
HAL Id: tel-03116827
https://theses.hal.science/tel-03116827v1

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-tolerant control of a multirotor unmanned aerial
vehicle under hardware and software failures

Hussein Hamadi

To cite this version:
Hussein Hamadi. Fault-tolerant control of a multirotor unmanned aerial vehicle under hardware and
software failures. Automatic Control Engineering. Université de Technologie de Compiègne; Université
Libanaise, 2020. English. �NNT : 2020COMP2555�. �tel-03116827�

https://theses.hal.science/tel-03116827v1
https://hal.archives-ouvertes.fr

 Par Hussein HAMADI

 Thèse présentée en cotutelle
 pour l’obtention du grade
 de Docteur de l’UTC

Fault-tolerant control of a multirotor unmanned aerial
vehicle under hardware and software failures

Soutenue le 15 juillet 2020
Spécialité : Sciences et Technologies de l’Information et des Systèmes
: Unité de recherche Heudyasic (UMR-7253)

 D2555

Fault-Tolerant Control of a multirotor Unmanned

Aerial Vehicle Under hardware and software

Failures

Hussein HAMADI

 Thèse soutenue le 15 Juillet 2020 devant le jury composé de :

Rapporteurs:
Didier THEILLIOL Jean-Marc Thiriet

Professeur des universités Professeur des universités
Univ de Lorraine Grenoble Alpes

Examinateurs:
Abdelhamid Chriette Maan Elbadaoui Reine Talj

Maître de conférences Professeur des universités Chargée de recherche cnrs
Ecole Centrale De Nantes Univ De Lille Univ de Technologie de Compiègne

Directeurs de Thèse:
Isabelle FANTONI Clovis FRANCIS

Directrice de Recherche CNRS Professeur des universités
Univ de Technologie de Compiègne Univ Libanaise

Encadrants:
Benjamin LUSSIER Hassan SHRAIM

Enseignant Chercheur Enseignant Chercheur
Univ de Technologie de Compiègne Univ Libanaise

Université de Technologie de Compiègne

Laboratoire Heudiasyc UMR CNRS 7253

15 - 07- 2020

Contents

Contents i

Introduction 1

1 Concepts and State of the Art 5
1.1 Dependability . 5

1.1.1 General principles of dependability 6
1.2 Fault Tolerance . 8

1.2.1 Principle of Fault Tolerance . 8
1.2.2 Error detection . 9
1.2.3 System recovery . 9
1.2.4 Fault Masking . 10
1.2.5 Examples of redundancy . 10

1.3 Fault and failure in automatic control systems and their classification . . . 11
1.3.1 Faults . 11
1.3.2 Failures . 12
1.3.3 Failure modes identification . 13

1.4 Robustness . 14
1.5 Fault-Tolerant Control in control . 14

1.5.1 Passive Fault Tolerant Control Systems 15
1.5.2 Active Fault Tolerant Control Systems 16
1.5.3 State of the Art on Active and Passive Fault Tolerant Control . . . 17

1.6 Fault Tolerance Applied to Unmanned Aerial Vehicles 19
1.6.1 State of the art of FTC for quadrotor UAVs 19
1.6.2 State of the art on fault-tolerant control for UAVs through actua-

tors redundancy . 20
1.7 Wind perturbations on the dynamics of a multirotor UAV 22

1.7.1 Wind model . 22
1.7.2 State of the art of resilience to wind perturbations 23

1.8 Fault tolerance for multi-sensor data fusion 24
1.8.1 Data fusion using Kalman filter 25

1.8.1.1 Kalman filter for linear systems 25
1.8.1.2 Extended Kalman filter EKF for nonlinear systems . . . 26

1.8.2 Fault tolerance mechanisms for data fusion 27
1.8.2.1 Model Based approaches 28
1.8.2.2 Redundancy based approaches 28

1.9 Summary . 29

i

ii Contents

2 Dynamic Model and parameters estimation 31
2.1 Modeling formalism and Assumptions 31
2.2 Modeling using Newton-Euler formalism 32

2.2.1 Definitions of the Frames . 33
2.2.2 Euler angles . 34
2.2.3 Rotation Matrix . 35

2.3 Aerodynamic Forces and Moments . 36
2.3.1 Forces Modeling . 36
2.3.2 Moments Modeling . 38
2.3.3 Equations of Motion . 39

2.4 Experimental Platforms . 40
2.4.1 Modulo−X8 . 40
2.4.2 DJI S500 . 44

2.4.2.1 Model identification of the DJI S500 quadrotor 45
2.4.3 Tarot 650 . 46

2.4.3.1 Model parameters of the TAROT 650 quadrotor 47
2.5 Model identification for the TAROT 650 quadrotor 48

2.5.1 Motor model Identification Procedure 48
2.5.2 Relationship between PWM inputs and generated thrust force . . 48
2.5.3 Relationship between PWM inputs and generated torque 50
2.5.4 Inertia Matrix . 51

2.6 Summary . 52

3 Baseline Control Laws Experiments 53
3.1 Software Architecture of Low-Level Flight Control of Multirotors 54
3.2 Basic Control Concept . 55
3.3 Linear PID controller . 56

3.3.1 Linear Model Simplification . 57
3.3.2 Horizontal Position Model . 58
3.3.3 Altitude Model . 58
3.3.4 Attitude Model . 59
3.3.5 Traditional PID Controller . 59

3.3.5.1 Horizontal position control and attitude control and at-
titude control . 59

3.3.5.2 Altitude control . 60
3.3.6 PID Controllers in the open source autopilot Ardupilot 61

3.3.6.1 Horizontal position control 61
3.3.6.2 Altitude control . 62

3.4 Sliding Mode Controller for attitude and altitude Control 63
3.4.1 Sliding Mode Theory . 63
3.4.2 Matched and Unmatched perturbation 63

3.4.2.1 First-Order Sliding Mode Control 63
3.4.2.2 Second-Order Sliding Mode: Super-Twisting Algorithm 66

3.4.3 Altitude and heading control . 68
3.4.4 Translational motion in X-Y direction 69

3.5 Shared control law for the fault tolerant control strategies 70

Contents iii

3.5.1 Common subsystems formulation and sliding manifolds for all
FTC schemes . 71

3.5.2 Modelization of the control inputs and the motors health and Con-
trol allocation problem . 72

3.6 Summary . 74

4 Wind Force Compensation Strategy 75
4.1 Non linear multi-rotor model with wind perturbations 75
4.2 Smooth sliding mode controller robust to external perturbations 76

4.2.1 Desired sliding variable dynamics 76
4.2.2 Disturbance Observer . 78
4.2.3 Cancellation of external perturbation 80

4.3 Estimation of Wind Disturbances using the Nonlinear Observer 80
4.3.1 Smooth second order controller 82
4.3.2 Controller and observer in closed loop 82

4.4 Simulation and Experimental validation 83
4.4.1 Simulation results (Adaptive STA vs Observer-based STA) 84
4.4.2 Outdoor experimental results (PID vs Observer-based STA) . . . 84

4.5 Conclusion and future works . 87

5 FTC strategies for successive failures in an Octorotor UAV 89
5.1 Self-tuning sliding mode control applied to the coaxial octorotor 89

5.1.1 Self-Tuning sliding mode control (STSMC) 90
5.1.2 AFTC based on an offline control mixing 95

5.1.2.1 Fault-Free Mode . 95
5.1.2.2 One complete failure 97
5.1.2.3 Two, three and four complete motors failures 97

5.1.3 Adaptive sliding mode control allocation (ASMCA) 97
5.2 Indoor experimental Validation . 98

5.2.1 Experimental platform . 98
5.2.2 Fault detection and isolation (FDI) using current sensors 99
5.2.3 Experimental Results . 100

5.2.3.1 Hovering flight . 101
5.2.3.2 Trajectory Tracking flight 102

5.3 Discussion . 102
5.3.1 Performance . 102
5.3.2 Development cost . 102
5.3.3 Computation time . 103
5.3.4 Health monitoring . 103

5.4 Conclusion . 103

6 Fault tolerance strategy for a quadrotor UAV under sensor and software
faults 111
6.1 Fusion architectures . 112

6.1.1 Centralized fusion architecture 112
6.1.2 Distributed fusion architecture 112

iv Contents

6.1.3 Decentralized fusion architecture 113
6.1.4 Brief comparison between the fusion architectures 113

6.2 Weighted Average Voting System . 113
6.3 Arducopter fusion architecture . 115
6.4 Enhanced data fusion architecture for tolerating sensor and software faults 118
6.5 Fault detection . 119
6.6 Recovery module . 121

6.6.1 Recovery for Hardware Fault 121
6.6.2 Recovery for Software Fault . 125

6.7 Validation . 126
6.7.1 Implementation of the fault tolerance architecture 127
6.7.2 Additive fault on GPS1 . 130
6.7.3 Additive fault on Lidar1 . 133
6.7.4 Software altitude fault . 135
6.7.5 Software position fault . 136

6.8 Conclusion . 141

Conclusions and Outlook 143

Bibliography 147

Introduction

Unmanned aerial vehicles (UAVs) can be classified into fixed-wing aircraft, helicopters,
and multirotors. Before 2010, fixed-wing aircraft and helicopters had overwhelming
dominance in the field of both aerial photography and model aircraft sports. Nowadays,
multirotors UAVs have consolidated their dominance in the market of small UAVs, due
to their ease-of-use, and the development of performant sensors and onboard computers.
In the domain of civil applications, the use of multirotor UAVs is indeed considered for a
large number of delicate or expensive missions such as the exploration of an unknown
environment, the surveillance or the intervention in potentially dangerous zones, the
evaluation of damage and monitoring of forest fires, high voltage power lines, road traffic,
overflight of mountainous and inaccessible areas, etc...

In fact, the development of multirotors is becoming more and more popular for many
reasons, namely: the advancement in related technologies, preferential policy support, the
promotion of open source autopilots...

Multirotor UAVs exist in several configurations including tricopter, quadrotor, hexaro-
tor and octorotor. A quadrotor is a multirotor UAV with four independently controlled
actuators or motors, where an octorotor is equipped with eight motors arranged in a
coaxial or a star-shaped configuration. As a conventional quadrotor, an octorotor is
equipped with multiple sensors (IMU, GPS, Magnetometer, LIDAR, optical flow...) and
controlled by varying the speeds of its eight motors. The increased number of actuators in
an octorotor presents many advantages in terms of payload and inbuilt redundancy. This
hardware redundancy is useful to ensure safe flights in case of motor faults and failures.

Motivation

During their operations, multirotor UAVs are subject to different technical and operational
constraints. Thus, it is important to increase their technical reliability to ensure a safe flight
in critical areas despite faults in the system and external disturbances.

Fault Tolerant Control strategies can be used to increase reliability and safety in
multirotors help to maintain the system’s stability even when a partial or a complete fault
occurs.

Due to a lack of motor redundancy in quadrotors, the complete loss of a rotor or the
complete failure of a motor results in a vehicle that is not fully controllable. Hence one
solution is to consider multirotors with additional motors like hexarotors and octorotors.
Also, sensor and software faults as well as external perturbations of wind forces are
important factors to be considered since they can lead to the system’s instability.

1

2

The main motivation of designing a fault-tolerant control system is to try to avoid
the consequences of all sort of faults (hardware, software and external perturbations) if
possible, or at least, to minimize their negative effect on the system’s performance.

Thesis Contribution
The main contributions of this thesis are:

• Development and validation of a wind estimation strategy using only position and
acceleration information based on a super-twisting sliding mode observer. This
observer is used in a robust wind tolerant controller that is also developed and
validated during the thesis.

• Proposition of a new self tuning fault tolerant control mechanism to deal with motor
failures in a coaxial octorotor and the experimental validation of this new approach.

• Development and validation of a fault-tolerant data fusion technique based on [19]
to cope with hardware (GPS, IMU and Lidar) and software faults in the UAV’s
perception system.

• Comparative study of self tuning, adaptive and multiplexing Fault-Tolerant Control
strategies for successive failures in a coaxial octorotor UAV.

• Experimental validation of the proposed strategies using several platforms devel-
oped within the framework of this thesis: assembly, programming and implemen-
tation of several multirotors platforms (quadrotors, hexarotors, octorotors) using
different autopilots (pixhawk, Raspberry pi 3 + Navio2, cube).

Thesis Outline
The thesis is organized in 6 chapters:

• Chapter 1: This chapter provides a state of the art on fault-tolerant control and wind
perturbations concerning multirotor UAVs and fault tolerance for multi-sensor data
fusion.

• Chapter 2: This chapter presents the dynamic model of the quadrotor and the
coaxial octorotor which are used to implement and validate our work. Complete
and simplified models are presented and some model parameters are identified using
real data sets.

• Chapter 3: This chapter presents a baseline controller based on the sliding
mode super twisting control. This controller is implemented on the quadrotor and
octorotor platforms that are used to validate our contributions.

• Chapter 4: This chapter presents the first major contribution of this thesis, which
is the compensation of external wind perturbations. We develop and implement
an observer-based super twisting controller, which is robust to wind perturbations.

3

Outdoor experiments are realized to validate the observer and the controller
performances obtained by simulations.

• Chapter 5: As the second major contribution of this thesis, we propose a new FTC
strategy based on a self tuning sliding mode control (STSMC) where the gains of the
control law are adjusted depending on the detected errors to maintain the stability
and controllability of the system. We compare this method through extensive real
indoor experiments with two other FTC methods: a multiplexing method using error
detection and system recovery that applies precompiled mixing strategy to detected
faults, and an adaptive method that uses a robust controller and fault masking to
passively tolerate faults.

• Chapter 6: As the third major contribution of this thesis, we present the design
and implementation of a sensor fusion scheme that tolerates hardware faults in the
sensors and software faults in the data fusion. Based on [19], it aims to tolerate
both hardware sensors faults (GPS jamming, IMU lock or freezing, magnetometer
sensitivity to high power magnetic fields...) and software faults (faults in the Kalman
filter, bad gains value....).

Finally, the thesis concludes with a summary about the obtained results and an outlook
about potential improvements of our work.

Chapter 1

Concepts and State of the Art

Contents

1.1 Dependability . 5

1.2 Fault Tolerance . 8

1.3 Fault and failure in automatic control systems and their classification 11

1.4 Robustness . 14

1.5 Fault-Tolerant Control in control . 14

1.6 Fault Tolerance Applied to Unmanned Aerial Vehicles 19

1.7 Wind perturbations on the dynamics of a multirotor UAV 22

1.8 Fault tolerance for multi-sensor data fusion 24

1.9 Summary . 29

This chapter presents a state of the art concerning two aspects for unmanned aerial
vehicles (UAVs): external wind disturbances recognition and resilience, and fault-tolerant
control against hardware (particularly concerning actuators and sensors) and software
faults. First, basic concepts and principles of dependability are presented: threats, means
and attributes, focusing particularly on one mean, fault tolerance. Second, we introduce
the notion of fault tolerance applied to automatic control. Third, the concept of robustness
in control is discussed, notably its similarity and links to fault tolerance. Fourth, we
present a state of the art regarding Fault Tolerant Control (FTC) in UAVs. Fifth, we
present a state of the art regarding external wind perturbations on the dynamics of the
UAV. Finally, we present fault tolerance techniques for data fusion mechanisms to deal
with sensors and software faults in perception.

1.1 Dependability
In recent years, autonomous systems have been integrated in different domains such as
space aircrafts, space exploration, intelligent vehicles, etc. In such applications, a system
failure may have catastrophic consequences regarding human lives or the economical
impact. Thus arises a need to increase the dependability of such systems. From a
dependability point of view, UAVs are primarily concerned with the safety, reliability
and security attributes, which will be presented in this section.

5

6 CHAPTER 1. CONCEPTS AND STATE OF THE ART

Figure 1.1 – Dependability tree [14]

1.1.1 General principles of dependability
In this section, all the presented definitions are taken from [14].
In software engineering, the dependability of a computing system is its ability to provide
services that can justifiably be trusted within a time-period. Correct service is considered
delivered when the system behaves as it is intended to. Dependability can be broken down
amongst three aspects:

• Its attributes - how to characterize the dependability of a system.

• Its threats - what can negatively affect the dependability of the system.

• Its means - how to increase the dependability of a system.

Fig. 1.1 shows the dependability tree that represents these three aspects.

Attributes

The attributes are what characterizes a system’s dependability. These can be assessed to
determine its overall dependability using qualitative or quantitative measures. [14] defined
the following dependability attributes:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the environment.

• Confidentiality: absence of unauthorized disclosure of information.

• Integrity: absence of improper system alteration.

• Maintainability: ability for a process to undergo modifications and repairs.

1.1. DEPENDABILITY 7

Figure 1.2 – Example of error propagation in a perception system

Moreover, the confidentiality and integrity attributes can be considered together as
another attribute: security.

Here, we focus particularly on the reliability and safety attributes. However, these
concerns can be contradictory, since in some critical situations safety concerns could
require to safely stop the UAV while reliability concerns could require to continue the
mission.

Threats

By definition, threats are what can affect a system and diminish its dependability. The
threats are decomposed in three elements, namely faults, errors and failures.

• Failure: A failure is an event that occurs when the delivered service deviates from
the correct service.

• Error: An error is the incorrect part of the system state that can cause a subsequent
failure. An error can cause other errors in the system, until this propagation
ultimately causes a failure by making the system deviates from its correct service.
Some errors may stop propagating before becoming a failure; for example, a thresh-
old condition on a variable may stop an error on this variable from propagating if the
erroneous value is close enough to the correct value to still be under the threshold.
An example of error propagation is given in Figure 1.2 adopted from [18].

• Fault: A fault is the supposed or adjudged cause of an error. It may manifest as
incorrect lines of code, weariness in components, bad design, etc. A fault is called
active when it produces an error, and latent when it has not been activated yet. A
latent fault is hidden from regular means of detection, and can only be identified
once it has caused an error or after a detailed analysis.

According to their origin, nature and creation phase, faults are classified into several
partially overlapping classes, such as:

• development faults include all fault occurring during development while opera-
tional faults include all fault occurring after development when the system is used.

• hardware faults include all fault that affect hardware while software faults include
all fault that affect the software components of a system.

8 CHAPTER 1. CONCEPTS AND STATE OF THE ART

• external faults include all faults which are external to the system (such as weather,
electromagnetic rays, a nail on the road, etc.) while internal faults include all faults
internal to the system (bad design, incorrect lines of code, frail circuitry, etc.).

• permanent faults include all faults whose presence is continuous in time while
transient faults are faults that are present only for a bounded time.

In this manuscript, we primarily consider hardware faults on actuators (both internal
and external occurring during development and operation), and internal faults on percep-
tion (both hardware and software occurring during development and operation).

Means

In order to increase the dependability of a system, four means exists:

• Fault prevention: it deals with preventing the occurrence or introduction of faults
in the system, through good design process and good practices

• Fault removal: it is done during development through verification and validation,
usually dynamically with testing or statically with formal methods.

• Fault forecasting: it is the ability to predict potential faults so that they can be
removed or their effects can be avoided. It is usually achieved through statistical
analysis and mostly considers hardware faults.

• Fault tolerance: it deals with developing mechanisms that can allow the system
to still deliver correct service in the presence of faults through error detection and
system recovery. To be achieved, it requires some form of redundancy in the system.

1.2 Fault Tolerance
In this thesis, we particularly focus on Fault Tolerance (FT), the mean of dependability
that seeks to maintain a system’s correct service despite the presence of faults.

1.2.1 Principle of Fault Tolerance
Fault Tolerance is usually carried out either:

• Actively though error detection and system recovery

• Passively through fault masking.

Active fault tolerance requires a fault detection and identification (FDI) process. This
FDI detects and localizes the faults occurring in the system. The main advantage of this
method is that since we are monitoring the system health, we can know if the system
is getting close to its limits (particularly in term of redundancy), and recovery can be
executed if the system is deemed not safe enough (such as an emergency landing or an
order to return to base). The main drawback of AFTCs is that the fault is not tolerated

1.2. FAULT TOLERANCE 9

during the time needed to detect and isolate it, possibly leading to a system’s failure if the
detection takes too long.

In contrast to active fault tolerance, passive fault tolerance strategies consist in
masking the faults, using for example a robust controller able to tolerate some specific
faults (like model uncertainties or actuators failures) or redundant components associated
with a voter. Oppositely to active fault tolerance, such strategies can avoid the time delay
needed to detect the error, but if error detection is not implemented at all it could lead
eventually to a failure when the system reaches its fault-tolerance limits.

1.2.2 Error detection
Error detection is a prior step before the implementation of system recovery. It aims to
detect erroneous states in of the system before they cause a system failure. There are three
main methods of error detection:

• The Duplication/Comparison method compares the results provided by at least
two redundant units providing the same service and independent to the faults to
be tolerated. Typically, physical faults are detected by redundancy of hardware
components such as sensors in perception systems, and software faults by N-version
programming such as the diversification of data fusion algorithms.

• The Temporal Watchdog method detects temporal errors in the system, for example
by checking that its response time does not exceed a maximum value (time out).

• The Likelihood Checks method seeks to detect errors in outliers of the system’s
state. A typical example of likelihood control for a perception sensor is to check
whether its output belongs to a range of possible values.

1.2.3 System recovery
System recovery seeks to transform the detected erroneous state of the system into an
error-free state. It is performed by two complementary methods:

• Error handling allows substituting an erroneous state by an error-free state. This
substitution can itself take three forms: the rollback that brings the system back
to a correct state that occurred before the occurrence of the error; the rollforward
seeking a new state from which the system can operate (possibly in degraded mode);
and the compensation where the erroneous state has enough redundancy to allow
its transformation into a correct state.

� The rollback consists in returning to a correct previous state. This requires
capturing and periodically backing up the state of the system, and creating
a set of possible checkpoints, from which a consistent state can be restored.
The advantage of this technique is that it is independent of the application.
However, there are several challenges to it: the checkpoints themselves must
be error-free, and they are expensive in terms of backup size. We must add
to that the difficulty of making consistent backups, and the over-cost of time

10 CHAPTER 1. CONCEPTS AND STATE OF THE ART

required for their establishment. Finally, this technique is usually difficult to
implement for embedded systems like cars, planes or UAVs, as these systems
function in open environments that can not be turned back to a previously
saved state.

� The rollforward requires finding a new correct state from which the system
can operate, usually in a degraded mode. This technique remains specific and
dependent on the application. The search for a new acceptable state often
consists of a re-initialization of the system and the acquisition of a new
execution context with the environment.

� The compensation requires the presence of redundancies in the system
allowing it to provide a correct service despite the errors that may affect
it. This compensation comes in two forms: detection and compensation if
it is consecutive to an error detection, or fault masking if it is applied
systematically without detection of errors.

• Fault handling is not necessary to avoid failure, but aim to prevent a new activation
of the fault causing the error. It is possible either to bring a restorative solution, or
to deactivate the faulty components. This method is composed of four successive
phases:

� Diagnosis identifies and records the causes of errors in terms of both location
and type.

� Isolation performs physical or logical exclusion of the faulty components
from further participation in service delivery.

� Reconfiguration either switches in spare components or reassigns tasks
among healthy components.

� Reinitialization checks and records the new configuration and updates system
tables.

1.2.4 Fault Masking
As mentioned before, error compensation can be done through detection and compen-
sation if it is consecutive to an error detection, or can be systematic through fault
masking. Fault masking is usually done using duplication/comparison techniques and
voters: computation is carried out by three or more identical or similar components whose
outputs are voted. Recently in UAVs robust controllers are also implemented that allow
to tolerate some software (imprecisions in the model) and hardware (actuators failures)
faults. These techniques also belong in fault masking.

1.2.5 Examples of redundancy
The implementation of FT requires redundancies in the system. This redundancy can take
several forms:

1. Hardware Redundancy: addition of replicated modules, or use of extra circuits for
fault detection.

1.3. FAULT AND FAILURE IN AUTOMATIC CONTROL SYSTEMS AND THEIR CLASSIFICATION
11

2. Information Redundancy: addition of extra information to data, allowing error
detection and correction, such as error-detecting codes, error-correcting codes
(ECC), and self-checking circuits.

3. Software Redundancy: N-Version Programming, Transactions, ...

4. Time redundancy: performing the same operation multiple times such as multiple
executions of a program or multiple copies of data transmitted.

1.3 Fault and failure in automatic control systems and
their classification

We presented in section 1.2 the definitions of faults, errors and failures as threats for
the dependability community. The control community uses other definitions for faults
and failures, that we will present and discuss in this section. We still also present
the classification of representative faults on sensors and actuators proposed by this
community.

1.3.1 Faults
In control systems, a fault constitutes an unexpected change in a system parameter from
the acceptable/ normal condition, which can degrade system performance. It is a fact
that a fault can disturb the normal operation of a system from the desired one, but
may be tolerable. This definition appears to be distinct and more clear than that from
the dependability community, thus it will be adopted in this thesis. According to their
location, faults in automatic control systems are classified as follows:

• Actuator faults: correspond to an abnormal actuator behavior.

• Sensor faults: correspond to significant errors in the sensors readings.

• Plant faults: correspond to changes in the dynamical input/output properties of the
system.

Note that compared to the dependability community, both actuator and sensor faults
are hardware faults, while plant faults are mostly software faults. Faults can be also
classified with respect to the way they are modeled as:

• Additive faults: faults that can be treated as external inputs or biases. They usually
affect the sensors of the system (GPS, IMU ...).

• Multiplicative faults: faults that are represented by a multiplication with the state
and input vectors. Both sensors and actuators are vulnerable to such kind of faults.

In this thesis, in case of actuators faults, we considered multiplicative faults which are
also called losses in control effectiveness (Figure 1.3(d)), and are modeled as follows:

ui
f = (li)ui

n (1.1)

12 CHAPTER 1. CONCEPTS AND STATE OF THE ART

Figure 1.3 – Types of actuator faults and failures (adapted from [12]). a Float failure. b Lock in
place failure. c Hard over failure. d Loss of effectiveness

where i indicates which actuator is affected by the fault, u f is the actual erroneous control
output, un is the nominal control output and li is the multiplicative factor representing
the loss of effectiveness of the actuator. li = 1 and li = 0 means respectively that the i-th
actuator is completely healthy or failing.

In case of sensor faults, we considered both additive and multiplicative faults.

1.3.2 Failures
In the control domain, a failure is considered as an intolerable malfunction, and describes
the inability of a system or a component to accomplish correctly its function. A system
failure, resulting from one or more faults, should be avoided by means of a fault-tolerant
controller. This definition is very similar to the one used in the dependability community,
as a system’s function is part of the service that it offers.

According to [12], actuators failures are divided in three categories, as seen in Figure
1.3:

• float failure: This occurs when the control surface moves freely providing random
outputs.

• lock in place failure: This occurs when an actuator becomes stuck and immovable.

• hard over failure: This occurs when the actuator moves to its maximum output due
to an electrical or software fault.

• Loss of effectiveness: This type of failures is similar to the multiplicative faults
presented in 1.3.1.

1.3. FAULT AND FAILURE IN AUTOMATIC CONTROL SYSTEMS AND THEIR CLASSIFICATION
13

Note that, as previously stated, these actuators failures are also considered in the
dependability community as system’s errors until they possibly propagate and ultimately
become system’s failures as they negatively impact the system’s correct service.

1.3.3 Failure modes identification
A risk analysis process starts by identifying the potential failure modes of a given system.
For a multirotor UAV, some failure modes are hardware-related while others are software-
related, and some of them can be organized by subsystem as follows ([119]):

1. Altitude Sensor Failure Modes: Loss of valid return from the altitude sensor can
cause the vehicle to become unstable regarding motions on the vertical axis which
introduces the potential for loss-of-control (LOC). This failure mode can result
from multiple causes: flying above the maximum range of the sensor, flying over an
obstacle, improper filtering, vibration from airframe, etc.

2. IMU Failure Modes: A failure of the IMU leads to a worse/wrong, or even no
attitude information, which could make the control impossible.

3. Motor Failure Modes: A motor failure is considered as a catastrophic failure. For
some multirotor configurations, such as quadrotor or a specific configuration of
hexarotor, loss of control is unavoidable after one motor failure. This failure could
occur after a progressive degradation of the motor caused by prolonged use or
particles in the motor housing or a sudden contact with part of the environment
(tree branches, debris falling from some height, etc.). This could also be caused by
Electronic Speed Controller (ESC) overheating due to an overdraw on current or a
hot environment.

4. Navigation and Stabilization Algorithms Failure Modes: A navigation algorithm
failure mode causes an erroneous localization of the system, either due to wrong
sensors information or some software faults in the navigation process. A stabiliza-
tion algorithm failure mode leads to an unstabilizable system and can occur when
a linear control law is combined with fast dynamical flight (nonlinear effects), or in
case of bad control gains when the system properties change due to a payload for
example.

5. Ground Station Communications Failure Modes: Communication losses cause the
loss of visibility of the system. They can be due to signal interference, router
problems, going out of range or latency and delay in data transmission.

6. Battery failure Modes: A battery failure cause the loss of the system’s power. It can
be caused by battery damage, short circuit, overheating due to current exceeding or
failure of its electric connections due to vibrations and forces during flight.

In this thesis, we particularly focus on faults and failures occurring on the actuators,
the sensors and the computational processes (cases number 1 to 4). In our opinion, these
faults represents a major risk for UAVs due to the impact they have on the stability of the
vehicle combined with the high likelihood of occurrence during the life of a multirotor.

14 CHAPTER 1. CONCEPTS AND STATE OF THE ART

1.4 Robustness
The concept of robustness is found in many different contexts. In the field of robotics,
robustness is seen as a response to the significant variability of the execution context
that a robot may be confronted with. This variability is due to the open environment
in which the robot evolves, which may present obstacles or variations in occurrence of
unforeseen events, and uncertainties of observation and action, which may result in the
system’s inability to accurately observe its own state and that of the environment, and to
predict the precise consequences of its actions. However, there is no unique definition of
this term in the literature, and it is not easy to distinguish between the notion of robustness
in the field of robotics, and the notion of fault tolerance in the field of dependability.

In our opinion, a possible link between robustness and fault tolerance is that both aim
to increase the ability of the system to deliver correct behavior, but the fault tolerance
target a specific subset of the adverse situations facing an autonomous system: the faults.
From this point of view, fault tolerance therefore appears as a subset of robustness.

However, it seemed to be helpful to differentiate between the notion of robustness
and the notion of fault tolerance according to the origin of the adverse situations:
either internal or external to the autonomous system. Thus, we retain the two following
definitions from [100]:

• Robustness is the delivery of a correct service despite adverse situations due to
uncertainties about the system environment (such as unexpected obstacle, external
perturbations of wind on the dynamics of the UAV, etc.)

• Fault tolerance is the delivery of a correct service despite faults or failures affecting
the various resources of the system (such as loss of effectiveness of an actuators,
sensor failure, or software fault, etc.)

Robustness in robotic systems (UAVs, intelligent vehicles...) is typically achieved
either by functional redundancy, aimed at compensating the limitations of hardware
components and software algorithms (such as a combined use of camera, laser sensor
and bumper to detect obstacles, or complementary localization algorithms), or by using
uncertainties management, aimed at compensating environment uncertainties for control
and observation, such as robust control laws (sliding mode, adaptive laws..) which
automatically compensate for system imperfections and uncertainties or Kalman filters
which can filter out the inconsistency in the sensors readings by evaluating its variances
with respect to time.

1.5 Fault-Tolerant Control in control
In this section, we will discuss the different methods used in control to deal with faults
and failures in dynamical systems. Such process is called in the control community fault
tolerant control (FTC). Note that in the control community, most of the research papers
address the problem of actuators faults, whereas only few works are dedicated to study
other kind of faults in the system, namely sensors and software faults. The motivation
for the early research in the field of fault tolerant control was in the area of flight control

1.5. FAULT-TOLERANT CONTROL IN CONTROL 15

Figure 1.4 – Classification of FTC methods (adapted from [149])

systems to improve the reliability and safety of aircrafts. A fault tolerant control system
has the capability to maintain some level of acceptable performance or degrade gracefully
after the occurrence of a fault. Usually to design such a controller, the system should
have redundant control actuators, which can be efficiently used and exploited to achieve
fault tolerance. In the case of a failure in certain actuators, the control effort can be
distributed to healthy actuators to maintain the desired performance or at least some level
of acceptable performance. As previously stated in section 1.2. redundancy is absolutely
necessary for fault tolerance. This redundancy can be achieved by the direct replication
of the hardware (actuator/sensor) or it can be in the form of dissimilar hardware having
similar functionality.

Depending on the way the problem is tackled, FTC systems can be classified as passive
fault tolerant control (PFTC) systems or active fault tolerant control (AFTC) systems. A
block diagram representing the classification of FTC methods is shown in Fig. 1.4.

1.5.1 Passive Fault Tolerant Control Systems

In PFTC systems the controller is of a fixed structure and is designed off-line [167].
Due to the fact that PFTC systems do not require error detection, PFTC methods are
computationally more attractive. In passive fault tolerant control schemes, the idea is to
design the controller using robust control techniques and considering the system’s faults
are uncertainties. In practice, passive fault-tolerant control (PFTC) strategies consists
mostly in masking the faults by using a robust and reliable controller able to deal with
all expected fault without the need to detect and identify them. The main advantage of
using PFTCs is that it can avoid the time delay needed to detect the error since it is
not required. However, in this case, we usually do not monitor the system’s health, and
this could lead eventually to a failure when the system reaches its fault-tolerance limits.

16 CHAPTER 1. CONCEPTS AND STATE OF THE ART

Moreover, adaptation to failing situations from robustness is generally not as efficient to
recover from a particular failure as a specifically designed recovery mechanism.

The H∞ methodology is a well-known technique in the field of robust control, and
can take into account performance and stability requirements. The idea behind the H∞

control methodology is to design a controller which can provide stabilizing properties
and minimize the effects of uncertainties or disturbances on certain outputs of interest.
When designing a robust controller, the worst case performance specifications are taken
into account, which may lead to a requirement to sacrifice the nominal performance
of the system. Since faults usually occur rarely in the system to sacrifice the nominal
performance to obtain robustness against a certain class of faults may not be appropriate.

Another robust control methodology is the Sliding Mode Control (SMC). This
approach will be discussed in depth in this thesis. SMC schemes have inherent robustness
properties against matched uncertainties (i.e. uncertainties which have effects on the
input channels). The basic concept is to first design a sliding surface, and then to
specify a controller to induce and maintain a sliding motion on the sliding surface.
Due to its inherent robustness against matched uncertainties, SMC schemes have the
capability to directly deal with actuator faults, which can be effectively modeled as
matched uncertainties. However, this requires for the system to have sufficient actuators
redundancy for the fault to be tolerated.

1.5.2 Active Fault Tolerant Control Systems

Active fault tolerant control (AFTC) systems on the other hand rely on error detection
from a fault detection and identification (FDI) unit scheme to perform a system recovery.
Specifically AFTC systems react to faults/failures by reconfiguring control actions so
that stability and acceptable performance of the system can be maintained. In certain
circumstances, degraded performance may have to be accepted. A typical AFTC system
is represented in Figure 1.5. The structure of an AFTC system is usually more complex
compared to PFTC systems, but can deal with a wider class of faults. The error handling in
AFTCs is done using rollforward and error compensation techniques presented in Section
1.2.3. It is difficult to apply rollback techniques to dynamical systems since it is usually
difficult to influence the environment to return to a previous state. The reconfiguration
mechanism changes the parameters or structure of the controller, (usually) based on
the fault information provided by the FDI unit. In the literature, AFTC methods are
further sub-classified as projection-based methods, and online control redesign methods.
In projection based methods, one of the pre-computed controllers from a set, which
have already been designed off-line for a specific fault scenario, is selected, depending
on the fault information provided by the FDI scheme. In online control redesign
methods, depending on the fault information provided by the FDI scheme, the new
controller is synthesized online. Online control redesign methods are also categorized as
reconfigurable control or restructurable control. In reconfigurable control, the controller
parameters are computed online depending on the fault information provided by the FDI
unit, whereas in restructurable control both the structure and controller parameters are
computed online.

1.5. FAULT-TOLERANT CONTROL IN CONTROL 17

Figure 1.5 – Main structure of AFTC systems (adapted from [149])

Control allocation

In the literature, control allocation is used as part of active fault tolerant control tech-
niques, as a way to redistribute control signals amongst healthy actuators to compensate
the failing ones.

In order to redistribute the control signals in the case of faults or failures, diversified
configurations targeting either the nominal mode or specific faults are used to transform
the virtual control input ν(t) into the real control input u(t). The structure of the Control
Allocation (CA) scheme is shown in Figure 1.6, which shows that the CA element is
not part of the virtual control law ν(t). The virtual control effort ν(t) produced by the
controller is directly translated into actuator deflections by the CA module.

The hardware redundancy provides opportunities that can be exploited when design-
ing fault tolerant controllers. The advantage of the CA method is that the underlying
control law can be designed separately in order to produce the desired control effort and
the CA distributes this virtual effort among the available actuators to achieve the required
system performance.

1.5.3 State of the Art on Active and Passive Fault Tolerant Control
Many different approaches have been considered for FTC in different dynamic systems
(UAV, intelligent vehicle, etc...). In PFTCs, the main focus is on using robust controllers
such as sliding mode [36, 109, 16, 148, 102, 40], and H∞ [95, 101, 83] control laws
presented previously in section 1.5.1. Also, as a good example of PFTC, adaptive sliding
mode controllers are used in several works to mask the faults by adapting the controller
gains with respect to the system health [23, 91, 92, 56].

