
sy = 〈s, y〉 and a multiple of the difference 〈x̄ , y〉− z between the function evalua-
tion fy (x̄) = 〈x̄ , y〉 and the oracle value z = 〈x?, y〉. Since 〈x̄ , y〉−z may be large over
Z, we need to sample the entries of s ∈Z` from a sufficiently wide interval so as to
“drown” the statistical discrepancy between the distributions of the master secret
s ∈ Z` and its shifted variant s ′ = s +γ · (x̄ − x?) ∈ Z` for which s′y = 〈s ′, y〉. Since

RSA moduli should asymptotically contain λ3/polylog(λ) bits to resist factoriza-
tion attacks, we need to sample each entry of s ∈Z` from an interval of cardinality
O(2`

2·log`+λ3/polylog(λ)). Despite somewhat large secret keys, the scheme remains
computationally efficient.

4.3.2 The DCR-based Construction

Below we give the description of the IPFE scheme that works for the class of func-
tions of bounded inner-products:

F =
{

fy : ([−X , X ]∩Z)`→Z : y ∈ ([−Y ,Y ]∩Z)` and fy (x) = 〈x , y〉
}

.

Setup(1λ,1`, X ,Y ) : Choose safe primes p = 2p ′ + 1 and q = 2q ′ + 1 with p ′, q ′

also primes, such that `X Y < N /2, where N = pq . Sample g ′ ← U (Z∗
N 2 )

and set g := g ′2N mod N 2. Next for each i ∈ [`] sample si ← U ([−S,S] ∩
Z), where S = 2λ+`−1 · X̄ `+1 · `N 2 and X̄ := X + X Y · `2 · (Y

p
`)` and then

compute hi = g si mod N 2. Define msk := s = (s1, . . . , s`)> ∈ Z` and mpk :=(
N , g , {hi }`i=1, X ,Y

)
Keygen(msk, y) : To generate a secret key from the vector y ∈ [−Y ,Y ]` usingmsk=

s = (s1, . . . , s`)>, compute sy := 〈s, y〉 =∑`
i=1 si ·yi ∈Z and return sky := (y , sy ).
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Encrypt(mpk, x) : Given the public key mpk, to encrypt a message x ∈ [−X , X ]`,
sample r ←U ({0,1, . . . , N /4}) and compute

c0 = g r mod N 2, ci = (1+xi N ) ·hr
i mod N 2 ∀i ∈ [`]

and output c = (c0, {ci }`i=1) ∈
(
Z∗

N 2

)`+1
.

Decrypt(mpk,sky ,c) : On input of a functional decryption key sky = (y , sy ) and a
ciphertext c = (c0,c1, . . . ,c`), compute

cy = c
−sy

0 · ∏̀
i=1

c yi

i mod N 2

Then output log1+N (cy ) = cy−1 mod N 2

N .

Correctness: Suppose that we want to decrypt c = {ci }`i=0 using sky = (y ,〈s, y〉).
Observe that we have the following equalities modulo N 2:

∏̀
i=1

c yi

i = ∏̀
i=1

(1+xi N )yi · g r ·si yi = (1+N )〈x ,y〉 · g r ·〈s,y〉 = (1+N )〈x ,y〉 · c〈s,y〉
0 ,

so that cy = (1+ N )〈x ,y〉 mod N 2. Recall that (1+ N )〈x ,y〉 = 1+〈x , y〉 · N mod N 2,
so that computing discrete logarithms in the subgroup generated by 1+N is easy.
This enables the computation of 〈x , y〉 mod N . By the choice of parameters we
have |〈x , y〉| ≤ ` · ‖x‖∞‖y‖∞ ≤ ` · X ·Y < N /2 , so we actually recover 〈x , y〉 com-
puted over Z.

4.3.3 The Security Proof

Theorem 4.3. Under the DCR assumption, the above construction achieves adap-
tive simulation-based security.

Proof. To prove the theorem we first describe the PPT simulator and show that
under theDCR assumption the real experiment is indistinguishable from the ideal
experiment.

In both experiments, we know that the adversary A can obtain private keys for
up to `−1 linearly independent vectors over Z, a limit that is intrinsic to the func-
tionality. We assume w.l.o.g. that A makes private keys queries for exactly `−1 =
`0 +`1 independent vectors, which we denote by y 1, . . . , y`−1 ∈ Z`q . Among these
vectors, we denote by y 1, . . . , y`0 the vectors queried by A before the challenge
phase while y`0+1, . . . , y`0+`1 stand for the post-challenge private key queries. In
the challenge phase, we denote by x? = (x?1 , . . . , x?

`
) ∈ Z`q the message chosen by

A . The simulator, given by (Setup?,Keygen?0 ,Encrypt?,Keygen?1 ), proceeds as fol-
lows.
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Setup?(1λ,1`, X ,Y ) : This algorithm chooses safe primes p = 2p ′+1 and q = 2q ′+
1 such that `X Y < N /2, and sets N = pq . It samples g ′ ←U (Z∗

N 2 ) and sets

g := g ′2N mod N 2. Next, for each i ∈ [`], it samples si ← U ([−S,S] ∩Z),
where S = 2λ+`−1 · X̄ `+1 ·`N 2 and X̄ := X + X Y ·`2 · (Y

p
`)`, and computes

hi = g si mod N 2. It defines the master secret key msk? = (
s, p, q

)
, where

s = (s1, . . . , s`)>, and the master public key mpk? = (
N , g , {hi }`i=1, X ,Y

)
Keygen?0 (msk?, y) : This algorithm is used to generate all the pre-challenge func-

tional decryption queries. To generate a secret key for y ∈ [−Y ,Y ]`, it com-
putes and outputs sky := 〈s, y〉 =∑`

i=1 si · yi ∈Z.

Encrypt?(mpk?,msk?, {(y 1, z1), (y 2, z2), . . . , (y`0 , z`0 )}) : Given mpk?, msk? and all
the pre-challenge pairs (y j , z j ) ∈ [−Y ,Y ]`×Z, where z j = 〈x?, y j 〉 ∈Z and x?

is the challenge message, it first computes a ’small’ dummy message x̄ ∈Z`
such that 〈x̄ , y j 〉 = z j for all j ∈ [`0], as follows.

Letting zpre = (z1, . . . , z`0 )> ∈Z`0 , it computes x̄ ∈Z` as in Lemma 2.15, such
that ‖x̄‖∞ ≤ ‖zpre‖∞ ·` · (Y

√
`0)`0 and Ypre · x̄ = zpre ∈Z`0 , where

Ypre =


y>

1
...

y>
`0

 ∈Z`0×`,

Next, it samples a ← U (Z∗
N ) and b ← U (ZN ′), where N ′ = p ′q ′, and com-

putes

c?0 = (1+aN ) · g b mod N 2, c?i = (1+ x̄i N ) · (c?0 )si mod N 2 ∀i ∈ [`].

It outputs the simulated ciphertext c? = (
c?0 , {c?i }`i=1

) ∈
(
Z∗

N 2

)`+1
together

with the state information st := (
x̄ , a, N ′)

Keygen?1 (msk?, (y , z = 〈y , x?〉),st) : Post-challenge key queries are handled as fol-
lows. Upon receiving a pair (y , z = 〈x?, y〉), it first computes u, v ∈ Z such
that uN+v N ′ = 1 and γ := (a−1 mod N )·v N ′ mod N N ′ then computes and
outputs

s′y := 〈s, y〉+γ · (〈x̄ , y〉− z) ∈Z.

In order to prove that the real experiment is computationally indistinguish-

able from the ideal one, we use a sequence of games. We denote by Adv
i j
A

(λ)
the advantage of an adversary A in distinguishing between Gamei and Game j .
More precisely, a challenger C flips a coin b ← {0,1}. If b = 0 the challenger in-
teracts with the adversary A as in Gamei while, if b = 1, it interacts as in Game j .
At the end of the interaction, A outputs b′ ∈ {0,1}. The advantage is defined as

Adv
i j
A

(λ) := ∣∣Pr[b′ = b]− 1
2

∣∣.
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Game0 : This is the real experiment in which the challenger generates the param-
eters and interacts with the adversary as in the real experiment.

Game1 : This game is exactly as the previous one except that the challenge cipher-
text is computed as follows: r ←U ({0,1, . . . , N /4}) is sampled and

c?0 = g r mod N 2, c?i = (1+x?i N ) · (c?0 )si mod N 2, for i ∈ [`]

This is possible since the challenger knows the secret key msk = (
{si }`i=1

)
.

Notice that Game0 is identical to Game1. So, Adv01
A (λ) = 0.

Game2 : In this experiment, the computation of c?0 is modified. In the challenge
phase, the challenger samples r ←U (ZN ′), where N ′ = p ′q ′, and computes
c?0 := g r mod N 2. By Lemma 2.12, the statistical distance between distribu-
tions U ({0,1,2, . . . , N /4}) mod N ′ and U (ZN ′) is < 1

p + 1
q , which is negligible.

Hence, Game1 and Game2 are statistically indistinguishable. More precisely,
we have Adv12

A (λ) < 1/p +1/q .

Game3 : This experiment is like the previous one, except that c?0 is generated by
sampling t ←-U (Z∗

N 2 ) and computing c?0 := t 2 mod N 2. Under the DCR as-
sumption, Game2 and Game3 are computationally indistinguishable. In-
deed, in Game2, as long as g has order N ′, the distribution {g r | r ←-U (ZN ′)}
is the uniform distribution in the subgroup of 2N -th residues. The DCR
assumption implies that the latter distribution is computationally indistin-
guishable from the distribution {t 2 mod N 2 | t ←-U (Z∗

N 2 )}. Since a random
2N -th residue g generates the entire subgroup of 2N -th residues with prob-

ability ϕ(N ′)
N ′ = 1− 1

p ′ − 1
q ′ + 1

N ′ , we obtain

(
1− 1

p ′ −
1

q ′ +
1

N ′

)
·Adv23

A (λ) ≤AdvDCR
B (λ).

Game4 : In this game, we sample a ←U (Z∗
N ) and b ←U (ZN ′) and compute c?0 :=

(1+aN ) ·g b mod N 2. Observe that {t 2 mod N 2 | t ←-U (Z∗
N 2 )} is the same as

the distribution {(1+αN ) · gβ mod N 2 | α←-U (ZN ), β←-U (ZN ′)}. There-
fore the statistical distance between the view of the adversary in Game3 and
Game4 is bounded by∆(a,α) < 1

p + 1
q . So, these games are statistically indis-

tinguishable and Adv34
A (λ) < 1/p +1/q .

Game5 : This is the ideal experiment where the adversary interacts with the sim-
ulator. Lemma 4.4 shows that Game5 and Game4 are statistically indistin-
guishable, which yields the stated result.
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Putting the above altogether, we obtain that a PPT adversary A that can dis-
tinguish between the real and the ideal experiment implies an efficient DCR dis-
tinguisher B such that

AdvReal-IdealA (1λ) = |Pr[1 ← ExpReal
A (1λ)]−Pr[1 ← ExpIdeal

A (1λ)]|

≤ N ′

ϕ(N ′)
·AdvDCR

B (1λ)+ 2

p
+ 2

q
+2−λ.

Lemma 4.4. The advantage of any distinguisher between Game4 and Game5 is sta-
tistically negligible and Adv45

A (λ) ≤ 2−λ.

Proof. In order to prove the claim, we simultaneously define Game′
4 and Game′

5
as follows. For each k ∈ {4,5}, define Game′

k identically to Gamek except that,
at the outset of the game, the challenger samples ∆x ←-U ([−X̄ , X̄ ]`), where X̄ =
X + X Y ·`2 · (Y

p
`)`. Before generating the challenge ciphertext, the challenger

uses Lemma 2.15 to compute x̄ ∈Z` such that ‖x̄‖∞ ≤ `X Y ·`(Y
p
`)` and Ypre · x̄ =

Ypre · x?, where Ypre is the matrix obtained by stacking up the (linearly indepen-
dent) transposed vectors y> occurring in pre-challenge queries. If∆x = x̄−x? (we
call this event Guess), the challenger proceeds as in Gamek . Otherwise, the chal-
lenger aborts the game and replaces A ’s output b′ by a random bit. We claim that
any adversary A that can distinguish between Game4 and Game5 with advantage
Adv45

A (λ) can be used to distinguish between Game′
4 and Game′

5 with advantage

Adv4′5′
A (λ) = 1

(2X̄ )`
·Adv45

A (λ). (4.5)

Indeed, the probability that A outputs the correct bit b′ when distinguishing be-
tween Game′

4 and Game′
5 is equal to

Pr[b′ = b] = Pr[b′ = b|Guess] ·Pr[Guess]+Pr[b′ = b|Guess] ·Pr[Guess]

which is equivalent to

Pr[b′ = b]− 1

2
=

(
Pr[b′ = b|Guess]− 1

2

)
·Pr[Guess]

By considering the equality in absolute value, we obtain (4.7).
Next, we claim that Adv4′5′

A (λ) ≤ (2X̄ )−` · 2−λ, which implies that Game4 and
Game5 are indistinguishable. To see this, observe that, when Guess occurs, Game′

5
is identical to a modification of Game′

4 where the master secret key has been re-
placed by

s′i = si +γ ·∆x i ∈Z, ∀i ∈ [`]

where γ= (a−1 mod N ) · v N ′ mod N N ′ is determined by the Bézout coefficient v
for which uN + v N ′ = 1 (and thus v N ′ = 1 mod N ) and the element a ∈Z∗

N which
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used to compute c?0 = (1+aN ) ·g b mod N 2 in the challenge ciphertext. (Note that
a and v can be chosen by the challenger at the beginning of the game, so that
we can define a game where the challenger uses {s′i }i instead of {si }i ). With this
new master secret key s ′ = (s′1, . . . , s′

`
), notice that the public key remains invariant

hi = g si = g s′i mod N 2 for all i ∈ [`] and 〈s, y〉 = 〈s ′, y〉 for all pre-challenge queries
y ∈Z`. We thus obtain

Adv4′5′
A (λ) ≤∆(s ′, s) ≤ (2X̄ )−` ·2−λ,

where the last inequality follows from the fact that

∆(s ′, s) ≤ ∑̀
i=1

∆(s′i , si )
Lemma 2.13≤ ` · ‖γ ·∆x‖∞

2S
≤ N N ′ · X̄

2λ+` · X̄ `+1 ·N 2
≤ (2X̄ )−` ·2−λ.

4.4 Adaptive Simulation IPFE from LWE

As already mentioned in Section 4.3, another result of [ALMŢ20] gives an AD-SIM
IPFE compiler, for constructions that evaluate inner products mod an integer. This
can be applied to the [ALS16] LWE-based construction for inner products overZp ,
to obtain a stateful AD-SIM secure IPFE, that evaluates inner products mod p. We
will not give the details for the stateful construction in this work, but the results
can be found in the [ALMŢ20] paper.

However, in this section we recall a variant of the LWE-based IPFE scheme of
[ALS16], that evaluates inner products over the integers, for which we prove AD-
SIM security. The key generation algorithm for this scheme is stateless.

4.4.1 Overview

The security proof follows the same pattern as the DDH and DCR-based proofs
from the previous sections. The difference in this case is that, shifting the mas-
ter secret key is not as straightforward as before. The reason is that the decryption
process of the LWE-based scheme is different, in the following sense. When we de-
crypt the ciphertext corresponding to the message vector x ∈Z`, computed under
the public key A ∈Zn×m

q and U = A ·R ∈Zn×`
q ,

c0 = A> ·s+e0 ∈Zm
q

c1 = U> ·s+e1 +x · bq/K c ∈Z`q ,

using a functional decryption key ry = R · y ∈ Zm , we must compute y> · c1 −
r>y c0 = 〈x?, y〉 · bq/K c + small error. When we do the same computation, using a
shifted functional decryption key of the form r′y := ry +α · 〈∆x , y〉, correspond-

ing to a master secret key, of the form R′ := R+α, the extra term α> · c0 appears,
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which prevents the correct programming of the post-challenge keys. To solve this
problem, during the simulation, we generate a trapdoor matrix corresponding to[

A
c>0

]
∈Z(n+1)×m

q . The trapdoor allows us to compute a small matrixα ∈Zm×` such

that A·α= 0 andα>·c0 = constant. This implies that the public key U = AR = AR′,
remains invariant under the shift R′ = R+α and also it enables us to correctly pro-
gram the post-challenge key queries. We can actually choose α = ∆x>⊗w of this
form, which guarantees that the pre-challenge keys remain invariant to the shift.

To argue that the statistical distance between the master secret key R and its
shift R′ = R+α is negligible, we use the noise flood Lemma 2.9. Because of this,
we need an exponentially large modulus q .

4.4.2 The LWE-based IPFE Construction

Setup(1λ,1`, X ,Y ): The public parameters are Γ= {m,n, q,`,α,σ,σ1, X ,Y ,K }, for
K := ` · X Y , m =Θ(n log q), α ∈ (0,1) such that αq =Ω(

p
n), σ= 2λ ·poly(λ),

σ1 = 2λ ·σ ·poly(λ) and (σ1 +m ·σ ·αq) ·Y
p
`< q/2K .

The public key is generated via the following steps. Sample A ←-U (Zn×m
q ),

R ←-DZm×`,σ and compute U := AR ∈Zn×`
q . Set mpk := (A,U) and msk := R.

Keygen(msk, y): On input the msk = R ∈ Zm×` and a vector y ∈ Z` such that
‖y‖∞ ≤ Y , compute ry := R · y ∈Zm and return sky := (y ,ry ).

Encrypt(mpk, x): To encrypt a message x ∈ Z` such that ‖x‖∞ ≤ X , first sample
s ←-Zn

q , e0 ←-DZm ,αq , e1 ←-DZ`,σ1
compute:

c0 = A> ·s+e0 ∈Zm
q

c1 = U> ·s+e1 +x · bq/K c ∈Z`q

and return the ciphertext c := (c0,c1) ∈Zm
q ×Z`q .

Decrypt(sky ,c): Given the secret key sky = (y ,ry ) ∈ Z`+m and a ciphertext c =
(c0,c1) compute v := y> · c1 − r>y c0 mod q . Return the vector z ∈ Z` such
that |vi − zi · bq/K c| is minimized for all i ∈ [`].

Lemma 4.5 (Correctness). Ifσ1 =ω(
√

log`),αq =ω(
√

logm) and (σ1+m ·σ·αq)·
Y
p
` < q/2K then for any (mpk,msk) ← Setup(1λ,1`, X ,Y ), any x ∈ [−X , X ]`∩Z`

and y ∈ [−Y ,Y ]`∩Z` and sky ←Keygen(msk, y) we have

Decrypt(sky ,Encrypt(mpk, x)) = 〈x , y〉,

with probability exponentially close to 1.
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Proof. Suppose that (c0,c1) ←Encrypt(mpk, x) for some integer vector x ∈ [−X , X ]`.
The decryption algorithm computes y> ·c1 − r>y c0 = 〈e1 −R>e0, y〉+bq/K c · 〈x , y〉.
Notice that the condition |〈e1−R>e0, y〉| < q/2K ensures that decryption correctly
recovers 〈x , y〉. It thus suffices to prove the above inequality.

|〈e1 −R>e0, y〉| ≤ (‖e1‖+‖R>e0‖
) · ‖y‖ ≤

(
‖e1‖+

p
` ·max

i∈[`]
|r>i ·e0|

)
· ‖y‖,

where r>i ∈Z1×m are the rows of R>.
By Lemma 2.1 we can bound the Euclidean norm of the Gaussian vectors ‖e0‖ ≤

αq
p

m, ‖e1‖ ≤σ1
p
` and ‖ri‖ ≤σ

p
m respectively. This implies

|〈e1 −R>e0, y〉| ≤ (σ1 +m ·σ ·αq) ·Y
p
`< q/2K .

The last inequality follows from the choice of parameters.

4.4.3 Security

Theorem 4.6. The above construction provides AD-SIM security under the LWE as-
sumption.

Proof. In order to prove the result, we first describe the simulator given by the
PPT algorithms (Setup?,Keygen?0 ,Encrypt?,Keygen?1 ). In a second step, we will
prove that the LWE assumption implies the adversary’s inability to distinguish the
real experiment from the ideal.

Both in the Real and the Ideal experiments, we know that the adversary A can
obtain private keys for up to `−1 linearly independent vectors overZ, a limit that is
intrinsic to the functionality. We assume w.l.o.g. that A makes private keys queries
for exactly `−1 = `0 +`1 independent vectors, which we denote by y 1, . . . , y`−1 ∈
Z`q . Among these vectors, we denote by y 1, . . . , y`0 the vectors queried by A before
the challenge phase while y`0+1, . . . , y`0+`1 stand for the post-challenge private key
queries. In the challenge phase, we denote by x? = (x?1 , . . . , x?

`
) ∈ Z`q the message

chosen by A . The simulator proceeds as follows.

Setup?(1λ,1`, X ,Y ) : The public parameters Γ = {m,n, q,`,α,σ,σ1, X ,Y ,K }, are
chosen by the experiment as in the descryption of the scheme.

Next it runs (Ā,TĀ) ←TrapGen(1m ,1n+1) and parses Ā =
[

A
a>

0

]
∈Z(n+1)×m

q and

it uses the trapdoor TĀ ∈ Zm×m to sample a ”small” vector w ∈ Zm (as in
Remark 1) such that [

A
a>

0

]
·w =

[
0n

bq/K c
]
∈Zn+1

q ,

Then, it samples R ←-DZm×`,σ, computes U = AR and sets mpk? = (A,U) and
msk? = (R,TĀ,a0,w).
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Keygen?0 (msk?, y) : On input the msk = R ∈ Zm×` and a vector y ∈ Z` such that
‖y‖∞ ≤ Y , compute ry := R · y ∈Zm and return sky := (y ,ry ).

Encrypt?(mpk?,msk?, {(y 1, z1), (y 2, z2), . . . , (y`0 , z`0 )}) : Given mpk?, msk? and all
the pre-challenge pairs (y j , z j ) ∈ [−Y ,Y ]`×Z, where z j = 〈x?, y j 〉 ∈Z and x?

is the challenge message, it first computes a ”small” dummy message x̄ ∈Z`
such that 〈x̄ , y j 〉 = z j for all j ∈ [`0], as follows.

Letting zpre = (z1, . . . , z`0 )> ∈Z`0 , it computes x̄ ∈Z` as in Lemma 2.15, such
that ‖x̄‖∞ ≤ ‖zpre‖∞ ·` · (Y

√
`0)`0 and Ypre · x̄ = zpre ∈Z`0 , where

Ypre =


y>

1
...

y>
`0

 ∈Z`0×`,

Next, it samples s ←-Zn
q , e?1 ←-DZ`,σ1

and computes the ciphertext as:

c?0 = a0

c?1 = R> ·c?0 +e?1 + x̄ · bq/K c ∈Z`q

It outputs the simulated ciphertext c? = (c?0 ,c?1 ).

Keygen?1 (msk?, (y , z = 〈y , x?〉),st) : Post-challenge key queries as answered as fol-
lows. Upon receiving a pair (y , z = 〈x?, y〉), it computes r′y := Ry + (〈x̄ , y〉−
z) ·w ∈Zm , and outputs sky := (y ,r′y ).

Notice that keys sky corresponding to post-challenge queries decrypt to 〈x?, y〉.

y> ·c?1 − r′>y ·c?0 = (Ry)> ·c?0 +〈e?1 , y〉+bq/K c · 〈x̄ , y〉−
− (Ry)> ·c?0 − (〈x̄ , y〉− z

) ·w> ·c?0
= 〈e?1 , y〉+〈x?, y〉 · bq/K c

So the above decrypts to 〈x?, y〉 since |〈e?1 , y〉| < q/2K ( Correctness Lemma 4.5).

In order to prove that the real experiment is computationally indistinguishable
from the ideal experiment, we use the following sequence of games.

Game 0: This the real AD-SIM experiment. The pair (mpk,msk) is generated as in
the real experiment, namely A ←- Zn×m

q , R ←- DZm×`,σ and U = AR ∈ Zn×`
q .

