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Inference of a short bundle atlas informed by the variability of the cortical folding pattern by Nicole LABRA AVILA Technological breakthroughs in medical imaging have allowed for first time in vivo exploration of the brain of living beings. This has prompted the creation of big projects and large databases for the study of the human brain such as the Human Connectome Project (HCP) or the Human Brain Project (HBP), of which this thesis is a part. Tractography by diffusion MRI (dMRI) has been the first technique to explore the white matter and the major connections of the human brain but there is still a long way to go regarding short-range connections. Even more, the boundary of the division between long and short fibers remains ambiguous and without consensus among the scientific community and further study is imperative. In recent years, some short bundle atlases have been proposed, identifying about a hundred short-range fascicles. However, the main weakness in the development of these atlases is the poor alignment between subjects which consider only the standard Talairach alignment or the diffusion tensor image registration method (DTI-tk). Neither of those approaches take into account correctly the variability of the cortical folding pattern which is closely related to the shortrange connections surrounding sulci, commonly known as U-bundles. This thesis work proposes a new framework for the creation of an extended atlas of short-range fiber bundles between 20mm and 85mm length from two massive dMRI tractography datasets : the ARCHI database and the HCP database. 76 subjects of each one have been used to construct two atlases of short-range connections using exactly the same pipeline. This method uses a two-step diffeomorphic inter-subject alignment procedure that combines DISCO and DARTEL approaches. First, DISCO includes information on cortical folding and forces the accurate match of the main sulci that have to be circumvented by the U-bundles. Then, the well-known DARTEL method is applied to refine the registration. The MNI 152 template is also used, in order to provide our results in a common space to facilitate its use in the scientific community. An adaptative hierarchical clustering, focused in the extraction of shortrange connections was performed then to extract the most reproducible bundles across subjects. This method does not impose restriction on the shape of the bundle clusters and allows the processing of massive tractography datasets in a reasonable time and without the need of high performance computational resources. The results show an increased number of short-range bundles consistently mapped in the general population compared with previous atlases created from the same ARCHI database. This first atlas contains more than 400 bundles. On the other hand, more than 600 bundles were obtained with the massive HCP database endowed with higher spatial resolution. Each of this new atlases contains all the bundles of the existent atlases of short-range connections and much more to explore. And even, for some bundles in the same region and position, different morphologies of them have been differentiated. Those results open a new path to improve our understanding of the relationship between the folding pattern and the U-bundle variability but also the possibility to detect abnormal configurations induced by developmental issues which may lead to mental pathologies such as bipolar depression or schizophrenia.
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In general, I want to thanks to all the people that was and still is in Neurospin who made this 4 years of thesis and 5 in France more bearable and enjoyable for me, even when I do not put all your names here (the list is too big!) but you all know who you are! iii To those who were and still are part of my world and Tofi. . . [2012], [START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF]). Bien que plusieurs auteurs aient spéculé sur le lien entre le processus de gyrification et la connectivité cortico-corticale, la localisation des faisceaux courts n'a pas été cartographié précisément dans le passé et leur fonction dans le cerveau est encore mal comprise.

Les atlas les plus étendus dédiés aux faisceaux de fibres U ont été construits ces dernières années et comprennent une centaine de faisceaux reproductibles à travers des groupes de sujets [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], Román et al., 2017]. Ces atlas ont été déduits du regroupement non supervisé après alignement des pseudo-fibres d'une population de tractogrammes. La normalisation spatiale utilisée pour l'alignement était basée soit sur des transformations affines [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], soit sur un recalage non linéaire des champs de tenseurs de diffusion [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], soit sur un alignement affine des tractogrammes [START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF]. Aucune de ces approches ne traite de la correspondance précise des motifs de plissement entre les sujets, ce qui constitue un défi pour la plupart des approches de normalisation spatiale.

Bien que ces études représentent un progrès important dans notre compréhension de l'anatomie des connexions humaines, elles sont limitées en ce qui concerne le processus de validation. 

Méthode

La base de données ARCHI [START_REF] Schmitt | Connect/archi: an open database to infer atlases of the human brain connectivity[END_REF] [2013] (29 ± 7 ans; 41 hommes, 35 femmes). Les acquisitions ont été obtenues à l'Université de Washington à St.Louis en utilisant un appareil Siemens personnalisé de 3,0T Connectome Skyra Scanner, équipé de 32 canaux.

Ginkgo Library

• Q-ball model La tractographie déterministe régularisée a été choisi pour reconstruire les trajectoires putatives des fibres de la matière blanche. Afin de rendre ces bases de données composées de millions de courbes plus gérables, chaque tractogramme individuel a été compressé en quelques milliers de clusters en utilisant la méthode de regroupement des fibres intra-sujet proposée par Guevara et al. [2011a] où chaque cluster de courbes est représentée par une courbe unique appelée centroide ou centreline.

125 sulci ont été automatiquement identifiés pour chaque sujet et extraits avec Morphologist [START_REF] Fischer | Morphologist 2012: the new morphological pipeline of brainvisa[END_REF][START_REF] Mangin | A framework to study the cortical folding patterns[END_REF] dans les deux bases de données. L'étiquetage des sillons a été corrigé manuellement dans chaque cerveau par deux évaluateurs. La même procédure basée sur Morphologist a été appliquée à l'atlas non linéaire ICBM 152 [START_REF] Mazziotta | A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)[END_REF] U entourant les sillons les plus petits peuvent commencer à apparaître pour une longueur de plus de 15mm, valeur qui coïncide avec le début de la croissance de la courbe de ces histogrammes. Cependant, plus la longueur est faible, plus le risque d'obtenir des pseudofibres erronées est élevé [START_REF] Bajada | Fiber length profiling: A novel approach to structural brain organization[END_REF]. Pour ces raisons, une longueur limite de 20mm a été choisi, en éliminant les centrelines en dessous de cette valeur. En ce qui concerne le seuil supérieur, 78mm pourrait être un seuil naturel comme le montrent les histogrammes, mais en raison du manque de consensus concernant les fibres courtes nous avons abandonné l'idée de choisir une limite supérieure significative. Afin de simplifier la comparaison avec les études antérieures réalisées avec la même base de données, seuls les faisceaux avec longueur moyenne inférieures à 85mm seront pris en compte dans notre nouvel atlas des faisceaux courts.

Une fois fini le prétraitement, c'est le tour du clustering. Nous avons d'abord effectué de nombreuses expériences avec les approches basées sur la densité, en particulier les algorithmes DB-SCAN et HDBSCAN. Nous avons pu observer que l'imposition d'une densité élevée aux clusters, ne conduit qu'à des clusters très cohérents et de formes similaires. Bien que cette caractéristique soit intéressante pour certaines applications, cette approche était également trop rigoureuse pour notre objectif de construire des atlas plus exhaustif des faisceaux courts avec l'hypothèse que des faisceaux courts reproductibles existent dans n'importe quelle région corticale. Néanmoins, nous supposons que grâce aux contraintes imposées par l'algorithme DISCO sur l'alignement des sillons les plus stables, nous pourrions espérer atteindre un alignement raisonnable au moins la moitié de la population, fixant ainsi un objectif minimal pour les clusters inter-sujets finaux.

Pour cette raison, et en plus des problèmes liés au traitement des énormes bases de données avec les outils de clustering existants, nous avons décidé de concevoir une approche de regroupement donnant diverses formes de groupes, similaire au regroupement hiérarchique single linkage. Nous avons décidé de ne pas utiliser un regroupement hiérarchique aggloméré classique, qui a à notre avis un défaut : la coupe traditionnelle de l'arbre hiérarchique à un niveau donné pour obtenir les regroupements finaux. Nous avons conc ¸u une heuristique adaptant localement le critère d'arrêt des opérations de fractionnement descendantes pour obtenir des clusters, dont les connexions centrales sont constituées de différentes plages de longueur. L'idée sous-jacente est que pour couvrir l'ensemble du cortex, nous devions cibler des clusters de densités différentes, au moins en raison des différentes précisions d'alignement entre les sujets.

En conjonction avec l'algorithme de clustering, une nouvelle mesure de similarité entre centrelines a été proposée, qui tient compte non seulement de leur position spatiale mais aussi de leur forme, généralement définie comme une caractéristique invariante aux mouvements rigides. Nous avons réalisé que l'alignement de deux centrelines transformerait une métrique classique en une bonne mesure de similarité de forme, indispensable pour démêler l'objet complexe formé par les connexions à courte portée.

Nous allons décrire ci-dessous cet algorithme et la mesure de similarité dans le contexte du processus complet de génération de l'atlas. Les bases de données ARCHI et HCP ont été traitées indépendamment et chacune d'elles a été subdivisée en deux groupes de 38 sujets. Le clustering a été exécuté indépendamment dans chaque groupe, afin d'obtenir un atlas de chaque base de données contenant les faisceaux les plus reproductibles de chaque groupe.

1. Structure de données : Le stockage de la matrice des distances requises par les boîtes à outils générales est l'un des problèmes majeurs qui empêchent leur utilisation sur nos ensembles de données. Mais, il n'est pas obligatoire de calculer la mesure de similarité pour toute paire de pseudofibre. Pour chaque centreline, nous stockons un maximum de N voisins les plus proches, apres avoir présélectionné les paires de centrelines suffisamment proches dans l'espace et de longueur similaire.

La mesure de similarité utilisé sur les paires sélectionnées est nommée Rayon minimum après alignement et correspond au rayon minimum permettant à une centreline d'être complètement inclue dans l'enveloppe d'une autre centreline, selon l'idée d'enveloppe de [START_REF] Mai | A similarity model and segmentation algorithm for white matter fiber tracts[END_REF].

Avant de calculer le rayon minimum, elles sont simplement alignées en superposant leurs points médians. Notez que cet alignement est uniquement basé sur la translation, ce qui est suffisant pour que les centrelines appartenant aux mêmes faisceaux conduisent à un petit rayon.

Après cette translation initiale, la valeur maximale des distances euclidiennes entre points appariés représentera la différence de forme entre les courbes.

2. Custering hiérarchique adaptatif: L'algorithme de clustering est inspiré des expériences réalisées au début de notre projet avec les cartes auto-organisées (SOM), également connues sous le nom de cartes de Kohonen [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF]). Nous avons décidé d'utiliser un processus itératif descendant qui conduit à l'estimation de distances maximales spécifiques à chaque clusters de centrelines. À chaque itération, les clusters se développent à partir d'une centreline initiale par l'addition itérative de centrelines qui peuvent être atteintes en utilisant un chemin de liens du plus proche voisin, où toutes les longueurs (les distances par paire) sont inférieures à un rayon spécifique à ce cluster. Ce rayon est initialisé au début du processus à une valeur relativement élevée et diminue lentement au cours des itérations, à un rythme qui dépend de la longueur des liens utilisés pendant la croissance de ce cluster. Au cours de ces itérations, le nombre total de clusters augmente jusqu'à la pseudo-convergence des rayons. Lorsque le nombre de clusters devient stable et que la différence entre tous les rayons de deux itérations consécutives devient très faible (pratiquement moins de 0.1mm), le processus s'arrête.

Pour éviter une segmentation excessive, Quelques fusions de cluster sont effectuées à la fin du processus. Cette opération de fusion est effectuée avec la distance commune utilisée dans les travaux précédents [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], Román et al., 2017]. Deux clusters sont fusionnés lorsqu'au moins 50% de leur centrelines sont similaires. Afin de ne conserver que les clusters présentant une grande reproductibilité entre les sujets, les clusters constitués par des centrelines appartenant à moins de 50% des sujets sont supprimés. L'idée sous-jacente est qu'avec cette heuristique, nous avons peu de chances de définir deux clusters représentant la même entité anatomique, alignés différemment pour deux sous-groupes de sujets. Dans le cas d'un tel problème d'alignement, seul le plus grand groupe conduirait à l'instanciation d'un faisceau dans l'atlas.

La valeur des paramètres utilisés dans ce processus et dans le calcul de la structure de données des voisins les plus proches a été choisie avec une validation croisée, en utilisant plusieurs indices pour quantifier la qualité des groupes obtenus avec différents ensembles de paramètres.

3. Comparaison de clusters:Les clusters obtenues pour les deux groupes de sujets sont comparés, en utilisant la même distance que celle utilisée dans les études précédentes. Deux clusters sont appariés à condition que 80% des centrelines d'une cluster aient au moins 5% de lignes centrales similaires dans la deuxième cluster. Entre 60% et 70% des groupes ont survécu à cette opération de comparaison. Enfin, un contrôle visuel en 3D a été effectué pour chacun des clusters résultant de la fusion, afin de détecter les centrelines potentiellement aberrantes. Environ 10% des clusters ont été élagués lorsque de telles lignes aberrantes ont été observées visuellement. L'algorithme de nomage calcule la distance euclidienne entre chaque extrémité de chaque centreline d'un groupe et le voxel marqué le plus proche dans l'image ICBM152 étiqueté. Si la distance est inférieure à un seuil, l'étiquette correspondante est attribuée à cette extrémité de la centreline. Pour chaque extrémité du cluster, le nombre d'occurrences des étiquettes associées à chaque centreline est compté, et la plus fréquente est attribuée à l'extrémité du cluster. Le nom final est défini par les étiquettes des deux extrémités de la grappe sous-jacente.

Les extrémités non reliées à l'une des régions définies par l'atlas de Desikan ont été étiquetées comme "NCR". = Non lié à une région.

Résultats

La version finale des atlas de faisceaux courts ne contient que les faisceaux d'une longueur moyenne comprise entre 20mm et 85mm qui relient une ou plusieurs régions corticales aux deux extrémités. At a macroscopic level, the human brain structure was observed first by early Greek physicianphilosophers, made mostly by post mortem studies but only toward the end of the 1800s its circuitry's astounding complexity was appreciated, with the first advances in microscopy [START_REF] Kandel | Principles of neural science, Fifth Edition[END_REF]. The individual pathways (axon bundles) and neuronal regions (distinguishable neuronal cell body aggregates) were identified. At the beginning of the 20th century, the spanish neuroanatomist Santiago Ramón y Cajal revealed hundreds of distinct types of neurons using Golgi's technique, each with its own unique dendritic structure and pattern of connectivity [START_REF] Shepherd | Foundations of the Neuron Doctrine[END_REF].

The invention of electronic computers in the 1940s along with the development in the second half of the 20th century of mathematical information, chemistry, electron microscopy, genetics, computer science, functional brain imaging, and other fields have progressively opened new windows into the study of the brain structure and function. All these technological progress of the second half of the 20th century favored the development of a new discipline within medicine and neurosciences: the neuroimaging. This discipline aims the use of various techniques to either directly or indirectly image the structure, function, or pharmacology of the nervous system. Neuroimaging can be divided into two categories: the structural imaging and functional imaging. Between the technologies and tools used in neuroimaging are found the Computed Axial Tomography (CAT), the Electroencephalography (EEG), the Diffuse Optical Imaging (DOI), the Event-Related Optical Signal (EROS), the Single Photon Emission Computed Tomography (SPECT), the Positron Emission Tomography (PET), the Magnetic Resonance Imaging (MRI), the Functional Magnetic Resonance Imaging (fMRI), the Magnetoencephalography (MEG) and the Cranial Ultrasound.

In particular, MRI has proven to be a versatile imaging technique from which has derived the Diffusion-Weighted Magnetic Resonance Imaging (dMRI) [START_REF] Le Bihan | Diffusion tensor imaging: concepts and applications[END_REF]. This is a powerful and one of the most useful tools to explore neuroscience and neuropathology questions, in particular for the analysis of the human brain white matter (WM). It relies upon the diffusion of water molecules to allow the reconstruction of the main brain anatomical bundles in vivo. Known white matter tracts can be segmented and used for quantitative comparison of diffusion or geometric indexes between populations, and to perform studies about different kinds of pathologies and disorders. Tractography datasets, composed of a big set of 3D curves, can be reconstructed from dMRI and represent the main anatomical connections in the brain. Known WM tracts, e.g. the arcuate or the uncinate fasciculi, are used to quantitatively compare diffusion indexes, bundle volume, fiber count and bundle shape between populations [O' Donnell et al., 2009[START_REF] Ros | Quantitative fiber bundle-based analysis of diffusion-weighted mri data[END_REF]. The work of Sullivan et al. [2010] describes aging effects found in some WM tracts reflected by differences in their fractional anisotropy [START_REF] Beaulieu | The basis of anisotropic water diffusion in the nervous system -a technical review[END_REF], one of the most used diffusion indexes computed from Diffusion Tensor Imaging (DTI). Fractional anisotropy (FA) is used as a metric of WM tract integrity and coherence, while transverse diffusivity (λ T ), a metric of myelin integrity. [START_REF] Sarrazin | A multicenter tractography study of deep white matter tracts in bipolar i disorder: Psychotic features and interhemispheric disconnectivity[END_REF] found significant reductions in mean generalized fractional anisotropy values along several bundles in bipolar patients compared to control groups.

Several atlases of the long white matter fibers and methods to automatically identify (segment) fibers from a tractography dataset have been proposed in the past years. Bundle extraction can be performed through the placement of regions of interest (ROI) by an expert [START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF][START_REF] Wakana | Reproducibility of quantitative tractography methods applied to cerebral white matter[END_REF]. They can deal with datasets containing a huge number of fibers but require sophisticated brain registration algorithms and are thus sensitive to registration errors. Other methods can warp automatically a brain ROI atlas [START_REF] Wieslaw | Three-dimensional interactive and stereotactic human brain atlas of white matter tracts[END_REF][START_REF] Hu | Joint analysis of fiber shape and cortical folding patterns[END_REF], or use volumes of interest (VOI) [START_REF] Prados | Information-theoretic approach for automated white matter fiber tracts reconstruction[END_REF]. Other approaches perform fully unsupervised clustering of WM fibers based on distances or other grouping criteria, relying on geometrical and localization information of the fiber. These methods assist the exploration of tractography dataset structure by generating groups of fibers (also called clusters), of similar shapes. In general, these groups do not represent directly anatomical WM bundles because anatomical tracts are often composed of several minor fiber bundles. In fact, the literature shows several proposals of decomposition of major WM tracts [START_REF] Catani | Perisylvian language networks of the human brain[END_REF][START_REF] Nigel | Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection[END_REF]. Because the different bundles and minor bundles are defined following anatomical descriptions, with sometimes subtle shape or position differences, automatic clustering can not lead to the "correct" clusters without using additional information. Therefore, for the segmentation of WM tracts, the automatic clusters are usually aggregated during computation or in a postprocessing step, with some degree of anatomical/expert information. For example, some approaches used an embedded WM fiber tract atlas [O'Donnell and Westin, 2007], a white matter tract ROI atlas [START_REF] Ros | Atlas-guided cluster analysis of large tractography datasets[END_REF], or a GM/WM ROI atlas [START_REF] Wassermann | Unsupervised white matter fiber clustering and tract probability map generation: Applications of a gaussian process framework for white matter fibers[END_REF] for known bundle extraction. Another method, proposed by [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF] for huge tractography datasets, uses intrasubject clustering and a multisubject WM bundle atlas to classify the fibers and extract the known bundles. Cluster-based or hybrid methods can give accurate results, but have limitations on the number of fibers that can be analyzed and suffer from long processing times. Improvements in dMRI techniques such as High Angular Resolution Diffusion Imaging (HARDI) [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF], 2009a[START_REF] Tuch | Q-ball imaging[END_REF], combined with several accurate pre-and postprocessing methods, provide valuable information in tractography datasets at the cost of drastically increased size and complexity.

Fiber datasets of more than one million fibers are common, and probabilistic tractography datasets often comprise more than 5 million fibers. Two main difficulties arise from these large datasets:

increasing storage and memory requirements, and processing time. Additionally, the complexity of WM fiber bundle structure has also increased in the new datasets, leading to more complex bundles.

All the studies mentioned before have been focused on long white matter pathways but smaller connections have been neglected and left in the background. The knowledge on short-range connections in the human brain is sparse in the anatomical literature. The core structure of the short-range connections is a set of U-shaped fiber bundles that circumvent the cortical folds while remaining in the superficial part of white matter under the cortical mantle. The most extended atlases dedicated to U-fiber bundles have been inferred in the recent years and include about one hundred bundles reproducible across groups of subject [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], Román et al., 2017]. This timely research program, however, is still in its infancy because of the challenges raised by the variability of the cortical folding pattern. While the core part of the long pathways travelling through deep white matter is barely influenced by cortical folding, the U-fiber organization is dependent on the cortical folding pattern. Furthermore, the impact of the large variability of these folding pattern is an open issue.

The short-range bundle atlases existent today have been infered using non supervised clustering after alignment of a population of tractograms. This spatial normalization was either based on affine transformations [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], nonlinear registration of the tensor fields [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] or groupwise alignment of the tractograms [START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF]. None of these approaches is dealing with the accurate matching of the folding patterns across subjects, which is a challenge for most of the spatial normalization approaches.

As it was mentioned above, this thesis work was carried out within the framework of the Human Brain Project (HBP) and the overall objective was the creation of an extended white matter atlas fully dedicated to the short-range connections, including U-shaped fiber bundles. By the means of using a diffeomorphic inter-subject alignment strategy, imposing explicit matching of the most stable cortical sulci, we expect to increase the number of U-bundles consistently mapped in the general population with respect to previous atlases and improve our understanding of the relationship between the folding pattern and the U-bundle variability.

Organization of this thesis

This thesis is organized into two parts. The first one gives all the basic principles necessary for the understanding of the developement of our work, including the basic knowledge in brain anatomy and connectivity, dMRI principles and clustering algorithms. Then, the second part presents our contributions with the study and creation of two white matter atlases of short-range connections from two different human brain databases: ARCHI and HCP. Finally, the main conclusion of this thesis and the future perspectives are presented.

Part I -Background

Chapter 2: Human Brain

This chapter presents the background on the key aspects of the human brain anatomy. First of all, a general description of the nervous system and the gross brain anatomy is presented. The main parts of the human brain are exposed briefly and then, go deep into the description of the gray matter and the cortical folding patterns. Finally, the white matter and its structural connectivity is presented, particularly focusing in the knowledge about short-range connections and U-fibers.

Chapter 3: Diffusion MRI

This chapter presents the principles of magnetic resonance imaging (MRI) in two sections: the first section gives a short introduction to Nuclear Magnetic Resonance (NMR) principles and key components of the hardware. The second section explains the diffusion-weighted MRI technique and how the water molecules diffusion may be exploited to investigate the human brain structural connectome. This section is subdivided, in order to show the main techniques and models used to obtain a key element for the developement of our work: the tractogram.

Chapter 4: Clustering

This chapter gives a background of the clustering methods and their applications in brain study in two sections: the first give as the backgroung of the main clustering algorithms existent today that have been used for white matter studies, exposing their pros and cons. The main clustering evaluation methods and indexs are also presented. The second parts shows how those methods have been used

in the brain anatomy study over the years, in particular being applied in white matter studies.

Part II -Short Bundle Atlases

Chapter 5: Short bundle atlas from ARCHI database This is the biggest and main chapter of this thesis. It describes all the process realized to obtain a new atlas of short-range connections from the original MRI images of the ARCHI database. It is divided into 4 sections in order to show conveniently our work. First section 5.4 summarizes the software and hardware resources used to develop this work. It also presents the pre-processing steps necessary to obtain the final tractograms used in the elaboration of the atlas. The second section presents all the path followed while developing the atlas, from the selection of the similarity measure to the developing of the clustering algorithm and labellization. Some first approaches used and why they were discarded in earlier stages of this thesis are exposed. The goal is to explain the road that lead us to obtain the final method presented. Then, the third section shows the results of the atlas generation process: the new ARCHI atlas. A comparison with previous atlases obtained from the same database is presented. Finally, in the fourth section we discuss our results and presents the conclusions we obtained from the new atlas constructed.

Chapter 6: Short bundle atlas from HCP database

This chapter presents a second atlas of short-range connections, obtained by using the same method previously described but with the HCP database. It is divided into three sections: first an overview presents the HCP database and gives its main features and all the pre-processing pipeline performed.

Then, the second section shows the results and the new HCP atlas of short range connections. A comparison with respect to the ARCHI atlas is presented; Finally, the third section presents the conclusions of this chapter. This chapter presents a background and basic concepts for the understanding of the human brain's world. Since the area of interest of this thesis is the structural connectivity of superficial WM, this chapter is mainly focused in the cortical folding pattern and WM structure. First, a general description of the nervous system (section 2.1) is presented . Then, an in-depth on brain anatomy and functions is given (section 2.2) followed by a section exploring brain tissue which is separated into two types: gray and white matter and they are detailed in their corresponding sections. Section 2.2.1 describes the gray matter and its folded appearance in the brain surface. Some theories of the gyrification process are presented in the subsection 2.2.1.1. Finally, in section 2.2.2 the white matter known structure is described and a review of the structural connectivity of the brain in both long and shortrange connection fibers. This chapter is inspired from books, review articles and thesis chapters from 

Nervous System

The nervous system (NS) is an organized and highly complex network of nerve tissue present in all the vertebrates and most invertebrate animals [START_REF] Ruppert | Invertebrate Zoology[END_REF]. It coordinates actions and sensory information by transmitting chemical or electrical signals to and from different parts of the body. In vertebrates, the nervous system consists of two main parts: the Central Nervous System (CNS) composed by the brain and the spinal cord and the Peripheral Nervous System (PNS) composed by all the nerves and ganglia outside the CNS. In all the vertebrates and some invertebrates the brain is the organ in charge of the control process of the nervous system and is the most complex organ in living beings. On the other hand, the spinal cord receives and processes sensory information from the sensorial organs, bringing this information into the brain.

At the cellular level, the primary component of the nervous system is a specialized type of cell called neuron. As shown in figure 2.2, neurons are composed by a cell body known as soma, dendrites and a long structure called axon. The soma has a nucleus containing all the genetic information.

Dendrites correspond to the short branches that out in tree-like fashion from the soma and they are in charge of receiving the incoming electrical signals, called action potentials from other nerve cells.

And finally, the axon is the long and tubular structure arising from the cell body and is in charge of the signal transmition between neurons. Axons may extend from a few millimeters to over one meter [START_REF] Schüz | The human cortical white matter: quantitative aspects of cortico-cortical longrange connectivity[END_REF]. The diameter of axons can differ by a factor of more than 100 within the mammalian nervous system.

Fiber inner diameters are reported to range from 0.16 to 9 µm in human brain [START_REF] Aboitiz | Fiber composition of the human corpus callosum[END_REF][START_REF] Liewald | Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque[END_REF], and are up to 15 µm in the human spinal cord [START_REF] Häggqvist | Analyse der faserverteilung in einem rückenmarkquerschnitt (th 3)[END_REF]. Fiber diameter is related to conduction velocity: in myelinated axons, conduction velocity increases approximately linearly with axon diameter [START_REF] Herbert | Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian a fibers[END_REF]]. Consequently, one might expect the axon diameters to follow the growth of the brain in order to maintain the conduction times, from a mouse to a human. However, making conduction times as short in human brains as in small brains would lead to an impossibly large brain volume. Furthermore, the increase in conduction times may be related to the improvement of cognitive abilities [START_REF] Bojak | Axonal velocity distributions in neural field equations[END_REF]Liley, 2010, Roberts and[START_REF] Roberts | Modeling distributed axonal delays in mean-field brain dynamics[END_REF]. 

Human Brain General Anatomy and Functions

As it was mentioned before, the brain is a complex organ in charge of the NS control process in most of the animals and it is the main focus of this work. While the anatomy has been largely described [START_REF] Gray | Anatomy of the human body[END_REF] and studied, there is still a long way to go to fully understand its complex functioning. So, let's start with the best known about the brain: the anatomical description.

In the very general description, the brain is covered and protected by a bone structure called skull and three membranes called meninges. First of them is the pia mater that covers the entire surface of the central nervous system. Then comes the arachnoid mater and the dura mater, which is thicker and closer to the bone. In addition to this protection, there is an hydraulic shock absorber lying between the pia and the arachnoid mater known as the cerebrospinal fluid (CSF). This fluid also occupies the ventricular system around and inside the brain and serves several other purposes such as clearing waste produced by the brain or supplying nutriments to nervous system tissues. The adult human brain weighs typically 1.2 -1.5kg. • Forebrain: Composed by the diencephalon (n°6) and the cerebrum (n°7). The cerebrum comprises the two cerebral hemispheres interconnected by the corpus callosum, a wide and thick nerve tract, made up of commissural fibers. Each hemisphere contains a wrinkled outer layer known as cerebral cortex, that is detailed below. The cerebrum also contains three deeplying structures: the basal ganglia that participates in the regulation of the motor performance, the hippocampus, involved in memory storage and the amygdaloid nuclei which coordinates the autonomic and endocrine responses of emotional states. The diencephalon contains two structures: the thalamus which processes most of the information reaching the cerebral cortex from the rest of the SNC and the hypothalamus that regulates the autonomic SNP, the endocrine and visceral functions.

• Midbrain: Composed by the structures of the brain stem: the pons (n°3) that conveys information about movement from the cerebral hemispheres to the cerebellum (n°4), the medulla oblongata (n°2) which includes several centers responsibles for vital autonomic functions such as digestion, breathing and the control of the heart rate and the midbrain (n°5) that controls many sensory and motor functions, including eye movement and the coordination of visual and auditory reflexes.

• Hindbrain:Composed by the same parts of the brain stem and the cerebellum (n°4) that modulates the force and range of movement and is involved in the learning motor skills. The brain stem is the structure that connects the spinal cord with the brain. It receives sensory information from the skin and muscles and provides the motor control for the musculature. It also conveys information from the spinal cord to the brain and from the brain to the spinal cord, and regulates levels of arousal and awareness through the reticular formation.

Figure 2.4 shows a cortical region of a macaque monkey where two important components of the brain can be identified. The white regions constitute the White Matter (WM) composed of bundles of myelinated axons that run from one brain region to one or more other regions. By contrast, the grey outer regions correspond to the Gray Matter (GM) of the cerebral cortex, composed mostly by the neuron's somas. The colour difference arises mainly from the whiteness of myelin. Because of the importance and relevance of these two components, they are deeply detailed below.

Gray Matter

The GM consists mostly of neuronal cell bodies, dendrites, capillaries and glial cells that maintain homeostasis, form myelin and provide support and protection for neurons [START_REF] Kristjan | Glial cells in the enteric nervous system contain glial fibrillary acidic protein[END_REF].

As it was mentioned above, the part of grey matter that composes the surface of the brain is called cortical mantle or the cortex. Its thickness varies according to the location. For instance, Zilles and Amunts [2015] reported a thickness of 4.2 -5.7mm in the primary motor cortex, while the primary somatosensory cortex depicts a thickness of only 2.4 -2.7mm. Other part composed by GM are the cerebellum, also called cerebellar cortex, and the nuclei, that are internal groups of neurons usually sharing similar connections and functions.

However, the cortex is the most important structure of the GM and plays a major role in cognitive functions. Cerebral hemispheres are concerned primarily with sensory and motor processes of the contralateral side of the body. Each hemisphere of the cerebral cortex is divided into four external lobes: frontal lobe, parietal lobe, occipital lobe and temporal lobe (See figure 2.5). Other two internal lobes can be added: the insula and the limbic lobe (see figure 2.6).

In human and some big mammals, the brain cortex is folded into ridges known as gyri and grooves called sulci. This configuration provides a greater surface area in the confined volume of the cranium [START_REF] Cusack | The intraparietal sulcus and perceptual organization[END_REF]. The more prominent gyri and sulci are very similar from one individual to another and therefore have specific names. Figure 2.5 shows some of the most well-known and studied sulci of the brain that are used as reference to divide the cortex into lobes: the central sulcus that divides the frontal and the parietal lobes, the lateral sulcus that divides the temporal lobe from the frontal and parietal lobes, the cingulate gyrus which lies immediately above the corpus callosum and the parietal occipital sulcus that divides the parietal lobe and the occipital lobe. Lobes from both hemispheres are similar but not completely symmetrical in structure and they are not equivalent in function. Some areas of the cerebral cortex are designated as primary, secondary, or tertiary areas, depending on their functional sequence within the pathway. The primary sensory/motor areas receive/send most of their information from the thalamus, which receives/sends signals from the peripheral receptors/motor neurons with only a few intervening synaptic relays. Depending of the location of this areas, each lobe has been associated with different and complex functions that are briefly summarized below [START_REF] Beaujoin | Post mortem inference of the human brain microstructure using ultra-high field magnetic resonance imaging with strong gradients[END_REF][START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF][START_REF] Kandel | Principles of neural science, Fifth Edition[END_REF] (see figure 2.7):

• Frontal lobe: It can be functionally divided into different areas: the prefrontal cortex is associated to reasoning skills, decision-making and higher level cognition. The premotor cortex is responsible for planning/reasoning and motor skills as the organization of movements while the primary motor cortex sends orders to execute movements. Finally, well-known Broca's area plays a key role in expressive language.

• Parietal lobe: Associated with the integration of tactile sensory information (primary somatosensory cortex) from several parts of the body and processes information relating to the sense of touch [START_REF] Penfield | The cerebral cortex of man; a clinical study of localization of function[END_REF]. It is also related to language comprehension, spatial orientation and perception.

• Temporal lobe: Involves the primary auditory cortex that analyzes auditory information and the Wernicke's area, an important structure which plays a key role in speech comprehension.

It is also related to several cognitive processes and with the formation of explicit long-term memory and learning in the hippocampus.

• Occipital lobe: Due to the prescence of the primary visual cortex and the visual association cortex, this lobe is the visual processing center of the brain, receiving visual information from the retina. This information is then sent to the temporal or parietal lobe for analysis.

• Insula lobe: The insular cortex is still not fully understood but it is believed to be involved with the perception, emotion, memory, self-awareness, cognitive functioning and interpersonal experience. It is also related to the regulation of the body's homeostasis and motor control.

• Cingulate cortex: The limbic lobe plays a role in the regulation of emotional life, cognition and memory, processes highly interconnected.

Cortical folding

As it was mentioned above, the brain cortex is folded into ridges called gyri and depressions or grooves known as sulci. The variation in the number of fissures in the brain between species is related to the size of the animal and the size of the brain. Mammals that have smooth-surfaced or nonconvoluted brains are called lissencephalics and those that have folded or convoluted brains gyrencephalics [START_REF] Hofman | Size and shape of the cerebral cortex in mammals (part 1 of 2)[END_REF][START_REF] Michel | On the evolution and geometry of the brain in mammals[END_REF]]. The division between the two groups occurs when cortical surface area is about 10cm 2 and the brain has a volume of 3-4cm 3 .

The process of forming the characteristics folds is called gyrification [START_REF] Rakic | Evolution of the neocortex: a perspective from developmental biology[END_REF] The folded appearance creates a larger surface area for the brain in humans and other mammals, hidding up to two-thirds of the surface in the grooves. This expansion is driven by an increase in the number of functional units, rather than an increase in the complexity of those units [START_REF] Griffin | The intrinsic geometry of the cerebral cortex[END_REF] and this allows to have a greater cognitive function in the confines of a smaller cranium [START_REF] Cusack | The intraparietal sulcus and perceptual organization[END_REF].

It has been found also that the width of cortical sulci increases with age and also with cognitive decline in the elderly [START_REF] Liu | The effects of age and sex on cortical sulci in the elderly[END_REF][START_REF] Liu | The relationship between cortical sulcal variability and cognitive performance in the elderly[END_REF] and that the abnormalities in gyrification of the languaje related-cortex are associated to schizophrenia patients with auditory hallucinations [START_REF] Cachia | Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations[END_REF].

The formation of these convolutions involves rather complicated logistical problems: one of them being that the pattern of convolutions is not random, but highly reproducible within each species with relatively small individual variations. So, how does the process of gyrification works? Several hypotheses have been presented to answer this enigmatic question. In the 19th century the idea originated that the cranium was responsible for the folding of the cortical surface, due to the mechanical buckling forces when expanding the brain tissue into this rigid structure [START_REF] Ronan | Differential tangential expansion as a mechanism for cortical gyrification[END_REF]. However, this idea lost strength when it was noticed that the primordium of the cranium during the period of fetal brain development is not yet ossified.

An alternative hypotheses was proposed by [START_REF] David | A tension-based theory of morphogenesis and compact wiring in the central nervous system[END_REF] where axonal tension forces and the pattern of connections within the developing brain is an important factor in the development of brain convolutions. According to this theory, densely interconnected regions tend to resist separation during brain growth and form bulges or gyri that limit the separation distance, whereas poorly interconnected regions are free to fold and form fissures or sulci that would increase the separation distance. However, [START_REF] Xu | Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding[END_REF] demonstrated that axons do not follow the pattern specified and they run parallel to the sulcal walls rather than perpendicular to them. In addition, he has shown that while axons pull on the brain, they are not under sufficient tension to affect folding patterns of individual gyri.

Another relevant theory proposes that regionally specific differential expansion is a plausible primary mechanism for gyrification and the presented evidence supports the hypothesis that the degree and pattern of gyrification is a cortex-specific process, driven by expansion, and mediated by cortical architecture and growth rates. [START_REF] Ronan | Differential tangential expansion as a mechanism for cortical gyrification[END_REF]. Although many hypotheses have been raised, the gyrification process is still not fully understood nor fully elucidated for what much more research is still needed. Furthermore, the potential influences of genetic, epigenetic and environmental factors are still an incoming challenge [START_REF] Dubois | Mapping the early cortical folding process in the preterm newborn brain[END_REF].

As it was mentioned before, pattern of convolutions is not random but highly reproducible within each species. However, due to the high convolution levels in human brain, the sulcal pattern variations in human individuals is complex (see figure 2.9). Only the largest and deepest folds have led to a clear consensus among experts of sulcal anatomy regarding their characteristic pattern in terms of shape or spatial relations [START_REF] Destrieux | A practical guide for the identification of major sulcogyral structures of the human cortex[END_REF]. These are the primary folds that appear at the early stage of brain maturation as seeds which will become the future sulci [START_REF] Dubois | Brainrat: Brain reconstruction and analysis toolbox. a freely available toolbox for the 3d reconstruction of anatomo-functional brainsections in rodents[END_REF] and are used as inter-lobular landmarks. They are [START_REF] Tamraz | Brain Cortical Mantle and White Matter Core[END_REF]: the central sulcus, also known as Rolandic fissure, the lateral sulcus, also known as Sylvian fissure, the cingulate gyrus, the parietal occipital sulcus, the callosal sulcus, the calcarine sulcus, the superior temporal sulcus, the circular sulcus of the insula, the intraparietal sulcus, the inferior-frontal sulcus, the paracentral sulcus, the collateral sulcus, the olfactory sulcus, the precentral sulcus (superior part) and the superior frontal sulcus. 

White matter

As it was mentioned above, WM mostly consists of axons that connect different areas of grey matter and carry nerve impulses between neurons. Axons connecting the same regions tend to bundle together and form tracts also known as fiber bundles or fascicles. In the cerebral hemispheres it is possible to find short-range tracts that follow the contours of the gray matter and connect closer cortical areas and the long-range fiber bundles that go into the deep WM and connect different regions of the brain. There are also shorter intracortical fibers within the gray matter (between 1 -3mm). As a rough rule, the number of fibers of a certain range of lengths is inversely proportional to their length [START_REF] Schüz | The human cortical white matter: quantitative aspects of cortico-cortical longrange connectivity[END_REF].

Why is the understanding of WM tracts so important? Because they are essential in the further elaboration of knowledge of brain structure and function and also, a deeper understanding of the white matter pathways is relevant for clinical purposes. Deseases such as multiple sclerosis [START_REF] Charcot | Histologie de la sclérose en plaques[END_REF], Alzheimer [Roseborough et They are described below.

Projection fibers

They correspond to the fiber bundles connecting the cortex with the subcortical centers and other areas of the CNS, such as the deep nuclei, the brainstem, the cerebellum or the spinal cord. These tracts conduct information outwards from the cortex (efferent tracts) and inwards the cortex (afferent tracts). Essentially, afferent tracts are ascending pathways that carry sensory information (optic, acoustic and somatosensory information) from different parts of the body to the cerebral cortex and other structures. On the other hand, efferent are descending tracts that carry motor commands from the motor cortex down to the muscles and glands through the lower brain structures (basal ganglia, cerebellum, brain stem) and the spinal cord.

Descending motor tracts can be functionally divided into two major groups: • Pyramidal tracts : They carry motor fibers and are responsible for voluntary movements of the face and the body. The name is due to the crossover of fibers at the level of the pyramids in the medulla. The pyramidal tracts, shown in figure 2.15, is composed by the Corticospinal tract (CST) and the Corticobulbar tract (CBT). The CST is mainly originated from motor and premotor areas as well as the primary somatosensory cortex tract. It constitutes a large part of the internal capsule (see figure 2.16c) to finally descend into the spinal cord. In the most inferior part of the medulla, 80% of the CST fibers decussate (cross over to the other side of the CNS). CBT is a two-neuron path originated in the ventral precentral gyrus, which unites the cerebral cortex with the cranial nerve nuclei in the brainstem involved in motor functions (apart from the oculomotor nerve) and other sensory nuclei.

• Extrapyramidal tracts : These tracts originate in the brainstem, carrying motor fibers to the spinal cord. They are responsible for the involuntary and automatic control of all musculature, such as muscle tone, balance, posture and locomotion. There are four extrapyramidal tracts:

the vestibulospinal (arising from the vestibular nuclei), the reticulospinal (from the reticular formation), the rubrospinal (from the red nuclei) and the tectospinal (from the superior colliculus of the midbrain also called tectum) tracts. • Fornix : It connects the medial temporal lobe to the mammillary bodies and hypothalamus.

The fornix belongs to the limbic system and is involved in memory functions (see figure 2.16d).

• 

Commissural fibers

Also known as transverse fibers, they are axons connecting the two hemispheres of the brain. The three main commissures are: the corpus callosum and the anterior and posterior commissures detailed below (See figure 2.17).

• Corpus callosum : It is the wider commissure and even the largest white matter structure in the human brain that connects left and right hemispheres. This structure is involved in several motor, perceptual and cognitive functions. As shown in figure 2.17, it is divided into four sections: the Genu that connects medial and lateral frontal regions, the Rostrum connecting orbito-frontal regions, the Body passing through the corona radiata and connecting precentral frontal regions and parietal lobes and the Splenium that connects the occipital lobes. The fibers of the body of the corpus callosum are ventral to the cingulum and medial to the lateral ventricles.

• Anterior commissure : Corresponds to a tract connecting the two temporal lobes, placed in front of the columns of the fornix (the anterior and ventral, including the amygdala) of the two hemispheres. The functions of the anterior commissure are poorly understood.

• Posterior commissure : Corresponds to a tract connecting the pretectal nuclei (in the midbrain), mediating the pupillary light reflex.

Other commissures exist like the hippocampal commissure enabling the communication between the right and left hippocampus.

Association fibers

These tracts correspond to axons that connect cortical areas within the same cerebral hemisphere.

Usually, the association fibers are arbitrarily divided into two types (see figure 2.18): the longassociation fibers, connecting distant areas of the brain and the short-association fibers located under the cerebral mantel and connecting adjacent gyri. The first ones have been largely studied [START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF], while the identification of the second ones is one of the main goals of this thesis Unfortunately, the term "short association fiber" is not well-defined in publications and in some works they have been divided into more types [START_REF] Schmahmann | Fiber Pathways of the Brain[END_REF]] depending on the regions connected or their lengths [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], 2011a, Román et al., 2017]. There is also no consensus in the scientific community on the nomenclature used for labelling or the cortex parcellation used to define the short conexions. These ambiguities stunt the comparing and validating process of the bundles already identified between research reports.

Long-association fibers are located in deeper parts of the WM and link cortex areas of different regions and lobes. White matter structures in the deep white matter regions (DWM) seem to share more common anatomical features across individuals, since there are many prominent axonal bundles that can be identified in all normal subjects at well-defined locations. Below, a brief summary about the well-known and most studied in literature long-association fibers. • Arcuate fasciculus (AF) : Also known as superior longitudinal fasciculus, it connects the perisylvian cortex (around the fissure of Sylvius or lateral sulcus) of the frontal, parietal, and temporal lobes. AF of the left hemisphere is commonly involved in language while AF of the right hemisphere is usually involved in visuospatial processing and some aspects of language such as prosody and semantic. Some atlases have divided this tract into three parts [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF] (see figure 2.19d).