In contrast to PFTCs which rely in the literature mostly on robust controllers,
many techniques are considered as the basis of AFCTs: (1) Control Allocation (CA)
[73, 151, 125, 135, 136] is used, as explained previously, to handle actuator faults
or failures without the need to modify the underlying control law. (2) Linearization-

18 CHAPTER 1. CONCEPTS AND STATE OF THE ART

Design approaches references

Adaptive control [23, 91, 92, 56]

Control allocation [73, 151, 125, 135, 136]

Sliding mode control [36, 109, 16, 148, 102, 40]

Dynamic inversion [99, 97]

Gain scheduling [126, 114, 20]

H∞ robust control [95, 101, 83]

Multiple model [144, 76, 27]

Linear parameter varying [103, 121, 104]

Model predictive control [75, 142]

Model reference adaptive control [127, 34]

Multiple model switching and tuning [28, 60]

Interacting multiple models [165, 166]

Table 1.1 – Examples of existing control design methodologies used in FTC

Figure 1.6 – Control allocation scheme (adapted from [65])

based methods, such as Nonlinear Dynamic Inversion (NDI), are nonlinear control
methods which can handle nonlinearities and faults in the model [99, 97]. (3) The gain
scheduled controller [126, 114, 20] is an approach designed to select several operating
points, covering the range of the plant’s working conditions. (4) In multiple models
[144, 76, 27], the goal is to detect, isolate and estimate an accurate state of the system
in presence of faults/failures around an operating point. (5) Linear parameter varying
(LPV) [103, 121, 104] techniques can be considered as an updated version of gain
scheduling methods, by taking into account local stability and performance assurances
of the system. (6) Model predictive control (MPC) and Model reference adaptive control
[75, 142, 127, 34] are techniques where actuators and sensors faults can be represented
through modifications of the constraints in the MPC problem definition. (7) The multiple

1.6. FAULT TOLERANCE APPLIED TO UNMANNED AERIAL VEHICLES 19

model switching and tuning (MMST) [28, 60] technique is applied by setting up parallel
identification models and corresponding controllers and proposing a suitable strategy for
switching among the controllers. (8) Interacting multiple model (IMM) [165, 166] is a
technique where the occurrence or recovery of a failure in a dynamic system has been
explicitly modeled as a finite-state Markov chain with known transition probabilities.

A summary of these techniques is proposed in Table 1.1. This is not an exhaustive list,
as indeed other techniques exist in the literature.

1.6 Fault Tolerance Applied to Unmanned Aerial Vehi-
cles

Nowadays, several application fields rely on the use of drones or UAVs. As they are small,
light, and maneuverable, drones have many uses in both military and civilian domains,
such as fire detection, inspection of power lines, flying surveillance, aerial photography,
roof and solar panels inspection, 3d mapping, etc. In order to accomplish these missions
safely, UAVs must be equipped with an onboard computer or autopilot, different sensors
(GPS, IMU, Magnetometer, barometer...) and actuators to ensure the full functionality of
the drone.

As previously explained in section 1.2, a motor’s failure failure will first manifest
as an error in the system until it has undesired consequences on the system’s behavior
(which will usually happen quickly). Fault-tolerant control (FTC) strategies for UAV have
recently received significant attention in research fields due to the increasing awareness
about the risks resulting from components failures, and the need for reliable and safe
systems in critical applications [167].

1.6.1 State of the art of FTC for quadrotor UAVs
Among different types of multirotor UAVs, the quadrotor has been widely used by the
academic communities due to its simple design and dynamics. This allows to easily
develop and test several control algorithms [13]. A lot of recent works have focused on
fault detection and identification (FDI) and fault-tolerant control for quadrotors UAVs.

A complete loss of a motor/propeller of the quadrotor leads to the inability to fully
control the system’s attitude [85]. Due to this difficulty, there are few works considering
the case of complete rotor loss. We can find solutions to this problem mostly in [115],
[98], [118]. The most commun solution is to sacrifice the controllability of the yaw angle
to still be able to command the UAV’s position and altitude by making it continuously
rotate around the Z axis.

In the literature, different strategies were developed considering the FTC problem
against partial actuators failures in a quadrotor. In [35], a reconfigurable FTC is proposed,
based on a trajectory re-planning scheme and an online decision making strategy using
differential flatness. This strategy consists in synthesizing a reconfigurable feedback
control with a modified reference trajectory once an actuator fault has been diagnosed
by a fault detection and diagnosis scheme, which uses a parameter estimation based
unscented Kalman filter. In [123], the authors proposed a nonlinear adaptive feedback
linearization strategy where the solution takes into account the management of the control

20 CHAPTER 1. CONCEPTS AND STATE OF THE ART

authority by incorporating the post-fault model of the actuator, which guarantees an
acceptable performance in presence of certain types of faults in the actuators. Other
proposed strategies addressing partial actuator failures can be found in [15], [154] and
[140], where the authors proposed robust and adaptive control laws based on sliding mode
and backstepping theories to compensate the loss of effectiveness in actuators.

1.6.2 State of the art on fault-tolerant control for UAVs through
actuators redundancy

In order to maintain complete control on the UAV in the case of one or more motor
failures, to our knowledge, the only solution is to consider multirotors with redundant
actuators, i.e., hexarotors [133] and octorotors [130]. The main advantage of such
configurations is the possibility of tolerating multiple failures without losing complete
controllability. It thus allows the UAV to keep a stable flight and possibly continue its
mission.

The added hardware redundancy in coaxial octorotors, though allowing more de-
pendability in the system, complexifies the definition of the control law. The actuators
redundancy is considered as an important factor in any FTC strategy implementation,
since it allows to maintain complete controllability of the system not only with partial
faults, but also with up to four total motors failures. However, an effective motor control
allocation of the remaining healthy motors is required to achieve acceptable performance
[168].

In [87], a time delay fault tolerant control (TDC) is proposed to maintain attitude
stabilization after a fault on one or more rotors by treating the fault as a disturbance.
Another work [163] suggests a fault-tolerant control strategy using cooperation between
a radial based function neural network, fuzzy logic control and sliding mode control
(SMC) technique in presence of actuator faults, to alleviate the chattering and to maintain
good tracking of the system. In [11], two FTC schemes using linear parameter varying
system representation, with a combination of SMC theory and control allocation, are
developed and tested in the presence of uncertainties, as well as faults and failures. In
the first scheme, the knowledge of the rotor effectiveness is required in order to apply an
online control allocation methodology, and to redistribute the control signal to working
motors. In the second scheme, this knowledge is not necessary. In [164], a neural network,
an interval type-2 fuzzy logic control approach and a sliding mode control technique
are used to design a controller, named as a fault tolerant neural network interval type-2
fuzzy sliding mode controller. This control scheme has many advantages, since it allows
avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the
number of rules for the fuzzy controller, and guaranteeing the stability and the robustness
of the system. Note that in these different studies is that only simulations are presented to
validate the effectiveness of the proposed methods.

Another fault tolerant control scheme based on nonlinear model predictive control for
a Y6 coaxial tricopter is proposed in [108]. In this study, a cascaded closed-loop control
methodology is proposed which incorporates a reconfigurable low-level controller. The
effectiveness of the presented fault-tolerant scheme is validated by following an 8-shaped
trajectory with a complete loss of one rotor. In [113], the authors showed that a passive
FTC controller based on a second order sliding mode control outperforms an active FTC

1.6. FAULT TOLERANCE APPLIED TO UNMANNED AERIAL VEHICLES 21

controller designed using a pseudo-inverse dynamic control re-allocation and a first order
sliding mode control.

A global active FTC of underactuated UAV with redundant actuators (hexarotors and
octorotors) is proposed in [162] where the entire architecture contains a baseline controller
(adopted from [161]), and a fault detection and isolation scheme based on a robust
parameter identification approach. The FDI identifies the generated thrust and torques
by the actuators in normal and faulty situations and a controller reconstruction module
then calculates a feasible solution to the control allocation problem in faulty cases. In
[22], a fault-tolerant control for an octorotor UAV is proposed based on a combination
of Backstepping and Dynamic Surface Control. In this method, the uncertainties and
parameters variations caused by faults and failures are estimated and then taken into
account in the control allocation algorithm, based on a Moore-Penrose pseudoinverse
[74], which distributes the control efforts among the actuators and minimizes the energy
consumption. Another FTC strategy based on the reconfiguration of the remaining rotors
was proposed in [39], to handle the disturbance torque and the large yaw rate which occurs
after the failure of a one rotor in a hexarotor UAV. The main issue in all these different
studies is that only simulations are presented to validate the effectiveness of the proposed
methods.

In contrast, a few studies have addressed the problem of fault-tolerant control for
actuators faults in redundant UAVs providing experimental validations for the proposed
strategies, such as in [116], where the authors proposed a fault detection and a fault-
tolerant control FTC scheme which can handle up to two actuators failure for an hexarotor.
This FTC scheme uses a nonlinear Thau observer to estimate the states of the UAV and
to detect the actuators failures. It also uses a sliding mode and disturbance observer to
stabilize the UAV despite the existence of disturbances. However, the authors cited that
for the frames that have more than six motors (like octorotor), the fault detection and
fault-tolerant control schemes are more complex, which is out of scope of their research
and will be investigated in further studies.

In [152], an offline control mixing fault-tolerant control strategy is detailed, which
consists in computing a set of explicit laws, where each one is dedicated to a fault
and obtained by solving an optimization problem considering this particular fault. Fault
detection and isolation must be associated with the FTC scheme to match a corresponding
control mixing law. From this detection, a lookup table containing all possible faults and
failures combinations is used to select the control law to apply for the system recovery. In
[129], an online ASMCA scheme is proposed as a passive robustness approach to adapt to
motors failures. The stability of the overall system is verified using the Lyapunov theory.
However, the convergence time may vary depending on the gain tuning process and
the initial condition of the system. These two strategies represent two typical examples
of PFTC (ASMCA) and AFTC (control mixing). They are used later in our work on
actuator fault tolerance in Chapter 6, where we present a comparative study between the
behavior of these methods and our proposed solution (self tuning sliding mode STSMC).
A classification of the existing work on quadrotors and octorotors is presented in Table
1.2.

22 CHAPTER 1. CONCEPTS AND STATE OF THE ART

ref Types of faults Types of FDD UAV
[141], [37], [111], [1], [3] Loss of effectiveness Observer-based Quadrotor
[70] Loss of effectiveness Moving Horizon Quadrotor
[159], [112], [7], [93], [94] Complete actuator failure Observer-based Quadrotor
[8], [10], [9] Loss of effectiveness Observer-based Octorotor
[132], [53], [105], [110] Complete actuator failure Observer-based Octorotor

Table 1.2 – Classification of works on quadrotor and octorotor UAVs

1.7 Wind perturbations on the dynamics of a multirotor
UAV

The objective of controlling a drone is to stabilize its orientation and position in the space,
successfully track a desired path, and ensure automatic take-off / landing. In order to
obtain solutions at the controller level, it is necessary to have a representative model of
the uncontrollable effects on the drone [139].

The influence of weather conditions must thus be taken into account in order to find a
solution for the control problem of an outdoor multirotor drone. These conditions can be
summarized thereafter:

• Changes in temperature which can affect the sensor readings.

• Changes in air density which can partially affect the friction forces acting on the
propeller.

• Changes in movements, directions, and speed of the wind which can be considered
as external perturbations on the system dynamics.

1.7.1 Wind model

In practice, [139] explains that the influence of temperature, changes in air density is not
very important at the operational flight altitude of the multirotors, thus it is sufficient to
study only the effect of wind conditions on the system dynamics.

The same paper says that the analysis of the aerodynamic wind effect allows the
separation of a constant component Vs (systematic) that defines the constant wind speed
and a variable component Vµ (turbulent) that defines the gusts. Thus, the complete wind
speed could be considered as a vector defined in the space at the point r by the following
formula:

V(r) = Vs(r)+Vµ(r) (1.2)

The wind force affecting the UAV can be determined given its speed and direction.
The value of this force can be determined using the equation (1.3).

Fv = SeAV2(r) (1.3)

1.7. WIND PERTURBATIONS ON THE DYNAMICS OF A MULTIROTOR UAV 23

where Fv is the magnitude of the wind force, Se is the effective area that is subjected to
this force, A = 0.16 is the conversion ratio of velocity (m/s) to pressure (N/m2) and V(r)
is the total wind speed [139]. The influence of the wind force on the UAV is determined
according to formula (4.4) by the wind speed and by considering the orientation of the
UAV and the direction of the force.

The forces Fx and Fy, which represent the components of the total wind force Fv in the
x and y direction respectively, can be calculated given the direction of the wind attacking
the UAV using the equation (1.4).

Fx = SexAV2(r)cos(δ)
Fy = SeyAV2(r)sin(δ)

(1.4)

where Sex and Sey are the effective areas that are subjected to the forces Fx and Fy
respectively, and δ represents the wind direction relative to the UAV.

1.7.2 State of the art of resilience to wind perturbations

Since in outdoors environment the drone is exposed to adverse atmospheric conditions,
reliable and robust control algorithms are required. However, there exist to our knowledge
few works where wind effects on these systems are quantified. In [120], the authors
developed two methods to estimate the wind speed and its direction. In a direct approach,
wind information are estimated using a wind sensor (anemometer) mounted on top of
the vehicle. In an indirect approach, the attitude data from the drone are used in the
estimation. However, the wind effect is considered as only due to the air frame drag
which does not reflect real flight conditions. The problem of wind estimation was also
addressed in [155], where an extended state observer is developed to identify wind
disturbances, but only indoor experiments where conducted to validate this method. A
linear observer for the estimation of wind disturbances is presented in [106]. Real-time
outdoor experiments where conducted using a GPS receiver to test the proposed method
in real flight conditions. Nevertheless, the authors explain that it can only be used near the
equilibrium point, i.e. hovering, since it is based on a linear model of the vehicle.

Indeed, the design of a robust control law against disturbances due to wind is a difficult
problem [6], especially when tracking aggressive trajectories. Thus two approaches are
oftenly used: first the implicit modeling of the forces of wind on the drone and its
integration in the expression of the control law, and second the use of a robust controller
to tolerate wind effects and other uncertainties (such as model uncertainties).

Among the first approach, Sydney et al. [143] carried out an estimation process of
the wind effect on a quadrotor and used it to design a control law capable of countering
its disturbances. The authors in [145] investigated the wind effect on a quadrotor model,
and showed that it can be viewed as an oblique flow approaching the rotors based on
the blade-element momentum theory. Huan et al. [67] took into account the aerodynamic
effect by proposing a law of aggressive command for a quadrotor using the blade flapping
approach. In [88], an active rejection of wind disturbance using an approximate feedback
linearization of the model dynamics is proposed and validated. However, such a controller
based on feedback linearization is known to be very sensitive to sensor noise, since up to
three-order derivatives of the states are included in the inputs. The main issue in all these

24 CHAPTER 1. CONCEPTS AND STATE OF THE ART

different studies is that only simulations are presented to validate the effectiveness of the
proposed methods.

In contrast, other studies have addressed the problem of wind perturbations on the
UAVs providing experimental validations for the proposed strategies, such as in [51]
where three types of disturbances including payloads, rotors failures, and the wind
generated by a fan are chosen separately to verify the effectiveness of the controller in
each situation.

Among works of the second approach, [79] and [117], propose robust control laws
with adaptive gains to ensure the stability of the system. In [57], the authors address flight
control in presence of wind-gust disturbances during trajectory tracking with a 6DOF
nonlinear dynamics model separated into two subsystems (dynamic and kinematic).
A hierarchical controller is used to stabilize the under-actuated subsystems using the
adaptive control techniques to deal with slow and fast varying wind conditions. At the
same time, a backstepping technique is used to stabilize the inner loop heading dynamics.

The authors of [153] developed an adaptive robust controller based on the sliding
mode algorithm to deal with payload variation and wind gust disturbances. To quantify
the wind impact, they implemented a propeller momentum drag and wind gust model
including forces and moment disturbances.

To our knowledge, there exists only few works which address the problem of wind
perturbations and propose experimental. We think that most researchers working on UAVs
assume that robust controllers are sufficient to deal with such problem. However, from
our experiments in chapter 4, we found that only the complex robust controllers (such
as second-order sliding mode controllers) are able to compensate most of the external
wind perturbations. To solve this problem, we propose as an alternative solution an active
disturbane rejection technique through online estimation of wind perturbations.

1.8 Fault tolerance for multi-sensor data fusion

We introduce here the field of data fusion, which plays a fundamental role for multi-sensor
perception systems, and we particularly focus on the Kalman filter technique that allows
to fuse data from different sensors and reduce noise. We then present a state of the art for
fault tolerant techniques in perception.

Data Fusion [26] consists in joining or merging information that stems from several
sources and exploiting that information in various tasks such as answering questions,
making decisions, estimating numerical values, etc. These sources can be physical sensors
observing the actual situation and providing different information on the possible events.
Other definitions of the data fusion concept can be found in [29]. Multi-sensor data fusion
combines several sensors measurements to form a better and easier to use representation
of the observed environment: the world model. It seeks to take advantage of all available
information on a given problem to counter each sources imperfections. Generally three
major theoretical frameworks are used to implement a data fusion mechanisms: the
probability theory, the possibility theory [55, 54], and the belief function theory [48]. In
our work we focus on the probabilistic framework, particularly the Kalman filter method
[78].

Data fusion has a long history in robotic field. It has been a significant focus during

1.8. FAULT TOLERANCE FOR MULTI-SENSOR DATA FUSION 25

the 80-90s in military applications [63, 62], and remains relevant in this area. Fusion
methods have been adapted and developed for robotics applications (such as autonomous
navigation, target tracking, and localization). In [160] a belief function theory data fusion
technique is used and adapted to the robot localization problem using ultrasound images.
As navigation is fundamental for mobile robots, Kalman filters have been used in that
function for a long time [41, 59]. As the original Kalman filter can only be applied to linear
systems, an extended Kalman filter (EKF) has been proposed for non linear systems. This
EKF has been successfully implemented for robot position estimation in [47], and [82].

1.8.1 Data fusion using Kalman filter
The Kalman filter assumes that the system states and the measurements of the sensors can
be described by a linear dynamic system. This dynamic system is divided into two parts:

• The linear model which describes the evolution of the system states over time.

• The measurement model which describes how the measurements are related to the
states.

Thus, the Kalman filter assumes that the system can be represented by linear
equations. When the system is nonlinear, we can use linearization techniques to transform
the problem into a linear problem, using the Extended Kalman filter (EKF). A good
introduction to the topic can be found in [157]. A more detailed description of the concept,
derivation and properties is given in [58].

1.8.1.1 Kalman filter for linear systems

The Kalman filter, also known as linear quadratic estimator, is an optimal estimator for
discrete linear system of the form:

xk+1 = Akxk +wk (1.5)

where xk+1 ∈Rn, xk ∈Rn represent the system states respectively at the instants k+1 and
k, Ak ∈ Rn×n is the transition matrix between k+1 and k and wk ∈ Rn is the noise vector
in the states model.

On the other hand, the observation model which describes the measurement of the
sensors is describe by:

zk = Hkxk + vk (1.6)

with zk ∈ Rp, Hk ∈ Rp×n and vk ∈ Rp are respectively the measurement vector at instant
k, the observation matrix and the noise vector in the observation model.

The process noise wk and the measurement noise vk are assumed to be independent
random variables with Gaussian probability density functions and zero mean value. The
normal probability distributions p are as follows:

p(w)v N(0,Q),Q = diag(σ2
w1,σ

2
w2, ...,) (1.7)

p(v)v N(0,R),Q = diag(σ2
v1,σ

2
v2, ...,) (1.8)

with σ2 being the variance of the corresponding noise distribution.

26 CHAPTER 1. CONCEPTS AND STATE OF THE ART

Kalman filter process

The first step is to determine the predicted state x̂−k at time k, using the previous corrected
state x̂k−1 , and the associated error covariance matrix P−k using:

x̂−k = Akx̂k−1
P−k = AkP+

k−1AT
k +Qk

(1.9)

The second step (correction step) is to correct the predicted states and the covariance
matrix using the measurements from the sensors zk when they are available. The predicted
state can be corrected using the innovation (or residual) Ŝk and the computed Kalman gain
kk. Thus, the corrected state x̂k and its associated covariance matrix P+

k can be estimated
using the following equations:

Ŝk = zk−Hkx̂−k
Ŝk = HkP−k HT

k +Rk
kk = P−k HT

k Ŝ−1
k

x̂k = x̂−+ kkŜk
P+

k = P−k kkHkP−k

(1.10)

The innovation Ŝk represents the difference between the predicted states and the real
measurement from the sensors.

1.8.1.2 Extended Kalman filter EKF for nonlinear systems

For the estimation of a nonlinear system, several extended versions of the Kalman filter
exist. A widely used approach is to linearize the system dynamics in every step around
the a priori estimation x−k , and proceed as for a linear system. This approach is known
as the EKF. The fundamental imperfection of the EKF, as pointed out in [96], is that
the distributions of the various random variables are no longer a normal distribution,
after undergoing their respective non-linear transformations. Thus, the optimality of the
estimation is only approximated by linearization. The stochastic system equations from
(1.9) and (1.6) are now generalized to the nonlinear case as:

xk+1 = f (xk,wk) (1.11)

again with the state vector xk ∈ Rn, and the observation model is given by:

zk = h(xk,vk) (1.12)

with the measurements vector zk ∈ Rm.

Extended Kalman filter process

By deriving the Jacobian matrix of the partial derivatives of f (xk,wk) and h(xk,vk)
with respect to the state xk and the noise vectors wk and vk, we obtain the linearized

1.8. FAULT TOLERANCE FOR MULTI-SENSOR DATA FUSION 27

Figure 1.7 – Data flow of the Extended Kalman filter operation

approximation of the matrices:

Ak = (∂ f (xk,wk)
∂xk

)T |x̂−k
Wk = (∂ f (xk,wk)

∂wk
)T |x̂−k

Hk = (∂h(xk,vk)
∂xk

)T |x̂−k
Vk = (∂h(xk,vk)

∂vk
)T |x̂−k

(1.13)

The EKF is implemented as shown in Figure 1.7, and a detailed process can again be
found in [96].

1.8.2 Fault tolerance mechanisms for data fusion

The risk of software and hardware faults increases, in terms of sensor failures and
processing failures, due to the increasing number of sensors and the underlying data fusion
mechanisms [4]. Hence, there is a need to apply a fault tolerant strategy to overcome these
issues and detect any failures, and to ensure more reliable performance outcomes with
respect to autonomous systems.

To our best knowledge, there exist only few works in the literature regarding fault
tolerance in the field of data fusion. The approaches that can be found use the duplication
and comparison techniques to tolerate physical faults [18]. These approaches can be
categorized into two categories: duplication based on an analytical model, and duplication
based on hardware redundancy.

28 CHAPTER 1. CONCEPTS AND STATE OF THE ART

1.8.2.1 Model Based approaches

The model based approaches, also known as analytical redundancy approaches [72],
determine functional relationships between the measured states through a mathematical
model. This mathematical model can either be developed from physics analyses or
obtained from the measurements directly. Subsequently, a residual rk is then generated
between the actual sensor output yk and the estimated modeled output ŷk, i.e.,

rk = yk− ŷk (1.14)

A residual zero-mean, that is, ∑
k

rk
k = 0 means no fault and the mean deviation from

zero means the existence of a fault. A Nadaraya-Watson statistical estimator and a priori
observations are used in [158] to validate sensor measurements. Residuals or innovations
generated by Kalman filter (KF) were used in [52, 68, 43] to detect faults: statistical tests
on residual whiteness, mean, and covariance identify the faults. In [43], a failure detection
approach for a KF-based GPS integrity monitoring system was proposed. The idea is
to process subsets of the measurements by an auxiliary KF component and to use the
estimate generated as a reference for detection of failures. The KF prediction was used as a
reference for detecting inconsistencies in the measurement of sensors in [77]. An adaptive
sensor/actuator detection and isolation scheme for a Unmanned Aerial Vehicle (UAV)
based on KF has been proposed in [61]. The detection of system failure in this method is
done by applying statistical tests on the KF’s innovation covariance. In [66], this method
is used to improve the accuracy of personal outdoor positioning systems. Common tools
for assessing residual statistical characteristics are generalized probability ratio tests [71],
chi-square tests [150], and multiple hypothesis tests [69]. Some authors also proposed
approaches based on Extended KF (EKF) [107, 46] and Unscented KF (UKF) [134]
with the objective of detecting inconsistencies in the perception of non-linear systems.
Multi-sensor data fusion for multi-robot system based on Kullback-Leibler Divergence
(KLD) was proposed in [5]. The method calculates the KLD between an Information
Filter a priori and a posteriori distributions and uses the threshold of the Kullback-Leibler
Criterion to detect and remove suspicious sensor data.

1.8.2.2 Redundancy based approaches

In data/hardware/sensor redundancy based approaches, two or more sensors measure the
same critical state and then detect as well as isolate the faulty sensors by consistency
checks and majority voting [72]. For example, in [81], the authors proposed a voter-based
fault detection system for multiple sensors subsystems of inertial navigation system (INS),
GPS, attitude sensor and heading reference system (DAHRS). A sensor voting algorithm
was presented in [44] to manage three redundant sensors.

In [19], the authors introduced an approach for tolerating faults using multi-sensor
data fusion. This approach is based on the method of duplication/comparison, which can
offer detection and diagnosis of faults in a data fusion mechanism. Fault tolerance is done
through error detection and system recovery. Error detection helps to detect the erroneous
state of the system before the propagation of the error can cause the failure of the system.
System recovery allows an error-free state to be substituted in place of an erroneous state.

1.9. SUMMARY 29

Figure 1.8 – Duplication-comparison architecture for fault tolerance in multi-sensor perception

The Figure 1.8 illustrates the architecture for fault tolerance using duplication-comparison
and multi-sensory perception. This architecture will be further discussed in Chapter 6.

Based on redundant multi-sensor navigation systems, inconsistency detection for
hypersonic cruise vehicles (HCVs) was proposed in [156]. Two sensor blocks were
involved: the first block consists of an inertial navigation system (INS) and a GPS,
while the second block consists of an INS and a navigation system. The method uses
chi-square test and sequential probability ratio test to detect inconsistencies in each
block’s local sensor estimates before sending their data to a central node for a global
estimate. In another work, an application for failure detection and isolation on redundant
aircraft sensors based on fuzzy logic and majority voting was proposed in [24]. A method
for detecting spurious sensor data based on the Bayesian framework without any prior
information was proposed in [84]. This method adds a term to a Bayesian probabilistic
approach that increases the a posteriori distribution if measurement from one sensor is
inconsistent with the other.

1.9 Summary
In this chapter, we presented a state of the art in fault-tolerant control for unmanned aerial
vehicles:

• First, we introduced some fundamental concepts and principles of dependability:
attributes, threats and means. The notions of faults, errors and failures used
throughout the thesis are defined and faults are classified according to different
criteria. A special focus was laid on the concept of robustness and FTC, where a
detailed description of the techniques employed in the robotic field is given.

• Then we described the classifications of FTC systems as passive fault tolerant
control (PFTC) systems and active fault tolerant control (AFTC) systems. PFTC
strategies consists in masking the faults by using a robust and reliable controller
able to deal with all expected fault without the need to detect and identify them. In
AFTC strategies, the fault tolerance process is carried out via three successive steps:

30 CHAPTER 1. CONCEPTS AND STATE OF THE ART

(1) Error detection, using a fault detection unit, (2) fault diagnosis, which identifies
the occurrence and the type of a fault after the detection, (3) system recovery.

• Then, We presented a state of the art regarding wind perturbations and their effects
on an UAV’s dynamics. Many research articles focuses on passive strategies to
deal with wind perturbations using adaptive robust controllers, and only few works
considered active solutions with online estimation of the wind perturbations.

• Finally, we introduced the works done in the field of fault tolerance for multi-
sensors data fusion, where we presented the Kalman filter theory and fault tolerant
approaches to deal with sensor and data processing failures. The majority of
scientific research about fault tolerance of UAV systems focuses on the problem
of actuator failures and to our knowledge, there exist only few works regarding
fault tolerance in the field of perception and data fusion. The approaches that can
be found on data fusion focuses on duplication and comparison techniques and
can be categorized into two categories: duplication based on analytical model and
duplication based on hardware redundancy.

Chapter 2

Dynamic Model and parameters
estimation

Contents

2.1 Modeling formalism and Assumptions 31
2.2 Modeling using Newton-Euler formalism 32
2.3 Aerodynamic Forces and Moments 36
2.4 Experimental Platforms . 40
2.5 Model identification for the TAROT 650 quadrotor 48
2.6 Summary . 52

This chapter outlines the dynamic modeling of multirotor UAVs. First, the earth
and body frames and the transformations of coordinates from each frame to the other
are introduced. These coordinates are used to define the position and orientation of the
multirotor. Second, the forces and moments acting on the UAV are detailed and the
kinematics and dynamics expressions are derived using the Newton-Euler formalism.
Finally, the complete and simplified model of a coaxial octorotor is presented and its
parameters are identified using real data sets extracted from static tests on the motors and
propellers systems.

2.1 Modeling formalism and Assumptions
A multirotor UAV system is a highly nonlinear, multivariable, strongly coupled, unstable
system. In practice, there exists several configurations of multirotor UAVs, such as:
quadrotors, tricopters, hexarotors, coaxial octorotors... In this thesis, only quadrotors and
a coaxial counter-rotating octorotor are considered to validate our contributions. Note that
in coaxial octorotors, the actuators are stacked in counter-rotating pairs so as to resemble
a quadrotor as in Fig. 2.3.

In general, a multirotor UAV is a 6-Degrees Of Freedom (DOF) symmetric rigid body
which includes several actuators that are attached at the ends of the system’s arms and on
which propellers are fixed. Each motor can be controlled individually via an electronic
speed controller unit (ESC), thus modifying the states (position and orientation) of the
drone and allowing it to maneuver into the three dimensional space.

In the literature, two main formalisms are used to derive the dynamic model of a
multirotor UAV:

31

32 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

• The Euler-Lagrange formalism

• The Newton-Euler formalism

The Newton-Euler formalism approach is expressed in terms of the body frame
coordinates and then derived in terms of the earth frame coordinates using kinematics
transformation. The Euler-Lagrange formalism, instead, directly uses generalized coor-
dinates in the frame coordinates, but the equations of motion requires the formulation
of the kinetic and potential energies of the system under this frame, which leads to a
more complex formulation. However, the final result is equivalent in both approaches,
but written with different notations. In [30], a detailed model of the quadrotor is given
including all rigid body dynamics, aerodynamic forces and gyroscopic effects. Both
methods, Euler-Lagrange and Newton-Euler formalisms, are consistent for the description
of the dynamics of the aerial vehicle. However, it has been noted, as previously explained,
that the Newton-Euler formalism is easier to understand. This formalism is chosen in this
thesis to model the quadrotor and the coaxial octorotor dynamics.

In this work, some assumptions are made to facilitate the modeling process:

• Assumption MOD1 The structure of the vehicle is supposed to be rigid and
symmetrical. Specifically, the center of gravity is supposed to be fixed and the
actuator’s position are symmetrical with respect to the vehicle axes, which will
allow much simpler equations concerning the forces applied on the system.

• Assumption MOD2 The motor dynamics are ignored. This will allow to not
consider, the equations between the motor’s rotational speed and the feeding current
and voltage.

• Assumption MOD3 The center of gravity and the body-fixed frame origin are
assumed to coincide. This will allow the off-diagonal terms in the inertia matrix
to be zero.

• Assumption MOD4 The propellers are supposed to be rigid. Thus, we ignore the
blade flapping (the up and down movement of a rotor blade).

• Assumption MOD5 The thrust and the drag are proportional to the square of
the rotors speed. This will be useful in the identification procedure of the motor
parameters.

2.2 Modeling using Newton-Euler formalism
For multirotor UAVs, there are several configurations including tricopter, quadrotor,
hexarotor and octorotor. The following Figure 2.1 shows the UAVs configurations that
are supported by open source autopilots, where the cyan colored motor refers to a
motor rotating in clockwise sense and the grey motor refers to a motor rotating in a
counterclockwise sense. In this work, we will focus on the quad X and X8 configurations.

The quadrotor and the coaxial octorotor used in this thesis are modeled using the
conventions shown in Figures 2.2 and 2.3. For the octorotor, the motors spinning in the

2.2. MODELING USING NEWTON-EULER FORMALISM 33

Figure 2.1 – Multirotor configurations

Figure 2.2 – Quadrotor’s configuration

counter-rotating direction are the bottom front left, bottom rear right, top front right and
top rear left motors (M7, M3, M2 and M6) with angular velocities ω7, ω3, ω2 and ω6,
while the remaining four motors (M1, M4, M5 and M8) spin in the clockwise direction
with angular velocities ω1, ω4, ω5 and ω8.

In this section, we will first introduce the frames used to study the motion of the
multirotor, then we will describe the Euler angles with respect to the orientation of the
vehicle, finally we will describe the derivation of the rotation matrix used to express the
vectors in different frames.

2.2.1 Definitions of the Frames

In order to study the motion of the multirotor UAV, we need first to consider two Cartesian
frames of reference:

34 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

Figure 2.3 – Octorotor’s configuration

• The earth frame RE {XE ,YE ,ZE}
This frame is used to define the starting location of the mission, or home. It will be
used to derive the translational equations of motion. In this frame, XE points north,
YE points East and ZE points upward.

• The body frame RB {XB,YB,ZB}
This frame is fixed to the UAV’s body with its origin considered at the center of
gravity of the UAV. The positive XB-axis of the body frame points to the front
direction of the UAV. The positive YB-axis is pointing to the left and the ZB-axis
is perpendicular to the XB and YB axes, pointing upward. As we are using the quad
X and X8 configurations, the XB and YB axes are found between the UAV’s arms
rather than along them.

2.2.2 Euler angles

The orientation of the vehicle is determined by the Euler angles. They are known as the
yaw ψ (or heading), pitch θ , and roll φ angles.

The transformation between the earth and body frames can be realized by three
successive Euler rotations.

Figure 2.4 presents the three successive Euler rotations needed to transform the earth
frame into the body frame. This transformation is done by applying a rotation around
each of the three Cartesian axes successively, following the right-hand rule. The first
rotation around the z-axis by an angle ψ transforms the inertial coordinate frame into
an Intermediate Frame 1. This is followed by a rotation around the new y1 axis by an
angle θ to get the second intermediate frame 2. Finally, the last Euler angle φ defines the
rotation around the new x2 axis to obtain the body frame. As we will see in Section 2.2.3,
a rotation matrix is associated to each transformation. The inverse transformation can be
done by calculating the inverse of each rotation matrix.

2.2. MODELING USING NEWTON-EULER FORMALISM 35

Figure 2.4 – Transformation between Earth and body-fixed frame using Euler angles

2.2.3 Rotation Matrix
Any vector v expressed in the earth frame is transformed into a vector vB expressed in the
body frame by mean of the rotation matrix RE→B. The equation between these vectors is
given as follows:

vB = RE→Bv (2.1)

This rotation matrix is obtained by multiplying each of the three relative matrices
associated with each Euler angle.These rotation matrices are respectively given by:

Rψ =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

Rθ =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

Rφ =

 1 0 0
0 cosφ −sinφ

0 sinφ cosφ

(2.2)

The rotation matrix, also called Direction Cosine Matrix (DCM), is then expressed as:

RE→B = Rφ Rθ Rψ (2.3)

or

RE→B =

 cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ

(2.4)

It is worth to note that the DCM is an orthogonal matrix. Thus the rotation matrix RB→E
that transforms a vector vB expressed in the body frame into a vector expressed in the
inertial earth frame is obtained as follows:

RB→E = (RE→B)
−1 = (RE→B)

T (2.5)

Following the same manner, given the angular velocity vector ω =
[

p q r
]T , where

p, q and r are the angular velocities around the XB, YB and ZB axes respectively, we can

36 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

obtain the Euler rates η̇ =
[

φ̇ θ̇ ψ̇
]T by means of a transformation matrix T :

η̇ = Tω (2.6)

where

T =

 1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

 (2.7)

For further information about the derivation of the T matrix, please refer to [31].

2.3 Aerodynamic Forces and Moments
The multirotor UAV is considered as a rigid body. The dynamics under the external forces
that are applied to the center of mass are described in this section. All the forces vectors
are then transformed into the earth frame and the dynamic model is finally obtained using
the Newton-Euler formalism. Let:

• F be the vector of forces acting on the multirotor UAV in the body frame.

• τ be the vector of moments acting on the multirotor UAV in the body frame.

• v be the vector of linear velocities along x, y and z axes in the earth frame.

• ω be the vector of angular velocities p, q and r in the body frame.

• G, m, and I be the gravity constant, the mass of the vehicle and the inertia matrix of
the vehicle respectively. I is a diagonal matrix because of the symmetrical structure
of the system, expressed as:

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.8)

where Ixx, Iyy, Izz are the moments of inertia around the axes XB, YB, ZB respectively.

In this section, we will describe the forces and the moments acting on the multirotor,
then we will derive the equations governing the motion of the multirotor UAV.

2.3.1 Forces Modeling
The different forces acting on the drone are given below:

• Force of Gravity: This force is directed in the -z direction. It is expressed in the
earth frame as:

[FG]E =

 0
0
−mG

 (2.9)

Since its point of application is the center of gravity, this force does not generate
any moment.

2.3. AERODYNAMIC FORCES AND MOMENTS 37

Figure 2.5 – Top Motor: Aerodynamic force as a function of the motor speed

• Thrust Force: Each motor/propeller produces an upward thrust force fi where i =
1,2, ...4 in case of a quadrotor and i = 1,2, ...8 in case of an octorotor, directed
along the positive zB-axis and at a distance d from the center of mass.

fi =

 0
0
fi

 (2.10)

The expression of the thrust can be derived using the actuator disk and blade
elements theory [30]:

fi =CT ρAr2
ω

2
i = K f ω

2
i (2.11)

where CT is the thrust coefficient, ρ is the air density, A is the rotor disk area, r is
the rotor radius, and ωi is the rotational speed of the motor i. In this thesis, the gain
K f will encompasses most of the thrust force’s variables (as seen in equation 2.11)
and will be identified for each experimental platform in Section 2.4.

In the case of the coaxial octorotor, we must also take into account the interaction
between the two coaxial rotors which causes a loss of net rotor aerodynamic
efficiency as mentioned in [124]. Thus, the combined force produced by two coaxial
rotors is given as:

fi j = αi j(fi + f j)S (2.12)

αi j = 1.8 is the coefficient of loss of aerodynamic efficiency due to the aerodynamic
interference between the upper and lower rotors in a pair of coaxial rotors. S =
1 + SS

Sprop
represents the shape factor of the propellers, with SS referencing the

propellers surface and Sprop the surface of the circle that the propeller would make
when rotating.

Indeed, the total thrust f12 remains less than the sum of individual thrusts of each
rotor f1 and f2 as demonstrated in Fig. 2.5.

38 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

This figure shows the data collected from different static tests that were carried out
when the top and bottom motors were rotating at the same speeds and at different
speeds.

