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Acronyms

ANN Arti�cial Neural Network.

BWR Boiling Water Reactor.

CPU Central Processing Unit.

CR Control Rod.

EPR European Pressurized Reactor.

F Set of all approximations.

FA Fuel Assembly.

FP Fission Product.

GET Generalized Equivalence Theory.

GPU Graphic Processing Unit.

HFP Hot Full Power.

HZP Hot Zero Power.

LWR Light Water Reactor.

MH Moderator History.

MOC Method of Characteristics.

MSE Mean Square Error.

MTR Material Testing Reactor.

NPP Nuclear Power Plant.

P Plutonium history parameter.

PWR Pressurized Water Reactor.
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RAM Random Access Memory.

RKHS Reproducing Kernel Hilbert Spaces.

SH Spectral History.

SI Spectral Index.

SMR Small Modular Reactor.

TPU Tensor Processing Unit.

UO2 Uranium oxide ceramic.
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A Nucleus of atom.

Bu Burnup, power release per unit of initial heavy metal. Unit Giga-Watts-day per tonne
of heavy metal GWd/t.

CB Boron concentration.

D Di�usion coe�cient.

E Energy of neutron. Unit in electronvolt eV .

Iσ Cross section importance.

L Number of layers.

Lx Evaluation functional.

T Temperature of the medium.

Tf Fuel temperature averaged over the fuel rod. Unit in degree Celsius ◦C.

$K,~t Linear space of splines of order K and knot vector ~t.

ΠK,~ξ Linear space of piece-wise polynomials of order K and breaks vector ~ξ.

ΠK Linear space of polynomials of order K.

Σ Macroscopic cross section. Unit in 1/cm.

γ Gamma ray.

B Depletion calculation.

G Set of energy groups.

H Hilbert Space.

Hk Reproducing kernel Hilbert Space (RKHS).

I Set of specialized isotopes.

J Penalty function.

L Loss function.
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R Set of reaction types.

Sσ Support of a cross section model.

T Test set.

U Domain of cross section.

V Set of homogenized region.

X Normalized domain of cross section.

XP Sampling of the total pool of data.

Y Set of cross sections within I, R, G, V .

ν Amount of neutrons emitted per �ssion.

φ Scalar neutron �ux.

σ Microscopic cross section usually noted as σi,r,g being i the isotope, r the reaction type
and g the energy group. Unit in barns 1b =1E-24 cm2.

~ι Instantaneous state-variables.

~θ History state-variables.

~r Vector position in space.

ξ Microscopic reaction rate.

d Dimension of a cross section's domain.

k Kernel function.

k∞ In�nite multiplication factor. Unit in in pcm =1E-6.

n Number of neurons.

t Time. Unit in seconds s.

v Velocity of neutron.
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Synthèse en français: Dans les réacteurs nucléaires, une réaction de fission en chaine
est induite par les neutrons et est contrôlée pour générer de l’énergie thermique utilisée
pour la production d’électricité. Le type de réacteur le plus commun au monde est le
REP, Réacteur à Eau Pressurisée qui constitue actuellement la majorité du parc des
réacteurs nucléaires en France. Ces réacteurs sont caractérisés par l’utilisation d’eau
pour la réfrigération du cœur et la modération des neutrons, ainsi que par l’utilisation
d’uranium enrichi placé dans des crayons de combustibles eux-mêmes disposés dans des
assemblages “rectangulaires” de 17 par 17 crayons. L’énergie produite dans le cœur est
transportée (via le réfrigérant, qui reste à l’état liquide) vers les générateurs de vapeur.
L’énergie électrique est alors produite par un turbine alimentée par la vapeur produite
par les générateurs de vapeur.

