Resilience study paradigm in nuclear fuel cycle scenario studies

Summary -This chapter is dedicated to the definition of the different notions that are used in the resilience study of the nuclear fuel cycle scenario. First, the uncertainties in the nuclear fuel cycle scenario study will be identified, which are the origin of the thesis problem. Then, the terminology of nuclear fuel cycle scenario studies will be defined. Using this terminology, the subject problem of this thesis will be formally formulated. Then, three adaptation strategies to handle the disruption problem in nuclear fuel cycle scenario studies, which are resistance, resilience, and robustness, will be presented. Finally, a framework for resilience analysis will be defined.

Highlights:

➢ The uncertainties in the nuclear fuel cycle scenario study are identified. ➢ Several terminologies in the nuclear fuel cycle scenario study are defined.

➢ The subject problem of this study is formally formulated. ➢ The definition of resistance, resilience, and robustness are given. ➢ A framework for resilience analysis is constructed.

Chapter 3: Methodology

Summary -In this chapter, first, we will develop a method based on the state-of-the-art SUR algorithm to implement the resilience analysis framework constructed in section 2.6.1. SUR algorithm is an efficient way to identify the valid input parameter space. At the same time, it can provide a set of observations adapted to the imposed scenario constraints for the construction of a Kriging-based trajectory validity estimator. With this estimator, one can rapidly estimate a priori the validity of a given trajectory without calling the time-consuming scenario model. Since the initial SUR algorithm is only adapted to the mono-constraint case, we will develop a multi-constraint version of SUR algorithm to meet the requirement of scenario studies. With the multi-constraint version of SUR algorithm, we will build a resilience evaluation scheme and a method to search valid trajectories.

In this work, we will apply the developed mothed to two scenario problems in which a simplified French nuclear fleet with disruption of total electricity production is considered.

According to the developed resilience evaluation scheme, we will need to carry out a large number of scenario simulations. However, the disruption of total electricity production can affect a large number of parameters in the nuclear fleet, causing difficulty for scenario modeling. To reduce the number of parameters to manage in the problems, we will construct a nuclear fleet evolution-driving model, which can automatically determine the evolution of the nuclear fleet under the impact of disruption, according to a set of rules and drivers.

Highlights:

➢ We present the bases of the Kriging surrogate model and the SUR algorithm.

➢ We develop a multi-constraint version of SUR algorithm. ➢ We construct a resilience evaluation scheme and a method to search valid trajectories based on the multi-constraint version of SUR algorithm. ➢ We develop and implement a nuclear fleet evolution-driving model, which can automatically determine the evolution of nuclear fleet according to a set of rules and drivers.
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As an important remark about nuclear fuel cycle scenarios, SFEN (Société Française d'Energie Nuclé aire) [START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF] indicates that "the scenarios should not be considered as predictions about future, but as analyses of the impacts and trade-offs between different technological choices and political objectives, thus providing a quantitative approach to support decision-making in the energy sector." The relevance of nuclear fuel cycle scenarios for the decision-maker (like governments and nuclear industry managers, etc.) rests on their objectives to integrate the possible prospective developments and provide helpful information, such as highlighting the advantages and drawbacks of different developments strategies, in order to understand the issues in decision-making. The scenario analyses make it possible to assess the value of the options under uncertainties and the paths of least regret.

Nuclear fuel cycle scenario simulation

In nuclear fuel cycle scenario studies, we characterize a nuclear fuel cycle system (composed of reactors with varied fuels and cycle facilities) by simulating the dynamic evolution of materials in the whole nuclear fuel cycle, from the extraction of natural resources to the geological storage.

To carry out nuclear fuel cycle scenario simulations, many countries and institutes have developed different nuclear fuel cycle scenario codes [START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF]. These nuclear fuel cycle scenario codes calculate the time evolution of the nuclei present in a nuclear fuel cycle, as well as the material flows circulating between the units that make up the fuel cycle such as reactors, uranium enrichment plants, reprocessing plants, etc. With the outputs from the nuclear fuel cycle scenario codes, one can deduce other quantities, like the consumption of natural uranium, the radiotoxicity of the waste produced or the discounted cost of nuclear electricity, etc. [START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF]. For the aim of describing the fuel cycle mechanisms, nuclear fuel cycle scenario codes usually integrate a lot of:

• nuclear physics (e.g., the computation of cross-sections of different nuclei); • reactor physics (e.g., the neutron transportation during irradiation in reactor cores); • nuclear fuel cycle phenomena (e.g., spent fuel cooling and transport); • complex algorithms (e.g., the equivalence models that compute the enrichment / fissile material content to add in the function of fuel isotopic composition when fabricating the fresh fuel).

The nuclear fuel cycle scenario studies carried out with these codes can provide elements of response to the problems linked to the energy transition and thus support decision-making. For example, in the frame of the French Act for waste management, many scenario studies have been carried out with COSI [START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF], which is a nuclear fuel cycle scenario code being developed at CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) Cadarache since 1985. The COSI code enables the comparison of different development strategies for the French reactor fleet, as well as the different options of partitioning and transmutation of minor actinides and plutonium [START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF].

Motivation of the subject 1.2.1 Uncertainty propagation in nuclear fuel cycle scenarios

Nuclear fuel cycle scenarios are imperfect representations of the nuclear fuel cycle systems in the real world. Uncertainties exist inherently in scenario specifications and the scenario codes.

As pointed out in the work of [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF], several parameters can generate the uncertainties in scenario studies:

• nuclear data, such as cross-sections of nuclei, fission yields;

• scenario parameters for reactors and facilities description, such as fuel burnup or reprocessing plant recovery rate.

These uncertainties can propagate from the input parameters to the output and may significantly impact the meaning of the scenario simulation results. Since the scenario studies may contribute to decision-making on policy, technology selection, and research, development and demonstration (RD&D) budgets, it is important to identify and communicate the impact of these uncertainties [START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF].

Under this context, G. Krivtchik [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF] developed an uncertainty propagation method in the frame of dynamic transition scenario studies based on the COSI scenario code. Scenario simulations are complex objects, and the results are highly non-linear in the function of the input parameters. Hence, a stochastic methodology was adopted in the work of [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF] to perform uncertainty propagation: one (1) samples input parameters according to their probability distribution, [START_REF]Ministry of Ecological and Solidarity Transition of France[END_REF] then calls the scenario code to carry out scenario simulations, (3) and finally analyzes the results. For the aim of implementing this stochastic methodology in the COSI scenario code, several physical models have been developed, such as:

• irradiation surrogate models that allow rapid irradiation calculation and consideration of nuclear data perturbation; • statistical equivalence models that allow nuclear data to be taken into account when calculating the fissile content of fresh reprocessed fuel.

In the work of [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF], the uncertainty propagation method was applied to various scenarios to study the impact of uncertain nuclear data and fuel burnups on the scenario simulation:

• the historical scenario of French reactor fleet;

• an industrial scenario concerning the deployment of SFR;

• an academic scenario for the deployment of SFR without transmutation;

• an academic scenario for the deployment of SFR with the transmutation of americium.

The study results showed that in these scenarios, the uncertainties of nuclear data and fuel burnups have a moderate impact on the simulation results: the uncertainties in plutonium, americium, neptunium and curium inventories are generally of the order of a few percent.

Compared with the burnup uncertainties, the nuclear data uncertainties generate most of the inventory uncertainty.

Problem beyond uncertainty propagation

The uncertainties studied in the work of [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF] is mainly from the physics level. However, we are aware that in scenario studies, there also exist uncertainties not coming from the physics level, but generated from the decision-making. For instance, the change of scenario hypotheses is such uncertainty from the decision-making. Scenario hypotheses include:

• type of fuel used in the scenario (SFR, SMR (Small Modular Reactors), MSR (Molten Salt Reactor), etc.); • reprocessing strategy (e.g., using mono-or multi-recycling of plutonium); • load factors;

• reactor commissioning and shutdown dates;

• or even the evolution of the total installed electricity production, etc.

The choice of scenario hypotheses can evolve as time goes by, as the decision-making has to cope with the evolution of the economic, societal and political context. The uncertainties from decision-making can have a strong impact on the scenario study results and may lead to the failure of the scenario, meaning that the results in the scenario study become unacceptable for the decision-makers under the impact of these uncertainties. As an example, let us imagine a situation as follows:

"At the beginning of a scenario study, with the scenario hypothesis that the total installed power will be constant and the same as the current level (2019), a scenario is proposed. In this scenario, a symbiotic reactor fleet composed of SFR and EPR (European Pressurized Reactor) is built. All reactors fuel with 100% MOX (Mixed OXide) fuel. After spent fuel discharged from reactor cores and cooled, the spent MOX fuels from the SFR and EPR are mixed and reprocessed to recover the plutonium and the uranium. Using the recovered plutonium, the fuel fabrication plant produces new fresh MOX fuels to supply the reactors. In terms of production of plutonium, EPR are consumers of plutonium, while SFR are generators of plutonium. The reactor fleet achieves a symbiotic state when the plutonium production and consumption are kept in balance to maintain the sustainability of fuel cycle without requiring exotic fissile material.

However, in the future, following the evolution of the economic, societal and political context, the decision-makers may decide to reduce the installed power. In this case, certain reactors may be shut down early compared with the proposed scenario due to the reduction of installed power. As a result, the delicate plutonium balance in the fuel cycle chains can be broken. Depending on the number ratio of SFR and EPR, the plutonium inventory in the fuel cycle can increase or decrease: the former situation can lead to the accumulation of plutonium, increasing the proliferation risk; the latter situation can finally lead to a shortage of plutonium to supply the fresh MOX fuel fabrication. Both situations are undesirable. Hence, the scenario can become unacceptable when the scenario hypothesis about the installed power is changed due to the uncertain future."

The uncertainty propagation study indicates how the physical uncertainties propagate in the scenario studies and evaluates their associated impacts on the scenario results. But it is not able to indicate how we should react in front of the uncertainties, especially the uncertainties from decision-making. Is it necessary to take any action under the impact of uncertainties? If the scenario becomes unacceptable under the impact of uncertainties, is it possible to make it acceptable again by making some modifications? If it is possible, how should the modification be? The responses to these questions can bring useful information for the decision-makers and help them understand the behavior of the scenarios. Especially, they may help the decisionmakers to understand how to cope with the uncertainties from decision-making and to make robust decision-making [START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF]. To answer these questions, we have to study the flexibility of the scenarios to remain acceptable under the impact of uncertainties, which is the motivation of this thesis.

Objective and outline of this thesis

The objective of this thesis is to propose a new paradigm for scenario studies. In this paradigm, we consider:

• the uncertainties not only from physics but also generated from the decision-making;

• the associated impact of these uncertainties on the given scenarios;

• the possibility to maintain the scenarios acceptable under the impact of uncertainties.

We will define three different adaptation strategies to cope with the impact of uncertainties on the scenarios: resistance, resilience, and robustness. In particular, we mainly concentrate on the resilience adaptation strategy in this manuscript. We aim to develop a resilience analysis framework to evaluate the resilience of a given scenario in front of uncertainties (from physics level or decision-making). With this resilience analysis framework, it is possible to indicate how one should react to counterbalance the impact of the uncertainties so as to maintain the scenarios acceptable.

In the second chapter of this manuscript, we aim to build the resilience analysis framework. To achieve this aim, we first clarify the notion of uncertainty in a general sense from the decision-making point of view and identify different types of uncertainties in scenario studies. This clarification and identification can help us to understand the position of our study in scenario studies. Second, to make the discussion in scenario study simplified and precise, we give a scenario study terminology and define several commonly used notions. With the help of the constructed terminology, we formalize the problem of this thesis and propose three adaptation strategies as responses to the problem of the thesis. Finally, we construct a resilience analysis framework.

In the third chapter, we present the methodologies used in this thesis. First, we devote to construct a scheme to implement the resilience analysis framework proposed in the second chapter. The construction of this scheme is based on the state-of-the-art SUR (Stepwise Uncertainty Reduction) algorithm. With this scheme, it is possible to point out how the scenarios should be modified to counterbalance the impact caused by uncertainties.

Then, we present a nuclear fleet evolution-driving model. The development of this model is motivated by the intention to apply the developed resilience analysis framework to study the scenario problems in which the decision about the total installed electricity production can be subject to uncertainty. In applications, thousands of scenario simulations with different decisions about the total installed electricity production are required. In order to make the scenario simulations automatic in the computer, we need a nuclear reactor fleet evolutiondriving model to "translate" automatically the decisions about the total installed electricity production into the scenario simulations and model their impact on the reactor fleet.

In the fourth chapter, we apply the developed resilience analysis framework to two scenario problems. In both applications, we suppose that the decisions about the total installed electricity production are subject to uncertainty as a result caused by the unexpected change of the economic, societal and political context in the future. We will show that it is possible to counterbalance the impact of this uncertainty by readjusting the evolution of the reactor fleet in both applications.

Finally, the conclusions and perspectives will be given in the fifth chapter.

Uncertainty and deep uncertainty

The notion of uncertainty has arisen with different meanings and emphases in various fields such as insurance, philosophy, physics, statistics, economics, finance, engineering, meteorology, etc. Usually, uncertainty refers to epistemic situations involving imperfect or unknown information [START_REF] Wikipedia | Uncertainty[END_REF]. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. It arises in partially observable and/or stochastic environments, as well as ignorance. However, it does not mean that uncertainty is simply the absence of knowledge [START_REF] Funtowicz | Uncertainty and quality in science for policy[END_REF]. Uncertainty exists in cases where abundant information is available [START_REF] Van Asselt | Uncertainty in Integrated Assessment modelling: From positivism to pluralism[END_REF]. In fact, new information can either increase or decrease uncertainty. New knowledge on complex processes may reveal the presence of uncertainties that were previously unknown or were understated, illuminating that one's understanding is more limited or that the processes are more complex than previously thought [START_REF] Van Der Sluijs | Anchoring amid uncertainty: On the management of uncertainties in risk assessment of anthropogenic climate change[END_REF]. Uncertainty is objective. For instance, the uncertainty of nuclear data is caused by the limitation of physical measurement, and the improvement of technologies can reduce it. Otherwise, uncertainty is subjective. For example, in policy-making, uncertainty is usually colored by the underlying values, cognition, and perspectives of the policy-maker and the various actors involved in the policy-making process, and the decision options available to them [START_REF] Walker | Deep Uncertainty[END_REF].

In many studies (e.g., reactor physics), the approaches to dealing with uncertainty generally consider uncertainties in model inputs and model parameters described by probability distributions, resulting in a corresponding characteristic distribution of outputs to understand the associated impact. However, when faced with an uncertain future as a result of drivers such as technological, socio-economic and political change, and corresponding policy and societal responses, it is difficult to identify the adequate probability distributions. It is because, in such situations, there exist multiple plausible future trajectories that generally correspond to distinct future states of the world that do not have an associated probability of occurrence or cannot even be ranked [START_REF] Walker | Deep Uncertainty[END_REF]. Consequently, when dealing with an uncertain future, a different conceptual approach to thinking about uncertainty is needed, which is referred to as "deep uncertainty."

Deep uncertainty arose in the context of model-based decision aiding. According to Lempert et al. [START_REF] Lempert | Shaping the next one hundred years : new methods for quantitative, long-term policy analysis and bibliography[END_REF], deep uncertainty is defined as circumstances "where analysts do not know, or the parties to a decision cannot agree on, (1) the appropriate conceptual models that describe the relationships among the key driving forces that will shape the long-term future, (2) the probability distributions used to represent uncertainty about key variables and parameters in the mathematical representations of these conceptual models, and/or (3) how to value the desirability of alternative outcomes." Hallegatte et al. [START_REF] Hallegatte | Investment Decision Making Under Deep Uncertainty -Application to Climate Change[END_REF] further state that deep uncertainty may occur due to the presence of "(1) Knightian uncertainty: multiple possible future worlds without known relative probabilities; (2) multiple divergent but equally-valid world-views, including values used to define criteria of success; and (3) decisions which adapt over time and cannot be considered independently." Marchau et al. [START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF] think that the presence of "deep uncertainty" may stem from "(1) a lack of knowledge or data about the mechanism of functional relationships being studied, and/or (2) the potential for unpredictable, surprising, events." As an example of deep uncertainty, a "black swan" event is defined as one that lies outside the realm of regular expectations (i.e., "nothing in the past can convincingly point out its possibility"), carries an extreme impact, and is explainable only after the fact (i.e., through retrospective, not prospective, predictability) [START_REF] Taleb | The Black Swan: The Impact of the Highly Improbable[END_REF]. Deep uncertainty also covers "unknown unknowns," which refers to the situation "one does not know he does not know" [START_REF] Buurman | Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies[END_REF].

Uncertainties in nuclear fuel cycle scenario studies

Uncertainties exist widely in the nuclear fuel cycle scenario studies. In this work, we classify these uncertainties into six categories: the model bias, the uncertainty of nuclear data, the uncertainty of historical data, the uncertainty of prospective input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context.

• Model bias: model bias is associated with the conceptual model, i.e., the variables and their relationships that are chosen to describe the system located within the boundaries and thus constituting the model complex [START_REF] Walker | Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support[END_REF]. Since a nuclear fuel cycle system can be very complex, making it impossible to take all details into account, simplifications are necessary during modeling, and only the main characteristics are grasped. For example, in the COSI6 code [START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF], which is the nuclear fuel cycle scenario code used in this work, all simulated objects are simplified. For instance, when modeling the reprocessing of spent fuels, we only consider the transfer of materials, without taking the physics of dissolution and reduction into account in the COSI6 code. Besides the simplification of objects (reactors and facilities, etc.), the physical models, which are mainly the fuel evolution model and the equivalence model [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF], are another contributor to the model bias. The fuel evolution model is used to calculate the evolution of fuel isotopes in the reactor core under irradiation or during cooling. In the making of a fuel evolution model, many assumptions are used. For instance, one usually uses an equivalent assembly at some specific conditions to describe the entire reactor core during irradiation, and the inventories of the materials in the core are obtained by multiplying by a given ratio the results of this single equivalent assembly according to the size of the whole core. As for the equivalence model, it calculates the fresh fuel fissile enrichment (for instance, the plutonium content in PWR MOX) to be representative of nominal fuel behavior. The equivalence condition is generally formulated in terms of end-of-cycle mean core reactivity [START_REF] Krivtchik | Artificial neural network surrogate development of equivalence models for nuclear data uncertainty propagation in scenario studies[END_REF]. As it results from a physical computation, it is therefore associated with uncertainty. All the effects mentioned here are usually difficult to evaluate, and they form the model bias together. Nevertheless, the model bias can be controlled by model validation. The effort of [START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF] has confirmed the adequate modeling of the nuclear fuel cycle with the COSI6 code.

• Uncertainty of nuclear data. Nuclear data are the basic input for neutron transport calculations, which are required for the generation of the irradiation model for scenario simulation. Nuclear data describe the various reactions of neutrons with different atomic nuclei present in the reactor core. The corresponding evaluated nuclear data files are continuously improved. For example, during the last few years, the European library has been updated from JEF-2.2 to JEF-3.1 [START_REF] Koning | The JEFF-3.1 Nuclear Data Library[END_REF] and further to JEFF-3.1.1 [START_REF] Santamarina | The JEFF-3.1.1 Nuclear Data Library[END_REF] with minor revisions in JEFF-3.1.2. These library improvements are based on the newest evaluations of different experiments. Their validation comes from the comparison between the results of Monte Carlo calculations and a large number of critical experiments covering a wide variety of fuel, moderator, and structure materials in different spectral conditions. However, no matter how the libraries are improved, the precision of the nuclear data is always limited at a certain level as a result of the limitation of measurement technologies. To handle this problem, the physicists use the covariance matrices to quantify and represent the uncertainties associated with the nuclear data. Over the past few years, there has been an increasing effort to improve the amount and quality of the covariance files accompanying the major data libraries. For example, COMAC (COvariance MAtrices from Cadarache) [START_REF] Archier | COMAC: Nuclear data covariance matrices library for reactor applications[END_REF] is a covariance database managed by the CEA Cadarache, which is associated with the JEFF evaluated data library. The work of [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF] has assessed the impact of nuclear data, especially the cross-sections and fission yields, on the nuclear fuel cycle scenarios.

• Uncertainty of historical data. The historical data are the data that describe the nuclear fuel cycle system history in the past, such as the commissioning dates of existing reactors, the historical fuel enrichments, the historical irradiation time, the historical reprocessing capacities, etc. To ensure a good starting point for the evaluation of the potential developments in the future, one needs the simulation of the history of the studied nuclear fuel cycle system. However, the acquisition of historical data is usually difficult for several reasons. Sometimes, some of these data may raise commercial confidentiality concerns, and it is hard to obtain accurate data for the researchers. Sometimes, some of these parameters may not exist due to the difficulty of measurement or the lack of information. Consequently, one may have to use the uncertain historical data during the scenario study, raising the level of uncertainty. Nevertheless, one can control this kind of uncertainty by validation. One can calibrate the historical system by comparing it with the real data at the starting point of scenario simulation. These real data mainly concern the inventories and integrated flows of materials such as the cumulative natural uranium consumption, the cumulative depleted uranium, the total quantity of spent fuels to store, the stock of reprocessed uranium, and the waste package production, etc.

• Uncertainty of prospective input parameters. The prospective input parameters describe a proposition of evolution of the studied nuclear fuel cycle system in the future. They generally consist of physical and industrial parameters. For example, they include the burnup of potential future fuels, the spent fuel transport duration, the recovery rate of the reprocessing plants, etc. Usually, there are many different possible and plausible values for each of these parameters, but one has not enough knowledge and information to know which value will be used in the future. As these parameters have not yet existed in reality, one has no real data to judge the pertinence for the value choice of these parameters. However, in the light of the integration of expertise and professional judgment, one may give out the perceived likelihood or preferences for the possible values. For instance, in reality, the whole fuel fabrication duration is not fixed, and it varies in a certain range. However, in several scenario studies [START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF], its prospective value is usually set as two years, which is considered consistent with industrial feedback.

• Uncertainty of scenario hypotheses. Scenario hypotheses generally result from industrial or governmental decisions and constitute the backbone of the scenario model. The change of the scenario hypotheses can lead to a completely different scenario (hence different choice of input parameters of interest and constraints by the definition of scenario model in section 2.3) and a different evolution of the studied nuclear fuel cycle system. In contrast, the value change of the prospective input parameters is only considered as a perturbation in the scenario model, whose impact on the studied system is much smaller. Examples of scenario hypotheses are:

-The type of reactors to deploy in the future (SFR, SMR, MSR, etc.);

-The reprocessing strategy (open fuel cycle strategy, closed fuel cycle strategy, mono-recycling of plutonium, multi-recycling of plutonium, etc.);

-The commissioning and shutdown dates of reactors, etc.

Sometimes, there may be many different possible choices for a scenario hypothesis, but one cannot give out their perceived likelihood. For example, in China, all generation IV reactor technologies are of interest to the Chinese nuclear industry managers, and there are many different corresponding research projects. However, until now, the Chinese nuclear industry managers are still not sure about which one or which several ones will be finally carried out for the future development of the nuclear industry.

• Uncertainty of economic, societal and political context. The economic, societal and political context determines the general development direction of the nuclear power industry and thus, influences the scenario hypotheses. For example, in scenario studies, the prospective evolution of the fleet installed electricity power can be a scenario hypothesis affecting the lives of reactors: it influences the shutdown of existing reactors and the commissioning of newly built reactors in the future. But from the decisionmaking point of view, the evolution of the installed electricity power of a nuclear fleet in a country is usually a result from a political decision according to many factors included in the economic, societal and political context such as the country population, the competitiveness of nuclear electricity price, the public attitude toward the nuclear energy, etc. Following the evolution of the economic, societal and political context, the political decision about the evolution of the fleet installed electricity power can evolve. Thus, the scenario hypothesis can become different. Generally speaking, the economic, societal and political context has the strongest impact on the development of nuclear energy and, thus, on the scenario studies, too. It integrates all the factors from the economic and political aspects, which are too much complex to predict. One usually has no idea how this context will change in the future.

The model bias, the uncertainty of nuclear data, and the uncertainty of historical data can usually be controlled by validation or measurement. They do not concern the future, and one can calibrate the scenario model by comparing the model results with the real data. In this case, one can control these types of bias or uncertainties by associating them with limit values or probabilistic models.

However, it is difficult to associate the uncertainty of prospective input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context with probability distributions. These three types of uncertainties involve knowledge that will only be available in the future, and thus, are impacted by a lack of information in the present. They are undetermined at present, and one must make assumptions according to the currently available knowledge at the moment of the scenario study. But the future can be different from the assumptions made in scenario studies and predictions based on today's experiences may be very inaccurate. In this work, the term "deep uncertainty" refers to the uncertainty of prospective input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context. The following discussion mainly focuses on these types of uncertainties.

Scenario study terminology

The terminology used in nuclear fuel cycle scenario studies appears to lead to inconsistencies, due to the unclear definition of concepts like scenarios, trajectories, and so on. In this section, we aim to redefine the terminology used in the nuclear fuel cycle scenario studies to avoid ambiguity. This work is the effort of the collaboration between the scenario research groups from the CEA and the CNRS (Centre National de la Recherche Scientifique) for the past several years.

We propose the following definitions:

• Input parameter: Input parameters are the quantities (or variables) that one has to determine in a nuclear fuel cycle scenario model to characterize the studied nuclear fuel cycle system. For example, in the COSI6 code, before launching a simulation, one has to specify the burnup of fuels, the irradiation duration, the load factors, the fuel fabrication time, the mass losses at different fuel plants, etc. According to the scenario model, the choice of input parameters can be different.

• Output parameter: Output parameters are the quantities (or variables) that are calculated by the nuclear fuel cycle scenario model. For example, the evolution of the plutonium inventory in the separated stockpile is usually an output parameter: its evolution is not decided but is dictated by the model and the input parameters.

• Trajectory: A trajectory is a fully characterized evolution history of a nuclear fuel cycle system consisting of all the reactors and the associated fuel cycle facilities defined without ambiguity. In other words, a trajectory represents a concrete and definite evolution of the studied nuclear fuel cycle system, which is characterized by a model and a set of specific values of input parameters. Due to the deterministic nature of the fuel cycle evolution models, the value of each output parameter is determined once a trajectory is fully identified.

• Constraint: A constraint is a condition that a trajectory has to satisfies. Constraints integrate industrial limitations, as well as the requirements of decision-makers, to contribute to making the scenario problem realistic concerning current knowledge and feedback. These considerations can come from many different aspects. For example, the plutonium content in the fresh MOX fuel loaded in a PWR must not exceed 12% due to the possibility of a positive void effect [START_REF] Marguet | The Physics of Nuclear Reactors[END_REF]. Another example is the plutonium inventory in the separated stockpile, which is limited due to the proliferation resistance limitation.

The last example is that a certain ratio of capacity usage rate of a reprocessing plant must be respected due to economic considerations. One can express a constraint in the form of equality or inequality between an indicator of constraint and the associated threshold. One can refer to section 4.1.2.3 as an example.

• Trajectory validity: A given trajectory is valid if it satisfies all of the imposed constraints of the scenario; it is invalid if it violates any of the imposed constraints. A major area of focus in a scenario study is to search the valid trajectories according to the imposed constraints.

• Preference: A preference is a criterion used to choose one or several valid trajectories when there are many different choices. For a scenario problem, there may exist a set of different valid trajectories. However, during the decision-making process, it may be impossible to take all the valid trajectories into account, and one may have to choose only one to represent the studied industrial development strategy, which requires preferences to realize. Like the construction of constraints, the construction of preferences integrates different requirements of decision-makers concerning different aspects, such as safety, economy, policy, etc. The present definition of preference is borrowed from multicriteria optimization studies, and the interested reader can refer to [START_REF] Freynet | Dé veloppement d'une mé thodologie pour l'optimisation multicritè re de scé narios d'é volution du parc nuclé aire[END_REF] for more details about the formulation of preference. An example is given in section 4.1.5.2.2.

• Disruption: A disruption is defined as an unexpected or unforeseen event that jeopardizes the validity of the studied trajectory. It includes the sudden and unplanned change of the input parameters, the constraints, or even the scenario model. Disruption is generally caused by the deep uncertainty mentioned in section 2.2 (i.e., the uncertainty of prospective input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context).

• Scenario model: A scenario model is a parametric model used to describe the evolution of a nuclear fuel cycle system with given assumptions, which is composed of a set of variables (e.g., the commissioning and shutdown dates of reactors, the fuel burnups, the recovery rate of the reprocessing plants, inventory of spent fuel, indicators of constraint, etc.) and relations (e.g., the mechanism concerning the evolution of fuel isotopic composition during depletion and cooling, scenario constraints, etc.). Once a scenario model is determined, one can characterize the scenario model with the input parameters of interest and the constraints. In a scenario study, there are usually thousands of input parameters to specify before launching a scenario model to get a trajectory. It is usually difficult to take all of these input parameters into account at the same time. To facilitate the study, one can focus on only a few input parameters of interest and let the others fixed during the study when constructing a scenario model.

• Scenarios: Scenarios are "boundary objects" [START_REF] Star | Institutional Ecology, 'Translations' and Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology[END_REF], which are a theoretical tool providing an opportunity to bring together different communities of stakeholders (e.g., decisionmakers, physicians, economists, sociologists, etc.) with various knowledge and different (sometimes opposing) interests in order to share and compare their visions for the future, organize their strategies and even cooperate. With the scenarios, one aims to help expand the "scope of possibilities" for the development of the nuclear industry.

These definitions are used throughout this work. development of the nuclear fuel cycle system with a given industrial development strategy. The construction of this trajectory is often based on a set of constraints (represented by the orange dotted lines in Figure 2.1), which represent industrial limitations and the requirements of decision-makers. This trajectory is valid if it satisfies all the constraints at the same time.

Formalization of problem

However, a nuclear fuel cycle scenario study requires a set of assumptions about the future, which are expressed in the form of scenario hypotheses and prospective input parameters. Since the scenario hypotheses and the prospective input parameters are subject to deep uncertainty (see section 2.2), they can be disrupted (i.e., the real-world future can be different from the assumptions made in the scenario study) due to deep uncertainty. These disruptions can jeopardize the validity of the given trajectory: under the impact of the disruptions, the given trajectory can be disrupted and deviate into another different trajectory (represented by the red curve in Figure 2.1) which may violate one or several constraints, making the given trajectory invalid under the impact of the disruptions.

In nuclear fuel cycle scenario studies, uncertainty propagation methodology [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF] has been developed to analyze the impacts of the uncertainties of the nuclear data and prospective input parameters: one (1) samples the parameters that can be disrupted with respect to their distribution, ( 2) calls the scenario model to perform the scenario simulations, (3) and finally analyzes the results to identify the associated impacts. The uncertainty propagation methodology allows for knowing the impacts of disruptions of nuclear data and prospective input parameters on the validity of the studied trajectory. However, this methodology cannot answer to the questions "whether it is possible or what actions one should take to maintain the validity of trajectories in front of the impact of disruptions, in particular, the disruptions linked to decision-making caused by the deep uncertainty." The response to these questions can consist of a complementary study after the conventional nuclear fuel cycle scenario study by which we found a valid trajectory.

The objective of this work is to develop an innovative resilience study paradigm for helping the decision-makers to better understand the studied industrial development strategy from the angle of its flexibility, i.e., the possibility of remaining validity, in front of deep uncertainty. This resilience study is a complement following after the conventional nuclear fuel cycle scenario study: after a trajectory having been proposed by a conventional nuclear fuel cycle scenario study, one then applies the resilience study to evaluate the impact of disruptions on the validity of this trajectory as well as the possibility of maintaining its validity under the impact of disruptions due to the deep uncertainty. In this work, we refer to the valid trajectory, which is found through the conventional nuclear fuel cycle scenario study and before the resilience study, as a prior trajectory. The prior trajectory is the investigation object of the resilience study and supposed a priori given before the resilience study.

Adaptation strategies: resistance, resilience and robustness

When it comes to the methods to overcome the problem of disruption, resistance, resilience, and robustness are three terms the most mentioned and are usually applied to study the response of operational systems or organizations to events that question their ability to continue functioning. In the literature, the meaning and the use of these terms change depending on the fields of applications. In the nuclear fuel cycle scenario studies, the formal definition of these three terms does not exist before this study. In this section, we aim to define these three terms formally and give out the associated adaptation strategies.

Resistance

The resistance is the adaptation strategy that usually comes first in terms of methods to overcome the problem of disruption. In literature, resistance is often considered as a capacity of a system to remain unchanged when challenged by disturbances [START_REF] Walker | Deep Uncertainty[END_REF][START_REF] Grimm | Babel, or The Ecological Stability Discussions: An Inventory and Analysis of Terminology and A Guide for Avoiding Confusion[END_REF][START_REF]Robustness & Resilience[END_REF]. One may suppose that in the case of resistance, a system can tolerate the disturbance, and no reorganization and reactive change of the system is needed [START_REF]Resilience and resistance[END_REF]. Inspired by this idea, we propose a resistance adaptation strategy in the nuclear fuel cycle scenario studies. To understand the idea of the resistance adaptation strategy, we clarify the key concept of "endogenous adjustments." If a disruption manifests itself and leads to changing the values of certain input parameters in the prior trajectory, the impact of the disruption propagates through the scenario model. We recall that a scenario model is composed of a set of variables and relations (see section 2.3). As the disruption impact propagates, the values of the variables inside the scenario model are automatically adjusted according to the relations among the scenario model variables, and then become different from those in the prior trajectory. In other words, during the propagation of the disruption impact, there exist automatic value adjustments of the variables inside the scenario model, which are imposed by the endogenous (or intrinsic) relations of the scenario model. In our study, "endogenous adjustments" refers to the automatic adjustments of the trajectory imposed by the endogenous relations of the scenario model under the impact of disruption. For example, in a given prior trajectory, if the fuel burnup of a reactor is disrupted, then correspondingly, the isotopic composition of the discharged spent fuel can become different from the prior trajectory. This difference is due to the endogenous adjustments according to the fuel depletion mechanism following the disruption of fuel burnup.

A trajectory is qualified as "resistant" if it can stay valid only by the endogenous adjustments under the impact of disruption, as shown in Figure 2.2. The disrupted trajectory may be different from the prior trajectory due to the "endogenous adjustments." In some sense, the resistance adaptation strategy aims to deal with the problem of disruption once for all by constructing one single "omnipotent" trajectory that can bear all disruptions considered in the scenario studies and always respect the imposed constraints. However, according to previous nuclear fuel cycle 

Results of interest

Resistance

Disruption scenario studies [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Freynet | Dé veloppement d'une mé thodologie pour l'optimisation multicritè re de scé narios d'é volution du parc nuclé aire[END_REF], the resistance adaptation strategy may be insufficient in scenario studies. The resistance of a trajectory is usually limited for a certain restricted impact level of disruption and is held only when this limitation is not exceeded. Nonetheless, the deep uncertainty in scenario studies (see section 2.2) is generally so high that the associated impact of disruptions may be too strong to respect this limitation. Furthermore, numerous constraints in scenario studies can make this limitation stricter and more difficult to respect. Moreover, even if such an "omnipotent" trajectory exists, its construction may be too costly [START_REF] Walker | Deep Uncertainty[END_REF]. Hence, the resistance strategy is not sufficient for the nuclear fuel cycle scenario studies. This point is demonstrated for a scenario of interest in section 4.1.5.1.

Resilience

Despite different points of view on the definition of resilience from different research areas, Boin et al. [START_REF] Boin | The Resilient Organization[END_REF] indicate that one should generally consider two elements when defining resilience:

• when the disruptions appear, and the threat of failure manifests itself;

• there is a way to restore the trajectory, i.e., bouncing back to an acceptable state.

The first element emphasizes the trajectory itself cannot undergo the impact of disruption, and the resistance adaptation strategy may not suffice. In other words, the "endogenous adjustments" can no longer be sufficient to maintain the validity of the disrupted trajectory. The second element refers to the capacity of the disrupted trajectory to go back to a desirable state, which infuses resilience with the idea of making active actions to readjust the disrupted trajectory. Based on these ideas, we propose a definition of the resilience adaptation strategy for the nuclear fuel cycle scenario studies.

This resilience adaptation strategy consists of considering the possibilities to avoid the disrupted trajectory violating the constraints by making "exogenous readjustments."

"Exogenous readjustments" are an expanded concept further developed from the "endogenous adjustments." In the resistance adaptation strategy, we only consider the "endogenous adjustments," which is a passive result imposed by the endogenous relation of the scenario model according to the disruption. We indicate that in front of disruption, besides the "endogenous adjustments," it is also possible to profit the activity of the decision-making further: based on the "endogenous adjustments," one can further make the readjustments of the disrupted trajectory according to the analysis of experts and/or the desire of decision-makers to counterbalance the impact of disruption. Since these readjustments are actively imposed by the decision-making, which is not a part of the scenario model, we call these readjustments as "exogenous readjustments." In our study, "exogenous readjustments" imply the readjustment of the input parameters of the scenario model that characterize the given disrupted trajectory. Depending on the way of parametrization of scenario model, the "exogenous readjustments" refer to the readjustment of the prospective scenario input parameters, such as the fuel burnups or the readjustment of the development strategy, such as the reprocessing strategy.

A trajectory is qualified as "resilient" if, under the impact of disruption, one can make it valid again by using a set of "exogenous readjustments" of input parameters. As demonstrated in Figure 2.3, a disruption occurs due to the deep uncertainty (see section 2.2). Under the impact of this disruption, the prior trajectory (represented by the green dotted curve in Figure 2.3) deviates into a disrupted trajectory (represented by the light red dotted curve in Figure 2.3). In Figure 2.3, we suppose that the impact of the disruption is so strong that the "endogenous adjustments" are not sufficient to remain the disrupted trajectory valid, and the disrupted trajectory can violate one or several constraints. In this case, if the prior trajectory is resilient, then one can make the "exogenous readjustments" of input parameters of scenario model (e.g., the fuel burnups, the reprocessing capacity, the shutdown and commissioning dates of reactors, etc.) to lead the disrupted trajectory into a new one (represented by the blue curve in Figure 2.3). As a result of the counterbalance between the impact of disruption and the effect of "exogenous readjustments," the readjusted trajectory can satisfy the imposed constraints. Compared to resistance, resilience is a dynamic and proactive adaptation strategy, which brings flexibility to the system. While a resistant trajectory is static, a resilient trajectory can be readjusted to face the disruption. For a given prior trajectory and a given disruption, one may prepare different resilience adaptation strategies in terms of choosing different ways to readjust. For instance, in a trajectory where there is a shortage of plutonium in the separated stockpile caused by a disruption in the fleet electricity production of the nuclear fuel cycle system, one may choose to modify the fuel burnups to carry out the exogenous readjustment, forming a resilience strategy, while another one may decide to change the reprocessing capacity to readjust, thus, forming another different resilience strategy. Moreover, even within the same resilience strategy, one can lead a disrupted trajectory into different readjusted ones with different moments to make the readjustment or different modification extents of readjustment. As a consequence, the resilience strategy brings more choices to the decision-makers.

Robustness

In the resistance and resilience adaptation strategies, we suppose that under the impact of disruption, the scenario model, which consists of a set of variables and endogenous relations, is still unchanged. "Endogenous adjustments" and "exogenous readjustments" are both realized based on the same scenario model before and after the disruption. However, under the impact of deep uncertainty (e.g., the uncertainty of economic, societal and political context), it is possible that the associated disruption causes the change of scenario model, i.e., the changes of the variables and endogenous relations inside the scenario model. For example, in a prior trajectory in which a nuclear reactor fleet initially consists of PWR reactors, one deploys the SFR reactors on a large scale to replace the initial PWR fleet so as to close the nuclear fuel cycle and economize the natural uranium resources. But as time goes by, the price of natural uranium resources becomes cheaper and cheaper. This change is not foreseen in the prior trajectory, and thus, is a disruption. As a result of the low uranium price, the reduction of natural 

Resilience

Disruption uranium resource consumption by closing the nuclear fuel cycle is no longer a priority, and the decision-makers finally decide to continue to deploy the PWR reactors instead of SFR in the future. In this case, the scenario hypothesis about the reactor type to deploy is disrupted, and thus, the scenario model is no longer adapted. One may change the scenario model to adapt to the disruption. Comparing the scenario models before and after the disruption, the variables and the endogenous relations are different:

• For variables: e.g., in the scenario model before the disruption, there are the input parameters concerning the deployment of SFR, while these parameters do not exist in the adapted scenario model after the disruption; • For endogenous relations: e.g., the fuel cycle strategies are different before and after the disruption.

As a complement to the resistance and resilience adaptation strategies, we propose to define a robustness adaptation strategy in the nuclear fuel cycle scenario studies.

This robustness adaptation strategy consists of considering the possibility to readjust the prior trajectory to maintain valid under the impact of disruption that leads to the change of scenario model. In the beginning, one gives a set of initial constraints (represented by the orange dotted lines in Figure 2.4) and then obtains a valid prior trajectory (represented by the green dotted curve in Figure 2.4) according to the imposed constraints through a scenario study. However, at a certain moment in the future, the economic, societal and political context changes. Thus, the considerations of decision-makers differ from the previous ones. As a result, a disruption in the imposed constraints appears. A set of new constraints (represented by the red dotted lines in Figure 2.4) replaces the initial constraints after the disruption. Recalling that constraints are characteristic elements and a part of endogenous relations of a scenario model (see section 2.3), the scenario model is thus disrupted. However, this is not the only possible effect of the disruptions: the new constraints can be different from the initial constraints in terms of the constraint thresholds. 2.4) that satisfies the new constraints. We note that disruptions may also remove constraints that have become obsolete in the light of new information.

Figure 2.4 is a simplified and stylized representation of the concept of robustness. In the general case, the categories of input parameters of interest and the constraints may have to be redetermined due to disruption, which means that the whole scenario model must be reconstructed.

Resilience study

In this work, we focus on the notions of resistance and resilience. In particular, we have developed a framework for analyzing the resilience of a given trajectory.

Resilience analysis framework

Based on the definition of the resilience adaptation strategy given in section 2.5.2, we propose a framework for the resilience analysis of nuclear fuel cycle scenarios. With this framework, we aim to evaluate the resilience of a given trajectory.

In our study, a scenario model is characterized by input parameters of interest and constraints, as said in section 2.3. A scenario study aims to search a valid trajectory versus the imposed constraints to represent the prospective developments of the studied nuclear fuel cycle system under a given industrial development strategy. Mathematically, the achievement of this aim corresponds to solving the system expressed as follows:

(𝒮): { ∀𝑗 ∈ [1, 𝑀], 𝐼 𝑗 (𝒙) < 𝑇 𝑗 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 Eq. (2-1)
where:

• 𝕏 is the variation range of the input parameters of interest;

• 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) is a vector composed of 𝑁 input parameters that characterize a trajectory in the scenario problem; • 𝑀 is the number of constraints;

• 𝐼 𝑗 (•) is the indicator of the 𝑗-th imposed constraint; • 𝑇 𝑗 is the threshold of the 𝑗 -th imposed constraint, constituting the quantification expression of the 𝑗-th imposed constraint along with 𝐼 𝑗 (•).

For a nuclear fuel cycle scenario study, all of the input parameters can be classified into two sorts according to their controllability in the resilience study:

• Controlled parameters: input parameters the values of which can be freely chosen according to the requirements of decision-makers in a predesigned variation range. Due to their role, controlled parameters are also referred to as levers, noted as 𝑳 in the following discussion.

• Uncontrolled parameters: input parameters that bear uncertainties. Their value may change according to the circumstances, without this being the result of a desired choice of decision-makers. In other words, they can be disrupted. We note the uncontrolled parameters as 𝑼 for the following discussion.

In this case, one has 𝒙 = (𝑼, 𝑳). The general idea of the mechanism of resilience is as follows: when the disruption of uncontrolled parameters (caused by uncertainties) manifests itself, one can readjust levers, to counterbalance the impact of disruptions and avoid the failure of disrupted trajectories.

We illustrate the process using Figure 2.5 with a mono-constraint case. The input parameters of interest in a resilience study are the levers 𝑳 and the uncontrolled parameters 𝑼. Their variation ranges, usually determined by expertise, constitute the input parameter space (represented by the domain surrounded by the rose lines in Figure 2.5). We suppose that one can express the scenario constraint in the form of inequality such that 𝐼(𝑼, 𝑳) < 𝑇 where 𝐼(•) is an indicator of constraint of the scenario model and 𝑇 is a corresponding threshold value. In the input parameter space, there exists one or several regions where the constraint is validated. These regions, referred to as valid regions or valid input parameter spaces, are represented by the orange zone in Figure 2.5. We suppose that one has found a valid prior trajectory (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) such that 𝐼(𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) < 𝑇 through a scenario study, which is represented by the black point in Figure 2.5. When applying the framework shown in Figure 2.5, one needs to indicate to what extent the levers should be modified to achieve the readjustment successfully. In the present study, we have developed a method based on the Kriging surrogate model and the state-of-the-art SUR algorithm to point out the modification of levers. The detailed presentation of this method is given in section 3.3.1.

Discussion

The resilience analysis framework provides a way to assess the resilience of a given trajectory obtained through a conventional scenario study. But the purpose of the resilience studies is not to show that a given trajectory is resilient or not. In fact, the deep uncertainty in the nuclear fuel cycle scenario studies (see section 2.2) is linked to the lack of information that will only be available in the future. At the time of the resilience study, one does not know what future disruptions will be, because the future cannot be predicted. In the resilience study, what one can do is to identify plausible disruptions using the currently available knowledge at the time of the resilience study, and carry out the resilience study by assuming that these plausible disruptions may occur. In other words, the disruptions considered in the resilience study are the assumptions proposed in relation to the knowledge available at the time of the resilience study. However, one does not know whether any of these assumed disruptions will occur in the real-world future. The determination of the assumed disruptions, as well as the formation of adaptation strategies (including the choice of levers, the readjustment extent, etc.), require expertise and insight from multiple fields (e.g., engineering, physics, finance, etc.). The construction of a resilience study problem benefits from the participation of decision-makers and experts from different communities.