The total thrust value Fu produced by the propellers of the quadrotor and the
octorotor can be expressed in the body frame as:

� For a quadrotor:
Fu = f1 + f2 + f3 + f4 (2.13)

� For a coaxial octorotor:

Fu = f12 + f34 + f56 + f78 (2.14)

And using the DCM matrix, we can express the total thrust generated by each
system in the earth frame as follows:

[Fu]E = RB→E

 0
0
Fu

 (2.15)

• Drag Forces: The drag forces on the vehicle body are due to the friction with the
wind during horizontal motion. They are expressed in the earth frame as follows:

Ffx = 1
2CxAcρ ẋ|ẋ|

Ffy = 1
2CyAcρ ẏ|ẏ| (2.16)

where Cx, Cy are friction coefficients and Ac is the fuselage area or the area of the
drone exposed to wind.

2.3.2 Moments Modeling
The different moments acting on the multirotor are analyzed below.

• Propeller Gyroscopic Effect: The high rotation speed of the propeller blades causes
a gyroscopic effect, which affects the motion of the vehicle when the propellers do
not spin with the same velocity. The gyroscopic torque is expressed as:

τg = JR

ω x

 0
0
1

Ωr (2.17)

where Ωr = ω1 +ω3−ω2−ω4 for a quadrotor and Ωr = ω2 +ω3 +ω6 +ω7−
ω1−ω4−ω5−ω8 for a coaxial octorotor. Ωr is the overall residual propeller speed
from the unbalanced rotor rotation, and ω1...ω8 are the motors speeds. JR is the
propellers inertia and ω is the vehicle angular velocity expressed in the body frame.

This effect is neglected most of the time since the propellers inertia is small
compared to the body inertia.

2.3. AERODYNAMIC FORCES AND MOMENTS 39

• Drag Moment: The drag moment around the rotor shaft is caused by the aerody-
namic forces acting on the blade elements. This moment is directed along the ZB-
axis.

τττ i =

 0
0
τi

 (2.18)

The expression of the drag moment generated by the motor i is obtained using the
actuator disk and blade elements theory, similarly to the thrust force:

τi =CQρAr3
ωi|ωi|= Ktωi|ωi| (2.19)

where CQ is the drag coefficient. In this thesis,the gain Kt encompasses most of the
drag moment’s variables, as seen in Equation 2.19, and will be identified in Section
2.4. The drag moment τi is proportional to the square of the motor i speed. Its sign
depends on the sense of rotation of the corresponding motor i.

• Torques: the actuators generate roll and pitch torques depending on their positions
with respect to the XB and YB axis. Let τφ and τθ represent respectively the roll and
pitch torque. The expressions of these torques will be given in the next section for
the case of a quadrotor and an octorotor.

2.3.3 Equations of Motion

The dynamical model of the translation motion of the UAV can be obtained using
Newton’s law. We can write:

mv̇ = RB→E .F (2.20)

where F in the vector representing the sum of all the forces presented in subsections 2.3.1.
Therefore, we obtain:

mẍ = (cosφ sinθ cosψ + sinφ sinψ)u f − 1
2CxAcρ ẋ|ẋ|

mÿ = (cosφ sinθ sinψ− sinφ cosψ)u f − 1
2CyAcρ ẏ|ẏ|

mz̈ = (cosφ cosθ)u f −mG
(2.21)

Using Euler’s law, we can model the dynamic of the UAV’s attitude ω =
[

p q r
]T

by the following:
Iω̇ =−ω× Iω + τ (2.22)

or Ixx 0 0
0 Iyy 0
0 0 Izz

 p
q
r

=−

 p
q
r

×
 Ixx 0 0

0 Iyy 0
0 0 Izz

 p
q
r

+
 τφ

τθ

τψ

 (2.23)

where τ is the vector of moment acting on the multirotor. Now a simplification is made
by setting [φ̇ , θ̇ , ψ̇] = [p,q,r]. This assumption holds true for small angles of movement.

40 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

So, the full dynamic model of the UAV in the inertial frame is:

mẍ = (cosφ sinθ cosψ + sinφ sinψ)u f − 1
2CxAcρ ẋ|ẋ|

mÿ = (cosφ sinθ sinψ− sinφ cosψ)u f − 1
2CyAcρ ẏ|ẏ|

mz̈ = (cosφ cosθ)u f −mG
Ixxφ̈ = θ̇ ψ̇(Iyy− Izz)− Jrθ̇Ωr + τφ

Iyyθ̈ = φ̇ ψ̇(Izz− Ixx)+ Jrφ̇Ωr + τθ

Izzψ̈ = φ̇ θ̇(Ixx− Iyy)+ τψ

(2.24)

And the virtual input vector is given by:

• In case of a quadrotor:
u f
τφ

τθ

τψ

=

f1 + f2 + f3 + f4

l(f4− f2)
l(f3− f1)

(τ1 + τ3)− (τ2 + τ4)

 (2.25)

• In case of a coaxial octorotor:
u f
τφ

τθ

τψ

=

f12 + f34 + f56 + f78

l
√

(2)
2 (f78 + f56− f34− f12)

l
√

(2)
2 (f34 + f56− f78− f12)

(τ2 + τ3 + τ6 + τ7)− (τ1 + τ4 + τ5 + τ8)

 (2.26)

where l is the length of the arm.

2.4 Experimental Platforms
In this section, we present the different experimental drones used to validate our
contributions. The first UAV is the Modulo−X8 octorotor (Fig. 2.6), the second UAV
is the DJI S500 quadrotor (Fig. 2.9), and the third UAV is the Tarot 650 quadrotor (Fig.
2.10). All these systems will be used as experimental platforms for our experimental
validations. We start by introducing the hardware for each UAV, including the sensors
and actuators, and the experimental setups (Figures 2.7 and 2.8). Then we present the
work that has been done on these drones for the identification of modeling parameters
corresponding to the gains Kt and K f presented in the previous section.

2.4.1 Modulo−X8

The hardware used for the Modulo−X8 includes:

• Mechanical Structure:
The mechanical basis of the Modulo − X8 octorotor prototype was designed,
using the Catia software, developed and assembled at the Heudiasyc laboratory.
The frame is made from carbon fiber material and it accommodates the control
electronics, the power distribution board, the flight sensors and the power supply.

2.4. EXPERIMENTAL PLATFORMS 41

Figure 2.6 – Modulo−X8 coaxial Octorotor

The structure consists of four arms equally spaced, each one carrying at its
extremity two brushless coaxial counter-rotating DC motors and the associated
electronic speed controllers (ESCs).

• Development Framework:

The software used to write applications for the octorotor is called FL-AIR, it has
been produced at the Heudiasyc laboratory to ease development and integration of
research algorithms. FL-AIR is based on Linux and is compatible with real time
features with Xenomai.

• Propulsion System:
The propulsion system of the platform consists of eight brushless DC (BLDC)
motors with electronic speed controllers (ESC) and propellers. The motors used
are BL2827-35 driven by BLCTRLV2 controllers which provide speed, current,
temperature and voltage measurements.

• Central Processing Unit (CPU):
The CPU used in our experiments is an IGEPv2. It is programmed in the C++
language compiler. The sensors measure the state of the vehicle and they transmit
the data to the CPU through different communication interfaces. The information
is processed in order to compute the control law, which is sent to the actuators
as control signals. In addition, the microprocessor is able to exchange information
with a ground station in order to transmit the data relative to the octorotor state or
to receive directives regarding to the ongoing mission.

• Sensors:
The sensors onboard the octorotor are as follows:

� Inertial Measurement Unit: The IMU equipping the octorotor is a 3DM-
GX3-25 Microstain. It is composed of accelerometers, gyroscopes, magne-
tometers, a temperature sensor, and an on-board processor running a sensor

https://devel.hds.utc.fr/software/flair

42 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

fusion algorithm to provide static and dynamic orientation, and inertial
measurements.

� Telemeter: An ultrasonic telemeter SRF08 is used for altitude measurement.
It consists of a transmitter and a receiver. It works on a principle similar to
that of transducers used in radar and sonar systems, which evaluate attributes
of a target by interpreting the echoes from radio or sound waves, respectively.
It generates high-frequency sound waves and evaluates the echo which is
received back by the sensor, measuring the time interval between sending the
signal and receiving the echo to determine the distance to the ground.

� Camera: The octorotor is equipped with a downward pointing optical flow
camera module that uses the ground texture and visible features to determine
the vehicle ground velocity. It provides the image for setup purposes, but it is
not designed to capture images like a traditional camera. Note that we don’t
use the optical flow camera in our experiments.

• Motion Capture System: The indoor aviary where we experiment with the
Modulo−X8 is equipped with a Motion Capture System from Optitrack. Twenty-
four infrared cameras are fixed on the walls and are connected by Ethernet cables
to a computer on which is installed the Motive tracking software. By tracking
reflective markers placed on the octorotor’s body, it is possible to reconstruct its
position and orientation in space through triangulation with an accuracy of about 1
mm.

• Ground Station:
The octorotor is connected to a ground station by a wireless link. The ground station
is written in C++ using the QT libraries. It can run on a laptop in a real time
environment. It consists of the following modules:

� a communication link with the UAV (wireless) allowing the modification of
the control laws, sensors calibration and filters parameters anytime during the
flight ;

� a communication link with the joystick (Bluetooth) during manual flights;

� a data logging module allowing real-time plotting of the sensors measure-
ments as well as the outputs of the control laws.

The ground station receives the following data in real time for logging purposes:

� the required and measured motors speeds from the ESC;

� the estimated roll, pitch and yaw angles and velocities from the inertial
measurement unit;

� the estimated altitude from the ultrasonic sensor;

� the UAV’s position from the optitrack system.

The figure 2.7 shows the different connections between all the hardware used for the
octorotor.

2.4. EXPERIMENTAL PLATFORMS 43

Figure 2.7 – The experimental setup of the real-time experiments for the coaxial octorotor

Figure 2.8 – The experimental setup of the real-time experiments for the DJI S500 and the tarot
650 quadrotors. Adapted from arducopter site

http://ardupilot.org/copter/

44 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

Figure 2.9 – Experimental DJI S500 quadrotor

Model parameters of the Modulo−X8

All the model parameters were identified in the work done in [128]. They are given in
Table 2.1.

K f Thrust factor 2.25∗10−5 Ns2/rad2

Kt Drag factor 3.5∗10−7 Nm/rad2

m Mass of the vehicle 1.6 kg
l Length of the arm 0.25 m

Ixx, Iyy Inertia 2.55∗10−2 Kg.m2

Izz Inertia 3.88∗10−2 Kg.m2

Table 2.1 – The Modulo−X8 model’s parameters

2.4.2 DJI S500

The DJI S500 is a UAV from DJI Innovations. It can use a DJI WKM, NAZA or pixhawk
autopilot system, and is aimed for research and leisure activities. The implemented UAV
using this frame is shown in Figure 2.9 and is intended for outdoor experimentations.

The S500 is equipped with a Raspberry pi 3 + Navio2 open-source autopilot wich runs
the Arducopter flight stack. This autopilot has the following specifications:

• Processor: the processor of the Navio2 is a 1.2GHz 64-bit quad-core ARMv8 CPU
with 1GB RAM.

• Sensors: the Navio2 is equipped with 2 IMU, namely the MPU9250 and the
LSM9DS1. It also include a barometer (MS5611) for measuring altitude and an RC
I/O co-processor to handle the received signal of the transmitter. For localization, it
supports the U-blox M8N Glonass/GPS/Beidou.

2.4. EXPERIMENTAL PLATFORMS 45

• Power: the Navio2 is equipped with a triple redundant power supply

• Interfaces: the Navio2 has several input and output interfaces to connect the sensors
and the motors. It has the Universal Asynchronous Receiver-Transmitter (UART),
Inter-integrated-circuit (I2C), Analog to Digital Convertor (ADC) interfaces for
extensions, a PWM/S.Bus input to receive the transmitter signals and 14 PWM
servo outputs to control the actuators.

• Dimensions: the weight of the Navio2 is 23g and the RPi3 is 54g. The size of the
Navio is 55x65mm.

• Development Environment:

� Arducopter flight stack: it is an open source autopilot system supporting multi-
copters, traditional helicopters, fixed wing aircraft and rovers. The source
code, written in C++, is developed by a large community but can be difficult
to understand and modify. The flight stack can be found and downloaded from
github 1.

� Mission Planner: it is a ground control station for Copter and other vehicles
that supports the ArduCopter flight stack. It is compatible with Windows only.
It can be used as a configuration utility or as a dynamic control supplement
for an autonomous vehicle.

• Propulsion System : The propulsion system of the S500 quadrotor consists of four
BLDC motors (D2212-920KV) with 20A ESC and 1045 propellers.

• Additional sensors: the Navio2 can be equipped with a sensor to measure the
altitude of the vehicle. This is useful because the barometer readings are not precise.
For example, we use a Lidar Lite v3 which is a 2D downward pointing distance
sensor .

The figure 2.8 shows the hardware used for a UAV running the Arducopter flight stack.
In this architecture, we use for localization a GPS instead of the optitrack since we are
outdoors. Also the manual control of the UAV is done using a direct RC transmitter and a
radio connection instead of the bluetooth joystick.

2.4.2.1 Model identification of the DJI S500 quadrotor

All the model parameters are given by the manufacturers except the vehicle mass which
was measured by a weight scale. They can be found in Table 2.2.

K f Thrust factor 2.1∗10−5 Ns2/rad2

Kt drag factor 4∗10−7 Nm/rad2

m mass of the vehicle 1.05 kg
l length of the arm 0.21 m

Ixx, Iyy Inertia 3.47∗10−2 Kg.m2

Izz Inertia 5.31∗10−2 Kg.m2

1https://github.com/ArduPilot/ardupilot

46 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

Table 2.2 – The DJI S500 model’s parameters

2.4.3 Tarot 650

The Tarot 650 is a commercial hobby type UAV commonly used for photography and
recreational use. The implemented UAV using this frame is shown in Figure 2.10.

Figure 2.10 – Experimental Tarot 650 quadrotor

The Tarot650 is equipped with a Cube flight controller which is an updated version
of the Pixhawk flight controller. It is an open-source and open-hardware autopilot which
runs the Arducopter flight stack. This autopilot has the following specifications:

• Processor: the processor of the Cube is a 32-bit ARM Cortex M4 core with FPU
with 168 Mhz/256 KB RAM/2 MB Flash and a 32-bit failsafe co-processor

• Sensors: the Cube is equipped with three redundant IMUs (accels, gyros and
compass), namely the MPU9250, the ICM20948 and the ICM20648. It is also
equipped with two redundant MS5611 barometers

• Power: the Cube has a redundant power supply with automatic failover and a servo
rail high-power (7 V) and high-current ready. All peripheral outputs are over-current
protected, and all inputs are ESD protected

• Interfaces: a list of the Cube’s interfaces is given below.

� 14x Pulse Width Modulation (PWM) servo outputs (8 from IO, 6 from FMU)

� S.Bus servo output

� R/C inputs for CPPM, Spektrum / DSM and S.Bus

2.4. EXPERIMENTAL PLATFORMS 47

� Analogue / PWM Received Signal Strength Indicator (RSSI) input

� 5x general purpose serial ports, 2 with full flow control

� 2x I2C ports

� Serial Peripheral Interface (SPI) port (un-buffered, for short cables only not
recommended for use)

� 2x Controller Area Network (CAN) Bus interface

� 3x Analogue inputs (3.3V and 6.6V)

� High-powered piezo buzzer driver (on expansion board)

� High-power RGB LED (I2C driver compatible connected externally only)

� Safety switch / LED

� Optional carrier board for Intel Edison

• Propulsion System: The propulsion system of the Tarot 650 quadrotor consists of
four BLDC motors (T-motor Airmax 920kc) with 20A ESC and 1045 propellers.

• Additional sensors: The Cube also supports the Lidar Lite v3 and the optical flow
camera PX4Flow.

2.4.3.1 Model parameters of the TAROT 650 quadrotor

To our best knowledge, the model parameters of the TAROT 650 were not identified else-
where in the literature, and we couldn’t obtain these information from the manufacturers.
Therefore, we had to estimate these constants using different techniques. The Tarot650
parameters are given in Table 6.1.

m Mass of the vehicle 1.7 kg
l Length of the arm 0.23 m

Ixx, Iyy Inertia 3.38∗10−2 Kg.m2

Izz Inertia 2.25∗10−2 Kg.m2

Table 2.3 – The TAROT 650 model’s parameters

For the actuators, we identified the relations between the pulse width modulation
PWM input of the motor and the generated force and torque of the motor. They are given
by the following:

fi = (−1.4736u3
pwm +11.0691u2

pwm−16.7074upwm +7.3007)/100
τi = (−0.0905u3

pwm +0.4771u2
pwm−0.679upwm +0.3045)/100

(2.27)

The estimation process of these model parameters, along with the actuators constants,
is described in the section 2.5.

48 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

2.5 Model identification for the TAROT 650 quadrotor
In this section, the parameters of the Tarot650 quadrotor concerning the thrust forces and
drag moments are identified. A thruster identification procedure is presented to determine
the relation between the PWM input of the motors and the generated thrust and moment
of the propeller system using an adapted setup. Also the identification of the parameters
of the inertia matrix will be given.

2.5.1 Motor model Identification Procedure
As seen in sections 2.3.1 and 2.3.2, the relation between the generated aerodynamic forces
and moments by the propellers are the following: fi = K f ω2

i and τi = Ktω
2
i . Since Round

Per Minute (RPM) sensors are not yet compatible with the Cube flight controller, it is
difficult to measure the motor coefficients K f and Kt directly. However, since the Pulse
Width Modulation (PWM) signals communicated between the autopilot and the ESCs are
measured and identified, it is possible to identify a polynomial relation between the PWM
signals and the generated forces and moments. These relationships can be considered as
an alternative solution for the identification of the motor coefficients and a replacement
for the K f and Kt gains. To do this, we have set up two experiments: the first is used
to identify the relation between the input PWM signals and the force generated by the
actuator, and the second is used to identify the relation between the PWM signals and the
generated torque.

2.5.2 Relationship between PWM inputs and generated thrust force
The first experiment is shown in Figure 2.11. It aims to find the relation between the PWM
control signal and the thrust generated. The actuator and its propeller are mounted on top
of a single bar attached to a base support. When the actuator start running, the weight scale
under the support measures the added thrust force generated by the actuator. To identify
the relation between the PWM signal and the thrust generated, we implemented a Matlab
application to send PWM signals to the ESC, starting from 1000 up to 2000 with a step of
50. A value of 1000 means that no signal is sent to the motor, thus the motor is turn off,
and a value of 2000 means that we run the motor at full power.

After collecting data, we obtain the curve of the thrust forces generated in Newton
(N) with respect to each PWM signal sent to the motor upwm, as shown in Figure 2.12.
Five tests of the same experiment were conducted to minimize the error due to the
imperfections of the setup and the measurement noises, and to verify the repeatability
of the results.

Using the polyfit function in Matlab, we found that a polynomial of degree three
presents a good approximation of the collected data from the tests, with an approximation
error of order 10−3. The obtained relation is as follows:

fi = (−1.4736u3
pwm +11.0691u2

pwm−16.7074upwm +7.3007)/100 (2.28)

In fact, in hovering mode, the PWM values of motors is around 1500 and 1600
which corresponds to 2 N and 3 N of generated forces by the actuators. However, an

2.5. MODEL IDENTIFICATION FOR THE TAROT 650 QUADROTOR 49

Figure 2.11 – Experimental setup for thrust identification of the Tarot 650

Figure 2.12 – Thrust force as function of the applied PWM input

approximation using a polynomial of second order gives an error of 2× 10−2 which
correspond to 1−2% of percentage error in hovering mode. Even though this error is not
huge, it adds up quickly with the passage of time, and we will get bad estimations after
a short amount of time. Thus we consider this approximation unacceptable. Moreover,
an approximation using a polynomial of fourth order gives an acceptable error of order
4×10−3, while has a computation time significantly bigger than a polynomial of degree
three which gives a similar error of 3×10−3. Thus, we choose the approximation of the

50 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

polynomial of third order in our model.

2.5.3 Relationship between PWM inputs and generated torque
The second experiment is shown in Figure 2.13. It aims to find the relation between the
PWM control signal sent to the motor and the torque generated. In this setup, a small
bar, with a known length of 13 cm, is attached to the motor arm and placed on top of
the weight scale. When the actuator starts running, the motor arm starts to turn slightly
oppositely to the rotor’s sense due to the generated torque. This will induce a force on the
weight scale transmitted by the small bar. Thus by multiplying this force by the length of
the small bar, we obtain the torque generated by the motor.

To identify the relation between the PWM signal and the generated torque, we used the
same Matlab application than in Section 2.5.2 to send PWM signals to the ESC, starting
from 1000 up to 2000 with a step of 50.

After collecting data, we obtain the curve of the torque generated in Newton.meter
(N.m) with respect to each PWM signal sent to the motor upwm, as shown in Figure
2.14. Again, five tests of the same experiment are realized to minimize errors due to
measurements noises and the imperfections of the setup.

Figure 2.13 – Experimental setup for torque identification of the Tarot 650

Using the polyfit function in Matlab, we found that a polynomial of degree three
presents a good approximation of the collected data from the tests, with an approximation

2.5. MODEL IDENTIFICATION FOR THE TAROT 650 QUADROTOR 51

Figure 2.14 – Motor torque as function of the applied PWM input

error of order 10−3. The obtain relation is as follows:

τi = (−0.0905u3
pwm +0.4771u2

pwm−0.679upwm +0.3045)/100 (2.29)

Similarly as in Section 2.5.2, an approximation using a polynomial of second order
gives an unacceptable error of 3×10−2. An approximation using a polynomial of fourth
order gives an acceptable error of 5× 10−4, but has a computation time bigger than a
polynomial of degree three which gives a similar error of 2×10−4. Thus, we choose the
approximation of a polynomial of third order for our model.

2.5.4 Inertia Matrix
The moment of inertia (inertia matrix) I (see equation 2.30) of a rigid body is required
to calculate the torque needed to achieve a desired angular acceleration about a rotational
axis. The calculation of this moment of inertia depends on the body mass distribution and
the chosen axis. Assuming a perfect symmetry about the three rotational axis, the off-
diagonal terms of the inertia matrix (Ixy, Ixz, Iyz) become zero, and the diagonal terms can
be calculated using the following equations:

Ixx = Σimi(d2
yi
+d2

zi
)

Iyy = Σimi(d2
xi
+d2

zi
)

Izz = Σimi(d2
xi
+d2

yi
)

(2.30)

with Σimi the mass of the UAV’s arm (including the actuator, ESC and the arm itself) and
dxi , dyi and dzi the perpendicular distances from the end of the arm to the specific axis,
which are the same in each case since the structure is symmetrical. In the case of the Tarot
650, by applying the equation 2.30, we get the following values:

Ixx = Iyy = 3.38∗10−2 Kg.m2

Izz = 2.25∗10−2 Kg.m2 (2.31)

52 CHAPTER 2. DYNAMIC MODEL AND PARAMETERS ESTIMATION

2.6 Summary
This chapter presented the dynamic modeling of a quadrotor UAV and a coaxial counter-
rotating octorotor UAV. After identifying the reference frames and coordinate systems, the
forces and moments acting on the multirotor are detailed and the dynamics expressions
of the model are derived using the Newton-Euler formalism. Then we presented the
Modulo− X8, DJI S500 and Tarot 650 , three experimental UAV that will be used to
validate our work. The model parameters of the octorotor were already identified in
the literature, the model parameters of the S500 were provided by the manufacturers
and the parameters of the Tarot platform parameters were identified using estimation
techniques through experimental tests. Some of its parameters, the moments of inertia,
were approximated using analytical expressions, while the propulsion system parameters,
were identified using experimental data. In order to facilitate the modeling process of
the UAV dynamics, some assumptions are made, such as supposing that the structure of
the UAv is rigid and ignoring the motor dynamics. The obtained equation of motion in
equation (2.24), and the expression of the virtual input vector in function of the real inputs
in equations (2.25) and (2.26) will be used later in chapter 3, 4, 5 and 6 in order to derive
the control laws and the FTC strategies.

Chapter 3

Baseline Control Laws Experiments

Contents

3.1 Software Architecture of Low-Level Flight Control of Multirotors . 54

3.2 Basic Control Concept . 55

3.3 Linear PID controller . 56

3.4 Sliding Mode Controller for attitude and altitude Control 63

3.5 Shared control law for the fault tolerant control strategies 70

3.6 Summary . 74

Flight control systems are required to control the motion of the UAVs in order to
fly and successfully complete their missions. This is done in terms of delivering the
desired performance and following the desired path with sufficient accuracy. The control
system’s overall objective is to stabilize the UAV and minimize the tracking error between
the desired reference command and the UAV’s measured information provided by the
onboard sensors. Flight control and stability are therefore a very critical part of the
UAV because system failure due to malfunctioning components, lack of robustness or
even unsuitable design will result in unacceptable mission performance or high risk of
damage. In this chapter, we will present two strategies used to build the baseline control
law for the different experimental UAVs used in our work: a linear Proportional Integral
Derivative controller (PID) used in open source autopilots (Navio2 and Pixhawk Cube
Flight Controller) and a nonlinear Sliding Mode Controller based on the Super-Twisting
algorithm for attitude and altitude control. These two controllers are used in Chapter 4 to
validate our wind-tolerant strategy. We will also present in this chapter the shared control
law used in the fault tolerant control strategies discussed in Chapter 5.

In the following, we will first present the software architecture of the flight controller,
before describing some basic concepts in control and the types of position control. Then,
we will detail two control laws to control a UAV, namely a linear PID controller and a
nonlinear robust controller based on the sliding mode theory. Finally, we will decompose
the sliding mode robust controller into four subsystems shared by the three FTC schemes
presented in section 5.1.

53

54 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

3.1 Software Architecture of Low-Level Flight Control of
Multirotors

A classical multirotor UAV is an under-actuated system since it has six states (the position
p =

[
x y z

]T and the attitude angles Θ =
[
φ θ ψ

]T), but only four independent
inputs (the total thrust u f and the three angular moments τφ , τθ and τψ). Thus, a multirotor
can only track four desired references (pd and ψd), and the remaining references (φd and
θd) are calculated internally by the system to obtain these desired references.

The low-level flight control of all the configurations of multicopters can be divided
into four parts, namely the position control, attitude control, control allocation and motor
control. Figure 3.1 illustrates this framework.

rotation

inputs

Figure 3.1 – Software Architecture of low-level flight control of multicopters

Since the UAV is generally controlled in position, the position control loop is
generated first. The x and y positions are not controlled directly, but through the
modification of the roll and pitch angles of the attitude control loop. Also, it is worth
noting that the position control is executed at a low frequency (10 hz in Ardupilot), and

3.2. BASIC CONTROL CONCEPT 55

the attitude control is executed at a high frequency (400 hz in Ardupilot). Thus the desired
roll and pitch angles are considered as constant inputs in the attitude control loop.

The objective of each part is as follows:

1. Position control aims to determine the desired roll angle φd , the desired pitch angles
θd and the total thrust u f according to the desired position pd =

[
xd yd zd

]T .

2. Attitude control aims to determine the desired angular moments τφ , τθ and τψ based
on the desired attitude angles Θd =

[
φd θd ψd

]T .

3. Control allocation aims to calculate the desired angular speeds of the propellers
ωd,i, i = 1,2, ...,nr where nr represents the number of motors, with the intention of
obtaining the desired control inputs u f , τφ , τθ and τψ .

4. Motor control aims to calculate the desired PWM signals for each motor according
to ωd,i, i = 1,2, ...,nr.

The control architecture of the multirotor can be decomposed into different blocks,
namely: the position controller, the attitude controller, the control allocator and the
Multicopter (as shown in Figure 3.3). The position control block generates the thrust
needed to control the altitude based on the desired altitude zd and the measured one z.
Also, it generates the desired roll and pitch angles φd and θd based on the differences
between xd,yd and x,y. The attitude controller block generates the desired torques to the
system based on the errors between the desired angles and the measured angles. The
control allocator block manages the so-called multiplexing of the control input, which
determines the individual control signal for each motor in PWM based on the desired
thrust and toques. Finaly, the Multicopter block represents the plant or the equations of
motion of the UAV.

3.2 Basic Control Concept
To better understand the control problem of tracking the desired references, we introduce
some basic concepts in this section. In this thesis, we will consider that the position control
of a vehicle can be divided into three types based on the given position pd: namely set-
point, trajectory tracking and path following (see Figure 3.2)

Figure 3.2 – Types of position control

56 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

First, let us define the three types of position control:

1. Set-point control: in this scenario, the desired position pd =
[
xd yd zd

]T is a
constant point in the earth frame. The goal is to design a controller which guarantees
the position converges towards the desired one ‖p(t)−pd‖ → 0 as t → ∞. In this
case, the multirotor can fly to the desired position, regardless of the trajectory. This
type of control is illustrated in Figure 3.2(a).

2. Trajectory tracking: in this case, the desired position pd(t) is a time-dependent
trajectory. The goal is to design a controller which guarantees that ‖p(t)−pd(t)‖→
0 as t→∞. This type of application includes the case where a multirotor is required
to follow a path at a given speed, as shown in Figure 3.2(b), or when it is asked to
be at one position at a given time.

3. Path following: here the desired position pd(γ) is a path which is determined by the
parameter γ rather than the time. This parameter represent the set of point which
describe the desired geometric path to be followed by the drone. The goal is to
design a controller which guarantees that ‖p(t)−pd(γ)‖ → 0 as t → ∞. This type
of application includes. that a multirotor is required to fly along a profile over a hill
or any geometric path, as shown in Figure 3.2(c).

The main difference between a trajectory tracking problem and a path following
problem is whether the curves which describe the desired reference depends upon time
or is independent of time. The path following is also referred to as three-dimensional 3D
tracking, while trajectory tracking is referred to as four-dimensional 4D tracking as time
is considered as an added dimension.

In this thesis, we mainly focuses on the set-point control problem and trajectory
tracking problem. Readers who are interested in path following can refer to [32, 2].

3.3 Linear PID controller

Figure 3.3 – Closed-loop structure of a low-level fight control system for multicopters

3.3. LINEAR PID CONTROLLER 57

In the case of a PID controller, the generalized equation of the control law is given by the
following expression:

u = Kpe+Kd ė+Ki

∫ t

0
e(τ)dτ (3.1)

where u is the control input, Kp, Kd and Ki are the controller’s gains, and e is the state
error compared to the desired position.

It can be noticed that the PID controller can be decomposed into three parts, namely:
the proportional term Kpe, the integral term Ki

∫ t
0 e(τ)dτ and the derivative term Kd ė.

The proportional term produces an output value that is proportional to the current
error value. The proportional response can be adjusted by multiplying the error by a
constant Kp, called the proportional gain constant. A high proportional gain results in
a large change in the output for a given change in the error. If the proportional gain is too
high, the system can become unstable.f

The integral term is proportional to both the magnitude of the error and the duration
of the error. The integral in a PID controller is the sum of the instantaneous error over
time and gives the accumulated offset that should have been corrected previously. The
accumulated error is then multiplied by the integral gain Ki and added to the controller
output. The integral term accelerates the movement of the process towards setpoint and
eliminates the residual error that occurs with a pure proportional controller.

Finally, the derivative term is calculated by determining the slope of the error over
time and multiplying this rate of change by the derivative gain Kd . The magnitude of the
contribution of the derivative term to the overall control action is termed the derivative
gain, Kd . Derivative action predicts system behavior and thus improves settling time and
stability of the system.

3.3.1 Linear Model Simplification

The full nonlinear model has been established in Chapter 2. However, in order to apply
a linear controller, the nonlinear model in equation (2.24) needs to be linearized and
simplified. Thus, the PID control law design is performed under several assumptions:

Assumption PID1 The system dynamics are limited to small angles and small
variations of linear and angular velocities, and thus no acrobatic behavior of the UAV
can occur.

Assumption PID2 the system is always considered near its hovering state (or
equilibrium point).

To obtain the simplified model, the first simplification (based on the Assumption
PID1) is to ignore the effect of the propeller gyroscopic effect τg, drag moments τi and
the corrective term ω xIω which are described in section 2.3.2. Thus, the simplified model

58 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

becomes:

mẍ = (cosφ sinθ cosψ + sinφ sinψ)u f
mÿ = (cosφ sinθ sinψ− sinφ cosψ)u f
mz̈ = (cosφ cosθ)u f −mG

Ixxφ̈ = τφ

Iyyθ̈ = τθ

Izzψ̈ = τψ

(3.2)

However, the system in equation (3.2) is still non-linear, so more simplifications are
needed. If we consider that the system will only turn smoothly with no acrobatic behavior,
we can acknowledge that the roll and pitch angles will always remain small (Assumption
PID1). Thus, the following simplifications are applicable:

sinφ ≈ φ

sinθ ≈ θ

cosφ ≈ 1
cosθ ≈ 1

(3.3)

Still considering that we have only small roll and pitch angles, we can also assume
that the system is always considered near its hovering state (or equilibrium point), that is
where the roll and pitch angles of the drone are zero (Assumption PID2). In this state,
the total thrust of the drone approximates to the weight of the multirotor and we can then
simplify the UAV’s thrust as:

u f ≈ mG (3.4)

Finally, the original system given in equation (3.2) is divided into three linear models,
namely the horizontal position model, altitude model and attitude model. These three
models are detailed in the following sections.

3.3.2 Horizontal Position Model
According to the small-angle assumptions in equations (3.3) and (3.4), the first two
equations of the system (3.2) can be simplified as:

ẍ = (θ cosψ +φ sinψ)G
ÿ = (θ sinψ−φ cosψ)G (3.5)

In the horizontal position model (3.5), the yaw angle ψ is known, thus the terms cosψ

and sinψ are constant. The roll and pitch angles φ and θ represents the inputs and the
variables x and y represents the outputs of the system (3.5). Therefore, the horizontal
position model (3.5) is, in fact, a linear model.

3.3.3 Altitude Model
According to the small-angle assumptions in equations (3.3) and (3.4), the third equation
of the system (3.2) is simplified as:

z̈ =
u f
m −G (3.6)

3.3. LINEAR PID CONTROLLER 59

The control input is u f and the output z. Here the simplification of the term u f is
not applied since this simplification would make the control input u f disappears from the
equation. Obviously, the altitude model (3.6) is also a linear model.

3.3.4 Attitude Model
The last three equations of the system (3.2) represent the attitude model:

φ̈ =
τφ

Ixx

θ̈ = τθ

Iyy

ψ̈ =
τψ

Izz

(3.7)

which is obviously a linear model. The control input of the roll, pitch and yaw
dynamics are respectively τφ , τθ and τψ , whereas the output are the roll, pitch and yaw
angles (φ , θ and ψ).

3.3.5 Traditional PID Controller
We present in this section the traditional PID controllers often used in UAVs, and prove
that they converge to the desired position and orientation in a finite time.

3.3.5.1 Horizontal position control and attitude control and attitude control

According to the linear position model in equation (3.2), the desired attitude angles φd
and θd are expected to be designed such that:

limt→∞ ex(t) = 0
limt→∞ ey(t) = 0 (3.8)

where ex = x− xd and ey = y− yd . First, in PID controllers, we need to put the errors
under this form:

ëx =−Kxd ėx−Kxpex−Kxi
∫

ex
ëy =−Kyd ėy−Kypey−Kyi

∫
ey

(3.9)

where Kxp, Kxd , Kyp and Kyd are the control gains. If these gains verify the conditions
Kxp > 0, Kxd > 0, Kyp > 0 and Kyd > 0, we get limt→∞ ex(t) = 0 and limt→∞ ey(t) = 0 in
the case were the roll and pitch errors converge to zero. In order to comply with equation
(3.9), the accelerations ẍ and ÿ must satisfy

ẍ = ẍd−Kxd ėx−Kxpex−Kxi
∫

ex
ÿ = ÿd−Kyd ėy−Kypey−Kyi

∫
ey

(3.10)

By combining equations (3.5) with equations (3.10), we get:

(θd cosψ +φd sinψ)G = ẍd−Kxd ėx−Kxpex−Kxi
∫

ex
(θd sinψ−φd cosψ)G = ÿd−Kyd ėy−Kypey−Kyi

∫
ey

(3.11)

It these equations, we have replaced φ and θ by φd and θd , because by defining
eφ = φd − φ and eθ = θd − θ as the roll and pitch errors respectively, the conditions

60 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

limt→∞ ex(t) = 0 and limt→∞ ey(t) = 0 are satisfied only if θ = θd and φ = φd in (3.5),
equivalently eφ = 0 and eθ = 0. In practice when a set-point control problem is considered,
namely ẍd = ẋd = ÿd = ẏd = 0, the equation (3.11) becomes:

φd = (cosψ(Kyd ẏ+Kyp(y− yd))− sinψ(Kxd ẋ+Kxp(x− xd)+Kxi
∫

x− xd)/G
θd = (−cosψ(Kxd ẋ+Kxp(x− xd))− sinψ(Kyd ẏ+Kyp(y− yd)+Kyi

∫
y− yd)/G

(3.12)
Following the same manner, the attitude control input τφ , τθ and τψ can be expressed

as:

τφd = (−Kφd φ̇ −Kφ p(φ −φd))/Ixx
τθd = (−Kθd θ̇ −Kθ p(θ −θd))/Iyy

τψd = (−Kψdψ̇−Kψ p(ψ−ψd))/Izz

(3.13)

where Kφd , Kφ p, Kθd , Kθ p, Kψd , and Kψ p are the control gains for the attitude control.

3.3.5.2 Altitude control

For to the altitude model in equation (3.6), the control objective is :

limt→∞ ez(t) = 0 (3.14)

where ez = z− zd . As seen in the previous section the transient process for the PID
controller is of the form:

ëz =−Kzd ėx−Kzpex (3.15)

where Kzp and Kzd are the control gains for the altitude control. If the gains verify the
Hurwitz condition ([42]), then according to the stability theory we get limt→∞ ez(t) = 0.
In order to comply with equation (3.15), the acceleration z̈ must satisfy

z̈ = z̈d−Kzd ėz−Kzpez−Kzi
∫

ez (3.16)

By combining equations (3.6) with equations (3.16), we get:

u fd
m −G = z̈d−Kzd ėz−Kxpez−Kzi

∫
ez (3.17)

where u fd is the desired thrust. From the above equation, u fd has the following
expression:

u fd = m(z̈d−Kzd ėz−Kzpez−Kzi
∫

ez)+mG (3.18)

The desired value of the thrust is calculated from the above equation in order to satisfy
the condition that limt→∞ ez(t) = 0. Thus, if the real generated thrust u f by the UAV is
equal to the desired thrust, in other work if u f = u fd , then the altitude of the UAV z will
follow the desired altitude zd .