Pour analyser l’état du réacteur en condition d’opérations normales et accidentelles,
l’équation du transport de Boltzmann, qui régule les changements dans la population de
neutrons, doit être résolue. Or, il s’agit d’un défi important, car c’est une équation intégro-
différentielle en 7 variables devant être résolues pour des milieux complexes de grande
dimension comme les cœurs des les réacteurs nucléaires. A cette complexité géométrique
vient s’ajouter la complexité due aux phénomènes multi-échelles des énergies des neutrons
et aux aspects multi-physique dus aux échanges avec les matériaux combustible et le
fluide modérateur (phénomènes de thermo-hydraulique, thermomécanique et neutronique
sont fortement interdépendants). Les sections efficaces, qui modélisent l’interaction entre
les neutrons et les matières, sont les paramètres clés de l’équation du transport. Leurs
valeurs varient en fonction des paramètres thermo-hydrauliques du réacteur. Pour estimer
la répartition de la puissance au sein d’un réacteur nucléaire, il est donc nécessaire de
modéliser l’interdépendance entre les phénomènes neutroniques et thermo-hydrauliques
de manière pratique et en restant modeste sur l’utilisation des moyens numériques.

Une stratégie est possible à travers un schéma de calcul déterministe, qui discrétise
l’équation du transport en espace, en énergie et en angle. La résolution des équations
du système se fait en deux deux étapes distinctes : le calcul réseau, réalisé sur un motif
de petite dimension (typiquement un assemblage), où les données de sections efficaces
sont tabulées en fonction des paramètres de fonctionnement du réacteur puis condensées
en énergie et homogénéisées en espace. Puis, dans la seconde étape, le calcul cœur,
où ces librairies de sections sont utilisées pour la simulation du système entier, avec
une discrétisation beaucoup plus grossière qui permet des calculs plus rapides. Si cela
est exécuté d’une manière correcte, un réacteur de puissance modélisé ainsi permet des
simulations précises avec un coût numérique modéré.

Les librairies des sections efficaces homogénéisées à peu de groupes d’énergies sont le
lien entre ces deux étapes de modélisation, mais aussi une des sources principales d’erreurs
dues aux approximations. Ces sections évoluent de manière relativement régulière lors des
changements d’état du réacteur, avec une dépendance d’ordre bas dans les variables prin-
cipales (comme la température et le taux de combustion du combustible, la température
du modérateur...) et sans bruit numérique. En revanche, de forts changements localisés
peuvent être observés dans certaines régions du domaine.

Cette thèse est consacrée à la modélisation des sections efficaces par de nouvelles
techniques innovantes et performantes, mais suffisamment matures pour être appliquées
aux problèmes industriels. La performance d’un modèle est principalement définie par le
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nombre de coefficients qui le caractérisent (c’est-à-dire l’espace mémoire nécessaire pour le
stocker), la vitesse d’évaluation, la précision, la robustesse par rapport au bruit numérique,
la complexité, etc. Dans les anciens travaux de modélisation, seules des sections efficaces
macroscopiques étaient modelées à travers des facteurs de correction construits d’une
manière empirique, basée sur “l’avis d’experts”. La plupart de ces exemples peuvent être
regroupés sous la dénomination d’expansions de Taylor définies par “essai et erreur”.

Au début des années 2000, la modélisation est passée à des simulations neutroniques-
thermo-hydrauliques tridimensionnelles et entièrement couplées. L’interpolation multil-
inéaire dans une grille complète a été couramment utilisée pour reconstruire les sections
efficaces, en utilisant des bibliothèques de très grande taille, afin de répondre aux exi-
gences de précision. Mais un nombre de points à croissance exponentielle est nécessaire
pour interpoler les sections lorsque l’on augmente la taille du modèle. Cela est appelé
la “malédiction de la dimensionnalité” (curse of dimensionality). Des approximations
d’ordre supérieur ou des projections dans des sous-bibliothèques spécialisées sont utilisées
pour essayer de réduire l’occupation mémoire.

Pour diminuer la taille de la libraire de sections efficaces, des méthodes de régression
ont été explorées. La principale difficulté de ces méthodologies est le coût des calculs
nécessaires pour la résolution de la quadrature intégrale qui contient les coefficients de
l’approximation. Jusqu’à un million de points de calcul sont requis pour traiter un prob-
lème de faible dimension.

