
HAL Id: tel-03116812
https://theses.hal.science/tel-03116812

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-performance dense tensor and sparse matrix
kernels for machine learning

Filip Igor Pawlowski

To cite this version:
Filip Igor Pawlowski. High-performance dense tensor and sparse matrix kernels for machine learning.
Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lyon, 2020. English. �NNT :
2020LYSEN081�. �tel-03116812�

https://theses.hal.science/tel-03116812
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN081

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

présentée et soutenue publiquement le 11/12/2020, par :

Filip Igor PAWLOWSKI

High-performance dense tensor and sparse matrix
kernels for machine learning

Noyaux de calcul haute-performance de tenseurs denses et
matrices creuses pour l’apprentissage automatique

Devant le jury composé de :
Alfredo BUTTARI Chercheur, CNRS Rapporteur
X. Sherry LI Directrice de recherche,

Lawrence Berkeley National
Lab., Etats-Unis,

Rapporteure

Ümit V. ÇATALYÜREK Professeur, Georgia Institute of
Tech., Etats-Unis,

Examinateur

Laura GRIGORI Directrice de recherche, Inria Examinatrice
Bora UÇAR Chercheur, CNRS Directeur de thèse
Albert-Jan N. YZELMAN Chercheur, Huawei Zürich Re-

search Center, Suisse
Co-encadrant de thèse

Contents

Résumé français . vi

1 Introduction 2
1.1 General background . 2

1.1.1 The cache memory and blocking 3
1.1.2 Machine and cost model . 4
1.1.3 Parallel algorithm analysis . 6
1.1.4 Memory allocation and partitioning 7

1.2 Thesis outline . 7
1.2.1 Tensor products . 8
1.2.2 Sparse inference . 9

2 Tensor computations 12
2.1 Introduction . 13
2.2 Related work . 14
2.3 Sequential tensor–vector multiplication 17

2.3.1 Tensor layouts . 17
2.3.2 Two state-of-the-art tensor–vector multiplication algorithms . . . 19
2.3.3 Block tensor–vector multiplication algorithms 20
2.3.4 Experiments . 22

2.4 Shared-memory parallel tensor–vector multiplication 35
2.4.1 The loopedBLAS baseline . 37
2.4.2 Optimality of one-dimensional tensor partitioning 38
2.4.3 Proposed 1D TVM algorithms . 40
2.4.4 Analysis of the algorithms . 42
2.4.5 Experiments . 46

2.5 Concluding remarks . 50

3 Sparse inference 53
3.1 Introduction . 54

3.1.1 Sparse inference . 54
3.1.2 Sparse matrix–sparse matrix multiplication 55
3.1.3 Hypergraph partitioning . 56
3.1.4 Graph Challenge dataset . 57
3.1.5 State of the art . 58

ii

CONTENTS iii

3.2 Sequential sparse inference . 60
3.2.1 SpGEMM-inference kernel . 60
3.2.2 Sparse inference analysis . 62
3.2.3 SpGEMM-inference kernel for partitioned matrices 63

3.3 Data-, model- and hybrid-parallel inference 64
3.3.1 Data-parallel inference . 64
3.3.2 Model-parallel inference . 67
3.3.3 Hybrid-parallel inference and deep inference 72
3.3.4 Implementation details . 74

3.4 Experiments . 74
3.4.1 Setup . 75
3.4.2 The tiling model-parallel inference results 76
3.4.3 The tiling hybrid-parallel inference results 80

3.5 Concluding remarks . 82

4 Conclusions 83
4.1 Summary . 83

4.1.1 Summary of Chapter 2 . 83
4.1.2 Summary of Chapter 3 . 84

4.2 Future work . 86
4.2.1 Tensor computations . 86
4.2.2 Sparse networks . 87

Bibliography 93

List of Algorithms

2.1 The looped tensor–vector multiplication 20
2.2 The unfold tensor–vector multiplication. 21
2.3 The block tensor–vector multiplication algorithm 22
2.4 The next block according to a ρπ layout. 23
2.5 The next block according to a Morton layout. 24
2.6 A basic higher-order power method . 35
2.7 The q-sync parallel TVM algorithm. 41
2.8 The interleaved q(i)-sync parallel TVM algorithm. 42
2.9 The explicit q(e)-sync parallel TVM algorithm. 42
3.1 The SpGEMM-inference kernel. 61
3.2 The SpGEMM-inference kernel for partitioned matrices. 65
3.3 The model-parallel inference at layer k. 69
3.4 The tiling model-parallel inference. 73
3.5 The latency-hiding model-parallel layer-k inference. 75

iv

List of Figures

2.1 Plot of the effective bandwidth (in GB/s) of the copy kernels. 26
2.2 Illustration of elements lying on all axes going through tensor element(s). 39

3.1 The staircase matrix of a neural network. 71
3.2 Plot of the run time of the data-parallel and the tiling model-parallel in-

ference using 5 layers on Ivy Bridge. 77
3.3 Plot of the run time of the data-parallel and the tiling model-parallel in-

ference using 5 layers on Cascade Lake. 78

v

Résumé français

Dans cette thèse, nous développons des algorithmes à haute performance pour certains
calculs impliquant des tenseurs denses et des matrices creuses. Nous abordons les noy-
aux de calculs qui sont utiles pour les tâches d’apprentissage automatique, telles que
l’inférence avec les réseaux neuronaux profonds (DNN). Nous développons des structures
de données et des techniques pour réduire l’utilisation de la mémoire, pour améliorer la
localisation des données et donc pour améliorer la réutilisation du cache des opérations
du noyau. Nous concevons des algorithmes séquentiels et parallèles à mémoire partagée.

Dans la première partie de la thèse, nous nous concentrons sur les noyaux de calculs
de tenseurs denses. Les noyaux de calculs de tenseurs comprennent la multiplication
tenseur-vecteur (TVM), la multiplication tenseur-matrice et la multiplication tenseur-
tenseur. Parmi ceux-ci, la TVM est la plus limitée par la bande passante et constitue un
élément de base pour de nombreux algorithmes. Nous nous concentrons sur cette opéra-
tion et développons une structure de données et des algorithmes séquentiels et parallèles
pour celle-ci. Nous proposons une nouvelle structure de données qui stocke le tenseur
sous forme de blocs, qui sont ordonnés en utilisant la courbe de remplissage de l’espace
connue sous le nom de courbe de Morton (ou courbe en Z). L’idée principale consiste à
diviser le tenseur en blocs suffisamment petits pour tenir dans le cache et à les stocker
selon l’ordre de Morton, tout en conservant un ordre simple et multidimensionnel sur les
éléments individuels qui les composent. Ainsi, des routines BLAS haute performance peu-
vent être utilisées comme micro-noyaux pour chaque bloc. Nous évaluons nos techniques
sur un ensemble d’expériences. Les résultats démontrent non seulement que l’approche
proposée est plus performante que les variantes de pointe jusqu’à 18%, mais aussi que
l’approche proposée induit 71% de moins d’écart-type d’échantillon pour le TVM dans les
différents modes possibles. Enfin, nous montrons que notre structure de données s’étend
naturellement à d’autres noyaux de calculs de tenseurs en démontrant qu’elle offre des
performances jusqu’à 38% supérieures pour la méthode de puissance d’ordre supérieur.
Enfin, nous étudions des algorithmes parallèles en mémoire partagée pour la TVM qui
utilisent la structure de données proposée. Plusieurs algorithmes parallèles alternatifs
ont été caractérisés théoriquement et mis en œuvre en utilisant OpenMP pour les com-
parer expérimentalement. Nos résultats sur un maximum de 8 processeurs montrent une
performance presque maximale pour l’algorithme proposé pour les tenseurs à 2, 3, 4 et 5
dimensions.

Dans la deuxième partie de la thèse, nous explorons les calculs creux dans les réseaux
de neurones en nous concentrant sur le problème d’inférence profonde creuse à haute

vi

1

performance. L’inférence creuse de DNN représente la tâche où les DNN creux clas-
sifient un lot d’éléments de données formant, dans notre cas, une matrice creuse. La
performance de l’inférence creuse dépend de la parallélisation efficace de la multiplication
matrice creuse-matrice creuse (SpGEMM) répétée pour chaque couche de la d’inférence.
Nous caractérisons d’abord les algorithmes SpGEMM séquentiels efficaces pour notre cas
d’utilisation. Nous introduisons ensuite l’inférence modèle-parallèle, qui utilise un par-
titionnement bidimensionnel des matrices de poids obtenues à l’aide du logiciel de par-
titionnement des hypergraphes. La variante modèle-parallèle utilise des barrières pour
synchroniser entre les couches. Enfin, nous introduisons les algorithmes de tuilage modèle-
parallèle et de tuilage hybride, qui augmentent la réutilisation du cache entre les couches,
et utilisent un module de synchronisation faible pour cacher le déséquilibre de charge
et les coûts de synchronisation. Nous évaluons nos techniques sur les données du grand
réseau de l’IEEE HPEC 2019 Graph Challenge sur les systèmes à mémoire partagée et
nous rapportons jusqu’à 2 fois de l’accélération par rapport à la référence.

Chapter 1

Introduction

This thesis is in the field of high-performance computing and focuses on finding high-
performance algorithms which solve computational problems involving dense tensors and
sparse matrices. Traditional computational problems involve dense matrix and sparse
matrix computations with potentially only a few matrices, as in the preconditioned it-
erative methods or multigrid methods for solving linear systems. Up-and-coming tasks
in data analysis and machine learning deal with multi-modal data and involve a large
number of matrices. We see two classes of computational problems associated with these
tasks: those having dense tensors, which are collections of dense matrices, and those
having a large number of sparse matrices. We identify frequently used kernels in these
problems. We discuss a machine model and a cost model to quantify the data movement
of parallel algorithms. We develop data structures and sequential kernel implementa-
tions which increase cache reuse. We then develop shared-memory parallel algorithms
and analyze their practical effects using the proposed cost model as well as the effects
of the proposed data structures on high-end computer systems. We use those kernels in
applications concerning tensor decomposition and analysis, and in inference with sparse
neural networks.

In this chapter, we first give a general background that underlines our approach to
the two subjects of the thesis in Section 1.1. Section 1.2 then gives an outline of the
thesis by summarizing the problems, contributions, and the main results.

1.1 General background
In this thesis, we are interested in designing algorithms and techniques that apply to
modern architectures. As the memory throughput grows much slower than the ma-
chine’s computational power, increasingly many workloads are bottlenecked by memory,
on modern machines. On modern hardware, a computing unit has multiple local mem-
ory storages connected to it. One such memory, caches, have lower latency and higher
bandwidth but smaller size when compared to main memory. The cache memory is a
hardware optimization design to store the data a computing unit requires as it might
be used again in nearby future. On parallel machines, when these computing units are

2

1.1. GENERAL BACKGROUND 3

connected and share their local memories with the other computing units, a common
characteristic is that the time to access local memory is much shorter than to access the
local memories of other units. This gives rise to the notion of local and remote mem-
ories for each unit. Shared-memory architectures with this characteristic are known as
the Non-Uniform Memory Access (NUMA) machines, as the main memory accesses have
different latency and throughput. To design efficient parallel algorithms we must be able
to estimate their costs on such hardware.

This section is organized as follows. In Section 1.1.1 we describe the cache memory
and the programming techniques that we adopt in this thesis to use the cache memory
effectively. In Section 1.1.2, we describe a bridging model of NUMA hardware which
includes a model of parallel computation and a cost model we use to analyze paral-
lel algorithms. In Section 1.1.3, we introduce the concept of parallel overheads we use
to compare parallel algorithms with respect to the best sequential alternative. In Sec-
tion 1.1.4 we discuss allocation techniques which allow to effectively distribute data on a
shared-memory machine.

1.1.1 The cache memory and blocking
The cache memory is an on-chip memory which is closer to the CPU and hence faster
to access, but also very small due to its high production costs. Typically, CPUs contain
multiple levels of caches where the higher level caches have higher latencies and lower
bandwidths, but greater size. This is done as programs have tendency to reuse the same
data in a short period of time, which is referred to as temporal locality. The computing
unit first looks up data in each level of cache. If the cache contains the required element,
it is called a cache hit. Otherwise, if the element has not been found, it is fetched from the
main memory and loaded into cache and processor registers; this is called a cache miss.
The hardware policy governs which elements to then evict from cache when it reaches its
capacity. A perfect architecture usually assumes the Least Recently Used (LRU) policy,
which evicts the least recently used elements first.

In the thesis, we use a well-known software optimization technique to increase the
temporal locality of algorithms known as the loop blocking, or loop tiling. This technique
reorganizes the computation in the program to repeatedly operate on small parts of data,
known as blocks or tiles. The size of a block should be such that a block’s data fits in
cache. If the block’s data fits in cache, then the number of cache misses reduces and
hence one sees improved performance. We note that such a blocking is justified only
under two conditions. First, a program must reuse the data in blocks as opposed to
streaming them, that is, touching the data only once. Second, the original data should
be much larger than the cache size; otherwise, blocking becomes an overhead. Optimal
block sizes could be determined statically on a per-machine basis, either analytically or
via (manual or automated) experimentation. The latter approach results in a process
known as parameter tuning.

Spatial locality is another property of programs which is crucial to performance. It
occurs when a program accesses a data item and subsequently requires another data item
lying in close-by memory areas; a special case is when a program iterates over successive

4 CHAPTER 1. INTRODUCTION

memory addresses in a streaming fashion. We note that blocking does not necessarily
achieve spatial locality, which itself relates not only to the computation but also to the
data layout. In the thesis, we modify the storage of input data and propose new data
layouts which improve spatial locality of blocking algorithms.

1.1.2 Machine and cost model
At an abstract level, a shared-memory parallel NUMA machine consists of ps connected
processors, or sockets. Each socket consists of pt threads thus yielding a total of p = pspt
threads. Each socket has local memory connected to it: the cache, RAMs, and the main
memory. The sockets are connected with each other via a communication bus such that
the memory is shared and forms a global address space. A thread executing on a socket
may access the local memory of the socket faster than the remote memory of the other
sockets; a NUMA effect.

We use a set of parameters to characterize such a shared-memory NUMA machine:
• r, the time a flop operation takes in seconds;

• L, the time in which a barrier completes in seconds;

• g, the time required to move a byte from local memory to a thread in seconds; and

• h, the time to move a byte from remote memory to the thread in seconds.
Thus, g is inversely proportional to the intra-socket throughput while h is inversely pro-
portional to the inter-socket memory throughput per socket. These parameters together
with ps and pt fully characterize a machine and allow quantifying the behavior of a pro-
gram running on that machine.

The following model allows quantifying the cost of a parallel program. Any parallel
program may be viewed as a series of S barriers with S + 1 phases in between them.
Therefore, each thread q ∈ {0, . . . , p − 1} executes S + 1 different phases, which are
numbered using integer s, 0 ≤ s ≤ S. We quantify the computation in terms of the
number of floating point operations, or flops, which includes all scalar operations. We
use Wq,s to count the local computation at thread q in flops at phase s. For each thread,
we distinguish between the intra-socket and inter-socket data movement. While the intra-
socket data movement Uq,s counts the data thread q reads and writes in the local memory
in words at phase s, the inter-socket data movement Vq,s counts the data items in words
q reads and writes in the remote memory in words at phase s. We use Mq,s to denote
the storage requirement by thread q at phase s in bytes. While these fully quantify an
algorithm, their values depend on the number of threads p as well as on any problem
parameters.

In general, the cost of each phase s is proportional to the slowest thread, which
completes in maxq{Wq,sr+Uq,sg+Vq,sh}. Thus, the time in which an algorithm consisting
of S + 1 phases completes is

T (n, p) =
S∑
s=0

[
max

q∈{0,...,p−1}
{Wq,sr + Uq,sg + Vq,sh}

]
+ SL seconds. (1.1)

1.1. GENERAL BACKGROUND 5

However, if the local computational may be overlapped with data movement, the same
algorithm completes in

T (n, p) =
S∑
s=0

[
max{ max

q∈{0,...,p−1}
Wq,sr, max

q∈{0,...,p−1}
{Uq,sg + Vq,sh}

]
}+ SL seconds. (1.2)

Note that for any s:

max
q∈{0,...,p−1}

{Wq,sr + Uq,sg + Vq,sh}/max{ max
q∈{0,...,p−1}

Wq,sr, max
q∈{0,...,p−1}

{Uq,sg + Vq,sh}} ≤ 2,

and that this upper bound is reached only if

max
q∈{0,...,p−1}

Wq,sr = max
q∈{0,...,p−1}

{Uq,sg + Vq,sh}.

Minimizing each of the total asymptotic costs of computation, data movement and syn-
chronization for any input and number of threads, i.e., minimizing

Twork =
S∑
s=0

max
q∈{0,...,p−1}

Wq,sr

Tdata =
S∑
s=0

max
q∈{0,...,p−1}

{Uq,sg + Vq,sh}

Tsync = SL,

(1.3)

thus minimizes both the overlapping and non-overlapping versions of T (n, p). The final
cost metric we use is the storage requirement of a parallel algorithm. It is the maxi-
mum storage requirement M(n, p) = maxq∈{0,...,p−1}

∑S
s=0 Mq,s(n, p) per thread during all

phases.
We note that in practice, many problems do not have an algorithmic solution which

minimizes all three costs simultaneously. In the thesis, we propose algorithms which have
various ratios between these costs. The final implementation may be chosen based on
the number of threads, the problem size, and the parameters values r, g, h and L of the
machine.

Related models. The Random Access Machine (RAM) is an agreed upon model of
computation for sequential machines, while for parallel computing the Bulk Synchronous
Parallel (BSP) and Communicating Sequential Processes (CSP) models quantify the costs
of parallel programs effectively under different scenarios. While our model focuses on
data movement, the BSP [61] is another bridging model of hardware which explicitly
models communication. The originally proposed BSP model is also known as the flat
BSP model, as it states that all processes take equal time to communicate with each
other and does not capture the NUMA effects. Variants of the BSP model which capture
NUMA effects and provide a cost model are the BSPRAM [57] and the multi-BSP [62].
The multi-BSP model also considers multiple levels of memory locality, e.g., a shared-
memory and distributed-memory parallel machine where memory may be seen at three

6 CHAPTER 1. INTRODUCTION

levels. Another parallel model of computation is the Parallel Random Access Machine
(PRAM) [22] which assumes that the synchronization issues are resolved by the hardware
itself and that communication has a constant cost. Therefore, it cannot serve as a tool
to model data movement costs.

1.1.3 Parallel algorithm analysis
A basic metric to measure performance of a parallel algorithm is the ratio of a sequential
algorithm run time Tseq to the parallel run time for p threads,

S(n, p) = Tseq(n)
T (n, p) .

Ideally, the speedup of a parallel program grows linearly with p for a constant problem
size n. However, Amdahl’s law states that this is not attainable in practice as most
parallel algorithms possess a parallel overhead

O(n, p) = pT (n, p)− Tseq(n).

It may be thought of as the execution time of the part of the program which cannot be
parallelized, i.e., its critical section. Except for trivially parallel algorithms, the critical
section increases with n and p. Another metric to evaluate performance of a parallel
algorithm is the parallel efficiency defined as the ratio between speedup and the number
of threads:

E(n, p) = S(n, p)
p

= Tseq(n)
pT (n, p) .

Gustafson’s law states that the speedup of a parallel program grows linearly with p, that
is, its efficiency remains constant, if n increases. This is true for most parallel algorithms
as Tseq grows with n as well, thus amortizing the impact of the overhead on efficiency:

E(n, p) = 1− O(n, p)
O(n, p) + Tseq(n) .

The above formula allows to compute how fast n should grow to retain the same parallel
efficiency as p increases and vice versa, giving rise to the concept of iso-efficiency. Strongly
scaling algorithms have that the overhead O(n, p) is independent of p, which is unrealistic,
while weakly scaling algorithms have that the ratio O(pn, p)/Tseq(pn) is constant; iso-
efficiency instead tells us a much wider range of conditions under which the algorithm
scales. We note that the total number of threads an algorithm employs need not be equal
to the number of cores a given machine holds; it can be less when considering strong
scalability, and it can be more when exploring the use of hyperthreads.

Using the parallel costs defined in (1.3), we subdivide the parallel overhead and define
the following parallel overheads for each of the corresponding parallel costs to quantify
parallel algorithms:

Owork(n, p) = pTwork(n, p)− Tseq-work(n)
Odata(n, p) = pTdata(n, p)− Tseq-data(n)
Osync(n, p) = pTsync(n, p)− Tseq-sync(n).

1.2. THESIS OUTLINE 7

We note that when counting the data movement overhead Odata(n, p) for algorithms
which use blocking, we assume a perfect caching occurs for blocks and that they do not
contribute to the overhead. All overheads should compare against the best performing
sequential algorithm, which may be drastically different than the parallel algorithm for
p = 1. Finally, we define the parallel storage overhead Omem(n, p) = pM(n, p)−Mseq(n),
where Mseq is the storage size required by the best sequential algorithm.

The final metric we use is the arithmetic intensity, which is a ratio between the number
of floating point operations an algorithm performs versus the memory size it touches
during the computation. We determine the arithmetic intensity of the best sequential
algorithm to determine how likely the algorithm is to fully utilize the memory bandwidth
of a machine rather than its computational power. While the bottleneck of compute-bound
algorithms is the computational power of a machine, the bottleneck of bandwidth-bound
algorithms is the memory speed. However, this does not preclude memory optimizations
from benefiting compute-bound kernels, but rather states that these will improve the run
time to a smaller degree.

1.1.4 Memory allocation and partitioning

On shared-memory systems, each processor has local memory to which it accesses faster
than remote memory areas. We assume that threads taking part in a parallel computation
are pinned to a specific core, meaning that threads will not move from one core at run
time. A pinned thread has a notion of local memory: namely, all addresses that are
mapped to the memory controlled by the processor the thread is pinned to. This gives
rise to two distinct modes of use for shared memory areas: the explicit versus interleaved
modes. If a thread allocates, initializes, and remains the only thread using this memory
area, we dub its use explicit. In contrast, if the memory pages associated with an area
cycle through all available memories, then the use is called interleaved. The latter mode
is enabled by NUMA-ctl library [47]. If a memory area is accessed by all threads in a
uniformly random fashion, then it is advisable to interleave it to achieve high throughput.

1.2 Thesis outline

The main contributions of the thesis are discussed in two chapters. Chapter 2 focuses
on problems in dense tensor computations, while Chapter 3 treats the problem of sparse
inference. In both chapters, the main elements of our approach are as follows. We propose
algorithms and implement them on shared-memory systems. We analyze the proposed
algorithms theoretically using the metrics discussed in Section 1.1.3. We also analyze the
proposed algorithms experimentally, where parallel codes use OpenMP and are run on
shared memory systems.

8 CHAPTER 1. INTRODUCTION

1.2.1 Tensor products

In Chapter 2, we investigate computations on dense tensors (or multidimensional arrays)
in d modes (dimensions). Much like matrices can be multiplied with vectors or matri-
ces, tensors can be multiplied with vectors, matrices, or tensors. These multiplication
operations are called tensor–vector multiplication (TVM), tensor–matrix multiplication
(TMM), and tensor–tensor multiplication (TTM). These multiplication operations apply
to specific modes; each multiplication can operate on a subset of modes of the input ten-
sor. We dub algorithms such as the TVM , TMM , and TTM kernels. Much in line with
the original Basic Linear Algebra Subprograms (BLAS) definition [19, 20], we classify
the TVM as a generalized BLAS level-2 (BLAS2) kernel, while we classify the TMM ,
TTM , and Khatri-Rao products [27] as generalized BLAS3 ones. These kernels form
the core components in tensor computation algorithms [4]; one example is the computa-
tion of Candecomp/Parafac decomposition of tensors using the alternating least squares
method [5] and its computationally efficient implementations [27,31,52].

In Chapter 2, we first focus on sequential algorithms to optimize the TVM operations.
We define a tensor kernel to be mode-aware if its performance strongly depends on the
mode in which the kernel is applied; otherwise, we define the kernel to be mode-oblivious.
This informal definition is in-line with the more widely known concept of cache-aware
versus cache-oblivious algorithms [23]. We propose block-wise storage for tensors to mode-
obliviously support common tensor kernels. We closely investigate the TVM kernel, which
is the most bandwidth-bound due to low arithmetic intensity (defined in Section 1.1.3).
Thus, among the three multiplication operations, TVM is the most difficult one to achieve
high performance. However, as guaranteeing efficiency for bandwidth-bound kernels is
harder, the methods used for them can be extended to others. Efficient TMM and
TTM kernels, in contrast, often make use of the compute-bound general matrix–matrix
multiplication (BLAS3).

Tensors are commonly stored in an unfolded fashion, which corresponds to a higher-
dimensional equivalent of row-major or column-major storage for matrices. While a
matrix can be unfolded in two different ways, a d-dimensional tensor can be stored in
d! different ways, depending on the definition of precedence of the modes. We discuss
previous work in tensor computations, including tensor storage and develop a notation
for precisely describing a tensor layout in computer memory and for describing how an
algorithm operates on tensor data stored that way.

We discuss various ways for implementing the TVM . The first one notes TVM ’s
similarity to the matrix–vector multiplication (MVM). It takes a tensor, the index of a
mode, and a vector of size conformal to that mode’s size and performs scalar multiply and
add operations. In fact the MVM kernel can be used to carry out a TVM by either (i)
reorganizing the tensor in memory (unfolding the tensor) followed by a single MVM ; or
(ii) reinterpreting the tensor as a series of matrices, on which a series of MVM operations
are executed. We describe how to implement them using BLAS2, resulting in two highly
optimized baseline methods. We then introduce our proposed blocked data structure for
efficient, mode-oblivious performance. A blocked tensor is a tensor with smaller equally-
sized tensors as its elements. We consider only the case where smaller tensor blocks are

1.2. THESIS OUTLINE 9

stored in an unfolded fashion and are processed using one or more BLAS2 calls. We define
two block layouts, which determine the order of processing of the smaller blocks: either a
simple, natural ordering of dimensions or one inferred from the Morton order [45].

The experiments show that the Morton order blocked data structure offers higher
performance on the TVM kernel when compared to the state-of-the-art methods. It
also maintains a significantly lower standard deviation of performance when the TVM
is applied on different modes, thus indeed achieving mode-oblivious behavior. We use
the proposed data structure and TVM algorithm to implement a method used in tensor
decomposition and analysis, and show that the superior performance observed for the
TVM is retained.

We then turn our attention to shared-memory parallel TVM algorithms based on
the proposed sequential algorithm and Morton-blocked layout. We prove that a one-
dimensional partitioning is communication optimal under an assumption that the TVM
kernel is applied in a series, each time to the input tensor. We characterize several
alternative parallel algorithms which follow the algorithmic bound in (1.1) and implement
two variants using OpenMP which we compare experimentally. Our results on up to 8
socket systems show near peak performance for the proposed algorithm for 2, 3, 4, and
5-dimensional tensors.

The work we present in this chapter has been published in a journal [50] and a
conference [49]:

• F. Pawłowski, B. Uçar, and A. N. Yzelman, A multi-dimensional Morton-ordered
block storage for mode-oblivious tensor computations, Journal of Computational
Science, 33 (2019), pp. 34–44. This paper discusses the mode-oblivious storage and
the sequential kernel.

• F. Pawłowski, B. Uçar, and A. N. Yzelman. High performance tensor–vector mul-
tiplication on shared-memory systems. In R. Wyrzykowski, E. Deelman, J. Don-
garra, and K. Karczewski, editors, Parallel Processing and Applied Mathematics,
pages 38–48, Cham, 2020. Springer International Publishing. This paper discusses
the parallel tensor–vector multiplication algorithm design.

1.2.2 Sparse inference
In Chapter 3, we explore the sparse computations in neural networks by focusing on
the high-performance deep inference problem with sparsely connected neural networks.
Sparse inference is the task of classifying a number of data items using a sparse neural
network. This problem was posed by the IEEE HPEC Graph Challenge 2019 [33]. In the
case of the Graph Challenge, the data items are also sparse, thus forming a sparse input
as well.

In summary, a neural network (NN) consists of d ∈ N layers of neurons, where the
neurons at each level combine outputs of all neurons from the previous layer by a weighted
sum, potentially add biases, and apply an activation function to produce an output for
the next layer. The first layer is called the input layer and the last layer is called the
output layer. If a neuron does not combine the output of all neurons in the previous

10 CHAPTER 1. INTRODUCTION

layer, then the neural network becomes sparse. In the sparse inference, the aim is to
classify a given input into one of the classes decided so far. The typical example [36] is
to classify or map a given hand-written digit into the intended digit 0, . . . , 9.