By proving that the given trajectory is resilient under the impact of the assumed disruptions, one can:

• Prepare the adaptation strategies (resistance or resilience) corresponding to the assumed disruptions in the resilience study, helping the decision-makers to understand further the behaviors of the given trajectory in front of the "plausible disruptions" (i.e., the disruptions that have been foreseen according to the currently available knowledge at the time of the resilience study, but one cannot be sure whether they will occur in the real-world future) and then, constructing trajectories adapted to the considered plausible disruptions; • Provide confidence in the flexibility (i.e., the possibility to remain valid) of the given trajectory (as well as the flexibility of the corresponding studied industrial development strategy) in front of the "unforeseen disruptions," which are the disruptions that have not yet been foreseen at the time of the resilience study.

In conclusion, the present resilience study paradigm is a complement for the conventional nuclear fuel cycle scenario studies to help understand the flexibility of a given trajectory when facing disruptions due to deep uncertainty.

Kriging surrogate model and SUR algorithm

Motivation

In section 2.6.1, we have constructed a framework for the resilience analysis of trajectories. However, one needs a method to indicate the modification of levers to readjust the invalid disrupted trajectories. Random sampling and optimization methods, which have been successfully introduced in the scenario study by the effort of [START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Freynet | Dé veloppement d'une mé thodologie pour l'optimisation multicritè re de scé narios d'é volution du parc nuclé aire[END_REF], are two first methods of interest.

With the random sampling method, one can randomly sample the values of levers to propose a large number of readjusted trajectories and then, directly call the scenario model to verify their validity. Theoretically, the random sampling method can always allow for obtaining valid readjusted trajectories if they exist. Nevertheless, its calculation cost in a scenario resilience study is very high. A scenario is usually very constrained, and the valid input parameter space (i.e., parts of input parameter space that contain valid trajectories, see section 2.6.1) is very narrow compared with the whole variation range of the input parameters of interest. Therefore, the probability of obtaining a valid readjusted trajectory "by chance," i.e., by a pure random sampling method, is very low. In this case, one has to increase the number of sampled readjusted trajectories to ensure the achievement of valid ones, which requires a high calculation cost.

As for the optimization method, it allows for reformulating the scenario problem into an optimization problem in which the variables to optimize are the levers. By solving the optimization problem, one can obtain the successful modification of levers. Even though the optimization method can provide a way to indicate how to modify the levers, it has several disadvantages. First, the optimization method has the same inconvenience as the random sampling method and requires a high calculation cost. In each iteration of optimization, it needs a huge amount of scenario simulation calculations to explore the variation ranges of levers. Secondly, the optimization method allows of only finding a part of valid readjusted trajectories instead of all of them, as it aims to find only the optimal solutions of the optimization problem.

The optimization method may ignore other readjusted trajectories that are valid while not optimal according to the optimization problem. In this case, the decision-makers may suffer low flexibility in decision-making due to the loss of potential ad hoc choices.

In our study, we use the Kriging surrogate model and the SUR (Stepwise Uncertainty Reduction) algorithm as a method to indicate the modification of levers and find the valid readjusted trajectories. C. Chevalier [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF] proposed this method for the first time in his PhD work, on which the present work is extensively based, and he applied the method to the study of nuclear criticality safety. Based on the idea of the sequential design of experiments (see section 3.1.3.1), the SUR algorithm is an efficient method to identify the valid input parameter space and provide a set of observations (or a database) to construct the Kriging surrogate models. With the constructed Kriging models, one can build the trajectory validity estimators called "excursion probabilities" (see sections 3.1.2.3.3 and 3.2.2), to estimate the validity of a given trajectory rapidly. Generally speaking, the Kriging surrogate model and the SUR algorithm allow for

• exploring the input parameter spaces corresponding to the valid trajectories with a reasonable calculation cost; • and then providing a fast way to estimate a priori the validity of a given trajectory without calling the time-consuming scenario simulator.

However, the version of the SUR algorithm given in [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF] is only adapted to the mono-constraint case, while the nuclear fuel cycle scenario problems are usually of multi-constraint. In our study, to adapt to the characteristics of the nuclear fuel cycle scenario problems, we have developed a multi-constraint version of the SUR algorithm as our contribution in this thesis (see section 3.2 and Appendix A) and incorporated it into the resilience analysis framework in section 2.6.1. In this chapter, we present the basics of the Kriging model, the SUR algorithm, the further development of the multi-constraint version of the SUR algorithm, their applications to the resilience analysis framework of trajectories as well as the search for valid trajectories.

Basics of Kriging surrogate model

Surrogate models are compact scalable analytic models that approximate the multivariate input/output behaviors of complex systems, based on a limited set of expensive computational simulations or so-called observations. With the advantage of fast calculation, they provide the possibility to give the prediction of outcomes of the modeled systems in a relatively low computation cost when the simulations are computation-intensive. For example, in the COSI6 nuclear fuel cycle scenario simulation code, one has implemented a fuel evolution model relying on the Artificial Neuron Network to take the place of the time-consuming ordinary fuel evolution calculation codes such as CESAR and ERANOS, providing the reliable results in a short time [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF].

Kriging is a kind of surrogate model that has been developed by Georges Matheron since 1963 for geostatistics, based on the Master's thesis of Danie G. Krige [START_REF] Matheron | Principles of geostatistics[END_REF]. Different from the ordinary surrogate models such as the Artificial Neuron Network, linear regression, polynomial regression, etc., the Kriging model can not only provide the prediction of outcomes of the modeled system but also can give the statistic information associated to the prediction result at the same time. With this supplementary statistic information, it is possible to construct a fast estimator to estimate the a priori probability of the validity of a given trajectory without call the time-consuming scenario simulation code, which is the key point of our method and will be explained later.

In the following discussion, we focus on the mono-constraint case and consider the constraint such that 𝐼(𝒙) < 𝑇 where 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) ∈ 𝕏 ⊂ ℝ 𝑁 is a vector composed of 𝑁 input parameters that characterizes a trajectory in the scenario problem and sometimes called "spatial location" in the later discussion. 𝕏 is the possible variation range of the input parameters, 𝐼(•) is the indicator of the imposed constraint in the scenario problem, and 𝑇 is the threshold of the imposed constraint in the scenario problem. We suppose that 𝐼(•) is unidentified, i.e., for a given spatial location 𝒙, 𝐼(𝒙) cannot be known a priori before the scenario simulation. Moreover, we assume that the calculation cost of 𝐼(𝒙) is expensive in terms of computation time.

Kriging surrogate model

In the context of Kriging surrogate model, one supposes that there exists a random variable field (or stochastic process), denoted as 𝜉 in this thesis, indexed by spatial location, such that 𝜉(𝒙) is a random variable for each 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 . The value of the modeled function, which is the indicator of constraint 𝐼(•) in our study, from a given spatial location 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , i.e., 𝐼(𝒙), is considered as an observation (or realization 2 ) of the random variable 𝜉(𝒙). One can understand this context as the fact that the modeled function value 𝐼(𝒙) from an unobserved (i.e., before the execution of the scenario simulator) spatial location 𝒙 is unknown a priori and may take any value. In this case, one can associate this unknown modeled function value with a random variable 𝜉(𝒙), and consider the value of 𝐼(𝒙) obtained after the execution of the scenario simulator as an observation of 𝜉(𝒙) after an experiment.

Let 𝜉(𝒙) be a random variable indexed by a given spatial location 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , (𝒙 𝟏 , … , 𝒙 𝒏 ) ∈ 𝕏 𝑛 denote 𝑛 > 0 distinct spatial locations, (𝜉(𝒙 1 ), … , 𝜉(𝒙 𝑛 )) represent the 𝑛 random variables corresponding to the spatial locations (𝒙 𝟏 , … , 𝒙 𝒏 ), and (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 )) be the observations of the random variables (𝜉(𝒙 1 ), … , 𝜉(𝒙 𝑛 )).

Under the above Kriging context and notations, the basic idea of Kriging model is the following: the Kriging model aims at performing linear prediction [START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF] and the expression of the observation is:

∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑚 𝑛 (𝒙) ≔ ∑ 𝜆 𝑖,𝑛 (𝒙) • 𝐼(𝒙 𝑖 ) 𝑛 𝑖=1 ≔ 𝝀(𝒙) 𝑇 𝒚 Eq. (3-2)
where 𝒀 ≔ (𝜉(𝒙 1 ), … , 𝜉(𝒙 𝑛 )) 𝑇 , 𝒚 ≔ (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 )) 𝑇 , 𝝀(𝒙) ≔ (𝜆 1,𝑛 (𝒙), … , 𝜆 𝑛,𝑛 (𝒙)) 𝑇 ∈ ℝ 𝑛 are so-called "Kriging weights" and 𝑚 𝑛 (𝒙) is the Kriging prediction result of 𝐼(𝒙) as well as the predicted observation of the random variable 𝜉(𝒙). To find the appropriate Kriging weights 𝝀(𝒙), four assumptions are made.

First, it is assumed that the observations spatially near the prediction location should have a stronger impact on the prediction result than those located far away and, thus, get more weight in the prediction to improve the estimation [START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF]. In other words, the Kriging model relies on prior knowledge of some kind of spatial structure. To take this assumption into account, one needs a covariance function 3 to characterize the spatial relation between two observations, defined as follows:

∀(𝒙, 𝒙 ′ ) ∈ 𝕏 𝟐 ⊂ ℝ 2𝑁 , 𝑘(𝒙, 𝒙 ′ ) ≔ 𝐶𝑜𝑣(𝜉(𝒙), 𝜉(𝒙 ′ )) Eq. (3-3)
In application, there exist several covariance functions that are commonly used. For example, the URANIE [START_REF] Gaudier | URANIE: The CEA/DEN Uncertainty and Sensitivity Platform[END_REF][START_REF] The | User manual for Uranie v4.2.0[END_REF] statistical analysis platform, which is used in our study, provides the Gaussian covariance function, the Isogaussian covariance function, the Exponential covariance function, the Matern covariance functions, etc., to construct the Kriging model. These covariance functions are parametric with a set of so-called hyper-parameters. To determine these hyper-parameters, one can apply different parameter estimation methods, such as the maximum likelihood (used in our study) and the Leave-One-Out method. For more details about the covariance function (or variogram), one can refer to [START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF] and [START_REF] The | User manual for Uranie v4.2.0[END_REF].

Second, as the Kriging model is based on the notion of best linear unbiased prediction method [START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF], the choice of the Kriging weights 𝝀(𝒙) should satisfy two conditions, respectively, as follows:

• Unbiasedness condition, i.e., the expectation of 𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀 is equal to zero:

∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝝀(𝒙): 𝔼(𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀) = 0 Eq. (3-4)

• Minimization of the prediction variance, which is expressed as: In the setting of the Simple Kriging model, the third assumption is that the mean function of the random variable field 𝜉 exists and is constant, i.e., there exist 𝜇 ∈ ℝ such that:

∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 ,
∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝔼(𝜉(𝒙)) = 𝜇 Eq. (3-6)
The last assumption of the Simple Kriging model is that the Kriging covariance exists and only depends on the separating vector between the spatial locations instead of their exact locations, i. ∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑠 𝑛 2 (𝒙) = 𝑘( 𝒙, 𝒙) -𝒌(𝒙) 𝑇 𝐾 -1 𝒌( 𝒙) = 𝑘( 𝒙, 𝒙) -𝒌(𝒙) 𝑇 𝝀(𝒙) Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF] where:

• 𝒌(𝒙) ≔ (𝑘(𝒙, 𝒙 1 ), … , 𝑘(𝒙, 𝒙 𝑛 )) 𝑇 with (𝒙 𝒊 ) 1≤𝑖≤𝑛 the spatial locations of observations;

• 𝐾 is the covariance matrix between the observations (i.e. 𝐾 𝑖𝑗 ≔ 𝑘(𝒙 𝑖 , 𝒙 𝑗 ) with 1 ≤ 𝑖, 𝑗 ≤ 𝑛);

• 𝝁 ⃗ ⃗ ≔ (𝜇, … , 𝜇) 𝑇 .
Interested readers can find in [START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF] the detailed deduction of the Eq. (3-8), Eq. (3-9) and Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF] as well as the presentations of the Ordinary Kriging and the Universal Kriging.

Gaussian process

The assumptions described in section 3.1.2.1 originate from the geostatistics. The basic idea of the Kriging model shown in section 3.1.2.1 is to predict the value of a function at a given point by computing a weighted average of the known values of the function in the neighborhood of the given point. However, one can also re-explain the Kriging model from a different angle. In statistics, one can consider the Kriging model as an interpolation method in which the interpolated values are modeled by a Gaussian process governed by prior distribution [START_REF] Gelman | Prior distribution[END_REF], from which the alias name "Gaussian process regression" comes. To understand this explanation, one needs to present the Gaussian process as a prerequisite.

A Gaussian process [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF], denoted as 𝒢, is a collection of random variables indexed by spatial location, such that every finite collection of these random variables has a multivariate normal distribution, i.e., every finite linear combination of them is normally distributed. For example, if 𝒢 is a Gaussian process, then 𝒢(𝒙 𝟏 ) and 𝒢(𝒙 𝟐 ), two elements of the Gaussian process 𝒢 indexed by two given locations (𝒙 𝟏 , 𝒙 𝟐 ) ∈ 𝕏 2 , are both random variables, and their linear combination follows a normal distribution. The Gaussian process can be considered as an infinite-dimensional generalization of the Gaussian distribution. One can fully determine the distribution of a Gaussian process 𝒢 by its mean function 𝑚 𝐺𝑃 Interested readers can refer to [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF] for more details about the Gaussian process, including the proof of Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF] and Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF].

Combining Kriging and Gaussian processes

Kriging with Gaussian process assumption

In applications, besides the assumptions in section 3.1.2.1, the Kriging model is often used with the Gaussian process assumption: the random variable field 𝜉 considered in the context of Kriging model is a Gaussian process a priori. More precisely, it assumes 𝜉~𝐺𝑃(𝑚, 𝑘) where 𝑚 and 𝑘 are respectively the mean function and covariance function of the Kriging model. For example, let us consider a Simple Kriging with a constant mean 𝜇 ∈ ℝ, a covariance function 𝑘(•,•) and a random variable field 𝜉 considered in the context of Simple Kriging model. When assuming 𝜉~𝐺𝑃(𝜇, 𝑘(•,•)) a priori and having observations, one can reobtain Eq. (3-9), Eq. (3-10) and Eq. (3-11) by using 𝑚 𝐺𝑃 = 𝜇 and 𝑘 𝐺𝑃 (•,•) = 𝑘(•,•) in Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF], Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF] and Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF][START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF]. Under the Gaussian process assumption, the Kriging prediction result and Kriging covariance are the conditional (or posterior) expectation and covariance of the Gaussian process 𝐺𝑃(𝑚, 𝑘) given with observations. When 𝑛 observations are obtained, the prior distribution 𝜉~𝐺𝑃(𝜇, 𝑘(•,•)) is updated to a posterior distribution such that (𝜉|𝒀 = 𝒚)~𝐺𝑃(𝑚 𝑛 𝐺𝑃 , 𝑘 𝑛 𝐺𝑃 ). This conclusion also holds for the Universal Kriging model, which can be considered as a further expanded model of the Simple Kriging. The interested reader can find a detailed deduction of Eq. (3-9), Eq. (3-10), Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF] with the Gaussian process assumption in [START_REF] O'hagan | Curve fitting and optimal design for prediction[END_REF]. As the Kriging prediction result is the posterior expectation of a Gaussian process given with observations, it is also called Kriging mean.

It is noteworthy that the Gaussian process assumption is not necessary for the Kriging model. One can fully define a Kriging model only with the assumptions in section 3.1.2.1. However, the additional introduction of the Gaussian process assumption can bring several advantages in applications such as the Kriging update formulas and the excursion probability. In the following discussion about the Kriging update formulas and the excursion probability, the settings of the Simple Kriging model are used. But the same results are held for the Universal Kriging.

Kriging update formulas

In the Simple Kriging settings, we consider 𝑛 > 0 observations 𝒜 𝑛 ≔ (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 . We assume that with these observations, we have already computed the Kriging prediction result 𝑚 𝑛 (𝒙), the Kriging variance 𝑠 𝑛 2 (𝒙) at a given spatial locations 𝒙 and the Kriging covariance 𝑘 𝑛 (𝒙, 𝒙 ′ ) with some other spatial location 𝒙 ′ according to Eq. (3-9), Eq. (3-10), Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF]. Let us suppose that (𝒙 𝒏+𝟏 , … , 𝒙 𝒏+𝒓 ) ∈ 𝕏 𝑟 is a batch of 𝑟 points and (𝐼(𝒙 𝒏+𝟏 ), … , 𝐼(𝒙 𝒏+𝒓 )) be a set of 𝑟 corresponding new observations. Now, the problem we are trying to tackle is the following: how to take the 𝑟 new observations into account and update the Kriging prediction result and the Kriging variance at 𝒙 as well as the Kriging covariance between 𝒙 and 𝒙 ′ with (𝐼(𝒙 𝟏 ), … , 𝐼(𝒙 𝒏 ), 𝐼(𝒙 𝒏+𝟏 ), … , 𝐼(𝒙 𝒏+𝒓 )).

The first answer that comes naturally first is to reconstruct a Kriging model with the (𝑛 + 𝑟) observations according to Eq. (3-9), Eq. (3-10), Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF]. However, this way requires to calculate the costly (𝑛 + 𝑟) × (𝑛 + 𝑟) matrix inversion of the covariance matrix. In the case where one needs to update the Kriging model frequently, the computation cost can be very high. For example, in the SUR algorithm which we will introduce in the later section, each iteration requires over hundreds of times of Kriging update. If one computes the matrix inversion of the covariance matrix at each time of Kriging update, the iteration of the algorithm can become very slow, making the algorithm impractical in applications.

According to the work of [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF], the additional introduction of the Gaussian process assumption in the Kriging model allows for obtaining the so-called Kriging update formulas, which is a fast way to update Kriging model with new additional observations. As explained above, when assuming 𝜉~𝐺𝑃(𝑚, 𝑘) a priori, the Kriging prediction result and the Kriging covariance are respectively the posterior expectation and posterior covariance of the Gaussian process 𝐺𝑃(𝑚, 𝑘) conditioned on observations. Similarly, when assuming 𝜉~𝐺𝑃(𝑚 𝑛 , 𝑘 𝑛 ) a priori where 𝑚 𝑛 and 𝑘 𝑛 are respectively the Kriging prediction result and Kriging covariance constructed with 𝑛 observations, the new Kriging prediction result and Kriging covariance updated with 𝑟 new observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 𝑛+1≤𝑖≤𝑛+𝑟 are respectively the posterior expectation and posterior covariance of the Gaussian process 𝐺𝑃(𝑚 𝑛 , 𝑘 𝑛 ) conditioned on new observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 𝑛+1≤𝑖≤𝑛+𝑟 . Mathematically, by Eq. (3-16), Eq. (3-17), Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF] and Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF][START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF], the Kriging update formulas are as follows:

(𝜉|𝒀 = 𝒚, 𝒀 𝒏𝒆𝒘 = 𝒚 𝒏𝒆𝒘 ) = ((𝜉|𝒀 = 𝒚)|𝒀 𝒏𝒆𝒘 = 𝒚 𝒏𝒆𝒘 )
Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF][START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF][START_REF] Wikipedia | Uncertainty[END_REF] with

∀𝒙 ∈ 𝕏, 𝑚 𝑛+𝑟 (𝒙) = 𝑚 𝑛 (𝒙) + 𝒌 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) 𝑇 𝐾 𝑛𝑒𝑤 -1 (𝒚 𝒏𝒆𝒘 -𝒎 𝒏 (𝒙 𝒏𝒆𝒘 )) Eq. (3-21) ∀(𝒙, 𝒙 ′ ) ∈ 𝕏 𝟐 ⊂ ℝ 2𝑁 , 𝑘 𝑛+𝑟 (𝒙, 𝒙 ′ ) = 𝑘 𝑛 (𝒙, 𝒙 ′ ) -𝒌 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) 𝑇 𝐾 𝑛𝑒𝑤 -1 𝒌 𝒏 (𝒙 ′ , 𝒙 𝒏𝒆𝒘 ) Eq. (3-22) ∀𝒙 ∈ 𝕏, 𝑠 𝑛+𝑟 2 (𝒙) = 𝑠 𝑛 2 ( 𝒙) -𝒌 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) 𝑇 𝐾 𝑛𝑒𝑤 -1 𝒌 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) Eq. (3-23)
where:

• 𝜉 is the random variable field considered in the Kriging context;

• 𝒀 ≔ (𝜉(𝒙 1 ), … , 𝜉(𝒙 𝑛 )) 𝑇 ;

• 𝒀 𝒏𝒆𝒘 ≔ (𝜉(𝒙 𝑛+1 ), … , 𝜉(𝒙 𝑛+𝑟 )) 𝑇 ;

• 𝒚 ≔ (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 )) 𝑇 is a vector composed of the 𝑛 old observations;

• 𝒚 𝒏𝒆𝒘 ≔ (𝐼(𝒙 𝑛+1 ), … , 𝐼(𝒙 𝑛+𝑟 )) 𝑇 is a vector composed of the 𝑟 new additional observations; When calculating the updated Kriging prediction result and Kriging variance (or Kriging covariance) with the Kriging update formulas, one only needs to compute the terms 𝐾 𝑛𝑒𝑤 -1 , 𝒎 𝒏 (𝒙 𝒏𝒆𝒘 ) and 𝒌 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ), which is much less costly in terms of calculation time if 𝑟 ≪ 𝑛.

• 𝑚 𝑛 (•)
With the Kriging update formulas, the SUR algorithm can be applied with reasonable computation time.

The interested reader can find the formal proof of the Kriging update formulas in [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF].

Excursion probability

Let us suppose that a given Kriging model constructed with 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 has a Kriging prediction result 𝑚 𝑛 (•), a Kriging covariance 𝑘 𝑛 (•,•), a Kriging variance 𝑠 𝑛 2 (•) and a random variable field 𝜉 considered in the Kriging context. Under the Gaussian process assumption, one has 𝜉~𝐺𝑃(𝑚 𝑛 , 𝑘 𝑛 ). According to Eq. [START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF], for a given spatial location 𝒙, 𝜉(𝒙) is a random variable following a Gaussian distribution with a mean and a variance respectively equal to 𝑚 𝑛 (𝒙) and 𝑠 𝑛 2 (𝒙) where 𝑠 𝑛 2 (𝒙) = 𝑘 𝑛 (𝒙, 𝒙) , i.e., 𝜉(𝒙)~𝒩(𝑚 𝑛 (𝒙), 𝑠 𝑛 2 (𝒙)). One assumes that 𝑇 ∈ ℝ is a given constant. In this case, one can have:

𝑝 𝑛 (𝒙) ≔ ℙ(𝜉(𝒙) < 𝑇|𝒀 = 𝒚) = Φ ( 𝑇-𝑚 𝑛 (𝒙) 𝑠 𝑛 (𝒙) )
Eq. where:

• 𝒀 ≔ (𝜉(𝒙 1 ), … , 𝜉(𝒙 𝑛 )) 𝑇 ;

• 𝒚 ≔ (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 )) 𝑇 ;

• 𝑝 𝑛 (𝒙) ≔ ℙ(𝜉(𝒙) < 𝑇|𝒀 = 𝒚) is the conditional probability that 𝜉(𝒙) < 𝑇 when knowing 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 ; • Φ(•) is the cumulative distribution function of the standard normal distribution 𝒩(0,1);

• 𝑠 𝑛 (𝒙) ≔ √𝑠 𝑛 2 (𝒙).
Considering that 𝜉(𝒙) is the estimated value of 𝐼(𝒙) before having any observation at 𝒙 , 𝑝 𝑛 (𝒙) ≔ ℙ(𝜉(𝒙) < 𝑇|𝒀 = 𝒚) is also the conditional probability that 𝐼(𝒙) < 𝑇 before knowing the observation at 𝒙 while knowing the observations at other 𝑛 spatial location (𝒙 𝟏 , … , 𝒙 𝒏 ). In this work, 𝑝 𝑛 (𝒙) ≔ ℙ(𝜉(𝒙) < 𝑇|𝒀 = 𝒚) is called "excursion probability."

The excursion probability is a key milestone to apply the resilience analysis framework developed in our study, as it provides a fast (as the computation of Kriging prediction result and Kriging variance at a given spatial location is very quick) way to estimate the satisfaction of the constraint 𝐼(𝒙) < 𝑇 before observing at 𝒙 while knowing the observations at other 𝑛 spatial locations (𝒙 𝟏 , … , 𝒙 𝒏 ). However, as shown in Eq. , the excursion probability depends on the observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 . In order to have an appropriate estimation for the satisfaction of the constraint 𝐼(𝒙) < 𝑇, one should choose a set of observations carefully. The SUR algorithm has the ability to do such a task.

SUR algorithm

With the basics of the Kriging model previously presented, we introduced the SUR algorithm, which is firstly proposed in the work of [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF].

Sequential design of experiments

Let 𝐼: 𝕏 ⊂ ℝ 𝑁 ↦ ℝ be an indicator of constraint and 𝑇 ∈ ℝ be a constant. In a mono-constraint scenario problem where the constraint 𝐼(𝒙) < 𝑇 is imposed, the objective is to determine the valid input parameter space, which is denoted as 𝛤 * and defined as:

𝛤 * ≔ {𝒙 ∈ 𝕏 ∶ 𝐼(𝒙) < 𝑇} Eq. (3-25)
If the scenario problem is numerable (i.e., the number of possible trajectories of the scenario problem is finite), it is possible to identify the set of interest 𝛤 * completely by the exhaustion method. However, in most situations, this is not the case. Most of the scenario problems are not numerable, and it is only possible to estimate the form (or the volume) of the set 𝛤 by a finite set of 𝑛 > 0 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 , which may sometimes lead to an estimated result far away from the real one. Despite this, as the number of observations 𝑛 increases, more and more information is brought, and the estimated result about the set 𝛤 gets closer and closer to the real result. Considering this point, a large number of observations may be preferable. Yet this is not always recommended, especially when the scenario simulation is very timeconsuming, as the calculation cost increases as the number of observations gets bigger. One should choose the most "valuable" observations that can bring as much information about the set 𝛤 * as possible in order to have a good estimation result about 𝛤 * with a reasonably small number of observations. A sequential design of experiments is a promising solution for this task:

Sequential design of experiments

Require:

-An initial design of experiments: 𝑛 observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 ; -A sampling criterion: a criterion to quantify a priori (i.e., before the scenario simulation) the improvement of the estimation result of the set 𝛤 * (or the volume of the set 𝛤 * ) by placing a new observation at a given spatial location when a set of observations is already known; -An experiment budget 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 : i.e., the number of new observations to add.

𝒇𝒐𝒓 (𝑘 = 0; 𝑘 < 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 ; 𝑘 + +) { -Construct the sampling criterion based on the (𝑛 + 𝑘) observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛+𝑘 ; -Find the spatial location 𝒙 𝒏+𝒌+𝟏 according to the maximization of the sampling criterion; -Evaluate the value of 𝐼(𝒙 𝒏+𝒌+𝟏 ) by calling the costly model (in our case: scenario model).

}

Return: a set of well-chosen observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛+𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 according to the sampling criterion, which can be used to estimate the set 𝛤 * Generally speaking, the basic idea of the sequential design of experiments is to use the information from past observations to determine the optimum locations in the input parameter space for the next observations. It aims to find a sequence of observations. In other words, the search of each observations benefits from the information brought in each previous observation to maximize the improvement of the estimation result about the set of interest 𝛤 * . In this case, one can identify the set of interest 𝛤 * with the least observations possible.

The SUR algorithm is a sequential design of experiments. In the SUR algorithm, the sampling criterion, which is the key point of the sequential design of experiments, is the so-called SUR criterion. We present this criterion in the next section.

SUR criterion

Construction

Besides the Kriging update formulas and the excursion probability, with the Gaussian process assumption, one can also construct a criterion to estimate the uncertainty about the valid input parameter space, which is the key factor of the SUR algorithm.

Let us suppose an indicator of constraint 𝐼: 𝕏 ⊂ ℝ 𝑁 ↦ ℝ and 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 . We use the Simple Kriging settings 4 with the Gaussian process assumption, and 𝜉 is assumed as the random variable field considered in the Kriging context. We assume that we have already constructed a Simple Kriging model of 𝐼(•) with the 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 . The Simple Kriging has a mean function 𝑚 𝑛 (•), a variance function 𝑠 𝑛 2 (•) and a covariance function 𝑘 𝑛 (•,•). Let 𝑇 ∈ ℝ be a constant and ℙ 𝕏 be a fixed probability measure5 defined on 𝕏.

In the mono-constraint case where the constraint 𝐼(𝒙) < 𝑇 is imposed, 𝛤 * , which is the valid input parameter space, is defined by Eq. . We want to determine the volume of the set 𝛤 * which is denoted as 𝛼 * and defined as follows:

𝛼 * ≔ ℙ 𝕏 (𝛤 * ) = ℙ 𝕏 ({𝒙 ∈ 𝕏 ∶ 𝐼(𝒙) < 𝑇})
Eq. As 𝐼(•) is not known (i.e., for a given spatial location 𝒙, one cannot know the value of 𝐼(𝒙) a priori before the scenario simulation): it is impossible to calculate 𝛼 * directly. However, using the properties of the Kriging model with the Gaussian process assumption, one can estimate the value of 𝛼 * and the uncertainty of the estimation result.

Let us consider the set defined as:

𝛤 ≔ {𝒙 ∈ 𝕏 ∶ 𝜉(𝒙) < 𝑇} Eq. (3-27)
Since 𝜉 is a random variable field, the set 𝛤 is also random. the set 𝛤 is the counterpart of the set 𝛤 * in the probability space. Correspondingly, the volume of 𝛤, denoted as 𝛼, is a random variable and the counterpart of 𝛼 * in the probability space. Mathematically, by definition:

𝛼 ≔ ℙ 𝕏 (Γ) = ∫ 𝕏 𝟙 (𝜉(𝒙)<𝑇) 𝑑ℙ 𝕏 (𝒙) Eq. (3-28)
where

𝟙 (𝜉(𝒙)<𝑇) ≔ { 1, 𝑖𝑓 𝜉(𝒙) < 𝑇 0, 𝑖𝑓 𝜉(𝒙) ≥ 𝑇 Eq. (3-29)
is the characteristic function of 𝜉. As 𝜉 is a random variable field, 𝟙 (𝜉(𝒙)<𝑇) is a random variable with each 𝒙 ∈ 𝕏, and one has:

𝔼(𝟙 (𝜉(𝒙)<𝑇) ) = ℙ(𝜉(𝒙) < 𝑇) Eq. (3-30)
Combining Eq. (3-28) and Eq. (3-30), we have:

𝔼(𝛼) = 𝔼 (∫ 𝕏 𝟙 (𝜉(𝒙)<𝑇) 𝑑ℙ 𝕏 (𝒙)) = ∫ 𝕏 𝔼(𝟙 (𝜉(𝒙)<𝑇) )𝑑ℙ 𝕏 (𝒙) = ∫ 𝕏 ℙ(𝜉(𝒙) < 𝑇)𝑑ℙ 𝕏 (𝒙) Eq. (3-31)
The interchange of integration and expectation in the second equality in Eq. where 𝔼 𝑛 (•) ≔ 𝔼(• |𝒜 𝑛 ) is the expectation conditioned on the observations 𝒜 𝑛 and 𝑝 𝑛 (𝒙) = ℙ(𝜉(𝒙) < 𝑇|𝒜 𝑛 ) = ℙ(𝜉(𝒙) < 𝑇|𝒀 = 𝒚) is the excursion probability given by Eq. .

𝔼 𝑛 (𝛼) is the estimated value of 𝛼 * when knowing the observations 𝒜 𝑛 . Correspondingly, the conditional variance of 𝛼, i.e.:

𝑉𝑎𝑟 𝑛 (𝛼) ≔ 𝑉𝑎𝑟(𝛼|𝒜 𝑛 ) = 𝔼 𝑛 ((𝛼 -𝔼 𝑛 (𝛼)) 2 )
Eq. quantifies the uncertainty of 𝔼 𝑛 (𝛼) when knowing the observations 𝒜 𝑛 . In other words, 𝑉𝑎𝑟 𝑛 (𝛼) evaluates the quality of the estimation result of 𝛼 * .

Based on Eq. (3-34), Bect et al. [START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF] proposed a criterion to evaluate a priori (i.e., before the scenario simulation) the benefit brought to the improvement of the estimation result of 𝛼 * by adding a new observation at a given spatial location 𝒙 𝑛+1 when the observations 𝒜 𝑛 are already known, which is denoted as 𝐽 𝑛 (•) and has an expression as follows 6 :

𝐽 𝑛 (𝒙 𝑛+1 ) ≔ 𝔼 𝑛 ( 𝑉𝑎𝑟 𝑛+1 (𝛼)) ≔ 𝔼 𝑛 (𝑉𝑎𝑟(𝛼|𝒜 𝑛 , 𝜉(𝒙 𝑛+1 )))
Eq. with 𝜉(𝒙 𝑛+1 )~𝒩(𝑚 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑛 2 (𝒙 𝑛+1 )) . Bect et al. [START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF] also proposed another criterion derived from 𝐽 𝑛 (𝒙 𝑛+1 ), which is denoted as 𝐽 ̃𝑛(𝒙 𝑛+1 ) and expressed as follows:

𝐽 ̃𝑛(𝒙 𝑛+1 ) = 𝔼 𝑛 (∫ 𝕏 𝑝 𝑛+1 (𝒙) • (1 -𝑝 𝑛+1 (𝒙))𝑑ℙ 𝕏 (𝒙))
Eq. where 𝑝 𝑛+1 (•) is the excursion probability when knowing 𝒜 𝑛 and 𝜉(𝒙 𝑛+1 )~𝒩(𝑚 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑛 2 (𝒙 𝑛+1 )). We indicate that 𝑉𝑎𝑟 𝑛+1 (𝛼) in Eq. and 𝑝 𝑛+1 (𝒙)

Eq. are random variables as 𝜉(𝒙 𝑛+1 )~𝒩(𝑚 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑛 2 (𝒙 𝑛+1 )) . One can find the detailed deduction of 𝐽 ̃𝑛(𝒙 𝑛+1 ) from 𝐽 𝑛 (𝒙 𝑛+1 ) in [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF].

Eq. and Eq. (3-36) consider only one observation to add. As a more general form, the batch-sequential generalization of Eq. and Eq. , in which 𝑞 > 1 observations to add are considered at the same time, are proposed by [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF], as follows:

𝐽 𝑛 (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) ≔ 𝔼 𝑛 ( 𝑉𝑎𝑟 𝑛+𝑞 (𝛼)) Eq. (3-37) 𝐽 ̃𝑛(𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) ≔ 𝔼 𝑛 (∫ 𝕏 𝑝 𝑛+𝑞 (𝒙) • (1 -𝑝 𝑛+𝑞 (𝒙)) 𝑑ℙ 𝕏 (𝒙)) Eq. (3-38)
Eq. (3-37) and Eq. (3-38) quantify a priori (i.e., before the scenario simulation) the benefit brought to the improvement of the estimation result of 𝛼 * by adding a sequence of observations at a set of given spatial locations (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) at the same time when the observations 𝒜 𝑛 are already known.

Closed-form expression

To evaluate Eq. (3-37) and Eq. , one can use the Monte Carlo approximation which considers a finite number of possible responses of (𝜉(𝒙 𝑛+1 ), … , 𝜉(𝒙 𝑛+𝑞 )).

We take 𝐽 𝑛 (𝒙 𝑛+1 ) with 𝑞 = 1 as an example (in this case, Eq. 

∫ 𝕏 𝑝 𝑛+1 (𝒙) • (1 -𝑝 𝑛+1 (𝒙))𝑑ℙ 𝕏 (𝒙)).
However, such a method to calculate Eq. (3-37) and Eq. is expensive in terms of computation time. Considering that one needs to calculate Eq. (3-37) and Eq. over hundreds of times to find one optimal observation, the calculation with the Monte Carlo approximation is impractical. As a better solution, in the work of [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF], the closed-form expressions of Eq. (3-37) and Eq. 

≔ 𝔼 𝑛 (∫ 𝕏 𝑝 𝑛+𝑞 (x) • (1 -𝑝 𝑛+𝑞 (x)) 𝑑ℙ 𝕏 (𝒙)) = ∫ 𝕏 Φ 2 (( 𝑎(𝒙) -𝑎(𝒙) ) , ( 𝑐(𝒙) 1 -𝑐(𝒙) 1 -𝑐(𝒙) 𝑐(𝒙) )) 𝑑ℙ 𝕏 (𝒙)
Eq. where:

• Φ 2 (•, 𝑴) is the cumulative distribution function of the centered bivariate Gaussian with covariance matrix 𝑴;

• 𝑎(𝒙) ≔ 𝑚 𝑛 (𝒙)-𝑇 𝑠 𝑛+𝑞 (𝒙) ; • 𝑏(𝒙) ≔ 1 𝑠 𝑛+𝑞 (𝒙) 𝚺 -1 (𝑘 𝑛 (𝒙, 𝒙 𝒏+𝟏 ), … , 𝑘 𝑛 (𝒙, 𝒙 𝒏+𝒒 )) 𝑇 ; • 𝑐(𝒙) = 𝑠 𝑛 2 (𝒙) 𝑠 𝑛+𝑞 2 (𝒙)
;

• 𝑑(𝒛 𝟏 , 𝒛 𝟐 ) ≔ 𝑏(𝒛 𝟏 ) 𝑇 𝚺𝑏(𝒛 𝟐 );

• 𝚺 is the covariance matrix of (𝜉(𝒙 𝒏+𝟏 ), … , 𝜉(𝒙 𝒏+𝒒 ))

𝑇 conditional on the observations 𝒜 𝑛 (i.e. Σ 𝑖𝑗 ≔ 𝑘 𝑛 (𝒙 𝑛+𝑖 , 𝒙 𝑛+𝑗 ) with 1 ≤ 𝑖, 𝑗 ≤ 𝑞); • 𝛾 𝑛 is a constant in the sense that it does not depend on (𝒙 𝒏+𝟏 , … , 𝒙 𝒏+𝒒 ).

Both criteria in Eq. and Eq. (3-39) can be used as a sampling criterion in the SUR algorithm. However, the computation of Eq. is generally simpler than that of Eq. . In our study, we consider only the criterion 𝐽 ̃𝑛(𝒙 𝒏+𝟏 , … , 𝒙 𝒏+𝒒 ) in Eq. , which is called the "SUR criterion" in [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF].

Scheme of SUR algorithm

Based on the sequential design of experiments and the SUR criterion, the scheme of SUR algorithm with 𝑞 = 1 is as follows:

SUR algorithm

Require:

-An initial design of experiment: 𝑛 observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛 ; -A sampling criterion: the SUR criterion 𝐽 ̃𝑛(•) given in Eq. ; -An experiment budget 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 : the number of new observations to add.

𝒇𝒐𝒓 (𝑘 = 0; 𝑘 < 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 ; 𝑘 + +) { -Construct the SUR criterion 𝐽 ̃𝑛(•) based on the (𝑛 + 𝑘) observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛+𝑘 ; -Find the spatial location 𝒙 𝒏+𝒌+𝟏 according to the minimization of the SUR criterion; -Evaluate the value of 𝐼(𝒙 𝒏+𝒌+𝟏 ) by calling the scenario simulator.

}

Return: a set of well-chosen observations (𝒙 𝒊 , 𝐼(𝒙 𝒊 )) 1≤𝑖≤𝑛+𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 according to the SUR criterion, which can be used to estimate the set 𝛤 *

As an important feature of the SUR algorithm, the observations found by the SUR algorithm are mainly placed around the contour line, denoted as 𝒞, corresponding to the constraint 𝐼(𝒙) < 𝑇. 𝒞 is the boundary between the input parameter space of the valid trajectories and the invalid trajectories and defined as:

𝒞 ≔ {𝒙 ∈ 𝕏 ∶ 𝐼(𝒙) = 𝑇} Eq. (3-41)
In fact, the term ʃ 𝕏 𝑝 𝑛 (𝒙) • (1 -𝑝 𝑛 (𝒙))𝑑ℙ 𝕏 (𝒙) is a measure to evaluate the uncertainty of the space around the contour line:

• If for all 𝒙 ∈ 𝕏, the excursion probability 𝑝 𝑛 (𝒙) is close to either 0 or 1, then the term ʃ 𝕏 𝑝 𝑛 (𝒙) • (1 -𝑝 𝑛 (𝒙))𝑑ℙ 𝕏 (𝒙) is small. In other words, if for every 𝒙 ∈ 𝕏 one can identify if 𝒙 is in the valid input parameter space 𝛤 * (i.e., 𝑝 𝑛 (𝒙) is close to 1) or not (i.e., 𝑝 𝑛 (𝒙) is close to 0), then the term ʃ 𝕏 𝑝 𝑛 (𝒙) • (1 -𝑝 𝑛 (𝒙))𝑑ℙ 𝕏 (𝒙) is low. • If there exist large (in the sense of their volume) zones where 𝑝 𝑛 (𝒙) ≈ 1/2, then the term ʃ 𝕏 𝑝 𝑛 (𝒙) • (1 -𝑝 𝑛 (𝒙))𝑑ℙ 𝕏 (𝒙) is high, as 𝑝 • (1 -𝑝) takes its maximum value for 𝑝 = 1/2.

To minimize the SUR criterion 𝔼 𝑛 (∫ 𝕏 𝑝 𝑛+1 (𝒙) • (1 -𝑝 𝑛+1 (𝒙))𝑑ℙ 𝕏 (𝒙)) in Eq. , one has to reduce the volume of the zones where 𝑝 𝑛 (𝒙) ≈ 1/2. To achieve this point, one should place the new observation 𝒙 𝒏+𝟏 at the location where 𝑝 𝑛 (𝒙) ≈ 1/2. In other words, it requires to have 𝑝 𝑛 (𝒙 𝒏+𝟏 ) = 1/2, which implies 𝑚 𝑛 (𝒙 𝒏+𝟏 ) = 𝑇 by Eq. . Consequently, 𝒙 𝒏+𝟏 generally stays in a certain vicinity of the contour line. As the observations are sequentially added, one can gradually identify the contour line 𝒞.

In conclusion, the SUR algorithm is an efficient way to identify the contour line versus the imposed constraint 𝐼(𝒙) < 𝑇. As a byproduct to identify the contour line, the SUR algorithm can provide a set of observations placed around the contour line. One can use such observations to construct an excursion probability and estimate a priori the validity of a given trajectory without calling the time-consuming scenario model.

Contribution to SUR algorithm: multi-constraint version

In section 3.1.3.2, the SUR criterion shown in Eq. , which is the key factor of the SUR algorithm, is only adapted to the mono-constraint case. However, the nuclear fuel cycle scenario problems are usually multi-constrained, which is shown in Eq. (2-1). To adapt the SUR algorithm to the nuclear fuel cycle scenario studies, we have developed a multi-constraint version of the SUR criterion in this thesis as our contribution.

Multi-constraint SUR criterion

Let us consider a nuclear fuel cycle scenario problem with 𝑀 > 1 constraints, as shown in Eq.

(2-1):

(𝒮): { ∀𝑗 ∈ [1, 𝑀], 𝐼 𝑗 (𝒙) < 𝑇 𝑗 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁
where:

• 𝕏 is the variation range of the input parameters of interest;

• 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) is a vector composed of 𝑁 input parameters that characterize a trajectory in the scenario problem; • 𝐼 𝑗 (•) is the indicator of the 𝑗-th imposed constraint in the scenario problem;

• 𝑇 𝑗 is the threshold of the 𝑗-th imposed constraint in the scenario problem, constituting the quantification expression of the 𝑗-th imposed constraint along with 𝐼 𝑗 (•).

We assume that:

• we have 𝑛 observations 𝒜 𝑛 ≔ (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛 and another 𝑛 ′ observations ℬ 𝑛 ′ ≔ (𝒙 𝒊 ′ , 𝐼 1 (𝒙 𝒊 ′ ), … , 𝐼 𝑀 (𝒙 𝒊 ′ )) 1≤𝑖≤𝑛 ′ different from 𝒜 𝑛 ;
• we use the Simple Kriging settings under the Gaussian process assumption; • based on ℬ 𝑛 ′ , we have constructed 𝑀 excursion probabilities corresponding to the 𝑀 constraints according to Eq. (3-24) and denote them as

(𝑝 𝑗,ℬ 𝑛 ′ (•)) 1≤𝑗≤𝑀 .
With the above assumptions, the batch sequential multi-constraint SUR criterion with 𝑞 > 1 (i.e., one considers to add a sequence of 𝑞 observations at a set of 𝑞 given spatial location (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) at the same time) is given as follows:

𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) ≔ ∑ ∫ 𝕏 𝔼 (𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙) • (1 -𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙)) |𝒜 𝑛 ) • ∏ 𝑝 𝑙,ℬ 𝑛 ′ (𝒙) 𝑀 𝑙=1 𝑙≠𝑗 𝑑ℙ 𝕏 (𝒙) 𝑀 𝑗=1
Eq. (3-42) 7 This is a common modeling assumption in the Bayesian optimization literature when several objective functions and several constraint functions have to be dealt with [START_REF] Picheny | Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction[END_REF][START_REF] Feliot | A Bayesian approach to constrained single-and multiobjective optimization[END_REF][START_REF] Gardner | Bayesian Optimization with Inequality Constraints[END_REF].

where: are random.

𝑝 𝑗,
The multi-constraint SUR criterion in Eq. (3-42) quantifies a priori (i.e., before the scenario simulation) the benefit brought to the estimation of the contour line of the valid input parameter space by adding a sequence of observations at a set of given spatial location (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) at the same time when the observations 𝒜 𝑛 and ℬ 𝑛 ′ are already known.

To make Eq. (3-42) practical to compute in application, we use its closed-form:

𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) = ∑ ∫ 𝕏 Φ 2 (( 𝑎 𝑗 (𝒙) -𝑎 𝑗 (𝒙) ) , ( 𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙) 𝑐 𝑗 (𝒙) )) • ∏ 𝑝 𝑙,ℬ 𝑛 ′ (𝒙) 𝑀 𝑙=1 𝑙≠𝑗 𝑑ℙ 𝕏 (𝒙) 𝑀 𝑗=1
Eq. where:

• Φ 2 (•, 𝑴) is the cumulative distribution function of the centered bivariate Gaussian with covariance matrix 𝑴;

• 𝑎 𝑗 (𝒙) ≔ 𝑚 𝑗,𝒜 𝑛 (𝒙)-𝑇 𝑗 𝑠 𝑗,𝒜 𝑛+𝑞 2 (𝒙) ; • 𝑐 𝑗 (𝒙) = 𝑠 𝑗,𝒜 𝑛 2 (𝒙) 𝑠 𝑗,𝒜 𝑛+𝑞 2 (𝒙)
.