La dépendance des sections efficaces aux variables d’état peut être considérée comme
la somme de fonctions de dimension relativement faible, elles présentent donc une “dimen-
sionnalité pratique réduite”. En conséquence des grilles “creuses” (sparse , c’est-à-dire non
complètes, mais régulières) ont été explorées pour l’approximation des fonctions multidi-
mensionnelles. Ceci entraîne une réduction très significative de la taille de la bibliothèque
de sections efficaces, cela même avec un espace d’approximation au premier ordre. Des es-
paces d’approximation d’ordre élevé augmentent le taux de convergence, mais nécessitent
des polynômes globaux et des discrétisations très particulières (nœuds de Tchebychev)
pour traiter le phénomène de Runge-Kutta

Les objectifs de cette thèse sont d’analyser la modélisation des sections efficaces en
utilisant différentes méthodes : les Splines avec des B-splines, les méthodes à noyaux com-
binées avec de l’apprentissage actif et des réseaux de neurones artificiels à sortie unique ou
multidiomensionelle. Ces modèles sont évalués en vue de la précision requise, d’une vitesse
d’évaluation compatible avec les standards industriels et d’une réduction des besoins de
stockage de la bibliothèque. Les splines représentent l’état de l’art dans de nombreux
codes industriels, et sont une approximation locale d’ordre supérieur. Nous proposons
les méthodes à noyau du type RKHS (Reproducing Kernel Hilbert Space) qui permet-
tent d’envisager des supports très généraux. Cette approche combinée à des techniques
d’apprentissage actif permet de choisir un support optimal de point pour l’approximation.
Cela a pour effet de diminuer la taille mémoire occupée pour l’approximation des sections
efficaces. L’approche RKHS permet une grande variété d’espaces de fonctions qui peuvent
reproduites avec un coût d’évaluation relativement réduit. Enfin, les réseaux de neurones
artificiels reconnus pour leurs capacités d’approximation de fonctions complexes peuvent
apprendre des relations directement à partir des données, ce qui permet de traiter la
totalité des sections efficaces avec un seul modèle. Ces modèles sont d’autant plus perfor-
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mants aujourd’hui car ils tirent profit de la performance des outils et des logiciels existant
aujourd’hui.

Dans cette thèse, nous nous sommes limités à l’étude d’un assemblage REP standard
de combustible UOX et nous avons analysé la dépendance des sections efficaces en fonction
de trois variables d’état : le burnup (traduisant l’usure du combustible), la température du
combustible et la concentration de bore. La taille de stockage des bibliothèques est opti-
misée en cherchant à maximiser la vitesse et la précision de l’évaluation, tout en cherchant
à réduire l’erreur de reconstruction des sections efficaces microscopiques, macroscopiques
et le facteur de multiplication infini.

La dépendance des sections efficaces peut être divisée entre les variables d’état qui
varient de manière instantanée dans le cœur, et les variables dites “historiques” qui vari-
ent lentement avec l’exposition du combustible nucléaire au flux neutronique. Même si
la plupart des modélisations ont été menées pour les variables instantanées (qui vient
du calcul du type “branch” dans le code de calcul réseau) une étude de modélisation de
variables historiques a été aussi effectuée pour les variables principales d’un REP. Dif-
férentes méthodologies de paramétrisation au premier ordre ont été réalisées, notamment
en considérant la concentration de plutonium et des variables spectrales comme le spec-
tral index ou l’histoire spectrale. Des améliorations significatives ont été trouvées. En
revanche, pour des cas où la barre de contrôle change de position pendant l’évolution, des
erreurs significatives de modélisation ont été décelées.

SPLINE : La plupart des méthodologies développées le sont pour les variables de
type instantanées. Les stratégies que nous proposons sont comparées entre elles, et à
l’interpolation multilinéaire sur une grille cartésienne qui est la méthode utilisée usuelle-
ment dans l’industrie. L’interpolation par splines représente la méthode “state-of-the-
art” dans l’industrie. Elle utilise une base de B-splines qui génère des approximations
locales d’ordre élevé. Une grille cartésienne est utilisée comme support, ce qui permet
l’utilisation de routines performante numériquement. Un traitement formel de la construc-
tion d’espaces d’approximation locaux avec les B-splines permet d’analyser les différentes
conditions de bords avec les Splines. De faibles améliorations sont obtenues en relax-
ant les conditions des dérivées sur les bords du domaine, ce qui en aide à la résolution
des problèmes d’oscillations. Néanmoins lorsque l’on augmente le nombre de dimensions,
le bénéfice d’utiliser un espace d’approximation d’ordre élevé est réduit par l’utilisation
d’une grille cartésienne