The weighted combination at layer k of the outputs of the neurons from the previous
layer can be accomplished by a matrix–matrix multiply of the form X(k)W (k), whereW (k)

lists the weights and X(k) is the output of the previous layer. With the biases and the
activation function, the whole inference then can be described as computing the final
classification matrix X(d) ∈ Rn×c from the input feature matrix X(0):

X(d) = f(· · · f(f(X(0)W (0) + enb(0)T)W (1)

+ enb(1)T) · · ·W (d−1) + enb(d−1)T) .

Here, X(0) consists of sparse feature vectors, one row for each data instance to be
classified, and X(d) has a row for each data instance and a column for each poten-
tial output class. The function f : R → R is the activation function to be applied
element-wise, b(k) ∈ Rnk+1×1 is a vector of bias at layer k, and en is the vector of ones,
en = (1, 1, . . . , 1)T ∈ Rn×1. In our case, the input data instances are sparse, the connec-
tions are sparse and hence the weight matrices are sparse, all together these give rise to
the sparse inference problem of Chapter 3. There are different activation functions; our
application in Chapter 3 uses one called ReLU, which replaces negative entries by zeros.

The performance of sparse inference hinges on the performance of sparse matrix–sparse
matrix multiplication (SpGEMM) as can be seen in the equation above. We first observe
that the computation of SpGEMM may be combined with the activation function and
the bias addition at each layer. We propose a modified SpGEMM kernel which iteratively
computes sparse inference by computing all operations and a variant of this kernel to be
used within one of the parallel inference variants in which the input and output matrices
are partitioned.

After analyzing the state-of-the-art inference algorithm, the data-parallel inference,
we propose a model-parallel one. These algorithms differ in the way the feature and
the weight matrices are partitioned. Partitioning the feature matrix row-wise yields the
data-parallel inference, in which each thread executes a series of SpGEMMs interleaved
with the activation function without synchronizations, in an embarrassingly parallel fash-
ion. Partitioning the neural network yields the model-parallel inference, which induces a
partitioning on the feature matrix and requires barriers to synchronize at layers.

Typically, neural networks do not change after they are trained, and they are used
for classification of many new data items. Thus, we propose to obtain more efficient
partitioning of the weight matrices during a preprocessing stage, which lowers the data
movement incurred by the proposed model-parallel inference algorithm. Optimal sparse
matrix partitionings exploit the nonzero structure of matrices and may be obtained using
hypergraph partitioning [13,65]. We propose a hypergraph model to transform the neural
network into a hypergraph. Using the hypergraph partitioning software as a black box,
we obtain two-dimensional partitioning of the weight matrices. We propose loop tiling
in the model-parallel variant such that threads compute the sparse inference on small
batches of data items that fit cache. We lower parallel inference costs by overlapping

1.2. THESIS OUTLINE 11

computation with barrier synchronization.
The experiment using the tiling model-parallel inference shows that it obtains the best

speedups for p ≤ 8. Therefore, we propose a tiling hybrid-parallel algorithm to utilize
all threads of a machine by combining both parallel variants. The tiling hybrid-parallel
method executes the proposed tiling model-parallel variant on each of the row-wise parti-
tions of the feature matrix. Here, the number of threads running the tiling model-parallel
inference is the one achieving the best speedup in an earlier experiment. Experimental re-
sults show the hybrid-parallel method achieves up to 2× speedup against the state-of-the-
art data parallel algorithm running on the same number of threads, provided sufficiently
large inference problems.

The work we present in this chapter has been accepted to be published at a confer-
ence [48]:

• F. Pawłowski, R. H. Bisseling, B. Uçar, and A. N. Yzelman. “Combinatorial tiling
for sparse neural networks” in proc. 2020 IEEE High Performance Extreme Com-
puting (HPEC), September, 2020, Waltham, MA, United States (accepted to be
published). This paper describes the proposed algorithms and presents our experi-
ments; the thesis contains extended material.

With a unique view of the whole inference computation as a single matrix, and related
algorithms with optimized performance based on this view, the paper received one of the
Innovation Awards at the IEEE HPEC Graph Challenge 2020.

Chapter 2

Tensor computations

In this chapter, we investigate high-performance dense tensor computations. We focus on
the tensor–vector multiplication kernel and methodologically develop storage, sequential
algorithms, and parallel algorithms for this operation. This is a core tensor operation
and forms the building block of many algorithms [4]. Furthermore, it is bandwidth-bound
and hence its high performance implementation is a challenging endeavor.

Computation on dense tensors, treated as multidimensional arrays, revolve around
generalized basic linear algebra subroutines (BLAS). These computations usually ap-
ply to one mode of the tensor, as in the right or left multiplication of a matrix with
a vector. We propose a novel data structure in which tensors are blocked and blocks
are stored in Morton order. This data structure and the associated algorithms bring
high performance. They also induce efficiency regardless of which mode a generalized
BLAS call is invoked for. We coin the term mode-oblivious to describe data structures
and algorithms that induce such behavior. The proposed sequential tensor–vector mul-
tiplication kernels not only demonstrate superior performance over two state-of-the-art
implementations by up to 18%, but additionally show that the proposed data structure
induces a 71% less sample standard deviation across d modes, where d varies from 2
to 10. We show that the proposed data structure and the associated algorithms are
useful in applications, by implementing a tensor analysis method called the higher order
power method (HOPM) [17,18]. Experiments demonstrate up to 38% higher performance
with our methods over the state-of-the-art. We then design an efficient shared-memory
tensor–vector multiplication algorithm based on a one-dimensional partitioning of the
tensor. We prove that one-dimensional partitionings are asymptotically optimal in terms
of communication complexity when multiplying an input tensor with a vector on each
dimension. We implement a number of alternatives using OpenMP and compare them
experimentally. Experimental results for the parallel tensor–vector multiplication on up
to 8 socket systems show near peak performance for the proposed algorithms.

This chapter is organized as follows. We first introduce the problem of dense ten-
sor computations, the tensor–vector multiplication (TVM), and the notation we use in
Section 2.1. Section 2.2 presents an overview of related work in tensor computations.
We then start discussing the sequential tensor–vector multiplication in Section 2.3. We
describe a blocking-based storage of dense tensors (Section 2.3.1), two state-of-the art al-

12

2.1. INTRODUCTION 13

gorithms for the tensor–vector multiplication (Section 2.3.2), and the new tensor–vector
multiplication algorithms based on the proposed blocking layouts (Section 2.3.3). We
then complete the investigation on sequential TVM by presenting a large set of exper-
iments (Section 2.3.4). Completing the investigation of the sequential TVM with the
experiments allows us to turn our attention to shared-memory parallel TVM .

Building on the results obtained for the sequential TVM , we propose shared-memory
algorithms for TVM in Section 2.4. There, we consider a shared-memory TVM algorithm
based on a for-loop parallelization (Section 2.4.1), reflecting the state-of-the-art. We then
discuss that one-dimensional tensor partitionings are asymptotically optimal in terms
of communication complexity (Section 2.4.2). We then describe a number of parallel
TVM algorithms based on one-dimensional tensor partitionings (Section 2.4.3), which
is followed by the data movement complexity analyses of all presented parallel TVM
algorithms (Section 2.4.4) and the experimental comparisons (Section 2.4.5).

We conclude the chapter by giving a summary of our results on the sequential and
parallel TVM in Section 2.5.

This chapter synthesizes two publications. The first one [50], presents the novel
mode-oblivious storage and the associated sequential TVM kernel. The second one [49]
discusses the parallel tensor–vector multiplication algorithms.

2.1 Introduction
An order-d tensor consists of d dimensions, and a mode k ∈ {0, . . . , d − 1} refers to one
of its d dimensions. We use a calligraphic font to denote a tensor, e.g., A, boldface
capital letters for matrices, e.g., A, and boldface lowercase letters for vectors, e.g., x.
This standard notation is taken in part from Kolda and Bader [35]. Tensor (and thus,
matrix) elements are represented by lowercase letters with subscripts for each dimension.
When a subtensor, matrix, vector, or an element of a higher order object is referred, we
retain the name of the parent object. For example, ai,j,k is an element of a tensor A. We
shall use a flat notation to represent a tensor. For example, the following is an order-3
tensor, where the slices 0 (lower left quadrant) and 1 (top right quadrant) are visually
separated:

B =

41 43 47 53
59 61 67 71
73 79 83 89

2 3 5 7
11 13 17 19
23 29 31 37

∈ R3×4×2 . (2.1)

We assume tensors have real values; although the discussion can apply to other number
fields.

Let A ∈ Rn0×n1×···×nd−1 be an order-d tensor. We use n = ∏d−1
k=0 nk to denote the total

number of elements in A, and Ik = {0, 1, . . . , nk − 1} to denote the index set for mode
k ∈ {0, 1, . . . , d− 1} of size nk. Then, I = I0× I1× · · · × Id−1 is the Cartesian product of

14 CHAPTER 2. TENSOR COMPUTATIONS

all index sets, whose elements are marked with boldface letters i and j. For example, ai
is an element of A whose indices are i = i0, . . . , id−1. We use Matlab colon notation for
denoting all indices in a mode. A mode-k fiber ai0,...,ik−1,:,ik+1,...,id−1 is a vector obtained
by fixing the indices in all modes except mode k. A hyperslice is a tensor obtained by
fixing one of the indices, and varying all others. For example, for third order tensors, a
hyperslice becomes a slice, and therefore, a matrix, i.e., Ai,:,: is the ith mode-1 slice of A.

The k-mode tensor–vector multiplication (TVM) multiplies the input tensor with a
suitably sized vector x along a given mode k and is denoted by the symbol ×k. Formally,

Y = A ×k v where Y ∈ Rn0×n1×...nk−1×1×nk+1...×nd−1 ,

where for all i0, i1, . . . , ik−1, ik+1, . . . , id−1,

yi0,...,ik−1,1,ik+1,...,id−1 =
nk−1∑
ik=0

ai0,...,ik−1,ik,ik+1,...,id−1vik ,

Here, yi0,...,ik−1,1,ik+1,...,id−1 is an element of Y , and ai0,...,ik−1,ik,ik+1,...,id−1 is an element of
A. The kth mode of the output tensor Y is of size one. The above formulation is a
contraction of the tensor along the kth mode. Thus, we assume that the operation does
not drop the contracted mode, and the resulting tensor is always d-dimensional; for the
advantages of this formulation see Bader and Kolda [4, Section 3.2].

The number of floating point operations (flops) of a k-mode TVM is 2n. The minimum
number of data elements touched is:

n+ n

nk
+ nk , (2.2)

where n is the size of the input tensor, n
nk

is the size of the output tensor, and nk is the
size of the input vector. This makes the operation special from the computational point
of view. The size of one of its inputs, A, is much greater than the other input, v. The
arithmetic intensity of a k-mode TVM is the ratio of its floating point operations to its
memory accesses, which in our case is

2n
w(n+ n

nk
+ nk)

flops per byte , (2.3)

where w is the number of bytes required to store a single element. This lies between
1/w and 2/w and thus amounts to a heavily bandwidth-bound computation even for
sequential execution. The matrix–vector multiplication operation is in the same range
of arithmetic intensity. The multi-threaded case is even more challenging, as cores on a
single socket compete for the same local memory bandwidth.

We summarize the symbols used in this chapter in Table 2.1.

2.2 Related work
To the best of our knowledge, ours is the first work discussing a blocking approach for
obtaining efficient, mode-oblivious sequential and parallel tensor computations. Other

2.2. RELATED WORK 15

A,Y An input and output tensor, respectively
x An input vector
d The order of A and one plus the order of Y
ni The size of A in the ith dimension
n The number of elements in A
Ii The index set corresponding to ni
I The Cartesian product of all Ii

i and j Members of I
k The mode of a TVM computation
b Individual block size of tensors blocked using hypercubes
s The ID of a given thread
P The set of all possible thread IDs
π Any distribution of A

π1D A 1D block distribution
b1D The block size of a load-balanced 1D block distribution
ρπ A unfold layout for storing a tensor
ρZ A Morton order layout for storing a tensor

ρZρπ Blocked tensor layout with a Morton order on blocks
ms The number of fibers in each slice under a 1D distribution

As,Ys Thread-local versions of A,Y

Table 2.1 – Notation used throughout this chapter for the TVM operation Y ← A ×k v.

16 CHAPTER 2. TENSOR COMPUTATIONS

work that uses space-filling curves include Lorton and Wise [41] who use the Morton
order within a blocked data structure for dense matrices, for the matrix–matrix multipli-
cation operation. Yzelman and Bisseling [71] discuss the use of the Hilbert space-filling
curve for the sparse matrix–vector multiplication, combined with blocking [72]. Both
studies are motivated by cache-obliviousness and did not consider mode-obliviousness.
Walker [66] investigates Morton ordering for 2D arrays to obtain efficient memory ac-
cess in parallel systems for matrix multiplication, Cholesky factorization and fast Fourier
transform algorithms. In recent work [39], Li et al. propose a data structure for sparse
tensors which uses the Morton order to sort individual nonzero elements of a sparse tensor
to organize them in blocks, for efficient representation of sparse tensors.

A dense tensor–vector multiplication routine may be expressed in BLAS2 routines.
There are many BLAS implementations, including OpenBLAS [70], ATLAS [69], and
Intel MKL [30]. BLIS is a code generator library that can emit BLAS kernels which
operate without the need to reorganize input matrices when the elements are strided [64].
However, strided algorithms tend to perform worse than direct BLAS calls when those
calls can be made [38].

Early approaches to tensor kernels reorganize the whole tensor in the memory, a so-
called tensor unfolding, to then complete the operation using a single optimized BLAS call
directly [35]. The unfolding-based approach not only requires unfolding of the input, but
also requires unfolding of the output. Li et al. [38] instead propose a parallel loop-based
algorithm for the TMM kernel: a loop of the BLAS3 kernels, which operate in-place on
parts of the tensor such that no unfold is required. They propose an auto-tuning approach
based on heuristics and two microbenchmarks and use heuristics to decide on the size of
the MM kernel and the distribution of the threads among the loops. A recent study [7]
proposes a parallel loop-based algorithm for the TVM using a similar approach. Ballard
et al. [6] investigate the communication requirements of a well-known operation called
MTTKRP and discuss a blocking approach. MTTKRP is usually formulated by matrix–
matrix multiplication using BLAS libraries. Kjolstad et al. [34] propose The Tensor
Algebra Compiler (taco) for tensor computations. It generates code for different modes
of a tensor according to the operands of a tensor algebraic expression. Supported formats
aside from the dense unfolded storage are sparse storages such as Compressed Sparse Row
(otherwise known as Compressed Row Storage, CSR/CRS), its column-oriented variant,
and (by recursive use of CSR/CSC) Compressed Sparse Fibers [54].

A related and more computationally involved operation, tensor–tensor multiplication
(TTM), or tensor contraction, has received considerable attention. This operation is
the most general form of the multiplication operation in (multi)linear algebra. CTF [55],
TBLIS [42], and GETT [56] are recent libraries carrying out this operation based on prin-
ciples and lessons learned from high performance matrix–matrix multiplication. Apart
from not explicitly considering TVM , they do not adapt the tensor layout. As a conse-
quence, they all require transpositions, one way or another. Our TVM routines address
a very special case of TMM .

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 17

2.3 Sequential tensor–vector multiplication
In this section, we first describe tensor storages including our proposed blocked data
structure for efficient, mode-oblivious performance in Section 2.3.1. We then discuss
the various ways for implementing the TVM . A TVM operation is similar to a matrix–
vector multiplication (MVM) operation. It takes a tensor, the index of a mode, and
a vector of size conformal to that mode’s size and performs scalar multiply and add
operations. Therefore, we take advantage of the existing BLAS2 routines concerning
the MVM kernel, which are the left-hand sided multiplication vm (u = vA), and the
right-hand sided multiplication mv (u = Av). Section 2.3.2. presents the state-of-the-art
TVM algorithms, which enable the use of standard BLAS2 routines in the state-of-the-
art BLAS libraries. Finally, we propose two block algorithms to perform tensor–vector
multiplication in Section 2.3.3. We consider only the case where smaller tensor blocks are
stored in an unfolded fashion and are processed using one or more BLAS2 calls. A large
set of experiments (Section 2.3.4) are carried out to tune the parameters of the resulting
sequential algorithms to be used later in developing parallel algorithms.

2.3.1 Tensor layouts
A layout of a tensor defines the order in which tensor elements are stored in computer
memory. We always assume that a tensor is stored in a contiguous memory area. Specif-
ically, a layout ρ(A) is a function which maps tensor elements ai0,i1,...,id−1 onto an array
of size n:

ρ(A) : {0, 1, . . . , n0 − 1} × {0, 1, . . . , n1 − 1} × · · · × {0, 1, . . . , nd−1 − 1} 7→
{0, 1, . . . , n− 1}.

For example, the layout ρ(B) maps B’s elements to a contiguous block of memory storing
3 · 4 · 2 = 24 elements. For performance, we do not modify the data structure while
performing a TVM .

Most commonly, dense tensors are stored as multidimensional arrays, i.e., in an un-
folded fashion. While a matrix can be unfolded in two different ways (row-major and
column-major), d-dimensional tensors can be stored in d! different ways. Let ρπ(A) be a
layout and π an associated permutation of (0, 1, . . . , d− 1) such that

ρπ(A) : (i0, i1, . . . , id−1) 7→
d−1∑
k=0

iπk d−1∏
j=k+1

nπj

 , (2.4)

with the convention that products over an empty set amount to 1, that is ∏d−1
j=d nπj = 1.

Conversely, the ith element in memory corresponds to the tensor element with coordinates
given by the inverse of the layout ρ−1

π (A):

ik =
⌊

i

Πd−1
j=k+1nπj

⌋
mod nk, for all k ∈ {0, . . . , d− 1} .

18 CHAPTER 2. TENSOR COMPUTATIONS

For matrices, this relates to the concept of row-major and column-major layout, which,
using the layout definition (2.4), correspond to ρ(0,1)(A) and ρ(1,0)(A), respectively. Such
a permutation-based layout is called a tensor unfolding [35] and describes the case where
a tensor is stored as a regular multidimensional array.

Let ρZ(A) be a Morton layout defined by the space-filling Morton curve [45]. The
Morton order is defined recursively, where at every step the covered space is subdivided
into two within every dimension; for 2D planar areas this creates four cells, while for
3D it creates eight cells. In every two dimensions the order between cells is given by
a (possibly rotated) Z-shape. Let w be the number of bits used to represent a single
coordinate, and let ik = (lk0 lk1 . . . lkw−1)2 for k = {0, 1, . . . , d− 1} be the bit representation
of each coordinate. The Morton order in d dimensions ρZ(A) can then be defined as

ρZ(A) : (i0, i1, . . . , id−1) 7→ (l00l10 . . . ld−1
0 l01l

1
1 . . . l

d−1
1 . . . l0w−1l

1
w−1 . . . l

d−1
w−1)2 . (2.5)

The inverse ρ−1
Z (A) yields the coordinates of the ith consecutively stored element in

memory, where i = (l0l1 . . . ldw−1)2:

ρ−1
Z (A) : i 7→ (i0, i1, . . . , id−1) where ik = (lk+0dlk+1d . . . lk+(w−1)d)2 , (2.6)

for all k ∈ {0, 1, . . . , d−1}. Such layout improves performance on systems with multi-level
caches due to the locality preserving properties of the Morton order. However, ρZ(A) is
an irregular layout, and thus unsuitable for processing with standard BLAS routines.

Let Mk×l
ρπ (A) be the matricization of A which views a tensor layout ρπ(A) as a k × l

matrix:

Mk×l
ρπ (A) : Rn0×n1×···×nd−1 7→ Rk×l ,

where π is a permutation of (0, . . . , d − 1), k = Πb
k=0nπk for some 0 6 b 6 d − 1, and

l = n/k. We relate the entries (Mk×l
ρπ (A))i,j to Ai0,i1,...,id−1 by

i =
b∑

k=0
iπk

b∏
j=k+1

nπj and j =
d−1∑
k=b+1

iπk

d−1∏
j=k+1

nπj ,

where i ∈ {0, 1, . . . , k− 1}, j ∈ {0, 1, . . . , l− 1} and ik ∈ {0, 1, . . . , nk − 1}. For example,
M3×8

ρπ
(B) corresponds to the following n0 × n1n2 matricization of ρ(0,1,2)(B) (2.1):

M3×8
ρπ

(B) =

 2 41 3 43 5 47 7 53
11 59 13 61 17 67 19 71
23 73 29 79 31 83 37 89

 ∈ R3×8 .

A blocked tensor is a tensor with smaller equally-sized tensors as its elements. For-
mally, an order-d blocked tensor A ∈ Rn0×n1×···×nd−1 consists of a total of ∏d−1

i=0 ai blocks
Aj ∈ Rb0×b1×···×bd−1 , where j ∈ {0, . . . , (∏d−1

i=0 ai)−1} and nk = akbk for all k ∈ {0, 1, . . . , d−
1}. A blocked layout organizes elements into blocks by storing the blocks consecutively
in memory while the blocks themselves use a uniform layout to store their elements. For-
mally, a blocked layout ρ0ρ1(A) stores a block as the ρ0(A)(i0, i1, . . . , id−1)th block in the

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 19

memory occupied by the tensor, while a scalar is stored as the ρ1(A0)(i0, i1, . . . , id−1)th
in the memory occupied by the block. It is thus a combination of two layouts: ρ0 at
the block-level, and ρ1 within blocks. We propose two blocked layouts which vary in the
layout used for the blocks: (i) ρπρπ, where the blocks are ordered using a permutation of
dimensions; and (ii) ρZρπ, where blocks are ordered according to the Morton order [45].

2.3.2 Two state-of-the-art tensor–vector multiplication algorithms
Assuming a matrix A is stored using ρ(0,1)-layout, the BLAS subroutines vm and mv
effectively compute mode-0 TVM and mode-1 TVM of A, respectively. In general, for
any tensor stored using a ρπ layout, a TVM may be carried out using the MVM kernel
(using BLAS2) either by:

• reorganizing the tensor in memory (unfolding the tensor into a matrix) followed by
a single MVM , or

• reinterpreting the tensor as a series of matrices, on which a series of MVM opera-
tions are executed.

These two approaches result in two highly optimized state-of-the-art algorithms. As-
suming a tensor with ρπ layout, Algorithm 2.1 computes a k-mode TVM by repeatedly
invoking a column-major MVM on consecutive parts of the tensor in-place, by matri-
cization. Algorithm 2.2, instead, computes a k-mode TVM by reordering the tensor in
memory such that the data is aligned for a single column-major MVM . Both take care
of the position of the mode in the permutation such that the appropriate MVM routine
is chosen.

Both algorithms rely on a single MVM kernel for the case when π0 = k or πd−1 = k,
in which case the memory touched explicitly by the MVM kernel corresponds to the
minimum number of elements touched (2.2). For the remaining d − 2 modes, the two
algorithms exhibit different behavior. Algorithm 2.1 touches at least

d−1∏
i=π−1

k

nπi +
d−1∏

i=π−1
k

+1

nπi + nk (2.7)

data elements for each of the ∏π−1
k
−1

i=0 nπi MVM calls. This brings the data movement
overhead of Algorithm 2.1 to

π
−1
k
−1∏

i=0
nπi

− 1

nk. (2.8)

Algorithm 2.2 performs an explicit unfold of the tensor memory which instead incurs
a more signifcant overhead of 2n. We choose a ρ(1,0)-layout for the unfolded U instead of
a ρ(0,1)-layout since the latter would require element-by-element copies, while the former
can copy ranges of size ∏d−1

i=π−1
k

+1 nπi . Furthermore, the former accesses the input tensor
consecutively while individual accesses on the unfold matrix are interleaved; this is faster
than the reverse.

20 CHAPTER 2. TENSOR COMPUTATIONS

Algorithm 2.1 tvLooped(A,v, k, π): The looped tensor–vector multiplication.
Input: An n0 × n1 × · · · × nd−1 tensor A with ρπ(A),

an nk × 1 vector v,
a mode of multiplication k ∈ {0, 1, . . . , d− 1},
a permutation of modes π.

Output: An n0 × n1 × · · · × nk−1 × 1× nk+1 × · · · × nd−1 tensor B,
B = A×k v with ρπ(B).

1: n = ∏d−1
i=0 ni I Number of tensor elements.

2: if πd−1 equals k then
3: Let A = Mn/nk×nk

ρπ (A) I Reinterpret A as a tall-skinny ρ(0,1)-matrix.
4: u← mv(A,v) I A single mv computes B.
5: return B = (Mn/nk×1

ρπ)−1(u) I Reinterpret u as a tensor.
6: else
7: Let r = ∏d−1

i=π−1
k

nπi and s = r/nk

8: Let A = M (n/r)nk×s
ρπ (A) I Reinterpret A as n/r wide ρ(0,1)-matrices.

9: Let B be an n/r × s matrix with layout ρ(0,1) I n/r vectors of length s.
10: for i = 0 to (n/r)− 1 do
11: bi,: ← vm(vT ,Aink:(i+1)nk,:) I ith row of B computed.
12: return B = (Mn/r×s

ρπ)−1(B) I Reinterpret B as a tensor.

2.3.3 Block tensor–vector multiplication algorithms

We store blocks with ρπ layout to take advantage of the TVM algorithms from Sec-
tion 2.3.2 that exploit highly optimized BLAS2 routines. Algorithm 2.3 is a general
block TVM algorithm which visits the blocks in the order imposed by any layout ρ0.
When the TVM of a block finishes, the next block offset in the output tensor and the
associated positions of the vector entry are computed using the nextBlock function, which
implements the block order.

Depending on the layout ρ0, the nextBlock function in Algorithm 2.3 then corresponds
to nextBlockρπ or nextBlockρZ . The nextBlockρπ function (Algorithm 2.4) has an efficient
Θ(1) implementation which avoids explicitly evaluating ρπ and ρ−1

π .
The nextBlockρZ function (Algorithm 2.5) when moving from one block to the next

increments the result index by default and and the block coordinates according to the
Morton order using mortonInc function (Line 2), which is a modified version of a binary
counter. If it increments coordinate ik, then the nextBlockρZ function swaps the incre-
mented result index with an index stored in resultIndices[lvl] (Line 4), where lvl is the
level of recursion of the Morton curve. It does not explicitly evaluate ρZ and ρ−1

Z , but
instead requires Algorithm 2.3 to maintain a counter for each dimension (i0 , . . . , id−1)
and an array for result indices at each level of the Morton order resultIndices yielding
the memory overhead of Θ(d + log2 maxi ai). The amortized analysis [15, ch. 17] of the
mortonInc function yields a run time complexity of Θ(Πd−1

i=0 ai) over the whole ρZρπ-block

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 21

Algorithm 2.2 tvUnfold(A,v, k, π): The unfold tensor–vector multiplication.
Input: An n0 × n1 × · · · × nd−1 tensor A with ρπ(A),

an nk × 1 vector v,
a mode of multiplication k ∈ {0, 1, . . . , d− 1},
a permutation of modes π.

Output: An n0 × n1 × · · · × nk−1 × 1× nk+1 × · · · × nd−1 tensor B,
B = A×k v with ρπ(B).

1: n = ∏d−1
i=0 ni I Number of tensor elements.

2: if πd−1 equals k then
3: Let A = Mn/nk×nk

ρπ (A) I Reinterpret A as a tall-skinny ρ(0,1)-matrix.
4: u← mv(A,v)
5: return B = (Mn/nk×1

ρπ)−1(u)
6: else if π0 equals k then
7: Let A = Mnk×n/nk

ρπ (A) I Reinterpret A as a wide ρ(0,1)-matrix.
8: u← vm(vT ,A)
9: return B = (M1×n/nk

ρπ)−1(u)
10: else
11: Let r = ∏d−1

i=π−1
k

nπi and s = r/nk

12: Let A = M (n/r)nk×s
ρπ (A) I Reinterpret A as n/r wide matrices.

13: Let U be an empty nk × n/nk matrix with layout ρ(0,1)
14: for i = 0 to (n/r)− 1 do
15: for j = 0 to nk − 1 do
16: uj,is:(i+1)s ← aink+j,: I Rearrange A into U (tensor unfolding).
17: x← vm(vT ,U) I A single vm can now compute B.
18: return B = (M1×n/nk

ρπ)−1(x) I Reinterpret x as a tensor.

22 CHAPTER 2. TENSOR COMPUTATIONS

TVM computation, while the if statement block (Lines 3-7) executes at most

Θ
log2a−1∑

i=0
2di+k +

log2a−2∑
i=0

2di+log2n−2+k

 = Θ(a/2d−k)

times.
The overhead of Θ(dΠd−1

i=0 ai) is much smaller than the number of operations the
bandwidth-bound TVM performs. Thus, we expect neither the ρπρπ- nor the ρZρπ-block
TVM to slow down for this reason while we expect an increased performance in both
algorithms due to cache reuse, with more mode-oblivious performance of the ρZρπ-block
TVM algorithm.