In practice, when a set-point control problem is considered, namely żd = z̈d = 0, the
desired thrust u fd is written explicitly as follows:

u fd = m(−Kzd ż−Kzpez−Kzi
∫

ez)+mG (3.19)

3.3. LINEAR PID CONTROLLER 61

3.3.6 PID Controllers in the open source autopilot Ardupilot

In Ardupilot, the PID controller is decomposed into two steps. In the first step, the desired
velocities are calculated based on the position errors, and in the second step, a PID
controller is applied on the system velocities to drive the system errors in position and
velocity to zero. The main advantage of this decomposition is that it can be useful to
simplify the tuning of the control gains, where the gains in the first step are intended to
manage the responsiveness of the system (relationship between position and velocity),
and the gains in the second step of the PID controller of the velocities are intended to
manage the other characteristics of the controller (overshoot, settling time...). The work
presented in this section was done using retro-engineering from the flight stack of the
Ardupilot (version 3.6 of Arducopter December 10, 2019).

The design of the position controller based on the ArduPilot flight stack supported by
the Navio2 and the pixhawk Cube is detailed in the following sections.

3.3.6.1 Horizontal position control

Let be:

ẋ = vx
ẏ = vy

(3.20)

In this PID controller, the desired values of vx and vy, namely vxd and vyd , are designed
as follows

vxd = Kxp(xd− x)
vyd = Kyp(yd− y) (3.21)

where Kxp, Kyp ∈ R+ are the positive control gains. By defining the velocity errors
as follows: evx = vxd − vx and evy = vyd − vy, if the following conditions are true
limt→∞ vxd(t) = 0 and limt→∞ vyd(t) = 0, limt→∞ evx(t) = 0 and limt→∞ evy(t) = 0, then
the conditions limt→∞ ex(t) = 0 and limt→∞ ey(t) = 0 are satisfied. The horizontal control
loop is built via Equations (3.20) and (3.5), according to the following relations:

v̇x = (θ cosψ +φ sinψ)G
v̇y = (θ sinψ−φ cosψ)G (3.22)

The next step is to design the desired roll and pitch angles, namely φd and θd .
Following the same procedure than in Equation (3.5), the PID controller is designed as
follows:

(θd cosψ +φd sinψ)G =−Kvxpevx−Kvxi
∫

evx−Kvxd ėvx
(θd sinψ−φd cosψ)G =−Kvypevy−Kvyi

∫
evy−Kvyd ėvy

(3.23)

where Kvxp, Kvxd , Kvxi, Kvyp, Kvyd and Kvyi are positive control gains. Under the
assumption that v̇x = 0 and v̇y = 0, the conditions limt→∞ ex(t) = 0 and limt→∞ ey(t) = 0

62 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

are satisfied if limt→∞(φ(t)−φd(t)) = 0 and limt→∞ (θ(t)−θd(t)) = 0. The desired Euler
angles are derived from (3.23) as

φd = (cosψ(Kvyd v̇y +Kvyp(vy− vyd))− sinψ(Kvxd v̇x +Kvxp(vx− vxd)+Kvxp
∫

vx− vxd)/G
θd = (−cosψ(Kvxd v̇x +Kvxp(vx− vxd))− sinψ(Kvyd v̇y +Kvyp(vy− vyd)+Kvyp

∫
vy− vyd)/G

(3.24)
In the case of a set-point problem we can choose ẋd = 0, v̇xd = 0, ẏd = 0 and v̇yd =

0. Also, to avoid the noises generated by the time derivative signals, the terms Kvxd ėvx
and Kvyd ėvy can be omitted, but in this case the system will be more sensitive to the
measurement noises and external perturbations.

Note that Eq. (3.21) is written in the form of a P controller, while Eq. (3.24) is designed
as a PID controller. The reason for that change is that the model (3.20) is a kinematic
model, thus uncertainty-free and a P controller is sufficient to satisfy its stability. However,
the attitude model (3.22) is a dynamic model, thus subject to uncertainties and requiring
a PID controller to compensate them.

3.3.6.2 Altitude control

Let be:

ż = vz (3.25)

the desired value of vz, namely vzd , is designed as follows

vzd = Kzp(zd− z) (3.26)

where Kzp ∈ R+ is the positive control gain. Under the assumption that vzd = 0,
if limt→∞ evz(t) = 0, then limt→∞ ez(t) = 0, where evz = vzd − vz. Actually, the altitude
control loop is built via Equations (3.25) and (3.26), according to the following relations:

u f
m −G = v̇z (3.27)

To obtain the desired thrust u f d , we follow the same procedure in Equation (3.17), and
the PID controller is designed as follows:

u fd
m −G =−Kvzpevz−Kvzd ėvz−Kvzi

∫
evz (3.28)

where Kvzp, Kvzd and Kvzi are the positive control gains. Under the assumption that v̇z =
0, the condition limt→∞ ez(t) = 0 is satisfied if limt→∞(u f (t)− u fd(t)) = 0. The desired
thrust is derived from (3.28) as

u fd = m(−Kvzp(vz− vzd)−Kvzd(v̇z− v̇zd)−Kvzi
∫
(vz− vzd))+mG (3.29)

3.4. SLIDING MODE CONTROLLER FOR ATTITUDE AND ALTITUDE CONTROL 63

3.4 Sliding Mode Controller for attitude and altitude
Control

The sliding mode controller is a well-known robust controller which is widely used in
dynamical systems like UAVs. The main advantage of the sliding mode controller is its
ability to passively compensate the uncertainties in the system parameters and some of
the perturbations on the system. This section is devoted to the fundamental mathematical
concepts of the sliding mode control theory and the application of the Super-Twisting
SMC on the octorotor.

3.4.1 Sliding Mode Theory

Sliding Mode Control is a nonlinear control method that alters the dynamics of a nonlinear
system by applying a discontinuous control signal that leads the system states onto a
particular surface of the system in the state space, named the sliding surface. Once the
sliding surface is reached, the sliding mode controller keeps the system in the states in
the close neighborhood of the sliding surface (see Fig. 3.4) [146]. The state-feedback
control law is not a continuous function of time. Instead, it can switch from one continuous
structure to another based on the current position in the state space. Hence, Utkin called
the sliding mode control a variable structure control method [147].

3.4.2 Matched and Unmatched perturbation

In the case of underactuated systems, we control some of the states of the system directly
through the control inputs, while other state’s variables are controlled indirectly through
some of the other state’s variables. In this case, we call the perturbations affecting the
directly controlled state’s variables matched perturbations, and the perturbations affecting
the other state’s variables are called unmatched perturbations.

It is worth to mention that sliding mode controllers can fully compensate the matched
perturbations. However, the unmatched uncertainties are only partially compensated
using the sliding mode controller. In order to extend the robustness of sliding mode
controllers towards those unmatched perturbations (imperfect modeling values, external
perturbations, etc.), other techniques should be used like adaptive controllers or observers
used to estimate these perturbations.

3.4.2.1 First-Order Sliding Mode Control

The synthesis of a sliding mode control law consists of two steps: selecting a suitable
sliding manifold in order to assign the desired dynamics, then designing a discontinuous
control law that forces the system states to reach the sliding surface in finite time and to
stay there despite the uncertainties and disturbances.

64 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

Figure 3.4 – Principle of Sliding Mode Control

Consider the nonlinear time-invariant system defined as:
ẋ1
ẋ2
...

ẋn−1
ẋn

=

x2
x3
...

xn
fn(x, t)

+

0
...
...
0

gn(x, t)

u

y = x1

(3.30)

where x =
[

x1 · · · xn
]T ∈ X ⊂ Rn is the system state with u ∈ U ⊂ Rn is a

bounded discontinuous control input. y represents the output of the system. fn(x, t) and
gn(x, t) are continuously differentiable functions. Unknown parameter uncertainties and
external disturbances are included in these two functions. We can also model the external
disturbances as additive terms outside these functions. We assume that the objective of
the control is to follow a certain reference trajectory.

Selection of the Sliding Manifold

Let s(x, t) be a continuous function such that the system trajectory exhibits desirable
behavior when it is zero. This function is called the switching variable.
The set

S = {x ∈ X |s(x, t) = 0} (3.31)

of dimension (n-1) is called the sliding manifold.
A sliding mode regime exists if there exists a finite time ts such that the solution of (3.30)
satisfies s(x, t) = 0 for each t ≥ ts.
In general, the sliding surface is selected as an hyperplane passing through the origin of
the state space, and is in most cases a linear combination of the state variables. The sliding
surface should have a relative degree equal to 1 with respect to the control input u. This is
a necessary condition for establishing the sliding mode regime.

3.4. SLIDING MODE CONTROLLER FOR ATTITUDE AND ALTITUDE CONTROL 65

Control Law

Once the sliding surface is selected, the second step is to design a control law that
stabilizes the switching variable around the origin in finite time. Since sliding mode
trajectories belong to a manifold of a dimension lower than the one of the original system,
the order of the system is reduced as well. This enables a designer to simplify the design
procedure and decouple the overall system motion into independent partial components
of lower dimension.
The objective of the control law is to force the system states to reach and stay on the
sliding manifold. In other words, the control law should make the sliding surface locally
attractive (trajectories outside the surface should converge to it). Thus it can be calculated
by checking the convergence condition of s(x, t) to zero.
The behavior of the closed-loop system can be decomposed into two modes:

• Reaching mode: This phase corresponds to the time interval t ∈ [0, ts] during which
the system state trajectories are not on the sliding surface S, but try to reach it. In
this phase, the system remains sensitive to parameter variations. However, to avoid
a large influence of these variations, one solution is to shorten the duration of this
phase.

• Sliding mode: This phase corresponds to the time interval t ∈ [ts,∞[during which
the state trajectories are confined throughout the set S. The magnitude of the control
discontinuity depends on the system states and disturbances, and the control gains
can be adapted according to the nature and level of these disturbances and thus
tolerate them. The system is then insensitive to any perturbation involved in the
same direction as the control input during the sliding mode.

The control law consists of an equivalent control ueq and a switch control us,
respectively corresponding to the sliding mode and the reaching mode. System states are
kept on the sliding surface by the equivalent control and they attain the sliding surface by
the switch control.
The equivalent control law ueq can be found by solving

s = ṡ = 0 (3.32)

To counteract disturbances and uncertainties in fn(x, t) and gn(x, t), a discontinuous loop
is used in order to satisfy the control objective s(x, t) = 0. The control law is then written
as:

u = ueq−g(x, t)−1Ksign(s(x, t)) (3.33)

where K is the control gain.
In order to govern the system states to reach the sliding surface s = 0 in a limited time
and to remain there, the control law should be designed such that the following sliding
condition is satisfied:

sṡ≤−γ|s|, with γ > 0. (3.34)

Chattering

The main disadvantage of the sliding mode controller is the chattering: finite-amplitude
high-frequency oscillations of the controlled structure. Chattering can cause low control

66 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

accuracy, high wear of moving mechanical parts, or might even damage the system being
controlled. Chattering is thus the main obstacle in implementing sliding mode controllers,
and the problem is exarcerbated in practice for two main reasons. High bandwidth
dynamics are often neglected in the open-loop plant model used to design controllers.
In SMC implementations, these dynamics are exacerbated by the switch control input and
often have significant effects on the system. Three main approaches were proposed to
reduce the chattering:

• Boundary Layer Control: To remedy to the chattering, the strict requirement of
movement on the sliding surface is relaxed and a quasi sliding mode is obtained by
piecewise linear or smooth approximations of the switching element in a boundary
layer of the sliding manifold. Possible linear approximations of the sign function
are the saturation and the sigmoid functions (see [38]).

• Observer-Based Sliding Mode Control: The use of an asymptotically stable
observer in the closed-loop system can eliminate the phenomenon of chattering
in spite of the discontinuity of the control. The basic idea is to generate a sliding
regime in the system observer instead of generating it in the system itself. Since the
observer does not depend on the unmodeled dynamics, the ideal sliding mode takes
place in the closed loop of the observer. Thus, the system output follows the output
of the observer without any chattering. However, the synthesis of an asymptotically
stable observer is not an easy task when the system is nonlinear and uncertain. Also,
the applicability of this method is limited to systems for which the synthesis of an
observer is possible (see [131]).

• Higher-Order Sliding Modes (HOSM): The Higher-Order Sliding Modes tech-
nique, which is a generalization of the first order sliding mode control with higher
order derivatives of the sliding variable, can reduce or eliminate this undesirable
phenomenon (see [137]).

In the next section, we will present a second order sliding mode technique which
counts amongst the HOSM.

3.4.2.2 Second-Order Sliding Mode: Super-Twisting Algorithm

The Super-Twisting Algorithm (STA) is a second order sliding mode control that handles
a relative degree equal to one, which means that the control input appears in the expression
of the first derivative of the sliding variable. It generates the continuous control function
that drives the sliding variable and its derivative to zero in finite time in the presence of
the smooth matched disturbances with bounded gradient, when this boundary is known.
Since the STA algorithm contains a discontinuous function under the integral, chattering
is not eliminated but only attenuated.

The control law design is performed under several assumptions:
Assumption SMC1 The desired trajectory controllers are continuous, differentiable

and their derivatives are bounded.
Assumption SMC2 The external disturbances and their first derivatives are bounded.

For example when considering wind perturbations, the wind forces variations are
considered continuous.

3.4. SLIDING MODE CONTROLLER FOR ATTITUDE AND ALTITUDE CONTROL 67

Assumption SMC3 The roll, pitch and yaw angles are constrained to (−π/2< φ ,θ <
π/2) and (−π < ψ < π), so acrobatic behaviors such as looping are not allowed.

Assumption SMC4 The system dynamics are limited to small angles and small
variations of linear and angular velocities. This behavior is common in practice with UAV.

Assumption SMC5 All the control inputs are bounded. In practice, they are normal-
ized as u f ∈]0,1] and τφ ,τθ ,τψ ∈ [−1;1].

The objective of the controller is to ensure the convergence of the actual state vector
[x,y,z,ψ] to the desired trajectories [xd,yd,zd,ψd]. Since the system is underactuated, we
design a controller for the altitude z, and for the states φ , θ and ψ since the states x
and y can be controlled through these angles. Let us first consider the following vectors:
x1 = [z,φ ,θ ,ψ]T , and x2 = [ż, φ̇ , θ̇ , ψ̇]T so we end up with the following state-space form
of the model: {

ẋ1 = x2
ẋ2 = f(x1,x2)+g(x1,x2)u+w (3.35)

where w =
[
wz wφ wθ wψ

]T represents the external disturbances vector, and we have
x1,x2,u and w are dependent of time. The vector f(x1,x2), the matrix g(x1,x2) and u are
defined as (using equation 2.24):

f(x1,x2) =

−G

(Iyy− Izz)θ̇ ψ̇− Jrθ̇Ωr
(Izz− Ixx)φ̇ ψ̇ + Jrφ̇Ωr

(Ixx− Iyy)φ̇ θ̇

 (3.36)

u =

u f
τφ

τθ

τψ

 (3.37)

g(x1,x2) =

1
m(cosθ cosφ) 0 0 0

0 1
Ixx

0 0
0 0 1

Iyy
0

0 0 0 1
Izz

 (3.38)

Note that in equation (3.36) the terms Jrφ̇Ωr, −Jrθ̇Ωr will be neglected by means
of the (Assumption SMC4) in the rest of this thesis. According to the assumption
(Assumption SMC3), the control matrix g = (x1,x2) is non-singular and thus invertible,
and the following inequalities are established (using Assumption SMC2) and the
equation of motions of the system):

| fi(x1,x2) |< f̃i, i = 1, ...,4
| ẇi |< w̃i, i = z,φ ,θ ,ψ

(3.39)

where f̃i and w̃i are known positive values. The sliding manifolds vector s =[
sz sφ sθ sψ

]T is defined as:
s = ė+λe (3.40)

68 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

where e =
[
ez eφ eθ eψ

]T represent the errors between the actual states of the system
and the desired ones and λ = diag(λz,λφ ,λθ ,λψ) is a positive definite gain matrix.
According to [49], we choose the control input as the following expression:

u = g(x1,x2)
−1(ẍ1d−λ ė−K1

√
|s|sign(s)−K2

∫ t
0 sign(s(ε))dε− f(x1,x2)) (3.41)

where ẍ1d is the desired acceleration provided by the trajectory generator, K1 =
diag(K1z,K1φ ,K1θ ,K1ψ) and K2 = diag(K2z,K2φ ,K2θ ,K2ψ) are super twisting control
positive gain matrices, and sign(.) is the sign function. Thus we obtain the following
closed-loop error dynamics (A more detailed process is given in the Section 3.4.4):

ṡ =−K1
√
|s|sign(s)−K2

∫ t

0
sign(s(ε))dε (3.42)

To prove the stability and the time convergence of this system, we define the variable
ζ = [ζ1, ζ2]

T = [s, −K2
∫ t

0 sign(s)dε]T , then the equation (3.42) can be rewritten as:

ζ̇1 =−K1
√
|ζ1|sign(ζ1)+ζ2

ζ̇2 =−K2 sign(ζ1)+ ẇ
(3.43)

The proof of finite convergence of the variables ζ1 and ζ2 follows the same procedure as
in [50]. It is worth noting that the translational motion in the x-axis and y-axis depends on
the pitching and rolling torques, so the development of the control inputs is divided into
an altitude and heading control upon which depends an X-Y translational motion control,
as detailed in the following sections.

3.4.3 Altitude and heading control
We define the altitude tracking error, which is the difference between the desired and the
measured altitudes as follows:

ez = zd− z (3.44)

We also define the sliding variables for these errors:

sz = ėz +λzez (3.45)

In this case, the dynamics of the altitude sliding variable sz is given by:

ṡz = ëz +λzėz (3.46)

By substituting (2.24) and (3.44) into (3.46), we obtain:

ṡz = z̈d +G− (cosθ cosφ)

m
u f −wz +λzėz (3.47)

As previously stated in section 3.4.2.1, the control input ut is composed of two parts: a
continuous part called equivalent input which is responsible of the reaching phase, and a
discontinuous part based on the super twisting algorithm (3.48) which is responsible of
the convergence phase.

u f = u f eq +u f dis (3.48)

3.4. SLIDING MODE CONTROLLER FOR ATTITUDE AND ALTITUDE CONTROL 69

The equivalent input u f eq is computed by applying the sliding condition, ṡz = 0, and the
discontinuous part u f dis is designed to obtain the closed-loop error dynamics as given in
(3.42) in each subsystem. By applying the sliding condition to the altitude i.e. ṡz = 0, we
obtain from (3.47) a sliding property that we want u f eq to satisfy:

z̈r +G− (cosθ cosφ)

m
u f eq−wz +λzėz = 0 (3.49)

As the matched uncertainties contained in wz will be tolerated by the super twisting
controller, we thus choose for the equivalent input:

u f eq =
m

(cosθ cosφ)
(z̈d +G+λzėz) (3.50)

Note however that if we had unmatched uncertainties in wz, we would have them added
to the expression of u f eq. This is not the case here because the altitude z of the system
is controlled directly using the thrust input u f . For the discontinuous part, we choose as
given by the super twisting algorithm:

u f dis =−K1z
√
|sz|sign(sz)−K2z

∫ t

0
sign(sz(ε))dε (3.51)

By adding the equivalent term and the discontinuous term, the full expression of the
control input becomes:

u f =
m

(cosθ cosφ)(z̈r +G+λzėz)−K1z
√
|sz|sign(sz)−K2z

∫ t
0 sign(sz(ε))dε (3.52)

By choosing the altitude control gains as follows:

K1z =
mK
′
1z

(cosθ cosφ)

K2z =
mK
′
2z

(cosθ cosφ)

(3.53)

and by substituting (3.53) into (3.52), then finally by substituting the control law (3.52) in
(3.47), the dynamics of sz becomes:

ṡz =−K
′
1z

√
|sz|sign(sz)−K

′
2z

∫ t

0
sign(sz(ε))dε +wz (3.54)

Which satisfy having the same form as the equation (3.42), thus assuring the stability of
the controller.

The same procedure is used to obtain the yaw torque:

τψ = Izz(ψ̈r +λψ ėψ −
(Ixx−Iyy)

Izz
φ̇ θ̇)−K1ψ

√
|sψ |sign(sψ)−K2ψ

∫ t
0 sign(sψ(ε))dε

(3.55)

3.4.4 Translational motion in X-Y direction
In this subsection, the procedure to determine the roll and pitch torques is introduced. The
first challenge is to obtain the desired roll and pitch variables from the position dynamic
model. We define the following tracking errors:

ex = xd− x
ey = yd− y (3.56)

70 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

By applying the sliding conditions, i.e. ṡx = 0, ṡy = 0, we get:

ẍd−
(u f)

m
uxeq−

Fx

m
+λxėx = 0

ÿd−
(u f)

m
uyeq−

Fy

m
+λyėy = 0

(3.57)

Where the wind forces Fx and Fy represent the only unmatched uncertainties in the terms
wx and wy. The terms uxeq and uyeq are given by:

uxeq = cosφ cosψ sinθ + sinφ sinψ

uyeq = cosφ sinψ sinθ − sinφ cosψ
(3.58)

Following the same procedure as in the previous section, we define:

u f
m ux = ẍd− Fx

m +λxėx−K1x
√
|sx|sign(sx)−K2x

∫ t
0 sign(sx(ε))dε

u f
m uy = ẍd−

Fy
m +λyėy−K1y

√
|sy|sign(sy)−K2y

∫ t
0 sign(sy(ε))dε

(3.59)

The desired roll and pitch can be determined from ux and uy and by using the desired
heading:

φd = arcsin(sinψdux− cosψduy)

θd = arcsin(
cosψrux + sinψduy

cosφd
)

(3.60)

Thus, we can define the roll and pitch errors by:

eφ = φd−φ

eθ = θd−θ
(3.61)

These values are used in order to calculate the appropriate torques as follows:

τφ = Ixx(φ̈d +λφ ėφ −
(Iyy−Izz)

Ixx
θ̇ ψ̇−K1φ

√
|sφ |sign(sφ)−K2φ

∫ t
0 sign(sφ (ε))dε

τθ = Iyy(θ̈d +λθ ėθ − (Izz−Ixx)
Iyy

φ̇ ψ̇−K1θ

√
|sθ |sign(sθ)−K2θ

∫ t
0 sign(sθ (ε))dε

(3.62)

Based on the Assumption SMC5, the desired linear and angular accelerations as well
as the desired angular velocities in the control inputs expressions can be ignored.

Thus the expression of the torques becomes:

τφ = Ixx(λφ φ̇ − (Iyy−Izz)
Ixx

θ̇ ψ̇−K1φ

√
|sφ |sign(sφ)−K2φ

∫ t
0 sign(sφ (ε))dε

τθ = Iyy(λθ θ̇ − (Izz−Ixx)
Iyy

φ̇ ψ̇−K1θ

√
|sθ |sign(sθ)−K2θ

∫ t
0 sign(sθ (ε))dε

(3.63)

3.5 Shared control law for the fault tolerant control
strategies

In this section, we present four aspects of the control law that will be shared between
three FTC controllers in Chapter 5 to compare their fault tolerance. The first point is

3.5. SHARED CONTROL LAW FOR THE FAULT TOLERANT CONTROL STRATEGIES 71

the determination of subsystems for the control laws. This decomposition is very useful
in order to simplify the design of the controllers and the FTC strategies in Chapter 5.
Alongside with the subsystems decomposition, the second point is to present the common
sliding manifold for the SMC of the three FTC. The objective of the SMC controller is to
achieve a desired dynamics of the sliding manifold in order to drive the system errors to
zeros. The third point is the modelization of the control inputs and the motors health. In
this modelization, we include the relationship between the virtual inputs, the real control
inputs and the coefficients representing the losses in control effectiveness in case of motor
failures. Finally, the fourth point is to define the control allocation problem for the coaxial
octorotor, and how to find the solutions of the real control inputs given the virtual control
inputs.

3.5.1 Common subsystems formulation and sliding manifolds for all
FTC schemes

Here, we present a decomposition of the dynamic model of the UAV into four subsystems
(Altitude, Roll, Pitch and Yaw subsystems). This is done in order to simplify the design
of the controller and it is considered as an alternative of the work done in Sections 3.4.3
and 3.4.4.

Since the controller stabilizes both the altitude z and the attitude φ ,θ ,ψ of the
octorotor, we will consider the state vector as

X =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
=
[
z ż φ φ̇ θ θ̇ ψ ψ̇

]T (3.64)

Given the nonlinear equations of motion in (2.24), and by ignoring the effect of
propeller gyroscopic effect and drag forces (from our fifth assumption in Section 3.4.2.2),
the octorotor dynamic model can be divided into four subsystems as follows:

Altitude subsystem
{

ẋ1 = x2
ẋ2 = f1 +g1u1

(3.65)

Roll subsystem
{

ẋ3 = x4
ẋ4 = f2 +g2u2

(3.66)

Pitch subsystem
{

ẋ5 = x6
ẋ6 = f3 +g3u3

(3.67)

Yaw subsystem
{

ẋ7 = x8
ẋ8 = f4 +g4u4

(3.68)

72 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

where fi and gi are defined as:

f1 =−G
f2 = x6x8(Iyy− Izz)/Ixx

f3 = x4x8(Izz− Ixx)/Iyy

f4 = x4x6(Ixx− Iyy)/Izz

g1 = cos(x3)cos(x5)/m
g2 = 1/Ixx

g3 = 1/Iyy

g4 = 1/Izz

(3.69)

With the formulation above, and for control design purposes, it is useful to represent
each subsystem as a single input nonlinear system given by:{

ẋ2i−1 = x2i
ẋ2i = fi +giui

with i = 1,2,3,4 (3.70)

Next, we present the sliding manifold for a UAV’s sliding mode controller. This sliding
manifold will be used on the three presented FTCs, in order to compare only the impact
of the fault tolerant mechanisms as much as possible.

The integral sliding manifold Si is proposed as follows:

Si = {X ∈ Rn | si(X) = 0} (3.71)

The integral switching function s(X) is defined as:

si(X) = ėi +λiei + ki

∫
eidt−λiei0− ėi0 (3.72)

where λi and ki are the positive gains for the sliding variables and (3.73) gives ei for
(3.65), (3.66), (3.67) and (3.68) with i = 1, ..,4, such that ei and ėi represent the position
and velocity errors between the real states xi measured by the vehicle sensors, and the
desired values xd

i calculated by the trajectory generator. ei0 and ėi0 are the initial errors.

ėi = x2i− xd
2i

ei = x2i−1− xd
2i−1

(3.73)

3.5.2 Modelization of the control inputs and the motors health and
Control allocation problem

First, let us consider the general nonlinear system model:

Ẋ = f(X)+g(X)u
u = BLu∗ (3.74)

where u is the virtual control input, that is the desired thrust and the moments, u∗
represents the real control input, that is the each motor’s desired power, and X ∈ Rn

is the state vector of the system, defined in the next section. The nonlinear functions

3.5. SHARED CONTROL LAW FOR THE FAULT TOLERANT CONTROL STRATEGIES 73

f(X) ∈ Rn and g(X) ∈ Rn are respectively the drift vector field and the control vector
field. L = diag(l1, ..., lm) with m is the number of actuators and 0 ≤ li ≤ 1 represents the
control effectiveness of the actuators, so if li = 1, the i-th actuators is working perfectly,
whereas li = 0 means the complete failure of the i-th actuators, and 0 < li < 1 denotes
a partial failure on the i-th actuator. B ∈ Rp×m with p < m is the control effectiveness
matrix, representing the relation between the virtual and real control inputs. Moreover, as
u is bounded from our fourth assumption (Assumption SMC4), we can say from (3.74)
that u∗ belongs to a compact set Σ defined as:

Σ = {u∗ ∈ Rm |u∗imin ≤ u∗i ≤ u∗imax}
i = 1, ...,m (3.75)

In the coaxial octorotor configuration, the UAV is equipped with eight actuators
where each pair is on the same arm and has the same axle, but rotates in opposite
directions (four motors rotating clockwise, four motors rotating counter-clockwise).
Usually, FTC schemes take advantage of the added hardware redundancy in order to
achieve fast responses when a motor failure occurs. During fault-free operation, the
high level controller generates virtual control inputs u =

[
u f τφ τθ τψ

]T . This virtual
input vector u is redistributed among the set of m healthy motors where m ≤ 8. This
redistribution is known as the control allocation. The control allocation problem is
formulated as:

BLu∗(t) = u(t)
u∗imin ≤ u∗i ≤ u∗imax

(3.76)

where u∗ =
[
ω2

1 ω2
2 ... ω2

8
]T , and the control effectiveness matrix B is defined as:

B =

t1 ... t8
r1 ... r8
p1 ... p8
y1 ... y8

 (3.77)

with:

ti = αi jK f S

ri =±αi jK f Sl

√
2

2

pi =±αi jK f Sl

√
2

2
yi =±Kt

(3.78)

where ri, pi and yi are of the same sign than the moment generated by the i-th motor, and
the other parameters are defined in equations (2.12),(2.11), (2.26) and (2.19).

Since the coaxial octorotor is an over-actuated system, the control allocation problem
has a finite number of solutions. In this regard, by taking into account some optimization
criterion and actuators constraints (see Section 6.2 in [128]), it is possible to find

74 CHAPTER 3. BASELINE CONTROL LAWS EXPERIMENTS

the optimal solution by considering the quadratic programming approach based on
minimizing the control input as follows:

J =argmin u∗TWiu∗
such that: Bu∗ = u (3.79)

where J is the value of the function to be minimized, which has the explicit solution:

u∗ =WiBT (BWiBT)−1u (3.80)

where Wi =W T
i is a symmetric positive definite weighting matrix.

3.6 Summary
In this chapter, we presented the two control laws that we will be using in experiments to
control the attitude and altitude of our multirotors in chapter 4. The first control law is a
linear PID controller used in the open source autopilot Ardupilot. It has the advantage to
be simple to apply and does not require heavy computations. In addition, it is suitable for
a multirotor UAV flying at small speed and with small angles variations.

The second control law is a second-order sliding mode controller based on the
Super-Twisting algorithm. Although we faced some difficulties while implementing this
control law particularly caused by gain tuning and chattering, it can be used as a
baseline controller for passive fault tolerance of the multirotor due to its robustness and
insensitivity to uncertainties.

Also we presented four aspects of the shared control law used in the fault tolerant
control strategies which will be discussed in chapter 5. These four aspects are:

• Common subsystems formulation for all FTC schemes

• Shared sliding manifold function for all FTC schemes

• Modelization of the control inputs and the motors failures

• Control allocation problem

Chapter 4

Wind Force Compensation Strategy

Contents

4.1 Non linear multi-rotor model with wind perturbations 75

4.2 Smooth sliding mode controller robust to external perturbations . . 76

4.3 Estimation of Wind Disturbances using the Nonlinear Observer . . 80

4.4 Simulation and Experimental validation 83

4.5 Conclusion and future works . 87

This chapter describes the design and implementation of a wind force compensation
strategy for a quadrotor. This strategy relies on a second order sliding mode controller
based on the super twisting algorithm (STA) with a nonlinear observer. The robust
STA controller ensures robustness to matched external disturbances and time varying,
parametric and nonlinear uncertainties. To extend the robustness of the controller against
wind perturbation, we propose the integration of a wind observer in the closed-loop
system. This estimation will allow a better monitoring of the system’s status than
passive robustness, providing the opportunity for a recovery procedure such as an
emergency landing when the external perturbations become too strong for the system.
The effectiveness of the proposed strategy is compared to an adaptive gain controller
through simulations and validated in real experiments on the DJI S500 quadrotor.

4.1 Non linear multi-rotor model with wind perturba-
tions

The presence of wind forces causes an erroneous flight trajectory shifting the UAV away
from the desired path. For this reason, such unknown disturbances must be included in
the control design. In the nonlinear model (2.24), the wind effect is considered as only
due to the air frame drag which does not reflect real flight conditions, since it affects
also the propeller dynamics. In this chapter, we are going to include the full unknown
induced forces and moments of wind disturbances in the nonlinear dynamic model of the
quadrotor in order to extend the robustness of the controller. Thus, the nonlinear model of

75

76 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

the UAV presented in section 2.3.3 of Chapter 2 becomes as follows:

mẍ = (cosφ sinθ cosψ + sinφ sinψ)u f +Fx
mÿ = (cosφ sinθ sinψ− sinφ cosψ)u f +Fy
mz̈ = (cosφ cosθ)u f −mG+Fz

Ixxφ̈ = θ̇ ψ̇(Iyy− Izz)− Jrθ̇Ωr + τφ +Mφ

Iyyθ̈ = φ̇ ψ̇(Izz− Ixx)+ Jrφ̇Ωr + τθ +Mθ

Izzψ̈ = φ̇ θ̇(Ixx− Iyy)+ τψ +Mψ

(4.1)

where Fp = [Fx Fy Fz]
T and Mr = [Mφ Mθ Mψ]

T are the induced aerodynamic forces
and moments acting on the quadrotor caused by external wind and gusts. It is worth
mentioning that the aerodynamic moments Mr and the aerodynamic force Fz are named
matched disturbances since they affect the system states, which are directly controlled by
the motors, while only the forces Fx and Fy are unmatched ones [80]. The robust STA
controller, by itself, is able to compensate only the matched disturbances, thus the forces
Fx and Fy are not fully tolerated by the controller and can cause trajectory shifting and
system instability in the case of aggressive winds.

4.2 Smooth sliding mode controller robust to external
perturbations

The goal of this section is to propose a smooth second order sliding mode controller
which enhances the tracking accuracy of the system despite the existence of external
perturbations. The estimation of the external perturbation is done via a robust observer
used to determine the value of these perturbations by comparing the real behavior of the
system to the desired one. The estimated values of the external perturbation are then used
by the sliding mode controller in order to retain the system stability in the presence of
disturbance inputs.

In the following sections, we will first present the desired dynamics of the sliding
variable (which is of relative degree equals to 1 in our case) and how to design a control
law in order to obtain these desired dynamics, then we will introduce the conception
of the disturbance observer and differentiator which will be used to estimate the wind
perturbations and can also be used to estimate the derivatives of the disturbance up to the
m-th order, finally we will describe the mechanism of the disturbance cancellation through
a cooperation between the control law and the disturbance observer, which will be used
to obtain the desired dynamics of the sliding variable.

4.2.1 Desired sliding variable dynamics
The problem addressed in this section is to design a smooth control law u for the robust
controller drives to zero the sliding mode variable s and its derivative ṡ. First let us output
(SISO) system with a relative degree of the sliding variable equal to 1, meaning that the
control law u appears in the expression of the first derivative of the sliding variable. Thus,
we have:

ṡ = d(t)+u (4.2)

4.2. SMOOTH SLIDING MODE CONTROLLER ROBUST TO EXTERNAL PERTURBATIONS 77

where d(t) represents the external perturbation applied on the system and the
condition s = 0 defines that the system motion is on the sliding surface. However, we
will consider in the rest of this section the more general case of a sliding variable with
a relative degree to the control input equals to m and apply it in our specific case of m
equals 1 in section 4.3.

The goal is to use an observer that estimates the perturbation term d(t), and then by
designing a smooth control law u under the form u =−d(t)+ρ that uses this estimation,
we ensure that the system will converge to the desired destination in finite time despite the
perturbation. The estimation procedure of d(t) and ρ are given in sections 4.2.2 and 4.2.3
respectively. In the case of a SISO system with a relative degree to the sliding variable
equal to m, we will prove that the following sliding variable s is finite time stable, allowing
the system to converge to the desired values in finite time:

s = ζ1

ζ̇1 =−α1|ζ1|(p−1)/p sign(ζ1)+ζ2

ζ̇2 =−α2|ζ1|(p−2)/p sign(ζ1)

(4.3)

where ζ1 and ζ2 are intermediate variables used to represent the dynamics of s, p is a
positive integer equals to m +1 (m being the relative degree of the sliding variable to the
control input, as previously stated), and α1,α2 are positive gains.

Proposition 1. By choosing p > 2, α1,α2 > 0 the system (4.3) is finite time stable
(asymptotically stable with a finite settling time), meaning that the errors between the
desired values and the actual values of the system will converge to zero in finite time.

Proof. Considering the following Lyapunov function candidate:

V =
ζ 2

2
2

+
∫

ζ1

0
α2|β |1/3 sign(β)dβ

=
ζ 2

2
2

+
p

2p−2
α2ζ

(2p−2)/p
1

(4.4)

By defining γ =
[
ζ1 ζ2

]T , we obtain the first derivative of this Lyapunov function as
follows:

V̇ =
∂V
∂γ

γ̇ (4.5)

Then, by substituting ζ1 and ζ2 with those defined in our sliding surface in equations
(4.3), we obtain:

V̇ = ∂V
∂γ

γ̇

=
[
α2|ζ1|(p−2)/p sign(ζ1) ζ2

]
.

[
ζ2−α1|ζ1|(p−1)/p sign(ζ1)

−α2|ζ1|(p−2)/p sign(ζ1)

]
= α2ζ2|ζ1|(p−2)/p sign(ζ1)−α1α2|ζ1|(2p−3)/p

−α2ζ2|ζ1|(p−2)/p sign(ζ1)

=−α1α2|ζ1|(2p−3)/p.

(4.6)

78 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

By applying the LaSalle theorem, the set of γ verifying the condition V̇ (γ) = 0 consists of
the axis ζ1 = 0. However the unique solution that satisfies ζ̇1 = 0 in the first equation of
(4.3) is ζ2 = 0. So the largest invariant set is the origin ζ1 = ζ2 = 0, thus the asymptotic
stability is verified, and the variables ζ1 and ζ2 converge both to zero. Subsequently, it
is proved in [138] that the system (4.3) is homogeneous, in which case the asymptotic
stability implies the finite-time stability of the system [17],[25],[90].

4.2.2 Disturbance Observer
From Eq. (4.2), it can be seen that the sliding variable s is sensitive to the unknown
perturbation d(t). In order to obtain a controller that can drives the system to the desired
sliding surface (4.3), we need first to estimate the value of the perturbation via a robust
observer.

Let us suppose that s and u are available in real time, that d(t) is m− 1 times
differentiable so that d(m−1)(t) has a known Lipshitz constant M > 0. The following
observer is proposed:

ż0 = v0 +u,
v0 =−λ0M1/(m+1)|z0− s|m/(m+1) sign(z0− s)+ z1
ż1 = v1
.
.
.
żm−1 = vm−1,

vm−1 =−λm−1M1/2|zm−1− vm−2|1/2 sign(zm−1− vm−2)+ zm
żm =−λmM sign(zm− vm−1)

(4.7)

Proposition 2. Considering that s and u are measured with Lebesgue-measurable noises
bounded, respectively, by ε > 0 and kε(m−1)/m, k > 0 being any fixed constant, and
the parameters λi being chosen sufficiently large in the reverse order, the following
inequalities are established in finite time for some positive constants µi,ηi depending
exclusively on k and the choice of parameters [89],[138]:

|z0− s| ≤ µ0ε

.