• Inferior fronto-occipital fasciculus (IFO) : This tract connects the ventral occipital lobe and the orbitofrontal cortex. The functions of the IFO fasciculus are poorly understood but it is possible that it participates to reading [START_REF] Catani | The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state[END_REF], attention and visual processing. In humans, it represents the only direct connections between occipital and frontal lobes (see figure 2.19e).

• Superior fronto-occipital fasciculus (SFO) : Although the components of this bundle are not well characterized, it has been considered to carry fibers that connect occipital and temporal regions with frontal cortex and insula of Reil [START_REF] Crosby | Correlative anatomy of the nervous system[END_REF] (see figures 2.14 and 2.18).

All the tracts and fascicules described above correspond to the longest and major tracts, those who have been largely studied. However, the knowledge on short-range connections, also known as subcortical U-fibers or arcuate fibers, in the human brains is sparse in the anatomical literature.

Many of the short association fibers lie immediately beneath the grey substance of the cortex of the proposed that there is a proportional relation between the degree of intrinsic curvature and the degree of differential expansion of the brain. At the same time, the differential (non-uniform) rates of surface expansion, may give rise to uneven distributions of neurons and an increase in the proportion of short connections. This might explain why larger brains with increased degrees of gyrification will naturally favor proportionately more short-range connections. However, more studies are necessary to validate this theory.

The On the other hand, Heinrich Sachs produced a detailed atlas of human brain [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF] (see figure 2.21), identifying the U-shaped fibers of the occipital lobe organized in larger bundles visible on post-mortem dissections. He describes the occipital fibers as organised into bundles and layers according to the following rules:

• Every fibre reaches its destination via the shortest possible route, as far as this is in correspondence with embryological peculiarities of brain development,

• Short fibers are located close to the cortex while longer fibers are located close to the ventricle,

• Fibers with roughly the same destination run in parallel or form bundles for a part of their common trajectory.

In his observations, Sachs indicated that occipital lobe fibers form four layers, which envelop the occipital horn like an onion skin from all sides except its opening. These layers, counted outwards from the medial to the lateral walls of the ventricles are (see figure 2.21):

1. Layer of the corpus callosum: 4. Layer of the short association fibers: Stratum proprium cortices (16)(17)(18)(19)(20)[START_REF] Broca | Mémoires sur le cerveau de l'homme et des primates[END_REF](22).

Sachs also pointed out that brains cannot be identical in all their details and variability is also observed in the arrangement and development of white matter anatomy. Unfortunately, his work is mostly based in the occipital lobe. Nevertheless, in words of [Vergani et al., 2014b]: "The atlas of Sachs is one of the most accurate description of the occipital fibers in humans, and it still represents a most valuable basis of comparison for those who want to approach this subject". They managed to replicate all short-association tracts originally described by him. They also noticed that the parieto-occipital sulcus and the calcarine fissure demonstrate a rich pattern of connecting gyri and that the longitudinal fibers of the stratum sagittale are arranged as external and internal layers.

In addition, they recognised a tract previously not described by Sachs or any other post mortem dissection work. This tract runs deep within the calcarine fissure from the inferior portion of the cuneus to the superior and anterior aspect of the lingual gyrus and due to its peculiar shape they named it as The monkey neuroanatomy provides important hypotheses to be tested and validated in the human brain but despite the similarities, differences between species in the anatomy and function of the brain, the task of translating out findings from monkeys to humans can be not as straightforward as previously thought [Catani et al., 2012a, 2017, de Schotten et al., 2012[START_REF] Oishi | Superficially located white matter structures commonly seen in the human and the macaque brain with diffusion tensor imaging[END_REF].

The advances in MRI and specifically the diffusion imaging tractography studies have contributed to elucidate the WM organization and in particular, U-shaped connections have been reported in the living human brain [START_REF] Anwander | Connectivity-Based Parcellation of Broca's Area[END_REF][START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF], 2012b Broca's Area as well as Lawes et al. [2008] with the creation of a WM atlas. In particular he extracted some short arcuate fiber of the cingulum. As both were not particularly interested in short fibers, they did not go deeper in their description. In the same year, Oishi et al. [2008] identified four U-fibers in the frontal area as illustrated in figure 2.26. For this purpose, they parcellated and defined their own brain regions, 9 in total which were further parcellated into 21 subregions based on the cortical anatomy, all this using 81 healthy subjects. The short-fiber bundles identified are:

1. Frontal short association fibers: Connect the regions between the gyrus superior frontal (SFG)

and the inferior frontal (IFG).

2. Fronto-central short association fibers: Connect the regions between the gyrus medial frontal (MFG) and the pre-central (PrCG). Furthermore, the image 2.28b shows the probabilistic maps of the other 25 short association fibers identified, whose nomenclature is summarised in the Appendix A, section A.1.2.1. The probabilistic maps reflect common and reproducible trajectories with relatively large spatial variations, compared to well-defined big bundles. In their work, Zhang et al. [2010] noticed that the probabilistic maps of short association tracts have a large degree of dispersion compared to larger axonal bundles, probably due to a higher complexity in the configuration of the short connections compared to larger ones, as suggested by [START_REF] Jones | Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor mri[END_REF], Zhu et al. [2009], but it could be also influenced by the limitation in precisely matching the cortical anatomy among the subjects.

One year after, Guevara et al. [2011b] proposed a primary short bundle atlas composed by 47 bundles per hemisphere and inferred from a database of 12 brains (See figure 2.29). They tried to find the most reproducible SWM bundles, also in the whole brain, validating their results in another database of 10 subjects. All the bundles of their atlas were found in at least half of the subjects.

A fiber length limit was established, considering as short only the fibers between 35 and 110mm.

However, they do not give further details on how or why they have chosen these limits. Also, they do not give references about possible functions in which their tracts could be involved. in the next chapter) and between different primate species (macaque, chimpanzee and human). As their goal is to characterize the short connections and to compare the fiber shapes across species and across datasets, they have analyzed the cluster centers obtained with their method and have identified five common short-fiber shapes that they can propagate across species and datasets (see figure 2.32).

Closer to our days, and focusing on the detection of U-fibers in specific regions, [START_REF] Pron | U-shape short-range extrinsic connectivity organisation around the human central sulcus[END_REF] characterized the connectivity of U-shape fibers coursing around the central sulcus (CS), including pre-and post-central gyrus. They used 100 right-handed, non-twin subjects (50 males, 50 females) of the HCP dataset to infer the presence of 5 major U-shape fiber bundles in both hemispheres by applying unsupervised clustering (DBSCAN) in a "connectivity space". The analysis of the bundles suggested that some of them might be subdivided in some subjects, what could be due to interindividual variability of the CS sulci. Even more, for the hand area in the CS, they detected a greater number of streamlines in the left than in the right hemisphere and the absence of volume difference suggests a higher density of the streamlines in the left hemisphere. This shows an important correspondence between the CS morphology, the short structural connectivity and the manual preference.

The 5 short bundles of the CS are shown in the figure 2.33. The interest in the short association fibers in the recent years has not been only focused on the detection of U-fibers in specific regions but also in the whole brain. Guevara et al.

[2017] created an atlas of short superficial white matter tracts composed by the most reproducible bundles with low variability in shape across a population of 79 healthy subjects. The atlas has 100 bundles in total, 50 per hemisphere (see figure 2.35), from which 35 are common to both hemispheres. This atlas contains most of the tracts described before in the previous works but also has several connections not described yet in the literature. Among those bundles there are some connecting the orbito-frontal with The main difference in results between both Guevara's and Roman's atlases is due to the method they used to extract the bundles, but that aspect will be analyzed in the following chapters. In the latest years, and thanks to the increasing of machine lerning techniques and the boom of deep learning, the interest for the automatic extraction an analysis of short-connections tracts has grown. [START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF] hypothesized that a whole brain tractography analysis could predict autism spectrum disorder (ASD) by inferring global white matter abnormality patterns with respect to controls. They created an atlas of fibers of the whole brain from 149 male subjects (70 with ASD and 70 healthycontrols) using machine learning techniques. Only highly consistent bundles across the subjects were kept. Then, they analyzed the bundles described in literature as implicated in ASD, among which is the aslan tract. Differences in the fractional anisotropy (FA) were found in ASD cases which is consistent with the literature.

D'Albis et al.

[2018] also studied ASD patients using Principal Components Analysis (PCA) and the short bundle atlas of [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF]. They found that patients with ASD had a significantly decreased anatomical connectivity in a component comprising 13 short tracts compared to controls.

ASD patients showed strong correlations between mean generalized fractional anisotropy of left inferior temporal-middle temporal and empathy, and between mean generalized fractional anisotropy right supramarginal-insula andsocial awareness and language structure. All these corticalregions (temporal, inferior parietal and insular regions) arecritical to social cognition. The differences in anisotropy values in mental pathologies have also been found by [START_REF] Ji | Increased and decreased superficial white matter structural connectivity in schizophrenia and bipolar disorder[END_REF] in patiens with Schizophrenia (SZ) and bipolar disorder (BD). These, also called as "disconnection syndromes", show substantial evidence of abnormalities in deep white matter tracts but also in the SWM bundles from the frontal, parietal and temporal cortices. Ji performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls; bundles were extrated using the atlas of [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF]. Analysis of covariances yielded significant generalized fractional anisotropy (GFA) reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). In particular for the SZ patients, increased GFA in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus) was found, supporting functional hyperconnectivity of this network.

Kai and Khan [2019] also developed a tool to automatically identify all pathways in the human brain, including the short-range, U-shaped tracts across different set of datasets. They use 100 subjects from the HCP dataset and the subjects from MyConnectome database. Additional length constraints of 20mm (minimum) and 80mm (maximum) were imposed and as previous reports, they do not specify the reasons to choose those values. A total of 125 tracts were identified (see figure 2.37).

Gahm and Shi [2019] proposed an innovative method to extract U-shaped fibers without the tractography reconstruction. Only the most known short connections from the precentral and postcentral gyrus were extracted in order to prove the efficacity of their method. They used 484 subjects from the HCP data and a technique based fiber orientation distributions (FODs) on cortical surfaces to extract the bundles. The main advantage on this technique is that it is intrinsic to the cortical geometry. As previous works, they also fixed the minimum and maximum length of the tracks between 20 and 80mm. Although they were able to reconstruct well-connected, well-U-shaped and well-distributed bundles of the PrCG and PoCG regions, more analysis and studies are necessary to demonstrate its effectiveness, nevertheless this method is presented as a good and striking alternative to tractography.

Conclusions

This chapter has introduced us to the brain world, and in particular to the connectivity of the white matter. At the beginning, the macroscopic view of the anatomy and structure of the nervous system and the human brain gave us the anatomical context in which this thesis is developed. Then, the gray matter of the brain was described highlighting mainly one structure in particular: the cerebral cortex. The cortex is usually divided into lobes associated to specific functions and it has a folded appearance that increases the area available for functional units. This is not an exclusively human characteristic, but of big mammals in general and they commonly appear in the fetal stages. Despite the proposition of some theories, the appearance of brain convolutions is still a mystery. Moreover, the patterns are formed not exactly the same in all individuals of a specie, a phenomenon that has aroused great interest in the scientific community over the centuries for the possible implications regarding the brain function and the particular characteristics of each individual. The identification of the main gyri or sulci has been widely described in the literature and in particular, the template proposed by [START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF] is presented due to its later use in the development of this thesis, as well as the parcellation of Desikan et al. [2006]. Parcellation divides the brain cortex into smaller segments and is a technique used to facilitate its study.

Another important structure of the brain is the white matter, in charge of the transmition of the electrical signals and information between different parts of the body and the brain, or inside it, between the brain structures. The way this structure is organized is another aspect of relevance in the scientific community. White matter structures seem to be related to the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. The white matter is usually divided depending on the regions that communicate, so, we can find projection fibers, commissural fibers and association fibers which are arbitrarily divided into long-tracts, mostly located into the deep white matter, and short-tracts, usually located in the superficial whitte matter, near to the cortex. The study of this last part of the classification is the main goal of this thesis.

In spite of being already described in the 19th century, the short fibers, also called U-fibers, remain not well documented in the literature and only the main and bigger tracts from the frontal and occipital areas have been barely studied, but from the earlier studies of [START_REF] Meynert | Psychiatry, a clinical treatise on disease of the fore-brain, based upon a study of its structure, functions, and nutrition[END_REF] it is concluded that they are present all around the cortex. Furthermore, no formal criteria are indicated to define them, either by a length limit or by the regions connected or if they only considered the proximity of the fibers to the cerebral cortex. However, in a non-formal way there seems to be a tendency to establish a limit by lenght size, considering tracts less than 80-85mm as short connections, otherwise as long Due to the proximity with the cerebral cortex, the folding pattern is closely related to the organizational structure of the U-fibers and even an influence of this WM structures in the gyrification process has been proposed. Research has also shown evidence of relationship between alteration of the U-fibers structures with the developement of mental diseases such as autism, bipolarity, depression and schizophrenia [START_REF] Ji | Increased and decreased superficial white matter structural connectivity in schizophrenia and bipolar disorder[END_REF][START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF]. However, given the recent nature of these studies/theories and the lack of knowledge about short association fibers, there is an urgent need to carry out more research on this subject and, above all, to increase knowledge about the connectivity patterns of U-fibers in the human brain.

Chapter 3

Brain Imaging 

MRI: The image generation

MRI scanners consist of several components: a superconducting magnet that provides a powerful and very uniform magnetic field, shim coils to correct inhomogeneities in the main magnetic field, gradient coils used to modify the magnetic field linearly along the X, Y, and Z directions and antennas (also known as radiofrequency coils (RF coils)) to ensure a better signal homogeneity. The magnetic resonance phenomenon used in MRI can be divided into three stages: polarization, resonance, and relaxation.

The MR images reflect water properties measuring signals from hydrogen nuclei (proton) that possess a nuclear magnetic moment called spin which rotates around its axis and acts like a small bar magnet. The tissue essentially has no net magnetization and in the absence of a magnetic field, the microscopic magnetic moment of each proton is randomly oriented. However, when placed in a magnetic field (B0), the protons align themselves as shown in figure 3 a horizontal radio frequency pulse is applied to tip the protons so that they rotate in the horizontal plane synchronously with one another (in-phase). Then, after the RF pulse is turned off (figure 3.3

2) and the rotating protons begin to move out of phase with one another (dephase) relatively quickly.

Summed across all of the individual water protons, the precession creates a rotating magnetic field that changes (decrease) in time and generates an alternating electric current back in the RF coil (figures 3.3 3, 4 and 5) that is measured in MRI to generate the image. This current is reflected in the brightness of each pixel in the image. The amplitude of the signal decays over time (the time constant of this decay is called T 2 and is approximately 30ms) at a rate dependent upon a number of factors, among which is the type of tissue of the protons analysed. The time between the excitation pulse and the peak of the signal is known as echo time (TE).

After withdrawal of the horizontal pulse, the protons slowly realign with the vertical magnetic field. This recovery of the vertical magnetization occurs more slowly than the dephasing. The time constant of the recovery is called T 1 and it takes several seconds [START_REF] Bloch | Nuclear induction[END_REF]. In many pulse sequences, a second RF pulse is applied at some time t after excitation to eliminate spin dephasing. 

dMRI: The diffusion-weighted image generation

At microscopic scale, the water molecules present a constant thermal agitation known as Brownian motion [M.R.S.E. and V.P.L.S., 1828], a phenomenon produced by thermal chocs between molecules that randomly modifies their trajectories. [START_REF] Einstein | Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen[END_REF], unaware of Brown's observation, used a probabilistic framework to describe the motion of an ensemble of particles undergoing diffusion, introducing the displacement distribution concept, which quantifies the fraction of particles that will traverse a certain distance within a particular timeframe. In a free medium, molecular movement is not restricted by any physical barrier (isotropic) and each one performs a random walk that leads to a random path in three-dimensional (3D) space. This process is known as diffusion phenomenon and is essential for the normal functioning of living systems. Following Einstein theory, in free diffusion the displacement distribution is a Gaussian function whose width is determined by the diffusion coefficient (D).

In biological tissues, the membranes hinder and restrict the path of molecules making the diffusion process anisotropic. Particularly in the WM, the organization into bundles and the myelinization of fibers enhance the anisotropy so the displacement of water molecules is drastically reduced in any direction that do not correspond to the main direction of fibers. The diffusion of water is approximately three to six times faster in the direction of the white matter fiber bundles than in the perpendicular direction. The average distance moved by the molecules in an homogeneous medium increases linearly with the square root of time. This phenomenon is the core principle used to investigate the local orientation of white matter bundles with diffusion MRI (dMRI) data. In general, the probability density function (PDF) of the diffusion displacement (also known ad diffusion propagator) of water molecules is extremely complex and is still not well known today.

In many situations, the full PDF information is not required and the knowledge of its angular part, the Orientation Distribution Function (ODF), is enough. The ODF is defined as the radial projection of the diffusion PDF. The ODF has its maximum aligned with the underlying population(s) of fiber(s) and is therefore an interesting function to perform tractography. In general, an ODF is usually represented by a stretched sphere, in which the radius is scaled by the value of the ODF. A colormap for the ODF values can also be applied to the mesh vertices. MRI data are collected by turning certain magnetic fields off and on in a prescribed sequence called pulse sequence and this will determine what the image will look like. dMRI makes MR images sensitive to the displacement of water molecules in brain tissues by determining the direction of maximum diffusivity. For this purpose, a specific MRI pulse sequence is needed, including a pair of strong diffusion gradients to ray the position of spins.

Almost any MRI pulse sequence can be modified to become sensitive to diffusion. After excitation of protons, the application of a bipolar gradient adds to each spin's precession a positive phase proportional to its average position (along the direction of the gradient) during the first gradient, and a negative phase proportional to its average position during the second. The sum of these phases is related to the difference between these two positions. The bipolar gradient has no net effect on spins which do not move, they are completely "in phase" after its application. As shown in figure 3.6 if there is spin displacement the signal is attenuated exponentially by the product of the diffusion coefficient D and a factor b which is a function of the diffusion-weighting gradients.

In general, the D for any direction is estimated by collecting two sets of data: one S 0 with the diffusion-weighting gradient amplitude set to 0, such that b = 0, and the second S D with a non-zero diffusion-weighting gradient in the desired direction of measurement. Both The modeling of the water diffusion in the tissue microstructure is fundamental to decode its effect on the MR signal and reconstruct the WM paths. The diffusion is restricted by the structure of the tissue. The first model for this was the apparent diffusion coefficient (ADC). As it was mentioned before, Einstein proposed that the displacement distribution of water molecules is a Gaussian function and following this theory, there is a single exponential relationship between the signal and the ADC, being b the coupling factor introduced by Le Bihan et al. [1986]. However, the single ADC model is inadequate for characterizing the diffusion process when there is anisotropic tissue in the image volume because the ADC measure depends on the direction of the gradient. The more anisotropic the tissue is within the sample, the more the ADC will depend on the measurement direction. Therefore, a more complex model to characterize diffusion is needed. Below, we will review the main models used to describe intrinsic diffusion properties in dMRI.

DTI

Basser et al. [1994] proposed to use the diffusion tensor (DT) to model the intrinsic diffusion properties of biological tissues, considering the anisotropy of the diffusion process. The DT can be used to characterize the local orientation of the fiber bundles at each location in the white matter of the brain.

The water diffusion can be visualized as an ellipsoid representing the average diffusion distance in each direction during the diffusion time (τ)(see figure 3.7a). The principal axis of the ellipsoid gives the principal fiber orientation in the voxel (axes are given by the eigenvectors) and the lengths are given by the diffusion distance in a given time τ. The displacement in a given time is proportional to the square root of the diffusivity. The ellipsoid axes are scaled according to the square root of the eigenvalues.

The excentricity informs on the degree of anisotropy. In practice, DTs are commonly visualized with a Red-Green-Blue (RGB) colormap, that encodes the x-y-z coordinates of the principal eigen- The measurement is repeated for each of several directions to characterize the diffusion anisotropy.

A separate image of the brain is reconstructed for each direction. A voxel in white matter will typically exhibit greater diffusion in the direction of the fiber tract (dimmer image intensity in the corresponding image) and less diffusion in the other directions (brighter image intensities). These separate images can then be combined to show the degree of anisotropy and the dominant direction of anisotropy. The DT can be reconstructed by the measurement of signal attenuation for six different non-colinear and non-coplanar directions, with the addition of one non-diffusion-weighted image.

This approach uses a number of model parameters equal to the data, leading to a high sensibility to noise.

Because of the simplicity of the model with very few parameters, as well as the relatively small number of data required, DTI has earned success in many clinical applications. It quantifies diffusion anisotropy, which is a useful index of white matter integrity, and provides an estimate of the principal direction of axon fibers, which enables tractography (it will be detailed in the next sections). However, this model is limited, first due to the following constraints: DT model can only resolve a single fiber orientation within each imaging voxel as resolution of DT acquisition obtained with clinical MRI is between 1 -3mm 3 . This lead to problems with fiber bundle crossings, that are thought to occur in more than one-third of imaging voxels in white-matter [START_REF] Behrens | Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?[END_REF]. DT model assumes only one dominant fiber population within each pixel, which is an oversimplification [START_REF] David S Tuch | High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity[END_REF]. This could be an issue, especially for our research focused in the SWM where fiber architectures are more complicated than in the DWM Oishi et al. [2011].

Higher order models than DT and other reconstruction techniques are needed to describe non-

Gaussian diffusion signals, as the High Angular Resolution Diffusion Imaging (HARDI) techniques

that is presented in the next section.

HARDI

In WM, a voxel contains hundreds of thousands of axon fibers therefore, within a voxel a wide range of often complex configurations of fibers can exist. The discrimination of multiple fibers crossings is problematic with DT and would theoretically require to drastically increase the spatial resolution, which cannot be achieved due to severe hardware limitations. An alternative solution is then to increase the angular resolution by applying diffusion-sensitized gradients in a much larger number of directions than required for DTI reconstruction, and at much higher b-values. The idea now is to sample the q-space, a non-parametric approach to study the diffusion distribution [START_REF] Paul | Principles of Nuclear Magnetic Resonance Microscopy[END_REF], along as many directions as possible in order to reconstruct the true diffusion PDF. This approach is known as High Angular Resolution Diffusion Imaging (HARDI). It depends on the number of measurements N and the gradient strength (bvalue), which will directly affect acquisition time and signal to noise ratio. The ODF computed in HARDI data shows the presence of multiple fiber populations at each voxel as shown in figure 3.8. Analytical QBall Imaging (aQBI) [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF]:This method uses the same acquisition scheme as QBI and decomposed the function on the sphere on a set of orthogonal functions defined as spherical harmonics basis. Due to the nature of the diffusion, the induced signal is real and symmetric. Hence, a real and symmetric modified orthonormal spherical harmonics basis was defined, with only even order terms in order to respect the symmetric property. The capability of aQBI to differentiate crossing fibers depends on the q-sphere encoding points and the wave vector q. Moreover, the higher the b-value, the higher the angular resolution of the ODF [START_REF] Tuch | Q-ball imaging[END_REF].

While ODFs obtained with HARDI enable a more robust fiber populations estimation than DTI, they only rely on the angular profile and miss valuable information embedded in the radial part of the PDF. With the improvements of hardware, in particular regarding the gradients, new models have been developed to take advantage of this radial information to obtain in fine EAP instead of simple ODFs. In the frame of this thesis, aQBI model was chosen to reconstruct ODFs with a single-shell HARDI acquisition. Initially the adoption of higher-order models (such as HARDI) was hampered by unacceptably long scan times and limited software availability but nowadays they have been integrated into several software packages and can be readily used on clinically feasible data sets [START_REF] Jeurissen | Diffusion mri fiber tractography of the brain[END_REF].

The most advanced application of the techniques described above is fiber tracking or tractography, the only non invasive method currently available to characterize anatomical connectivity in the living human brain. Below, in the next section, the inference of structural connectivity of WM using tractography is presented. Despite all the constraints mentioned above, tractography still remains a powerfull tool to explore human brain mainly due to its non-invasive nature and ease of measurement [START_REF] Radmanesh | Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography[END_REF].

MR diffusion Tractography

This allows to address scientific and clinical questions that cannot be answered by any other means as the brain connectomics and the developement of quantitative analysis of WM for a wide range of diseases (including Alzheimer's, schizophrenia, stroke, and epilepsy) and is even a usefull tool for the planning of surgery [START_REF] Shawna Farquharson | White matter fiber tractography: why we need to move beyond dti[END_REF]. Because different tracking approaches will produce very different tractograms given the same connectome (MRI data), as shown in figure 3.11, their results must be interpreted carefully. Because DTI is only capable of distinguishing a single fiber population per voxel it often offers a poor representation of the underlying fiber orientations. On the other hand, higher-order fiber modeling methods can estimate the orientations and relative contributions of multiple fiber populations within each voxel and by using the fODF as a propagator, tracking can be performed even in white matter regions with complex fiber architecture. (Image taken from Jeurissen et al.

[2019])

In general, fiber tracking algorithms can be classified into two types: local and global and provide two types or results: 3D curves or voxel-maps. Both techniques are detailed below.

Local line propagation techniques, also known as streamline techniques [START_REF] Mori | Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging[END_REF][START_REF] Poupon | Détection des faisceaux de fibres de la substance blanche pour l'étude de la connectivité anatomique cérébrale[END_REF]] build a fiber pathway from a seed point along the principal diffusion directions, which correspond to the principal eigenvectors of the diffusion tensors. There are two main classes of algorithm using a local approach: deterministic and probabilistic tracking. generate a large collection or distribution of possible trajectories from each seed point. Brain regions that contain higher densities of the resulting trajectories are then deemed to have a higher probability of connection with the seed point. Thus, the highest probability is not systematically followed but an orientation is randomly chosen within the angular cone, centered on the highest probability given by the local model. PST algorithms can better handle fiber crossings [START_REF] Cook | Modelling uncertainty in two fibre-orientation estimates within a voxel[END_REF]Alexander, 2006, Parker et al., 2003] and they are more robust to noise as they can overcome propagation of errors. On the other hand, these algorithms are much slower than the deterministic methods and have a higher sensitivity compared to their deterministic counterparts, showing a higher rate of true positives, but also a higher rate of false positives and may yield spurious connections that have not been described with other methods [START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF].

As an alternative to deterministic and probabilistic algorithms, global tractography [Fillard et [2002] introduced the use of spin-glass (pieces of tracts) approaches to infer white matter tracts. The idea is to find the configuration of the spin-glasses minimizing a global energy and attracting the spins to be oriented along the main fiber directions and to form long chains with low curvature. If the number of spins is not enough to solve the local configuration, such as crossings, the algorithm allows them to be created on the fly. These global techniques are efficient since they are less blind than others but suffer from long computation time, and require strong optimization of the code and the use of high performance computing (HPC) hardware.

Inter-subject alignment of MRI images

When performing studies over a population of subjects, an other important step is necessary: the alignment of the data across the subjects. This means, to determine which location in each subject's images corresponds to the equivalent anatomical location in the other subjects. The correspondence can be found between images, between ROIs or anatomical structures, like sulci or WM tracts. The spatial adjustment of one image to match another is a process known as registration, where the input image is a single brain and the reference image might be a different image of the same subject, a different subject, or a template brain. When a template is used, the process is called normalization.

Template images are typically created by averaging several subject images in some common space [START_REF] Fonov | Unbiased average age-appropriate atlases for pediatric studies[END_REF].

Registration can be divided into geometric approaches and intensity approaches. The first ones build explicit models of identifiable anatomical elements in each image. These elements typically include functionally important surfaces, curves and point landmarks that can be matched with their Registration can also be divided between linear or non-linear methods [START_REF] Johansen | Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy[END_REF] and this classification will be detailed below.

Linear registration

These methods limit the motions applied to the input image to global translations, rotations, scalings and shearings. These low degrees-of-freedom (DoF) transformations tend to be robust and accurate for aligning images within subject and can be used to align head shapes and positions between subjects, but there will be remaining smaller-scale differences. These approaches can be divided into shown in figure 3.12. It was generated from a single 60 year old female postmortem brain in which one half of the brain was sectioned sagitally and the other coronally and is based on two relatively invariant subcortical point landmarks, the anterior commissure (AC) and the posterior commissure

(PC).
Intuitively, a single brain cannot be a good representative of the human brain but still the Talairach atlas has become de facto standard in brain mapping [START_REF] Gholipour | Brain functional localization: A survey of image registration techniques[END_REF] and has been used in multiple studies and applications, including brain alignment in the atlas generation [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], 2011b[START_REF] Mori | Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking[END_REF][START_REF] Oishi | Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter[END_REF]. Although major U-fibers and prominent common WM structures have been found using this approach, it is not the best choice when it comes to studying in depth the short association fibers due to the proximity of them with the cortical surface.

The Talairach approach cannot align detailed cortical structures adequately, which leads to significant blurring in population-averaged images [START_REF] Oishi | Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter[END_REF]. And this is crucial for the SWM tracts identification, which are located between the DWM and the cortex. created an atlas of short fiber bundles using both, the well-known Talairach alignment and the DTI-tk non linear registration [START_REF] Zhang | Deformable registration of diffusion tensor mr images with explicit orientation optimization[END_REF]], a method based on the features of the diffusion tensor.

Their results were better with the non-linear registration, identifying a greater number of bundles more dense and homogeneous than those obtained with the affine registration. As the main goal of this thesis is the creation of an atlas of short-range tracts/U-fibers , which are very close to the cortical surface, a registration method that incorporates information of the cortical patterns seems to be essential for a good inter-subject alignment and, ergo, the obtention of highly reproducible tracts across subjects. So, the DISCO approach seems to meet all our needs. We use it in conjunction with the well-known DARTEL method [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF] 

Virtual dissection and segmentation

As it was shown in sections 2.2.2 and 3.3, dMRI tractography opened a door to the study of the human WM structure and connectivty, allowing the creation of atlases from virtual in vivo dissections of the brain. But after obtaining the reconstruction of the WM paths and before getting the beautiful atlas images shown in the previous chapter, an essential step is necessary: the grouping of the trajectories or the identification of the tracts, in other words the segmentation process.

The first approaches for segmentation did not use tractography and only considered the information of the DTI and diffusion models to segment the WM tracts, for example using front propagation methods in conjunction with a similarity measure of diffusion in voxels [Jonasson et A similar approach was used by [START_REF] Magro | Characterization of short white matter fiber bundles in the central area from diffusion tensor mri[END_REF] and [Vergani et al., 2014a] to study the SMA region predefined in the MNI space. were normalized to the atlas, using the affine and LDDMM transformation. Tracts were extracted using existing anatomical knowledge about tract trajectories (method known as Template ROI Set or TRS). 30 previously well-described long fiber tracts were reconstructed but they also found 29 short-association tracts not well-known, by using the same approach but removing first the 56 DWM long association fibers.

Tracts may be complex and difficult to define due to their irregular shape and the amount of artifacts of tractography. The methods previously described do not consider the shape of the tracts and this is a big weakness considering the great inter-subject variability, especially at the cortical level. Those techniques are interesting and innovative and they may even show the future of the WM segmentation, however nowadays further analysis and more studies are necessary to validate them.

Conclusion

The development of diffusion tensor magnetic resonance imaging (DT MRI) has opened a door in the history for the non-invasive and in-vivo studies of the human brain. This chapter has presented the advantages and disavantages of the most used methods for this purpose: DTI and HARDI techniques. While DTI has become massive and is fast, this method can only deal with one trajectory per voxel. Due to the complex nature of the WM organization and despite of the improvements over this technique, DTI methods are left only to the identification of the largest and simplest WM structures.

HARDI methods have evolved to deal with the multi fiber per voxel problem, but with a compromise of execution time. Several algorithms have been developed as the DSI, QBall, aQBI, SD among many others, but even when they perform better than DTI, the crossing of fibers and the reconstruction of pathways in dense and complex regions is still challenging. This particular problem added to the lack of a gold standard to validate the results turn weak the reliability of tractography, an application of these techniques.

Despite this, tractography is a powerfull tool to explore the human brain but their results must be interpreted carefully and avoid the use as a black-box [START_REF] Jeurissen | Diffusion mri fiber tractography of the brain[END_REF]. Deterministic and probabilistic methods have also their pros-and cons. While determinist methods are fast, they are sensitive to noise and their results are prone to local errors in the estimate of the fiber direction.

On the other hand, probabilistic methods are more robust but slower and they could require high computational resources for their processing. This is not trivial and it is an important aspect to have in consideration at the moment of choosing a method. The regularization in deterministic algorithms seems to be an alternative to reduce the sensitivity of the deterministic methods without a great deal of time and computational resources.

Another important task is to choose a good inter-subject alignment depending on the nature of each study. This aspect can play a fundamental role and make a big difference in the final results obtained. In our case, the nature of the short-range connections, closer to the cortical surface and surrounding sulci, added to the analysis of previous studies suggest that a non-linear approach that considers cortical information is necessary. Fortunately, DISCO seems to be a good choice for us.

Finally, organization and identification of anatomical tracts with dMRI can be performed in many ways which may not need tractography. However, tractography gives a better global anatomical interpretation of diffusivity, and in consequence, smaller structures are better defined and can be extracted, 

as

Clustering algorithms

Clustering is a common technique for data mining and statistical data analysis used in many fields, including studies of brain WM [START_REF] Moberts | Evaluation of fiber clustering methods for diffusion tensor imaging[END_REF]. Due to its exploratory nature, looking to find previously unknown and unsuspected patterns, clustering is not a trivial task. "One person's noise could be another person's signal" [START_REF] Aldenderfer | and inc Sage Publications[END_REF]. This quote summarizes the complexity of this process.

Nowadays, a huge variety of clustering methods and models to extract patterns exists but not all of them give the same results on the same data and this takes on greater importance when talking about the brain, where the inter-subject variability is considerable. The grouping process requires a measurement (metric) or similarity measure in order to establish similarity and dissimilarity between samples in a data set, that is the basis for constructing clustering algorithms. The similarity measures proposed for WM brain segmentation in particular will be detailed in the next section.

In general, the clustering process can be summarized into the following steps [Rui Xu and Wunsch, 2005]:

• Extract and select the most representative features from the original data set.

• Design the clustering algorithm according to the characteristics of the problem.

• Evaluate the clustering result and judge the validity of algorithm.

• Give a practical explanation for the clustering result.

One of the main problems of clustering algorithms is the application to large databases since not all of them scale efficiently. For example, many clustering algorithms work by computing the similarity measure between all pairs of samples. This means their run-time increases as the square of the n number of examples, that is O(n 2 ) and this also involves an increase in the amount of computational resources needed, thus this kind of algorithms are not practical when the number of examples are in millions. Furthermore, large databases arise the minimum requirements of domain knowledge to determine the input parameters of the different approaches and this difficult the discovery of clusters with arbitrary shape. For those reasons, when choosing a clustering algorithm, you should consider whether the algorithm scales to your dataset.

Another problem to take into account in particular for clustering applied to WM segmentation is the lack of gold standard to evaluate the results obtained. In relation to the long structures, anatomical postmortem dissections have been used for this purpose but for SWM studies, this is more complex because the cartography of the short-association bundles and U-fibers is still largely unknown and as shown in section 2.2.2 few works described them in post mortem dissections. 

Connectivity-based algorithms

This kind of cluster analysis seeks to construct hierarchical relationship among data, building nested cluster by merging or splitting them successively. [START_REF] Johnson | Hierarchical clustering schemes[END_REF]. For this reason, this type of clustering is also known as hierarchical clustering. They can be divided into 2 categories: bottom-up (agglomerative) or top-down (divisive). The first one treats each element in the dataset as a single cluster at the onset and then successively merges pairs of clusters until all of them have been merged into a single cluster that contains all the elements (as shown in image 4.2a). Top-down approach does the same process in reverse, this means, all elements start in one cluster and splits are performed 

Single linkage

Minimun distance between Tends to produce long thin clusters that might be Sneath [1957] pair of objects, one in one unbalanced and straggly (chaining), especially in cluster, one in the other large data sets. Does not take account of cluster structure and might subdivide the data.

Complete linkage Maximun distance between

Tends to find compact clusters with equal diameters [START_REF] Sørensen | A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biologiske skrifter. I kommission hos E. Munksgaard[END_REF] pair of objects, one in one (maximum distance between objects). Clusters are cluster, one in the other circle, compact contours by their borders but not necessarily compact inside. Does not take account of cluster structure.

Average linkage)

Average distance between Tends to join clusters with small variances. Inter-Sokal et al. [1958] pair of objects, one in one mediate between single and complete linkage. cluster, one in the other Clusters of miscellaneaous shapes and outlines can be produced. Takes account of cluster structure. Relatively robust.

Centroid linkage

Squared euclidean distance It uses a data matrix rather than a proximity matrix [START_REF] Sokal | A Statistical Method for Evaluating Systematic Relationships[END_REF] between mean vectors and involves merging clusters with the most similar (centroids) mean vectors. Assumes points can be represented in Euclidean space for geometrical interpretation. The more numerous of the two groups clustered dominates the merged cluster. Clusters can be various by outline. Subject to reversals.

Median linkage

Squared euclidean distance It is similar to the previous one but centroids of [START_REF] Gower | A comparison of some methods of cluster analysis[END_REF] between weighted centroids the constituent clusters are weighted equally. Assumes points can be represented in Euclidean space for geometrical interpretation. New group is intermediate in position between merged groups. Subject to reversals.

Ward's method

Increase in sum of squares Assumes points can be represented in Euclidean space [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF] within clusters, after for geometrical interpretation. Tends to find same fusion, summed over all size, spherical clusters. They are more dense and variables more concentric towards its middle, whereas marginal points are few and could be scattered relatively freely. Sensitive to outliers. One advantage of these approaches is that it does not require to specify the number of clusters initially. Hierarchical clustering creates a tree of clusters and the number of clusters can be chosen by cutting the tree at the right level, which requires user intervention. It is also particularly good when the underlying data has a hierarchical structure and the description of the hierarchy is necessary.

On the other hand, these clustering methods are not very robust towards outliers that can be finally considered as additional clusters or can produce the "chaining phenomenon" where some clusters may be forced together due to single elements being close to each other. In addition, has a time complexity of O(n 3 ) and requires O(n 2 ) memory, turning this method slow and high in computational resource demanded for big datasets.

For those datasets where standard methods may be unable to cope, specialized methods that use the advantajes of parallel computing have been developed, beign highlighted BIRCH [START_REF] Zhang | Birch: An efficient data clustering method for very large databases[END_REF] and CURE [START_REF] Guha | Cure: An efficient clustering algorithm for large databases[END_REF]] methods. BIRCH employs a preclustering phase where dense regions are summarized and then, the summaries being then clustered using a hierarchical method based on centroids. On the other side, CURE starts with a random sample of points, and represents clusters by a smaller number of points that capture the shape of the cluster, which are then shrunk towards the centroid so as to dampen the effects of outliers; hierarchical clustering then operates on the representative points. CURE has been shown to be able to cope with arbitrary-shaped clusters, and in that respect may be superior to BIRCH, although it does require a judgement as to the number of clusters and also a parameter which favours more or less compact clusters.

Centroid-based algorithms

Unlike previous method, centroid-based clustering organizes the data into non-hierarchical clusters.

Here, clusters are represented by a central vector or centroid which may not necessarily be a member of the data set (see figure 4.4). Centroid-based algorithms are computing efficiently but they are sensitive to initial conditions and outliers.

k-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] is the most known and widely used centroid-based clustering algorithm, mainly because it is easy to understand and implement in code. In general, at first this method requires the user to specify the number of clusters to be found and randomly initializes their respective centroids. Then, each element in the dataset is classified by computing a metric of distance between that element and the centroid of each group. The element is classified in the group whose centroid is closest to it. After all the elements are classified, the centroid is recomputed by taking the mean of all the vectors in the group. Those steps are repeated for a preset number of iterations or until the group centers do not change significantly.

Because the computation of distances is executed between data points and centroids, k-means is pretty fast and has a linear complexity O(n). On the other hand, as most of centroid-based techniques, this method require k number to be specified in advance which is considered one of its major disadvantages because this is not a trivial task and even more when what we expect from the clustering algorithm is to gain some insight from the data. Furthermore, those methods usually start with a random choice of cluster centers and therefore it may yield different clustering results on different runs of the algorithm. Thus, the results may not be repeatable and lack consistency. Finally, as the algorithm optimizes cluster centers this often leads to incorrectly cut borders of clusters.

Distribution-based algorithms

This clustering approach assumes that data is composed of distributions and data from the same distribution belongs to the same cluster, if there exists several distributions in the original data. Then, clusters can easily be defined as objects belonging most likely to the same distribution. As these methods gives the probability of belonging to a cluster, the results are more realistic and the models are well supported by the theoretical foundation of statistical science. A more complex model will usually be able to explain the data better. However, this complexity makes choosing the appropriate model complexity difficult. In addition, these models suffer from one key problem known as overfitting, this means, the model extracts some of the residual variation (i.e. the noise) as if this represented the model structure. Another disavantage is the high execution time involved to process these complex models.

A very known algorithm of this kind is the Gaussian Mixture Models, (GMM) [START_REF] Edward | The infinite gaussian mixture model[END_REF].

This method models the data with a fixed number of Gaussian distributions that are initialized randomly and whose parameters are iteratively optimized to maximize the probabilities and to better fit the data points within the clusters. The expectation-maximization algorithm is usually used for this process. Data belonging to the same independent Gaussian distribution is considered to belong to the same cluster. 

Clustering evaluation

As we shown before, clustering is not a trivial task and even more when the knowledge of the domain of study is not enough to have an initial set of parameters to begin with. And once we obtained the first results, how to evaluate the quality of the clusters and the validity of the algorithm used? This is one of the big problems in unsupervised learning because it is questionable to evaluate unsupervised methods, as clustering, in the same way we evaluate supervised methods where the concept to be learned is known beforehand [Färber et 

Sil k = 1 n n ∑ i=1 (b i -a i ) max(a i , b i ) , (4.4) 
where, n: is the total number elements in the dataset.

a i : is the average distance between the element i and all elements in its own cluster.

b i : is the minimum of the average dissimilarities between element i and the elements in other clusters.

Davies-Bouldin index

Proposed by [START_REF] Davies | A cluster separation measure. Pattern Analysis and Machine Intelligence[END_REF], this index identifies clusters that are compact and far from each other. As the objective is to obtain clusters with minimun intra-cluster distances, a small Davies-Bouldin index (DB k ) is expected. This may works also when looking for the best number of clusters.

Davies-Bouldin index is defined by equations 4.5 and 4.6

DB k = 1 k k ∑ i=1 max j=1,...k,i = j diam(c i ) + diam(c j ) c i -c j , (4.5) diam(c i ) = 1 
n i ∑ x∈c i x -z i 2 (4.6)
where, k: number of clusters.

c x : is a x cluster with x ∈ k.
n i : is the number of elements in the cluster i. z i : is the centroid of the cluster i.

Fiber similarity measures

As it was introduced in section 4.1, WM clustering regroups fibers from the whole brain tractography into clusters of streamlines or trajectories with similar shape, position and length. In order to do this, a similarity measure that can quantify the closeness or similarity between trajectories is needed. One 1936] and an ad-hoc penalty term to handle partial overlapping. However, this approach requires the setting of an initial fiber representing each bundle and also the computation of a covariance matrix involves high computational complexity. Jonasson et al. [2005a] also considered partial overlapping of fibers by using voxels to perform a pairwise comparison of distance and shape between fibers. The similarity measure was evaluated as the number of intersections between fibers represented by the This metric serves as a probabilistic measure of inclusion of two fibers but is highly complex.

Mai et al. [2012]

introduced a new view on the shape similarity of fibers known as fiber envelope(see figure 4.7). The main idea is that to measure the shape similarity between two fibers A and B, an envelope is built around A (Env(A)) and then compared it with B. If B is inside Env(A), they have similar shape. By distance-based mechanism, it may be not possible to know whether the shape of fiber B or C is more similar to A, because Dist(A, B) ≈ Dist(A,C). However, the envelope scheme successfully discovers that the shape of C is more similar to A than to B, because a large part of C lies inside Env(A). The proposal is innovative, however it is also computationally intense and complex.

Closer to our research in the field of the short-connections, Guevara et al.