Algorithm 2.3 btv(A,v, k, π, nextBlockρ0 , tv): The block tensor–vector algorithm
Input: An n0 × n1 × · · · × nd−1 blocked tensor A with ρ0ρπ(A)

consisting of Πd−1
i=0 ai blocks Aj ∈ Rb0×b1×...×bd−1 ,

an nk × 1 vector v,
a mode of multiplication k ∈ {0, 1, . . . , d− 1},
a permutation of modes π for each block layout,
a nextBlockρ0 function for indices of result o and vector ik ,
a TVM algorithm tv for ρπ layouts.

Output: An n0 × · · · × nk−1 × 1× nk+1 × · · · × nd−1 blocked tensor B
consisting of Πd−1

i=0 ai/ak blocks Bk ∈ Rb0×···×bk−1×1×bk+1×···×bd−1 ,
B = A×k v with ρ0ρπ(B).

1: Let B be a blocked tensor with layout ρ0ρπ(B) with entries initialized to 0.
2: (i0 , i1 , . . . , id−1)← ρ−1

0 (A)(0) I Get coordinates of the first block.
3: o ← ρ0(B)(i0 , . . . ik−1 , 0 , ik+1 , . . . , id−1) I Get output block index.
4: for i = 0 to Πd−1

j=0aj − 1 do
5: Bo ← Bo + tv(Ai,v(ik)bk:(ik+1)bk , k, π)
6: (o, ik)← nextBlockρ0(k, i, o, ik)
7: return B

2.3.4 Experiments
We evaluate the proposed blocked tensor layouts for the TVM computation, evaluate
their mode-obliviousness, and compare the proposed blocked TVM algorithms against
the state of the art. Section 2.3.4.1 first presents our experimental setup and methodolo-
gies. To ascertain practical upper bounds for the performance of a TVM , Section 2.3.4.2
presents microbenchmarks designed to find realistic bounds on data movement and com-
putation. We then follow with the assessment of the state-of-the-art TVM algorithms
in Section 2.3.4.3, the block TVM algorithms in Section 2.3.4.4, and compare them with
the codes generated by the Tensor Algebra Compiler (taco) in Section 2.3.4.5. To show
our proposed tensor layouts are useful in applications, we apply them to the iterative
higher-order power method (HOPM) [17,18] in Section 2.3.4.6.

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 23

Algorithm 2.4 nextBlockρπ(k, i, o, ik): The output and vector indices used by the next
block in a ρπ layout.

Input: A mode k,
current block index i,
current block result index o,
current block vector index ik.

Output: A next block result index o
and next block vector index ik .

1: Let mright = ∏d−1
i=π−1

k

aπi and mmode = mright/ak
2: i ← i + 1
3: if (k > 0) and ((i mod mright) equals 0) then
4: o ← o + 1
5: ik ← 0
6: else if ((i mod mmode) equals 0) then
7: o ← o −mmode + 1
8: ik ← ik + 1
9: else
10: o ← o + 1
11: return (o, ik)

2.3.4.1 Setup

We run our experiments on a single Intel Ivy Bridge node, containing two Intel Xeon
E5-2690 v2 processors that are each equipped with 10 cores. The cores run at 3.0 GHz
with AVX capabilities, amounting to 240 Gflop/s per processor. Each processor has 32
KB of L1 cache memory per core, 256 KB of L2 cache memory per core, and 25 MB of
L3 cache memory shared amongst the cores. Each processor has 128 GB of local memory
configured in quad-channel at 1600 MHz, yielding a theoretical bandwidth of 47.68 GB/s
per socket. The system uses CentOS 7 with Linux kernel 3.10.0 and software is compiled
using GCC version 6.1. We use Intel MKL version 2018.1.199 and LIBXSMM version
1.9-864.

Benchmarking methodology. We benchmark tensors of order-two (d = 2) up to order-
10 (d = 10) and for simplicity assume square tensors of size n. We assume users are
interested in input tensors that do not fit into cache, and thus choose n such that the
combined input and output memory areas during a single TVM call have a combined
size of at least several GBs to make sure we capture out-of-cache behavior.

To benchmark a kernel, we first time a single run and calculate the number m of calls
required to reach at least one second of run time. We then conduct 10 experiments as
follows:

1. issue a sleep command for 1 second,

2. run the kernel once without timing,

24 CHAPTER 2. TENSOR COMPUTATIONS

Algorithm 2.5 nextBlockρZ (k, i, o, ik): The output and vector indices used by the next
block in a Morton layout.

Input: A mode k,
current block result index o,
current block vector index ik.
The index i is retained for genericity.
This algorithm requires access to global data structures:
current block coordinates (i0 , . . . , id−1),
and resultIndices array of size log2maxk(nk).

Output: A next block result index o
and next block vector index ik .

1: o← o+ 1 I Increment the result index.
2: dim, lvl← mortonInc(i0 , . . . , id−1) I Increment indices according to ρ−1

Z (A).
3: if dim = k then I Reset o if kth dimension was incremented.
4: swap(resultIndices[lvl], o)
5: if ik < nk − 1 then
6: for j = 0 to level− 1 do
7: resultIndices[j]← o

3. time m runs of the kernel,

4. store the time taken divided by m as ti.

Based on 10 experiments, we compute the average time tavg = (∑m−1
i=0 ti)/10 and the (un-

biased) sample standard deviation tstd =
√

1
9
∑9
i=0(ti − tavg)2. Throughout experiments,

we make sure that the tstd are less than or equal 5% of tavg, so as to exclude bad hardware
and suspicious system states.

Block size selection. We evaluate the performance of block TVM algorithms by vary-
ing the block size with respect to the cache hierarchy. As for the input tensors, we assume
square blocks which have equal length b along all dimensions. Recall that a block TVM
algorithm relies on the existing TVM kernels of Section 2.3.2 being called for each in-
dividual block; the size b thus controls the cache level that we block for. We say that
a kernel fits level-L cache if the number of elements it touches is less than or equal to
αzL/s, where 0 < α ≤ 1 is the cache saturation coefficient, zL is the level-L cache size in
bytes, and s is the size of a single tensor data element in bytes. The saturation coefficient
is such that we obtain the typical cache behavior; setting it too close to 1 usually loses
performance, while setting it too close to 0 amounts to benchmarking lower level caches.
We find that for best performance, b should be even or a multiple of four, presumably
to make optimal use of SIMD instructions, and observe typical throughput is attained at
α = 0.5. Table 2.2 summarizes our choices for b in the bL1, bL2 and bL3 columns such that

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 25

d bL1 bL2 bL3

2 44 124 1276
3 12 24 116
4 6 10 34
5 4 6 16
6 3 4 10
7 2 4 7
8 2 3 5
9 2 3 4
10 2 - 4

Table 2.2 – Values of b such that square order-d blocks of bd elements together with the
input vector (b elements) and the output block (bd−1 elements) all fit in the L1, L2, and
L3 caches, assuming double-precision tensor and vector elements. Note that there is no
integer b for d = 10 such that the TVM routine fits the L2 cache without also fitting L1
cache.

the TVM of a block touching bd+bd−1 +b elements fits L1, L2 and L3 cache, respectively.
Note that this parameter is not fine-tuned for better performance.

Implementation. The tvUnfold (Algorithm 2.2) relies on a custom memcpy routine
ntmemcpy, which flags the source memory for early cache eviction. This leads to better
performance once the matrix U is multiplied (line 14), since the full cache is available to
work on the unfolded tensor. The ntmemcpy uses non-temporal reads followed by aligned
or unaligned streaming writes, as appropriate.

Both tvUnfold and tvLooped rely on the mv and vm matrix–vector multiplications ker-
nels. We always use MKL if these kernels are used on unblocked tensors, but, when called
for MVMs on individual blocks of a blocked layout, we also consider LIBXSMM [28]—a
library especially optimized for repeated dense small matrix–matrix multiplications. We
observe that the performance of the MVM kernel strongly depends on the ratio between
rows and columns: for short-wide and tall-skinny matrices LIBXSMM usually outper-
forms MKL, while otherwise MKL exhibits better performance. We tune the selection
of MKL or LIBXSMM to our Ivy Bridge machine based on the aspect ratio, the kernel
orientation (mv or vm), and the number of bytes the computation touches.

2.3.4.2 Microbenchmarks

As TVM algorithms are bandwidth-bound, we retrieve an upper bound on their per-
formance by benchmarking the peak bandwidth our machine attains in practice. We
benchmark using STREAM variants, the C standard memcpy, and the hand-coded nt-
memcpy. To measure an upper bound on computation time for in-cache blocks, we
separately benchmark the mv and vm MVM kernels for cache-sized matrices and for
much larger matrices as well, as a proxy for the overall expected TVM performance.

26 CHAPTER 2. TENSOR COMPUTATIONS

2
11

2
14

2
17

2
20

2
23

2
26

2
29

2
32

Memory movement [B]

2
3

2
4

2
5

2
6

Ba
nd
w
id
th
[G
B/
s]

L1 L2 L3

8
G
B

memcpy
ntmemcpy

Figure 2.1 – Plot of the effective bandwidth (in GB/s) of the copy kernels versus the
amount of bytes moved by the copies, in bytes. The results are stable for sizes larger
than 8 GB.

We also investigate the performance and mode-obliviousness of using one of the state-
of-the-art TVM algorithms on tensors that fit in cache, as this is the inner kernel of the
block TVM algorithms. Since bandwidth is the overall limiting factor, all measurements
are in Gigabyte per second (GB/s).

Upper bounds on effective bandwidth. We measure the maximum bandwidth of our
system using several variants of the STREAM benchmark, reporting the maximum mea-
sured performance only. Using the full machine we attain 76.7 GB/s (using two proces-
sors and ten threads each); however, since our proposed TVM algorithms are sequential,
STREAM performance of a single core yields the upper bound of interest at 18.3 GB/s.
Both results are consistent with the theoretical peak.

The tensor blocked layouts require blocks to be streamed from RAM into cache. For
the tvUnfold, we unfold the tensor with a series of copies. Figure 2.1 benchmarks the
standard memcpy and ntmemcpy for different sizes, including the cache-sized copies in
order to attain upper bounds for data movements when processing a single block. The nt-
memcpy performance is indeed better for RAM-sized copies since it avoids caching source
memory areas. Table 2.3 summarizes the results by selecting representative performance
figures for each level of the memory hierarchy.

Matrix–vector multiplication using mv and vm. The matrix–vector multiplication
mv or the vector transpose–matrix multiplication vm are the innermost kernels of all

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 27

Copy kernel L1 L2 L3 RAM

memcpy 88.41 46.15 29.33 7.62
ntmemcpy 83.78 46.25 25.98 11.39

Table 2.3 – Sample effective bandwidths (in GB/s) of the copy kernels when copy size
fits into different levels of the memory hierarchy. These are representative values taken
from Figure 2.1 at 16 KB for L1, 128 KB for L2, 16 MB for L3, and 8 GB for RAM.

d mv vm

2 12.79 11.64
3 14.25 9.58
4 10.79 9.83
5 9.45 9.85
6 11.29 9.71
7 12.77 10.03
8 13.52 9.82
9 13.46 10.72
10 13.16 9.43

Table 2.4 – Effective bandwidth (in GB/s) of a single mv and vm, given a tall-skinny and
short-wide ρ(0,1)-matrix, respectively. Matrix sizes n are such that at least several GBs
of memory are required. The order d determines the aspect ratio of the matrix as nd−1

to n. All experiments use MKL.

TVM algorithms. The block algorithms call either tvLooped or tvUnfold algorithms for
individual blocks, while those two algorithms, in turn, execute one or more MVM kernels.
To gauge the overall computational performance of both in-cache matrices and tvLooped
and tvUnfold algorithms, we benchmark the speed of single calls to mv and vm over a
range of d-dimensional tensors interpreted as tall-skinny or short-wide matrices. Table 2.4
summarizes the results for matrices that do not fit in cache, while Table 2.5 contains those
for in-cache matrices.

For large matrices, the mv has better performance than the vm, since the former
operates on the output vector via a single stream, while the latter is forced to either i)
access the input matrix with stride, or ii) access the output vector multiple times; which
both result in reduced performance. The mv attains better performance than Table 2.3
would predict presumably because of the reuse of cached input vector elements, which
could only benefit the vm if it was implemented using accesses with stride.

Comparing the results for cache-sized matrices to Table 2.3 would indicate that for
L1-sized and L2-sized matrices, the MVM becomes compute-bound. We also observe
that the vm outperforms mv, especially for lower cache levels and higher d, and that
blocking for L2 typically is preferred. Furthermore, the mv exhibits slowdowns when the
aspect ratio increases while the vm is oblivious to it; we exploit this property to attain
mode-oblivious behavior for the block TVM algorithms.

28 CHAPTER 2. TENSOR COMPUTATIONS

mv
d bL1 bL2 bL3

2 35.42 37.84 26.46
3 26.21 32.51 26.18
4 20.94 27.29 25.09
5 19.29 21.08 23.39
6 18.47 18.34 23.58
7 12.01 20.53 19.84
8 14.43 19.14 18.96
9 16.82 19.27 18.59
10 18.51 - 18.58

vm
bL1 bL2 bL3

45.25 38.94 26.13
38.26 42.54 22.81

43.14 40.07 26.77
29.76 35.95 21.26
23.56 33.70 31.10
11.18 33.36 28.86
19.09 35.88 27.76
29.35 33.27 26.47

42.45 - 26.50

Table 2.5 – Effective bandwidth (in GB/s) of a single mv (left) or vm (right) given a
bd−1 × b and b × bd−1 ρ(0,1)-matrix, respectively, with b as defined in Table 2.2. MKL
results are in italics while LIBXSMM results are in regular font; we report only the best-
performing variant. The best results for any given d are in bold. Note that there is no
integer b for d = 10 such that the TVM routine fits the L2 cache without also fitting L1
cache.

Single-block tensor–vector multiplication. We discard tvUnfold as the inner kernel of
the block TVM algorithms because it requires a complete unfold of each block which
would double the data movement, resulting in a major performance overhead at least for
L2- and L3-sized tensors. Therefore, we will only use tvLooped as the inner kernel of the
block TVM algorithms.

We measure the performance of tvLooped (Algorithm 2.1) on cache-sized tensors in
Table 2.6, for each mode 0 ≤ k < d, and report the average performance over all modes
(left). Additionally, we measure the unbiased sample standard deviation between the
modes (right) as a measure of mode-obliviousness—the lower this value, the more con-
sistent the performance when computing in arbitrary modes. The tvLooped algorithm
uses the vm kernel for all modes k < d − 1 and uses the slower-performing and less
mode-oblivious mv only for the mode k = d− 1.

We achieve best performance on L2-sized tensors, which is consistent with the mi-
crobenchmarks for the vm and mv kernels. However, we achieve best mode-obliviousness
for L3-sized blocks, while a lower d benefits both performance and mode-obliviousness
for both L2 and L3. Since in practical application we still require retrieving the input
blocks from main memory and since both L2 and L3 performances are higher than the
bounds in Table 2.4, we expect the best results for L3-sized blocks.

2.3.4.3 The state-of-the-art tensor–vector multiplication algorithms

Here, we benchmark tvLooped and tvUnfold algorithms for large tensors with general
unfolded layouts ρπ: tvlooped (Algorithm 2.1), which repeatedly makes BLAS2 calls over
the given input tensor as-is, and tvUnfold (Algorithm 2.2) which first unfolds the input
tensor into a layout appropriate for the multiplication mode and then calls BLAS2 once.

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 29

Average performance Sample stddev. (%).
d bL1 bL2 bL3 stdbL1 stdbL2 stdbL3

2 40.34 38.39 25.84 17.23 2.03 0.68
3 33.08 35.56 25.11 18.74 17.05 7.83
4 31.95 33.69 24.76 35.14 16.29 5.86
5 24.30 29.64 22.87 21.66 21.03 17.96
6 20.11 27.53 28.37 18.69 24.24 11.48
7 10.31 28.96 25.70 11.98 19.45 15.60
8 15.57 26.39 24.64 20.66 27.39 14.48
9 22.64 26.72 25.55 29.83 24.29 13.21
10 30.68 - 24.58 36.81 - 11.83

Table 2.6 – Average effective bandwidth (in GB/s) and relative standard deviation of
tvLooped (Algorithm 2.1), in percentage versus the average bandwidth over all possible
k ∈ {0, 1, . . . , d − 1}. The input tensor is a square block of size b as given in Table 2.2.
The highest bandwidth and lowest standard deviation for each d are stated in bold. Note
that there is no integer b for d = 10 such that the TVM routine fits the L2 cache without
also fitting L1 cache.

The tvLooped algorithm. Table 2.7 shows the results of tvLooped for k ∈ {1, . . . , d−2};
like for Table 2.4, these are higher than the raw memory-copy speeds in Table 2.3 due
to cache reuse. We omit the results for k = 0 and k = d− 1 since their equivalence to a
single vm and vm, respectively, for which the results are in Table 2.4.

We previously learned that mode k = d − 1 (mv) is preferred over k = 0 (vm) for
matrices that cannot be cached; Table 2.7, however, shows several modes 0 < k < d− 1
that exhibit higher performance than a single mv call. This is due to tvLooped dividing
the computation into multiple vm calls on smaller matrices: when the output matrix fits
cache, the number of cache misses may be significantly reduced. To test this hypothesis,
the results which correspond to calls to vm on matrices for which the output matrix fits
L2 cache size (and not L1) are printed in italic, while marking the best results in bold.
From the table, we indeed observe that the fastest results for given d are obtained for
computations making optimal use of the L2 cache.

For all d, one may observe that the performance decreases with increasing k, even if the
output matrix fits in the L2 cache. This conforms to the data movement overhead (2.7)
of input vector elements.

The tvUnfold algorithm. Table 2.8 benchmarks tvUnfold (Algorithm 2.2) for large
tensors for k ∈ {1, . . . , d− 2}. The results for modes 0 and d− 1 are equivalent to those
of a single vm and vm in Table 2.4, respectively.

The tvUnfold performance is suboptimal as it is equivalent to performing two opera-
tions in sequence: a large memory copy (the unfold), followed by a single vm. These are
bounded by the copy and MVM microbenchmarks of Section 2.3.4.2, respectively. The
performance of tvUnfold thus is half of the fastest one at best and half of the slowest one
at worst; indeed, most results are very close to the raw memcpy performance. The effec-

30 CHAPTER 2. TENSOR COMPUTATIONS

d\k 1 2 3 4 5 6 7 8 avgtvU stdtvU

2 - - - - - - - 12.22 6.66
3 13.57 - - - - - - - 12.47 20.24
4 11.28 11.25 - - - - - - 10.79 6.27
5 11.16 13.03 10.05 - - - - - 10.71 13.49
6 9.92 10.98 13.11 10.87 - - - - 10.98 11.07
7 10.18 11.32 10.81 12.81 10.89 - - - 11.26 10.07
8 10.24 11.44 11.39 12.54 10.46 9.62 - - 11.13 12.29
9 10.41 10.70 10.64 11.32 12.56 9.85 7.72 - 10.82 14.98
10 9.18 9.86 10.84 9.08 11.67 12.59 10.11 6.65 10.26 18.56

Table 2.7 – Effective bandwidth (in GB/s) of tvLooped (Algorithm 2.1), for k ∈ {1, . . . , d−
2} for each d. The two columns on the right are the average effective bandwidth (in
GB/s) and relative standard deviation (in percentage versus the average bandwidth) for
k ∈ {0, 1, . . . , d − 1}. Tensor sizes n are such that at least several GBs of memory are
required. For each d, the best bandwidth (between modes 1 and d− 2) is in bold, while
the result for which the MVM kernel fits L2 is in italics. All experiments use MKL.

d\k 1 2 3 4 5 6 7 8 avgtvU stdtvU

2 - - - - - - - 12.22 6.66
3 3.48 - - - - - - - 6.36 83.75
4 3.62 3.46 - - - - - - 4.50 80.03
5 3.64 3.63 3.07 - - - - - 3.76 77.73
6 3.65 3.64 3.65 1.95 - - - - 3.46 88.34
7 3.74 3.73 3.73 3.69 3.46 - - - 3.64 81.39
8 3.78 3.77 3.78 3.78 3.71 3.72 - - 3.68 75.93
9 3.95 3.94 3.94 3.94 3.93 3.79 3.71 - 3.54 77.26
10 3.90 3.90 3.90 3.90 3.87 3.81 3.70 3.24 3.77 74.71

Table 2.8 – Effective bandwidth (in GB/s) of tvUnfold (Algorithm 2.2), for k ∈ {1, . . . , d−
2} for each d. The two columns on the right are the average effective bandwidth (in
GB/s) and relative standard deviation (in percentage versus the average bandwidth) for
k ∈ {0, 1, . . . , d − 1}. Tensor sizes n are such that at least several GBs of memory are
required. All experiments use MKL.

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 31

Average performance Sample stddev. (%).
d bL1 bL2 bL3 stdbL1 stdbL2 stdbL3

2 9.25 9.92 13.94 11.54 2.57 2.48
3 8.67 11.81 10.29 46.28 11.79 6.80
4 6.42 11.30 11.12 56.47 15.07 12.79
5 5.40 9.62 10.61 47.43 29.69 10.82
6 3.79 7.71 11.47 56.02 27.53 10.78
7 3.04 6.58 8.97 51.98 41.09 45.89
8 3.27 4.67 8.11 48.10 49.31 43.83
9 3.47 4.99 7.30 44.63 46.40 35.82
10 3.67 - 7.77 42.16 - 33.79

Table 2.9 – Average effective bandwidth (in GB/s) and relative standard deviation (in
percentage versus the average bandwidth) of the ρπρπ-block algorithm with tvLooped, for
k ∈ {0, 1, . . . , d− 1} for each d. Blocked tensor sizes n are such that at least several GBs
of memory are required, while block sizes defined in Table 2.2 hitting different L1, L2
and L3 cache.

tive bandwidths are often 3x slower than those achieved by tvLooped and performance
is highly unpredictable given standard deviations of up to 88% of average performance;
unfold-based TVM implementations should be avoided.

2.3.4.4 Block tensor–vector multiplication algorithms.

Here we benchmark the two blocked tensor layouts proposed in Section 2.3.3: ρπρπ and
ρZρπ. We expect both block algorithms to improve mode-obliviousness over tvLooped
and tvUnfold, and, for sufficiently small block sizes, expect the ρZρπ-algorithm to cache-
obliviously improve reuse of input vector and output tensor elements. Conforming to
earlier experiments, we only consider the tvLooped (Algorithm 2.1) for performing the
TVM on a single block by fixing the tv parameter to the block TVM (Algorithm 2.3).

Tables 2.9 and 2.10 contain the experimental results of ρπρπ-block and ρZρπ-block
algorithm, respectively. The ρZρπ-block algorithm achieves a mode-oblivious behavior
similar to that of tvLooped, while both performance and mode-obliviousness of the ρπρπ-
block algorithm drop as d increases. Compared to the ρZρπ-block algorithm, performance
losses are up to 67% while standard deviations are multiplied several times. This attests
that the natural order blocking alone is not enough to induce mode-oblivious behavior;
the Morton order based blocking is necessary.

The results in Table 2.9 show that ρπρπ-block TVM has much lower performance and
much higher standard deviation between modes than tvLooped in Table 2.7, for d ≥ 7.
This confirms that the mode-dependent behavior is inherent to ρπ layout and is amplified
by the ρπρπ layout.

In line with experiments from Section 2.3.4.2 (single-block tensor-vector multipli-
cation), both block algorithms generally achieve the highest performance for L3-sized
blocks, and if not, in all but two cases achieve it on L2-sized blocks instead. In terms of
mode-obliviousness, the ρZρπ-block algorithm performs best using L2- or L3-sized blocks.

32 CHAPTER 2. TENSOR COMPUTATIONS

Average performance Sample stddev. (%).
d bL1 bL2 bL3 stdbL1 stdbL2 stdbL3

2 10.43 9.93 13.91 5.14 3.21 2.75
3 12.30 11.67 10.35 6.58 11.99 6.32
4 11.73 12.13 11.31 6.19 7.71 10.23
5 10.89 11.71 11.17 4.14 6.01 10.06
6 10.03 10.88 10.99 10.32 4.69 15.08
7 8.70 10.74 11.03 13.10 4.62 8.40
8 9.10 10.13 10.87 11.13 7.96 5.85
9 9.25 10.21 10.34 8.88 7.39 9.44
10 9.55 - 10.56 8.22 - 9.17

Table 2.10 – Average effective bandwidth (in GB/s) and relative standard deviation (in
percentage versus the average bandwidth) of the ρZρπ-block algorithm with tvLooped, for
k ∈ {0, 1, . . . , d− 1} for each d. Blocked tensor sizes n are such that at least several GBs
of memory are required, while block sizes defined in Table 2.2 hitting different L1, L2
and L3 cache.

Blocking for L2 incurs a small performance penalty, however, so blocking for L3 is pre-
ferred. The ρZρπ-block TVM maintains high performance and low standard deviations
across all values of d tested; the increase in cache efficiency on input and output elements
that the Morton order induces proves crucial to blocked tensor layouts. This algorithm
performs slower than ρπρπ only for d = 2 and 6, and only slightly so.

We measure the highest performance for order-2 tensors at almost 14 GB/s for L3-sized
blocks, for both block algorithms. This is higher than the raw vm and mv performance
from Section 2.3.4.3 and 1.5 GB/s higher than the unblocked tvLooped, showing the
benefit of blocked data layouts in general for regular matrices.

2.3.4.5 Experimental results of TVM algorithms for large-sized tensors

This section compares all presented TVM algorithms with the code generated by The
Tensor Algebra Compiler (taco). Tables 2.11 and 2.12 compare the average bandwidths
and standard deviations of the state-of-the-art algorithms, the taco-generated TVM ker-
nels, the block algorithms ρπρπ, ρZρπ and ρZρ

?
π, where the last one uses a hand-tuned

blocking parameter. For the blocked layouts, we select the block sizes bL3 in Table 2.2
which correspond to 0.5zL3 for reasons discussed in the previous subsection. For the ρZρ?π
block algorithm, we used a block size such that the TVM of a block fits a memory of size
0.1zL3 which not only performs better, but also is more suitable for any future threaded
use of the Morton block layout.

While taco enables very generic generation of possibly quite complex tensor computa-
tion codes and its performance improves on the tvUnfold except for d = 2, it lags behind
all other variants except once for ρπρπ at d = 7. The lack of performance is explained
by taco not reverting to optimized BLAS2 kernels in its generated codes. It also does
not generate mode-oblivious code until d > 7, curiously reaching parity with the ρZρπ-
blocked results for d = 9 and 10. Between the two blocked variants, the ρZρπ-block

2.3. SEQUENTIAL TENSOR–VECTOR MULTIPLICATION 33

d tvUnfold tvLooped taco ρπρπ-block ρZρπ-block ρZρ
?
π-block

2 12.22 12.22 9.36 13.94 13.91 14.1
3 6.36 12.47 11.92 10.29 10.35 11.06
4 4.50 10.79 10.09 11.12 11.31 11.86
5 3.76 10.71 10.69 10.61 11.17 12.06
6 3.46 10.98 9.93 11.47 10.99 11.48
7 3.64 11.26 9.55 8.97 11.03 11.52
8 3.68 11.13 6.94 8.11 10.87 10.87
9 3.54 10.82 6.75 7.30 10.34 10.36
10 3.77 10.26 7.05 7.77 10.56 10.62

Table 2.11 – Average effective bandwidth (in GB/s) of different algorithms for large order-
d tensors. The highest bandwidth, signifying the best performance, for each d is shown
in bold. Tensor sizes n are such that at least several GBs of memory are required.

d tvUnfold tvLooped taco ρπρπ-block ρZρπ-block ρZρ
?
π-block

2 6.66 6.66 18.50 2.48 2.75 0.65
3 83.75 20.24 38.25 6.80 6.32 12.99
4 80.03 6.27 38.18 12.79 10.23 10.31
5 77.73 13.49 33.65 10.82 10.06 7.08
6 88.34 11.07 30.30 10.78 15.08 8.58
7 81.39 10.07 28.50 45.89 8.40 4.73
8 75.93 12.29 11.53 43.83 5.85 5.82
9 77.26 14.98 10.21 35.82 9.44 9.44
10 74.71 18.56 11.03 33.79 9.17 9.17

Table 2.12 – Relative standard deviation (in percentage versus the average bandwidth) of
different algorithms for large order-d tensors. The lowest standard deviation, signifying
the best mode-oblivious behavior, for each d is shown in bold. Tensor sizes n are such
that at least several GBs of memory are required.

34 CHAPTER 2. TENSOR COMPUTATIONS

generally performs better in both performance and mode-obliviousness, while the ρπρπ
blocked layout additionally incurring unusably high standard deviations for d > 6. Both
block algorithms dominate tvUnfold and taco in terms of performance (except for d = 7)
and mode-obliviousness. The ρZρ?π-block algorithm dominates all other variants except
tvLooped for d = 8, 9, where they perform equally. Considering mode-obliviousness, the
block algorithms following the ρZρπ and ρZρ?π tensor layouts achieve the best results by
very comfortable margins.