We indicate that the development of the multi-constraint SUR criterion is a milestone of the present work, as it is a key factor in implementing the resilience analysis framework in section 2.6.1. However, in order to make the present manuscript more easily readable, we decide not to present the deduction of the multi-constraint SUR criterion in Eq. in the main text. The interested readers can find the detailed deduction and the explanation of Eq. in Appendix A.

Validity estimation in multi-constraint case

According to the assumption that (𝜉 𝑗 ) 1≤𝑗≤𝑀 are mutually independent in section 3.2.1, one can estimate the validity of a given trajectory 𝒙 knowing the observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛 with the following equation:

ℙ(𝒙 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑|𝒜 𝑛 ) = ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 = ∏ Φ ( 𝑇-𝑚 𝑗,𝒜 𝑛 (𝒙) 𝑠 𝑗,𝒜 𝑛 (𝒙) ) 𝑀 𝑗=1
Eq. where:

• ℙ(𝒙 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑|𝒜 𝑛 )
is the conditional probability that the trajectory 𝒙 is valid when the observations 𝒜 𝑛 are known; • 𝑝 𝑗,𝒜 𝑛 (𝒙) is the excursion probability corresponding to 𝑗 -th constraint, i.e., the conditional probability that the trajectory 𝒙 satisfies the constraint 𝐼 𝑗 (𝒙) < 𝑇 𝑗 when the observations 𝒜 𝑛 are known. • 𝑚 𝑗,𝒜 𝑛 (•) is the Kriging prediction result function constructed with the observations 𝒜 𝑛 ;

• 𝑠 𝑗,𝒜 𝑛 2 (•) is the Kriging variance function constructed with the observations 𝒜 𝑛 .

As the runs of the Kriging models are very fast, Eq. (3-48) can be used to rapidly estimate the a priori validity of a given trajectory without calling the time-consuming scenario simulation code.

Scheme of multi-constraint SUR algorithm

Like the mono-constraint version, the multi-constraint SUR algorithm is based on the idea of the sequential design of experiments and its scheme with 𝑞 = 1 (i.e. only one new observation is added at each step) is given as follows:

Multi-constraint SUR algorithm

Require:

-Two sets of initial observations: 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛

and another

𝑛 ′ observations ℬ 𝑛 ′ ≔ (𝒙 𝒊 ′ , 𝐼 1 (𝒙 𝒊 ′ ) , … , 𝐼 𝑀 (𝒙 𝒊 ′ )) 1≤𝑖≤𝑛 ′ ;
-A sampling criterion: the multi-constraint SUR criterion 𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (•) given in Eq.

(3-47);

-An experiment budget 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 : the number of new observations to add.

𝒇𝒐𝒓 (𝑘 = 0; 𝑘 < 𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 ; 𝑘 + +) { -Construct the SUR criterion 𝐽 ̌𝒜𝑛+𝑘 ,ℬ 𝑛 ′ +𝑘 (•) based on the observations 𝒜 𝑛+𝑘 and ℬ 𝑛 ′ +𝑘 ; -Find the spatial location 𝒙 𝒌+𝟏 𝒏𝒆𝒘 by minimizing the multi-constraint SUR criterion;

-Evaluate the value of (𝐼 1 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ), … , 𝐼 𝑀 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 )) by calling the scenario simulator.

-Update the observations: 𝒜 𝑛+𝑘+1 ≔ 𝒜 𝑛+𝑘 ∪ {(𝒙 𝒌+𝟏 𝒏𝒆𝒘 , 𝐼 1 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ), … , 𝐼 𝑀 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ))} and

ℬ 𝑛 ′ +𝑘 ≔ ℬ 𝑛 ′ +𝑘 ∪ {(𝒙 𝒌+𝟏 𝒏𝒆𝒘 , 𝐼 1 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ), … , 𝐼 𝑀 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ))}.

}

Return: a set of well-chosen observations 𝒜 𝑛+𝑁 𝑏𝑢𝑑𝑔𝑒𝑡 according to the SUR criterion, which can be used to estimate the set 𝛤 *

The value of 𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 ) in Eq. with 𝑞 = 1 quantifies a priori (i.e., before the scenario simulation) the benefit brought to the improvement of the estimation result about the contour line of the valid input parameter space by adding an observation at a given spatial location 𝒙 𝒏+𝟏 when the observations 𝒜 𝑛 and ℬ 𝑛 ′ are already known. It depends on the two sets of observations 𝒜 𝑛 and ℬ 𝑛 ′ . In the scheme shown above, both sets of observation 𝒜 𝑛 and ℬ 𝑛 ′ are updated in each iteration step with the new added observation (𝒙 𝒌+𝟏 𝒏𝒆𝒘 , 𝐼 1 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ), … , 𝐼 𝑀 (𝒙 𝒌+𝟏 𝒏𝒆𝒘 ))

to improve the estimation result of the contour line of the valid input parameter space.

Similar to the mono-constraint SUR algorithm in section 3.1.3.3, we indicate that the observations found with the multi-constraint SUR algorithm coupled with the SUR criterion in Eq. are placed around the contour line of the valid input parameter space. As an example of this point, one can refer to the mathematical application example in Appendix A. Further explanations of this point can be found in Appendix A:.

In the particular case where 𝒜 𝑛 = ℬ 𝑛 ′ , i.e., the two sets of initial observations in the multiconstraint SUR algorithm are identical, Eq. (3-42) becomes:

𝐽 ̌𝒜𝑛 (𝒙 𝑛+1 , … , 𝒙 𝑛+𝑞 ) ≔ ∑ ∫ 𝕏 𝔼 (𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙) • (1 -𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙)) |𝒜 𝑛 ) • ∏ 𝑝 𝑙,𝒜 𝑛 (𝒙) 𝑀 𝑙=1 𝑙≠𝑗 𝑑ℙ 𝕏 (𝒙) 𝑀 𝑗=1
Eq. (3-49)

Given its simpler formulation, in our study, we use the SUR criterion defined in Eq. when applying the multi-constraint SUR algorithm.

Application of multi-constraint SUR algorithm in scenario study

The multi-constraint SUR algorithm is a powerful tool for scenario studies. Based on the multiconstraint SUR algorithm, we have constructed a resilience evaluation method to implement the resilience analysis framework in section 2.6.1 and a method for the search of valid trajectories.

Resilience evaluation method based on SUR algorithm

Generally speaking, using the Kriging models under the Gaussian process assumption, one can construct an estimator according to Eq. to rapidly estimate a priori the validity of a given trajectory without calling the time-consuming scenario code. However, the validity estimation result depends on the observations (or so-called database) provided for the building of the Kriging models. As a solution, the multi-constraint SUR algorithm coupled with the multiconstraint SUR criterion in Eq. (3-42) (or actually in Eq. for our study in this thesis) can efficiently identify the contour line of the valid input parameter space (thus, it can identify the valid and invalid input parameter spaces) and provide a set of observations adapted to the considered resilience problem.

In section 2.6.1, we have defined a framework for the resilience analysis in the nuclear fuel cycle scenario study, which has an aim to analyze the resilience of a valid prior trajectory given by a scenario study under the impact of the disruption caused by the deep uncertainty. The general idea of the resilience analysis framework is as follows: if the valid prior trajectory is resilient versus the considered disruption, then if the uncontrolled parameters (see section 2.6.1) are disrupted and the disrupted trajectory becomes invalid, one can make the invalid disrupted trajectory valid again by readjusting the values of the levers (see section 2.6.1). In this framework, the key difficulty is to indicate how to change the levers according to the disruption. Now, with the fast trajectory validity estimator and the multi-constraint SUR algorithm, we can provide a solution.

Let us consider a scenario problem as shown in Eq. (2-1):

(𝒮): { ∀𝑗 ∈ [1, 𝑀], 𝐼 𝑗 (𝒙) < 𝑇 𝑗 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁
where:

• 𝕏 is the variation range of the input parameters of interest;

• 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) is a vector composed of 𝑁 input parameters that characterize a trajectory in the scenario problem; • 𝐼 𝑗 (•) is the indicator of the 𝑗-th imposed constraint in the scenario problem; • 𝑇 𝑗 is the threshold of the 𝑗-th imposed constraint in the scenario problem, constituting the quantification expression of the 𝑗-th imposed constraint along with 𝐼 𝑗 (•).

We assume that a valid prior trajectory is given after a scenario study, and its input parameters of interest are denoted as 𝒙 𝒑𝒓𝒊𝒐𝒓 ∈ 𝕏. According to the considered uncertainty, we divide the input parameters of interest 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) ∈ 𝕏 into two categories:

• the uncontrolled parameters (see the definition in section 2.6.1) bearing uncertainty can be disrupted; they are denoted as 𝑼; • the levers (see the definition in section 2.6.1) which do not bear uncertainty and can be readjusted by the decision-makers to counterbalance the impact of the disruption to make the disrupted trajectory valid again, denoted as 𝑳;

In this case, one can rewrite the input parameters of the valid prior trajectory as 𝒙 𝒑𝒓𝒊𝒐𝒓 = (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) .

With the above assumption, we propose a resilience evaluation method, as shown in Figure 3.1, to analyze the resilience of the valid prior trajectory. The uncontrolled parameters and the levers fully characterize the trajectories considered in Figure 3.1. At the beginning of the resilience analysis, as the prior trajectory is valid, one has 𝐼 𝑗 (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) < 𝑇 𝑗 for all 1 ≤ 𝑗 ≤ 𝑀 (see ① in Figure 3.1). However, the deep uncertainty may generate disruption. Under the impact of the disruption, the uncontrolled parameters are disrupted, and their values become different from 𝑼 𝒑𝒓𝒊𝒐𝒓 . In Figure 3 as the candidates for the readjusted trajectories (see ③ in Figure 3.1).

Nevertheless, one cannot directly call the scenario model to assess the validity of all these sampled candidate trajectories, as their number is very great, and the simulation cost can be very high. Under this situation, the Kriging-based fast trajectory validity estimator and the multi-constraint SUR algorithm provide a time-efficient solution. One applies the multiconstraint SUR algorithm shown in section 3.2 to generate an optimized 9 set of observations (see ④ in Figure 3.1) and then constructs the Kriging-based validity estimator 𝑝 𝑛 (•) (see ⑤ in Figure 3.1) according to Eq. . With the validity estimator 𝑝 𝑛 (•), one estimates a priori the validity of the candidate trajectories without calling the scenario model (see ⑥ in Figure 3.1).

In this case, one ranks the candidate trajectories according to their a priori validity possibilities and then use a filtering condition to find those with high validity possibilities. For example, one can impose a threshold value to 𝑝 𝑛 for filtering or just simply choose the candidate trajectory with the highest validity possibility.

Using the filtering condition, one can get an arbitrarily small number 𝑃 of trajectories with high confidence of validity, which are called potential trajectories (see ⑦ in Figure 3.1). As the number of the potential trajectories is small, one can directly call the scenario model to assess a posteriori their validities with a low simulation cost (see ⑧ in Figure 3.1). After the scenario simulations of the potential trajectories with the scenario model, one judges whether a valid readjusted trajectory is found among the potential trajectories or not. If one or several valid readjusted trajectories are obtained, then the prior trajectory (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) is resilient versus the considered disruption (see ⑨ in Figure 3.1); otherwise, the resilience of the prior trajectory (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) versus the considered disruption is not demonstrated (unknown) (see ⑩ in Figure 3.1).

Concerning the resilience evaluation method shown in Figure 3.1, three points should be mentioned:

• Only the steps ④ and ⑧ require scenario simulations. The potential trajectories with high confidence of validity are given by the coupling of Kriging-based validity estimator and the filtering condition, without calling the scenario model. • As the validity estimator is based on the Kriging models whose executions are very fast, one can estimate a priori (i.e., without calling the scenario model) the validities of a great number of candidate trajectories in a reasonable time in step ⑥. • If none of the valid readjusted trajectories is found at the end of the evaluation, i.e., the situation in step ⑩ happens, one can only conclude that the resilience of the prior trajectory is unknown. Indeed, the non-resilience of the prior trajectory is not demonstrated either. To understand this fact, we indicate that the resilience evaluation method in Figure 3.1 depends on many factors, such as the number of sampled candidate trajectories, the observations provided by the SUR algorithm, the training of the Kriging models, the filtering condition, etc. If the resilience of the prior trajectory cannot be proven, one may improve the mentioned factors (for example, by increasing the number of sampled candidate trajectories or by adding more observations with SUR algorithm to construct better Kriging models) and re-apply the resilience evaluation method in Figure 3.1. With the improved factors, the resilience of the prior trajectory might be shown.

Figure 3.1: Resilience evaluation method

Generally speaking, by coupling the fast Kriging-based validity estimator and the multiconstraint SUR algorithm, the method shown in Figure 3.1 provides a way to evaluate the resilience of a given trajectory versus the considered disruption in a reasonable time.

A method for searching valid trajectories based on SUR algorithm

Knowing that one can estimate a priori the validity of a given trajectory rapidly by coupling the Kriging-based validity estimator and the multi-constraint SUR algorithm, a resilience evaluation method has been proposed in section 3.3.1. But besides the resilience evaluation method, one can also take advantage of the multi-constraint SUR algorithm for searching valid trajectories, as shown in Figure 3.2.

First, one generates a sample of the input parameters (see [START_REF] Cany | Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix[END_REF] in Figure 3.2) to propose a large number (e.g., one million or even more) of candidate trajectories (see [START_REF]Ministry of Ecological and Solidarity Transition of France[END_REF] in Figure 3.2). The aim is to find the valid trajectories among these candidate trajectories. However, as the number of candidate trajectories is very large, it is usually difficult to call the scenario model to assess their validities directly with a reasonable computation cost. In this case, the multi-constraint SUR algorithm and the fast Kriging-based validity estimator provide a solution to avoid this problem. One applies the multi-constraint SUR algorithm to obtain a set of appropriate (i.e., rich in information of the contour line between the valid and invalid input parameter space) observations 𝒜 𝑛 (see (3) in Figure 3.2) and then constructs a Kriging-based validity estimator 𝑝 𝑛 (•) according to Eq. (3-48) (see (4) in Figure 3.2). Thanks to the fast execution of Kriging models, one uses the validity estimator 𝑝 𝑛 (•) to estimate the a priori validity possibilities of the candidate trajectories in a reasonable time without calling the time-consuming scenario model (see [START_REF]Nuclear energy: combating climate change[END_REF] in Figure 3.2). Then, one ranks the sampled candidate trajectories according to their validity possibilities and impose a filtering condition or a cut-off value to 𝑝 𝑛 (•) to find the potential trajectories with high confidence of validity (see [START_REF]Nuclear is part of the solution for fighting climate change[END_REF] in Figure 3.2). As the number of the potential trajectories gotten after filtering is small, it is possible to call the scenario model to assess the validity of the potential trajectories directly within a reasonable simulation time (see [START_REF]Climate Change and Nuclear Power 2014[END_REF] in Figure 3.2). If one finds valid trajectories among the potential trajectories, then the search of valid trajectories is finished (see (8) in Figure 3.2); otherwise, one restarts the search method till valid trajectories are found. Compared to other methods applied for the search of valid trajectories, such as the optimization method [START_REF] Freynet | Dé veloppement d'une mé thodologie pour l'optimisation multicritè re de scé narios d'é volution du parc nuclé aire[END_REF] and the random sampling method [START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF], the method for search of valid trajectories based on the SUR algorithm is much less expensive in terms of simulation cost. When searching valid trajectories with the optimization method or the random sampling method, finding a valid trajectory usually requires hundreds of scenario simulations. Hence, the simulation cost with these two methods can be unacceptable if a large number of valid trajectories are required, which is impractical in application. However, for the search method shown in Figure 3.2, only the potential trajectories with the high confidence of validity are verified with the scenario model. Hence, the search is more efficient. Another advantage of the search method in Figure 3.2 is that it allows for understanding the distribution pattern of the valid trajectories in the whole input parameter space. If the sampling size 𝐺 in the step (2) in Figure 3.2 is large enough to cover the whole input parameter space with the sampled candidate trajectories, then the distribution of a priori validity probabilities from the step (5) in Figure 3.2 can reveal the parts of input parameter space in which there is high confidence to find the valid trajectories.

Nuclear fleet evolution-driving model

Motivation

With the resilience evaluation method in section 3.3.1, the framework of resilience analysis in section 2.6.1 is implemented. As a demonstration of this framework, we decide to apply it to two academic scenario problems (see the two applications in Chapter 4). In both scenario problems,

• We consider a simplified French nuclear fleet; • We suppose that the Gen-III type reactors will gradually replace the currently existing Gen-II type reactors in the future (from 2019 to 2080); • We consider only UOX (Uranium OXide) and MOX fuels; • We consider that each MOX-fueled reactor is 30% partial MOX loading, and the 70% remaining fuels are UOX; • We suppose that MOX fuel loading in the fleet will last in the future, for the sake of recycling the spent UOX fuel and controlling the inventory of spent fuels; • We assume that the total electricity production of the whole nuclear fleet is subject to uncertainty and can potentially be reduced disruptively. In our study, we consider the uncertainty of the total fleet electricity production as not a physical uncertainty. The total electricity production of the whole nuclear fleet is a decision parameter from a political decision and copes with the evolution of a political point of view. Hence, we suppose that the disruptive reduction of the total electricity production of the whole nuclear fleet is a result of decision-making to cope with the deep uncertainty of the economic, societal and political context in the future.

However, according to the resilience evaluation method in Figure 3.1, a large number of scenario trajectory simulations with different values of uncontrolled parameters and levers are required (by the steps ④ and ⑧ in Figure 3.1), which causes difficulty in modeling. To understand this difficulty, we indicate that the total electricity production of the whole nuclear fleet is one of the basic scenario hypotheses instead of a physical parameter in a scenario problem. For a physical parameter, such as the fuel burnup, its disruption usually does not affect the lives of reactors, while just has a slight impact on the material flow [START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF]. But as for the total electricity production of the whole nuclear fleet, its disruption can greatly influence the evolution of the nuclear fleet. For instance, the disruptive reduction of the total electricity production can impose an early shutdown on some reactors. Correspondingly, the material flow in the nuclear fuel cycle chain, the reactor replacement (i.e., the shutdown of old reactors and the commissioning of new reactors), and the fuel recycling strategy in the future can all be impacted. Basically, the whole nuclear fleet is greatly changed compared with the prior trajectory given by the previous scenario study when a disruptive reduction of the total electricity production happens. To model a disrupted trajectory after the disruptive reduction of the total electricity production, one needs to re-determine the nuclear reactor fleet according to the disruption. Nonetheless, this task is a heavy workload. Describing a nuclear fleet in a scenario model requires specifying a large number of parameters. For example, when modeling a nuclear reactor with the COSI6 code, there are over one hundred parameters to determine, including:

• the commissioning date;

• the shutdown date;

• the loading factors at each year during the operation of the reactor;

• the yield of the reactor to change the thermal energy via fission into electricity;

• the successions of loading, including the fuel types, the fuel burnups, the irradiation duration, the dates to change the fuel loadings, etc.

In a trajectory representative of our study, there may exist more than 58 reactors at a time (the 58 currently existing reactors and the new reactors that are supposed to be commissioned in the future) are individually modeled. To determine a disrupted trajectory, one needs to re-evaluate the majority of the above parameters of each reactor (mainly the commissioning and shutdown dates as well as the successions of loading), and the number of parameters is over hundreds.

Considering that a large number of scenario trajectory simulations with different values of uncontrolled parameters (in our study, the total electricity production) and levers are expected when applying the resilience analysis framework, it is hard to re-determine all the disrupted trajectories manually. In this case, one needs a method to automatically re-determine the evolution of the studied nuclear fleet under the impact of the disruptive reduction of total electricity production.

As a solution, we developed a nuclear fleet evolution-driving model to re-determine the evolution of the nuclear fleet according to a disruptive reduction of the total electricity production. This nuclear fleet evolution-driving model serves as a tool to reduce the dimension of the parameter space of the scenario model, which uses an approach based on the scenario expertise.

Principles

We developed in our study a nuclear fleet evolution-driving model called "PiloRI" algorithm as a solution to the difficulty described in section 3.4.1 (i.e., to re-determine the evolution of the nuclear fleet after the disruptive reduction of total electricity production). As illustrated by Figure 3.3, the nuclear fleet evolution-driving model is a layer between the scenario model and the decision-making (in our study, we suppose that the decision-makers are the manager of nuclear energy industries) as an intermediate layer. In the driving model, a set of rules and drivers are implemented to determine the evolution of the simplified French nuclear fleet (or, more precisely, all of the input parameters of the scenario model) automatically according to its historical state and the decision parameters from the decision-making. All the rules in the driving model are carefully chosen according to the expertise from different domains. Generally speaking, this nuclear fleet evolution-driving model is a tool to translate the decisions (e.g., the disrupted total electricity production) from the decision-making into the nuclear reactor fleet evolution described in the scenario model. • First, it it noteworthy that the disruptive reduction of the total electricity production can directly affect the lifetimes of the reactors, i.e., the shutdown and commissioning dates of reactors. For instance, when a disruptive reduction of the total electricity production occurs, certain reactors may be shut down earlier than in the prior trajectory. At the same time, the replacement of the old reactors by the new Gen-III type reactors should be redesigned, as the power scale of the nuclear fleet is changed under the impact of the disruption. Hence, in the driving model, one needs to construct a series of rules to determine the shutdown and the commissioning of reactors according to the disruptive total electricity production. • Second, the disruption of the total electricity production can influence the MOX fuel loading in the reactors' cores in the nuclear fleet. As the disruption of the total electricity production can affect the lifetimes of the reactors, the MOX fuel loading decisions (decisions about which reactors to be MOXed or de-MOXed from which moment on) in the prior trajectory may no longer work as expected under the impact of the disruption. One should redesign the MOX fuel loading in accordance with the disruption. For the sake of taking this point into account, a series of rules for the MOX fuel loading after the disruption must be defined.

Thus, in the nuclear fleet evolution-driving model, one should construct two series of rules and drivers: (1) the rules and drivers to control reactors shutdown and commissioning; (2) the rules and drivers to determine MOX fuel loading.

Rules for shutdown and commissioning of reactors

In Figure 3.3, it is noteworthy that there are two kinds of total electricity production of the nuclear fleet, which are respectively from the decision-making (corresponding to the left-hand side of the fleet evolution-driving model in Figure 3.3) and the scenario model (corresponding to the right-hand side of the fleet evolution-driving model in Figure 3.3). These two kinds of total electricity production are different:

• In decision-making, the evolution of the total electricity production of the nuclear fleet is a decision parameter from decision-making according to the evolution of the economic, societal and political context. Its impact spreads from the higher levels to the grassroots, and it determines the lives (i.e., the shutdown and the commissioning) of all reactors in the nuclear fleet. From the decision-making point of view, the total electricity production of the nuclear fleet is a basic hypothesis in a scenario problem and is a driving force to determine the fleet. The disruption considered in our study is, precisely, the disruption of the total electricity production at the decision-making level. This disruption is supposed the result of decision-making to cope with the disruption of the economic, societal and political context. • In scenario model, the total electricity production of the nuclear fleet is a passive parameter that is directly determined by the lifetimes of the reactors, which is opposite to the angle of decision-making.

As a tool to translate the decision parameters from the decision-making into the nuclear reactor fleet evolution described in the scenario model, the nuclear fleet evolution-driving model has a mission to match the two above-mentioned "different" total electricity productions of the nuclear fleet. The idea to achieve this mission is to use the evolution of the total electricity production of the nuclear fleet from decision-making as "setpoints," and the shutdown and commissioning of reactors are determined by matching the setpoints and the total electricity production simulated with the scenario model. More precisely, we construct the following rules and drivers.

Rules and driver for reactors definitive shutdown

Rule R1: A reactor can only be shut down at the end of an irradiation cycle.

The construction of this rule is based on the assumption that when one plans to shut down a reactor definitively, one usually waits until the end of an irradiation cycle to let the whole cycle finished, for the sake of profiting the economic benefits of the whole cycle. With this rule R1, for a reactor with a given fuel loading successions, its possible shutdown dates are discrete in our study. An example is given in Figure 3.4 to help illustrate this rule. In Figure 3.4, the x-axis represents the time in a scenario simulation, and the green segments are supposed to be the fuel irradiation durations of a reactor. The irradiation duration of one fuel cycle in a PWR usually varies from one to two years. According to the rule R1, the reactor considered in Figure 3.4 cannot be shut down between 2032 and 2033, as there is no end of irradiation cycle during this period. On the contrary, it is possible to shut down the reactor considered in Moreover, during the scenario simulation, the outages (production shutdown to change part of the nuclear fuel) are not directly modeled, and their impact is introduced into the scenario simulation result through the adjustment of the load factors. This choice does not modify the composition of the isotopes of interest when compared with the direct modeling of outages. Hence, the beginning of an irradiation cycle coincides with the end of the previous cycle. The lifespan of a reactor is limited due to the aging of its vessel and other facilities. During the design, the initially expected lifespan of the currently existing French PWR was 40 years. However, recently, the "Grand Carénage" program [START_REF] Isabelle | Exploiter 40 ans et au-delà avec le Grand caré nage[END_REF][START_REF]Le Grand Caré nage du parc nuclé aire EDF et les actions post Fukushima[END_REF] was proposed and studied in France, for the sake of extending the existing reactors beyond 40 years, up to 50 years, or even 60 years.

To take the limitation of the lifespan of the reactors into account, we set the maximum lifespan equal to 60 years for all reactors. Once a reactor reaches its 60 th year, it will be forced to be shut down without another choice.

Rule R3: After a decennial visit, the reactor has to operate for at least 5 years for economic performance considerations.

Every ten years, each nuclear reactor has to undergo an in-depth safety review of the facilities, known as a decennial visit. The decennial visit allows for checking the evolution of the facilities since their commissioning, detecting the possible anomalies, and verifying the operation conditions. A decennial visit is very costly. For example, the cost of the decennial visit of the Flamanville-1 reactor in 2018 was around 70 million euros [START_REF]Flamanville : visite dé cennale et grand caré nage pour la centrale nuclé aire en 2018[END_REF]. Considering the economic performance, one should ensure a long operation duration for a reactor after a decennial visit to refund the investment cost. It is preferable from the economic point of view to shutting down every reactor just before the arrival of the decennial visits. However, this choice can make the nuclear fleet rigid, as the choice of the shutdown dates of reactors is very limited. In our study, we decide to impose at least 5 years of operation duration for all reactors after a decennial visit. The choice of "5 years" is arbitrarily chosen, which is equal to one half of the time interval between two decennial visits.

Rule R4:

The oldest reactors are shut down preferentially for economic considerations.

Even though the nuclear fuel and the exploitation of a reactor are costly, the reactor operation is generally profitable, and the profit grows as the electricity production time increases. Hence, from the economic point of view, a long lifespan for a reactor is preferred. To ensure it for the whole fleet, in our study, we decide to guarantee the operation of the newest reactors, while the oldest reactors are shut down preferentially if needed.

Driver D510 : The choice to shut down reactors is made according to the imposed total annual electricity production setpoints.

The above rules R1 ~ R4 are supposed to be applied every year in the scenario simulation. Using these four rules, we obtain a list of candidate reactors that can be shut down. Moreover, the candidate reactors in this list are ranked according to their ages (by the rule R4). Then, we shut down the reactors in this list one by one until the difference between the simulated total electricity production in the scenario model and its setpoint is smaller than a tolerance value in the evaluation year.

Rule and driver for reactor commissioning

Rule R6: The commissioning rate cannot exceed 𝑁 𝑙𝑖𝑚𝑖𝑡 = 3 Gen-III reactors per year for the sake of smoothing the investments.

The construction of a large-scale nuclear reactor is expensive and takes an important part of the cost in the whole reactor's life from the construction to the decommissioning. It takes thousands of workers, huge amounts of steel and concrete, thousands of components, and several systems to provide electricity, cooling, ventilation, information, control, and communication. A dense commissioning rhythm of new reactors requires an important investment in a short period, which can cause difficulties to the constructor and the management of the nuclear industry. To avoid these difficulties, in our study, we decide to limit the number of newly commissioned reactors every year to smooth the investments for the construction. We suppose that the commissioning rate cannot exceed 𝑁 𝑙𝑖𝑚𝑖𝑡 = 3 Gen-III per year for the sake of smoothing the investments.

Driver D7: The number and the commissioning dates of new reactors are determined by the difference between the simulated total electricity production and the imposed setpoints.

The number of reactors commissioned each year in the scenario simulation, denoted as 𝑁, is calculated as:

𝑁 = { 𝑚𝑖𝑛 (𝑓𝑙𝑜𝑜𝑟 ( ∆𝑃 𝑃 𝐺𝑒𝑛-𝐼𝐼𝐼 + 0.5) , 𝑁 𝑙𝑖𝑚𝑖𝑡 ) , 𝑖𝑓 ∆𝑃 > 0 0, 𝑖𝑓 ∆𝑃 < 0
Eq. where 𝑓𝑙𝑜𝑜𝑟(•) is the mathematical floor function, ∆𝑃 is the difference value that the total electricity production setpoint minus the simulated result given by the scenario model and 𝑃 𝐺𝑒𝑛-𝐼𝐼𝐼 is the annual electricity production of a newly built Gen-III type reactor. As for the commissioning dates of new reactors, we suppose that the new reactors are commissioned with a regular rhythm, which is as shown in Figure 3.5. Supposing that 𝑁 new Gen-III reactors should be added into the nuclear fleet between the years 𝑌 and 𝑌 + 1, a new Gen-III reactor is commissioned every 𝜏 year with 𝜏 < 1. The value of τ is determined by matching the setpoint value of the total electricity production and the simulated result. More precisely, one has:

{ 𝜏 = 0, 𝑖𝑓 𝑁 • 𝑃 𝐺𝑒𝑛-𝐼𝐼𝐼 ≤ ∆𝑃 ∆𝑃 = ∑ 𝑃 𝐺𝑒𝑛-𝐼𝐼𝐼 • (1 -𝑖 • 𝜏) 𝑁 𝑖=1
, 𝑖𝑓 𝑁 • 𝑃 𝐺𝑛𝑒-𝐼𝐼𝐼 > ∆𝑃 Eq. where the term

∑ 𝑃 𝐺𝑒𝑛-𝐼𝐼𝐼 • (1 -𝑖 • 𝜏) 𝑁 𝑖=1
is the electricity production generated by the 𝑁 new commissioned Gen-III between the years 𝑌 and 𝑌 + 1. 

Rules for MOX fuel loading

In the two academic scenario problems in Chapter 4, we consider the use of MOX fuel will last in the future. In the nuclear fleet evolution-driving model, the loading of the MOX fuel in reactors after the disruption of the total electricity production is driven by the setpoints of the electricity production issued from MOX fuel. These setpoints of the electricity production issued from MOX fuel are considered as a result of the decision-making. The MOXing (from a 100% UOX-fueled reactor to a (30% MOX + 70% UOX)-fueled one) and de-MOXing (from a Time (years)

𝑌 𝑌 + 1 Gen-III 1 Gen-III 2 Gen-III 3 ⋯ Gen-III 𝑁 𝑌 + 𝜏 𝑌 + 2 • τ 𝑌 + 3 • τ 𝑌 + 𝑁 • τ ⋯
(30% MOX + 70% UOX)-fueled reactor to a 100% UOX-fueled one) of reactors are both possible. To implement this idea, we construct the following rules and drivers.

Rules and drivers for MOXing of reactors

Rule R8: The reactors can only be MOXed at the beginning of an irradiation cycle.

As the neutron performance of the MOX fuel is different from that of the UOX fuel, one needs to redesign the reactor core and carry out a safety review, which is time-consuming. In reality, the MOXing of a reactor usually takes place during outages for economic consideration. However, since the outages are not directly modeled in our study, we suppose that the MOXing is instantaneous, and the reactors can only be MOXed at the beginning of an irradiation cycle.

Rule R9: The reactor to be MOXed must have gone through at least one equilibrium irradiation cycle when the first MOX fuel batch is loaded.

The construction of this rule is based on two considerations:

• First, the MOXing of a reactor during the start-up and intermediate fuel cycles (the first three fuel cycles for 1/3 fuel loading pattern or the first four fuel cycles for 1/4 fuel loading pattern) is not recommended, as the neutron performances in these cycles are quite variable from one cycle to another, causing fuel management difficulties. On the contrary, the neutron performance is stable across the equilibrium irradiation cycles. Hence, the MOXing during the equilibrium irradiation cycles is preferred for fuel management. • Second, to MOX a reactor, one has to redesign the reactor core and carry out a series of the safety review. As the first equilibrium irradiation cycle for a PWR is usually reached 7 years after the start-up, the rule R9 allows enough time to accumulate experiences to master the characteristics of the reactor and make the preparation for the MOXing.

Consequently, we construct the rule R9.

Rule R10: Once a reactor is MOXed, it has to go through at least one "nominal" irradiation cycle where the whole core is MOXed at 30% before de-MOXing or shutdown.

First, it is noteworthy that MOXing a reactor is a long process. To understand this point, we illustrate it with an example in which a PWR core managed with a 1/3 fuel loading pattern is MOXed, as shown in Figure 3.6. In the beginning, the PWR core is 100% fueled with UOX fuel, and there are three fuel batches with different burnups. At the end of each irradiation cycle, 1/3 of fuels (or more precisely, the oldest fuel batch) is discharged from the core and replaced by the fresh MOX and UOX fuel batches in a ratio of 30% versus 70%. To MOX a reactor from a 100% UOX-fueled core, one needs to go through 2 transition irradiation cycles. Considering that one irradiation cycle for PWR varies from one to two years, it takes around 2 ~ 4 years to finish the MOXing process. Hence, the MOXing of a reactor is a long process.

Knowing the above point, we notice that there exist two possible special situations:

1. A reactor is shut down during the transition cycles without finishing the MOXing process. From the industry point of view, such a situation is not coherent. The cost to MOX a reactor is expensive, as it requires the design of the reactor core and the associated safety review. It is not preferable to pay this cost just before the shutdown of a reactor.

2. A reactor is chosen to be de-MOXed while it is under a MOXing process. Such a situation imposes to pay the costly core design adaptation again soon after MOXing and, at the same time, causes difficulties to fuel management.

To avoid both above situations, we impose the rule R10. In our study, we would like to avoid the repeated switch between the MOXing and de-MOXing process.

Rule R12: A longer operating time with MOX fuel is preferable in order to reduce the number of times to MOX and de-MOX reactors.

In our study, we prefer to reduce the number of times to MOX and de-MOX reactors. On one hand, the switch between the UOX-fueled core and the MOX-fueled core is expensive, as mentioned previously; on the other hand, during the MOXing or the de-MOXing process, the reactor is under a transition state, which can make the nuclear fleet complex to manage.

Driver D13:

The choice to MOX reactors is made according to the imposed setpoints of the electricity production from MOX fuel.

The above rules R8 ~ R12 are supposed to be applied every year in the scenario simulation. Through these four rules, we can obtain a list of candidate reactors that can be MOXed. Moreover, the candidate reactors in this list are ranked according to their possible operating time with MOX fuel (by the rule R12). Then, we MOX the reactors in this list one by one until 

Beginning of MOXing

End of MOXing

the difference between the simulated electricity production from MOX fuel in the scenario model and its setpoints is greater than a tolerance value in the evaluation year.

Rules and drivers for de-MOXing of reactors

De-MOXing is a reverse process of MOXing. In the nuclear fleet evolution-driving model, the rules for a reactor de-MOXing are similar to those for MOXing, and their construction is based on similar reasons. Hence, the rules for de-MOXing are directly given as follows:

Rule R14: A MOX-fueled reactor can only be de-MOXed at the end of an irradiation cycle.

Rule R15: Once a MOX-fueled reactor is de-MOXed, it has to go through at least one "nominal" irradiation cycle where the whole core is 100% fueled with UOX fuels. Otherwise, the MOX-fueled cannot be de-MOXed and will be shut down with a 30% MOX-fueled core.

Rule R16:

The MOX-fueled reactors with shorter residual operating time are de-MOXed preferentially, in order to reduce the number of times to MOX and de-MOX in the nuclear fleet.

Driver D17: The decision to de-MOX reactors is made according to the imposed setpoints of the electricity production from MOX fuel.

Implementation

With the rules and drivers given above, one can determine the evolution of the simplified French nuclear fleet considered in our study, including reactor lifetimes and MOX fuel loadings in reactors, according to the disruption of the total electricity production and the associated adapted MOX fuel loading strategy. In our study, these rules are implemented in the form of a dedicated algorithm called "PiloRI" (Pilotage du parc de Ré acteurs pour les é tudes d'Incertitude, Reactors fleet management for uncertainty studies) and encapsulated as a C++ package. The interested readers can find the implementation scheme in Appendix B.

Chapter 4: Applications

Summary -In this chapter, the main objective is to apply the developed resilience study paradigm to two scenario problems as demonstrations. In these two scenario problems, we will consider a simplified French reactor fleet and its possible prospective replacement by new Gen-III reactors. In each scenario problem, we will give a priori a prior trajectory, which is supposed as a result of a scenario study with the scenario hypothesis to maintain the installed fleet total electricity production constant and equal to the current level in the future. We will suppose that at a certain moment after the scenario study, a disruptive reduction of the total electricity production happens as a result of decision-making to cope with the disruption of the economic, societal and political context in the future. We will aim to investigate the impact of the disruptive reduction of total electricity production on the prior trajectories in both scenario problems and assess the possibility of readjustment when the disrupted trajectories are not resistant.

Highlights:

➢ We use the "PiloRI" algorithm in both scenario problems as a tool to propagate the impact of the disruptive reduction of total electricity production on the evolution of the simulated reactor fleet. ➢ We investigate the impacts of the disruptive reduction of the total electricity production on the materials flows (such as spent fuel inventory, the separation of plutonium, etc.) and the lifespans of reactors. ➢ We study the benefit of dilution strategy in which the spent UOX and MOX fuels are mixed and then reprocessed. ➢ We demonstrate that the evolution of the nuclear fuel cycle system in the prior trajectories are resilient if using the MOX fuel loadings in reactor cores and the reprocessing as levers. The history of the French nuclear reactor fleet can be traced back to 1955. In this year, the CEA brought the first French power reactor in operation over the Marcoule site [START_REF] Ré My | La divergence de G1[END_REF]. With a very modest power of 2 MWe, this reactor, called "G1", was a UNGG (Uranium Naturel Graphite Gaz), in which the natural uranium is used and the neutrons are moderated with graphite. Following this reactor, eight other reactors of the same type were successively built in France, the last of them (Bugey-1, whose power reaches 540 MWe) being connected to the network in 1972 [START_REF]Connaissance des Energies[END_REF]. In 1973, these nine reactors provided an electricity capacity of 2,084 MWe, satisfying about 8% of French electricity production [START_REF]Connaissance des Energies[END_REF].

Scenario problem

In 1974, the "Messmer Plan," a huge nuclear power program aimed at generating all of France's electricity from nuclear power, was announced as a direct result of the 1973 oil crisis and became the key point for the development of the French nuclear reactor fleet. Under the guidelines of this plan, 58 PWR have installed on 19 nuclear power plant sites from 1977 to 2000 and replaced the old reactors constructed before 1973. These PWR are the current French nuclear reactor fleet 11 .

At present, with an installed electricity capacity of 63.2 GWe, France has the second largest nuclear reactor fleet in the world, behind the United States. In 2019, the French nuclear reactor fleet produced 379.5 TWe•h of electricity, or 70.58% of the total electricity production in mainland France [START_REF]PRIS -Power Reactor Information System[END_REF]. One of the characteristics of this fleet is its standardization: all the nuclear reactors currently in operation are PWR of Gen-II from a successive design series. These design series respect the same principles and the same industrial architectures but take into account the lessons learned from the operation and optimize the power of the reactors [START_REF] Reuss | L'épopée de l'énergie nucléaire, une histoire scientifique et industrielle[END_REF].

Besides these 58 existing reactors, a reactor, known as Gen-III, of the PWR type and baptized EPR, has been under construction next to the two existing reactors of the Flamanville nuclear power plant site since 2007. However, the Flamanville EPR project encountered many difficulties (vessel, welding, etc.) [START_REF]Cuve du ré acteur EPR de Flamanville: Analyse des consé quences de l'anomalie de fabrication du fond et du couvercle de la cuve du ré acteur EPR de Flamanville[END_REF]. The date of loading the reactor with fuel is not envisaged before the end of 2020.

The reactors mentioned above are all thermal reactors, meaning that the energy release is mainly from the fissile reaction caused by the thermal neutrons. For the aim of the research, France constructed two experimental sodium-cooled fast reactors called Phé nix and Superphé nix, respectively, in 1968 and 1985 [START_REF]Connaissance des Energies[END_REF][START_REF]Connaissance des Energies[END_REF]. These two reactors have been shut down.

Current French fuel cycle strategy

With the nuclear power experiences accumulated since 1955, France has constructed a complete industrial chain of nuclear energy. It can carry out different industrial activities covering the whole fuel cycle, including reactor manufacturing, fuel supply operations, as well as spent fuel management from ore to waste management. 

Replacement of nuclear reactor fleet

In France, there is no fixed legal limit on the lifespan of nuclear power reactors. However, every ten years, each nuclear power reactor has to undergo an in-depth inspection of the facilities, known as decennial visit. The decennial visit is a periodic specific safety review requested by the French Nuclear Safety Authority, which may give its "no opposition" to the restart for a new period of ten years. The purpose of the decennial visit is to examine in depth the status of the installation, taking into account its aging, improving its security level by benefiting the feedbacks and technical progress in the reactor technology achieved (for example, following the lessons learned from Fukushima). Generally, the execution of the decennial visit is costly, and the average duration is about 3 to 4 months, giving enough time to achieve the regulatory controls, make the necessary replacements and implement the agreed changes to improve safety.

The initially expected lifespan of French PWR was 40 years. Nowadays, the current French nuclear reactor fleet now has an average age of 33 years [START_REF]Quand décider d'un renouvellement du parc nucléaire français ?[END_REF], and the fourth decennial visit of some reactors is approaching. From a technical point of view, extending the life of the existing reactors is feasible. The components of a reactor can all be replaced, except the containment building and the vessel. The vessel has not been changed on any nuclear reactor in France, and the operating mode of the reactor cores has made it possible to limit its irradiation and, therefore, its aging. According to [START_REF] Oecd-Nea | Gestion et prolongation de la duré e de vie des centrales nuclé aires[END_REF], the extension of the life of reactors can bring several potential advantages.

First, the main advantages are economic, as extending the life of a reactor can avoid the need to invest in new generation capacity immediately. The capital costs of extending life will be lower than those of any type of replacement capacity, although additional capital may be required to renovate the plant [START_REF] Oecd-Nea | Gestion et prolongation de la duré e de vie des centrales nuclé aires[END_REF]. Since the price of nuclear fuel is generally lower and more stable than that of fossil fuels, the option of extending its lifespan should make it possible to produce cheaper electricity than with any other available path, which is a clear benefit for the national economy. Also, even though the nuclear fuel and the exploitation of a reactor are costly, the reactor operation is generally profitable, and the profit grows as the electricity production time increases. The extension of lifespans of reactors can bring extra electricity production time, and thus, the extra profit when compared to the choice without extension. Second, extending the life of reactors contributes to the security, stability, and diversity of energy supplies. Last but not least, by this extension, it is possible to produce electricity while producing less greenhouse gas, in particular CO2 emissions, when compared to the fossil energy, making the energy supply system sustainable and minimizing the irreversible and long-term environmental effects of energy supply. Under this context, the "Grand Carénage" program [START_REF] Isabelle | Exploiter 40 ans et au-delà avec le Grand caré nage[END_REF][START_REF]Le Grand Caré nage du parc nuclé aire EDF et les actions post Fukushima[END_REF] is proposed and studied, for the sake of extending the existing reactors beyond 40 years, up to 50 years, or even 60 years. However, it is impossible to extend the life of reactors limitlessly. With the assumption of extending the lifespan to 60 years, the currently existing French reactors will all be shut down before 2060. Before this time, new reactors may be progressively constructed to take the place of the existing ones, achieving the replacement of the current reactor fleet. In several scenario studies [START_REF]Quand décider d'un renouvellement du parc nucléaire français ?[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF], the EPR is chosen as a reactor model for the French fleet replacement. The EPR is a Gen-III reactor designed from the outset for the replacement of the French nuclear fleet: it is a continuation of existing reactors concepts and offers very high standards in terms of safety, as well as improved economic and environmental performance in operation. Its high power makes it possible to meet, on a limited number of sites, the electricity needs in the country. In several studies [START_REF] Tiphine | Simulations of progressive potential scenarios of Pu multi-recycling in SFR and associated phase-out in the French nuclear power fleet[END_REF][START_REF] Martin | French scenarios toward fast plutonium multi-recycling in PWR[END_REF], the replacement of the current French fleet by an EPR fleet occurs between 2030 and 2060.

Motivation of application

In the past years, a lot of research has been carried out to study different prospective developments for the French nuclear reactor fleet. For example, in the work of [START_REF] Martin | French transition scenarios toward a symbiotic nuclear fleet[END_REF], the strategy about the passage from the current French PWR fleet to nuclear power systems that do not need any natural uranium supply is studied. These systems are composed of either SFR only or a mix of SFR and EPR. In another work [START_REF] Martin | French scenarios toward fast plutonium multi-recycling in PWR[END_REF], the possibility to replace the current French reactor fleet by an EPR fleet using the plutonium multi-recycling strategy is investigated. However, many of these studies were carried out with a strong hypothesis that is nuclear electricity production will stay constant and be the same as the current level in the future. Such a hypothesis has a strong impact on these studies, as its disruption can influence the shutdown of the existing reactors and the commissioning of the new reactors, leading to the disrupted trajectories totally different from the prior trajectories given in the previous studies, or even the violation of constraints. In this case, one can carry out a resilience study to analyze the impact of the disruption in nuclear electricity production.