[2011b] used the same pairwise-distance scheme they used to extract DWM tracts [Guevara et al., 2011a] in the SWM shorter tracts. They also defined a metric to perfom tract segmentation of new datasets, computed between a pair of trajectories. This metric corresponds to the maximum of the pairwise Euclidean distances between corresponding 3D points and takes into account fiber position and shape. Considering two trajectories A and B with N p 3D points each one, this metric is defined as (see equation 4.7):

d M (A, B) = min(max a i -b i , max a i -b N p -i ), (4.7) 
where,

• : Euclidean norm.

a i and b i : the 3D point positions.

i : the position, with i = 0...N p -1,

As the direction of the fiber storage in memory is not known, the distance is calculated in both directions and then, the minimum is selected. Subsequently, this mesure was also used for the creation of the short bundles atlases proposed by Guevara et 

Clustering algorithms in WM segmentation

As it was described in the section 3.4.3, clustering methods have been widely used into the study of the structural connectivity of WM, using different fiber similarity measures. The aim is to partition a set of fiber pathways into different natural bundles, with anatomical correspondence [START_REF] Ding | Classification and quantification of neuronal fiber pathways using diffusion tensor mri[END_REF]]. Thus, the enormous amount of individual fibers provided by tractography algorithms can be reduced to a limited number of logical fiber clusters that are more manageable and understandable.

In fact, the huge size of the tractography dataset, in particular those of the new generation containing millions of trajectories, is one of the biggest challenges that clustering algorithms face. It is important to highlight that the results of this approaches depend strongly on the quality of the tractography used. Anatomical bundles whose trajectories have not been tracked or virtually reconstructed in the tractography will not be found [Guevara et [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] to model and cluster the trajectories. On the other hand Wassermann et al.

[2010] used a Gaussian distribution to create tract probability maps of the bundles and then cluster them by using a stochastic agglomerative clustering over a full brain tractography. Even though the results are interesting and require less user interaction, the complexity of these algorithms fully restrict their use to small datasets.

Another interesting approach to deal with huge databases was proposed by Visser et al. [2011] who randomly partitions the dataset to perform clustering over the smaller subsets. Then, consistent clusters across subsets were selected in a short execution time and with an easy parallel implementation. However, in this case the lack of anatomical reference in the method produced final clusters that do not necessarily correspond to bundles with anatomical meaning.

Mai et al. [2012] work neither use anatomical references but they use a density-based clustering,

DBSCAN with the warped longest common sub-sequence similarity measure of two fibers to automatically extract clusters. Their results show that this approach was able to successfully extract a set of known bundles from the database, although only long well-known bundles were considered. It would be interesting to perform further analyses of its behavior over shorter bundles.

Garyfallidis et al. [2012] proposed the QuickBundles algorithm for clustering. This method is focused in time performance so fibers are re-sampled to only 12 equidistant points. The efficiency is based on a cluster centroid calculation by the means of accumulative addition of cluster fibers and no re-computation of them. In later work, Garyfallidis et al.

[2015] complemented their approach including a registration framework to align bundles of interest directly in the space of streamlines. This is one of the fastest and more efficient algorithm reported in the literature, although re-sampling the fiber to only 12 points may limit the ability of the method to capture shape details.

In an innovative work, [START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF] proposed a pipeline based on machine learning to perform fiber clustering over the whole brain in an extended version of their preliminary work [START_REF] Zhang | Fiber clustering based white matter connectivity analysis for prediction of autism spectrum disorder using diffusion tensor imaging[END_REF]. They employ a multi-fiber tractography model that is more sensitive in tracking through regions of crossing fibers and work in the same spectral embedding space as O'Donnell and Westin [2007] to create an atlas representing common white matter structures in healthy population. The atlas was used to extract the bundles in a population of subjects by assigning the fibers to their closest atlas cluster, all in the same space. As the main focus of this approach is the classification and characterization of white matter abnormality, multiple diffusion features were extracted from each valid fiber cluster to characterize them and then, use them to inspect austistic spectrum disorder/typically developing controls (ASD/TDC) population. This method works in data-driven manner to identify tracts that may be most affected by pathology in whole-brain tractography and the results show its effectiveness even over some short-connections as the Aslan tract.

All the previous clustering methods mentioned have been mainly focused in the extraction of longer WM tracts. Closer to our research, Guevara et al. [2011a] proposed an automatic two-level clustering method to construct an atlas of DWM bundles. First an intra-subject clustering (hierarchical clustering) was performed to reduce the tractography dataset information from more than one million of tracts to a few thousand of fiber bundles. Then, an inter-subject clustering is performed across a population of subjects over their centroids (a representation of a fiber bundle obtained in the previous step). In order to get population representative clusters, only clusters composed by centroids from at least half of the subjects were selected and labelled by an expert. In Guevara et al. [2011b] the same process was applied over the SWM to extract the short-tracts, using a linear normalization.

The labellisation was done by using gyral parcellation of cortical surfaces. This was one of the first short-bundles atlas from whole-brain, composed by 47 bundles and presented preliminary results with shape description for SWM bundles, but no further analysis was performed. Also, this method was developed and tuned to extract DWM bundles that are longer than SWM ones, thus it was not well adapted for short association bundles. include in the study the connections within the gyri. They also did some optimization in their method in order to be able to process big datasets or a big population of them. They created an atlas composed by 49 bundles in the left hemisphere and 44 in the right hemisphere.

Conclusions

This chapter introduced us into the clustering world, full of different approaches evolving every day, each one with pros and cons.

Clustering is a hard task and mostly when there is not a clear image about what are we looking for. All depends on the task we are addressing: what is noise for someone could be the signal of someone else. This problem increases if tractograms are added: a virtual representation of possible fiber trajectories of WM. And becomes worst if we added the concept of short fiber bundles, small structures not well-known and poorly described in literature.

In the previous chapter it was suggested not to use tractography as a black box and it was recommended caution when interpreting their results. However, with the few information available, especially about U-fibers and the extended experience in the extraction of long fiber bundles with different approaches, what seems to be just conjectures and uncertainties begins to take a defined shape.

Through the years, clustering has been mainly focused in the long fiber trajectories and a huge but all of them are based on a similar approach, using the same metric and similar agglomerative clustering approach. It would be interesting to compare the results with respect to both, a different clustering technique and metric. This is the challenge that will be addressed in the next chapter.

Part II Short-fiber bundles atlases 93 Chapter 5

Short-fiber bundle atlas: ARCHI Some works, mainly focused in the long WM bundles, have also described some short connections This chapter presents the method used to obtain a new atlas of short-range fiber bundles in between 20mm and 85mm of length. This approach overcomes the cortical folding patterns variability by performing the inter-subject alignment with a diffeomorphic strategy [START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF], which imposes explicit matching of the most stable cortical sulci. Then, using divisive hierarchical clustering, the most reproducible bundles across the subjects of the ARCHI database are extracted. This method allows us to obtain not only the tubular-shaped bundles but also bundles with different morphologies [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]. The objective of this framework is twofold: 1) increasing the number of U-bundles consistently mapped in the general population in comparison to previous atlases inferred from the same database; 2) improving our understanding of the relationship between the folding pattern and the U-bundle organization.

The chapter is organized as follows: first section 5.4 introduces the used data and all the preprocessing tasks performed over the initial MRI images until tractograms are obtained. It also presents the diffeomorphic registration method used to align brains and streamlines. Then, in the section 5.2, we describe several preliminary analyses performed to observe the data, which have influenced the design of the final clustering algorithm used to generate our atlases. Finally, we present the final algorithm. The section 5.3 describes the new atlas obtained from the ARCHI database and the analysis of the bundles. In addition, we propose a discussion with respect to the previous atlases obtained from the same database. Finally, the conclusions 5.4 of this chapter are presented in the fourth section.

Materials and preprocessing of the data

Acquisition of ARCHI Database

The MRI database used in the development of this thesis is the ARCHI database [Schmitt et Python, C and FreeSurfer among others. Detailed information about the computational resources used can be found in the appendix B.1.

Preprocessing of the ARCHI database

The original MRI images of the ARCHI database need to be preprocessed before obtaining the trac- This method belongs to the HARDI techniques that have better performance than DTI in the regions of fiber crossing, as it was exposed in the chapter 3. that includes not only deep but also superficial white matter voxels and the deep layers of the cortical mantle. This allows a good reconstruction of cortico-cortical connections. This is achieved by removing the negative skeleton of the folds from the brain mask, to prevent spurious fiber trajectories through CSF.

Later on, the mask was transformed from T1 to DW space and used to define the space where streamlines were tracked. In section 3. As a middle ground between both techniques, the streamline algorithm including a trajectory regularization is the option that we preferred to deal with crossing or fanning fibers regions. They are less sensitive to noise and low anisotrophy values than the classic SDT approaches, and do not require large amounts of computational resources. For those reasons, the streamline regularized deterministic tractography (SRD) has been chosen and it was computed from the entire T1-based brain mask, using 8 seeds per voxel, a forward step of 0.5mm and a maximum curvature angle of 30 to reconstruct the white matter trajectories.

The massive tractograms resulting from this process contain around eight million streamlines per subject. In order to make this database more manageable, each individual tractogram was then compressed to a few thousand clusters using the intra-subject fiber clustering method proposed by Gue- determined as the streamline minimizing a distance to the rest of the streamlines of the cluster. Each one is sampled with 51 3D points equidistantly distributed along the curve.

Furthermore, the entire tractogram of each subject was segmented into 4 regions: left-hemisphere, right-hemisphere, interhemispheric and cerebellum. Our atlas considers only the trajectories in left or right hemispheres of each subject and each of these files contains around 5500 centerlines, where the dataset of centerlines of the right hemisphere tends to have around 3% more centerlines than the left hemisphere one.

Sulci recognition

One of the principles of this thesis is that cortical patterns are closely related to the structure of the short bundles. For this reason, it is essential to incorporate the cortical geometry to the process of atlas creation. Thus, in each subject, 125 cortical sulci were automatically identified and extracted using the Morphologist toolbox [START_REF] Fischer | Morphologist 2012: the new morphological pipeline of brainvisa[END_REF][START_REF] Mangin | A framework to study the cortical folding patterns[END_REF]. This pipeline enables segmentation of the GM and WM through histogram analyses and morphological operations applied onto a bias-corrected T1-weighted MR image. The skeleton of a negative mold of WM provides representations of the elementary folds. Then, whole sulci representations stem from automatic labeling of the folds using a machine learning approach [START_REF] Perrot | Cortical sulci recognition and spatial normalization[END_REF].

The labeling of the sulci was manually corrected in each brain by two raters, a task not easy considering the huge variability of the sulcal patterns between subjects and that depends on the experience of the person in charge. Then the two raters were asked to find a consensus that was used for further processing. The same Morphologist-based procedure was applied to the non linear ICBM 152 atlas [START_REF] Mazziotta | A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (icbm)[END_REF] 

Brain Registration

All the subjects of the ARCHI database and the ICBM 152 atlas were aligned using a two-steps method proposed by Lebenberg et al. [2018], which combines the approaches previously described in the section 3.4.2, namely DISCO (DIffeomorphic Sulcal-based COrtical deformation) [START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF]] and the intensity-based method known as DARTEL distributed within the SPM software [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF]. In this approach, DISCO registration is used to initialize DARTEL, to choose the group alignment matching the most stable sulci.

The process starts first with DISCO algorithm, that generates a population level template space from a set of 43 reliable and stable sulci, defined in the brain of each subject and also in the ICBM 152 template. They were selected throughout the whole brain to achieve a reasonable spatial sampling of constraints and some of them (the smallest sulci in Morphologist's nomenclature) have been merged in order to facilitate the DISCO process. Sulci used in this project are summarized in the table 5. DISCO did provide a population level template space and a diffeomorphic transformation per subject, including ICBM template, to reach this space. Then, we composed each subject-specific transformation with the inverse transformation of the ICBM template to bring all subjects to the MNI space, in order to initialize DARTEL registration process. DARTEL needs the gray and white matter maps of each subject, obtained also with the Morphologist pipeline. This robust registration framework improves the inter-subject alignment of the main folding patterns and also the gray matter maps overlaps, as it was shown in the section 3.4.2. Consequently, this improvement would also favor the inter-subject alignment of the short bundles or U-fibers circumventing sulci. used both Talairach and non-Linear alignment, highlighting the improved results obtained with the second approach, where a greater amount of similar bundles were identified and additionally, the clusters were more dense and homogeneous in comparison with the linear registration.

One hypothesis of this thesis is that the sulci-based alignment would favor even further the intersubject alignment of the short bundles or U-fibers circumventing sulci. Applying the transformations yielded by DISCO-DARTEL to the datasets of centerlines, it was possible to bring them all to the MNI space while matching precisely the main folding patterns. Then, in order to compare this new approach with the two other methods using the same database, the centerlines of all the subjects were merged into one single dataset after the DISCO-DARTEL alignment. A well-known clustering method was applied over the merged centerlines (HDBSCAN [Campello et al. Images G, H and I correspond to the centerlines between of 70mm and 80mm. Images J, K and L correspond to the centerlines between of 100mm and 130mm. The t-SNEs of the centerlines aligned with the DISCO-DARTEL-MNI method tend to be more clustered as the length of the centroids decreases compared to the Talairach and DTI-TK alignments

In order to compare the elements of a dataset, the t-SNE requires a matrix of distances between all of them (an MxM matrix, where M is the amount of elements in the dataset). In this case, the matrix has been obtained using the similarity measure proposed by Guevara et we have chosen ranges of size increasing with length [START_REF] Schüz | The human cortical white matter: quantitative aspects of cortico-cortical longrange connectivity[END_REF], to be able to have a good t-SNE visualization. The parameters of this method have been chosen empirically until reaching a stable t-SNE configuration for each alignment strategy.

Figure 5.6 shows a comparison of the t-SNE of the centroids from all the subjects from the ARCHI database. For smaller length range, the t-SNEs of the centerlines aligned with the DISCO-DARTEL-MNI method tend to be more clustered. In Talairach and DTI-TK, larger portions of data make up low density clouds, suggesting a poor alignment performance of those methods for shorter length ranges. In contrast, for longer centerlines such as 70mm -80mm and 100mm -130mm, it is more difficult to appreciate the difference between methods. This is because longer centerlines are usually located deeper in the WM, where the cortical sulci alignment does not have a big influence.

Once all the subject's centerlines were aligned in the DISCO-DARTEL-MNI space and after this evaluation process, the dataset was divided into 2 groups of 38 subjects for the next processing steps.

Clustering process: the short-fiber bundles clustering problem

As it was shown in chapter 4, clustering is not a trivial task. The distance and the clustering algorithm chosen can have a great impact on the final results. Because of this, a preliminary analysis over the data to be clustered was considered as necessary, all the more that there is not a straight and clear idea of what is expected as result. Notions of what short fibers are and how they look like exist, mainly due to observations of previous studies, but not a formal definition and characterization of them. Some of the questions faced when starting this analysis and before performing clustering are:

• Is there a limit of size length between short and long fiber bundles?

• How short should be the smallest fiber bundles to be found?

• Do the short fibers have all the same U-shape?

• Do the long and short fiber bundles have the same properties? For example, in terms of distribution of distances between fibers?

The next subsections will try to answer these questions before presenting the final clustering strategy used to generate our short bundle atlas.

Tractograms length analysis

Previous works have established upper and lower thresholds for centroid/centerline lengths selected to belong to the short fiber bundles. The upper limit to the notion of short fibers is arbitrary.

In order to investigate further about these limits, we have performed first an analysis about the centerline lengths. What about the length distribution in the datasets?

An histogram of the centerlines lengths from all the subjects in native spaces was computed and is shown in figure 5.7. The curve start growing around 15mm and an initial peak is reached in both hemispheres around 20mm. Then, a skewed pattern appears with peaks and local minima, summarized in the table 5.2. Provided that the initial compression leading to the centerlines probably discards a lot of spurious streamlines, this pattern may suggest a structure in the bundle geometry, for instance related to the wavelength of cortical folding and maybe the "gyral bias" of tractography (the fact that streamline extremities often reach the crest of gyri because tractography often misses sharp turns toward the cortical mantle). The first peak may represent the threshold where actual fiber bundles start to be found. It appears also clearly that the amount of centerlines decreases with length. Furthermore, even in the world of U-shaped bundles, several geometries may be found, from tubular ones to wide sheets with uniform fiber density following the shape of a fold.

With respect to the upper threshold: What criteria should be considered to set it? Should we consider the shape of the bundles? Should we consider the number of folds passed by? Because of all these questions and the lack of consensus with respect to the short fibers and U-fiber definition (largely due to the lack of information about them), we have given up the idea to choose a significant upper limit. In order to simplify the comparison with past studies with the same database, only the centerlines under 85mm will be considered in our new short bundle atlas. Further discussions aiming at disentangling different kinds of short connections would be required to push this analysis further.

The definition of short versus long bundles is meaningless, the brain includes a continuum of fiber lengths.

Clustering: data analysis

As we have shown in the section 4.3, different approaches have been used to perform clustering from tractography streamlines, mostly over long bundles. Algorithms based on hierarchical clustering have been preferentially used, being even the only method involved in the exploration of short-range bundles to date.

For long streamlines, the clustering methods have been partially benchmarked by comparing with anatomical studies available from post-mortem dissections. But what happens with the shorter streamlines? Do the clustering algorithms behave the same way as with long ones? Once again, the absence of gold standard result turns this question difficult to answer. Intuition indicates that this is probably not the case.

As a rough rule, the number of short centerlines is much higher than the number of long ones [START_REF] Schüz | The human cortical white matter: quantitative aspects of cortico-cortical longrange connectivity[END_REF] (figure 5.7). In a Region Of Interest centered around a given short centerline, one can discover several bundles with similar length. Clustering a local set of short centerlines raises much more ambiguities than clustering the global set of long centerlines. In some cases, grouping the centerlines with similar trajectories may not be sufficient to disentangle the bundles correctly. Several short bundles connecting different but nearby regions sharing the same white matter space may be mixed up. For this reason, in spite of the efficiency of hierarchical clustering for long bundles, it is important to investigate whether alternative approaches may behave better in such a difficult context.

From the existent clustering methods analyzed in the section 4.3, it is possible to see that all of them have their pros and cons. In general, the goal is to choose an algorithm with the best fit for a problem and the characteristics of the data in use. In our case, due to the characteristics of the datasets (massive and clusters of variable density) we need a clustering algorithm that suits the following:

• Fast and simple execution to process a huge amount of data in reasonable time and using standard computational resources.

• Capable to extract clusters of different shapes and density, because of our lack of a priori about the short bundle world.

• Due to the lack of knowledge about actual short bundles, there is no certainty about the amount of clusters to be expected. For this reason, a clustering strategy that does not require to specify the number of clusters is needed.

Two families of approaches mostly meet those requirements: the connectivity-based ones as the already well-known hierarchical clustering and the density-based ones, among which the DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] highlights due to its simplicity. It also has been used over long fibers Mai et al.

[2012], leading to successfully extract a set of known bundles from a database. As it was shown in the previous section 5. 1.3.4, an improved version of this algorithm is available online (HDBSCAN

Campello et al. [2013]). 4 ).

Most of the usage of Hierarchical clustering are based on the bottom-up agglomerative approach, described in the section 4.1.1, based on an iterative merge of pairs of clusters. Agglomerative hierarchical clustering has many variants, especially related to the linkage rule, namely the criterion used to merge the two must close clusters at each step. The initial input to the algorithm is a pairwise distance matrix computed on data points. Then this merge criterion combines several point-based distances across the two sets of points. The choice has a strong impact on the shape of the clusters. A typical choice is called complete linkage or farthest neighbor, which is using the distance between the two must distant points, leading to "circular" rather compact clusters in the streamline space. Another typical choice is called single linkage or nearest neighbor, using the distance between the closest point, leading to less compact clusters of miscellaneous shapes in the streamline space (chains, snowflakes, etc.). Past works of our team have been using average linkage, using the arithmetic average between all distances, leading to cluster shapes somewhere in between. While this choice was reasonable and is often set has the default choice in clustering packages, we decided to move to a less stringent criterion, to prevent overfitting to a specific kind of short bundles.

We have performed a lot of experiments with the attractive density-based approaches, especially DBSCAN and HDBSCAN algorithm, some of which described below. We could observed that imposing a high density to the clusters, namely the fact that each point has a minimal number of neighbors, is leading to only very consistent clusters, similar in shape to the clusters obtained using complete linkage with hierarchical clustering. While this is an attractive feature for some applications, especially to retrieve only the most reproducible bundles, we realized that this approach was also too stringent for our purpose. As mentioned above, our goal is two infer from the ARCHI dataset a more exhaustive atlas of short bundles than what could be achieved during the previous attempts targeting the most reproducible and probably also the biggest bundles. Our vision is that a feature of our atlas should be complete coverage of the brain, with the hypothesis that reproducible short bundles do exist in any cortical region. This is especially challenging in the regions where the extreme variability of the folding patterns is probably preventing an optimal alignment of the short bundles. Nevertheless, we assume that thanks to the DISCO's constraints on the alignment of the most stable sulci, we could hope to have reach a reasonable alignment in such regions for at least half of the population, hence setting a minimal target for the final inter-subject clusters.

As mentioned above, we lack information about the nature of the fiber organization into short bundles. Therefore, in the following, we decided to design a clustering approach yielding miscellaneous cluster shapes, similar to the single linkage hierarchical clustering. What we had in mind is typically sheet-like organizations of U-fibers with stable density along a sulcus, leading to elongated cluster shapes in the streamline space. But we also hope to have the opportunity to discover other kinds of organizations. We decided not to use a classical agglomerative hierarchical clustering, which has in our opinion a default: the traditional cut of the hierarchical tree at a given level to get the final clusters. In the past works of our team, the clusters were defined by a maximum average distance, corresponding to this level in the hierarchical tree. The choice of the distance has a strong impact on the geometry of the final bundles, imposing some merge that may not be optimal in some regions to preserve some bundles that are sparser in other regions. Once again, to be more agnostic relative to any a priori on the geometry of the short bundles, we have been looking for an approach tuning this maximal distance spatially.

We have opted for the alternative top-down divisive hierarchical clustering strategy, for which splits are performed recursively as one moves down the hierarchy. We have designed a heuristics adapting locally the stopping criterion of the top-down splitting operations to obtain clusters, which core connections are made-up of different length ranges. The underlying idea is that to cover the whole cortex, we had to target clusters with different densities, at least because of different alignment accuracies. A similar heuristics could probably be designed for adaptive stopping of the bottom-up merging operations, but the top-down version was more intuitive to us.

The set of experiments that led to the decisions mentioned above, has shown that dealing with small U-fiber bundles would be difficult with the usual similarity measure between centerlines. Therefore, before describing the detailed design of our clustering algorithm, we will describe the design of a new similarity measure.

Measure of distance analysis

As the section 4. This metric was primarily intended for discovering long bundles and has proven to work well for them. Later on, it has also been used to perform clustering of shorter streamlines. However, the optimality of this metric in the context of short fibers has never been questioned. Our first trials have shown that, as the mean length of the clusters gets smaller, their structure becomes more disorganized. Several types of bundles do cross in small volumes of white matter, building up complex local wiring networks that lead to messy clusters with this standard metric. Disentangling all those bundles requires a similarity measure between centerlines that considers not only their spatial position but also their shape. At first glance, the metric defined in equation 4.7 does not achieve this goal, because it is not sensitive enough to shape variations.

We have mentioned above that short bundles can be endowed with a wide variety of shapes corresponding to all the possible variations of the U pattern, including almost straight bundles living inside a single gyri, which have been highlighted in several papers [START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF], [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF]. Therefore, to disentangle this wide variety of bundles, it seems important to give a more important role to the shape in the measure of similarity.

Shape is usually defined as a feature invariant to rigid motions. Hence quantifying shape difference between two objects often requires a preliminary rigid alignment. Once two curves have been aligned, a variety of shape similarity metrics can be designed. For instance [START_REF] Mai | A similarity model and segmentation algorithm for white matter fiber tracts[END_REF] propose to build such a similarity from the notion of curve envelop (see section 4.2 and figure 4.7). The envelope of a centerline includes all the points located closer to the centerline in a radius of proximity. Various similarity measures can be designed based on the distance from one centerline to the envelope of another centerline, usually considering only the points located outside this envelop. The simplest such distance would be the minimum radius or distance allowing the centerline to be completely included in the envelope of the other centerline. Then the simplest choices for the similarity measure between two centerlines would be the minimum, the maximum or the sum of the two distances from one of the centerline to the envelope of the other.

It turns out that the classical metric used for fiber clustering amounts to a proxy of this type of choice. If we consider the simplest envelope definition, the union of the circles centered around the points sampling the curve, and provided that the two centerlines are relatively similar and aligned, this classical metric is the minimum radius/distance allowing each of the two centerlines to be fully included in the envelope of the other centerline. When the two aligned centerlines are not very similar, for instance if one of them is much longer than the other one, this interpretation is wrong because of the forced match between points sharing the same sampling position embedded in the classical metric. Nevertheless, the classical metric will provide a proxy of the maximum of the two distances to the envelopes, the distance from the longer centerline to the shorter centerline envelop. Anyway, the key point here is that the usual metric can become an interesting shape similarity measure, without additional computational cost, provided that the two centerlines are aligned first. The centerline B is translated in order to superimpose its medial point to the medial point of centerline A. Once aligned, the minimum distance between them is computed as usual, considering a flip of the sampling direction of one of the centerline, and keeping the minimum of both results.

d MMEA (A, B) = min(max A i -B i , max A i -B N-i ) (5.1)
where,

A and B : Two different centerlines.

B : Centerline B translated with respect to the medial point of A to align them.

N : Number of points of the centerlines.

i : A point of a pairwise.

Note that this alignment is only translation-based, which is sufficient for centerlines belonging to the same bundles to lead to a small distance. Furthermore, performing a rotational alignment would create ambiguities between bundles with similar shapes and would require too much computational power. After this initial translation, the maximum value of the pairwise Euclidean distances between paired points will represent the difference in shape between curves.

As it is possible to find very similar shapes in distant regions of the brain, a rough proximity threshold th p is used to discard spurious matches. Looking back to the histograms of length distribution of figure 5.7, it was noticed that the amount of centerlines decreases with their length, therefore, in some experiments, we modulate the threshold to keep a stable number of eligible neighbors for clustering whatever the centerline length. Note, however, that the clustering is performed where, p: is a constant, with p > 0.

A: a centerline.

len : length of a centerline

Hence, the similarity measure between two centerlines A and B is obtained in two steps. First (cf 5.3), a simple Euclidean distance between the medial points of the pairwise is computed (d E (A mid , B mid )).

If this distance is over the th p threshold, we set the similarity measure to a fixed high factor named P (50mm) and if not the value is 0. That will prevent any clustering algorithm to merge the two centerlines that are in distant regions of the brain but with a similar shape. Then, we proceed with the computation of the shape similarity measure described previously (d MMEA ). This means that the main features of the short centerline organization are better extracted with the d MDA measure. This distance seems to be also better for bigger lengths although the differences between t-SNEs are less pronounced. 

The final clustering algorithm

As explained before, DBSCAN approach in conjunction with the new similarity measure, was at first glance a very good strategy for our purpose. Several implementations of this algorithm are available nowadays, including a version in the scikit-learn toolbox that was the first method used. However, due to the used of 8 seeds to generate the tractograms, the final datasets are bigger than the ones previously used by Guevara and Roman and it was only possible to process a few subjects simultaneously. We performed several attempts at dividing the datasets by ranges of length, to decrease the number of centerlines, but we observed that whatever the parameter set the clustering results were not satisfying (over-or under-segmentation in some regions). We realized that our difficulties were generated by a high variability of the density of the clusters, which DBSCAN standard algorithm cannot manage correctly. In a way this problem was very similar with the problem occurring with hierarchical clustering when choosing the level of the tree leading to the clusters. HDBSCAN [Campello et al., 2013], which is a refined version of DBSCAN including a hierarchical strategy, would probably have been an interesting way to deal with adaptive densities, but the current implementation did not scaleup neither with the size of our dataset. Furthermore, this set of experiments was showing that the stringent density constraints could prevent us to reach a complete coverage of the cortex even with a locally adaptive density threshold.

The previous section has introduced a new similarity measure to increase the effect of shape differences. Our goal has become to implement a connectivity-based top-down hierarchical clustering with an adaptive stopping rule overcoming the problems induced by the choice of the final level in hierarchical clustering. This implementation had to scale-up to datasets from the HCP. This was simply obtained using a sparse representation of the distance matrix restricted to the nearest neighbors.

We will now described this algorithm in the context of the complete atlas generation process.

Complete atlas generation process

The atlas generation process can be summarized by the figure 5.12. The ARCHI database is composed by a total of 78 subjects whereof 76 have been successfully pre-processed. This group was divided into two groups of 38 subjects randomly selected, like in previous works, to embed a bundle replication criterion in the general process. Centerlines of each group of subjects were brought from the native subject spaces to the MNI space, as it was shown in the section 5. The clustering process is divided into 3 main steps:

1. The definition of a nearest neighbors data structure.

2. The top-down adaptive hierarchical clustering.

Clusters comparison between both groups.

Each of these steps is detailed below.

Nearest neighbors data structure

As it was described above, the storage of the matrix of distances required by the general purpose toolboxes available online is one of the major problems that prevent their use over the complete ARCHI data due to low scalability. However, for our application, the full matrix is not mandatory.

Assuming that a cluster is composed by centerlines that have a similar shape, similar length and that live in the same brain region, it is not mandatory to compute the similarity measure for any pair of centerlines.

We preselect the pairs of centerlines close enough spatially (using the distance between their medial points) and with similar length, before computing the shape comparison (Minimum Distance after Alignment d MDA ). Then, for each centerline, we store a maximum of only N nearest neighbors, as it is shown in the figure 5.13. Based on this technique, we have reduced the growth of the matrix of distances to linear, although this implies the appearance of three parameters necessary for the matrix computation: N, the number of neighbors, a threshold th l used to discard pairs of centerlines because of their difference in length considering the quotient Q (defined by the equation 5.5), and the threshold th p used to discard pairs of the centerlines because of their spatial position (defined previously by the equation 5.2). At first glance, these three parameters shall be easy to set with a margin, because they are mainly used to diminish the amount of computation (but also some ambiguities).

They will be set using a cross-validation strategy driven by a clustering quality objective. Note again that the threshold on spatial distances discards spurious matches occurring for pairs of centerlines with similar shapes living in two different regions of the brain.

Q =    len(A)/len(B), if len(A) < len(B) len(B)/len(A), if len(B) < len(A) (5.5)
where,

A and B : Two different centerlines.

len : length of a centerline. 
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Adaptive hierarchical clustering

The final clustering algorithm is inspired by experiments performed at the beginning of our project with Self-Organizing Maps (SOM), also known as Kohonen maps [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF]). We decided to use a top-down iterative process leading to the estimation of cluster-specific maximal distances for the connected centerlines. While the underlying strategy is divisive hierarchical clustering, we do not trigger the method from the full cluster aggregating all the centerlines, to discard some useless computations. At each iteration (see figure 5.14), the current clusters grow from an initial centerline through the iterative addition of centerlines that can be reached using a path of nearest neighbor links, where all the lengths (the pairwise distances) are below a cluster-specific distance. This distance is initialized at the beginning of the process to a relatively high value and decreases slowly during the iterations at a rate depending on the length of the links used during the cluster growth (see equation 5.6). The behavior of the distance updating rule has been designed so that each link with a length much smaller than the distance leads to a strong distance decrease, while larger lengths have a lighter impact. The goal is to make the distance drop rapidly to reach a maximal distance slightly above the range of lengths corresponding to the core skeleton of the underlying bundle. Once this stage is reach, the updating rule leads to a very slow decrease of the distance, providing stability to the cluster during a large number of iterations. Nevertheless, a cluster merging operation performed at the end of the process overcomes potential over-segmentations. The iterative process requires a new parameter α, a small constant value that drives the learning rate. This constant will also be chosen using cross validation.

d C i = d C i + α * (d MDA (A, B) -d C i ) (5.6)
where,

A and B: Two centerlines linked in the nearest neighbor graph. During the first iteration, the first step of a cluster creation is the random choice of a centerline in the pool of yet untouched centerlines. Then the initial cluster linkage-distance is set to a multiple of the distance to the closest neighbor of this first centerline (K, see equation 5.7). Note that each centerline represents a cluster of the streamlines of one specific subject. Therefore, two centerlines linked in the nearest neighbor graph have a very low chance to be very similar, either because they stem from two different subjects or because they have not been gathered in the same cluster during the tractogram compression. As a consequence, the smallest distance to a neighbor used to initialize the cluster linkage-distance is a good representative of the range of lengths corresponding to the local cluster. Note also that for each centerline, the nearest neighbors are ranked by increasing distances (see figure 5.13). Therefore, during the iterative growth, the closest neighbors, the ones with the strongest impact on the cluster distance, are added first.

d C i =    K * matrix o f distances[A][0], if A does not have a label assigned d C i , otherwise (5.7)
where,

C i : is new label cluster. K: is a constant, with K > 0 A: a centerline.
d C i : the distance associated to A in the previous iteration FIGURE 5.14: Scheme of the adaptative hirarchical clustering. During the first iteration, a centerline (A) in the pool of yet untouched centerlines is chosen to start a cluster. The cluster adds new centerlines using a path of nearest neighbor links, where all the pairwise distances are below a cluster-specific distance. The initial cluster distance (d A ) is set to a multiple of the distance to the closest neighbor of this first centerline (K) and then it is actualized with every new neighbor found. After all the data is assigned to a cluster, the process is repeated. The linkage-distance obtained in the previous iteration are used to begin the process in the next iterations. When the amount of clusters get stable and the difference between all the linkage-distances in two consecutive iterations gets under 0.1mm, the process stops. Then, only the clusters made up of an amount of centerlines belonging to at least the 50% of the subjects in the group are kept. Finally, a process of pruning and merging very similar clusters is performed

The clusters aggregated during the first iteration are different from the clusters, which would stem from aggregative hierarchical clustering. Indeed, the centerlines are not added by increasing distance order and the linkage-distance used to define the neighborhood decreases slowly. Therefore, several iterations are required to achieve well-formed clusters corresponding to a cluster of the hierarchical tree. During these iterations, the total number of clusters increases until the pseudo-convergence of the linkage-distance. Note that the cluster distances are stored from one iteration to the next one.

When the amount of clusters get stable and the difference between all the linkage-distances in two consecutive iterations gets very small (practically under 0.1mm), the process stops.

To prevent spurious over-segmentation, a simple merge is performed at the end of the process. This merge operation is not performed with the shape-based distance embedding centerline alignment used during the clustering, but with the old distance without alignment (see equation 4.7). The goal is to merge clusters with a large spatial overlap but a slightly different shape leading to a split during the top-down clustering. We set up this automatic merge operation after a series of visual inspections leading us to believe that such split were probably not significant. Two clusters were merged when at least 50% of the centerlines of one cluster were similar to all the centerlines of the other clusters, namely when one cluster was like embedded in the other cluster.

In order to keep only bundles with a high reproducibility across subjects, the clusters made up of centerlines belonging to less than 50% of the subjects are deleted. The underlying idea is that with this heuristics, we got a low chance to define two bundles representing the same anatomical entity aligned differently for two subgroups of subjects. In case of such alignment issue, only the largest cluster would lead to the instantiation of a bundle in the atlas.

Finally, we obtained 778 and 877 clusters for the left and right hemisphere respectively in the group 1 and 533 and 731 clusters for the left and right hemisphere in the group 2 respectively.

Clusters comparison

The rest of the process is equivalent to what was done to build the previous atlases. As it is shown in the figure 5.15, once the clusters were obtained for both groups, a comparison was performed, using the old distance without centerline alignment (see equation 4.7). Two clusters were matched provided that 80% of the centerlines of one cluster had at least 5% similar centerlines in the second cluster. Between 60% and 70% of the clusters survived this matching operation.

After the clustering process and before the labelling, a total of 381 and 598 clusters from the left and right hemisphere were obtained respectively.Finally, a 3D visual check was perform for each of the clusters resulting from the merge of the matched group-specific clusters, to detect potential outlier centerlines. About 10% of the clusters were pruned when such outliers were visually observed. The outlier detection was then performed using a more sophisticated distance integrating angle considerations [START_REF] Guevara | Disentangling the short white matter connections using a fiber's geometry based dimensional reduction approach[END_REF]. The first and most common option in mind, probably not the most efficient, is the well-known trial and error technique. But after some initial trials to see how the algorithm behaves with very rough changes of the parameters, we decided to design a more systematic approach.

The section 4.1.5 introduced several indices used to quantify the quality of a clustering. Each index performs this evaluation in a different manner: Dunn's index DI [START_REF] Dunn | Well-separated clusters and optimal fuzzy partitions[END_REF] maximizes the inter-cluster distance while minimizing the intra-cluster distance, identifying clusters well separated and compact. The objective of the Davies-Bouldin index DB is very similar [START_REF] Davies | A cluster separation measure. Pattern Analysis and Machine Intelligence[END_REF], but this index has to be minized rather than maximized. Finally, another well-known index is the Silhouette coefficient (Sil) [START_REF] Kaufman | Finding Groups in Data: An Introduction to Cluster Analysis[END_REF], a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). Highest values of this index are expected. Both Davies-Bouldin and Silhouette indexes are commonly used to set the optimal number of clusters in methods that require this information at the very beginning.

Here, we proposed to use them in conjunction to determine the combination of parameter values (for N, p, th l , K and α) that produce the clusters with the best average index, according to the equation 5.8. In this equation, each index contributes through a normalized version computed from all the runs. Because for Davies-Boulding the minimum value is expected to be the best, unlike (5.8)

BPS i = n max i DI i (C i ) -min n i (DI) max n i (DI) + Sil i (C i ) -min n i (Sil) max n i (Sil) + 1 - DB i (C i ) -min n i (DB) max n i (DB) + nC i (C i ) -min n i (nC) max n i (nC)
where, n: is the total number of combinations of the parameters.

i: a combination of particular values for the parameters N, p, l, K and α C i : A set of clusters obtained with a set of parameters i.

Table 5.3 summarizes the values tested for each parameter in the evaluation process. At the right columns, the two best configurations are presented. Both were tested and the clusters obtained turned out to have satisfactory geometry in comparison with the atlases previously obtained. But as the first configuration gives a slightly higher number of clusters, it has been decided to proceed with it.

Once all the parameters have been set and for a better understanding of the algorithm's behavior, a tSNE representation of the evolution of the clustering through the iterations is shown in the figure 5. 16.

In terms of time, the first step of the clustering process depends of the number of iterations but in general the convergence is reached after 200 and 400 iterations and it takes a mean of 50min to process a subset of 200.000 centerlines. Then, the comparison of clusters from the two subsets of centerlines takes around 15 minutes. In general, all the clustering process for all the ARCHI data from the begining to the end for both hemispheres requires 3, 5 -4 hours approximately. 

Labelling

Once the two-steps of the clustering process are performed and all the clusters of the atlas were defined for both, left and right hemispheres, the labelling process begin. In order to facilitate the use of the new atlas, we use the same naming convention as in previous bundle atlases [Guevara et To begin the labelling, the ICBM152 template was processed with Freesurfer in order to obtain a labelled image corresponding to the regions of the Desikan's atlas. This image was superimposed to the clusters, in order to identify which brain regions are connected by their extremities. The aim is not only to identify clusters connecting different regions but also the intraregional connections.

In order to determine which regions are connected by the extremities of a cluster, the following algorithm was proposed. It basically computes the Euclidean distance between each extremity of every centerline in a cluster to the closest labeled voxel in the labelled image. If the distance is below a threshold (th Labels ), the corresponding label is assigned to that centerline extremity. Then, for each extremity of the cluster, the number of occurrences of the labels associated to each centerline are counted, and the most frequent one is attributed to the cluster extremity. The name of the bundle is defined by the labels of both extremities of the underlying cluster using the nomenclature of the table in the Appendix A.1.1.1 and following the structure hemisphere region1-region2. In some cases, one of the extremities or both were not connected to any of the regions defined by the Desikan's atlas.

The label used in those cases is 'NCR = Not Connected to a Region.

The parameter th Labels was obtained by trial and error, until all the extremities of a subset of bundles used for testing were labeled correctly. th Labels was set finally to 7mm.

The final version of the short-bundles atlas contains only the bundles with mean lengths between 20mm and 85mm that connect cortical regions with both extremities. The connections labelled as NCR (24 and 43 clusters from the left and right hemispheres respectively) were also discarded, althought they still can be accessed if necessary. Hence bundles reaching the subcortical areas were not taken into account. The selected bundles were visually checked to verify their robustness and anatomical correspondence. From this process, very few bundles were removed, mostly bundles with irregular shape and small length. Some others located very close and with very similar shapes were merged into one.

Results

ARCHI short bundle atlas: General observations

As it was mentioned previously, only the clusters between 20mm-85mm of length and connecting the cortical surface with both extremities were kept for the final version of the atlas. The connections labelled as NCR (24 and 43 clusters from the left and right hemispheres respectively) were also discarded, althought they still can be accessed if necessary. From this process, very few of them were removed, mostly bundles with irregular shape and small length. Some others located very close and very similar in shape were merged into one.

After the labelling and visual checking process using the regions defined by the Desikan atlas, the new short bundle atlas from ARCHI database is composed by a total of 213 and 273 bundles in the left and right hemispheres respectively. A general view of this atlas is shown in the figure 5.17 and a summary of the general atlas information is presented in the table 5.4. The mean length of the bundles is around the 45mm while the mean linkage-distance is around 15mm. The mean number of curves per cluster is higher in the right hemisphere (175 curves versus 134) with a high standard deviation.

The mean number of different subjects that compose a bundle is similar in both hemispheres, with fibers provided by 50c(le f t)/53(right) different subjects (around 65% of the total) in average. The 

Bundle shapes

Bundle shapes are related to the morphology of the surrounded sulci and the regions they connect. At the beginning of the last century, U-shaped fiber bundles were identified in post mortem dissections, mainly in the occipital lobe [Forkel et but also some others difficult to classify. As our clustering method does not restrict the shapes of the bundles, our atlas is composed not only by the typical tubular structures but also by tile-shaped U-bundles that cover a portion of sulcus (as a volume surrounding the sulci). We have also found some bundles connecting intra gyrus regions that we initialy considered as tractography errors but some recent studies [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF] have found evidence of their existence.

It is difficult to categorize the bundle shapes into only a few types because most of the bundles have their own particularities as well as the sulci shapes. Despite this, we have tried to identify the most common bundle shapes present in the atlas and they are described and characterized below. • U-shaped bundles: Usually found around the large deep sulci as the central sulcus (SC) (and the regions PrC and PoC), the superior temporal sulcus (STS) (regions ST and MT) and in the regions inferior parietal (IP), superior parietal (SP) and Insula (Ins). As they are surrounding deep sulci their length is medium size. The U-shape is due to their extremities are located at the top of the two adjacent gyri, either in front of each other or slightly shifted along the sulcus lond direction.

• V-shaped bundles: As the U-shape, their extremities surround sulci connecting two gyri in areas that are right in front of each other or slightly shifted. Unlike the U-shaped, they are usually found in sulci less deep and more irregular in shape, as the ones of the superior frontal region (SF). In general, they are small in length but there are some medium size bundles with this shape. There is a variant of the V-shaped with an extremity shorter than the other, as a "tick" (see figure 6.6) In consequence, a C-bundle surrounds a sulci but also those thin bundles, which deforms the traditional U-shape to contain them. The figure 5.20 shows the cingulate region with three continuous small and long bundles that surround all along the FCM. • 6-shaped bundles: As the U-shaped bundles, they are found around the big deep sulci as the SC, the superior STS, deep sulci in the parietal region or the Insula among others. They are very similar to the U-shaped bundles and usually found mixing with them, with the difference that one of their extremities is shorter than the other, curving inward at half the depth of the groove and forming a shape similar to the number "6". They are small/medium size length.

• Straight bundles: Usually small/medium in length, they can be found connecting closer areas into the same gyrus (intra-gyrus bundle) or in the lower regions (inferior temporal (IT), lingual (li), fusiform (Fu), entorhinal (En), parahippocampal(PH)) of the brain around the collateral fissure (F.Coll).