2.3.4.6 Practical effects in an algorithm

Here we study the proposed tensor layouts in the context of the iterative higher-order
power method (HOPM) [17, 18]. Given a square d-dimensional tensor and d initial vec-
tors the HOPM proceeds as in Algorithm 2.6. Each of the d(d − 1) TVM calls per
iteration can be computed using tvLooped; this requires a buffer space of nd−1 and yields
a straightforward baseline implementation. The number of floating point operations is
d(3n + ∑d

i=2 2ni) per iteration for both the normalization and the TVMs. The number
of data elements touched per iteration is d2n for all vectors, plus d(nd + ∑d−1

i=2 2ni) for
streaming the input tensor and repeatedly streaming intermediate tensors, plus 2dn for
the normalization step. Hence the arithmetic intensity is

d
(
3n+∑d

i=2 2ni
)

wd
(
2n+ dn+ nd +∑d−1

i=2 2ni
) flop per byte , (2.9)

with w being the number of bytes required to store a single element. Like for the arith-
metic intensity of the TVM 2.3, this is bounded from above by 2/w; the HOPM remains
a bandwidth-bound operation.

When assuming a block layout, however, the loops on lines 4–7 can be implemented
as a single kernel: the tensor times a sequence of vectors, or ttsv. Just as the block TVM
algorithm calls tvLooped on each block, our blocked layouts allow making d− 1 tvLooped
calls on that single block. Compared to non-blocked layouts, we expect significant gains
due to computing each of the d batches of d−1 TVMs entirely in cache, while for Morton-
ordered blocks we additionally expect to observe an accumulated gain from increased
cache efficiency on the input and output vectors. The blocked ttsv requires a buffer
with size bounded by bd, which coincides perfectly with our choice for α = 0.5 from
the preceding TVM analyses. The output vectors must be reset to zero before each of
the d blocked ttsv calls, causing a Θ(dn) overhead per iteration in both time and data
movement. However, this is negligible compared to the d∑d−1

i=2 2ni intermediate tensor
elements it saves from being streamed from main memory.

Tables 2.13 and 2.14 show experimental results of a single iteration of HOPM on two
different compute nodes, Ivy Bridge and Haswell, respectively. We consider only tvLooped
and the proposed block algorithms, as Table 2.11 clearly indicated that these algorithms
have better performance than others. We choose the input tensor size n to yield close to
8 GB sized data. For the block algorithms, where n is a multiple of b, we choose the latter
to result in block sizes that fit L3 cache. Since HOPM computation involves all tensor

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 35

Algorithm 2.6 A basic higher-order power method
Input: A square tensor A of order d and size n,

d vectors u(k) of size n, the maximum number of iterations maxIters
Output: d vectors u(k) of size n

1: for iters = 0 to maxIters − 1 do
2: for k = 0 to d− 1 do
3: ũ(k) ← A
4: for t = 0 to k − 1 do
5: ũ(k) ← ũ(k) ×t u(t)

6: for t = k + 1 to d− 1 do
7: ũ(k) ← ũ(k) ×t u(t)

8: u(k) ← ũ(k)

‖ũ(k)‖
return (u(0), u(1), . . . , u(d−1))

modes, we do not evaluate mode-obliviousness in this case study. We always compute
the speed in GB/s according to the data movement equation (2.9).

On the Ivy Bridge, the performance of tvLooped drops below 11 GB/s for d larger
than 3, while the proposed block algorithms generally remain steady between 11–13
GB/s. They improve over tvLooped by 14.1 to 30.4 per cent. Haswell has 26.2 per
cent less bandwidth per core, as measured by the STREAM variants of Section 2.3.4.2.
Nonetheless, we achieve speedups of up to 15.4 per cent using block algorithms over
tvLooped. As expected, the blocked variants’ performances in HOPM (Table 2.13) are
better than those reported in Table 2.11—while their improvement over the RAMmemory
speed from Table 2.3 can only be due to improved cache reuse. Since the ratio of input
tensor elements versus those of the vectors ui is high and increases with d, the benefits of
cache reuse on vectors for Morton ordered curves decline and even out to memory copy
speed. Finally, we give an example of an absolute run time. An iteration of HOPM of an
order-5 tensor of 8 GB takes 4.5 seconds with tvLooped and 3.5 seconds with ρZρπ-block
on the Ivy Bridge. A straightforward implementation with nested for-loops, where the
inner kernel multiplies the tensor with all input vectors simultaneously and accumulates
into the output vector without using BLAS (as in û(0)

i ← û
(0)
i +Ai,j,ku(1)

j u
(2)
k for an order-

3 tensor A), takes 7 seconds; resulting in 6.29 GB/s, twice slower than the proposed
ρZρπ-block.

2.4 Shared-memory parallel tensor–vector multiplication
In this section, we build on the insights we have gained when developing the sequential
TVM to develop shared-memory parallel algorithms for TVM considering both paral-
lelizations of for-loops as well as parallelizations following the Single Program, Multiple
Data (SPMD) paradigm.

A distribution of an order-d tensor of size n0 × · · · × nd−1 over p threads is given by

36 CHAPTER 2. TENSOR COMPUTATIONS

d tvLooped ρπρπ-block ρZρπ-block
2 11.10 13.96 13.98
3 13.99 9.85 9.80
4 9.64 11.32 11.29
5 9.83 12.80 12.82
6 10.88 12.65 12.63
7 10.90 12.47 12.50
8 10.82 12.34 12.35
9 10.30 11.74 11.76
10 9.69 11.42 11.46

Table 2.13 – Average effective bandwidth (in GB/s) of different algorithms for HOPM
of large order-d tensors on an Intel Ivy Bridge node. The highest bandwidth, signifying
the best performance, for each d is shown in bold. Tensor sizes n are such that at least
several GBs of memory are required.

d tvLooped ρπρπ-block ρZρπ-block
2 10.22 10.89 10.73
3 12.16 8.59 8.55
4 8.47 8.86 8.87
5 8.65 8.77 8.79
6 8.97 9.23 9.25
7 8.58 9.40 9.40
8 8.54 9.40 9.40
9 8.04 9.28 9.28
10 7.88 8.89 8.89

Table 2.14 – Average effective bandwidth (in GB/s) of different algorithms for HOPM of
large order-d tensors on an Intel Haswell node with two Intel Xeon E5-2690 v3 processors.
Each processor has 12 cores sharing 30 MB of L3 cache and the upper bound on bandwidth
per core of 14.5 GB/s. The highest bandwidth, signifying the best performance, for each
d is shown in bold. Tensor sizes n are such that at least several GBs of memory are
required.

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 37

a map π : I → {0, . . . , p− 1}. Let π1D be a regular 1D block distribution such that

π1D(A) : (i0, i1, . . . , id−1) 7→ bi0/b1Dc,

where block size b1D = dn0/pe refers to the number of hyperslices. Let ms = |π−1
1D(s)|

count the number of elements local to thread s. We demand that a 1D distribution be
load-balanced,

max
s∈P

ms −min
s∈P

ms ≤ n/n0.

The choices to distribute over the first mode and to use a block distribution are without
loss of generality; the dimensions of A and their fibers could be permuted to fit any other
load-balanced 1D distribution. When n0 < p the dimensions could be reordered or fewer
threads could be used.

We first describe a shared-memory TVM algorithm based on a for-loop parallelization
in Section 2.4.1, as it serves as the baseline parallel TVM algorithm. Before describing
the SPMD variants, we first motivate why it is sufficient to only consider one-dimensional
partitionings of A in Section 2.4.2. We describe a number of SPMD TVM algorithms
based on one-dimensional tensor partitionings in Section 2.4.3. Section 2.4.4 contains
analyses of all presented parallel TVM algorithms, We present experimental results on
up to 8-socket 120-core systems in Section 2.4.5.

2.4.1 The loopedBLAS baseline
The baseline algorithm uses a for-loop where each iteration can be processed concurrently
without causing race conditions. Iterations of such a for-loop can either be scheduled
statically or dynamically; the former cuts a loop of size n in exactly p parts and has each
thread execute a unique part of the loop, while the latter typically employs a form of
work stealing to assign parts of the loop to threads. In both cases, we assume that one
does not explicitly control which thread will execute which part of the loop.

We assumeA and Y have the default unfold layout. The TVM operation could naively
be written using d nested for-loops, where the outermost loop that does not equal the
mode k of the TVM is executed concurrently using OpenMP. Such code is generated by
the tensor algebra compiler (taco). For a better performing parallel baseline, however, we
observe that the d−k inner for-loops correspond to a dense matrix–vector multiplication
if k < d; we can thus write the parallel TVM as a loop over BLAS2 calls, and use
highly optimized libraries for their execution. For k = d − 1, the naively nested for-
loops correspond to a dense matrix–transpose–vector multiplication, which is a standard
BLAS2 call as well. Matrices involved with these BLAS2 calls generally are rectangular.

We execute the loop over the BLAS2 calls in parallel using OpenMP. For k = d−1, and
for smaller tensors, this may not expose enough parallelism to make use of all available
threads; we use any such left-over threads to parallelize the BLAS2 calls themselves,
while taking care that threads collaborating on the same BLAS2 call are pinned close to
each other to exploit shared caches as much as possible. Since all threads access both
the input tensor and input vector, and since it cannot be predicted which thread accesses
which part of the output tensor, all memory areas corresponding to A, Y , and x must

38 CHAPTER 2. TENSOR COMPUTATIONS

be interleaved. We refer to the described algorithm as loopedBLAS, which for p = 1 is
equivalent to tvLooped in our earlier work [50].

2.4.2 Optimality of one-dimensional tensor partitioning
In this section, we prove that a one-dimensional partitioning of A yields an asymptotic
lower bound on the number of elements which require a reduction when computing all
possible TVMs of A in a series. Recall that the distribution π defines which thread
multiplies an input tensor element ai with its corresponding input vector element xik , for
any i ∈ I. We say that the thread(s) in π(i0, . . . , ik−1, Ik, ik+1, . . . , id−1) contribute to the
reduction of yj for j = (i0, . . . , ik−1, 1, ik+1, . . . , id−1) as they perform local reductions of
multiplicands to yj during the sequence of d TVMs.

Theorem 1. Let A be a tensor of size n = ∏d−1
k=0 nk, with ni ≥ ni+1 for 0 ≤ i <

d − 1. Let n0 ≥ p ≥ 2, ∏d−1
i=1 ni > d − 1, and d > 2. Let π1D be a load-balanced

one-dimensional distribution of A and Y such that thread s has at least bn0/pcn/n0 and
at most dn0/pen/n0 elements of A. Then, this partitioning π1D yields a lower bound
on the number of elements which require a reduction during the series of computations
Yk = A×k vk for all k ∈ {0, . . . , d− 1}.

Proof. We will show that a partitioning over more dimensions violates the load balance
assumption.

Let π be any load-balanced distribution of A and Y such that thread s has at least
2dbn0/pcn/n0 and at most 2ddn0/pen/n0 work. For any i ∈ I, let Ji = {j ∈ I | ∨d−1

k=0 ik =
jk} be the set of elements lying on d different axes which all go through i, as illustrated in
Figure 2.2 (left). Let Xi = π(Ji), where π is any distribution, describe the set of threads
to which elements in Ji are mapped. Should |Xi| > 1 for all i ∈ I, then there is at least
one TVM for which all elements of Y are involved in a reduction, as at least two threads
contribute to yj. Therefore, the number of reductions for a series of TVMs is at least
n/n0. This lower bound on the number of reductions occurs for a 1D distribution over
mode 0, showing that it is attainable. We will now consider if we can improve this lower
bound by allowing i for which |Xi| = 1, and if so, by how much.

Suppose there exist r = ∏d−1
k=0 rk coordinates i ∈ I such that Xi = {s}, which form

a hyper-rectangular subtensor B of side length rk < nk contained in A, as in Figure 2.2
(right). We choose a hyper-rectangular shape so that the r elements create the minimum
amount of redundant work. Since |Xi| = 1, the number of coordinates which must
then also lie on thread s is r(∑d−1

k=0 [nk/rk] − (d − 1)). If rk = 21/(d−1)nk/p
1/(d−1), this

already corresponds to a load exceeding the assumed load balance (2n − n/n0)/p; see
Section 2.4.2.1 for details behind the constant factor 21/(d−1). Furthermore, with r =
2d/(d−1)n/pd/(d−1) such coordinates, the lower bound on the number of reductions may
only be reduced to n/n0(1 − 2/p), where r/r1 = 2n/pn0 is the projection of the cube
r onto the d − 1-dimensional output tensor. We consider only the data movement on
the output tensor as the data movement on the input vector is at most (d− 1)n0, which
is asymptotically less than the data movement associated with the output tensor since
d− 1 < ∏d−1

i=1 ni and d > 2.

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 39

i

r

Figure 2.2 – Illustrations of elements in Ji, indicated via thick gray lines, for an arbitrarily
chosen i depicted by a filled dot (left), and for a cube of r elements i (right).

As seen in the proof, we do not assume a specific reduction algorithm and count the
minimal work involved.

2.4.2.1 Finding the minimal number of elements r

Let r = ∏d−1
k=0 rk be a hyperrectangular subtensor B contained in A. The number of

elements e in A\B that lie orthogonal to any of the d dimensions is (∑d−1
k=0 rnk/rk)−r(d−

1), which simplifies to r(∑d−1
k=0 [nk/rk]− (d− 1)). Assuming p ≤ n0 (which is the largest

dimension in A), we know that dn0/pen/n0 < 2n/p:

dn0/pen/n0 ≤ (n0n+ pn− n)/pn0 ≤ (2n− n/n0)/p < 2n/p

We are looking for a minimal r for which

e = r(
d−1∑
k=0

nk/rk − (d− 1)) > 2n/p

for r, n, d, p ∈ N and under the assumptions that p > 1, n ≥ p, d > 2, and rk < nk.
A reasonable guess would be rk = cnk/p

1/(d−1), where p1/(d−1) > c > 0 is some to-be-
determined constant (thus the total size r = cdn/pd/(d−1), and nk/rk = p1/(d−1)/c):

cdn/pd/(d−1)(dp1/(d−1)/c− (d− 1)) > 2n/p
c(d−1)n(d− 2/c(d−1))/p > cdn(d− 1)/pd/(d−1),

which we can further simplify to

c(d−1)n(d− 2/c(d−1))/p ≥ cdn(d− 1)/pd/(d−1)

which is satisfied when c(d−1)/p ≥ cd/pd/(d−1) and −2/c(d−1) ≥ −1. From the second
equation, cd−1 ≥ 2 and thus c ≥ 21/(d−1). From the first equation, p ≥ c(d−1) and
thus p ≥ 2. The total number of elements r we can take hence must be smaller than
2d/(d−1)n/pd/(d−1).

40 CHAPTER 2. TENSOR COMPUTATIONS

2.4.3 Proposed 1D TVM algorithms
We explore a family of shared-memory parallel TVM algorithms assuming the π1D dis-
tribution of the input and output tensors, as Theorem 1 enables us to focus only on
such partitionings for the TVMs when our goal is to minimize the data movement. Such
partitioning results in p disjoint input tensors As and p disjoint output tensors Ys, whose
unions correspond to A and Y , respectively. For all but k = 0, a parallel TVM amounts
to a thread-local call to a sequential TVM computing Ys = As ×k x; each thread reads
from its own part of A while writing to its own part of Y . We may thus employ the
ρZρπ layout for As and Ys and use its high-performance sequential mode-oblivious ker-
nel [50]; here, x is allocated interleaved while As and Ys are explicit. The global tensors
A and Y are never materialized in shared-memory—only their distributed variants are
required. We expect the explicit allocation of these two largest data entities involved
with the TVM computation to induce much better parallel efficiency compared to the
loopedBLAS baseline where all data is interleaved.

For k = 0, the output tensor Y cannot be distributed. We define that Y is then
instead subject to a 1D block distribution over mode 1, and assume n1 ≥ p. Since the
distributions of A and Y then do not match, communication ensues. We suggest three
variants that minimize data movement, characterized by the number of synchronization
barriers they require: zero, one, or p− 1.

2.4.3.1 The 0-sync algorithm

We avoid performing a reduction on Y for k = 0 by storing A twice; once with a 1D
distribution over mode 0, another time using a 1D distribution over mode d−1. Although
the storage requirement is doubled, data movement remains minimal while explicit re-
duction for k = 0 is completely eliminated: the copy with the 1D distribution over mode
d− 1 can then be used instead. In either case, the parallel TVM computation completes
after a sequential thread-local TVM ; this variant requires no barriers to resolve data
dependencies.

If this algorithm is to re-use output of mode-0 or mode-d−1 TVM to perform another
TVM , each thread must replicate the work such that the unused input tensor storage
stores the output tensor partitioned over mode 0 or mode d− 1, respectively.

2.4.3.2 The 1-sync algorithm

This variant performs an explicit reduction of the Ys for k = 0 using two-phase reduction
and behaves as the 0-sync variant otherwise. It requires a larger buffer for the Ys to cope
with k = 0, since each thread computes a full output tensor As×0 x that contains partial
results only. The output tensor is then reduced by all p threads, such that each thread
contains its part according to a π1D distribution over mode 0, i.e., Yt = (∑p−1

s=0(As×0 x))t,
for all t ∈ P . By load balance, each thread has at most dn0/pen/(n0n0) elements of
the output tensor. A barrier must separate the local TVM from the reduction phase to
ensure no incomplete Ys are reduced.

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 41

2.4.3.3 The q-sync algorithm

This variant stores A with a 1D distribution over mode 0. It also stores two versions of
the output tensor, one interleaved Y and one thread-local Ys. The vector x is interleaved.
Both As and Ys are split into q = ∏d−1

i=1 qi ≥ p parts, by splitting each object into qi parts
across mode i. We index the resulting objects as As,t, which are explicitly allocated to
thread s, and Ys,t, which are allocated twice, once explicitly and once interleaved. The
input vector x remains interleaved. Algorithm 2.7 summarizes this approach.

Algorithm 2.7 The q-sync parallel TVM algorithm at thread s.
Input: A square tensor A of order d containing n elements

and a vector x of size nk.
Output: An output tensor Y of size n/nk.

1: if k = 0 then
2: Y = As,s ×k x
3: for t = 1 to q − 1 do
4: barrier
5: Y += As,(t+s) mod q ×k x
6: else
7: for t = 0 to q − 1 do
8: Ys,t += As,t ×k x

return Y

If this algorithm is to re-use output of mode-0 TVM , then, similarly to the 0-sync
variant, each thread must re-synchronize its local Ys,t with Y . Thus, unless the need
explicitly arises, implementations need not distribute Y over n1 as part of a mode-0 TVM
(at the cost of interleaved data movement on Y). This algorithm avoids doubling the
storage requirement yet still eliminates explicit reductions for k = 0, replacing reduction
with synchronization. For k > 0, no barriers are required since each thread writes into
disjoint areas of Y due to the 1D block distribution over mode 0. For simplicity, we omit
the indexing of the interleaved Y into one of its q subtensors. Additionally, lines 7 and 8
assume the amount of subtensors in Ys is the same as in As, i.e., qk = 1. Otherwise, the
code has to be adapted to go over q/qk output subtensors qk times.

2.4.3.4 Interleaved q(i)-sync algorithm

The q(i)-sync variant assumes only an interleaved Y in lieu of thread-local Ys. Each As
is further split into q parts, each stored thread-locally, giving rise to the input tensors
As,t; this split is equal across all threads and is used to synchronise writing into the
output tensor. Each thread s executes Algorithm 2.8 to compute k-mode TVM using
the interleaved q(i) sync approach. For simplicity, we omit any offset into Y .

42 CHAPTER 2. TENSOR COMPUTATIONS

Algorithm 2.8 The interleaved q(i)-sync parallel TVM algorithm at thread s.
Input: A square tensor A of order d containing n elements

and a vector x of size nk.
Output: An output tensor Y of size n/nk.

1: Y = As,s ×k x
2: for t = 1 to q − 1 do
3: if k = 0 then
4: barrier
5: Y += As,(t+s) mod q ×k x

return Y

2.4.3.5 Explicit q(e)-sync algorithm

The explicit q-sync variant allocates all As and Ys explicitly local to thread s and keeps x
interleaved. We split eachAs into q subtensorsAs,t. Each thread s executes Algorithm 2.9
in order to compute the explicit q(e)-sync parallel TVM . An inter-socket data movement
occurs on the output tensor (Line 5 of Algorithm 2.9). To cope with cases where the
output tensors act as input on any subsequent TVM calls on all possible modes, As must
be split into q ≥ p parts across each dimension, while Ys should likewise be split into at
least pd−1 parts. An implementation does not need to allocate pd separate subtensors,
but rather use a blocked tensor layout in a recursive fashion for each of the p subtensors.

Algorithm 2.9 The explicit q(e)-sync parallel TVM algorithm at thread s.
Input: A square tensor A of order d containing n elements

and a vector x of size nk.
Output: An output tensor Y of size n/nk.

1: if k = 0 then
2: Ys,s = As,s ×k x
3: for t = 1 to q − 1 do
4: barrier
5: Y(t+s) mod q,t += As,t ×k x
6: else
7: for t = 0 to q − 1 do
8: Ys,t = As,t ×k x

return Y

2.4.4 Analysis of the algorithms
We analyse the parallel TVM algorithms from the previous section, restricting ourselves
not only to the amount of data moved during a TVM computation, but also consider
mode-obliviousness, memory, and work. For quantifying data movement we assume per-
fect caching, meaning that all required data elements are touched exactly once.

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 43

Since barriers require active participation by processor cores while they also make use
of communication, the time in which a given algorithm completes a TVM computation
is given by (1.1). This is determined by the quantified costs of a thread s at phase i,
Wk,ir, Uk,ig, and Vk,ih, where r is the thread compute speed in seconds per flop, g is the
time to transfer a byte from local memory to a thread, and h is the time to transfer a
byte from remote memory to a thread; L is the time for a barrier to complete in seconds
(Section 1.1.2).

Strongly scaling algorithms have that O(n, p) is independent of p (which is unrealistic),
while weakly scalable algorithms have that the ratio O(pn, p)/Tseq(pn) is constant; iso-
efficiency instead tells us a much wider range of conditions under which the algorithm
scales.

The TVM computation is a heavily bandwidth-bound operation. It performs 2n flops
on n+n/nk+nk data elements, and thus has arithmetic intensity equal to 1 < 2n

n+n/nk+nk
<

2 flop per element. This amounts to a heavily bandwidth-bound computation even when
considering a sequential TVM [50]. The multi-threaded case is even more challenging, as
cores on a single socket compete for the same local memory bandwidth. In our subsequent
analyses we will thus ignore the computational part of the equations for T , O, and E. We
also consider memory overhead and efficiency versus the sequential memory requirement
Mseq = n+ maxk (n/nk + nk) words.

2.4.4.1 The loopedBLAS algorithm

The loopedBLAS variant interleaves A, Y , and x, storing them once while it performs
2n flops to complete the TVM ; it is thus both memory- and work-optimal. It does not
include any cache-oblivious nor mode-oblivious optimizations, and requires no barrier
synchronizations. Since all memory used is interleaved we assume their effective band-
width is spread over g and h proportional to the number of CPU sockets ps. Assuming a
uniform work balance is achieved at run time, all p threads read n/p data from A, write
n/(pnk) to Y , and read the full nk elements of x. Thus, Us,0 = 1

ps
v and Vs,0 = ps−1

ps
v with

v =
(
n+n/nk

p
+ nk

)
. The parallel overhead becomes

O(n, p) = ps − 1
ps

(n+ n/nk)(h− g) + nk ((pt − 1)g + pt(ps − 1)h) . (2.10)

We see the overhead is dominated by O(n(h − g)) as ps increases, while for ps = 1 the
overhead simplifies to Θ(ptnkg). This excludes any underlying overhead of the parallel
implementation of BLAS.

2.4.4.2 The 0-sync algorithm

This algorithm incurs n words of extra storage and thus is not memory optimal. In both
cases of k = 0 and k > 0 the amount of work executed remains optimal at 2n flops. The
cache- and mode-oblivious optimizations from our earlier work are fully exploited by this
algorithm, while, like loopedBLAS, S remains zero. Here, A and Y are allocated explicitly

44 CHAPTER 2. TENSOR COMPUTATIONS

while x remains interleaved; hence Us,0 = 1
p
(n+n/nk) + 1

ps
nk and Vs,0 = ps−1

ps
nk, resulting

in

O(n, p) = (pt − 1)nkg + pt(ps − 1)nkh. (2.11)

This overhead is bounded by Θ(pnkh) for ps > 1, a significant improvement over looped-
BLAS.

If the output tensor Y must assume a similar datastructure toA for further processing,
the output must also be stored twice. The minimal cost for this incurs extra overhead
at Θ((n/nk)g); i.e., a thread-local data copy, which remains asymptotically smaller than
Tseq = O(ng). We do note that applications which require repeated TVMs such as the
higher-order power method (HOPM) actually do not require this extra step; multilinearity
can be exploited to perform the HOPM block-by-block (see Section 2.3.4.6).

2.4.4.3 The 1-sync algorithm

This variant requires the Ys are all of size n/nk instead of (n/nk)/p elements, which con-
stitutes a memory overhead of (p−1)(n/nk). It benefits from the same cache- and mode-
oblivious properties as the 0-sync variant, and achieves the same overhead (Eq. 2.11)
when k > 0. For k = 0, however, we must account for the reduction phase on the Ys and
for the barrier that precedes it. Reduction proceeds with minimal cost by having each
thread reduce (n/nk)/p elements corresponding to those elements it should locally store,
resulting in an overhead O(n, p) for a mode-0 TVM of

pt(n/n0)g + pt(ps − 1)(n/n0)h+ (1− 1/ps)n0(h− g) + (p− 1)(L+ (n/n0)r)

This extra overhead is proportional to (n/n0)/p for both memory movement and flops.

2.4.4.4 The interleaved q(i)-sync algorithm

The interleaved q(i)-sync variant requires only the interleaved storage of Y , which implies
writing output requires inter-process data movement for all modes, a significant and equal
overhead for all modes. Only accesses to As,p remain explicit. This variant remains both
memory and work optimal, while it incurs q − 1 barriers and requires, for k = 0, the
complete output tensor to be accessed by all p threads. Thus, it results in an overhead
O(n, p) for a mode-0 TVM of

(pt − 1)(n/n0)g + pt(ps − 1)(n/n0)h+ (1− 1/ps)n0(h− g) + p(p− 1)L,

which increases with p(p−1)L. Hence, this parallel overhead is a significant increase over
that of the 0-sync variant (Eq. 2.11) if k = 0, and equivalent otherwise. It still improves
significantly over loopedBLAS (compare (2.10)). For k > 0, the overhead is

O(n, p) = (1− 1/ps)(n/nk + nk)(h− g).

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 45

2.4.4.5 The explicit q(e)-sync and q-sync algorithms

In the explicit variant, and the q-sync variant, accesses to As,p and Ys,p are explicit, while
accesses to vector are interleaved. This variant remains work- and memory-optimal but
reduces the data movement overhead for all modes other than 0 to

O(n, p) = (pt − 1)nkg + pt(ps − 1)nkh.

This explicit variant improves on the interleaved one in that inter-socket communication
related to Y is now only incurred for k = 0. Compared to the 0-sync variant, the q-
sync variants trade synchronization and inter-socket communication for reduced memory
storage overheads.

2.4.4.6 Mode-obliviousness

The loopedBLAS algorithm is highly sensitive to the mode k in which a TVM is executed,
while those algorithms based on the ρZρπ tensor layout are, by design, not sensitive to
k [50]. The 0-sync and 1-sync variants exploit the ρZρπ maximally; the thread-local
tensors use a single such layout, and each thread thus behaves fully mode-oblivious.

For the q-sync variants, however, each locally stored input tensor is split into subten-
sors. Suppose mode k has As split in qk parts, resulting in q = ∏d−1

i=1 qi ≥ p parts stored
using a ρZρπ layout. This may hamper both cache efficiency and mode-obliviousness,
since reading from x and writing to Y now only partially follows a Morton order. Hence
we prefer to minimize q and maxi qi. This occurs when the qi are the result of an integer
factorization of p.

2.4.4.7 Iso-efficiencies

Table 2.15 summarizes the results from this section for arbitrary ps, while Table 2.16
notes the simplified overheads when ps = 1. Note that the parallel efficiency depends
solely on the ratio O(n, p) versus Tseq(n). Considering the work- and communication-
optimal 0-sync algorithm, efficiency thus is proportional to pnkh

ng
; i.e., 0-sync scales as

long as p grows proportionally with n/nk. For loopedBLAS, efficiency is proportional to
(h/g−1)(ps−1)/ps. Since h/g−1 is constant, it drops as the number of sockets increases;
that is, loopedBLAS does not scale in ps.