As a demonstration, we apply the developed resilience analysis framework (see section 2.6.1) and evaluation method (see section 3.3.1) to an academic scenario problem in this section. In this scenario problem, we focus on the replacement of a simplified currently existing French nuclear reactor fleet by a Gen-III reactor fleet, and the disruption in fleet total electricity production is considered. This scenario problem is quantified as "academic" because we have made several simplifications, such as ignoring the individual differences among the reactors and only classifying them into four reactor types (see Table 4.1); however, the problem is representative of a real situation (e.g., we have modeled the reactors individually and considered the replacement of fleet). The scenario simulations are carried out with the COSI6 code [START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF], using options to speed-up the computation (the irradiation are calculated with Artificial Neuron Network surrogate models, and a simplified analytic model is used for cooling). The statistical analyses are based on the URANIE platform [START_REF] Gaudier | URANIE: The CEA/DEN Uncertainty and Sensitivity Platform[END_REF][START_REF] The | User manual for Uranie v4.2.0[END_REF]. We insist that the scenario model detailed in the forthcoming discussions is constructed only for academic purposes and does not reflect any current industrial strategy or policy.

Description of scenario model

Assumptions about historical modeling

In the scenario simulation model, an approximation of the French PWR historical fleet from 1977 to 2019 is considered. Only the 58 existing PWR are simulated, and the reactors that once existed but have been shut down now, such as the nine UNGG reactors, Phé nix and SuperPhé nix, are not modeled as they do not contribute significantly to the fuel cycle. We divide the 58 existing PWR into three classes according to their power, and model all reactors in a given class using the same characteristics: The characteristics of the three reactors classes are given in Table 4.1 [START_REF] Tiphine | Simulations of progressive potential scenarios of Pu multi-recycling in SFR and associated phase-out in the French nuclear power fleet[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF]. They constitute an approximation of the more diverse characteristics of the existing reactors of the French fleet. The commissioning dates of these 58 PWR are shown in Figure 4.2, which are obtained from [START_REF]PRIS -Power Reactor Information System[END_REF]. Figure 4.3 shows the historical evolution of electricity production between 1977 and 2019, given by modeling. The 58 currently existing PWR are all commissioned before 2000. From 2000 on, the total electricity production of the whole nuclear reactor fleet is constant. 

Assumptions about prospective evolution of nuclear reactor fleet

In this scenario simulation model, several assumptions are considered:

• The electricity production of the nuclear reactor fleet can go through a strong reduction in the future; • All PWR are gradually replaced by Gen-III reactors;

• Except the 1450 MWe reactors, all reactors can be MOXed (from 100% UOX-fueled core to (30% MOX + 70% UOX)-fueled core) or de-MOXed (from (30% MOX + 70% UOX)-fueled core to 100% UOX-fueled core); • The reprocessing capacity is adjustable.

To define a trajectory, hundreds of parameters have to be set up. For instance, to characterize a reactor in the COSI6 code, one needs to precise the commissioning and shutdown dates, successions of loadings, load factors, and so on. However, in a resilience study, a large number of scenario trajectory simulations are required. It is hard to set the values of all these parameters, one by one, manually in each simulation. One needs a way of allowing the automatic set-up of these parameters.

As a solution, we use the ad hoc algorithm "PiloRI" (see section 3.4). PiloRI consists of an intermediate layer between the scenario model and decision-making, serving as a tool to automatically determine the evolution of the nuclear reactor fleet. A set of rules involving the commissioning and shutdown of reactors, as well as the loading of MOX fuel in reactors (see sections 3.4.3 and 3.4.4), is applied. With PiloRI, one aims to use a small number of parameters of interest to determine the evolution of the nuclear reactor fleet, reducing the number of input parameters and making the resilience study possible.

Assumptions of total electricity production

In this scenario simulation model, we take into account a reduction in total electricity production of the nuclear reactor fleet in the future, as illustrated in We suppose that the reduction in total electricity production starts in 2023. The setpoints of total electricity production is a linear function of time in the reduction period from 2023 to 2035. During the reduction, some PWR are shut down to meet the setpoints of electricity production. There is no commissioning of new reactors during the reduction period. After 2035, the annual electricity production is assumed to stay stable at the level of 𝛼 • 𝐷 0 where 𝛼 is defined as the ratio between the total annual electricity productions after and before the reduction and can vary in the interval (0.7, 1.0). In the period between 2035 and 2060, PWR are gradually shut down due to the limit of maximum lifespan, which is set to 60 years in this application, and new Gen-III reactors are commissioned to maintain total electricity production.

The scenario simulation ends in 2080. During the replacement of the nuclear reactor fleet, we suppose that the number of new commissioned Gen-III reactors in each year cannot surpass 3 reactors to avoid the intensive economic investment in the reactor construction.

In this application, we suppose that the setpoints of total electricity production are decision parameters from the decision-making. To follow the setpoints of electricity production, we apply the rules and drivers shown in section 3.4.3. The PiloRI algorithm determines the shutdown and commissioning of reactors automatically by matching the setpoints of total electricity production and the corresponding simulation result in the scenario model.

It is noteworthy that the building of a reactor in the real world is a long process that takes at least 10 ~ 15 years. However, in the simulations of this application, we assume that the commissioning of a new reactor is instantaneous. In other words, we suppose that the building phase of the new reactors was anticipated.

Assumptions of MOX fuel loading in reactors

As the reduction in total electricity production goes on, some reactors consuming MOX fuels may be shut down, and the proportion of UOX/MOX reactors could no longer be maintained, which may lead to a storage challenge [START_REF]France needs Mox to avoid spent fuel storage crisis[END_REF] due to the accumulation of spent fuels. To solve this problem, we take a MOX fuel loading strategy into account. In the scenario model of this application, the MOXing (from 100% UOX-fueled core to (30% MOX + 70% UOX)-fueled core) and de-MOXing (from (30% MOX + 70% UOX)-fueled core to 100% UOX-fueled core) of reactors are possible.

The MOX fuel loading in reactors is driven by the setpoints of annual electricity production from MOX fuel, which is shown in Figure 4.6. The electricity production from MOX fuel is kept constant before 2035 with a value 𝐷 0 𝑀𝑂𝑋 = 39.1 TWe•h and then is reduced linearly with time during the period between 2035 and 2060. After 2060, this production is again kept constant at the level of 𝛽 • 𝐷 0 𝑀𝑂𝑋 where 𝛽 is defined as the ratio between the annual electricity productions from MOX fuel after and before the reduction and can vary in the interval (0, 1.0).

It is supposed that all reactors, except the PWR of 1450 MWe class, can be MOXed during the simulation. The PWR of 1450 MWe class do not load the MOX fuel and use only UOX fuels during the simulation [START_REF] De | Poursuite de fonctionnement du ré acteur N°1 de la centrale nuclé aire de CIVAUX aprè s son premier ré examen pé riodique[END_REF][START_REF] De | Poursuite de fonctionnement du ré acteur N°2 de la centrale nuclé aire de CIVAUX aprè s son premier ré examen pé riodique[END_REF][START_REF] De | Poursuite de fonctionnement du ré acteur N°1 de la centrale nuclé aire de CHOOZ aprè s son premier ré examen pé riodique[END_REF].

In this application, we suppose that the setpoints of electricity production from MOX fuel are decision parameters from the decision-making. To realize the MOX fuel loading according to these setpoints, we apply the rules and drivers shown in section 3.4.4. The PiloRI algorithm determines the MOXing and de-MOXing of reactors by matching the setpoints of electricity production from MOX fuel and the corresponding simulation result in the scenario model. 

.2.3 Assumptions of reprocessing

In the scenario model of this application, we suppose that the fuel cycle strategy shown in Figure 4.1 is kept and used for the prospective simulation from 2019 and 2080. However, the heavy nuclides reprocessing capacity (called "reprocessing capacity" henceforth for simplification) can be modified during the simulation. The setpoints of annual reprocessing capacity are exposed in Figure 4.7. There are two periods in which the reprocessing capacity stays constant. The reprocessing capacity is kept constant from 2019 to year 𝑇 𝑐 with a value 𝐶 0 = 950 tHM/year. After the year 𝑇 𝑐 , the capacity is immediately changed into another constant level 𝛾 • 𝐶 0 where 𝛾 is defined as the ratio between the reprocessing capacities after and before the year 𝑇 𝑐 . It is supposed that 2023 < 𝑇 𝑐 < 2060 and 0.0 < 𝛾 < 1.0. In this application, we consider that the setpoints of reprocessing capacity are decision parameters from the decision-making.

The minimum cooling time of spent fuels before reprocessing is 5 years, which is consistent with the setting in the historical modeling in section 4.1.2.1. The reprocessing order for spent fuel and the retrieving order of plutonium in the separated stockpile are both chronological, i.e., first in first out. 

Definition of valid trajectory

With the above assumptions and the developed "PiloRI" algorithm (see section 3.4), we can fully characterize a scenario trajectory with the four decision parameters (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) shown in Table 4.2. The "PiloRI" algorithm can use these decision parameters to determine the evolution of the studied nuclear reactor fleet, i.e., to set up all the input parameters of the scenario model such as the shutdown and commissioning dates of reactors, the dates to switch the reactors between the UOX-and MOX-fueled reactor types. To define the validity of a trajectory in this application, we impose five constraints:

Constraint C1: The reprocessing plant must work at full capacity during the simulation.

In this application, we impose that the reprocessing plant must work at full capacity during the simulation for economic reasons, such as to ensure the employment of workers in the plant.

In the scenario simulation of this application, the "real plant" mode is chosen when modeling the reprocessing plant with the COSI6 code. According to this mode, the modeled reprocessing
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Setpoints of annual reprocessing capacity in reprocessing plant 𝐶 0 2080 2019 plant operates in relation to a reprocessing frequency 12 and imposed setpoints of annual reprocessing capacity. For a year in which there are enough spent UOX fuels in the stock to supply reprocessing, the reprocessing is halted when the annual reprocessing capacity setpoint is reached. However, for a year in which there are not enough spent UOX fuels to meet the annual reprocessing goal defined by the setpoints, the reprocessing plant is supposed to be in an under-capacity operation: the simulated quantity of reprocessed spent UOX fuels in this year is smaller than the annual reprocessing capacity setpoint. To evaluate this constraint C1, we calculate the utilization ratio of the reprocessing plant during the simulation defined as follows: During the scenario simulation with the COSI6 code, the MOX fuel fabrication plant retrieves plutonium from the separated stockpile to fabricate the MOX fuels according to the demand of the reactor fleet. When there is not enough separated plutonium, the plant will fail to build the MOX fuels for the fuel reloading of reactors, making the trajectory infeasible. In this case, the simulation of the COSI6 code can be blocked. To let the COSI6 code finish the calculation for an infeasible trajectory, we add a fictive infinite plutonium stock in the simulation. When the trajectory is infeasible, i.e., there is a shortage of plutonium, this fictive stock will be activated to provide the supplementary plutonium from the exterior of the reactor fleet, letting the simulation of COSI6 code continue.

In the scenario study, the infeasible trajectory is usually undesired for the decision-makers, and one should ensure the inventory of separated plutonium during the simulation. To evaluate this constraint, we construct an indicator of constraint, noted as 𝐼 𝑀𝑖𝑛𝑃𝑢 and defined as follows: In some scenario studies, one may construct a simple binary indicator of constraint, i.e., the indicator whose value is equal to 0 for feasible trajectories and equal to 1 for infeasible trajectories, to evaluate the feasibility in terms of sufficiency of separated plutonium inventory. However, this indicator is of less interest in our study, as it can only judge a given trajectory feasible or not while it cannot give out more information. On the contrary, the indicator in Eq. (4-2) can not only identify the feasibility of a given trajectory but also can indicate to what extent the trajectory is infeasible.

Along with the indicator 𝐼 𝑀𝑖𝑛𝑃𝑢 , we impose 𝐼 𝑀𝑖𝑛𝑃𝑢 > 5 tons to quantify the constraint C2 in this application. We indicate that the choice of the threshold here is arbitrary and subjective. 12 Reprocessing frequency is an input parameter used in the COSI6 code. For a modeled reprocessing plant of "real plant" mode with a yearly reprocessing capacity X tons and a reprocessing frequency Y batches, it processes X/Y tons of spent fuels every 1/Y year from its commissioning date. In this study, the reprocessing frequency is set as 1 batch per year.

Constraint C3:

The inventory of plutonium in the separated stockpile should be limited below a certain level.

A large stock of separated plutonium is favorable to ensure the feasibility of the trajectory. However, plutonium is a material with strong radioactivity. It is dangerous to the environment and the workers in the associated facilities. For the sake of safety, one should not accumulate a great amount of plutonium in the separated stock. What's more, a large stock of separated plutonium can cause a high risk of proliferation [START_REF] Squassoni | Proliferation risks from nuclear power infrastructure[END_REF]. As a result, one should limit the inventory of plutonium in the separated stockpile. In this application, this constraint can be expressed as 𝐼 𝑀𝑎𝑥𝑃𝑢 < 55 tons where 𝐼 𝑀𝑎𝑥𝑃𝑢 is defined as follows:

𝐼 𝑀𝑎𝑥𝑃𝑢 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑢 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑖𝑛 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑠𝑡𝑜𝑐𝑘𝑝𝑖𝑙𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 Eq. (4-3) Constraint C4: The plutonium contents in fresh MOX fuels (whatever its isotopic composition) can never go beyond 12% during the simulation for safety reasons.

The plutonium content is defined as the mass ratio between the plutonium and all heavy materials (plutonium + uranium) of fresh MOX fuel in our study. Depending on the isotopic vector of the plutonium used in fuel fabrication, the plutonium content can be variant.

In nuclear engineering, a void coefficient is a number used to estimate how much the reactivity of a reactor changes as void content, typically steam bubbles in PWR reactor type, form in the reactor moderator, or coolant. For a PWR in which the moderator and coolant are both light water, a negative void coefficient means that the reactivity decreases as the void content inside the reactor increases, forming an under-moderated core and negative feedback inside the reactor; a positive void coefficient means that the reactivity increases as the void content inside the reactor increases, forming an over-moderated core and positive feedback inside the reactor. For the sake of safety, the French PWR are designed to have a negative void coefficient with the usual fuel types. However, it may become hazardous beyond a given plutonium content when the MOX fuel is used. In some studies, this limited plutonium content is 12% [START_REF] Marguet | The Physics of Nuclear Reactors[END_REF][START_REF] Oecd/Nea | Physics and Fuel Performance of Reactor-Based Plutonium Disposition[END_REF].

To interpret this constraint C4, an indicator of constraint, noted as 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , is defined as:

𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑢 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑎𝑙𝑙 𝑓𝑟𝑒𝑠ℎ 𝑀𝑂𝑋 𝑓𝑢𝑒𝑙𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 Eq. and one imposes 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 < 12%.

Constraint C5: The total spent fuel (MOX + UOX) inventory can never exceed 24000 tHM because of a limited spent fuel storage capacity.

The storage capacity for spent fuels is limited. In this application, we impose that the inventory of total spent fuels, including both the spent UOX and MOX fuels, in the interim storage can never exceed 24000 tHM [START_REF]Radioactive waste management programmes in OECD/NEA member countries[END_REF]. To quantify this constraint, we construct an indicator, noted as 𝐼 𝑀𝑎𝑥𝑆𝐹 , as follows:

𝐼 𝑀𝑎𝑥𝑆𝐹 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑜𝑡𝑎𝑙 𝑠𝑝𝑒𝑛𝑡 𝑓𝑢𝑒𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
Eq. [START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF] and impose that 𝐼 𝑀𝑎𝑥𝑆𝐹 < 24000 tHM.

As a consequence, a given trajectory (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) is valid if and only if: { 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 1.0 𝐼 𝑀𝑖𝑛𝑃𝑢 > 5 tons 𝐼 𝑀𝑎𝑥𝑃𝑢 < 55 tons 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 < 12% 𝐼 𝑀𝑎𝑥𝑆𝐹 < 24000 tHM Eq. (4-6)

Synthesis of scenario model

After the above discussion, we construct a scenario model concerning the replacement of a simplified French reactor fleet with the possibility to reduce total electricity production in the future. More precisely, in this scenario model, the initial reactor fleet consists of 58 PWR that are commissioned between 1977 and 2000 (see section 4.1.2.1). From 2023 to 2035, this reactor fleet can go through a linear reduction in total electricity production and then stays at a constant production until 2080. Between 2035 and 2060, the old PWR are successively shut down as they reach their maximum lifespan of 60 years (see section 4.1.2.2.1). To maintain the electricity production, new Gen-III reactors are commissioned to take the place of the shutdown PWR. In the period from 2035 to 2060, the electricity production from MOX fuel goes through a linear reduction and then stays constant after 2060. A strategy is implemented in the model to load the MOX fuels in the reactor cores, including the MOXing and de-MOXing in the new commissioned Gen-III reactors, according to the given setpoints (see section 4.1.2.2.2). During the simulation after 2023, the "mono-recycling" strategy shown in Figure 4.1 is maintained, while the reprocessing capacity can be changed during the simulation (see section 4.1.2.2.3). We suppose that the setpoints of total electricity production, electricity production from MOX fuel and reprocessing capacity are the decision parameters from the decision-making. In the scenario model, a trajectory is characterized by four decision parameters (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) (see Figure 4.5, Figure 4.6 and Figure 4.7). The "PiloRI" algorithm (see section 3.4) determines the evolution of the reactor fleet according to these four parameters. This trajectory is designated valid if and only if it satisfies five imposed constraints that are quantified as shown in Eq. [START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF].

In this application, the constructed scenario model is used only for academic study and the demonstration of the developed resilience study. It does not reflect any current industrial strategy or policy. Compared to industrial scenario models, the scenario model in this application is relatively rough, and many approximations have been made:

• In our scenario model, for the sake of simplicity, the modeled PWR reactors are divided into three classes according to their electrical power, which are 34 reactors of 900-MWe class, 20 reactors of 1300 MWe class, and 4 reactors of 1450 MWe class. However, in reality, the electrical powers of each reactor from the same electrical power class are usually slightly different from one to another, due to the different operating environments such as the different inlet and outlet temperatures of the last circuit of the reactor, the different grid load and so on. In our model, we have ignored such differences of electrical powers. • The accurate real historical successions of fuel loading of each reactor, such as the precise enrichments of fuels, the accurate dates to load different fuel types, the irradiation durations of each fuel cycle for each reactor, etc., are hard to obtain due to commercial confidentiality. In our study, we have simplified the successions of fuel loading such that the reactors of the same electrical power share the same average fuel burnup and irradiation duration during the simulation. Moreover, the history of the use of ERU fuel is not considered.

• The accurate historical loading factors of each PWR in each year are hard to get due to commercial confidentiality. In our model, we use a fixed loading factor during the life of the reactors. • The history of the reactors that have been shut down before 2019, including the nine UNGG reactors, Phé nix, and Superphé nix reactors, are not considered in our study. • The accurate historical accumulated inventories of different materials such as the spent fuels, separated plutonium, reprocessed uranium, etc., are not taken into account in the scenario model due to the lack of these data.

Despite the above approximations, our scenario model is still representative of real situations: for example, the reactors are individually modeled; the successions of fuel loading concerning the processes of MOXing and de-MOXing in reactor cores are considered (see Figure 3.6); the reprocessing plant is modeled with the "real plant" mode; etc. Moreover, the main aim of our study in this application is the academic demonstration of developed the resilience study framework instead of the industrial study. A simplified model allows for making the demonstration more understandable. The application of the resilience study on an industrial scenario study is left as the prospective work of this thesis.

Prior trajectory

In this application, a valid prior trajectory is given a priori with characteristic parameters (𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035). These parameters mean that the total annual electricity production of the nuclear reactor fleet, the annual electricity production from MOX fuel and the reprocessing capacity are all supposed to be constant from the beginning of the prospective simulation (2019) to the end of the prospective simulation (2080), and their initial values in 2019 are used throughout the simulation. We assume that this valid prior trajectory is a result given by a conventional nuclear fuel cycle scenario study before the resilience study.

Electricity production and replacement of reactor fleet

The setpoints and simulation results of the total annual electricity production of the nuclear reactor fleet for the prior trajectory are shown in Figure 4.8. We can find that the simulated total electricity production stays constant during the simulation from 2019 to 2080. The simulated result conforms with the imposed setpoints. However, in the periods from 2020 to 2022, and from 2038 to 2060, there are some fluctuations. These fluctuations in both periods are due to the replacement of reactors: the old PWR reactors are shut down, and the new reactors are commissioned. According to the assumptions in section 4.1. At the end of the simulation, each reactor has its own MOXing and de-MOXing history. Figure 4.12 summarizes the loading of MOX fuel in the reactors. In Figure 4.12, according to the times of MOXing and de-MOXing, the reactors can be divided into three categories: the green bar presents the reactors that use only 100% UOX fuel all along with their life; the red bar stands for the reactors that are commissioned with 100% UOX fuel and then, load 30% MOX fuel in their cores from a certain moment on until their end of life; the blue bar represents the reactors that suffer a history from a 100%-UOX core to a 30%-MOX core and then to a 100%-UOX core again during their life. From Figure 4.12, we can find that 24 PWR 900 MWe and 7 PWR 1300 MWe go through a history such that (100% UOX → 30% MOX + 70% UOX → 100% UOX) during their life. At the end of the simulation, 13 Gen-III reactors are MOXed to follow the setpoints of electricity production from MOX fuel.

It is noteworthy that in this trajectory, no reactors is MOXed more than twice during their life. This setting is imposed by the rules of the "PiloRI" algorithm (see section 3.4.4). The prior trajectory is valid as the five constraints are all satisfied.

The equality 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 1.0 means that the reprocessing plant always works at full capacity during the simulation. The decision parameter 𝛾 = 1.0 indicates that the reprocessing capacity is always kept at 950 tHM/year. The plutonium inventory in the separated stockpile for the prior trajectory is given in Figure 4.13. During the simulation, the inventory evolution of separated plutonium is quasiequilibrium and always stays between the authorized domain defined by the thresholds of the constraints C2 and C3, i.e., between 5 tons and 55 tons. In fact, since the electricity production from MOX fuel remains almost constant during the simulation, the consumption of plutonium of the reactor fleet is stable, despite the slight variation of the plutonium vector in the spent UOX fuel according to the irradiation conditions. 4.14 shows the evolution of the plutonium contents in fresh MOX fuels for the prior trajectory. During the simulation, the shutdown of MOX-fueled reactors is carried out in their last irradiation cycle with specific MOX fuel batches whose plutonium contents are reduced according to their shorter irradiation durations and burnups in the reactor core. As a result, one can see in Figure 4.14 that the plutonium content can approach 6% 13 between 2041 and 2051, corresponding to the loading of special shutdown MOX fuel batches in the cores. The plutonium content always stays below 12% during the simulation, satisfying the constraint C4. 4.15 shows the evolution of the spent UOX and MOX fuel inventories for the prior trajectory. During the simulation, the spent UOX fuels are recycled with a constant capacity of 950 tHM/year while the spent MOX fuels are stored without reprocessing. Since the electricity production from MOX fuel remains constant during the simulation, the spent MOX fuel increases almost linearly. At the end of the simulation, the total inventory of both spent fuels reaches its maximum value of 15152 tHM, which is smaller than the limit value of constraint C5.

In conclusion, the prior trajectory with parameters (𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035) is valid against the imposed five constraints. This prior trajectory is supposed to be a result given by a conventional nuclear fuel cycle scenario study and used for the demonstration of the resilience study in the following discussion.

Construction of validity estimator

The key in the resilience evaluation method shown in section 3.3.1 is the validity estimator based on Kriging surrogate models, i.e., the excursion probability that evaluates the probability that a given trajectory satisfies the imposed constraints. In this section 4.1.4, we aim to construct a validity estimator corresponding to the five imposed constraints of our scenario model as preparation before the resilience study. The work in section 4.1.4 corresponds to the steps ④ and ⑤ in Figure 3.1.

To build the validity estimator, one has to prepare a database that consists of abundant observations given by the scenario simulation with the COSI6 code. An observation can be expressed as (𝛼, 𝛽, 𝛾, 𝑇 𝑐 , 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 , 𝐼 𝑀𝑖𝑛𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , 𝐼 𝑀𝑎𝑥𝑆𝐹 ). To do this task, we consider two different methods, respectively, the random sampling method and the multiconstraint SUR algorithm.

Database constructed with random sampling method

In the random sampling method, we randomly sample with the Latin Hypercube Sampling technique [START_REF] Mckay | A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code[END_REF] 3000 different values of (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) in their variation ranges shown in Table 4.2, and then the COSI6 code and the "PiloRI" algorithm are called to carry out the scenario simulations to obtain the corresponding values of (𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 , 𝐼 𝑀𝑖𝑛𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , 𝐼 𝑀𝑎𝑥𝑆𝐹 ). With a machine having 32 CPU of 2.1 GHz frequency, the realization of the 3000 scenario simulations takes around 2h. 4.16 represents a trajectory after scenario simulation (or rather an observation): the blue lines are valid observations, and the grey lines are the invalid observations. One can see that the valid observations take only a small proportion among all, around 4.6%. This is because the constraints are quite strict. For example, for the constraint C5, its indicator 𝐼 𝑀𝑎𝑥𝑆𝐹 , is required to be smaller than 24000 tHM in this application, while its possible variation range covers from around 9000 tHM to over 60000 tHM, which is much larger than the authorized interval. As a result, a large amount of observations violates the constraint C5. In our scenario model, we consider five constraints instead of only the constraint C5. Thus, the scenario problem is more constrained compared with the mono-constraint case. The possibility to randomly obtain valid trajectories is small.

With a so small proportion of valid observations, this database obtained with random sampling method has sparse information about the valid trajectories. The validity estimator constructed with this database may be biased by the overabundant invalid observations and nearly always judge the given trajectories as invalid, even though most of these trajectories are verified as valid by the scenario simulation with the COSI6 code. In other words, there may not be enough valid trajectories for a validity estimator to "recognize" the validity. As an extreme example, a validity estimator constructed with a database without any valid observations will consider every given trajectory as invalid and cannot predict the valid trajectories. However, one should pay attention that a database inside which all observations are valid can lead to another extreme situation. To construct a pertinent validity estimator, one should keep in mind that both valid and invalid observations are important and should be contained in a database.

To obtain a better database, one needs another more efficient method to find both valid and invalid observations.

Database constructed with multi-constraint SUR algorithm

In the resilience study, we construct the database of the validity estimator with the multiconstraint SUR algorithm (see section 3.2).

To prepare a database for the initiation of the multi-constraint SUR algorithm (see 3.2.3), we randomly generate 50 observations. Among these observations, there are 2 valid ones and 48 invalid ones.

Before launching the multi-constraint SUR algorithm, we notice that the calculation time of the multi-constraint SUR algorithm increases as the new observations are added. According to Eq. (3-10), the size of the Kriging covariance matrix has a squared growth with the number of observations in the database. As a result, the calculation of the multi-constraint SUR algorithm can increase as the new observations are added to update the Kriging model after each iteration step of the algorithm, making the iteration slower and slower. For our scenario model, the calculation time of the multi-constraint SUR algorithm in the first iteration with only 50 observations in the database is negligible in front of the calculation time of the COSI6 scenario code. However, when the number of observations increases to over 1000, the calculation of the multi-constraint SUR algorithm for one iteration step can take several minutes, being more time-consuming than the scenario simulation with the COSI6 code and making the searching of new observations slow. To solve this difficulty, we propose a distributed application strategy. More precisely, we divide the whole variation range of the four input parameters (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) into 8 subspaces, as shown in Table 4.3. In each subspace, we apply the multi-constraint SUR algorithm separately at the same time. Since the size of the exploration domain become smaller in each subspace, one can reduce the number of observations in the database required for the exploration in each subspace. With such a distributed application strategy, we can avoid the inefficiency of the iteration of the multi-constraint SUR algorithm arisen by the increasing of the number of observations. The number of the divided subspaces in our study is determined according to the profile of our calculation machine. With the distributed application strategy initialized with the 50 prior observations, we apply the multi-constraint SUR algorithm. The Matern3/2 function is used as the Kriging covariance function. The batch size is chosen as 1, which means that one observation is added in each iteration of the algorithm. In another word, 3200 new observations are given at total by the multi-constraint SUR algorithm in the eight subspaces. The parallel coordinates plot of these 3200 observations is shown in Figure 4.17. We observe that in this database constructed with the multi-constraint SUR algorithm, the proportion of the valid observations is around 28%, much greater than that in the database built with the random sampling method. However, as an important remark for the multi-constraint SUR algorithm, we insist that the aim of the multi-constraint SUR algorithm is not to simply provide a database containing a high proportion of valid observations but to identify the frontier between the valid and invalid input parameter spaces by sequentially adding the observations. At each iteration, the multi-constraint SUR algorithm does not explore the parts of the input parameter space in which it knows 14 that the trajectories are valid or not. Instead, the algorithm focuses on exploring the domains in which it does not know whether the trajectories are valid or not. These domains are usually around the frontier between the valid and invalid input parameter spaces. As a consequence, the observations found by the multiconstraint SUR algorithm are mainly located around the contour line between the valid and invalid input parameter spaces. This point can be proven in Figure 4.18, which are stacked histograms of the five indicators of constraint for the 3200 observations obtained with the multiconstraint SUR algorithm. In Figure 4.18, one can notice the accumulation of observations around the threshold values 𝐼 𝑀𝑎𝑥𝑃𝑢 = 55 tHM and 𝐼 𝑀𝑎𝑥𝑆𝐹 = 24000 tHM. A high proportion of valid observations in the database given by the multi-constraint SUR algorithm is only a byproduct of identifying the contour line between the valid and invalid input parameter spaces.

Figure 4.19 is the pair plots of the 3200 observations obtained with the multi-constraint SUR algorithm. In this figure, one can observe that many observations accumulate around some special values of input parameters, especially 𝛽 = 0.5 and 𝛾 = 0.5. This phenomenon is caused by the division of the whole input parameter space into several subspaces shown in Table 4.3.

In the subspaces with 𝛽 < 0.5 and 𝛾 < 0.5, as the iteration goes by, the multi-constraint SUR algorithm gradually "learns" that there is less possibility to find the valid trajectories with small values of 𝛽 and 𝛾. As a result, it will less explore the zones with small values of 𝛽 and 𝛾 and tend to place the observations close to 𝛽 = 0.5 and 𝛾 = 0.5 in the subspace with 𝛽 < 0.5 and 𝛾 < 0.5. Consequently, there is an accumulation phenomenon around 𝛽 = 0.5 and 𝛾 = 0.5 in Figure 4.19. With the database given by the multi-constraint SUR algorithm, we construct the validity estimator, i.e., the excursion probability, according to Eq. (3-48), which is denoted as 𝑝 𝑛 𝐴 and as follows:

𝑝 𝑛 𝐴 (𝒙) = 𝑝 𝑛 𝐶1,𝐴 (𝒙) ⋅ 𝑝 𝑛 𝐶2,𝐴 (𝒙) ⋅ 𝑝 𝑛 𝐶3,𝐴 (𝒙) ⋅ 𝑝 𝑛 𝐶4,𝐴 (𝒙) ⋅ 𝑝 𝑛 𝐶5,𝐴 (𝒙) ⋅ Eq. (4-8) where

• 𝒙 ≔ (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) is the tuple of input parameters which characterize a trajectory;

• 𝑝 𝑛 𝐶1,𝐴 , 𝑝 𝑛 𝐶2,𝐴 , 𝑝 𝑛 𝐶3,𝐴 , 𝑝 𝑛 𝐶4,𝐴 and 𝑝 𝑛 𝐶5,𝐴 are the excursion probabilities corresponding to the five constraints described in section 4.1.2.3 and constructed according to Eq. (3-24); • 𝑛 =3200 stands for the 3200 observations given by the multi-constraint SUR algorithm;

• "𝐴" stands for the scenario problem A.

For a given trajectory 𝒙, 𝑝 𝑛 𝐴 (𝒙) is a measure related to the validity probability: with a high value of 𝑝 𝑛 𝐴 (𝒙), the trajectory 𝒙 is very likely to be valid; with a low value of 𝑝 𝑛 𝐴 (𝒙), the trajectory 𝒙 is very likely to be invalid. The estimator 𝑝 𝑛 𝐴 are used for the resilience study in section 4.1.5.

Resilience study of the prior trajectory

In this section, we apply the developed resilience analysis framework(see section 2.6.1) and evaluation method (see section 3.3.1) to study the resilience of the valid prior trajectory in section 4.1.3. We suppose that this valid prior trajectory is a result given by a conventional nuclear fuel cycle scenario study with the assumption of having a constant electricity production in the future. However, the total electricity production of the nuclear reactor fleet may be affected by the deep uncertainty. The parameter of interest 𝛼 is supposed here as uncontrolled and possibly disrupted. The disruption is assumed to be the transcription of the following information:

"At the time of the conventional scenario study, the total electricity production of the nuclear reactor fleet was assumed to remain constant with the level in 2019 during the simulation.

Through the conventional scenario study, one obtained the prior trajectory shown in section 4.1.3. However, in the future, the economic, societal and political context may be disrupted due to the deep uncertainty. As a result, the decision-makers may decide to reduce the total electricity production of the nuclear reactor fleet according to the profile in Figure 4.5."

The following resilience study is made based on this transcription. The validity estimator 𝑝 𝑛 𝐴 constructed in Eq. (4-8) are used.

Resistance study

As a first step of the resilience study, we aim to study the resistance of the prior trajectory versus the disruption of 𝛼, i.e., to observe the behavior of the prior trajectory if the total electricity production is disrupted as shown in Figure 4.5, without making any exogenous readjustments.

The "exogenous readjustments" here refer to the changes of the other three decision parameters (𝛽, 𝛾, 𝑇 𝑐 ). Indeed, the model that we use in the following resistance and resilience studies is the complex composed of the "PiloRI" algorithm and the scenario model simulated by the COSI6 code.

To model the disruption and get a disrupted trajectory derived from the prior trajectory, we randomly sample the value of the uncontrolled parameter 𝛼 according to the uniform distribution in its variation range (0.7, 1.0); the values of other three characteristic parameters of the disrupted trajectory are the same as those in the prior trajectory, i.e., (𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035). It means that all other decision parameters related to MOX recycling (i.e., 𝛽) and reprocessing (i.e., 𝛾 and 𝑇 𝑐 ) are kept unchanged while the total electricity production is decreased. In this section, 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 disrupted trajectories with different disrupted values of 𝛼 are randomly sampled and simulated with the COSI6 scenario simulation code. The five constraint indicators as functions of the 𝛼 values are given in Figure 4.20 (each point in each subfigure corresponds to a disrupted trajectory). In Figure 4.20 (b), the value of 𝐼 𝑀𝑖𝑛𝑃𝑢 can be negative. The negative 𝐼 𝑀𝑖𝑛𝑃𝑢 means the lack of plutonium in the separated stockpile to support the nuclear reactor fleet during the simulation and that a fictive plutonium stockpile with infinite quantity is triggered to complete the simulation (see the definition of 𝐼 𝑀𝑖𝑛𝑃𝑢 in section 4.1.2.3).

From Figure 4.20, first, one can observe that all disrupted trajectories satisfy the constraints C3, C4, and C5 (see Figure 4.20 (c)-(e)). The disruption of 𝛼 has less impact on the satisfaction of these three constraints. However, such a disruption can lead to violations of the constraints C1 and C2. In Figure 4.20 (a) and (b), it is observed that, when the value of 𝛼 is only slightly disrupted, both C1 and C2 can still be held. As the value of 𝛼 continues to decrease and becomes smaller than some certain threshold values (respectively, 𝛼 < 0.85 for the constraint C1 and 𝛼 < 0.79 for the constraint C2), both C1 and C2 fail. To understand this failure, one should first notice that the spent fuel inventory has a positive correlation with the total electricity production level of the nuclear reactor fleet, i.e., the value of 𝛼, which is illustrated by the Figure 4.20 (e).

In other words, if the reprocessing remains constant, the spent fuel inventory linearly increases with the total electricy production. If the value of 𝛼 becomes too small, the annual production rate of spent UOX fuels can be smaller than the annual reprocessing capacity setpoints after the reduction of total electricity production. As a result, there are not enough available spent UOX fuels for reprocessing at the end of the simulation, leading to the under-capacity operation of the reprocessing plant and, thus, the violation of the constraint C1. As an example, the inventory of spent UOX fuels and the reprocessing capacity of the disrupted trajectory (𝛼 = 0.70, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035) are respectively given in According to the simulation results in Figure 4.20, after the disruption of 𝛼 value, 𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 245 out of 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 disrupted trajectories stay valid, all of which have a 𝛼 value greater than 0.85. This point can be found more intuitively from Figure 4.23, which is the parallel coordinates plot of the 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 disrupted trajectories. It implies that the prior trajectory is resistant to the defined disruption for 𝛼 values greater than 0.85. However, the remaining 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 -𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 255 disrupted trajectories, with a 𝛼 value smaller than 0.85, are invalid. One can conclude that the resistance of the prior trajectory is limited for a certain impact level of disruption of 𝛼 and can no longer be held when the disruption impact is too strong, as mentioned in section 2.5.1: the resistance strategy, in which the prior trajectory is supposed to stay valid by itself without taking any exogenous readjustment under the impact of disruption, does not suffice to face a strong disruption. To avoid the failure of the prior trajectory under the strong impact of disruption, one needs a resilience strategy. "If the prior trajectory is not resistant in front of a strong disruption of total electricity production, the decision-makers may decide to modify the MOX fuel loading in reactors and the reprocessing to cope with the disruption. The modification ways are as described in sections 4.1.2.2.2 and 4.1.2.2.3."

Application of resilience to one invalid disrupted trajectory

As a first example, the scheme is applied to one randomly selected of the 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 255 invalid non-resistant disrupted trajectories derived from the prior trajectory in section 4. The constraints C1 and C2, i.e., the full use of reprocessing plant and the feasibility in terms of having enough plutonium in the separated stockpile, are violated since there are not enough spent UOX fuels to be reprocessed (see Figure 4.21 and Figure 4.22). One should adapt the MOX fuel loading and the reprocessing, i.e., 𝛽, 𝛾 and 𝑇 𝑐 , according to the disrupted total electricity production. For this end, the resilience evaluation scheme in Figure 3.1 is applied to this invalid disrupted trajectory, and 𝛽 , 𝛾 and 𝑇 𝑐 are used as levers. More precisely, the following steps are done:

1. 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 6 candidate trajectories are proposed by randomly sampling 𝛽, 𝛾 and 𝑇 𝑐 on their variation ranges (see Table 4.2) and keeping 𝛼 = 0.70, without being verified by the scenario simulation. When choosing the value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , one should consider two points. On the one hand, the value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 should be large enough to cover the whole variation range of (𝛽, 𝛾, 𝑇 𝑐 ) in order to fully explore the possible values of levers. On the other hand, as the value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 increases, the computation cost in the later steps augments, since more sampled candidate trajectories are evaluated. To make the computation cost reasonable, one should limit the value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 under a certain level. The value choice of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 6 here is a compromise between these two points. First, we observe that the values of the levers 𝛽 , 𝛾 and 𝑇 𝑐 of the 𝑁 𝑣𝑎𝑙𝑖𝑑 valid readjusted trajectories cover a wide range with 0.18 < 𝛽 < 0.74, 0.31 < 𝛾 < 0.76 and 2037 < 𝑇 𝑐 < 2057, showing the high flexibility to readjust the chosen disrupted trajectory by adapting 𝛽, 𝛾 and 𝑇 𝑐 . Then, one can find that the valid readjusted trajectories accumulate in some spaces, for example in (0.3 < 𝛽 < 0.5, 0.45 < 𝛾 < 0.55, 2040 < 𝑇 𝑐 < 2050), while there are sparse valid readjusted trajectories in other spaces. As a remark, it is noteworthy that the 𝑁 𝑣𝑎𝑙𝑖𝑑 valid readjusted trajectories shown in Figure 4.24 and Figure 4.25 are only a part of all possible valid readjusted trajectories in the whole variation ranges of ( 𝛽 , 𝛾 , 𝑇 𝑐 ). The selection of these 𝑁 𝑣𝑎𝑙𝑖𝑑 readjustment ways depends on many factors, such as the database for the construction of the validity estimator and the choice of filtering condition. With a different database or a different filtering condition, there can be other different readjustments. The resilience evaluation scheme in Figure 3.1 is not an exploration method to figure out all successful readjustment ways: its goal is to demonstrate the possibility to achieve successful readjustments. For the readjustments shown in Figure 4.25, the false-positive rate, defined as the proportion of invalid ones among all potential trajectories that are considered valid by the scheme and verified by the scenario model, is (1 -𝑁 𝑣𝑎𝑙𝑖𝑑 / 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ) × 100% = 3.7%. A low false-positive rate implies that the scheme in Figure 3.1 is efficient in terms of finding valid readjusted trajectories. Moreover, one can remark that for a given invalid disrupted trajectory, there can be many different readjustment ways (see Figure 4.24 and Figure 4.25). However, it is difficult to take all of them into account during the decision-making process. A solution is to establish preferences to choose one readjustment way among different possibilities. Generally, these preferences are given by the decision-makers like the nuclear energy industry heads and governments. Their construction integrates different considerations such as the economic cost, the impact of nuclear waste on the environment, natural resource consumption, and so on. Examples of preferences are given in section 4.1.5.2.2. 

Application of resilience to a set of invalid disrupted trajectories

As another example of a resilience study, the resilience evaluation scheme in Figure 3.1 is applied to a set of invalid non-resistant disrupted trajectories. We remind that 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 255 invalid non-resistant disrupted trajectories are produced in section 4.1.5.1 by disrupting the valid prior trajectory (𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035) with different values of 𝛼. These 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid non-resistant disrupted trajectories represent the different potential impact of the total electricity production. This time, the resilience evaluation scheme in Figure 3.1 is applied to each of these invalid disrupted non-resistant trajectories, and the levers are the same as used in section 4.1.5.2.1: 𝛽, 𝛾 and 𝑇 𝑐 . As said in section 4.1.5.2.1, there are usually many different successful readjustment ways for a given invalid disrupted trajectory. However, during the decision-making process, one needs preferences to select only one valid readjusted trajectory among different possibilities. In this section 4.1.5.2.2, as an illustration, we choose two opposite preferences to readjust each of these 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 disrupted trajectories separately to show the impact of preference. They are as follows:

• Preference P1: Among different possibilities, choosing the one that can maximize the 𝛾 value, i.e., the reprocessing capacity after readjustment. • Preference P2: Among different possibilities, choosing the one that can minimize the 𝛾 value, i.e., the reprocessing capacity after readjustment.

To apply the resilience scheme, for each of the 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 disrupted trajectories, the following steps are performed:

1. 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 4 candidate trajectories are proposed by randomly sampling 𝛽, 𝛾 and 𝑇 𝑐 on their variation domains and keeping the disrupted 𝛼 value unchanged, without being verified by the scenario code.

The values of the validity estimator 𝑝 𝑛

𝐴 for each of these 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 sampled candidate trajectories are rapidly calculated.

According to the filtering condition 𝑝 𝑛

𝐴 > 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 with 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 = 0.9, potential trajectories with high confidence of validity are obtained. 4. These potential trajectories with high confidence of validity are ranked according to the value of 𝛾: descending order of 𝛾 value for the preference P1 and ascending order of 𝛾 value for the preference P2. 5. The COSI6 scenario code is called to verify the selected potential trajectories according to the ranking order until a valid readjusted trajectory is found.

After the steps given above, all 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid disrupted trajectories are successfully readjusted with both preferences. The parallel coordinates plot of these valid readjusted trajectories and the 𝛽, 𝛾 and 𝑇 𝑐 after readjustment as functions of the disrupted 𝛼 value are respectively shown in Figure 4.31 and Figure 4.32. First, one can see that for a given disrupted trajectory (i.e., a given disrupted 𝛼 value), different preferences can lead to quite different readjustments (i.e., values of 𝛽, 𝛾 and 𝑇 𝑐 after readjustment) and thus, different nuclear reactor fleet evolutions. Hence, one should be careful to choose preferences during the decision-making process.

Second, considering that two preferences are respectively the maximization and the minimization of 𝛾 value, two groups of scatter points (light green and violet points) in when 𝛼 = 0.70, i.e. (0.41, 0.76). Knowing the possible readjustment intervals of characteristic parameters can be of benefit for the decision-making process as it helps to avoid the analysis out of the ranges of interest.

In Figure 4.32 (c), one can find that the distribution of the values of 𝑇 𝑐 for the preference P2 is less scattered than that for the preference P1. It is because the value choice of 𝑇 𝑐 with the preference P2 is more constrained than that with the preference P1. To understand this point, we indicate that the readjusted trajectories found with the preference P2 are optimized concerning the constraint C5 (i.e., 𝐼 𝑀𝑎𝑥𝑆𝐹 < 24000 tHM, the limit on the maximum spent fuel inventory in the interim storage during simulation): one can see in Figure 4.31 that the values of 𝐼 𝑀𝑎𝑥𝑆𝐹 for most of the readjusted trajectories found with the preference P2 are close to the threshold of the constraint C5, i.e., 𝐼 𝑀𝑎𝑥𝑆𝐹 = 24000 tHM. On the contrary, as shown in Figure 4.31, the readjusted trajectories found with the preference P1 are not optimized concerning the constraint C5. Consequently, for the readjusted trajectories found with the preference P2 in Figure 4.32 (c), their margins to the threshold 𝐼 𝑀𝑎𝑥𝑆𝐹 = 24000 tHM are generally smaller than those found with the preference P1. On the other hand, we know that if (𝛼, 𝛽, 𝛾) are fixed, 𝑇 𝑐 is negatively correlated with 𝐼 𝑀𝑎𝑥𝑆𝐹 : as the reprocessing capacity is reduced earlier (i.e., 𝑇 𝑐 becomes smaller), less spent fuel is reprocessed, and more spent fuel is accumulated in the interim storage. Due to smaller margins to the threshold 𝐼 𝑀𝑎𝑥𝑆𝐹 = 24000 tHM, as 𝑇 𝑐 becomes smaller, the readjusted trajectories found with the preference P2 can violate the constraint C5 more easily than those found with the preference P1. As a result, the value choice of 𝑇 𝑐 with the preference P2 is more constrained (by the constraint C5) than that with the preference P1. The distribution of the values of 𝑇 𝑐 for the preference P2 is, thus, less scattered than that for the preference P1. One should mention that the results in Figure 4.31 and Figure 4.32 depend on many factors, such as the database for the construction of the validity estimators and the choices of filtering conditions. With a different database or filtering condition, the results can be different. If 𝛼 is disrupted into a smaller value, for example, 𝛼 < 0.6, it is possible that the readjustment with 𝛽, 𝛾 and 𝑇 𝑐 can be no longer sufficient as the impact level is too high. In that case, one can add some other controlled parameters, such as the MOX fuel burnup in Gen-III reactors, as supplementary levers to form another resilience strategy. As a result, one has two different types of resilience strategies corresponding to different impact levels of disruption.