• Open U-shaped: They are part of the longest of the short-range and the medium length bundles. They seem to be a U-shaped stretched and some times twisted, with one extremity in one gyrus and the other jumping one or two gyri. They can also create communication between adjacent gyri but with a large shift in gyral position producing a "twisted" bundle effect. They are usually found deeper in the WM, connecting gyri as the PrG, PoG, STG, MTG, SM with some distant ones.

• Curved bundles: They are also part of the longest of the short-range bundles, linking different distant regions and located deeper in the WM. They do not have a defined shape unlike the other bundles, since they seem to adapt to the configuration of the smallest and most superficial bundles. The figure 5.21

shows some examples of curved bundles. They can be found in the lower regions (inferior temporal (IT), lingual (li), fusiform (Fu), entorhinal (En), parahippocampal(PH)), also connecting the area of the SC with other distant regions and between connections of the SF with the ST and nearby regions. In a particular observation, for 4 bundles (only in the right hemisphere), we found a second bundle very similar in terms of trajectory and location of the extremities, but with some slight differences explaining the behavior of the clustering process, as it shown in the figure 5.22. The bundles in this situation are rh SM-Ins 1, rh PoC-PoC 1, rh PrCu-SF 1 and rh ST-ST 2. The image show the two versions of the bundles separately and also both bundles superimposed. In general, one bundle of each pair has one extremity much longer than the other (a U-shaped and a 6-shaped). The origin of those differences is not clear. They might be due to the variability of the folding pattern leading to two bundle configurations, or just to tractography errors. But it is also possible that they are two different actual bundles linking different but close regions.

In view of the doubt about whether they belong to the same bundle or they are different ones with a difference in shape, we have decided to keep them as a separate bundle, but adding a number 2 to the name to identify that it could be a second shape version of the same bundle. For each pair, both bundles are in the same position but one of them has one extreme longer than the other. In the case of the bundle rh PrCu-SF 1, one has both extremities slightly shorter than the other

Lateralization

There are 60 more bundles in the right hemisphere with respect to the left hemisphere, representing a difference of 28%. A similar result was obtained by [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], with a difference around 10% of more clusters in the right hemisphere with respect to the left, from the same database. This might be partially due and enhanced by the difference in the total amount of centerlines in the datasets of the left and right hemispheres. However, the information and results obtained so far is not sufficient to speculate about the origin of this asymmetry.

A comparison between the hemispheres was performed to detect those bundles that have a counterpart in the opposite hemisphere, as it is illustrated in the image 5.23. This process was done by creating a "symmetrical bundle" (a projection) in the right hemisphere for each bundle of the left hemisphere. Then, the right hemisphere and the left symmetrical bundles were compared with the process already used to compare clusters between different groups (see subsection 5.2.3.4).

From this process, it was found that 105 bundles are common to both hemispheres. This means that 105 bundles of the left hemisphere have a counterpart in the right hemisphere, representing approximately 43% of the total of bundles in the atlas. That value is inferior to the 70% obtained by [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF]. This difference is probably linked to the fact that these two atlases include only the largest short bundles, which are probably the easiest ones to identify. Therefore they are often identify in both hemispheres. Our atlas includes smaller bundles selected after several layers of filtering to preserve only the most reliable bundles. These filtering operations may behave differently for the left and right instance of a bundle existing in both hemisphere.

We observed that, some bundles in the left hemisphere seem to be similar to more than one bundle in the right hemisphere, that are close to each other. Hence, one hypothesis to explain the asymmetrical number of bundles of our atlas is a difference of granularity. This hypothesis fits also the observation that several pairs of bundles of the right hemisphere are very similar. The higher granularity obtained in the right hemisphere could result from a better alignment of the folding pattern, which is often suggested to be more stable across subjects on the right side. For instance, the superior temporal sulcus is more interrupted in the left hemisphere. A poor alignment across subjects leads to overlapping bundles that can not be disentangled by the fiber clustering process.

For the sake of simplicity, in the following, left hemisphere bundles were matched only to the closest right hemisphere bundle. A more advanced study would require a more sophisticated definition of symmetry, for instance to correct for the cerebral torque or for the asymmetry of the temporo-parietal junction.

The image 5.24 shows all the bundles that are specific for each hemisphere, this is 108 bundles in the left hemisphere and 168 for the right. It is important to mention that some bundles of the left hemisphere are in the middle of two bundles of the right hemisphere and viceversa. Hence this lack of symmetrical match may result partly from our simplistic definition of symmetry. Our template is asymmetrical, which means that the most asymmetrical parts of the brain can not be mirrored from 

Bundles organization

When [START_REF] Meynert | Psychiatry, a clinical treatise on disease of the fore-brain, based upon a study of its structure, functions, and nutrition[END_REF] described the U-shaped connections of the occipital lobe, he noticed that these bundles are located just under the cortical mantle. Later, Sachs [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF] described an organization into "layers" of the associated bundles, also in the occipital lobe. He mentioned the existence of 4 layers in white matter and also noticed that short fibers are located close to the cortex while longer fibers are located close to the ventricles. More recently, the work of Schmahmann and Pandya [2006] over Rhesus monkey gives a better idea of the organization of the WM near the gyri.

As Sachs described in his studies, he identified layers into the white matter organization and dived them into three categories: short association fibers (closer to the gyrus), neighborhood association fibers, and long association bundles (deeper in the WM). He also mentioned a onion-like structure into the gyrus organization: both, neighborhood and long fibers begin within the central part of the white matter of the core of the gyrus, accompanied in the initial stages by the striatal fibers.

Subcortically directed fibers together with the commissural fibers are arranged initially in a cord formation and travel centripetally in the central part of the white matter of the gyrus (see figure 2.24).

More recently, [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF]] also refers to the U-fibers organization in terms of a layer structure in their study with both fiber dissection and diffusion spectrum imaging (DSI) techniques.

In the creation of the ARCHI atlas we have also observed those white matter patterns in the bundle organization. Considering that our scheme for the atlas construction selects some of the most reliable streamlines in the tractograms, it is of interest to test to which extent these streamlines have an organization into layers. While our atlas does not include the longest association bundles, the commissural fibers and the cortico-subcortical fibers, our short fiber definition includes the U-bundle category and the neighborhood association fibers, which can be roughly distinguish from their lengths. Therefore, in order to characterize and quantify the structure in layers described previously by post-mortem dissections, we have defined a measure to quantify the relationship between the depth of the bundles relative to the pial surface and their lengths.

For this purpose, for each subject of the ARCHI dataset, a voxelwise distance map to a proxy of the pial surface has been computed. Then each centerline of the atlas belonging to a specific subject can be dived in the corresponding distance map to compute its average depth. Next, the depths of several centerlines belonging to the same subject can be averaged, and finally the depth of the bundle is obtained through a cross-subject averaging process. We named this measure "bundle depth distance (dBD bundle ) and it is defined by the equation 5.10. Once computed the dBD for each bundle of the atlas, we have analised that values with respect to the length of the bundles.

dBD bundle = ∑ N i=1 (dBD bundle,i ) N (5.9)
where, i: a subject dBD bundle,i : Bundle depth distance for the bundle of a specific subject that compose it N: number of subjects that made up a bundle

The proxy of the pial surface stems from the tractography mask used previously, namely a mask of the brain from which the skeleton representing the sulci has been removed. The use of this skeleton guarantees that the outside of the mask reaches the bottom of the fold even for configurations where the amount of CSF is too small to lead to CSF voxels in the tissue classification, because of partial volume effect. We have decided to define the depth from the pial surface rather than from the grey/white interface because of the definition of our tractography mask. Because of the spatial resolution of the diffusion acquisition, around 2mm, some of the streamlines may be located in the cortical mantle at the resolution of the T1-weighted data. Furthermore, the width of the white matter gyral blades in the T1-weighted data is often only a few voxels, which would not be enough to get an informative distance map in these areas.

dBD bundle = ∑ N i=1 (dBD bundle,i ) N (5.10)
where, i: a subject dBD bundle,i : Bundle depth distance for the bundle of a specific subject that compose it N: number of subjects that made up a bundle

First, an analysis by regions of interest of the Desikan atlas was performed, taking into account the whole trajectory of the bundles. This first analysis aims at testing the layer hypothesis relative to the whole white matter. Later on, we will produce a second analysis restricted to the superficial white matter to target the onion like organization close to the cortical mantle. For each Desikan ROI, we aggregate the bundles with one extremity in this ROI. The figure 5.27 shows a tendency, for most of the regions, to an increase of the average bundle depth as the length of the bundles increases. The figure 5.28 shows all the correlations and the associated p-values.

The effect is very strong in all regions except in two with few bundles (En and PeCa), validating the hypothesis that bundles get deeper when they travel farther away. The most superficial bundle have an average depth from the pial surface between 2 and 3 millimeters, corresponding to the thickness of the cortical mantle. The longer ones travel a few millimeter deeper. The correlation values can be found in the table 5.5.

While the dependence of the depth on the length is clear. The notion of layer was not highlighted by the previous results. To tackle this issue, we decided to go back to the ranges of lengths (see table 5.2) observed in the histogram of lengths (see figure 5.7) in the 5.2.1. We hypothesize that the peaks observed in this histogram are related to the wavelength of the folding pattern. The first peak would correspond mainly to U-fibers, the second one to fiber skipping one gyrus, the third one to fibers skipping two gyri, etc. Therefore, we have organized the bundles into subsets grouped by the ranges of length defined by the minima between the peaks (cf table 5.2): 1) Centerlines between 20mm and 34mm length 2) Centerlines between 34mm and 49mm 3) Centerlines between 49mm and 63mm 4)

Centerlines between 63mm and 78mm and 5) Centerlines between 78mm and 85mm. In a visual inspection of the bundles (see figures 5.29 and 5.30) between 20mm and 34mm length it was observed that most of the bundle shapes corresponds to C-shaped, V-shaped and straight bundles.

Some U-fibers and slightly curved bundles of small size were also observed in the regions of non deep sulci. Bundles in this range are the closest to the cortex and represent around the 25% of the total of bundles. In the second range between 34mm and 49mm, most of the bundles are in the U-shaped category, with also some large V-shaped and curved ones. This range contains 38% of the bundles while the third range between 49mm and 63mm corresponds to 22% of them. The bundles in the third range have mostly an open U-shape, curved bundles and a few large U-shapes. The fourth range (63mm and 78mm) contains a 12% of the bundles with curved shapes and open U-shapes. The last range between 78mm and 85mm represents only 3% of the total of bundles and they are mostly curved and located deep in the WM.

The first impression is that the peaks of the histogram of the fiber lengths could correspond to the layered structure mentioned previously. Sachs [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF]] mentioned 4 layers in their studies, that might correspond to the first 4 ranges of length identified, while Schmahmann and Pandya [2006] and Shinohara et al.

[2020] refers only to three in monkey and human. In order to clarify further this idea we have computed the mean of the bundle depth for each range (table 5.6). We observe as expected the same dependency of the depth on length, with the first category corresponding to a 3mm depth from the pial surface corresponding to the depth of the grey/white interface. As the superior limit of the short-range bundles is not really clear, it is difficult to really match the number of peaks with a putative number of layers. The last range has been cut at 85mm length because it is the limit imposed to study the short range connections (and to be able to compare with previously studies) but the original upper limit established by the histogram is 92. In that range of length, fibers bundles are located very deep in the WM corresponding to the long bundles. 78mm

seems to be a more realistic upper limit to discriminate between long and short fibers, which leaves the short bundles structure organized into 4 layers. 
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The last characteristic observed in the structure organization of the short-range bundles we would like to test corresponds to the work of [START_REF] Schmahmann | Fiber Pathways of the Brain[END_REF] over Rhesus monkey, namely the onion-like structure in the gyri. He observed that the longer fibers are located in the central part of the white matter of the core of a gyrus while the very short association fibers are located closer to the sulci. To test this idea in our atlas, we have used a very similar strategy as above, but the average depth of a bundle is computed only for its 3D points located in the superficial white matter. Superficial white matter has been defined by a threshold at 6mm corresponding to the highest values observed in the center of the gyral blades. Unfortunately, most of the bundles are probably completely included in this superficial white matter, so this experiment led to very similar results, that can be observed in the figure 5.31. In the future, we might have to perform a segmentation of the gyral blades to test this hypothesis further. Nevertheless, we propose a visual illustration of the onion-like organization for a specific gyrus including U-bundles and longer short association bundles. 

Conclusions

This chapter has presented the process to obtain a short-range fiber bundles atlas from the ARCHI database of dMRI images. The first section introduced all the physical resources used and the preprocessing of the images necessary to obtain the final tractograms used for the atlas construction.

The brain alignment is an important step due to the huge morphological variations between subjects, mainly of the circumlocutions of the brain, closely related to the short WM structures of our study. For this reason, a diffeomorphic alignment that takes into account the variability of the cortical folding pattern through explicit sulcal contraints has been chosen. We have shown that the quality of the centerline alignment obtained with this procedure has contributed to the disentanglement of the short bundles, leading us to populate our atlas with a greater number of reproducible bundles than with previous attempts.

Then, the clustering strategy used has been presented. Through different analysis of the similarity metrics already described in the literature, we have proposed a new one (Minimum Distance after Alignment (d MDA ) that provides good results when comparing the shape of two curves. After many experiments with the already known clustering algorithms, a new clustering strategy based on a divisive hierarchical clustering has been also proposed. This method solved the scalability problems due to the large amount of data used in our study that made processing difficult with traditional tools available and allowed us to obtain the new short fiber atlas with computational resources of standard machines.

After all the clustering process and labeling, we created an atlas of short-range bundles between 20mm and 85mm length, composed by a total of 486 bundles, where 213 come from the left hemisphere and 273 bundles from the right hemisphere. From those bundles 105 are common to both hemispheres. These results quadruples the number of reproducible bundles obtained in other atlases made from the same database by [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF].

In comparison with other previous studies of the short bundles that described the shape of those connections [START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF], more bundle shapes were identified (U-shape, C-shape, V-shape, 6-shape, Open U-shape, straight bundles and curved bundles) and also a layered structure as the one described in human post mortem dissections by Meynert [START_REF] Meynert | Psychiatry, a clinical treatise on disease of the fore-brain, based upon a study of its structure, functions, and nutrition[END_REF], Sachs [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF],

Shinohara [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF] and in the Rhesus monkey study of Schmahmann [START_REF] Schmahmann | Fiber Pathways of the Brain[END_REF]. Furthermore, in the same work Schmahmann described an internal organization of the bundles into the gyri that we have also identified.

All those results and the facility of the clustering strategy execution in terms of time and computational resources allowed us to upgrade and to explore the short-range bundles world in a more complex database: the Human Connectome Project (HCP), presented in the next chapter.

Chapter 6

Short-fiber bundle atlas: HCP This chapter presents a second atlas of short fiber bundles (in the range 20mm -85mm of length) obtained from 79 subjects of the outstanding diffusion MRI dataset of the Human Connectome Project. It was constructed following a similar pre-processing to that described in the section 5.4

and the same clustering strategy described in the section 5.2.

The chapter is organised into three sections: first section 6.1 introduces the HCP data and the pre-procesing tasks performed over the initial MRI images until tractograms were obtained. It also presents all the processing over the data, nearly identical in terms of alignment of the brains and streamlines, clustering strategy and labelling process to that followed with the ARCHI database. The second section, 6.2, presents the new atlas obtained from the HCP database in conjunction with the bundles analysis and the discussion with respect to the previous ARCHI atlas and the other atlases obtained from the same database. The conclusions 5.4 of this chapter are presented in the third section.

6.1 Materials and processing of the data 

Hardware, software and programming enviroments

The same computational resources used in the construction of ARCHI atlas has been used to the construction of the HCP atlas, previously specified in the section 5.1.2. Detailed information about the computational resources used can be found in the Appendix B.1.

Preprocessing of the HCP database

As it was done with the ARCHI database, the original MRI images of the HCP need to be preprocessed before obtaining the tractograms and sulci graphs used for the atlas construction. The pipeline of this process is similar to the previous one shown in the section 5.1.3 and is summarized in the figure 6.2.

The main difference occurs at the stage of the low level preprocessing, where the distortions corrections and alignment between the T1-weighted morphological dataset and the diffusion-weighted dataset have been performed using HCP-dedicated methods developed by the HCP consortium, primarily built using tools from FSL and FreeSurfer [START_REF] Andersson | Non-parametric representation and prediction of single-and multi-shell diffusion-weighted mri data using gaussian processes[END_REF], 2016[START_REF] Jesper | How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging[END_REF][START_REF] Fischl | [END_REF][START_REF] Matthew | The minimal preprocessing pipelines for the human connectome project[END_REF][START_REF] Jenkinson | Improved optimization for the robust and accurate linear registration and motion correction of brain images[END_REF][START_REF] Fischl | [END_REF].

Next steps were implemented in the Ginkgo library developed by the team of Cyril Poupon in

Neurospin [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA[END_REF]. First, the analytical Q-ball model [START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF] was computed to obtain ODF fields in each voxel. Then, the deterministic streamline algorithm with regularization was used to compute the tractogram using 1 seed per voxel. Due to the improvements in the Ginkgo library with respect to the old Connectomist version, the tractograms obtained contain around 4 millions of curves per subject using 1 seed so that, similar as it was done with the ARCHI database, each individual tractogram was then compressed to a few thousand clusters using the intrasubject fiber clustering of the Ginkgo library. Each centerline of the compressed dataset is composed by 51 3D points equidistantly distributed across the curve. The entire tractograms of each subject were segmented into 4 regions: left-hemisphere, right-hemisphere, interhemispheric and cerebellum, considering only the left and right hemispheres of each subject in the atlas construction. Each of these files contains around 25000 centerlines, where the datasets of the right hemisphere tends to have around a 3% more centerlines than the left hemisphere, as was the case with the ARCHI database.

The sulci recognition process was performed exactly as it was described in the section 5.1.3.2 with Morphologist. Then, the DISCO toolbox of brainVISA suite was used to align all the subjects with the diffeomorphic transformation into the MNI space, following the same process and using the same sulci selected in the section 5.1.3.3. Finally, the DARTEL algorithm from SPM was applied to refine the alignment. The centerlines were also brought to the MNI space where brains were aligned by applying the sulcus-based template of each subject obtained previously with DISCO-DARTEL-MNI, as it was done in the section 5.1.3.4 with the ARCHI database.

Ginkgo Library

• Q-ball model 

Clustering process

In order to evaluate if the length thresholds chosen for the ARCHI data are also applicable to the HCP database, the histograms of the centerlines lengths in native space from all subjects were computed (see figure 6.3). As with ARCHI data, a peak is reached in both hemispheres around 20mm and also a skewed pattern appears but although the pattern is similar, the peaks values and local minima differ with respect to the ARCHI database. These local minima are summarized in the table 6.1.

Despite this difference, the length histograms of both datasets behave similarly at the beginning. As a consequence, the lower threshold at 20mm is kept and to allow a simpler comparison with the ARCHI atlas, the maximum of 85mm is also kept. Unlike the ARCHI atlas where the clustering was applied to all the centerlines between 20mm and 200mm, the clustering to generate the HCP atlas was applied to all the centerlines between 20mm and 100mm range, helping to reduce the number of centerlines to process and the size of the dataset.

The same clustering pipeline as in section 5.2.3 was used to obtain the HCP atlas clusters: the adaptative hierarchical clustering, composed by three steps. First, the data was divided into two groups composed by 38 subjects each and the nearest neighbors data structure was computed on each group. Then, the clustering pipeline was applied and finally, the clusters were compared, maintaining only those present in both groups (5.2.3.4).

With respect to the parameters used, the 3 best set of parameters obtained with the method specified in the section 5.2.3.5 were tested. Finally, the same parameters used to create the ARCHI atlas (see table 5.3) were selected. For the comparison of clusters, the process was also used with the same parameters as forof the ARCHI atlas (80% of the centerlines of one cluster must have at least 5% similar centerlines in the second cluster). The labelling process was performed exactly as described in the section 5.2.4.

In terms of time, it took a mean of one day approximately to fully perform the 3 steps of the clustering process over an amount of 1.400.000 centerlines in each hemisphere. A skewed pattern appears with peaks and local minimas, summarized in the table 5.2 but in a general approximation, the amount of centerlines in each length ranges decreases exponentially as the length increases. As it was done with the ARCHI atlas, after the clustering process only the clusters between 20mm-85mm length and connecting the cortical surface with both extremities were kept. The connections labelled as NCR (54 bundles in the left hemisphere and 35 in the righ hemisphere) were discarded but they still can be accessed if necessary. All the bundles were also visually checked to verify their robustness and anatomical correspondence.

After the labelling and visual checking process using the regions defined by the Desikan atlas, the short bundle atlas from HCP database is composed by a total of 349 and 308 bundles in the left and right hemispheres respectively. A general view of this atlas is shown in the figure 6.4 and a summary of the general atlas information is presented in the table 6.2. In comparison with the ARCHI atlas, the bundles obtained are much more dense and their shapes are better defined, in particular the extremities diverge less. The mean length of the bundles is around the 40mm while the mean linkage distance is around 10mm. The mean number of curves/centerlines per cluster is higher in the left hemisphere On the other hand, the image 6.12 shows 3 bundles of the artlas with a very particular shapes.

(
In the A image, the bundle lh LOF-ST 3 of the left hemisphere that surrounds the anterior lateral fissure(FCLa) sulci does not have equivalent elsewhere. The right counterpart is similar but less organized and one of the extremities is longer and more divergent. In the ARCHI atlas, a similar bundle exists in the right-hemisphere, but its shape is less clear than the HCP version.

The B image shows a bundle similar to a C-shaped located in the cingulate gyrus. This bundle and some other similar to it in the same area does not surround sulci but run along them, between the sulci FCM anterior, posterior, subcallosal (S.Call), sub-parietal (SsP) and superior rostral (S.R.Sup).

In the ARCHI atlas this bundle does not exist but instead, smaller bundles cover the same area. It could be possible that they are a fragmented version of the same bundle, probably due to a better reconstruction of the streamlines with the HCP database but they could also be different bundles.

Finally, the C image shows another atypical bundle that seems to surround like a "cap/bonnet" a slit into a sulci. This bundle was not detected into the ARCHI atlas although larger bundles cover the same area. In the HCP, this small (but dense) bundle is specific to this slit and it was found in both hemispheres, although in the right side exist two other bundles very close and similar that slighly differs in their shape and position, leaving the doubt if they belong to the same bundle or they are different ones. A similar cap/bonnet shape can be found in some small and variable sulci as the orbital (S.Or) or the sub-parietal (S.s.P) sulci.

The same observation with respect to the bundles with a double shape in the ARCHI atlas was noticed in the HCP atlas, but in a greater quantity and the differences were more well defined. As it was done with the ARCHI, to identify a second shape of a bundle a number 2 was added to its name. The bundles in this situation are 19 for the left hemisphere and 19 for the right. Most of them correspond to well defined U-shape bundles with a second version within a 6-shape or an extremity shorter than the other. The image 6.13 shows the two versions of 4 bundles separately and also both bundles superimposed. In contrast with the ARCHI atlas, the differences between both shapes are better defined mainly due to the better quality of the bundles obtained.

The presence of those differences in this second atlas leads us to believe that they might be produced by real structural differences that were better caught with the higher resolution of the HCP database. In a recent work, [START_REF] Guevara | Relation between u-fibers configuration, sulcus shape and hand functional activation in the central sulcus[END_REF] studied the relation of the U-fibers configuration with the cortical morphology and the results show that some bundles present different configurations, which might drive differences in the sulcus shape or vice-versa, proving the link between the brain wiring and the cortical folding pattern. This might be the case of those bundles with double shape but they also could be just different bundle sharing a common extremity while the other extremity connects a different (but very near) region within the same gyri. 

Intra-gyral bundles

As it was mentioned in the previous subsection and introduced in the 5, bundles in the cingulate gyrus were found to be running along the gyri instead of surrounding it. In addition to those bundles, some others were found in the ARCHI atlas, but given the lack of information with respect to the short range bundles, in the first instance it was thought that they could be tractography errors or misaligned streamlines of other bundles. However, in the creation of this second atlas from a different database, some of those bundles reappeared in the same places with the same shapes, raising the doubt whether they are real anatomical bundles or not.

Furthermore, [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF] in a recent publication has described the presence of intragyral bundles in 7 subjects studied with post-mortem dissections by the Klingler's method and also in 1065 subjects of the HCP database analyzed with tractography using diffusion spectrum imaging (DSI)), opening a door for a new type of short-range fibers. In their work, they mention that those fibers were hidden in (buried) and ran along the white matter ridge of a gyral convolution (see figure 6.14). They studied mostly intra-gyral bundles in the temporal-parietal lobes and in the area of the pre and post central gyri. In their opinion, inter-gyral U-fibers appear to contain intra-gyral fibers, a feature we have noticed in the clustering process and that constituted a great clustering challenge to be able to extract these interlaced curves from the common U-shaped bundles without over-segmenting them. In their words, the intra-gyral U-fibers are indispensable fiber elements for the construction of pyramid-shape crossings (a WM structure of convergence of U-fibers) and crossing-to-crossing connections. They interconnect two pyramid-shape crossings in the same gyrus, contributing to create the complex neuronal network of the brain. They also believe that intra-gyral U-fibers might play a role in functional reorganization, for example in places that have lost their functionality after a tumor or an accident. New intra-gyral connections might help to migrate the lost function from one specific brain region to another, although this idea is just a guess. Therefore, due to doubts about them, we have decided to leave all those bundles that we thought were tractography errors at the beginning available in the atlas, so that future research can help elucidate their existence or discard them.

In our exploration, the bundles we refer to as intra-gyral have two types of shape: some of them are medium size, made up of curves with U-shape that usually are not well aligned and their extremities seem to connect close but different areas into the same gyrus. These types of intra-gyral bundles are tangled in areas with many other U-shaped connections. For this reason, their unorganized structure is probably due to the fibers adjusting and trying to find a common path through the existing U-shaped bundles surrounding grooves. The second type correspond to very small and straight/slightly curved shaped bundles, which appear to be attached to a sulcal wall connecting close areas inside the same gyrus. One of these particular bundles is the one located in the cuneus (Cu) region and it is shown in the figure 6.17. This strange shape appears to be a tractography error, however this bundle was found in both hemispheres of both atlases in the same place and position. Other similar bundles were found in both atlases in the same position, like -attached to the sulcal walls. Some other bundles, running along the gyri with the same shape can be found in the inferior regions of the brain as the lingual, fusiform, parahippocampal, entorhinal, medial orbitofrontal and inferior temporal. The figure 6.18 A and B shows some small straight bundles in the SC sulci, in left and right hemispheres for the HCP atlas and also in the Insula in both hemispheres for both atlases. A bundle that we suspect is an intra-gyral U-shape with a particular position was found in the ARCHI atlas for both hemispheres. It is ilustrated in the image 6.19. This bundle seems to be connecting the opercularis (Op) and precentral (PrC) regions (in the middle of the S.Pe.C inf, FCLp and the Ins sulci), touching with their extremities different areas of the inferior frontal gyrus (IFG, FCLp sulci). In the HCP atlas, this bundle was found only in the right hemisphere with the same shape; in the left hemisphere another bundle in exactly the same position, but with a straight shape was found. All the bundles described previously are only a part of the total of the probably intra-gyral connections. Some bundles found are not clear enough to be classified into inter-gyral or intra-gyral and must be analysed more carefully. As the presence of this new type of bundles has been noticed recently and due to all the weaknesses of tractography, these bundles are probably spurious outcomes and not absolute truths. They must be taken and considered with caution, only future research can help us elucidate their true nature.

Lateralization

There are 40 more bundles in the left hemisphere with respect to the right hemisphere, representing a difference of 12%. This differs with the results obtained in the ARCHI atlas and the Roman's atlas [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], where the asymmetry was in favour of the right hemisphere with respect to the left. As mentioned in the last chapter, this asymmetry should not be overinterpreted, and can result for several origin. We mentioned already different quality of alignment resulting from different level of variability of the folding pattern, leading to a higher granularity in the right hemisphere for the ARCHI atlas. This new result leads to question this hypothesis. In general, however, the HCP bundles of the left hemisphere tend to have more centerlines than the ones in the right hemisphere, which hints again at larger bundle in the left than in the right hemisphere.. But the asymmetric number of bundles may probably result from a bias of our pipeline behaving differently with dataset with different qualities, rather than from an actual anatomical difference.

In the recent studies over short fiber bundles [Gahm and Shi, 2019, [START_REF] Kai | Assessing white matter pathway reproducibility from human whole-brain tractography clustering[END_REF]Khan, 2019, Yeh et al., 2018] the authors barely mention the amount of clusters found and not further analysis or details are given. The lack of information about the short fiber bundles in the literature makes difficult to get a clear answer, but some past studies over the white matter structures in general have found asymmetries in FA in the frontal, parietal, and temporal lobes [START_REF] Oyefiade | Development of short-range white matter in healthy children and adolescents[END_REF][START_REF] Phillips | Superficial white matter: effects of age, sex, and hemisphere[END_REF]. The arcuate fasciculus is known to much more developed in the left hemisphere. All this supports the idea that some structural asymmetry in the white matter of healthy individuals do exist and could be hidden behind some of our observations.

On the other hand, [START_REF] Magro | Characterization of short white matter fiber bundles in the central area from diffusion tensor mri[END_REF] studied the asymmetry in the number of tracks found in the central region (region connecting pre-and post central gyri in both hemispheres) related to the subject handedness. They found a significant asymmetry of the fronto-parietal connections of 20 subjects (10 subjects left-handed and 10 subjects right handed), with more short association tracks in the left hemisphere. In the HCP atlas this difference is also reflected with more bundles connecting the pre-and post central regions in the left hemisphere (14% more bundles). Furthermore, a recent study over chimpanzee brains [START_REF] Chauvel | A novel superficial white matter connectivity atlas of the chimpanzee brain[END_REF] has also found a difference in the amount of the short structures per hemisphere, with 21% more clusters in the left hemisphere.

In general, the few studies that make any reference to the brain asymmetries coincide with a higher density of white matter fibers in the left hemisphere and possible more bundles, with the exception of the works that used the ARCHI database (the atlas of [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] and the ARCHI atlas previously obtained). It is not clear for us if those differences are due to morphological variations of the bundles across subjects in the study or they are part of the uncertainties of the streamlines reconstruction model or the clustering process. Anyhow, all this information is not enough to fully understand and explain those differences and further analyses are necessary.

As it was done with the ARCHI atlas, a comparison between both hemispheres was performed to detect the bundles that have a counterpart in the opposite hemisphere, as it is illustrated in the image 6.20. From this process, it was found that 213 bundles are common to both hemispheres, representing roughly 65% of the total number of bundles in the atlas. That value is closer to the 70% obtained by [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] in their atlases.

On the other side, the image 6.21 shows all the bundles that are specific for each hemisphere, namely 134 bundles in the left hemisphere and 95 for the right. It is important to mention that some of the bundles with a doubled shape shared the same counterpart in the opposite hemisphere. The 

Atlas comparison

A comparison between the HCP atlas and the ARCHI atlas obtained previously was performed with the same tools as before for bundle comparison (cf section 5.2.3.4). As both atlas are in the same ICBM152 space, this process was realized after the labelling.

Although some of the bundles of the ARCHI differ in size or their shapes are less clear than the bundles in the HCP, most of them were found in this second atlas. As it happened with the atlas of Roman and Guevara in the comparison process, some bundles (most of them) of the ARCHI have a correspondence "One to one", others are "a part of a bigger one" and some others are "made up of more than one cluster". For the left hemisphere 126 bundles have a correspondence one to one while 41 are part of another one. 34 bundles are made up for more than one cluster. For the right hemisphere 108 bundles have a correspondence one to one and 109 are part of an HCP bundle. 25 bundles are made up by more than one bundle.

However, some clusters in the ARCHI were not found in the HCP. This is the case for 12 bundles in the left and 31 in the right hemisphere. A detailed analysis of the bundles involved revealed that 6 bundles of the left hemisphere and 15 of the right hemisphere that were not in the HCP version correspond to long and thin clusters over 70mm of length. This difference is explained because for the ARCHI atlas the clustering was executed over the centerlines between 20mm and 200mm length while for the HCP it was between 20mm and 100mm of length. The filtering by size was performed at the end of all the clustering and merging process, so that in the ARCHI atlas more larger bundles near to the upper limit were included while for the HCP those clusters never got the number of subjects or fibers needed to get to the end of the process. In fact, for some of this missing ARCHI bundles, a HCP counterpart was found between the discarded bundles over 85mm.

On the other hand, 4 bundles in the left hemisphere and 4 bundles in the right hemisphere that were not in the HCP atlas were found between the clusters with at least one extremity labeled as "NCR". The bundles involved are in the area very close to the ventricles and their difference in the labelling between both atlases may differ just because of the difference in the classification of a few centerlines.

In summary, from the 14 ARCHI bundles missing in the left hemisphere of the HCP atlas, only 2 were not really identified. For the right hemisphere this amount is 12, however, despite the fact that these connections were not found among those labeled as NCR, most of them are very small and close to that area. Some others are also in the limit of centerlines of different subjects. Probably, in the HCP they did not reach the minimum amount of subjects per bundle required to be part of the atlas.

Finally, 148 bundles of the left hemisphere and 66 bundles of the right hemisphere are exclusive to the HCP atlas. The detailed results of the comparison between the ARCHI atlas with the HCP atlas are presented in the appendix B.2.1.3 in the tables B.7, B.8 and B.9.

Bundles organization

We have performed the same anlysis as the one executed over the ARCHI atlas in the subsection 5.3.5. First, we have divided each bundle of the HCP atlas into the subject-specific sub-bundles that composed them and then, we have computed the dBD for each sub-bundle. As it was done with the ARCHI atlas, an analysis by regions of interest was performed. The figure 6.22 and the table 6.3

show the same tendency previously observed. In general, the depth increases when the length of the bundles increases. Some outliers can be observed that were also in the ARCHI: they correspond to some intra-gyral bundles that in general do not follow this pattern. As intra-gyral bundles are much more frequent in the HCP atlas, their influence is reflected in the results of this comparison, mostly in the inferior regions of the brain (En, MOF) but also in the areas related to the cingulum cortex (IC, CAC and PoC). The figure 6.23 shows the correlation between both variables in left and right hemispheres for each region with respect to the P-Values. In general, these results show a strong correlation for most of the regions as in the ARCHI atlas.

With respect to the ranges of lengths, for the HCP atlas we have considered the range observed in the histogram of lengths (see figure 6.3) and summarized in the table 6.1. The subsets created were: 1) Centerlines between 20mm and 38mm length 2) Centerlines between 38mm and 58mm 3)

Centerlines between 58mm and 78mm and 4) Centerlines between 78mm and 85mm.

In a visual inspection of the bundles (see figure 6.24) between 20mm and 38mm of length, it was observed that most of the bundle shapes correspond to C-shaped, V-shaped, straight bundles and, unlike the in first region in the ARCHI atlas, several U-fibers. Some Open U fibers were also found in the lower areas of the brain. Bundles in this range are the closest to the cortex and represent around the 53% of the total number of bundles. In the second range between 38mm and 58m, bundles are mostly large U-shaped and curved ones. This range contains about 38% of the bundles while the third range between 58mm and 78mm includes a 8% of them. The bundles in the third range are mostly open U-shape and curved bundles. The last range (78mm and 85mm) contains a 1% of the bundles also with curved shape and one open U-shape bundles.

Unlike the ARCHI data, only 4 ranges of length instead of 5 were extracted from the histogram of the HCP curves. However one of those limits also corresponds to 78mm, a number we thought might correspond to an interesting upper limit to distinguish short and long bundles. As it was observed in the ARCHI atlas and in the table 6.4, the pattern in the HCP also seems to be related to the layered structure described in previous studies. Although the structure of the two histograms are similar, the origin of the difference in the number of ranges between both datasets is not clear to us. One explanation may lie in the different number of intra-gyral bundles present in each database.

Centerlines that made up those bundles were mostly found in the HCP atlas, probably due to the higher acquisition quality. As these bundles do not follow the relation between depth and length, an increased presence of this kind of curves might have an influence on the histogram, affecting only the ranges under 78. 
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The computation of the mean of the bundle depth (dBD) for each range of lengths of the HCP atlas is summarized in the table 6.4. As for ARCHI, the mean depth increases with length, except for the last one. As we mentioned in the previous section, the clustering in the HCP was performed over less long centerlines, which may have an impact on the amount of long structures found. This can be seen when comparing the amount of bundles in this range found in both atlases (the last range is the same for both atlases, between 78 -85): while in the ARCHI there are 17 bundles in this range, only 6 were found in the HCP atlas, for both hemispheres. This reduction in the amount of bundles may be influencing the average value of the depth.

Finally, the internal gyrus organization was analised as it was done with the ARCHI atlas. First, the bundle depth graphs by Desikan regions are shown in the figure 6.25 and their results are similar to those obtained previously which consider the entire bundle. Then, a region was chosen to observe the internal gyral organization, this time with the PoG gyrus. In this area some intra-gyral bundles were found but due to their particular characteristics, they were excluded from this analysis. The image . This last bundle is the longest one and its centerlines arrive in the middle area of the gyrus while the traditional U-shaped centerlines remain closer to the sulci. The values of depths displayed in the table 6.5 confirm this observation, with the longer bundle having the greatest depth for the extremity going into the PoG.

The results obtained with the ARCHI and the HCP atlas confirm partially that the internal organization of the gyri, observed by [START_REF] Schmahmann | Fiber Pathways of the Brain[END_REF] in the Rhesus monkey exist also 189. 18 64.53 in the human brain. It would be interesting to explore the same feature in more species or to test whetherf this gyral organization is also present in preterm babies and infants. Maybe, it would help to understand the origin of the gyral convolutions and the influence of the WM structures on them. 

Conclusions

This chapter has presented a second short-range fiber bundles atlas from the well-known HCP database of dMRI images. The pipeline used was almost the same as the one used for the ARCHI atlas, with some differences at the level of the pre-processing.

After the application of our divisive hierarchical clustering and the labeling with the atlas of Desikan, an atlas of short-range bundles between 20mm and 85mm length was obtained. It is composed by a total of 657 bundles, where 349 and 308 bundles come from the left and right hemispheres, and 213 are common to both sides of the brain. The HCP atlas contains 136 bundles of the left hemisphere and 95 bundles of the right hemisphere exclusive to it. Most of their bundles of the ARCHI atlas were found in the HCP atlas. The absences are mainly due to the few long bundles obtained in the HCP atlas since to reduce the size of the dataset before clustering, only fibers less than 100mm

were considered for the HCP, which impacted the clustering of the longest streamlines.

The amount of bundles that appears to have a second alternative version with a variation of shape is increased with respect to the ARCHI atlas. In the ARCHI cases, the differences were not so clear and the idea of errors in the tractography seemed to be the right explanation. However, the bundles of the HCP atlas in this situation are well defined and dense which led us to think that they correspond to bundles with real differences in shape. It might be possible that they are due to anatomical differences in the cortex of the subjects in the study, but they also could be different bundles connecting different areas of a same gyri.

Another kind of interesting and uncommon bundles were noticed also in the HCP. As it was mentioned earlier in the creation of the ARCHI atlas, we noticed the presence of a few bundles connecting different areas of the same gyrus. As for the previous observation, the first impression was that they were tractography errors or misaligned parts of larger bundles. However, some of those bundles were found in both atlases in similar positions and some of them even in both hemispheres, which made us reconsider the nature of those strange bundles present in our atlases. Furthermore, the recent work of [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF] proved the existence of intra-gyral bundles suggesting their possible participation in functional reorganization of the brain. For all those reasons and the uncertainty about the origin of the bundles we have found in our atlases, we have decided to leave them available for future studies that may help to elucidate their real nature.

The studies of [START_REF] Meynert | Psychiatry, a clinical treatise on disease of the fore-brain, based upon a study of its structure, functions, and nutrition[END_REF], Sachs [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF]] and more recently [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF] have shed light on the structural organization of short fibers, describing a layered structure composed by 3 or 4 layers. This structure was also noticed in the Rhesus monkey by Schmahmann and Pandya [2006]. Through the definition of a depth measure we have been able to test the existence of a layer organization, mainly proving the rule that the depth of the bundles into the WM is related to their length. This means that shorter inter-gyral association fibers are located closer to the cortex in the SWM and they become longer in the DWM. This rule does not apply to the intra-gyral bundles that have a more disorganized and undefined structure. While the amount of layers involved in this structural organization is still not clear enough for us, mainly due to the difference in the ranges of length extracted from the histograms, we have noticed that 78mm seems to be a natural upper limit between short and long fiber bundles.

Finally, Schmahmann and Pandya [2006] also described an internal organization for the gyri in their work with monkeys. Using the same depth measure only in the extremities of the bundles we have noticed that the same or very similar structure organization is present inside the human brain.

Long structures arrive in the medial region of the gyri while shorter bundles remain closer to the external side of the blade.

The results obtained with both atlases help us to have a better understanding of the short fiber bundles and their structural organization. However, we must consider the limitations of tractography and use these results carefully in future research. Only time and studies will help us to elucidate if the new structures found have a real anatomical origin or are mere ghosts that will not last. For the moment we have planted the seed of doubt that can lead to new and interesting discoveries in the complex study of the brain.

Chapter 7

Conclusions

The second chapter of our introduction did provide a focus on the current knowledge on the Ufibers that surround the cortical sulci, a characteristic not exclusively human but observed also in other folded mammals. U-fibers seem to appear as early as the fetal stages. While this set of fibers has been described in the nineteenth century in post-mortem studies [Jakob, 1906, Meynert, analysis of the diffusion signal are now opening the world of short bundles for large-scale investigation. For this purpose, tractography is still required because we miss the a priori knowledge on their organization for creating the training datasets that could feed machine learning systems. The community needs first to discover the organization of the short bundles and to create a dedicated nomenclature. While the small diameter of the U-bundles has been an impediment to their analysis with the first generation of dMRI-based technique, it should be noted that their localization just under the cortical mantle is providing them with an unusual property for bundles: their analysis is probably less impacted by the complex fiber crossing issues disturbing the tractography of long bundles.

During the last decade, a stream of research results have contributed to decipher the unknown world of short fibers, leading to more or less detailed dedicated short-fibers atlases [Catani et Besides the improvements in tractography algorithms, intersubject alignment has a major impact on the inference of short bundle atlases. While the study of long bundles could be done using a rough alignment, a non-linear alignment is largely improving the amount of U-bundles reproducible across subjects [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF]]. This observation is not surprising when considering the nature of the short bundles, which circumvent the folding patterns. Our results have shown that controlling the alignment of the sulci across subject could lead to a very rich set of reproducible bundles.

Another feature with a strong impact on the atlas inference is the clustering process, and especially At the beginning of this thesis, the few information we could collect about the short association fibers was usually related to the U-shaped fibers and sometimes both terms were used as synonyms.

Few works, as the one of Zhang et al. [2014], have performed a more exhaustive exploration of the shapes occurring in the world of short fibers. However, the complexity of the brain structure led us to believe that the U-shaped fibers could be only one part of a wider universe of short-association fibers.

For that reason, the first clustering experiments, mainly using DBSCAN from libraries available on the internet, were focused on discovering what was hidden inside the tractography datasets in the lower ranges of length. Two important characteristics were noticed: 1) As it was suspected, we could observe much more shapes of bundle than the usual U-shape prototype. An analysis focused only in the U-shapes would make us lose other important structures that are also part of the complex brain connection system. 2) Some reproducible bundles are easy to identify using group-based clustering after spatial normalisation, mostly those located under the larger and most stable sulci, while others are hidden in complex fiber entanglements. These entanglements are probably resulting primarily from the variability of the folding pattern, but they may also stem from the variability of the short fiber organization in some of the non-primary areas. Defining both kinds of bundles from the same set of clustering parameters looked difficult, not to say impossible.