RKHS : La deuxième méthode appartient au domaine du machine learning, et en
particulière les “kernel machines”. Ces méthodes à noyaux utilisent le cadre général de
l’apprentissage machine et sont capables de proposer, dans un espace vectoriel normalisé,
une grande variété de modèles de régression ou de classification. Les méthodes à noyaux
peuvent reproduire différents espaces de fonctions en utilisant un support non structuré.
Support optimisé avec des techniques d’apprentissage actif. Les approximations sont trou-
vées grâce à un processus d’optimisation convexe facilité par “l’astuce du noyau” (kernel
trick). Le caractère modulaire intrinsèque de la méthode facilite la séparation des phases
de modélisation : sélection de l’espace de fonctions, application de routines numériques,
et optimisation du support par apprentissage actif. Différentes critères représentés par
des fonction de perte (loss function) ont été étudiés, sur les sections efficaces micro-
scopiques, macroscopiques ainsi que sur le facteur multiplicatif avec différentes métriques.
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Le meilleur compromis entre précision et performance numérique a été trouvé en privilé-
giant les sections efficaces qui contribuent le plus à la section macroscopique. L’analyse
de l’évolution de la fonction de perte a permis d’observer l’inclusion de points d’un bas
intérêt en la plupart de sections efficaces lorsque la condition de support partagé est im-
posée. En conséquence, une réduction en la taille de la librairie d’un maximum d’un ordre
de grandeur a été obtenue en faisant la construction du domaine de manière indépendant
pour chaque section efficace.

Nous avons utilisé des RKHS permettant de générer des fonctions dans des espaces de
Sobolev (fonctions continues à dérivées bornées en norme L2). Cela permet de reproduire
des approximations semblables à celles des splines sans contraintes sur le placement des
points supports. Cette propriété permet d’exploiter des grilles non cartésiennes ce qui
réduit considérablement le nombre de points nécessaires à l’approximation des sections
efficaces. L’approche par RKHS exige la résolution d’un système linéaire dense dans
notre cas. Des problèmes de conditionnement numériques sont apparus. Nous avons dû les
résoudre par des techniques de régularisation. Pour l’ensemble de ces méthodes, différentes
améliorations numériques (notamment le développent de modules en fortran compilé et
importé dans Python à travers des packages comme F2PY) ont permis l’obtention de
temps de calcul compatibles avec les standards industriels.

RÉSEAUXDE NEURONES : Les réseaux de neurones sont des méthodes d’approximation
universelles capables d’approcher de façon arbitraire des fonctions continues sans formuler
de relations explicites entre les variables. Ces « model-free mapping systems » sont ca-
pables de considérer des espaces d’entrées et de sorties de très haute dimension, sans
le besoin d’imposer des lois données par l’utilisateur et sans un surcoût computationnel
excessif. Ils utilisent les données en forme de « batch » ou en « streaming » sans change-
ment significatif de leur structure et sont capables d’exploiter les architectures modernes
de type GPU. Une fois formés avec des paramètres d’apprentissage adéquats, les réseaux
de neurones à sorties multiples (intrinsèquement parallélisables) réduisent au minimum
les besoins de stockage tout en offrant une vitesse d’évaluation élevée.

Des analyses de sensibilité ont été conduites pour les différentes options de normalisa-
tion, les paramètres d’apprentissage et les fonctions d’activation. Différentes topologies de
réseaux de neurones ont été étudiées en trouvant des systèmes qui minimisent le stockage
de chaque section efficace (en utilisant une couche cachée à 8 neurones) ou des systèmes à
2couches cachées qui maximisent le taux de convergence pendant l’étape d’apprentissage.

Ces systèmes ont été testés avec différents jeux de données pour reproduire les cas
caractéristiques trouvées dans les cas industriels. Une réduction très significative de la
taille des librairies de sections efficaces a été ainsi obtenue. Les temps d’entrainement sont
acceptables spécialement lorsque l’on considère les réseaux de neurones à double couche
qui maximisent le taux de convergence.Néanmoins, et surtout pour les jeux de données
plus petits, des phénomènes de sur-apprentissage ont été observés.