The public and the secret keys are set as mpk := (A,U), msk := R. To encrypt
the adversarially-chosen x? ∈ [−X , X ]`∩Z`, the the experiment samples s ←-
Zn

q , e?0 ←-DZm ,αq , e?1 ←-DZ`,σ1
computes

c?0 = A> ·s+e?0 ∈Zm
q

c?1 = U> ·s+e?1 +x? · bq/K c ∈Z`q
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and sets c? := (c?0 ,c?1 ) ∈Zm
q ×Z`q . To answer both the pre-challenge and the

post-challenge key queries for some vector y ∈ [−Y ,Y ]`∩Z`, the experiment
returns (y ,ry ), where ry := R · y ∈Zm , exactly as in the real experiment.

Game 1: This game differs from the previous one in that the ciphertext is com-
puted as: s ←-Zn

q , e?0 ←-DZm ,αq , e?1 ←-DZ`,σ1
,

c?0 = A> ·s+e?0 ∈Zm
q

c?1 = R> · (c?0 −e?0 )+e?1 +x? · bq/K c ∈Z`q
Since the experiment knows the secret key, it is able to compute the cipher-
text in this way. This change is only conceptual since the ciphertext is iden-
tical to that of Game 0.

Game 2: This game is the same as the previous one, except that the ciphertext is
computed as: e?0 ←-DZm ,αq , e?1 ←-DZ`,σ1

,

c?0 = A> ·s+e?0 ∈Zm
q

c?1 = R> ·c?0 +e?1 +x? · bq/K c ∈Z`q

The only difference between the last two games is the term R> · e?0 in the
expression of the ciphertext component c?1 .

Since the norm of R> · e?0 is relatively small, the statistical discrepancy be-
tween the two games is ”drowned”, as the term e?1 is sampled from a very
wide Gaussian distribution. Formally, by Lemma 2.9, Game 1 and Game 2

are statistically close, because the choice of parameters implies
‖R>·e?0 ‖∞

σ1
<

2−λ.

Game 3 This game is the same as the previous one, except that only the error e?1 ←-
DZ`,σ1

is sampled and the ciphertext is computed as: ,

c?0 ←- U (Zm
q )

c?1 = R> ·c?0 +e?1 +x? · bq/K c ∈Z`q
By the LWEq,m,n,α assumption the last two games are computationally in-
distinguishable.

Game 4: In this game, the experiment first runs (Ā,TĀ) ←TrapGen(1m ,1n+1) and

parses Ā =
[

A
a>

0

]
∈ Z(n+1)×m

q . Then, it samples R ←- DZm×`,σ, computes U =
AR and sets mpk? = (A,U) and msk? = (R,TĀ,a0). Also samples e?1 ←-DZ`,σ1

,
and computes the ciphertext as:

c?0 = a0 ∈Zm
q (4.6)

c?1 = R> ·c?0 +e?1 +x? · bq/K c ∈Z`q .
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The key queries are still answered as in the previous games. Notice that the
difference between Game 3 and Game 4 is the way the matrix A and the vec-

tor c?0 are sampled. By Lemma 2.8, the distribution of the matrix

[
A

a>
0

]
, which

was generated using the TrapGen algorithm, is statistically close to the uni-
form distribution U (Z(n+1)×m

q ). This implies that Game 3 and Game 4 are
statistically close in A ’s view.

Game 5: This game is exactly like the previous game, except that right after the
generation of the keys, the experiment uses the trapdoor TĀ ∈Zm×m to sam-
ple a ”small” vector w ∈Zm (as in Remark 1) such that[

A
a>

0

]
·w =

[
0n

bq/K c
]
∈Zn+1

q ,

then sets msk? = (R,TĀ,a0,w)

Notice that the last two games are the identical in the view of the adversary.

Game 6: This is identical to the Ideal experiment. In Lemma 4.7 we prove that
Game 5 and Game 6 are statistically close, thus concluding the proof.

Lemma 4.7. The advantage of any distinguisher between Game5 and Game6 is sta-
tistically negligible and Adv56

A (λ) ≤ 2−λ.

Proof. In order to prove the claim, we simultaneously define Game′
5 and Game′

6
as follows. For each k ∈ {5,6}, define Game′

k identically to Gamek except that,
at the outset of the game, the challenger samples ∆x ←-U ([−X̄ , X̄ ]`), where X̄ =
X+X Y ·`2·(Y

p
`)`. Before generating the challenge ciphertext, the challenger uses

Lemma 2.15 to compute x̄ ∈Z` such that ‖x̄‖∞ ≤ `X Y ·`(Y
p
`)` and Ypre ·x̄ = Ypre ·

x?, where Ypre is the matrix obtained by stacking up the (linearly independent)
transposed vectors y> occurring in pre-challenge queries. If ∆x = x̄ − x? (we call
this event Guess), the challenger proceeds as in Gamek . Otherwise, the challenger
aborts the game and replaces A ’s output b′ by a random bit.

As in the proof of Lemma 4.7, any adversary A that can distinguish between
Game5 and Game6 with advantage Adv56

A (λ) can be used to distinguish between
Game′

5 and Game′
6 with advantage

Adv5′6′
A (λ) = 1

(2X̄ )`
·Adv56

A (λ). (4.7)

Next, we show that Adv5′6′
A (λ) ≤ (2X̄ )−` · 2−λ, which implies that Game5 and

Game6 are statistically indistinguishable. To see this, observe that, when Guess
occurs, Game′

6 is identical to a modification of Game′
5 where the master secret

key has been replaced by

R′ = R+∆x>⊗w ∈Zm×`
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, where R ←- DZm×`,σ and ∆x>⊗w = [∆x1 ·w| · · · |∆x` ·w] ∈ Zm×` is the Kronecker
product matrix. Notice that the distribution of R′ can be computed at the begin-
ning of the experiment, thus we can define a game where R′ is used instead of R.
By making this change of the master secret key in Game 5′, all the pre-challenge
keys remain invariant since

R′ · y = Ry + (∆x>⊗w) · y = R · y , as long as ∆x> · y = 0,

and also the public key remains invariant, because the way we chose w ∈ Zm . In-
deed, since A ·w = 0n mod q we have that A ·R′ = A ·R mod q .

Hence the statistical distance between these two games is bounded by the sta-
tistical distance ∆

(
R,R′). We use the noise flood Lemma 2.9 to obtain the bound:

∆(R,R′) ≤ m` · ‖∆x‖∞ · ‖w‖∞
σ

< 2−λ.
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Chapter

5
Multi-Client Functional
Encryption from LWE

The focus of this chapter is the private-key Multi-Client Functional Encryption
scheme of [LŢ19] for the bounded inner-product class of functionalities. In the
multi-input setting, this was the first construction with labels, that was proved
secure against adaptive corruptions, in the standard model. The security relies
on the LWE assumption with super-polynomial modulus q , due to the use of the
rounding techniques introduced in [BPR12].

Our observation is that we can construct MCFE for the class of linear functions
from Key-Homomorphic PRFs. Directly leveraging the pseudo-randomness of the
KH-PRF only yields secure MCFEs in the selective security model, in which the
adversary has to announce its challenge in advance.

Our idea is to adapt the KH-PRF construction of [BLMR13] and use its par-
ticular design to construct adaptively secure MCFE, in a non-modular way. We
employed the same high-level strategy to get adaptive security, in a non-modular
way, in Chapter 3.
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Organization

We start section 5.1 by giving the formal definitions for the MCFE primitive and
comparing different security notions. In section 5.2.1 we highlight the connection
between MCFEs and KH-PRFs and discuss the selectively secure generic MCFE
construction that arises from it. The main result of this chapter is presented in
section 5.3, where we give an adaptively secure MCFE based on the LWE assump-
tion. Finally, we can upgrade the security of our scheme by using the compiler
presented in Section 5.4.

5.1 Definitions

First we recall the syntax of multi-client functional encryption as introduced in
[GKL+14].

5.1.1 Multi-Client Functional Encryption (MCFE)

Definition 5.1. A multi-client functional encryption (MCFE) scheme for a message
space M and tag space T is a tuple (Setup,Encrypt,DKeygen,Decrypt) of efficient
algorithm with the following specifications:

Setup(cp,1`) : Takes in global parameters cp and a pre-determined number of users
1`, where cp specifies a security parameter 1λ. It outputs a set of public pa-
rameters mpk, a master secret key msk, and a set of encryption keys {eki }`i=1.
We assume that mpk is included in all encryption keys eki .

Encrypt(eki , xi , t ) : Takes as input the encryption key eki of user i ∈ [`], a message
xi and a tag t ∈T . It output a ciphertext Ct ,i .

DKeygen(msk, f ) : Takes as input the master secret key msk and an `-argument
function f : M `→R. It outputs a functional decryption key dk f .

Decrypt(dk f , t ,C) : Takes as input a functional decryption key dk f , a tag t , and an
`-vector of ciphertexts C = (Ct ,1, . . . ,Ct ,`). It outputs a function evaluation
f (x) ∈R or an error message ⊥.

Correctness. For any public parameters cp, (mpk,msk, {eki }`i=1) ← Setup(cp,1`),

any vector x ∈ M n any tag t ∈ T and any function f : M ` → R, for all i ∈ [`]
Ct ,i ←Encrypt(eki , xi , t ) and dk f ←DKeygen(msk, f ), we haveDecrypt

(
dk f , t ,Ct =

(Ct ,1, . . . ,Ct ,`)
)= f (x) with overwhelming probability.

5.1.2 Security

We now recall the security definition given in [CDG+18a], for an adaptively secure
MCFE. Then we give another equivalent definition for the same security notion,
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that we use in the main proof. Both definitions are given as indistinguishability
(IND) games between a challenger and an adversary.

Definition 5.2 (IND-security). For an MCFE scheme with ` senders, consider the
following game between an adversary A and a challenger C . The game involves a
set H S of honest senders (initialized to H S := [`]) and a set C S (initialized to
C S :=;) of corrupted senders.

Initialization: The challenger C runs (mpk,msk, {eki }`i=1) ← Setup(cp,1`). Then,
it chooses a random bit b ← {0,1} and gives the master public key, mpk, to the
adversary

Encryption queries: The adversary A can adaptively make encryption queries of
the form QEncrypt(i , x0, x1, t ), to which the challenger replies with the en-
cryptionEncrypt(eki , xb , t ). For any given pair (i , t ), only one query is allowed
and subsequent queries involving the same (i , t ) are ignored.

Functional decryption key queries: The adversary can adaptively obtain decryp-
tion keys by making queries of the formQDKeygen( f ). The challenger returns
dk f ←DKeygen(msk, f ).

Corruption queries: For any user i ∈ H S , the adversary can adaptively make
queries QCorrupt(i ), to which the challenger replies with eki and updates
H S and C S by setting C S :=C S ∪ {i } and H S :=H S \ {i }.

Finalize: The adversary makes its guess b′ ∈ {0,1}; A wins the game if β= b, where
β is defined to be β := b′ except in the following situations.

1. An encryption query QEncrypt(i , x0, x1, t ) has been made for an index
i ∈C S with x0 6= x1.

2. For some label t , an encryption query QEncrypt(i , x0
i , x1

i , t ) has been
asked for i ∈ H S , but encryption queries QEncrypt( j , x0

j , x1
j , t ) have

not been asked for all j ∈H S .

3. For a label t and some function f queried to QDKeygen, there exists a
pair of vectors (x0, x1) such that f (x0) 6= f (x1), where

- x0
i = x1

i for all i ∈C S ;

- QEncrypt(i , x0
i , x1

i , t ) have been asked for all i ∈H S .

In any of the above cases, A ’s output is replaced by a random β←U ({0,1}).

An MCFE scheme provides IND security if, for any PPT adversary A , we have
AdvMCFE

A (λ) := ∣∣Pr[β= 1 | b = 1]−Pr[β= 1 | b = 0]
∣∣ ∈ negl(λ).

In this chapter, it will be convenient to work with the following security defini-
tion, which is equivalent to Definition 5.2, and the equivalence is proved below in
Proposition 5.2.
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Definition 5.3 (1-challenge-IND-security). For an MCFE scheme with ` senders,
we consider the following game between an adversary A and a challenger C . The
game involves a set H S (initialized to H S := [`]), of honest senders and a set C S

(initialized to C S :=;), of corrupted senders.

Initialization: The challenger C runs (mpk,msk, {eki }`i=1) ← Setup(cp,1`) for the
chosen global parameters cp. Then, it chooses a random bit b ← {0,1} and
gives the master public key mpk to the adversary A .

Encryption queries: The adversary can adaptively make encryption queries of the
form QEncrypt(i , x, t ), to which the challenger replies with Encrypt(eki , x, t ).
Any further query involving the same pair (i , t ) is ignored.

Challenge queries: The adversary adaptively makes challenge queries of the form
CQEncrypt(i , x?0

i , x?1
i , t?). The challenger replies with Encrypt(eki , x?b

i , t?).
Only one tag t? can be involved in a challenge query. If t? denotes the tag of
the first query, the challenger only replies to subsequent challenge queries for
the same label t?. Moreover, only one query (i , t?) is allowed for each i ∈ [`]
and subsequent queries involving the same i ∈ [`] are ignored.

Functional decryption key queries: The adversary can adaptively obtain decryp-
tion keys via queries QDKeygen( f ). At each query, the challenger returns
dk f ←DKeygen(msk, f ).

Corruption queries: For any user i ∈ H S , the adversary can adaptively make
queries QCorrupt(i ), to which the challenger replies with eki and updates
H S and C S by setting C S :=C S ∪ {i } and H S :=H S \ {i }.

Finalize: The adversary outputs a bit b′ ∈ {0,1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.

1. A challenge query CQEncrypt(i , x?0
i , x?1

i , t?) has been made for an in-
dex i ∈C S with x?0

i 6= x?1
i .

2. An encryption query QEncrypt(i , x, t?) has been made for the challenge
tag t? for some index i ∈ [`].

3. For the challenge tag t?, a challenge query CQEncrypt(i , x?0
i , x?1

i , t?)
has been asked for some index i ∈H S , but not all the challenge queries
CQEncrypt( j , x?0

j , x?1
j , t?) have not been asked for all j ∈H S .

4. For the challenge tag t? and some function f queried to QDKeygen,
there exists a pair of vectors (x?0, x?1) such that f (x?0) 6= f (x?1), where

- x?0
i = x?1

i for all i ∈C S ;

- CQEncrypt(i , x?0
i , x?1

i , t?) have been asked for all i ∈H S .

If any of these events occurred, A ’s output is overwritten by β←U ({0,1}).
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We say that an MCFE scheme is 1ch-IND secure if, for any PPT adversary A , we
have Adv1ch-IND

A (λ) := ∣∣Pr[β= b]− 1
2

∣∣ ∈ negl(λ).

Condition 1 and condition 4 from the above Finalize step are necessary to pre-
vent the adversary to trivially win the indistinguishability game. Also the adversary
is only allowed to make one encryption or challenge query per (slot, label)-pair
(specified in the syntax and by condition 2). Without condition 2 the adversary
could easily win the game for any scheme that only supports deterministic en-
cryption. We can actually relax condition 2 by the following, which allows both
encryption and challenge queries on the pair (i , t?) as long as x0?

i = x1?
i , while

maintaining the same level of security:

2′. Both QEncrypt(i , x, t?) and CQEncrypt(i , x?0
i , x?1

i , t?) have been made for
an index i and the challenge label t?, such that x0?

i 6= x1?
i

Proposition 5.1 below shows that replacing condition 2 by condition 2′ does not
make the adversary any stronger. We say that a scheme is 1ch-IND′ secure if it
satisfies the above security definition with condition 2 replaced by condition 2′.

The most artificial condition in the Finalize step is condition 3, which stops
the adversary from using any information on partial ciphertexts. We require this
condition since we need it in the security proof (Theorem 5.2). In section 5.4 we
give a compiler that works in the standard model and upgrades the security of any
1-challenge-IND secure MCFE, by removing the unnatural condition 3 from the
security definition.

Next, we give the formal definition of an MCFE scheme without the artificial
condition 3. We call this notion 1-or-less-IND security, because the adversary can
choose not to make or to make at most one challenge query for every honest slot.

Definition 5.4 (1-or-less-IND-security). For an MCFE scheme with ` senders, we
consider the following game between an adversary A and a challenger C . The
game involves a set H S (initialized to H S := [`]), of honest senders and a set
C S (initialized to C S :=;), of corrupted senders.

Initialization: The challenger C runs (mpk,msk, {eki }`i=1) ← Setup(cp,1`) for the
chosen global parameters cp. Then, it chooses a random bit b ← {0,1} and
gives the master public key mpk to the adversary A .

Encryption queries: The adversary can adaptively make encryption queries of the
form QEncrypt(i , x, t ), to which the challenger replies with Encrypt(eki , x, t ).
Any further query involving the same pair (i , t ) is ignored.

Challenge queries: The adversary adaptively makes challenge queries of the form
CQEncrypt(i , x?0

i , x?1
i , t?). The challenger replies with Encrypt(eki , x?b

i , t?).
Only one tag t? can be involved in a challenge query. If t? denotes the tag of
the first query, the challenger only replies to subsequent challenge queries for
the same label t?. Moreover, only one query (i , t?) is allowed for each i ∈ [`]
and subsequent queries involving the same i ∈ [`] are ignored.
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Functional decryption key queries: The adversary can adaptively obtain decryp-
tion keys via queries QDKeygen( f ). At each query, the challenger returns
dk f ←DKeygen(msk, f ).

Corruption queries: For any user i ∈ H S , the adversary can adaptively make
queries QCorrupt(i ), to which the challenger replies with eki and updates
H S and C S by setting C S :=C S ∪ {i } and H S :=H S \ {i }.

Finalize: The adversary outputs a bit b′ ∈ {0,1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.

1. A challenge query CQEncrypt(i , x?0
i , x?1

i , t?) has been made for an in-
dex i ∈C S with x?0

i 6= x?1
i .

2. An encryption query QEncrypt(i , x, t?) has been made for the challenge
tag t? for some index i ∈ [`].

4. For the challenge tag t? and some function f queried to QDKeygen,
there exists a pair of vectors (x?0, x?1) such that f (x?0) 6= f (x?1), where

- x?0
i = x?1

i for all i ∈C S ;

- CQEncrypt(i , x?0
i , x?1

i , t?) have been asked for all i ∈H S .

If any of these events occurred, A ’s output is overwritten by β←U ({0,1}).

We say that an MCFE scheme provides 1-or-less security if, for any PPT adversary
A , we have Adv1-or-less

A (λ) := ∣∣Pr[β= b]− 1
2

∣∣ ∈ negl(λ).

The definition of 1-or-less security is identical to the 1-challenge-IND defini-
tion, except that we removed Condition 3 of the Finalize step in Definition 5.3. In
Definition 5.4, we insist that the last condition of the Finalize step does not impose
any restriction on the functions queried to QDKeygen if there exists a single index
i ∈H S for which no challenge query CQEncrypt(i , ·, ·, t?) was made.

Proposition 5.1. 1ch-IND security is equivalent to 1ch-IND ′ security.

Proof. Recall that 1ch-IND′ refers to the same security notion as described in Def-
inition 5.3, except that Condition 2 in the Finalize step is replaced by

2′: Both QEncrypt(i , x, t?) and CQEncrypt(i , x?0
i , x?1

i , t?) have been made
for an index i and the challenge label t?, such that x0?

i 6= x1?
i .

The non-trivial implication to prove is that 1ch-IND security implies 1ch-IND′

security. Towards a contradiction, suppose that there exists an adversary A ′ that
wins the 1ch-IND′ game with noticeable advantage. We build an adversary A that
breaks the 1ch-IND security game. Our adversary A answers both corruption and
functional decryption key queries made by A ′ by relaying them to its challenger
and forwarding the responses to A ′. For a query QEncrypt(i , x, t ) made by A ′, A
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checks if a challenge query CQEncrypt(i , x?0
i , x?1

i , t ) was made earlier. If no chal-
lenge query has been made so far for the pair (i , t ), the reduction sends the same
QEncrypt(i , x, t ) query to its challenger and passes the the answer to A ′. Other-
wise, it makes a Corrupt(i ) query to its challenger and thereby obtains the encryp-
tion key eki . To answer any subsequent query for slot i , the reduction simply uses
eki .

To answer a challenge query QCEncrypt(i , x?0
i , x?1

i , t?), the reduction A for-
wards the query to its challenger and transmits the answer to A ’ if it did not pre-
viously make an encryption QEncrypt(i , x, t?) for the pair (i , t?). If A previously
made an encryption query for the pair (i , t?), it also invokes its challenger and
sends it the query Corrupt(i ). Upon receiving eki , A is able to answer any query
concerning the i -th slot.

Notice that the adversary A ′ is only allowed to make both encryption and chal-
lenge queries on the same pair (i , t?) if x?0

i = x?1
i . This implies that the reduction

is allowed to make the query Corrupt(i ) to its challenger, which allows it to answer
all queries concerning the i -th slot.

As mentioned above, definitions 5.2 and 5.3 are equivalent. We prove the non-
trivial implication below.

Proposition 5.2. For any MCFE scheme, 1ch-IND security implies IND security.

Proof. Let us consider an efficient MCFE adversary A in the IND security game.
We show that A implies an MCFE adversary in the 1ch-IND game.

Suppose that A makes encryption queries for Q distinct tags during the game.
The proof uses a standard hybrid argument over the distinct tags that A queries
throughout the attack. Let Hk with k ∈ {0,1, . . . ,Q} be the game in which the chal-
lenger replies to encryption queries QEncrypt(i , x0

i , x1
i , t ) in the following way.

• If the tag t is one of the first k distinct tags appearing in A ’s encryption
queries, it replies with Encrypt(eki , x0

i , t ).

• Otherwise, it replies with Encrypt(eki , x1
i , t ).

Note that an IND adversary A in the sense of Definition 5.2 implies a distinguisher
between H0 and HQ .

We claim that, for any k ∈ {0, . . . ,Q −1}, an efficient distinguisher Ak between
Hk and Hk+1 implies the existence of an efficient adversary Bk in 1ch-IND game
and such that Adv1ch-IND

Bk
(λ) = Advk,k+1

Ak
(λ). This adversary Bk proceeds as follows.

Initialization: Having received mpk, Bk runs Ak by feeding it with the same pub-
lic parameters mpk.

Encryption queries: For each query QEncrypt(i , x0
i , x1

i , t ) sent by Ak , Bk does the
following.
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• If t is among the first k distinct tags queried by Ak , Bk sends the query
QEncrypt(i , x0

i , t ) to its own challenger in the 1ch-IND game and relays
the answer back to Ak .

• If t coincides with (k +1)-th distinct tag queried by Ak , Bk makes the
challenge query QCEncrypt(i , x0

i , x1
i , t ) and transmits the response to

Ak .

• Otherwise, Bk sends the encryption queryQEncrypt(i , x1
i , t ) to its chal-

lenger and forwards the answer to Ak .

Functional decryption queries: For each query QDKeygen( f ) made by Ak , Bk

sends the same query to its own challenger and passes the answer to Ak .

Corruption queries: For each queryQCorrupt(i ) made by Ak , Bk makes the same
query to its own challenger and forwards the answer to Ak .

Finalize: When Ak halts, Bk outputs the same bit b′ as Ak .

We can conclude that, for any efficient IND adversary A , there exists an effi-
cient 1ch-IND adversary B such that

AdvMCFE
A (λ) ≤Q ·Adv1ch−IND

B (λ).

5.2 MCFE for Linear Functions from KH-PRF

In this section we highlight the connection between MCFE for Inner-Products and
KH-PRFs, which was implicitly used in [CDG+18a] and explicitly in [LŢ19] as well
as [Cho19].

In the simple version of the MCFE scheme of [CDG+18a], which is itself a
variant of the selectively secure Inner-Product Functional Encrypion scheme of
[ABDCP15], the encryption takes place in a finite group G = 〈g 〉 of prime order
p, where the DDH assumption holds. In order to encrypt a message xi ∈ Zp , un-
der some label t , user i ∈ [`], uses its secret key si ∈Zp to compute the ciphertext
Ct ,i := g xi ·H(t )si ∈ G , where the function H : {0,1}∗ → G is modeled as a random
oracle. Notice that the function F : Zp × {0,1}∗ → G given by F (s, t ) := H(t )s is the
Key-Homomorphic PRF of Naor, Pinkas and Reingold [NPR00] that was discussed
in Section 3.3.1. More abstractly, we can view the encryption as blinding the mes-
sage xi using the pseudo-randomness of F (si , t ), as shown in Figure 5.1 below.