For those reasons, we proposed first a new similarity measure with more shape content improving the fiber comparison. This measure was complemented with an adaptive hierarchical clustering strategy tuning the request on the cluster density to the specificities of the different bundles. The number of bundles included in the two hemispheres of the atlases are different. But more importantly, it is disturbing to get a different asymmetry for both atlases. It means that the impact of the diffusion MRI acquisition parameters on the result of our method depends on the hemisphere. It could result from a difference between both hemispheres. We mentioned the possibility that a higher variability of the folding patterns of the left hemisphere could lead to a lower quality alignment impacting the reproducibility of the fiber clustering and resulting in less bundles. On the other hand, this higher variability could also result in a larger variability of the fiber organization maybe leading to more bundles when dealing with tractograms with higher spatial resolution. It is not possible to draw any conclusion without further experiments, but we should not forget that the main origin of this observation could simply be a lack of stability of our new clustering algorithm.

While such an instability could be induced by some weaknesses in the design of our method, it should be noted that it could also be related to the ill-posed nature of the U-bundle inference problem. Our framework is based on the assumption that some reproducible U-bundles do exist all over the white matter. They are supposed to be the building blocks of the white matter organization reproducible across a given mammal species. Our results show that to some extent, this assumption may be at least partially corresponding to reality. But some of the instabilities may occur in brain regions where the inter-subject variability is such that each reproducible bundle corresponds only to a fraction of the population. In a way, the variability of the folding pattern shall lead to this kind of situation. For instance, while a short connection may exist throughout the whole population, its shape may be different in people with a deep sulcus versus the people with the same sulcus interrupted.

According to the design of the trimming part of our method, only the most frequent configurations can survive, provided that they exist at least in more than half of the population. With our current implementation where each atlas is inferred from two groups of only 40 subjects, the sampling of the folding patterns has good chances to vary from one group to the second, leading to lose some bundles. It is not very satisfying, and has to be improved in the future.

But the most important source of instabilities may lie in regions where our assumption is unfounded. A careful inspection of the tractogram of a single subject leads to observe U-shaped streamlines all along most of the sulci. Therefore, the accurate alignment of a specific sulcus across a group of subjects shall lead to a web of such streamlines densely covering all the sulcus. If this web does not include specific structures, only the characteristics of the used clustering algorithm will decide where and how many clusters will be identified. Furthermore, some of these bundles will be discarded because they will probably not occur in the same position in the two groups of subjects. Therefore the resulting set of identified bundles along this sulcus would be highly instable. In our opinion, this To conclude, our vision is that the cortical folding pattern embeds a map of reproducible sulcal roots or sulcal pits and dual plis de passage [START_REF] Im | Spatial Distribution of Deep Sulcal Landmarks and Hemispherical Asymmetry on the Cortical Surface[END_REF][START_REF] Gabriele Lohmann | Deep Sulcal Landmarks Provide an Organizing Framework for Human Cortical Folding[END_REF][START_REF] Régis | sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns[END_REF] and that the local organization of short bundles is strongly related to this map. This is our justification that the organization of the short bundles includes at least a reproducible skeleton derived from these maps.

Unlike previous atlases [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF], [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], the bundles of our atlases show strong relationships with the cortical sulci, as it was expected and described in the sections 5.3 and 6.2. Most of the clusters tend to circumvent one or two sulci in order to create a pathway between areas separated by one or several folds. This property will contribute to a better understanding of the connectivity provided by these short bundles. For instance, it could help to understand which short bundle could grasp the opportunity to pass through a sulcus interruption, leading maybe to a different efficiency as recently hypothesized [START_REF] Cachia | How interindividual differences in brain anatomy shape reading accuracy[END_REF]. We do not claim, of course that the plis de passage are the only reproducible short bundles, all the more that there is not a one to one match. It is probably better indeed to split the plis de passage in two parts to link them with the U-shaped bundles. The gyri visible in only one side of the wall of the sulci would be the building blocks: one such gyrus can be connected by two different clusters of U-fibers to two buried gyri of the other wall of the sulcus. Longer short fibers circumventing more than one sulcus could also grasp the opportunity of following a shorter pathway provided by the plis de passage, especially the fibers developing after the onset of the folding pattern. But plis de passage are only the visible part of the iceberg. We assume that the superficial white matter embeds a much larger number of reproducible structures that are not strong enough to emerge in the folding pattern.

The exact connecting point of our bundles in the cortical mantle is probably beyond reach with the diffusion models used in our work. Our atlases provide only the core organization of the short fibers when they travel throughout white matter. Note however that our bundles do not always reach the top of the gyri, which would have been the prediction considering the well-known gyral bias of the tractography algorithms that cannot follow the ninety degree turns toward the cortical mantle occurring inside the gyral blade. In fact the variety of shapes that we have identified (U-shape, Cshape, V-shape, 6-shape, Open U-shape, straight bundles and curved bundles) seem to imply that some of the bundle extremities are located in the walls of the sulci. We even found pairs of bundle sharing one extremity on one sulcus side while the other extremity could lead either to the gyrus top or in the gyrus wall on the other side of the sulcus. Our hypothesis that U-bundles are easier to track than longer ones may be the explanation. While long bundles travel throughout the center of the gyral blade, as demonstrated in some of our results, U-fibers stick to the superficial part of the blade closer to the border of the tractography mask. They may have more chances to be stopped in a way or another before reaching the top of the gyrus at the depth of the bundle turn. But reconsidering carefully the details of the seeding process and of the stopping process of the regularized streamline algorithm is mandatory to investigate further this phenomenon.

It is worth sheding some light on the particular structures traveling along the gyri instead of surrounding the cortical convolutions. We observed them both in ARCHI and HCP atlases. At the beginning, due to the variability of the curves that composed them, we though they could be a kind of tractography errors, namely spurious streamlines, or clusters of streamlines corresponding to broken fiber trajectories. However, a more exhaustive observation of them led to note that they are connecting different regions within the same gyri and even more, some of them, that were found in the ARCHI atlas and are present in a similar location in both hemispheres were also found in the HCP atlas in the same positions with similarly disorganized shapes. These characteristics made us doubt that they are only spurious outputs of our methodology. Some of these clusters may correspond to the intra-gyral bundles described in recent postmortem anatomical studies [START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF].

In the first studies about U-fibers, around one hundred years ago, [START_REF] Meynert | Psychiatry, a clinical treatise on disease of the fore-brain, based upon a study of its structure, functions, and nutrition[END_REF] noticed that the shorter the bundles, the closer to the cortex they travel, observation that was later ratified by Sachs [START_REF] Forkel | The white matter of the human cerebrum: Part i the occipital lobe by heinrich sachs[END_REF]. He described an organization into "layers" of the short-range bundles, always in the occipital lobe. He mentioned also the existence of 4 layers. More recent works [START_REF] Schmahmann | Fiber Pathways of the Brain[END_REF]Pandya, 2006, Shinohara et al., 2020] also detected this layer structure. All our experiments using the average depth of the bundles support this model: the longer the bundles, the deeper inside the white matter they lie. Nevertheless, it is important to mention that this rule is not followed by the intra-gyral bundles, which exact localization is still to be investigated.

The histograms of length of the ARCHI and the HCP centerlines exhibit a common skewed pattern with some local minima, very similar but with some differences. The ARCHI database presents 5 ranges of length, based on the local minima while the HCP contains only 4. However, the differences in the patterns occur only below the 78mm threshold; the last range of lengths is between 78mm and 92mm for both atlases. Therefore, we speculate that 78mm is probably the most natural threshold between long connections and the world of short bundles impacted by the wavelength of the folding pattern. It is possible that the difference in the number of length peaks observed for both atlas histograms result from the larger number of intra-gyral connections detected in the HCP dataset thanks to the higher spatial resolution. These bundles indeed are not impacted by the folding pattern, so the only geometrical constraint on their length is the maximal length of a gyrus. But the difference in spatial resolution may also have an impact on the distribution of the whole streamline populations into the different intervals of length.

While the link between length and depth is clearly highlighted by our experiments, the notion of explicit layers in the superficial white matter is more difficult to push forward. The strongest argument in favour of this organization is probably the pattern observed in the length histogram, but the differences between the two datasets lower the strength of this finding.

Finally, Schmahmann also described a specific organization of the bundles inside the gyri of the Rhesus monkeys. Our result on the bundle depth restricted to the superficial white matter are probably not sufficient to support the analogy with the human organization, because of the mix between the organization of the fibers in the gyral blade and the organization of the fibers under the bottom of the folds. Further work focusing the depth computation on the gyral blade may help to clarify the configurations. Nevertheless, our visual observations support strongly the onion-like organization of the fiber inside the gyral blade. In the future, we hope that diffusion data acquired in babies and preborn will contribute to the understanding of the developmental processes leading to this layered organization.

Diffusion imaging is a fantastic probe to explore the white matter organization. But this probe has to be used with great care. All the discussion above assumes a strong correlation between the virtual streamlines reconstructed by our algorithms and the fiber fasciculi populating the white matter.

Unfortunately, to some extent, this assumption is probably wrong. Therefore, we will need a stream of further studies to clarify whether the insights stemming out of our work provide a realistic sketch of the organization of the myriad short fibers connecting our neurons. Our new atlases, however, will be a great tool to study the potential link between impaired short connectivity and various pathologies.

This new field of research for neuroimaging has already been really successful using the partial atlases previously provided by our team D' founded by the french governement. BrainVISA may use any processing software and can combine home-made algorithms, software contained within the core BrainVISA package, or third-party software (some toolboxes use FSL, SPM, nipy, R-project, etc.).

The BrainVISA toolboxes used in this project are:

• Sulci: Automatic sulci identification and object-based morphometry [START_REF] Cachia | Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations[END_REF]].

• Morphologist: Brain segmentation and sulcal morphometry including T1 anatomical MRI processing, cortical sulci extraction and identification, and morphometric applications [START_REF] Fischer | Morphologist 2012: the new morphological pipeline of brainvisa[END_REF][START_REF] Mangin | A framework to study the cortical folding patterns[END_REF] • DISCO toolbox:Diffeomorphic structural-based cortical registration [START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF]. This registration approach aligns the brains using sulcal constraints. To optimize the cortical registration is recommended then perform the DARTEL registration [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF] In the execution of this project we use specially the toolboxes Sulci, Morphologist and DISCO as well as the AIMS library for Python. AIMS is the neuroimaging structures manipulation library of the BrainVISA project.

B.1.1.4 Connectomist2.0

Connectomist2.0 is a software developed by the UNIRS team in Neurospin [START_REF] Duclap | Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA[END_REF] dedicated to the analysis and study of structural brain connectivity from dMRI data. It is also usable as a BrainVISA toolbox. The pipelines used in this project are:

• Import and QC, detection and correction of artifacts and definition of the Q-space sampling.

• Tractography, includes the local modeling process of the diffusion process using popular HARDI models of the literature (DTI, Q-Ball Imaging, DOT, CSD, SDT, DSI) to obtain fields of orientation distribution functions (ODF). Computation of tractography masks from T1-weighted MRI data replacing standard FA-based masks and the tractography on the entire brain using streamline deterministic, streamline regularized deterministic or probabilistic tractography techniques. Title : Inference of a U-fiber bundle atlas informed by the variability of the cortical folding pattern Keywords : diffusion MRI, white matter atlas, short fiber bundles, brain connectivity Abstract : Technological breakthroughs in medical imaging have allowed for first time in vivo exploration of the brain of living beings. This has prompted the creation of big projects and large databases for the study of the human brain such as the Human Connectome Project (HCP) or the Human Brain Project (HBP), of which this thesis is a part. Tractography by diffusion MRI (dMRI) has been the first technique to explore the white matter and the major connections of the human brain but there is still a long way to go regarding short-range connections. In recent years, some short bundle atlases have been proposed, identifying about a hundred short-range fascicles. However, the main weakness in the development of these atlases is the poor alignment between subjects which consider only the standard Talairach alignment or the diffusion tensor image registration method (DTI-tk). Neither of those approaches take into account correctly the variability of the cortical folding pattern which is closely related to the short-range connections surrounding sulci, commonly known as U-bundles. This thesis work proposes a new framework for the creation of an extended atlas of short-range fiber bundles between 20mm and 85mm length from two massive dMRI tractography datasets : the ARCHI database and the HCP database. 76 subjects of each one have been used to construct two atlases of short-range connections using exactly the same pipeline. This method uses a two-step diffeomorphic inter-subject alignment procedure that combines DISCO and DARTEL approaches.

First, DISCO includes information on cortical folding and forces the accurate match of the main sulci that have to be circumvented by the U-bundles. Then, the well-known DARTEL method is applied to refine the registration. The MNI 152 template is also used, in order to provide our results in a common space to facilitate its use in the scientific community. An adaptative hierarchical clustering, focused in the extraction of short-range connections is performed then to extract the most reproducible bundles across subjects. This method does not impose restriction on the shape of the bundle clusters and allows the processing of massive tractography datasets in a reasonable time and without the need of high performance computational resources. The results show an increased number of short-range bundles consistently mapped in the general population compared with previous atlases created from the same ARCHI database. This first atlas contains more than 400 bundles. On the other hand, more than 600 bundles were obtained with the massive HCP database endowed with higher spatial resolution. Each of this new atlases contains all the bundles of the existent atlases of short-range connections and much more to explore. Those results open a new path to improve our understanding of the relationship between the folding pattern and the U-bundle variability but also the possibility to detect abnormal configurations induced by developmental issues which may lead to mental pathologies such as bipolar depression or schizophrenia.
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xix Résumé de la thèse 0. 1 Introduction

 1 Malgré les progrès réalisés ces dernières années, l'organisation et la structure de la substance blanche (SM) restent un domaine de recherche difficile pour les neurosciences et les études cliniques. Cela a conduit à la création de grands projets et de grandes bases de données pour l'étude et la recherche sur le cerveau humain, comme le Human Connectome Project (HCP) [Essen et al., 2013] 1 ou le Human Brain Project (HBP) 2 dont cette thèse est issue. Plusieurs atlas des faisceaux de la substance blanche et des méthodes d'identification automatique de ces faisceaux à partir d'un ensemble de données trajectographiques ont été proposés ces dernières années Catani and de Schotten [2008], Catani et al. [2012a], Guevara et al. [2012], Oishi et al. [2008], Vergani et al. [2014a], Zhang et al. [2010]. Ils ont été principalement axés sur les faisceaux longs tandis que les connexions à courte distance, également appelées fibres sous-corticales U-fibres ou arcuates, ont été négligées et laissées en arrière-plan. Beaucoup de ces fibres d'association courtes se trouvent immédiatement sous la substance grise du cortex des hémisphères, et relient entre elles les gyri adjacents. Ces trajets de fibres ont été documentés pendant plus d'un siècle avec les travaux de Dejerine [1895], Meynert [1886], Sachs [1893] et Jakob [1906]. Leur existence a également été démontrée par des études neuropathologiques ([Cervós-Navarro et al., 1994, Cobb et al., 1950] et Hu et al. [2010], Ronan et al. [2011], Wedeen et al.

  La technique de tractographie a le potentiel d'introduire de fausses connexions, produisant des trajectoires anatomiquement plausibles mais erronées [Basser et al., 2000]; une validation est donc nécessaire. La rareté des informations historiques sur les faisceaux en U et l'absence d'un Gold standard à leur égard entravent le processus de validation des trajectoires trouvées avec la technique de tractographie. La comparaison avec la dissection post-mortem est une méthode utilisée par les chercheurs pour étayer les tractographies [Catani et al., 2002, Catani and de Schotten, 2008, Catani et al., 2012a, Lawes et al., 2008, Vergani et al., 2014a, Zhang et al., 2010] et aussi la comparaison avec la structure du cerveau des singes en utilisant des traceurs invasifs [Catani et al., 2017, Oishi et al., 2011, Schmahmann and Pandya, 2006, Zhang et al., 2014] 0.1.1 Objectif Comme il a été mentionné ci-dessus, ce travail de thèse a été réalisé dans le cadre du projet phare européen sur le cerveau humain (HBP) et l'objectif global était la création d'un atlas couvrant l'ensemble de la substance blanche et entièrement consacré aux connexions issues des fibres courtes, y compris les faisceaux de fibres en forme de U. En utilisant une stratégie d'alignement difféomorphe inter-sujets, imposant une correspondance explicite des sillons corticaux les plus stables, nous espérons augmenter le nombre de faisceaux en U cartographiés de manière cohérente dans la population générale par rapport aux atlas précédents et améliorer notre compréhension de la relation entre le schéma des plissement et l'organisation des faisceaux en U.
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 1 FIGURE 1: Prétraitement des bases de données ARCHi et HCP avant la construction des atlases

  pour fournir notre atlas final dans le référentiel ICBM 152, un espace communément utilisé par les chercheurs [Gong et al., 2008, Lebenberg et al., 2018, Oishi et al., 2008, 2011, Perrot et al., 2011, Yeh et al., 2018, Zhang et al., 2010], afin de faciliter l'utilisation de l'atlas dans la communauté de recherche sur le cerveau. Tous les sujets des bases de données ARCHI et HCP ont été alignés séparément en utilisant une méthode en deux étapes proposée par Lebenberg et al. [2018], qui combine les approches DISCO (déformation COrtical DIffeomorphic Sulcal-based) [Auzias et al., 2011] et la méthode basée sur l'intensité connue sous le nom de DARTEL distribuée dans le logiciel SPM [Ashburner, 2007]. Un ensemble de 43 sulci fiables et stables a été sélectionné pour ce processus. DISCO a fourni un espace commun pour la population et une transformation difféomorphique par sujet. Ensuite, nous avons composé chaque transformation spécifique à un sujet avec la transformation inverse du modèle ICBM pour amener tous les sujets dans l'espace MNI, afin d'initialiser le processus de recalage DARTEL.

FIGURE 2 :

 2 FIGURE 2: comparaison entre les méthodes d'enregistrement DISCO-DARTEL-MNI, recalage affine Talairach affine et la methode non linéaire DTI-tk

FIGURE 3 :

 3 FIGURE 3: Histogramme des longueurs des centrelines pour les hemispheres droit et gauche pour les deux bases de données

4.

  Labelling: Afin de faciliter l'utilisation du nouvel atlas, nous utilisons la même convention d'appellation que dans les précédents atlas utilisés par Guevara et al. [2017] et Román et al. [2017], basés sur l'atlas de ROI de Desikan-Killiany [Desikan et al., 2006]. Le modèle ICBM152 a été traité avec Freesurfer pour d'obtenir une image étiquetée correspondant aux régions de l'atlas de Desikan.

  Le nouvel atlas des fibres courtes de la base de données ARCHI est composé d'un total 486 faisceaux, dont 213 proviennent de l'hémisphère gauche et 273 de l'hémisphère droit. Parmi ces faisceaux, 105 sont communs aux deux hémisphères. L'atlas court HCP contient un total de 657 de faisceaux, dont 349 et 308 proviennent respectivement des hémisphères gauche et droit et 213 sont communs aux deux côtés du cerveau. Une vue générale des deux atlas est présentée dans la figure 4.(A) ARCHI atlas (B) HCP atlas
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 45 FIGURE 4: ARCHI et HCP atlases de fibres courtes entre 20mm and 85mm de longueur
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 6111 FIGURE 6: Particularités des atlas. La figure A) montre des faisceaux avec une deuxième version de forme. La figure B) montre les connexions intra-gyrales. L'image C) montre l'organisation interne pour les gyri.
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 7 Conclusion, discussion and perspectivesThis chapter summarizes the contributions of this thesis and discusses future work on this topic.
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 21 FIGURE 2.1: Ex-vivo human brain (Image adapted from Ruppert and Barnes [1994])

  [START_REF] Beaujoin | Post mortem inference of the human brain microstructure using ultra-high field magnetic resonance imaging with strong gradients[END_REF],[START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF], Kandel and Schwartz [2013], Schmahmann and Pandya [2006], Squire et al. [2008].

  Many axons are insulated by a sheath of fat known as myelin. The myelin sheath is divided into segments along the axon with regular gaps called nodes of Ranvier. This structure helps to the faster propagation of the action potential by jumping the electrical signal between nodes. Myelin insulates the axon, which boosts the conduction speed along axons by a factor of about 5.5 and prevents the electric current from leaving the axon [Waxman and[START_REF] Sg Waxman | Relative conduction velocities of small myelinated and nonmyelinated fibres in the central nervous system[END_REF]. The myelin sheath consists of 80% lipids and 20% proteins and wraps around the axon in layers about 10nm thick.

FIGURE 2 . 2 :

 22 FIGURE 2.2: Structure of a common vertebrate nervous system neuron. The cell body is composed by a nucleus containing the genetic information and dendrites, the short branches that out in tree-like fashion. They are in charge of receiving the incoming electrical signals, called action potentials from other nerve cells. On the other hand, the axon, a long and tubular structure arising from the cell body, is in charge of the signal transmition between neurons. Many axons are insulated by a sheath of fatty myelin irregularly interrupted at gaps called nodes of Ranvier. This structure helps to the faster propagation of the action potential by jumping the electrical signal between the nodes (Image adapted from Kandel and Schwartz [2013])

Figure 2 .

 2 Figure 2.3a shows the three main regions of the brain: the forebrain, the midbrain and the hindbrain.

FIGURE 2 . 3 :

 23 FIGURE 2.3: Human brain can be divided into three regions: the forebrain, the midbrain and the hindbrain. The forebrain is composed by the diencephalon (thalamus and hypothalamus) and the cerebrum (cerebral hemispheres and cortex lobes, basal ganglia, hippocampus and the amygdalois nuclei. The midbrain is composed by the structures of the brain stem: the pons, the medulla oblongata and the midbrain structure. The hindbrain is composed by the same parts of the brain stem and the cerebellum (Image adapted from Kandel and Schwartz [2013])

FIGURE 2 . 4 :

 24 FIGURE 2.4: Cortex of a macaque monkey brain. The white regions constitute the WM where axons run from one brain region to one or more other regions. The grey regions correspond to the cerebral cortex composed by GM (Image adapted from Kandel and Schwartz [2013])

(A)

  Lateral view, left side (B) Medial view, right side

FIGURE 2 . 5 :

 25 FIGURE 2.5: Major brain lobes and some prominent sulci of the cortex (Images adapted from Kandel and Schwartz [2013]

FIGURE 2 . 6 :

 26 FIGURE 2.6: The internal brain lobes. Figure2.6a presents a lateral view of the insula lobe in blue exposed by removal of the frontal, parietal and temporal operculum (the overhanging portion of the cerebral cortex that buries the insula). Figure2.6b shows a medial view of the four external brain lobes and also the cingulate cortex in orange colour (Images adapted from[START_REF] Beaujoin | Post mortem inference of the human brain microstructure using ultra-high field magnetic resonance imaging with strong gradients[END_REF])
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 2 FIGURE 2.6: The internal brain lobes. Figure2.6a presents a lateral view of the insula lobe in blue exposed by removal of the frontal, parietal and temporal operculum (the overhanging portion of the cerebral cortex that buries the insula). Figure2.6b shows a medial view of the four external brain lobes and also the cingulate cortex in orange colour (Images adapted from[START_REF] Beaujoin | Post mortem inference of the human brain microstructure using ultra-high field magnetic resonance imaging with strong gradients[END_REF])
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 27 FIGURE 2.7: Schematic visualization of major functional areas of the human brain. Dashed areas are commonly left hemisphere dominant. Four colors identify the four external lobes: occipital (green), temporal (beige), parietal (blue), and frontal (pink) (Images taken from Blausen [2014])
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 28 FIGURE 2.8: Human cortical development (Image adapted from Van Essen [2019], http: // brainvis. wustl. edu/ wiki/ index. php/ Main_ Page )

FIGURE 2 . 9 :

 29 FIGURE 2.9: Three different human brains to picture the sulcal variability. They can be compared according to many criterions: size, shape, branches, orientation or topology of sulcal components (Images adapted from Perrot et al. [2011])
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 210 FIGURE 2.10: Left hemisphere of the brain with its prominent sulci, gyrus and lobes by Henry Gray.Figure 2.10a presents a lateral view of the left cerebral hemisphere.Figure 2.10b shows a medial view of the left cerebral hemisphere (Images adapted from Gray and Carter [1918])
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 2211 FIGURE 2.10: Left hemisphere of the brain with its prominent sulci, gyrus and lobes by Henry Gray.Figure 2.10a presents a lateral view of the left cerebral hemisphere.Figure 2.10b shows a medial view of the left cerebral hemisphere (Images adapted from Gray and Carter [1918])
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 212 FIGURE 2.12: Template of human sulci labels by Perrot et al. [2011]. This template is used to automatically identify approximately 125 sulci of the human brains. It was made from manual labelling by experts and considers only the most reliable sulcal roots. The nomenclature is given by the sulcal root theory [Régis et al., 2005] and can be found in the appendix B.1.2.Figure 2.12a) shows the lateral view and figure 2.12b the medial view (Images adapted from Perrot et al. [2011])
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 2 FIGURE 2.12: Template of human sulci labels by Perrot et al. [2011]. This template is used to automatically identify approximately 125 sulci of the human brains. It was made from manual labelling by experts and considers only the most reliable sulcal roots. The nomenclature is given by the sulcal root theory [Régis et al., 2005] and can be found in the appendix B.1.2.Figure 2.12a) shows the lateral view and figure 2.12b the medial view (Images adapted from Perrot et al. [2011])

FIGURE 2 .

 2 FIGURE 2.13: Atlas of Desikan brain parcellations. Figure shows Pial (left) and inflated (right) cortical representations of the regions of interest in one hemisphere. The top row illustrates the lateral view of the hemisphere while the bottom row shows the medial view of the hemisphere (Images adapted from Desikan et al. [2006])
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 2 FIGURE 2.15: Pyramidal Tracts. The CorticoSpinal Tract (CST) is originated from motor and premotor areas and finally descend into the spinal cord and synapse a lower motor neuron. In the most inferior part of the medulla, 80% of the CST fibers decussate (cross over to the other side of the CNS). Pyramidal tracts carry motor fibers responsible for voluntary movements (Image adapted from Gray and Carter [1918])
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  Thalamic radiations Dissection (B) Thalamic radiations Scheme (C) Internal capsule and corona radiata (D) Fornix (E) Cerebellar tracts
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 216 FIGURE 2.16: Projection tracts. Thalamic radiations have a fan shape as shown in the dissection of figure 2.16a and are usually grouped into four peduncles: anterior (frontal), superior (parietal), inferior (temporal) and posterior (occipital) as illustrated in figure 2.16b.Figure2.16c shows the internal capsule and the corona radiata that contains ascending and descending fibers connecting the cortex with the thalamus and also the CST. Figure2.16d shows the fornix and figure2.16e shows the cerebellar tracts. 2.16d and 2.16e were obtained with a deterministic tractography technique (Image 2.16a taken from http: // brainmind. com/ BrainAtlas2. html , image 2.16b taken from https: // www. memorangapp. com/ flashcards/ 85144/ Forebrain/ and figures 2.16c, 2.16d and 2.16e were adapted from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 

Figure 2 .

 2 FIGURE 2.16: Projection tracts. Thalamic radiations have a fan shape as shown in the dissection of figure 2.16a and are usually grouped into four peduncles: anterior (frontal), superior (parietal), inferior (temporal) and posterior (occipital) as illustrated in figure 2.16b.Figure2.16c shows the internal capsule and the corona radiata that contains ascending and descending fibers connecting the cortex with the thalamus and also the CST. Figure2.16d shows the fornix and figure2.16e shows the cerebellar tracts. 2.16d and 2.16e were obtained with a deterministic tractography technique (Image 2.16a taken from http: // brainmind. com/ BrainAtlas2. html , image 2.16b taken from https: // www. memorangapp. com/ flashcards/ 85144/ Forebrain/ and figures 2.16c, 2.16d and 2.16e were adapted from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 

  Cerebellar tracts : This structure, shown in figure 2.16e, is involved in motor learning, cognition, emotions and behavior. It receives inputs from the controlateral cerebral hemisphere through the middle cerebellar peduncle and from the spino-cerebellar tract through the inferior cerebellar peduncle. The major cerebellar output is represented by the superior cerebellar peduncle. (A) Corpus callosum and anterior and posterior commissures (B) Corpus callosum (C) Anterior commissure
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 217 FIGURE 2.17: Commissural fibers view from internal face of the right hemisphere. Figure2.17a shows the anterior commisure, posterior commissure and the parts of the corpus callosum are identified (Rostrum, Genu, Body and Splenium). Figure2.17b shows the corpus callosum obtained with a deterministic tractography technique. Figure2.17c shows the anterior commissure obtained with a deterministic tractography technique. (Image 2.17a taken from[START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF] and image 2.17b) and 2.17c were taken from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 
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 2 FIGURE 2.17: Commissural fibers view from internal face of the right hemisphere. Figure2.17a shows the anterior commisure, posterior commissure and the parts of the corpus callosum are identified (Rostrum, Genu, Body and Splenium). Figure2.17b shows the corpus callosum obtained with a deterministic tractography technique. Figure2.17c shows the anterior commissure obtained with a deterministic tractography technique. (Image 2.17a taken from[START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF] and image 2.17b) and 2.17c were taken from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 
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 2 FIGURE 2.17: Commissural fibers view from internal face of the right hemisphere. Figure2.17a shows the anterior commisure, posterior commissure and the parts of the corpus callosum are identified (Rostrum, Genu, Body and Splenium). Figure2.17b shows the corpus callosum obtained with a deterministic tractography technique. Figure2.17c shows the anterior commissure obtained with a deterministic tractography technique. (Image 2.17a taken from[START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF] and image 2.17b) and 2.17c were taken from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 
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 2 FIGURE 2.17: Commissural fibers view from internal face of the right hemisphere. Figure2.17a shows the anterior commisure, posterior commissure and the parts of the corpus callosum are identified (Rostrum, Genu, Body and Splenium). Figure2.17b shows the corpus callosum obtained with a deterministic tractography technique. Figure2.17c shows the anterior commissure obtained with a deterministic tractography technique. (Image 2.17a taken from[START_REF] Guevara | Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging[END_REF] and image 2.17b) and 2.17c were taken from[START_REF] Catani | A diffusion tensor imaging tractography atlas for virtual in vivo dissections[END_REF] 

•

  Inferior longitudinal fasciculus (ILF) : Connects the temporal and occipital lobes and is also known as Occipito-temporal fasciculus. It contains long and short fibers where long are medial to the short fibers and connect visual areas to the amygdala and hippocampus. This tract is involved in face recognition, visual perception, reading, visual memory and other functions related to language [Catani and Mesulam, 2008] (see figure 2.19c).

FIGURE 2 . 18 :

 218 FIGURE 2.18: Association tracts schematic classification by Gray and Carter [1918]. Association fibers are arbitrarly divided into two types: long and short association bundles. The longer has been widely studied and in the image correspond to the superior longitudinal fascicle, uncinate, cingulum and inferior longitudinal fascicle. The shortest are still not well-known but one of their main characteristics is that some of them are superficially located surrounding the convolutions of the brain cortex. (Image taken from Gray and Carter [1918])

FIGURE 2 . 19 :

 219 FIGURE 2.19: Long-association tracts. Main white matter fiber tracts described in the literature. The bundles Uncinate, Arcuate, Cingulum, Inferior longitudinal fasciculus and Inferior fronto-occipital fasciculus shown were obtained with a deterministic tractography technique. (Images were adapted from [Catani and de Schotten, 2008])

FIGURE 2 .

 2 FIGURE 2.20: U-fibers described by Meynert [1886]. Abbreviations: As.: Association bundles (also U-shaped bundles), P: Projection bundles, L: Nucleus lenticularis covered by a thin stratum of the capsula externa, A: Amygdala, Ca: Commissura anterior with its occipito-temporal radiating fibers and T 2 , T 3 : Second and third temporal convolutions. (Image taken from Meynert [1886])

( a ) 2 . 3 .

 a23 Forceps corporis callosi (1-10), (b) a. pars magna superior (1), (c) b. pars parva inferior (4) Layer of the projection fibers: Stratum sagittale internum (11-14) Layer of the long association fibers: Stratum sagittale externum (15)

FIGURE 2 . 22 :

 222 FIGURE 2.22: Frontal white matter atlas by Jakob. Association pathways in the frontal lobe. Abbreviations: A:Rolandic center of crus, a:U-fibers of superior frontal gyrus (I), B:brachial center, b:U-fibers of middle frontal gyrus (II), C facio-lingual center, c:U-fibers of inferior frontal gyrus (III), u:uncinate fasciculus, d:superior longitudinal fasciculus. (Image taken from Théodoridou and Triarhou [2012])
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 223 FIGURE 2.23: Dissection of the calcarine fissure, showing the Sledge Runner(*) bundle described by Vergani et al. [2014b] running from the cuneus (1) to the antero-superior portion of the lingula (2). Red pins indicate the cortical termination of the tract. U-shaped fibers laying in the depth of the sulcus and connecting the upper and lower edges of the calcarine fissure are also demonstrated (green pins). These fibers correspond to the stratum calcarinum of Sachs. Small pieces of purple paper have been inserted to show the complete dissection and continuity of them. (Image taken from Vergani et al. [2014b])

  sledge runner [Koutsarnakis et al., 2019] (See figure 2.23). The desire to understand the organization of the human brain WM has led to the study of other mammal's brains, mainly monkeys by the means of axonal tracing studies [Oishi et al., 2011, Schmahmann and Pandya, 2006, Yeterian et al., 2012]. In 2006, Schmahmann and Pandya [2006] realized a complete study by the means of dissection techniques on Rhesus monkey describing the organization of the white matter near to the gyrus. As Sachs described in his studies, he identified layers into the white matter organization. The figure 2.24 shows a diagram in coronal view of this fiber organization: layer 1 corresponds to the association fibers, layer 2 corresponds to the striatal fibers and layer 3 corresponds to the confluence of the commissural and subcortical fibers. Short association fibers hug the undersurface of the gyrus and link adjacent gyri. Neighborhood association fibers link nearby regions, usually within the same lobe while the long association travel deeper in the white matter of the hemisphere. Both, neighborhood and long fibers begin within the central part of the white matter of the core of the gyrus, accompanied in the initial stages by the striatal fibers. Subcortically directed fibers together with the commissural fibers are arranged initially in a cord formation and travel centripetally in the central part of the white matter of the gyrus.

FIGURE 2 . 24 :

 224 FIGURE 2.24: Association fiber bundles organization scheme on Rhesus monkey by Schmahmann. In this coronal diagram, the long association fibers are seen end-on as the stippled area within the white matter of the gyrus while the opposite extremities travel deeper in the white matter of the hemisphere. Short association fibers link adjacent gyri. Neighborhood association fibers link nearby regions, usually within the same lobe. Striatal fibers are mixed up with the association fibers at the begining, and then are identifiable as distinct fiber tracts. Cord fibers segregate into commissural fibers and the subcortical bundle, which further divides into fibers destined for thalamus, and those to brainstem and spinal cord in the pontine bundle (Image taken from Schmahmann and Pandya [2006])
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 225226 FIGURE 2.25: Parietal U-fiber bundles by Conturo et al. [1999]. Connected adjacent gyri had tightly curved trajectories consistent with U-fibers (red and magenta tracks) tracks that traversed more distant gyri had a more complex trajectory (green tracks). Tracks also entered deep cortical white matter (blue tracks), immediately lateral to the corona radiata, compatible with long association tracks described in gross dissections and animal tracer studies. (Image taken from Conturo et al. [1999])

3 .

 3 Central short association fibers: Connect the regions between the gyrus pre (PrCG)-and postcentral (PoCG). 4. Parietal short association fibers: Connect the regions between the gyrus superior parietal (SPG) and the parieto-temporal region (angular gyrus (AG), supramarginal gyrus (SMG), superior-temporal gyrus (STG)). One year later, Gong et al. [2008] also found short-connections with U-shape in his work about the construction of an anatomical connectivity network in human cerebral cortex. They used 80 healthy subjects and parcellated the entire cerebral cortex into multiple cortical regions, identifying 4 short connections (IFGoperc-PreCG, STG-ITG, ORBmid-MFG and SMG-MTG) as shown in figure 2.27 but without giving any further information about them.

FIGURE 2 .

 2 FIGURE 2.27: Short-connections found by Gong et al. [2008]. He found 4 common fiber bundles in a population of 80 healthy subjects. (Image taken from Gong et al. [2008])

FIGURE 2 .

 2 FIGURE 2.28: Short-association fibers found by Zhang et al. [2010]. Image 2.28a shows the tractography reconstruction and probabilistic maps of the same 4 bundles found by Oishi et al. [2008] (see image 2.26). They are: a) Superior Frontal -Inferior Frontal gyrus (SFG-IFG) (frontal short association fibers), b) Medial Frontal -Precentral Gyrus (MFG-PrCG) (fronto-central short association fibers), c) Precentral -Postcentral Gyrus (PrCG-PoCG) (central short association fibers) and d) Superior Frontal -Supramarginal Gyrus (SFG-SMG) (parietal short association fibers). Image 2.28b shows the probabilistic maps of other 25 short association fibers identified. The nomenclature can be found in the Appendix A (Image taken from Zhang et al. [2010])
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 22912 FIGURE 2.29: Short association bundle atlas of Guevara et al. [2011b]. Composed by 47 bundles per hemisphere inferred from a database of 12 brains. A fiber length limit was established, considering as short only the fibers between 35 and 110mm. Bundle names were assigned in function of the cortical regions that the bundles connect, following the nomenclature detailed in the Appendix A, section A.1.3.1. (Image adapted from Guevara et al. [2011b]

FIGURE 2 .

 2 FIGURE 2.30: Short frontal lobe connections of the human brain by Catani et al. [2012b]. Image 2.30a shows the short fronto-parietal U-tracts (FPUT) of the Central sulcus, connecting pre-central and post-central gyri. Image 2.30c shows the reconstruction of the frontal aslant tract (FAT) (yellow) that connects the dorsal and medial cortex of the superior frontal gyrus with the posterior region of inferior frontal gyrus. Red U-shaped tracts connect the superior and middle frontal gyri and the inferior and middle frontal gyri. Blue projection fibers connect the cortical premotor regions with the head of the caudate nucleus.Image 2.30d shows the fronto-orbitopolar (FOP) tract (yellow) connects posterior (pOFG) and anterior (aOFG) orbitofrontal gyri and inferior polar cortex. The fronto-marginal tract (FMT) (red) connects medial and lateral regions of the frontal pole. Image 2.30b shows the frontoinsular tracts (FIT). The insula is divided into anterior and posterior part by the central sulcus of the insula which is indicated by the dash white line. U-shaped fibers organised around the peri-insular sulcus connecting the inferior frontal and PrCG to the Insula. Anterior to this tract is a group of four Utracts connecting the PrCG (yellow tract) and the pars opercularis (red tract), pars triangularis (light blue tract) and pars orbitalis (dark blue tract) of the IFG to the insular gyri anterior to the central sulcus of the insula. Image 2.30e shows the frontal superior longitudinal system composed of a frontal superior longitudinal (FSL) (cyan) and a frontal inferior longitudinal (FIL) (purple) tract. These tracts are composed of short and long connections running along the superior and inferior frontal sulci and projecting mainly to the middle frontal gyrus. (Images were adapted from Catani et al. [2012b])

(

  A) U-fibers of precentral sulcus (B) FAT (C) U-fibers of cingulate sulcus (D) SMA callosal fibers (E) Medial fibers
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 231 FIGURE 2.31: Short frontal lobe connections of the human brain by Vergani et al. [2014a] (righthemisphere). The connections found are: PrCG with the SMA region (similar to FPUTs)(figure 2.31a), SMA with CG (figure 2.31b), FAT (igure 2.31c), medial fibers connecting the SMA with the striatum (figure 2.31d) and SMA callosal fibers (figure 2.31e). (Images were adapted from Vergani et al. [2014a])
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 2 FIGURE 2.32: Short association bundle shapes common for macaque, chimpanzee and human by Zhang et al. [2014]. Comparison of cluster centers obtained by separately on human DTI dataset, chimpanzee DTI dataset and macaque DTI dataset. (Image adapted from Zhang et al. [2014]
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 2234 FIGURE 2.33: Short bundles of the Central sulcus by Pron et al. [2020]. The 5 bundles are shown in 3 randomly selected hemispheres: 1st in red, 2nd in blue, 3rd in yellow, 4th in green and 5th in purple (Image adapted from Pron et al. [2020])

FIGURE 2 .

 2 FIGURE 2.35: SWM diffusion-based bundle atlas (LNAO-SWM79f) of Guevara et al. [2017]. Composed by 34 bundles for the left hemisphere, 29 for the right hemisphere and 20 bundles in common. Image adapted from Guevara et al. [2017]
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 236 FIGURE 2.36: SWM atlas of Román et al. [2017] composed by 48 bundles in the left hemisphere and 43 in the right hemisphere. Image adapted from Román et al. [2017]

FIGURE 2 .

 2 FIGURE 2.37: SWM atlas of Kai and Khan [2019] composed by 125 bundles in total. Image adapted from Kai and Khan [2019]

  association bundles. The reasons to choose those limits remain unclear since none of the authors who have used these limits have explained why or how they have chosen those values Gahm and Shi [2019], Guevara et al. [2017, 2011a], Román et al. [2017].
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 31 FIGURE 3.1: Whole human brain tractogram using a multi-compartment model and high-resolution data from the Human Connectome Project (image taken from Jeurissen et al. [2019])

  .2[START_REF] Shinohara | Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum[END_REF]. This corresponds to the polarization stage. Then, a second rotating magnetic field produced by the RF coil (RF pulse) is superimposed for a short time with B0 leading to a precessional movement where the protons start wobbling around their axes, as a spinning top (figures 3.2 3 and 4), phenomenon known as Larmor precession. The absorption and exchange of energy between two oscillating systems with the same frequency constitute the resonance phenomenon .

FIGURE 3 . 2 :

 32 FIGURE 3.2: Magnetic Resonance Imaging (MRI): Polarization and resonance. 1) Water protons spin around their axes, creating individual magnetic fields with random directions.2) Then, protons align when a vertical magnetic field is applied to the tissue, creating a net magnetic field. 3) A radio frequency pulse applied in a second (horizontal) direction, making the protons precess around their vertical axes. 4) The sum across all of the individual water protons creates a net magnetic field that changes in time and gives rise to an electric current that is ultimately measured in MRI (Image taken from[START_REF] Kandel | Principles of neural science, Fifth Edition[END_REF])

FIGURE 3 . 3 :

 33 FIGURE 3.3: Magnetic Resonance Imaging (MRI): Relaxation. 1) With the protons aligned vertically, a horizontal radio frequency pulse is applied to tip the protons so that they rotate in the horizontal plane synchronously with one another (in-phase). 2) The horizontal pulse is then turned off. 3-5) The rotating protons begin to move out of phase with one another (dephase) relatively quickly and leads to a decrease in the measured current. After withdrawal of the horizontal pulse the protons realign with the vertical magnetic field. This recovery of the vertical magnetization occurs more slowly than the dephasing (Image taken from Kandel and Schwartz [2013])
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 35 FIGURE 3.5: MRI contrast can be obtained by lengthening the T R, which reduces signal preferentially from tissues with a long T 1, or by lengthening T E, which reduces signal preferentially from tissues with a long T 2 (Image taken from Johansen Berg and Behrens [2009])
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 36 FIGURE 3.6: dMRI pulse sequence squeme. Illustration of the effect of a bipolar gradient. Excited spins begin precessing in-phase but with the application of a positive gradient, spins lose phase coherence and the net magnetization decreases in all pixels. A second gradient removes much of the dephasing, but magnetization recovery is incomplete due to diffusion-induced displacement during the bipolar gradient application. Spins in regions with high diffusion (CSF, blue pixel) have greater phase incoherence and signal loss than spins in regions with low diffusion (area of stroke, yellow pixel) (Image taken from Johansen Berg and[START_REF] Johansen | Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy[END_REF])

  S 0 and S D are weighted identically by M 0 , T 1 recovery, and T 2 decay. D only reflects diffusion in one direction thus, if one wants to measure diffusion in N directions and there are N 0 measurements of S 0 taken, the imaging experiment must be repeated N + N 0 times. The most known sequences used for diffusion MRI are the Pulsed Gradient Spin Echo (PGSE), introduced by Stejskal and Tanner [1965] an the Echo Planar Imaging (EPI) sequence introduced by Mansfield [1977]. For detailed information about these sequences you may refer to Johansen Berg and Behrens [2009] Chapter 2: Pulse Sequences for Diffusion-weighted MRI.

  vector. Image 3.7b shows an image of the anisotropy representation where the color and brightness at each location in the image represents the diffusion of a small volume (or voxel) of tissue. Brightness corresponds to the degree of diffusion anisotropy. As WM diffusion is highly anisotropic, this tissue mostly appears bright while gray matter and ventricles are darker (isotropic diffusion). Colors represent the dominant orientation of WM fibers: red indicates that diffusion is greatest in the right-left direction, green indicates diffusion is greatest in the front-back direction, and blue indicates diffusion is greatest in the up-down direction. (A) Difusion tensor ellipsoid representation (B) Difusion Anisotropy Image

FIGURE 3 . 7 :

 37 FIGURE 3.7: Diffusion Tensor Images. Figure3.7a shows the schematic of the diffusion tensor ellipsoid. The ellipsoid is the envelope where a spin will diffuse with equal probability. The axes are scaled according to the square root of the eigenvalues λ 1 , λ 2 and λ 3 and the principal axes are given by the corresponding eigenvectors, ε 1 , ε 2 and ε 3 . Figure3.7b shows the diffusion anisotropy image. The color and brightness at each location in the image represents the diffusion of a small volume (or voxel) of tissue. Brightness corresponds to the degree of diffusion anisotropy while WM mostly appears bright (diffusion is highly anisotropic). Gray matter and ventricles are dark (isotropic diffusion). Colors represent the dominant orientation of white matter fibers: red indicates that diffusion is greatest in the right-left direction, green indicates diffusion is greatest in the front-back direction, and blue indicates diffusion is greatest in the up-down direction. (Image 3.7a was adapted from[START_REF] Johansen | Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy[END_REF]] and image 3.7b was adapted from[START_REF] Kandel | Principles of neural science, Fifth Edition[END_REF] 
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 38 FIGURE 3.8: Orientation distribution function (ODF) computed in high angular resolution diffusion imaging (HARDI) provides for the presence of multiple fiber populations at each voxel (Image taken from http: // www. humanconnectomeproject. org/ gallery/ by Vishal Patel)

  Figure 3.9 compares the aQBI technique with the DTI ellipsoids in the same human brain region with crossing fibers. Supplementary details can be found in Descoteaux [2008], Özarslan et al. [2013].