.

.

|zi−di−1(t)| ≤ µiε
(m−i+1)/(m+1), i = 1, ...,m

|v j−d j(t)| ≤ ηiε
(m− j)/(m+1), j = 0,1, ...,m−1

(4.8)

Proof. The proof is similar to the one of the differentiator convergence presented in [89].
Let us introduce the notation:

σ0 = z0− s,
σ1 = z1−d,
.
.
σm = zm−dm,

(4.9)

4.2. SMOOTH SLIDING MODE CONTROLLER ROBUST TO EXTERNAL PERTURBATIONS 79

By substituting (4.7) and (4.3) in (4.9), the derivative of σ0 can be obtained as follows:

σ̇0 =−λ0M(1/m+1)|σ0|(m/(m+1) sign(σ0)+ z1 +u−d−u
σ̇0 =−λ0M(1/m+1)|σ0|(m/(m+1) sign(σ0)+σ1

(4.10)

With absence of measurement noises, i.e. ε = 0 in (4.8), any solution of the system
(4.9) satisfies the differential inclusion (4.11), which can be obtained by substituting (4.7)
and (4.3) in (4.9):

σ̇0 =−λ0M(1/m+1)|σ0|(m/(m+1) sign(σ0)+σ1

σ̇1 =−λ1M(1/m)|σ1− σ̇0|((m−1)/m sign(σ1− σ̇0)+σ2
.
.

σ̇m−1 =−λm−1M(1/2)|σm−1− σ̇m−2|(1/2 sign(σm−1− σ̇m−2)+σm
σ̇m =−λmM sign(σm− σ̇m−1)+β

β ∈ [−M,M]

(4.11)

The derivatives of σi are excluded here from the right-hand side [89]. The obtained
inclusion does not "remember" anything on the unknown signal d(t). Indeed, we need
to know the value of the Lipchitz constant M in order to calculate the values of σi in this
inclusion (similarly to (4.15)). Moreover, (4.11) coincides with the inclusion appearing
in the proof of the Theorem 5 [89]. Thus the proof and the choice of the parameters are
the same (λi must be sufficiently large). The inclusion is invariant with respect to the
homogeneity transformation

Gη : (t,σi)−→ (kt,km−i+1
σi), i = 0, ...,m (4.12)

Thus it is homogeneous with the homogeneity degree -1. The measurement noises
corresponding to σ and u belong to [−ε,ε] and [−kε(m−1)/m,kε(m−1)/m], respectively
according to [89].

In the case of exact measurement, i.e. ε = 0, from the system (4.8) we conclude that
the following equalities are established in finite time:

z0 = s,
z1 = d(t),
.
.

zi = vi−1 = d(i), i = 1, ...,m

(4.13)

To better understand how the algorithm (4.7) work, let’s take the case from (4.8) where
m = 2. We obtain the following system:

ż0 = v0 +u
v0 =−λ0M1/(3)|z0− s|2/(2+1) sign(z0− s)+ z1
ż1 = v1
v1 =−λ1M1/2|z1− v0|1/2 sign(z1− v0)+ z2
ż2 =−λ2M sign(z2− v1)

(4.14)

80 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

The discrete version of this system is as follows:
z0(k) = (v0(k−1)+u(k−1))∆t + z0(k−1)
v0(k) =−λ0M1/(3)|z0(k−1)− s(k−1)|2/(2+1) sign(z0(k−1)− s(k−1))+ z1(k−1)
z1(k) = v1(k−1)∆t + z1(k−1)
v1(k) =−λ1M1/2|z1(k−1)− v0(k−1)|1/2 sign(z1(k−1)− v0(k−1))+ z2(k−1)
z2(k) = (−λ2M sign(z2(k−1)− v1(k−1)))∆t + z2(k−1)

(4.15)
If the system is stable in finite time, we can choose any initial conditions as we

will converge towards a stable point anyway. Then, we choose zero as initial values
for z0(0),z1(0),z2(0),v0(0),v1(0). After calculating the value of the input u(0), the first
equation of (4.14) is used to calculate the value of z0 in the next iteration, that is z0(1),
using the calculated value of u(0) only (since v0(0) is zero in the first iteration). Next,
the value of v0(1) is calculated in the second equation using the known gain value λ0,
the known Lipchtiz value of M, the initialized values of z0(0) = 0 and z1(0) = 0 and
the measured value of s(0). The other variables values (z1(1),v1(1),z2(1)) are obtained
following the same manner. In the second iteration (case of k = 2), the obtained variable
values in the first iteration (z0(1),v0(1),z1(1),v1(1),z2(1)) are then used instead of the
initialized values to calculate the newest values of the variables in this iteration.

4.2.3 Cancellation of external perturbation

Having the sliding variable s under the form (4.2) with the perturbation d(t) being (m−1)
differentiable with a known Lipchitz constant M > 0 of d(m−1)(t), the desired dynamics
of the sliding variable (4.3) with p = m+ 1,m > 1 are achieved using the observer (4.8)
via the following control law:{

u =−z1−α1|s|m/(m+1) sign(s)+ ς

ς̇ =−α2|s|(m−1)/(m+1) sign(s)
(4.16)

In the case of exact measurement, the equality z1 = d(t) is achieved in finite time
by the observer from the equations (4.14) and by substituting (4.16) in (4.2), the desired
dynamics of the sliding variable (4.3) are established only after the convergence of the
observer, meaning that the system motion is retained on the sliding surface. In practice,
it is required to have the observer converging much faster than the controller, which can
be done by choosing sufficient large gains for the observer. In our case, the tuning of the
gains is done empirically by conducting several real tests.

4.3 Estimation of Wind Disturbances using the Nonlin-
ear Observer

As previously stated in section 4.1, since the wind induced forces Fx and Fy are used to
obtain the control law in (3.59), we need to take them into account. For that, we estimate
them through a super-twisting observer. We only develop the observer for the estimation
of Fx and Fy since they are not compensated directly by the control law unlike Fz and the

4.3. ESTIMATION OF WIND DISTURBANCES USING THE NONLINEAR OBSERVER 81

moment disturbances. Actually, the wind forces Fx and Fy represents the unknown terms
of the perturbation d(t) in (4.2).

In order to use the approach in [138] and [45] for the estimation of the unknown wind
forces Fx and Fy using the available sensor measurements, we put the x-direction state
model under the form: {

ẋ =Vx
mV̇x = ûxu f +Fx

(4.17)

where Fx represent the real unknown wind force in the x-direction that should be estimated
using the observer, and u f is the thrust force. The goal is to develop a virtual control law
ûx which is able to stabilize the sliding manifold sx defined in (4.18), by driving sx −→ 0
and ṡx −→ 0, and to cancel out the perturbation Fx. To do this, we choose sx as follows

sx =Vx−Vxd (4.18)

since we are using Ardupilot, the desired velocity is chosen as Vxd = Kp(x− xd), thus sx
becomes:

sx =Vx−Kp(x− xd) (4.19)

where Vx is the velocity in the x-direction and Kpx is the tracking gain. We choose a
tracking gain Kpx = 1, a higher value of Kpx will make the UAV more responsive to thrust
inputs, but if Kpx becomes too high, the UAV will oscillate quickly in roll and/or pitch.
Moreover, a lower value of Kpx will make it slower. This command will be followed by
the virtual control law to allow the vehicle to track the desired trajectory. Moreover the
(sx) dynamics is of relative degree 1, since the control law ûx appears in the first derivative
of sx:

ṡx =
ut

m
ûx +

Fx(t)
m
−Kp(Vx−Vxd) (4.20)

is under the form
ṡx =U +bx(t) (4.21)

where U = ut
m ûx−Kp(Vx−Vxd) is the control input and bx(t) =

Fx(t)
m is the perturbation in

the x direction. Thus the system (4.21) correspond to the general form defined in (4.2). It
can be seen that the first derivative of bx(t) is given by:

ḃx(t) =
Ḟx(t)

m
(4.22)

We assume that the wind forces (and particularly Fx and Fy) are continuous and
differentiable anytime, i.e. the wind perturbation are considered smooth with no abrupt
changes, and its derivative has a Lipschitz constant by assuming that the disturbances and
their derivative are bounded i.e. |Fx| < FLIM

x and |Ḟx| < ḞLIM
x . Then the function bx(t) is

also differentiable and has a Lipschitz constant Lx and the hypotheses of section 4.2.2 are
thus verified in this system. The term Fx is estimated by defining the following system:

ż0x = v0x +
ut
m ux−Kp(ẋ− ẋd)

v0x =−α0x|z0x− sx|2/3 sign(z0x− sx)+ z1x
ż1x = v1x

v1x =−α1x|z1x− v0x|1/2 sign(z1x− v0x)+ z2x
ż2x =−α2x sign(z2x− v1x)
F̂x/m = z1x

(4.23)

82 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

where vi(i = 1,2) are intermediate variables used in the calculation. In absence of
input noises, and by choosing α0x ≥ λ0x(Lx)

1/3 > 0, α1x ≥ λ1x(L)1/2 > 0 and α2x ≥
λ2x(Lx)

1/2 > 0, we obtain F̂x = Fx after finite-time with a suitable choice of the positive
gains λ0x,λ1x and λ2x. The system (4.23) correspond to the system (4.7) by taking m = 2,
thus it is finite-time stable.

4.3.1 Smooth second order controller

Considering the controller developed in (4.16) and by choosing m = 2, we get the
following smooth second order virtual control laws:

ut

m
ûx =−z1x +Kp(Vx−Vxd)−K1x|sx|2/3 sign(sx)

−K2x

∫ t

0
|sx(ε)|1/3 sign(sx(ε))dε

(4.24)

ut

m
ûy =−z1y +Kp(Vy−Vyd)−K1y|sy|2/3 sign(sy)

−K2y

∫ t

0
|sy(ε)|1/3 sign(sy(ε))dε

(4.25)

where the estimation of Fy is done by means of z1y following the same procedure. The
new desired roll and pitch angles become (4.26), which replaces those in Eq. (3.60).

φ̂r = arcsin(sinψrûx− cosψrûy)

θ̂r = arcsin(
cosψrûx + sinψrûy

C
φ̂r

)
(4.26)

4.3.2 Controller and observer in closed loop

It is proven in section 4.2 that the observer under the form (4.23) converges in a finite time
when exact measurements are available. Hence, z1x converges to the external disturbances
F̂x/m corresponding to the wind force’s impact in the x-direction (same for z1y and F̂y/m)
in finite time. Thereafter, by substituting respectively z1x and z1y by F̂x/m and F̂y/m in
(4.24) and (4.25), and by substituting the smooth controller (4.24) in (4.20), the sigma-
dynamics (with x1 = σx and x2 =−

∫ t
0 K2x|x1(ε)|1/3 sign(x1(ε))dε) becomes:{

ẋ1 =−K1x|x1|2/3 sign(x1)+ x2
ẋ2 =−K2x|x1|1/3 sign(x1)

(4.27)

This system correspond to the system (4.16) by taking m = 2, thus it is finite-time stable,
i.e., it is asymptotically stable with finite settling time for any initial conditions. Thus, the
control laws developed in (4.24) and (4.25) drive σx, σy, σ̇x and σ̇y to zero, which defines
the system motion on the sliding surface and the system actual states will converge to the
desired ones.

It can be noted that we use the saturation function sat instead of the sign function
in both the observer and the control law in order to attenuate the chattering phenomenon

4.4. SIMULATION AND EXPERIMENTAL VALIDATION 83

which appears when the sliding variable value approaches zero, and to a obtain a smoother
estimation. The expression of the function sat is given by:

sat(x) =

1 if x > 1
−1 if x <−1
x otherwise

(4.28)

However, in real-world applications, false alarms may occur when the measurement
of σ terms is imprecise due to sensor noises. For this reason, we define a detection
threshold for the observer, as will be shown in section 4.4. Moreover, we consider the
presence of wind disturbances in the system only when the absolute value of the estimated
wind forces exceed this specific threshold. We choose 0.05N as the threshold value
for our experiments. This threshold was identified empirically by conducting several
tests. The reason for which we need to this threshold is that assumption of noiseless
measurements (case of ε = 0) cannot be achieved in real world. Thus, in absence of
external perturbations, the observer becomes sensitive to measurement noises and will
eventually affect the system stability. Thus, the threshold 0.05N eliminates the output of
the observer in this case.

Moreover, let us recall that another condition of the strategy is to make the observer
much faster than the controller, and this highly depends on the precision of the sensors
that are been used to measure the states of the system. This can be done by choosing
sufficiently large gains for the observer. The easiest way to check if the gains are sufficient
for the observer design is empirically after several experiments or simulations.

4.4 Simulation and Experimental validation
The quadrotor DJI500 presented in Section 2.4 is the experimental drone that we used
to validate our wind observer and its integration in the control law presented in section
4.3. We used the Raspberry pi 3 + Navio2 open-source autopilot and the Arducopter flight
stack to perform the experimentation and to show the effectiveness of our strategy.

λ1z = 2.5 K1z = 4.5 K2z = 4.5
λ1x = 0.2 K1x = 0.5 K2x = 0.25
λ1y = 0.2 K1y = 0.5 K2y = 0.25
λ1φ = 3.5 K1φ = 4.5 K2φ = 4.5
λ1θ = 3.5 K1θ = 4.5 K2θ = 4.5
λ1ψ = 2.1 K1ψ = 5 K2ψ = 3.5

Table 4.1 – Control gains

α0x = 1 α1x = 0.5 α2x = 0.05
α0y = 1 α1y = 0.4 α2y = 0.045

Table 4.2 – Observer gains

λ1x,y,z = 2.5,2.5,5 ωx,y,z = 4.1,4.1,6.8
λ2x,y,z = 1.25,1.25,3.12 ηx,y,z = 1.03,1.03,3.25

λ3x,y,z = 1.83,1.83,2.01 βx,y,z = 0.5,0.5,0.8

84 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

Table 4.3 – adaptive gains

The controllers parameters and the observer gains were determined empirically and
are given respectively in Table 4.1 and Table 4.2.

In this section we will provide some simulation results to compare our proposed
observer-based controller to the adaptative controller given in [122]. The adaptive
controller gains used in these simulations are given in the Table 4.3. We will present
real experimental results to validate the effectiveness of our controller compared to the
standard PID controller.

Note that the adaptive controller used in our simulation is based on a second order
sliding mode algorithm and it has high number of gains to be tuned as shown in Table
4.3. However, we couldn’t tune these gains in real flight, since it is a very complicated
process and requires a lot of time. Comparatively, the real gains for our observer-based
STA controller were easy to find and close to those used in the simulation. We thus used
the PID controller as a comparison because it is still widely used and determining the
gains can be done automatically using the auto-tune mode of the Arducopter.

Note that the only theoretical drawback of the proposed strategy compared to classical
controllers is an increased computational time due to the estimation of the external forces,
which had no impact on our real flight experiments.

4.4.1 Simulation results (Adaptive STA vs Observer-based STA)
In the following simulations, we compare our proposed observer-based controller to an
adaptative controller in terms of robustness against wind. The simulated UAV is required
to follow a circular trajectory of 3 meters radius, starting from ξi = [0,0,0]T .

In Fig. 4.1, we can clearly see that with small wind forces of 0.2 N both controllers
follow closely the desired trajectory. Note that in real flights, mechanical constraints,
model uncertainties and sensor noises would obviously affect negatively the followed
trajectory.

In the second scenario presented in Fig. 4.2, an external wind perturbation of 5 N is
applied. We can notice that both controllers succeed to compensate the wind effect and
maintain the requested path of the system. However the results show that the observer-
based STA controller is smoother in this case. Note that such strong winds would probably
be difficult to navigate for the UAV in real conditions, and that the adaptative controller
had good similar results up to this wind strength. Nonetheless, these simulations show
more potential tolerance for our observer-based approach. By comparing the collected
errors data of these simulations, given in Table 4.4, we can see that the use of the observer
is an improvement over the adaptive method in terms of the robustness to the wind
disturbances.

4.4.2 Outdoor experimental results (PID vs Observer-based STA)
In our real experiments, an on-board GPS is used as the UAV’s localization system. The
position control in this experiment is a Set-point control (see Section 3.2). The desired
positions are the four points which form the edges of the rectangular path as shown in Fig.
4.3. The quadrotor has to fly to the desired position, regardless of the trajectory, starting

4.4. SIMULATION AND EXPERIMENTAL VALIDATION 85

Figure 4.1 – Behavior of adaptive controller and observer-based controller with small wind
perturbations of 0.2N (Simulation)

Figure 4.2 – Behavior of adaptive controller and observer-based controller with wind perturba-
tions up to 5N (Simulation)

Test 1
µex(m) µey(m)

Observer-based STA 0.249 0.482
Adaptive STA 0.367 0.597

Test 2
µex(m) µey(m)

Observer-based STA 0.5404 0.508
Adaptive STA 0.801 0.673

Table 4.4 – Position mean squared errors in x-direction (µex) and y-direction (µey) for the
simulations illustrated in Fig. 4.1 (Test 1) and in Fig. 4.2 (Test 2)

86 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

Figure 4.3 – Behavior of PID controller with and without Observer in the presence of wind
perturbations (Experiment)

5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

Fy controller+observer

Fx controller+observer

Fx controller only

Fy controller onlyThreshold

Figure 4.4 – Estimated wind forces FX and FY (N) in earth frame during the experiments
(Experiment)

Experiment
µex(m) µey(m)

Controller with Observer 1.519 1.745
Controller without Observer 1.605 2.37

Table 4.5 – Position mean squared errors in x-direction (µex) and y-direction (µey) for the
experiment illustrated in Fig. 4.3

4.5. CONCLUSION AND FUTURE WORKS 87

from the initial position ξi = [0,0,1]T as shown in the Fig. 4.3.. The wind forces Fx and Fy
(in Earth-Frame) are estimated in real time by the developed observer and are presented in
the Fig. 4.4. We can notice that the wind force is higher in the Y direction where it reaches
a peak of Fy=0.2 N. This mostly explains why the PID controller drifts from the desired
trajectory, as it is unable to tolerate the wind perturbations. Our observer-based controller
gives better results, as it is able to reach every set points. Since neither the observer model
nor its measurement are perfect, we used a threshold on the observer’s output to avoid
small perturbations due to noise values. As long as the estimated wind force stays between
the threshold values, we consider it 0, and as soon as it goes beyond them we integrate it
in the control law. From indoor experiments without wind perturbations, we empirically
chose threshold values of -0.05 and 0.05 N.

In order to compare the wind conditions in both experiments, we activated the observer
in both cases to estimate the wind forces, but the disturbance rejections strategy is only
applied for the observer-based STA controller. Fig. 4.4 shows that the wind forces were
very similar during both experiments.

Fx is very small and below the defined threshold, and as previously stated this
estimated force is not taken into account in the controller to avoid discontinuities due
to the gain tuning and the hypothesis of the absence of measurement noises from the
proof of section 4.2.2.

Despite the fact that the dominant wind is in the y direction, the pitch and roll of
the UAV are affected (see equation (4.26)), which explains the PID controller’s positions
errors on the x axis that we see on Fig. 4.3.

By comparing the means and medians of the quadrotor’s positions errors in Table 4.5,
we can see that our proposed method improved the trajectory of the quadrotor compared
to the PID controller.

However, supplementary tests and improvements are needed to completely validate
this method: we only tested its effectiveness against moderate wind (up to 0.2 N), and
we need to experiment in more aggressive environment where wind force can reach up to
several newtons.

4.5 Conclusion and future works

In this chapter, we presented a strategy using an observer based on the Super Twisting
Algorithm aiming to tolerate wind perturbations. The super Twisting controller is able to
passively tolerate only matched uncertainties. The horizontal components of wind forces
Fx and Fy are considered as unmatched uncertainties, thus we proposed an observer to
estimate these perturbations. The estimations of this observer are then used in a STA
controller to tolerate these wind perturbations. The robust controller and the nonlinear
observer are both designed based on the STA to compensate for matched uncertainties
such as unmodeled forces and imperfect UAV’s parameters. We implemented this
observer-based controller and validate it on real experiments. The proposed solution
guarantees the convergence of the position errors for different values and directions of
external airflow attacking the vehicle. This method was validated and compared with an
adaptative controller through simulation, and a PID controller though real flights. In both
cases, our proposed method gave better results although the adaptive method also gives

88 CHAPTER 4. WIND FORCE COMPENSATION STRATEGY

very good results in simulations. It is however very hard to implement in real experiments
as it has numerous interdependent gains to tune. To our knowledge, it has never been
presented in real experiments in this second order form, which is necessary to tolerate
wind forces. Stability analysis of the observer controller loop has also been presented in
the chapter.

Chapter 5

FTC strategies for successive failures in
an Octorotor UAV

Contents

5.1 Self-tuning sliding mode control applied to the coaxial octorotor . . 89
5.2 Indoor experimental Validation . 98
5.3 Discussion . 102
5.4 Conclusion . 103

This chapter presents three fault-tolerant control (FTC) strategies for a coaxial
octorotor UAV regarding motor failures. The first FTC is based on a control mixing
strategy which consists of a set of control laws designed offline, each one is dedicated
to a specific fault situation. In the second FTC, a robust adaptive sliding mode control
allocation is presented, where the control gains of the controller are adjusted online in
order to redistribute the control signals among the healthy motors in order to stabilize the
overall system. These two strategies have been introduced in our state of the art Section
1.6.2. The third FTC strategy is a new strategy proposed in this thesis, which is based on
a self-tuning sliding mode control (STSMC) where the control gains are readjusted from
the detected error to maintain the stability of the system. Multiple indoor experiments on
an octorotor UAV are conducted to show and compare the effectiveness and the behavior
of each FTC scheme after successive faults are injected.

5.1 Self-tuning sliding mode control applied to the coax-
ial octorotor

When a motor’s failure occurs, the control allocation should redistribute in a specific
way some control signals to the healthy actuators in order to compensate for the loss of
thrust. This could be done by changing the weighting matrix Wi in the STSMC and control
mixing techniques, or by modifying gains in the higher level controller ui to attain the new
stability conditions as it is done in the ASMCA and STSMC techniques. In this section,
we will first present our contribution for FTC methods: a self-tuning sliding mode control
(STSMC) that uses error detection to modify multiplexing and the control law’s gains and
to adapt to the erroneous state. Then, we will introduce two other FTC methods: a FTC
based on off-line control mixing [129] and an adaptive sliding mode control allocation
(ASMCA) for future comparison and validation of our proposed method.

89

90 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

5.1.1 Self-Tuning sliding mode control (STSMC)
We propose in this section an AFTC scheme which automatically tunes itself to an error
once this error has been detected and identified. The detection and isolation can be done
for example using additional current sensors equipped to each actuator (see chapter 5 in
[128]). This FDI module must identify the faulty actuator and provide the effectiveness
loss of each actuator for our method to be applied.

Let us recall the subsystems formulation presented in (3.65) to (3.68), the definition
of the integral sliding variable in (3.72) and the definition of the system errors given in
(3.73). The goal of the controller is to drive the sliding variable si and its first derivative to
zero, which implies that the difference between the system’s position and the desired one
will also be driven to zero and the system will follow the desired trajectory. To do this, we
design a control law u that ensure the following desired dynamics of the sliding variables
si:

ṡi =−Ki sat(si/εi) (5.1)

where Ki are positive gains of the discontinuous part of the control law and εi are small
positive values defining the boundaries of the linear part of the sat(.) function, defined as:

sat(si/ε) =

{
sign(si) if | si |> εi

si/εi if | si |< εi
(5.2)

From Eq. (3.72) and (3.73), the first derivative of si is calculated as:

ṡi = ëi +λiėi + kiei

= (ẋ2i− ẋd
2i)+λiėi + kiei

(5.3)

By substituting the expressions of ẍ2i from the subsystems (3.65), (3.66), (3.67) and
(3.68), we get:

ṡi = (fi +giui− ẍd
2i)+λiėi + kiei (5.4)

In order to obtain the desired dynamics of the sliding variable, we choose the control law
as follows:

ui =
1
gi
(ẋd

2i−λiėi− kiei− fi)− 1
gi

Ki sat(si/εi)

for i = 1, ..,4
(5.5)

By substituting this control law in Eq. (5.4), the desired dynamics of the sliding variable
(5.1) are established.

Proposition 3. Given the nonlinear subsystems (3.65), (3.66), (3.67) and (3.68), by
applying the control law (5.5) and by choosing Ki ≥ ηi > 0, where ηi is any fixed positive
value, the condition si(X) = 0 is satisfied and thus the system errors ei and ėi converge to
zeros, meaning that the system’s state will eventually be the desired one.

Proof. Consider the following Lyapunov function Vi :

Vi =
1
2

s2
i (5.6)

5.1. SELF-TUNING SLIDING MODE CONTROL APPLIED TO THE COAXIAL OCTOROTOR 91

Then the derivative of this function would be by using (3.72), (3.73) and (3.65) to
(3.68):

V̇i = siṡi

= si(ëi +λiėi + kiei)

= si(ẋ2i− ẋd
2i +λiėi + kiei)

= si(fi +giui− ẋd
2i +λiėi + kiei)

(5.7)

and by substituting (5.5) into (5.7), we get:

V̇i =−Kisi sat(si/ε)

≤−ηisi sat(si/ε)

≤−ηi | si |
(5.8)

Thus the system satisfies the η-reachability condition, and the system will asymptoti-
cally reach the desired trajectory. The proof is satisfied for i = 1, ...,4.

In faulty scenarios, actuators failures are modeled as losses in the control effective-
ness. We represent these losses by the L = diag(l1, ..., l8) matrix, where li = 1 and li = 0
indicate respectively that the i-th motor is fully healthy or completely failing. Then the
real force Fi produced by each actuator is actually:

Fi = liFi (5.9)

where Fi is the force produced in fault-free situation. In this situation, the real virtual input
vector u =

[
u f τφ τθ τψ

]T produced by the system becomes:
u f
τφ

τθ

τψ

=

u f
τφ

τθ

τψ

+

∆u f
∆τφ

∆τθ

∆τψ

 (5.10)

where u =
[
u f τφ τθ τψ

]T is the nominal virtual control input calculated by the
controller and ∆u =

[
∆u f ∆τφ ∆τθ ∆τψ

]T is the input caused by the erroneous
actuators, or input fault vector. In practice, an error could be caused either by a damage
affecting the motor or the propeller. In this work, we do not distinguish these faults.

Depending on the faulty actuator, additive faults in torques (∆τφ , ∆τθ , ∆τψ) can
be either positive or negative depending on the direction of the actuator rotation and its
position with respect to the center of gravity of the vehicle. In contrast to faults altering
torques, the additive faults affecting the thrust (∆u f) can only be negative since the
generated thrust doesn’t depend on the rotation direction nor on the actuator’s position.

92 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

First, we consider that a single fault is present in the system. In this case, the additive
faults input can be defined as:

∆u f =−(1− l j)Fjα jkS

∆τφ =±(1− l j)Fiα jkSl

√
2

2

∆τθ =±(1− l j)Fiα jkSl

√
2

2
∆τψ =±(1− l j)τi

(5.11)

where S is the shape factor of the propeller (see section 2.3.1), l is the length of the arm
given in Table 2.1, the j-th and k-th terms represent respectively the faulty actuators and
its redundant actuator. Note that this notation will be adopted in the rest of this chapter.
The signs of the additive faults in torques are given in Table 5.1.

Actuatori ∆τφ ∆τθ ∆τψ

1 + + +
2 + + -
3 + - -
4 + - +
5 - - +
6 - - -
7 - + -
8 - + +

Table 5.1 – Additive faults in torques according to the failing actuator

A new control law u f =
[
u f

f τ
f

φ
τ

f
θ

τ
f

ψ

]T
is designed to recover the system from

this faulty situation, such that:

u = u f +∆u (5.12)

Thereby, the subsystems (3.65), (3.66), (3.67) and (3.68), become:

Altitude subsystem

{
ẋ1 = x2

ẋ2 = f1 +g1u f
f +g1∆u f

(5.13)

Roll subsystem

{
ẋ3 = x4

ẋ4 = f2 +g2τ
f

φ
+g2∆τφ

(5.14)

Pitch subsystem
{

ẋ5 = x6

ẋ6 = f3 +g3τ
f

θ
+g3∆τθ

(5.15)

Yaw subsystem
{

ẋ7 = x8

ẋ8 = f4 +g4τ
f

ψ +g4∆τψ

(5.16)

Let us have:

u f =
[
u f

f τ
f

φ
τ

f
θ

τ
f

ψ

]T
=
[
u f

1 u f
2 u f

3 u f
4

]T
(5.17)

5.1. SELF-TUNING SLIDING MODE CONTROL APPLIED TO THE COAXIAL OCTOROTOR 93

We propose the following control law to recover the system from erroneous situations:

u f
i =

1
gi
(ẋd

2i−λiėi− kiei− fi)−
1
gi

K f
i sat(si/εi)

K f
i = Ki +∆umax

i j , i = 1, ...,4
(5.18)

where ∆umax
i j is the additive fault term of the input fault vector ∆umax

j due to the fault
injected to the j-th actuator given in Eq. (5.19). In fact, ∆umax

i j is positive and bounds the

maximal value of ∆ui. Thus, by adding this positive value to the control gain K f
i of the

proposed control law (5.18), we can prove (using the Proposition 4 and its proof) that the
system will be able to maintain its overall stability in case of actuator failures.

The expression of the input fault vector ∆umax
j is given by:

∆umax
j =

∆umax

f j
∆τmax

φ j
∆τmax

θ j
∆τmax

ψ j

=

∆umax

1 j
∆umax

2 j
∆umax

3 j
∆umax

4 j

=

l jFmax

j α jkS

l jFmax
j α jkSl

√
2

2

l jFmax
j α jkSl

√
2

2
l jτ

max
j

 (5.19)

where Fmax
j and τmax

j for our experimental drone’s actuators have been identified in [128].
The l j are the effectiveness losses detected by the FDI mechanism, as previously stated
in this section, and the other terms are dependent of the system and are identified for our
experimental UAV in section 5.2.2.

Proposition 4. Given the nonlinear subsystems (3.65), (3.66), (3.67) and (3.68), by
applying the new control law (5.18) and by choosing Ki ≥ ηi > 0 in a similar way than for
the fault-free control law, the condition si(X) = 0 is satisfied and thus the system errors
ei and ėi converge to zeros, meaning that the system’s state will eventually be the desired
one.

Proof. Consider the following Lyapunov function Vi:

Vi =
1
2

s2
i (5.20)

Then the derivative of this function would be

V̇i = siṡi

= si(ëi +λiėi + kiei)

= si(ẋ2i− ẋd
2i +λiėi + kiei)

= si(fi +giu
f
i +gi∆ui− ẋd

2i +λiėi + kiei)

(5.21)

and by substituting (5.18) into (5.21), we get:

V̇i =−K f
i si sat(si/ε)+gi∆uisi

=−Kisi sat(si/ε)−gi∆umax
i j si sat(si/ε)+gi∆uisi

=−Ki | si | −gi(∆umax
i j | si | −∆uisi)

(5.22)

94 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

Let us recall the expressions of gi (from Eq. (3.69):

g1 = cos(φ)cos(θ)/m
g2 = 1/Ixx

g3 = 1/Iyy

g4 = 1/Izz

(5.23)

Since the parameters Ixx, Iyy and Izz are all positive, thus the functions g2,g3,g4 are
positives. Moreover, since the roll and pitch angles are constrained to (−π/2 < φ ,θ <
π/2), and using the fact that m is the mass of the UAV which is a positive value, we can
conclude that g1 is also positive. Then, the following inequality holds true:

gi > 0 (5.24)

And, as ∆umax
i j is positive and bounds the maximal value of ∆ui, we can write:

∆umax
i j > |∆ui| (5.25)

Thus, using the Eq. (5.24) and (5.24), we have:

V̇i =−Ki | si | −gi(∆umax
i j | si |+∆uisi)

≤−Ki | si |
≤ −ηi | si |

(5.26)

Then the system satisfies the η-reachability condition, and the system will asymptotically
track the desired trajectory.

In case of multiple faults, the term ∆umax
i j is replaced by the sum of the input fault

vectors corresponding to all the injected faults. The additive faults input for multiple faults
thus becomes:

∆u f =−∑
j
(1− l j)Fjα jkS

∆τφ = ∑
j
±(1− l j)Fiα jkSl

√
2

2

∆τθ = ∑
j
±(1− l j)Fiα jkSl

√
2

2

∆τψ = ∑
j
±(1− l j)τi

(5.27)

where the j-th terms are the indices of all the failing actuators and, as we mentioned
previously, the k-th terms represent the redundant actuators of the j-th failing actuators.
The same proof of stability used in the case of one fault holds true in the case of multiple
faults by adding the sum of the upper bounds ∑

j
∆umax

i j of all the injected faults in equation

(5.18).

5.1. SELF-TUNING SLIDING MODE CONTROL APPLIED TO THE COAXIAL OCTOROTOR 95

Note that when an error occurs, the weighting matrix Wi, in Eq (3.80), is updated
according to the output of the FDI module, i.e., the detected fault information, namely
wi = 1/li. When the i-th actuator becomes faulty, its weight value increases and its control
signal also increases. If the control signal exceeds the power limit of the actuator, it will
cause saturation. The following weighting algorithm Ŵi (proposed in [129]) is always
used in (3.80) instead of Wi to avoid this actuators saturation::

Ŵi = ΞWiΞ with Ξ = diag(ξ1,ξ2, ...,ξ8)

ξi =

(1+η1)
u∗i

η2u∗imax
, u∗i > η2u∗imax

1, η2u∗imin ≤ u∗i 0≤ η2u∗imax

(5.28)

where η1 and η2 are small positive values with 0 < η2 ≤ 1.

5.1.2 AFTC based on an offline control mixing

Since the coaxial octorotor configuration is an over-actuated system, there exists a finite
number of solutions to the control allocation problem in equation (3.76). In [129], a
static reallocation for each motors failures case is obtained by resolving the optimization
problem (3.79) for each fault situation.

By considering that at least four motors are healthy, the number of complete failures
combinations is N f = ∑

4
i=1Ci

4 = 162.
However, due to the symmetry in the coaxial octorotor’s configuration, the number of

dissimilar combinations is reduced to 27.
In this FTC scheme, the same baseline control law (5.5) is used in all cases, i.e., in

nominal and faulty situations. However, as mentioned in [129], after each error detection,
a new set of control gains depending of the new system’s configuration must be associated
to the control law. These gains must be determined empirically for every one of the
erroneous configuration that we want to consider. For complete motors failures, the
number of dissimilar configurations can be reduced to 27 as previously stated. However,
if we want to take into account partial motors failures, this number can grow to hundreds.

5.1.2.1 Fault-Free Mode

In nominal behavior, the expression of the i-th motor speed ωi is given by (5.29):

ωi =

√
1
8 .

(
u f

αi j.K f .S
± τφ

αi j.K f .S.d
√

2
2

± τθ

αi j.K f .S.d
√

2
2

± τψ

Kt

)
(5.29)

In fact, the above expression of ωi represents the solution of the equation (3.76) by
taking L = I8×8.

96 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

Failed Motors Reallocated inputs
1 & 2 F ′i = 0 i = 5,6

F ′i = 2Fi i = 3,4,7,8
1 & 3 F ′i = 2Fi i = 2,4

F ′i = Fi i = 5,6,7,8
1 & 4 F ′i = 2Fi i = 2,3,5,8

F ′i = 0 i = 6,7
1 & 5 F ′i = Fi i = 2,3,6,7

F ′i = 2Fi i = 4,8
1 & 6 F ′i =

4
3Fi i = 2,3,4,5,7,8

1 & 7 F ′i = 2Fi i = 2,8
F ′i = Fi i = 3,4,5,6

1 & 8 F ′i = 2Fi i = 2,4,5,7
F ′i = 0 i = 3,6

Table 5.2 – Static reallocation in case of two motors failures

Failed Motors Reallocated inputs
1 & 2 & (3 or 4 or 7 or 8) —

1 & 2 & (5 or 6) F ′i = 2Fi i = 3,4,7,8
F ′i = 0 i = 6 or 5

1 & 3 & 4 —
1 & 3 & 5 F ′i = 1.5Fi i = 2,6,8

F ′i = 2.5Fi i = 4
F ′i = Fi i = 7

1 & 3 & (6 or 8) F ′i = 2Fi i = 2,4,5,7
F ′i = 0 i = 8 or 6

1 & 3 & 7 F ′i = 2.5Fi i = 2
F ′i = 1.5Fi i = 4,6,8

F ′i = Fi i = 5
1 & 4 & 5 —

1 & 4 & (6 or 7) F ′i = 2Fi i = 2,3,5,8
F ′i = 0 i = 7 or 6

1 & 5 & 6 F ′i = 2Fi i = 3,4,7,8
F ′i = 0 i = 2

1 & 5 & 7 F ′i = 2.5Fi i = 8
F ′i = 1.5Fi i = 2,4,6

F ′i = 1Fi i = 3
1 & 6 & 7 F ′i = 2Fi i = 2,3,5,8

F ′i = 0 i = 4
1 & 6 & 8 F ′i = 2Fi i = 2,4,5,7

F ′i = 0 i = 3
1 & 7 & 8 —

Table 5.3 – Static reallocation in case of three motors failures

5.1. SELF-TUNING SLIDING MODE CONTROL APPLIED TO THE COAXIAL OCTOROTOR 97

5.1.2.2 One complete failure

To deal with the case of one motor’s complete failure, the solution proposed in [129] from
the resolution of 3.79 (with one li = 0) is to reduce the power of its dual to the half, and to
increase the powers of the three upper remaining actuators by a factor of 1.5. For example
considering a complete failure of motor 1 (l1 = 0), we would have:

F
′
6 = 0.5F6

F
′
i = 1.5Fi i = 2,4,8

F
′
i = Fi i = 3,5,7

(5.30)

Failed Motors Reallocated inputs
1 & 2 & 5 & 6 F ′i = 2Fi i = 3,4,7,8
1 & 3 & 5 & 7 F ′i = 2Fi i = 2,4,6,8
1 & 4 & 6 & 7 F ′i = 2Fi i = 2,3,5,8
2 & 3 & 5 & 8 F ′i = 2Fi i = 1,4,6,7
2 & 4 & 5 & 7 F ′i = 2Fi i = 1,3,6,8
2 & 4 & 6 & 8 F ′i = 2Fi i = 1,3,5,7
3 & 4 & 7 & 8 F ′i = 2Fi i = 1,2,5,6

Table 5.4 – Static reallocation in case of four motors failures

5.1.2.3 Two, three and four complete motors failures

As mentioned before, in case of multiple complete failures, many solutions of the
optimization problem (3.79) are symmetrically equivalent since the frame configuration
of the coaxial octorotor is symmetric. So, without loss of generality, only the cases where
motors 1 and i = 2,3, ...,8 fail are presented in Tables 5.2. In the same way, Tables 5.3
and 5.4 present only cases which are not symmetrically equivalent. Note that a dashed
line indicates that no solution was found with the associated combination [129].