This suggests the following generic construction of MCFE for linear functions
using KH-PRFs as a black-box.
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- [CDG+18a] Abstraction(F : K ×T →M )

Setup : {si ←Zp }`i=1, H {si ← (K ,+)}`i=1, ppPRF

Encrypt : Ci ,t = g xi ·H(t )si Ci ,t = xi +Fsi (t )

DKeygen : SKy = 〈y,s〉 SKy = y1 · s1+ y2 · s2+·· ·+ yN · sN

Decrypt : DLog
(
ΠN

i=1C yi

i ,t /H(t )SKy

) ∑
i yi ·Ci ,t −FSKy (t )

Figure 5.1: Parallel between a simplified [CDG+18a] variant and its abstraction

5.2.1 The Generic Construction

Given F : K ×T →M , a KH-PRF, we construct the following MCFE scheme with
message space M and tag space T . We will use additive notation for all the group
operations done below on M and K .

Setup(1`,1λ) : Takes as input the number of users 1` and the security parameter
1λ. Chooses a secure KH-PRF F : K ×T →M and the secret PRF keys eki ∈
K for each user i ∈ [`]. The mpk contains the description of the PRF and
msk := {eki }i∈[`].

Encrypt(eki , xi , t ) : Takes as input the encryption key eki of user i ∈ [`], a message
xi ∈M and a tag t ∈T . It output the ciphertext Ct ,i := xi +Feki

(t ).

DKeygen(msk, fy ) : Takes as input the master secret key msk and an `-argument
function fy : M ` → M , such that fy (x) = y1 · x1 + y2 +·x2 +·· ·+ y` · x` ∈ M ,
for y ∈Z` and x ∈M `. Computes eky = y1 ·ek1+ y2 ·ek2 · · ·+ y` ·ek` ∈K and
outputs the functional decryption key dky := (y ,eky ).

Decrypt(dk f , t ,C) : Takes as input a functional decryption key dky , a tag t , and the
ciphertexts C = (Ct ,1, . . . ,Ct ,`). It outputs y1 ·Ct ,1 +·· ·+ y` ·Ct ,`−Feky (t )

Correctness. The algorithm Decrypt outputs the evaluation of fy (x) = 〈y , x〉 as
long as all the ciphertexts are encrypted under the same label t . Indeed,

∑̀
i=1

yi ·Ct ,i =
∑̀
i=1

(yi · xi + yi ·Feki
(t )) = 〈y , x〉+Fdky (t )

where the last equality follows from the key-homomorphic property of F.
Unfortunately, in terms of security this simple generic construction can only

achieve selective-IND security, a weaker security model in which the adversary has
to announce in advance the challenge queries in the security game of Definition
5.2. A proof for this is given in [Cho19, Theorem 4.1].
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So if we want to achieve adaptive security, in the sense of Definition 5.2, we
cannot rely on the pseudo-randomness of the key-homomorphic PRF in a black-
box manner.

We have to mention that the simple scheme from Figure 5.1 was proved in
[CDG+18a] to only be selectively secure. To achieve adaptive security they used
a modified version of the fully secure functional encryption scheme of [ALS16],
where they replaced the encryption randomness by random oracles. They proved
adaptive security by reducing it directly to the DDH assumption.

5.3 LWE based MCFE for Linear Functions

If we plug in the LWE-based almost KH-PRF of [BLMR13] into the generic MCFE
construction from the previous Section 5.2.1, we can expect a selectively-secure
MCFE, based on LWE assumption, without using random oracles.

Recall that in Section 3.5 we managed to give a security proof, for the dis-
tributed version of the PRF that was adaptively secure. We did this, not by lever-
aging its pseudo-randomness in a modular way, but by exploiting the particularity
of the construction, and reducing the security directly to the LWE assumption.

So a natural question would be: can we do a similar thing here and adapt the
same KH-PRF to get an adaptively secure MCFE? The short answer is ’yes’, and the
approach is detailed in this section.

5.3.1 Overview

Our construction and proof for the KH-PRF component depart from the one in
Section 3.4.2 in that we use an additional multiplication by G−1(V> ·G0) in order to
introduce a matrix V ∈ Zn0×n

q in the expression of A(τ?). In addition, in this vari-
ant we do not rely on a randomness extraction argument to exploit the entropy of
A(τ?)> · si + ei in the challenge phase. Instead, we use a trapdoor for the matrix
U = [

V
C

]
to “equivocate” the challenge ciphertexts and explain them as an encryp-

tion of x?1,i instead of x?0,i .

The scheme encrypts x i ∈Zn0 as a vector Ct ,i = G>
0 ·x i +A(τ)> ·si +ei , where G0

is a gadget matrix; τ=AHF(t ) ∈ {0,1}L is an admissible hash of the tag t ; and ei is a
Gaussian noise. This is done in a way that a functional secret key sy =∑`

i=1 yi ·si ∈
Zn allows computing

∑`
i=1 yi · x i from {Ct ,i }`i=1 by using the public trapdoor of the

lattice Λ⊥(G0).
We derive A(τ) from a set of 2L public matrices {Ai ,0,Ai ,1}L

i=1 and an additional
matrix V ∈ Zn0×n

q . Like the proof in Section 3.4.2, matrices Ai ,b ∈ Zn×m
q are in-

terpreted as a GSW ciphertext Ai ,b = A · Ri ,b +µi ,b · G, where Ri ,b ∈ {−1,1}m×m ,
µi ,b ∈ {0,1} and G ∈Zn×m

q is the gadget matrix of [MP12]. Then, we homomorphi-

cally compute A(τ) as an FHE ciphertext A ·R′
τ+ (

∏L
i=1µi ,τ[i ]) ·G, for some small-

norm R′
τ ∈ Zm×m , which is in turn multiplied by G−1(V> ·G0) in such a way that

A(τ) = A ·Rτ + (
∏L

i=1µi ,τ[i ]) · (V> ·G0). Via a careful choice of {µi ,b}i∈[L],b∈{0,1}, the
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properties of admissible hash functions imply that
∏L

i=1µi ,x[i ] vanishes in all en-
cryption queries but evaluates to 1 on the challenge tag τ?. In order to prevent
the encryption oracle from leaking too much about si ∈ Zn , we proceed as be-
fore and replace the random A ∈ Zn×m

q by a lossy matrix A> = Â> ·C+E, where

Â ←-U (Zn1×m
q ), C ←-U (Zn1×n

q ) and for a small-norm E ∈Zm×n .

5.3.2 The Construction

In the following description, we assume public parameters

cp :=
(
λ, `max, X , Y , n0, n1, n, m, α, α1, σ, `t , L, q, AHF

)
,

consisting of a security parameter λ and the following quantities:

- (X ,Y ,`max,n0,n1,n,m), which are all in poly(λ)

X = 1, n1 = λd , q = 2λ
d−1

, α = 2−pλ, α1 = 2−λd−1+d logλ, n0 = o(λd−2), n =
O(λ2d−1), σ = 2λ

d−1−2λ and n0 · `max = O(λd−2) where d is a constant; for
instance d = 3 works asymptotically.

- The description of a tag space T = {0,1}`t , for some `t ∈ poly(λ), such that
tags may be arbitrary strings (e.g., time period numbers or dataset names).

- A balanced admissible hash function AHF : {0,1}`t → {0,1}L , for a suitable
L ∈Θ(λ) (Def. 2.1).

- The message space will be M = [−X , X ]n0 , for some n0 ∈ poly(λ).

- Integers n,n0,n1,m ∈ poly(λ) satisfying the conditions m > 2n · dlog qe and
n > 3 · (n0 +n1) · dlog qe.

- A real α > 0 and a Gaussian parameter σ > 0, which specifies an interval
[−β,β] = [−σpn,σ

p
n] where the coordinates of users’ secret keys will live

(with probability exponentially close to 1).

Letting ` ∈ poly(λ), with `≤ `max , be the number of users, our function space
is the set of all functions fy : Zn0×` → Zn0 indexed by an integer vector y ∈ Z` of
infinity norm ‖y‖∞ < Y .

We define G0 ∈Zn0×m
q to be the gadget matrix

G0 = [In0 ⊗ (1,2,4, . . . ,2dlog qe) | 0n0 | . . . | 0n0 ] ∈Zn0×m
q

where the product In0⊗(1,2,4, . . . ,2dlog qe) is padded with m−n0·dlog qe zero columns.
We similarly denote by G ∈Zn×m

q the gadget matrix of rank n:

G = [In ⊗ (1,2,4, . . . ,2dlog qe) | 0n | . . . | 0n] ∈Zn×m
q .

Our MCFE construction goes as follows.
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Setup(cp,1`): On input of cp and a number of users `, do the following.

1. Choose random matrices Ai , j ←-U (Zn×m
q ), for each i ∈ [L], j ∈ {0,1}.

2. Choose a uniformly random matrix V ←-U (Zn0×n
q ).

3. For each i ∈ [`], sample si ←-DZn ,σ and define eki = si ∈Zn .

Output the master secret key msk := {eki }`i=1 and the public parameters

mpk :=
(
cp, V, {Ai ,0,Ai ,1 ∈Zn×m

q }L
i=1

)
.

DKeygen(msk, fy ) : Given the master secret key msk := {eki }`i=1 and a linear func-

tion fy : Zn0×` → Zn0 defined by an integer vector y = (y1, . . . , y`)> ∈ Z`
which maps an input X = [x1 | . . . | x`] ∈ Zn0×` to fy (X) = X · y ∈ Zn0 , parse
each eki as a vector si ∈ Zn . Then, compute and output the functional se-
cret key dky := (y ,sy ), where sy =∑`

i=1 si · yi ∈Zn .

Encrypt(eki , x i , t ) : Given eki = si ∈Zn , x i ∈ [−X , X ]n0 , and t ∈ {0,1}`t ,

1. Compute τ=AHF(t ) ∈ {0,1}L and parse it as τ= τ1 . . .τL .

2. Define W = G>
0 ·V ∈Zm×n

q and compute

A(τ) = A1,τ1 ·G−1
(
A2,τ2 ·G−1(. . .AL−1,τL−1 ·G−1(AL,τL

)))
·G−1(W>) ∈Zn×m

q . (5.1)

3. Sample a noise vector ei ←-DZm ,αq . Then, compute and output

Ct ,i = G>
0 · x i +A(τ)> ·si +ei ∈Zm

q .

Decrypt(dky , t ,Ct ) : On input of a functional secret key dky = (y ,sy ) for a vector
y = (y1, . . . , y`)> ∈ [−Y ,Y ]`, a tag t ∈ {0,1}`t , and an `-vector of ciphertexts
Ct = (Ct ,1, . . . ,Ct ,`) ∈ (Zm

q )`, conduct the following steps.

1. Compute τ=AHF(t ) ∈ {0,1}L and parse it as τ= τ1 . . .τL .

2. Compute A(τ) ∈Zn×m
q as per (5.1).

3. Compute ft ,y =∑`
i=1 yi ·Ct ,i −A(τ)> ·sy mod q .

4. Interpret ft ,y ∈ Zm
q as a vector of the form ft ,y = G>

0 · z + ẽ mod q , for

some "small" error vector ẽ. Using the public trapdoor ofΛ⊥(G0), com-
pute and output the underlying vector z ∈ [−` ·X ·Y ,` ·X ·Y ]n0 .
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5.3.3 Correctness and Security

Lemma 5.1 (Correctness). Assume that αq = ω(
√

log`), Y · ` ·αq · log q < q/2
and ` · X ·Y < q/2. Then, for any (mpk,msk, {eki }`i=1) ← Setup(cp,1λ), any mes-

sage X = [x1| · · · |x`] ∈ [−X , X ]n0×`, any y ∈ [−Y ,Y ]`, any tag t ∈ {0,1}`t , algorithm
Decrypt(dky , t ,Ct ) outputs X · y ∈ Zn0 with probability exponentially close to 1,
where Ct ,i ←Encrypt(eki , xi , t ) and dky ←DKeygen(msk, fy ).

Proof. Suppose that Ct ,i = G>
0 · x i + A(τ)> · si + ei ∈ Zm

q , with each error vector

e i ← DZm ,αq and τ=AHF(t ). Defining E = [e1| · · · |e`] ∈Zm×`, we have

ft ,y = ∑̀
i=1

yi ·Ct ,i −A(τ)> ·sy = G>
0 ·X · y +E · y mod q.

We know from [MP12] that Λ⊥(G0) has a public trapdoor T0 ∈ Zm×m such that

G0 ·T0 = 0 mod q and ‖T>
0 ‖∞ ≤ log q where ‖T>

0 ‖∞ := supx 6=0
‖T>

0 ·x‖∞
‖x‖∞ . By using

this short trapdoor, we are able to recover X · y ∈Zn0 in the following way: observe
that T>

0 ·ft ,y = T>
0 ·E·y mod q . By [MR07, Lemma 4.4], we can bound the Euclidean

norm of a Gaussian vector e ←-DZ`,αq by ‖e‖ ≤p
` ·αq with probability exponen-

tially close to 1. It comes that

‖E‖∞ = max
i∈[m]

∑̀
j=1

|ei , j | ≤
p
` ·max

i∈[m]

√√√√∑̀
j=1

e2
i , j ≤ ` ·αq.

Moreover, the hypotheses imply

‖T>
0 ·E · y‖∞ ≤ ‖T>

0 ‖∞ · ‖E‖∞ · ‖y‖∞ ≤ log q ·` ·αq ·Y < q/2.

Hence, T>
0 · ft ,y mod q actually reveals T>

0 ·E · y over Zm . Since T>
0 is a Z-basis, it

comes that we can recover E · y ∈Zm , at which point we also get X · y mod q . Since
‖X·y‖∞ ≤ `·X ·Y < q/2 by hypothesis, the modular product X·y mod q is nothing
but X · y ∈Zn0 .

We now prove the security of the scheme in the sense of Definition 5.3 (and
thus Definition 5.2 modulo some loss of tightness in the reduction).

For the current parameters n1 = λd , q = 2λ
d−1

, and α1 = 2−λd−1+d logλ, α1q =
Ω(

p
n1), we know from [Reg05] that LWEq,n1,α1 is at least as hard asGapSVPγ, with

γ= Õ(n1/α1) = Õ(2λ
d−1

). The best known algorithms [Sch87] for solving GapSVPγ

run in 2
Õ

(
n1

logγ

)
, which for our parameters is 2Õ(λ).

Theorem 5.2. Under the LWEq,m,n1,α1 assumption, the above MCFE scheme pro-
vides adaptive security.

Proof. The proof considers a sequence of games. In each game, we denote by Wi

the event that b′ = b. For each i , the adversary’s advantage function in Gamei is
Advi

A (λ) := |Pr[b′ = b]−1/2| = 1
2 · |Pr[b′ = 1 | b = 1]−Pr[b′ = 1 | b = 0]|.
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5.3. LWE based MCFE for Linear Functions

Game0: This is the real security game. We denote by t? the tag of the challenge
phase while t (1), . . . , t (Q) are the tags involved in encryption queries. Namely,
for each j ∈ [Q], t ( j ) stands for the j -th distinct tag involved in an encryption
query. Since up to ` encryption queries (i , x i , t ) are allowed for each tag t ,
the adversary can make a total of ` ·Q encryption queries. The game begins
with the challenger initially choosing encryption keys {eki }`i=1 by sampling
eki = si ←-DZn ,σ for each i ∈ [`]. In addition, the challenger flips a fair coin
b ←- U ({0,1}) which will determine the response to challenge queries. At
each corruption query i ∈ [`], the adversary obtains eki and the challenger
updates a set C S := C S ∪ {i }, which is initially empty. At each encryption

query (i , x ( j )
i , t ( j )), the challenger samples e( j )

i ←-DZm ,αq and returns

C( j )
t ,i = G>

0 · x ( j )
i +A(τ( j ))> ·si +e( j )

i ∈Zm
q ,

where τ( j ) = AHF(t ( j )). In the challenge phase, the adversary A chooses a
fresh tag t? and two vectors of messages X?0 = [x?0,1 | . . . | x?0,`] ∈ [−X , X ]n0×`

and X?1 = [x?1,1 | . . . | x?1,`] ∈ [−X , X ]n0×` subject to the constraint that, for any

private key query y ∈ [−Y ,Y ]` made by A , we must have X?0 ·y = X?1 ·y overZ.
In addition, the invariant that x?0,i = x?1,i for any i ∈C S must be satisfied at
any time during the game. In response to a challenge query (i , x?0,i , x?1,i , t?),
the challenger generates a challenge ciphertext Ct?,i , where

Ct?,i = G>
0 · x?b,i +A(τ?)> ·si +e?i , (5.2)

where τ? =AHF(t?) and e?i ←-DZm ,αq for all i ∈ [`].

When A halts, it outputs b̂ ∈ {0,1} and the challenger defines b′ := b̂. We
have AdvA (λ) := |Pr[W0]−1/2|, where W0 is event that b′ = b.

Game1: This game is identical to Game0 except for the following changes. The
challenger runs K ← AdmSmp(1λ,Qmax,δ) to generate a key K ∈ {0,1,⊥}L

for a balanced admissible hash function AHF : {0,1}`t → {0,1}L , where δ :=
AdvA (λ) and Qmax is the maximum number of distinct tags that the ad-
versary queries during the game. When the adversary halts and outputs
b̂ ∈ {0,1}, the challenger checks if the conditions

PK (t (1)) = ·· · = PK (t (Q)) = 1 ∧ PK (t?) = 0 (5.3)

are satisfied. If conditions (5.3) do not hold, the challenger ignores A ’s out-
put b̂ ∈ {0,1} and overwrites it with a random bit b′′ ←- {0,1} to define b′ = b′′.
If conditions (5.3) are satisfied, the challenger sets b′ = b̂. By Lemma 2.17,

|Pr[W1]−1/2| ≥ γmin ·AdvA (λ)− 1

2
· (γmax −γmin),

where the right hand side is a noticeable function in λ.
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5. MULTI-CLIENT FUNCTIONAL ENCRYPTION FROM LWE

Game2: In this game, we modify the generation of mpk in the following way. Ini-
tially, the challenger samples a uniformly random matrix A ←- U (Zn×m

q ).
Next, for each i ∈ [L], it samples Ri ,0,Ri ,1 ←-U ({−1,1})m×m and defines the
public matrices {Ai ,0,Ai ,1}L

i=1 as follows: for all i ∈ [L] and j ∈ {0,1}

Ai , j :=
{

A ·Ri , j if ( j 6= Ki ) ∧ (Ki 6=⊥)
A ·Ri , j +G if ( j = Ki ) ∨ (Ki =⊥)

(5.4)

Since A ∈ Zn×m
q was chosen uniformly, the Leftover Hash Lemma ensures

that {Ai ,0,Ai ,1}L
i=1 are statistically independent and uniformly distributed over

Zn×m
q . It follows that |Pr[W2]−Pr[W1]| ≤ L ·2−λ.

We note that, at each encryption query (i , x ( j )
i , t ( j )), the admissible hash func-

tion maps t ( j ) to τ( j ) =AHF(t ( j )), which is itself mapped to a GSW encryption

A(τ( j )) = A ·Rτ( j ) + (
L∏

i=1
µi ) ·W>, (5.5)

of a product
∏L

i=1µi , for some small norm matrix Rτ( j ) ∈Zm×m , where

µi :=
{

0 if (AHF(t ( j ))i 6= Ki ) ∧ (Ki 6=⊥)
1 if (AHF(t ( j ))i = Ki ) ∨ (Ki =⊥)

If conditions (5.3) are satisfied, at each encryption query (i , x( j )
i , t ( j )), the admissi-

ble hash function ensures that τ( j ) =AHF(t ( j )) satisfies

A(τ( j )) = A ·Rτ( j ) ∀ j ∈ [Q], (5.6)

for some small norm Rτ( j ) ∈Zm×m . Moreover, the challenge tag t? is mapped to an
L-bit string τ? =AHF(t?) such that

A(τ?) = A ·Rτ? +W> = A ·Rτ? +V> ·G0 (5.7)

Game3: In this game, we modify the distribution of mpk and replace the uniform
matrix A ∈Zn×m

q by a lossy matrix such that

A> = Â> ·C+E ∈Zm×n
q , (5.8)

where Â ←-U (Zn1×m
q ), C ←-U (Zn1×n

q ) and E ←- DZm×n ,α1q , for n1 ¿ n. The

matrix (5.8) is thus “close” to a matrix Â> · C of much lower rank than n.
Under the LWE assumption in dimension n1 with error rate α1, this change
should not significantly affect A ’s behavior and a straightforward reduction

B shows that |Pr[W3]−Pr[W2]| ≤ n · Adv
LWEq,m,n1,α1

B
(λ), where the factor n

comes from the use of an LWE assumption with n secrets.
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5.3. LWE based MCFE for Linear Functions

Game4: In this game, we modify the encryption oracle. At each encryption query

(i , x ( j )
i , t ( j )), the challenger generates the ciphertext by computing:

C( j )
t ,i = G>

0 · x ( j )
i +R>

τ( j ) · Â> ·C ·si +e( j )
i ∈Zm

q , (5.9)

and for each challenge query (i , x?0,i , x?1,i , t?) the challenger replies with:

Ct?,i = G>
0 · x?b,i +

(
R>
τ? · Â> ·C+G>

0 ·V
) ·si +e?i ∈Zm

q (5.10)

where e( j )
i ←-DZm ,αq and e?i ←-DZm ,αq . The only difference between Game3

and Game4 is thus that the terms R>
τ( j ) · E · si + e( j )

i and R>
τ?

· E · si + e?i are

replaced by e( j )
i and e?i respectively, at each encryption or challenge query.

However, the smudging lemma (Lemma 2.9) ensures that the two distribu-
tions are statistically close as long asα is sufficiently large with respect toα1

and σ. Concretely, Lemma 5.3 implies |Pr[W4]−Pr[W3]| ≤ ` · (Q +1) ·2−Ω(λ).

Game5: This game is like Game4 but we modify the challenge oracle. Instead of
encrypting X?b = [x?b,1 | . . . | x?b,`] as in (5.10), the challenger encrypts a linear

combination of X?0 and X?1 . It initially chooses a uniformly random γ ←-
U (Zq ) and, at each challenge query (i , x?0,i , x?1,i , t?), computes Ct?,i as

Ct?,i = G>
0 · ((1−γ) · x?b,i +γ · x?1−b,i

)+ (
R>
τ? · Â> ·C+G>

0 ·V
) ·si +e?i ,

with e?i ←-DZm ,αq , for all i ∈ [`]. Lemma 5.4 shows that Game4 and Game5

are negligibly far part as |Pr[W5]−Pr[W4]| ≤ 2−Ω(λ).

In Game5, we have Pr[W5] = 1/2 since the challenge ciphertexts (C?
t ,1, . . . ,C?

t ,`)
reveal no information about b ∈ {0,1}.

Lemma 5.3. Let Rτ ∈ Zm×m be as in equation (5.5). Let E ←- DZm×n ,α1q and s ←-
DZn ,σ. If α1q =ω(

√
logn), σ =ω(

√
logn) and α ≥ 2λ ·L ·m4 ·n3/2 ·α1 ·σ, we have

the statistical distance upper bound ∆
(
DZm ,αq , R>

τ ·E ·s+DZm ,αq
)≤ 2−λ.

Proof. If the matrices Ai , j = A · Ri , j + µi , j · G ∈ Zn×m , for i ∈ [L] and j ∈ {0,1},
with Ri , j ← {−1,1}m×m and µi , j ∈ {0,1}, defined as in equation (5.4), then Rτ =
R′
τ ·G−1(W>), where R′

τ is given below:

R′
τ = R1,τ1 ·G−1 (

A2,τ2 ·G−1 (
A3,τ3 ·

(· · ·G−1 (
AL,τL

))))
+τ1 ·R2 ·G−1 (

A3,τ3 ·
(· · ·G−1 (

AL,τL

)))
+x1 · x2 ·R3 ·G−1 (

A4,τ4 ·
(· · ·G−1 (

AL,τL

)))
...