  (A) Analytical QBI (B) DTI Ellipsoids
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 39 FIGURE 3.9: Comparison between the analytical ODF estimation in the human brain (b = 1000s/mm 2 with isotropic voxels of 3mm) and DTI ellipsoids. Coronal slice in the centrum semiovale, where the intersections between the corpus callosum commisural fibers and the corona radiata and superior longitudinal fasciculus are seen. An order 6 estimation with λ = 0.006 is used (Images taken from Descoteaux et al. [2007])

  figure 3.10, fiber tractography assumes that each imaging voxel is characterized by a single predominant fiber orientation and pieces together these local orientations to infer global fiber trajectories (see figure 3.10). An important consideration to have in mind is that DTI and MR tractography do not demonstrate the origins or terminations of the pathways. First tractography approaches were based on pixel-by-pixel diffusion orientation information obtained from the DTI [Basser et al., 2000, Conturo et al., 1999, Mori et al., 1999, Poupon, 1999].
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 310 FIGURE 3.10: Vector field of local predominant fiber orientations and two of its streamlines depicted in the tractography process. The blue streamline is part of the corticospinal tract and the red one is part of the corpus callosum (Image taken from Jeurissen et al. [2019])

FIGURE 3 .

 3 FIGURE 3.11: Comparison of local fiber orientations and their tractograms. Local fiber orientations are shown at the top and their corresponding tractograms, from part of the corpus callosum, are shown at the bottom. The tractogram at the left was obtained using a low-order model (DTI) while the tractogram at the right used a high-order model (HARDI) for the local fiber orientation estimation.Because DTI is only capable of distinguishing a single fiber population per voxel it often offers a poor representation of the underlying fiber orientations. On the other hand, higher-order fiber modeling methods can estimate the orientations and relative contributions of multiple fiber populations within each voxel and by using the fODF as a propagator, tracking can be performed even in white matter regions with complex fiber architecture. (Image taken from Jeurissen et al.[2019])

  Streamline deterministic algorithms (SDT): These methods are very fast and initialy they were designed to compute the tractogram from DTI data[START_REF] Peter | In vivo fiber tractography using DT-MRI data[END_REF], althought they are not restricted to the tensor model. They are simple to adapt to exploit multiple fibers in each voxel and the basic extension requires only a method to choose which of the multiple directions to follow at each step for this purpose. In general, the reconstructed streamlines are 3D curves presenting a tangent parallel to the main fiber direction in each voxel. At each step of the algorithm, a line is propagated following the orientation having the highest probability according to the given local orientation field.In each voxel, several lines are drawn from different seeds, typically 1, 8 to 27 per voxel. Taking into account the low curvature of fibers, the algorithms generally consider an aperture cone around 30°, forwards or backwards, restricting the propagation domain within this cone. Deterministic algorithms are prone to local errors in the estimate of the fiber directions (caused by noise and partial voluming) and may deviate from the true neural pathway, thus creating plethora of false positives[START_REF] Lazar | An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations[END_REF][START_REF] Maier-Hein | The challenge of mapping the human connectome based on diffusion tractography[END_REF][START_REF] Tournier | Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations[END_REF]. Streamline algorithms can also include a trajectory regularization that can better resolve fibers in regions where there are crossing or fanning fibers. For this purpose, they include more information like the entire tensor information, for DTI case, and the incident streamline direction[Lazar and Alexander, 2003, Weinstein et al., 1999].These methods are less sentitive to noise and low anisotropy values than the classic approaches. As the choice of parameter values could be a major problem, some other approaches use a markovian regularization of the directions field to define the fibers as a trade-off between high diffusion along fibers and low curvature constraints[START_REF] Poupon | Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles[END_REF].Probabilistic streamline algorithms (PST): These methods incorporate a model of the uncertainty of each fiber-orientation estimate in dMR measurements to propagate according to a probability distribution function[START_REF] Behrens | Characterization and propagation of uncertainty in diffusion-weighted mr imaging[END_REF][START_REF] Parker | A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements[END_REF][START_REF] Perrin | Fiber tracking in q-ball fields using regularized particle trajectories[END_REF]. For this, they

  counterparts in the second image[START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF][START_REF] W R Crum | Non-rigid image registration: theory and practice[END_REF]. The second category, is done by optimisation based on an image similarity measure that quantifies the degree of similarity between intensity patterns in two images (intensity based registration). Different criterias can be used such as: the minimization of the mean squared difference[START_REF] Friston | Spatial registration and normalization of images[END_REF], the maximization of mutual information (MI)[START_REF] Viola | Alignment by maximization of mutual information[END_REF] or normalized mutual information (NMI)[START_REF] Maes | Multimodality image registration by maximization of mutual information[END_REF][START_REF] Studholme | An overlap invariant entropy measure of 3d medical image alignment[END_REF].

  rigid (global translations and rotations), affine (rigid plus overall scale and shear) and piecewise linear (a set of linear maps). The rigid and affine transformations can be modeled as 4x4 matrices of translation, rotation, scale, and shear. One of the most known and used method of linear normalization (affine) is based on the Talairach atlas[Talairach and Tournoux, 1988, Talairach et al., 1993],

FIGURE 3 .

 3 FIGURE 3.12: Talairach atlas. At the left, the electronic original digitized axial Talairach-Tournoux brain atlas and in the right side, the corresponding electronic fully color-coded atlas image labeled with subcortical structures, gyri, and Brodmann's areas produced by Nowinski and Belov [2003]. The Talairach atlas defines 12 lobes, 55 regions, GM/WM and CSF and 71 Broadmann areas. (Images taken from Nowinski and Belov [2003])

  Hybrid algorithms have also been proposed, combining intensity-based and model based criteria to establish more accurate correspondences in difficult registration problems, for example, using sulcal information to constrain intensity-based brain registration or to combine the cortical surface with a volumetric approach [Crum et al., 2004]. The transformation model defines how one image can be deformed to match another. Other more recent and widely used templates are the Montreal Neurological Institute (MNI). A first atlas, called MNI305, was created based on averaging several normal MRI brain images, registered to the Talairach space [Mazziotta et al., 1995]. Catani and de Schotten [2008] and Vergani et al. [2014a] used this template to register brains in their short-range WM studies. However, MNI template is suboptimal for processing brain images of pediatric populations due to the variation from the adult brain. This particular problem led to the developement of a second atlas called ICBM152 [Mazziotta, 2001], with higher spatial resolution. It was obtained as the average of 152 individual (between 18.5 and 43.5 years old) anatomical images.

  as recommended by Lebenberg et al. [2018]. They demonstrated that performance of DARTEL improves when it is initialized with the DISCO [Auzias et al., 2011] registration. Below, a brief description of both methods: DISCO [Auzias et al., 2011]: It consists of three main steps: first, for each subject, the extraction of sulcal imprints (top and bottom lines of each sulcus) targeted as alignment constraint, is performed.The resulting sulcal edges are then represented as mathematical measures consisting of weighted sums of Dirac distributions. A sulcus present in all subjects will contain more points and thus bear more weight in the template measure than a sulcus that exists only in a few individuals. In the second step, the registration of each individual sulcal imprint from its native space onto the empirical template using smooth invertible deformations (LDDMM[START_REF] Glaunes | Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching[END_REF]), is performed. The similarity index between corresponding sulci is non-parametric and consists in matching distributions of measures representing the sulcal landmarks at multiple scales. The deformations applied on the measures are defined as mass transportation problems preserving the imprint topologies. Finally, the deformed imprints are aggregated into an updated empirical template used to iterate step 2 and 3 until convergence. The registration is considered optimized when the distance between two consecutive (A) Talairach alignement (B) DISCO alignement (C) Talairach alignement (D) DISCO alignement
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 3 FIGURE 3.13: Comparison between Talairach and DISCO inter-subject alignment of sulci. Image adapted from[START_REF] Lebenberg | A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem[END_REF] 

  The main limitations of all those approaches are[START_REF] Hu | Joint analysis of fiber shape and cortical folding patterns[END_REF]] 1) the dependence on an expert for the identification and delineation of the ROIs pathways, where a specific protocol must be followed for the extraction of every tract 2) taking into account this first limitation, if a large number of tracts identification in multiple-subject brain data is necessary, the task can become an extremely hard-labor and 3) the ROIs are usually confined in a 2D plane in one of the three orthogonal viewing angles. Consequently some important tracts, such as the corpus callosum and thalamic radiation are difficult to define. But one of the most important limitation is related to our work: the smaller association (cortico-cortical) tracts are difficult to define by this type of approach due to the complex shape of the cortex. Other approaches use whole brain WM/GM parcellations to extract WM tracts. Based on Conturo et al. [1999] and Huang et al. [2004], Oishi et al. [2008] used a two-ROIs approach with DTI to reconstruct tracts of interest and, for the first time, found 4 short-tracts previously described in the literature. They manually parcellated the cortex and the SWM into nine major structures called blades, which were further sub-parcellated into 23 regions based on the relationships with 24 cerebral cortical areas and the cerebellum. The blades were used as ROIs for tractography selections. The developement of automated ROI-based and atlas-based approaches has become massive in the latest years. The automated atlas-based approach for the reconstruction of WM tracts of Zhang et al. [2010] is highlighted. Authors used as base the tracts obtained in their previous work with DTI[START_REF] Wakana | Reproducibility of quantitative tractography methods applied to cerebral white matter[END_REF] and also the single-subject DTI atlas of[START_REF] Oishi | Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and alzheimer's disease participants[END_REF] with 130 3D anatomical segmentations. This atlas was warped non-linearly to individual DTI data using the LDDMM technique[START_REF] Ceritoglu | Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging[END_REF] and then, a GM/WM parcellation map was transferred from the atlas to the data, to perform the automated segmentation into 130 brain regions. Wholebrain tractography was obtained for each subject in the subject data space and the tract coordinates

  The improvements on machine learning and deep learning techniques have allowed the return in the latest years of the methods for the WM segmentation non-tractography-based. Neher et al.[2015] developed a model-free approach to track fiber pathways based on a random forest classification and voting process, guiding each step of the streamline progression by directly processing raw signal intensities with machine learning methods. Closer to our research, Gahm and Shi[2019] proposed an innovative method to extract, in particular U-shaped fibers without the tractography reconstruction. This technique uses multi-shell diffusion MRI to reconstruct the fiber orientation distributions (FODs) with compartment models[START_REF] Tran | Fiber orientation and compartment parameter estimation from multishell diffusion imaging[END_REF]] on cortical surfaces. An interesting feature is that this method can start from sulcal seed regions and establish U-fiber connections between neighboring gyri as guided by the surface projection of FODs and can handle the blended U-fibers. They prove the efficacity of their method with the most known short connections from the precentral and postcentral gyrus.

ClusteringFIGURE 4 . 1 :

 41 FIGURE 4.1: Schematic representation of clustering. (Image adapted from Sugis [2019])

  Several clustering techniques can be found in the literature[START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF] but they usually belong to one of the following types [Halkidi et al., 2001]: connectivity-based clustering (hierarchical clustering), density-based clustering (DBSCAN), centroid-based clustering (K-means) and distribution-based clustering (the mixture of Gaussian approach). Let's quickly look at these types of clustering algorithms.

  recursively as one moves down the hierarchy. This hierarchy is represented usually as a tree or dendrogram as shown in the image 4.2b. Agglomerative procedures are probably the most widely used of the hierarchical methods. An important concept to consider in the agglommerative approach is the linkage, which refers to the measure of closeness between clusters. The function used to determine the distance between two clusters is known as the linkage function. There are a variety of possible linkages and the most well-known are summarized in the table 4.1 and the figure 4.3.(A) Hierarchical clustering process (B) Dendrogram
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 2 FIGURE 4.2: Hierarchical clustering scheme.Figure 4.2a shows an schematic representation of the nested clusters in the contruction of hierarchies process.Figure 4.2b shows a dendrogram used to represent the clustering results. (Images adapted from Sugis [2019])

  FIGURE 4.2: Hierarchical clustering scheme.Figure 4.2a shows an schematic representation of the nested clusters in the contruction of hierarchies process.Figure 4.2b shows a dendrogram used to represent the clustering results. (Images adapted from Sugis [2019])
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 3 FIGURE 4.3: Linkage methods used in agglomerative hierarchical clustering. Figure shows an schematic representation of three inter-cluster distance measures: single, complete and average, that use a proximity matrix as input (Images adapted from Everitt et al. [2011])

FIGURE 4. 4 :

 4 FIGURE 4.4: Schematic representation of centroid-based clustering. This kind of algorithms computes a centroid that represent each cluster (image adapted from Google Developers [2019])

  FIGURE 4.5: Schematic representation of distribution-based clustering method. In this kind of algorithms, the probability that a point belongs to the distribution, represented with the bands, decreases as the distance from the distribution's center increases(image adapted from Google Developers [2019])
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 6 FIGURE 4.6: Schematic representation of density-based clustering. These approaches detects areas with high density and cluster them, represented as points in blue and yellow, leaving the outliers out of the clusters, represented with sparse grey points (image adapted from Google Developers [2019])

  al., 2010]. Despite this, several indices have been proposed to solve this question and they can be divided into two groups: external evaluation indicators and internal evaluation indicators. The external evaluation uses some external data to test the validity of the results, for example, the clustering results are compared to an existing ground truth classification or a manual evaluation by a human expert. However, it turns out recently that the external evaluation is not completely correct [Färber et al., 2010]. On the other hand, in the internal evaluation the clustering is summarized to a single quality score or indicators, also known as internal quality indices. It uses the internal data to test the validity of the results. However, the value of this kind of indices is not an absolute indicator of which algorithm is better so they should be used with moderation [Estivill-Castro, 2002]. Three commonly used internal indicators are detailed below: 4.1.5.1 Dunn's index This is one of the most known and cited indices and it was proposed by Dunn [1974]. The objective of Dunn's index (DI k ) is to maximize the inter-cluster distance while minimizing the intra-cluster distance, identifying clusters well separated and compact. It is mostly recommended for the data that has even density and distribution. This index is defined by equations 4.1, 4.2 and 4.3. As large Dunn's index is, more compact and well separated clusters are. A maximum Dunn at k clusters may indicate also the most probably number of clusters that can be extracted from the dataset.DI k = min i=1,...,k min j=1+1,...,k diss(c i , c j ) max m=1,...,k (diam(c m )), number of clusters.diss(c i , c j ): dissimilarity between clusters c i and c j defined by equation 4.2.diam(C): diameter of the cluster C defined by equation 4.3.4.1.5.2 Silhouette coefficientThe silhouette index (Sil k ) was proposed by[START_REF] Kaufman | Finding Groups in Data: An Introduction to Cluster Analysis[END_REF] and evaluates the clustering results based on the average distance between a data point and other data points in the same cluster and average distance among different clusters. It is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). This coefficient is defined by equation 4.4. The partition k with the highest Sil may be considered as optimal.

  of the most common and used similarity measures, in general, is the Euclidean distance. This metric has been used in all kinds of problems and also constitute the basis of many other specific-problem defined similarity measures proposed in the literature[START_REF] Brun | Coloring of dt-mri fiber traces using laplacian eigenmaps[END_REF], Guevara et al., 2012[START_REF] Maddah | A unified framework for clustering and quantitative analysis of white matter fiber tracts[END_REF].Choosing a similarity measure is not a trivial task[START_REF] Brun | Clustering fiber traces using normalized cuts. In Medical image computing and computer-assisted intervention : MICCAI[END_REF][START_REF] Ding | Classification and quantification of neuronal fiber pathways using diffusion tensor mri[END_REF]. As the number of trajectories is usually very large, especially when tractography is performed on the whole brain, the similarity measure plays an essential role and can make a big difference between a method computationally efficient and other impossible to achieve. Also, most of the metrics proposed in the literature are focused in the comparison of long trajectories and are based on the assumption that a bundle of trajectories begins near to each other, follows similar paths and terminates near to each other[Guevara et al., 2011a]. However, these criteria might be insufficient, since two fibers with different shapes can be grouped into a bundle if they start and end at the same region[START_REF] Mai | A similarity model and segmentation algorithm for white matter fiber tracts[END_REF] including spurious and noisy fibers from tractogram.[START_REF] Corouge | Towards a shape model of white matter fiber bundles using diffusion tensor mri[END_REF],[START_REF] Gerig | Analysis of brain white matter via fiber tract modeling[END_REF] proposed the use of three pairwise distances between adjacent trajectories to group a set of curves into bundles and rejecting the outliers. These metrics are: 1) the closest point distance (encodes only very coarse information about fiber similarity and closeness), 2) the mean closest point distance (provides a global similarity measure integrated along the whole curve) and 3) the Hausdorff distance[START_REF] Hausdorff | Grundzüge der Mengenlehre[END_REF], a worst-case distance (the more stringent of them) useful to reject outliers and prevents the algorithm from clustering curves with high dissimilarity. Those metrics were used to construct the intra-subject clustering of Guevara et al.[2011a] and also by[START_REF] Lin | importance sampling' in ms: Use of diffusion tensor tractography to quantify pathology related to specific impairment[END_REF]. The mean closest point distance, in particular has been used in several approaches[START_REF] Ding | Classification and quantification of neuronal fiber pathways using diffusion tensor mri[END_REF][START_REF] O'donnell | Automatic tractography segmentation using a high-dimensional white matter atlas[END_REF][START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF], being found to be the most effective in a small study where the ground truth clusters were known[Moberts et al., 2005]. Works of Corouge et al. [2006], Leemans et al. [2006] quantify fiber similarity with different variations of shape statistics but they do not take into account the partial overlapping of fibers as a similarity feature [Wassermann et al., 2010]. Maddah et al. [2007] proposed another interesting measure based on an Euclidean distance map in conjunction with the Mahalanobis distance [Mahalanobis,
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 7 FIGURE 4.7: Fiber envelope concept Mai et al. [2012]. By distance-based techniques, both B and C are similar to A. By envelope-based techniques, C is more similar to A than to B (Image adapted from Mai et al. [2012])

  amount of works have been proposed, exploring different clustering techniques in conjunction withdifferent similarity measures or models to define possible clusters. The most used techniques are based on hierarchical clustering due to their easy implementation and relatively fast execution, but also the modeling with distribution-based methods, that are more robust to noise and outliers, providing better results but with a huge computational cost that prevent their massive use.For the long trajectories most of the methods provide good results comparing with post-mortem dissections and this gives a light of hope regarding what can happen with the shorter fibers. The behaviour exploration of different clustering methods and similarity measures with respect to those fibers is essential to elucidate the enigma. Some clustering works have been developed during the recent years extracting short-association bundles[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF]Guevara et al. [ , 2011b]],[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] 
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 1 FIGURE 5.1: Short fiber bundles atlas from ARCHI database

•

  FIGURE 5.2: Pre-processing pipeline of the MRI images before atlas construction

2 . 2 .

 22 In conjunction with the Morphologist toolbox (see section B.1.1.3), a T1-based propagation brain mask was computed[Guevara et al., 2011a] 

  3, the main tractography techniques were discussed. Streamline deterministic tractography methods (SDT) are very fast and can generate multiple fiber trajectories in each voxel but are prone to local errors in the estimate of the fiber directions, creating false positives [Lazar and Alexander, 2003, Maier-Hein et al., 2017, Tournier et al., 2002]. On the other hand, probabilistic streamline tractography methods (PST), which propagate according to a probability distribution function [Behrens et al., 2003, Parker et al., 2003, Perrin et al., 2005], generate a collection of possible trajectories from each seed point, which allows a better handling of fiber cross-ings[START_REF] Cook | Modelling uncertainty in two fibre-orientation estimates within a voxel[END_REF] Alexander, 2006, Parker et al., 2003]. They are also more robust to noise as they can overcome propagation of error but not completely; they show higher rate of true positives and also of false positives[START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF]. Another important characteristic to take into account is that this technique is much slower than the deterministic methods and requires high computational resources.

  vara et al. [2011a] (see figure 5.3. After this process, each streamline cluster is represented by a unique curve called centroid or centerline. A centerline represents the main cluster geometry and is

FIGURE 5. 3 :

 3 FIGURE 5.3: Intra-subject clustering method proposed by Guevara et al. [2011a]. The method is divided into 5 steps: 1) Hierarchical decomposition (tractography divided into right hemisphere, left hemisphere, inter-hemispheric and cerebellum regional tractography sets), 2) Length-based segmentation (each dataset divided into groups of similar length), 3) Voxel-based clustering (connectivity-based parcellation of WM performed using an average-link hierarchical clustering), 4) Extremity-based clustering (Watershed approach used to detect 3D regions with high tract extremity density) and 5) Fascicle merge (A centerline is computed as a representative for each significant fascicle. Centerlines are clustered using an average-link hierarchical clustering to merge the similar ones) (Image taken from Guevara et al. [2011a])

1 and

 1 shown in figure 5.4. The nomenclature for the used sulci names is provided by Morphologist and can be found in the Appendix B.1.2.
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 54 FIGURE 5.4: Sulci used in DISCO alignment process in the ICBM 152 space. Color nomenclature shown in the Appendix B.1.2

  , 2013] 2 ) to select some clusters for comparison purpose. The centerlines making up the resulting clusters were then also brought from their native spaces to the other two spaces used respectively by the two older methods: the Talairach space[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and DTI-TK space[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF].
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 5 Figure 5.5 shows the comparison between DISCO-DARTEL-MNI, the Talairach affine and the DTI-TK non linear registration methods. Our approach significantly improves the centerline alignment around cortical folding, allowing the visualization of the sulcus groove among a set of centerlines which is not always possible when using the Talairach or DTI-TK alignment. The clusters chosen have different lengths (83mm, 71mm, 54mm and 31mm), showing the efficiency of the alignment not only over the longer but also the shorter ones. Note that this experience was only exploratory, since the definition of the clusters from our alignment introduces a bias in the comparison. Another view of the improvement of the diffeomorphic aligment of the centerlines with respect to the Talairach and DTI-tk methods can be obtained by using the t-Distributed Stochastic Neighbor Embedding (t-SNE) representation, a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization into a low-dimensional space [van der Maaten and Hinton, 2008, Wattenberg et al., 2016]. The Sckit-learn API for Machine Learning in Python was used for this purpose [Buitinck et al., 2013, Pedregosa et al., 2011] 3 . The goal of using t-SNE is to find a faithful representation of the centerlines as points in a lower-dimensional space, here a 2D plane.

  FIGURE 5.8: Maximum distance similarity measure in both directions, with automatic reorientation of the fiber sampling. Figure shows the maximum distance similarity measure proposed by Guevara et al. [2011b] for this purpose. This metric takes the maximum of the Euclidean distances between corresponding points of both directions (d E (A j , B j ) and (d E (A j , B n-j ), with n the number of points of the centerline and 0 < j < N)
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 9 FIGURE 5.9: The figure shows the alignment of two centerlines by the medial point. This alignment is performed to obtain a more precise similarity distance between centerlines and ergo, a better shape comparison
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 510 FIGURE 5.10: Histogram of centroid lengths for left-hemisphere and right-hemisphere in the DISCO-DARTEL MNI space. The skewed pattern observed previously tends to disappear and in a general approximation, the amount of centerlines in each constant length range decreases linearly as the length increases.

A

  The final similarity distance between A and B (Minimum Distance after Alignment, d MDA (A, B)) will correspond to the sum of d MMEA and P factor (cf 5.4). d E (A mid , B mid ) < th p and B : Two different centerlines. d E : Euclidean distance. mid : Middle point position a centerline.th p : Threshold of distance neighborhood, defined by equation 5.2. d MDA (A, B) = d MMEA + P (5.4) where, A and B : Two different centerlines. P : Factor defined by the equation 5.3. d MMEA : Minimum of the Maximum Euclidean distance after Alignment defined by the equation 5.1. Now, to graphically illustrate the differences of performance between the similarity measures previously analyzed and the new one proposed, the same previous technique of visualization was used: the tSNE. As it was done previously to deal with the high amount of fibers in the datasets, we divided them into ranges of lengths only for visualization purposes. The ranges are: centerlines between 10 -20mm, 20 -22mm, 50 -55mm, 70 -80mm and 90 -100mm. The two measures of similarity described above were applied over the datasets in DISCO-DARTEL-MNI space: the minimum of the maximum Euclidean distance (abbreviated as d MME ) proposed by Guevara et al. [2011a] and defined by equation 4.7, and our new measure (d MDA ). The parameters for the t-SNE have been chosen empirically until reaching a stable configuration for each measure, as it was done previously. The th p parameter is expressed in function of the length of the centerlines and for this image the constant p was set to 1.5.

Figure 5 .

 5 Figure 5.11 shows the results of the similarity measure comparison. The clearest differences occur for the smaller ranges of length (10mm -20mm, 20mm -22mm and 50mm -55mm). The tSNE of the new measure of distance proposed d MDA is more clusterized than the well-known d MME distance.

  FIGURE 5.11: t-SNE comparison of the two measures of similarity: the minimum of the maximum Euclidean distance (d MME ), and our new measure d MDA . The centerlines datasets have been split into sub-sets by ranges of length. Images A, B and C correspond to the centerlines between of 10 -20mm. Images D, E and F correspond to the centerlines between of 30-33mm. Images G, H and I correspond to the centerlines between of 70 -80mm. Images J, K and L correspond to the centerlines between of 100 -130mm.

For

  distances of n-nearest neighborsFor each centerline A in the group : each centerline B in the group :-Compute the length of each centerline and store it in the sizes vectord MRA (A 1 ,B 1 ) d MRA (A 1 ,B 2 ) ... … … … … … … d MRA (A 1 ,B N ) 6,3 mm 6,5mm ... … … … … … … 24,5mm d MRA (A M ,B 1 ) d MRA (A M ,B 2 ) ... … … … … … … d MRA (A M ,B N )10,1 mm 10,2mm ... … … … … … … 40,2mm I MRA (A 1 ,B 1 ) I MRA (A 1 ,B 2 ) ... … … … … … … I MRA (A 1 ,B N ) Index:2060 Index:64 ... … … … … … … index:450 I MRA (A M ,B 1 ) I MRA (A M ,B 2 ) ... … … … … … … I MRA (A M ,B N ) Index: 268 Index:1340 ... … … … … … … index:5

FIGURE 5 . 13 :

 513 FIGURE 5.13: The figure shows the process to obtain the N-nearest neighbors data structure of NxM elements, where N corresponds to the closest neighbors of the centerlines and M to the amount of them in the dataset. Two matrices are obtained: one of them stores the distances while the other stores the indexes of position of the element asociated to that distance. The nearest neighbors are stored in the matrices in increasing order of d MDA distance.

d

  MDA : Minimum Distance Aligned, defined by the equation 5.1 i: index of the cluster d C i : the distance of linkage specific of the cluster i α: a constant, with α > 0

For each cluster A in the group 1 :B-FIGURE 5 . 15 :

 1515 FIGURE 5.15: Scheme of cluster comparison process. Two clusters A and B are considered similar if the amount of centerlines of A that are similar to at least 5% centerlines of B is over the 80% of them

  and Silhouette indexes, the normalized arithmetic complement of DB is used. In order to prevent undersegmentation, we added a fourth term aiming at maximizing the number of clusters. Dunn's index for each set of clusters was obtained by the equations 4.1, 4.2 and 4.3. Davies-Bouldin index was obtained following the equations 4.5 and 4.6 and the Silhouette coefficient by the equation 4.4.

(A) Iteration 1 (B) Iteration 3 (C) Iteration 9 FIGURE 5

 1395 FIGURE 5.16: t-SNE evolution (per iteration) of the resulting clusters of the adaptive hierarchical clustering applied on a small area of the PrC region. An amount of 202635 centerlines from 38 subjects was used. At the end of the first iteration, 32 clusters were detected while at the end of the third this amount increases to 36. The process finish in the ninth iteration with 42 clusters.

tables B. 1

 1 and B.2 of the appendix B.1.3.1 summarize the information for each bundle, in the left and right hemispheres respectively. The amount of centerlines per bundle, the mean length, the linkagedistance and the amount of different subjects that compose each bundle are presented. It is also displayed in the table if each bundle has a counterpart in the opposite hemisphere. A detailed view of the atlas can be also found in the appendix B.1.3.2, where the bundles are divided by the regions of interest of the Desikan atlas.

(A)

  FIGURE 5.17: ARCHI atlas of short-range bundles between 20mm and 85mm length

(

  FIGURE 5.18: Bundle shapes of the ARCHI atlas. U-shaped, V-shaped, straight bundles, curved bundles, 6-shaped and open U-shaped bundles were identified

( 1 FIGURE 5 . 19 :

 1519 FIGURE 5.19: V-shaped bundles and the variant bundles with an extremity shorter than the other

FIGURE 5. 20 :

 20 FIGURE 5.20: C-shaped bundles of the right FCM posterior sulci

( 2 FIGURE 5 . 21 :

 2521 FIGURE 5.21: Curved bundles do not have a defined shape. They are long and located deeper in the WM.

(A) 2 (

 2 FIGURE 5.22: ARCHI bundles with a second shape. Images A, B and C show the two versions of bundle rh SM-Ins 1, D, E and F the two versions of rh PoC-PoC 1, G, H and I the two versions of rh PrCu-SF 1 and J, K and L show the two versions of bundle rh ST-ST 1. For each pair, both bundles are in the same position but one of them has one extreme longer than the other. In the case of the bundle rh PrCu-SF 1, one has both extremities slightly shorter than the other

FIGURE 5 . 23 :FIGURE 5 . 24 :

 523524 FIGURE 5.23: Bundles of the ARCHI atlas common to both hemispheres. 105 bundles were found to be common in the left and right hemispheres

(A)

  FIGURE 5.27: Bundle depth distance (dBD) versus length by Desikan region. The graphics of the left and right hemispheres illustrates a tendency, in each region, to increase the distance as the length of the bundles increases

FIGURE 5 . 28 :

 528 FIGURE 5.28: Correlation between both variables in left and right hemispheres for each region with respect to the P-Values. The results shows a strong positive correlation, reaffirming the relationship between bundle length and depth. The correlation values can be found in the table 5.5

(A) 20

 20 FIGURE 5.29: ARCHI atlas divided by range of lengths

The image 5 .

 5 32 illustrates partially the gyral structure observed in the Rhesus monkeys but in the human brain (we mention partially because the analysis only takes into account the short-range fiber bundles while the Schmahmann included all the fibers). In the figure, 7 bundles of an area in the PrG are shown. Bundles rh IP-PrC 1 and rh IP-PrC 2 (yellow and salmon color respectively) are large open U-shaped bundles interconnecting distant regions (inferior parietal with precentral), while the U-shaped bundles rh PoC-PrC 4, rh PoC-PrC 7 and rh PoC-PrC 8 (pink, green oil, and dark green respectively) are surrounding the central sulcus with one of their extremities in the PrG. The U-shaped bundles rh Op-PrC 3 and rh CMF-PrC 2 (blue and light green) surrounds the S.Pe.C.Interand also have an extremity in the PrG. Despite the mixture of centroids, it is possible to visualize that the long fascicles coming from the IP region tend to concentrate at the middle of the gyrus, between the two sulci, while the U-shaped fibers remain attached to them. This observation is also confirmed if we observe the depth of the common extremities going into the PrG (see table 5.7). The extremities of longer bundles have greater depth than the smaller ones, indicating that the mean of the curves are located more central in the gyrus. This intra-gyral organization was also observed into other larger gyri. It would be interesting to validate these results including also bundles connecting other structures as in the Schmahmann's study.

FIGURE 5 . 31 :

 531 FIGURE 5.31: Bundle depth distance (dBD) of the extremities of the bundles versus their lengths by Desikan region. The graphics of the left and right hemispheres illustrates a tendency, in each region, to increase the depth as the length of the bundles increases

FIGURE 6. 1 :

 1 FIGURE 6.1: HCP atlas of short white matter bundles.

6. 1 . 1

 11 The HCP databaseWe used 76 healthy subjects of the HCP database2 ( Essen et al. [2013] (29 ± 7 years old; 41 males, 35 females). Acquisitions were obtained at Washington University in St.Louis using a customized 3.0T Siemens Connectome Skyra Scanner, 32 channel equipped with a standard 32-channel receive head coil and a body transmission coil. The protocol included a spin-echo planar imaging (EPI) sequence (TR = 5520, TE = 89.5, flip angle = 78 • , matrix = 168 × 144, FOV=210 × 180mm, 111 slices, voxel size = 0.7mm 3 ), including 270 diffusion-weighted scans distributed equally over 3 shells of b = 1000, 2000, and 3000s/mm 2 and 18 b = 0 scans per subject.

••FreeSurferFIGURE 6 . 2 :

 62 FIGURE 6.2: Preprocessing pipeline of the MRI images of the HCP database before atlas construction

FIGURE 6 . 3 :

 63 FIGURE 6.3: Histogram of centerlines lengths for left-hemisphere and right-hemisphere of the HCP database. A skewed pattern appears with peaks and local minimas, summarized in the table 5.2 but in a general approximation, the amount of centerlines in each length ranges decreases exponentially as the length increases.

(A) 1 FIGURE 6 . 9 :

 169 FIGURE 6.4: HCP atlas of short-range bundles between 20mm and 85mm length

(A)

  FIGURE 6.13: HCP bundles with a second shape. Images A, B and C show the two versions of bundle lh RAC-RAC 1, D, E and F the two versions of lh PoC-PoC 5, G, H and I the two versions of rh Tr-Ins 1 and J, K and L show the two versions of bundle lh PoC-PrC 3

FIGURE 6. 14 :

 14 FIGURE 6.14: Intra-gyral bundles described by Shinohara et al. [2020]. The inter-gyral U-fibers are indicated by broken lines and the zone occupied by them is colored gray. They pave the sulcal floor and delineate various shapes of sulcal motifs (A-E). The intra-gyral U-fibers are drawn with thin solid lines in the middle temporal ridge (uncolored/white). In some occasions, critical discrimination of intra-gyral U-fibers from inter-gyral U-fibers become difficult; namely, the inter-gyral U-fibers may contain intra-gyral U-fibers to connect different crossing of fibers

(

  FIGURE 6.15: Intra-gyral connections in the MT region. Two bundles running along the MTG were found in both, left and right hemispheres for the ARCHI and HCP atlases. These bundles are composed by U-shaped curves but they do not surround a sulci

FIGURE 6. 17 :

 17 FIGURE 6.17: Intragyral straight/slightly curved connections of the Cuneus. This small bundle was found found in both hemispheres of both atlases and it is extremely close to the FCLp sulcus

  FIGURE 6.19: Intra-gyral U-shaped connection of the inferior frontal gyrus, in the left and right hemispheres for the ARCHI and the right hemisphere for the HCP atlas. In the left hemisphere, another bundle in exactly the same position but with a straight shape was found

FIGURE 6 . 20 :FIGURE 6 . 21 :

 620621 FIGURE 6.20: Bundles of the HCP atlas common to both hemispheres. 213 bundles were found to be common in the left and right hemispheres

FIGURE 6. 22 :

 22 FIGURE 6.22: Bundle depth distance (dBD) versus length by Desikan region. The graphics of the left and right hemispheres illustrate a tendency to increased depth when the length of the bundles increases

(A) 20

 20 FIGURE 6.24: HCP atlas divided by range of lengths

6

  .26 shows the area analised that contains mostly U-shaped bundles sharing one extremity into the PoG (rh PoC-PrC 3 1 in pink, rh PoC-SP 1 1 in light green, rh PoC-SP 3 in salmon, rh PoC-PoC 6 in kaki and rh PoC-PoC 8 in fucshia) and one open U-shaped twisted bundle that connects the PoG with the PrG in orange color (rh PoC-PrC 2)

(A )

 ) FIGURE 6.25: Bundle depth distance (dBD) of the extremities of the bundles versus their lengths by Desikan region. The graphics of the left and right hemispheres illustrates a tendency, in each region, to increase the depth as the length of the bundles increases

  , very few studies have been dedicated to them. The lack of understanding of the large variability of the cortical folding pattern has probably contributed to this situation. But the interest in the cortical folding pattern has been increasing during the last decade, and the interest in the U-fibers is bound to follow the same path. Throughout this thesis, we have contributed to the characterization of the short-range pathways of white matter. We have built two new atlases of the short fibers obtained using the same clustering process but applied to two different databases: The ARCHI database Schmitt et al. [2012], acquired in Neurospin by the team of Cyril Poupon, and the HCP database [Essen et al., 2013], acquired bythe Human Connectome Project. The ARCHI database is a good example of a high quality diffusion MRI dataset acquired with a conventional scanner. The resulting atlas provides an idea of the set of short bundles covering the whole brain reproducible enough to be the basis of a clinical study. The HCP database is an outstanding dataset in terms of spatial resolution, which allowed us to obtain an extended atlas that may be of interest for more advanced neuroscience research.The development of diffusion MRI, described in the third chapter, has been opening a door for the non-invasive and in-vivo studies of the human brain connectivity. The organization and identification of anatomical tracts with dMRI can be performed in many ways, which may not even need tractography. Until recently, most of the analyses were restricted to long and large association pathways, whose definition from tractography is relatively robust to the uncertainty occurring because of fiber crossing areas. The rise of machine learning and deep learning methods is even leading now to new methodologies performing the large bundle segmentation without the need to perform tractography [Gahm and Shi, 2019, Neher et al., 2015]. Methodological progresses in the acquisition schemes and

  the similarity measure used to establish the closeness/similarity between fibers. Several works based on clustering and using different similarity measures have been proposed for long fibers [Guevara et al., 2012, O'Donnell and Westin, 2007, Wassermann et al., 2010, Yeh et al., 2018, Zhang, 2018]. The most used techniques are based on hierarchical clustering because of the algorithmic simplicity and computational efficiency. Some advanced methods rely on the modeling of fiber distributions, to increase robustness to outliers, but they are probably beyond reach for our purpose because of their computational cost. Regarding the clustering of short fibers, most of the past works have used the same metric and similar agglomerative clustering approaches Guevara et al. [2017, 2011b], Román et al. [2017].

  pessimistic vision does not correspond to the actual U-fiber organization. Several recent works have shown that the density of the U-shaped streamlines varies along the sulci. Higher density areas seem to be related to the old anatomical notion of pli de passage, buried gyri observed in the walls of the large sulci on both side of the fold[Mangin et al., 2019]. These plis de passage could include a larger set of U-shaped fibers than elsewhere along the sulcus, which has been shown for the Central Sulcus and the Superior Central Sulcus[START_REF] Bodin | Plis de passage in the superior temporal sulcus: Morphology and local connectivity[END_REF], Pron et al., 2020]. Hence, our assumption would be strongly related with the assumption that the map of the plis de passage is largely reproducible across individuals, which has been shown for instance for the central sulcus[START_REF] Germann | Tight Coupling between Morphological Features of the Central Sulcus and Somatomotor Body Representations: A Combined Anatomical and Functional MRI Study[END_REF].

B. 1 . 2 3 FIGURE B. 1 :

 1231 FIGURE B.1: Sulci nomenclature used by Morphologist pipeline (The image was adapted from Perrot et al. [2011])

FIGURE B. 30 :

 30 FIGURE B.30: Bundles connecting SM intra-region and inter-region from left and right hemispheres.

FIGURE B. 31 :

 31 FIGURE B.31: Bundles connecting TT intra-region and inter-region from left and right hemispheres.

(A)

  FIGURE B.32: Bundles connecting Ins intra-region and inter-region from left and right hemispheres.

FIGURE B. 62 :

 62 FIGURE B.62: Bundles connecting TT intra-region and inter-region from left hemisphere.

(A)

  FIGURE B.63: Bundles connecting Ins intra-region and inter-region from left and right hemispheres.

Titre:

  Inférence d'un atlas des faisceaux en U intégrant la variabilité des plissements corticauxMots clés : IRM de diffusion, atlas de la substance blanche, faisceaux de fibres courtes, connectivité cérébrale Résumé : Les progrès technologiques en imagerie médicale ont permis pour la première fois d'explorer in vivo le cerveau des êtres vivants. Cela a conduit à la création de grands projets et de grandes bases de données pour l'étude du cerveau humain comme le Human Connectome Project (HCP) ou le Human Brain Project (HBP), dont cette thèse est issue. La tractographie par IRM de diffussion (dMRI) a été la première technique pour explorer la substance blanche et les principales connexions du cerveau humain, mais il reste encore beaucoup à faire en ce qui concerne les connexions des fibres courtes. Au cours des dernières années, des atlas de faisceaux courts ont été proposés, identifiant une centaine de faisceaux. Cependant, la principale faiblesse dans le développement de ces atlas est un alignement approximatif entre les sujets qui considèrent soit l'espace standard de Talairach ou une méthode fondée sur le recalage des images du tenseur de diffusion (DTI-tk). Aucune de ces approches ne gère correctement la variabilité des motif du plissement cortical qui est étroitement lié aux connexions courtes entourant les sillons, communément appelées faisceaux en U. Ce travail de thèse propose un nouveau cadre pour la création d'un atlas étendu de faisceaux de fibres entre 20mm et 85mm de longueur à partir de deux bases de données de tractographie massives fondées sur l'IRM de diffusion: la base de données ARCHI et la base de données HCP. 76 sujets de chacune ont été utilisés pour construire deux atlas de connexions courtes en utilisant exactement le même pipeline. Cette méthode utilise une procédure d'alignement inter-sujets difféomorphe en deux étapes qui combine les approches DISCO et DARTEL.Premièrement, DISCO inclut l'information du plissement cortical et force l'appariement précis des sillons majeurs qui doivent être contournés par les faisceaux en U. Ensuite, la méthode DARTEL bien connue est appliquée aux fibres pour affiner l'alignement. Le template MNI 152 est utilisé comme cible de la normalisation spatiale, afin de fournir nos résultats dans un espace commun pour faciliter son utilisation dans la communauté scientifique. Un clustering hierarchical adaptatif et focalisé sur l'extraction des connexions de courte portée est ensuite réalisé pour extraire les faisceaux les plus reproductibles entre les sujets. Cette méthode n'impose pas de restriction sur la forme des clusters de faisceaux obtenus et permet de traiter des bases de données de tractographie massive dans un temps raisonnable et sans utiliser de ressources de calcul de haute performance. Les résultats montrent un nombre accru de faisceaux en U cartographiés de façon reproductible dans la population générale par rapport aux atlas précédents créés auparavant à partir de la même base de données ARCHI. Ce premier atlas contient plus de 400 faisceaux des deux hémisphères. En outre, plus de 600 faisceaux ont été obtenus avec l'énorme base de données HCP de meilleure résolution spatiale. Chacun de ces nouveaux atlas contient tous les faisceaux des atlas existants de connexions courtes et bien plus encore à explorer. Ces résultats ouvrent une nouvelle voie pour améliorer notre compréhension de la relation entre le plissement cortical et la variabilité des faisceaux en U mais ils visent également la possibilité de détecter des configurations anormales induites par des problèmes de développement qui peuvent conduire à des pathologies mentales telles que la dépression bipolaire ou la schizophrénie.