Integration of resistance and resilience study results

As illustrated in

Conclusions of the application

In section 4.1, the developed resilience analysis framework (see section 2.6.1) and evaluation method (see section 3.3.1) are applied to an academic scenario study problem. In the considered scenario model, an initial nuclear reactor fleet composed of 58 PWR is gradually transformed into a new fleet purely composed of Gen-III reactors. In order to characterize a trajectory with a reduced number of parameters, the developed "PiloRI" algorithm (see section 3.4) is used between the scenario model and the decision-making to determine the evolution of the nuclear fleet according to several rules and drivers as well as the decision parameters given as setpoints.

Five constraints are considered for defining the validity of trajectories: the full use of reprocessing plant, the feasibility from the point view of having enough plutonium in the separated stockpile, the limit on the plutonium storage capacity in the separated stockpile, the safety limit on the plutonium content inside fresh MOX fuels and the limit on the storage capacity of spent fuels. A valid prior trajectory is given and supposed as a result from a conventional scenario study with the assumption of having a constant electricity production in the future. The electricity production from MOX fuel and the reprocessing capacity in this valid prior trajectory are both kept unchanged from 2019 to 2080.

A disruption of the total electricity production of the reactor fleet is considered in this application. This disruption is supposed to be a transcription of information "At the time of the conventional scenario study, the total electricity production of the nuclear reactor fleet was assumed to remain constant with the level in 2019 during the simulation. Through the conventional scenario study, one obtained the prior trajectory. However, in the future, the economic, societal and political context may be disrupted due to the deep uncertainty. Consequently, the decision-makers may decide to reduce the total electricity production of the fleet according to the profile in Figure 4.5". The more the total electricity production is reduced, the higher the impact level of the associated disruption is. 

Impact level of disruption Low High

First, the resistance of the prior trajectory against the disruption of the total electricity production of the reactor fleet is investigated. As intuitively expected, the results demonstrate that the resistance of the prior trajectory is held only for a certain limited impact level of disruption while it is broken down as the impact level goes higher. When the total electricity production is too much reduced, the production rate of spent UOX fuels becomes too small so that there are not enough spent UOX fuels in the cycle for reprocessing. Consequently, it results in the under-capacity operation for the reprocessing plant and the lack of separated plutonium to supply the MOX-fueled reactors. Thus, the disrupted trajectories fail to meet the imposed constraints as the impact of disruption is too strong. It is concluded that the resistance strategy is not sufficient in the scenario studies. As a complementary solution, the resilience strategy can be used to take exogenous readjustments into account to counterbalance the potential impact of disruption.

As a detailed example, the resilience evaluation scheme is applied to a single invalid nonresistant disrupted trajectory derived from the prior trajectory. Keeping the disruption of total electricity production, one uses the MOX fuel loading in reactors and the reprocessing as levers for exogenous readjustment. It is showed that the chosen invalid non-resistant disrupted trajectory could be successfully readjusted to meet the constraints by adapting the levers. Moreover, there exist many different possibilities to readjust, some of which are even quite different from each other. During the decision-making process, it is difficult to take all of these possibilities into account, and one needs to formulate preferences to choose one among them.

As another detailed example, the resilience evaluation scheme is applied to a set of invalid nonresistant disrupted trajectories derived from the prior trajectory: the levers for readjustment are still the MOX fuel loading in reactors and the reprocessing. For the sake of showing the importance of preferences in the decision-making process, two opposite preferences are considered in this study to choose one final valid readjusted trajectory among all readjustment possibilities for each of invalid non-resistant disrupted trajectories. These two preferences are respectively the maximization and the minimization of reprocessing capacity after readjustment. First, the results show that all of the invalid non-resistant disrupted trajectories can be successfully readjusted with both preferences. One can conclude that the valid prior trajectory is either resistant or resilient for all different impact levels of disruption that it receives in this study. Besides, it is found that for a given invalid non-resistant disrupted trajectory, its corresponding final valid readjusted trajectories chosen with two different preferences can be quite diverse (thus, leading to different nuclear reactor fleet evolutions). Moreover, with the two considered preferences, the resilience evaluation scheme can give the limits of the readjustment interval for reprocessing capacity as a function of the disruption impact level, which can be of benefit for the decision-making process.

Overall, the developed resilience analysis framework and evaluation method are applied in this section as a demonstration and are proved to be an efficient tool to deal with the failure of trajectories caused by disruption.

Scenario problem B: dilution of spent UOX and MOX fuels 4.2.1 Motivation of application

According to the current spent fuel recycling strategy applied in France, the spent MOX fuels discharged from the PWR cores are stored in interim storage and are not reprocessed (see Figure 4.1). Within these spent MOX fuels, there is a large amount of plutonium that was not burned out during irradiation in the reactor core. Even though plutonium is a valuable fissile material, the reuse of these spent MOX fuels in a PWR reactor fleet is difficult from the technical point of view.

For thermal reactors such as PWR, the even isotopes of plutonium ( 238 Pu, 240 Pu and 242 Pu) do not contribute significantly to fissions. The ratio ( 239 Pu + 241 Pu)/(total plutonium) is, thus, a measure of plutonium quality for the usage of MOX fuel in thermal reactors. The problem is that plutonium quality in MOX fuel decreases as irradiation goes on and decreases even further following the multi-recycling of the plutonium recovered from spent MOX fuel in the thermal reactors. Indeed, if the plutonium content is fixed, then as the plutonium quality degrades following the multi-recycling of plutonium in thermal reactors, the reactivity in the reactor core at the end of the cycles becomes smaller and smaller. As a result, the achievable burnup of multi-recycled MOX fuel can decrease as the multi-recycling goes on. In order to ensure the discharge burnup of MOX fuel, it would be necessary to significantly increase the plutonium content in the fresh MOX fuel to compensate for the degradation of plutonium quality as plutonium multi-recycling goes. However, as is mentioned in section 4.1.2.3, the plutonium content of fresh MOX fuel in a PWR has to stay below a certain limit due to the risk of a positive void coefficient. In this case, multi-recycling, even just twice through, of MOX fuel in a PWR reactor fleet becomes difficult, at least with conventional lattices.

As potential solutions, several different innovative fuel lattice designs, including MIX (also called MOXEUS, MOX on Enriched Uranium Support), APA (Advanced Plutonium Assembly), CORAIL (Combustible Recyclage A Ilot), etc. [START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF], were proposed to achieve multi-recycling of plutonium in PWR. These fuel lattices are quite different from the conventional UOX and MOX lattices. For instance, MIX fuel is a homogeneous mix of plutonium and enriched uranium loaded in a standard PWR 17 × 17 assembly. By adding enriched uranium to plutonium instead of depleted uranium (as in conventional MOX fuel), one aims to compensate plutonium quality degradation at each recycling by increasing the uranium enrichment and avoid to exceed the maximum limit of plutonium content in fresh MOX fuel. In this case, one can achieve the multi-recycling of spent MOX fuel in a PWR nuclear fleet. In the current French nuclear fleet, the MOX fuel has been used for around 30 years [START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF]: it is a mature industrial technique. But the innovative fuel lattice designs previously mentioned may provide promising alternatives besides the MOX fuel for the prospective development of the French nuclear fleet.

Another way to reuse the spent MOX fuel in a PWR reactor fleet is to co-reprocessing the spent UOX and MOX fuel in the reprocessing plant. More precisely, the spent UOX and MOX fuels are mixed and then reprocessed together as a mixture in the reprocessing plant. The plutonium in the mixture is recovered to fabricate fresh MOX fuel and charged again in PWR cores. As the plutonium quality in spent UOX fuel is higher than that in spent MOX fuel, the operation to reprocess the spent UOX and MOX fuels together allows for diluting the plutonium of lower quality with the plutonium of high quality. In this way, the reuse (at least twice through 15 ) of the spent MOX fuel in a PWR nuclear fleet is feasible with respect to the limit of the maximum plutonium content in fresh MOX fuel. In the following discussion, we call the strategy to reprocess the spent UOX and MOX fuels together as a "dilution strategy." In this scenario problem B, we aim to study the impact of this dilution strategy on the simplified French reactor fleet.

In the scenario problem A, we supposed that the total electricity production could be disrupted as a result of the disruption of the economic, societal and political context. During the simulation, we assumed that the time to start the reduction of the total electricity production was fixed, and only the level of total electricity production was disrupted. However, in a more general case, the time to start the reduction of the total electricity production can also be a part of the disruption of the total electricity production. This timing can have a strong impact on the evolution of the nuclear reactor fleet since it can change the replacement of the reactor fleet and the lifespans of the existing reactors. In this scenario problem B, we are interested in studying the impact of this timing on the evolution of the reactor fleet.

To summarize, the scenario problem B is an extension of the scenario problem A in which we consider further the possibility to apply the dilution strategy and the disruption of the timing to reduce the total electricity production.

Description of scenario model

In scenario problem B, the assumptions about historical modeling are the same as those described in section 4.1.2.1. An approximation of the historical French PWR fleet from 1977 to 2019 is considered. The characteristics of reactors in Table 4.1 in section 4.1.2.1 are used. One can find the details of historical modeling in section 4.1.2.1. However, the prospective evolutions of the nuclear reactor fleet in the scenario model are different.

Assumptions about prospective evolution of nuclear reactor fleet

In scenario problem B, several assumptions about the prospective evolution of the nuclear reactor fleet are considered:

• The electricity production of the nuclear reactor fleet can go through a strong disruptive reduction in the future. This disruptive reduction is supposed to be a result of the decision-making to cope with the disruption of the economic, societal and political context due to deep uncertainty. For scenario problem A in section 4.1, the moment to start the reduction was fixed in 2023. However, in scenario problem B, we further suppose that the decision-makers may change the moment to start the reduction. • Only the Gen-III type reactors are commissioned after 2020 (the same as the scenario problem A); • The reactors can be MOXed (from a 100% UOX-fueled core to a (30% MOX + 70% UOX)-fueled core) or de-MOXed (from a (30% MOX + 70% UOX)-fueled core to a 100% UOX-fueled core) (the same as the scenario problem A). However, the prospective evolution of electricity production from MOX in scenario problem B differs from that in scenario problem A. The detailed description can be found in section 4.2.2.1.2. • The current fuel cycle strategy shown in Figure 4.1 will be replaced by the dilution strategy (different from the scenario problem A) in the future. In the dilution strategy, the spent UOX and MOX fuels are mixed and reprocessed together. The detailed description is given in section 4.2.2.1.3

In scenario simulation, the prospective evolution of the nuclear reactor fleet in each trajectory is automatically determined with the ad hoc algorithm "PiloRI" (see section 3.4) according to a small number of input parameters.

Assumptions of total electricity production

The total annual electricity production of the modeled French PWR fleet in 2019 is 𝐷 0 = 409.2 TWe•h. pose that the number of newly commissioned Gen-III type reactors in one year cannot exceed 3 reactors to avoid the intensive economic investment in the reactor construction.

To take the currently constructing EPR into account, according to [START_REF]Bilan prévisionnel de l'équilibre offre-demande d'électricité en France -é dition 2018[END_REF], we assume that the two oldest PWR will be gradually shut down before 2021 and replaced by an EPR commissioned in 2022.

To let the simulation result follow the setpoints of total annual electricity production given in Figure 4.34, we apply the rules shown in section 3.4.3 to manage the shutdown and commissioning of reactors.

Assumptions of MOX fuel loading in reactors

The electricity production from MOX fuel of the modeled French PWR fleet in 2019 is 𝐷 0 𝑀𝑂𝑋 = 39.1 TWe•h. 22 currently existing 900 MWe PWR load 30% MOX + 70% UOX fuels in their cores. where 𝛽 is defined as the ratio between the annual electricity productions from MOX fuel after and before the reduction and can vary in the interval (0, 1.0).

It should be recalled that the core of a MOX-fueled reactor in our study is supposed to be composed of 30% MOX + 70% UOX fuels. Moreover, it is supposed that all reactors, except the PWR of 1450 MWe class, can be MOXed during the simulation. The PWR of 1450 MWe class use only UOX fuels during the simulation.

To let the simulation result follow the setpoints of annual electricity production from MOX fuel given in Figure 4.35, we apply the rules shown in section 3.4.4 to determine the MOXing and de-MOXing of reactors.

Assumptions of reprocessing

In scenario problem B, we suppose that there will be a change of fuel cycle strategy in the future in a given date denoted as 𝑇 𝑅 . Before the date 𝑇 𝑅 , the current fuel cycle strategy shown in Figure 4.1 is kept. We notice that in this strategy, the fresh MOX fuels are fabricated with the plutonium 100% recovered from the spent UOX fuels and go through the irradiation only once. After irradiation and cooling, these once-through spent MOX fuels are stored and accumulated in the interim storage without reprocessing. After 𝑇 𝑅 , we assume that the old reprocessing plant will be shut down and replaced by a new reprocessing plant. On this occasion, we suppose that the fuel cycle strategy shown in Figure 4.1 is replaced by a new one, as shown in Figure 4.36. In the new fuel cycle strategy, the dilution of spent UOX and MOX fuels is applied. The spent UOX fuels and the once-through spent MOX fuels accumulated before 𝑇 𝑅 are mixed and reprocessed together as a mixture in the new reprocessing plant. After the reprocessing, the plutonium from the mixture is recovered and sent to the plutonium separated stock. In our study, this kind of plutonium from the mixture of the spent UOX fuels and the once-through spent MOX fuels is referred to as "diluted plutonium." The term "diluted" means to dilute the plutonium of low quality (from the spent MOX fuels) with the plutonium of high quality (from the spent UOX fuels). With the diluted plutonium, we fabricate the fresh MOX fuels. This kind of MOX fuels fabricated with the diluted plutonium is named as "twice-through MOX fuels" to distinguish the once-through spent MOX fuels accumulated before the date 𝑇 𝑅 . These fresh twice-through MOX fuels are charged in the reactors to form a (30% MOX + 70% UOX)-fueled cores. After the irradiation in reactors, the spent twice-through MOX fuels are discharged and cooled. Finally, the spent twice-through MOX fuels are stored in interim storage without reprocessing. With the dilution strategy, we reuse the once-through spent MOX fuels and economize the natural resources. In the case where there is not enough once-through spent MOX fuels in the interim storage, the dilution is stopped, and the plutonium will be 100% recovered from the spent UOX fuels.

In Figure 4.37, the setpoints of reprocessing capacity are shown. The reprocessing capacity in 2019 is 𝐶 0 = 950 tHM/year. Between 2019 and 𝑇 𝑅 , the reprocessing capacity is assumed as constant. After the date 𝑇 𝑅 , following the replacement of the old reprocessing plant by a new one, the reprocessing capacity is immediately reduced to a level 𝛾 • 𝐶 0 where 𝛾 is defined as the ratio between the reprocessing capacities after and before the date 𝑇 𝑅 . After 𝑇 𝑅 , the reprocessing capacity stays constant until the end of simulation (2080). From 𝑇 𝑅 to the end of simulation, the once-through spent MOX fuels are reprocessed with a constant capacity of 𝜀 • 𝛾 • 𝐶 0 where 𝜀 is defined as the mass ratio of the spent MOX fuels in the reprocessed mixture of spent UOX and MOX fuels.

With the assumptions mentioned above, the reprocessing of the scenario problem B is characterized by three parameters, respectively:

• 𝑇 𝑅 : time to change the reprocessing strategy and the reprocessing capacity (remark that we suppose here that the reprocessing strategy and the reprocessing capacity are changed at the same time, while it is also possible to change them separately.); • 𝛾: reprocessing capacity after the date 𝑇 𝑅 ;

• 𝜀: percentage of spent MOX fuels in the reprocessed spent (UOX + MOX) fuel mixture. Moreover, in scenario simulation, we assume that the fuel fabrication time is fixed at 2 years for both UOX and MOX fuels. The minimum cooling time before the reprocessing of spent fuels is 5 years. The reprocessing order of spent fuel and the retrieving order of plutonium in the separated stockpile for fresh MOX fuel fabrication are both chronological, i.e., "first in, first out."

Definition of valid trajectory

With the assumption given in section 4.2.2.1 and the developed "PiloRI" algorithm (see section 3.4), we can fully characterize a scenario trajectory with seven decision parameters (𝛼, 𝑇 𝐸 , 𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) shown in Table 4.4. The "PiloRI" algorithm uses these decision parameters to determine the evolution of the studied nuclear reactor fleet, i.e., to set up all the scenario parameters such as the shutdown and commissioning dates of reactors, the dates to switch the reactors between the UOX-and MOX-fueled reactor types.

To define the validity of a trajectory, we impose the same five constraints as in section 4.1.2.3, which are as follows:

Constraint C1: The reprocessing plant must work at full capacity during the simulation. The quantification of this constraint is expressed as 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 1.0 with 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 the indicator of constraint defined in Eq. (4-1).

Constraint C2:

There is always enough plutonium in the separated stockpile to supply the MOX fuel fabrication. This constraint is quantitatively expressed as 𝐼 𝑀𝑖𝑛𝑃𝑢 > 5 tons where the indicator of constraint 𝐼 𝑀𝑖𝑛𝑃𝑢 is defined in Eq. (4-2). For this prior trajectory in scenario problem B, the setpoints of total annual electricity production and annual electricity production from MOX fuel are the same as those of the valid prior trajectory in section 4.1.3. Hence, the electricity production, the replacement of the reactor fleet, and the MOX fuel loadings in reactors are identical to the valid prior trajectory in scenario problem A in section 4.1.3. We do not show these results again here. One can see sections 4.1.3.1 and 4.1.3.2 for detailed results. However, as the new reprocessing strategy is applied, the fuel cycle in scenario problem B is different from the prior trajectory in section 4.1.3. We assume that this valid prior trajectory is a result given by a conventional nuclear fuel cycle scenario study before the resilience study.

After the scenario simulation with the COSI6 scenario code, the values of the five constraint indicators are the following: In Eq. (4-12), the equality 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 1.0 means that both reprocessing plants always operate at full capacity during the simulation. The equality 𝛾 = 1.0 indicates that the reprocessing capacity is always kept at 950 tHM/year. The plutonium inventory in the separated stockpile for the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) is given in Figure 4.38. After the year 𝑇 𝑅 = 2035, the dilution strategy is applied. During the simulation, the inventory of separated plutonium is at quasi-equilibrium and stays between the authorized domain defined by the thresholds of the constraints C2 and C3, i.e., between 5 tons and 55 tons. From Figure 4.38, we can find that after the application of the dilution strategy since 𝑇 𝑅 = 2035, the separated plutonium inventory for the prior trajectory in scenario problem B is always slightly greater than the prior trajectory in scenario problem A (without dilution strategy). This phenomenon is a result of two effects. On the one hand, the concentration of plutonium in the spent MOX fuel is generally higher than that in the spent UOX fuel. With the same reprocessing capacity, the dilution strategy can increase the plutonium quantity entered in the separated stockpile. On the other hand, to compensate for the plutonium quality degradation due to the dilution strategy, one has to increase the plutonium content in the fresh twice-through MOX fuel to ensure the target burnup. As seen in Figure 4.39, after 𝑇 𝑅 = 2035, the plutonium contents in the fresh MOX fuel for the prior trajectory of scenario problem B are generally larger than the prior trajectory of scenario problem A. Under the impact of both effects, we observe that the separated plutonium inventory for the prior trajectory in scenario problem B is always slightly greater, as shown in Figure 4.38. Figure 4.39 shows the evolution of the plutonium content in fresh MOX fuels for the prior trajectories of problems A and B. As in scenario problem A, the shutdown of MOX-fueled reactors in scenario problem B is carried out in their last irradiation cycle with specific MOX fuel batches whose plutonium contents are reduced according to their shorter irradiation durations and burnups in the reactor core. As a result, one can see in Figure 4.39 that the plutonium content can approach 6% between 2041 and 2051, corresponding to the loading of specific shutdown MOX fuel batches in the cores. Since the setpoints of total electricity production and electricity production from MOX fuel are identical in both scenario problems A and B, the fuel loading successions, especially the MOX fuel loading successions, are the same To build the validity estimator, one has to prepare a database (or a set of observations) that contains abundant observations given by the scenario simulations with the COSI6 code. An observation can be expressed as ( 𝛼 , 𝑇 𝐸 , 𝛽 , 𝑇 𝑀 , 𝛾 , 𝜀 , 𝑇 𝑅 , 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 , 𝐼 𝑀𝑖𝑛𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , 𝐼 𝑀𝑎𝑥𝑆𝐹 ). To do this task, we consider two different methods, respectively, the random sampling method and the multi-constraint SUR algorithm.

{ 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 =

Database constructed with random sampling method

In the random sampling method, we randomly sample with the Latin Hypercube Sampling technique 3000 different tuples of (𝛼, 𝑇 𝐸 , 𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) in their variation range shown in Table 4.4. Then, the COSI6 code and the "PiloRI" algorithm are called to carry out the scenario simulations to obtain the corresponding values of (𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 , 𝐼 𝑀𝑖𝑛𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢 , 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 , 𝐼 𝑀𝑎𝑥𝑆𝐹 ). With a machine having 32 CPU of 2.1 GHz frequency, the 3000 scenario simulations take around 4h. that in scenario problem A (four-dimension input space). To find a valid trajectory in scenario problem B is much more difficult than in scenario problem A.

With a small ratio (1.2%) of valid observations, the database shown in Figure 4.41 has sparse information about the valid trajectories. The validity estimator constructed with this database may not be able to estimate the validity of a given trajectory correctly, as there may not be enough valid trajectories to train the estimator sufficiently. A possible solution is to increase the number of valid observations. However, according to the ratio of valid observations obtained with the random sampling method in scenario problem B, to find a large number of valid observations requires a very expensive scenario simulation cost. For example, to find 500 valid trajectories would require more than 40000 scenario simulations (500/1.2% ≈ 41666). Another possible solution is to construct the database with the multi-constraint SUR algorithm.

Database constructed with multi-constraint SUR algorithm

To prepare a database for the initiation of the multi-constraint SUR algorithm (see section 3.2.3), we randomly generate 50 observations. Among these observations, there are 49 invalid trajectories and only one valid trajectory. The number of observations in the initial design of experiments, i.e., 50, is arbitrarily selected.

The same as in section 4.1.4.2, we apply the "distributed application strategy" to avoid the progressive saturation of the multi-constraint SUR algorithm arisen by the increasing of the number of observations when using the multi-constraint SUR algorithm (see section 4.1.4.2).

According to the profile of our workstation (i.e., the number of CPU and the size of RAM memory), we divide the input parameter space into 8 subspaces, which are shown in Table 4.5.

The variation ranges of 𝛼, 𝛽 and 𝛾 are respectively uniformly split into two parts, while the other four input parameters 𝑇 𝐸 , 𝑇 𝑀 , 𝜀 and 𝑇 𝑅 are not divided. This division way is arbitrarily chosen 16 . In each subspace, we apply the multi-constraint SUR algorithm separately at the same time. With the "distributed application strategy" initialized with the 50 prior observations, we apply the multi-constraint SUR algorithm. The "Matern3/2" function is used as the Kriging 16 As a more formal way to divide the input parameter space into several subspaces, one may analyze the sensibility of the input parameters versus the indicators of constraint. According to the rank of the impact of the input parameters on the indicators of constraint, one divides the variation ranges of the input parameters having strong impact more finely, while does not divide the variation ranges of the input parameters having weak impact. However, the sensibility analysis requires a large amount of scenario simulations and thus, is expensive in terms of computation time. In this application, we do not apply the sensitivity analysis and simply use the division way as shown in Table 4.5, which is consistent with the division in the scenario problem A (see Table 4.3).

covariance function. The batch size is chosen as 1, meaning that one observation is added at each iteration of the algorithm.

At the end of the execution of the algorithm, 500 new observations have been found for each subspace. In other words, 4000 new observations have been found by the multi-constraint SUR algorithm in the eight subspaces sum. In this database constructed with the multi-constraint SUR algorithm, the proportion of the valid observations is around 15% (602 valid ones over 4000 observations), which is much greater than that in the database built with the random sampling method. As an important remark for the multi-constraint SUR algorithm, we insist that the functionality of the multi-constraint SUR algorithm is not to simply construct a database with a high proportion of valid observations but to construct a database that can help identify the frontier between the valid and invalid input parameter spaces. Most of the observations found with the multi-constraint SUR algorithm are located around the contour line of the valid input parameter space. This point can be proven in Figure 4.42, especially by noticing the accumulation of observations around 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 12% and 𝐼 𝑀𝑎𝑥𝑆𝐹 = 24000 tHM. A high proportion of the valid observations in the database given by the multi-constraint SUR algorithm is only a byproduct of identifying the contour line of the valid input parameter space.

Figure 4.43 shows the stacked histograms of the input parameters (𝛼, 𝑇 𝐸 , 𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) for the 4000 observations obtained with the multi-constraint SUR algorithm in the scenario problem B. Form Figure 4.43 (a), (c) and (e), one can see that many observations accumulate around some special values of input parameters such as 𝛼 = 0.85, 𝛽 = 0.5 and 𝛾 = 0.5. This phenomenon is caused by the division of the input parameter space into several subspaces according to Table 4.5. In the subspaces with small values of 𝛽 and 𝛾 (e.g. 𝛽 < 0.5 and 𝛾 < 0.5), there are less valid trajectories. Hence, the SUR algorithm prefers to place the observations close to 𝛽 = 0.5 and 𝛾 = 0.5 in these subspaces, as it is more possible to find valid observations with greater values of 𝛽 and 𝛾.

From Figure 4.43 (f), we can find that there are no valid trajectories with 𝜀 beyond 4%. In the dilution strategy, 𝜀 is limited by the maximum plutonium content in the fresh MOX fuel, i.e., the constraint C4 in our study. Indeed, as 𝜀 increases, the quality of the plutonium recovered from the mixed spent fuels degrades. To maintain the burnup of MOX fuel, one has to increases the plutonium content in the fresh MOX fuel. However, if 𝜀 is too great, the constraint C4 may be violated. As an evidence, in Figure 4.44, we draw the pair plot of 𝜀 and 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 for the trajectories with 𝜀 > 4% among the observations found by the random sampling method in section 4.2.4.1. We can find that 𝜀 and 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 have a positive correlation and all trajectories in Figure 4.44 have a value of 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 greater than the imposed limit 12%. With the database given by the multi-constraint SUR algorithm and according to Eq. (3-48), we construct the validity estimator, denoted as 𝑝 𝑛 𝐵 , as follows:

𝑝 𝑛 𝐵 (𝒙) = 𝑝 𝑛 𝐶1,𝐵 (𝒙) ⋅ 𝑝 𝑛 𝐶2,𝐵 (𝒙) ⋅ 𝑝 𝑛 𝐶3,𝐵 (𝒙) ⋅ 𝑝 𝑛 𝐶4,𝐵 (𝒙) ⋅ 𝑝 𝑛 𝐶5,𝐵 (𝒙) ⋅ Eq. (4-13)
where

• 𝒙 ≔ (𝛼, 𝑇 𝐸 , 𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) is the tuple of input parameters which characterize a trajectory; • 𝑝 𝑛 𝐶1,𝐵 , 𝑝 𝑛 𝐶2,𝐵 , 𝑝 𝑛 𝐶3,𝐵 , 𝑝 𝑛 𝐶4,𝐵 and 𝑝 𝑛 𝐶5,𝐵 are the excursion probabilities corresponding to the five constraints described in section 4.2.2.2 and constructed according to Eq. (3-24); • 𝑛 =4000 stands for the 4000 observations given by the multi-constraint SUR algorithm;

• "𝐵" stands for the scenario problem B.

For a given trajectory 𝒙, 𝑝 𝑛 𝐵 (𝒙) is a measure related to the validity probability: with a high value of 𝑝 𝑛 𝐵 (𝒙), the trajectory 𝒙 is very likely to be valid; with a low value of 𝑝 𝑛 𝐵 (𝒙), the trajectory 𝒙 is very likely invalid. The estimator 𝑝 𝑛 𝐵 are used for the resilience study in section 4.2.5.

Resilience study of the prior trajectory

In this section, we apply the resilience analysis framework (see section 2.6.1) and the evaluation method (see section 3.3.1) developed in the frame of this work, to the prior trajectory. We suppose that a valid prior trajectory in section 4.2.3 is given by a conventional scenario study with the assumption of having a constant electricity production in the future. However, the total electricity production of the nuclear reactor fleet may be affected by the deep uncertainty. The parameters of interest 𝛼 and 𝑇 𝐸 are supposed here as uncontrolled and possibly disrupted. The disruption is assumed to be the transcription of the following information:

"At the time of the conventional scenario study, the total electricity production of the nuclear reactor fleet was assumed to remain constant with the level in 2019 during the simulation, and the dilution strategy would be applied. Through the conventional scenario study, one obtained the prior trajectory shown in section 4.2.3. However, in the future, the economic, societal and political context may be disrupted due to the deep uncertainty. To cope with the disruption of this context, decision-makers may decide to reduce the total electricity production of the nuclear reactor fleet according to the profile in Figure 4. [START_REF] Marguet | The Physics of Nuclear Reactors[END_REF]."

The following resilience study unrolls based on this transcription. The validity estimator 𝑝 𝑛 𝐵 constructed in section 4.2.4.2 is used. In other words, we observe the behavior of the prior trajectory under the impact of disruption of the total electricity production, without making any exogenous readjustments. The "exogenous readjustments" here refer to the changes of the other five decision parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ). Indeed, the model that we use in the following resistance and resilience studies is the complex composed of the "PiloRI" algorithm and the scenario model simulated by the COSI6 code.

To model the disruption and obtain a disrupted trajectory derived from the prior trajectory, the value of the uncontrolled parameters 𝛼 and 𝑇 𝐸 are randomly sampled according to the uniform distribution 17 in their variation ranges 0.7 < 𝛼 < 1.0 and 2023 < 𝑇 𝐸 < 2035; the values of the other five characteristic parameters of the disrupted trajectory are the same as those in the prior trajectory, i.e., (𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035). It means that all other input parameters related to MOX fuel loading (𝛽, 𝑇 𝑀 ) and reprocessing (𝛾, 𝜀, 𝑇 𝑅 ) are kept unchanged while the total electricity production is disrupted. However, as the total electricity production is disrupted, the evolutions of the whole nuclear reactor fleet in the disrupted trajectories are different from the prior trajectory. As a result, even though the values of 𝛽 and 𝑇 𝑀 are the same for the prior and disrupted trajectories, the MOX fuel loading arrangements in reactors (including the moments to MOX or de-MOX reactors and the choice of the reactors to be MOXed or de-MOXed) are different (see section 4.2.5.1.3).

In the resistance study, 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 disrupted trajectories with different disrupted couples (𝛼, 𝑇 𝐸 ) are randomly sampled and simulated with the COSI6 scenario code. The five constraint indicators as functions of the couple (𝛼, 𝑇 𝐸 ) are given in Figure 4.45. In Figure 4.45, each point in the same subfigure corresponds to a disrupted trajectory. The round and cross markers respectively stand for the valid and invalid disrupted trajectories. In each subfigure of Figure 4.45, the satisfaction of the corresponding constraint is indicated by the color: the red marker means that the disrupted trajectory satisfies the corresponding constraint while the marker with other color stands for the violation of the corresponding constraint.

First, one can observe that all disrupted trajectories satisfy the constraints C3, C4, and C5 (see Figure 4.45 (c)-(e)). The disruption of (𝛼, 𝑇 𝐸 ) has less impact on the satisfaction of these three constraints. However, this disruption can lead to violations of the constraints C1 and C2. Figure 4.45 (a) and (b) 18 show that the violations of the constraints C1 and C2 are mainly caused by the reduction level of the total electricity production (i.e., 𝛼), as the indicators of constraint 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and 𝐼 𝑀𝑖𝑛𝑃𝑢 vary evidently following the decrease of 𝛼 . As the value of 𝛼 decreases and becomes smaller than a certain threshold values (respectively, 𝛼 < 0.85 for the constraint C1 and 𝛼 < 0.79 for the constraint C2), both C1 and C2 fail. For the same reason as explained in section 4.1.5.1 for the scenario problem A, if the reprocessing capacity remains constant, the spent fuel inventory has a positive correlation with the total electricity production level of the nuclear reactor fleet: one can see Figure 4.45 (e) to understand this point. If the value of 𝛼 becomes too small, the annual production rate of spent UOX fuels cannot adapt to the annual reprocessing capacity setpoints after the reduction of total electricity production. As a consequence, there are not enough available spent UOX fuels for reprocessing at the end of the simulation, leading to the under-capacity operation of the reprocessing plant and, thus, the violation of the constraint C1. From Figure 4.45 (a) and (b), we can also find that compared with 𝛼, the choice of the moment to start the total electricity production reduction has less impact on the constraints C1 and C2, as 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and 𝐼 𝑀𝑖𝑛𝑃𝑢 change only slightly following the variation of 𝑇 𝐸 . It is because before the date 𝑇 𝐸 , i.e., the moment to start the total electricity production reduction, the material flows (including the separate plutonium inventory and the total spent fuel inventory) is at quasi-equilibrium. One can see Figure 4.38, Figure 4.39 and Figure 4.40 as an example to understand this point. As 𝑇 𝐸 (the moment to start the total electricity production reduction) changes in its variation range (2023, 2035), the material flows just before the total electricity production reduction are almost identical. As a result, the variation of 𝑇 𝐸 has less impact on the material flows. Thus, the constraints C1 and C2 have less relation with 𝑇 𝐸 when compared with 𝛼. The resistance strategy, in which the prior trajectory stays valid without taking any exogenous readjustments under the impact of disruption, does not suffice to face a strong disruption.

To avoid the failure of the prior trajectory under the strong impact of disruption, one needs a resilience strategy. Since the evolution of the whole reactor fleet is changed by the disruptions of 𝛼 and 𝑇 𝐸 , the lifespans of the 58 currently existing PWR are impacted as well. Figure 4.49 shows the impact of the disruptions of 𝛼 and 𝑇 𝐸 on the average lifespan of the 58 currently existing PWR. It appears that if the disrupted reduction level of the total electricity production is constant (i.e., 𝛼 is fixed), then the average lifespan of the 58 currently existing PWR increases as the reduction of the total electricity production is postponed (i.e., 𝑇 𝐸 increases). If the time to start the reduction the total electricity production is fixed (i.e., 𝑇 𝐸 is fixed), then the average lifespan of the 58 currently existing PWR decreases as the reduction level of the total electricity production goes higher (i.e., 𝛼 decreases). As the reduction level of the total electricity production goes higher, more reactors are shut down early before reaching their maximum lifespan (see Figure 4.48 (a) and (c)).

In Figure 4.49, we notice that all curves converge towards 59 years in 𝑇 𝐸 = 2035. In our study, we have imposed a maximum lifespan equal to 60 years to all reactors (see Rule R2 of the "PiloRI" algorithm in section 3.4.3). After 2035, the 58 currently existing PWR gradually reach their maximum lifespans and are replaced by new commissioned Gen-III type reactors. As an extreme case, if there is no reduction of the total electricity production, i.e., 𝛼 = 1.0, all the 58 currently existing PWR will be shut down at their maximum lifespan, and their average lifespan can achieve the maximum value (note that in our study, we suppose that a new EPR replaces two oldest PWR before reaching their maximum lifespan; as a consequence, the maximum average lifespan of the 58 currently existing PWR is slightly smaller than 60 years.). 

Impact of disruption on the MOX fuel loading in reactors

In section 4.2.5.1.1, when the total electricity production (i.e., 𝛼 and 𝑇 𝐸 ) is disrupted, the input parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) are kept unchanged, i.e., (𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) fixed. However, we should be aware that even though (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) are fixed, the MOX fuel loading in reactors is changed when the total electricity production is disrupted. As shown in section 4.2.5.1.2, the disruption of the total electricity production can change the evolution of the whole reactor fleet. In this case, the previous MOX fuel loadings (more precisely, the decisions about which reactors to be MOXed or de-MOXed at which moment) in the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) can be no longer available, since certain old reactors can be shut down early, or the constructions of certain new reactors are postponed under the impact of disruption. One has to re-determine the MOX fuel loading in reactors under the impact of disruption.

In our study, if the total electricity production (𝛼 and 𝑇 𝐸 ) is disrupted, even though (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) are unchanged, the "PiloRI" algorithm re-evaluates the MOX fuel loading in reactors. As examples, Figure 4.50 and Figure 4.51 demonstrate the evolutions of electricity production from MOX fuel and the summary for the MOX fuel loadings in reactors for two different trajectories:

• The setpoints of the electricity production from MOX fuel, i.e., (𝛽, 𝑇 𝑀 ), are equal in both trajectories, but the MOX fuel loadings in reactors are different. The resistance discussed here is the resistance of the complex model composed of the "PiloRI" algorithm and the COSI6 code.

A further discussion about this point is given in section 4.3.3. 

Resilience study

The resistance study in section 4.2.5.1 showed that among the 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 randomly sampled disrupted trajectories, 𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 305 ones are valid and resistant. Correspondingly, there are 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 -𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 195 invalid non-resistant disrupted trajectories derived from the prior trajectory. In this section, we apply the scheme shown in Figure 3.1 to evaluate the resilience of the prior trajectory against the disruption of (𝛼, 𝑇 𝐸 ). The five characteristic parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ), i.e, the annual electricity production from MOX fuel (𝛽, 𝑇 𝑀 ) and the reprocessing strategy (𝛾, 𝜀, 𝑇 𝑅 ) are used as levers for readjustment. This setting of levers is a transcription of information such that:

"If the prior trajectory is not resistant in front of a disruption of total electricity production, the decision-makers may decide to modify the MOX fuel loading and in reactors and the reprocessing to cope with the disruption. 

.5.2.1 Application of resilience to one invalid disrupted trajectory

As a first example, the scheme is applied to one of the 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 195 invalid non-resistant disrupted trajectories, which is randomly chosen. The parameters of the selected invalid nonresistant disrupted trajectory are (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035). Compared with the prior trajectory in scenario problem B, the total electricity production is reduced to 70% since 2030. The validity of the selected invalid non-resistant disrupted trajectory is as follows:

{ 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 0.92 ≠ 1 (𝐶1 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) 𝐼 𝑀𝑖𝑛𝑃𝑢 = -11.79 tons < 5 tons (𝐶2 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢 = 29.76 tons < 55 tons (𝐶3 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 11.00% < 12% (𝐶4 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑆𝐹 = 10145 tHM < 24000 tHM (𝐶5 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) Eq. (4-14)

The constraints C1 and C2, i.e., the full use of reprocessing plants and the feasibility in terms of having enough plutonium in the separated stockpile, are violated since there are not enough spent UOX fuels to reprocess at the end of the simulation. Figure 4.52 shows the inventory of spent UOX fuel for the disrupted trajectory (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035). After 2067, there is a shortage of spent UOX fuel for reprocessing. As a solution to counterbalance the impact of the disrupted total electricity production (𝛼, 𝑇 𝐸 ), one should readjust the MOX fuel loading (𝛽, 𝑇 𝑀 ) and the reprocessing (𝛾, 𝜀, 𝑇 𝑅 ). To this end, the resilience evaluation scheme presented in Figure 3.1 is applied to this invalid disrupted trajectory. (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) are used as levers. More precisely, the following steps are followed:

1. 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 6 candidate trajectories are proposed by randomly sampling the controlled parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) on their variation ranges (see Table 4.4) while keeping the uncontrolled parameters at their disrupted value (𝛼 = 0.7, 𝑇 𝐸 = 2030). These trajectories are generated without being verified by the COSI6 scenario code. The idea to choose the number of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is: (1) on the one hand, one should generate a large enough number of sampled candidate trajectories to cover the variation ranges of levers (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) in order to fully explore the possible values of levers; (2) on the other ahnd, one should limit the value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 under a certain level as a too great value of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 can be too expensive in terms of computation cost in subsequent steps.

The choice of 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 6 is a compreomise between these two points. 2. The validity estimator 𝑝 𝑛 𝐵 constructed in section 4.2.4.2 is called to evaluate the validity probability of these 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 sampled candidate trajectories rapidly (the computation time of the validity probability for the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 6 sampled candidate trajectories is around 1h in a machine having 32 CPU at 2.1 GHz frequency.) 3. According to the filtering condition 𝑝 𝑛 𝐵 > 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 with 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 = 0.3, 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2278 among the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 candidate trajectories are selected as the potential trajectories with high confidence of validity. 4. Finally, we call the COSI6 scenario code to confirm the validity of the 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 chosen potential trajectories.

After the scenario simulation carried out with the COSI6 code, 𝑁 𝑣𝑎𝑙𝑖𝑑 = 1980 among the 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2278 potential trajectories are verified as valid. In other words, we have found 𝑁 𝑣𝑎𝑙𝑖𝑑 = 1980 different ways to readjust one single disrupted trajectory 19 . The false-positive rate of the readjustment is around 13.1%. Otherwise, one has to choose a capacity greater than 𝛾 = 0.4 for the new reprocessing plant.

In Figure 4.54, we observe that there exist several isolated scatter point groups. For example, in Figure 4.54 (b), (e), (h) and (i), the scatter points are divided into two groups, whose values of 𝛾 are respectively 0.3 < 𝛾 < 0.75 and 0.8 < 𝛾 < 0.9. This is due to the cut-off effect brought by using the filtering condition 𝑝 𝑛 𝐵 > 0.3 when applying the resilience evaluation scheme. Only the trajectories with 𝑝 𝑛 𝐵 > 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 = 0.3 were chosen and assessed with scenario simulation. For the blank space not covered by the scatter points in Figure 4.54 (e.g., 0.75 < 𝛾 < 0.8), there may be valid trajectories, while they were not chosen by the resilience evaluation scheme as they have 𝑝 𝑛 𝐵 < 0.3. The valid trajectories found in Figure 4.54 are only parts of all successful readjusted trajectories. All of the five constraints of the scenario problem are satisfied. Thus, the chosen readjusted trajectory is valid. The simulation results of this valid readjusted trajectory are shown in Figure 4.55 -Figure 4.59. As a remark, one can notice that in Figure 4.56, there is a difference between the setpoints of the electricity production from MOX fuel and the simulation result given by the COSI6 code when the reactor fleet reaches a static state after 2060. It is because the reactors are individually modeled in our study. When the reactor fleet reaches a static state, the possible values of electricity production from MOX fuel are discrete. In the "PiloRI" algorithm, we ensure that when the reactor fleet reaches a static state, the absolute difference between the setpoints and the scenario simulation result for the electricity production from MOX fuel is smaller than 3.34 TWe•h, which corresponds to the annual electricity production from MOX in a 30% MOX-fueled GEN-III. with different values of 𝛼 and 𝑇 𝐸 . These 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid non-resistant disrupted trajectories represent the different potential impact of the disruption of total electricity production. This time, the resilience evaluation scheme in Figure 3.1 is applied to each of these invalid disrupted non-resistant trajectories, and the levers are the same as used in section 4.2.5.2.1: (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ). We aim to show that one can counterbalance the different potential impacts of the disruption of total electricity production on validity by readjusting these levers.

From section 4.2.5.2.1, we know that there may exist different successful readjustments for a given invalid disrupted trajectory (see Figure 4.54). During the decision-making process, preferences (see section 2.3) help to select one or a limited number of valid readjusted trajectories among different possibilities. The construction of the preferences requires expertise from different research domains including but not limited to the reactor physics, economics, environment, politic, etc. To illustrate the impact of preferences, we use two opposite preferences to readjust the 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 disrupted trajectories:

• Preference P1: maximize 𝛾, i.e., the reprocessing capacity after readjustment.

• Preference P2: minimize 𝛾, i.e., the reprocessing capacity after readjustment.

With the preference P1 (respectively, P2), one aims to evaluate different successful readjustment ways for each invalid disrupted trajectory and then select the one corresponding to the largest (respectively, the smallest) readjusted reprocessing capacity.

To apply the resilience evaluation scheme in Figure 3.1, one performs the following steps for each of the 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 disrupted trajectories:

• 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 10 4 candidate trajectories are proposed by randomly sampling (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) on their variation domains (see Table 4.4) and keeping the disrupted values of 𝛼 and 𝑇 𝐸 unchanged, without being verified by the scenario code. • The value of the validity estimator 𝑝 𝑛 𝐵 is calculated for each of the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 trajectories.

• According to the filtering condition 𝑝 𝑛 𝐵 > 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 with 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 = 0.3, potential trajectories with high confidence of validity are obtained among the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 trajectories. • These potential trajectories with high confidence of validity are ranked according to the descending order of 𝛾 values for the preference P1 or the ascending order of 𝛾 values for the preference P2. • The COSI6 scenario code is called to verify the selected potential trajectories according to the ranking order one by one until a valid readjusted trajectory is found.

When the above steps are finished, all 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid disrupted trajectories are successfully readjusted with both preferences. The parallel coordinates plot of these valid readjusted trajectories is demonstrated in Figure 4.60. We also observe that the valid readjusted trajectories found by maximizing 𝛾 have generally a 𝐼 𝑀𝑎𝑥𝑆𝐹 value smaller than those found by minimizing 𝛾. It is because 𝛾 and 𝐼 𝑀𝑎𝑥𝑆𝐹 (the maximum total spent fuel inventory during simulation of trajectory) are negatively correlated:

all other things being equal, as 𝛾 becomes greater, more spent fuel is consumed for reprocessing, reducing the inventory of spent fuel.

In Figure 4.60, all 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid disrupted trajectories are successfully readjusted, and the readjustments are proposed following both preferences. We demonstrate that one can counterbalance the different potential impacts of the assumed disruption of the total electricity production on validity. It is noteworthy that the readjustments given in Figure 4.60 depend on many factors, such as the database for the construction of the validity estimators and the choices of filtering conditions. The preferences P1 and P2 in section 4.2.5.2.2 are not applied for the sake of optimizing the successfully readjusted levers over whole variation ranges of levers but serves as a tool to help select one or a limited number of successfully readjusted levers among all possibilities found by the resilience evaluation method. The possible successful readjustments found by the resilience evaluation method may be only a part of all possible successful readjustments over the whole variation ranges of levers. With a different database or filtering condition when applying the resilience evaluation method, the possible successful readjustments can be different. Consequently, the trajectories finally selected by the preferences P1 and P2 can be different from the result in Figure 4.60.