+τ1 ·τ2 · · ·τL−2 ·RL−1 ·G−1(AL,τL

)
+τ1 ·τ2 · · ·τL−1 ·RL
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5. MULTI-CLIENT FUNCTIONAL ENCRYPTION FROM LWE

R>
τ is thus a sum of L terms of products of at most 3 binary matrices. Since each

binary matrix has infinity norm less than m we obtain the upper bound ‖R>
τ ‖∞ ≤

L ·m3. By [MR07, Lemma 4.4], we can bound the Euclidean norm of a Gaussian
vector e ←-DZn ,α1q by ‖e‖ ≤p

n ·α1q , with probability exponentially close to 1. We
thus obtain

‖E‖∞ = max
i∈[m]

n∑
j=1

|ei , j | ≤
p

n ·max
i∈[m]

√√√√ n∑
j=1

e2
i , j ≤ n ·α1q,

so that ‖R>
τ ·E · s‖∞ ≤ ‖R>

τ ‖∞ · ‖E‖∞ · ‖s‖∞ ≤ Lm3 ·nα1q ·σpn. By Lemma 2.9, the

statistical distance to be bounded is at most ≤ m · Lm3·nα1q·σpn
αq = 2−λ.

Lemma 5.4. We have |Pr[W5]−Pr[W4]| ≤ 2−Ω(λ).

Proof. To prove the result, we resort to a technique of guessing in advance the
difference X?1−b − X?b , which was previously used in [Wee14, BBL17] and can be
seen as complexity leveraging with respect to a statistical argument. We consider
the following variants of Game4 and Game5, respectively.

We define Game′
4 and Game′

5 simultaneously by using an index k ∈ {4,5}:

Game′
k : This game is like Gamek with one difference in the setup phase. To gener-

ate mpk, the challenger generates a statistically uniform U ∈Z(n0+n1)×n
q with

a trapdoor TU (Lemma 2.8) for the lattice Λ⊥(U). Then, B parses U as

U =
[

V
C

]
∈Z(n0+n1)×n

q ,

where V ∈ Zn0×n
q and C ∈ Zn1×n

q are statistically independent and uniform
over Zq . Next, it computes

A> = Â> ·C+E ∈Zm×n
q ,

where Â ←-U (Zn1×m
q ) and E ←- DZm×n ,α1q . The obtained matrix A ∈ Zn×m

q is
then used to generate {Ai , j }i∈[L], j∈{0,1} as per (5.4). The upper part V ∈Zn0×n

q

of U is included in mpk, the distribution of which is statistically close to that
of Gamek : we indeed have |Pr[W ′

k ]−Pr[Wk ]| ≤ 2−Ω(λ).

We do the same as above and define Game′′4 and Game′′5 simultaneously by
using an index k ∈ {4,5}:

Game′′
k : This game is identical to Game′

k with the following difference. At the out-

set of the game, the challenger randomly chooses∆X ←-U ([−2X ,2X ]n0×`) as
a guess for the difference X?1−b −X?b between the challenge messages X?0 ,X?1 .
In the challenge phase, the challenger checks if ∆X = X?1−b −X?b . If not, it

aborts and replaces A ’s output b̂ with a random bit b′′ ←-U ({0,1}). If the
guess for X?1−b −X?b was successful (we call Guess this event), the challenger
proceeds exactly as it did in Game′

k .

122



5.3. LWE based MCFE for Linear Functions

Since the choice of ∆X ←-U ([−2X ,2X ]n0×`) is completely independent of A ’s
view, we clearly have Pr[Guess] = 1/(4X )n0`. Since Game′′

4 is identical to Game′
4

when Guess occurs, this implies Adv4′
A (λ) = (4X )n0` ·Adv4′′

A (λ). Indeed,

Adv4′′
A (λ) := 1

2
· |Pr[b′ = 1 | b = 1,Guess] ·Pr[Guess]+ 1

2
·Pr[¬Guess]

−Pr[b′ = 1 | b = 0,Guess] ·Pr[Guess]− 1

2
·Pr[¬Guess]|

= 1

2
·Pr[Guess] · |Pr[b′ = 1 | b = 1,Guess]−Pr[b′ = 1 | b = 0,Guess]|

= Pr[Guess] ·Adv4′
A (λ) = 1

(4X )n0`
·Adv4′

A (λ)

and we can similarly show that Adv5′
A (λ) = (4X )n0` ·Adv5′′

A (λ).

Game′′′
5 : This game is identical to Game′′

4 except that encryption keys {eki }`i=1 are

replaced by alternative encryption keys {ek′i }`i=1, which are generated as fol-
lows. After having sampled eki = si ←- DZn ,σ for all i ∈ [`], the challenger
chooses γ←-U (Zq ) and uses the trapdoor TU for Λ⊥(U) to sample a small-
norm matrix T ∈Zn×n0 (Lemma 2.8, Remark 1) satisfying

U ·T =
[
γ · In0

0n1×n0

]
mod q, (5.11)

so that V ·T = γ · In0 mod q and C ·T = 0n1×n0 mod q . For each i ∈ [`], the
alternative key ek′i = s′i of user i is defined as:

s′i = si +T ·∆x i ∈Zn ∀i ∈ [`], (5.12)

where ∆x i is the i -th column of ∆X (i.e., the guess for x?1−b,i − x?b,i ). These

modified encryption keys {ek′i = s′i }`i=1 are used to answer all encryption
queries, to generate the challenge ciphertext and to answer functional de-
cryption key queries as well. At each corruption query i , the adversary is
also given ek′i instead of eki .

We first claim that, conditionally on Guess, Game′′′
5 is statistically close to Game′′

4 .
To see this, we first argue that trading {eki }`i=1 for {ek′i }`i=1 has no incidence on
queries made by a legitimate adversary:

- We have C · s′i = C · si mod q , so that encryption queries obtain the same

responses no matter which key set is used among {eki }`i=1 and {ek′i }`i=1.

- We have
∑`

i=1 s′i ·y i =∑`
i=1 si ·y i so long as the adversary only obtains private

keys for vectors y ∈ Z` such that (X?0 −X?1 ) · y = 0 (over Z). Thus functional
decryption queries are answered identically, regardless of which key set is
used.
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- For any corrupted user i ∈C S , it should be the case that x?0,i = x?1,i , mean-
ing that s′i = si as long as Guess occurs.

This implies that Game′′′
5 is identical to Game′′

4 , except that users’ secret keys are
defined via (5.12) and thus have a slightly different distribution. Lemma 5.5 shows
that the statistical distance between the distributions of {s′i }`i=1 and {si }`i=1 is at

most 2−λ · (4X )−n0`. This implies that Game′′
4 and Game′′′

5 are statistically close
assuming that Guess occurs. When Guess does not occur, both games output a
random b′ ←-U ({0,1}), so that |Pr[W ′′′

5 ]−Pr[W ′′
4 ]| ≤ 2−λ · (4X )−n0`.

We finally claim that, from the adversary’s view Game′′′
5 is identical to Game′′

5 .
Indeed, our choice of T ensures that V ·T = γ · In0 mod q , so that we have V · s′i =
V ·si +γ · (x?1−b,i −x?b,i ) mod q . This implies

Ct?,i = G>
0 · x?b,i + (R>

τ? · Â> ·C+G>
0 ·V) ·s′i +ei

?

= G>
0 · ((1−γ) · x?b,i +γ · x?1−b,i

)+ (R>
τ? · Â> ·C+G>

0 ·V) ·si +ei
?

which is exactly the distribution from Game′′5 .

Putting the above altogether, we find |Pr[W ′′
4 ] − Pr[W ′′

5 ]| ≤ 2−Ω(λ) · (4X )−n0`,
which in turn implies |Pr[W4]−Pr[W5]| ≤ 2−Ω(λ), as claimed.

Lemma 5.5. If σ≥ 2λ ·n0 · (4X )n0`+1 ·ω(n2
√

logn), then we have the inequality

∆
(
DZn ,σ,T ·∆xi +DZn ,σ

)≤ 2−λ · (4X )−n0`.

Proof. By Lemma 2.8, Remark 1, each column of T has norm smaller than:

‖ti‖ ≤O(
√

n · (n0 +n1) log q) ·ω(
√

logn) = n ·ω
(√

logn
)

,

so that ‖T ·∆x i‖∞ ≤ ‖T ·∆x i‖ ≤ 2X n0 ·n ·ω(
√

logn). By Lemma 2.9, the considered

distance is smaller than n · 2X n0·n·ω(
p

logn)
σ ≤ 2−λ · (4X )−n0`.

5.4 One-or-less Compiler

5.4.1 Adaptive Multi-Instance PRFs

In order to achieve 1-or-less-IND security (Definition 5.4), our compiler uses as
a building block a pseudo-random function family that satisfies a definition of
adaptive multi-instance PRF. This notion is defined as follows.

Definition 5.5 (ad-mi-PRF). An efficiently computable function F : K ×X →Y is
an adaptively secure N -instance PRF, for some N ∈ poly(λ), if no PPT adversary A

has non-negligible advantage in winning the following game.
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5.4. One-or-less Compiler

Initialization: The challenger C samples N secret keys k1,k2, . . .kN from the key
space K and a uniformly random bit b ←-U ({0,1}).

Queries. The adversary A adaptively interleaves the following kinds queries:

Evaluation: Upon receiving a query Eval(i , X ), where i ∈ [N ] and X ∈X , the
challenger returns ⊥ if it previously replied to a challenge query for the
same pair (i , X ). Otherwise, it replies with Fki (X ) ∈Y .

Corruption: When the adversary makes a query Corrupt(i ), the challenger
returns ⊥ if it previously replied to a challenge query for i . Otherwise,
the challenger returns ki ∈K .

Challenge: A makes challenge queries Challenge(i , X?) for a unique arbi-
trary input X? (any subsequent challenge query involving a different
input X 6= X? is ignored). If Eval(i , X?) or Corrupt(i ) was queried be-
fore, the challenger returns ⊥. Else, it returns Fki (X?) if b = 1 and a
uniformly random value from Y if b = 0.

Guess. A outputs a guess b′ ∈ {0,1} and wins if b′ = b.

The adversary’s advantage is Advad-mi-PRF
A (λ) := ∣∣Pr[b′ = b]− 1

2

∣∣ .

It is possible to show that any PRF that provides single-instance security in
the sense of a “find-then-guess” (Definition 2.12) is also secure in the sense of the
above Definition 5.5. In short, the proof of Proposition 5.3 proceeds using a hybrid
argument over the challenge queries and guesses the index of an uncorrupted in-
dex in each hybrid. However, this reduction incurs a quadratic security loss in N .

Proposition 5.3. If F : K ×X → Y is a secure PRF (Def. 2.12) then it is also a
secure N -instance ad-mi-PRF. Moreover, if there exists an adversary A that breaks
the ad-mi-PRF we give a reduction B that breaks the standard PRF security such
that:

Advad-mi-PRF
A (λ) ≤ N 2 ·AdvFG

B (λ)

Proof. To prove the above result we use a sequence of hybrid games. We define
each game Hk for k ∈ {0,1,2, . . . , N } very similar to the ad-mi-PRF game. In game
Hk the challenger starts by sampling N secret keys for the PRF k1,k2, . . . ,kN . To an-
swer evaluation and corruption queries that are made in an adaptive manner, the
challenger proceeds exactly as in the ad-mi-PRF game. Concretely, for an evalua-
tion query for the pair (i , X ) ∈ [N ]×X , the challenger returns F (ki , X ). Corruption
queries for any index i are answered with ki . Challenge queries are answered dif-
ferently from the original security game. In game Hk , the first k challenge queries
are answered with honest evaluations of the PRF and the rest are answered with
uniformly random values. As in the ad-mi-PRF game, corruption queries and chal-
lenge queries on the same index are not compatible. Also, the challenge input X?

should not appear as an evaluation queries.
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Notice that an efficient adversary that is able to win the ad-mi-PRF security
game is able to distinguish between games H0 and HN . We prove below that any
two consecutive games are computationally indistinguishable, thus completing
the proof. Assume there exits an efficient algorithm Ak that distinguishes between
Game Hk and Hk+1 with non-negligible advantage. We give an efficient adversary
Bk that breaks the find-then-guess PRF security game.

The reduction Bk starts by sampling the uniformly random value i0 ←-U ([N ]),
which represents a guess for the index for the (k+1)-th challenge query that Ak will
make. Then it samples the keys k1,k2, . . . ,ki0−1,ki0+1, . . . ,kN . Notice the reduction
is able to answer corruption, challenge and evaluation queries for any [N ] \ {i0}.
If the adversary makes an evaluation query for (i0, X ) ∈ [N ] ×X , the reduction
makes an evaluation query for X ∈X to its challenger and receives F (ki0 , X ). The
value is relayed to the adversary as a response. If a corruption query is made for
i0 the reduction aborts. When the adversary makes a challenge query for (i0, X ) ∈
[N ]×X , the reduction makes a challenge query on X? to its challenger to receive
yb , which is either the honest evaluation F (ki0 , X?) or a uniformly random value.
The value yb is given to Ak as a response to the challenge query. At the end of
the game, the reduction outputs the same bit as the adversary Ak . Notice that
depending on the nature of the value yb , the view of the adversary is either as
in Hk or Hk+1. This means that the advantage of Bk in breaking the PRF is the
same as the advantage of Ak , provided that the guess of i0 was right. Since the
probability of a right guess is 1/N , and we have N transitions between the hybrid
games, we obtain the quadratic loss in security of N 2.

The N 2 security loss from the above reduction translates into an `5 loss factor
for the actual compiler, where ` is the number of clients in the MCFE scheme. This
is because Lemma 5.8 uses a reduction with N = `2 PRF instances, which gives a
degradation factor `4, which eventually becomes `5 because of the bound (5.13).

The PRF described in Section 3.4.2 can be proven secure in the sense of Defini-
tion 5.5 without the O(N 2) loss in the reduction. This gives a compiler that works
under the LWE assumption, with a loss factor that is linear in `, the number of
clients. Since our MCFE scheme from Section 5.3.2 relies on the LWE assump-
tion anyway, we do not need an extra assumption in order to use the compiler. In
comparison, the compiler of [ABG19] loses a factor O(`2) but works with any PRF.

Theorem 5.6. The PRF from Section 3.4.2 is also ad-mi-PRF secure, under the LWE
assumption. Moreover, for any efficient adversary A , there exists an efficient reduc-
tion B such that:

Advad-mi-PRF
A (λ) ≤ n ·Adv

LWEq,m,n′ ,α
B

(λ)+2−Ω(λ).

The proof is essentially identical to the proof of Theorem 3.3. Intuitively, it ex-
ploits the fact that the reduction knows the secret keys at any time, which makes it
easy to consistently answer adaptive corruption queries. The details can be found
in [LŢ19].
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5.4.2 The Compiler

The compiler is similar to the random-oracle-based transformation of Abdalla et
al. [ABKW19, Section 4.2] – which is itself inspired by [ACF+18] – and its intuition
is the following. The ciphertexts of individual slots contain partial MCFE cipher-
texts Encrypt′(ek′i , xi , t ) which are super-encrypted using a symmetric encryption
scheme with secret key Kt ,i . The partial ciphertexts of the compiled scheme also
contain shares ki j t of the secret key Ki ,t in such a way that, once all the partial
ciphertexts are gathered for a given tag t , the decryptor can recover the secret
Kt ,i = ⊕`

j=1 ki j t and thus the encryption Encrypt′(ek′i , xi , i ). If only one such ci-
phertext is missing, then the secret key Kt ,i remains computationally hidden be-
cause the decryptor does not have all the shares. The symmetric encryption layer
thus hides all the information that could leak when the adversary does not make
encryption queries for all uncorrupted slots.

Given a scheme MC FE ′ = (Setup′,Encrypt′,DKeygen′,Decrypt′), an adap-
tively secure `2-instances ad-mi-PRF F : K ×T → {0,1}λ and a pseudo-random
generator G : {0,1}λ → {0,1}|ct

′|, where |ct′| is the length of the output of the algo-
rithm Encrypt′, we obtain the following compiled scheme MC FE .

Setup(cp,1`) : Runs (mpk′,msk′, {ek′i }`i=1) ← Setup′(cp,1λ). Samples `2 secret keys
ki j ←- K for all i , j ∈ [`]. Then, set mpk := mpk′ msk := msk′ and eki :=(
ek′i , {ki j ,k j i } j∈[`]

)
Encrypt(eki , xi , t ) : Given eki =

(
ek′i , {ki j ,k ′

j i }`j=1

)
it computes ki j t := Fki j (t ), k j i t :=

Fk j i (t ) for all j ∈ [`], C ′
t ,i := Encrypt′(ek′i , xi , t ) and Kt ,i := ⊕`

j=1 ki j t . Next, it

computes Ct ,i :=C ′
t ,i ⊕G(Kt ,i ). It outputs ctt ,i =

(
Ct ,i , {k j i t }`j=1

)
.

DKeygen(msk, f ) : Given msk and an `-argument function f : M ` → R. It out-
puts a functional decryption key dk f :=DKeygen′(msk′, f ).

Decrypt(dk f , t , {ctt ,1,ctt ,2, . . . ,ctt ,`}) : Takes as input a functional decryption key
dk f , a tag t ∈ T , and an `-vector of ciphertexts C = (ctt ,1, . . . ,ctt ,`). For

all i ∈ [`] it computes Kt ,i = ⊕`
j=1 ki j t and C ′

t ,i := Ct ,i ⊕G(Kt ,i ) and runs

Decrypt′
(
dk f , t , {C ′

t ,1,C ′
t ,2, . . . ,C ′

t ,`}
)

The security proof relies on the idea that, if the adversary A does not make
all the allowed challenge encryptions queries, there must exist an honest slot j0 ∈
H S such that CQEncrypt( j0, x0?

j0
, x1?

j0
, t?) is never asked. This ensures that none

of the PRF values {ki j0t? = Fki j0
(t?)}i∈H S is ever exposed to the adversary, which

implies that {ki j0t?}i∈H S are pseudo-random in the adversary’s view since F is a
PRF. This implies that secret keys Kt?,i := ⊕`

j=1 ki j t? are also pseudo-random for

all i ∈ H S . Hence, the ciphertexts Ct?,i = Encrypt′(ek′i , xi , i )⊕G(Kt?,i ) computa-
tionally hide the xi ’s for all uncorrupted slots i . To translate this intuition into a
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formal security proof, we need a PRF family that provides security in the sense of
Definition 5.5.

Theorem 5.7. If MC FE ′ is 1ch-IND secure then the compiled MC FE scheme is
1-or-less-IND secure. Moreover, if A breaks the security of the MC FE scheme, we
give a reduction B that breaks the security of the MC FE ′ such that:

Adv1-or-less
A (λ) ≤ Adv1ch-IND

B (λ)+` ·Advad-mi-PRF(λ)+AdvPRG(λ)

Proof. Given an adversary A that breaks the MC FE scheme by winning the
game of Definition 5.4 with non-negligible probability, we give an efficient reduc-
tion B that wins the game of Definition 5.3 with noticeable advantage, thus break-
ing the MC FE ′ scheme. The algorithm B works as follows.

Initialization: The challenger C gives B the public parameters mpk′ and keeps
to itself the secret keys (msk′, {ek′i }`i=1). In order to initialize the game with
A , the reduction B samples `2 secret keys ki j ←-K for all i , j ∈ [`]. Then
gives A the public parameters mpk :=mpk′.

Encryption queries: For each encryption query QEncrypt(i , x, t ) made by A , B

sends to same query to its challenger and obtains C ′
t ,i = Encrypt′(ek′i , x, t ).

Then, B computes
{

ki j t := Fki j (t ),k j i t := Fk j i (t )
}`

j=1
, Kt ,i :=⊕`

j=1 ki j t , Ct ,i :=
C ′

t ,i ⊕G(Kt ,i ) and gives ctt ,i := (Ct ,i , {k j i t }`j=1) to A .

Challenge queries: If A makes a query CQEncrypt(i , x?0
i , x?1

i , t?), B relays it to

its challenger and obtains C ′
t?,i := Encrypt′(ek′i , x?b

i , t?). Then, B computes{
ki j t? := Fki j (t?),k j i t? := Fk j i (t?)

}`
j=1

, Kt?i := ⊕`
j=1 ki j t? , as well as Ct?,i :=

C ′
t?,i ⊕G(Kt?i ). The adversary A is given ctt?i := (Ct?i , {k j i t?}`j=1).

Functional decryption key queries: Each query QDKeygen( f ) made by A is re-
layed by B to its challenger, which replies with dk′f . Then, B gives dk f :=
dk′f to A .

Corruption queries: For each corruption query QCorrupt(i ) that A makes, the

reduction B replies with eki :=
(
ek′i , {ki j ,k j i }`j=1

)
, where ek′i is the key given

by its challenger in response to the same corruption query.

Finalize: When A outputs a result b′, B distinguishes two situations.

- If A makes queries CQEnc(i ,?,?, t?) for all slots i ∈H S and the con-
ditions of the Finalize step in Definition 5.4 are all satisfied (i.e., A ’s
output is not overwritten by a random bit β), B outputs the same bit
b̃ := b′ as A .

- Otherwise, B outputs a random b̃ ←-U ({0,1}). We call this eventAbort.
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Next, we analyze the probability of B winning the game.

Pr[b̃ = b] = Pr[b̃ = b|Abort] ·Pr[Abort]+Pr[b̃ = b|Abort] ·Pr[Abort]

= 1

2
·Pr[Abort]+Pr[b′ = b|Abort] ·Pr[Abort]

= Pr[b′ = b]+
(

1

2
−Pr[b′ = b|Abort]

)
·Pr[Abort]

= Pr[b′ = b]+
(

1

2
−Pr[b′ = b|abort]

)
·Pr[abort]

where abort is the event that B aborts the attack because A did not make all the
challenge queries for all honest slots (but all the other conditions from the Finalize
step in Def. 5.4 are satisfied). We can replace the event Abort with the event abort
in the equality above because, in the case A does not meet at least one of the other
conditions from the Finalize step, its output is the same as B’s, namely a uniformly
random bit.

In order to finish the proof, we need to prove the following claim.

Claim. If F is an ad-mi-PRF and G a PRG, then
∣∣Pr[b′ = b|abort]− 1

2

∣∣ is negligible.

Proof. Since we are in the setting where abort happens, we can consider that the
class of adversaries A is restricted to those who always satisfy the conditions of
the event abort, namely it does not make all the encryption queries for all honest
slots, but meets all the other conditions in the Finalize step. We will prove this
claim via a series of games. For each i ∈ {0,1,2}, we call Wi the event that b′ = b in
Gamei , i.e. the adversary A makes the correct guess and wins the game.

Game0: This is the original game in the one-or-less security experiment (Defi-
nition 5.4) for the compiled scheme. The challenger uniformly samples a
bit b ←-U ({0,1}) and then runs the setup algorithm of MC FE ′ to obtain
(mpk′,msk′, {ek′i }`i=1), samples ki j ←- K , for all i , j ∈ [`] and sets mpk :=
mpk′, msk :=msk′ and eki :=

(
ek′i , {ki j ,k j i }`j=1

)
. It gives mpk to A and han-

dles queries QCorrupt(i ) using eki := (ek′i , {ki j ,k j i }`j=1). To answer queries

QEnc(i , xi , t ), it computes the shares
{

ki j t := Fki j (t ),k j i t := Fk j i (t )
}`

j=1
and

the seed Kt ,i := ⊕`
j=1 ki j t . Then, it computes Ct ,i := Encrypt′(ek′i , xi , t ) ⊕

G(Kt ,i ). The adversary A is given ctt ,i :=
(
Ct ,i , {k j i t }`j=1

)
. To answer a chal-

lenge encryption queryCQEncrypt(i , x0
i , x1

i , t?), it replies withQEnc(i , xb
i , t?).

For functional decryption queries QDKeygen( f ,msk), the challenger replies
with dk f ←DKeygen′(msk′, f ). When A halts, it outputs a bit b′, so Pr[W0] =
Pr[b′ = b|abort] by definition.