  

  

  

  

  

  

  

  

  

  

  

  est composée de 76 sujets sains (23.6 ± 5.2 d'âge; 46 hommes, 30 femmes; 74 droitiers et 2 gauchers). Elle a été utilisé précédemment pour construire les premiers atlas de fibres courtes dans Guevara et al. [2017] et Román et al. [2017]. Les acquisitions ont été obtenues en utilisant une IRM Siemens Magnetom TrioTim 3T, avec une bobine tête à 12 canaux (Siemens, Erlangen). Pour le HCP, nous n'avons utilisé que 76 sujets sains 3 ( Essen et al.

TABLE 2 :

 2 Minimas locaux des histogrammes des centrelines pour les bases de données ARCHI et HCP

	ARCHI local minimas 10 20 34 49 63 78 92 107 127 147 172 197
	HBP local minimas	15 20 38 58 78 92
	50 Lenght of centroids (mm) 100 150	200

  and occurs in the fetal stages in most of mammals. Primary sulci (as the lateral, central, parietal, and superior temporal sulci) and gyri (pre-and postcentral gyri, superior temporal and middle temporal gyri, superior and middle frontal gyri, and superior and inferior occipital gyri) are the first to appear and become

well defined between 26 and 28 weeks of gestation. Development of secondary (more individual variations than primary sulci) and tertiary gyri (great individual variations) occurs later in gestation, and in the last trimester the sulci become deeply enfolded [Rajagopalan et al., 2011] (see figure 2.8).

  WM fiber tracts reconstruction in axial, sagittal and coronal view. Association fibers: superior longitudinal fasciculus (SLF, in green), internal (IC, in blue) and external/extreme capsule (EC/EmC, in yellow). Projection fibers: superior coronar radiata (SCR, in light blue) and parts of the internal capsule (IC, in blue). Commissural fibers: interhemispheric parietal to parietal connections encompassing the callosal isthmus (CI, in red) (Image taken from Moeller et al. [2015])

	al., 2017], depression [O'Brien, 2014] or normal aging [Xiong and Mok, 2011] are characterized by affliction of the white matter. The first studies related to the WM were performed through post-mortem dissections, beign the work of Franz Joseph Gall (1758-1828) and Johann Kaspar Spurzheim (1776-1832) some of the FIGURE 2.14: dissection of the brain. Tractography in conjunction with a clustering algorithm (detailed in a later
	most relevant [Schmahmann and Pandya, 2006]. They proposed the idea that the "convolutions chapter) indicates how WM tracts are connected in brain areas. In addition, functional magnetic
	are of an essential nature and necessary for intellectual functions" [Clarke and O'Malley, 1968] resonance imaging (fMRI) identifies functionally defined cortical areas. Both techniques assembled
	consequently, there is a functional specialization of different parts of the cortex, where the WM fibers provides a powerful tool to study brain connectivity patterns underlying cognitive functions and they
	origin. Gall was also the first to claim that mental activities were localized in the cortex alone while have contributed greatly to improve the knowledge and the understanding about the WM structure
	the white matter remains relegated to the role of a system of conduction and projection [Neuburger hand in hand with the old dissection techniques, that have been used to validate the results obtained
	and Clarke, 1981]. by tractography.
	Later, Meynert [1886] established with greater clarity the three principal types of WM systems Empirical evidence has demonstrated that the functional role of a given brain area is not determined
	and categorized them into three parts: projection, association and commissural fibers and he also only by its anatomical structure but also by its relationships to other areas [Catani et al., 2012a, 2013,
	noticed in detail the existence of U-shaped fibers. But it was the dissection method of Joseph Klin-López-Barroso et al., 2013]. Therefore, the knowledge of structural connectivity of WM has become
	gler [Agrawal et al., 2011] during the 1930s, wich had the biggest impact in the area [Agrawal et al., escential to unravel the mysteries of brain function in normal condictions but also to help those
	2011]. He developed a new method of dissection based on a freezing technique for brain tissue that affected by brain pathologies. This has led to the construction of several WM atlases in recent years
	eloquently revealed the white matter tracts with a big quality of anatomical details. His work laid that can serve as a basis for studies linked to the understanding of brain functions and its pathologies.
	the foundation for defining mesial temporal, limbic, insular, and thalamic fibers and functional rela-Within the proposed atlases, the work carried out by Catani and de Schotten [2008], Catani et al.
	tionships. However, Joseph Jules Dejerine's (1849-1917) [Dejerine, 2011] concepts about the white [2012a], Oishi et al. [2008], Zhang et al. [2010], Guevara et al. [2012], Vergani et al. [2014a], and
	matter systems have been the pre-eminent authority for over a century. He matched his anatomical more recently two atlases entirely dedicated to short range fibers proposed by Guevara et al. [2017],
	investigations with clinical observations in patients and described for the first time the disconnection Román et al. [2017], Zhang [2018] are outstanding.
	syndrome from a lesion of the left occipital lobe together with a lesion of the splenium of the corpus
	callosum resulting in alexia without agraphia. A summary of the main WM pathways described with dissection techniques [Zemmoura et al.,
	2014] but also those obtained with the new tractography techniques and reported in recent literature
	Nowadays, the technological improvements on MRI allowed the apparition of techniques such as is presented. Depending on the brain regions connected, the WM fibers tracts are classified into three
	diffusion tensor magnetic resonance imaging (DTI) [Basser et al., 1994, Le Bihan et al., 2001b], the categories, shown in figures 2.14: projection, association and commissural fibers [Meynert, 1886].
	MR tractography [Basser, 1998, Catani et al., 2002, Mori et al., 1999, Poupon et al., 2000] (detailed

in the next chapter), or the diffusion spectrum imaging (DSI)

[START_REF] Lin | Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms[END_REF]

] that allow the in-vivo

  first mentions about U-fibers in the literature were made in 1810 by Franz Joseph Gall and White matter atlas by Sachs. In the image the frontal section through the right occipital lobe is shown. Abbreviations: v:ventricle, f.c.:calcarine fissure, coll.:collateral sulcus, s.o.I:sulcus occipitalis superior, s.o.II:sulcus occipitalis medium, s.o.III:sulcus occipitalis inferior, g.l.:gyrus lingualis, g.f.:gyrus fusiformis, g.o.s.:superior occipital gyrus, g.o.m.:middle occipital gyrus, 1-10:forceps, 11-14:stratum sagittale internum, 15:stratum sagittale externum, 16:stratum calcarinum, 17:stratum cunei transversum, 18:stratum proprium cunei, 19:stratum proprium s.o.I, 20:stratum proprium s.o.II, 21:stratum proprium s.o.III, 22:stratum proprium coll., 23:stratum profundum convexitatis (Image taken from Forkel et al. [2015])

	Johann Kaspar Spurzheim [Schmahmann and Pandya, 2006]. Later, Meynert [1886] described in
	detail the short U-shaped connections (mainly from occipital lobe, see figure 2.20) and attributed
	to them a central role in human cognition. He classified them as cortico-cortical short association
	connections of different lengths, with the shortest fibers nearest to the cortex. He also noticed that
	the U-shaped bundles of the cortex extend not only from one convolution to the next one adjoining
	but they may skip one, two, three, or an entire series of convolutions. Indeed, this kind of fibers
	begins and ends in the cortex.

FIGURE 2.21:

  In 1906 Cristfield Jakob described a system of longitudinal U-shaped fibers connecting adjacent frontal gyri[START_REF] Zoë | Challenging the supremacy of the frontal lobe: Early views (1906-1909) of christfried jakob on the human cerebral cortex[END_REF]. As shown in figure2.22 he wrote that the superior frontal gyrus with motor foci that innervate the lower extremities, relate the middle frontal gyrus with the foci of the arms, and the inferior frontal gyrus with facial-lingual movements. Moreover,

	he described the existence of short association fibers that connect the three gyri among them, and
	commissural fibers that pass through the corpus callosum, enabling the communication between the
	frontal gyri of the two sides. Jakob's contributions, written in German and Spanish, have been largely
	neglected in the English scientific literature.
	Closer to our days, Vergani et al. [2014b] performed post-mortem dissections with Joseph Klin-
	gler's method [Agrawal et al., 2011] on three neuroanatomically healthy right hemispheres and com-
	pared these results with the original description of the occipital white matter made by Sachs [1893].

  Tracks also entered deep cortical white matter (blue tracks), immediately lateral to the corona radiata, compatible with long association tracks described in gross dissections and animal tracer studies. As this is one of the first works showing the feasibility of tractography as in vivo dissection, they do not go deep into the analysis and no further information about these tracts is given.

	in the most of subjects of another database) of the bundles found in some studies, has been also used
	as a way to validate the results Guevara et al. [2017, 2011a], Román et al. [2017], Zhang et al. [2010].
	Zhang et al. [2010] also proposed direct stimulation, dye injection or to investigate the perturbation of
	the bundles in various pathological conditions in order to provide important clues about the status of
	short-range connections. On the other hand, the work of Zhang et al. [2014] confirms the plausibility
	of U-fiber bundles extraction with different tractographic methods. The short-association bundles
	found to date by the means of diffusion MRI techniques and tractography are detailed below.
	Conturo et al. [1999] tracked four association bundles connecting nearby cortical regions in the
	parietal lobe (See figure 2.25). They noticed that connected adjacent gyri had tightly curved trajec-
	tories consistent with U-fibers (red and magenta tracks) and tracks that traversed more distant gyri
	had a more complex trajectory (green tracks).
	, Conturo et al., 1999, Gong
	et al., 2008, Guevara et al., 2017, 2011b, Lawes et al., 2008, Oishi et al., 2008, Román et al., 2017,
	Vergani et al., 2014a, Zhang et al., 2010].
	Althought these studies represent an important advancement in our understanding of human con-
	nectional anatomy, they are weak with respect to the validation process. Tractography technique has
	the potential to introduce false connections, producing anatomically plausible but erroneous trajecto-
	ries [Basser et al., 2000] so validation is needed. The scarcity of historical information on U-shaped
	bundles and absence of a Gold standard respect to them hinder the validation process of tracts found
	with the tractography technique. Comparison with the post-mortem dissection is one method used
	by researchers to support the tractography tracts [Catani et al., 2002, Catani and de Schotten, 2008,
	Catani et al., 2012a, Lawes et al., 2008, Vergani et al., 2014a, Zhang et al., 2010] and also the com-
	parison with monkey brain structure as it was mentioned previously [Catani et al., 2017, Oishi et al.,
	2011, Schmahmann and Pandya, 2006, Zhang et al., 2014].
	In the latest years, the cross-subject reproducibility (this means, find the bundles under evaluation

  [START_REF] Rakic | Evolution of the neocortex: a perspective from developmental biology[END_REF], Jbabdi and Johansen-Berg, 2011[START_REF] Bw Kreher | Gibbs tracking: a novel approach for the reconstruction of neuronal pathways[END_REF][START_REF] Mangin | Toward global tractography[END_REF][START_REF] Poupon | Détection des faisceaux de fibres de la substance blanche pour l'étude de la connectivité anatomique cérébrale[END_REF][START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF] was developed with the intention of further improving the robustness of fiber tracking using diffusion imaging[START_REF] Mangin | Toward global tractography[END_REF]. This technique try to reconstruct the fibers simultaneously by finding the configuration that best describes the measured data. Cointepas et al.

  These methods are normally initialized by linear registration to get the general orientation and size matched globally. Non-linear registration may be constrained to only allow simple coarse warps (low DoF) or to apply very finely detailed complex warps (high DoF), in order to attempt to match the input image to the reference image as perfectly as possible. However, it is important to have in mind that very high-dimensional transformation could warp so much the images until they look almost exactly like each other without having preserved how the different features relate[START_REF] Johansen | Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy[END_REF]. Furthermore, increasing flexibility with more DoFs tends to require more computer time[START_REF] W R Crum | Non-rigid image registration: theory and practice[END_REF].Non-linear deformation can include for instance polynomial functions[START_REF] Roger | Automated image registration: Ii. intersubject validation of linear and nonlinear models[END_REF]] or harmonic basis functions (used by SPM software)[START_REF] Ashburner | High-dimensional image registration using symmetric priors[END_REF]. Several methods, using

	3.4.2 Non-linear registration

different similarity measures, deformations, regularizations and optimization approaches have been proposed and some of them have been also used in studies related to the connectivity of WM tracts as the AIR [Woods et al., 1998] algorithm used by Wakana et al. [2007] in conjuntion with DTI to extract 11 major bundles. The method was then improved by Oishi et al. [2009] and Zhang et al. [2010],

using dual-contrast Large Deformation Diffeomorphic Metric Mapping (LDDMM)

[START_REF] Ceritoglu | Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging[END_REF]

. He extracted 59 bundles, where 29 of them correspond to U-fibers.

[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] 

  that correspond to anatomical descriptions. Later, in Catani and de Schotten[2008] they provided a template to guide the delineation of ROIs and then, based on this work they were able to construct one of the first atlas of short-connections from the frontal lobe inCatani et al. [2012b].

	brain and then multiple ROIs are used to select tracts, being more robust [Huang et al., 2004, Wakana
	et al., 2007].
	Manually defined ROIs have been used in several tractography studies, mainly focused on the long-

al., 2005b,

[START_REF] Lenglet | Geometric and variational methods for diffusion tensor MRI processing[END_REF]

]. However, because of the use of the DT model, they also present problems in regions of fiber crossings. HARDI acquisitions have a better performance on those cases and several works have been presented to segment bundles from ODF's fields using for example DSI data to represent diffusion as a signal mapped on a 5D space

[START_REF] Hagmann | Fibertract segmentation in position orientation space from high angular resolution diffusion mri[END_REF][START_REF] Jonasson | Representing diffusion mri in 5-d simplifies regularization and segmentation of white matter tracts[END_REF] 

or using the spherical harmonics

[START_REF] Descoteaux | Regularized, fast and robust analytical q-ball imaging[END_REF] 

representation of the ODF

[Descoteaux et al., 2009a[START_REF] Wassermann | Diffusion maps clustering for magnetic resonance q-ball imaging segmentation[END_REF]

. Nevertheless, both methods can only detect the main and biggest WM tracts due to the voxel-based approach that only integrates local spatial and diffusivity information. dW-based tractography provides a more global anatomical interpretation of diffusivity in each voxel. Earlier works based on it use an interactive segmentation where the fiber selection and anatomical labeling are done using expert knowledge. In these methods, tractography is seeded in the entire association, projection and commissural tracts

[START_REF] Peter | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF][START_REF] Te Conturo | Tracking neuronal fiber pathways in the living human brain[END_REF][START_REF] Wakana | Reproducibility of quantitative tractography methods applied to cerebral white matter[END_REF]

. However, Conturo et al.

[1999] 

using this approach and DT-MRI was one of the first to vaguely detect some short-association fibers from tractography.

[START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF] 

also detected some short connections with manual ROI method to produce virtual representations of WM tracts

  To overcome this problem, clustering-based methods have been proposed and widely used for segmentation of WM [Garyfallidis et al., 2012, Maddah et al., 2007, Mai et al., 2012, O'Donnell and Westin, 2007, Visser et al., 2011, Wassermann et al., 2010], including studies of short-connections [Guevara et al., 2017, 2011b, Román et al., 2017, Zhang, 2018]. Clustering methods will be presented and analyzed in detail in the next chapter.

TABLE 4 . 1 :

 41 Standard agglomerative hierarchical clustering methods[START_REF] Everitt | Cluster Analysis[END_REF] 

	Method	Distance between clusters	Remarks

  Later,[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] presented an automatic hybrid method to obtain a model of the most reproducible short association diffusion-based bundles from the whole brain, stable in shape across a large population of subjects. Combining fiber clustering and parcellation, more anatomical information is included into the analysis. The method has several steps: first a well-known cortical parcellation is computed for each subject[START_REF] Rahul | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF]] and used to create sub-tractogram of fibers connecting pairs of ROIs. Then, an intra-subject fiber clustering (agglomerative based in the affinity graph to average link hierarchical clustering [Nipy Library, 2019]) is performed for each extracted group of fibers. This analysis allows the subdivision of the fibers from each group into bundles composed of fibers with similar shape. Finally, an inter-subject clustering is applied in order to find correspondence between subjects and keep only the most reproducible bundles, presented in at least 50% of the population. This atlas contains 100 fiber bundles from left and right hemispheres from which 35 are common in both hemispheres. As this method strongly relies on the cortical parcellation applied at the beginning, all the subsequent steps based on clustering are influenced by the parcellation template used, and in particular for this case, those localized on the frontiers of the gyri.

In the same year,

[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] 

presented another atlas of short fibers also based on intersubject clustering of whole brain short white matter fibers. They used the same database used in

[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] 

. First the intra-subject clustering proposed by

Guevara et al. [2011a] 

was used to remove outliers and reduce the data dimensionality. Also, the multi-subject atlas of Guevara et al.

[2012] 

is applied to remove centroids that can be part of known DWM bundles. Then, over the centroids an inter-subject clustering (also agglomerative) is applied, keeping only reproducible clusters. A difference with Guevara's work is that the anatomical labelling using cortical parcellations

[START_REF] Rahul | An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest[END_REF] 

is not applied at the beginning but at this stage, and this allows to naturally

[

  [START_REF] Gong | Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography[END_REF][START_REF] Oishi | Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter[END_REF][START_REF] Yeh | Population-averaged atlas of the macroscale human structural connectome and its network topology[END_REF][START_REF] Zhang | Whole brain white matter connectivity analysis using machine learning: An application to autism[END_REF][START_REF] Hu | Joint analysis of fiber shape and cortical folding patterns[END_REF]; and more recently, some atlases entirely focused on the identification of the short fibers bundles have been presented[Catani et al., 2012b[START_REF] Kyu | Surface-based tracking of u-fibers in the superficial white matter[END_REF], Guevara et al., 2017, 2011b, Román et al., 2017, 

	Vergani et al., 2014a]. However, none of these approaches is dealing with the accurate matching of
	the folding patterns across subjects, a challenge for most of the spatial normalization approaches, that
	has a significant influence over the U-shape structure alignment.

  This project was developed and executed in a standard workstation with the Linux distribution. The main software used for the preprocesing of the data and the development of this project are Brainvisa/Anatomist 1 [Cointepas et al., 2001, Rivière et al., 2009], Connectomist2.0[Duclap et al., 2012],

	flip angle FA=9; matrix=256 × 240, voxel size = 1.0 × 1.0 × 1.1mm, RBW=240Hz/pixel), a B0
	field map, and a SS-EPI single-shell HARDI dataset along 60 optimized diffusion weighted direc-
	tions, b=1, 500s/mm2, (70 slices; TH=1.7mm, TE=93ms; TR=14, 000ms; FA=90; matrix=128 × 128;
	voxel size=1.71875 × 1.71875 × 1.7mm; RBW=1502Hz/pixel; echo spacing ES=114 0.75ms; partial
	Fourier factor PF=6/8; GRAPPA=2; total scan time=16 min and 46s).
	5.1.2 Hardware and software
	al., 2012]
	composed of 78 healthy subjects but in this project we have used 76 of them (23.6 ± 5.2 years old;
	46 males, 30 females; 74 right-handed and 2 left-handed). It has also been used previously to infer
	the short bundle atlases of Guevara et al. [2017] and Román et al. [2017].

Acquisitions were obtained using a Siemens Magnetom TrioTim 3T MRI, 12-channel head coil (Siemens, Erlangen). The protocol included a high resolution T1-weighted acquisition using an MPRAGE sequence (echo time = 2.98ms, repetition time = 2300ms, 160 sagittal slices, TI=900ms,

TABLE 5

 5 

		.1: Sulci used in DISCO process. Nomenclature if given by Brainvisa/Morphologist (see more
	details in the appendix B.1.2)			
			.		
		1) SFsup	2) SFinf	3) SFinfant	4) Sor	5) FCMant
		6) SCall	7) SPaint	8) SsP	9) FPO	10) Spat
	Individual 11) SPasup	12) FIP	13) SGSM	14) FIPrint1	15) Print2
	Sulci	16) STSterascant	17) STSterascpost 18) STS	19) FCLp	20) FCLa
		21) Stpol	22) SOTlatant	23) SOlf	24) SRsup	25) Srinf
		26) SC	27) Scsylvian		
		28) SPeCmedian	29) SPeCmarginal 30) SPeCsup	31) SPeCinter 32) SpeCinf
	Merged	33) SPoCsup	34) FIPPoCinf	35) FCLrretroCtr	
	Sulci	36) STiant	37) STIpost		
		38) FColl	39) Srh		
		40) FCMpost	41) SintraCing		
		42) Fcalant-ScCal 43) SOp		

(A) Left hemisphere (B) Right hemisphere

  al. [2011a] (See section 4.2, equation 4.7) and also used by Guevara et al. [2017] and Román et al. [2017]. For visualization purposes, the data has been divided into ranges of centerlines lengths (20mm-22mm, 30mm-33mm, 70mm -80mm, 100mm -130mm). Because the number of centerlines decreases with their lengths,

  Guevara et al. [2011b] and[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] have set the

	ranges to be 35mm -110mm and 20mm -80mm respectively but they do not mention any concrete
	reason for this choice. On the other hand, Román et al. [2017] used the range 35mm -85mm, arguing
	that under 35mm the shape of the clusters is very variable, difficult to analyze and probably often
	related to artifacts. Similarly, Bajada et al. [2019] suggested that fibers below 40mm are primarily
	driven by cortical folding; then they suggest that their organization into bundles is of low interest.

TABLE 5 . 2 :

 52 Local minimas of the histogram in mm start of growth of the histogram curve. The smaller the length, however, the higher the risk to get spurious centerlines. For those reasons, a lower length threshold of 20mm was chosen, discarding the centerlines under this value. The amount of centerlines in the file after filtering is reduced by around 5%. Note, as it was shown in section 2.2.2.3, that the short fiber bundles will probably not include only typical U-shaped bundles turning around a single sulcus[START_REF] Zhang | Characterization of u-shape streamline fibers: Methods and applications[END_REF] but also more complex shapes skipping several sulci or passing through sulcus interruptions.

	Local minimas 10 20 34 49 63 78 92 107 127 147 172 197
	have a length around 30mm. On the other hand, Lyu et al. [2018] studied the average sulcal depths of
	all the sulci from particular regions: prefrontal, parietal, occipital, and temporal. The average sulci
	depth for those regions are around: 7, 7mm, 10, 4mm, 7, 5mm, and 9, 3mm respectively. Considering
	this data, U-bundles surrounding smaller sulci may start to appear over 15mm of length, value that
	coincides with the

  Scheme of the atlas creation process. First, the database is divided into two groups of 36 subjects each. Centerlines of each group were brought from the original subject space to the MNI space using contraints on the matching of the main sulci. The objective is to perform the clustering process over each sub-group separately in order to obtain two different sets of clusters. Only those existing in both groups that are in between 20mm and 85mm of length are kept to create the new short bundles atlas, ensuring the reproducibility of the bundles that compose it. Finally, the bundles are labelled using the naming convention used by[START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] based on the Desikan-Killiany atlas of ROIs.

	1.3.4. The objective is
	to perform the clustering process over each sub-group separately in order to obtain two different sets
	of clusters. Only those existing in both groups that are in between 20mm and 85mm of length are
	kept to create the final short bundle atlas, ensuring the reproducibility of the bundles that compose

it. Finally, the bundles are labelled using the naming convention used by

Guevara 

et al. [2017] and Román et al. [2017] based on the Desikan-Killiany atlas of ROIs.

FIGURE 5.12:

TABLE 5 . 3 :

 53 Set of parameters tested to obtain the best configuration to generate the atlas.

	Step	Parameter	Tested values	1st Best set
	Matrix	N	10, 50, 100, 500, 1000, 5000	50
	of	p	0.7, 1.0, 1.3, 1, 5	1.5
	neighbors	th l	0.3, 0.5, 0.7	0.7
	Clustering	K	2, 3, 5, 10, 15	5

  al., 2017, Román et al., 2017] based on the Desikan-Killiany atlas of ROIs [Desikan et al., 2006](previously described in the section 2.2.1.2). The table A.1.1.1 of the Appendix A summarizes the nomenclature used for the naming process.

TABLE 5

 5 

	.4: General information of the ARCHI atlas	
	Item	Left hemisphere Right hemisphere
	Mean lengths (mm)	45, 77	46, 01
	Standard deviation	15, 04	15, 55
	Mean linkage-distance (mm)	14, 03	16, 19
	Standard deviation	4, 57	5, 47
	Mean number of curves per bundle	134	175
	Standard deviation	91, 08	132, 04
	Mean number of subjects per bundle	50	53
	Standard deviation	8, 54	8, 64

  al., 2015, Meynert, 1886] and the fronto-parietal [Théodoridou and Triarhou, 2012] region. Closer to our days, Zhang et al. [2014] mentioned that not only Ushaped fibers are observable in the short range connections but also straight lines, curved lines and open U-shaped bundles (see figure 2.32). In our atlas those shapes were identified (see figure 5.18)

TABLE 5 .

 5 5: Correlation between length and depth by Desikan region

	Region Correlation left hemisphere Correlation right hemisphere
	CAC	0.61	0.59
	CMF	0.93	0.99
	Cu	0.82	0.91
	En	0.21	0.69
	Fu	0.83	0.93
	IP	0.96	0.95
	IT	0.92	0.68
	IC	0.54	0.81
	LI	0.79	0.84
	LO	0.84	0.80
	LOF	0.85	0.90
	MOF	0.92	0.90
	MT	0.87	0.81
	PH	0.68	0.72
	PC	0.67	0.58
	OP	0.95	0.89
	Or	0.93	0.94
	Tr	0.89	0.79
	PeCa	0.15	0.30
	PoC	0.88	0.86
	PoCi	0.82	0.79
	PrC	0.52	0.77
	PrCu	0.96	0.97
	RAC	0.90	0.84
	RMF	0.94	0.97
	SF	0.74	0.76
	SP	0.91	0.83
	ST	0.62	0.70
	All	0.73	0.77

(A) Left hemisphere (B) Right hemispehere

TABLE 5 .

 5 6: Mean dBD by range of lengths

	Region	Mean dBD
	Range 20 -34 mm	147.92
	Range 34 -49 mm	166.75
	Range 49 -63 mm	194.85
	Range 63 -78 mm	222.04
	Range 78 -85 mm	

TABLE 5 . 7 :

 57 Depth distance in the PrG bundles

	Bundle	dBD	Length
	rh˙PoC-PrC˙4 118.23	45.24
	rh˙PoC-PrC˙8 142.40	46.83
	rh˙CMF-PrC˙2 156.06	48.54
	rh˙PoC-PrC˙7 147.64	51.10
	rh˙Op-PrC˙3	157.71	55.52
	rh˙IP-PrC˙1	186.76	81.89
	rh˙IP-PrC˙2	195.74	83.86

TABLE 6 . 1 :

 61 Local minimas of the histogram

	Local minimas 15mm 20mm 38mm 58mm 78mm 92mm
	6.2 Results
	6.2.1 HCP short bundle atlas: General observations

  The tables B.5 and B.6 of the appendix B.2.1.1 summarize the information for each bundle, in the left and right hemispheres respectively. As it was done with the ARCHI, the amount of centerlines per bundle, the mean length, the linkage-distance, the amount of different subjects that compose each bundle and the lateralization of them are presented. A detailed view of the atlas can be also found in the appendix B.2.1.2, where the bundles are divided by the regions of interest of the Desikan atlas.

	355 curves versus 304) with a high standard deviation. The mean number of different subjects that
	compose a bundle is similar in both hemispheres, with fibers provided by 48/47 different subjects
	(around 63% of the total).

TABLE 6 . 2 :

 62 General information of the HCP atlas

	Item	Left hemisphere Right hemisphere
	Mean lengths (mm)	39, 36	40, 13
	Standard deviation	12, 67	13, 61
	Mean linkage-distance (mm)	11, 12	10, 56
	Standard deviation	3, 41	3, 34
	Mean number of curves per bundle	355	304
	Standard deviation	282	239
	Mean number of subjects per bundle	48	47
	Standard deviation	6, 29	6, 07

TABLE 6 . 3 :

 63 Correlation between length and depth by Desikan region

	Region Correlation left hemisphere Correlation right hemisphere
	CAC	0.10	0.72
	CMF	0.91	0.99
	Cu	0.87	0.71
	En	-0.55	0.87
	Fu	0.82	0.92
	IP	0.96	0.98
	IT	0.66	0.74
	IC	0.61	0.54
	LI	0.77	0.70
	LO	0.93	0.95
	LOF	0.92	0.89
	MOF	0.54	0.50
	MT	0.91	0.89
	PH	0.63	0.54
	PC	0.67	0.19
	OP	0.94	0.98
	Or	0.96	0.98
	Tr	0.96	0.97
	PeCa	0.61	0.58
	PoC	0.15	-0.13
	PoCi	0.76	0.87
	PrC	0.78	0.68
	PrCu	0.62	0.28
	RAC	0.91	0.78
	RMF	0.81	0.89
	SF	0.85	0.96
	SP	0.89	0.86
	ST	0.86	0.32
	SM	0.94	0.80
	All	0.71	0.75

(A) Left hemisphere (B) Right hemispehere

TABLE 6 .

 6 4: Mean dBD by range of lengths

	Region	Mean dBD
	Range 20 -38 mm	147.53
	Range 38 -58 mm	176.78
	Range 58 -78 mm	220.04
	Range 78 -85 mm	

TABLE 6 . 5 :

 65 Depth distance in the PoG bundles

	Bundle	dBD	dBD
	rh PoC-PrC 3 1 123.42 41.50
	rh PoC-SP 1 1	127.32 42.56
	rh PoC-SP 3	136.08 43.78
	rh PoC-PoC 6	149.66 45.13
	rh PoC-PoC 8	155.70 45.68
	rh PoC-PrC 2		

  al., 2012b, Gahm and Shi, 2019, Guevara et al., 2017, 2011b, Román et al., 2017, Vergani et al., 2014a] or general purpose atlases including some short bundles [Gong et al., 2008, Oishi et al., 2008, Yeh et al., 2018, Zhang, 2018, Zhang et al., 2010]. Our work is proceeding further with this trend, leading to the largest atlas of reproducible short bundles currently available.

  The resulting ARCHI atlas is composed by 486 bundles, 213 from the left hemisphere and 273 bundles from the right hemispheres. From those bundles 105 are common to both hemispheres. This result largely increases the number of bundles obtained previously with the same database Guevara et al.[2017] and[START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF]. On the other side, the HCP atlas is composed by 657 bundles, 349 in the left hemisphere and 308 bundles in the right hemisphere. 213 bundles are common to both sides of the brain.

  Albis et al. [2018], Guevara et al. [2017], Ji et al. [2019].

	Our new full coverage atlases are now ready to proceed further.

TABLE A . 2 :

 A2 Summary of short bundles from Guevara et al. [2017] and Román et al. [2017] atlases. Brainvisa 1 [Cointepas et al., 2001, Rivière et al., 2009] is a set of tools and a modular customizable software and for neuroimaging study. It is free and open-source and it was developed mainly in Neurospin (CEA) with the colaboration of INSERM, INRIA and CNRS, all research organizations

	B.1.1.3 Brainvisa				
		lh CAC-PrCu 0	lh CMF-Op 0	lh CMF-PoC 0	lh CMF-PrC 0
		lh CMF-PrC 1	lh CMF-RMF 0	lh CMF-SF 0	lh Fu-LO 0
		lh IC-PrCu 0	lh IP-IT 0	lh IP-LO 1	lh IP-MT 0
		lh IP-SM 0	lh IP-SP 0	lh IP-SP 1	lh IT-MT 0
		lh LOF-Or 0	lh LOF-RMF 0	lh LOF-RMF 1	lh LOF-ST 0
		lh MOF-ST 0	lh MT-SM 0	lh MT-ST 0	lh Op-Ins 0
	Left	lh Op-PrC 0	lh Op-SF 0	lh Or-Ins 0	lh PoC-Ins 0
		lh PoC-PrC 0	lh PoC-PrC 1	lh PoC-PrC 2	lh PoC-PrC 3
	hemis.	lh PoC-SM 0	lh PoC-SM 1	lh PoCi-PrCu 0	lh PoCi-PrCu 1
		lh PoCi-RAC 0	lh PoCi-SF 0	lh PrC-Ins 0	lh PrC-SF 0
		lh PrC-SM 0	lh RAC-SF 1	lh RMF-SF 0	lh RMF-SF 1
		lh SM-Ins 0	lh SP-SM 0	lh ST-Ins 0	lh ST-TT 0
	SWM Atlas	lh Tr-Ins 0	lh Tr-SF 0		
	of Guevara	rh CAC-PoCi 0	rh CAC-PrCu 0	rh CMF-PrC 0	rh CMF-PrC 1
		rh CMF-RMF 0	rh CMF-SF 0	rh CMF-SF 1	rh Cu-Li 0
		rh Fu-LO 1	rh IC-PrCu 0	rh IP-IT 0	rh IP-LO 0
	[2017]	rh IP-MT 0	rh IP-SM 0	rh IP-SP 0	rh IT-MT 1
		rh IT-MT 2	rh LO-SP 0	rh LOF-MOF 0	rh LOF-RMF 0
		rh LOF-RMF 1	rh LOF-ST 0	rh MOF-ST 0	rh MT-SM 0
	Right	rh MT-ST 0	rh Op-Ins 0	rh Op-PrC 0	rh Op-SF 0
		rh Op-Tr 0	rh Or-Ins 0	rh PoC-PrC 0	rh PoC-PrC 1
	hemis.	rh PoC-PrC 2	rh PoC-SM 0	rh PoC-SP 0	rh PoC-SP 1
		rh PoCi-PrCu 1	rh PoCi-PrCu 2	rh PoCi-RAC 0	rh PrC-Ins 0
		rh PrC-SM 0	rh PrC-SP 0	rh RAC-SF 0	rh RMF-SF 0
		rh RMF-SF 1	rh SM-Ins 0	rh SP-SM 0	rh ST-TT 0
		rh Tr-Ins 0	rh Tr-SF 0		
		lh CMF CMF 0i	lh CMF Op 0i	lh CMF PreC 0i	lh CMF PreC 1i
		lh Cu Lg 0l	lh Fu Fu 0i	lh Fu Fu 1l	lh Fu IT 0i
		lh IP SP 0i	lh IT IT 0l	lh IT IT 1l	lh LO LO 0i
		lh LO LO 1i	lh LO LO 2l	lh LOrF LOrF 0i	lh MT MT 0i
		lh MT MT 1i	lh MT MT 1l	lh MT ST 0i	lh Op SF 0i
	Left	lh PoC PreC 0i	lh PoC PreC 1i	lh PoC PreC 2i	lh PoC PreC 3i
		lh PoC SM 0i	lh PreC Ins 0l	lh PreC PreC 0l	lh PreC SF 0i
	hemis.	lh PreC SM 0i	lh PreC SM 1i	lh PreCu PreCu 0l lh RoMF RoMF 0i
		lh RoMF RoMF 1i	lh RoMF SF 0i	lh RoMF SF 1i	lh SF SF 0l
		lh SM SM 0i	lh SM SM 1i	lh SM SM 2i	lh SP SP 0i
	SWM Atlas	lh ST ST 0i	lh ST ST 1l	lh Tr RoMF 0i	lh Tr SF 0i
	of Roman	rh CMF CMF 0i	rh CMF Op 0i	rh CMF PreC 0i	rh CMF PreC 1i
		rh Fu Fu 0i	rh Fu IT 0i	rh IP IP 0r	rh IP LO 0r
		rh IP SP 0i	rh LO LO 0i	rh LO LO 1i	rh LOrF LOrF 0i
	[2017]	rh LOrF LOrF 1r	rh MT MT 0i	rh MT MT 0r	rh MT MT 1i
		rh MT ST 0i	rh Op SF 0i	rh PoC PoC 1r	rh PoC PreC 0i
	Right	rh PoC PreC 1i	rh PreC SF 0i	rh PreC SM 0i	rh PreC SM 1
		rh PreCu PreCu 0r rh RoMF RoMF 0i rh RoMF RoMF 0r rh RoMF RoMF 1i
	hemis. rh RoMF RoMF 1r	rh RoMF SF 0i	rh RoMF SF 0r	rh RoMF SF 1i
		rh SF SF 1r	rh SF SF 2r	rh SM SM 0i	rh SM SM 1i
		rh SM SM 2i	rh SP SP 0i	rh SP SP 0r	rh ST ST 0i
		rh Tr Ins 0r	rh Tr RoMF 0i	rh Tr SF 0i	rh Tr SF 1r
		rh Tr Tr 0r			

TABLE B . 1 :

 B1 Bundles of the ARCHI short bundles atlas from the left-hemisphere between 20mm and 85mm lengthContinued on next pageTable B.1 -Continued from previous page Table B.1 -Continued from previous page Table B.1 -Continued from previous page

	Bundle Bundle				Number Length Linkage N subjects Bundle Number Length Linkage N subjects counterpart Number Length Linkage N subjects counterpart	counterpart
					of curves of curves	distance per bundle of curves distance per bundle ? distance per bundle ?	?
	lh En-En 1 lh MOF-MOF 1 lh IP-SP 5 51 56	23.42 193 30.69	9.69 43.88 11.10	39 12.28 38	-rh MOF-MOF 2 54 rh IP-SP 2
	lh En-IC 1 lh MOF-PH 1	58 lh IT-IT 1 88	60.37 90 41.23	15.04 33.08 10.99	42 12.02 43	50	--	-
	Bundle 158 lh IT-IT 2 116 146 lh IT-LO 1 lh MOF-RAC 1 lh En-IC 2 lh MOF-PrC 1 lh En-LOF 1 85 lh En-Li 1 168 lh IT-PH 1 lh MOF-RAC 2 47	Number Length Linkage N subjects 59.06 13.81 48 rh En-IC 2 69 74.86 19.98 36 82.52 14.92 41 -of curves distance per bundle 26.77 11.10 56 rh En-LOF 1 181 45.35 14.99 53 23.92 12.24 49 rh MOF-SF 1 65.06 11.82 49 rh En-PrCu 1 90 57.67 15.43 50 30.33 15.72 39 rh MOF-RAC 1 counterpart --? rh En-Li 2
	lh CAC-CAC 1 83 lh IT-SM 1 lh MOF-SF 1 lh En-Li 2 86	62 47.86 81 84.08	30.10 22.35 71.64 15.04	9.59 53 21.98 50	50 43	--	rh CAC-SF 1 -
	lh CAC-CAC 2 lh En-PH 1 640 lh Ins-Ins 1 lh MOF-SF 2 51	95 48.45 130 26.37	28.33 16.01 49.92 20.59	11.27 61 12.78 44	54 61 rh MOF-SF 2 -	rh SF-SF 4 -
	lh CAC-PoCi 1 lh En-PH 2 189 lh Ins-Ins 2 lh MOF-ST 1 415	384 23.91 85 64.50	56.63 11.97 32.75 11.40	12.39 51 12.49 57	64 rh En-En 1 rh CAC-PoCi 1 50 rh Ins-Ins 3 rh MOF-ST 1
	lh CAC-PoCi 2 71 lh LO-LO 1 lh MT-MT 1 lh Fu-Fu 1 91	118 45.99 72 34.58	37.95 13.61 26.18 17.60	16.10 48 17.04 50	53 rh Fu-Fu 3 rh PoCi-PoCi 1 41 rh LO-LO 3 -
	lh CAC-PrCu 1 225 lh LO-LO 2 lh MT-MT 2 lh Fu-Fu 2 50	130 43.30 88 37.85	71.94 18.82 30.71 12.33	31.32 48 12.54 37	55 49	--	-rh LO-LO 4
	lh CAC-RAC 1 129 lh LO-LO 3 lh MT-MT 3 lh Fu-Fu 3 115	57 29.73 76 31.11	26.61 19.05 31.30 12.29	17.39 48 11.37 51	46 rh IT-LO 1 51 rh MT-MT 5	-rh LO-LO 5
	lh Fu-Fu 4 lh MT-MT 4		lh CAC-SF 1 48 lh LO-LO 4 109	263 24.34 124 34.32	48.32 13.14 42.00 11.24	11.21 37 13.58 51	58 53	--	--
	lh Fu-IT 1 lh MT-SM 1		lh CAC-SF 2 223 lh LO-LO 5 211	161 52.56 95 65.88	36.90 17.64 34.12 15.68	11.06 57 17.86 51	69 48	--	rh CAC-SF 3 rh LO-LO 2
	lh Fu-LO 1 lh MT-ST 1		lh CAC-SF 3 94 lh LO-Li 1 197	146 31.61 78 47.60	41.03 10.50 39.16 11.12	15.68 52 13.68 64	55 43	--	rh CAC-SF 2 -
	lh Fu-LO 2 lh MT-ST 2	lh CAC-SF 4 110 lh LOF-Ins 1 87	57 57.51 45 40.13	66.04 13.48 22.92 18.48	12.59 52 8.12 53	44 rh Fu-LO 2 43 rh LOF-LOF 8 --
	lh CMF-CMF 1 lh IC-LOF 1 67 lh LOF-Ins 2 lh MT-ST 3 138	133 38.64 117 59.58	34.78 9.59 34.55 17.04	12.14 46 11.41 45	62 rh IC-LOF 1 54 rh LOF-Ins 2 --
	lh CMF-CMF 2 lh IC-MOF 1 45 lh LOF-LOF 1 lh MT-ST 4 165	61 40.61 191 40.63	38.77 8.82 38.73 14.64	11.15 42 9.77 50	42 57	--	-rh LOF-MOF 2
	lh CMF-CMF 3 lh IC-PH 1 43 lh LOF-LOF 2 lh Op-Ins 1 75	67 41.89 51 43.86	30.39 10.58 44.07 9.24	10.50 40 11.73 53	47 rh IC-PH 1 rh CMF-CMF 1 38 -rh PrC-Ins 1
	lh CMF-CMF 4 lh IC-PoCi 1 80 lh LOF-LOF 3 lh Op-Ins 2 230	121 24.11 87 39.79	34.33 10.21 26.77 9.71	13.95 53 9.30 57	54 rh IC-IC 1 49 rh Op-Ins 1 rh LOF-LOF 2 -
	lh CMF-Op 1 lh IC-PoCi 2 48 lh LOF-LOF 4 lh Op-Op 1 143	54 52.12 108 50.23	60.04 10.79 51.63 11.24	13.68 42 12.09 55	38 rh PoCi-PrCu 2 60 rh LOF-Or 1 -rh Op-PrC 2
	lh CMF-PoC 1 lh IC-PoCi 3 45 lh LOF-LOF 5 lh Op-Op 2 90	88 32.94 71 29.18	72.63 11.26 42.49 15.04	14.49 38 20.74 52	46 rh PoCi-PrCu 1 39 -	--
	lh CMF-PrC 1 lh IC-PrCu 1 218 lh LOF-LOF 6 lh Op-Op 3 87	44 59.04 51 51.52	56.42 15.29 28.02 10.89	9.83 51 12.15 49	40 38 rh Op-Tr 1 rh CMF-PrC 1 -rh LOF-LOF 4
	lh CMF-PrC 2 79 lh LOF-MOF 1 lh Op-PrC 1 lh IC-ST 1 117	373 60.93 80 56.93	42.57 11.34 62.23 10.02	13.86 47 16.46 62	65 rh PH-ST 1 43 rh Op-PrC 1 rh PrC-PrC 1 -
	lh CMF-PrC 3 189 lh LOF-MOF 2 lh Op-PrC 2 lh IP-IP 1 67	255 40.70 129 34.02	44.86 11.56 34.38 12.79	13.29 58 10.68 45	61 60 rh Op-PrC 3 rh CMF-PrC 2 -rh LOF-MOF 1
	lh CMF-RMF 1 73 lh LOF-PoC 1 lh Op-SF 1 lh IP-IP 2 346	210 34.50 64 71.10	52.75 11.97 78.76 12.85	20.78 42 13.10 72	48 43 rh Op-SF 2 -	--
	lh IP-IP 3 lh Op-SF 2	lh CMF-SF 1 179 lh LOF-RAC 1 374	325 53.16 152 72.46	32.49 18.61 67.07 16.05	10.07 53 14.06 63	59 56	--	rh CMF-CMF 2 -
	lh IP-IT 1 lh Or-Ins 1	lh CMF-SF 2 225 lh LOF-RAC 2 143	276 58.66 81 34.50	40.26 14.44 23.71 9.59	10.97 56 10.13 49	66 58 rh Tr-Ins 2 -	rh CMF-SF 1 -
	lh CMF-SF 3 152 lh LOF-RMF 1 lh Or-Ins 2 lh IP-LO 1 173	455 44.40 114 55.59	48.64 12.48 29.02 11.70	12.72 64 14.26 54	69 51 rh Tr-Ins 1 -rh LOF-LOF 7 -
	lh Cu-Cu 1 222 lh LOF-RMF 2 lh IP-MT 1 lh Or-ST 1 96	129 61.60 60 82.94	32.87 13.45 44.33 11.99	11.61 65 11.85 43	57 40	--	rh Cu-Li 1 rh LOF-LOF 3
	lh IP-MT 2 lh PC-PC 1		lh Cu-Cu 2 169 lh LOF-SF 1 61	59 54.12 109 24.84	28.27 11.95 54.87 12.19	9.91 60 11.89 43	47 59	--	-rh LOF-RAC 1
	lh IP-MT 3 lh PC-PoCi 1	lh Cu-Cu 3 185 lh LOF-ST 1 138	77 40.77 166 52.37	33.55 11.09 56.98 15.46	19.54 58 10.75 47	48 48 rh PrCi-PrC 1 -rh LOF-ST 2 rh Cu-Cu 1
	lh IP-SP 1 lh PC-PoCi 2	lh Cu-IC 1 270 lh LOF-ST 2 74	53 58.00 51 41.26	69.34 12.70 78.62 16.47	13.83 53 34.63 48	36 40	--	-rh MOF-ST 3
	lh IP-SP 2 lh PC-SF 1				lh Cu-IC 2 367 lh Li-Li 1 134	234 43.71 132 66.24	61.78 12.23 47.56 16.55	27.80 66 12.43 50	48 53	--	--
	lh IP-SP 3 lh PH-PH 1			lh Cu-Li 1 193 lh Li-Li 2 53	75 68.83 72 22.97	39.91 15.04 28.95 20.67	11.95 52 17.57 42	45 48 rh PH-PH 1 -	rh Cu-Li 2 rh Li-Li 3
	lh IP-SP 4 lh PH-PoC 1	lh Cu-PeCa 1 144 lh Li-PH 1 248	66 39.54 85 83.31	36.14 12.94 58.02 14.39	10.35 65 27.43 64	41 49	--	rh Cu-PeCa 1 -
					Continued on next page Continued on next page Continued on next page