5.1.3 Adaptive sliding mode control allocation (ASMCA)
In this robust approach, an adaptive control allocation and re-allocation strategy [152] is
proposed to redistribute control signals among healthy motors. This ASMCA is employed
to maintain the overall system performance, providing tolerance to motors faults but also
robustness to external perturbations that are matched uncertainties.

The proposed control law is as follows:

ui = ϒ̂i(ẋd
2i−λiėi− kiei− fi)− ϒ̂iKi ∗ sat(si/εi) (5.31)

The parameter ϒ̂i is adaptively adjusted online when there is an error between the
baseline controller ui and the desired one ud

i in the case of actuator faults or external
perturbations. The online update scheme of the parameter ϒ̂i is given by:

˙̂
ϒi = (−ẋd

2i +λiėi + kiei + fi)+Ki ∗ sat(si/εi)s∆i (5.32)

where s∆i = si− ε sat(si/ε). Further information about this algorithm are given in [152].
The main steps of the adaptive allocation are conducted as follows:

98 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

1. When there exists an error between the actual baseline controller ui and the desired
controller uid , which means that the position and the velocity of the system are
different from the desired values, thus the parameter ϒ̂i is updated following the
equation (5.32) to maintain the system performance.

2. The control effectiveness matrix Bi is updated accordingly through a defined
relationship B̂i = ϒ̂i ∗Ti, where the relationship between gi from equations (3.65) to
(3.68) and Bi is bounded by Ti = giBi.

3. The control signals are redistributed to the healthy motors through the relationship
u∗ =WiB̂T (B̂WiB̂T)−1u

It is proved in [152] that for a nonlinear system with bounded disturbance, the sliding
motion will be achieved and maintained by applying the feedback control law (5.31) and
the online adaptation scheme (5.32) and by an appropriate choice of the discontinuous
gains Ki.

It is worth noting that this controller is based on a first order sliding mode with only
3 gains to tune for each input: λi, ki and Ki. However, if we want to use an adaptive
controller based on higher order sliding mode (for example one able to tolerate wind
forces), the tuning process becomes more complicated since we will get several more
control gains in the expression of the controller.

5.2 Indoor experimental Validation

In this section, we demonstrate the performance of our proposed STSMC. Also, we
compare these performances with those of the other two FTC schemes described in
the previous section in real indoor experiments. In these experiments, four successive
fault injections are used to simulate the failures of top actuators of the coaxial octorotor
(actuators 6, 2, 4 and 8) by sending stop commands at desired times.

5.2.1 Experimental platform

The experimental coaxial octorotor is shown the Modulo−X8 presented in section 2.4.
The maximum values of thrust force and moment generated by the actuators are given in
Table 5.5. The other parameters were previously given in Table 2.1.

Symbole Parameter Value Unit

Fmax
i Max forces 5 N

τmax
φ

, τmax
θ

Max torque 2 Nm
τmax

ψ Max torque 0.08 Nm

Table 5.5 – Coaxial octorotor parameters

5.2. INDOOR EXPERIMENTAL VALIDATION 99

Gain No fault FI1 FI2 FI3 FI4
λ1 3 3.3 3.7 4 4
λ2 5 5.2 5.5 6 6
λ3 5 5.2 5.5 6 6
λ4 4 4.2 4.5 5 5
k1 3 3.3 3.6 4.1 4.1
k2 4 4.4 4.8 5.2 5.2
k3 4 4.4 4.8 5.2 5.2
k4 5 5.2 5.6 6.2 6.2
K1 6 6.4 6.8 7.3 7.3
K2 5 5.2 5.6 6.1 6.1
K3 5 5.2 5.6 6.1 6.1
K4 6 6.4 6.8 7.3 7.3

Table 5.6 – Gains values for each recovery configuration for the Multiplexing method

In order to compare the FTC methods, we use the same initial control parameters for
all FTC control schemes, i.e. in (5.18) and (5.31):

λ1 = 3, λ2 = 5, λ3 = 5, λ4 = 4
k1 = 3, k2 = 4, k3 = 4, k4 = 5
K1 = 6, K2 = 5, K3 = 5, K4 = 6

ε = 0.15

(5.33)

Note that for the reconfigurable control mixing technique, we assign new control
parameters after each failure injection to meet the new condition of the system. These
gains for each recovery configuration are determined experimentally and are given in
Table 5.6. On the other hand, for the STSMC and ASMCA, the initial control parameters
(5.33) are adjusted online with respect to equations (5.18) and (5.31) respectively.

5.2.2 Fault detection and isolation (FDI) using current sensors
As mentioned before, the system recovery in AFTCs is depending upon the occurring
errors in the system being detected and identified. Therefore, a fault detection and
isolation (FDI) unit is required to detect the failed component and to estimate the fault
parameters. Fault detection and isolation techniques can be classified into two categories,
namely Model-based FDI and Model-free FDI.

In Model-based FDI, the detection, isolation and identification of faults are done by
comparing the output of the system available measurements with a priori information
represented by the dynamics equations of the system. In Model-free FDI, the detection
relies only on real-time or historical data collected from the sensors and measurements in
order to detect and isolate failed components without the need of any information about
the system dynamics.

In our experiments, the FDI is supposed to be carried out by comparing each actuator’s
current to the current that it should theoretically have given the desired command (a Model

100 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

Figure 5.1 – Motors currents during real hover flight and successive failures injections (FI)

Figure 5.2 – Zoomed view of motors currents during real hover flight and successive failures
injections (FI)

Based FDI). This technique was successfully tested in [128], but we only simulated it in
our experiments in order to focus on the reconfiguration problem of the FTC.

Fig. 5.1 and 5.2 illustrate the motor currents during a real hover flight. Note that after
the injection of the first failure, the current measurements take about one second before
converging to zero. We chose in our experiments to fix the simulated error detection time
at 0.5s as we consider from this data that an 80% decrease of motor current could be
correlated to the complete failure of the actuator.

5.2.3 Experimental Results
To compare the three FTC schemes, two indoor scenarios are considered:

• The coaxial octorotor is required to do a stable flight at 1 meter altitude.

• The octorotor is required to follow a squared trajectory of 2 meters sides at the same
altitude of 1 meter.

For each FTC scheme, we realized 10 experimental tests of each flight, thus a total of
60 flight tests were carried out. We needed to do this number of experiments as they are not
completely reproductible because of the complexity of the system. Ten experiments per
method allow us to have a good representativity while being feasible under our resources
and time constraints.

To study this number of experimentations, we plot the results using the box and
whisker technique, since it is able to summarize a set of data and is ideal for comparing
distributions. In this representation the box lower and upper sides represent the two middle
quartiles of data measurements (between 25% and 75%), while the whiskers refer to the

5.2. INDOOR EXPERIMENTAL VALIDATION 101

Figure 5.3 – Box and whisker plot

lower and higher quartile (respectively, between 0% and 25%, and between 75% and
100%). Finally, the mean and the median of the observations are represented respectively
by a star and an horizontal line inside the box. The Figure 5.3 shows an example of box
and whiskers with all the cited properties.

5.2.3.1 Hovering flight

To characterize the performance of the three FTC schemes in handling motor failures,
first we performed 10 trials of the hovering scenario using each method (STSMC,
Multiplexing, Adaptive). In each experiment, the top motors (successively 6, 2, 4 and 8)
are turned off from the ground station at the same times t1 = 18.28s, t2 = 25.8s, t3 = 32.8s
and t4 = 40.8s. Position data of the different trials are collected between t = 17s and
t = 45s right before the first injection, and after the last one. The three controllers were
equally stable at the beginning of the data collection. All the data are illustrated in Fig.
5.4, Fig. 5.5 and Fig. 5.6. To simplify the analysis of the performance, we calculated
the average positions of the trials for each FTC scheme, and we illustrate them in Fig.
5.7, tables 5.7 and 5.8. By comparing these results, it can be seen that in all cases the
altitude errors are less important than the (x,y) position errors. This is because all the
eight actuators contribute to the height control in the same direction and the loss of one
motor is a loss of 1/8 of the total number of actuators in this direction. However, in the roll
and pitch control we have 4 actuators generating positive orientations and the 4 remaining
actuators generating negative orientations, and the loss of one motor is then a loss of 1/4
of the total number of actuators contributing to the same torque. The loss of one motor
has thus more influence on the (x,y) position than on the altitude.

The altitude tracking performance of the trials averages is shown in Fig. 5.8.

102 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

5.2.3.2 Trajectory Tracking flight

To characterize the performance of the three FTC schemes in handling motor failures
when following trajectories, we realized another flight scenario, where the coaxial
octorotor has to follow a squared path starting from the initial position (x = 0, y = 0)
as shown in Fig. 5.13. This is the case of a trajectory tracking problem presented in
section 3.2, where the desired positions and velocities are time-dependent and the system
is restricted to follow the squared reference and reach successively the ABCDA corners
of the rectangle as shown in Fig. 5.13. Again, we performed 10 trials using each FTC
scheme, where the failures to the top motors (successively 6, 2, 4 and 8) are injected in
all experiments at the same times t1 = 18.28s, t2 = 25.8s, t3 = 32.8s and t4 = 40.8s. Data
on all experiments are illustrated in Fig. 5.9, Fig. 5.10 and Fig. 5.11, and the average
positions and errors information are presented respectively in Fig. 5.12, Tables 5.9 and
5.10.

5.3 Discussion
In this section, we will discuss and compare the different behaviors and aspects of
the three FTC schemes considering four aspects: performance, development costs,
computation time and health monitoring.

5.3.1 Performance
All three FTCs give good results and successfully tolerate the four successive faults.
However, it can be seen on Fig. 5.8 and 5.13 that compared to the Adaptive method,
the Multiplexing and the STSMC have a smaller response time in compensating for the
effects of the injected faults. This is probably due to the fact that the adaptation process of
the adaptive method needs some time to converge to the required control parameters. Also,
from Table 5.7, 5.8, 5.9 and 5.10, it can be shown that the lowest errors are recorded when
using the Multiplexing method. This is probably due to its parameters being obtained by
resolving an optimization problem, while the SMTC gains bounds the error (see equation
(5.18)) and the adaptive gains are based on a comparison with noisy sensors outputs.

5.3.2 Development cost
The Multiplexing FTC method is very costly to develop since it requires to determine the
control law’s gains for every possible faults. This cost becomes even greater if we take into
account partial failures in addition to complete ones. On the other hand, the STSMC and
the Adaptive method can both be used to deal with all possible faulty scenarios without
more development effort. Nevertheless, the STSMC still requires more knowledge about
the model of the system, since a thruster model identification must be done to determine
the thrust and drag coefficients of the actuator/propeller system in order to obtain the
tuning law.

However, note that if we want to use an adaptive robust sliding mode controller to deal
with unmatched uncertainties like wind forces in x and y direction (as seen in chapter 4),
it will have to be based on second order sliding mode algorithm where the tuning process

5.4. CONCLUSION 103

of the gain becomes more complex since the number of gains increases and these gains
need to be codependent to guarantee the stability of the system.

5.3.3 Computation time
The averages of the computation time of each FTC during an experiment (from t = 15s to
t = 45s) of the baseline controller for each FTC scheme are given in Table 5.11. It shows
that the STSMC and the Adaptive methods are more expensive than the Multiplexing
method in terms of computational complexity by a ratio of 1.5. This is certainly because
they involve online computation of the controller parameters while the Multiplexing
method just switch from one control law to another.

5.3.4 Health monitoring
An advantage of using active fault tolerance schemes (Multiplexing and STSMC) is
that we can know if the system is getting close to its fault tolerance limit since we are
monitoring the system health. This is not possible in the case of the Adaptative method,
and therefore it may not be as reliable in critical cases. Nevertheless, the Adaptive method
also adds more robustness to the system against external disturbances and does not need a
FDI mechanism. Note however than an added FDI mechanism to the Adaptative method,
even if not required, would allow to monitor the system’s health in the same way than the
two other methods.

5.4 Conclusion
Based on the experimental results we obtained, it can be concluded that the proposed
STSMC, the Multiplexing, and the Adaptive fault tolerant control strategies all allow a
coaxial octorotor to maintain stability after losing up to four motors.

Although the Multiplexing FTC scored the lowest position errors and time complexity,
it is not efficient in development cost as every possible fault scenario must be studied both
theoretically and experimentally to determine respectively the multiplexing parameters
of the control law and its gains. Meanwhile, the proposed STSMC can be considered
as a good intermediate alternative to both strategies, since it shows better performance
and faster response time compared to the Adaptive method and allows to monitor the the
system’s health with almost no added development cost. It can also be easily implemented
on a second order sliding mode controller to allow robustness against wind disturbances,
unlike the adaptive method that requires complex gains tuning.

104 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

FTC RMS ex (m) RMS ey (m) RMS ez (m)

STSMC 0.0835 0.0777 0.0453
Multiplexing 0.0621 0.0707 0.0448

Adaptive 0.0975 0.0882 0.0614

Table 5.7 – hovering flight Root Mean Square errors

FTC exmax (m) eymax (m) ezmax (m)

STSMC 0.222 0.151 0.143
Multiplexing 0.204 0.139 0.135

Adaptive 0.213 0.161 0.175

Table 5.8 – hovering flight Max errors

FTC RMS ex (m) RMS ey (m) RMS ez (m)

STSMC 0.0882 0.0909 0.0553
Multiplexing 0.0723 0.0798 0.049

Adaptive 0.0950 0.1009 0.0616

Table 5.9 – Square Trajectory flight Root Mean Square errors

FTC exmax (m) eymax (m) ezmax (m)

STSMC 0.224 0.249 0.155
Multiplexing 0.218 0.239 0.141

Adaptive 0.281 0.238 0.180

Table 5.10 – Square Trajectory flight Max errors

FTC CPU clock (s)

STSMC 0.110196
Multiplexing 0.075216

Adaptive 0.115344

Table 5.11 – Time complexity of each FTC method between t4 = 17s and t4 = 45s during an
experiment.

5.4. CONCLUSION 105

0 1 2 3 4 5 6 7 8 9 10 11
0.8

0.85

0.9

0.95

1

1.05

z
(m

)

median

mean

25%-75%

9%-10%

0 1 2 3 4 5 6 7 8 9 10 11
-0.4

-0.2

0

0.2

0.4

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11

case

-0.4

-0.2

0

0.2

0.4

e
y
(m

)

Figure 5.4 – Box and whisker plot for 10 trials of the Adaptive method after four successive
failures in hover flight, showing the altitude z(m), and position errors ex(m) and ey(m)
between t=17s and t=45s.

0 1 2 3 4 5 6 7 8 9 10 11
0.8

0.9

1

1.1

z
(m

)

median

mean

25%-75%

9%-10%

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11

case

-0.2

-0.1

0

0.1

0.2

e
y
(m

)

Figure 5.5 – Box and whisker plot for 10 trials of the Multiplexing method after four successive
failures in hover flight, showing the altitude z(m), and position errors ex(m) and ey(m)
between t=17s and t=45s.

106 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

0 1 2 3 4 5 6 7 8 9 10 11
0.8

0.9

1

1.1

z
(m

)

median

mean

25%-75%

9%-10%

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11

case

-0.2

-0.1

0

0.1

0.2

e
y
(m

)

Figure 5.6 – Box and whisker plot for 10 trials of the STSMC method after four successive failures
in hover flight, showing the altitude z(m), and positions x(m) and y(m) between t=17s
and t=45s.

0 1 2 3 4
0.8

0.85

0.9

0.95

1

1.05

z(
m

)

median

mean

25%-75%

9%-10%

STSMC AdaptiveMultiplexing

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

e x
(m

)

Multiplexing
STSMC

Adaptive

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

e y
 (

m
)

STSMC Multiplexing

Adaptive

Figure 5.7 – Box and whisker plot for means of each FTC scheme trials after four successive
failures in hover flight, showing the altitude z(m), and positions x(m) and y(m)
between t=17s and t=45s.

5.4. CONCLUSION 107

10 15 20 25 30 35 40 45 50
t (s)

0

0.2

0.4

0.6

0.8

1

1.2

z
(m

)

FI1 FI2 FI3 FI4

Adaptive
Multiplexing
STSMC

Fault
Isolation

Figure 5.8 – Behavior of 10 trials means of Adaptive, STSMC, and Multiplexing methods after
four successive failures injection to the top motors in hover flight

0 1 2 3 4 5 6 7 8 9 10 11
0.8

0.9

1

1.05

z
 (

m
)

median

mean

25%-75%

9%-10%

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11

case

-0.2

-0.1

0

0.1

0.2

e
y
(m

)

Figure 5.9 – Box and whisker plot for 10 trials of the Adaptive method after four successive
failures in square trajectory flight, showing the altitude z(m), and position errors ex(m)
and ey(m) between t=17s and t=45s.

108 CHAPTER 5. FTC STRATEGIES FOR SUCCESSIVE FAILURES IN AN OCTOROTOR UAV

0 1 2 3 4 5 6 7 8 9 10 11
0.9

0.95

1

1.05

z
 (

m
)

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
y
(m

)

Figure 5.10 – Box and whisker plot for 10 trials of the STSMC method after four successive
failures in square trajectory flight, showing the altitude z(m), and position errors
ex(m) and ey(m) between t=17s and t=45s.

0 1 2 3 4 5 6 7 8 9 10 11
0.9

0.95

1

1.05

z
 (

m
)

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
x
(m

)

0 1 2 3 4 5 6 7 8 9 10 11
-0.2

-0.1

0

0.1

0.2

e
y
(m

)

Figure 5.11 – Box and whisker plot for 10 trials of the Multiplexing method after four successive
failures in square trajectory flight, showing the altitude z(m), and position errors
ex(m) and ey(m) between t=17s and t=45s.

5.4. CONCLUSION 109

0 1 2 3 4
0.8

0.85

0.9

0.95

1

1.05

z
(m

)

median

mean

25%-75%

9%-10%

Multiplexing STSMC Adaptive

0 1 2 3 4
-0.2

-0.1

0

0.1

0.2
e x

 (
m

)
Multiplexing

STSMC Adaptive

0 1 2 3 4
-0.2

-0.1

0

0.1

0.2

e y
 (

m
)

Multiplexing STSMC Adaptive

Figure 5.12 – Box and whisker plot for means of each FTC scheme trials after four successive
failures in square trajectory flight, showing the altitude z(m), and position errors
ex(m) and ey(m) between t=17s and t=45s.

Figure 5.13 – Behavior of 10 trials means of Adaptive, STSMC, and Multiplexing methods after
four successive failures injection to the top motors in square trajectory flight in
ABCDA direction

Chapter 6

Fault tolerance strategy for a quadrotor
UAV under sensor and software faults

Contents

6.1 Fusion architectures . 112

6.2 Weighted Average Voting System . 113

6.3 Arducopter fusion architecture . 115

6.4 Enhanced data fusion architecture for tolerating sensor and soft-
ware faults . 118

6.5 Fault detection . 119

6.6 Recovery module . 121

6.7 Validation . 126

6.8 Conclusion . 141

In this chapter, we present a fault-tolerance architecture for perception targeting
sensors and software faults on an outdoor quadrotor UAV. This architecture extends the
duplication-comparison technique described in [19] which is introduced in section 1.8.2.2,
with the weighted average voting system proposed in [86]. This architecture uses data
fusion with Kalman filters in order to estimate the states (position and orientation) of the
UAV. Four main additions have been made between our proposed architecture and the one
proposed in [19]: (1) The first difference is that we add an analytical redundancy using the
dynamic model of the system (DM). (2) The second difference is that we use a weighted
average voter instead of a simple thresholding, which increases the accuracy of the outputs
and the error detection process. (3) The third difference is that we have multiple solutions
which can be applied to recover a faulty system and this increases the flexibility of our
architecture. (4) The fourth difference is that our architecture is experimentally validated
in real outdoor environment using a quadrotor.

This chapter is organized as follows: we first describe the different fusion archi-
tectures. Then we present the weighted average voting system for a triple modular
redundancy detailed in [86], which will also be used in our case as thresholding for error
detection. After that, we describe the data fusion architecture used in the Arducopter
flight stack. By briefly presenting the steps of the fusion algorithm and discussing
its advantages. As the Arducopter flight stack is vulnerable to software and hardware
faults, we propose our fault tolerance architecture for data fusion, which uses the voting

111

112 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.1 – Centralized fusion architecture

system, the redundancy based approach (Duplication/Comparison) described in [19] and
an analytical redundancy using the quadrotor’s equations of motions. Then, we consider
a case study on the quadrotor Tarot650 were we show the effectiveness of the proposed
strategy through simulations using mission planner and real experiments.

6.1 Fusion architectures
In a data fusion architecture, additional and complementary data are provided by different
sensors to a fusion node. This fusion node provides a more meaningful information about
the system states can be obtained by combining the received measurement data. Based
on the availability and the processing of the measurements, the authors in [21] proposed
that the fusion architectures can be divided into two categories, namely: centralized and
distributed fusion architectures. However, in this thesis, we propose a third category,
decentralized architecture, that the previous authors considered as part of the distributed
category.

6.1.1 Centralized fusion architecture
In a centralized fusion architecture, we find a central fusion node which receives directly
the raw data from multiple sensors. Then, the central fusion node computes the state
estimates and makes decisions as shown in Figure 6.1. Although, a sensor module may
pre-process the data before transmitting it to the central node, the term raw data is related
to the measurements or the pre-processed data without filtering or local fusion. Each
sensor provides its measurements to the central system where the data is filtered and
fused together. If the data is correctly aligned and consistent, then a theoretical optimal
solution to the state’s estimation can be obtained using the centralized fusion architecture.
However, various issues are raised in this architecture, such as the difficulty to adapt to
any change in the environment, the presence of a critical point as the central node (which
makes the system particularly vulnerable to failures), and a large computational load on
the central node.

6.1.2 Distributed fusion architecture
In a distributed fusion architecture, local state estimates are computed by each sensor node
through processing its sensor data. In most applications, the raw information are used to

6.2. WEIGHTED AVERAGE VOTING SYSTEM 113

Figure 6.2 – Distributed fusion architecture.

compute the state estimates of some quantity of interest in the form of the mean or the
covariance. These estimates are then communicated among sensor nodes to the central
node to form a global state estimate as depicted in Figure 6.2. Compared to a centralized
architecture, a distributed one solves the problems in a cooperative way. Furthermore,
local processing of the data means a lower processing load on each node due to the
distribution of the load, a flexibility to changes and possibly some fault tolerance if there
are redundant nodes or information.

6.1.3 Decentralized fusion architecture
Another fusion architecture is the decentralized one where nodes operate independently,
and share information with each other without any central fusion node. The main
difference with the distributed architecture resides in the fact that the decentralized
architecture lacks any central node, rather making each node computes some part of the
underlying system’s states and to cooperate with each other to share a more trusted view
of the whole system’s states.

6.1.4 Brief comparison between the fusion architectures
In general, the estimation from a centralized system is more precise than from decentral-
ized or distributed ones. However, a decentralized or distributed system is inherently more
robust and might be more fault tolerant. In our thesis, we will use this type to implement
our fault tolerant fusion architecture: as all the data is collected on a single system (the
UAV) most of the advantages of distributed systems would not apply.

6.2 Weighted Average Voting System
As seen in section 1.8.2.2, the fault tolerance architecture for perception proposed in [19]
uses redundant sensors blocks to produce diversified fusion outputs, and a voter to detect

114 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.3 – A 3-input weighted average voter.

errors and produce a unique output. However, the voter is a fairly common threshold
comparator that averages the output of the healthy sensors blocks and detects errors by a
thresholding comparison. We propose to use an updated version of this voter in order to
improve the system’s behavior in presence of faults prior to the error detection module,
by weighting the output of each sensors block with its consistency with the other’s.

Considering a redundant system using multiple diversified but functionally identical
modules operating in parallel, the weighted average voter [86] gives a weighted mean of
values obtained from the redundant modules. Given a set of inputs from three diversified
modules xm1, xm2, and xm3 for a particular cycle, the weighted average voter determines
first a numerical distance of input pairs: d12 = |xm1− xm2|, d13 = |xm1− xm3| and d23 =
|xm2− xm3|. Out of these values, the weighting values of individual inputs, wm1, wm2 and
wm3 are computed: a module’s result far from the other modules results would be assigned
a low weight. The weight values are then used to calculate a single value as the voter
output (Figure 6.3). We detail in the rest of this section how the weights and the final
output are obtained.

Voter implementation

In order to determine the consistency of all voter input pairs, the weighted average voter
uses the concept of the soft threshold [86]. For any voter input pairs i and j, the agreement
indicator si j is defined as follows:

si j =

1, if di j 6 a
(n

n−1)(1−
di j
na), if a < di j 6 na

0, if di j > na
(6.1)

where di j is the distance between the input pairs i and j, a is the fixed threshold of the
voter, and n is another positive tuneable thresholding parameter.

If the distance di j of input pairs is less than the threshold a, the agreement indicator
is si j = 1. This means that the measurements of the modules i and j are aligned and
consistent for the specific application. Oppositely, if the distance di j of input pairs is more
than the threshold n×a, then the agreement indicator becomes si j = 0, which means that
the measurements of the modules i and j are inconsistent. For input pairs with a distance
between a and n×a, the agreement indicator varies in the range [0,1] as shown in Figure
6.4.

6.3. ARDUCOPTER FUSION ARCHITECTURE 115

Figure 6.4 – Agreement indicator in function of the distance between input pairs.

After calculating the agreement indicator for each input pairs, the next step is to
calculate the weighted values wmi for each module i based on the following equation:

wmi =

k
∑

j=1, j 6=i
si j

k−1
(6.2)

where k is the number of diversified modules.
The voter output is calculated as follows:

y =

k
∑

i=1
xmi×wmi

k
∑

i=1
wmi

(6.3)

The tuneable parameter n has a significant impact on the behavior of the voter. In our
case, we will also use the voter as a detection error mechanism, considering that an error
is present in a sensor when an agreement indicator reaches zero. Thus, as n increases, the
chances of getting undetected errors increases, while when n tends to 1, the voter behaves
as a common voter with a fixed hard threshold value a, where the agreement indicator si j
is either 0 or 1, which increases the chances of getting false positives.

6.3 Arducopter fusion architecture
Before presenting our fault tolerant data fusion architecture in the next section, we present
here how data fusion is originally done on multicopters using the Arducopter flight stack.
The Arducopter flight stack uses an Extended Kalman Filter (EKF) algorithm in order
to identify the vehicle’s states (position, velocity and angular orientation) using the data
stream from multiple sensors (IMU, GPS, compass, barometer...). Data fusion enables to
achieve adequate performances and robustness despite the use of many low cost sensors,
and provides the following advantages:

116 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

• Reduction of sensor noise and errors.

• Complementary sensing modules and data can be combined to achieve robust
estimation. For example, the outliers of the GPS measurements are compensated
using the more stable measurements of the IMU.

In multirotors running Arducopter, data fusion is used to estimate a vector containing 23
system’s state’s variables:

• Quaternions (q0,q1,q2,q3,q4)

• Velocity (North,East,Down)

• Position (North,East,Down)

• Gyrometers bias offsets (X,Y,Z)

• Gyrometers scale factors (X,Y,Z)

• Z acceleration bias

• Earth magnetic field (North,East,Down)

• Body magnetic field (X,Y,Z)

The quaternions is an alternative representation to the Euler angles for representing
the attitude of an UAV. The Euler angles (roll, pitch and yaw angles) can be derived from
the quaternions. For further information about this topic please refer to [33]. The position
and velocity are estimated in the earth frame defined in section 2.2.1 in Chapter 2. For
more details about the remaining states, please refer to the Kalman filter section in the
official site of the Ardupilot 1.

The fusion algorithm detailed here has been retro-engineered from the filter equations
described in the source code of the Arducopter flight stack, more particularly from the
github repository 2 of Nov 3, 2016.

Note that, the availability of faster processors such as pixhawk and Navio has
enabled more complex mathematical algorithms such as the EKF3 to be implemented to
estimate the orientation, velocity and position of the flight vehicle. The sequential fusion
methodology in the Ardupilot’s EKF can also use measurements from sensors such as an
optical flow and range finders in order to assist the navigation process, which we didn’t
use on our UAV.

We present here a simplified non-mathematical description of the filter:

1. The IMU’s angular speeds are integrated to calculate the orientation of the UAV.

2. The IMU’s linear accelerations are converted using a rotation matrix from the body
frame to the earth frame. In the case of altitude acceleration the gravity is also taken
into account.

1https://ardupilot.org/dev/docs/ekf2-estimation-system.html
2https://github.com/priseborough/InertialNav/blob/master/derivations/

RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m

6.3. ARDUCOPTER FUSION ARCHITECTURE 117

3. The IMU’s converted linear accelerations from step 2 are integrated to calculate the
velocity.

4. The velocity obtained from the IMU during step 3 is integrated to calculate the
position.

The process (1 to 4) is referred as the State Prediction process in the Kalman filter.
The filter has other inputs (gyro and compass biases...) that change at a slower rate,
so they are not taken into account in this process but are used during the correction
phase in the next steps.

If we had a perfect initial and perfect IMU measurement, the filter could stop
here and keep repeating steps 1 to 4. However in practice, disturbances such as
sensor noises would lead the system to an unstable diverging state. For this reason,
the EKF algorithm uses data from other sensors (GPS, optical flow, barometer,
etc.) in order to correct the positions predicted by step 4 and to restabilize the
system. In the steps 6 to 7 the example of a GPS is given for correction of the
horizontal position, however the same principle applies to other measurement types
(barometric altitude, GPS velocity, etc)

5. The estimated gyro and accelerometer noises are calculated from the steps 1 to 4
and are then used to estimate the growth in error of the calculated position and
orientation. These estimated errors are found in the State Covariance Matrix (P in
Figure 1.7).

6. When a GPS measurement is available, the filter calculates the difference between
the predicted position from step 4 and the position from the GPS. This difference is
called an Innovation (Ŝk in equation (1.10)).

7. The Innovation from step 6, the State Covariance Matrix from step 5, and the
GPS measurement error specified by its variances (information given in the
specific sensor and usually given by the manufacturer) are combined to calculate
a correction to the state’s variables obtained from step 1 to step 4. This is referred
as a State Correction.

8. Since the correction has been made, the obtained values of the state’s variables are
more precise. The filter updates the states and the state covariances and returns to
step 1.

An illustration of the process is introduced in the Figure 6.5. As shown in this figure,
the EKF is a centralized fusion architecture, since the state estimates are computed in a
central fusion node which receives the raw data from all the onboard sensors. In order
to increase the robustness in case of multiple IMUs, the EKF performs a sanity check
on the raw data of the IMUs, where the health of each IMU is checked based on the
estimated covariance values of each sensors, then the IMU reporting the best measurement
is selected as the primary. It is thus used in steps 1 to 4 for state prediction and data fusion
as explained in the algorithm.

118 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.5 – Arducopter data fusion architecture.

6.4 Enhanced data fusion architecture for tolerating sen-
sor and software faults

Data fusion can be used to reduce sensor noise and errors and to achieve and optimize
a solution in case of multiple sensors. However, even though data fusion architectures
are robust to some temporary outliers (like sensor noises) they can not usually tolerate
prolonged sensor faults. They are also vulnerable to software faults, particularly on gains
or covariances in the data fusion mechanism.

In this section, we present our proposed data fusion architecture for tolerating sensors
and software faults which is based on duplication and comparison and was initially
proposed in [19]. We also use a redundant predictive block based on a mathematical model
of the UAV for both error detection and diagnosis and the weighted average voting system
presented in section 6.2. This architecture will be validated in section 6.7 on a real outdoor
UAV: the Tarot650 quadrotor.

The proposed fault tolerance architecture is shown in Figure 6.6. This architecture
provides detection and recovery services adapted to multi-sensor perception systems to
ensure their reliability and the safety of the UAV.

The main differences between our architecture (Figure 6.6) and the architecture
proposed in [19] are summarized as follows:

• Branches: in our architecture we proposed to add an analytical redundancy using
the dynamic model (DM) and the equations of motion of the UAV, whereas in [19],
all the branches are formed only using available hardware (sensors).

6.5. FAULT DETECTION 119

• Voter: in our architecture we used an average weighted voter to calculate the output
of the system, whereas in [19], a simple thresholding is used instead.

• Recovery: in our architecture, we propose several solutions to recover a faulty
system by altering the outputs of the sensor blocks, whereas in [19], the solutions
were limited to using the identified healthy branch.

• Validation: our architecture is validated in real outdoor flights, whereas the
architecture in [19] was only validated in an open loop using data sets from real
experiments.

In our generic architecture, we implement two parallel and independent perception
branches, each containing a data fusion block (here KF1 and KF2) that estimates the
state of the UAV from redundant and diversified sensor blocks. Each sensor block (SB1,
SB2, SB3 and SB4) may contain one or several sensors. In Figure 6.6, we consider that
the sensor blocks SB1 and SB3 contain functionally similar sensors measuring the same
state’s variables. Similarly, the sensor blocks SB2 and SB4 are functionally equivalent.
Note that more than two independent branches could be used if the required resources
and space are available, which ultimately would allow to tolerate more successive faults.
In the residuals generator block we calculate the residuals from the redundant sensors
data which represents the differences between the output of these redundant sensors.
Moreover, the dynamic model module in Figure 6.6 represents the analytic redundancy in
our architecture, where we use the equations of motion of the UAV and the control input
(thrust and torques) of the motors. The output of all the mentioned modules are then fed
into the final module which is called the software/hardware error detection, isolation and
recovery module.

This architecture can tolerate one or more successive hardware faults related to sensor
blocks (as long as we still have redundancies in functionally equivalent sensors) and
allows to tolerate a software fault related to the fusion blocks, under the assumption of no
simultaneous sensor’s failure.

6.5 Fault detection
We propose in this section an implementation example of our architecture with three
parallel branches, two of them executing a data fusion process and using each two sensor
blocks similarly to Figure 6.6. The first branch (SB1, SB2, KF1) combines the outputs
of sensor blocks SB1 and SB2 within the KF1 fusion block, the second branch (SB3,
SB4, KF2) combines the outputs of sensor blocks SB3 and SB4 at the KF2 fusion block,
and the third branch is the Dynamic model which uses the equations of motion of the
quadrotor UAV. For the sensor blocks (SB1, SB2) and (SB3, SB4), the outputs of each
component are compared with its redundant component: the outputs of SB1 are compared
with the output of SB3, while the outputs of SB2 are compared with the output of SB4.
Also, the outputs of the fusion blocks KF1 and KF2 and of the Dynamic model (DM) are
compared and combined using the weighted average voter. The comparison between the
fusion blocks allows to detect an error in the system, while the comparisons between the
sensor blocks are used to diagnose the detected error. In case of no fault in the system, the

120 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

output of the perception system is the same as the output of the voter which represents a
combined solution of the three estimations of the state vector. In the following we explain
the error detection and identification algorithm. Note that a third sensor branch could be
used instead (or additionally) to the Dynamic Model and could allow to tolerate more
hardware faults, but would obviously be more costly and limit the payload of the UAV.

Our architecture is made up of three modules (as shown in Figure 6.7). In the
following, we define each module the two modules used respectively for error detection
and identification:

1. Voter and error detection: The error detection is done by computing the values of
the agreement indicators si j of the outputs of the two fusion blocks KF1 and KF2,
and of the Dynamic model (DM). The indicators are computed using the equation
(6.1), where the indices 1, 2 and 3 represent respectively the outputs of KF1, KF2
and DM. When the indicator s12 goes to zero, this implies the occurrence of an
error in the system. This error is either due to a software fault of the data fusion
blocks KF1 and KF2, or to a hardware fault in one of the sensor blocks. Using
these agreement indicators, we can also identify the erroneous branch thanks to the
redundancy introduced by the DM. When s12 = 0, we compare the values of s13
and s23. If s13 = min(s13,s23), and |s13− s23|> ε (a threshold value delta), then the
error is in the first branch. If s23 =min(s13,s23) and |s13−s23|> ε , the error is in the
second branch. Finally, if |s13− s23| 6 ε , we can only conclude that the fault does
not yet affect the system sufficiently to be identified, and we will continue checking
this condition in the next cycles until we identify the erroneous branch.

In case where the indicators s13 and s23 go to zero with s12 = 1, this implies
that there is an error in the estimation of the DM. Such error can be due to high
uncertainties in the system, which can happen because of unusual environmental
conditions or divergence due the model imperfections. In this case, on possible
solution is to reset the output of the DM to the average value of the outputs of KF1
and KF2, under the assumption that no other fault impacts the sensors. We could
also remove the erroneous DM from the system, but we would then only be able
to detect hardware faults, and no longer tolerate them as we would be unable to
identify the correct branch.

2. Software/hardware error identification module: This module diagnoses the detected
error, and identifies whether it is a software fault in the data fusion process or a
hardware fault of a sensor block. In practice, the comparison of sensors outputs
allow us to determine whether the detected error is hardware or software, and
to identify the erroneous sensor in the case of a hardware fault. The residuals
are computed as the differences between the outputs of the redundant sensors
blocks (SB1/SB3 and SB2/SB4 in our implementation). If the output of a sensor
block deviates significantly from its redundant block then the system diagnoses a
hardware error on one of these two sensors. More precisely, a hardware error is
detected if the value of the residual ∆SB1,SB3 or ∆SB2,SB4 exceeds the values of the
fixed thresholds T h13 and T h24, which are depending on the application. If the
value of all residuals are below their corresponding threshold, a software error is
diagnosed either in KF1 or KF2. Note that if these thresholds were too high or too

6.6. RECOVERY MODULE 121

SB1

SB3

SB2

SB4

Dynamic model

KF1

KF2

Software/hardware
 error detection,

isolation
 and

recovery
module

Residuals generator

Sensor
Block

Data fusion
Block

Fault tolerance
Block

Figure 6.6 – Fault tolerance architecture using Duplication comparison and analytical redundancy

low, this may cause respectively absences of error detection or false positives. The
value of these thresholds are determined by taking into account the precision of the
onboard sensors. For example, for the low cost GPS l used in our Tarot650, a value
of 2 meters is acceptable. On the other hand, if the value of the residuals are below
the predefined thresholds, we diagnose a software error in one of the data fusion
blocks KF1 and KF2.