Game1: The challenger interacts with A exactly as in Game0 except that, upon
receiving a challenge query CQEncrypt(i , x0

i , x1
i , t?), it does the following. If
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x0
i = x1

i , it replies as in Game0. Otherwise, for each slot i ∈ [`] such that

x0
i 6= x1

i , it samples a uniform value for Kt?,i ←-U ({0,1}λ) which it uses as a
seed for the pseudo-random generator G in order to compute Ct?,i .

Since we are conditioning on the event abort, there exists an index j0 ∈ H S

which is never the input to a query of the formCQEnc( j0, ·, ·, t?). Moreover, for any
index i such that x0

i 6= x1
i , corruption queries Corrupt(i ) are disallowed by the con-

ditions of the Finalize step which must be satisfied (recall that we are condition-
ing on event abort). The only information that A can gather about Kt?,i is thus
obtained from QEnc( j , x j , t ) and CQEnc( j , x0

j , x1
j , t?) queries. By making these

types of queries, A learns any {ki j t = Fki j (t )} for any i , j ∈ [`], any t ∈T \ {t?} and{
Fki j (t?)

}
j∈H S \{ j0}

, respectively. Intuitively the pseudo-randomness of F should

be enough to prove that Fki j0
(t?) is pseudo-random which implies that the key

Kt?i is also pseudo-random, and this assures that Game0 and Game1 are indistin-
guishable.

In order to prove that Game0 and Game1 are indeed computationally indistin-
guishable, we make use of another two intermediate games, Game′0 and Game′1
that are proved to be computationally indistinguishable. They are defined below.

Game′
d (d ∈ {0,1}): This game is identical to Gamed with the difference that the
challenger initially chooses j0 ←- U ([`]) as a guess for the smallest index
j0 ∈ H S such that no challenge query CQEnc( j0, ·, ·, t?) is ever made. As
soon as the guess turns out to be wrong, the challenger stops the interaction
and outputs a uniformly random bit b′ ←-U ({0,1}), instead of an output pro-
vided by A . For each d ∈ {0,1}, we have Pr[W ′

d ] = (`−1)/2`+1/` ·Pr[Wd ],
which is equivalent to:

Pr[Wd ] = ` ·
(
Pr[W ′

d ]− 1

2

)
+ 1

2

Notice that this implies |Pr[W0]−Pr[W1]| = ` · |Pr[W ′
0]−Pr[W ′

1]|, where the
event W ′

d is the event that b′ = b in Game′d .

Lemma 5.8 shows that Game′0 and Game′1 are computationally indistinguish-
able if F is a secure PRF in the multi-instance setting and G is a secure pseudo-
random generator.

Game2: This game is identical to Game1 except that the challenger responds to
challenge queries of the form CQEncrypt(i , x0

i , x1
i , t?) such that x0

i 6= x1
i , with

a uniformly random Ct?,i , as part of the ciphertext. In this game, we obvi-
ously have Pr[W2] = Pr[b′ = b|abort] = 1

2 , because the cipheretext does not
contain any information about the bit b.
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To see that Game1 and Game2 are computationally indistinguishable, recall that
Ct?,i = C ′

t?,i ⊕G(Kt?,i ). When the seed Kt?,i is uniformly generated, G(Kt?,i ) is
pseudo-random, hence Game1 and Game2 are computationally indistinguishable.
In particular, we thus obtain |Pr[W2]−Pr[W1]| ≤ AdvPRG(λ).

When combining the above, we obtain

|Pr[W0]−Pr[W2]| ≤ ` ·Advad-mi-PRF(λ)+AdvPRG(λ), (5.13)

which proves the result.

Lemma 5.8. If F is secure in the ad-mi-PRF sense, then Game′0 and Game′1 are com-
putationally indistinguishable. More precisely, for any distinguisher A , there exists
a PRF adversary B such that AdvA (λ) ≤ Advad-mi-PRF

B (λ).

Proof. Suppose that A is adistinguisher between the two games. We construct an
adversary B that breaks the ad-mi-PRF security of F when the challenger samples
N = `2 secret keys ki j ←-K for all i , j ∈ [`] in the game of Definition 5.5. Algorithm
B proceeds in the following way.

Initialization: B starts by drawing j0 ←-U ([`]) as a guess that j0 is the smallest
index such that no challenge query CQEncrypt( j0, ·, ·, t?) is made. Then, it
runs (mpk′,msk′, {ek′i }`i=1) ← Setup(1λ) and mpk :=mpk′ is given to A .

Corruption queries: In order to answer a corruption query Corrupt( j ), if j = j0

the reduction B stops the attack, since its guess for j0 was incorrect and
outputs the same bit as the distinguisher in this situation. Otherwise, it ob-
tains the values {k jτ,kτ j }`τ=1 by making corruption queries to its PRF chal-
lenger. Then, it replies with (ek′j , {k jτ,kτ j }`τ=1). Notice that, if j0 is a cor-
rect guess, we have j0 ∈H S , which implies that the adversary never learns
{k j0i ,ki j0 }i∈H S from corruption queries.

Encryption queries: To answerQEncrypt(i , x, t ) queries, B asks its PRF challenger

for the evaluations
{

ki j t := Fki j (t ),k j i t := Fk j i (t )
}`

j=1
and computes Kt ,i :=⊕`

j=1 ki j t . Then, it computes C ′
t ,i = Encrypt′(ek′i , x, t ) as well as Ct ,i :=C ′

t ,i ⊕
G(Kt ,i ). The ciphertext ctt ,i := (Ct ,i , {k j i t }`j=1) is given to A .

Challenge queries: When receiving a challenge query CQEncrypt(i , x0?
i , x1?

i , t?),
B stops the interaction if i = j0 and outputs the same guess bit b′ as the
distinguisher would in this situation. Otherwise, it considers the following
two cases.

- If x0?
i = x1?

i = x?i , then B responds as it would answer the encryption
query QEncrypt(i , x?i , t?).
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- If x0?
i 6= x1?

i (which is only possible if i ∈H S ), the reduction B asks its
challenger for the PRF evaluations {ki j t? := Fki j (t?)} j 6= j0 . It also makes
a challenge query for the input t? evaluated with the secret key ki j0 .
The challenger replies with a value yi j0t? , which is either the evaluation
Fki j0

(t?) for the unknown secret key ki j0 chosen by the PRF challenger
or a random value. Then, B computes Kt?,i := (

⊕
j 6= j0

ki j t?)⊕yi j0t? and

uses Kt?,i as a seed for the PRG, by computing C b
t?,i :=C b′

t?,i ⊕G(Kt?,i ).

The adversary A is given ctt ,i :=
(
C b

t ,i , {k j i t?}`j=1

)
.

Guess: The reduction B always outputs the same guess bit b′ as as the distin-
guisher A , when the interaction stops.

We now observe that, if B’s challenger always returns truly random values
yi j0t? at each challenge query, then A ’s view is identical to that of Game′1. If B’s
challenger always returns pseudo-random values, A ’s view is as in Game′0. We
thus conclude that Advad-mi-PRF

B (λ) ≥ AdvA(λ) .
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Chapter

6
Simulation-Sound NIZK
Arguments for LWE-based
Encryption

In this chapter we discuss the details of the generic transformations presented in
[LNPŢ19], that yield non-interactive zero-knowledge (NIZK) argument systems.
The first result is a generic compiler that gives multi-theorem NIZK arguments
directly from trapdoor Σ-protocols, assuming lossy encryption and correlation-
intractable hash functions.

Our second result improves the generic compiler, such that it directly trans-
forms trapdoor Σ-protocols into unbounded simulation-sound NIZKs. Again, we
need to assume some form of lossy encryption, correlation-intractable hash func-
tions but also one-time signatures. The observation that some forms of lossy en-
cryption admit an efficient opening is crucially used by the NIZK simulators in the
above results. An efficient opening is an algorithm that takes input a lossy cipher-
text and a message and outputs some randomness that explains the ciphertext as
the encryption of this particular message.

It is also possible to obtain unbounded simulation sound NIZK by combining
the generic NIZK techniques from [FLS99, SCO+01] and the latest results on in-
stantiating the Fiat-Shamir paradigm without random oracles [CLW19, PS19]. But
the resulting scheme would be terrible inefficient as it would have to go through
a Karp reduction to the graph Hamiltonicity language. Our results enable more
efficient NIZK constructions for languages of interest, because we can bypass the
Karp reduction.

We can apply these ideas to obtain the most efficient public-key scheme, key-
dependent message (KDM) [BRS02] secure against adaptive chosen-ciphertext at-
tacks (CCA2), under the standard LWE assumption. KDM security guarantees pri-
vacy even when the adversary gets encryptions of messages that depend of the
secret key itself. Constructions of public-key KDM-CCA2 secure schemes under
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lattice assumptions, were previously known to be possible from any KDM-CPA
scheme, by combining generic NIZK techniques [FLS99, SCO+01] and the recent
results of [CLW19, PS19] with the Naor-Yung [NY90] transform. Efficient KDM-
CCA constructions from standard DDH or DCR assumptions are known as well
[HLL16, KT18, KMT19], but not from lattice assumptions.

To construct more efficient KDM-CCA2 secure schemes under standard lattice
assumptions, we give a construction for a trapdoor Σ-protocol, that proves two
ciphertexts of the LWE-based KDM-CPA secure scheme of [ACPS09] encrypt the
same message. Together with the compiler for unbounded simulation-soundness,
it allows us to apply the Naor-Yung transform to the ACPS scheme. This yields the
most efficient public-key scheme, key-dependent message (KDM) secure under
chosen-ciphertext attacks (CCA2), under the standard LWE assumption.
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Organization

We start the last part of this thesis, with Section 6.1, by defining all the building-
blocks that we use in this chapter, together with their security properties. Next,
in Section 6.2 we give the construction and the security proof for the RBM-lossy
public-key encryption scheme with efficient opening, that we need for the un-
bounded simulation-sound NIZK transformation of Section 6.4. In Section 6.3 we
present the generic construction of multi-theorem NIZKs and discuss an applica-
tion of this result in Section 6.3.4.

6.1 Definitions

In this section we present the notions that we need for our results.

6.1.1 Trapdoor Sigma Protocols

Canetti et al. [CLW19] considered a definition of Σ-protocols that slightly differs
from the usual formulation [CDS94, Cra96].

Definition 6.1 (Adapted from [CLW19, AJW12]). Let a language L = (Lzk,Lsound)
associated with two NP relations Rzk,Rsound. A 3-move interactive proof systemΠ=
(Genpar,GenL ,P,V) in the common reference string model is a Gap Σ-protocol for
L if it satisfies the following conditions:

• 3-Move Form: The prover and the verifier both take as input crs= (par,crsL ),
with par ← Genpar(1λ) and crsL ← GenL (par,L ), and a statement x and
proceed as follows: (i) P takes in w ∈ Rzk(x), computes (a, st ) ← P(crs, x, w)
and sends a to the verifier; (ii)V sends back a random challengeChall from the
challenge spaceChSp; (iii)Pfinally sends a response z =P(crs, x, w,a,Chall, st )
to V; (iv) On input of (a,Chall,z), V outputs 1 or 0.

• Completeness: If (x, w) ∈ Rzk and P honestly computes (a,z) for a challenge
Chall, V(crs, x, (a,Chall,z)) outputs 1 with probability 1−negl(λ).

• Special zero-knowledge: There is a PPT simulator ZKSim that, on input of
crs, x ∈Lzk and a challengeChall ∈ChSp, outputs (a,z) ←ZKSim(crs, x,Chall)
such that (a,Chall,z) is computationally indistinguishable from a real tran-
script with challenge Chall (for w ∈ Rzk (x)).

• Special soundness: For any crs = (par,crsL ) obtained as par← Genpar(1λ),
crsL ← GenL (par,L ), any x 6∈ Lsound, and any first message a sent by P,
there is at most one challenge Chall= f (crs, x,a) for which an accepting tran-
script (crs, x,a,Chall,z) exists for some third message z. The function f is
called the “bad challenge function” of Π. That is, if x 6∈ Lsound and the chal-
lenge differs from the bad challenge, the verifier never accepts.
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Definition 6.1 is taken from [CLW19, AJW12] and relaxes the standard special
soundness property in that extractability is not required. Instead, it considers a
bad challenge function f , which may not be efficiently computable. Canetti et
al. [CLW19] define trapdoor Σ-protocols as Σ-protocols where the bad challenge
function is efficiently computable using a trapdoor. They also define instance-
dependent trapdoor Σ-protocol where the trapdoor τΣ should be generated as a
function of some instance x 6∈Lsound. Here, we use a definition where x need not
be known in advance (which is not possible for instance in applications to chosen-
ciphertext security, where x is determined by a decryption query) and the trapdoor
does not depend on a specific x. However, the common reference string and the
trapdoor may depend on the language.

The common reference string crs = (par,crsL ) consists of a fixed part par and
a language-dependent part crsL which is generated as a function of par and a lan-
guage parameter L = (Lzk,Lsound).

Definition 6.2 (Adapted from [CLW19]). AΣ-protocolΠ= (Genpar,GenL ,P,V) with
bad challenge function f for a trapdoor language L = (Lzk,Lsound) is a trapdoor
Σ-protocol if it satisfies the properties of Definition 6.1 and there exist PPT algo-
rithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈N and outputs public parameters par←Genpar(1λ).

• GenL is a randomized algorithm that, on input of public parameters par,
outputs the language-dependent crsL ←GenL (par,L ) of crs= (par,crsL ).

• TrapGen(par,L ,τL ) takes as input public parameters par and a membership-
testing trapdoor τL for the language Lsound. It outputs a common reference
string crsL and a trapdoor τΣ.

• BadChallenge(τΣ,crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par,crsL ), an
instance x, and a first prover message a. It outputs a challenge Chall.

In addition, the following properties are required.

• CRS indistinguishability: For any par← Genpar(1λ), and any trapdoor τL

for the language L , an honestly generated crsL is computationally indistin-
guishable from a CRS produced byTrapGen(par,L ,τL ). Namely, for any PPT
distinguisher A , we have

Advindist-Σ
A (λ) := |Pr[crsL ←GenL (par,L ) : A (par,crsL ) = 1]

−Pr[(crsL ,τΣ) ←TrapGen(par,L ,τL ) : A (par,crsL ) = 1]| ≤ negl(λ).

• Correctness: For all pairs (crsL ,τΣ) ← TrapGen(par,L ,τL ), where τL is a
language-specific trapdoor, and for any instance x 6∈Lsound we have

BadChallenge(τΣ,crs, x,a) = f (crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of Lsound.
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6.1.2 NIZKs and Simulation-Sound Proofs

We recall the definitions of NIZK proofs. Since it is sufficient for our applications,
we allow the common reference string to be generated as a function of the lan-
guage LR .

Definition 6.3. A non-interactive zero-knowledge (NIZK) argument system Π for
a class of NP relations R consists of four PPT algorithms (Genpar,GenL ,P,V) with
the following syntax:

• Genpar(1λ) inputs a security parameter λ and outputs public parameters par.

• GenL (1λ,R) takes as input a security parameter λ and the description of a
relation R ∈R which specifies a statement length N . It outputs the language-
dependent part crsL of the common reference string crs= (par,crsL ).

• P(crs, x, w) is a proving algorithm taking as input the common reference string
crs, a statement x ∈ {0,1}N and a witness w such that (x, w) ∈ R. It outputs a
proof π.

• V(crs, x,π) is a verification algorithm taking as input a common reference
string crs, a statement x ∈ {0,1}N , and a proof π. It outputs 1 or 0.

Moreover, Π should satisfy the following properties. For simplification we denote
below by Setup an algorithm that runs successively Genpar and GenL to generate a
common reference string.

• Completeness: For any (x, w) ∈ R, we have

Pr
[
crs← Setup(1λ,R), π←P(crs, x, w) :V(crs, x,π) = 1

]
≥ 1−negl(λ) .

• Soundness (non-adaptive): Let the language LR = {x | ∃w s.t. (x, w) ∈ R}
associated with R. For any x ∈ {0,1}N \LR and any PPT prover P∗, we have

Pr
[
crs← Setup(1λ,R), π← P∗(crs, x) :V(crs, x,π) = 1

]
≤ negl(λ) .

• Zero-Knowledge: There is a PPT simulator (Sim0,Sim1) such that, for any
PPT adversary A , we have

|Pr[crs← Setup(1λ,R) : A P(crs,·,·)(crs) = 1]

−Pr[(crs,τzk) ← Sim0(1λ,R) : A O (crs,τzk,·,·)(crs) = 1]| ≤ negl(λ) .

Here,P(crs, ·, ·) is an oracle that outputs⊥ on input of (x, w) 6∈ R and outputs a
valid proof π←P(crs, x, w) otherwise; O (crs,τzk, ·, ·) is an oracle that outputs
⊥ on input of (x, w) ∉ R and outputs a simulated proof π← Sim1(crs,τzk, x)
on input of a pair (x, w) ∈ R. Note that this simulated proof π is generated
independently of the witness w provided as input.1

1In particular, Sim1 can be run on any statement x, even x ∉LR . This is central in the definition
of unbounded simulation soundness (Definition 6.4).
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Definition 6.3 captures a notion of multi-theorem zero-knowledge, which al-
lows the adversary to obtain proofs for multiple statements. Feige et al. [FLS99]
gave a generic transformation of a multi-theorem NIZK argument system from a
single-theorem one (where the adversary can only invoke the oracle once).

SIMULATION-SOUNDNESS. We now recall the definition of simulation-soundness
introduced in [Sah99], which informally captures the adversary’s inability to cre-
ate a new proof for a false statement x? even after having seen simulated proofs
for possibly false statements {xi }i of its choice.

In the following, in order to allow a challenger to efficiently check the win-
ning condition (ii) in the security experiment, we restrict ourselves to trapdoor
languages, where a language-specific trapdoor τL makes it possible to determine
if a given statement x? ∈ {0,1}N belongs to the language LR with overwhelming
probability.

Definition 6.4 ([Sah99, SCO+01]). A NIZK argument system for a class of relations
R provides unbounded simulation soundness if no PPT adversary has noticeable
advantage in this game.

1. The challenger chooses a relation R ∈ R together with a membership testing
trapdoor τL that allows recognizing elements of LR . Let Sim = (Sim0,Sim1)
be an efficient NIZK simulator for LR . The challenger generates (crs,τzk) ←
Sim0(1λ,R) and gives (crs,τL ) to the adversary A .

2. A is given oracle access to Sim1(crs,τzk, ·). At each query, A chooses a state-
ment x ∈ {0,1}N and obtains π← Sim1(crs,τzk, x).

3. A outputs (x?,π?).

Let Q be the set of all simulation queries and responses (xi ,πi ) made by A . The
adversary A wins if the following conditions are satisfied: (i) (x?,π?) 6∈ Q; (ii)
x? 6∈ LR ; and (iii) V(crs, x?,π?) = 1. The adversary’s advantage Advuss

A (λ) is its
probability of success taken over all coin tosses.

6.1.3 Correlation Intractable Hash Functions

We consider unique-output searchable binary relations [CCH+19]. These are bi-
nary relations such that, for every x, there is at most one y such that R(x, y) = 1
and y is efficiently computable from x.

Definition 6.5. A relation R ⊆X×Y is searchable in size S if there exists a function
f : X →Y which is computable by a size S boolean circuit such that, if there exists
y such that (x, y) ∈ R, then f (x) = y.

Lettingλ ∈N denote a security parameter, a hash family with input length n(λ)
and output length m(λ) is a collection H = {hλ : {0,1}s(λ) × {0,1}n(λ) → {0,1}m(λ)}
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of keyed hash functions implemented by efficient algorithms (Gen,Hash), where
Gen(1λ) outputs a key k ∈ {0,1}s(λ) and Hash(k, x) computes a hash value hλ(k, x) ∈
{0,1}m(λ).

Definition 6.6. For a relation class R = {Rλ ⊆ {0,1}n(λ) × {0,1}m(λ)}, i.e. a set of re-
lations for each λ, a hash function family H = {hλ : {0,1}s(λ)×{0,1}n(λ) → {0,1}m(λ)}
is R-correlation intractable if, for any probabilistic polynomial time (PPT) adver-
sary A there is a negligible function ν, such that for any R ∈Rλ we have

Pr
[

k ←Gen(1λ), x ←A (k) : (x,hλ(k, x)) ∈ R
]
≤ ν(λ).

Definition 6.7 ([CLW19, CCH+19]). Given a relation ensemble R = {Rλ}, a hash
family H is somewhere statistically correlation intractable w.r.t. R if there is an
efficient algorithm StatGen with the following properties:

• StatGen(1λ,aux) is a fake key generation that takes as input a security pa-
rameter λ and an auxiliary input aux. It outputs a hashing key k.

• For any relation R ∈ Rλ, there is an auxiliary input auxR with the following
properties:

- Key indistinguishability: The distributions {k | k ← Gen(1λ)} and {k |
k ← StatGen(1λ,auxR )} are computationally indistinguishable. For any
PPT distinguisher A , the following function should be negligible:

Advindist-CI
A (λ) := |Pr[k ←Gen(1λ) : A (k,auxR ) = 1]

−Pr[k ← StatGen(1λ,auxR ) : A (k,auxR ) = 1]| .

- Statistical Correlation Intractability: With overwhelming probability
over the choice of k ← StatGen(1λ,auxR ), no pair (k,h(k, x)) satisfies R:

Pr
k←StatGen(1λ,auxR )

[
∃x ∈ {0,1}n(λ) : (x,h(k, x)) ∈ R

]
≤ 2−Ω(λ) .

Peikert and Shiehian [PS19] described a somewhere correlation-intractable
hash family for any searchable relation (in the sense of Definition 6.5) defined by
functions f of bounded depth. Their construction relies on the standard LWE as-
sumption with polynomial approximation factors.

Here, we explicitly require the key indistinguishability property to hold even
when the adversary is given the auxiliary information auxR associated with the
relation. However, this property is satisfied by the LWE-based construction of
[PS19], where auxR is the description of the circuit that evaluates the relation.
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6.1.4 Strongly Unforgeable One-Time-Signatures

Definition 6.8. A signature scheme OTS = (G ,S ,V ) is Strongly Unforgeable One-
Time-Signature (OTS) if any PPT adversary A has only negligible advantage in
producing a forgery in the following game.

1. (SK,VK) ←G (1λ) and the verification key VK is given to A .

2. The adversary can obtain a signature σ← S (SK,m) for a single message m
of his choosing.

3. The adversary outputs a forgery (m?,σ?).

We define the advantage of A winning the game as:

Advots
A (1λ) := Pr

[
V (VK, (m?,σ?)) = 1∧ (m?,σ?) 6= (m,σ)

]
,

where the probabilities are taken over (SK,VK) ← G (1λ), (m?,σ?) ← A (VK,σ),
σ←S (SK,m) and the internal randomness of A .

6.1.5 Lossy Encryption With Efficient Opening

We recall the notion of lossy encryption with efficient opening as considered by
Bellare et al. [BHY09].

Definition 6.9. A lossy PKE scheme with efficient opening is a tuple of PPT algo-
rithms (Par-Gen,Keygen,LKeygen,Encrypt,Decrypt,Opener) such that:

Public parameters: Par-Gen inputs a security parameter λ ∈N and outputs public
parameters Γ, which specify a message space MsgSp, a ciphertext space CtSp
and a randomness space RLPKE.

Key generation: On input of public parametersΓ,Keygen outputs an injective pub-
lic key pk ∈P K and a secret key sk ∈S K .

Lossy Key generation: On input of public parameters Γ, LKeygen outputs a lossy
public key pk ∈P K and a lossy secret key sk ∈S K .

Decryption under injective keys: For any Γ←Par-Gen(1λ), any injective key pair
(pk, sk) ←Keygen(Γ), and any message Msg ∈MsgSp, we have

Pr
[
∃r ∈ RLPKE :Decrypt

(
sk,Encrypt(pk,Msg;r )

) 6=Msg
]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk) ←Keygen(1λ) and the prob-
ability is taken over the randomness of Keygen.
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Indistinguishability: The distributions Dinj = {pk | (pk, sk) ← Keygen(1λ)} and
D loss = {pk | (pk, sk) ← LKeygen(1λ)} are indistinguishable. For any PPT ad-
versary, we have Advindist-LPKE(λ) ≤ negl(λ), where

Advindist-LPKE(λ) := |Pr[pk ←-Dinj : A (pk) = 1]

−Pr[pk ←-D loss : A (pk) = 1]| .