  TABLE B.4: Comparison between SWM atlas of Román et al. [2017] and the ARCHI SWM atlas. Even though all the clusters of Román et al. [2017] has been found in the new ARCHI atlas, some cluster presents a correspondence 1 to 1 between atlases while others has been found as a part into bigger clusters or made up of smaller cluster of the new atlas

	B.2 Chapter 6. HCP short fiber bundles atlas											
	B.2.1 Section 6.2 B.2.1.1 HCP atlas	lh PoC PreC 1i	lh CMF Op 0i	lh PoC SM 0i	lh ST ST 0i				lh PreC PreC 0l	lh LO LO 2l	lh LO LO 0i		rh IP LO 0r	rh LOrF LOrF 0i	rh PreC SM 0i				rh SP SP 0r	rh PoC PreC 3i	rh PreC SM 1i	rh CMF Op 0i	rh MT MT 1i
		lh Op SF 0i	lh MT ST 0i	lh RoMF RoMF 1i	lh PreC SM 0i	lh SM SM 1i			lh IT IT 0l	lh MT MT 1l	lh PreC SM 1i		rh PoC PoC 1r	rh IP SP 0i	rh PoC PreC 0i	rh RoMF RoMF 0i			rh RoMF RoMF 1r	rh SP SP 0i	rh MT MT 0i	rh LO LO 0i	rh PoC PreC 2i	rh SM SM 1i
		lh PoC PreC 3i	lh IP SP 0i	lh SM SM 2i	lh Fu Fu 0i	lh RoMF RoMF 0i			lh Fu Fu 1l	lh PreCu PreCu 0l	lh MT MT 0i	lh Tr RoMF 0i	rh RoMF RoMF 0r	rh PreC SF 0i	rh SM SM 0i	rh RoMF SF 0i			rh RoMF SF 0r	rh LOrF LOrF 1r	rh PoC PreC 1i	rh MT ST 0i	rh PoC SM 0i	rh LO LO 1i
		lh PreC SF 0i	lh Fu IT 0i	lh Tr SF 0i	lh MT MT 1i	lh RoMF SF 0i	lh PoC PreC 0i		lh SF SF 0l	lh Cu Lg 0l	lh CMF PreC 0i	lh CMF PreC 1i	rh Tr Ins 0r	rh Tr SF 1r	rh SM SM 2i	rh Tr RoMF 0i			rh SF SF 2r	rh SF SF 1r	rh CMF PreC 0i	rh Fu IT 0i	rh RoMF RoMF 1i	rh Fu Fu 0i
		Clusters 1 to 1 lh PreC Ins 0l	lh CMF CMF 0i	lh RoMF SF 1i	lh PoC PreC 2i	lh LO LO 1i	Cluster as part lh LOrF LOrF 0i	of a bigger one	Cluster made up lh IT IT 1l	of smaller clusters lh ST ST 1l	lh SP SP 0i	lh SM SM 0i	Clusters 1 to 1 rh Tr Tr 0r	rh IP IP 0r	rh Tr SF 0i	rh ST ST 0i	Cluster as part rh PoC PreC 1r	of a bigger one	Cluster made up rh MT MT 0r	of smaller clusters rh PreCu PreCu 0r	rh Op SF 0i	rh CMF CMF 0i	rh RoMF SF 1i	rh CMF PreC 1i
						Left	hemisphere									Right	hemisphere						

  TABLE B.5: Bundles of the HCP short bundles atlas from the left-hemisphere between 20mm and 85mm length Continued on next page Table B.5 -Continued from previous page Continued on next page Table B.6 -Continued from previous page Table B.6 -Continued from previous page Continued on next page Table B.6 -Continued from previous page

	Bundle Bundle Bundle	Number Length Linkage N subjects Number Length Linkage N subjects Bundle Number Length Linkage N subjects counterpart counterpart Number Length Linkage N subjects counterpart	counterpart
		of curves of curves of curves	distance per bundle distance per bundle of curves distance per bundle ? ? distance per bundle ?	?
	lh LO-LO 8 rh LOF-Ins 1 rh MOF-ST 2 246 355 rh PoC-PoC 1 82	32.11 37.43 298 26.08	8.73 9.08 68.06 9.59	45 55 9.95 38	-lh LOF-Ins 2 40 -	-
	lh LO-LO 9 rh LOF-Ins 2 rh MOF-ST 3 220 113 rh PoC-PoC 2 137	34.67 26.41 303 43.37	11.72 8.37 61.67 9.21	54 44 16.14 50	rh LO-LO 12 lh LOF-Ins 1 50 lh RAC-ST 1 lh PoC-PoC 5 2
	lh LOF-Ins 1 rh LOF-LOF 1 1 rh MT-MT 1 51 398 rh PoC-PoC 3 385	24.57 62.97 166 42.13	7.66 10.17 49.54 12.14	36 51 12.36 53	rh LOF-Ins 2 lh LOF-LOF 11 54 lh MT-MT 14 lh PoC-PrC 5
	lh LOF-Ins 2 rh LOF-LOF 1 2 rh MT-MT 10 109 176 rh PoC-PoC 4 121	34.47 53.25 106 30.69	8.18 9.41 54.42 8.64	46 44 24.40 48	rh LOF-Ins 1 -51 lh PoC-PoC 1	-
	Bundle lh LOF-LOF 1 rh LOF-LOF 2 rh MT-MT 11 Number Length Linkage N subjects 414 22.68 7.21 57 230 32.63 9.58 41 117 38.43 9.93 rh PoC-PoC 5 127 44.82 10.26 41 of curves distance per bundle lh LOF-LOF 10 149 29.11 12.05 38 rh LOF-LOF 3 349 53.16 16.00 55 rh MT-MT 2 95 23.46 16.63 rh PoC-PoC 6 362 46.79 9.27 55 lh CAC-CAC 1 448 27.48 7.97 52 lh LOF-LOF 11 547 53.09 10.32 57 rh LOF-LOF 4 325 36.40 9.26 48 rh MT-MT 3 76 42.67 13.91 rh PoC-PoC 7 163 45.68 11.78 48 lh CAC-CAC 2 396 32.35 10.64 56 lh LOF-LOF 2 1271 37.57 12.29 61 rh LOF-LOF 5 168 22.37 7.63 38 rh MT-MT 4 193 42.91 10.37 rh PoC-PrC 1 219 33.45 7.96 46 lh CAC-MOF 1 304 70.68 11.27 43 lh LOF-LOF 3 81 25.12 8.82 43 rh LOF-LOF 6 178 29.76 9.01 47 rh MT-MT 5 106 43.05 10.65 rh PoC-PrC 2 1190 63.47 9.29 51 lh CAC-PoCi 1 109 42.04 9.41 44 lh LOF-LOF 4 74 22.50 7.57 46 rh LOF-LOF 7 300 33.05 10.17 44 rh MT-MT 6 208 66.02 14.00 rh PoC-PrC 3 1 1728 37.57 7.98 56 lh CAC-PrCu 1 160 58.90 9.22 42 lh LOF-LOF 5 165 31.92 8.33 50 rh LOF-LOF 8 280 56.96 9.49 53 rh MT-MT 7 275 54.52 12.58 rh PoC-PrC 3 2 527 32.15 7.71 51 lh CAC-RAC 1 203 34.49 11.04 38 lh LOF-LOF 6 125 23.69 18.19 51 rh LOF-LOF 9 223 61.07 12.98 49 rh MT-MT 8 87 26.13 9.50 rh PoC-PrC 4 1 345 40.48 8.73 45 lh CAC-SF 1 399 29.28 9.95 59 lh LOF-LOF 7 89 32.63 10.32 40 rh LOF-MOF 1 106 24.28 7.46 47 rh MT-MT 9 115 30.65 16.73 rh PoC-PrC 4 2 238 23.16 7.17 50 lh CAC-SF 2 808 43.47 11.69 67 lh LOF-LOF 8 162 56.47 10.06 42 rh LOF-MOF 2 372 38.75 10.89 55 rh MT-ST 1 426 68.99 9.73 rh PoC-SM 1 70 28.18 7.51 39 lh CAC-SF 3 260 37.69 14.29 59 lh LOF-LOF 9 157 31.79 9.51 45 rh LOF-MOF 3 572 40.10 10.41 55 rh MT-ST 2 359 29.85 12.26 rh PoC-SP 1 1 423 43.03 8.62 56 lh CAC-SF 4 211 43.70 10.08 38 lh LOF-MOF 1 80 26.68 9.38 47 rh LOF-MOF 4 107 23.58 16.08 50 rh MT-ST 3 399 64.07 8.92 rh PoC-SP 1 2 112 34.05 8.85 46 lh CAC-SF 5 140 48.55 9.64 38 lh LOF-MOF 2 199 53.16 13.18 46 rh LOF-Or 1 154 29.51 8.43 40 rh MT-ST 4 325 50.30 20.61 rh PoC-SP 2 363 31.72 8.86 49 lh CMF-CMF 1 320 34.84 7.59 56 lh LOF-Or 1 126 51.27 11.19 41 rh LOF-Or 2 331 49.63 10.18 38 rh MT-ST 5 199 54.36 19.99 rh PoC-SP 3 238 43.78 9.49 44 lh CMF-CMF 2 1 668 32.12 8.36 57 lh LOF-RAC 1 159 24.07 18.82 56 rh LOF-Or 3 262 61.57 11.87 38 rh Op-Op 1 1 492 31.62 11.29 rh PoC-SP 4 727 66.71 11.35 57 lh CMF-CMF 2 2 113 28.38 8.68 41 lh LOF-ST 1 500 51.33 8.53 51 rh LOF-ST 1 1 243 48.60 8.34 44 rh Op-Op 1 2 67 28.53 7.63 rh PoCi-PrCu 1 194 30.10 8.41 46 lh CMF-CMF 3 272 27.76 9.07 42 lh LOF-ST 2 505 57.25 13.80 48 rh LOF-ST 1 2 113 43.68 8.51 41 rh Op-Op 2 140 29.83 9.18 rh PoCi-PrCu 2 463 43.87 8.84 46 lh CMF-CMF 4 544 38.13 9.07 58 lh LOF-ST 3 402 73.29 10.30 52 rh LOF-ST 2 1 286 72.01 23.63 44 rh Op-Op 3 331 28.50 8.40 rh PoCi-RAC 1 295 80.18 12.07 50 lh CMF-CMF 5 324 32.25 9.83 54 lh Li-Li 1 125 24.05 9.78 58 rh LOF-ST 2 2 182 50.96 13.52 41 rh Op-PrC 1 1 578 42.24 8.70 rh PrC-Ins 1 306 58.96 13.29 46 lh CMF-CMF 6 208 44.60 11.24 46 lh Li-Li 2 350 24.11 8.91 53 rh LOF-ST 3 247 56.76 11.39 45 rh Op-PrC 1 2 366 36.06 8.15 rh PrC-PrC 1 223 39.79 9.55 40 lh CMF-CMF 7 327 39.54 8.75 50 lh Li-Li 3 444 33.85 10.78 64 rh Li-Li 1 94 41.09 13.58 40 rh Op-PrC 2 140 36.48 8.47 rh PrC-PrC 2 323 39.19 9.01 43 lh CMF-CMF 8 182 30.85 8.94 44 lh Li-Li 4 229 39.93 13.65 52 rh Li-Li 2 159 23.92 8.69 40 rh Op-PrC 3 403 49.12 10.58 rh PrC-PrC 3 1 658 44.84 9.37 57 lh CMF-Op 1 285 51.54 10.72 45 lh Li-Li 5 189 38.86 12.15 48 rh Li-Li 3 89 23.06 9.82 40 rh Op-PrC 4 84 58.96 13.29 rh PrC-PrC 3 2 218 30.66 7.72 48 lh CMF-PoC 1 184 68.06 13.81 39 lh Li-Li 6 157 42.73 11.94 46 rh Li-PH 1 179 22.95 8.88 40 rh Op-SF 1 952 73.73 10.20 rh PrC-PrC 4 366 30.03 7.95 54 lh CMF-PrC 1 163 30.17 8.50 45 lh Li-Li 7 437 27.55 14.22 47 rh Li-PeCa 1 118 28.58 9.57 47 rh Or-Ins 1 674 39.73 7.44 rh PrC-PrC 5 173 47.42 11.13 48 lh CMF-PrC 2 196 51.09 8.60 50 lh Li-PH 1 216 32.31 12.34 48 rh MOF-MOF 1 299 25.52 7.79 50 rh PC-PoC 1 145 23.58 9.24 rh PrC-SF 1 266 27.87 8.62 54 lh CMF-PrC 3 1283 41.61 9.34 57 lh Li-PH 2 188 48.98 10.42 39 rh MOF-MOF 2 144 25.58 8.36 44 rh PC-PoCi 1 322 36.38 6.01 rh PrC-SF 2 1 319 48.97 10.35 57 lh CMF-RMF 1 822 42.51 10.96 49 lh Li-PrCu 1 77 55.29 13.69 37 rh MOF-PH 1 74 36.69 7.09 45 rh PC-PoCi 2 105 31.09 6.56 rh PrC-SF 2 2 249 30.10 8.65 51 lh CMF-RMF 2 752 50.29 10.62 54 lh MOF-MOF 1 307 27.81 14.15 50 rh MOF-RAC 1 202 48.19 9.59 48 rh PC-PoCi 3 227 39.50 6.47 rh PrC-SF 3 549 75.72 9.34 42 lh CMF-RMF 3 84 35.93 11.27 40 lh MOF-MOF 2 215 27.28 8.23 53 rh MOF-RAC 2 135 38.22 8.81 37 rh PC-PrCu 1 129 50.11 10.26 rh PrCu-PrCu 1 371 32.21 8.90 55 lh MOF-MOF 3 450 31.35 11.90 53 rh MOF-ST 1 220 73.47 9.93 44 rh PH-PrCu 1 225 31.81 9.86 rh PrCu-PrCu 2 1 582 34.58 8.73 51	-lh LOF-LOF 3 43 lh PoC-PoC 2 counterpart --57 -? rh LOF-LOF 1 1 lh LOF-LOF 9 39 lh PoC-PoC 5 1 --lh LOF-LOF 4 41 lh MT-MT 3 ---lh PoC-PrC 1 1 rh CAC-CAC 3 rh LOF-LOF 2 lh LOF-LOF 7 38 -lh CMF-PoC 1 -rh LOF-LOF 5 lh LOF-LOF 5 42 -lh PoC-PrC 3 1 -rh LOF-LOF 7 -57 lh MT-MT 9 lh PoC-PrC 1 2 rh CAC-PrCu 2 --40 -lh PoC-PrC 2 -rh LOF-LOF 6 lh LOF-RAC 1 44 lh IT-ST 1 lh PoC-PrC 6 rh CAC-SF 2 --46 -lh PoC-SM 1 rh CAC-SF 4 rh LOF-LOF 4 lh LOF-MOF 2 53 lh MT-ST 3 lh SP-SP 4 rh CAC-SF 1 rh LOF-MOF 4 lh LOF-MOF 1 47 ---rh LOF-MOF 3 -62 -lh PoC-PoC 7 -rh LOF-Or 2 lh LOF-Or 1 60 --rh CMF-CMF 6 rh LOF-MOF 1 -59 lh CMF-RMF 3 -rh CMF-CMF 1 rh LOF-ST 1 2 -42 -lh PrCu-PrCu 6 rh CMF-CMF 1 rh LOF-ST 3 lh LOF-ST 1 51 lh Op-Op 5 lh PoCi-PrCu 1 rh CMF-CMF 9 --43 lh Op-Op 1 ---lh ST-Ins 1 51 lh Op-PrC 1 -rh CMF-CMF 5 rh Li-Li 2 lh LOF-ST 2 47 lh Op-Op 2 lh PrC-PrC 1 rh CMF-CMF 2 rh LO-Li 2 lh Li-Li 4 45 --rh CMF-SF 2 1 rh Li-Li 1 lh Li-Li 2 52 lh PrC-PrC 4 lh PrC-PrC 3 rh CMF-CMF 8 -lh Li-Li 7 46 --rh CMF-Op 1 --48 lh Op-SF 1 lh PrC-SF 2 rh PoC-PrC 2 rh Li-Li 3 lh Cu-Li 1 48 lh Or-Ins 1 -rh CMF-CMF 5 rh PH-PrCu 1 lh MOF-MOF 1 52 lh PC-PoC 1 lh PrC-SF 1 rh CMF-PrC 1 -lh MOF-MOF 3 43 lh PC-PoCi 2 -rh CMF-PrC 2 rh Cu-PrCu 1 -40 --rh CMF-RMF 2 rh MOF-MOF 1 -41 lh PC-PoCi 1 lh PrC-SF 3 --lh MOF-RAC 1 45 lh PC-PrCu 1 lh PrCu-PrCu 7 rh Op-Op 1 1 rh MOF-MOF 2 -45 lh Li-PH 1 -
			Continued on next page Continued on next page		
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	Comparison Comparison	Comparison Comparison				Bundles Bundles	Bundles Bundles
		lh CAC-PrCu 1 of smaller lh CMF-RMF 1 lh Li-PH 1 rh MOF-ST 3 rh SF-SF 11 rh IC-PrCu 3	lh IP-SP 3 lh Fu-Fu 3 rh PoCi-SF 1 rh SM-SM 3	lh SF-SF 5 lh En-IC 1 rh LO-LO 1 rh SM-Ins 2	lh PC-PC 1 rh IT-IT 6
			lh IP-MT 3 clusters rh Op-SF 1	lh SP-SP 2 lh IC-LOF 1 rh Tr-Ins 1 rh Cu-Li 1	lh CAC-SF 2 lh IC-PoCi 2 lh MOF-MOF 1 lh En-PH 1 rh PoC-PrC 5 rh RMF-RMF 6	lh IP-LO 1
	lh CMF-CMF 1 lh PoC-Ins 1 lh IT-IT 1 rh En-PH 1 rh IP-IT 2 Cluster made up rh Fu-Fu 1	lh RMF-RMF 3 lh LOF-RMF 1 lh CMF-PrC 2 lh Op-PrC 2 lh LOF-LOF 1 rh LOF-Or 1 rh IP-SP 1 rh Op-PrC 3 rh SF-SF 1 rh SM-SM 1
		lh MT-ST 2 rh CAC-SF 1 lh PoC-SM 1 lh PC-PoCi 1 rh PrC-PrC 1 of smaller rh Tr-Ins 2	lh IP-IT 1 lh Ins-Ins 1 rh Cu-Li 4 rh PoC-Ins 1	lh En-PH 2 lh Fu-LO 1 rh IC-Li 1 rh PoC-PrC rh RMF-RMF 1 lh PoCi-PrCu 3
			lh PrC-PrC 1 rh MOF-MOF 4 lh IC-PoCi 1 lh LOF-RAC 1 lh ST-SM 1 Short lh LOF-LOF 4 lh MOF-RAC 1 lh PrCu-PrCu 1 lh PoC-SP 2 rh IT-IT 1 rh IP-IP 2 rh CMF-Op 1 clusters rh Op-PrC 2 rh SP-SM 1 rh CAC-PrCu 1 rh Op-Ins 1
			lh PoCi-PrCu 1 lh PrCu-PrCu 5 lh MOF-SF 2 rh ST-Ins 1 rh PrCu-SF 2 rh PoCi-PrCu 3	lh CMF-PrC 3 lh SF-SF 3 rh RMF-SF 1 rh MT-ST 2 rh PoC-PrC lh SP-SM 1 lh SM-Ins 1 rh MOF-ST 2	lh PoC-SM 2 rh MT-MT 3
			lh Op-SF 1 rh IP-SP 2	lh MT-ST 3 lh PoCi-PrCu 2 rh PrCu-PrCu 5 lh RMF-RMF 6 lh IT-IT 2 rh Cu-Li 3 rh Fu-Fu 3 rh SF-SF 4	lh IP-IP 2 lh PrCu-PrCu 4 lh RMF-RMF 4 rh LOF-LOF 5 rh ST-ST 3 rh SF-SF 5
			lh RAC-SF 1 lh CAC-CAC 1 lh LO-LO 5 rh ST-Ins 2 rh MOF-MOF 3 rh Fu-IT 1 rh IC-PrCu 1 lh Op-SF 2 lh LO-Li 1 rh ST-ST 1	lh IT-LO 1 rh SF-SF 7 rh ST-ST 4	rh IP-IT 1
	lh PoC-PrC 2 Clusters not in rh MT-ST 4	lh LOF-ST 1 lh RMF-Ins 1 rh IT-IT 2 rh ST-SM 1	lh En-IC 2 lh ST-Ins 2 rh IP-MT 2	lh En-Li 1 lh MOF-SF 1 rh IP-MT 1	lh PoC-PoC 2
	lh IP-IP 3 HCP rh CMF-CMF 2 rh LOF-MOF 1 lh ST-ST 2 lh ST-Ins 3 lh LOF-PoC 1 lh CMF-PrC 1 rh LOF-LOF 3 Clusters not in rh PrC-SP 1 rh CAC-SF 5	lh LOF-LOF 6 lh IC-MOF 1 lh PH-RAC 1 rh RAC-ST 1 rh Li-ST 1 rh RMF-SF 6
	Cluster as part	lh LOF-MOF 1 lh PrC-SM 2 lh PH-PH 1 rh PrC-SP 2 rh Li-PH 1 HCP rh IC-PrCu 4	lh PoC-PoCi 1 lh RMF-SF 5 lh MOF-RAC 2 lh PH-PrCu 3 rh PoC-SM 3 rh Fu-LO 2 rh RAC-SF 4 rh PC-PC 1	lh LOF-ST 2 rh ST-TT 1
	of a bigger one	lh PoC-PrCu 1 rh IC-LOF 1		lh Fu-Fu 2 rh Cu-IC 2 rh IP-PrC 1	lh MT-MT 1 rh ST-ST 2 2 rh Fu-LO 1	lh Li-Li 2 rh MOF-ST 1 rh RMF-SF	rh Cu-IC 1
			lh CAC-PoCi 2 rh LOF-LOF 7	lh PoC-PrC 3 rh PoC-SM 1 rh PrC-SM 1	lh CAC-SF 1 rh PrC-RMF 1 rh LO-Li 1	lh ST-ST 1 rh ST-Ins 3 rh Fu-SP 1	rh IP-PoC 1
			lh IP-SP 1 rh PrCu-SF 1 1 rh LOF-SF 1 lh PoCi-PrC 1 rh Op-SF 2	lh Cu-Li 1 rh Op-Ins 2 rh ST-ST 5	lh CMF-CMF 4 rh RMF-SF 7 rh IP-PrC 2 rh PH-PH 1
	lh PrCu-PrCu 3 lh LOF-SF 1 lh RAC-SF 3 lh LOF-RMF 2 lh Tr-RMF 1 rh RMF-SF 5 rh MT-MT 4 rh IC-PrCu 2 rh PoC-PrC 1 rh PoC-PoCi 1 lh LOF-Ins 1 lh PC-SF 1 lh RAC-ST 1 lh Op-Ins 2 lh RMF-SF 3 rh PC-PC 2 rh PoC-PoC 1 1 rh PrC-PrC 2 rh LOF-Ins 2 rh SP-SP 2 rh IT-PrCu 1 lh Fu-IT 1 lh Op-Op 2 lh CAC-SF 4 lh LO-LO 1 lh PoC-PrC 5 Bundles rh LOF-ST 3 rh PH-PrCu 1 rh LOF-Ins 1 rh CAC-SF 4 rh SF-SF 6 rh MOF-SF lh Or-Ins 2 lh SM-SM 1 lh PH-PrCu 1 lh PoC-PrC 4 lh RMF-RMF 5 rh CAC-SF 3 rh SF-SF 9 rh IT-IT 5 rh RMF-RMF 7 rh SP-ST 1 TABLE B.8: Comparison rh LO-SP 1 rh SF-SF 10 rh RMF-SF 4 rh En-Li 2 rh PoC-PrCu 1	rh Li-Li 1 rh Tr-SF 1
	lh CMF-CMF 2 Clusters 1 to 1 rh En-LOF 1		lh IC-ST 1 rh LO-LO 5 rh CAC-RAC 1 rh CMF-CMF 1 lh En-Li 2 rh LO-LO 3	lh MOF-PH 1 rh En-En 1 rh MOF-RAC 1 rh Cu-PeCa 1
			lh PoCi-RAC 1 rh CAC-IC 1		lh IP-IP 1 rh MT-ST 1 rh IC-PH 1	lh PoC-SP 1 rh IT-PH 2 rh PoCi-PrCu 1	lh Or-Ins 1 rh IP-SM 1 rh MT-MT 6	rh IP-SP 3
			lh PrC-SM 1 rh MOF-MOF 1 rh MOF-MOF 2 lh CAC-PoCi 1 rh CMF-PrC 1 rh PeCa-PeCa 1 lh SM-SM 2 rh LOF-ST 1	lh SF-SF 7 rh SF-SF 8 rh CAC-SF 2	rh LO-SP 2
			lh MT-MT 3 rh CAC-RAC 2 rh PrCu-PrCu 2 lh CMF-SF 2 rh SM-Ins 3 rh PC-PoCi 1 lh RAC-RAC 2 rh Li-Li 2	lh LO-LO 2 rh SP-SP 1 rh IT-MT 1	rh PoC-PrC 3
			lh PoC-SM 3 rh PrCu-PrCu 3 rh RMF-RMF 4 lh Cu-Cu 1 rh Op-Op 1 rh CMF-PrC 2 rh Fu-MT 1	rh En-IT 1 rh En-IC 2	rh IP-SP 4
	Cluster as part	lh MOF-PrC 1 rh PC-SF 2	lh PH-PoC 1 rh PoC-PrC 2 rh PrCu-SF 1 2 rh RMF-RMF 5 lh LO-LO 4 rh SF-SF 2 rh PrC-Ins 1 lh CAC-RAC 1 rh PrCu-PrCu 1 rh Tr-Ins 3
	of a bigger one	lh MT-MT 2 rh En-ST 1	lh RMF-RMF 2 rh LOF-LOF 1 rh PoCi-PrC 1	lh CAC-CAC 2 rh Li-Li 3 rh SM-SM 2 lh PrC-PrC 2 rh CMF-SF 1 rh PoC-PoC 3 rh Ins-Ins 1
			lh CMF-CMF 3 rh PoC-PoC 1 2 rh CAC-PoCi 1 lh En-LOF 1 lh SF-SF 4 rh PoC-SP 2 rh PrC-SF 1 rh PoC-SP 1	lh RMF-SF 2 rh IT-LO 1 rh LO-LO 2	rh Cu-Cu 1
			lh PrCu-PrCu 2 rh MOF-PH 1 lh LOF-LOF 5 rh PoCi-PrCu 2 lh ST-ST 3 rh MT-MT 2 rh Op-Tr 1 rh LOF-LOF 6 rh LOF-LOF 8 lh Cu-IC 1 rh LOF-LOF 4 rh LOF-RAC 1
			lh SF-SF 2 rh IT-PH 1				lh RMF-SF 4 rh Tr-Tr 1 rh IC-IC 1	lh RMF-SF 1 rh Op-Tr 2 rh PoC-PrC 6 lh IP-SP 2 rh Cu-Li 2 rh LO-LO 6	rh SF-SF 12
			lh IT-PH 1 rh MT-ST 3		lh CAC-SF 3 rh PoC-PrC 7 rh MT-MT 1	lh PoCi-SF 1 rh En-IC 1 rh CMF-SF 2 lh Ins-Ins 2 rh Ins-Ins 2 rh LOF-LOF 2 rh MOF-SF 1
			lh Cu-IC 2 rh Li-PH 2			lh IC-PoCi 3 rh Cu-Li 5 rh LOF-MOF 3 rh RAC-SF 3 lh IP-SP 4 rh IT-LO 2	lh Op-PrC 1 rh IT-IT 4 rh SM-Ins 1 1	rh ST-SM 2
			lh LOF-MOF 2 rh LOF-MOF 2 rh RMF-RMF 2 lh CMF-PoC 1 lh MT-SM 1 rh Fu-Fu 2 rh RMF-SF 2 rh RAC-SF 1	lh IT-SM 1 rh SF-SF 3 rh LOF-RMF 1 rh PoCi-PoCi 1
			lh LOF-LOF 2 rh Tr-RMF 1		lh LOF-LOF 3 rh Op-PrC 1 rh LO-LO 4	lh PrC-SF 1 rh PC-PC 3 rh PC-PrCu 1	lh En-En 1 rh RAC-SF 2 rh MT-MT 7	rh IT-IT 3
			lh Cu-Cu 3 rh ST-ST 6			lh RAC-RAC 1 rh IP-IP 3 rh PH-ST 1	lh RAC-SF 2 rh ST-ST 7 rh PoC-PoC 2	lh LOF-RAC 2 rh IT-IC 1 rh PrCu-PrCu 4 rh Ins-Ins 3
			lh SF-SF 6 rh SM-SM 4 rh PoCi-RAC 1 rh RMF-RMF 3	rh IC-ST 1 rh En-PrCu 1	rh PoC-PrC 9 rh PrC-SF 2	rh ST-ST 2 1
	Cluster made up	lh Li-Li 1 rh MOF-RAC 2	lh Op-Op 3 rh IP-IP 4 rh PC-SF 1	lh Tr-Ins 1 rh En-Li 1 rh SP-SP 3	lh PoC-PoC 1 rh PoC-SM 2 rh LOF-ST 2 rh IP-IP 1

TABLE B . 9 :
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	Hemisphere		Bundles		
	Left	lh˙CAC-MOF˙1	lh˙CAC-SF˙1	lh˙CAC-SF˙3	lh˙CAC-SF˙4
		lh˙CAC-SF˙5	lh˙CMF-CMF˙2˙1 lh˙CMF-CMF˙2˙2	lh˙CMF-CMF˙3
		lh˙CMF-CMF˙6	lh˙CMF-CMF˙7	lh˙CMF-CMF˙8	lh˙CMF-PrC˙1
		lh˙CMF-RMF˙2	lh˙CMF-RMF˙3	lh˙CMF-SF˙1˙1	lh˙CMF-SF˙1˙2
		lh˙CMF-SF˙2	lh˙Cu-Cu˙1	lh˙Cu-Cu˙2˙2	lh˙Cu-Cu˙3
		lh˙Cu-Cu˙4	lh˙Cu-LO˙1	lh˙Cu-LO˙2	lh˙Cu-Li˙2
		lh˙Cu-Li˙6	lh˙Cu-PeCa˙2	lh˙En-PH˙1	lh˙Fu-Fu˙2
		lh˙Fu-Fu˙3	lh˙Fu-Fu˙4	lh˙Fu-Fu˙6	lh˙Fu-Fu˙8
		lh˙Fu-IT˙1	lh˙Fu-IT˙3	lh˙Fu-PH˙1	lh˙IC-PrCu˙1
		lh˙IP-IP˙1	lh˙IP-IP˙2	lh˙IP-IP˙3˙1	lh˙IP-IP˙4
		lh˙IP-IP˙7	lh˙IP-IP˙8	lh˙IP-IP˙9	lh˙IP-LO˙1
		lh˙IP-SM˙1	lh˙IP-SP˙1˙1	lh˙IP-SP˙1˙2	lh˙IP-SP˙3
		lh˙IP-SP˙4	lh˙IP-ST˙1	lh˙IT-IT˙1	lh˙IT-IT˙2

Human Connectome project homepage https://www.humanconnectome.org/

Human Brain Project homepage https://www.humanbrainproject.eu/en/ xxi

HCP data available at https://db.humanconnectome.org/

https://hdbscan.readthedocs.io/en/latest/index.html

Human Connectome project homepage http://www.humanconnectomeproject.org/

Human Brain Project homepage https://www.humanbrainproject.eu/en/

(A) Comparison with Oishi et al. [2008](2.26) (B) 25 short association fibers only in Zhang et al. [2010] report

(A) Spin echo pulse sequence image (B) Gradient echo sequence image

https://hdbscan.readthedocs.io/en/latest/index.html

Scikit-learn homepage https://scikit-learn.org/

HCP homepage http://www.humanconnectomeproject.org/

HCP data available at https://db.humanconnectome.org/

(A) Intragyral connection of the Cuneus in ARCHI (B) Intragyral connections of the Cuneus in HCP

Brainvisa homepage http://brainvisa.info/web/index.html

Brainvisa homepage http://brainvisa.info/web/index.html

(A) Bundles of left SM (B) Bundles of right SM

Continued on next page
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Table B.9 -Continued from previous page Hemisphere Bundles lh˙IT-IT˙3 lh˙IT-IT˙7 lh˙IT-LO˙1 lh˙IT-MT˙2 lh˙IT-MT˙3 lh˙IT-PH˙2 lh˙LO-LO˙10 lh˙LO-LO˙11 lh˙LO-LO˙12 lh˙LO-LO˙2 lh˙LO-LO˙3 lh˙LO-LO˙4 lh˙LO-LO˙5 lh˙LO-LO˙7 lh˙LO-LO˙8 lh˙LO-LO˙9 lh˙LOF

Table B.9 -Continued from previous page Hemisphere Bundles rh˙Cu-LO˙2 rh˙Cu-Li˙1 rh˙Cu-PrCu˙3 rh˙En-MOF˙1˙2 rh˙En-MOF˙2 rh˙En-PH˙1 rh˙Fu-Fu˙2 rh˙Fu-Fu˙3 rh˙Fu-Fu˙4 rh˙Fu-Fu˙5 rh˙Fu-IT˙1 rh˙Fu-IT˙2 rh˙Fu-PH˙1 rh˙IC-PrCu˙1 rh˙IP-IP˙4 rh˙IP-IP˙6 rh˙IP-IP˙7 rh˙IP-IT˙1 rh˙IP-MT˙2 rh˙IP-SM˙1 rh˙IP-SP˙1 rh˙IP-SP˙2 rh˙IP-SP˙3 rh˙IP-SP˙6 rh˙IT-IT˙1 rh˙IT-IT˙2 rh˙IT-IT˙3 rh˙IT-IT˙4 rh˙IT-IT˙6 rh˙IT-LOF˙1 rh˙IT-LO˙2 rh˙LO-LO˙1 rh˙LO-LO˙13 rh˙LO-LO˙2 rh˙LO-LO˙3 rh˙LO-LO˙4 rh˙LO-LO˙7 rh˙LO-LO˙9 rh˙LO-Li˙1 rh˙LO-Li˙2 rh˙LO-SP˙2 rh˙LOF-Ins˙2 rh˙LOF-LOF˙2 rh˙LOF-LOF˙9 rh˙LOF-MOF˙1 rh˙LOF-MOF˙2 rh˙LOF-MOF˙4 rh˙LOF-ST˙1˙1 rh˙LOF-ST˙2˙1 rh˙Li-Li˙2 rh˙MOF-ST˙3 rh˙MT-MT˙11 rh˙MT-MT˙2 rh˙MT-MT˙4 rh˙MT-MT˙6 rh˙MT-MT˙7 rh˙MT-MT˙8 rh˙MT-ST˙4 rh˙Op-Op˙1˙2 rh˙PC-PoC˙1 rh˙PC-PoCi˙2 rh˙PC-PrCu˙1 rh˙PoC-PoC˙1 rh˙PoC-PoC˙4 rh˙PoC-PoC˙7 rh˙PoC-PrC˙4˙1 rh˙PoC-SP˙1˙1 rh˙PoC-SP˙3 rh˙PoC-SP˙4 rh˙PrC-PrC˙1 rh˙PrC-PrC˙2 rh˙PrC-PrC˙3˙2 rh˙PrC-PrC˙5 rh˙PrC-SF˙2˙1 rh˙PrC-SF˙2˙2 rh˙PrCu-PrCu˙1 rh˙PrCu-PrCu˙2˙2 rh˙PrCu-PrCu˙3 rh˙PrCu-PrCu˙4 rh˙RAC-RAC˙1 rh˙RMF-RMF˙12 rh˙RMF-RMF˙15 rh˙RMF-RMF˙3 rh˙RMF-RMF˙6 rh˙RMF-RMF˙7 rh˙RMF-RMF˙8 rh˙SF-SF˙10 rh˙SF-SF˙13 rh˙SF-SF˙15 rh˙SF-SF˙17 rh˙SF-SF˙3˙2 rh˙SF-SF˙5 rh˙SF-SF˙8 rh˙SM-SM˙3 rh˙SM-SM˙4 rh˙SM-SM˙7 rh˙SM-SM˙8 rh˙SP-SP˙1 rh˙SP-SP˙3 rh˙ST-ST˙1

Appendix A -Background

This appendix contains detailed information of the firt part of this thesis (chapters 2, 3 and 4).

Appendix B -Short fiber bundles atlases

This appendix contains detailed information of the second part of this thesis (chapters 5 and 6).

Pictures and tables of both short fiber atlases, obtained from the ARCHI and HCP database are presented.

Appendix C -Related publications

This appendix enumerates the publications and the participation in conferences of the author arising from this thesis.

Adaptive hierarchical clustering

Iterate until convergence of the linkage-distance per cluster and the number of them. For all the A' centerlines with the same label than A, execute recursively until no element remains to be evaluated :

Look for all the neighbors of A' in the matrix of distances, with d MDA < d A :

Assign the same label of A to all of them.

Update d A with each neighbor. The cluster distance will tend to decrease, in accordance with the linkage-distances of the nearest neighbors.

Atlas comparison

We performed a comparison between the ARCHI atlas and the previous ones [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF], obtained from the same database. We used a modified version of the function used to compare the bundles of the atlas after the clustering process in both groups of subjects (see section 5.2.3.4). This process was realized before the labellisation, in the Talairach space, and for this reason we refer in this subsection to the bundles of our atlas in terms of clusters.

Althought some of the bundles of those past atlas differ in size from the new one, all of them were found to some extent in the new richer atlas. Some have a direct correspondence "One to one", this means exactly the same bundle was found in both atlases. This was the case of 35 bundles from the left-hemisphere and 37 from the right-hemisphere in Guevara et al. [2017] atlas and in 24 and 19 bundles from the left and right hemispheres respectively of the [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] atlas.

In other cases, a bundle was found as "a part of a bigger one" as shown in figure 5.25A. In this case, we also found what could be a tractography error as shown in 5.25B, where bundle lh ST TT of [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] was only a part of a U-shaped bundle. In this case, as the new cluster has a different shape, the label based on the regions connected is different too. Bundles considered as "a part of a bigger one" were 8 and 9 for left and right hemispheres in the atlas of [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] and 2 and 1 bundles for left and right hemispheres in the atlas of [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF].

We also found some bundles that were "made up of more than one cluster" of the new atlas as shown in figure 5.26. This was the case of 7 and 4 bundles in [START_REF] Guevara | Reproducibility of superficial white matter tracts using diffusionweighted imaging tractography[END_REF] for left and right hemispheres respectively. In [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] atlas his number increases significantly mainly due to the nature of those bundles. As they are connecting internal regions and considering the not-sogood alignment, they tend to be bigger and with a bunch-shape. For this reason 19 bundles of the left hemisphere and 24 from the right-hemisphere were found made up to more than one cluster of our . Some bundles between atlases do not have a correspondence one to one. Image A shows bundle rh PoC-PreC 1r (in pink colour) of [START_REF] Román | Clustering of whole-brain white matter short association bundles using hardi data[END_REF] in the middle of one bigger cluster (in blue colour) of the new ARCHI atlas. In this case, we consider that rh PoC-PreC 1r is a part of cluster 271. Something similar occurs with some bundles of Guevara et al.

[2017] atlas. Image B shows bundle lh ST TT (image C) is a part of one ARCHI cluster (image D).

Bundle shapes

Most of the bundles in the HCP atlas present a well-defined shape and in general have a better definition than the ARCHI bundles. However, as it was mentioned before, it is difficult to categorize them into just a few types. All the bundle shapes described for the ARCHI atlas in the subsection 5.3.2 were identified in the HCP atlas and also some particular ones. Below, the images 6.5, 6.6, 6.10, 6.11, 6.7, 6.9 and 6.12 ilustrate the different forms of U-shaped, Vshaped, 6-shapes, C-shaped,

straight bundles, open U-shaped and curved bundles, respectively, that can be found in the HCP atlas. A. Because of the complexity and size of the datasets used, the core codes and the most computationally expensive functions were written in C and compiled with GCC version 5.4.0. The advantages of a low-level programming language allowed us to optimize the use of computational resources as memory and to speed up the execution of the code by means of parallelization with OpenMP. We also set the -O3 flag, a compiler optimization provided by GCC. This option enables many advanced features such as vectorization, inlining and loop unrolling to improve the performance.

The Tractography pipeline provides the streamlines of the tractograms in a file known as bundle. 

}

The .bundlesdata file contains the three-dimensional (3D) coordinates that make up each streamline of the tractogram. The file begins with an int32 element that indicates the number of 3D points contained in the first streamline. Then, the following elements corresponds to the float coordinates X, Y and Z of each point in the curve placed sequentially next to each other. Once the first streamline is finished, the second begins with the first element indicating the number of 3D points and then the points and so on until all the tractogram fibers are completed.

B.1.1.5 Anatomist

Anatomist is a software 
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• Labra, N., Lebenberg, J., Rivière, D., Auzias,G., Fischer, C., Poupon, F., Guevara, P., Poupon, C., Mangin, J.F. Inference of an extended short fiber bundle atlas and white matter organization.
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