Integration of resistance and resilience study results

As illustrated in Figure 4.61, which aggregates the results from sections 4.2.5.1.1 and 4.2.5.2.2, the resistance and the resilience of the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) mainly depends on the disrupted value of 𝛼: if the disrupted 𝛼 is greater than 0.85, the prior trajectory is resistant; if the disrupted 𝛼 is smaller than 0.8, the prior trajectory is resilient; for 0.8 < 𝛼 < 0.85, the resilience and the resilience depend on the value of 𝑇 𝐸 . 

Conclusions of the application

In section 4.2, we applied the developed resilience analysis framework (see section 2.6.1) and evaluation method (see section 3.3.1) to an academic scenario study problem. In scenario problem B, the initial nuclear reactor fleet composed of 58 PWR is gradually replaced by a new fleet purely composed of Gen-III type reactors. A reprocessing plant is commissioned to replace the existing reprocessing plant. In the new reprocessing plant, the dilution strategy is used: the once-through spent MOX fuel and the spent UOX fuel are reprocessed together, allowing to recover the plutonium for supplying the fresh MOX fuel fabrication. After being unloaded from reactor cores and cooled in the cooling pool, the spent twice-through MOX fuel fabricated with the plutonium recovered from the dilution strategy is sent to the interim storage and is not reprocessed. In this study, we developed and used the "PiloRI" algorithm (see section 3.4) to characterize a trajectory with a reduced number of parameters. To define the validity of trajectories, the same five constraints as in scenario problem A are used:

• the full use of reprocessing plants;

• the feasibility in terms of having enough plutonium in the separated stockpile to supply the fresh MOX fuel fabrication; • the maximum limit on the plutonium storage capacity in the separated stockpile;

• the safety limit on the plutonium content inside fresh MOX fuels;

• the limit on the spent fuel storage capacity.

A valid prior trajectory is given and assumed as a result of a conventional scenario study with the assumption of having a constant electricity production in the future. In the prior trajectory, the electricity production from MOX fuel and the reprocessing capacity are maintained constant from 2019 to 2080; the spent MOX fuel dilution strategy is used in the new reprocessing plant since 2035; the mass ratio of the spent MOX fuel in the reprocessed spent (UOX+MOX) fuel mixture is set as 1%.

Comparing with the prior trajectories in the scenario problems A and B, we find that the dilution strategy can slightly reduce the spent MOX fuel inventory in the cycle. However, the mass ratio of the spent MOX fuel in the reprocessed spent (UOX+MOX) fuel mixture should be set under a certain level to respect the limitation about the maximum plutonium content in the fresh MOX fuel when assuring the burnup.

In scenario problem B, we consider the disruption of the total electricity production of the reactor fleet. This disruption is supposed to be a transcription of information "At the time of the conventional scenario study, the total electricity production of the nuclear reactor fleet was assumed to remain constant with the level in 2019 during the simulation, and the dilution strategy would be applied. Through the conventional scenario study, one obtained the prior trajectory shown in section 4.2.3. However, in the future, the economic, societal and political context may be disrupted due to the deep uncertainty. To cope with the disruption of this context, decision-makers may decide to reduce the total electricity production of the nuclear reactor fleet according to the profile in Figure 4. [START_REF] Marguet | The Physics of Nuclear Reactors[END_REF]." Compared with the scenario problem A in section 4.1, we take into account additionally the time to reduce the total electricity production in scenario problem B.

First, the resistance of the prior trajectory against the disruption of total electricity production of the reactor fleet is investigated. The results demonstrate that the resistance of the prior trajectory mainly depends on the reduction level of the total electricity production. If the reduction level of the total electricity production does not exceed a certain limit, the prior trajectory is resistant. However, if the total electricity production is reduced too much under the impact of disruption, the prior trajectory is not resistant: if the total electricity production is reduced too much, the production of spent UOX fuel in the fleet may be smaller than its consumption by the reprocessing, which may lead to a shortage of spent UOX fuel for reprocessing and the under-capacity operation of the reprocessing plants. Compared with the reduction level of the total electricity production, the time to start the total electricity production reduction has less impact on trajectory validity. It is because the material flow in the reactor fleet (including the separate plutonium inventory and the total spent fuel inventory) is at quasiequilibrium before the reduction of total electricity production. As the moment to start the total electricity production reduction changes across the different disrupted trajectories (i.e., 𝑇 𝐸 varies in its variation range (2023, 2035)), the material flows just before the total electricity production reduction (i.e., the material flows in 𝑇 𝐸 ) are almost identical. Thus, the time to start the total electricity production reduction has less impact on the five constraints. However, the time to start the total electricity production reduction can strongly impact the replacement of the reactor fleet and the lifespans of the 58 currently existing PWR. If the reduction level of the total electricity production is fixed, then as the time to start the total electricity production is postponed, the average lifespan of the 58 currently existing PWR increases and can converge to a maximum value due to the maximum lifespan of each reactor limited to 60 years in our study. Also, for a fixed time to start the total electricity production reduction, the average lifespan of the 58 currently existing PWR decreases as the reduction level of the total electricity production increases. It results from the fact that as the reduction level increases, more reactors are shut down early before reaching their maximum limited lifespan. At the end of the resistance study, it is proven that the prior trajectory is not resistant to disruptions exceeding certain quantified thresholds. As a complementary solution, the resilience is used to make readjustments to the trajectory in order to counterbalance the potential impact of the disruption.

As a detailed example of a resilience study, the resilience evaluation scheme is applied to a single invalid non-resistant disrupted trajectory derived from the prior trajectory. Under the disruption of total electricity production (both the reduction level and the time to start reduction), the MOX fuel loading and the reprocessing are used as levers for readjustment. It is showed that the chosen invalid non-resistant disrupted trajectory could be successfully readjusted to meet the constraints by adapting the levers. Moreover, by applying the resilience evaluation method Figure 3.1, we have obtained not only one successful readjustment but a variety of solutions, providing different options and trends for the decision-making.

Afterward, the resilience evaluation scheme is applied to a set of invalid non-resistant disrupted trajectories derived from the prior trajectory: the levers for readjustment are still the MOX fuel loading and the reprocessing. For the sake of showing the importance of preferences in the decision-making process, two opposite preferences are considered to choose one final valid readjusted trajectory among all possibilities for each of invalid non-resistant disrupted trajectories. These two preferences are respectively the maximization and minimization of the capacity of the new reprocessing plant. The results showed that all of the invalid non-resistant disrupted trajectories could be successfully readjusted with both preferences. Depending on the preferences, the readjustments for a given invalid non-resistant disrupted trajectory can be different. Indeed, preferences integrate different requirements of decision-makers concerning different aspects, such as safety, economy, policy, etc. The construction of the preferences consists of a part of decision-making processing.

Overall, one can conclude that the given valid prior trajectory is either resistant or resilient for all different impacts of disruption assumed in this study.

Discussion

In the previous sections, we have applied the resilience analysis method to two academic scenario problems. In both scenario problems, we considered a simplified French nuclear reactor fleet and supposed that the Gen-III type reactors will gradually replace the currently existing PWR reactors in the future. We assumed a prior trajectory in each of both scenario problems. We assumed that the two prior trajectories were the results of conventional nuclear fuel cycle scenario studies representing the prospective development strategies of interest. We investigated the impact of the disruptive reduction of the fleet total electricity production on the prior trajectories and their resilience, i.e., the possibility to make the disrupted trajectories valid by readjustments.

Building and using scenarios as a boundary object with resilience studies

In conventional scenario studies, scenarios are usually built in a "monolithic" way. More precisely, one makes different assumptions (such as the value choices of prospective scenario input parameters and scenario hypotheses) for different plausible futures and then proposes several trajectories to represent the development strategies of interest. These given trajectories based on different assumptions concerning different plausible futures are independently analyzed and used to represent the evolutions of the studied nuclear reactor fleet in different non-interfering parallel universes. Certain of these evolutions may sometimes be quite different from each other: for example, in one plausible future, one may need to accumulate the plutonium inventory in the separated stockpile to prepare a large-scale deployment of SFR reactors; however, in another plausible future, one may require to reduce the plutonium inventory in the separated stockpile for the sake of reducing the proliferation risk. Due to the difficulty of predicting the real-world future, it is hard for the decision-makers to judge the pertinence of different plausible futures. As a result, the decision-makers may lack confidence in the results given by the conventional scenario studies. Moreover, as the stakeholders in scenario studies usually come from different communities, such as government, managers of the nuclear industry, experts from different research domains (e.g., physicians, economists, sociologists, etc.) and so on, they may have different knowledge and interest. The visions and opinions from one group of stakeholders may be surprising and unexpected for another group of stakeholders. Thus, for a scenario trajectory given by one group of stakeholders, the visions and opinions from another group of stakeholders may be considered as disruptions and may jeopardize the validity of trajectory. But in the conventional scenario studies, one does not have a systematic method to evaluate the flexibility of the given trajectories in front of disruptions (i.e., i.e., the capacity of the given trajectories to remain valid under the impact of disruptions). Consequently, the scenarios may be difficult to use as a boundary object to integrate the different knowledge and interest of different stakeholders.

However, the resilience study paradigm provides new ways to build and use scenarios. First, with resilience studies, one may build a scenario trajectory that can take different plausible futures into account. Indeed, for a given prior trajectory, a disruption represents the change from one plausible future into another one. In conventional scenario studies, the different plausible futures are considered as different non-interfering parallel universes. But in resilience studies, the notion of disruption provides a connection point among these different plausible futures, associating one of them with another one of them. With resilience studies, one may prepare different resilience adaptation strategies for the prior trajectory to cope with the change from one plausible future into another one. The prior trajectory and these resilience adaptation strategies together make up a result of building scenarios. In this case, the scenarios are built in a non-monolithic way with resilience studies. Second, the resilience study paradigm allows for using scenarios as a boundary object. As mentioned above, different stakeholders in scenario studies may have different opinions and visions. For a scenario trajectory given by one group of stakeholders, the visions and opinions from another group of stakeholders may be disruptions. Through a resilience study, the group of stakeholders who propose the prior trajectory may prepare different resilience adaptation strategies for the prior trajectory against these disruptions, and they will use levers to readjust the trajectory if the disruptions appear. Indeed, a resilience study allows one group of stakeholders to make the decisions (readjustments of levers) that is resilient to the decisions of other stakeholders (disruptions), which makes scenarios a boundary object for different stakeholders.

Defining disruptions

In the resilience study paradigm, we considered disruptions as unexpected or unforeseen changes in the conventional scenario study to which the prior trajectory is an answer. They are caused by deep uncertainty, which includes the uncertainty of prospective input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context (see section 2.2). The deep uncertainty involves the knowledge that will only be available in the future, and thus, is impacted by the lack of information in the present. At the time of a resilience study, one usually cannot know what the real-world disruptions will be, as it is difficult to predict the future. As discussed in section 2.6.2, the disruptions in resilience studies are, indeed, the assumptions based on the collective knowledge available at the time of the resilience study. Once the disruptions assumptions are produced, the resilience study problems are constructed. The whole resilience study unrolls under the hypothesis that the assumed disruptions will appear in the future.

In this work, we have considered the disruptions of total electricity production in both scenario problems. These disruptions are supposed to be a transcription of information "At the time of the conventional scenario study (2020), the total electricity production of the nuclear reactor fleet was assumed to remain constant (at the 2019 level) throughout the simulation. Through the conventional scenario studies, one obtained the prior trajectories. However, in the future, the economic, societal and political context may be disrupted due to the deep uncertainty. Consequently, the decision-makers may decide to reduce the total electricity production of the fleet according to the profile in Figure 4.5 (for scenario problem A) or Figure 4.34 (for scenario problem B)." We have applied the resilience method developed in section 2.6 to evaluate the resilience of the given prior trajectories under the impact of the assumed disruptions. However, the assumptions behind assumed disruptions in both scenario problems A and B were not explained:

• Why is the disruptive reduction of total electricity production a linear function of time?

• Why does the total electricity production remain constant after reduction, instead of increasing? • How are the variation ranges of the disruption parameters determined? Etc. Indeed, the present study lacks a discussion concerning the assumed disruptions: the disruptions defined in Figure 4.5 and Figure 4.34 were given, but not justified. This is because the making of disruptions hypotheses is beyond the research boundary of our work in this manuscript.

First, the causality of the disruption of total electricity production is complex. Many different factors from society, technological progress, environment, etc., may result in the disruption of total electricity production:

• For instance, there may be a transcription of information such that "A prior trajectory is obtained via a scenario study with the assumption of having constant electricity production level in the future. However, following the technological breakthrough, the cost competitiveness of certain energy resources (e.g., solar power or wind power) may become better than that of nuclear power. As a result, decision-makers may change the policy and decide to reduce the nuclear power share." • As another example, there may be another transcription of information such that "A prior trajectory is obtained via a scenario study with the assumption of having constant electricity production level in the future. However, as time passes by, the energy needs may become smaller than the previous expectation in the prior trajectory. Consequently, decision-makers may decide to reduce nuclear power production."

When generating disruptions hypotheses, one requires the expertise from different research domains to identify and evaluate the potential causalities of the disruptions so as to justify the necessity of carrying out a resilience study against the assumed disruptions.

Second, the total electricity production of a nuclear reactor fleet is a decision parameter instead of a physical or economical parameter. The disruption in total electricity production of the nuclear reactor fleet has a great impact on many different aspects, such as:

• The physics -The disruption of the total electricity production may affect the shutdown and commissioning of reactors and thus influence the fuel cycle of the reactor fleet. As shown in scenario problems A and B, if the prior trajectories go through disruptive reductions of total electricity production, certain reactors may be shut down earlier than the expectation in the prior trajectories, and one may need to readjust the MOX fuel loading in reactors and the reprocessing, which leads to change of nuclear fuel cycle in the fleet. • The finance -Building a large-scale nuclear reactor takes thousands of workers, huge amounts of steel and concrete, thousands of components, and several systems to provide electricity, cooling, ventilation, information, control, and communication. All these things require large financial investments. As the disruption of the total electricity production may affect the commissioning of new reactors, including not only the commissioning time of reactors but also the number of new reactors to build, the economic cost may be strongly influenced by the disruption of the total electricity production. • The economics -The nuclear energy industry is a powerful engine for job creation.

According to [START_REF]Jobs -A single nuclear power plant creates more jobs than any other type of energy generation facility[END_REF], in the United States, each nuclear power plant employs 500 to 1000 workers; building a nuclear power reactor employs up to 3,500 workers at peak construction; for every 100 nuclear power plant jobs, 66 more jobs are created in the local community. As the disruption of the total electricity production may affect the shutdown and commissioning of reactors, the job opportunities may be influenced by the disruption of the total electricity production, causing an impact on society. When determining the plausible disruptions for total electricity production, one requires to evaluate the associated impact of disruption on the society.

To define reasonable assumed disruptions, one should take the potential impact of the disruptions into account, requiring the expertise from different research domains.

Consequently, defining the assumed disruptions in this work is beyond the physics study, consisting of an integrated task of decision-making.

Resistance, resilience, robustness: a matter of perspective

In section 2.5, we have defined three adaptation strategies to cope with the impact of disruptions, which are respectively:

• The resistance adaptation strategy consists of considering the possibility that the prior trajectory can bear the impact of disruption by itself, i.e., can still satisfy the constraints only through the endogenous adjustments under the impact of disruption; • The resilience adaptation strategy consists of considering the possibilities to avoid the disrupted trajectory violating the constraints by making exogenous readjustments; • The robustness adaptation strategy considers the possibility to readjust the prior trajectory to maintain valid under the impact of disruption that leads to the change of scenario model.

However, if using these definitions, the notions of resistance, resilience, and robustness seem model-dependent. In other words, for the same problem, if one uses a different model, then the conclusion about the resistance, resilience, and robustness of the same prior trajectory may be different.

For example, for scenario problem B in this work, the model that we used in the resistance and resilience studies is the complex composed of the "PiloRI" algorithm and the scenario model simulated by the COSI6 code. The "exogenous readjustments" refer to the changes in the decision parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ). Among (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ), 𝛽 and 𝑇 𝑀 are associated with the MOX fuel loading in reactors, and 𝛾, 𝜀 and 𝑇 𝑅 characterize the reprocessing strategy (see Table 4.4 in section 4.2.2.2 for the detailed definition of these decision parameters). We have concluded that the prior trajectory in scenario problem B is: resistant if the disruption of total electricity production does not exceed certain quantified thresholds (see section 4.2.5.3); resilient if the disruption of total electricity production exceeds the quantified thresholds and using (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) as levers. The term "resistant" in this conclusion means that one can use the same values of the decision parameters (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) in the prior trajectory to remain the disrupted trajectories valid. The term "resilient" means that to remain the disrupted trajectories valid, one has to readjust the values of (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ).

However, if one focuses only on the scenario model simulated by the COSI6 code, one can find that for all (no matter valid or invalid) disrupted trajectories in scenario problem B, the scenario models before and after the disruption of total electricity production are different. For instance, compared with the prior trajectory, the numbers of newly commissioned reactors in the valid disrupted trajectories are different. Certain reactors supposed to be newly commissioned in the prior trajectory are finally decided not to be built in the valid disrupted trajectories. The variables concerning these reactors (e.g., the commissioning dates, the fuel loading successions, etc.) exist in the scenario model before the disruption but does not exist in the scenario model after the disruption. Consequently, the scenario models before and after the disruption of total electricity production are different. Indeed, the disruption of total electricity production can lead to the change of the scenario model simulated by the COSI6 code. Hence, if one uses the scenario model simulated by the COSI6 code, the results in section 4.2.5 showed that the prior trajectory is robust in front of the assumed disruptions according to the definition of the robustness adaptation strategy.

To summarize:

• If one uses the complex composed of the "PiloRI" algorithm and the scenario model simulated by the COSI6 code, the prior trajectory is either resistant or resilient in front of the assumed disruptions, depending on the disruption; • If one uses the scenario model simulated by the COSI6 code, the prior trajectory is neither resistant nor resilient, but it is robust in front of the assumed disruptions.

Chapter 5: Conclusions

Context

Nuclear fuel cycle scenarios are "boundary objects," which are a theoretical tool providing an opportunity to bring together different communities of stakeholders (e.g., decision-makers, physicians, economists, sociologists, etc.) with various knowledge and different (sometimes opposing) interests in order to share and compare their visions for the future, organize their strategies and even cooperate. Scenarios constitute a powerful decision-making tool. Through nuclear fuel cycle scenario studies, one can make projections of industrial development strategies for nuclear energy and evaluate their associated short-or long-term impacts on the nuclear reactor fleet. As a result of a scenario study, one obtains one or several trajectories, i.e., prospective evolutions of the studied nuclear reactor fleet, to represent the studied industrial development strategies. Usually, these trajectories must satisfy some constraints, which integrate industrial limitations, as well as the requirements from decision-makers, to contribute to making the scenario problem realistic concerning current knowledge and feedback.

However, uncertainties exist widely in scenario studies, not only coming from physics but also generated by potential decisions. Uncertainties, especially those resulting from decisionmaking, can have strong impacts on the scenario study results. Indeed, they cause disruptions, i.e., unexpected or unforeseen changes (e.g., unexpected or unforeseen changes in input parameters, scenario hypotheses, etc.) in the scenario studies. In many cases, the disruptions caused by the uncertainties from decision-making can lead to the failure of scenarios: the trajectories given by the scenario studies may violate one or several constraints under the impact of disruptions. Therefore, disrupted trajectories may not constitute a satisfactory answer to the scenario problem anymore.

Uncertainty propagation techniques can be applied to evaluate the impact of the uncertainties from physics, including the uncertainties of nuclear data, such as cross-sections and fission yields, etc., and uncertainties of scenario parameters like fuel burnup. However, the uncertainty propagation study does not inform on how one should react and adapt in front of disruption caused by uncertainties and avoid the failure of scenario studies under the impact of disruptions.

The objective of this work is to propose a resilience study paradigm for scenario studies to cope with the impact of disruptions caused by uncertainties. In this paradigm, we have considered the possibility to readjust the scenario trajectory to counterbalance the impact of disruptions and avoid the failure of the scenarios.

Resilience study paradigm

To achieve the objective of constructing a resilience study paradigm for scenario studies, we decomposed the work into several steps.

Uncertainties in scenario study

First, we identified different types of uncertainties in scenario studies, which are the causality for requiring resilience studies. In the present work, uncertainty refers to epistemic situations involving imperfect or unknown information. Uncertainty is associated with the predictions of future events, to physical measurements that are already made, or to the unknown.

In the frame of scenario studies, we classified uncertainties into six categories (see section 2.2):

• scenario model bias, which results from the simplification of simulated objects (e.g., reactors and facilities, etc.) and assumptions in the physical models such as the fuel evolution model and the equivalence model; • uncertainty of nuclear data (e.g., cross-sections and fission yields), which is mainly due to the limitation of data measurement technologies; • uncertainty of historical data (e.g., the fuel enrichments and burnups in the past), which is due to the difficulty to obtain precise historical data to describe the historical fleet evolution in scenario simulation; • uncertainty of prospective scenario input parameters (e.g., the fuel enrichments and burnups in the future), which is due to the difficulty to predict the value choice of physical and industrial parameters that describe the prospective development of nuclear fleet; • uncertainty of scenario hypotheses (e.g., the types of reactors to deploy in the future and the prospective reprocessing strategy), which results from industrial or governmental decisions and cannot be described by probability distribution; • uncertainty of economic, societal and political context, which has strong impacts on the general development direction of the nuclear power industry and thus, influences the scenario hypotheses.

The model bias, the uncertainty of nuclear data, and the uncertainty of historical data do not concern the future and can usually be controlled by validation or measurement. However, the other three kinds of uncertainties involve knowledge that will only be available in the future, and thus, are impacted by a lack of information in the present. They are undetermined at present, and one must make assumptions according to the currently available knowledge at the moment of the scenario study. But the future can (and will) be different from the assumptions made in scenario studies and predictions based on today's experiences may be very inaccurate. In our study, the uncertainty of prospective scenario input parameters, the uncertainty of scenario hypotheses, and the uncertainty of economic, societal and political context, are considered as "deep uncertainty." This concept covers "unknown unknowns," which refers to the situation "at the time of scenario studies, one does not know he does not know there may be unexpected or unforeseen changes in the future."

Scenario terminology

Before this work, the terminology used in nuclear fuel cycle scenario studies appeared to lead to inconsistencies, due to the unclear definition of concepts. For the sake of making the discussion in this work more precise, we propose to redefine the scenario study terminology.

The following terms were re-defined in cooperation with the CNRS scenario group:

• A scenario model is a parametric model used to describe the evolution of the nuclear fuel cycle system with given assumptions, which is composed of a set of variables and relations among them. • The input parameters are the quantities that have to be determined in a nuclear fuel cycle scenario model to characterize the studied nuclear fuel cycle system. • The output parameters are the quantities that are evaluated by the nuclear fuel cycle scenario model.

• A trajectory is defined as a unique and fully characterized evolution history of a nuclear fuel cycle system consisting of all the reactors and the associated fuel cycle facilities defined without ambiguity. It represents a development strategy of interest for a nuclear fuel cycle system. • A constraint is a condition that a trajectory has to satisfy and integrates the industrial limitations or the requirements of decision-makers. • A trajectory is valid if it satisfies all of the imposed constraints of the scenario at the same time. • A preference is a criterion used to choose one or several valid trajectories when there are various alternatives. • A disruption is defined as an unexpected or unforeseen event that may jeopardize the validity of the studied trajectory. It consists in the modification of input parameters or scenario model. • A prior trajectory is a trajectory given by a scenario study before the resilience study.

In resilience study, we suppose that the prior trajectory is the investigation object a priori given and aim to study the impact of disruption on the prior trajectory as well as the possibility to maintain its validity.

These definitions were used throughout this work.

Problem formalization

Using the defined terminology, we formalized the problem of the thesis. In nuclear fuel cycle scenario studies, the objective is to make projections of development strategies of interest and study their impact on the studied nuclear fuel cycle system. As the main result of a scenario study, the researchers propose a trajectory to represent the possible prospective development of the nuclear fuel cycle system with the studied development strategy. However, a scenario study is based on an ensemble of assumptions about the future, which are expressed as scenario hypotheses and prospective scenario input parameters. Since the scenario hypotheses and the prospective scenario input parameters are subject to deep uncertainty, they can be disrupted and, thus, jeopardize the validity of the given trajectory, making the given trajectory invalid under the impact of disruption. In conventional scenario studies, there does not yet exist a systematic method to analyze the flexibility of the given trajectory in front of deep uncertainty and indicate how one should cope with the impact of disruption due to deep uncertainty to maintain the validity. This work has the objective to develop a resilience study paradigm as a complement of the conventional scenario study to fill in this blank and help the decision-makers to further understand the development strategies of interest from the angle of its flexibility.

Adaptation strategies to disruption

To cope with the impact of disruption caused by deep uncertainty on a given trajectory, we proposed three adaptation strategies in this work:

• The resistance adaptation strategy consists in considering the possibility that the prior trajectory can bear the impact of disruption by itself, i.e., can still satisfy the constraints only through the endogenous adjustments under the impact of disruption. The term "endogenous adjustments" refers to the automatic adjustments of the trajectory imposed by the endogenous relations among the variables of the scenario model under the impact of disruption. For example, in a given prior trajectory, if the fuel burnup of a reactor is disrupted, then correspondingly, the isotopic composition of the discharged spent fuel can become different from the prior trajectory, due to the endogenous adjustments according to the fuel depletion mechanism following the disruption of fuel burnup. Endogenous adjustments are a passive result imposed by the endogenous relation of the scenario model according to the disruption • The resilience adaptation strategy consists ins considering the possibilities to avoid the disrupted trajectory violating the constraints by making "exogenous readjustments." In our study, "exogenous readjustments" imply the readjustment of the input parameters of the scenario model that characterize the given disrupted trajectory. Depending on the parametrization of scenario model, "exogenous readjustments" refer to the readjustment of the prospective scenario input parameters, such as the fuel burnups or the readjustment of the development strategy, such as the reprocessing strategy. The driving force of exogenous readjustments comes from the decision-making, which is not a part of the scenario model. This concept allows for taking the activity of the decision-making into account to counterbalance the impact of disruptions and remain the trajectory valid. • The robustness adaptation strategy considers the possibility to readjust the prior trajectory to maintain valid under the impact of disruption that leads to the change of scenario model. "Endogenous adjustments" and "exogenous readjustments" are both realized based on the same scenario model before and after the disruption. However, under the impact of deep uncertainty (e.g., the uncertainty of economic, societal and political context), it is possible that the associated disruption causes the change of scenario model, i.e., the changes of the variables (not only the changes in variable values but also the category choice of variables) and endogenous relations inside the scenario model. In other words, one must reconstruct the scenario model under the impact of these disruptions. If one can find one or several valid readjusted trajectories after the reconstruction of the scenario model, then the prior trajectory is robust.

In scenario studies, the resistance adaptation strategy is generally insufficient, as the impact of disruption caused by deep uncertainty is usually so strong that the trajectory cannot maintain its validity without exogenous readjustments. Hence, we proposed the resilience adaptation strategy and built a resilience analysis framework to evaluate the resilience of given trajectories for nuclear fuel cycle scenario studies, as a complement to the resistance adaptation strategy.

Resilience analysis framework

Based on the idea of the resilience adaptation strategy, we have constructed a resilience analysis framework. In this framework, we classify the input parameters of the scenario model into two categories:

• Controlled parameters: parameters whose values can be freely chosen by decisionmakers according to their requirements in a (possibly predesigned) variation range. Due to their role, controlled parameters are also referred to as levers. • Uncontrolled parameters: parameters bearing uncertainties. Their value may change according to the circumstances, without this being the result of a desired choice of decision-makers. In other words, they can be disrupted.

In resilience studies, different stakeholders from different communities (including decisionmakers and experts from different research domains) might consider different plausible disruptions, based on their knowledge and expertise. Consequently, the classification of uncontrolled parameters and levers may be different from one group of stakeholders to another group. The determination of uncontrolled parameters and levers should require communication among the different stakeholders.

The general idea of the mechanism of resilience analysis framework is as follows: for a given prior trajectory, under the impact of the disruption of the uncontrolled parameters (caused by deep uncertainty), if one can readjust the levers (or controlled parameters) to counterbalance the impact of the disruption and avoid the disrupted trajectories violating the constraints, then the given prior trajectory is resilient against the disruption.

In this work, we implemented the developed resilience analysis framework with the state-ofthe-art SUR algorithm and built a resilience evaluation scheme. Using this resilience evaluation scheme, one can demonstrate the resilience of a given trajectory under a given disruption and obtain different readjustments ways in reasonable computation time. In order to adapt to the characteristic of scenario study, a multi-constraint SUR algorithm has been developed in this work.

Applications

As demonstration benchmarks, we applied the developed resilience study paradigm to two academic scenario problems. In both scenario problems, we considered a simplified French nuclear reactor fleet. We supposed that in the future, Gen-III type reactors would gradually replace the current Gen-II type reactors. We aimed to investigate the impact of the disruptive reduction of the fleet total electricity production and the possibility to maintain the disrupted trajectories valid by readjustments of levers.

The disruption of the total electricity production has a strong impact on the evolution of the reactor fleet: the disruptive reduction of the total electricity production generally imposes an early shutdown on some reactors, and correspondingly, the material flow in the nuclear fuel cycle chain, the reactor replacement (i.e., the shutdown of old reactors and the commissioning of new reactors) and the fuel cycle strategy in the future are all impacted. To model a disrupted trajectory derived from a prior trajectory under the impact of the disruptive reduction of total electricity production, we have to re-determine the nuclear reactor fleet according to the disruption, requiring to specify hundreds of parameters, such as shutdown and commissioning dates of each reactor, the successions of fuel loadings, etc. Considering that a large number of scenario trajectory simulations with different values of uncontrolled parameters (in our study, the total electricity production) and levers are expected when applying the resilience evaluation scheme, it is difficult to re-determine all the disrupted trajectories manually. In this case, we need a method to automatically re-determine the evolution of the studied nuclear fleet under the impact of the disruption of total electricity production.

As a solution, we developed a nuclear fleet evolution-driving model. It played the role of a dimension reduction model of the parameter space, whose construction is based on the expertise of scenarios. In this nuclear fleet evolution-driving model, we used several rules and drivers to determine the shutdown and commissioning of reactors as well as the MOX loadings in reactor cores according to a reduced number of decision parameters, including the setpoints of the total electricity production and the electricity production from MOX fuel. These setpoints resulted from decision-making. In this work, we have implemented this nuclear fleet evolution-driving model in the form of an algorithm called "PiloRI." The evolutions of the nuclear reactor fleet of the disrupted trajectories in the two scenario problems were determined by the "PiloRI" algorithm.

In the two scenario problems, we defined the validity of trajectories using five constraints: the full use of reprocessing plants, the availability of plutonium in the separated stockpile to support the fresh MOX fuel fabrication, the limit on the plutonium storage capacity in the separated stockpile, the safety limit on the plutonium content inside fresh MOX fuels and the limit on the storage capacity of spent fuels. In each scenario problem, a valid prior trajectory, which was the result of a prior conventional scenario study, was given. In the resilience studies corresponding to the two scenario problems, we assumed that the total electricity production of the whole reactor fleet would be disrupted in the future according to assumptions (see Figure 4.5 for scenario problem A and Figure 4.34 for scenario problem B). The resilience study results showed that under the impact of the assumed disruptive reductions of total electricity production, the evolutions of nuclear fuel cycle systems in the two prior trajectories are resilient if using the MOX fuel loadings in reactor cores and the reprocessing as levers. One can make the invalid disrupted trajectories valid again by readjusting the MOX fuel loadings in reactor cores and the reprocessing.

In the frame of deep uncertainty, and at the time of resilience studies, one does not know how the actual disruption of the total electricity production would be in the future, as future external decisions are generally not predictable. What one could do in the resilience studies is to assume the possible disruptions according to the available collective knowledge at the moment of study and to investigate their impact on the prior trajectory. The resilience study results of the two scenario problems mentioned above could help the decision-makers understand how the disruptive reduction of total electricity production may influence the evolution of the nuclear fuel cycle systems in the prior trajectories. At the same time, the study results demonstrated that it is possible to readjust the disrupted trajectories under the impact of the assumed disruption. This demonstration could give us insight, and possibly confidence about the flexibility of the prior trajectories under disruption, not only limited to the disruption assumed in this work but also including the disruption not investigated yet.

Building and using scenarios with resilience studies

The resilience study paradigm developed in this work provides a new way to build and use scenarios.

In conventional scenario studies before this work, scenarios are usually built in a "monolithic" way. More precisely, one (or more generally, a group of experts and decision-makers) makes different assumptions, such as the value choices of prospective scenario input parameters and scenario hypotheses, for different plausible futures and then proposes several trajectories to represent the development strategies of interest. The given trajectories are independently analyzed and used to represent the evolution of the studied nuclear reactor fleet in different noninterfering parallel universes. Due to the difficulty of predicting the future, it is hard for the stakeholders to judge the pertinence of different plausible futures. As a result, the decisionmakers may lack confidence in the results given by the conventional scenario studies. Moreover, as different stakeholders from different communities in scenario studies may have different knowledge and objectives, the visions and opinions from one group of stakeholders may be unexpected for another group of stakeholders. Thus, the visions and opinions from the one group of stakeholders may be considered as disruptions by another group of stakeholders and vice versa. But in the conventional scenario studies, one does not have a systematic method to evaluate the flexibility of the given trajectories in front of disruptions. Consequently, the scenarios may be difficult to use as a boundary object to integrate the different knowledge and interest of different stakeholders.

However, the resilience study paradigm provides a new way to build and use scenarios. First, by introducing the notion of disruption, one can integrate different plausible futures into the same study: for a given prior trajectory, a disruption represents the change from one plausible future to another one. The notion of disruption provides a connection point among the different plausible futures, making their overlap possible. In this case, the scenarios can be built in a nonmonolithic way. Second, considering that the differences of opinions and visions from different stakeholders may be considered as disruptions, the resilience study paradigm allows for integrating the knowledge and interest of different stakeholders into the scenario studies, making the scenarios a boundary object.

Perspectives

In this work, we have constructed a resilience study paradigm. In the given applications, the use of this resilience study paradigm was straightforward: we considered it as a complementary tool for the conventional scenario studies to evaluate the flexibility of the given trajectories to remain valid under the impact of disruptions. However, one may use the resilience study paradigm differently. For example, one can use the resilience study paradigm as a tool to generate a trajectory that integrates different opinions and visions from different stakeholders. First, one group of stakeholders proposes a prior trajectory by a scenario study. However, another group of stakeholders may have different opinions and visions on certain prospective scenario input parameters or scenario hypotheses and propose several modifications. These modifications may be considered as disruptions for the prior trajectory and probably make the disrupted trajectory violate the constraints. As a solution, one may use the levers to obtain valid readjusted trajectories. One of the valid readjusted trajectories may be used as a new prior trajectory. After applying this "proposing modifications -readjusting lever" process iteratively by different groups of stakeholders, the final readjusted trajectories may integrate different opinions and visions from different stakeholders. This use of the resilience study paradigm allows scenarios to be a boundary object. In the future, one may further investigate the possibility of this kind of usage of the resilience study paradigm.

As shown in Figure 4.53, the resilience evaluation scheme shown in Figure 3.1 can reveal the parts of the input space of levers in which one may find successful readjustments with high confidence. However, scenario problems are usually of high dimension. It is difficult to understand the form of the high dimensional valid input space of levers. In the future, the integration of the high dimensional data analysis methods in the scenario studies, such as principal component analysis [START_REF] Jolliffe | Principal component analysis: a review and recent developments[END_REF] and the Morse-Smale complex [START_REF] Gerber | Data Analysis with the Morse-Smale Complex: The msr Package for R[END_REF], will be a point of interest.

With the high dimensional data analysis methods, one may be able to understand the form of the high dimensional valid input space of levers and then provide advice as assistance for the decision-making.

In this manuscript, the developed resilience analysis method was applied to two academic scenario problems. Compared with industrial scenario problems, these two problems are relatively simple, and several simplifications have been introduced. For example, in both academic scenario problems, all reactors in the scenario model were simply classified into four reactor types. The reactors of the same type shared the same characteristics (e.g., power, load factor, irradiation length, etc.), ignoring the fine distinctions among them. However, in industrial scenario problems, the scenario models may be more complex and more constrained.

In the future, the application of the developed resilience analysis method to the complex industrial scenario problems could be interesting.

one can estimate the value of 𝛽 * and the uncertainty of the estimation result. By estimating the value of 𝛽 * and quantifying the uncertainty about the estimation result, we can construct the multi-constraint versions of SUR criterion.

A.2 Multi-constraint SUR criteria

In our study, there are two multi-constraint SUR criteria in different forms, and their constructions are as follows. )𝑑ℙ 𝕏 (𝒙) Eq. (A-13)

A.2.1 Multi-constraint SUR criterion

In Eq. (A-13), the inequality in the third line is obtained with the Cauchy-Schwarz inequality, and the interchange of the integration and the expectation in fifth line is gotten with the Tonelli's theorem. )𝑑ℙ 𝕏 (𝒙) is a measure to quantify the uncertainty of the estimated value of 𝛽 * when knowing the observations 𝒜 𝑛 . Hence, when choosing a new spatial location 𝒙 𝑛+1 to place an observation, the a priori (i.e., before knowing the observation result in 𝒙 𝑛+1 ) improvement for uncertainty of the estimated value of 𝛽 * is as follows:

𝐽 ̂𝑛(𝒙 𝑛+1 ) ≔ ∫ 𝕏 𝔼(∏ 𝑝 𝑗,𝒜 𝑛+1 (𝒙) 𝑀 𝑗=1 • (1 -∏ 𝑝 𝑗,𝒜 𝑛+1 (𝒙) 𝑀 𝑗=1 )|𝒜 𝑛 )𝑑ℙ 𝕏 (𝒙) Eq. (A-15)
where 𝑝 𝑗,𝒜 𝑛+1 (𝒙) = ℙ (𝒙|𝒜 𝑛+1 , 𝜉 𝑗 (𝒙 𝑛+1 )~𝒩 (𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑗,𝒜 𝑛 2 (𝒙 𝑛+1 ))) Eq. (A-16) 𝜉 𝑗 (𝒙 𝑛+1 ) is a random variable following a normal distribution 𝒩 (𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑗,𝒜 𝑛 2 (𝒙 𝑛+1 )).

Notice that 𝑝 𝑗,𝒜 𝑛+1 (𝒙) is a random variable as so is 𝜉 𝑗 (𝒙 𝑛+1 ). Thus, a multi-constraint SUR criterion is given in Eq. (A-15). To distinguish the multi-constraint SUR criterion shown in section 3.2.1, we name the criterion in Eq. (A-15) as multi-constraint SUR criterion Form I.

A.2.1.2 Closed-form expression

In this appendix, we do not give the general closed-form expression of Eq. (A-15) in function of the number of constraints 𝑀. Instead, we expose the deduction idea to get the closed-form expression of Eq. (A-15) and take the case 𝑀 = 2 as an example. For the other case where 𝑀 > 2, the deduction is similar.

When 𝑀 = 2, Eq. (A-15) becomes:

𝐽 ̂𝑛(𝒙 𝑛+1 ) = ∫ 𝕏 𝔼 𝑛 (𝑝 • To identify 𝛺 * is equivalent to identifying the "subdomain" of the set 𝛺 1 * where the first constraint 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 is satisfied. • To identify 𝛺 * is equivalent to identifying the "subdomain" of the set 𝛺 2 * where the second constraint 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2 is satisfied. • To identify 𝛺 * is equivalent to identifying the "subdomain" of the set 𝛺 3 * where the third constraint 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 is satisfied. In a more general case, for a scenario problem described by Eq. (A-1), to identify 𝛺 * is equivalent to identifying the "subdomain" of the set 𝛺 𝑗 * where the 𝑗-th constraint 𝐼 𝑗 (𝒙) < 𝑇 𝑗 is satisfied. In application, there are two steps to achieve:

Step 1: identify the set 𝛺 𝑗 * ;

Step 2: find the "subdomain" of the set 𝛺 𝑗 * where the 𝑗 -th constraint 𝐼 𝑗 (𝒙) < 𝑇 𝑗 is satisfied.

Based on this idea, the multi-constraint SUR criterion Form II is developed.

A.2.2.2 Deduction

𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2 𝛺 * : input parameter domain of valid trajectories 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 1 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 𝑥 (2) 𝑥 (1) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 2 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 3 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 where

• the inequality in the fifth line is obtained with the Cauchy-Schwarz inequality;

• the inequality in the seventh line is obtained as ℙ 𝕏 (𝛺 𝑗 * ) ≤ ℙ 𝕏 (𝕏) (𝛺 𝑗 * is included in 𝕏);

• the interchange of the integration and the expectation in the nineth line is obtained with the Tonelli's theorem; • the last equality is obtained by Eq. (A-14). Eq. (A-31)

𝔼(𝛽|𝒜

When choosing a new spatial location 𝒙 𝑛+1 to place observations, the a priori (i.e., before knowing the observation results in 𝒙 𝑛+1 ) improvement of uncertainty for the contour line of 𝛺 * (i.e., the input parameter domain of valid trajectories) is given as 21 :

𝔼 (ℋ 𝛺 * ,𝒜 𝑛+1 |𝒜 𝑛 , (𝜉 𝑙 (𝒙 𝑛+1 )) 1≤𝑙≤𝑀 ) 21 The exact expression of the improvement is ℋ 𝛺 * ,𝒜 𝑛 -𝔼 (ℋ 𝛺 * ,𝒜 𝑛+1 |𝒜 𝑛 , (𝜉 𝑙 (𝒙 𝑛+1 )) 1≤𝑙≤𝑀 ). However, ℋ 𝛺 * ,𝒜 𝑛 is a constant as it does not depend on 𝒙 𝑛+1 . Hence, one can only use 𝔼 (ℋ 𝛺 * ,𝒜 𝑛+1 |𝒜 𝑛 , (𝜉 𝑙 (𝒙 𝑛+1 ))

1≤𝑙≤𝑀 ) to characterize the improvement.

𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2 𝛺 * : input parameter domain of valid trajectories 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3

(a) (b) (c) (d)

𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 1 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 𝓗 𝜴 𝟏 * ,𝓐 𝒏 𝟏 𝑥 (2) 𝑥 (1) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 2 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 𝓗 𝜴 𝟐 * ,𝓐 𝒏 𝟐 𝑥 (1) 𝑥 (2) 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2

The set 𝛺 3 * 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 Eq. (A-40)

Hence, we obtain a numerical approximation of the multi-constraint SUR criterion 𝐽 ̌𝛺 * ,𝒜 𝑛 (𝒙 𝑛+1 ).

Following the same deduction, the batch sequential generalization (i.e., criteria which depend on 𝑞 > 1 points) of the multi-constraint SUR criterion given in Eq. (A-40) is given: At the end of each iteration step of SUR algorithm, a spatial location in the input space is chosen to place a new observation. We compute the SUR criterion value at this chosen spatial location at each iteration, and draw its evolution in Figure A.5. We recalling that SUR criterion quantified the uncertainty of the valid input space. At the beginning of iteration (iteration step < 25), the uncertainty of the valid input space decreases as new observations are sequentially added. When 25 < iteration step < 35, the uncertainty of the valid input space increases as iteration goes on. This is because at the beginning of iteration, the observations (or knowledge about the modeled system) are not enough. The algorithm does not "master" the behavior of the modeled system yet. More precisely, the behaviors of Kriging models are not stable yet and changes dramatically as new observations are successively added. When the number of observations becomes greater and greater (iteration step > 35), the behaviors of Kriging models stay stable. The uncertainty of the valid input space gradually reduces as iteration goes. In application, we may use the SUR criterion value at the chosen spatial location at each iteration as an indicator for the convergence of the algorithm and determine when the iteration should be stopped. Application of Rule R8: for each reactor in the nuclear reactor fleet given by Procedure 1 that is functioning with 100% UOX fuel in the year "𝑇𝑖𝑚𝑒", judge whether one of its ends of cycle lays between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1": if yes, then this reactor is chosen by Rule R8, and its potential MOXing date (i.e., the date to load the first MOX fuel batch in its core) is the date corresponding to its end of cycle laying between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1"; if no, then this reactor is not chosen by Rule R8. 2. Application of Rule R9: for each reactor chosen by Rule R8, judge whether it has gone through at least one equilibrium irradiation cycle before the year "𝑇𝑖𝑚𝑒": if yes, then this reactor is chosen by Rule R9; if no, then this reactor is not chosen by Rule R9. 3. Application of Rule R10: for each reactor chosen by Rule R9, judge whether it can go through at least one "nominal" irradiation cycle in which its core is MOXed at 30% before its shutdown or de-MOXing if it is MOXed from the year "𝑇𝑖𝑚𝑒" on: if yes, then this reactor is chosen by Rule R10; if no, then this reactor is not chosen by Rule R10. 4. Application of Rule R11: for each reactor chosen by Rule R10, judge whether it has been MOXed once before the year "𝑇𝑖𝑚𝑒": if yes, then this reactor is not chosen by Rule R11; if no, then this reactor is chosen by Rule R11. 5. Application of Rule R12: for each reactor chosen by Rule R11, calculate its residual lifespan, which is equal to the time duration between its shutdown date (determined by Procedure 1) and the year "𝑇𝑖𝑚𝑒". Then, rank these reactors chosen by Rule R11 according to the descending order of residual lifespans. 6. Application of Driver D13: MOX the reactors given by Rule 12 one by one according to the ranking order until the difference that the setpoint value of electricity production from MOX fuel minus the actual simulated value in the year "𝑇𝑖𝑚𝑒" is smaller than a tolerance value. This tolerance value is chosen as half of the annual electricity production from MOX fuel in a Gen-III type reactor, which is around 1.7 TWe•h.