For 1-sync, iso-efficiency is attained whenever p
nk

(r+ h+ g/ps) + p
n
L is constant; i.e.,

p should grow linearly with n when computation is latency-bound, and linearly with nk
otherwise. All q-sync variants attain iso-efficiency when p grows linearly with nk and
p2 grows linearly with n. Having to double nk when p is doubled (nk ∼ p) to retain
parallel efficiency is not very favourable as it incurs a type of curse of dimensionality: for
hypersquare tensors, doubling of nk means the total tensor size is multiplied by 2d, which
is unfortunate. Having n or n/nk grow with p or p2 would be preferred, and points to
0-sync as the preferred method.

46 CHAPTER 2. TENSOR COMPUTATIONS

Parallel TVM Parallel overhead Mode- Allocation mode
algorithm Work Memory Movement Barrier Oblivious Implicit Explicit k

loopedBLAS 0 0 n(h− g) 0 none x,A,Y - -
0-sync 0 n pn0h + ptn0g 0 full x A,A,Y -
1-sync pn/n0r pn/n0 pn/n0h+ ptn/n0g pL full x A,Y -

q(i)-sync 0 0 pn/n0h+ ptn/n0g p2L good x,Y A 0
q(e)-sync 0 0 pn/n0h+ ptn/n0g p2L good x A,Y 0
q-sync 0 n/n0 pn/n0h+ ptn/n0g p2L good x,Y A,Y 0

Table 2.15 – Summary of overheads for each parallel shared-memory TVM algorithm, plus
the allocation mode of A,Y , and x. We display the worst-case asymptotics; i.e., assuming
ps > 1 and the worst-case k for non mode-oblivious algorithms. Optimal overheads are
in bold.

Parallel TVM Parallel overhead Mode- Allocation mode
algorithm Work Memory Movement Barrier Oblivious Implicit Explicit k

loopedBLAS 0 0 pn0g 0 none x,A,Y - -
0-sync 0 n pn0g 0 full x A,A,Y -
1-sync pn/n0r pn/n0 pn/n0g pL full x A,Y -

q(i)-sync 0 0 pn/n0g p2L good x,Y A 0
q(e)-sync 0 0 pn/n0g p2L good x A,Y 0
q-sync 0 n/n0 pn/n0g p2L good x,Y A,Y 0

Table 2.16 – Like Table 2.15, but assuming ps = 1.

2.4.5 Experiments
We run our experiments on a number of different Intel Ivy Bridge nodes with different
specifications summarized in Table 2.17. As we do not use hyperthreading, we limit the
algorithms to use at most p/2 threads equal the number of cores (each core supports
2 hyperthreads). We measure the maximum bandwidth of the systems using several
variants of the STREAM benchmark, reporting the maximum measured performance
only.

The system uses CentOS 7 with Linux kernel 3.10.0 and software is compiled using
GCC version 6.1. We use Intel MKL version 2018.2.199 for loopedBLAS. We also run with
LIBXSMM version 1.9-864 for algorithms based on blocked layouts (0- and q-sync), and
retain only the result with the library which runs faster of the two. To benchmark a kernel,
we conduct 10 experiments for each combination of dimension, mode, and algorithm.

To illustrate and experiment with the various possible trade offs in parallel TVM ,
we implemented the baseline synchronization-optimal loopedBLAS, the work- and com-
munication-optimal 0-sync variant, and the work-optimal q-sync variant. We investigate
their performance and mode-obliviousness. We measure algorithmic performance using
the formula for effective bandwidth (GB/s). We benchmark tensors of order-2 up to
order-5. We choose n such that the combined input and output memory areas during a
single TVM call have a combined size of at least 10 GBs; The exact array of tensor sizes
and block sizes are given in Table 2.18, and Table 2.19. respectively. The block sizes

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 47

Bandwidth
Node CPU (clock speed) ps pt p Mem. size (clock speed) STREAM Theoretical

1 E5-2690 v2 (3 GHz) 2 20 40 256 GB (1600 MHz) 76.7 GB/s 95.37 GB/s
2 E7-4890 v2 (2.8 GHz) 4 30 120 512 GB (1333 MHz) 133.6 GB/s 158.91 GB/s
3 E7-8890 v2 (2.8 GHz) 8 30 240 2048 GB (1333 MHz) 441.9 GB/s 635.62 GB/s

Table 2.17 – An overview of machine configurations used. Memory runs in quad channel
mode on nodes 1, 2, and 3, and in octa-channel on node 4. Each processor has 32 KB of
L1 cache memory per core, 256 KB of L2 cache memory per core, and 1.25pt MB of L3
cache memory shared amongst the cores.

Node
d 1 2 3

2 45600× 45600 (15.49) 68400× 68400 (34.86) 136800× 136800 (139.43)
3 1360× 1360× 1360 (18.74) 4080× 680× 4080 (84.34) 4080× 680× 4080 (84.34)
4 440× 110× 88× 440 (13.96) 1320× 110× 132× 720 (102.81) 1440× 110× 66× 1440 (112.16)
5 240× 60× 36× 24× 240(22.25) 720× 60× 36× 24× 360(100.11) 720× 50× 36× 20× 720(139.05)

Table 2.18 – Table of tensor sizes n1 × · · · × nd per tensor-order d and the node as given
in Table 2.17. The exact size in GBs is given in parentheses.

selected ensure that computing a TVM on such a block fits L3 cache. This combination
of tensor and block sizes ensures all algorithms run with perfect load balance and without
requiring any padding of blocks; to ensure this, we choose block sizes that correspond to
0.5–1 MB of our L3 cache; note that for our parallel TVM variants, the Morton order
ensures the remainder cache remains obliviously well-used. We additionally kept the
sizes of tensors equal through all pairs of (d, ps), which enables comparison of different
algorithms within the same d and ps.

Node
d 1 2 3

2 570× 570 570× 570 570× 570
3 68× 68× 68 68× 68× 68 34× 68× 34
4 22× 22× 22× 22 22× 22× 22× 12 12× 22× 22× 12
5 12× 12× 12× 12× 12 12× 12× 12× 12× 6 6× 10× 12× 10× 6

Table 2.19 – Table of block sizes b1× · · · × bd per tensor-order d and the node as given in
Table 2.17. Sizes are chosen such that all elements of a single block can be stored in L3
cache.

48 CHAPTER 2. TENSOR COMPUTATIONS

Average performance Sample stddev. (%).
d loopedBLAS 0-sync q-sync loopedBLAS 0-sync q-sync
2 40.23 42.28 42.54 0.63 0.55 0.65
3 36.43 39.34 39.87 24.93 2.55 2.50
4 37.63 39.02 39.05 21.29 4.35 4.40
5 34.56 36.53 36.65 22.43 5.14 4.26

Table 2.20 – Average effective bandwidth (in GB/s) and relative standard deviation (in %,
versus the average bandwidth) of algorithms over all modes running on a single processor
(Node 1). The highest bandwidth and lowest standard deviation for different dimensions
d are stated in bold.

2.4.5.1 Single-socket results

Table 2.20 shows the experimental results for the single-socket of Node 1. Note that
it drops to half of the peak numbers measured in Table 2.17. Note that as there is no
inter-socket communication, all memory regions are exceptionally allocated locally for
intra-socket experiments.

As the loopedBLAS algorithm relies on the unfold storage, whose structure does re-
quire a loop over subtensors for modes 1 and d; thus, no for-loop parallelisation is possible
for these modes and the algorithm employs the internal MKL parallelization. Thus, the
Table shows its performance is highly mode-dependent, and that the algorithms based on
blocked ρZρπ storage perform faster than the loopedBLAS algorithm. The block Morton
order storage transfers the mode-obliviousness to parallel TVMs (the standard deviation
oscillates within 1%), as the Morton order induces mode-oblivious behavior on each core.

2.4.5.2 Inter-socket results

Table 2.21, 2.22, 2.23, and 2.24 show the parallel-TVM results on machines with different
numbers of sockets for tensors of order-2, 3, 4, and 5, respectively. These experimental
run times show a lack of scalability of loopedBLAS. This is due to the data structures
being interleaved (Section 2.4.4.1) instead of making use of a 1D distribution. Interleaving
or not only matters for multi-socket results, but since Table 2.20 conclusively shows that
approaches based on our ρZρπ storage remain superior on single sockets, we may conclude
our approach is superior at all scales.

The performance drops slightly when d increases for all variants. This is inherent to
the BLAS libraries handling matrices with a lower row-to-column ratio better than tall-
skinny or short-wide matrices [50]—and this ratio increases when processing higher-order
tensors.

For first-mode TVMs, the 0-sync algorithm slightly outperforms the q-sync, while they
achieve almost identical performance for all the other modes. The cause lies with the
0-sync not requiring any synchronization for k = 0, and the effect is the 0-sync achieves
the lowest standard deviation. Our measured performances are within the impressive
range of 75–88%, 81–95%, and 66–77% of theoretical peak performance for node 1, 2,

2.4. SHARED-MEMORY PARALLEL TENSOR–VECTOR MULTIPLICATION 49

Sample stddev. (%). Average performance
Number of sockets (ps) Number of sockets (ps)

Algorithm 2 4 8 2 4 8

loopedBLAS 1.74 17.15 3.72 68.52 50.68 9.68
0-sync 0.03 0.10 0.34 84.19 150.82 492.32
q-sync 0.12 0.11 0.74 84.17 150.39 487.38

Table 2.21 – Average effective bandwidth (in GB/s) and relative standard deviation (in
% of average) over all possible k ∈ {1, . . . , d} of order-2 tensors of algorithms executed
on different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3). The highest
bandwidth and lowest standard deviation for different d are stated in bold.

Sample stddev. (%). Average performance
Number of sockets (ps) Number of sockets (ps)

Algorithm 2 4 8 2 4 8

loopedBLAS 9.57 16.52 23.05 63.89 55.68 13.66
0-sync 2.80 1.38 3.42 77.06 145.07 467.31
q-sync 1.90 3.86 6.56 76.27 143.17 441.65

Table 2.22 – Average effective bandwidth (in GB/s) and relative standard deviation (in
% of average) over all possible k ∈ {1, . . . , d} of order-3 tensors of algorithms executed
on different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3). The highest
bandwidth and lowest standard deviation for different d are stated in bold.

Sample stddev. (%). Average performance
Number of sockets (ps) Number of sockets (ps)

Algorithm 2 4 8 2 4 8

loopedBLAS 16.99 23.43 15.45 61.60 47.73 12.59
0-sync 2.84 2.44 1.88 77.12 138.54 446.01
q-sync 3.67 5.47 9.98 76.82 137.79 424.85

Table 2.23 – Average effective bandwidth (in GB/s) and relative standard deviation (in
% of average) over all possible k ∈ {1, . . . , d} of order-4 tensors of algorithms executed
on different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3). The highest
bandwidth and lowest standard deviation for different d are stated in bold.

50 CHAPTER 2. TENSOR COMPUTATIONS

Sample stddev. (%). Average performance
Number of sockets (ps) Number of sockets (ps)

Algorithm 2 4 8 2 4 8

loopedBLAS 15.37 19.70 32.03 56.11 54.04 12.43
0-sync 3.47 5.01 5.02 71.71 129.80 421.98
q-sync 4.17 9.37 14.83 71.65 129.60 397.25

Table 2.24 – Average effective bandwidth (in GB/s) and relative standard deviation (in
% of average) over all possible k ∈ {1, . . . , d} of order-5 tensors of algorithms executed
on different nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3). The highest
bandwidth and lowest standard deviation for different d are stated in bold.

Number of sockets (ps)
Algorithm 2 4 8

loopedBLAS 0.81 0.31 0.02
0-sync 0.99 0.93 0.98
q-sync 0.99 0.93 0.97

Table 2.25 – Parallel efficiency of algorithms on order-2 tensors executed on different
nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3), calculated against the
single-socket run time on a given node of q-sync algorithm on the same problem size and
tensor order.

and 3, respectively.

Tables 2.25, 2.26, 2.27, and 2.28 display the parallel efficiency versus the performance
of the q-sync on a single socket. Each node takes its own baseline since the tensor sizes
differ between nodes as per Table 2.18; one can thus only compare parallel efficiencies
over the columns of these tables, and cannot compare rows; we compare algorithms, and
do not investigate inter-socket scalability.

The astute reader will note parallel efficiencies larger than one; these are commonly
due to cache-effects, in this case likely output tensors that fit in the combined cache of
eight CPUs, but did not fit in cache of a single CPU. These tests conclusively show that
both 0- and q-sync algorithms scale significantly better than loopedBLAS for ps > 1,
resulting in up to 35x higher efficiencies (for order-4 tensors on node 3).

2.5 Concluding remarks
In this chapter, we propose a Morton-ordered blocked layout for tensors that achieves
high-performance and mode-oblivious computations. Our TVM algorithms based on
this layout perform as good or better than several state-of-the-art and highly-optimized
BLAS-driven variants. We achieve our goal of mode-obliviousness, while all other variants

2.5. CONCLUDING REMARKS 51

Number of sockets (ps)
Algorithm 2 4 8

loopedBLAS 0.80 0.34 0.03
0-sync 0.97 0.88 0.96
q-sync 0.96 0.87 0.91

Table 2.26 – Parallel efficiency of algorithms on order-3 tensors executed on different
nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3), calculated against the
single-socket run time on a given node of q-sync algorithm on the same problem size and
tensor order.

Number of sockets (ps)
Algorithm 2 4 8

loopedBLAS 0.79 0.28 0.03
0-sync 0.99 0.83 1.05
q-sync 0.98 0.82 1.00

Table 2.27 – Parallel efficiency of algorithms on order-4 tensors executed on different
nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3), calculated against the
single-socket run time on a given node of q-sync algorithm on the same problem size and
tensor order.

Number of sockets (ps)
Algorithm 2 4 8

loopedBLAS 0.77 0.32 0.05
0-sync 0.98 0.76 1.53
q-sync 0.98 0.76 1.44

Table 2.28 – Parallel efficiency of algorithms on order-5 tensors executed on different
nodes (2 socket node 1, 4 socket node 2, and 8-socket node 3), calculated against the
single-socket run time on a given node of q-sync algorithm on the same problem size and
tensor order.

52 CHAPTER 2. TENSOR COMPUTATIONS

perform several factors worse in this respect. We characterize the performance and mode-
obliviousness using tensor–vector multiplications only, as this is the most bandwidth-
bound operation among the other common ones including TMM , TTM , and the Khatri-
Rao product. The layouts trivially extend to other operations such as the higher-order
power method. They also transfer to other architectures, with significant speedups on
both Ivy Bridge and Haswell nodes.

The best-performing non-blocked TVM algorithm, tvLooped, performs similar to the
blocked ρZρπ TVM , but, depending on the mode of interest, computation speeds vary
from as high as 14.35 GB/s to as low as 6.65 GB/s. Taking the standard deviation of
the average behavior over all modes as a measure of mode-obliviousness, our blocked
layout instead induces up to 3.2x more stable behavior; this is of particular benefit to
use cases where kernels are not applied over each mode successively, especially when it
is not known a priori which modes are of interest. Approaches that use an unfold step
followed by an optimized BLAS call, although perhaps still standard practice, are inferior
in terms of both performance and mode-obliviousness; bandwidth-bound operations such
as the TVM incur the worst-case performance degradation of a factor two, while standard
deviations magnify up to 88% of average performance. Also in the case of a compute-
bound TMM or TTM one could do without copying the entire input tensor once; which
is indeed unnecessary when using our proposed block layouts.

We implemented a tensor-times-a-sequence-of-vectors kernel which computes succes-
sive TVMs over all modes using our blocked layouts. This kernel is the computational
core of the HOPM. In this kernel, the cache effects of blocking are magnified, resulting
in even more pronounced performance gains for blocked layouts over successive tvLooped
calls. For the HOPM, the blocking itself causes the largest increase in spatial locality,
while for the TVM , the spatial locality is mainly induced by the Morton order of the
blocks. We note that none of our improvements can be achieved on the level of BLAS
libraries since we require a change in data layout.

Finally, we investigate the tensor–vector multiplication operation on shared-memory
multicore machines. We explore the design space of parallel shared-memory algorithms
based on this same mode-oblivious layout, and propose several candidate algorithms.
After analyzing them for work, memory, intra- and inter-socket data movement, the
number of barriers, and mode obliviousness, we choose to implement two of them. These
algorithms, called 0-sync and q-sync, deliver close to peak performance on up four different
systems, with 1, 2, 4, and 8 sockets, and surpass a baseline algorithm using tvLooped calls
that we optimized.

Chapter 3

Sparse inference

We explore the sparse computations in neural networks by focusing on the sparse deep
neural network (DNN) inference problem. The sparse DNN inference is the task of using
sparse DNNs to classify a batch of data elements forming the input feature matrix. In
many applications, including the one at our focus in this chapter, the input feature matrix
is also sparse. As highlighted earlier in Section 1.2.2, the performance of sparse infer-
ence hinges on efficient parallelization of the sparse matrix–sparse matrix multiplication
(SpGEMM) operation performed at each layer of the network. We characterize efficient
sequential SpGEMM algorithms for our use case. We introduce the model-parallel infer-
ence, which uses a two-dimensional partitioning of the weight matrices. While there are
different approaches for finding effective partitionings, we resort to hypergraphs, model-
ing with hypergraphs, and hypergraph partitioning. We propose a hypergraph model for
an efficient two-dimensional nonzero partitioning of the neural network. A conceivable
implementation of the model-parallel inference approach needs barriers to synchronize at
layers. We propose tiling model-parallel and tiling hybrid-parallel algorithms, which use
tiling to increase cache reuse between the layers and a weak synchronization module to
hide load imbalance and synchronization costs. We evaluate our techniques on the large
network data from the IEEE HPEC Graph Challenge 2019 on shared-memory systems
and report up to 2× speed-up versus the state-of-the-art baseline. The work we present
in this chapter has been accepted to be published in the proceedings of the 2020 IEEE
High Performance Extreme Computing Conference (HPEC) [48].

We describe the sparse neural network inference and give the relevant background in
Section 3.1. In the same section, we also review a classical sparse matrix–sparse matrix
multiplication algorithm, provide background on hypergraphs, and survey the state-of-
the-art parallel sparse inference literature. The Graph Challenge dataset and neural
network architectures are also reviewed in this section as they have some important char-
acteristics. We propose computational kernel implementations for sparse inference in
Section 3.2. We outline various parallelization strategies for the sparse inference com-
putations and describe the appropriate hypergraph models in Section 3.3. In the same
section, we also describe our novel approach to tiling model-parallel inference with sparse
deep neural networks. Section 3.4 contains experiments, which showcase the gains over
the standard inference approaches. We conclude this chapter in Section 3.5.

53

54 CHAPTER 3. SPARSE INFERENCE

d The number of neural network layers
W (k) The kth weight matrix corresponding to the kth layer
nk The number of input features to the kth weight matrix X(k)

nk+1, k > 0 The number of output features after applying W (k)

X(0) The input feature matrix; rows are data elements, columns are input features
X(d) The final classification matrix, the inference output
X(l) The feature matrices for all l ∈ {0, . . . , d}
n The number of feature vectors, the row dimension of all X(k) and C
f The activation function of the neural network

c(= nd) The number of classes, the output dimension of the last weight matrix W (d−1)

nz(A) The number of nonzeros of a matrix A
wval The number of bytes to store a (nonzero) value
wcol The number of bytes to store a column index
wrptr The number of bytes to point to elements of an array of size nz(A)

flops(AB) The function returning the number of multiplications whenc computing AB

Table 3.1 – Notation used throughout the chapter.

Table 3.1 presents the notation used in this chapter.

3.1 Introduction
We introduce the problem of sparse neural network inference in Section 3.1.1. We present
the sparse storage and sparse matrix–sparse matrix multiplication routine in Section 3.1.2.
We give some definitions about hypergraphs and summarize a common hypergraph model
used in scientific computing for sparse matrix partitioning in Section 3.1.3. We take a
deep look at the Graph Challenge dataset in Section 3.1.4 and portray the state-of-the-art
in sparse inference by reviewing Graph Challenge contenders in Section 3.1.5.

3.1.1 Sparse inference
Sparsely-connected neural networks exhibit lower computational complexity and lower
memory requirements compared to their dense counterparts. They may originate by
pruning a dense network as in the Banded Sparse Neural Networks [63], or result from
training a fixed sparse topology as in the RadiX-Net synthetic sparse deep neural net-
works [2]. The input data, which is represented as a matrix, may also be sparse, due to
feature extraction techniques generating sparse representations (from, e.g., image, video,
or signal data), or because input may be naturally sparse (e.g., graph inputs). The most
commonly known dataset with sparse representation is the MNIST database of handwrit-
ten digits [33].

Recall from Section 1.2.2 that a sparse neural network consists of d ∈ N sparse
weight matrices W (k) ∈ Rnk×nk+1 called layers, where nk, nk+1 ∈ N for all layers k ∈

3.1. INTRODUCTION 55

{0, . . . , d − 1}. An input feature matrix X(0) ∈ Rn×n0 consists of n ∈ N sparse feature
vectors, one row for each data instance to be classified. Sparse inference refers to the
computation of the final output matrix X(d) ∈ Rn×c from the input feature matrix X(0):

X(d) = f(· · · f(f(X(0)W (0) + enb(0)T)W (1)

+ enb(1)T) · · ·W (d−1) + enb(d−1)T) ,
(3.1)

where c = nd is the number of classes, f : R → R is an activation function to be
applied element-wise, b(k) ∈ Rnk+1×1 is a vector of bias at layer k, and en is the vector
of ones, en = (1, 1, . . . , 1)T ∈ Rn×1. We note that the use of biases, b(k) in the inference
function (3.1), can be integrated with the element-wise application of f . Therefore,
without loss of generality and for the sake of clarity in the expressions, we do not consider
the bias explicitly in the formulas from this moment on. We furthermore write X(k+1) =
f(X(k)W (k)) for 0 ≤ k < d as the operation at a layer. We refer to all X(l) for l ∈
{0, . . . , d} as feature matrices, including the input feature and output matrices of the
inference task.

The inference in this chapter uses the rectified linear unit (ReLU) as the activation
function. For Y = f(Z) and Z, Y ∈ Rm×n, ReLU sets

Yij = f(Zij) =
0 if Zij < 0
Zij, otherwise

for 0 ≤ i < m and 0 ≤ j < n .

With the integration of the biases into the element-wise application of ReLU and the sim-
ple structure of this latter function, we see that for a high performance implementation
of the inference function (3.1) one needs efficient sparse matrix–sparse matrix multiplica-
tion algorithms. These algorithms need to be adapted to encompass biases and activation
functions, and need to be optimized for the layer-wise use case in the inference task.

3.1.2 Sparse matrix–sparse matrix multiplication
Given an m× ` matrix A, an `×n matrix B, and an m×n matrix C, where all matrices
are sparse, an SpGEMM computes C = AB. There are a number of efficient SpGEMM
algorithms. These algorithms differ in the way the input and output matrices are stored,
the nonzeros are visited, and the way scalar multiples are accumulated [46]. Gustavson’s
algorithm [26] is a well-known SpGEMM algorithm which we use in our implementation.
This algorithm assumes that the two operands A and B of the multiplication operation
are stored in the Compressed Row Storage (CRS) format. We review this format for the
sake of completeness.

Let nz(A) denote the number of nonzeros of matrix A. In this format, the matrix
A requires nz(A)(wval + wcol) + (m + 1)wrptr bytes, or Θ(nz(A) + m), where wval is the
number of bytes to store a nonzero value, wcol is the number of bytes to store a column
index, and wrptr is the number of bytes to store the values in range {0, . . . , nz(A)}. The
nonzeros of A are stored in a contiguous array A.v of size nz(A), where the nonzeros in
a row are stored consecutively, starting from the first row to the last one. The column

56 CHAPTER 3. SPARSE INFERENCE

indices of these nonzeros are stored in an array A.col of size nz(A) and in the same order
as A.v. A third array A.rptr of size m+ 1 stores the position of the first element of each
row in the array A.col, where the last entry flags the end of a list of nonzeros. Hence,
A.v[A.rptr[i], . . . , A.rptr[i+ 1]− 1] and A.col[A.rptr[i], . . . , A.rptr[i+ 1]− 1] access the
nonzero values of the ith row and the column indices of the ith row, respectively.

Gustavson’s algorithm computes the ith row of the output matrix C as the sum of the
rows of B scaled by the corresponding nonzeros lying on the ith row of A. In order to sum
the resulting scaled rows of B in linear time nz(Ci,:), it uses the sparse accumulator [24],
or expanded real accumulator [53]. The sparse accumulator is an abstract data structure
whose typical implementation involves two dense arrays and a list. The SPA array stores
the nonzero values for the currently computed row of C. The SPAC array flags whether a
nonzero in SPA belongs to the current row or not. Here, instead of using boolean values
for SPAC, we use the active row index; this is known as the multiple switch technique, or
the phase counter technique [25], As a result, it is more efficient as SPAC does not need
to be reset between iterations for computing rows of C. The list allows quickly gathering
the nonzeros of ith row of C when it is complete, without the need to scan the whole
dense array SPAC of flags. This algorithm is asymptotically optimal in the sense that it
has work complexity in O(flops(AB)).

There are usually two phases of a typical SpGEMM algorithm, including Gustavson’s.
The symbolic phase computes only the number of nonzeros of each row of the output
matrix. The numeric phase allocates the memory and carries out the computation. The
symbolic phase results in additional memory movement, but helps to avoid reallocation
of matrix C at run time.

3.1.3 Hypergraph partitioning

A hypergraph H = (V ,N) consists of a set of vertices V and a set of hyperedges N .
A hyperedge c ∈ N is a subset of vertices, that is c ⊆ V . Weights can be associ-
ated with vertices; for a vertex v, w(v) denotes the weight of the vertex v, which is
also extended to a set S of vertices as w(S) = ∑

v∈S w(v). The hypergraph partition-
ing problem [37] is the task of dividing the vertices of a hypergraph into K parts of
roughly equal weight, while minimizing an objective (cost) function defined in terms of
hyperedges. That is, one seeks a partition ΠV = {V0,V1, . . . ,VK−1} of the vertex set of
H, where parts Vk for k = 0, . . . , K − 1 are pairwise disjoint and mutually exhaustive.
The vertex partition simultaneously induces a (K + 1)-way partition on the hyperedges,
ΠN = {N0,N1, . . . ,NK−1;NS}, where the hyperedges in Ni for 0 ≤ i < K are internal as
they have vertices only in Vi, while the hyperedges in NS have vertices in more than one
part and thus are external. The connectivity λc of a hyperedge c is equal to the number
of parts it connects; internal hyperedges hence have connectivity 1, while external hyper-
edges may have connectivities between 2 and K. A partition ΠV is said to be balanced if
for each part Vk, w(Vk) ≤ w(V/K)(1 + ε), where ε is a constant defined by a user. There
are many ways to express the objective function also known as the cutsize. The cut-net

3.1. INTRODUCTION 57

metric [11] is one such function which simply counts the external hyperedges,

cutsize(ΠV) =
∑
c∈NS

1. (3.2)

The most common variants of this problem are NP-complete [37, Ch. 6].
In hypergraph partitioning based data-partitioning for parallelization, the number

of parts corresponds to the degree of parallelism, i.e., the number of processing units or
threads. Usually, the owner-computes rule is assumed so that a data unit also corresponds
to a task. Each vertex corresponds to a portion of data and the corresponding atomic
task, which must be stored and executed by a single processing unit. The vertex weights
are set in such a way that they are proportional to the amount of work involved in the
corresponding atomic task. Each part is associated with a processing unit/thread so
that a balanced vertex partition leads to load balance. In most common settings about
partitioning matrices, the amount work is defined as the number of nonzeros assigned
to a processing unit/thread. The partitioning objective defined in terms of hyperedges
straddling the cut corresponds to reducing the communication cost and data movement.

There are a number of hypergraph models and methods used for sparse matrix com-
putations [13, 65]. Among these, the fine-grain hypergraph model [12, 14] is the most
general one. The fine-grain hypergraph model associates a hypergraph HA = (VA,NA)
to an m × n sparse matrix A. For each nonzero of A, there is a vertex in VA, resulting
in nz(A) vertices. For each row and for each column of A, there is a hyperedge in NA,
resulting in m+n hyperedges. In this model, a vertex v ∈ VA corresponding to a nonzero
aij is contained in the two hyperedges corresponding to the ith row and the jth column
of A. Under this model, a partitioning is two-dimensional as both rows and columns are
represented by hyperedges, which may have connectivity larger than one. As a result,
both the nonzeros lying on a single row and the nonzeros lying on a single column of A
may be assigned to different threads.