Lossiness under lossy keys: For any (pk, sk) ← LKeygen(1λ) and any two mes-
sages Msg0,Msg1 ∈MsgSp, the distributions

{C |C ←Encrypt(pk,Msg0)} ≈s {C |C ←Encrypt(pk,Msg1)},

are statistically close.

Efficient opening under lossy keys: Let DR the distribution over RLPKE, that sam-
ples random coins for the Encrypt algorithm. For any Msg ∈MsgSp and ci-
phertext C , let DPK ,Msg,C denote the probability distribution on RLPKE with
support SPK ,Msg,C = {r ∈ RLPKE | Encrypt(pk,Msg,r ) =C }, and such that, for
each r ∈ SPK ,Msg,C , we have

DPK ,Msg,C (r ) = Pr
r ′←-DR

[r ′ = r |Encrypt(pk,Msg,r ′) =C ] .

There is a PPT sampling algorithm Opener such that, for any keys (pk, sk) ←
LKeygen(1λ), any randomness r ←- DR , and any Msg0,Msg1 ∈MsgSp, takes
as inputs C =Encrypt(pk,Msg0,r ), Msg1 and the lossy keys (pk, sk) and out-
puts an independent sample r from a distribution that is statistically close to
DPK ,Msg1,C .

The variant of Regev’s cryptosystem suggested in [GPV08, Section 8.1] where
encryption coins are sampled from a Gaussian distribution is a Lossy PKE with
efficient opening.

6.1.6 R-Lossy Public-Key Encryption With Efficient Opening

We generalize the lossy encryption notion from the previous section and the no-
tion of R-lossy public-key encryption introduced by Boyle et al. [BSW11a]. As de-
fined in [BSW11a], it is a tag-based encryption scheme [Kil06] where the tag space
T is partitioned into a set of injective tags and a set of lossy tags. When cipher-
texts are generated for an injective tag, the decryption algorithm correctly recovers
the underlying plaintext. When messages are encrypted under lossy tags, the ci-
phertext is statistically independent of the plaintext. In R-lossy PKE schemes, the
tag space is partitioned according to a binary relation R ⊆ K ×T . The key gen-
eration algorithm takes as input an initialization value K ∈K and partitions T in
such a way that injective tags t ∈ T are exactly those for which (K , t ) ∈ R (i.e., all
tags t for which (K , t ) 6∈ R are lossy).
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From a security standpoint, we require the existence of a lossy key generation
algorithm LKeygen which outputs public keys with respect to which all tags t are
lossy (in contrast with injective keys where the only lossy tags are those for which
(K , t ) 6∈ R). Second, we also ask that the secret key makes it possible to equivocate
lossy ciphertexts (a property called efficient opening by Bellare et al. [BHY09]) us-
ing an algorithm called Opener. Finally, we use two distinct opening algorithms
Opener and LOpener. The former operates over injective public keys for lossy tags
while the latter can equivocate ciphertexts encrypted under lossy keys for any tag.

Definition 6.10. Let R ⊆Kλ×Tλ be an efficiently computable binary relation. An
R-lossy PKE scheme with efficient opening is a 7-uple of PPT algorithms,

(Par-Gen,Keygen,LKeygen,Encrypt,Decrypt,Opener,LOpener), such that:

Parameter generation: On input a security parameterλ,Par-Gen(1λ) outputs pub-
lic parameters Γ.

Key generation: For an initialization value K ∈ Kλ and public parameters Γ, al-
gorithmKeygen(Γ,K ) outputs an injective public key pk ∈P K , a decryption
key sk ∈S K and a trapdoor key tk ∈T K . The public key specifies a a mes-
sage space MsgSp, ciphertext space CtSp and a randomness space RLPKE.

Lossy Key generation: Given an initialization value K ∈ Kλ and public parame-
tersΓ, the lossy key generation algorithmLKeygen(Γ,K ) outputs a lossy public
key pk ∈P K , a lossy secret key sk ∈S K and a trapdoor key tk ∈T K .

Decryption under injective tags: For any initialization value K ∈ K , any tag t ∈
T such that (K , t ) ∈ R, and any message Msg ∈MsgSp, we have

Pr
[
∃r ∈ RLPKE :Decrypt

(
sk, t ,Encrypt(pk, t ,Msg;r )

) 6=Msg
]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk, tk) ←Keygen(Γ,K ) and the
probability is taken over the randomness of Keygen.

Indistinguishability: Algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈Kλ, the distributions

Dinj = {(pk, tk) | (pk, sk, tk) ←Keygen(Γ,K )},

D loss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K )}

are computationally indistinguishable. For any PPT adversary A , we
have Advindist-LPKE-1

A (λ) ≤ negl(λ), where

Advindist-LPKE-1
A (λ) := |Pr[(pk, tk) ←-Dinj : A (pk, tk) = 1]

−Pr[(pk, tk) ←-D loss : A (pk, tk) = 1]| .
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(ii) For any distinct initialization values K ,K ′ ∈Kλ, the following distribu-
tions

{pk | (pk, sk, tk) ← LKeygen(Γ,K )},

{pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}

are statistically indistinguishable. We require them to be 2−Ω(λ)-close in
terms of statistical distance.

Lossiness under lossy tags: For any initialization value K ∈ Kλ and tag t ∈ Tλ

such that (K , t ) 6∈ R, any (pk, sk, tk) ← Keygen(Γ,K ), and any Msg0,Msg1 ∈
MsgSp, the following distributions are statistically close:

{C |C ←Encrypt(pk, t ,Msg0)} ≈s {C |C ←Encrypt(pk, t ,Msg1)}.

Efficient opening under lossy tags: Let DR denote the distribution, defined over
the randomness space RLPKE, from which the random coins used by Encrypt
are sampled. For any message Msg ∈MsgSp and ciphertext C , let DPK ,Msg,C ,t

denote the probability distribution on RLPKE with support

SPK ,Msg,C ,t = {r ∈ RLPKE | Encrypt(pk, t ,Msg,r ) =C } ,

and such that, for each r ∈ SPK ,Msg,C ,t , we have

DPK ,Msg,C ,t (r ) = Pr
r ′←-DR

[r ′ = r |Encrypt(pk, t ,Msg,r ′) =C ] .

There exists a PPT algorithm Opener such that, for any K ∈ Kλ, any keys
(pk, sk, tk) ← Keygen(Γ,K ) and (pk, sk, tk) ← LKeygen(Γ,K ), any random
coins r ←- DR , any tag t ∈ Tλ such that (K , t ) 6∈ R, and any Msg0,Msg1 ∈
MsgSp, takes as inputs pk, Msg1,C = Encrypt(pk, t ,Msg0,r ), t and tk. It
outputs a sample r from a distribution statistically close to DPK ,Msg1,C ,t .

Efficient opening under lossy keys: There exists an efficient sampling algorithm
LOpener such that, for any K ∈ Kλ, any keys (pk, sk, tk) ← LKeygen(Γ,K ),
any random coins r ←- DR , any tag t ∈ Tλ, and any distinct Msg0,Msg1 ∈
MsgSp, takes as input pk, Msg1, C = Encrypt(pk, t ,Msg0,r ), t and sk. It
outputs a sample r from a distribution statistically close to DPK ,Msg1,C ,t .

In Definition 6.10, some of the first four properties were defined in [BSW11a,
Definition 4.1]. The last two properties are a natural extension of the definition of
efficient opening introduced by Bellare et al. [BHY09]. We note that property of
decryption under injective tags does not assume that random coins are honestly
sampled, but only that they belong to some pre-defined set RLPKE.
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6.2 An RBM-Lossy PKE Scheme from LWE

In this section we describe an RBM-lossy PKE scheme below. Our scheme builds
on a variant of the primal Regev cryptosystem [Reg05] suggested in [GPV08].

Definition 6.11. Let K = {0,1,⊥}L and T = {0,1}`, for some `,L ∈ poly(λ) such
that ` < L. Let FADH the partitioning function defined by AHF : {0,1}` → {0,1}L

in Definition 2.1. The bit-matching relation RBM : K ×T → {0,1} for AHF is
the relation where RBM(K , t ) = 1 if and only if K = K1 . . .KL and t = t1 . . . t` satisfy
FADH(K , t ) = 0

(
namely,

∧L
i=1(Ki =⊥)∨ (Ki =AHF(t )i )

)
.

6.2.1 The Construction

Let AHF : {0,1}` → {0,1}L an admissible hash function (Definition 2.1) with key
space K = {0,1,⊥}L and let RBM ⊂ K × {0,1}` the corresponding bit-matching
relation. We construct an RBM-lossy PKE scheme in the following way.

Par-Gen(1λ): Given a security parameterλ ∈N, let n0 = poly(λ) the length of mes-
sages. Choose a prime modulus q = poly(λ); dimensions n = n0 +Ω(λ) and
m = 2ndlog qe+O(λ). Define the tag space as T = {0,1}` where ` = Θ(λ).
Define the initialization value space K = {0,1,⊥}L and Gaussian parame-
ters σ=O(m) ·L and α ∈ (0,1) such that m2αq · (L+1) ·σp2m < q/4. Define
public parameters as Γ= (`,L,n0, q,n,m,u,α,σ).

Keygen(Γ,K ): On input of public parameters Γ and an initialization value K ∈
{0,1,⊥}L , generate a key pair as follows.

1. Sample random matrices B̄ ←-U (Z(n−n0)×m
q ), S ←-U (Z(n−n0)×n0

q ) and a
small-norm E ←-DZm×n0 ,αq to compute

A =
[

B̄
S> · B̄+E>

]
∈Zn×m

q .

2. Parse K as K1 . . .KL ∈ {0,1,⊥}L . Letting G ∈ Zn×m
q denote the gadget

matrix, for each i ∈ [L] and b ∈ {0,1}, compute matrices Ai ,b ∈Zn×m
q as

Ai ,b =
{

A ·Ri ,b +G if (Ki 6=⊥)∧ (b = 1−Ki )
A ·Ri ,b if (Ki =⊥)∨ (b = Ki ).

(6.1)

where Ri ,b ←-U ({−1,1}m×m) for all i ∈ [L] and b ∈ {0,1}.

Define RLPKE = {r ∈Z2m | ‖r‖ ≤σp2m} and output sk = (K ,S) as well as

pk :=
(
A, {Ai ,b}(i ,b)∈[L]×{0,1}

)
, tk = (K , {Ri ,b}(i ,b)∈[L]×{0,1}).
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LKeygen(Γ,K ): This algorithm proceeds identically to Keygen except that steps 1
and 2 are modified in the following way.

1. Run (A,TA) ← TrapGen(1m ,1n) so as to obtain a statistically uniform
matrix A ∼U (Zn×m

q ) with a trapdoor for the latticeΛ⊥(A) (Lemma 2.8).
Notice m = 2ndlog qe+O(λ) is required by Lemma 2.8 in order to run
algorithm TrapGen.

2. Define matrices {Ai ,b ∈Zn×m
q }(i ,b)∈[L]×{0,1} as in (6.1).

Define RLPKE as in Keygen and output

pk :=
(
A, {Ai ,b}(i ,b)∈[L]×{0,1}

)
, sk = TA, tk = (K , {Ri ,b}(i ,b)∈[L]×{0,1}).

Encrypt(pk, t ,Msg): To encrypt Msg ∈ {0,1}n0 for the tag t = t1 . . . t` ∈ {0,1}`, con-
duct the following steps.

1. Encode the tag t as t ′ = t ′1 . . . t ′L = AHF(t ) ∈ {0,1}L and compute AF,t =∑L
i=1 Ai ,t ′i

∈Zn×m
q . Note that AF,t = A·RF,t+dt ·G for some RF,t ∈Zm×m of

norm ‖RF,t‖∞ ≤ L ·m and where dt ∈ {0, . . . ,L} is the number of non-⊥
entries of K for which Ki 6= t ′i .

2. Choose r ←-DZ2m ,σ and output ⊥ if r 6∈ RLPKE. Otherwise, output

c = [A | AF,t ] · r+
[

0n−n0

Msg · bq/2c
]
∈Zn

q . (6.2)

Decrypt(sk, t ,c): Given sk = (K ,S) and the tag t ∈ {0,1}`, compute t ′ = t ′1 . . . t ′L =
AHF(t ) ∈ {0,1}L and return ⊥ if RBM(K , t ′) = 0. Otherwise, compute w =
[−S> | In0 ] ·c ∈Zn0

q . For each i ∈ [n0], do the following:

1. If neither w[i ] nor |w[i ]−bq/2c| is close to 0, halt and return ⊥.

2. Otherwise, set Msg[i ] ∈ {0,1} so as to minimize |w[i ]−Msg[i ] · bq/2c|.

Return Msg=Msg[1] . . .Msg[n0].

Opener(pk, tk, t ,c,Msg1): Given tk = (K , {Ri ,b}i ,b) and t ∈ {0,1}`, compute t ′ =
t ′1 . . . t ′L =AHF(t ) ∈ {0,1}L and return ⊥ if RBM(K , t ′) = 1. Otherwise,

1. Compute the small-norm matrix RF,t = ∑L
i=1 Ri ,t ′i

∈ Zm×m such that
AF,t = A ·RF,t +dt ·G and ‖RF,t‖∞ ≤ L ·m with dt ∈ [L].
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2. Use RF,t ∈Zm×m as a trapdoor for the matrix

ĀF,t = [A | AF,t ] = [A | A ·RF,t +dt ·G] ∈Zn×2m
q

to sample a Gaussian vector r̄ ∈Z2m such that

ĀF,t · r̄ = c−
[

0n−n0

Msg1 · bq/2c
]

. (6.3)

Namely, defining cMsg1
= c−[(0n−n0 )> |Msg>1 ·bq/2c]>, sample and out-

put fake random coins r̄ ←-D
Λ

cMsg1
q (ĀF,t ),σ

.

LOpener(sk, t ,c,Msg1): Given sk = TA and t ∈ {0,1}`, use TA to derive a trapdoor
TA,t for the lattice Λ⊥

q (ĀF,t ) and use TA,t to sample a Gaussian vector r̄ ←-
D
Λ

cMsg1
q (ĀF,t ),σ

satisfying (6.3).

6.2.2 Security

The Theorem below states that the construction has the required properties under
the LWE assumption.

Theorem 6.1. The above construction is an RBM-lossy public-key encryption scheme
with efficient opening under the LWE assumption.

Proof. To prove the statement, we prove that the scheme enables correct decryp-
tion with overwhelming probability in injective mode. We also prove the indistin-
guishability properties using the LWE assumption on one occasion.

Decryption under injective tags. For any initialization value K ∈K , any injective
tag t ∈ {0,1}` (i.e. (K , t ) ∈ RBM), any message Msg ∈ {0,1}n0 , and any encryption
c ∈Zn

q of Msg under the pk= (
A, {Ai ,b}i ,b

)
and t , we have:

[−S> | In0 ] ·c = E> · [Im | RF,t ] · r+Msg · bq/2c ∈Zn0
q

We show that, for any r ∈Z2m of norm smaller than ‖r‖∞ ≤ ‖r‖ ≤ σ
p

2m, we have
‖E>[Im | RF,t ] · r‖∞ < q/4 with overwhelming probability over the randomness of
Keygen, so that the decryption algorithm recovers the message. To prove this,
notice that our definition of the randomness space RLPKE imposes ‖r‖∞ ≤ ‖r‖ ≤
σ
p

2m. Besides, we also have

‖[Im | RF,t ]‖∞ ≤ 1+‖RF,t‖∞ ≤ 1+L ·m

with probability 1 and

‖E>‖∞ = max
i∈[n0]

m∑
j=1

|ei j | ≤
p

m · max
i∈[n0]

√√√√ m∑
j=1

e2
i j ≤ m ·αq
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with overwhelming probability when E> ←- DZn0×m ,αq . Putting the above alto-
gether, our choice of parameters implies that

‖E>‖∞ · ‖[Im | RF,t ]‖∞ · ‖r‖∞ ≤ mαq · (L ·m +1) ·σp2m < q/4 .

Indistinguishability. The key generation algorithm LKeygen and Keygen satisfy
the following properties:

(i) The LWE assumption implies that, for any K ∈Kλ, the distributions D loss =
{(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K )} and Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K )} are computationally indistinguishable. These distributions
only differ in the generation of the matrix A ∈Zn×m

q . The matrix A produced
by the Keygen algorithm is pseudo-random since, under the LWEq,m,n−n0,α

assumption, we can replace S>B̄ + E> by a uniform matrix B ∼ U (Zn0×m
q )

without the adversary noticing. When using LKeygen, the matrix A ∈ Zn×m
q

is statistically uniform by the properties of the TrapGen algorithm (specifi-
cally, Lemma 2.8).

(ii) For any distinct initialization values K ,K ′ ∈ Kλ, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K )} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)} are
statistically indistinguishable since the public matrices (A, {Ai ,b}) are statis-
tically uniform and independent regardless of which K is used as input by
LKeygen. Recall the matrix A produced by the LKeygen algorithm is statis-
tically close to U (Zn×m

q ) by the properties of the TrapGen. As for the ma-
trices Ai ,b = A ·Ri ,b +κi ,b ·G, for κi ,b ∈ {0,1}, the Leftover Hash Lemma 2.18
implies that the statistical distance between the distributions {(A,A ·Ri ,b) |
A ←- U (Zn×m

q ),Ri ,b ←- U ({−1,1}m×m)} and {(A,Ai ,b) | A,Ai ,b ←- U (Zn×m
q )} is

smaller than m ·√qn/2m < 2−λ, where the last inequality is implied by our
choice of m = 2ndlog qe+O(λ).

Lossiness under lossy tags. It is enough to prove that the distribution of a cipher-
text obtained by encrypting under a lossy tag is statistically close to the uniform
distribution on Zn

q .

For any initialization value K ∈ Kλ and tag t ∈ {0,1}` such that (K , t ) 6∈ RBM,
any

(
pk = (A, {Ai ,b}i∈[L],b∈{0,1}), sk = (S,K ), tk

) ← Keygen(Γ,K ), and any message
Msg ∈ {0,1}n0 , an encryption of Msg is generated as

c = [A | AF,t ] · r+
[

0n−n0

Msg · bq/2c
]
∈Zn

q . (6.4)

where r ←-DZ2m ,σ and ĀF,t = [A | A ·RF,t +dt ·G] ∈Zn×2m
q . The matrix ĀF,t is of this

form, with dt > 0, because t is a lossy tag (i.e., (K , t ) ∉ RBM). This implies that
the columns of ĀF,t generate Zn

q . By [MP12, Lemma 5.3], we know that ĀF,t has

a trapdoor TF,t ∈ Z2m×2m (namely, a short basis of the lattice Λ⊥(ĀF,t )) such that
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‖T̃F,t‖ ≤ (‖RF,t‖+1)·p5 and thus ‖T̃F,t‖ ≤
p

5·(pm·L+1). Again, by [GPV08, Lemma
3.1], we know that η2−m (Λ⊥(ĀF,t )) ≤ ‖T̃F,t‖ ·O(

p
m). By choosing σ = O(m) ·L, we

haveσ≥ η2−m (Λ⊥(ĀF,t )). By applying [GPV08, Lemma 5.2], we conclude that ĀF,t ·r
is statistically close to the uniform distribution U (Zn

q ) when r ←-DZ2m ,σ.

Efficient opening under lossy tags. From the previous paragraph, we know that
the lattice Λ⊥

q (ĀF,t ) has a basis satisfying ‖T̃F,t‖ ≤ p
5 · (

p
mL + 1). By the choice

of σ = O(m) ·L, the condition σ ≥ ‖T̃F,t‖ ·ω(
√

log2m) holds. For any cMsg1
∈ Zn

q ,

we can thus apply Lemma 2.2 and sample a Gaussian vector r̄ ∈ Z2m from the
distribution D

Λ
cMsg1
q (ĀF,t ),σ

. Our argument to prove the lossiness under lossy tags

implies that encrypting any message Msg0 ∈ {0,1}n0 under a lossy tag leads to a
statistically uniform ciphertext c ∼s U (Zn

q ). In particular, for any Msg1 ∈ {0,1}n0 ,
the distribution

{
(
ĀF,t , cMsg1

= ĀF,t · r0 + [ 0n−n0
Msg0·bq/2c ]− [ 0n−n0

Msg1·bq/2c ], r̄
) |

r0 ←-DZ2m ,σ, r̄ ←-DΛ
cMsg1 (ĀF,t ),σ}

is statistically close to{(
ĀF,t , cMsg1

= c− [ 0n−n0
Msg1·bq/2c ], r̄

) | c ←-U (Zn
q ), r̄ ←-DΛ

cMsg1 (ĀF,t ),σ

}
,

which is itself statistically close to
{(

ĀF,t , cMsg1
= ĀF,t · r, r

) | r ←-DZ2m ,σ
}

.

Efficient opening under lossy keys. By [CHKP10, Lemma 3.2], we know that a
basis TA,t ∈Z2m×2m for the latticeΛ⊥

q ([A|AF,t ]) can be efficiently computed given a

basis TA ∈ Zm×m of the lattice Λ⊥
q (A). Moreover, this basis satisfies ‖T̃A‖ = ‖T̃A,t‖.

By Lemma 2.8, it follows that ‖T̃A,t‖ ≤ O(
√

n log q) = O(
p

m). By the choice of
parameters, we obtain that σ≥ ‖T̃A,t‖ ·ω(

√
log2m). Hence, by Lemma 2.2, we can

sample r̄ ∈ Z2m from a distribution statistically close to D
Λ

cMsg1
q (ĀF,t ),σ

. The claim

follows from the same arguments as in the case of efficient openings under lossy
tags.

6.3 Direct Constructions of Multi-Theorem NIZK from
Trapdoor Sigma-protocols

In this section we present a generic transformation from trapdoor Σ-protocols to
multi-theorem NIZKs. We need to assume lossy encryption with efficient opening
and correlation-intractable hash functions.

6.3.1 Overview

Our multi-theorem compiler is inspired by the modified protocol of [CLW19] for
proving graph Hamiltonicity [FLS99]. We quickly recall the ideas of [CLW19] be-
low. The prover’s first message a of the interactive protocol is computed using a
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lossy encryption scheme, instead of an usual commitment. To make the scheme
non-interactive, the random oracle of the Fiat-Shamir transform is replaced by a
correlation-intractable hash function. The hash is applied to the transcript of the
protocol so far, to derive the challenge Chall = h(k, (x,a)). The proof for the mes-
sage x is given byπ := (a,Chall,z), where z is the final response of the prover of the
interactive Σ-protocol.

Recall that, depending on the generation of the keys, a lossy encryption be-
haves either as an extractable commitment or as a statistically-hiding commit-
ment. The extractable mode is used to prove soundness, while the hiding property
is used to prove zero-knowledge.

To simulate a proof, the honest verifier simulator is invoked on a random chal-
lenge, to produce a transcript (a,Chall,z) ←HVZK(x,Chall). Because the correla-
tion intractable hash family can be programmed, they are able to generate a key
k such that the challenge is explained as the hash value Chall = h(k, (x,a)). This
simulation strategy cannot be employed to prove multiple theorems, because for
each new proof they would need a new programmed key for the hash function.
This implies a CRS size proportional to the number of proofs that the adversary
queries.

To simulate multiple proofs while keeping the CRS size constant, we notice
that some particular lossy encryptions can admit efficient opening algorithms,
that allow explaining a ciphertext as the encryption of any message of our choice.

In our construction the prover’s first message a′ ← P (crs, x, w) is encrypted by
a lossy encryption scheme as a ← Encrypt(pk,a′) and the challenge is computed
as the hash Chall := h(k, (x,a)) of the message and the encryption of the prover’s
message.

We simulate a proof by first computing the challenge Chall := h(k, (x,a)), for
a dummy lossy encryption a = Encrypt(pk,0). Now we can invoke the honest
verifier simulator to obtain a transcript (a′,Chall,z′) ← HVZK(x,Chall). The ef-
ficient opening algorithm returns some encryption randomness r such that a =
Encrypt(pk,a′;r), i.e. the ciphertext a is explained as an encryption of the prover’s
message a′. This allows us to avoid programming the hashing keys, and we are
able to prove zero-knowledge when unbounded number of proofs are queried by
the adversary.