The operation of the fault tolerance algorithm is summarized in the algorithm 1 and
illustrated in Figures 6.8 and 6.9

6.6 Recovery module
Once the error in the system is detected on the voter level and isolated by the identification
module, an appropriate solution must be applied accordingly in order to re-stabilize the
perception system in case of hardware or software faults. In the following, some of the
possible solutions are presented.

6.6.1 Recovery for Hardware Fault
In the case of a hardware fault in component i of KF1, many solutions may be
implemented in order to reconfigure the system after the error detection and identification

122 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Algorithm 1: Fault detection and identification algorithm
Data: KF1,KF2: data fusion output
SB1,SB2,SB3,SB4: sensor blocks outputs
Constant: ε,T h24,T h13

1 begin
2 Calculate s12,s13,s23;
3 Calculate ∆SB1,SB3 and ∆SB2,SB4;
4 if s12 = 0 then
5 if |s13− s23|> ε then
6 if ∆SB1,SB3 > T h13 then
7 if s13 = min(s13,s23) then
8 /* error in SB1, apply adapted hardware recovery mechanism

*/
9 else

10 /*error in SB3, apply adapted hardware recovery mechanism
*/

11 else if ∆SB2,SB4 > T h24 then
12 if |s13− s23|> ε then
13 if s13 = min(s13,s23) then
14 /* error in SB2, apply adapted hardware recovery

mechanism */
15 else
16 /*error in SB4, apply adapted hardware recovery

mechanism */

17 else if s13 = min(s13,s23) then
18 /* error in KF1, apply adapted software recovery mechanism */

19 else
20 /* error in KF2, apply adapted software recovery mechanism */

21 else
22 /* cannot identify the faulty branch, keep running without

modifications */

23 else
24 /* No error detection, system healthy */

6.6. RECOVERY MODULE 123

KF1

KF2

Dynamic
model

Voter
Identification

module

Error detection

Residuals
generator

Software/hardware
Error identification

Recovery
module

Output

Fault tolerance Blocks

Software/Hardware error detection, isolation and recovery module

SB1, SB2, SB3, SB4

Figure 6.7 – Software/hardware error detection, isolation and recovery module

process. However, we identify two main solutions as follows:

• Sol 1: the first solution consists in removing the component i from KF1 and
replacing it with the equivalent component j from KF2. The newly defined block
KF3 (KF1 with component j) is then integrated into the voting mechanism along
with KF2 and DM. Henceforth, using this technique, it is possible to tolerate all
software faults and hardware faults except on component j which cannot be even
detected anymore. This is because if the component j become faulty, it will affect
KF2 and KF3 simultaneously, and by following the diagnostic logic of 1, we can
see that a fault in DM will be detected because it’s equivalent output will defer from
the coherent estimations of KF2 and KF3 and a false alarm will be reported by the
error detection process.

• Sol 2: the second solution consists in removing all the branch containing KF1
from the architecture and using only the remaining healthy branches KF2 and DM.
Moreover, the healthy components of KF1 as backup resources and keep comparing
their output with those of KF2. Henceforth, it is possible to detect all possible
faults although we can only tolerate the errors on the healthy components only (all
components except component j).

• Sol 3: the third solution consists in removing all the branch containing KF1
and replacing it by a virtual estimation branch KF3 where the output of KF3 is
the average of the outputs of KF2 and DM. This may increase the precision of

124 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Begin

KF2KF1

s
12

=0?

No Error
detected

 Error
detected

Apply recovery
mechanism

for KF1

Yes No

Identification
Module

KF1 Faulty

KF2 Faulty

Apply recovery
mechanism

for KF2

Figure 6.8 – Proposed data fusion architecture for tolerating sensors and software faults

6.6. RECOVERY MODULE 125

Figure 6.9 – Proposed data fusion architecture for tolerating sensors and software faults

the estimation in case of increasing uncertainties in the DM calculations due to
unmodeled effects. The same properties of sol 2 are available here, however the
detection time become greater in this case after a new fault in the system.

Note that if the hardware faults is in KF2, the same solutions mentioned above can
be applied by replacing KF1 by KF2 and vice-versa. Once the appropriate solution
for the intended application is selected, the recovery module could be easily designed
accordingly.

6.6.2 Recovery for Software Fault
In the case of software fault in KF1, again many solutions may be proposed in order to
reconfigure the system after the error detection and identification process. However, we
identify two main solutions as follows:

• Sol 1: the first solution consists in initializing a new data fusion block KF3 with
the current states values of the healthy block KF2. Also, the same code section of
the KF2 is used in order to perform the estimations in KF3, since no software fault
is yet activated in KF2. Henceforth, using this technique, it is possible to detect
and tolerate all hardware faults in the system although software faults cannot be
guaranteed to be detected anymore. This is because a new software fault may affect
the shared code section between KF2 and KF3 and thus leads to a simultaneously
distortion in both estimations, and by following the diagnostic logic of 1, we can see
that a fault in DM will be detected because it’s output will defer from the coherent
estimations of KF2 and KF3 and a false alarm will be reported by the error detection
module.

• Sol 2: the second solution consists in removing all the branch containing KF1
from the architecture and using only the remaining healthy branches KF2 and DM.

126 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Moreover, the healthy components of KF1 can be kept as backup resources to keep
comparing their output with those of KF2. Henceforth, it is possible to detect and
tolerate all the harware faults in the system, however we can only detect software
faults without the ability to tolerate them. It is also possible to identify a virtual
estimation branch KF3 by using the average of the outputs of KF2 and DM as
the output of KF3. This may increase the precision of the estimation in case of
increasing uncertainties in the DM calculations due to unmodeled effects.

• Sol 3: the third solution consists in initializing from the beginning a backup
data fusion process in parallel. The added data fusion core in the system is only
performing mathematical calculations without being integrated into the architecture
when running normally. Once a software fault in KF1 is detected, the data fusion
core in the memory is replaced by the backup core using the same components.
Using this solution, all the detecting and tolerance capacities in the system are
retained after the first software fault.

Again once the appropriate solution for the intended application is selected, the
recovery module could be easily designed accordingly.

6.7 Validation

To evaluate the proposed architecture for tolerating sensors and software faults developed
during this work, we have conducted the following experiments:

• A real outdoor flight test with hardware fault injection (additive fault of 5m in the x
and y direction) on the GPS1 during a U-path trajectory tracking

• A real outdoor flight test with hardware fault injection (additive fault of -1m) on the
Lidar used in KF1 during a hovering at 3m altitude

• A simulation of a flight with software altitude fault injection in KF1 during a
hovering at 3m altitude

• A simulation of a flight with software x,y fault injection in KF1 during a U-path
trajectory tracking

The real experiments were conducted using the Tarot 650 which is a commercial
hobby type quadrotor UAV. The implemented UAV using this frame is shown in Figure
6.10. The Tarot 650 is equipped with the Hex Cube Black (FMUv3). This is an updated
version of the Pixhawk controller which is an open-source and open-hardware autopilot
able to run the Arducopter flight stack used to build our software. This Cube has a
32-bit ARM Cortex M4 core processor with FPU with 168 Mhz/256 KB RAM/2 MB
Flash and a 32-bit failsafe co-processor. It also includes three redundant IMUs and two
redundant barometers. The Cube has been equipped with additional sensors, namely the
Lidar Lite v3, two GNSS modules and an RTK module used as the reference for the
position measurements to evaluate our experimental results.

6.7. VALIDATION 127

Figure 6.10 – Experimental Tarot 650 quadrotor

To our best knowledge, the model parameters of the TAROT 650 were not identified
elsewhere in the literature, and we couldn’t obtain these information from the manufac-
turers. Therefore, we had to estimate these constants using mesurement tool (numerical
balance for mass, and a meter for length) and analytical expressions for inertia values.
The Tarot 650 parameters are given in Table 6.1.

m Mass of the vehicle 1.7 kg
l Length of the arm 0.23 m

Ixx, Iyy Inertia 3.38∗10−2 Kg.m2

Izz Inertia 2.25∗10−2 Kg.m2

Table 6.1 – The TAROT 650 model’s parameters

All the simulations and experiment configurations were done using a ground control
station (Mission Planner) running the Arducopter flight stack. Note that the control law
used to control the UAV is a smooth second order sliding mode control law based on
the super-twisting algorithm proposed in [64]. It has been proven that this control law is
capable of stabilizing the UAV despite the existence of external perturbations due to wind
which increases the reliability of the sates estimations of the dynamic model.

6.7.1 Implementation of the fault tolerance architecture

The details of the implemented architecture are shown in Figure 6.11. In this application
we implement three parallel branches (B1, B2 and B3).

The first two branches B1 and B2 are the fusion blocks, each containing two sensors
blocks: SB1 and SB2 in B1, and SB3 and SB4 in B2. The first sensors blocks SB1 and
SB3 are the IMU blocks (IMU1 and IMU2), they are used to estimate the prediction of
the state vector. Each IMU contains the following sensors:

128 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

• A gyroscope (Gyro1 and Gyro2): it is used to measure the angular velocity of the
UAV in the body frame. The integration of this measure gives the attitude angles
(roll, pitch and yaw) of the UAV.

• An accelerometer (Acc1 and Acc2): it is used to measure the linear accelerations
of the UAV. The integration of this measure gives the linear velocity, and its double
integration gives the position of the UAV.

Each of the other two blocks SB2 and SB4 contains the following sensors:

• A GPS (GPS1 and GPS2): it is used to measure the absolute position of the UAV.

• A magnometer (Mag1 and Mag2): it is used to measure the heading (yaw) of the
UAV.

• A lidar (Lidar1): it is used to measure the altitude of the UAV.

Note that we only use one lidar in our experimental quadrotor. Of course we would
need another redundant lidar to tolerate faults on this sensor according to our architecture,
but we did not have the the second one on the UAV at the time of the experiments. In fact,
we intended first to use a barometer as a diversified sensor to the lidar, but its performances
were too poor in practice to use it.

A data fusion block combines the outputs of these sensors blocks in a Kalman filter
(KF1 for SB1 and SB2, and KF2 for SB3 and SB4). The sensors blocks SB2 and SB4 are
used in the correction step of the Kalman filter process, while the sensors blocks SB1 and
SB3 are used for the prediction step of the Kalman filter process. The third branch B3 is
the Dynamic Model block. In this block the state vector of the UAV is estimated using
the dynamic model of the vehicle and the relationships between the PWM inputs and the
generated thrust and torques that we identified on our UAV as follows:

Fi = (−1.4736u3
pwm +11.0691u2

pwm−16.7074upwm +7.3007)/100 (6.4)

τi = (−0.0905u3
pwm +0.4771u2

pwm−0.679upwm +0.3045)/100 (6.5)

The dynamic model that we use in this chapter is the model from (2.24), since the
experimental validations are done in an outdoor environment where wind perturbations
affect the UAV.

Finally, in order to test our architecture in real outdoor experiments, we need to
choose all the values of the thresholds used in the Residuals Generator block and the
minimum and maximum threshold’s parameters used in the voter module. The values that
we used were determined after conducting several real outdoor experiments in normal
conditions and are chosen empirically in order to prevent the occurrence of false alarms
and undetected errors. They are given in Tables 6.2 and 6.3. For example, in case of
hardware fault in one of the GPS modules, the residuals between the measured distances
d1 and d2 measured respectively by GPS1 and GPS2 will exceed the fixed threshold T H23
which can be found equal to 2 m from Table 6.3.

6.7. VALIDATION 129

Figure 6.11 – Proposed data fusion architecture for tolerating sensors and software faults

Estimated State a n
x 0.5 6
y 0.5 6
z 0.5 2
φ 1 3
θ 1 3
ψ 2 3

Table 6.2 – Tuneable parameters values for selecting the thresholds of the voter

Sensor Measured state Threshold Unit
GPS d 2 m

Magnetometer ψ 6 deg
Lidar z 1 m
IMU ẍ, ÿ 0.01 m/s2

Gyro φ̇ , θ̇ 0.1 deg/s

Table 6.3 – Thresholds values used in the Residual Generator block

130 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.12 – GPS additive fault: positions estimated by the two Kalman fi
lters, the dynamic model, the voter, and the ground truth given by a GPS RTK

6.7.2 Additive fault on GPS1
In this experiment, an additive fault of 5m in the x and y direction has been injected in
the first GPS (GPS1). The UAV is required to follow a U-path trajectory starting from the
initial point (x = 0,y = 0) to the destination point (x = 4,y =−3) as shown in Figure 6.12.
This is the case of a trajectory tracking case, where the desired positions and velocities
are time-dependent and the system is restricted to follow the U-path reference. Note that
the GPS RTK is chosen as ground truth because of its precision (1cm) when receiving
enough satellites data (four or more in our case).

The injected fault simulates an external fault such as a jump in the position provided
by the GPS due to bounces from one of the satellite signals. This fault is generally not
permanent, but it can occur for a significant period of time. Note that using the same type
of GPS would usually not tolerate this fault, as it has a common cause. However, using
diversified GPSs (such as Galileo, Glonass, or USA’s GPS) would allow to tolerate faults
due to a lack of satellites visibility in the constellation or signal rebounds. However some
common cause faults, such as signal obtrusions due to a tunnel or a dense forest, would
still be impossible to tolerate.

Between the instants tin j = 7s and tin jend = 15.8s, we added a 5 meter jump on the
xGPS1 and yGPS1 components, as described in (6.6).

xGPS1(tk) = xGPS1(tin j)+5
yGPS1(tk) = yGPS1(tin j)+5
for tk such as tin jend ≥ tk ≥ tin j

(6.6)

Figure 6.12 shows the UAV positions given by the different localization systems
during the first experiments: the ground truth as the output of the GPS RTK, the output
of the branches B1 and B2 as the Kalman filter blocks KF1 and KF2, the output of the
branch B3 given by the dynamic model, and the output of the perception component as the
result of the voter on the three branches. The additive fault injected to the system causes
the position estimated by KF1 to deviates significantly from all the other systems.

Figure 6.13 presents the agreement indicators of our voter during the experiment. We
can see that after the fault injection at t = 7s the agreement indicator between the two

6.7. VALIDATION 131

Figure 6.13 – GPS additive fault: the agreement indicators of the Euclidean distance of the first
and second Kalman filters and the model

Figure 6.14 – GPS additive fault: positions estimated by the two GPS, the dynamic model, the rtk
and the voter

Figure 6.15 – GPS additive fault: The residues of the x,y,d components between the first GPS and
the second GPS

132 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.16 – GPS additive fault: accelerations estimates by the two Accelerometers and their
corresponding residues

Kalman filter blocks sdKF1−dKF2 starts to fall down from sdKF1−dKF2 = 1 and reaches
sdKF1−dKF2 = 0 after 0.5s at tdet = 7.5s. A similar behavior can be seen for the agreement
indicator between KF1 and the dynamic model. The agreement indicator between KF2
and the model stays much higher during this period, although it drops from 1 to 0.5. This
is due to the value of KF1 affecting the output of the voter until the error detection, and
thus affecting the dynamic model that uses the voter’s output to calculate its next position.

Following Algorithm 1, when the agreement indicator sdKF1−dKF2 equals 0, we check
which one is the more consistent to the dynamic model. Figure 6.13 clearly shows from
the agreement indicators pertaining to the dynamic model that the erroneous one is KF1.
Thus, the erroneous branch is B1 which contains KF1.

After identifying the erroneous branch, the next step is to identify if the error is due to
a hardware or software fault. Thus we compare the outputs of the functionaly equivalent
sensors. Figure 6.14 shows the measured positions by GPS1 and GPS2, and for reference
by the ground truth. As shown in this figure, the positions of GPS1 and GPS2 are highly
different after the fault injection. Indeed, in Figure 6.15, we can see the residuals of the
measured x,y,d components by the two GPS. In particular, the distance d between the two
GPS exceeds the T HGPS = 2m threshold at tdet = 7.5s, thus a hardware fault is reported
at tdet = 7.5s. Note that after the fault injection on GPS1, some outliers appears in the
measurements of this sensor. In our opinion, we think that this is due to some corrections
which are done automatically in the Ardupilot since the autopilot is reporting unusual
output of the sensor which is not supposed to be unhealthy.

Since the detected error in our architecture involves the positions estimates, the
outputs of the Acc1 and Acc2 are also compared since they are also used to predict the
positions estimates in the Kalman Filter and could be another source of the error. Figure
6.16 shows the measured accelerations ẍ and ÿ measured by Acc1 and Acc2 and their
corresponding residues. It is clear that the values of the residues do not exceed the value
of the predefined threshold T hAcc = 0.01m/s2, thus the two Acc are reported as healthy

6.7. VALIDATION 133

Figure 6.17 – Lidar additive fault: The estimated altitudes by the two Kalman filters, the dynamic
model and the voter

sensors. Since we have already identified the first branch as the erroneous branch in the
previous step, we can conclude that the erroneous sensor is the first GPS (GPS1) in KF1.

Once the GPS1 is detected as the faulty sensor, the first branch is immediately
removed from the system and a new localization system KF3 is defined, where the
position estimated by KF3 is equal to the average of the position estimated by KF2 and
the Dynamic model. This recovery corresponds to the solution 3 in section 6.6.1. This
explains why the agreement indicators sdKF1−dKF2 and sdKF1−dmodel increases quickly
after the identification of the fault in Figure 6.13, since KF1 has been recovered. Note
that as we do not directly use the redundant sensors of SB1 and SB3, we can no longer
directly tolerate another fault. However, we can still compare the outputs of the IMU, the
lidars and the magnometers to detect hardware faults. We could also have used the other
recovery mechanism proposed in 6.6.1, by using GPS2 instead of GPS1 in KF1.

6.7.3 Additive fault on Lidar1
In this experiment, the quadrotor is required to perform a hovering flight at a 3 meters
altitude. In this experiment, the injected fault consists in adding a value of -1 meter to
the Lidar1 output used in KF1. Note that because of time constraints, as previously stated
in section 6.7.1, we only have one lidar on our UAV, which outputs are sent to both SB2
and SB4. To simulate a fault on a single Lidar, we thus only inject the fault on the data
received by SB2. There is no need for an additional ground truth in this experiment since
the precision of the Lidar Lite v3 equipped to the drone is below 15 cm, thus we consider
it as a ground truth. The estimated altitudes by the first and second Kalman filters (KF1
and KF2), the dynamic model and the voter are also depicted in Figure 6.17. As can be

134 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Figure 6.18 – Lidar additive fault: The agreement indicators of the altitude of the first and second
Kalman filters and the model

seen, the additive fault injected to the system causes the estimated altitude by KF1 to
deviate from all the other systems.

In Figure 6.18, it can be noticed that after the fault injection at tin j = 17.8s the
agreement indicator of the altitude between the two Kalman filter blocks szKF1−zKF2 starts
to fall down from szKF1−zKF2 = 1 and reaches szKF1−zKF2 = 0 after 1.7s at tdet = 19.5s. As
in the previous experiment, the agreement indicator between KF1 and the model behaves
in the same way. However, here the agreement indicator between KF2 and the model stays
at the maximum value of 1, probably because of a more conservative threshold value than
for the position, thanks to the better precision of the lidar compared to the GPS.

As described in algorithm 1, an error has been detected due to the value of szKF1−zKF2.
Figure 6.18 shows that the two agreement indicator on the model points to an error in the
branch B1.

After identifying the erroneous branch, the next step is to diagnose if the error is due
to a hardware or a software fault. Thus we compare the outputs of the Lidar used in KF1
and KF2 which are considered independent. Figure 6.19 shows the measured altitudes of
the Lidar zr1 and zr2 in KF1 and KF2 respectively, and their residues. We can see that
the residuals of the zr1 and zr2 exceeds the T Hrg = 1m threshold at tdet = 19.5s , thus a
hardware fault is reported at tdet = 19.5s. We do not need to compare other sensors results
here, as the lidar is the only sensor determining the altitude in our data fusion. Since we
have already identified that the first branch is the erroneous branch from the previous step,
we can conclude that the faulty sensor is the zr1 in KF1.

Once zr1 is detected as the faulty sensor, the first branch is immediately removed from
the system and a new localization system KF3 is defined, where the position estimated by

6.7. VALIDATION 135

Figure 6.19 – Lidar additive fault: The measured altitude and the residues of the Lidar’s output
used in KF1 and KF2

KF3 is equal to the average of the altitude estimated by KF1 and the Dynamic model. This
corresponds to solution 3 in section 6.6.1. This explains why the agreement indicators
szKF1−zKF2 and szKF1−zmodel increases quickly after the identification of the fault in Figure
6.18, since they no longer describe the difference between the faulty branch and the
other branches in the system. As in the previous experiment, this solution has the flaws
described in 6.6.1, and could have been replaced by the other method presented in the
same section.

6.7.4 Software altitude fault

To evaluate the proposed architecture for tolerating software faults developed during
this work, we present in this section the simulation results of a software fault injection
described in the following.

In order to validate our architecture against a software fault in the altitude estimation,
the altitude covariance term Pz is forced to a negative value of -0.1 starting from the
beginning of the flight simulation described in the following. In this simulation, the
quadrotor is required to perform a hovering flight at a 3 meters altitude. The estimated
altitudes by the first and second Kalman filters (KF1 and KF2), the dynamic model and
the voter are depicted in Figure 6.20. It can be noted that KF1 still gives an acceptable
behavior for more than 15 seconds even if the software fault is injected before the takeoff.
Indeed, development software faults are always present in the system.

This injected fault can corresponds to two real faults. First a development error in
the value of this term. This can corresponds to a programming error (an incorrect value
due to some mistakes from the programmers) or a design error. Indeed, the matrices P
and Q in Kalman filters have values that are not easy to determined and can thus be
designed incorrectly. Second, it can simulate the propagation of other software errors
during operation. Consider that the the effect of rounding errors on the state estimation

136 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

can be accounted for by calculation errors in the error covariance matrix P during the data
fusion mechanism in the Kalman filter. The longer the Kalman filter has been running and
the higher the iteration rate, the greater the distortion of the matrix become. The diagonal
terms of the covariance matrix represents the estimation uncertainties relative to each state
estimation and should always be positive in order to guarantee a stable estimation during
the data fusion positive. However, distortions due to other software errors in the system
could lead, the estimated covariance terms to become negative as in our injected fault,
which will cause divergence in the estimation process.

In Figure 6.21, we can see that the agreement indicator of the altitude between the
two Kalman filter blocks szKF1−zKF2 starts to fall down from szKF1−zKF2 = 1 and reaches
szKF1−zKF2 = 0 after 1.7s at tdet = 19s. As in the previous experiments, the agreement
indicator between KF1 and the model behaves in the same way. However, here the
agreement indicator between KF2 and the model stays at the maximum value of 1,
probably because of a more conservative threshold value than for the position due to
the reduced uncertainties in the simulation environment. These results are consistent with
the values of the residues between the branches presented in Figure 6.22, where only the
residues of KF1 exceed the predefined threshold value of 0.5 m, thus indicating a fault in
the first branch.

As described in algorithm 1, an error has been detected due to the value of szKF1−zKF2.
Figure 6.21 shows that the two agreement indicator on the model points to an error in the
branch B1.

After identifying the erroneous branch, the next step is to identify if the error is due to
a hardware or software fault. Thus we compare the outputs of the functionaly equivalent
sensors. Figure 6.23 shows the measured altitudes by the first and the second Lidar. As
shown in this figure, the altitude measurements of both Lidar show consistency during all
the flight time. Since we do not need to compare other sensor results here, as the Lidar is
the only sensor used to measure the altitude, this leads to the conclusion that no hardware
fault is present in the system. Thus, a software fault is confirmed in KF1.

Once KF1 is detected as the faulty block, it is immediately removed from the
system and a new localization system KF3 is defined, where the position estimated by
KF3 is equal to the average of the altitude estimated by KF1 and the dynamic model.
This is another alternative solution for those presented in section 6.6.2. This explains
why the agreement indicators szKF1−zKF2 and szKF1−zmodel increases quickly after the
identification of the fault in Figure 6.21, since they no longer describe the difference
between the faulty branch and the other branches in the system. As in the previous
experiment, this solution has the flaws described in 6.6.2, and could have been replaced
by the other method presented in the same section.

6.7.5 Software position fault
In order to validate our architecture against a software fault in the position estimation,the
position covariances terms Px and Py are forced to a small negative value of -0.01 starting
from the beginning of the flight simulation described in the following. In this simulation,
The UAV is required to follow a U-path trajectory starting from the initial point (x =
0,y = 0) to the destination point (x = 26,y = 5). The estimated positions by the first and
second Kalman filters (KF1 and KF2), the dynamic model and the voter are depicted in

6.7. VALIDATION 137

5 10 15 20 25 30 35
t(s)

-5

0

5

z(
m

)

 zkf1
zkf2
zmod
zvot

Figure 6.20 – Software fault: altitude estimated by the two Kalman filters, the dynamic model and
the voter

5 10 15 20 25 30 35
t(s)

0

0.5

1
 s

zKF1-zKF2

5 10 15 20 25 30 35
t(s)

0

0.5

1
 s

zKF1-zmodel

5 10 15 20 25 30 35
t(s)

0

0.5

1
 s

zKF2-zmodel

Figure 6.21 – Software fault: the agreement indicators of the altitude of the first and second
Kalman filters and the model

138 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

5 10 15 20 25 30 35
t(s)

-5
0
5

 res-zKF1-zKF2

5 10 15 20 25 30 35
t(s)

-5
0
5

res-zKF1-zmodel

5 10 15 20 25 30 35
t(s)

-5
0
5

res-zKF2-zmodel

Figure 6.22 – Software fault: the residues of the altitude estimations between KF1; KF2 and the
DM

5 10 15 20 25 30 35
t(s)

0
1
2
3
4
5

z(
m

)

 zr1
zr2

5 10 15 20 25 30 35
t(s)

-1

0

1

z(
m

)

 Res-zr1-zr2

Figure 6.23 – Software fault: The residues of the z components between the first simulated Lidar
and the second simulated Lidar

6.7. VALIDATION 139

-5 0 5 10 15 20 25 30
x(m)

-5

0

5

10

15

20

25
y(

m
)

 KF1
KF2
model
voter
ref

Start

Figure 6.24 – Software fault: positions estimated by the two Kalman fi
lters, the dynamic model, the voter

Figure 6.24. It can be noted that KF1 still gives an acceptable behavior for more than
32.5 seconds even if the software fault is injected before the takeoff. Indeed, development
software faults are always present in the system.

In Figure 6.26, we can see that the agreement indicator of the Euclidean distance
between the two Kalman filter blocks sdKF1−dKF2 starts to fall down from sdKF1−dKF2 = 1
and reaches sdKF1−dKF2 = 0 after 18s at tdet = 32.5s. As in the previous experiments, the
agreement indicator between KF1 and the model behaves in the same way. However, here
the agreement indicator between KF2 and the model stays at the maximum value of 1,
probably because of a more conservative threshold value than for the position due to the
reduced uncertainties in the simulation environment.

As described in algorithm 1, an error has been detected due to the value of sdKF1−dKF2.
Figure 6.26 shows that the two agreement indicator on the model points to an error in the
branch B1.

After identifying the erroneous branch, the next step is to identify if the error is due to
a hardware or software fault. Thus we compare the outputs of the functionaly equivalent
sensors. The Figures 6.25 and 6.27 shows that the sensors contributing in the estimation
of the position (Acc1 & Acc2 for the prediction step and GPS1 & GPS2 for the correction
step in the Data fusion process) show consistency during all the flight time. Thus, a
software fault is confirmed in KF1.

Once KF1 is detected as the faulty block, it is immediately removed from the system
and a new localization system KF3 is defined, where the position estimated by KF3 is
equal to the average of the altitude estimated by KF1 and the dynamic model. This
explains why the agreement indicators sdKF1−dKF2 and sdKF1−dmodel increases quickly
after the identification of the fault in Figure 6.26, since they no longer describe the
difference between the faulty branch and the other branches in the system.

140 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

0 10 20 30 40
t (s)

-0.01

0

0.01

0 10 20 30 40
t (s)

-0.01

0

0.01

0 10 20 30 40
t (s)

-0.4

-0.2

0 Acc1
Acc2

0 10 20 30 40
t (s)

-0.4

-0.2

0

0.2

Acc1
Acc2

Figure 6.25 – Software fault: accelerations estimates by the two Accelerometers and their corre-
sponding residues

0 5 10 15 20 25 30 35 40 45
t(s)

0

0.5

1
 s

dKF1-dKF2

0 5 10 15 20 25 30 35 40 45
t(s)

0

0.5

1
 s

dKF1-dmodel

0 5 10 15 20 25 30 35 40 45
t(s)

0

0.5

1
 s

dKF2-dmodel

Figure 6.26 – Software fault: the agreement indicators of the Euclidean distance of the first and
second Kalman filters and the DM

6.8. CONCLUSION 141

0 5 10 15 20 25 30 35 40 45
t(s)

-5

0

5
d(

m
)

res-d-GPS1-GPS2

Figure 6.27 – Software fault: The residues of the Euclidean distance measured by the first GPS
and the second GPS

6.8 Conclusion
In this paper, we have presented our proposed data fusion architecture for tolerating
sensors and software faults which is based on duplication and comparison and was
initially proposed in [19]. Four main differences exist between our proposed architecture
and the one proposed in [19]: (1) The first difference is that we propose to add an
analytical redundancy using the dynamic model (DM). (2) The second difference is that
we use a weighted average voter instead of a simple thresholding, which increases the
accuracy of the outputs and the error detection process. (3) The third difference is that
we have multiple solutions which can be applied to recover a faulty system, increasing
the flexibility of our architecture. (4) The fourth difference is that our architecture is
experimentally validated in real outdoor environment using a quadrotor. The experiments
show that our architecture is able to deal with hardware faults during real flights, and
software faults during simulations.

For perspectives, such redundancy in the proposed architecture could also be exploited
to tolerate faults in the dynamic model block using the diversity of data fusion. If the data
of diversified sensors measuring a state are consistent and the estimation of the same state
using the dynamic model is not coherent with the sensors data, thus we need to reset the
output of the dynamic model to one of the sensors measurements or to their average.
Such scenario can occurs when the uncertainties on the equation of motions become
significant due to external perturbations or aggressive maneuvers. It is also interesting to
test the effectiveness of the architecture regarding successive and simultaneous hardware
or software or mixed faults in the system. This way the proposed solutions for the recovery
may be analyzed further more in terms of robustness and sensitivity to different conditions
of faulty situations. Also, another interesting topic is to apply this architecture to different
robotics systems such as rovers and plans where other types of hardware and software
faults can be tested.

Conclusions and Outlook

In this final section, we first summarize the contributions concerning the wind force
compensation strategy for a quadrotor, the fault-tolerant control strategy for a coaxial
octorotor regarding motor failures based on a self-tuning sliding mode control (STSMC)
and the fault-tolerant architecture for perception targeting sensors and software faults
based on duplication-comparison and a weighted average voting system. We then suggest
possible improvements upon our work and topics for future studies.

Conclusions
Many research studies on robustness against external wind perturbations and fault-tolerant
control of unmanned aerial vehicles have been developed in the literature. However,
only some of them are applied to real UAV systems during flights. Moreover, most
researchers working on UAVs assume that robust controllers are sufficient to deal with
wind perturbations, which we found not true from our experiments, apart from the
adaptive technique. However this adaptive technique requires second order control laws
to tolerate wind perturbations as matched uncertainties, and these control laws are hard
to design and to tune. Also, in order to maintain complete control on the UAV in the
case of one or more motor failures, to our knowledge, the only solution is to consider
multirotors with redundant actuators, which adds the possibility of tolerating multiple
failures without losing complete controllability unlike the case of a quadrotor. However,
due to the increasing number of sensors and the underlying data fusion mechanisms in
UAVs, the risk of software and hardware faults increases, in terms of sensor failures and
processing failures. Hence, there is a need to apply a fault tolerant strategy to overcome
these issues and detect any failures, and to ensure more reliable performance outcomes
with respect to autonomous systems.

In this thesis, we present the design and implementation of a wind force compensation
strategy for a quadrotor. This strategy relies on a second-order sliding mode controller
based on the super twisting algorithm (STA) with a nonlinear observer. The STA con-
troller ensures robustness to matched external disturbances and time varying, parametric
and nonlinear uncertainties. Also, to extend the robustness of the controller against wind
perturbation, we propose the integration of a wind observer in the closed-loop system.
This estimation allows a better monitoring of the system’s status than passive robustness,
providing the opportunity for a recovery procedure such as an emergency landing when
the external perturbations become too strong for the system. The effectiveness of the
proposed strategy is compared to an adaptive gain controller through simulations and
validated in real experiments on the DJIS500 quadrotor.

143

144 CHAPTER 6. FAULT TOLERANCE STRATEGY FOR A QUADROTOR UAV UNDER SENSOR
AND SOFTWARE FAULTS

Regarding motor failures, three fault-tolerant control (FTC) strategies for a coaxial
octorotor UAV were presented. The first FTC is based on a control mixing (Multiplexing)
strategy which consists of a set of control laws designed offline, each one is dedicated
to a specific fault situation. In the second FTC, a robust adaptive sliding mode control
allocation is presented, where the control gains of the controller are adjusted online in
order to redistribute the control signals among the healthy motors in order to stabilize
the overall system. The third FTC strategy is a new strategy proposed in this thesis,
which is based on a self-tuning sliding mode control (STSMC) where the control gains
are readjusted from the detected error to maintain the stability of the system. Multiple
indoor experiments on an octorotor UAV are conducted to show and compare the
effectiveness and the behavior of each FTC scheme after the injection of successive faults.
Based on the experimental results we obtained, it can be concluded that the proposed
STSMC, the Multiplexing, and the Adaptive fault tolerant control strategies all allow
a coaxial octorotor to maintain stability after losing up to four motors. Although the
Multiplexing FTC scored the lowest position errors and time complexity, it is not efficient
in development cost as every possible fault scenario must be studied both theoretically and
experimentally to determine respectively the multiplexing parameters of the control law
and its gains. Meanwhile, the proposed STSMC can be considered as a good intermediate
alternative to both strategies, since it shows better performance and faster response time
compared to the Adaptive method and allows to monitor the system’s health with almost
no added development cost. It can also be easily implemented to allow robustness against
wind disturbances, unlike the adaptive method that requires complex gains tuning.

Finally, since the open source Arducopter flight stack is vulnerable to software and
hardware faults, we present our proposed fault tolerance architecture for data fusion,
which uses a voting system, a redundancy based approach (Duplication/Comparison)
and an analytical redundancy using the equations of motions. Then, we present the
fault detection, identification and recovery services proposed in our architecture, and we
present a case study on the quadrotor Tarot650. Our proposed data fusion architecture
for tolerating sensors and software faults is based on duplication and comparison and
was initially proposed in [19]. We also use a redundant predictive block based on a
mathematical model of the UAV for both error detection and diagnostic and the weighted
average voting system. Four main additions have been made between our proposed
architecture and the one proposed in [19]: (1) The first difference is that we add an
analytical redundancy using the dynamic model of the system (DM). (2) The second
difference is that we use a weighted average voter instead of a simple thresholding,
which increases the accuracy of the outputs and the error detection process. (3) The third
difference is that we have multiple solutions which can be applied to recover a faulty
system and this increases the flexibility of our architecture. (4) The fourth difference
is that our architecture is experimentally validated in real outdoor environment using a
quadrotor. The experiments shows that our architecture is able to deal with hardware
faults during real flights, however it would be also interesting to test the effectiveness of
this architecture in handling software faults as well. The effectiveness of the proposed
strategy is shown through real outdoor experiments using the Tarot650.

Conclusions and Outlook 145

Perspectives
In the following, we present some potential future research prospects in continuation of
this thesis:

• Wind compensation: In our work regarding wind-tolerant strategy, we compared
our strategy with an adaptative controller through simulations. In both cases, our
proposed method gave better results although the adaptive method also gives
very good results in simulations. It is however very hard to implement in real
experiments as it has numerous interdependent gains to tune. It would be interesting
to compare the behavior of both methods in real experimental flights.

Also, supplementary tests and improvements are needed to completely validate this
method: we only tested its effectiveness against moderate wind (up to 0.2 N), and
we need to experiment in more aggressive environment where wind force can reach
up to several newtons.

• Fault tolerance under motors failures: It would be interesting to consider partial
faults and simultaneous faults/failures to conduct better analyses and to study more
extensively the advantages of each FTC strategy. Conducting the same experiments
outdoor by adding the wind compensation strategy would be very interesting. Also,
the baseline sliding mode controller could be replaced by the finite-time sliding
mode controller in the FTCs strategies in order to study how it improves the
system’s stability during recovery.

• Fault tolerance under sensor and software faults: The number of experiments
we have carried out are not representative of all the faults that our system may
encounter, although we believe that the injected faults represents realistic faults
that our localization system may face. Moreover, our execution context is only one
example of a data fusion application in the robotics field, it would be interesting
to adapt our fault tolerance mechanisms for other types of applications such as
obstacle detection and object tracking.

Bibliography

[1] A.Freddi, S. Longhi, and A. Monteri. Actuator fault detection system for a mini-
quadrotor. In International Symposuim on Industrial Electronics (ISIE), pages
2055–2060, July 2010.

[2] A Pedro Aguiar and Joao P Hespanha. Trajectory-tracking and path-following of
underactuated autonomous vehicles with parametric modeling uncertainty. IEEE
transactions on automatic control, 52(8):1362–1379, 2007.

[3] H. Aguilar-Sierra, G. Flores, S. Salazar, and R. Lozano. Fault estimation for a
quad-rotor mav using a polynomial observer. Journal of Intelligent and Robotic
Systems, 73(1):455–468, 2014.

[4] Abdelouahab Aitouche and Belkacem Ould-Bouamama. Sensor location with
respect to fault tolerance properties. International Journal of Automation and
Control, 4(3):298–316, 2010.

[5] Joelle Al Hage, Maan E El Najjar, and Denis Pomorski. Multi-sensor fusion ap-
proach with fault detection and exclusion based on the kullback–leibler divergence:
Application on collaborative multi-robot system. Information Fusion, 37:61–76,
2017.