3.1.4 Graph Challenge dataset
We summarize the Graph Challenge dataset in terms of input and the neural networks
used. In the Graph Challenge, data consists of both a sparse feature dataset, and a
number of example neural networks in the well-known Compressed Row Storage (CRS)
format; for the sake of completeness we describe this format in Section 3.1.2. The Graph
Challenge’s input feature matrix is based on MNIST (Modified National Institute of
Standards and Technology), a well-known dataset of handwritten digits [36] and consists
of 60 000 images from the MNIST dataset, with each image flattened to a single vector and
thresholded such that the values are either 0 or 1. Images are interpolated to the number
of neurons at layers in the neural networks: 1024 (1k), 4096 (4k), 16384 (16k), and 65536
(64k), for which the biases b in the inference function (3.1) are: −0.3,−0.35,−0.4,−0.45,
respectively. As such large sparse networks are not readily available due to difficulties
of obtaining them from real data [32], several deep sparse neural networks are generated
using RadiX-Net [2], which uses mixed radices (mixed-radix numeral system) to ensure
desired topological properties such as the number of connections per neuron. The sizes of

58 CHAPTER 3. SPARSE INFERENCE

NN (defined by Input Number of layers d
number of neurons) matrix 120 480 1920

1k 48.86 30.47 121.88 487.51
4k 191.11 121.88 487.50 1950.01

16k 754.46 487.50 1950.00 7800.01
64k 2992.42 1950.00 7800.00 31200.01

Table 3.2 – The sizes (in MB, assuming CRS using four bytes for values and indices) of
the input feature matrix X(0) and the Graph Challenge neural networks with different
numbers of neurons and layers.

these networks are given in Table 3.2. The filtering step requires checking if C(i, j).v− b
is in the range (0, 32). If it’s below 0, we remove this triple, while if it’s greater than 32
we threshold it to 32. The number of neurons, layers, and bytes is given in Table 3.2.

Let us define the density of anm×n matrix as the number of nonzeros divided bymn.
Let us also define the compressed density as the number of nonzeros divided bym′n where
m′ is the number of nonempty rows. These two ratios are therefore related to each other
by the ratio of the number of nonempty rows to the total number of rows. All weight
matrices of a given NN in the Graph Challenge have equal densities. Specifically, the
weight matrices of the 1k-, 4k-, 16k-, and 64k-neuron networks have densities of 3.13%,
0.78%, 0.20%, and 0.05% respectively.

We extract some statistics from the 1k-neuron, 120-layer network experiment provided
in the challenge to demonstrate important properties of both the feature and weight
matrices. Each weight matrix of the 1k-neuron NN occupies exactly 0.75 MB, while all
120 weight matrices occupy 90.47 MB. Table 3.3 shows the density and the compressed
density for the first fifteen feature matrices X(k) and the size of the memory touched by
the SpGEMM operation processing that feature matrix defined as the combined size of
X(k), X(k+1), and W (k) where 0 ≤ k ≤ 14. For X(0), all rows are nonempty and hence
the compressed density matches the density. Note that for the later layers, the density
is computed after the application of the activation function f . While the density is of
X(1) is 69.37% without the ReLU, not shown in the table, and decreases to 28.33% with
ReLU as reported in the table.

We observe that the density of feature matrices continuously decreases, from the sec-
ond layer onwards, and remains constant at 3.02% after the 14th layer. On the other
hand, the compressed density increases and reaches 100%, and remains so after layer
14. We believe that compressed densities tend to hundred percent in most neural net-
works beyond Radix-Net since classification tends to result in nonzero probabilities for
all classes. However, we do not know if the densities would decrease in general.

3.1.5 State of the art
The Graph Challenge is a recent initiative to encourage new developments in graph
analytics. The IEEE HPEC Graph Challenge 2019 posed a sparse DNN challenge [33]
focused on fast inference for sparse deep neural networks, and described the original

3.1. INTRODUCTION 59

Layer Condensed Memory
k density Density (in MB)
0 10.38 10.38 136.70
1 31.08 28.33 149.15
2 20.65 13.94 80.99
3 23.37 8.98 56.02
4 34.28 6.86 45.98
5 56.39 6.14 36.81
6 62.56 4.26 29.07
7 85.38 3.95 26.21
8 97.23 3.45 23.63
9 99.48 3.22 22.48
10 99.93 3.12 21.93
11 99.95 3.06 21.64
12 99.91 3.04 21.54
13 99.92 3.03 21.50
14 100.00 3.02 21.47

Table 3.3 – The compressed density and the density of feature matrices X(k). The last
column reports the total memory (in MB, assuming CRS using four bytes for values and
indices) occupied by the three matrices in X(k+1) = X(k)W (k). We assume f has been
applied except for the input feature matrix X(0).

problem using the GraphBLAS standard C API [10], which advocates the use of matrix-
based algorithms for the sparse computations. The challenge focuses on deep neural
networks in particular, which often perform better as a large number of layers allows for
more non-linear boundaries. We base our work on the Graph Challenge, as it introduced
the problem and data reflective of emerging sparse deep learning systems, and received
considerable research attention to compare with.

The parallelization strategies in deep learning typically work by partitioning the
input feature matrix (data-parallel), partitioning the neural network (model-parallel),
and/or by pipelining [8]. The previous sparse DNN Graph Challenge submissions ex-
ploit data-parallelism and propose methods to maintain load balance since the number
of nonzeros in the rows of the input matrix differ arbitrarily. There were six submis-
sions [9, 16, 21, 43, 67, 68] providing performance data for analysis [32]. They evaluate
the performance on a common scale by fitting a line using the reported times. Most
employ high-performance frameworks, such as SuiteSparse:GraphBLAS, GraphBLAST,
or Kokkos, to take advantage of highly-optimized SpGEMM kernels and achieve shorter
development time. Since such frameworks are designed for (trans)portability, their use
typically disallows optimizations across the individual steps of the inference, such as
fusing the bias and the ReLU application within the SpGEMM kernel.

There were two champions and two innovation awards for the sparse deep neural
network challenge at the IEEE HPEC Graph Challenge 2020. Ours [48] has received an

60 CHAPTER 3. SPARSE INFERENCE

Innovation Award thanks to a unique combination of different techniques we transfer from
the world of high-performance sparse matrix computations. Another work [44], which also
received an Innovation Award, ingeniously uses a different computational kernel known as
the sparse matrix–dense matrix kernel (SpMM) by exploiting the structure of the Graph
Challenge dataset (see Section 3.1.4). Two other studies were selected as the IEEE HPEC
Graph Challenge 2020 Champions as they deliver high performance with the use of GPUs
and propose batch parallelism [29] and task-based parallelism [40].

3.2 Sequential sparse inference
Sparse inference may be viewed as a repeated sparse matrix–sparse matrix multiplication
C = AB integrated with the filtering of nonzero elements in C using f and the addition of
bias, as shown in the inference function (3.1). In Section 3.2.1, we present an SpGEMM-
inference kernel which combines these operations and thus computes the sparse inference
when applied at each layer. We analyze its flops and data movement requirements.
We then perform the same analysis for the full sparse inference using this kernel in
Section 3.2.2. Finally, we propose an SpGEMM-inference kernel for the case when the
input and output matrices are partitioned in Section 3.2.3. Later in this chapter, we
propose parallel sparse inference algorithms which use this kernel.

3.2.1 SpGEMM-inference kernel
Algorithm 3.1 is the SpGEMM-inference kernel which computes sparse inference when
applied at each layer. It modifies Gustavson’s algorithm to additionally apply the ReLU
activation function f and add the bias to the nonzeros of C. As an SpGEMM, it consists
of two phases, the symbolic phase (Lines 5-10) and the numeric phase (Lines 15-30).
Recall that Gustavson’s algorithm computes the ith row of the output matrix C as the
sum of the rows of B scaled by the corresponding nonzeros lying on the ith row of A;
this may be seen at Lines 16 until 21. To add bias, it suffice to simply initialize each
nonzero with the bias value instead of 0 when first writing a value into SPAC for each
row (Line 20). The ReLU application simply checks the nonzero value before writing it
out to C storage (Line 24). Finally, we threshold the nonzeros of C as required by the
Graph Challenge. If a nonzero is greater than 32 we threshold it to 32 (Line 25).

In our implementation of the sparse accumulator, the SPAC array tracks column
indices belonging to the active row i (Line 19) which is standard. However, we do not
keep the usual list of indices used to iterate over the accumulator in O(nz(Ci,:)) time,
when writing nonzeros to C. Instead, we scan the complete SPA array in O(n) time
to find the nonzeros which belong to the currently active row (Line 22). Avoiding the
indirection reduces the run time when rows of the output matrix hold relatively many
nonzeros—which, as argued in Section 3.1.4, holds for the neural network inference.

We note that in the sparse inference context, the computed number of nonzeros in
the symbolic phase may be an overestimation, as the nonzeros can be removed based on
their values, according to the bias and the activation function ReLU. This is unknown

3.2. SEQUENTIAL SPARSE INFERENCE 61

Algorithm 3.1 SpGEMM (A,B): The SpGEMM-inference kernel.

Input: An m× ` matrix A and a `× n matrix B in the CRS format,
the threshold value thresh, and the bias value b.

Output: An m× n matrix C = AB in the CRS format.

1: C.rptr[0]← 0
2: nzC ← 0
3: for j ← 0 to n− 1 do
4: SPAC[j]← −1
5: for i← 0 to m− 1 do I Symbolic phase
6: for nzA ← A.rptr[i] to A.rptr[i+ 1]− 1 do
7: for nzB ← B.rptr[A.col[nzA]] to B.rptr[A.col[nzA] + 1]− 1 do
8: if SPAC[B.col[nzB]] 6= i then
9: SPAC[B.col[nzB]]← i I The B.col[nzB] entry was not yet processed
10: nzC ← nzC + 1
11: Make sure C can store nzC nonzeros
12: nzC ← 0
13: for j ← 0 to n− 1 do
14: SPAC[j]← −1
15: for i← 0 to m− 1 do I Numeric phase
16: for nzA ← A.rptr[i] to A.rptr[i+ 1]− 1 do
17: for nzB ← B.rptr[A.col[nzA]] to B.rptr[A.col[nzA] + 1]− 1 do
18: if SPAC[B.col[nzB]] 6= i then
19: SPAC[B.col[nzB]]← i
20: SPA[B.col[nzB]]← b

21: SPA[B.col[nzB]]← SPA[B.col[nzB]] + A.v[nzA] ·B.v[nzB]
22: for j ← 0 in n− 1 do
23: if SPAC[j] = i then I Check that entry belongs to the active row
24: if SPA[j] > 0 then I Check that it is a nonnegative value (ReLU)
25: if SPA[j] > thresh then I From the challenge specifications
26: SPA[j]← thresh
27: C.col[nzC]← j
28: C.v[nzC]← SPA[j]
29: nzC ← nzC + 1
30: C.rptr[i]← nzC I Store a row in the CRS

62 CHAPTER 3. SPARSE INFERENCE

until the numeric phase has taken place.
We now provide an analysis of the flops and memory movement requirements. As the

symbolic phase requires the same memory movement on A and B as the numeric phase,
we consider only the numeric phase.

Assume that the function flops(AB) = ∑`−1
i=0 nz(A{:,i}) nz(B{i,:}) returns the size of

the outer products between each column of A and the corresponding row of B. This is
precisely the number of multiplications required to multiply A and B. The complexity
of Algorithm 3.1 is 2 flops(AB) as each multiplication involves an addition (Line 21).

This algorithm accesses the CRS of the matrix B as well as the sparse accumulator
structures (SPA and SPAC of size n) Θ(nz(A)) times. It reads a total of flops(AB)(wval +
wcol) + nz(A)wrptr bytes from the CRS of B, writes to SPA flops(AB) times, and to SPAC
nz(C) times. On the other hand, the CRS of A and the CRS of C are streamed to the
CPU exactly once. Thus, the sequential cost of data movement while ignoring the data
movement on the accumulator and the cache effects on B is[(

nz(A) + flops(AB) + nz(C)
)(
wval + wcol

)
+
(

2(2m+ 2) + 2 nz(A)
)
wrptr

]
g,

where factor 2 nz(A) accounts for reading indices of first and last element of a row of B,
from B.rptr, for each nonzero of A. This equation yields an upper-bound on the data
movement cost of

O
((

nz(A) + flops(AB) + nz(C) +m
)
g
)
. (3.3)

While the number of nonzeros of A touched during an SpGEMM is precisely nz(A),
the nonzeros of B that are touched during an SpGEMM are only the nonzeros on rows
matching the nonempty columns of A; all nonzeros of B are required only if there are no
empty columns in A. Thus, the nonzero pattern of A determines how many times each
row is used and thus how many rows of B are required. If these rows may be cached, the
bound on the memory movement may be as low as

Ω
((

nz(A) + nz(B) + nz(C) +m+ `
)
g
)

(3.4)

assuming no columns of A are empty. Thus, which of the two bounds applies depends on
whether the required nonzeros of B may be cached as well as the nonzero structure of A.

3.2.2 Sparse inference analysis
The sparse inference (3.1) reduces to a sequence of calls to Algorithm 3.1

X(d) = SpGEMM (...SpGEMM (SpGEMM (X(0),W (0)),W (1)), . . . ,W (d−1)).

Thus, a row i of the feature matrix X(k+1) is computed as the sum of the rows of the
weight matrix W (k) first scaled by the corresponding nonzeros lying on the row i of X(k).
This brings the complexity of sparse inference to

Θ
(
d−1∑
k=0

flops(X(k)W (k))
)
.

3.2. SEQUENTIAL SPARSE INFERENCE 63

The accumulator structures must be large enough to store Θ(maxk nk+1) elements, where
nk+1 is the number of output features of the kth weight matrix X(k). Two buffers suffice
to store the input and output matrices X(k) and X(k+1) throughout the inference. Thus,
the total storage requirement becomes

Θ
(

max
l

nz(X(l)) + n+
d−1∑
k=0

[
nz(W (k)) + nk

])
.

Based on the upper bound (3.3) on SpGEMM’s data movement complexity, the upper-
bound on sequential data movement overhead of the sparse inference is

O
((

d∑
l=0

[
nz(X(l)) + n

]
+

d−1∑
k=0

[
flops(X(k)W (k)) + nk

])
g

)
.

Using the lower bound on SpGEMM’s data movement complexity (3.4), we obtain the
lower bound

Ω
((

d∑
l=0

[
nz(X(l)) + n

]
+

d−1∑
k=0

[
nz(W (k)) + nk

])
g

)
,

on the sparse inference’s data movement complexity. The lower bound can be attained
when the required part of the weight matrix W (k) fits cache for each layer.

3.2.3 SpGEMM-inference kernel for partitioned matrices
As hinted earlier, the model-parallel inference algorithm that we propose later uses par-
titioned matrices for parallelism. In particular, each thread computes an SpGEMM op-
eration C = AB where matrix B is the thread-local part of the weight matrix W (k).
Therein, matrices A and C, which correspond to the parts of the input feature matrix
that a thread carrying out C = AB requires and the output feature matrix parts it pro-
duces, respectively, are both partitioned and stored as four matrices in CRS. Specifically,
matrix A is partitioned into A0 ∈ Rm×`0 and A1 ∈ Rm×`1 and matrix C is partitioned
into C0 ∈ Rm×n0 and C1 ∈ Rm×n1 which induces the following structure on B:

(
C0 C1

)
=
(
A0 A1

)(B00 B10
B01 B11

)
, (3.5)

where B00 ∈ R`0×n0 , B01 ∈ R`1×n0 , B10 ∈ R`0×n1 , and B11 ∈ R`1×n1 . As an SpGEMM-
inference (Algorithm 3.1) takes only two matrices in CRS as input, computing C = AB
requires the following four SpGEMMs as A0 and A1 each contribute to both C0 and C1:

C0 = A0B00

C0 = C0 + A1B01

C1 = A0B10

C1 = C1 + A1B11,

(3.6)

Furthermore, it requires that blocks of B are in separate CRS structures.

64 CHAPTER 3. SPARSE INFERENCE

Instead of a direct implementation of the multiplications and additions in (3.6), we
propose in Algorithm 3.2 a fused SpGEMM-inference kernel. This kernel computes C =
AB where the matrices are split as shown in (3.5) with less data movement and uses the
CRS of matrix B directly. For each row i, the fused SpGEMM-inference multiplies each
nonzero in A0{i,:} and A1{i,:} with the row of B which corresponds to the nonzero column
index. Here, the column index k of the nonzeros A1{i,:} must be increased by k0 (Line 17)
to match with rows of B. It stores the resulting contributions in a single accumulator of
size n0 + n1. When it writes out the nonzeros in the accumulator to C1, it decrements
the column index by n0 (Line 33).

While this algorithm performs the same number of flops as the explicit computa-
tion (3.6) using Algorithm 3.2, it reduces the data movement by reading A0 and A1 and
writing C0 and C1 only once instead of twice. Note that it applies the activation function
ReLU, bias, and the thresholding step to C0 but not to C1, which becomes later useful
for the parallel algorithm.

3.3 Data-, model- and hybrid-parallel inference
The parallel sparse inference algorithm depends on which of the two inputs, the feature
matrix or the neural network, is explicitly partitioned. The former corresponds to the
row-wise partitioning of the feature matrix which yields the data-parallel inference, the
de-facto standard in deep learning. The latter corresponds to themodel-parallel inference,
where each thread stores a part of each weight matrix. In our variant, each thread is
assigned some of the nonzeros of each weight matrix according to the two-dimensional
nonzero partitioning of the neural network we obtain using the proposed hypergraph
model. We later combine it with tiling and a synchronization mechanism. A third parallel
variant is the tiling hybrid-parallel inference which allows the user to balance between the
costs of both parallelization methods, and describe application of the resulting method
to the deep neural network inference. Finally, we discuss implementation issues and
experiment using our implementations on shared-memory systems.

3.3.1 Data-parallel inference
In this section, we describe and analyze the data-parallel inference algorithm. This algo-
rithm is the state-of-the-art for parallel inference and serves as the baseline later in our
experiments (Section 3.4). In general, data-parallel inference uses a row-wise partitioning
πR : {0, 1, . . . , n− 1} → {0, 1, . . . , p− 1} of the input feature matrix X(0) ∈ Rn×n0 into p
parts, where p is the number of threads. In our implementation, we map row i to thread
bi/dn/pec, which is a block partitioning with block size of b1D = dn/pe. Let sq denote
the set of indices assigned to thread q for all threads q, i.e., ones for which πR(i) = q.
With this definition, X(0)

{sq ,:} denotes the rows of the input feature matrix assigned to the
thread q. To proceed with inference on the n data inputs, each thread performs sequential
inference on its block of input data elements in an embarrassingly parallel fashion. In
other words, the thread q executes an SpGEMM (with biases and the activation function

3.3. DATA-, MODEL- AND HYBRID-PARALLEL INFERENCE 65

Algorithm 3.2 fusedSpGEMM (A0, A1, B): The SpGEMM-inference kernel for parti-
tioned matrices.

Input: The matrices A0 ∈ Rm×`0 , A1 ∈ Rm×`1 , and B ∈ R`×n in CRS format,
the threshold value thresh, and the bias value b.

Output: The matrices C0 ∈ Rm×n0 , C1 ∈ Rm×n1 of (C0|C1) = (A0|A1)B in CRS.

1: C0.rptr[0]← 0, C1.rptr[0]← 0
2: · · · I Symbolic phase not shown
3: Make sure C0 can store nzC0 nonzeros
4: Make sure C1 can store nzC1 nonzeros
5: nzC0 ← 0, nzC1 ← 0
6: for j ← 0 to n− 1 do
7: SPAC[j]← −1
8: for i← 0 to m− 1 do
9: for nzA ← A0.rptr[i] to A0.rptr[i+ 1]− 1 do
10: col← A0.col[nzA] I Use the original column index
11: for nzB ← B.rptr[col] to B.rptr[col + 1]− 1 do
12: if SPAC[B.col[nzB]] 6= i then
13: SPAC[B.col[nzB]]← i
14: SPA[B.col[nzB]]← b

15: SPA[B.col[nzB]]← SPA[B.col[nzB]] +A0.v[nzA] ·B.v[nzB]
16: for nzA ← A1.rptr[i] to A1.rptr[i+ 1]− 1 do
17: col← A1.col[nzA] + k0 I Add offset k0 to the column index
18: for nzB ← B.rptr[col] to B.rptr[col + 1]− 1 do
19: if SPAC[B.col[nzB]] 6= i then
20: SPAC[B.col[nzB]]← i
21: SPA[B.col[nzB]]← b

22: SPA[B.col[nzB]]← SPA[B.col[nzB]] +A1.v[nzA] ·B.v[nzB]
23: for j ← 0 to n− 1 do
24: if SPAC[j] = i then I Check that entry belongs to the active row
25: if j < n1 then I It belongs to C0
26: if SPA[j] > 0 then I Check that it is a nonnegative value (ReLU)
27: if SPA[j] > thresh then I As before
28: SPA[j]← thresh
29: C0.col[nzC0]← j
30: C0.v[nzC0]← SPA[j]
31: nzC0 ← nzC0 + 1
32: else I This nonzero belongs to C1 (no ReLU or thresholding)
33: C1.col[nzC1]← j − n0 I Adjust the index to fit the storage
34: C1.v[nzC1]← SPA[j]− b I Store without applying ReLU or bias
35: nzC1 ← nzC1 + 1
36: C0.rptr[g]← nzC0 I Store the two rows in the respective CRS structures
37: C1.rptr[g]← nzC1

66 CHAPTER 3. SPARSE INFERENCE

ReLU) at each layer k for k = 0, . . . , d−1. Here, at layer k = 0, the two input arguments
of the SpGEMM are X(0)

{sq ,:}, which is the input matrix assigned to thread q, and the whole
weight matrix W (0) respectively. The output of the SpGEMM carried out by the thread
q at any layer is always of the same shape as X(0)

{sq ,:} and becomes the first input argu-
ment of the SpGEMM of the next layer. The second input argument of the SpGEMM
at any layer k is the whole weight W (k). Each thread q allocates two buffer matrices to
store the intermediate local feature matrices X(k)

{sq ,:} and X
(k+1)
{sq ,:} for computing X(k)

{sq ,:}W
(k)

throughout the inference; that is why only two buffers are used. On the other hand, the
weight matrices are allocated once globally and shared. The data-parallel algorithm has
no work overhead compared to a sequential method.

To proceed with analysis, we recall from Section 1.1.2 that g and h denote the time to
transfer a byte from local memory and remote memory, respectively, to a thread, while
L denotes the time to complete a barrier. These quantify performance of an abstract
machine consisting of ps sockets, where each socket may run up to pt threads. The worst-
case memory movement occurs when the weight matrices do not fit in cache while only pt
out of p threads may access the weight matrices locally as they are stored at one socket.
Then, the worst-case data movement overhead is

O
(
d−1∑
k=0

flops(X(k)W (k))(1− 1/ps)(h− g)
)
.

In fact, it is determined by the partition with the largest workload,

O
(
d−1∑
k=0

[
pmax

q
flops(X(k)

{sq ,:}W
(k))

]
h

)
.

On the other hand, if elements of each weight matrix fit in cache, the minimum data
movement overhead is

Ω
(
d−1∑
k=0

(
nz (W (k)) + nk

)(
(pt − 1)g + pt(ps − 1)h

))
, (3.7)

as all threads need to refer to the shared weights at least once. We note that the actual
overhead may be closer to the lower or the upper bound as it depends on the size of
W (k), which might change between the layers. By replicating the weight matrices on each
socket, all threads access the weight matrices locally which further reduces the overhead
in the above formula to

Ω
(
d−1∑
k=0

(nz (W (k)) + nk)(p− 1)g
)
.

Finally, since we use CRS to store the disjoint partitions X(k)
{sq ,:}, there is almost no

storage overhead except for the extra row pointer array entries, which yield an overhead
of Θ(p) integers.

3.3. DATA-, MODEL- AND HYBRID-PARALLEL INFERENCE 67

3.3.2 Model-parallel inference

We assume a mutually disjoint p-way partition W(k) = {W (k)
0 , . . . ,W

(k)
p−1} for each layer

k which maps each individual nonzero of the weight matrix W (k) to a unique thread,
where W (k)

q is mapped to thread q. Let R(k) = {r(k)
0 , . . . , r

(k)
p−1; r(k)

S } be an assignment of
row indices of W (k) such that all nonzeros on rows in r

(k)
i of the weight matrix belong

to part W (k)
i only, and are internal, while the nonzeros on each row in r

(k)
S belong to

multiple parts of W(k) and thus are external. Let Z(k) = {z(k)
0 , . . . , z

(k)
p−1; z(k)

S } be a similar
assignment of column indices. When the layer number k can be inferred from the context,
we shall omit the superscripts and use {r0, . . . , rp−1; rS} and {z0, . . . , zp−1; zS} to refer to
R(k) and Z(k), respectively.

Let i be a column index of W (k) and a corresponding row index of W (k+1). In general,
it may be that i is internal in Z(k) and external in R(k+1), or vice versa. Even if it
is internal in both, it may belong to a different part in Z(k) than in R(k+1). Handling
mismatched assignments and communication between the resulting internal and external
parts of the partitionings efficiently during inference is possible using techniques from
sparse matrix computations (see, e.g., Yzelman and Roose [72]). However, we save that
exercise for future work, and instead inflate the external set to ensure that we do not
need to permute columns of X(k) before processing layer k + 1. For k ∈ {0, . . . , d − 2}
and q ∈ {0, . . . , p− 1}, let i(k)

q = z(k)
q ∩ r(k+1)

q be the new set of indices assigned to thread
q, which consists of the indices which are simultaneously assigned to q in z(k)

q and r(k+1)
q .

Also for k ∈ {0, . . . , d− 2}, let

i
(k)
S =

(
z

(k)
S ∪ r

(k+1)
S

)
∪
p−1⋃
q=0

(
z(k)
q ∪ r(k+1)

q \ i(k)
q

)

be the new set of external indices which consist of all indices in z
(k)
S and r

(k+1)
S and all

other indices in Z(k) and R(k+1) which are not contained in any i(k)
q for q ∈ {0, . . . , p−1}.

We then initialize sets Z(k) and R(k+1) to {i(k)
0 , i

(k)
1 , . . . , i

(k)
p−1; i(k)

S } such that Z(k) = R(k+1);
the sets R(0) and Z(d−1) need not be changed. Thus, the column assignment of W (k)

matches to the row assignment of W (k+1) for all k ∈ {0, . . . , d − 2}. We note that the
local nonzeros of each thread W (k)

q are contained in submatrix W (k)
{rq∪rS ,zq∪zS} despite the

change in Z(k) and R(k+1).
We use the subscript q to emphasize the locality to show that a matrix is stored

at thread q. Let W (k)
{rq∪rS ,zq∪zS}q

for all layers k be the set of d matrices consisting of
the nonzeros assigned to thread q in part W (k)

q . This is known as the doubly-bordered
block-diagonal form [3]. At each layer k of inference, thread q must compute X(k+1)

{:,zq∪zS} ←
X

(k)
{:,rq∪rS}W

(k)
{rq∪rS ,zq∪zS}q

. We now discuss the locality of nonzeros in X(k) and X(k+1). The
feature matrix parts X(k)

{:,rS} and X
(k+1)
{:,zS} are read and written, respectively, by potentially

all threads at each layer k; we refer to X
(k)
{:,rS} as the input separator and X

(k+1)
{:,zS} as

the output separator. We distribute these among all threads using the block row-wise
partitioning from Section 3.3.1 such that X(k)

{sr,rS}r
= X

(k)
{sr,rS} and X

(k+1)
{sr,zS}r

= X
(k+1)
{sr,zS}

68 CHAPTER 3. SPARSE INFERENCE

for each 0 ≤ r < p. The elements of feature matrix parts X(k)
{:,rq} and X

(k+1)
{:,zq} are used

exclusively by thread q. Thus, we store elements X(k)
{:,rq}q

= X
(k)
{:,rq} and X

(k+1)
{:,zq}q

= X
(k+1)
{:,zq}

locally at thread q.
Instead of threads writing to the output separator in parallel, we have threads write

their partial results locally and perform a collaborative summation afterwards. Therefore,
each thread q may perform all its multiplications at layer k without conflicts. These may
be illustrated using the structured multiplication in (3.5)

(
X

(k+1)
{sr,zq}q

X
(k+1)
{sr,zS}q

)
=
(
X

(k)
{sr,rq}q

X
(k)
{sr,rS}r

)W (k)
{rq ,zq}q

W
(k)
{rq ,zS}q

W
(k)
{rS ,zq}q

W
(k)
{rS ,zS}q

 .
As shown earlier, this yields four SpGEMMs (3.6) which we carry out using fusedSpGEMM
(Algorithm 3.2) to lower the data movement (see Section 3.2.3).