}

incertitudes peuvent ê tre dé finies comme une connaissance limité e des é vé nements futurs, passés ou actuels, qui impliquent des informations imparfaites ou inconnues. Dans l'étude de scé narios é lectronuclé aires, nous avons classé six caté gories d'incertitudes :

• biais du modè le ;

• l'incertitude des donné es nuclé aires ;

• l'incertitude des donné es historiques ;

• l'incertitude des paramè tres d'entré e du scé nario prospectif ;

• l'incertitude des hypothè ses de scé nario ;

• l'incertitude du contexte é conomique, socié tal et politique.

Le biais du modè le, l'incertitude des donné es nuclé aires et l'incertitude des donné es historiques peuvent gé né ralement ê tre contrôlé s par validation ou mesure. Cependant, l'incertitude des paramè tres d'entré e du scé nario prospectif, l'incertitude des hypothè ses de scé nario et l'incertitude du contexte é conomique, socié tal et politique impliquent l'avenir. Par consé quent, elles sont impactées par le manque d'informations. Leur existence est due au fait qu'il est difficile, voire impossible, de pré dire l'avenir selon nos connaissances actuelles disponibles, et l'avenir peut ê tre au-delà de nos attentes. Ces trois caté gories d'incertitudes, à savoir l'incertitude des paramè tres d'entré e du scé nario prospectif, l'incertitude des hypothè ses de scé nario et l'incertitude du contexte é conomique, socié tal et politique, sont considé ré es comme des « incertitudes profondes » dans notre travail, qui se ré fè rent à des circonstances où les parties à une dé cision ne savent pas ou ne s'entendent pas sur la probabilité d'é vé nements futurs. Parmi elles, l'incertitude du contexte é conomique, socié tal et politique a le plus fort impact sur les résultats de l'étude de scénarios électronucléaires, car le contexte économique, sociétal et politique détermine la question et le problème à traiter dans la prise de décision et l'étude de scénarios électronucléaires. Le déroulement et l'analyse de l'étude de scénarios é lectronuclé aires sont basé s sur ce contexte. À la suite de l'é volution de ce contexte à l'avenir, l'é tude de scé narios é lectronuclé aires pré cé dente risque de ne plus ê tre adapté e. Les hypothè ses de scé nario, telles que la straté gie de retraitement à l'avenir, l'é volution de la puissance installé e à l'avenir, etc., constituent le cadre de base du modè le de scé nario. Le choix des hypothè ses de scé nario ré sulte de la prise de dé cision et dé pend du contexte é conomique, socié tal et politique. Le contexte é conomique, socié tal et politique futur é tant incertain, les hypothè ses de scé nario sont sujettes à incertitude. L'incertitude des paramè tres d'entré e du scé nario prospectif a le plus faible impact sur l'é tude de scé narios é lectronuclé aires parmi les trois incertitudes profondes mentionné es ci-dessus. La disruption des paramè tres d'entré e du scé nario prospectif peut gé né ralement ê tre considé ré e comme une perturbation des paramè tres dans l'é tude de scé narios é lectronuclé aires. Dans notre é tude, nous nous inté ressons aux trois incertitudes profondes é voqué es ci-dessus.

C.2.2 Terminologie de l'é tude de scé narios é lectronuclé aires

Avant ces travaux, la terminologie utilisé e dans les é tudes de scé narios é lectronuclé aires semblait conduire à des incohé rences, en raison de la dé finition peu claire des concepts. Afin de rendre la discussion dans ce travail simplifié e et pré cise, nous proposons de redé finir la terminologie de l'é tude de scé narios é lectronuclé aires :

• Les paramè tres d'entré e sont les quantité s qui doivent ê tre dé terminé es dans un modè le de scé nario pour caracté riser le systè me du cycle du combustible nuclé aire é tudié . • Les paramè tres de sortie sont les quantité s calculé es par le modè le de scé nario.

• Une trajectoire est une histoire d'é volution entiè rement caracté risé e d'un systè me du cycle du combustible nuclé aire dans laquelle tous les ré acteurs et des installations du cycle du combustible associé es sont dé finis sans ambiguï té . Elle repré sente une straté gie de dé veloppement inté ressante pour un systè me du cycle du combustible nuclé aire. • Une contrainte est une condition qui doit ê tre satisfaite par une trajectoire. Elle intè gre les limites industrielles ou les considé rations des dé cideurs. • Une trajectoire est valide si elle satisfait à la fois toutes les contraintes imposé es du scé nario. • Une pré fé rence est un critè re utilisé pour choisir une ou plusieurs trajectoires valides lorsqu'il existe diffé rents choix. • Une disruption est dé finie comme un é vé nement inattendu ou impré vu qui met en pé ril la validité de la trajectoire é tudié e. • Une trajectoire pré alable est une trajectoire donné e par une é tude de scé narios é lectronuclé aires avant l'é tude de ré silience. En l'é tude de ré silience, nous supposons que la trajectoire préalable est l'objet d'étude a priori donné et visons à é tudier l'impact des disruptions sur la trajectoire pré alable ainsi que la possibilité de maintenir sa validité par des ré ajustements. • Un modè le de scé nario est un modè le paramé trique utilisé pour dé crire l'é volution du systè me du cycle du combustible nuclé aire avec des hypothè ses donné es, qui est composé d'un ensemble de variables et de relations.

Les dé finitions ci-dessus sont dé finies du point de vu de la physique du cycle nuclé aire. Ces dé finitions sont utilisé es tout au long de ce travail pour faciliter la discussion. • 𝕏 est la plage de variation des paramè tres d'entré e d'inté rê t;

C.2.3 Formalisation du problè me

• 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) est un vecteur composé de 𝑁 paramè tres d'entré e qui caracté risent une trajectoire dans le modè le du scé nario; • 𝐼 𝑗 (•) est l'indicateur de la 𝑗-è me contrainte imposé e dans le problè me de scé nario;

• 𝑇 𝑗 est le seuil de la 𝑗-è me contrainte imposé e dans le problè me de scé nario, constituant l'expression de quantification de la 𝑗-è me contrainte imposé e avec 𝐼 𝑗 (•). Dans l'é tude de scé narios é lectronuclé aires, une mé thodologie de la propagation des incertitudes é tait dé veloppé e pour analyser les impacts des incertitudes des donné es nuclé aires et des paramè tres d'entré e du scé nario prospectif : nous é chantillonnons (1) les paramè tres disrupté s par rapport à leur distribution, (2) appelons le code de scé nario pour effectuer les simulations de scé nario, (3) et finalement analysons les ré sultats. La mé thodologie de la propagation des incertitudes nous permet de connaî tre les impacts des disruptions des donné es nuclé aires et des paramè tres d'entré e du scé nario prospectif sur la validité de la trajectoire. Mais par contre, cette mé thodologie ne peut pas nous indiquer comment nous devons faire pour maintenir la validité des trajectoires face à l'impact des disruptions, notamment les disruptions lié es à la prise de dé cision.

Ce travail a pour objectif de développer un paradigme de l'étude de résilience pour aider les dé cideurs à mieux comprendre la straté gie de dé veloppement d'inté rê t sous l'angle de sa possibilité de maintenir la validité face à l'incertitude profonde. Cette é tude de ré silience est comme complément suivant dernière l'étude de scénarios électronucléaires conventionnelle : aprè s une trajectoire avoir é té construite par une é tude de scé narios é lectronuclé aires, nous appliquons ensuite l'é tude de ré silience pour é tudier l'impact des disruptions sur cette trajectoire ainsi que la possibilité de maintenir sa validité lorsque la trajectoire est disrupté e. Une telle trajectoire est appelée trajectoire préalable dans l'étude de résilience. • Dans la straté gie d'adaptation de ré sistance, nous considé rons que la trajectoire peut supporter par elle-mê me l'impact de l'incertitude et satisfait toujours les contraintes de maniè re endogè ne aprè s la disruption, sans prendre de ré ajustement exogè ne. • Dans la straté gie d'adaptation de ré silience, nous prenons en compte la possibilité d'adapter la trajectoire en effectuant des ré ajustements exogè nes pour éviter l'échec de trajectoire, c'est-à -dire la violation des contraintes, provoqué e par l'impact de la disruption.

• Dans la straté gie d'adaptation de robustesse, nous intégrons la possibilité d'adapter la trajectoire en effectuant des ré ajustements exogè nes pour éviter l'échec de trajectoire provoqué e par l'impact des disruptions qui conduisent au changement de modè le de scé nario.

Dans ces trois straté gies d'adaptation, le terme « ré ajustement exogè ne » signifie le ré ajustement des paramè tres d'entré e du modè le de scé nario qui caracté risent la trajectoire donné e. Selon le moyen de paramé trisation du modè le de scé nario, le « ré ajustement exogè ne » peut repré senter le ré ajustement des paramè tres d'entré e du scé nario prospectif tels que le taux de combustion ou bien le ré ajustement de la straté gie de dé veloppement telle que la straté gie de retraitement. Les straté gies d'adaptation de ré silience et de robustesse considè rent la possibilité de procé der à des ré ajustements exogè nes. La diffé rence pour distinguer ces deux straté gies d'adaptation est l'impact de la disruption :

• Dans la straté gie d'adaptation de robustesse, nous considé rons que la disruption due à des incertitudes profondes, telle que la disruption du contexte é conomique, socié tal et politique, a un impact si grave que le problè me ou la question à ré soudre dans l'é tude de scé narios é lectronuclé aires et la prise de dé cision ont changé aprè s la disruption. Le modè le de scé nario pré cé dent avant la disruption n'est plus adapté à l'é tude de scé narios é lectronuclé aires aprè s la disruption, et il faut reconstruire le modè le de scé nario. • Dans la straté gie d'adaptation de ré silience, nous considé rons que le problè me à traiter dans l'é tude de scé narios é lectronuclé aires et la prise de dé cision ne change pas aprè s la disruption, et le modè le de scé nario est toujours adapté .

Dans l'é tude de scé narios é lectronuclé aires, la straté gie d'adaptation de ré sistance est insuffisante, car l'impact des disruptions causé es par une incertitude profonde est gé né ralement si fort que la trajectoire ne peut pas maintenir sa validité sans ré ajustements exogè nes. Par consé quent, il faut des straté gies d'adaptation de ré silience et de robustesse pour l'é tude des scé narios é lectronuclé aires. Comme premiè re é tape vers ces deux straté gies, nous nous inté ressons à la straté gie d'adaptation de ré silience dans ce travail, car elle est moins complexe que la straté gie d'adaptation de robustesse du point de vue de la modé lisation. 

C.2.5.2 Positionnement de l'étude de résilience

Le cadre d'analyse de résilience nous donne un moyen pour évaluer la résilience d'une trajectoire donné e vis-à -vis d'une disruption donnée. Mais nous indiquons que le but de l'étude de résilience n'est pas de montrer qu'une trajectoire donnée est résiliente ou non. En fait, les incertitudes profondes sont liées au manque d'information sur l'avenir. Au moment de l'étude de ré silience, nous ne savons pas les disruptions réelles à l'avenir seront comment, car nous ne pouvons pas prédire l'avenir. Ce que nous pouvons faire, c'est d'identifier les disruptions possibles par rapport à nos connaissances disponibles actuelles au moment de l'étude de résilience et déroulons l'étude de résilience avec ces disruptions possibles. Autrement dit, les disruptions considé ré es dans l'étude de résilience sont les hypothèses proposées par rapport à nos connaissances disponibles au moment de l'étude. Nous ne savons pas laquelle de ces disruptions supposées deviendra une réalité à l'avenir, ou si l'une d'entre toutes ces disruptions supposées deviendra une réalité à l'avenir. Or, par prouver que la résilience de la trajectoire donné e sous les impacts de ces disruptions supposé es, nous pouvons :

• D'une part, préparer les stratégies d'adaptation (de résistance ou de résilience) pour les disruptions supposées dans l'étude de résilience, fournissant de l'aide pour la prise de dé cision ; • D'autre part, nous donner une confiance quant à la flexibilité de la trajectoire donné e face aux disruptions gé né rales, non seulement limité es à celles supposées dans l'étude de ré silience, mais incluant é galement les disruptions non encore pré vue au moment de l'étude.

C.3 Applications

Nous avons appliqué le paradigme de l'é tude de ré silience dé veloppé e à deux problè mes de scé nario acadé mique. Dans les deux problè mes de scé nario, nous considé rons un parc de ré acteurs nuclé aires franç ais simplifié . Nous supposons qu'à l'avenir, le parc actuel de ré acteurs nuclé aires Gen-II sera progressivement remplacé par des ré acteurs de type Gen-III. Notre objectif est d'é tudier l'impact de la ré duction disruptive de la production totale d'é lectricité du parc et la possibilité de maintenir les trajectoires disrupté es valides par des ré ajustements.

De maniè re gé né rale, la disruption de la production totale d'é lectricité du parc peut avoir un impact important sur l'é volution du parc de ré acteurs : la ré duction disruptive de la production totale d'é lectricité du parc peut imposer un arrê t pré coce de certains ré acteurs, et en consé quence, le flux de matiè re dans le cycle du combustible nuclé aire, le remplacement des ré acteurs (c'està -dire l'arrê t des anciens ré acteurs et le dé marrage de nouveaux ré acteurs) et la straté gie du cycle du combustible à l'avenir peuvent tous ê tre affecté s. Pour modé liser une trajectoire disrupté e dé rivé e d'une trajectoire pré alable aprè s la ré duction disruptive de la production totale d'é lectricité du parc, il faut redé finir le parc de ré acteurs nuclé aires en fonction de la disruption, né cessitant de spé cifier des centaines de paramè tres, tels que les dates d'arrê t et de dé marrage de chaque ré acteur, les successions de campagnes, etc. Etant donné qu'un grand nombre de simulations de trajectoires avec diffé rentes valeurs de paramè tres non-contrôlé s (dans nos applications, la production totale d'é lectricité ) et de leviers sont attendus lors de l'application du sché ma d'é valuation de ré silience, il est difficile de redé finir manuellement toutes les trajectoires disrupté es. Dans ce cas, nous avons besoin d'une mé thode pour redé finir systé matiquement l'é volution du parc nuclé aire é tudié aprè s la disruption de la production totale d'é lectricité . Comme solution, nous avons dé veloppé un modè le de pilotage de l'é volution du parc nuclé aire. Il s'agit d'un modè le de ré duction de dimension de l'espace des paramè tres, dont la construction se base sur l'expertise des scé narios. Dans ce modè le d'é volution du parc nuclé aire, nous utilisons plusieurs rè gles et drivers pour dé terminer l'arrê t et le dé marrage des ré acteurs ainsi que les charges de combustible MOX dans les coeurs de réacteurs en fonction d'un nombre ré duit de paramè tres de dé cision, y compris les consignes de la production totale d'é lectricité et de la production d'é lectricité issue de combustible MOX. Ces consignes sont supposé es ré sulter de la prise de dé cision. Dans ce travail, nous avons implé menté ce modè le de pilotage de l'é volution du parc nuclé aire sous la forme d'un algorithme appelé « PiloRI » (Pilotage du parc de Réacteurs pour les études d'Incertitude). Les é volutions du parc de ré acteurs nuclé aires des trajectoires disrupté es dans les deux problè mes de scé nario sont dé terminé es par l'algorithme « PiloRI ».

Dans les deux problè mes de scé nario, nous avons dé fini la validité des trajectoires par cinq contraintes : la pleine utilisation des usines de retraitement, la faisabilité en termes d'avoir suffisamment de plutonium dans le stock sé paré pour alimenter la fabrication de combustible MOX frais, la limite de la capacité de stockage de plutonium dans le stock sé paré , la limite de sé curité sur la teneur en plutonium dans les combustibles MOX frais et la limite de la capacité de stockage des combustibles usé s. Dans chaque problè me de scé nario, une trajectoire pré alable valide est a priori donné e et supposé e comme le ré sultat d'une é tude de scé narios é lectronuclé aires avant l'é tude de ré silience. Dans les é tudes de ré silience correspondant aux deux problè mes de scé nario, nous supposons que la production totale d'é lectricité du parc de ré acteurs sera disrupté e à l'avenir selon certains modes (voir la Figure 4.3 pour le problè me de scé nario A et la Figure 4.32 pour le problè me de scé nario B). Les ré sultats de l'é tude de ré silience montrent que sous l'impact des ré ductions disruptives de la production totale d'é lectricité du parc, les é volutions des systè mes du cycle du combustible nuclé aire dans les deux trajectoires pré alables sont ré silientes si nous utilisons les chargements de combustible MOX dans les coeurs de réacteur et le retraitement comme leviers. Nous pouvons rendre les trajectoires disrupté es invalides, qui sont dé rivé es des trajectoires pré alables aprè s les disruptions, valides à nouveau en ré ajustant les chargements de combustible MOX dans les coeurs de réacteur et le retraitement.

Pour comprendre la valeur des ré sultats de l'é tude de ré silience dans les deux problè mes de scé nario du point de vue de la prise de dé cision, nous indiquons que dans l'incertitude profonde, nous ne savons pas comment la disruption réelle de la production totale d'électricité sera à l'avenir, car il est difficile de pré dire l'avenir. Ce que nous pouvons faire dans l'é tude de ré silience, c'est de supposer les disruptions possibles en fonction de nos connaissances collectives disponibles au moment de l'é tude et é tudier leur impact sur la trajectoire pré alable. Par les ré sultats de l'é tude de ré silience des deux problè mes de scé nario mentionné s ci-dessus, nous pouvons comprendre comment la disruption supposé e de la production totale d'é lectricité peut influencer l'é volution des systè mes du cycle du combustible nuclé aire dans les trajectoires pré alables. Dans le mê me temps, nous dé montrons qu'il est possible de ré ajuster les trajectoires disrupté es aprè s les disruptions supposé es. Une telle dé monstration peut nous donner une confiance quant à la flexibilité des trajectoires pré alables sous les disruptions gé né rales de la production totale d'é lectricité , non seulement limité es aux modes de disruption supposé s dans les applications, mais incluant é galement les modes de disruption non encore é tudié s.
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   and Eq. become Eq. and Eq.). First, one can randomly sample a large number of the possible values of 𝜉(𝒙 𝑛+1 ) according to the distribution 𝜉(𝒙 𝑛+1 )~𝒩(𝑚 𝑛 (𝒙 𝑛+1 ), 𝑠 𝑛 2 (𝒙 𝑛+1 )). Then, with each of the sampled values of 𝜉(𝒙 𝑛+1 ), one computes the corresponding values of 𝑉𝑎𝑟 𝑛+1 (𝛼) in Eq. (3-35) (or ∫ 𝕏 𝑝 𝑛+1 (𝒙) • (1 -𝑝 𝑛+1 (𝒙))𝑑ℙ 𝕏 (𝒙) in Eq. (3-36)). Finally, the approximated value of 𝐽 𝑛 (𝒙 𝑛+1 ) (or 𝐽 ̃𝑛(𝒙 𝑛+1 ) ) can be obtained by calculating the average of 𝑉𝑎𝑟 𝑛+1 (𝛼) (or
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Figure 3 . 2 :

 32 Figure 3.2: Method for search of valid trajectories based on SUR algorithm

  Candidate trajectories(𝒙 𝒊 ) 1≤𝑖≤𝐺 Sampling of inputs Fast validity estimation (Kriging) and filtering (𝑝 𝑛 (𝒙 𝒊 )) 1≤𝑖≤𝐺 Validity estimator 𝑝 𝑛 (•) Observations 𝒜 𝑛 Construct validity estimator 𝑝 𝑛 (•) with 𝒜 𝑛 Apply SUR algorithm Potential trajectories (𝒙 𝒊 𝒌 ) 𝟏≤𝒌≤𝑷 Assessment by scenario model for (𝒙 𝒊 𝒌 ) 𝟏≤𝒌≤𝑷

Figure 3 . 3 :

 33 Figure 3.3: Nuclear fleet evolution-driving model

  Figure 3.4 between 2030 and 2031, 2031 and 2032, 2033 and 2034, or 2034 and 2035. The possible shutdown dates are the ends of the irradiation cycles.
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 34 Figure 3.4: An example to help understand the rule R1

Figure 3 . 5 :

 35 Figure 3.5: Commissioning pattern for the new reactors (𝑁: number of the new commissioned Gen-III reactors between the years 𝑌 and 𝑌 + 1)

Figure 3 . 6 :

 36 Figure 3.6: MOXing process of a PWR core managed with a 1/3 fuel loading pattern

A: replacement of nuclear reactor fleet with disruption in electricity production 4

 4 

Figure 4 . 1 :

 41 Figure 4.1: Current French fuel cycle strategy

•

  34 reactors of 900-MWe class; • 20 reactors of 1300 MWe class; • 4 reactors of 1450 MWe class.

Figure 4 .

 4 [START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF] shows the historical evolution of electricity production from MOX fuel between 1977 and 2019, given by modeling. According to modeling, the electricity production from MOX fuel stayed constant from 2016 on.The simulated fuel cycle strategy is the same as in Figure4.1. The fuel fabrication time is fixed at 2 years for both UOX and MOX fuels. The minimum cooling time before the spent fuel reprocessing is 5 years. The reprocessing is in chronological order, i.e., "first in, first out." Only spent UOX fuels are reprocessed.
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 4344 Figure 4.3: Historical evolution of electricity production between 1977 and 2019, given by modeling

  Figure 4.5.
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 45 Figure 4.5: Assumption of total electricity production

Figure 4 . 6 :

 46 Figure 4.6: Assumptions of annual electricity production from MOX fuel

Figure 4 . 7 :

 47 Figure 4.7: Assumptions on reprocessing capacity

  𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≔ 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑝𝑒𝑛𝑡 𝑓𝑢𝑒𝑙 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑝𝑒𝑛𝑡 𝑓𝑢𝑒𝑙 𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑏𝑦 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑠 Eq. (4-1) and impose 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 1.0. Constraint C2: There is always enough plutonium in the separated stockpile to supply the MOX fuel fabrication.

  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑠𝑡𝑜𝑐𝑘𝑝𝑖𝑙𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 -(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑓𝑖𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑃𝑢 𝑠𝑡𝑜𝑐𝑘 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 𝑖𝑓 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑓 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 Eq. (4-2)

2 . 2 . 1 ,

 221 the two oldest PWR are successively shut down between 2019 and 2022, and an EPR is commissioned in 2022. From 2038 and 2060, the rest of PWR gradually reach their maximum lifespan of 60 years and are closed definitively. At the same time, new Gen-III reactors are commissioned to maintain the total electricity production. The detailed distributions of shutdown dates for the 58 PWR and the commissioning dates for the Gen-III reactors are given in Figure4.9. Especially, one can note that in the ten years between 2038 to 2048, 46 PWR are shut down, and 28 Gen-III reactors are commissioned. In 2061, the PWR fleet is completely replaced by a new fleet purely composed of 37 Gen-III reactors. The lifespans of PWR are exposed in Figure4.10. Except for the two oldest PWR, the lifespans of PWR are all close to maximum limited value 60 years. We assume that the two oldest PWR are shut down before reaching their maximum lifespan of 60 years (see section 4.1.2.2.1).
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 48 Figure 4.8: Evolution of total electricity production in different reactor types for the prior trajectory

Figure 4 . 9 :

 49 Figure 4.9: Distributions of the shutdown dates of PWR and the commissioning dates of Gen-III reactors for the prior trajectory

Figure 4 . 10 :

 410 Figure 4.10: Distribution of lifespans of the 58 PWR for the prior trajectory

Figure 4 . 11 :

 411 Figure 4.11: Evolution of electricity production from MOX fuel in different reactor types

Figure 4 . 12 : 4 . 1 . 3 . 3

 4124133 Figure 4.12: Summary for the MOX fuel loading in reactors at the end of the simulation with stacked bar plots for the prior trajectory.

Figure 4 . 13 :

 413 Figure 4.13: Inventory evolution of plutonium in separated stockpile for the prior trajectory

Figure 4 . 14 :

 414 Figure 4.14: Evolution of plutonium content inside fresh MOX fuels for the prior trajectory

Figure

  Figure 4.14 shows the evolution of the plutonium contents in fresh MOX fuels for the prior trajectory. During the simulation, the shutdown of MOX-fueled reactors is carried out in their last irradiation cycle with specific MOX fuel batches whose plutonium contents are reduced according to their shorter irradiation durations and burnups in the reactor core. As a result, one can see in Figure4.14 that the plutonium content can approach 6%13 between 2041 and 2051, corresponding to the loading of special shutdown MOX fuel batches in the cores. The plutonium content always stays below 12% during the simulation, satisfying the constraint C4.

Figure 4 . 15 :

 415 Figure 4.15: Evolution of inventories of spent fuels for prior trajectory, with stacked plot

Figure

  Figure 4.[START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF] shows the evolution of the spent UOX and MOX fuel inventories for the prior trajectory. During the simulation, the spent UOX fuels are recycled with a constant capacity of 950 tHM/year while the spent MOX fuels are stored without reprocessing. Since the electricity production from MOX fuel remains constant during the simulation, the spent MOX fuel increases almost linearly. At the end of the simulation, the total inventory of both spent fuels reaches its maximum value of 15152 tHM, which is smaller than the limit value of constraint C5.

Figure 4 . 16 :Figure 4 .

 4164 Figure 4.16: Parallel coordinates plot of the 3000 observations obtained with the random sampling method

Figure 4 . 17 :

 417 Figure 4.17: Parallel coordinates plot of the 3200 observations obtained with the multiconstraint SUR algorithm

Figure 4 . 18 :Figure 4 . 19 :

 418419 Figure 4.18: Stacked histograms of five indicators of constraint for 3200 observations obtained with multi-constraint SUR algorithm

Figure 4 .

 4 21 and Figure 4.22. As there are not enough spent UOX fuels to be separated, there is a shortage of plutonium in the separated stockpile to supply the fabrication of MOX fuel, therefore the MOX fuel loading in PWR MOX reactors, which leads to the violation of the constraint C2.
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 420421422 Figure 4.20: Impact of disruption of 𝛼 on validity of the prior trajectory (each point in the same figure corresponds to a disrupted trajectory.)
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 4234152 Figure 4.23: Parallel coordinates plot of 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 trajectories derived from the valid prior trajectory after disruption

1 . 5 . 1 .

 151 The characteristic parameters of the selected invalid non-resistant disrupted trajectory are (𝛼 = 0.70, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035) and its validity is as follows: { 𝐼 𝑅𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 0.87 ≠ 1 (𝐶1 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) 𝐼 𝑀𝑖𝑛𝑃𝑢 = -4.78 tons < 5 tons (𝐶2 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢 = 23.69 tons < 55 tons (𝐶3 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 10.42% < 12% (𝐶4 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑆𝐹 = 8815 tHM < 24000 tHM (𝐶5 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)Eq.[START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF] 

2 .

 2 The values of the validity estimator 𝑝 𝑛 𝐴 constructed in section 4.1.4.2 for each of these 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 sampled candidate trajectories are rapidly calculated. 3. According to the filtering condition 𝑝 𝑛 𝐴 > 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 with 𝑇 𝑓𝑖𝑙𝑡𝑒𝑟 = 0.9, 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2427 among the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 candidate trajectories are selected as the potential ones with high confidence of validity. 4. Verify the 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 potential trajectories with the COSI6 code.

Figure 4 . 24 :

 424 Figure 4.24: Parallel coordinates plot of 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2427 potential trajectories for the readjustment of the single disrupted trajectory (𝛼 = 0.70, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035), after the verification with the COSI6 code

Figure 4 . 25 :

 425 Figure 4.25: Pair plots of the levers 𝛽, 𝛾 and 𝑇 𝑐 of 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2427 potential trajectories for the readjustment of the single disrupted trajectory (𝛼 = 0.70, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035), after the verification with the COSI6 code
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 426427428429430 Figure 4.26: Evolution of total electricity production in different reactor types for valid readjusted trajectory (𝛼 = 0.70, 𝛽 = 0.59, 𝛾 = 0.50, 𝑇 𝑐 = 2052)

Figure 4 .

 4 32 (b) indicates the frontiers of the readjustment interval of 𝛾 value as a function of the disrupted 𝛼 value. As an argument, Figure 4.25 shows different successful readjustments for the invalid non-resistant disrupted trajectory with 𝛼 = 0.70 and the variation range of different possible 𝛾 values given in Figure 4.25 corresponds to the interval indicated by Figure 4.32 (b)

Figure 4 . 31 :Figure 4 . 32 :

 431432 Figure 4.31: Parallel coordinates plot of the valid readjusted trajectories found with preferences P1 and P2 corresponding to 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid non-resistant disrupted trajectories in section 4.1.5.1, after the verification with COSI6

Figure 4 .Figure 4 . 33 :

 4433 Figure 4.33: Resistance and resilience of prior trajectory (𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 1.0, 𝑇 𝑐 = 2035) versus disruption of 𝛼

  (𝜷, 𝜸, 𝑻 𝒄 )) (Initial value) 𝛼 = 1.0 𝛼 = 0.85 𝛼 = 0.70

Figure 4 . 34 :

 434 Figure 4.34: Assumption of total electricity production in scenario problem B

Figure 4 . 35 :

 435 Figure 4.35: Assumptions of annual electricity production from MOX fuel in scenario problem B

Figure 4 . 36 :

 436 Figure 4.36: New fuel cycle strategy assumed to be applied in the future in scenario problem B

Figure 4 . 37 :

 437 Figure 4.37: Assumptions on reprocessing capacity in scenario problem B

  Dilution strategybeginning of the prospective simulation (2019) to the end of the prospective simulation (2080), and their initial values in 2019 are used throughout the simulation;• the dilution strategy is applied following the operation of the new reprocessing plant in the year 𝑇 𝑅 = 2035; • the mass ratio of the spent once-though MOX fuel in the reprocessed spent (UOX + MOX) fuel mixture is set as 𝜀 = 1.0%; • the reprocessing capacity stays constant during scenario simulation, and its initial value in 2019 is used.

  1.00 (𝐶1 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑖𝑛𝑃𝑢 = 10.82 tons > 5 tons (𝐶2 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢 = 20.83 tons < 55 tons (𝐶3 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 11.27% < 12% (𝐶4 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 𝐼 𝑀𝑎𝑥𝑆𝐹 = 15152 tHM < 24000 tHM (𝐶5 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) Eq. (4-12) The prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) is valid as the five constraints are all satisfied.
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 438439 Figure 4.38: Evolution of plutonium inventory in separated stockpile for the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035)

Figure 4 . 41 :Figure 4 .

 4414 Figure 4.41: Parallel coordinates plot of the 3000 observations obtained with the random sampling method in scenario problem B

Figure 4 . 42 :Figure 4 . 43 :

 442443 Figure 4.42: Stacked histograms of the five constraint indicators for 4000 observations obtained with the multi-constraint SUR algorithm in scenario problem B

Figure 4 . 44 :

 444 Figure 4.44: Pair plot of 𝜀 and 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 for the trajectories with 𝜀 > 4% among the observations found by the random sampling method in section 4.2.4.1

4. 2 . 5 . 1 study 4 . 2 . 5 . 1 . 1

 25142511 Resistance Impact of disruption on the validityAs a first step, we study the resistance of the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) against the disruption of 𝛼 and 𝑇 𝐸 as shown in Figure4.34.

Figure 4 .

 4 Figure 4.46 is the parallel coordinates plot of 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 = 500 disrupted trajectories derived from the valid prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035). According to the simulation results from Figure 4.45 and Figure 4.46, after the disruption of the couple (𝛼, 𝑇 𝐸 ), 𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 305 out of 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 disrupted trajectories stay valid, which have 𝛼 values variating from 0.80 to 1.0. However, the remaining 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 𝑁 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 -𝑁 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 195 disrupted trajectories are invalid, with a 𝛼 value changing from 0.7 to 0.85. The resistance strategy, in which the prior trajectory stays valid without taking any exogenous readjustments under the impact of disruption, does not suffice to face a strong disruption.

Figure 4 . 45 :Figure 4 . 46 : 4 . 2 . 5 . 1 . 2

 44544642512 Figure 4.45: Impact of disruption of (𝛼, 𝑇 𝐸 ) on validity of the prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035)

Figure 4 . 47 : 7 ,Figure 4 . 48 : 7 ,

 44774487 Figure 4.47: Impact of disruptions of 𝛼 and 𝑇 𝐸 on the evolution of electricity production

Figure 4 . 49 :

 449 Figure 4.49: Impact of disruptions of 𝛼 and 𝑇 𝐸 on the average lifespans of the 58 currently existing PWR

Figure 4 .

 4 50 (a) andFigure 4.51 (a): trajectory with (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035); • Figure 4.50 (b) and Figure 4.51 (b): trajectory with (𝛼 = 0.85, 𝑇 𝐸 = 2025, 𝛽 = 1.0, 𝑇 𝑀 = 2035).

Figure 4 . 50 :Figure 4 . 51 :

 450451 Figure 4.50: Evolutions of electricity production from MOX fuel for trajectory (a): (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035) and trajectory (b): (𝛼 = 0.85, 𝑇 𝐸 = 2025, 𝛽 = 1.0, 𝑇 𝑀 = 2035)

Figure 4 . 52 :

 452 Figure 4.52: Inventory of spent UOX fuel for disrupted trajectory (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035)

Figure 4 .

 4 Figure 4.53 is generated with the validity probabilities 𝑝 𝑛 𝐵 of the 𝑁 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 sampled candidate trajectories: in each subfigure of Figure 4.53, (1) we first divide the whole input space into 30×30 bins; (2) then, we calculate the average validity probability of the sampled candidate trajectories in each bin; (3) finally, we draw the heatmap according to the average validity probability per bin.

Figure 4 .

 4 Figure 4.53 is obtained by application of the validity estimator 𝑝 𝑛 𝐵 , without calling the scenario model. It shows the validity probability distribution in the input space of the levers (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) when readjusting the disrupted trajectory (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035).

Figure 4 .

 4 Figure 4.54 shows the pair plots of the levers (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) of the 𝑁 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 2278 potential trajectories after the verification with the COSI6 code. We observe that the distribution of the valid trajectories in Figure4.54 is consistent with the validity probability in Figure4.53. Such conformity proves that the validity estimator 𝑝 𝑛 𝐵 can estimate the valid input space of the levers. In Figure4.53, we notice that the values of average validity probabilities are generally small. The validity estimator 𝑝 𝑛 𝐵 estimates that the valid trajectories are sparsely distributed in each 2D bin of each subfigure in Figure4.53.

Figure 4 .

 4 Figure 4.53 reveals the global behavior of the modeled system when readjusting the disrupted trajectory. By analyzing the validity estimator 𝑝 𝑛 𝐵 , we can not only obtain examples of valid readjustments, but also understand the relations among the levers. Using Figure 4.53, we summarize the advice for the readjustments of the chosen disrupted trajectory and provide the helps for the decision-making:

Figure 4 .Figure 4 . 53 ( 2 / 2 ):Figure 4 .Figure 4 . 54 ( 2 / 2 ):

 445322445422 Figure 4.53 (1/2): Validity probability distribution in the input space of the levers (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) when readjusting the disrupted trajectory (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035)

Figure 4 . 55 :Figure 4 . 56 :Figure 4 . 57 :Figure 4 . 58 :Figure 4 . 59 : 4 . 2 . 5 . 2 . 2

 45545645745845942522 Figure 4.55: Evolution of electricity production in different reactor types for valid readjusted trajectory (𝛼 = 0.7, 𝑇 𝐸 = 2030, 𝛽 = 0.56, 𝑇 𝑀 = 2036, 𝛾 = 0.64, 𝜀 = 0.72%, 𝑇 𝑅 = 2033)

Figure 4 . 60 :

 460 Figure 4.60: Parallel coordinates plot of the valid readjusted trajectories found with preferences P1 and P2 corresponding to 𝑁 𝑛𝑜𝑛-𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 invalid non-resistant disrupted trajectories in section 4.2.5.1.1, after the posterior verification with COSI6

Figure 4 . 61 :

 461 Figure 4.61: Resistance and resilience of prior trajectory (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) against disruption of 𝛼 and 𝑇 𝐸

Figure A. 1 :

 1 Figure A.1: Example to help understanding the relation between the input parameter domain of valid trajectories 𝛺 * and the set 𝛺 𝑗 * .

  𝑛 𝑗 ) in Eq. (A-28) is the estimation value of 𝛽 * (the volume of the input parameter domain of valid trajectories 𝛺 * ) when knowing the set 𝛺 𝑗 * and the observations 𝒜 𝑛 𝑗 . 𝑉𝑎𝑟(𝛽|𝒜 𝑛 𝑗 ) in Eq. (A-29) quantifies the uncertainty about the input parameter domain of valid trajectories 𝛺 * when knowing the set 𝛺 𝑗 * and the observations 𝒜 𝑛 𝑗 . For simplification, let's denote: ℋ 𝛺 𝑗 insides the set 𝛺 𝑗 * when knowing the observations 𝒜 𝑛 𝑗 . An example derived from Figure A.1 is given in Figure A.2 to help understanding the term ℋ 𝛺 𝑗 * ,𝒜 𝑛 𝑗 .

Figure A. 2 :

 2 Figure A.2: Example derived from Figure A.1 to help understanding the term ℋ 𝛺 𝑗 * ,𝒜 𝑛 𝑗

Figure A. 3 :

 3 Figure A.3: Form of two-dimension Rastrigin function with 𝑥 ′ , 𝑥 ′ ′ ∈ (-2; 2)
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 45662 Figure A.4: Initial design of experiments for multi-constraint SUR algorithm

  Avec la terminologie dé finie, nous avons formalisé le problè me du sujet. Dans l'é tude de scé narios é lectronuclé aires, notre objectif est de faire la projection d'une straté gie de dé veloppement d'inté rê t et d'é tudier son impact sur le systè me du cycle du combustible nuclé aire é tudié à l'avenir. En tant que ré sultat principal de l'é tude de scé narios é lectronuclé aires, les chercheurs donnent une trajectoire (courbe verte dans Figure C.1) pour repré senter le dé veloppement prospectif possible du systè me du cycle du combustible nuclé aire avec la straté gie de dé veloppement é tudié e. La construction de cette trajectoire souvent se base sur un ensemble de contraintes (lignes orange en pointillé dans Figure C.1) qui repré sentent les limites industrielles ou les considé rations des dé cideurs. Cette trajectoire est valide, car elle satisfait toutes les contraintes à la fois. La validité de la trajectoire peut ê tre exprimé e comme suivant : (𝒮): { ∀𝑗 ∈ [1, 𝑀], 𝐼 𝑗 (𝒙) < 𝑇 𝑗 𝑤𝑖𝑡ℎ 𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 Eq. (C-1) où :

Figure C. 1 :

 1 Figure C.1 : Formalisation du problè me

C. 2 . 4

 24 Straté gies d'adaptation à la disruptionPour faire face à l'impact des disruptions causées par des incertitudes profondes sur une trajectoire donnée, nous proposons trois stratégies d'adaptation dans ce travail :

C. 2 . 5

 25 Etude de ré silienceC.2.5.1 Cadre d'analyse de ré silienceBasé sur l'idé e de la straté gie d'adaptation de ré silience, nous avons construit un cadre d'analyse de ré silience. Plus pré cisé ment, avec ce cadre, nous visons à é valuer la ré silience d'une trajectoire pré alable supposé e donné e par une é tude de scé narios é lectronuclé aires.

Figure C. 2 :

 2 Figure C.2 : Cadre d'analyse de ré silience
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Introduction 1.1 Nuclear fuel cycle scenarios 1.1.1 Need of nuclear fuel cycle scenarios

  

  The last two assumptions are respectively about the mean function of the random variable field 𝜉 and the property of the Kriging covariance function. According to different assumptions on the mean function and the property of the Kriging covariance function, one can obtain different types of Kriging models, such as the Simple Kriging, the Ordinary Kriging, the Universal Kriging, etc. In our study, we choose to use the Simple Kriging, which is the simplest among the three mentioned models.

	𝝀(𝒙): 𝑚𝑖𝑛 𝝀(𝒙)	( 𝑉𝑎𝑟(𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀))	Eq. (3-5)
	with 𝑉𝑎𝑟(𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀) ≔ 𝐶𝑜𝑣(𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀, 𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀). For 𝝀(𝒙) satisfying Eq.
	(3-4) and Eq. (3-5), 𝑠 𝑛 2 (𝒙) ≔ 𝑚𝑖𝑛 𝝀(𝒙)	( 𝑉𝑎𝑟(𝜉(𝒙) -𝝀(𝒙) 𝑇 𝒀)) and 𝑘 𝑛 (𝒙, 𝒙 ′ ) ≔ 𝐶𝑜𝑣(𝜉(𝒙) -
	𝝀(𝒙) 𝑇 𝒀, 𝜉(𝒙 ′ ) -𝝀(𝒙 ′ ) 𝑇 𝒀) are respectively called "Kriging variance" and "Kriging
	covariance".		

is the covariance function of the conditional Gaussian process with observations 𝒚 from the spatial locations (𝒙 𝟏 , …, 𝒙 𝐧 ). In the settings of the conditional Gaussian process described above, 𝑚 𝐺𝑃 and 𝑘 𝐺𝑃 are respectively called prior mean function and prior covariance function of the Gaussian process

  According to the work of[START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF], a Gaussian process 𝒢~𝐺𝑃(𝑚 𝐺𝑃 , 𝑘 𝐺𝑃 ) conditioned on a set of 𝑛 > 0 observations (or realizations) (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 )) from the spatial locations (𝒙 𝟏 , …, 𝒙 𝐧 ) ∈ 𝕏 𝑛 is still a Gaussian process with a different mean function and covariance.

			More precisely,
	one has:	
		(𝒢|𝒀 = 𝒚)~𝐺𝑃(𝑚 𝑛 𝐺𝑃 , 𝑘 𝑛 𝐺𝑃 )	Eq. (3-16)
	with	
	∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑚 𝑛 𝐺𝑃 (𝒙) ≔ 𝔼(𝒢(𝒙)|𝒀 = 𝒚)
		= 𝑚 𝐺𝑃 (𝒙) + 𝒌 𝑮𝑷 (𝒙) 𝑇 (𝐾 𝐺𝑃 ) -1 (𝒚 -𝒎 𝑮𝑷 (𝒙 𝒏 )) Eq. (3-17)
	∀(𝒙, 𝒙 ′ ) ∈ 𝕏 𝟐 ⊂ ℝ 2𝑁 , 𝑘 𝑛 𝐺𝑃 (𝒙, 𝒙 ′ ) ≔ 𝐶𝑜𝑣(𝒢(𝒙), 𝒢(𝒙 ′ )|𝒀 = 𝒚)
		= 𝑘 𝐺𝑃 ( 𝒙, 𝒙 ′ ) -𝒌 𝑮𝑷 (𝒙) 𝑇 (𝐾 𝐺𝑃 ) -1 𝒌 𝑮𝑷 ( 𝒙 ′ ) Eq. (3-18)
	where:	
	• 𝒀 ≔ (𝒢(𝒙 1 ), … , 𝒢(𝒙 𝑛 )) 𝑇
	• 𝒚 ≔ (𝐼(𝒙 1 ), … , 𝐼(𝒙 𝑛 ))	𝑇 is a vector composed of the observations from the spatial
	locations (𝒙 𝟏 , …, 𝒙 𝐧 ), i.e., the realizations of the random variables (𝒢(𝒙 1 ), … , 𝒢(𝒙 𝑛 ));
	• 𝒎 𝑮𝑷 (𝒙 𝒏 ) ≔ (𝑚 𝐺𝑃 (𝒙 1 ), … , 𝑚 𝐺𝑃 (𝒙 𝑛 )) 𝑇 ;
	• 𝒌 𝑮𝑷 (𝒙) ≔ (𝑘 𝐺𝑃 (𝒙, 𝒙 1 ), … , 𝑘 𝐺𝑃 (𝒙, 𝒙 𝑛 )) 𝑇 with (𝒙 𝒊 ) 1≤𝑖≤𝑛 the spatial locations of
	observations;	
	• 𝐾 𝐺𝑃 is the covariance matrix between the observations (i.e. 𝐾 𝐺𝑃	𝑖𝑗 ≔ 𝑘 𝐺𝑃 (𝒙 𝑖 , 𝒙 𝑗 ) with
	1 ≤ 𝑖, 𝑗 ≤ 𝑛);	
	• 𝑚 𝑛 𝐺𝑃 (•) = 𝔼(𝒢(•)|𝒀 = 𝒚) is the mean function of the conditional Gaussian process with
	observations 𝒚 from the spatial locations (𝒙 𝟏 , …, 𝒙 𝐧 );
	(•) and covariance function (or Eq. (3-12) 𝐺𝑃 (•,•) = 𝐶𝑜𝑣(𝒢(•), 𝒢(•)|𝒀 = 𝒚) , kernel) 𝑘 𝐺𝑃 (•,•): ∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑚 𝐺𝑃 (𝒙) ≔ 𝔼(𝒢(𝒙)) • 𝑘 𝑛
	∀(𝒙, 𝒙 ′ ) ∈ 𝕏 𝟐 ⊂ ℝ 2𝑁 , 𝑘 𝐺𝑃 (𝒙, 𝒙 ′ ) ≔ 𝐶𝑜𝑣(𝒢(𝒙), 𝒢(𝒙 ′ )) 𝐺𝑃 and 𝑘 𝑛 while 𝑚 𝑛 𝐺𝑃 are correspondingly named as posterior mean function and posterior Eq. (3-13) covariance function of the Gaussian process conditioned on observations.
	One can usually write as 𝒢~𝐺𝑃(𝑚 𝐺𝑃 (•), 𝑘 𝐺𝑃 (•,•)) or even sometimes 𝒢~𝐺𝑃(𝑚 𝐺𝑃 , 𝑘 𝐺𝑃 ) in the case without ambiguity that 𝑚 𝐺𝑃 and 𝑘 𝐺𝑃 are functions. Especially, one has: Especially, one has:
	∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑠 𝐺𝑃 2 (𝒙) ≔ 𝑘 𝐺𝑃 (𝒙, 𝒙) ≔ 𝐶𝑜𝑣(𝒢(𝒙), 𝒢(𝒙)) ∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝑠 𝐺𝑃,𝑛 2 (𝒙) ≔ 𝑘 𝑛 𝐺𝑃 (𝒙, 𝒙)	Eq. (3-14)
	with 𝑠 𝐺𝑃 2 (•) called the Gaussian process variance function. = 𝑘 𝐺𝑃 ( 𝒙, 𝒙) -𝒌 𝑮𝑷 (𝒙) 𝑇 (𝐾 𝐺𝑃 ) -1 𝒌 𝑮𝑷 ( 𝒙)	Eq. (3-19)
	with 𝑠 𝐺𝑃,𝑛 2 According to the definition of Gaussian process, one has: (•) called the posterior variance function of the Gaussian process conditioned on observations.
	∀𝒙 ∈ 𝕏 ⊂ ℝ 𝑁 , 𝒢(𝒙)~𝒩(𝑚 𝐺𝑃 (𝒙), 𝑠 𝐺𝑃 2 (𝒙))	Eq. (3-15)
	where 𝒩(•,•) is the notation of Gaussian distribution (or normal distribution). For a given
	spatial location 𝒙, the random variable 𝒢(𝒙) follows a Gaussian distribution with a mean and a
	variance respectively equal to 𝑚 𝐺𝑃 (𝒙) and 𝑠 𝐺𝑃 2 (𝒙).