6.3.2 Direct Construction

In order to compile trapdoor Σ-protocols into multi-theorem NIZK proof systems
for the same language, we use the following building blocks.

- A trapdoorΣ-protocolΠ′ = (Gen′par,Gen
′
L ,P′,V′) with challenge spaceChSp,

for a language L = (Lzk,Lsound). In addition, BadChallenge(τΣ,crs, x,a)
should be computable by a boolean circuit of size S ∈ poly(λ) for any input
(τΣ,crs, x,a).
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- A somewhere correlation intractable hash family H = (Gen,Hash) with out-
put in ChSp for the class RCI of relations that are efficiently searchable in
size 2S ∈ poly(λ).

- A lossy PKE scheme ΠLPKE = (Par-Gen,Keygen,LKeygen,Encrypt,Decrypt,
Opener) with public (resp. secret) key space P K (resp. S K ), as defined
in Section 6.1.5. We assume that the decryption algorithm Decrypt is com-
putable by a boolean circuit of size S. We denote the message (resp. cipher-
text) space by MsgSp (resp. CtSp) and the randomness space by RLPKE. Let
also DLPKE

R denote the distribution from which the random coins of Encrypt
are sampled.

Our construction Π= (Genpar,GenL ,P,V) goes as follows.

Genpar(1λ): Run par←Gen′par(1λ) and output par.

GenL (par,L ): Given public parameters par and a language L = (Lzk,Lsound),
generate the common reference string as follows.

1. Generate a common reference string crs′
L

←Gen′L (par,L ) for the trap-
door Σ-protocol Π′.

2. Generate a key k ←Gen(1λ) for the somewhere correlation intractable
hash function.

3. Generate public parametersΓ←-Par-Gen(1λ) for the lossy PKE scheme
ΠLPKE. Then, generate lossy keys (pk, sk) ← LKeygen(Γ).

Output the language-dependent crsL := (
crs′

L
,k

)
. The global common ref-

erence string consists of

crs= (
par,crsL ,Γ, pk

)
.

P(crs, x, w) : To prove a statement x using a witness w ∈ Rzk(x),

1. Compute
(
a′, st

) ← P′(crs′
L

, x, w) via the invocation of the prover al-
gorithm of Π′. Compute a ← Encrypt(pk,a′;r) using randomness r ←-
DLPKE

R sampled from the distribution DLPKE
R over RLPKE.

2. Compute Chall :=Hash(k, (x,a))

3. Compute z′ =P′(crs′
L

, x, w,a,Chall, st )

4. Output the proofπ= (
a′,z′,r

)
.

V(crs, x,π) : Given a statement x and a candidate proof π = (
a′,z′,r

)
, do the fol-

lowing. Compute a ← Encrypt(pk,a′;r). Compute the challenge Chall =
Hash

(
k, (x,a)

)
. If V′(crs′

L
, x, (a′,Chall,z′)) = 1 if, return 1. Otherwise, return

0.
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6.3.3 Security Proofs for the Multi-Theorem NIZK

We show below that the properties of Definition 6.3 are satisfied by the previous
construction.

Theorem 6.2. The above argument system is multi-theorem (statistically) ZK as-
suming that the trapdoor Σ-protocol Π′ is special (statistically) ZK.

Proof. We describe a zero-knowledge simulator (Sim0,Sim1) that uses the lossy
secret key τzk = sk ofΠLPKE to generate proofsπ= (a′,z′,r) without using the wit-
nesses. Namely, on input of par←Genpar(1λ), Sim0 generates crsL by proceeding
identically to GenL while Sim1 is described hereunder.

Sim1(crs,τzk, x): Given a statement x and the simulation trapdoor τzk = sk, algo-
rithm Sim1 proceeds as follows.

1. Let 0|a′| the all-zeroes string of the same length as the first prover mes-
sage of Π′. Compute

a ←Encrypt(pk,0|a′|;r0)

using random coins r0 ←-DLPKE
R sampled from the distribution DLPKE

R .

2. Compute Chall=Hash(k, (x,a)).

3. Run the ZK simulator (a′,z′) ← ZKSim(crs′
L

, x,Chall) of Π′ so as to ob-
tain a simulated transcript (a′,Chall,z′) of Π′ for the challenge Chall.

4. Using the lossy secret key sk of ΠLPKE, compute random coins r ←
Opener(pk, sk,a,a′) that explain a as an encryption of a′. Then, output
the proofπ= (a′,z′,r).

We now prove that the simulation is statistically indistinguishable from proofs
generated by the real prover. The special property of Π′ implies that its simulator
produces (a′,z′) ← ZKSim(crs′

L
, x,Chall) such that (a′,Chall,z′) is indistinguish-

able from a real transcript with challenge Chall. This implies that the distribution

{(a,a′,r,z′) | r0 ←-DLPKE
R , a ←Encrypt(pk,0|a′|;r0),

(a′,z′) ←ZKSim(crs′L , x,Chall), r ←Opener(pk, sk,a,a′)}, (6.5)

is computationally indistinguishable from

{(a,a′,r,z′) | r0 ←-DLPKE
R , a ←Encrypt(pk,0|a′|;r0),

(a′, st ′) ←P′(crs′L , x, w), z′ =P′(crs′L , x, w,a′,Chall, st ′),

r ←Opener(pk, sk,a,a′)}.

By the property of Lossiness under lossy keys of the ΠLPKE ciphertexts, the
above is statistically close to:
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{(a,a′,r,z′) | r0 ←-DLPKE
R , a ←Encrypt(pk,a′;r0),

(a′, st ′) ←P′(crs′L , x, w), z′ =P′(crs′L , x, w,a′,Chall, st ′),

r ←Opener(pk, sk,a,a′)}.

By the property of efficient opening under lossy keys, we know that the above
is statistically indistinguishable from

{(a,a′,r,z′) | (a′, st ′) ←P′(crs′L , x, w), r ←-DLPKE
R

a ←Encrypt(pk,a′;r), z′ =P′(crs′L , x, w,a′,Chall, st ′)}. (6.6)

The distribution (6.5) corresponds to proofs generated by the simulatorSim1, while
(6.6) is identical to the distribution generated by the real prover. Simulated proofs
are thus indistinguishable from real proofs if the simulator of Π′ is ZK. Notice that
if the simulator is statistically ZK then this implies that the simulated proofs are
actually statistically indistinguishable from real proofs.

Theorem 6.3. The above argument system provides non-adaptive soundness as-
suming that: (i) ΠLPKE is a lossy encryption scheme; (ii) The hash family H is
somewhere correlation-intractable for all relations that are searchable in size 2S,
where S denotes the size of a boolean circuit computing BadChallenge(·, ·, ·, ·) and
the size of a boolean decryption circuit.

Proof. To prove the result, we consider a sequence of games. For each i , we define
a Boolean variable Wi ∈ {true,false} where Wi = true if and only if the adversary
wins in Gamei .

Game0: This is the real soundness experiment. Namely, the challenger generates
the parameters as in the real scheme and gives crs= (par,crsL ,Γ, pk) to the
adversary A and a statement x? 6∈ Lsound. The adversary outputs a proof
π?, and W0 is set to 1 iffV(crs, x?,π?) = 1. By the definition of A ’s advantage,
we have Advsoundness

A (λ) = Pr[W0].

Game1: We change the distribution of crsL = (
crs′

L
,k

)
by leveraging the CRS in-

distinguishability property of the trapdoor Σ-protocol Π′. Namely, we use
the TrapGen′ algorithm of Definition 6.2 to generate crs′

L
as (crs′

L
,τΣ) ←

TrapGen′(par,L ,τL ) instead of crs′
L

←Gen′L (par,L ). We immediately have

|Pr[W1]−Pr[W0]| ≤ Advindist-Σ
A (λ).

We note that the trapdoor τΣ produced by TrapGen′ in Game1 can be used
in subsequent games to compute the BadChallenge function of the trapdoor Σ-
protocol Π′.
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Game2: We modify the distribution of crs. Namely, at step 3 of GenL , we gener-
ate the keys forΠLPKE as injective keys (pk, sk) ←Keygen(Γ) instead of lossy
keys (pk, sk) ← LKeygen(Γ). The indistinguishability property ofΠLPKE guar-
antees Pr[W2] is within negligible distance from Pr[W1]. We can easily build
a distinguisher B against ΠLPKE such that

|Pr[W2]−Pr[W1]| ≤ Advindist-LPKEB (λ).

Game3: We introduce another change in the distribution of crsL . We consider
the relation Rbad defined by(

(x,a),Chall
) ∈ Rbad (6.7)

⇔ Chall=BadChallenge
(
τΣ,crs′L , x,Decrypt(sk,a)

)
.

We now generate the key of the correlation-intractable hash function as k ←
StatGen

(
1λ,auxRbad

)
instead of k ←Gen(1λ). Here, auxRbad is the circuit that

uses τΣ and sk to evaluate BadChallenge according to (6.7). The key indis-
tinguishability property of H in the sense of Definition 6.7 implies |Pr[W3]−
Pr[W2]| ≤ Advindist-CI

A (λ).

In Game3, we claim that Pr[W3] ≤ 2−Ω(λ). Indeed, the statistical correlation
intractability property of H implies that we can only have

Hash(k, (x?,a?)) =BadChallenge
(
τΣ,crs′L , x?,Decrypt(sk,a?)

)
with exponentially small probability. The probability to have W3 = true is thus

smaller than 2−Ω(λ).
Putting the above altogether, the advantage of a PPT adversary is thus smaller

than

Advsoundness
A (λ) ≤ Advindist-LPKEB (λ)

+Advindist-Σ
A (λ)+Advindist-CI

A (λ)+2−Ω(λ),

which proves the claim.

6.3.4 Application: Multi-Theorem Statistical NIZK for NP from LWE

By using the techniques from the previous section it is possible to get statistical
NIZK for all NP languages, with non-adaptive soundness under the LWE assump-
tion, in the Common Random String model. We describe the idea below.

The construction from the previous section can be applied to any trapdoor Σ-
protocol. In particular, we can apply it to the modified FLS protocol of [CLW19],
for the graph Hamiltonicity language, in which the fist prover message is already
encrypted using a lossy scheme. For this reason we don’t need to actually encrypt
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it a second time, as a straight-forward application of our transformation would
require. Instead, we can use the simulator of Theorem 6.2 and simulate proofs by
equivocating lossy encryptions.

To encrypt the prover’s first message in the FLS protocol, we can use the variant
of Regev’s LWE-based cryptosystem suggested in [GPV08, Section 8.1]. This is in
fact a lossy encryption scheme with uniformly random lossy public keys. In the
simulation, the uniformly random public matrix can be generated together with a
trapdoor, thus enabling the equivocation of lossy ciphertexts.

Combining the above with the LWE-based somewhat Correlation-Intractable
hash family proposed in [PS19] (that supports uniformly random hashing keys),
we obtain a Multi-Theorem statistical NIZK argument for NP languages, with non-
adaptive soundness under the LWE assumption, in the Common Random String
model.

Multi-Theorem NIZK for NP can also be obtained generically using the FLS
transformation from [FLS99]. The compiler works by combining a single-theorem
NIZK and a PRG. In comparison with our result, their CRS is not sampled from a
uniformly random distribution.

6.4 Direct Constructions of Unbounded Simulation-sound
NIZK from Trapdoor Sigma-protocols

In this section we show how to upgrade the construction from section 6.3.2 to ob-
tain unbounded simulation-soundness (Definition 6.4) as well.

6.4.1 Overview

Continuing the discussion from section 6.3.1, we notice that lossy encryption with
efficient opening is not enough to prove unbounded simulation soundness for our
construction. The reason is that we need to be able to equivocate all the lossy ci-
phertexts in our simulation, while making sure that the proof the adversary out-
puts contains an injective (extractable) encryption, so we can prove simulation
soundness.

This can be solved by using a lossy encryption scheme flavor, called R-lossy
encryption with efficient opening (Definition 6.10). The encryption algorithm of
such a scheme takes as input additional labels. Such a tag (label) can determine
whether a ciphertext is lossy or injective, depending on the relation R. Now, when
we use the injective mode of the encryption scheme to prove soundness, we are
able to simulate the proofs by using lossy tags (on which we can equivocate the
encryptions), while having an injective tag for the proof that the adversary outputs
(thus making the encryption that the adversary outputs injective).
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6.4.2 Direct Construction

Our proof systems is inspired by ideas from [GMY03, MY04, Gen04] and relies on
the following ingredients:

- A trapdoorΣ-protocolΠ′ = (Gen′par,Gen
′
L ,P′,V′) with challenge spaceChSp,

for the gap language L = (Lzk,Lsound) and which satisfies the properties of
Definition 6.2. In addition, BadChallenge(τΣ,crs, x,a) should be computable
in size S ∈ poly(λ) for any input (τΣ,crs, x,a).

- A strongly unforgeable one-time signature scheme OTS = (G ,S ,V ) with
verification keys of length ` ∈ poly(λ) (Definition 6.8).

- An admissible hash functionAHF : {0,1}`→ {0,1}L , for some L ∈ poly(λ) such
that L > `, which induces the relation RBM : {0,1,⊥}L × {0,1}`→ {0,1} of Def-
inition 6.11.

- An R-lossy PKE scheme given by the 7 algorithms:

R-LPKE= (Par-Gen,Keygen,LKeygen,Encrypt,Decrypt,Opener,Opener′) us-
ing the relation RBM : {0,1,⊥}L × {0,1}`→ {0,1} with public (resp. secret) key
space P K (resp. S K ). We assume that the decryption algorithm Decrypt
is computable in size S. We denote the message (resp. ciphertext) space by
MsgSp (resp. CtSp) and the randomness space by RLPKE. Let also DLPKE

R
denote the distribution from which the random coins of Encrypt are sam-
pled.

- A somewhere correlation intractable hash family H = (Gen,Hash) for the
relation class RCI of relations that are efficiently searchable in size 2S.

We also assume that these ingredients are compatible in the sense that P′ outputs
a first prover message a′ that fits in the message space MsgSp of R-LPKE. The
correlation-intractable hash function should output values in the challenge space
ChSp of the Σ-Protocol Π′ as well.

The construction goes as follows.

Genpar(1λ): Run par←Gen′par(1λ) and output par.

GenL (par,L ): Given public parameters par and a language L ⊂ {0,1}N , let K =
{0,1,⊥}L and T = {0,1}`. The CRS is generated as follows.

1. Generate a common reference string crs′
L

←Gen′L (par,L ) for the trap-
door Σ-protocol Π′.

2. Generate public parameters Γ←- Par-Gen(1λ) for the RBM-lossy PKE
scheme where the relation RBM : K ×T → {0,1} is defined by an ad-
missible hash function AHF : {0,1}` → {0,1}L . Choose a random value
K ←K and generate lossy keys (pk, sk, tk) ← LKeygen(Γ,K ).
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3. Generate a key k ← Gen(1λ) for a somewhere correlation intractable
hash function with output in the challenge spaceChSpof theΣ-Protocol
Π′.

Output the language-dependent crsL := (
crs′

L
,k

)
and the simulation trap-

door τzk := sk, which is the lossy secret key of R-LPKE. The global common
reference string consists of crs= (par,crsL , pk,AHF,Πots).

P(crs, x, w) : To prove a statement x using a witness w ∈ Rzk(x), generate a one-
time signature key pair (VK,SK) ←G (1λ). Then, do the following.

1. Compute (a′, st ′) ← P′(crs′
L

, x, w) by invoking the prover for Π′. Then

compute a ←Encrypt(pk,VK,a′;r) using random coins r ←-DLPKE
R that

are sampled from the distribution DLPKE
R over RLPKE.

2. Compute Chall :=Hash(k, (x,a,VK)) ∈ChSp.

3. Compute z′ =P′(crs′
L

, x, w,a′,Chall, st ′). Define z = (a′,z′,r).

4. Generate a one-time signature si g ← S (SK, (x,a,z)) and output the
proofπ= (

VK, (a,z), si g
)
.

V(crs, x,π) : Given a statement x, and a purported proof π = (
VK, (a,z), si g

)
, re-

turn 0 if V (VK, (x,a,z), si g ) = 0. Otherwise,

1. Write z as z = (a′,z′,r) and return 0 if it does not parse properly. Return
0 if a 6=Encrypt(pk,VK,a′;r) or r 6∈ RLPKE.

2. Let Chall = Hash
(
k, (x, (a,VK)

)
. If V′(crs′

L
, x, (a′,Chall,z′)) = 1 then re-

turn 1. Otherwise, return 0.

The NIZK simulator is very similar to the one used in the proof of Theorem 6.2
and the proof follows a similar pattern.

Theorem 6.4. Assuming that the trapdoorΣ-protocolΠ′ is (statistical) special zero-
knowledge, the above argument system is (statistical) multi-theorem zero-knowledge

Sketch. We describe a simulator (Sim0,Sim1) which uses the lossy secret key τzk =
sk of R-LPKE to simulate proofs without using the witnesses. Namely, on input
of par←Genpar(1λ), Sim0 generates crsL by proceeding identically to GenL while
Sim1 is described hereunder.

Sim1(crs,τzk, x): On input a statement x ∈ {0,1}N and the simulation trapdoor
τzk = sk, algorithm Sim1 proceeds as follows.

1. Generate a one-time signature key pair (VK,SK) ← G (1λ). Let 0|a′| the
all-zeroes string of length |a′|. Sample random coins r0 ←-DLPKE

R from

the distribution DLPKE
R and compute a ←Encrypt(pk,VK,0|a′|;r0).
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2. Compute Chall=Hash(k, (x,a,VK)).

3. Run the special ZK simulator (a′,z′) ← ZKSim(crs′
L

, x,Chall) of Π′ so
as to obtain a simulated transcript (a′,Chall,z′) of Π′ for the challenge
Chall.

4. Using the lossy secret key sk of R-LPKE, compute random coins r ←
Opener′(sk,VK,a,a′) which explain a as an encryption of a′ under the
tag VK. Then, define z = (a′,z′,r)

5. Generate a one-time signature si g ← S
(
SK, (x,a,z)

)
and output the

proofπ= (
VK, (a,z), si g

)
.

The proof proceeds in the same fashion as the proof of Theorem 6.2, so the details
are omitted here.

6.4.3 Proof of Unbounded Simulation-Soundness

Theorem 6.5. The above argument system is unbounded simulation-sound if: (i)
OTS is a strongly unforgeable one-time signature; (ii) R-LPKE is an RBM-lossy PKE
scheme; (iii) The hash family H is somewhere correlation-intractable for all rela-
tions that are searchable in size 2S, where S denotes the maximal running time of
algorithms BadChallenge(·, ·, ·, ·) and Decrypt(·, ·, ·).

Proof. We consider a sequence of games where, for each i , we define a variable
Wi ∈ {true,false} where Wi = true if and only if the adversary wins in Gamei .

Game0: This is the real game of Definition 6.4. Namely, the challenger first runs
(crs,τzk) ← Sim0(par,1N ) and gives crs= (par,crsL , pk,AHF,Πots) to the ad-
versary A . At the same time, the challenger generates a trapdoor τL for the
language Lsound in such a way that it can efficiently test if A ’s output satis-
fies x? ∉ Lsound. The adversary is granted oracle access to Sim1(crs,τzk, ·, ·).
At each query, A chooses a statement x ∈ {0,1}N and the challenger replies
by returning a simulated argument π← Sim1(crs,τzk, x). When A halts, it
outputs a pair (x?,π?), where π? = (

VK?, (a?,z?), si g?
)
. The Boolean vari-

able W0 is thus set to W0 = true under the following three conditions: (i)
(x?,π?) 6∈Q, where Q = {(xi ,πi )}Q

i=1 is the set of queries to Sim1(crs,τzk, ·, ·)
and the corresponding responses πi =

(
VK(i ), (ai ,zi ), si gi

)
; (ii) x? 6∈Lsound;

and (iii) V (crs, x?,π?) = 1. We may assume w.l.o.g. that the one-time ver-
ification keys {VK(i )}Q

i=1 are chosen ahead of time at the beginning of the
game. By definition we have Advuss

A (λ) = Pr[W0].

Game1: This is like Game0 except that the challenger B sets W1 = false if A

outputs a fake proof (x?,π?), where π? = (
VK?, (a?,z?), si g?

)
contains a

VK? that coincides with the verification key VK(i ) contained in an output
πi = (

VK(i ), (ai ,zi ), si gi
)

of Sim1(crs,τzk, ·, ·). The strong unforgeability of
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OTS implies that Pr[W1] cannot noticeably differ from Pr[W0]. We can easily
turn B into a forger such that |Pr[W1]−Pr[W0]| ≤ Advots

B (λ).

Game2: This game is like Game1 with the following changes. At step 2 of GenL ,
the challenger runs K ← AdmSmp(1λ,Q,δ) to generate a key K ∈ {0,1,⊥}L

for an admissible hash function AHF : {0,1}` → {0,1}L , where Q is an upper
bound on the number of adversarial queries. By the second indistinguisha-
bility property of the RBM-lossy PKE scheme, we know that changing the
initialization value does not significantly affect A ’s view. It follows that

|Pr[W2]−Pr[W1]| ≤ 2−Ω(λ).

Game3: This game is identical to Game2 with one modification. When the adver-
sary halts and outputs x?, the challenger checks if the conditions

FADH(K ,VK(1)) = ·· · = FADH(K ,VK(Q)) = 1 ∧ FADH(K ,VK?) = 0 (6.8)

are satisfied, where VK? is the one-time verification key in the adversary’s
output and VK(1), . . . ,VK(Q) are those in adversarial queries. If these condi-
tions do not hold, the challenger aborts and sets W3 = false. For simplic-
ity, we assume that B aborts at the very beginning of the game if it detects
that there exists i ∈ [Q] such that FADH(K ,VK(i )) = 0 (recall that {VK(i )}Q

i=1
are chosen at the outset of the game by B). If conditions (6.8) are satisfied,
the challenger sets W3 = true whenever W1 = true. Letting Fail denote the
event that B aborts because (6.8) does not hold, we have W3 = W2 ∧¬Fail.
Since the key K of the admissible hash function is statistically independent
of the adversary’s view, we can apply Theorem 2.17 to argue that there is a
noticeable function δ(λ) such that Pr[¬Fail] ≥ δ(λ). This implies

Pr[W3] = Pr[W2 ∧¬Fail] ≥ δ(λ) ·Pr[W2] , (6.9)

where the inequality stems from the fact that Fail is independent of W1 since
K is statistically independent of A ’s view.

We remark that, if conditions (6.8) are satisfied in Game2, the of one-time verifi-
cation keys (VK(1), . . . ,VK(Q),VK?) satisfy RBM(K ,VK?) = 1 and RBM(K ,VK(i )) = 0
for all i ∈ [Q].

Game4: In this game, we modify the oracle Sim1(crs,τzk, ·, ·) and by exploiting the
efficient opening property of R-LPKE for lossy tags (instead of lossy keys).
At the i -th query xi to Sim1(crs,τzk, ·, ·), we must have FADH(K ,VK(i )) = 1
(meaning that VK(i ) is a lossy tag as RBM(K ,VK(i )) = 0) if B did not abort.
This allows B to equivocate a using the trapdoor key tk instead of the lossy
secret key sk ofR-LPKE. Namely, at step 4 ofSim1, the modified oracle com-
putes random coins r ←Opener(pk, tk,VK,a,a′) instead of running Opener′
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using sk. We define the Boolean variable W4 exactly as W3. Since Opener
and Opener′ output samples from the same distribution DLPKE

R over RLPKE,
this implies that |Pr[W4]−Pr[W3]| ≤ 2−λ.

Game5: We now modify the distribution of crs. At step 2 of Gen, we generate
the keys for R-LPKE as injective keys (pk, sk, tk) ←Keygen(Γ,K ) instead of
lossy keys (pk, sk, tk) ← LKeygen(Γ,K ). The indistinguishability property
(i ) of R-LPKE ensures that Pr[W5] and Pr[W4] are negligibly far apart. Re-
call that this indistinguishability property ensures that the distributions of
pairs (pk, tk) produced by Keygen and LKeygen are computationally indis-
tinguishable. So we can easily build a distinguisher B against R-LPKE that
bridges betweenGame4 andGame5 (by using tk to simulate Sim1(crs,τzk, ·, ·)
as in Game4). It comes that |Pr[W5]−Pr[W4]| ≤ Advindist-LPKE-1

B (λ) .