We propose Algorithm 3.3 to carry out the model-parallel inference at layer k. In this
algorithm, each thread q proceeds using two-phase reduction:

1. it computes the multiplications using fusedSpGEMM on each row-wise partition of
the input feature matrix parts (Lines 1-2), and all threads synchronize after the
for-loop;

2. it computes the sum of row-wise partition sq of the partial results and stores the
resulting separator locally (Line 4).

Taking L as the machine parameter describing the time in which a barrier completes in
seconds (as in Section 1.1.2), such two-phase reduction has a cost of 2L seconds for the
two barriers. This assumes that the number of rows n is larger than or equal to p. This
algorithm has no work overhead in flops as the summations which normally would take
place during a sequential SpGEMM are just delayed due to having to reduce them over
multiple threads. As each thread is responsible for reducing approximately n/p rows,
the resulting sums are spread across all threads allowing a balanced access pattern when
they are accessed at the next layer as ∑p−1

r=0 X
(k+1)
{sr,rS}r

. Ignoring the symbolic phase and
assuming each local weight matrix can be cached, the data movement overhead is due
to reading the input separator parts X(k)

{sr,rS}r
and writing and reading the partial results

X
(k+1)
{sr,zS}q

and X(k+1)
{sq ,zS}r

, respectively.
Each thread q stores W (k)

{rq∪rS ,zq∪zS}q
in CRS for each layer and uses 4p buffer matrices

in CRS to store different feature matrix parts between the layers. These are used to store
the two-phase reduction parts X(k)

{sr,rS}q
and X

(k+1)
{sr,zS}q

and the local parts X(k)
{sr,rq}q

and
X

(k+1)
{sr,zq}q

such that each part of rows sr for r ∈ {0, . . . , p−1} is stored separately. Overall,
this yields pd and 4p2 matrices in CRS for all threads. The parallel storage overhead is
due to the extra nonzeros stored in the partial results matrices and the duplicated index
array entries in CRS and thus adds up to

O

max
0≤k<d

p−1∑
q=0

[
nz(X(k+1)

{:,zS}q
)
]

+ p(n+
d∑

k=1
|r(k)
s |)

 .

3.3. DATA-, MODEL- AND HYBRID-PARALLEL INFERENCE 69

Algorithm 3.3 processLayer : The model-parallel layer-k inference at thread q.

Input: The local parts X(k)
{sr,rq}q

for r ∈ {0, . . . , p− 1},
the separator parts X(k)

{sr,rS}r
for r ∈ {0, . . . , p− 1},

and the local weight matrix W (k)
{rq∪rS ,zq∪zS}q

.
Output: The local parts X(k+1)

{sr,zq}q
for r ∈ {0, . . . , p− 1}

and the local separator part X(k+1)
{sq ,zS}q

.

1: for r ← 0 to p− 1 do
2: X

(k+1)
{sr,zq}q

, X
(k+1)
{sr,zS}q

← fusedSpGEMM
(
X

(k)
{sr,rq}q

, X
(k)
{sr,rS}r

,W
(k)
{rq∪rS ,zq∪zS}q

)
3: exec barrier I Executes only for k 6= 0
4: X(k+1)

{sq ,zS}q
← f(∑p−1

r=0 X
(k+1)
{sq ,zS}r

)
5: exec barrier

The synchronization overhead Θ(dpL) is due to each thread executing a barrier at each
layer. The total data movement overhead

Θ
(d−1∑
k=0

(
(pn+ p|r(k)

s |)g + (nz(X(k)
{:,rS}) + n+ p)h+ (p(n+ p) +

p−1∑
r=0

nz(X(k+1)
{:,zS}r

))(g + h)
))
(3.8)

is related to the overhead of reading the CRS indexing arrays of pd weight matrices, the
input separators in CRS, and the reading and writing of partial results. Taking account
of the load balance of the feature partitions, the data movement overhead is proportional
to

Θ

d−1∑
k=0

(
max
q

p−1∑
r=0,
r 6=q

[
nz(X(k)

{sr,rS}r
) + nz(X(k+1)

{sq ,zS}r
)
]

+ n
)
ph

 .
Thus, ideally the nonzeros in input separators ∑p−1

r=0 X
(k)
{sr,rS}r

as well as the nonzeros in
partial results ∑p−1

r=0 X
(k+1)
{sq ,zS}r

for each thread q are split equally between ps processors.
We note that both the parallel storage and the data movement overheads depend on

the size of the partial results after reduction. This changes according to the nonzero
pattern and is within the range nz(X(k+1)

{:,zS}) ≤
∑p−1
r=0 nz(X(k+1)

{:,zS}r
) ≤ p nz(X(k+1)

{:,zS}) where f
was not applied to X(k+1)

{:,zS} .
Comparing to the data movement overhead of the data-parallel method (3.7), the

model-parallel variant is preferable whenever the combined size of all X(k)
{:,rS} and X

(k+1)
{:,zS}

is smaller than that of all W (k). If the nonzeros W (k)
q do not fit in cache, an additional

data movement Θ(maxq[nz(W (k)
q) + |rq ∪ rS|]g) occurs. This results in an additional data

movement overhead of Θ(((p∑d−1
k=0 maxq |rq| + |rS| − nk/p) + εk

∑
k nz(W (k)))g), with εk

is the imbalance among the number of nonzeros assigned to different threads at layer k.

70 CHAPTER 3. SPARSE INFERENCE

3.3.2.1 Hypergraph model for model-parallel inference

In this section, we present a hypergraph model we use to obtain the nonzero partitioning
of the weight matrices for the model-parallel inference. The standard models and tools
may be used to partition the weight matrices independently layer by layer to partition
the whole neural network and the associated computations. However, if weight matrices
are partitioned independently, it is unlikely that their partitionings will match at any
index. In other words, the nonzeros lying on a column of W (k) may be assigned to
arbitrarily different thread(s) than the nonzeros lying on a matching row of W (k+1). This
requires communication between each two consecutive layers to align the matching row
and columns, which is costly.

Recall that sparse inference reduces to a series of d successive SpGEMMs. For layers
k ∈ {0, . . . , d−2}, the feature matrix X(k+1) is simultaneously an output of X(k)W (k) and
an input to X(k+1)W (k+1). Therefore, the nonzeros lying at column i of X(k+1) (i) contain
contributions of the nonzeros lying at column i of W (k) and (ii) are multiplied with the
nonzeros lying at row i of W (k+1), for all i ∈ {0, . . . , nk − 1} and k ∈ {0, . . . , d − 2}.
When partitioning a neural network for sparse inference, we want to prevent that these
nonzeros lie at different threads. Therefore, we want that the nonzeros in a given column
ofW (k) belong to the same thread which has the nonzeros at the matching row ofW (k+1).
To do so, we propose a hypergraph model in which there is only one hyperedge for a pair
of matching indices, e.g., a column of W (k) and its matching row of W (k+1). Under such
model, memory movement between threads due to assignment mismatches is minimized.
To describe this model, we use a matrix in which the weight matrices are aligned at their
matching indices to visually form a staircase.

Given a neural network with k layers, we first transpose each weight matrix W (k)

for which k is an even number. We then arrange all matrices blockwise within a larger
matrix. Particularly, we connect each transposed matrix W (k) with a successive weight
matrixW (k+1) horizontally (if k < d−1) and a preceding weight matrixW (k−1) vertically
(if k > 0). Two successive weight matrices are now aligned at the matching dimensions.
Figure 3.1 shows an example staircase matrix built using this procedure. The staircase
hypergraph model is then a fine-grain model of the staircase matrix complemented by the
following for partitioning purposes:

1. a vector of d weights is assigned to each vertex corresponding to a nonzero of W (k)

where the kth weight is 1 while all other weights are 0;

2. the cut-net metric (3.2) should be used.

The former ensures that threads have roughly an equal amount of work when collabora-
tively processing a layer by load balancing weights of a single layer across threads while
the latter ensures that the sizes of the external rows and columns, or the separators, are
reduced, as they are directly related to the cut-net metric.

We use the fine-grain model as we are interested in two-dimensional partitionings.
Other partitioning models and methods can also be used. We use PaToH [11], a multi-
constraint hypergraph partitioner, to obtain a p-way partitioning of the staircase hyper-
graph. We know which vertex in such partitioning represents a nonzero of which weight

3.3. DATA-, MODEL- AND HYBRID-PARALLEL INFERENCE 71

W (0)T W (1) 0 0 0 0 0
0 W (2)T W (3) 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 W (d−4)T W (d−3) 0
0 0 0 0 0 W (d−2)T W (d−1)

.

Figure 3.1 – The staircase matrix of a neural network consisting of d layers. Here, d is
even.

matrix. Thus, we use it to initialize the partitions W(k) for k ∈ {0, . . . , d − 1} of the
weight matrices.

3.3.2.2 Tiling model-parallel inference

Tiling, as described earlier in Section 1.1.1, increases data reuse by prematurely pausing a
loop’s iteration such that its output may be used by the subsequent iteration immediately,
while they are still in cache. However, tiling techniques may incur overheads such as
recomputation of factors needed to continue a paused iteration.

Algorithm 3.4 is the tiling model-parallel algorithm in which threads use the parti-
tioned weight matrices (Section 3.3.2) to compute model-parallel inference over a batch
of feature matrix at each layer. Assuming batch size bsize for which the intermediate
feature matrices for 0 < k < d remain in cache, each thread q reads from the input
feature matrix X(0)

{:,rq}q
only bsize rows at a time (Line 6), where n ≥ bsize. It also reads

dbsize/pe rows from the input matrix part X(0)
{:,rS}q

(Line 7). As the two-phase reduction
is now over bsize rows, it requires that bm ≥ p. Each thread q uses 2p in-cache buffer
matrices C and D to store the intermediate feature matrices elements, where C and D
are both split row-wise for the two-phase reduction: {C{s0,rq}q , C{s1,rq}q , . . . , C{sp−1,rq}q}
and {D{s0,rS}q , D{s1,rS}q , . . . , D{sp−1,rS}q}. We use functions checkAvail, resetAvail, and
signalAvail, which are part of a weak point-to-point synchronization module, to avoid
2dp explicit barriers for each of the t = dn/bsizee batches. Each thread uses signalAvail
to set a boolean in a shared memory communicating it has completed one of the phases,
which other threads may check for using checkAvail; resetAvail sets the boolean to false.
In the first reduction phase (Lines 10-18), each thread only waits if none of the partial
results are ready and may otherwise continue working with any available remote partial
results. In the second reduction phase (Lines 20-26), each thread q starts with iteration
q of the loop as the local input separator D{sq ,rS}q must be ready. It then overlaps the
barrier with the computation of local results by processing any available contributions
of remote threads D{sr,rS}r 6=q instead of waiting for all threads to complete the previous
phase. Thus, the synchronization overhead lies far below O(tdpL) in practice. When the

72 CHAPTER 3. SPARSE INFERENCE

inference completes, each thread writes out the computed elements to the large classifi-
cation matrix X(d).

The data movement overhead can be derived similarly to that of the model-parallel
inference (3.3.2), except it is multiplied by the number t of batches while substituting
bsize for n. This retains overheads proportional to n and magnifies overheads proportional
to |r(k)

S | and |z
(k)
S | by t. Hence, there exists a trade-off between choosing higher block

sizes that tile for smaller caches versus how well the underlying neural networks can be
partitioned. This algorithm may be especially effective when the local parts of the neural
network fit in cache as well.

3.3.3 Hybrid-parallel inference and deep inference

As the model-parallel variant may be freely mixed with the data-parallel variant, we
propose a hybrid approach which combines both the data-parallel and the tiling model-
parallel inference.

Assuming p = p0p1 threads, the hybrid inference splits n data items into p0 parts
using a block distribution, and groups of p1 threads process their part using the tiling
model-parallel inference. The weight matrices are allocated by the threads of one of the
p0 groups. There is a maximum number of threads we may dedicate to the model-parallel
inference due to the fact that normally, the separator size increases with increasing p1.
Therefore, we select p1 for which the speedup of the tiling model-parallel method is best.
We then choose p0 ≥ bp/p1c which enables the use of all available cores.

The tiling model-parallel method is most beneficial if not only the intermediate feature
matrices fit in cache but the weight matrices of the neural network as well. However,
inference computations on deep neural networks, where the weight matrices do not fit
cache, may also use the tiling model-inference or hybrid-parallel inference. To enable
deep inference, we may then cut the network’s layers into successive blocks, and apply
the tiling method for each block. For example, if d = 120, as in one of the neural networks
of the Graph Challenge, and we create blocks of 5 layers, inference should invoke the tiling
algorithm 24 times. This requires streaming from the main memory not only X(0), but
all of X(5k), for 0 ≤ k < 24, which happens each time we start processing a block. An
appropriate block size could be selected automatically by greedily growing blocks of layers
while they remain cacheable and the separator size remains below a certain threshold.
The hybrid method then can deal with the case when p � p1. More elaborate schemes
may be envisioned; with whatever the secondary details, a blocked tiling approach as
presented here should lie at the core of a competitive sparse neural network inference
method.

Assuming an appropriate partitioning, a blocked tiling inference identifies two pa-
rameters: (i) a block size for which the combined consecutive layers fit cache; and (ii)
a tile size for which the intermediate results fit cache as well. In the experiments, we
demonstrate that the proposed general approach works for the inputs and neural networks
proposed in the Graph Challenge.

3.3. DATA-, MODEL- AND HYBRID-PARALLEL INFERENCE 73

Algorithm 3.4 The tiling model-parallel inference at thread q.

Input: The local parts X(0)
{sr,rq}q

for r ∈ {0, . . . , p− 1},

the separator parts X(0)
{sr,rS}r

for r ∈ {0, . . . , p− 1},
the local weight matrices W (k)

{rq∪rS ,zq∪zS}q
for k ∈ {0, . . . , d− 1},

and the tile size bsize.
Output: The local parts X(d)

{sr,zq}q
for r ∈ {0, . . . , p− 1}

and the local separator part X(d)
{sq ,zS}q

.

1: for m← 0 to dn/bsizee − 1 do
2: bm ← {mbsize,mbsize + 1, . . . ,min{(m+ 1)bsize, n} − 1} I The current batch indices
3: Let {u0, . . . , up−1} be a block partitioning of bm into p parts.
4: Let Dq be a bm × |rq ∪ rS | in-cache matrix.
5: Let Cq be a bm × |zq ∪ zS | in-cache matrix.
6: D{bm,rq}q ← X

(0)
{bm,rq}q

I Read the local part into cache

7: D{uq ,rS}q ← X
(0)
{uq ,rS}q

I Read the separator into cache
8: resetAvail(C{:,rS}q), resetAvail(D{uq ,rS}q)
9: for k = 0 to d do
10: if k 6= 0 then I Inter-thread data movement
11: r = (q + 1) mod p, done = 1
12: checkAvail(D{:,rS}q) I Our partial results are added in-place
13: while done < p do
14: if checkAvail(D{:,rS}r) then
15: D{uq ,rS}q ← D{uq ,rS}q +D{uq ,rS}r
16: done← done+ 1
17: r ← (r + 1) mod p

18: D{uq ,rS}q ← f(D{uq ,rS}q) I Delayed ReLU

19: resetAvail(C{uq ,rS}q), signalAvail(D{uq ,rS}q)
20: if k 6= d then I Intra- and inter-thread data movement
21: r = q, done = 0
22: while done < p do
23: if checkAvail(D{ur,rS}r) then
24: C{ur,zq}q , C{ur,zS}q ← fusedSpGEMM

(
D{ur,rq}q , D{ur,rS}r ,W

(k)
{rq∪rS ,zq∪zS}q

)
25: done← done+ 1
26: r ← (r + 1) mod p

27: resetAvail(D{:,rS}q), signalAvail(C{:,rS}q)
28: Swap C and D
29: X

(d)
{bm,zq} ← D{bm,zq}q I Write back the local part into memory

30: X
(d)
{uq ,zS} ← D{uq ,zS}q I Write back the separator into memory

74 CHAPTER 3. SPARSE INFERENCE

3.3.4 Implementation details
We implement three sparse inference algorithms: the data-parallel, the tiling model-
parallel, and the tiling hybrid-parallel inference. Our data-parallel inference implemen-
tation uses the SpGEMM-inference kernel (Algorithm 3.1). Recall from Section 1.1.4,
explicit allocation means each thread allocates its own data. In all algorithms, we allo-
cate all data explicitly. The input and output buffers are allocated by the thread which
writes to it, such that only data reads may be remote. In all algorithms, the weight
matrices are allocated by a single thread. As the choice of the data type for nonzero
values has a strong effect on performance [16], we optimize it to the Graph Challenge
data and use floats to store values (wval = 4) and integers for column and nonzero in-
dices (wcol, wrptr = 4). Our implementation builds on an internal C++ GraphBLAS code
base used in sequential mode ensuring that threads allocate data using a local allocation
policy enforced by the libnuma library. OpenMP is used for parallelization together with
a custom ANSI C module that implements the (almost) synchronization-free mechanism
of our tiling method. Code compiles using GCC 9.2.0.

We note that at Line 14 of Algorithm 3.4, it is enough to check if checkAvail(D{sq ,rS}r)
is true, instead of checkAvail(D{bm,rS}r), as each thread q depends only on the rows sq
from remote partial results. However, such conditioning with lower granularity requires
more complex synchronization structures. We also note that each thread q may perform
multiplicationsD{sr,rq}qW

(k)
{rq ,zq}q

andD{sr,rq}qW
(k)
{rq ,zS}q

, for each r ∈ {0, . . . , p−1}, without
the need to wait for remote contributions, as these multiplications involve local parts of
the feature matrix only. Algorithm 3.5 is a latency-hiding model-parallel algorithm which
exploits this and carries out these multiplications (Lines 2-3 in Algorithm 3.5) first. This
delays the execution of the barrier and thus hides latency when the workloads or memory
accesses are not well-balanced between the threads. However, as the SpGEMMs are now
split in two groups, it does not use the fusedSpGEMM and touches the output twice.
Although this should not hurt performance as the tiling algorithm based on this model-
parallel variant keeps the output in cache, our early experiments show that it performs
worse than Algorithm 3.3, potentially due to the fact that inference over the Graph
Challenge dataset is well-balanced; we do not investigate its performance further.

3.4 Experiments
We first introduce the experimental methodology in Section 3.4.1, including the tile size
selection. We then proceed to test our implementations of the data-parallel inference,
the tiling model-parallel inference, and the tiling hybrid-parallel inference on the Graph
Challenge neural networks. For the purpose of this chapter, we calculate the speedup of
our proposed algorithms with respect to our data-parallel inference, as it is the common
parallelization in the state-of-the-art; this means the baseline is a parallel algorithm.
In all experiments, we use the first five layers of the Graph Challenge networks (i) to
confirm the beneficial effects of caching the intermediate results, and (ii) to confirm our
understanding of the performance characteristics of the proposed tiling algorithms.

3.4. EXPERIMENTS 75

Algorithm 3.5 The latency-hiding model-parallel layer-k inference at thread q.

Input: Local input X(k)
{:,rq}q

and weight matrix W (k)
{rq∪rS ,zq∪zS}q

.
Input separator parts ∑p−1

r=0 X
(k)
{sr,rS}r

Output: Local output X(k+1)
{:,zq}q

and separator part X(k+1)
{sq ,zS}q

.

1: for r ← 0 to p− 1 do
2: X

(k+1)
{sr,zq}q

← X
(k)
{sr,rq}q

W
(k)
{rq ,zq}q

I Without ReLU
3: X

(k+1)
{sr,zS}q

← X
(k)
{sr,rq}q

W
(k)
{rq ,zS}q

I Without ReLU

4: exec barrier I Executes only for k 6= 0
5: for r ← 0 to p− 1 do
6: X

(k+1)
{sr,zq}q

← f(X(k+1)
{sr,zq}q

+X
(k)
{sr,rS}r

W
(k)
{rS ,zq}q

) I Fused ReLU
7: X

(k+1)
{sr,zS}q

← X
(k+1)
{sr,zS}q

+X
(k)
{sr,rS}r

W
(k)
{rS ,zS}q

I Without ReLU

8: exec barrier
9: X(k+1)

{sq ,zS}q
← f(∑p−1

r=0 X
(k+1)
{sq ,zS}r

) I Apply ReLU

In Section 3.4.2, we first compare the tiling model-parallel approach versus the data-
parallel inference for different number of threads. Recall that the hybrid-parallel inference
scales up the tiling model-parallel inference. By assuming p = p0p1, it runs p0 = bp/p1c
tiling model-parallel inferences where each such inference uses p1 threads. The number p1
is identified in the first set of experiments. In Section 3.4.3 contains experimental results
for the hybrid-parallel inference versus the data-parallel inference.

3.4.1 Setup
We use two machines for experiments: an Ivy Bridge node consisting of two sockets each
equipped with 10 cores, and a Cascade Lake node with two sockets each with 22 cores.
Both machines have 32 KB of L1 data cache size per core. The L2 cache size on the
Ivy Bridge node is 256 kB, while on the Cascade Lake it is 1 MB per core. Their L3
cache sizes are 2.5 MB and 1.25 MB per core, respectively. Both machines run Linux
with kernel version 3.10.0 on Ivy Bridge and 5.4.0 on Cascade Lake.

The performance of tiling inference exceeds that of the data-parallel algorithm only
when both the input feature matrixX(0) and weightsW (k) do not fit cache. Otherwise, the
same beneficial cache effects of tiling naturally take place for the data-parallel algorithm.
We expect additional performance gains for tiling inference when a tile of intermediate
inputs and the local neural network (due to partitioning) fit L2 cache. Despite these
cache effects, the gains might still diminish if the separator size is too large. For the
tiling methods, when the combined network does not fit L3 cache we take the maximum
tile size for which thread-local tiles of X(k) remain in L3 cache. Otherwise, we find the
maximum tile size for which both thread-local tiles of X(k) and the combined network fit

76 CHAPTER 3. SPARSE INFERENCE

Threads Separator Tile Time (in s)
p (in %) size Data-parallel Tiling model-parallel (speedup)
2 11.79 11392 2.01 2.22 (0.91)
3 20.61 8067 1.32 1.63 (0.81)
4 16.25 6628 1.02 1.32 (0.77)
5 34.79 4575 0.81 1.55 (0.52)
6 26.67 4278 0.68 1.09 (0.62)
7 40.70 3304 0.58 1.15 (0.50)
8 21.25 3160 0.53 0.79 (0.67)
9 41.81 2601 0.46 0.99 (0.46)
10 42.71 2500 0.42 0.83 (0.51)
20 46.16 1340 0.22 0.53 (0.53)

Table 3.4 – The tiling model-parallel inference results over the first 5 layers of the 1k-
neuron network on Ivy Bridge. The separator is given in percentage of the total input
and output column size. Speedups are relative to the data-parallel baseline.

in L3 cache.
We want to find a tile size bsize for which the batches of the intermediate feature

matrices X(k)
{bm,:} fit in cache between the layers of inference. The size of the intermediate

feature matrices X(k) is related to the number of nonzeros which is unknown beforehand,
as it changes between layers depending on the computation. We use a formula combining
the nonzero density of the first matrix and the size of the separators to find the tile size.
We ensure that the tile size bsize > 0 is divisible by the number of threads used for the
tiling model-parallel inference.

3.4.2 The tiling model-parallel inference results
We first test the tiling model-parallel inference and the data-parallel inference on the first
five layers of the 1k-, 16k, and 64k-neuron NNs for different number of threads on the
Ivy Bridge node. In all tables in this section, we show the run times of the data-parallel
inference and the model-parallel inference and the tile size. For Ivy Bridge results, we
also show the separator size as a percentage of all column sizes. Table 3.4 shows the tiling
model-parallel inference versus the data-parallel baseline results for the 1k-neuron NN on
Ivy Bridge node. For this NN, we observe a slowdown of the tiling model-parallel method.
This is the case as each of the intermediate X(k) not only fit in cache, but their size also
decreases as k grows (see Table 3.2). Therefore, the data-parallel inference effectively
performs tiling without the overhead of the algorithmic tiling. We omit the 4k-neuron
NN results for which the matrices also fit in cache and the same effect is observed. We
conduct the rest of the experiments on the 16k- and 64k-neuron NNs only.

Figure 3.2 shows the run times of the tiling model-parallel and data-parallel inference
over the first 5 layers of 16k- and 64k-neuron NN for different number of threads on Ivy
Bridge. It summarizes the results in Tables 3.5 and 3.6 with the 16k- and 64k-neuron NN

3.4. EXPERIMENTS 77

Figure 3.2 – Plot of the run time (in seconds) of data-parallel inference and the tiling
model-parallel inference using the first 5 layers of the 16k- and 64k-neuron networks for
{2, . . . , 10, 20} threads on Ivy Bridge.

results, respectively. For the 16k-neuron NN we observe up to 1.69 speedup, while for the
64k-neuron NN we observe up to 1.78 speedup against the data-parallel inference. The
64k NN experiment achieves slightly higher speedups as its input feature matrix is larger
and therefore tiling saves more data movement. For both NNs, the tiling method achieves
the best speedup for 2, 4, and 8 threads on Ivy Bridge. As expected, the separator size
grows with p in all experiments so far as the complexity of the partitioning problem
increases. Figure 3.3 shows the results for the same experiment repeated on the Cascade
Lake node; we omit the separator size as we use the same partitioning as previously. The
full experimental results for the 16k- and 64k-neuron NNs are given in Tables 3.7 and 3.8.
Here, we achieve higher speedups, with up to 2 times speedup for the 64k-neuron NN, as
the combined cache size of Cascade Lake is higher.

To summarize the findings in this section, we note that the efficiency of the tiling
model-parallel algorithm decreases with the number of threads. This is so as the parallel
overhead grows not only in terms of p, but also in terms of the number of external rows
and columns which grows as well with the increasing number p of threads. Therefore, we
find with these experiments the number of threads for which the model-parallel inference
is most efficient. This number is limited as the problem size is constant while the separator
size, which determines the overhead of the tiling model-parallel algorithm, grows with p.

78 CHAPTER 3. SPARSE INFERENCE

Figure 3.3 – Plot of the run time (in seconds) of data-parallel inference and the tiling
model-parallel inference using the first 5 layers of the 16k- and 64k-neuron networks for
{2, . . . , 11, 16, 22} threads on Cascade Lake.

Threads Separator Tile Time (in s)
p (in %) size Data-parallel Tiling model-parallel (speedup)
2 0.80 158 33.62 19.86 (1.69)
3 5.37 117 22.07 14.77 (1.49)
4 4.89 116 16.92 10.35 (1.63)
5 6.02 95 13.44 10.01 (1.34)
6 4.24 114 11.60 7.82 (1.48)
7 7.34 63 9.55 6.80 (1.40)
8 7.97 72 9.78 5.87 (1.67)
9 6.77 81 7.56 6.81 (1.11)
10 8.27 90 7.00 5.37 (1.30)
20 16.74 180 3.66 3.87 (0.95)

Table 3.5 – The tiling model-parallel inference results over the first 5 layers of the 16k-
neuron network on Ivy Bridge. The separator is given in percentage of the total input
and output column size. Speedups are relative to the data-parallel baseline.

3.4. EXPERIMENTS 79

Threads Separator Tile Time (in s)
p (in %) size Data-parallel Tiling model-parallel (speedup)
2 2.08 220 119.90 67.64 (1.77)
3 2.41 210 77.99 46.05 (1.69)
4 4.55 200 61.57 34.57 (1.78)
5 1.69 200 47.22 27.65 (1.71)
6 2.53 180 39.24 23.91 (1.64)
7 7.79 140 33.53 24.75 (1.35)
8 3.68 160 32.64 18.53 (1.76)
9 3.26 180 26.28 17.58 (1.49)
10 5.23 100 24.45 17.93 (1.36)
20 6.17 200 12.58 10.06 (1.25)

Table 3.6 – The tiling model-parallel inference results over the first 5 layers of the 64k-
neuron network on Ivy Bridge. The separator is given in percentage of the total input
and output column size. Speedups are relative to the data-parallel baseline.

Threads Tile Time (in s)
p size Data-parallel Tiling model-parallel (speedup)
2 158 43.53 23.05 (1.89)
3 117 28.80 17.28 (1.67)
4 116 21.84 12.27 (1.78)
5 95 17.94 11.93 (1.50)
6 114 15.10 9.33 (1.62)
7 63 12.80 8.29 (1.54)
8 72 12.17 7.32 (1.66)
9 81 10.47 8.07 (1.30)
10 90 9.16 6.52 (1.40)
11 99 9.10 6.28 (1.45)
12 108 8.38 6.84 (1.23)
16 144 6.73 5.26 (1.28)
20 180 4.96 5.09 (0.97)
22 198 4.73 5.20 (0.91)

Table 3.7 – The tiling model-parallel inference results over the first 5 layers of the 16k-
neuron network on Cascade Lake. The separator is given in percentage of the total input
and output column size. Speedups are relative to the data-parallel baseline.