  𝒜 𝑛+𝑞 (𝒙) ≔ ℙ (𝜉 𝑗 (𝒙) < 𝑇 𝑗 |𝒜 𝑛 , (𝜉 𝑗 (𝒙 𝑛+1 ), … , 𝜉 𝑗 (𝒙 𝑛+𝑞 ))) Eq. is the excursion probability corresponding to the constraint 𝐼 𝑗 (𝒙) < 𝑇 𝑗 when knowing 𝒜 𝑛 and (𝜉 𝑗 (𝒙 𝑛+𝑘 )~𝒩 (𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+𝑘 ), 𝑠 𝑗,𝒜 𝑛 𝑀 𝑗,𝒜 𝑛+𝑞 (𝒙) and 𝑠 𝑗,𝒜 𝑛+𝑞 (𝒙) are given as follows through the Kriging update formulas Eq. 𝒎 𝒋,𝓐 𝒏 (𝒙 𝒏𝒆𝒘 ) ≔ (𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+1 ), … , 𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+𝑞 )) 𝑇 .One can notice that 𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙) in Eq. and 𝑀 𝑗,𝒜 𝑛+𝑞 (𝒙) in Eq. are random variables as (𝜉 𝑗 (𝒙 𝑛+𝑘 )~𝒩 (𝑚 𝑗,𝒜 𝑛 (𝒙 𝑛+𝑘 ), 𝑠 𝑗,𝒜 𝑛

	By Eq. (3-24), Eq. (3-43) becomes:		
	𝑝 𝑗,𝒜 𝑛+𝑞 (𝒙) = Φ (	𝑇-𝑀 𝑗,𝒜 𝑛+𝑞 (𝒙) 𝑠 𝑗,𝒜 𝑛+𝑞 (𝒙) )	Eq. (3-44)
	where		

2

(𝒙 𝑛+𝑘 ))) 1≤𝑘≤𝑞 (due to the Gaussian process assumption).

[START_REF]Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), "Energy concept for an environmentally sound, reliable and affordable energy supply[END_REF][START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF][START_REF]Nuclear is part of the solution for fighting climate change[END_REF][START_REF]Climate Change and Nuclear Power 2014[END_REF](8)[START_REF] Thiolliè Re | From neutronics to nuclear scenarios -Joliot-Curie School[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF][START_REF] Martin | French Transition Scenarios Toward a Symbiotic Nuclear Fleet[END_REF][START_REF] Martin | Symbiotic equilibrium between Sodium Fast Reactors and Pressurized Water Reactors supplied with MOX fuel[END_REF][START_REF]Peut-on prendre le risque de ne pas renouveler le parc nucléaire français ?[END_REF][START_REF]Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes[END_REF][START_REF] Coquelet-Pascal | COSI6: A Tool for Nuclear Transition Scenario Studies and Application to SFR Deployment Scenarios with Minor Actinide Transmutation[END_REF][START_REF] Krivtchik | Analysis of uncertainty propagation in nuclear fuel cycle scenarios[END_REF][START_REF] Coquelet-Pascal | Comparison of different scenarios for the deployment of fast reactors in france -results obtained with COSI[END_REF][START_REF]The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies[END_REF][START_REF] Marchau | Decision Making under Deep Uncertainty[END_REF][START_REF] Wikipedia | Uncertainty[END_REF][START_REF] Funtowicz | Uncertainty and quality in science for policy[END_REF] 

and Eq. (3-23): 𝑀 𝑗,𝒜 𝑛+𝑞 (𝒙) = 𝑚 𝑗,𝒜 𝑛 (𝒙) + 𝒌 𝒋,𝓐 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) 𝑇 𝐾 𝑗,𝒜 𝑛 ,𝑛𝑒𝑤 -1 (𝒀 𝒋,𝒏𝒆𝒘 -𝒎 𝒋,𝓐 𝒏 (𝒙 𝒏𝒆𝒘 ))Eq. (3-45) 𝑠 𝑗,𝒜 𝑛+𝑞 2 (𝒙) = 𝑠 𝑗,𝒜 𝑛 2 ( 𝒙) -𝒌 𝒋,𝓐 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) 𝑇 𝐾 𝑗,𝒜 𝑛 ,𝑛𝑒𝑤 -1 𝒌 𝒋,𝓐 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) Eq. (3-46) with: • 𝒀 𝒋,𝒏𝒆𝒘 ≔ (𝜉 𝑗 (𝒙 𝑛+1 ), … , 𝜉 𝑗 (𝒙 𝑛+𝑞 )) 𝑇 ; • 𝒌 𝒋,𝓐 𝒏 (𝒙, 𝒙 𝒏𝒆𝒘 ) ≔ (𝑘 𝑗,𝒜 𝑛 (𝒙, 𝒙 𝑛+1 ), … , 𝑘 𝑗,𝒜 𝑛 (𝒙, 𝒙 𝑛+𝑞 )) 𝑇 ; • 𝐾 𝑗,𝒜 𝑛 ,𝑛𝑒𝑤 ≔ [𝑘 𝑗,𝒜 𝑛 (𝒙 𝒏+𝒊 , 𝒙 𝒏+𝒋 )] 1≤𝑖,𝑗≤𝑞 the covariance matrix between the 𝑞 new observations given by the Gaussian process covariance function conditioned on the 𝑛 old observations 𝒜 𝑛 ; • 2 (𝒙 𝑛+𝑘 ))) 1≤𝑘≤𝑞

  .1, the disrupted values of the uncontrolled parameters are denoted as 𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 . Under the impact of the disruption, if the prior trajectory is not resistant, then the disrupted trajectory (𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) is invalid 8 . In other words, one or several constraints are violated for the disrupted trajectory, and there exists at least one 1 ≤ 𝑗 ≤ 𝑀 such that 𝐼 𝑗 (𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) > 𝑇 𝑗 (see ② in Figure3.1). If the prior trajectory is resilient, one can make the invalid disrupted trajectory valid again by changing the levers. To find the appropriate readjusted values of the levers, one can sample the values of the levers on their respective ranges to propose a great number 𝐺 of trajectories {(𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒓𝒆𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

	𝒊	)} 1≤𝑖≤𝐺

Table 4 . 1 :

 41 Characteristics of simulated reactors[START_REF] Tiphine | Simulations of progressive potential scenarios of Pu multi-recycling in SFR and associated phase-out in the French nuclear power fleet[END_REF][START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF] Histogram of commissioning dates for 58 existing French PWR During the first years after commissioning, the PWRs are only loaded with UOX fuels. From 1989 on, certain PWR of the 900 MWe class gradually becomes (30% MOX + 70% UOX)fueled ones. The schedule to load the first MOX fuel batch of each PWR can be found in[START_REF] Courtin | Etude de l'incinération du plutonium en REP MOX sur support d'uranium enrichi avec le code de simulation dynamique du cycle CLASS[END_REF]. Until 2019, 22 PWR of 900 MWe class are partially MOXed (30% of MOX fuel / 70% of UOX fuel). The history of the utilization of ERU fuel between 1994 and 2013 is not simulated in the model for the sake of simplification, and one uses UOX fuel to replace the ERU fuel.

	Reactor type	PWR 900 MWe 1300 MWe 1450 MWe	EPR/Gen-III reactor
	Power (MWth)	2800	3800	4300	4500
	Power (MWe)	900	1300	1450	1530
	Net yield (%)	32.1	34.2	33.7	34.0
	Load factor (%)	75.2	75.2	75.2	83.0
	Mass in core (tHM)	72.5	104	110	120
	Irradiation time (EFPD)	3×423	3×410.5	3×392.2	3×460
	Average burnup (GWd/tHM)	49	45	46	51.8

Table 4 . 2 :

 42 Input parameter space

	Paramet er	Meaning	Variation range Minimum Maximum
	𝛼	Ratio of total electricity production after and before reduction	0.7	1.0
	𝛽	Ratio of electricity production from MOX fuel after and before reduction	0.0	1.0
	𝛾	Ratio of reprocessing capacity after and before reduction	0.0	1.0
	𝑇 𝑐	Time to start reduction of reprocessing capacity	2023	2060

Table 4 . 3 :

 43 Division of the whole variation range of (𝛼, 𝛽, 𝛾, 𝑇 𝑐 ) into 8 subspace

	Subspace	𝛼		𝛽		𝛾		𝑇 𝑐	
		Min	Max	Min	Max	Min	Max	Min	Max
	1	0.70	0.85	0.00	0.50	0.00	0.50	2023	2060
	2	0.70	0.85	0.00	0.50	0.50	1.00	2023	2060
	3	0.70	0.85	0.50	1.00	0.00	0.50	2023	2060
	4	0.70	0.85	0.50	1.00	0.50	1.00	2023	2060
	5	0.85	1.00	0.00	0.50	0.00	0.50	2023	2060
	6	0.85	1.00	0.00	0.50	0.50	1.00	2023	2060
	7	0.85	1.00	0.50	1.00	0.00	0.50	2023	2060
	8	0.85	1.00	0.50	1.00	0.50	1.00	2023	2060

Table 4 . 5 :

 45 Division of the whole variation range of (𝛼, 𝑇 𝐸 , 𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) into 8 subspace

	Subspace	𝛼	𝑇 𝐸	𝛽		𝑇 𝑀	𝛾	𝜀	𝑇 𝑅
		Min Max Min	Max	Min	Max	Min	Max Min Max Min Max Min	Max
	1	0.70 0.85 2023 2035 0.00	0.50 2035 2055 0.00 0.50	0% 10% 2030 2060
	2	0.70 0.85 2023 2035 0.00	0.50 2035 2055 0.50 1.00	0% 10% 2030 2060
	3	0.70 0.85 2023 2035 0.50	1.00 2035 2055 0.00 0.50	0% 10% 2030 2060
	4	0.70 0.85 2023 2035 0.50	1.00 2035 2055 0.50 1.00	0% 10% 2030 2060
	5	0.85 1.00 2023 2035 0.00	0.50 2035 2055 0.00 0.50	0% 10% 2030 2060
	6	0.85 1.00 2023 2035 0.00	0.50 2035 2055 0.50 1.00	0% 10% 2030 2060
	7	0.85 1.00 2023 2035 0.50	1.00 2035 2055 0.00 0.50	0% 10% 2030 2060
	8	0.85 1.00 2023 2035 0.00	0.50 2035 2055 0.00 0.50	0% 10% 2030 2060

  As (𝜉 𝑗 ) 1≤𝑗≤𝑀 are the random variable fields, the set 𝛺 is random. 𝛺 is the counterpart of the input parameter domain of valid trajectories 𝛺 * in probability space. Correspondingly, the volume of 𝛺, denoted as 𝛽, is a random variable and counter part of 𝛽 * in probability space. Mathematically, one has by definition:𝛽 ≔ ℙ 𝕏 (𝛺) = ∫ 𝕏 𝟙 (𝒙∈𝛺) 𝑑ℙ 𝕏 (𝒙) = ∫ 𝕏 ∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 )function of the set 𝛺. Eq. (A-7) results from the mutual independence among (𝜉 𝑗 ) 1≤𝑗≤𝑀 . As (𝜉 𝑗 ) 1≤𝑗≤𝑀 are random variable fields, (𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) )The third equality in Eq. (A-9) is obtained by the mutual independence among (𝜉 𝑗 ) 1≤𝑗≤𝑀 . In the case where 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛 are obtained, Eq. (A-8) and Eq. (A-9) become: Eq. (A-10) and Eq. (A-11) result from the Gaussian process assumption and the assumption that (𝜉 𝑗 ) 1≤𝑗≤𝑀 are the random variable fields considered in the Kriging context.Recalling that 𝐼 𝑗 (𝒙) is a realization (or observation) of 𝜉 𝑗 (𝒙) for a given 𝒙 ∈ 𝕏 and 1 ≤ 𝑗 ≤ 𝑀, we indicate that 𝔼(𝛽|𝒜 𝑛 ) in Eq. (A-11) is the estimated value of 𝛽 * when knowing the 𝑛 observations 𝒜 𝑛 = (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛 . Correspondingly, the conditional variance of 𝛽, i.e.:

		= ∫ 𝕏 ∏ ℙ(𝜉 𝑗 (𝒙) < 𝑇 𝑗 ) 𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙)	Eq. (A-9)
		∀𝑗 ∈ [1, 𝑀], ∀𝒙 ∈ 𝕏,
	𝔼 (𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) |𝒜 𝑛 ) = ℙ(𝜉 𝑗 (𝒙) < 𝑇 𝑗 |𝒜 𝑛 ) = 𝑝 𝑗,𝒜 𝑛 (𝒙)	Eq. (A-10)
	Form I 𝔼(𝛽|𝒜 𝑛 ) = ∫ 𝕏 ∏ ℙ(𝜉 𝑗 (𝒙) < 𝑇 𝑗 |𝒜 𝑛 ) 𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙)
	A.2.1.1 Deduction	= ∫ 𝕏 ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙)	Eq. (A-11)
	Let's consider the set defined as:		
		𝛺 ≔ ⋂ {𝒙 ∈ 𝕏 ∶ 𝜉 𝑗 (𝒙) < 𝑇 𝑗 } 𝑀 𝑗=1	Eq. (A-4)
					𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙)	Eq. (A-5)
	where			
	∀𝑗 ∈ [1, 𝑀], ∀𝒙 ∈ 𝕏, 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) ≔ { 1, 𝑖𝑓 𝜉 𝑗 (𝒙) < 𝑇 𝑗 0, 𝑖𝑓 𝜉 𝑗 (𝒙) ≥ 𝑇 𝑗 𝑉𝑎𝑟(𝛽|𝒜 𝑛 ) = 𝔼 ((𝛽 -𝔼(𝛽|𝒜 𝑛 )) 2 |𝒜 𝑛 )	Eq. (A-6)
	are the characteristic functions corresponding to (𝜉 𝑗 (•) < 𝑇 𝑗 ) 1≤𝑗≤𝑀 = 𝔼 ((∫ 𝕏 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 ) 𝑑ℙ 𝕏 (𝒙)) and	2	|𝒜 𝑛 )
	∀𝒙 ∈ 𝕏, 𝟙 (𝒙∈𝛺) ≔ { 1, 𝑖𝑓 𝒙 ∈ 𝛺 0, 𝑖𝑓 𝒙 ∉ 𝛺 ≤ 𝔼 (∫ 𝕏 1 2 𝑑ℙ 𝕏 (𝒙) • ∫ 𝕏 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) = ∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1 𝑀 𝑗=1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	) 2	Eq. (A-7) 𝑑ℙ 𝕏 (𝒙)|𝒜 𝑛 )
	is the characteristic 1≤𝑗≤𝑀 = ℙ 𝕏 (𝕏) • 𝔼 (∫ 𝕏 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 ) 2 𝑑ℙ 𝕏 (𝒙)|𝒜 𝑛 ) are random
	variables with each 𝒙 ∈ 𝕏, and one has: = ℙ 𝕏 (𝕏) • ∫ 𝕏 𝔼 ((∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	-∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	) 2	|𝒜 𝑛 ) 𝑑ℙ 𝕏 (𝒙)
	∀𝑗 ∈ [1, 𝑀], ∀𝒙 ∈ 𝕏, 𝔼 (𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) ) = ℙ(𝜉 𝑗 (𝒙) < 𝑇 𝑗 ) = ℙ 𝕏 (𝕏) • ∫ 𝕏 ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 • (1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	Eq. (A-8)
	Combining Eq. (A-5) and Eq. (A-8), we have:		
		𝔼(𝛽) = 𝔼 (∫ 𝕏 ∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙))
		= ∫ 𝕏 𝔼 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	) 𝑑ℙ 𝕏 (𝒙)
		= ∫ 𝕏 ∏ 𝔼 (𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) ) 𝑀 𝑗=1	𝑑ℙ 𝕏 (𝒙)

𝑉𝑎𝑟(𝛽|𝒜

𝑛 ) = 𝔼 ((𝛽 -𝔼(𝛽|𝒜 𝑛 )) 2 |𝒜 𝑛 ) Eq. (A-12)

quantifies the uncertainty of 𝔼(𝛽|𝒜 𝑛 ). In another word, 𝑉𝑎𝑟(𝛽|𝒜 𝑛 ) evaluate the quality of the estimation result of 𝛽 * . With Eq. (A-5), Eq. (A-11) and Eq. (A-12), we have:

  The last equality results from: By Eq. (A-13), it is proven that 𝑉𝑎𝑟(𝛽|𝒜 𝑛 ), the uncertainty of the estimated value of 𝛽 * when knowing the observations 𝒜 𝑛 , is dominated by the term ∫ 𝕏 ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) As the term ∫ 𝕏 ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑉𝑎𝑟(𝛽|𝒜 𝑛 ) decreases. It means that the term ∫ 𝕏 ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙)

	= 𝔼 ((∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	) 2	-2 • ∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	• ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	+ (∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	)	2 |𝒜 𝑛 )
	= 𝔼 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	-2 • ∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	• ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	+ (∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )	2 |𝒜 𝑛 )
	= 𝔼 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	|𝒜 𝑛 ) -2 • 𝔼 (∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	|𝒜 𝑛 ) • ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	+
	(∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )	2	
	= ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	-2 • (∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )	2 + (∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )	2
	= ∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	• (1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )		Eq. (A-14)
								𝑀 𝑗=1	• (1 -
	∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1 )𝑑ℙ 𝕏 (𝒙). 𝑀 𝑗=1	𝑀 𝑗=1	𝑀 𝑗=1 • (1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) • (1 -∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) )𝑑ℙ 𝕏 (𝒙) reduces, 𝑀 𝑗=1
	𝔼 ((∏ 𝟙 (𝜉 𝑗 (𝒙)<𝑇 𝑗 ) 𝑀 𝑗=1	-∏ 𝑝 𝑗,𝒜 𝑛 (𝒙) 𝑀 𝑗=1	) 2	|𝒜 𝑛 )

  𝓗 𝜴 𝟑 * ,𝓐 𝒏 𝟑We define the counterpart of 𝐽 ̌𝛺 * ,𝒜 𝑛 (𝒙 𝑛+1 ) in probability space, denoted as 𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 ) , such that: 𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 ) is a random variable as (𝜉 𝑙 (•)) 1≤𝑙≤𝑀 𝑙≠𝑗 are random variable fields. By Eq. (A-36), the conditional expectation of 𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 ) when knowing the observations ℬ 𝑛 ′ is as follows:𝔼(𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 )|ℬ 𝑛 ′ ) = 𝔼 (∑ 𝔼 (ℋ 𝛺 𝑗 ,𝒜 𝑛+1As 𝔼(𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 )|ℬ 𝑛 ′ ) in Eq. (A-39) depends on the two sets of observations 𝒜 𝑛 and ℬ 𝑛 ′ , we denote it as 𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 ) for simplification, i.e.,:

	𝐽 ̌𝛺,𝒜 𝑛 (𝒙 𝑛+1 )				
	≔ ∑ ∫ 𝛺 𝑗 𝑀 𝑗=1	Φ 2 ((	𝑎 𝑗 (𝒙) -𝑎 𝑗 (𝒙)	) , (	𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙)	1 -𝑐 𝑗 (𝒙) 𝑐 𝑗 (𝒙) )) 𝑑ℙ 𝕏 (𝒙)
	≔ ∑ ∫ 𝕏 Φ 2 (( -𝑎 𝑗 (𝒙) 𝑎 𝑗 (𝒙) ) , ( 𝑀 𝑗=1	𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙)	1 -𝑐 𝑗 (𝒙) 𝑐 𝑗 (𝒙)	)) • ∏ 𝟙 (𝜉 𝑙 (𝒙)<𝑇 𝑙 ) 𝑀 𝑙=1 𝑙≠𝑗	𝑑ℙ 𝕏 (𝒙)
	= ∑ 𝔼 (ℋ 𝛺 𝑗 ,𝒜 𝑛+1 𝑗 𝑀 𝑗=1	|𝒜 𝑛 𝑗 , 𝜉 𝑗 (𝒙 𝑛+1 ))	(see Eq. (A-35))
							Eq. (A-38)
	𝑀 𝑗=1				𝑗		|𝒜 𝑛 𝑗 , 𝜉 𝑗 (𝒙 𝑛+1 ))	|ℬ 𝑛 ′ )
	= ∑ 𝔼 (𝔼 (ℋ 𝛺 𝑗 ,𝒜 𝑛+1 𝑗 𝑀 𝑗=1	|𝒜 𝑛 𝑗 , 𝜉 𝑗 (𝒙 𝑛+1 )) |ℬ ̃𝑛′ 𝑗 )
	= ∑ ∫ 𝕏 Φ 2 (( 𝑀 𝑗=1	𝑎 𝑗 (𝒙) -𝑎 𝑗 (𝒙) ) , (	𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙)	1 -𝑐 𝑗 (𝒙) 𝑐 𝑗 (𝒙)	)) • ∏ 𝑝 𝑙,ℬ 𝑛 ′ (𝒙) 𝑀 𝑙=1 𝑙≠𝑗	𝑑ℙ 𝕏 (𝒙)
							Eq. (A-39)
	𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 ) ≔ ∑ ∫ 𝕏 Φ 2 (( 𝑀 𝑗=1	𝑎 𝑗 (𝒙) -𝑎 𝑗 (𝒙) ) , (	𝑐 𝑗 (𝒙) 1 -𝑐 𝑗 (𝒙)	1 -𝑐 𝑗 (𝒙) 𝑐 𝑗 (𝒙) )) • ∏ 𝑝 𝑙,ℬ 𝑛 ′ (𝒙) 𝑀 𝑙=1 𝑙≠𝑗	𝑑ℙ 𝕏 (𝒙)

  Trajectoire ré ajusté e valide 𝐼(𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕é , 𝑳 𝒓é𝒂𝒋𝒖𝒔𝒕é ) < 𝐼 𝑡 Ré gions valides 𝐼(𝑼, 𝑳) < 𝐼 𝑡 Mais à cause des incertitudes profondes, les paramè tres non-contrôlé s peuvent ê tre disrupté s et la trajectoire pré alable est expulsé e des espaces d'entré e valides, devenant ainsi une trajectoire disrupté e invalide (𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕é , 𝑳 𝒑𝒓é𝒂𝒍𝒂𝒃𝒍𝒆 ) (repré senté e par le point rouge sur la Figure C.2) qui viole la contrainte. Afin de contrebalancer l'impact de la disruption, nous pouvons ré ajuster les valeurs des leviers ; toutefois, la valeur des paramè tres non-contrôlés, c'est-à -dire 𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕é , reste inchangé e. La dé monstration de ré silience de la trajectoire pré alable par rapport à ladite disruption est ré ussie si la trajectoire disrupté e est ramené e avec succè s dans un espace d'entré e valide, formant une trajectoire ré ajusté e valide (repré senté e par le point bleu sur la Figure C.2). Dans ce cas, la trajectoire pré alable (𝑼 𝒑𝒓é𝒂𝒍𝒂𝒃𝒍𝒆 , 𝑳 𝒑𝒓é𝒂𝒍𝒂𝒃𝒍𝒆 ) est ré siliente. Dans ce travail, nous avons mis en place le cadre d'analyse de ré silience avec l'algorithme SUR (Stepwise Uncertainty Reduction algorithm) et construit un sché ma d'é valuation de ré silience. Avec ce sché ma d'é valuation de ré silience, nous pouvons é valuer la ré silience d'une trajectoire donné e sous une disruption donné e et obtenir diffé rentes maniè res de ré ajustements des leviers dans un temps de calcul raisonnable. Afin de s'adapter à la caracté ristique de l'é tude de scé narios é lectronuclé aires, un algorithme SUR multi-contraintes est dé veloppé dans ce travail.

Based on the notions defined in section

2.6.1, we can further state the resistance as follows: for a given valid prior trajectory (𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) such that 𝐼(𝑼 𝒑𝒓𝒊𝒐𝒓 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) < 𝑇, it is resistant if one has 𝐼(𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) < 𝑇, i.e., the disrupted trajectory (𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) is still valid without the necessary to readjust the levers.

A realization of a random variable is a value that is actually observed.

In some research fields, especially in the geostatistics, one uses variogram instead of covariance function. Both can be used to describe the spatial relation of two observations. When considering the Simple Kriging or the Universal Kriging, which are two kinds of most common Kriging models, one can prove that the variogram and the covariance function are equivalent[START_REF] Lichtenstern | Kriging methods in spatial statistics[END_REF], and any one of them can be transferred into another one.

The discussion is also valid with the Universal Kriging settings[START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF].

A probability measure can be considered as the generalization of the concept of "geometric volume" in the probability space. One can find the detailed presentation of probability measure in[START_REF] Axler | Probability Measures[END_REF].

For the benefit brought to the improvement of the estimation result of 𝛼 * by adding a new observation at a given spatial location 𝒙 𝑛+1 when the observations 𝒜 𝑛 are already known, its exact expression is (𝑉𝑎𝑟 𝑛 (𝛼) -

On the contrary, if the prior trajectory is resistant, then the disrupted trajectory (𝑼 𝒅𝒊𝒔𝒓𝒖𝒑𝒕𝒆𝒅 , 𝑳 𝒑𝒓𝒊𝒐𝒓 ) is valid. In this case, one does not need to apply the resilience analysis, as the resilience strategy is a complementary approach when the resistance strategy does not work.

We decide to let the rules and drivers of the nuclear fleet evolution-driving model share the same serial numbers.

According to[START_REF]PRIS -Power Reactor Information System[END_REF], the Fessenheim-1 reactor has been permanently shut down since 22 February, 2020, and the French reactor fleet consists of 57 PWR after this date. However, we still count 58 PWR in this thesis, as most of our studies were made before this date.

Unlike the solution with the innovative fuel lattice designs, the times of recycling of the spent MOX fuel with the co-reprocessing strategy are still limited. Without introducing external fissile material in the fuel cycle chain, the global plutonium quality in the spent MOX fuel in the whole nuclear fuel cycle system decreases as the times of recycling increases.

In this study, we model 𝛼 and 𝑇 𝐸 as uniform distributions. This does not consistitute an hypothesis concerning the distribution PDF: it is only a technique used to generate the sampled disrupted trajectories covering the whole variation ranges of 𝛼 and 𝑇 𝐸 to map and partition the disruption against resislience. In industrial scenario study, the determination of the distribution of disrupted paramters should be a task of the decision-making process, beyond the physics study and requiring the cooperation of decision-makers and experts.

In our study, the indicator of constraint 𝐼 𝑀𝑖𝑛𝑃𝑢 can be negative. The negative 𝐼 𝑀𝑖𝑛𝑃𝑢 means the lack of plutonium in the separated stockpile to support the fabrication of fresh MOX fuel during the simulation. In this case, a fictive plutonium stockpile is supplied to complete the simulation.

We should be aware that as the reactors in our study are individually modeled, certain readjustments with the close values of (𝛽, 𝑇 𝑀 , 𝛾, 𝜀, 𝑇 𝑅 ) may correspond to the same evolution of the reactor fleet.
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Constraint C3 : The inventory of plutonium in the separated stockpile should be limited below a certain level. To quantify this constraint, we impose 𝐼 𝑀𝑎𝑥𝑃𝑢 < 55 tons with 𝐼 𝑀𝑎𝑥𝑃𝑢 the indicator of constraint constructed in Eq. .

Constraint C4:

The plutonium contents in fresh MOX fuels (whatever its isotopic composition) can never go beyond 12% during the simulation for safety reasons. To interpret this constraint quantitatively, we impose 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 < 12% where the definition of the indicator of constraint 𝐼 𝑀𝑎𝑥𝑃𝑢𝐶𝑜𝑛𝑡𝑒𝑛𝑡 is given in Eq. .

Constraint C5: The total spent fuel (MOX + UOX) inventory can never exceed 24000 tHM because of a limited spent fuel storage capacity. This constraint is quantified as 𝐼 𝑀𝑎𝑥𝑆𝐹 < 24000 tHM with the indicator of constraint 𝐼 𝑀𝑎𝑥𝑆𝐹 defined in Eq. [START_REF] Notter | Small country, big challenge: Switzerland's upcoming transition to sustainable energy[END_REF][START_REF]Nuclear energy: combating climate change[END_REF]. Note that in scenario problem B, the spent fuels include the spent UOX fuels, the once-through spent MOX fuels and the spent diluted spent MOX fuels. 

Prior trajectory

In scenario problem B, a prior trajectory is given a priori with characteristic parameters (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 =1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035). These input parameters mean that:

• the total annual electricity production of the nuclear reactor fleet and the annual electricity production from MOX fuel are both supposed to be constant from the in both prior trajectories, as shown in Figure 4.39. In Figure 4.39, the plutonium content always remains below 12% during the simulation, satisfying the constraint C4. In conclusion, the prior trajectory with parameters (𝛼 = 1.0, 𝑇 𝐸 = 2035, 𝛽 = 1.0, 𝑇 𝑀 = 2035, 𝛾 = 1.0, 𝜀 = 1.0%, 𝑇 𝑅 = 2035) is valid against the five imposed constraints. This prior trajectory is supposed to be a result given by a conventional nuclear fuel cycle scenario study and used for the demonstration of the resilience study in the following discussion.

Construction of validity estimators

The key to the resilience evaluation method shown in section 3.3.1 is the validity estimator based on Kriging surrogate models, i.e., the excursion probability. This estimator evaluates the probability that a given trajectory satisfies the imposed constraints at the same time. In this section, we construct the validity estimator corresponding to the five constraints described in section 4.2.2.2 as preparation before the resilience study.

Appendix A: Development of multiconstraint SUR algorithm

This appendix presents the details about development of the multi-constraint criterion given in section 3.2.1, including the mathematical deduction and the comprehension of the criterion.

A.1 Assumptions

Let's consider a nuclear fuel cycle scenario problem with 𝑀 > 1 constraints, as shown in Eq.

(2-1):

where:

• 𝕏 is the variation range of the input parameters of interest;

• 𝒙 = (𝑥 (1) , … , 𝑥 (𝑁) ) is a vector composed of 𝑁 input parameters that characterize a trajectory in the scenario problem; • 𝐼 𝑗 (•) is the indicator of the 𝑗-th imposed constraint in the scenario problem; • 𝑇 𝑗 is the threshold of the 𝑗-th imposed constraint in the scenario problem, constituting the quantification expression of the 𝑗-th imposed constraint along with 𝐼 𝑗 (•).

We assume that:

• we have 𝑛 observations 𝒜 𝑛 ≔ (𝒙 𝒊 , 𝐼 1 (𝒙 𝒊 ), … , 𝐼 𝑀 (𝒙 𝒊 )) 1≤𝑖≤𝑛 ;

• we are in the Universal Kriging settings with the Gaussian process assumption; The input parameter domain of valid trajectories is as follows:

We are interested in the volume of the set 𝛺 * , which is denoted as 𝛽 * and defined as follows:

Eq. (A-3)

As (𝐼 𝑗 ( Hence, one has: With Eq. (A-18), one can expand the integrated term in Eq. (A-17) as follows:

The last equality in Eq. (A-19) is obtained by the independence between (𝜉 𝑗 ) 1≤𝑗≤2 . Assuming that 1 ≤ 𝑗 ≤ 2, the closed-form expressions of the terms 𝔼 𝑛 (𝑝 1,𝒜 𝑛+1 (𝒙) • (1 -𝑝 1𝒜 𝑛+1 (𝒙)))

and 𝔼 𝑛 (𝑝 2,𝒜 𝑛+1 (𝒙) • (1 -𝑝 2,𝒜 𝑛+1 (𝒙))) has been given in the work of [START_REF] Chevalier | Fast uncertainty reduction strategies relying on Gaussian process models[END_REF] as follows:

Eq. (A-20)

where:

• 𝑞 ≥ 1 is a given integer number;

• Φ 2 (•, 𝑴) is the cumulative distribution function of the centered bivariate Gaussian with covariance matrix 𝑴;

. Now, one needs to find the closed-form expressions for the terms

and 𝔼 𝑛 (𝑝 2,𝒜 𝑛+1 (𝒙) • 𝑝 2,𝒜 𝑛+1 (𝒙)). According to the proposition 3.1 given in [START_REF] Picheny | Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction[END_REF], we have:

Without any restriction on the random variable 𝜉 𝑗 (𝒙 𝑛+1 ) , the expectation of the future probability of being below the threshold is equal to the current probability. With Eq. (A-20) and Eq. (A-21), we have:

Combining Eq. (A-19), Eq. (A-20) and Eq. (A-22), the closed-form expression of the multiconstraint SUR criterion in Eq. (A-17) is the following:

Hence, the closed-form expression of Eq. (A-15) with 𝑀 = 2 is obtained.

The key point of the deduction given above is Eq. (A-18). The term 1 -𝑝 1,𝒜 𝑛+1 (𝒙) • 𝑝 2,𝒜 𝑛+1 (𝒙)) integrates all the cases where one or several constraints are violated. By Eq. (A-18) and the independence of 𝜉 1 and 𝜉 2 , we expand Eq. (A-17) into several computable terms. For 𝑀 > 2, i.e., over two constraints are considered, such an expansion similar in Eq. (A-18) is always possible. The number of the terms obtained after the expansion is (2 𝑀 -1). For example, for 𝑀 = 3, we have:

The term (1 -𝑝 

Yes

Yes Yes Valid

With the deduction idea shown above, one can obtain the closed-form expression of Eq. (A-15) with any 𝑀 ≥ 2.

A.2.2 Multi-constraint SUR criterion Form II

Following the number of constraints 𝑀, the closed-form expression of the multi-constraint SUR criterion Form I given in Eq. (A-15) has (2 𝑀 -1) terms to compute. As the number of constraints increases, the computation cost augments exponentially. Due to this point, the application of the multi-constraint SUR criterion Form I may be limited. As an alternative choice, we develop another multi-constraint SUR criterion as shown in Eq. . We call Eq.

(3-42) as the multi-constraint SUR criterion Form II. In the following discussion, we present its deduction, closed-form expression and comprehension.

Besides those given in section A.1, we add several supplementary assumptions for the following discussion. We assume that: 

A.2.2.1 General idea

Let 1 ≤ 𝑗 ≤ 𝑀. We consider a set define as:

For a given trajectory 𝒙 inside the set 𝛺 𝑗 * , the 𝑀 constraints, except the 𝑗-th one, are all satisfied.

Satisfying or unsatisfying the 𝑗 -th constraint can both be possible to the trajectory 𝒙. To understand the relation between the input parameter domain of valid trajectories 𝛺 * and the set 𝛺 𝑗 * , we take a special case as shown in Figure A.1.

In the example in Figure A.1, we suppose that trajectories are characterized with two input parameters 𝑥 (1) and 𝑥 (2) (i.e., 𝒙 = (𝑥 (1) , 𝑥 (2) )) and three constraints (𝐼 𝑗 (𝑥 (1) , 𝑥 (2) ) < 𝑇 𝑗 ) 1≤𝑗≤3

are considered:

• the region surrounded by the blue circle represents the domain where 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 ; • the region surrounded by the green circle represents the domain where 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2 ; • the region surrounded by the orange circle represents the domain where 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 .

Correspondingly, we have: constraints, except the first one 𝐼 1 (𝑥 (1) , 𝑥 (2) ) < 𝑇 1 , are satisfied. • In Figure A.1 (c), the zone covered by the violet dotted line is the set 𝛺 2 * . In 𝛺 2 * , all constraints, except the second one 𝐼 2 (𝑥 (1) , 𝑥 (2) ) < 𝑇 2 , are satisfied. • In Figure A.1 (d), the zone covered by the purple dotted line is the set 𝛺 3 * . In 𝛺 3 * , all constraints, except the third one 𝐼 3 (𝑥 (1) , 𝑥 (2) ) < 𝑇 3 , are satisfied.

Before the formal deduction, several notations are given:

• Let 1 ≤ 𝑗 ≤ 𝑀. 

where 𝔼(𝟙 (𝜉 𝑙 (𝒙)<𝑇 𝑙 ) |ℬ ̃𝑛′ 𝑗 ) = 𝑝 𝑙,ℬ ̃𝑛′ 𝑗 (𝒙) = 𝑝 𝑙,ℬ 𝑛 ′ (𝒙) is the excursion probabilities corresponding to the 𝑙-th constraint 𝐼 𝑙 (𝒙) < 𝑇 𝑙 constructed with the observations ℬ 𝑛 ′ .

By Eq. (A-32), Eq. (A-33) and Eq. (A-34), 𝐽 ̌𝛺 * ,𝒜 𝑛 (𝒙 𝑛+1 ) can be rewritten as:

Eq. (A-37)

which is exactly the multi-constraint SUR criterion given in Eq. . We call Eq. (A-40) and Eq. (A-41) as the multi-constraint SUR criterion Form II in this thesis to distinguish the Form I given in Eq. (A-15).

Basically, the general idea to construct the multi-constraint SUR criterion Form II in Eq. (A-40) is to decompose a multi-constraint scenario problem over the whole input space 𝕏 into 𝑀 mono-constraint subproblems over 𝑀 subdomains (𝛺 𝑗 * ) 1≤𝑗≤𝑀 (see Figure A.2 for an example).

Correspondingly, the contour line of the set 𝛺 * (the input parameter domain of valid trajectories) is cut into 𝑀 parts in the subdomains (𝛺 𝑗 * ) 1≤𝑗≤𝑀 . Firstly, the subdomains (𝛺 𝑗 * ) 1≤𝑗≤𝑀 are estimated with the set of observations ℬ 𝑛 ′ , which corresponds to the terms

in Eq. (A-40). Then, the mono-constraint SUR algorithm with criterion given in Eq. is applied to identify the part of the contour line of the set 𝛺 * over each of subdomains (𝛺 𝑗 * ) 1≤𝑗≤𝑀 .

As seen in Eq. (A-40), the numerical value of 𝐽 ̌𝒜𝑛 ,ℬ 𝑛 ′ (𝒙 𝑛+1 ) depends on both sets of observations 𝒜 𝑛 and ℬ 𝑛 ′ , to get a better numerical approximation, we update the both observations sets with the new found observations at each iteration of the SUR algorithm, instead of updating the set 𝒜 𝑛 only. Thus, we have the scheme of multi-constraint SUR algorithm as shown in section 3.2.3.

In this thesis, we use only the multi-constraint SUR criterion in Eq. , which is a special case of Eq. (A-40) with 𝒜 𝑛 = ℬ 𝑛 ′ .

A.3 Application example

As a demonstration , we apply the developed multi-constraint SUR algorithm to a mathematical problem (𝒯) such as: SUR algorithm accumulate around the threshold values of the constraints. In the scatter plot between 𝑥 ′ and 𝑥 ′′ , we can observe that most of observations stay around the contour lines of the valid input space.

Figure A.7: Excursion probability of one million of sampled points

With the 300 new observations given by SUR algorithm, we construct an excursion probability according to Eq. . We recall that excursion probability can estimate a priori the validity of a given point before calling the code. A point with a great excursion probability is potentially valid with high confidence. To identify the valid input space, we randomly sample one million of points in the defined domain of the problem (𝒯) in Eq. (A-42) and then, compute their values of excursion probability. The computation time takes around 5 mins in a machine having 8 CPU with a frequency 2.6 GHz. 

Appendix B: Implementation scheme of "PiloRI" algorithm

The implementation scheme of the nuclear fleet evolution-driving model -"PiloRI" algorithm is presented as follows:

"PiloRI" algorithm Require:

- Application of Rule R1: for each reactor in the French nuclear reactor fleet that is still functioning in the year "𝑇𝑖𝑚𝑒", judge whether one of its ends of cycle lays between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1": if yes, then this reactor is chosen by Rule R1, and its potential shutdown date is the date corresponding to its end of cycle laying between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1"; if no, then this reactor is not chosen by Rule R1. For a reactor, the dates for its ends of cycle are discrete and identified according to its fuel loading successions. 2. Application of Rule R2: for each reactor chosen by Rule R1, calculate its potential lifespan, which is equal to the difference between its potential shutdown date given by Rule R1 and commissioning date. If this potential lifespan is greater than 60 years, then this reactor is forced to be shut down at the end of cycle laying between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1". 3. Application of Rule R3: for each reactor chosen by Rule R1 and not being shut down by Rule R2, judge whether it has operated for at least 5 years after the last decennial visit: if yes, then this reactor is chosen by Rule R3; if no, then this reactor is not chosen by Rule R3. 4. Application of Rule R4: for reactors chosen by Rule R3, rank them according to the descending order of their potential lifespans. 5. Application of Driver D5: Shut down the reactors given by Rule R4 one by one according to ranking order until the difference that the actual value of fleet total electricity production minus the setpoint value in the year "𝑇𝑖𝑚𝑒" is smaller than a tolerance value. In this work, this tolerance value is chosen as the annual electricity production of a Gen-III type reactor, which is around 11 TWe•h.

▷ Commissioning of reactors

▷ De-MOXing of reactors 𝒇𝒐𝒓 (𝑇𝑖𝑚𝑒 = 2019; 𝑇𝑖𝑚𝑒 < 2080; 𝑇𝑖𝑚𝑒 + +) { 1. Application of Rule R14: for each reactor in the French nuclear reactor fleet that is functioning with a 30% MOX-fueled core in the year "𝑇𝑖𝑚𝑒", judge whether one of its ends of cycle lays between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1": if yes, then this reactor is chosen by Rule R14, and its potential de-MOXing date (i.e., the date to start de-MOXing) is the date corresponding to its end of cycle laying between "𝑇𝑖𝑚𝑒" and "𝑇𝑖𝑚𝑒 + 1"; if no, then this reactor is not chosen by Rule R14. 2. Application of Rule R15: for each reactor chosen by Rule R14, judge whether it can go through at least one "nominal" irradiation cycle in which its core is 100% fueled with UOX before its shutdown if it is de-MOXed from the year "𝑇𝑖𝑚𝑒" on: if yes, then this reactor is chosen by Rule R15; if no, then this reactor is not chosen by Rule R15. 3. Application of Rule R16: for each reactor chosen by Rule R15, calculate its residual lifespan, which is equal to the time duration between its shutdown date (determined by Procedure 1) and the year "𝑇𝑖𝑚𝑒". Then, rank these reactors chosen by Rule R15 according to the ascending order of residual lifespans. 4. Application of Driver D17: De-MOX the reactors given by Rule R16 one by one according to the ranking order until the difference that the actual simulated value of electricity production from MOX fuel minus the setpoint value in the year "𝑇𝑖𝑚𝑒" is smaller than a tolerance value. This tolerance value is chosen as the annual electricity production from MOX fuel in a Gen-III type reactor, which is around 3.34 TWe•h. Les scenarios é lectronuclé aires peuvent simuler le systè me du cycle du combustible nuclé aire (ré acteurs + installations du cycle du combustible) sur une pé riode donné e, depuis l'extraction des ressources naturelles telle que l'uranium jusqu'au stockage géologique. L'étude de scé narios é lectronuclé aires permettent de comparer diffé rentes straté gies de dé veloppement ou options d'évolutions d'un parc de réacteurs nucléaires, telles que l'introduction des RNR, ainsi que diffé rentes straté gies de gestion du combustible, comme le mono-ou multi-recyclage du plutonium, la transmutation des actinides mineurs, etc. Les impacts de ces straté gies de dé veloppement sont observé s sur le systè me du cycle du combustible nucléaire. Donc, l'étude de scenarios é lectronuclé aires constituent une aide à la prise de dé cision.

Les incertitudes existent largement dans l'étude de scénarios électronucléaires, provenant non seulement de la physique, mais aussi gé né ré es par la prise de dé cision. L'existence d'incertitudes, en particulier les incertitudes de la prise de dé cision, peut avoir des impacts importants sur les résultats de l'étude de scenarios électronucléaires en provoquant des disruptions, c'est-à -dire des changements inattendus ou imprévus dans l'étude de scenarios é lectronuclé aires. De maniè re gé né rale, les disruptions causé es par les incertitudes de la prise de décision peuvent conduire à l'échec de l'étude de scenarios électronucléaires, car aprè s les disruptions, les trajectoires, c'est-à -dire les é volutions concrè tes du systè me du cycle du combustible nucléaire étudié, donnée par l'étude de scenarios électronucléaires peuvent ne satisfont plus aux considé rations des dé cideurs.

Il est possible d'appliquer l'é tude de la propagation des incertitudes pour é valuer l'impact des incertitudes de la physique, y compris les incertitudes des donné es nuclé aires, telles que les sections efficaces et les rendements de fission, etc., et les incertitudes des paramè tres de scé nario comme le taux de combustion. Cependant, l'é tude de la propagation des incertitudes n'est pas capable de nous dire comment réagir face aux disruptions causées par les incertitudes, notamment les incertitudes lié es à la prise de dé cision, et éviter l'échec de l'étude de scenarios é lectronuclé aires aprè s une disruption.

Ce travail a pour objectif de proposer un paradigme de l'étude de résilience pour l'étude de scenarios électronucléaires afin d'affronter l'impact des disruptions causées par les incertitudes.

C.2 Paradigme de l'é tude de ré silience pour les scé narios é lectronuclé aires

Pour atteindre l'objectif de construire un paradigme de l'é tude de ré silience pour les scé narios é lectronuclé aires, nous avons dé composé le travail en plusieurs é tapes.

C.2.1 Incertitudes dans l'étude de scénarios électronucléaires

Premièrement, afin de comprendre la position de notre travail dans l'étude de scénarios é lectronuclé aires, nous avons clarifié la notion d'incertitude dans un sens gé né ral et identifié différents types d'incertitudes dans l'étude de scénarios électronucléaires. Gé né ralement, les