[6] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. Experimental model
predictive attitude tracking control of a quadrotor helicopter subject to wind-gusts.
18th Mediterranean Conference on Control & Automation (MED), pages 1461–
1466, 2010.

[7] Abdel Ilah Nour Alshbatat, Liang Dong, and Peter James Vial. Controlling an
unmanned quad-rotor aerial vehicle with model parameter uncertainty and actuator
failure. International Journal of Intelligent Systems Technologies and Applications,
15(4):295–322, 2016.

[8] H. Alwi and C. Edwards. Fault tolerant control of an octorotor using lpv based
sliding mode control allocation. In IEEE American Control Conference (ACC),
pages 6505–6510, June 2013.

147

148 Bibliography

[9] H. Alwi and C. Edwards. Lpv sliding mode fault tolerant control of an octorotor
using fixed control allocation. In Conference on Control and Fault-Tolerant
Systems (SysTol), pages 772–777, October 2013.

[10] H. Alwi and C. Edwards. Sliding mode fault-tolerant control of an octorotor using
linear parameter varying-based schemes. IET Control Theory and Applications,
9(4):618–636, 2015.

[11] Halim Alwi and Christopher Edwards. Sliding mode fault-tolerant control of an
octorotor using linear parameter varying-based schemes. IET Control Theory &
Applications, 9:618–636, 2015.

[12] Halim Alwi, Christopher Edwards, and Chee Pin Tan. Fault detection and fault-
tolerant control using sliding modes. Springer Science & Business Media, 2011.

[13] Roohul Amin, Li Aijun, and Shahaboddin Shamshirband. A review of quadrotor
uav: control methodologies and performance evaluation. International Journal of
Automation and Control, 10(2):87–103, 2016.

[14] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004.

[15] Remus C Avram, Xiaodong Zhang, and Jonathan Muse. Nonlinear adaptive fault-
tolerant quadrotor altitude and attitude tracking with multiple actuator faults. IEEE
Transactions on Control Systems Technology, 26:701–707, 2018.

[16] Ahmad Taher Azar and Quanmin Zhu. Advances and applications in sliding mode
control systems. Springer, 2015.

[17] Andrea Bacciotti and Lionel Rosier. Liapunov functions and stability in control
theory. Springer, Lecture Notes in Control and Information Sciences, 2001.

[18] Kaci Bader. Tolérance aux fautes pour la perception multi-capteurs : application
à la localisation d’un véhicule intelligent. PhD thesis, University of technology of
Compiegne, 2014.

[19] Kaci Bader, Benjamin Lussier, and Walter SchÃűn. A fault tolerant architecture
for data fusion: A real application of kalman filters for mobile robot localization.
Robotics and Autonomous Systems, 88:11 – 23, 2017.

[20] Hamed Badihi, Youmin Zhang, and Henry Hong. Fuzzy gain-scheduled active
fault-tolerant control of a wind turbine. Journal of the Franklin Institute,
351(7):3677–3706, 2014.

Bibliography 149

[21] Muhammad Abu Bakr and Sukhan Lee. Distributed multisensor data fusion under
unknown correlation and data inconsistency. Sensors, 17(11):2472, 2017.

[22] A Baldini, R Felicetti, A Freddi, S Longhi, and A Monteriù. Octarotor fault tolerant
control via dynamic surface control. In IEEE 18th European Control Conference
(ECC), pages 3892–3897, 2019.

[23] Richard E Bellman. Adaptive control processes: a guided tour, volume 2045.
Princeton university press, 2015.

[24] Denis Berdjag, Jérôme Cieslak, and Ali Zolghadri. Fault detection and isolation
of aircraft air data/inertial system. Progress in Flight Dynamics, Guidance,
Navigation, Control, Fault Detection, and Avionics, 6:317–332, 2013.

[25] Sanjay P Bhat and Dennis S Bernstein. Finite-time stability of continuous
autonomous systems. SIAM Journal on Control and Optimization, 38(3):751–766,
2000.

[26] Isabelle Bloch, Anthony Hunter, Alain Appriou, André Ayoun, Salem Benferhat,
Philippe Besnard, Laurence Cholvy, Roger Cooke, Frédéric Cuppens, and Didier
Dubois. Fusion: General concepts and characteristics. International journal of
intelligent systems, 16(10):1107–1134, 2001.

[27] Jovan Boskovic and Raman Mehra. A multiple model-based reconfigurable flight
control system design. In Proceedings of the 37th IEEE Conference on Decision
and Control, volume 4, pages 4503–4508, 1998.

[28] Jovan Boskovic, Ssu-Hsin Yu, and Raman Mehra. Stable adaptive fault-tolerant
control of overactuated aircraft using multiple models, switching and tuning. In
Guidance, Navigation, and Control Conference and Exhibit, pages 739–749, 1998.

[29] Henrik Boström, Sten F Andler, Marcus Brohede, Ronnie Johansson, Alexander
Karlsson, Joeri Van Laere, Lars Niklasson, Marie Nilsson, Anne Persson, and Tom
Ziemke. On the definition of information fusion as a field of research. Informatics
Research Centre, University of Skovde, 2007.

[30] S. Bouabdallah. Design and Control of Quadrotors With Application to Au-
tonomous Flying. PhD thesis, Ecole Polytechnique Federale de Lausanne, 2007.

[31] Tammaso Bresciani. Modelling, identification and control of a quadrotor heli-
copter. PhD thesis, Lund University, 2008.

[32] David Cabecinhas, Rita Cunha, and Carlos Silvestre. A globally stabilizing
path following controller for rotorcraft with wind disturbance rejection. IEEE
Transactions on Control Systems Technology, 23(2):708–714, 2014.

150 Bibliography

[33] Jossué Carino, Hernan Abaunza, and P Castillo. Quadrotor quaternion control.
In IEEE International Conference on Unmanned Aircraft Systems (ICUAS), pages
825–831, 2015.

[34] A. Chamseddine, Y. Zhang, C.-A. Rabbath, J. Apkarian, and C. Fulford. Model
reference adaptive fault tolerant control of a quadrotor uav. In AIAA In-
fotech@Aerospace, March 2011.

[35] Abbas Chamseddine, Didier Theilliol, YM Zhang, Cédric Join, and Camille-Alain
Rabbath. Active fault-tolerant control system design with trajectory re-planning
against actuator faults and saturation: Application to a quadrotor unmanned aerial
vehicle. International Journal of Adaptive Control and Signal Processing, 29(1):1–
23, 2015.

[36] Fuyang Chen, Rongqiang Jiang, Kangkang Zhang, Bin Jiang, and Gang Tao.
Robust backstepping sliding-mode control and observer-based fault estimation for
a quadrotor uav. IEEE Transactions on Industrial Electronics, 63(8):5044–5056,
2016.

[37] Fuyang Chen, Qingbo Wu, Bin Jiang, and Gang Tao. A reconfiguration scheme
for quadrotor helicopter via simple adaptive control and quantum logic. IEEE
Transactions on Industrial Electronics, 62(7):4328–4335, 2015.

[38] M. Chen, Y. Hwang, and M. Tomizuka. A state-dependent boundary layer design
for sliding mode control. IEEE Transactions On Automatic Control, 47(10):1677–
1681, 2002.

[39] Ran Chen, Zhihua Zhang, Ping Zhang, and Michael Mangold. Fault tolerant control
for hexacopter with reducing yaw rate. In IEEE 4th Conference on Control and
Fault Tolerant Systems (SysTol), pages 171–176, 2019.

[40] Yong Chen and Bin Guo. Sliding mode fault tolerant tracking control for a single-
link flexible joint manipulator system. IEEE Access, 7:83046–83057, 2019.

[41] Byoung-Suk Choi and Ju-Jang Lee. The position estimation of mobile robot
under dynamic environment. In IECON Annual Conference of the IEEE Industrial
Electronics Society, pages 134–138, 2007.

[42] P Cominos and N Munro. Pid controllers: recent tuning methods and design to
specification. IET Control Theory and Applications, 149(1):46–53, 2002.

[43] Ren Da and Ching-Fang Lin. A new failure detection approach and its application
to gps autonomous integrity monitoring. IEEE transactions on Aerospace and
Electronic Systems, 31(1):499–506, 1995.

Bibliography 151

[44] Samar Dajani-Brown, Darren Cofer, Gary Hartmann, and Steve Pratt. Formal
modeling and analysis of an avionics triplex sensor voter. In International SPIN
Workshop on Model Checking of Software, pages 34–48. Springer, 2003.

[45] J. Davila, L. Fridman, and A. Levant. Second-order sliding-mode observer for
mechanical systems. IEEE Transactions On Automatic Control, 50(11):1785–
1789, 2005.

[46] Diego Del Gobbo, Marcello Napolitano, Parviz Famouri, and Mario Innocenti.
Experimental application of extended kalman filtering for sensor validation. IEEE
Transactions on control systems technology, 9(2):376–380, 2001.

[47] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte carlo
localization for mobile robots. ICRA, 2:1322–1328, 1999.

[48] Arthur P Dempster. Upper and lower probabilities induced by a multivalued
mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions,
pages 57–72. Springer, 2008.

[49] L. Derafa, A. Benallegue, and L. Fridman. Super twisting control algorithm for
the attitude tracking of a four rotors UAV. Journal of the Franklin Institute,
349(2):685–699, 2012.

[50] L. Derafa, A. Benallegue, and L. Fridman. Super twisting control algorithm for the
attitude tracking of a four rotors uav. Journal of Franklin Institute, 349(2):685–699,
2012.

[51] Wei Dong, Guo-Ying Gu, Xiangyang Zhu, and Han Ding. High-performance
trajectory tracking control of a quadrotor with disturbance observer. Sensors and
Actuators A: Physical, 211:67–77, 2014.

[52] Rajamani Doraiswami and Lahouari Cheded. A unified approach to detection
and isolation of parametric faults using a kalman filter residual-based approach.
Journal of the Franklin Institute, 350(5):938–965, 2013.

[53] Guang-Xun Du, Quan Quan, and Kai-Yuan Cai. Controllability analysis and
degraded control for a class of hexacopters subject to rotor failures. Journal of
Intelligent and Robotic Systems, 78(1):143–157, 2015.

[54] Didier Dubois and Henri Prade. Possibility theory and data fusion in poorly
informed environments. Control Engineering Practice, 2(5):811–823, 1994.

[55] Didier Dubois and Henri Prade. Possibility theory. Springer, 2012.

152 Bibliography

[56] Guy A Dumont and Mihai Huzmezan. Concepts, methods and techniques in
adaptive control. In IEEE American control conference, volume 2, pages 1137–
1150, 2002.

[57] J. Escareño, S. Salazar, H. Romero, and R. Lozano. Trajectory control of a
quadrotor subject to 2d wind disturbances. Journal of Intelligent & Robotic
Systems, 70(1-4):51–63, 2013.

[58] Ramsey Faragher et al. Understanding the basis of the kalman filter via a simple
and intuitive derivation. IEEE Signal processing magazine, 29(5):128–132, 2012.

[59] Leonie Freeston. Applications of the kalman filter algorithm to robot localisation
and world modelling. Electrical Engineering Final Year Project, 2002.

[60] Murali Gopinathan, Jovan D Boskovic, Raman K Mehra, and Constantino Rago.
A multiple model predictive scheme for fault-tolerant flight control design. In
Proceedings of the 37th IEEE Conference on Decision and Control, volume 2,
pages 1376–1381, 1998.

[61] Chingiz Hajiyev and Halil Ersin Soken. Robust adaptive kalman filter for
estimation of uav dynamics in the presence of sensor/actuator faults. Aerospace
Science and Technology, 28(1):376–383, 2013.

[62] David L Hall and James Llinas. An introduction to multisensor data fusion.
Proceedings of the IEEE, 85(1):6–23, 1997.

[63] David Lee Hall and Sonya AH McMullen. Mathematical techniques in multisensor
data fusion. Artech House, 2004.

[64] Hussein Hamadi, Benjamin Lussier, Isabelle Fantoni, Clovis Francis, and Hassan
Shraim. Observer-based super twisting controller robust to wind perturbation for
multirotor uav. pages 397–405, 2019.

[65] Ola Härkegård. Backstepping and control allocation with applications to flight
control. PhD thesis, Linköpings university, 2003.

[66] E Pulido Herrera, Hannes Kaufmann, J Secue, Ricardo Quirós, and Germán
Fabregat. Improving data fusion in personal positioning systems for outdoor
environments. Information Fusion, 14(1):45–56, 2013.

[67] Haomiao Huang, Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin.
Aerodynamics and control of autonomous quadrotor helicopters in aggressive
maneuvering. IEEE International Conference on Robotics and Automation (ICRA),
pages 3277–3282, 2009.

Bibliography 153

[68] Sunan Huang, Kok Kiong Tan, and Tong Heng Lee. Fault diagnosis and fault-
tolerant control in linear drives using the kalman filter. IEEE Transactions on
Industrial Electronics, 59(11):4285–4292, 2012.

[69] I. Hwang, S. Kim, Y. Kim, and C. E. Seah. A survey of fault detection, isolation,
and reconfiguration methods. 18:636–653, 2010.

[70] H. A. Izadi, Y. Zhang, and B. W. Gordon. Fault tolerant model predictive control
of quad-rotor helicopters with actuator fault estimation. In IFAC World Congress,
pages 6343–6348, August 2011.

[71] Hicham Jamouli and Dominique Sauter. A generalized likelihood ratio test for
a fault-tolerant control system. In International Conference on Advances in
Computational Tools for Engineering Applications, pages 474–479. IEEE, 2009.

[72] Li Jiang. Sensor Fault Detection and Isolation Using System Dynamics Identifica-
tion Techniques. PhD thesis, The University of Michigan, 2011.

[73] Tor A Johansen and Thor I Fossen. Control allocationâĂŤa survey. Automatica,
49(5):1087–1103, 2013.

[74] Tor A Johansen and Thor I Fossen. Control allocationâĂŤa survey. Automatica,
49(5):1087–1103, 2013.

[75] DA Joosten and JM Maciejowski. Mpc design for fault-tolerant flight control
purposes based upon an existing output feedback controller. IFAC Proceedings
Volumes, 42(8):253–258, 2009.

[76] B Jung, Youdan Kim, and C Ha. Fault tolerant flight control system design using
a multiple model adaptive controller. Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, 223(1):39–50, 2009.

[77] Qiu Kai, Yin Hui, Yan Xiao Peng, and Ren Yan. An integrated fault detection
scheme for the federated filter. In Fourth International Conference on Digital
Manufacturing & Automation, pages 161–164, 2013.

[78] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[79] Simon Karpenko, Ivan Konovalenko, Alexander Miller, Boris Miller, and Dmitry
Nikolaev. Stochastic control of uav on the basis of robust filtering of 3d natural
landmarks observations. Proceedings of the 39th IITP RAS Inter-disciplinary
Conference & School, pages 7–18, 2015.

154 Bibliography

[80] J. Kasac, S. Stevanovic, T. Zillic, and J. Stepanic. Robust output tracking control
of a quadrotor in the presence of external disturbances. Transactions of FAMENA,
pages 29–42, 2014.

[81] Thomas Kerr. Decentralized filtering and redundancy management for multisensor
navigation. IEEE Transactions on Aerospace and Electronic Systems, (1):83–119,
1987.

[82] Son-Goo Kim, John L Crassidis, Yang Cheng, Adam M Fosbury, and John L
Junkins. Kalman filtering for relative spacecraft attitude and position estimation.
Journal of Guidance, Control, and Dynamics, 30(1):133–143, 2007.

[83] Young-Man Kim. Robust data driven h-infinity control for wind turbine. Journal
of the Franklin Institute, 353(13):3104–3117, 2016.

[84] Manish Kumar, Devendra P Garg, and Randy A Zachery. A method for judicious
fusion of inconsistent multiple sensor data. IEEE Sensors Journal, 7(5):723–733,
2007.

[85] Alexander Lanzon, Alessandro Freddi, and Sauro Longhi. Flight control of a
quadrotor vehicle subsequent to a rotor failure. Journal of Guidance, Control,
and Dynamics, 37:580–591, 2014.

[86] GR Latif-Shabgahi. A novel algorithm for weighted average voting used in fault
tolerant computing systems. Microprocessors and Microsystems, 28(7):357–361,
2004.

[87] Jangho Lee, Dongho Shin, Hyeok Ryu, Dasol Lee, and David Hyunchul Shim.
Fault tolerant adaptive control using time delay control scheme under motor faults
of octocopter. In IEEE 7th International Conference on Systems and Control
(ICSC), pages 123–128, 2018.

[88] François Léonard, Adnan Martini, and Gabriel Abba. Robust nonlinear controls of
model-scale helicopters under lateral and vertical wind gusts. IEEE Transactions
on Control Systems Technology, 20(1):154–163, 2012.

[89] Arie Levant. Higher-order sliding modes, differentiation and output-feedback
control. International journal of Control, 76(9-10):924–941, 2003.

[90] Arie Levant. Homogeneity approach to high-order sliding mode design. Automat-
ica, 41(5):823–830, 2005.

[91] Yongming Li and Shaocheng Tong. Command-filtered-based fuzzy adaptive
control design for mimo-switched nonstrict-feedback nonlinear systems. IEEE
Transactions on Fuzzy Systems, 25(3):668–681, 2016.

Bibliography 155

[92] Yongming Li, Shaocheng Tong, Lu Liu, and Gang Feng. Adaptive output-
feedback control design with prescribed performance for switched nonlinear
systems. Automatica, 80:225–231, 2017.

[93] V. Lippiello, F. Ruggiero, and D. Serra. Emergency landing for a quadrotor in case
of a propeller failure: A backstepping approach. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4782–4788, September
2014.

[94] V. Lippiello, F. Ruggiero, and D. Serra. Emergency landing for a quadrotor in case
of a propeller failure: A pid based approach. In IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), pages 1–7, October 2014.

[95] Chun Liu, Bin Jiang, and Ke Zhang. Adaptive fault-tolerant h-infinity output
feedback control for lead-wing close formation flight. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2018.

[96] Lennart Ljung. Asymptotic behavior of the extended kalman filter as a parameter
estimator for linear systems. IEEE Transactions on Automatic Control, 24(1):36–
50, 1979.

[97] Binwen Lu, Jianjun Ma, and Zhiqiang Zheng. Control allocation based adaptive
dynamic inversion fault tolerant control scheme for an uncertain aircraft. In IEEE
Chinese Guidance, Navigation and Control Conference (CGNCC), pages 907–912,
2016.

[98] Peng Lu and Erik-Jan van Kampen. Active fault-tolerant control for quadrotors
subjected to a complete rotor failure. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4698–4703. IEEE, 2015.

[99] Peng Lu, Erik-Jan van Kampen, Cornelis de Visser, and Qiping Chu. Aircraft fault-
tolerant trajectory control using incremental nonlinear dynamic inversion. Control
Engineering Practice, 57:126–141, 2016.

[100] Benjamin Lussier. Tolérance aux fautes dans les systèmes autonomes. PhD thesis,
Institut National Polytechnique de Toulouse, 2007.

[101] Marcel Luzar and Marcin Witczak. Fault-tolerant control and diagnosis for lpv
system with h-infinity virtual sensor. In 3rd Conference on Control and Fault-
Tolerant Systems (SysTol), pages 825–830. IEEE, 2016.

[102] Zehui Mao, Xing-Gang Yan, Bin Jiang, and Mou Chen. Adaptive fault-tolerant
sliding-mode control for high-speed trains with actuator faults and uncertainties.
IEEE Transactions on Intelligent Transportation Systems, 2019.

156 Bibliography

[103] Andrés Marcos and Gary Balas. Development of linear-parameter-varying models
for aircraft. Journal of Guidance, Control, and Dynamics, 27(2):218–228, 2004.

[104] Andrés Marcos, Joost Veenman, Carsten Scherer, Gabriele De Zaiacomo, David
Mostaza, Murray Kerr, Hakan Köroglu, and Samir Bennani. Application of lpv
modeling, design and analysis methods to a re-entry vehicle. In AIAA guidance,
navigation, and control conference, pages 81–92, 2010.

[105] A. Marks, J. F. Whidborne, and I. Yamamoto. Control allocation for fault tolerant
control of a vtol octorotor. In UKACC International Conference on Control, pages
357–362, September 2012.

[106] Adrián Martínez-Vásquez, A Rodriguez-Mata, Iván González-Hernández, Sergio
Salazar, Alejandro Montiel-Varela, and Rogelio Lozano. Linear observer for
estimating wind gust in uav’s. In Electrical Engineering, 12th International
Conference on Computing Science and Automatic Control (CCE), pages 1–6, 2015.

[107] Stephan Matzka and Richard Altendorfer. A comparison of track-to-track fusion
algorithms for automotive sensor fusion. In Multisensor Fusion and Integration
for Intelligent Systems, pages 69–81. Springer, 2009.

[108] Mohit Mehndiratta and Erdal Kayacan. Reconfigurable fault-tolerant nmpc for y6
coaxial tricopter with complete loss of one rotor. In IEEE Conference on Control
Technology and Applications (CCTA), pages 774–780, 2018.

[109] Hemza Mekki, Djamel Boukhetala, and Ahmad Taher Azar. Sliding modes for fault
tolerant control. In Advances and applications in sliding mode control systems,
pages 407–433. Springer, 2015.

[110] A. Merheb, H. Nourra, and F. Batemann. Active fault tolerant control of octorotor
uav using dynamic control allocation. In International Conference on Intelligent
Unmanned systems (ICIUS’14), September 2014.

[111] Abdel-Razzak Merheb and Hassan Noura. Active fault-tolerant control of quadro-
tor uavs based on passive controller bank. In Mechanism, Machine, Robotics and
Mechatronics Sciences, pages 231–241. Springer, 2019.

[112] Abdel-Razzak Merheb, Hassan Noura, and François Bateman. Emergency control
of ar drone quadrotor uav suffering a total loss of one rotor. IEEE/ASME
Transactions on Mechatronics, 22(2):961–971, 2017.

[113] Abdel-Razzak Merheb, Hassan Noura, and FranÃğois Bateman. Passive and active
fault tolerant control of octorotor uav using second order sliding mode control. In
IEEE Conference on Control Applications (CCA), pages 1907–1912, 2015.

Bibliography 157

[114] Alaeddin Milhim, Youmin Zhang, and Camille-Alain Rabbath. Gain scheduling
based pid controller for fault tolerant control of quad-rotor uav. In AIAA infotech
and aerospace. 2010.

[115] Mark W Mueller and Raffaello D’Andrea. Stability and control of a quadrocopter
despite the complete loss of one, two, or three propellers. In IEEE International
Conference on Robotics and Automation (ICRA), pages 45–52, 2014.

[116] Ngoc Phi Nguyen, Nguyen Xuan Mung, and Sung Kyung Hong. Actuator fault
detection and fault-tolerant control for hexacopter. Sensors, 19(21):4721, 2019.

[117] C Nicol, CJB Macnab, and A Ramirez-Serrano. Robust adaptive control of a
quadrotor helicopter. Mechatronics, 21(6):927–938, 2011.

[118] Hideaki Okazaki, Siyuan Yin, Kaito Isogai, and Hideo Nakano. Motor speed
control signals for multirotor flights in the presence of complete propeller motor
failures. In IEEE 61st International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 384–387, 2018.

[119] I. J. Olson and E. Atkins. Qualitative failure analysis for a small quadrotor
unmanned aircraft system. In AIAA Guidance, Navigation, and Control (GNC)
Conference, Boston, MA, August 2013.

[120] Ross T Palomaki, Nathan T Rose, Michael van den Bossche, Thomas J Sherman,
and Stephan FJ De Wekker. Wind estimation in the lower atmosphere using
multirotor aircraft. Journal of Atmospheric and Oceanic Technology, 34(5):1183–
1191, 2017.

[121] Ron Patton and S Klinkhieo. Lpv fault estimation and ftc of a two-link manipulator.
In Proceedings of the American Control Conference, pages 4647–4652, 2010.

[122] Sujit Rajappa, Carlo Masone, Heinrich H Bülthoff, and Paolo Stegagno. Adaptive
super twisting controller for a quadrotor uav. IEEE International Conference on
Robotics and Automation (ICRA), pages 2971–2977, 2016.

[123] Mina Ranjbaran and Khashayar Khorasani. Fault recovery of an under-actuated
quadrotor aerial vehicle. In 49th IEEE Conference on Decision and Control (CDC),
pages 4385–4392. IEEE, 2010.

[124] F. Rinaldi. Automatic control of a multirotor. PhD thesis, Politecnico di Torino,
2014.

[125] Héctor Ríos, Shyam Kamal, Leonid M Fridman, and Ali Zolghadri. Fault
tolerant control allocation via continuous integral sliding-modes: a hosm-observer
approach. Automatica, 51:318–325, 2015.

158 Bibliography

[126] Damiano Rotondo. Advances in gain-scheduling and fault tolerant control
techniques. Springer, 2017.

[127] Iman Sadeghzadeh, Ankit Mehta, and Youmin Zhang. Fault/damage tolerant
control of a quadrotor helicopter uav using model reference adaptive control and
gain-scheduled pid. In AIAA Guidance, Navigation, and Control Conference, pages
1–10, 2011.

[128] Majd Saied. Fault-tolerant control of an octorotor unmanned aerial vehicle under
actuators failures. PhD thesis, Compiègne, 2016.

[129] Majd Saied, Benjamin Lussier, Isabelle Fantoni, Clovis Francis, and Hassan
Shraim. Fault tolerant control for multiple successive failures in an octorotor:
Architecture and experiments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 40–45, 2015.

[130] Majd Saied, Hassan Shraim, Clovis Francis, Isabelle Fantoni, and Benjamin
Lussier. Controllability analysis and motors failures symmetry in a coaxial
octorotor. In IEEE Third International Conference on Technological Advances
in Electrical, Electronics and Computer Engineering (TAEECE), pages 245–250,
2015.

[131] L. Schmidt, T. Andersen, and H. Pedersen. Robust non-chattering observer based
sliding control concept for electro-hydraulic drives. In 6th IFAC Symposium on
Mechatronic Systems The International Federation of Automatic Contro, pages 99–
108, April 2013.

[132] T. Schneider, G. Ducard, K. Rudin, and P. Strupler. Fault-tolerant control allocation
for multirotor helicopters using parametric programming. In International Micro
Air Vehicle Conference and Flight Competition, July 2012.

[133] Thomas Schneider, Guillaume Ducard, Konrad Rudin, and Pascal Strupler. Fault-
tolerant control allocation for multirotor helicopters using parametric program-
ming. International Micro Air Vehicle Conferance, 2012.

[134] Mohammad Sepasi and Farrokh Sassani. On-line fault diagnosis of hydraulic sys-
tems using unscented kalman filter. International Journal of Control, Automation
and Systems, 8(1):149–156, 2010.

[135] Qiang Shen, Danwei Wang, Senqiang Zhu, and Eng Kee Poh. Inertia-free fault-
tolerant spacecraft attitude tracking using control allocation. Automatica, 62:114–
121, 2015.

[136] Qiang Shen, Danwei Wang, Senqiang Zhu, and Eng Kee Poh. Robust control
allocation for spacecraft attitude tracking under actuator faults. IEEE Transactions
on Control Systems Technology, 25(3):1068–1075, 2016.

Bibliography 159

[137] Y. Shtessel, L. Fridman, and A. Zinober. Higher order sliding modes. International
Journal Of Robust and NonLinear Control, 18:381–384, 2008.

[138] Yuri B. Shtessel, Ilya A. Shkolnikov, and Arie Levant. Smooth second-order sliding
modes: Missile guidance application. Automatica, 43(8):1470 – 1476, 2007.

[139] Viktor Solovyev, Valery Finaev, Yuri Zargaryan, Igor Shapovalov, and Denis
Beloglazov. Simulation of wind effect on a quadrotor flight. 10:1535–1538, 01
2015.

[140] Zhankui Song and Kaibiao Sun. Attitude tracking control of a quad-rotor with
partial loss of rotation effectiveness. Asian Journal of Control, 19:1812–1821,
2017.

[141] Zhankui Song and Kaibiao Sun. Attitude tracking control of a quad-rotor with
partial loss of rotation effectiveness. Asian Journal of Control, 19(5):1812–1821,
2017.

[142] Shengqi Sun, Liang Dong, Cuijuan An, and Wenwei Liu. Fault-tolerant control
design for linear systems with input constraints and actuator failures. In Chinese
Control and Decision Conference, pages 5278–5283, 2009.

[143] Nitin Sydney, Brendan Smyth, and Derek A Paley. Dynamic control of autonomous
quadrotor flight in an estimated wind field. IEEE 52nd Annual Conference on
Decision and Control (CDC), pages 3609–3616, 2013.

[144] D Theilliol, D Sauter, and JC Ponsart. A multiple model based approach for fault
tolerant control in non-linear systems. IFAC Proceedings Volumes, 36(5):149–154,
2003.

[145] Nguyen Khoi Tran, Eitan Bulka, and Meyer Nahon. Quadrotor control in a wind
field. International Conference on Unmanned Aircraft Systems (ICUAS), pages
320–328, 2015.

[146] V. Utkin. Sliding Modes in Control and Optimization. Springer, 1992.

[147] Vadim Utkin. Variable structure systems with sliding modes. IEEE Transactions
on Automatic control, 22(2):212–222, 1977.

[148] Mien Van, Shuzhi Sam Ge, and Hongliang Ren. Robust fault-tolerant control for
a class of second-order nonlinear systems using an adaptive third-order sliding
mode control. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
47(2):221–228, 2016.

160 Bibliography

[149] Michel Verhaegen, Stoyan Kanev, Redouane Hallouzi, Colin Jones, Jan Ma-
ciejowski, and Hafid Smail. Fault tolerant flight control-a survey. In Fault tolerant
flight control, pages 47–89. Springer, 2010.

[150] Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Proba-
bility and statistics for engineers and scientists, volume 5. Macmillan New York,
1993.

[151] Ban Wang and Youmin Zhang. An adaptive fault-tolerant sliding mode control
allocation scheme for multirotor helicopter subject to simultaneous actuator faults.
IEEE Transactions on Industrial Electronics, 65(5):4227–4236, 2017.

[152] Ban Wang, Youmin Zhang, Jean-Christophe Ponsart, and Didier Theilliol. Fault-
tolerant adaptive control allocation for unmanned multirotor helicopter. Elsevier,
IFAC-PapersOnLine, 50:5269–5274, 2017.

[153] C. Wang, B. Song, P. Huang, and C. Tang. Trajectory tracking control for quadrotor
robot subject to payload variation and wind gust disturbance. Journal of Intelligent
& Robotic Systems, 83(2):315–333, August 2016.

[154] Huanhuan Wang, Youmin Zhang, Yingmin Yi, Jing Xin, and Ding Liu. Nonlinear
tracking control methods applied to qball-x4 quadrotor uav against actuator faults.
In IEEE Chinese Control and Decision Conference (CCDC), pages 3478–3483,
2016.

[155] Jia-Ying Wang, Bing Luo, Ming Zeng, and Qing-Hao Meng. A wind estimation
method with an unmanned rotorcraft for environmental monitoring tasks. Sensors,
18(12):4504, 2018.

[156] Rong Wang, Zhi Xiong, Jianye Liu, Jianxin Xu, and Lijuan Shi. Chi-square and
sprt combined fault detection for multisensor navigation. IEEE Transactions on
Aerospace and Electronic Systems, 52(3):1352–1365, 2016.

[157] Greg Welch and Gary Bishop. An introduction to the kalman filter. 1995.

[158] SJ Wellington, JK Atkinson, and RP Sion. Sensor validation and fusion using the
nadaraya-watson statistical estimator. In Proceedings of the Fifth International
Conference on Information Fusion., volume 1, pages 321–326, 2002.

[159] Yuhu Wu, Kaijian Hu, Xi-Ming Sun, and Yanhua Ma. Nonlinear control of
quadrotor for fault tolerance: A total failure of one actuator. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2019.

[160] Zou Yi, Ho Yeong Khing, Chua Chin Seng, and Zhou Xiao Wei. Multi-ultrasonic
sensor fusion for mobile robots. In Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 387–391, 2000.

Bibliography 161

[161] Yushu Yu and Xilun Ding. A global tracking controller for underactuated aerial
vehicles: design, analysis, and experimental tests on quadrotor. IEEE/ASME
Transactions on Mechatronics, 21(5):2499–2511, 2016.

[162] Yushu Yu and Yiqun Dong. Global fault-tolerant control of underactuated
aerial vehicles with redundant actuators. International Journal of Aerospace
Engineering, 2019, 2019.

[163] Samir Zeghlache, Hemza Mekki, Abderrahmen Bouguerra, and Ali Djerioui.
Actuator fault tolerant control using adaptive rbfnn fuzzy sliding mode controller
for coaxial octorotor uav. Elsevier ISA Transactions, 80:267–278, 2018.

[164] Samir Zeghlache, Djamel Saigaa, and Kamel Kara. Fault tolerant control based
on neural network interval type-2 fuzzy sliding mode controller for octorotor uav.
Springer, Frontiers of Computer Science, 10:657–672, 2016.

[165] Youmin Zhan and Jin Jiang. An interacting multiple-model based fault detection,
diagnosis and fault-tolerant control approach. In Proceedings of the 38th IEEE
Conference on Decision and Control, volume 4, pages 3593–3598, 1999.

[166] Youmin Zhang and Jin Jiang. Integrated active fault-tolerant control using imm
approach. IEEE Transactions on Aerospace and Electronic systems, 37(4):1221–
1235, 2001.

[167] Youmin Zhang and Jin Jiang. Bibliographical review on reconfigurable fault-
tolerant control systems. Annual Reviews in Control, 32(2):229 – 252, 2008.

[168] Youmin Zhang, V Sivasubramaniam Suresh, Bin Jiang, and Didier Theilliol.
Reconfigurable control allocation against aircraft control effector failures. In IEEE
International Conference on Control Applications (CCA), pages 1197–1202, 2007.

	PDT HAMADI Hussein
	Soutenue le 15 juillet 2020

	thesis_Hussein_HAMADI
	Contents
	Introduction
	Concepts and State of the Art
	Dependability
	General principles of dependability

	Fault Tolerance
	Principle of Fault Tolerance
	Error detection
	System recovery
	Fault Masking
	Examples of redundancy

	Fault and failure in automatic control systems and their classification
	Faults
	Failures
	 Failure modes identification

	Robustness
	Fault-Tolerant Control in control
	Passive Fault Tolerant Control Systems
	Active Fault Tolerant Control Systems
	State of the Art on Active and Passive Fault Tolerant Control

	Fault Tolerance Applied to Unmanned Aerial Vehicles
	State of the art of FTC for quadrotor UAVs
	State of the art on fault-tolerant control for UAVs through actuators redundancy

	Wind perturbations on the dynamics of a multirotor UAV
	Wind model
	State of the art of resilience to wind perturbations

	Fault tolerance for multi-sensor data fusion
	Data fusion using Kalman filter
	Kalman filter for linear systems
	Extended Kalman filter EKF for nonlinear systems

	Fault tolerance mechanisms for data fusion
	Model Based approaches
	Redundancy based approaches

	Summary

	Dynamic Model and parameters estimation
	Modeling formalism and Assumptions
	Modeling using Newton-Euler formalism
	Definitions of the Frames
	Euler angles
	Rotation Matrix

	Aerodynamic Forces and Moments
	Forces Modeling
	Moments Modeling
	Equations of Motion

	Experimental Platforms
	Modulo-X8
	DJI S500
	Model identification of the DJI S500 quadrotor

	Tarot 650
	Model parameters of the TAROT 650 quadrotor

	Model identification for the TAROT 650 quadrotor
	Motor model Identification Procedure
	Relationship between PWM inputs and generated thrust force
	Relationship between PWM inputs and generated torque
	Inertia Matrix

	Summary

	Baseline Control Laws Experiments
	Software Architecture of Low-Level Flight Control of Multirotors
	Basic Control Concept
	Linear PID controller
	Linear Model Simplification
	Horizontal Position Model
	Altitude Model
	Attitude Model
	Traditional PID Controller
	Horizontal position control and attitude control and attitude control
	Altitude control

	PID Controllers in the open source autopilot Ardupilot
	Horizontal position control
	Altitude control

	Sliding Mode Controller for attitude and altitude Control
	Sliding Mode Theory
	Matched and Unmatched perturbation
	First-Order Sliding Mode Control
	Second-Order Sliding Mode: Super-Twisting Algorithm

	Altitude and heading control
	Translational motion in X-Y direction

	Shared control law for the fault tolerant control strategies
	Common subsystems formulation and sliding manifolds for all FTC schemes
	Modelization of the control inputs and the motors health and Control allocation problem

	Summary

	Wind Force Compensation Strategy
	Non linear multi-rotor model with wind perturbations
	Smooth sliding mode controller robust to external perturbations
	Desired sliding variable dynamics
	Disturbance Observer
	Cancellation of external perturbation

	 Estimation of Wind Disturbances using the Nonlinear Observer
	Smooth second order controller
	Controller and observer in closed loop

	Simulation and Experimental validation
	Simulation results (Adaptive STA vs Observer-based STA)
	Outdoor experimental results (PID vs Observer-based STA)

	Conclusion and future works

	FTC strategies for successive failures in an Octorotor UAV
	Self-tuning sliding mode control applied to the coaxial octorotor
	Self-Tuning sliding mode control (STSMC)
	AFTC based on an offline control mixing
	Fault-Free Mode
	One complete failure
	Two, three and four complete motors failures

	Adaptive sliding mode control allocation (ASMCA)

	Indoor experimental Validation
	Experimental platform
	Fault detection and isolation (FDI) using current sensors
	Experimental Results
	Hovering flight
	Trajectory Tracking flight

	Discussion
	Performance
	Development cost
	Computation time
	Health monitoring

	Conclusion

	Fault tolerance strategy for a quadrotor UAV under sensor and software faults
	Fusion architectures
	Centralized fusion architecture
	Distributed fusion architecture
	Decentralized fusion architecture
	Brief comparison between the fusion architectures

	Weighted Average Voting System
	Arducopter fusion architecture
	Enhanced data fusion architecture for tolerating sensor and software faults
	Fault detection
	Recovery module
	Recovery for Hardware Fault
	Recovery for Software Fault

	Validation
	Implementation of the fault tolerance architecture
	Additive fault on GPS1
	Additive fault on Lidar1
	Software altitude fault
	Software position fault

	Conclusion

	Conclusions and Outlook
	Bibliography