80 CHAPTER 3. SPARSE INFERENCE

Threads Tile Time (in s)
p size Data-parallel Tiling model-parallel (speedup)
2 220 166.34 82.58 (2.01)
3 210 103.39 56.03 (1.85)
4 200 79.19 42.03 (1.88)
5 200 62.33 33.29 (1.87)
6 180 52.40 28.63 (1.83)
7 140 45.48 31.42 (1.45)
8 160 42.87 22.54 (1.90)
9 180 34.88 21.04 (1.66)
10 100 32.36 21.86 (1.48)
11 110 32.24 19.90 (1.62)
12 120 27.66 17.53 (1.58)
16 160 23.55 12.50 (1.88)
20 200 16.69 12.34 (1.35)
22 220 15.85 13.41 (1.18)

Table 3.8 – The tiling model-parallel inference results over the first 5 layers of the 64k-
neuron network on Cascade Lake. The separator is given in percentage of the total input
and output column size. Speedups are relative to the data-parallel baseline.

3.4.3 The tiling hybrid-parallel inference results
We are now able to proceed with the tiling hybrid-parallel inference. We select suitable p1
equal to the best performing p from the earlier tiling model-parallel inference experiments,
while using the remaining threads to scale up and invoke p0 such tiling inferences over p1
collaborating threads.

Table 3.9 shows the results for the tiling hybrid-parallel inference using the 5-layer
16k- and 64k-neuron network on the Ivy Bridge node. Here, we note that we use p1 = 5
for the 64k-neuron network as we prefer p1 values which are also factors of p. The results
in the table confirm that using multiple tiling model-parallel inferences maintains the
speedups versus the data-parallel baseline that we observed in Section 3.4.2 with p = p1
threads. The tiling hybrid-parallel is the fastest inference on the first five layers using
the full Ivy Bridge machine, 41% faster versus the data-parallel method for the 16k-
neuron network, and 50% faster on the 64k-neuron network. From the same table, we
additionally conclude that using hyperthreads benefits both the data-parallel and tiling
methods, presumably possible in the latter case due to the almost synchronization-free
method employed between the (hyper)threads.

Table 3.10 show the tiling hybrid-parallel and data-parallel inference results for the
first five layers of the 16k- and 64k-neuron NN on the Cascade Lake node. Here, some of
the experiments use less than the available 22 cores per socket due to the indivisibility
of p by the other p1 values with good performance such as 4 and 8. The tiling hybrid-
parallel inference is 101% and 94% faster compared to the data-parallel method for the
16k- and 64k-neuron networks, respectively, using all 22 cores with hyperthreads in a 22·2

3.4. EXPERIMENTS 81

NN (defined by Time (in s)
number of neurons) p p0 p1 Data-parallel Tiling hybrid-parallel (speedup)

16k 20 5 4 3.66 2.20 (1.66)
16k 40 20 2 2.56 1.81 (1.41)
64k 20 4 5 12.58 7.62 (1.65)
64k 40 8 5 9.72 6.49 (1.50)

Table 3.9 – The tiling hybrid-parallel inference results over the first 5 layers of 16k-, and
64k-neuron networks on Ivy Bridge.

NN (defined by Time (in s)
number of neurons) p p0 p1 Data-parallel Tiling hybrid-parallel (speedup)

16k 20 5 4 4.65 2.61 (1.78)
16k 22 11 2 4.49 2.23 (2.01)
16k 24 6 4 3.96 2.19 (1.81)
16k 44 22 2 2.36 1.18 (2.00)
16k 44 4 11 2.36 1.63 (1.45)
64k 20 5 4 16.99 9.06 (1.88)
64k 22 11 2 15.85 8.49 (1.87)
64k 40 5 8 8.91 4.75 (1.88)
64k 44 22 2 8.68 4.47 (1.94)
64k 44 4 11 8.68 5.10 (1.70)

Table 3.10 – The tiling hybrid-parallel inference results over the first 5 layers of 16k-, and
64k-neuron networks on Cascade Lake.

82 CHAPTER 3. SPARSE INFERENCE

configuration. The results for both experiments confirm the same expected behavior, and
thus show that the proposed tiling hybrid-parallel inference is better than the state-of-
the-art method of data-parallel inference across different architectures.

3.5 Concluding remarks
In this chapter, we consider different parallelizations of the sparse inference. We ana-
lyze the data-parallel inference, which is the standard approach based on partitioning
the input. We propose efficient tiling model-parallel and tiling hybrid-parallel inference
algorithms, which are based on model-parallelism. In our case, this refers to partitioning
of the nonzeros of the neural network to reduce the data movement cost.

To effectively partition the network for the tiling variants, we define a matrix called
the staircase matrix. This matrix uses a block structure of all weight matrices in a way
which accurately captures dependencies and communication between consecutive layers.
We propose using a hypergraph model to model the staircase matrix and to partition it
to reduce the parallel overheads in the model-parallel algorithms. We also propose a core
kernel, called fusedSpGEMM , which works on matrices split in a way specific to the tiling
algorithms using model-parallelism.

The tiling-based algorithms perform tiling through the layers to increase cache reuse
and use weak synchronization to hide potential load imbalance and reduce synchronization
costs. The tiling hybrid-parallel algorithm is designed to scale the tiling model-parallel
one. It offers best results for inference for the first five layers of the deep RadiX-Net NNs,
provided that the input feature matrix is sufficiently large as confirmed using the 16k- and
64k-neuron networks. We demonstrate that this approach works across architectures.

Chapter 4

Conclusions

This thesis designs high performance algorithms for computational kernels on tensors and
sparse matrices that arise in data analysis and machine learning applications. The algo-
rithms and techniques focus on and exploit the dependencies in the tensor and sparse ma-
trix computations. Techniques from the high-performance computing and combinatorial
scientific computing research areas are adapted to increase the data locality. These tech-
niques include blocking, tiling, space-filling curves, and hypergraph partitioning which
enable efficient algorithms for dense tensor and sparse neural network computations. Par-
allel algorithms are designed by investigating different types of data partitioning and by
carefully investigating the parallel overheads in work, data movement within and between
CPU sockets, synchronization, and storage. All algorithms are analyzed theoretically us-
ing a machine and a cost model to quantify the parallel overheads. Our analyses show that
the proposed parallel algorithms have reduced overheads of data movement, thanks to
the aforementioned techniques. The quantification of overheads is not only important for
designing good algorithms, but also to characterize the limitations different algorithms
may incur for different input parameters. We use auto-tuning to initialize parameters
such as the block size and the tile size in our codes. All algorithms are implemented
and carefully tested on recent machines. The experiments on shared-memory machines
confirm that the proposed methods work in practice.

4.1 Summary
In the following, we give summaries of Chapters 2 and 3.

4.1.1 Summary of Chapter 2
Chapter 2 proposes a mode-oblivious data structure for dense tensors, and demonstrates
its advantages on one of the most bandwidth-bound tensor operations, the tensor–vector
multiplication (TVM). A mode-oblivious algorithm is defined in the thesis as one which
has low relative standard deviation between its measured performances across different
tensor modes it may be applied to. The proposed mode-oblivious layout, which we called

83

84 CHAPTER 4. CONCLUSIONS

ρZρπ-layout, stores dense blocks of a tensor, whose elements are ordered lexicographically,
ordered according to the Morton order. While storing dense blocks using the standard
ordering ensures the applicability of BLAS kernels, storing the blocks using Morton order
induces mode-obliviousness by recursively blocking all tensor modes. Therefore, when
the proposed ρZρπ-block TVM algorithm performs a TVM with a tensor stored using
ρZρπ-layout, the caching occurs on both the input vector and the output tensor. This
is so as they are accessed with temporal locality for each of the d modes. The results
not only demonstrate superior performance of ρZρπ-block TVM over the state-of-the-art
variants by up to 18%, but additionally show that it induces a 71% less sample standard
deviation for the TVM across d modes, where d varies from 2 to 10. For the kernels,
we use two main BLAS2 libraries as subroutine of the aforementioned algorithms, Intel
MKL and LIBXSMM. Results show that the combination of both gives the best results.

The data structure and algorithms for TVM are used as a building block for the
higher-order power method (HOPM). The core of HOPM is a tensor-times-a-sequence-
of-vectors kernel which computes successive TVMs. Thus, in HOPM the cache effects of
blocking are magnified, resulting in even more pronounced performance gains for blocked
layouts. The experimental results demonstrated up to 38% higher performance with
respect to a standard implementation based on the state of the art TVM algorithms. For
the HOPM, the blocking itself causes the largest increase in spatial locality, while for the
TVM , the spatial locality is mainly induced by the Morton order of the blocks. We note
that none of our improvements can be achieved on the level of BLAS libraries, since we
require a change in tensor layout.

After developing the storage and sequential algorithms and experimenting with them
for parameter tuning, the chapter turns attention to the parallel shared-memory TVM
algorithms. By building upon the developed sequential TVM kernels, a number of parallel
algorithms are proposed. These algorithms are analyzed for work, memory, intra- and
inter-socket data movement, the number of barriers, and mode obliviousness. Two best
variants are identified and implemented using OpenMP. These algorithms, called 0-sync
and q-sync, deliver close to peak performance on four different systems, with 1, 2, 4, and
8 sockets, and surpass an optimized baseline algorithm based on the state-of-the-art.

4.1.2 Summary of Chapter 3
Chapter 3 tackles the problem of sparse inference as originally proposed by the IEEE
HPEC Graph Challenge 2019 [33]. The sparse inference is the task of classifying data
items using a sparse neural network. The sparse neural network is represented as a set of
sparse matrices known as the weight matrices, one for each layer of the network. The data
items to be classified form the input feature matrix, which is also sparse in the problem
dataset. This data items are passed through the layers of the neural network to obtain
a classification at the end. The key operation in passing the data items is formulated
as a matrix computation kernel, the sparse matrix times sparse matrix multiplication
(SpGEMM). As both the neural network activation function application and the bias
addition may be implemented within the SpGEMM kernel and are less computational
intensive, the sparse inference may be effectively seen as an SpGEMM operation repeated

4.1. SUMMARY 85

for each layer of the neural network.

The chapter develops our approach gradually, by first presenting the two different
parallelization approaches, the data-parallel inference and the model-parallel inference.
In a typical use-case scenario, the sparse neural network is trained once, and used for
classification of arbitrarily many data items. Thus, while for the data-parallel inference
we partition the input feature matrix using block row-wise partitioning without pay-
ing attention to the sparsity, for the model-parallel inference we attempt to obtain an
improved partitioning of the neural network. We propose a view in which the weight
matrices in different layers are stitched together to form a staircase matrix, representing
the whole neural network as a single sparse matrix. The structure of this sparse matrix
is exploited by representing it as a hypergraph and then using a hypergraph partitioning
software as a black-box. In the assumed use-case scenario, this happens during a stage
before inference starts where the neural networks are trained to learn the weights and
the connections. The cost of hypergraph partitioning is therefore accounted for. We used
a two-dimensional nonzero partitioning of the weight matrices of all layers obtained by
partitioning the staircase matrix. This induces, in our case, a partitioning on the input
and output matrices of an SpGEMM operation, where the successive SpGEMMs have
partitions aligned on the common matrix. High-performance SpGEMM-like operations
may use tiling. This technique requires pausing an iteration in order to compute a full
inference of only a subset of data items such that the intermediate results are cached. We
use it to reduce data movement in the model-parallel method and thus propose the tiling
model-parallel algorithm, which we also combine with mechanisms to lower synchroniza-
tion costs.

We implement shared-memory algorithms for the data-parallel inference and tiling
model-parallel inference. In the data-parallel inference, the threads execute a series of
SpGEMM calls in an embarrassingly parallel fashion. In the tiling model-parallel infer-
ence, the threads complete a model-parallel inference on a block of data items before
moving on to another block within a tiling scenario. Tiling allows the intermediate fea-
ture matrix results to stay in cache throughout the inference. Finally, the tiling hybrid-
parallel inference is a combination of both parallelization methods, and may be thought
of as running multiple tiling model-parallel inferences each on a separate row-wise block
of the input feature matrix and using different threads. Assuming p = p0p1 threads, we
first experiment on the tiling model-parallel inference to find the most efficient number of
threads to partition the network into p1 parts. We then execute hybrid-parallel inference
using p0 such tiling model-parallel inferences where each uses p1 threads. Experimental
results show that the tiling hybrid-parallel algorithm achieves x2 speedup against the
state-of-the-art data-parallel algorithm running on the same number of threads. We also
run experiments using hyperthreads which shows that our implementation benefits from
it.

86 CHAPTER 4. CONCLUSIONS

4.2 Future work
The two computational problems addressed in this thesis have many exciting prospects.
These can be addressed as short-term and long-term goals. Below, we summarize these
goals for the two problems separately.

4.2.1 Tensor computations
We believe the mode-oblivious storage is general enough to support the tensor–tensor
(TTM) and tensor–matrix multiplications (TMM). We plan to implement these algo-
rithms while taking advantage of the proposed tensor lay schemes. In particular, blocked
algorithms should be designed for the TMM products with tall-skinny matrices, which
are heavily used in tensor decomposition algorithms. In these cases, we remain in the
hard-to-optimize bandwidth-bound regime. If, just as with a TVM , the input matri-
ces are skinny enough to fit in cache, the oblivious behavior induced by the Morton
order and exploited by our ρZρπ-layout will magnify cache reuse and thus boost perfor-
mance further. Considering general compute-bound TMM and TTM products, the use of
Morton-ordered blocks is orthogonal to traditional BLAS3 optimizations and will boost
cache reuse further [41].

The use of the Hilbert curve instead of the Morton order, even though computationally
more expensive to use, will likely even further increase the cache reuse of the bandwidth-
bound TVM and tall-skinny TMM products. The proposed tensor layout and processing
method is orthogonal to most parallelization strategies; integration into such parallel
schemes [6, 38] is another logical step.

Other future work includes the auto-tuning of non-square block sizes; maintaining a
square block is restrictive for the number of choices that may fit in a targeted cache level
since the block size grows exponentially with d. Preliminary benchmarks with choosing
non-square block sizes indeed showed that the ρZρπ-layout achieves higher TVM perfor-
mance while retaining mode-obliviousness. Other parameters that could be considered
for auto-tuning include software prefetch distances and SIMD sizes.

As a long term goal, we plan to extend the proposed algorithms and layout for dis-
tributed memory systems. All proposed TVM variants should work well, after modifying
them to use explicit broadcasts of the input vector and/or explicit reductions on parts
of the output tensor. While additional buffer spaces may be required, we expect that
the other shared-memory cost analyses will transfer to the distributed-memory case. Ad-
ditionally, many of the current parallel machines have nodes with accelerators such as
GPUs. Nine out of top ten supercomputers on the June 2020 TOP500 list [58] have ac-
celerators, in seven of them these are Nvidia GPUs. Thus, exploiting these accelerators
is a must both for better energy use and high performance. Thus, first a distributed-
memory hybrid MPI+OpenMP implementations for the TTM , TMM , and TVM will be
developed, based on the shared-memory codes developed in the thesis. Then, relevant
parts of the codes will be offloaded to the accelerators for the highest performance. How
best split the task to multiple GPUs and CPUs available at a single node is a question
which we have to elaborate.

4.2. FUTURE WORK 87

4.2.2 Sparse networks
The most immediate work is to efficiently apply the proposed tiling hybrid-parallel algo-
rithm, potentially with the mentioned optimizations, on batches of neural network layers
successively. Such blocking approach allows storing in cache not only the tile of inter-
mediate results, but also the weight matrices. This will confirm the applicability and
benefits of the proposed approach on a broader set of neural network inference tasks, in
particular, the deepest neural networks of the Graph Challenge dataset.

While the fine-grain hypergraph model serves our purposes, other partitioning ap-
proaches could also be used. In particular, we want to experiment with the medium
grain approach [51] as it generally outperforms the fine-grain model for reducing the
communication volume (otherwise known as the connectivity-1 metric). The partitioner
method should be able to handle the cut-net and multi-constraint load balancing re-
quirement. Another potential improvement relates to the use of the cutnet metric: it
should be possible to achieve overheads proportional to the λ − 1-metric instead, since
such bounds were achieved in earlier work on sparse matrix–vector multiplication [72].
Allowing permutations between layers, which can also be modeled via hypergraphs [59],
may allow further reduction of the separator size. The constraints of the partitioning
problem also resemble the symmetric partitioning problem for the fine-grain model [60].
We plan to investigate this venue for further optimizing the partitions.

As this thesis demonstrates, adapting the right storage is of crucial importance for
high-performance kernels. Thus, applicability of other storages for sparse matrices to
the problem of sparse inference should be considered. Optimizations such as the use
of algorithms for sparse matrix–dense matrix [1] multiplication may be used when the
compressed density reaches 100% during inference as shown in [44].

Many of the neural network applications, including inference, approach the user or
the hand-held devices such as smartphones, abiding to the edge computing paradigm and
meeting its requirements. Making sense of the world around us by the help of hand held
devices’ capabilities is the current trend of the technology. Storing the neural networks
and carrying out the inference on such devices are very exciting topics that we want
to address. While we want to store large and deep models for accuracy, the devices at
the edge have smaller memory. As a long-term goal, we plan to investigate methods to
compress neural networks at hand, and develop methods to carry out inference efficiently
with such compressed networks.

Bibliography

[1] S. Acer, O. Selvitopi, and C. Aykanat. Improving performance of sparse matrix dense
matrix multiplication on large-scale parallel systems. Parallel Computing, 59:71–96,
2016.

[2] S. Alford, R. Robinett, L. Milechin, and J. Kepner. Pruned and structurally sparse
neural networks. CoRR, abs/1810.00299, 2018.

[3] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rectangular matrices
into block-diagonal form. SIAM Journal on Scientific Computing, 25(6), 12 2002.

[4] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB Tensor classes for fast
algorithm prototyping. ACM Transactions on Mathematical Software, 32(4):635–
653, December 2006.

[5] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.6. http://www.
sandia.gov/~tgkolda/TensorToolbox/, February 2015. visited on 01-30-2019.

[6] G. Ballard, N. Knight, and K. Rouse. Communication lower bounds for matri-
cized tensor times Khatri-Rao product. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 557–567. IEEE, 2018.

[7] C. Bassoy. Design of a high-performance tensor-vector multiplication with BLAS. In
J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Krzhizhanovskaya,
M. H. Lees, J. J. Dongarra, and P. M.A. Sloot, editors, Computational Science –
ICCS 2019, pages 32–45, Cham, 2019. Springer International Publishing.

[8] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43,
2019.

[9] M. Bisson and M. Fatica. A GPU implementation of the sparse deep neural net-
work graph challenge. In IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2019. IEEE.

[10] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. The GraphBLAS C
API specification. GraphBLAS. org, Tech. Rep., 2017.

88

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

BIBLIOGRAPHY 89

[11] Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partition-
ing Tool, Version 3.3. Bilkent University, Department of Computer Engineering,
Ankara, 06533 Turkey. PaToH is available at https://www.cc.gatech.edu/~umit/
software.html, 1999.

[12] Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2D decompo-
sition of sparse matrices. In IPDPS, page 118, 2001.

[13] Ü. V. Çatalyürek and C. Aykanat. Hypergraph partitioning. In David A. Padua,
editor, Encyclopedia of Parallel Computing, pages 871–881. Springer, 2011.

[14] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar. On two-dimensional sparse matrix
partitioning: Models, methods, and a recipe. SIAM Journal on Scientific Computing,
32(2):656–683, 2010.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, Cambridge, MA, 3rd edition, 2009.

[16] T. Davis, M. Aznaveh, and S. Kolodziej. Write quick, run fast: Sparse deep neural
network in 20 minutes of development time in SuiteSparse:GraphBLAS. In IEEE
High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA,
2019. IEEE.

[17] L. De Lathauwer, P. Comon, B. De Moor, and J. Vandewalle. Higher-order power
method–Application in independent component analysis. In Proceedings NOLTA’95,
pages 91–96, Las Vegas, USA, 1995.

[18] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM Journal on Matrix
Analysis and Applications, 21(4):1324–1342, 2000.

[19] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm 656: An
extended set of basic linear algebra subprograms: Model implementation and test
programs. ACM Trans. Math. Softw., 14(1):18–32, March 1988.

[20] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An Extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Softw., 14(1):1–17,
March 1988.

[21] J. A. Ellis and S. Rajamanickam. Scalable inference for sparse deep neural networks
using Kokkos kernels. In IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2019. IEEE.

[22] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages
114–118, New York, NY, USA, 1978. Association for Computing Machinery.

https://www.cc.gatech.edu/~umit/software.html
https://www.cc.gatech.edu/~umit/software.html

90 BIBLIOGRAPHY

[23] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-
gorithms. In Foundations of Computer Science, 1999. 40th Annual Symposium on,
pages 285–297. IEEE, 1999.

[24] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and
implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356,
1992.

[25] F. Gustavson. Finding the block lower triangular form of a sparse matrix. In J. R.
Bunch and D. J. Rose, editors, Sparse Matrix Computations, pages 275–289. Aca-
demic Press, 1976.

[26] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and per-
muted transposition. ACM Trans. Math. Softw., 4(3):250–269, September 1978.

[27] K. Hayashi, G. Ballard, Y. Jiang, and M. J. Tobia. Shared-memory parallelization of
MTTKRP for dense tensors. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’18, pages 393–394,
New York, NY, USA, 2018. ACM.

[28] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst. LIBXSMM: Accelerating
small matrix multiplications by runtime code generation. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 84:1–84:11, Piscataway, NJ, USA, 2016. IEEE Press.

[29] M. Hidayetoglu, C. Pearson, V. S. Mailthody, E. Ebrahimi, J. Xiong, R. Nagi, and
W. W. Hwu. At-scale sparse deep neural network inference with efficient GPU
implementation. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2020 (to appear). IEEE.

[30] Intel Math Kernel Library Reference Manual. https://software.intel.com/
en-us/articles/mkl-reference-manual. visited on 30-01-2019.

[31] O. Kaya and B. Uçar. Parallel candecomp/parafac decomposition of sparse tensors
using dimension trees. SIAM Journal on Scientific Computing, 40(1):C99–C130,
2018.

[32] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, A. Reuther, R. Robinett,
and S. Samsi. Graphchallenge.org sparse deep neural network performance. arXiv
e-prints, arXiv:2004.01181, 2020.

[33] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett, and S. Samsi.
Sparse deep neural network Graph Challenge. arXiv e-prints, arXiv:1909.05631,
2019.

[34] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. The Tensor Algebra
Compiler. Proc. ACM Program. Lang., 1(OOPSLA):77:1–77:29, October 2017.

https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual

BIBLIOGRAPHY 91

[35] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, September 2009.

[36] Y. LeCun, C. Cortes, and C. J. C. Burges. MNIST handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[37] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley–
Teubner, Chichester, U.K., 1990.

[38] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc. An input-adaptive and in-
place approach to dense tensor-times-matrix multiply. In High Performance Com-
puting, Networking, Storage and Analysis, 2015 SC-International Conference for,
pages 76:1–76:12. IEEE, 2015.

[39] J. Li, J. Sun, and R. Vuduc. HiCOO: Hierarchical storage of sparse tensors. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC’18, pages 19:1–19:15, New York, NY, USA, 2018.
ACM.

[40] D. Lin and T. Huang. A novel inference algorithm for large sparse neural network
using task graph parallelism. In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA, 2020 (to appear). IEEE.

[41] K. P. Lorton and D. S. Wise. Analyzing block locality in Morton-order and Morton-
hybrid matrices. SIGARCH Comput. Archit. News, 35(4):6–12, September 2007.

[42] D. Matthews. High-performance tensor contraction without transposition. SIAM
Journal on Scientific Computing, 40(1):C1–C24, 2018.

[43] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud. Multithreaded layer-wise
training of sparse deep neural networks using compressed sparse column. In IEEE
High Performance Extreme Computing Conference (HPEC), 2019.

[44] M. H. Mofrad, R. Melhem, Y. Ahmad, and M. Hammoud. Studying the effects of
hashing of sparse deep neural networks on data and model parallelisms. In 2020
IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA,
USA, 2020 (to appear). IEEE.

[45] G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. Technical report, IBM Ltd., Ottawa, Canada, 1966.

[46] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç. High-performance sparse matrix-
matrix products on Intel KNL and multicore architectures. In Proceedings of the 47th
International Conference on Parallel Processing Companion, ICPP ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[47] numactl(8) - linux man page. https://linux.die.net/man/8/numactl. visited on
28-09-2020.

https://linux.die.net/man/8/numactl

92 BIBLIOGRAPHY

[48] F. Pawłowski, R. H. Bisseling, B. Uçar, and A. N. Yzelman. Combinatorial tiling for
sparse neural networks. In proc. 2020 IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA, 2020 (to appear). IEEE.

[49] F. Pawłowski, B. Uçar, and A. N. Yzelman. High performance tensor–vector multi-
plication on shared-memory systems. In Roman Wyrzykowski, Ewa Deelman, Jack
Dongarra, and Konrad Karczewski, editors, Parallel Processing and Applied Mathe-
matics, volume 12043, pages 38–48, Cham, 2020. Springer International Publishing.

[50] F. Pawłowski, B. Uçar, and A. N. Yzelman. A multi-dimensional Morton-ordered
block storage for mode-oblivious tensor computations. Journal of Computational
Science, 33:34–44, 2019.

[51] D. M. Pelt and R. H. Bisseling. A medium-grain method for fast 2D bipartitioning
of sparse matrices. In IEEE 28th International Parallel and Distributed Processing
Symposium, pages 529–539, 2014.

[52] A. H. Phan, P. Tichavský, and A. Cichocki. Fast alternating LS algorithms for
high order CANDECOMP/PARAFAC tensor factorizations. IEEE Transactions on
Signal Processing, 61(19):4834–4846, Oct 2013.

[53] S. Pissanetsky. Sparse Matrix Technology. Academic Press, London, 1984.

[54] S. Smith and G. Karypis. Tensor-matrix products with a compressed sparse tensor.
In Proceedings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms, IA3 ’15, pages 5:1–5:7, New York, NY, USA, 2015. ACM.

[55] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel. A
massively parallel tensor contraction framework for coupled-cluster computations.
Journal of Parallel and Distributed Computing, 74(12):3176–3190, 2014.

[56] P. Springer and P. Bientinesi. Design of a high-performance GEMM-like tensor-
tensor multiplication. ACM Transactions on Mathematical Software, 44(3):28:1–
28:29, 2018.

[57] A. Tiskin. The bulk-synchronous parallel random access machine. Theoretical Com-
puter Science, 196(1-2):109–130, 1998.

[58] Top500 list 06/2020. https://www.top500.org/lists/top500/2020/06/. visited
on 28-09-2020.

[59] B. Uçar and C. Aykanat. Partitioning sparse matrices for parallel preconditioned
iterative methods. SIAM Journal on Scientific Computing, 29(4):1683–1709, 2007.

[60] B. Uçar and C. Aykanat. Minimizing communication cost in fine-grain partitioning
of sparse matrices. In A. Yazici and C. Şener, editors, Computer and Information
Sciences - ISCIS 2003, volume 2869 of Lecture Notes in Computer Science, pages
926–933. Springer Berlin / Heidelberg, 2003.

https://www.top500.org/lists/top500/2020/06/

	Résumé français
	Introduction
	General background
	The cache memory and blocking
	Machine and cost model
	Parallel algorithm analysis
	Memory allocation and partitioning

	Thesis outline
	Tensor products
	Sparse inference

	Tensor computations
	Introduction
	Related work
	Sequential tensor–vector multiplication
	Tensor layouts
	Two state-of-the-art tensor–vector multiplication algorithms
	Block tensor–vector multiplication algorithms
	Experiments

	Shared-memory parallel tensor–vector multiplication
	The loopedBLAS baseline
	Optimality of one-dimensional tensor partitioning
	Proposed 1D TVM algorithms
	Analysis of the algorithms
	Experiments

	Concluding remarks

	Sparse inference
	Introduction
	Sparse inference
	Sparse matrix–sparse matrix multiplication
	Hypergraph partitioning
	Graph Challenge dataset
	State of the art

	Sequential sparse inference
	SpGEMM-inference kernel
	Sparse inference analysis
	SpGEMM-inference kernel for partitioned matrices

	Data-, model- and hybrid-parallel inference
	Data-parallel inference
	Model-parallel inference
	Hybrid-parallel inference and deep inference
	Implementation details

	Experiments
	Setup
	The tiling model-parallel inference results
	The tiling hybrid-parallel inference results

	Concluding remarks

	Conclusions
	Summary
	Summary of Chapter 2
	Summary of Chapter 3

	Future work
	Tensor computations
	Sparse networks

	Bibliography