Due to the modification introduced in Game5, if the conditions (6.8) are sat-
isfied, we have RBM(K ,VK?) = 1, meaning that the adversary’s fake proof π? =(
VK?,

(
a?,z? = (a′?,z′?,r?)

)
, si g?

)
involves an injective tag VK?. Since pk is now

an injective key, this implies that a? is an injective encryption of a′? under the tag
VK? using the randomness r?.

Game6: We introduce another change in the distribution of crsL . We consider
the relation Rbad defined by

((x,a,VK),Chall) ∈ Rbad (6.10)

⇔ Chall=BadChallenge(τΣ,crs′L , x,Decrypt(sk,VK,a)).

We now generate the key of the correlation-intractable hash function as k ←
StatGen

(
1λ,auxRbad

)
instead of k ←Gen(1λ). Here, auxRbad is the circuit that

evaluates BadChallenge as per (6.10), where τΣ and sk are hard-wired. Here,
we crucially rely on the fact that Definition 6.7 captures key indisitinguisha-
bility even when auxR is given to the adversary. (This is necessary since auxR

depends on τΣ and τL and the latter is given to A ). By this key indistin-
guishability property of H , we have |Pr[W6]−Pr[W5]| ≤ Advindist-CI

A (λ).

In Game6, we claim that Pr[W6] ≤ 2−Ω(λ). Indeed, if B did not fail, we know
that the adversary’s output π? = (

VK?,
(
a?,z? = (a′?,z′?,r?)

)
, si g?

)
involves an

injective tag VK?, so that a? is a statistically binding commitment to a′?. So there
exists only one message a′? such that a? =Encrypt(pk,VK?,a′?;r?) for some r? ∈
RLPKE. Said otherwise, there exists only one a′? for which a pair (a′?,r?) satisfies
step 1 of the verification algorithm. Moreover, since a? uniquely determines a′?,
the statistical correlation intractability property of H implies that we can only
have
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Hash(k, (x?,a?,VK?)) =BadChallenge
(
τΣ,crs′L , x?,Decrypt(sk,VK?,a?)

)
with exponentially small probability. The probability to have W6 = true is thus

smaller than 2−Ω(λ) as claimed.

Putting the above altogether, we obtain

Advuss
A (λ) ≤ Advots

B (λ) + Advindist-LPKE-2
B (λ)+ 1

δ(λ)
·
(
Advindist-LPKE-1

B (λ)

+ Advindist-Σ
B (λ)+Advindist-CI

B (λ)+2−Ω(λ)
)

,

which completes the proof.

We note that the above security proof is not tight as the use of admissible hash
functions induces a security loss 1/δ(λ) (where δ(λ) is the non-negligible function
of Theorem 2.16) in the upper bound on the adversary’s advantage.

In [LNPŢ19] it was actually shown that it is possible to to have a tightly secure
unbounded-simulation sound NIZK scheme by constructing and using an R-lossy
PKE corresponding to a relation induced by a PRF: K × {0,1}`→ {0,1}λ, instead of
the AHF. The relation RPRF : K × {0,1}` → {0,1} is defined as RPRF(K , (ta , tc )) = 1
iff tc 6=PRF(K , ta).

6.4.4 Application: Naor-Yung KDM-CCA2 scheme from LWE

In this section we discuss how to apply the Naor-Yung paradigm and the NIZK
construction from section 6.4.2 to obtain the most efficient public-key encryp-
tion scheme, providing key-dependent message security under adaptive chosen-
ciphertext attacks (or KDM-CCA2 security for short), under the standard Learning-
With-Errors (LWE) assumption.

Naor-Yung Transform

Naor and Yung [NY90] showed how to use NIZK schemes to obtain public-key en-
cryption, secure against chosen-ciphertext (CCA1) attacks (’lunchtime’ attacks),
from any scheme that is secure against chosen-plaintext attacks (CPA). They en-
crypted the same message twice, using two different public keys, and then com-
puted a non-interactive zero-knowledge proof that the encryptions are of the same
message. Sahai later showed [Sah99] that the double encryption paradigm gives
CCA2 security if the NIZK scheme satisfies the simulation-soundness property.
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Key Dependent Message (KDM) Security

A public-key encryption with Key-Dependent Message (KDM) security [BRS02],
assures privacy against adversaries that are able to obtain encryption of messages
that depend on the secret key of the scheme. This security notion is useful in sit-
uations that may appear due to careless key management or when using disk en-
cryption utilities [BHHO08]. It is also useful for the bootstrapping step in Fully
Homomorphic Encryptions [Gen09].

Constructions of public-key KDM-CCA2 secure schemes under lattice assump-
tions, were previously known to be possible from any KDM-CPA scheme, by com-
bining the generic NIZK techniques [FLS99, SCO+01] and the recent results of
[CLW19, PS19] with the Naor-Yung [NY90] transform. Unfortunately such schemes
are rather inefficient, as the NIZK construction goes through a Karp reduction to
the graph Hamiltonicity problem.

To obtain more efficient KDM-CCA2 schemes, we apply the Naor-Yung con-
struction to the scheme of Applebaum, Cash, Peikert, Sahai [ACPS09], which was
proved secure under the LWE assumption, but only against key-dependent mes-
sage for chosen-plaintext attacks (KDM-CPA). In order to prove the stronger KDM-
CCA2 security, we use an unbounded simulation-sound NIZK that proves that
two ACPS ciphertexts encrypt the same message. To this end, we first construct a
trapdoor Σ-protocol for proving that two ACPS ciphertexts encrypt the same mes-
sage (see Section 6.4.5), then we apply the generic transformation from section
6.4.2. By using this trapdoor Σ-protocol and our generic compiler, we obtain an
unbounded simulation-sound NIZK, without going through the Karp reduction.
Thus we obtain a more efficient public-key encryption scheme in the end.

The details and the proof of the KDM-CCA2 construction can be checked in
[LNPŢ19], but they follow the same template as any Naor-Yung CCA2 scheme.

6.4.5 A Trapdoor Σ-Protocol for ACPS Ciphertexts

The KDM-CPA system of Applebaum et al. [ACPS09] uses a modulus q = p2,
for some prime p. Its public key (A,b) ∈ Zn×m

q ×Zm
q contains a random matrix

A ∼U (Zn×m
q ) and a vector b = A> ·s+e, for some s ∼ DZn ,αq , e ∼ DZm ,αq . Its encryp-

tion algorithm proceeds analogously to the primal Regev cryptosystem [Reg05]
and computes c = (c̄,c) = (A·r,b>r+µ·p+χ) ∈Zn+1

q , where r ∼ DZm ,r is a Gaussian
vector and χ∼ DZ,r ′ is sampled from a Gaussian with a slightly larger standard de-
viation. Decryption proceeds by rounding c −s> · c̄ mod q to the nearest multiple
of p.

In this section, we describe a trapdoor Σ-protocol allowing to prove that two
ACPS ciphertexts c0 = (c̄0,c0), c1 = (c̄1,c1) are both encryptions of the same µ ∈Zp .

PROVING PLAINTEXT EQUALITIES IN ACPS CIPHERTEXTS. Let q = p2, for some
prime p, and a matrix A which is used to set up two Regev public keys (A,b0) ∈
Zn×m

q ×Zm
q and (A,b1) ∈Zn×m

q ×Zm
q , where b0 = A> ·s0 +e0 and b1 = A> ·s1 +e1 for
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some s0,s1 ∼ DZn ,αq , e0,e1 ∼ DZm ,αq . Let also the matrix

Aeq =


A

b>
0 1

A
b>

1 1

 ∈Z2(n+1)×2(m+1)
q , (6.11)

We give a trapdoor Σ-protocol for the language L eq = (L eq
zk

,L eq
sound

), where

L
eq
zk

:=
{

(c0,c1) ∈ (Zn+1
q )2 | ∃r0,r1 ∈Zm , χ0,χ1 ∈Z, µ ∈Zp :

‖rb‖ ≤ Br , |χb | ≤ Bχ ∀b ∈ {0,1}

∧ cb = Āb · [r>b |χb]>+µ · [0n> | p
]> mod q

}
,

L
eq
sound

:=
{

(c0,c1) ∈ (Zn+1
q )2 | ∃ c̄0, c̄1 ∈Zn

q , v0, v1 ∈ [−B∗,B∗], µ ∈Zp

∧ cb =
[

c̄b

s>b · c̄b +p ·µ+ vb

]
∀b ∈ {0,1}

}
,

where

Āb =
[

A
b>

b 1

]
∈Z(n+1)×(m+1)

q ∀b ∈ {0,1}.

We note that L
eq
zk

⊆L
eq
sound

when Brαq
p

m+Bχ < B∗ ¿ p. Also, L
eq
sound

is equiva-
lently defined as the language of pairs (c0,c1) such that such that[ −s>0 1

−s>1 1

]
·
[

c0

c1

]
mod q =

[
v0

v1

]
+µ ·

[
p
p

]
for some µ ∈Zp , v0, v1 ∈ [−B∗,B∗].

Genpar(1λ) : On input of a security parameter λ ∈N, choose moduli q, p with q =
p2, dimensions n,m, and error rate α > 0 and a Gaussian parameter σeq ≥
log(2m +2) ·

√
B 2

r +B 2
χ. Define public parameters par= {λ, q, p,n,m,α,σeq}.

GenL (par,L eq) : Takes in global parameters par and the description of a lan-
guage L eq = (L eq

zk
,L eq

sound
) specifying real numbers B∗,Br ,Bχ > 0 such that

Brαq
p

m +Bχ < B∗ ¿ p, and a matrix Aeq from the distribution (6.11). It
defines the language-dependent crsL = {Ā,B∗,Br ,Bχ}. The global CRS is

crs= (
{λ, q, p,n,m,α,σeq}, {Aeq,B∗,Br ,Bχ}

)
.

TrapGen(par,L ,τL ) : Given par and a language description L eq that specifies
B∗,Br ,Bχ > 0 satisfying the same constraints as in GenL , a matrix Aeq sam-
pled from the distribution (6.11), as well as a membership-testing trapdoor
τL = (s0,s1) ∼ (DZn ,αq )2 for L

eq
sound

, output crsL = {Ā,B∗,Br ,Bχ}. The global
CRS is crs = (

{λ, q, p,n,m,α,σeq}, {Aeq,B∗,Br ,Bχ}
)

and the trapdoor τΣ =
(s0,s1) ∈Zn ×Zn .
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P
(
crs, (c0,c1), (µ,w)

)↔ V(crs,x) : Given crs and a statement[
c0

c1

]
= Aeq · [r0

> |χ0 | r1
> |χ1]>+µ · [0n> | p | 0n> | p]> ∈Z2(n+1)

q ,

the prover P (who has w = [r>0 | χ0 | r>1 | χ1]> ∈ Z2(m+1) and µ ∈ Zp ) and the
verifier V interact as follows.

1. The prover P samples a uniform scalar rµ ←-U (Zp ) and Gaussian vec-
tor rw ←-DZ2(m+1),σeq

. It computes the following which is sent to V :

a = Aeq · rw + rµ · [0n> | p | 0n> | p]> ∈Z2(n+1)
q .

2. V sends a random challenge Chall ∈ {0,1} to P .

3. P computes z = rw +Chall · w ∈ Z2(m+1), zµ = rµ +Chall ·µ mod p.

It sends (z, zµ) to V with probability θ = min
( D

Z2(m+1),σeq
(z)

M ·D
Z2(m+1),σeq,Chall·w(z) ,1

)
,

where M = e12/log(2(m+1))+1/(2log2(2(m+1))). P aborts, with probability
1−θ.

4. Given (z, zµ) ∈Z2(m+1) ×Zp , V checks if ‖z‖ ≤σeq
p

2(m +1) and

a+Chall ·
[

c0

c1

]
= Aeq ·z+ zµ · [0n> | p | 0n> | p]> mod q. (6.12)

If these conditions do not both hold, V halts and returns ⊥.

BadChallenge
(
par,τΣ,crs, (c0,c1),a

)
: Given τΣ = (s0,s1) ∈ Zn ×Zn , parse the first

prover message as a = (a>
0 | a>

1 )> ∈Z2(n+1)
q . If there exists d ∈ {0,1} such that

no pair (µ′
d ,vd ) ∈ [−(p −1)/2,(p −1)/2]× [−B∗/2,B∗/2]2 satisfies[ −s>0 1

−s>1 1

]
· (a+d ·c) mod q = vd +µ′

d ·
[

p
p

]
(6.13)

over Z, then return Chall= 1−d . Otherwise, return Chall=⊥.

The completeness of the protocol crucially uses the fact that p divides q to
ensure that the response zµ = rµ+Chall ·µ mod p satisfies (6.12).

The intuition of BadChallenge is that, for a false statement (c0,c1) 6∈ L
eq
sound

,
there exists d ∈ {0,1} such that no pair (µ′

d ,vd ) satisfies (6.13) for a small enough
vd ∈ Z2. Moreover, for this challenge Chall = d , no valid response can exist, as
shown in the proof of Lemma 6.6. We note that BadChallenge may output a bit
even when there is no bad challenge at all for a given a. These “false positives” are
not a problem since, in order to soundly instantiate Fiat-Shamir, we only need the
somewhere CI hash function to avoid the bad challenge when it exists.
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PARALLEL REPETITIONS. To achieve negligible soundness error, the protocol is
repeated κ=Θ(λ) times in parallel by first computing (a1, . . . ,aκ) before obtaining
the challengeChall=Chall[1] . . .Chall[κ] and computing the response z̄ = (z1, . . . ,zκ),
(zµ,1, . . . , zµ,κ). We then handle z̄ as an integer vector in Zκ·(m+1) and reject it with
probability θ = min

(
1,DZ2κ·(m+1),σeq

(z)/M ·DZ2κ·(m+1),σeq,Chall·(1κ⊗w)(z)
)
, with the value

of M = e12/log(2κ·(m+1))+1/(2log2(2κ·(m+1))). Then, we need to slightly increaseσeq and

set σeq ≥ log(2κ(m +1)) ·
√
κ(B 2

r +B 2
χ).

Lemma 6.6. The above construction is a trapdoorΣ-protocol for L eq if we setσeq ≥
log(2m +2) ·

√
B 2

r +B 2
χ and

B∗ > max(2σeq
p

2m +2 · (αq
p

m +1),Brαq
p

m +Bχ).

Proof. The special ZK simulator proceeds as follows. Given a statement (c0,c1) ∈
L

eq
zk

and a challenge Chall∗ ∈ {0,1}, the simulator first samples z∗ ←- DZ2(m+1),σeq

and z∗
µ ←-U (Zp ). Then, it computes

a∗ = Aeq ·z∗+ z∗
µ · [0n> | p | 0n> | p]>−Chall ·

[
c0

c1

]
mod q.

It outputs (a∗,Chall∗, (z∗, z∗
µ)) with probability 1/M . By construction, the triple

(a∗,Chall∗, (z∗, z∗
µ)) satisfies the verification conditions with high probability. We

show that it is statistically indistinguishable from a real transcript. If we have
(c0,c1) ∈ L

eq
zk

, there exist r0,r1 ∈ Zm , χ0,χ1 ∈ Z and µ ∈ Zp such that ‖rb‖ ≤ Br ,

|χb | ≤ Bχ and cb = Āb · [r>b | χb]> +µ · [0n> | p
]> mod q for b ∈ {0,1}. The distri-

bution of z ∈ Z2(m+1) in a real transcript is thus DZ2(m+1),σeq,Chall·w, where w = [r>0 |
χ0 | r>1 | χ1]>. By Lemma 2.7 and our choice of σeq ≥ log(2m + 2) ·

√
B 2

r +B 2
χ, the

distribution of the simulated z∗ is within statistical distance 2−100/M from that of
a real non-aborting transcript. Moreover, the component zµ in the real protocol
is uniformly random over Zp , so is the respective component z∗

µ in the simula-
tion. Finally, in both the real protocol and the simulation, the statement (c0,c1),
the challenge Chall and the response (z, zµ) uniquely determine a.

Soundness can be shown using the same arguments as well. Let us assume
that, for a given a ∈ Z2(n+1)

q , there exist two valid responses (zb , zµ,b) ∈ Z2m+2 ×Zp

with ‖zb‖ ≤σeq ·
p

2m +2 for each b ∈ {0,1} and such that

a+b ·
[

c0

c1

]
= Aeq ·zb + zµ,b ·


0n

p
0n

p

 mod q.
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Subtracting them yields

[
c0

c1

]
= Aeq · (z1 −z0)+ (zµ,1 − zµ,0 mod p) ·


0n

p
0n

p

 mod q,

where ‖z1 −z0‖ ≤ 2σeq ·
p

2m +2. Then, we also have

[ −s>0 1
−s>1 1

]
·
[

c0

c1

]
=

[
e>0 1

e>1 1

]
· (z1 −z0)+ (zµ,1 − zµ,0 mod p) ·

[
p
p

]
,

which implies that (c0,c1) ∈L
eq
sound

since |[ e>0 | 1 | 0n | 0]>·(z1−z0)] < 2σeq
p

2m +2·
(αq

p
m +1) < B∗ and |[0n | 0 | e>1 | 1]> · (z1 −z0)] < B∗.

We now show that BadChallenge provides the correct output. First, assuming
that (c0,c1) 6∈ L

eq
sound

, for a given a ∈ Z2n+2
q , there cannot exist two distinct pairs

(µ0,v0), (µ1,v1) ∈ [−(p − 1)/2,(p − 1)/2] × [−B∗/2,B∗/2]2 such that the following
equality holds over Z for each b ∈ {0,1}:[ −s>0 1

−s>1 1

]
·
(

a+b ·
[

c0

c1

])
mod q = vb +µb ·

[
p
p

]
. (6.14)

Let us first assume that there exists no (µ0,v0) ∈ Zp × [−B∗/2,B∗/2]2 satisfying
(6.14) for b = 0. Then, there can be no valid response for Chall = 0. Indeed, the
verifier would only accept a response (z0, zµ,0) ∈Z2m+2 ×Zp satisfying

a = Aeq ·z0 + zµ,0 ·


0n

p
0n

p

 mod q

and ‖z0‖ ≤σeq
p

2m +2, which would imply[ −s>0 1
−s>1 1

]
·a mod q =

[
e>0 1

e>1 1

]
·z0 + zµ,0 ·

[
p
p

]
with the inequalities |[e>0 | 1 | 0n | 0] · z0| < σeq

p
2m +2 · (αq

p
m + 1) < B∗/2 and

|[0n | 0 | e>1 | 1] ·z0| <σeq
p

2m +2 · (αq
p

m +1) < B∗/2.
Similarly, assuming that there exists no pair (µ1,v1) ∈Zp × [−B∗/2,B∗/2]2 sat-

isfying (6.14) for b = 1, we obtain that no valid response can exist for Chall = 1.
Since there exists b ∈ {0,1} such that no pair (µb ,vb) ∈ [−(p − 1)/2,(p − 1)/2] ×
[−B∗/2,B∗/2]2 satisfies (6.14), we conclude that BadChallenge always eliminates
a Chall ∈ {0,1} for which no valid response exists for a given a.
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Chapter

7
Conclusion

Summary of the Contribution

In this thesis, we focused our attention on building new cryptographic primitives,
with modern functionalities and advanced security under standard computational
assumptions, like learning With Errors (LWE), Decisional Diffie-Hellman (DDH) or
Paillier’s Decisional Composite Residuosity (DCR) assumption.

In Chapter 3, we discussed the construction of the first Distributed Pseudo-
Random Function family that is simultaneously non-interactive and secure under
adaptive corruptions. Security is proven under the LWE assumption. The main
ingredient for our result is a new security proof for the Key-Homomorphic PRF
of [BLMR13], that allows the reduction to know the secret key of the centralized
version of the PRF. This feature is important when proving the security in the de-
centralized case, since a reduction that knows the secrets of all the users, is able to
consistently answer adaptive queries for the adversary.

Then we continued with the study of Functional Encryption for the restricted
class of linear functions. In Chapter 5 we gave the first construction of MCFE that
supports labels, and is secure against adaptive corruptions, under a well estab-
lished computational assumption. The security is proven under the subexponen-
tial hardness of LWE and it exploits, in a non-generic way, the connection with the
previously mentioned security proof for DPRFs, against adaptive corruptions.

In Chapter 4, we showed that the IPFE schemes (or some variants) of [ALS16]
are in fact adaptive-simulation secure, therefore establishing optimal security for
this primitive, among the IND-based and SIM-based definitions considered in the
literature so far. The main insight for these proofs was that the semi-adaptive sim-
ulator of [Wee17] can be adapted to prove AD-SIM security.

Finally, in Chapter 6, we presented alternative ways to [FLS99, SCO+01] for
obtaining unbounded simulation-sound NIZKs, along with a trapdoor Σ-protocol
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for proving that two ACPS [ACPS09] ciphertexts encrypt the same message. Com-
bining these two results, we can apply the Naor-Young [NY90] transformation, to
get the most efficient public-key encryption scheme with Key-Dependent Mes-
sage (KDM) security against CCA2 attacks, under a standard assumption (LWE).
By using the particular trapdoor Σ-protocol for ACPS ciphertexts and out generic
NIZK transformation, we avoid the use of a Karp reduction to the graph Hamil-
tonicity problem and applying the general transformations of [FLS99, SCO+01].

Open Problems

Below, I propose a list of unsolved questions that naturally arise in the context of
this thesis.

Question 1: Can we get non-interactive DPRFs, secure against adaptive corrup-
tions, under the LWE assumption with a polynomial modulus q ? In general,
can we get efficient DPRFs, secure against adaptive corruptions, under any
other standard assumption?

A recent result [Kim20] shows that we can have Key-Homomorphic PRFs
from the LWE assumption with polynomial modulus. This implies a generic
DPRF construction that only achieves static security under LWE with small
modulus.

The construction from [NPR00] is very efficient, but it is only heuristically
secure in the static security model, under the assumptions of random ora-
cles.

Another way of getting more efficient DPRFs might be to construct them us-
ing algebraic variants of LWE (like Ring-LWE or Module-LWE). This strategy
may reduce the size of the public parameters (which in our construction is
dominated by the matrices from the public key) and the computational cost
of evaluating the PRF (in our case this is dominated by a sequence of matrix
multiplications).

Question 2: Can we have AD-SIM functional encryption for quadratic functions,
under standard assumptions?

Practical functional encryption schemes under standard assumptions, that
work for functionalities beyond linear functions have been constructed as
well [Lin17, BCFG17], but only in the IND model. Recently, [Gay20] gave a
semi-AD-SIM secure construction, with succinct ciphertexts, for quadratic
functions.

Question 3: Can we construct MCFE (with labels), for quadratic functions, under
standard assumptions?

Question 4: Can we push beyond quadratic functionality by constructing FE for
degree-3 polynomials, under standard assumptions?
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7. CONCLUSION

This is one major open problem in functional encryption, as the existence
of FE supporting degree-3 polynomials, with succinct ciphertexts, together
with the existence of a special class of PRGs, implies [LT17] Indistinguisha-
bility Obfuscation (iO) [BGI+01]. This is a very powerful primitive that is
known to imply a very large set of cryptographic applications. Moreover,
from a practical point of view we want, efficient schemes that can handle
a broad class of functionalitites, from minimal assumptions. For instance,
FE for quadratic functions has been used to apply Machine Learning on en-
crypted data [RDG+19].

Question 5: Can we build more efficient Correlation-Intractable hash functions,
under standard assumptions?

The Fiat-Shamir transform is usually used to obtain very efficient construc-
tions in the Random Oracle Model. Building very efficient CI hash functions
will allow practical schemes, but under standard assumptions. The current
standard model CI constructions [PS19] rely on techniques introduced for
computing on encrypted data, which are not very efficient. In particular, in
the construction of [PS19], the size of the hashing key grows with the de-
scription size of the circuits for which it is correlation intractable. It would
be desirable to have more compact hashing keys under the standard LWE
assumption.
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