Les caractéristiques de ces systèmes d’approximation permettent une extension très
facile à un schéma de prédiction à sorties multiples. À travers des analyses de sensibilités
sur des réseaux de neurones multicouches, qui modélisent la totalité des sections efficaces
dans la librairie, un modèle unique a été obtenu. Cela permet une réduction de la taille de
la librairie de 98% et une réduction du le temps d’obtention du modèle proportionnelle à la



Glossary 19

quantité totale de sectionnes efficaces modelés. Les temps d’évaluation de ces modèles sont
compatibles avec les standards de l’industrie notamment lorsque l’accélération GPU est
disponible. L’ensemble des données, des outils, et des scripts développés sont disponibles
librement sous licence MIT.

Conclusion : La conclusion centrale de la thèse est que les méthodes à noyaux, qui
utilisent des espaces d’approximation locaux et régularisés, sont bien adaptées à la re-
construction des sections efficaces. Avec une sélection des points supports optimisés par
apprentissage actif, la méthode est performante, modulaire et relativement facile à implé-
menter. Les réseaux de neurones sont potentiellement plus performants, notamment en
considèrent les réseaux multi sorties. Ils peuvent exploiter les représentations (patterns)
communes dans les données et ainsi obtenir une compression significative de la mémoire
occupée et une vitesse d’évaluation maximale. En revanche, cette méthode manque de
méthodologies standardisées pour l’obtention de ses hyper paramètres et n’est pas encore
assez mature pour être industrialisée.





Chapter 1

Introduction

In this chapter a brief introduction to nuclear power plants, their governing equations and
the computational tool used for simulating their behaviour are provided. Core calcula-
tions using the two-step modeling scheme are presented to identify the challenges posed
by modern industry calculations. Few group cross sections, that represent the interaction
of neutrons with matter, are the key linking elements between the two phases of this
modeling approach. Their characteristics, requirements and implementation constrains
are presented in the context of modern core calculations. Different approximation pro-
cedures with their advantages and drawbacks are extracted from a thorough literature
review guiding the main objectives of this thesis.

1.1 Nuclear Power Plants

Commercial Nuclear Power Plants (NPP) produce electricity by generating thermal energy
from nuclear fission providing access to carbon-free, non intermittent energy. There is a
total of 450 NPP currently in operation, with an installed power of 396 GW(e) accounting
for about 10 % of total electricity production [1]. An additional of 55 units with a total
capacity of 57 GW(e) are under construction.

Leading countries in nuclear energy production are the United States, France, Russia,
and China. The United States is the world’s largest producer of nuclear power accounting
for about 30% of the worldwide nuclear generation of electricity. France has 58 NPPs with
a nuclear share in electricity production of 71 %, the highest in the world. In China 10
NPP are under construction and nuclear energy share is expected to increase from 4% to
10% by 2030 [1].

An expected growth in the world-wide electricity demand of 2.1% per year pushes for
an increase in the nuclear share of up to 5% by the year 2050 [1]; a doubling of the current
installed power. Additionally, half of the nuclear fleet is over 30 years old, and even when
accounting for lifespan extensions, a significant demand for new reactors is in sight. In
Fig. 1.1 current planning of new NPP is shown.
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Asides from power generation, other application of nuclear technology includes medical
treatment, radioisotopes production, materials research and development, naval propul-
sion, desalination, space applications, etc.

Figure 1.1: Nuclear power plants (NPP) in the world [1]. Many countries count with NPP
and several more are projected or underway.

1.1.1 Nuclear reactors

In nuclear reactors, a self-sustained and controlled fission chain reaction generates thermal
energy used to produce electricity. Neutrons induce fission reactions in atoms of uranium
or plutonium which, when split, release large amounts of energy and high-speed neutrons.
They lose energy by colliding with nuclei present in the core in a process called moderation,
arriving at energies of a few eV which favors fission reactions. Light Water Reactors
(LWR) are a type of nuclear reactor that uses water (H2O)1 as both coolant and neutron
moderator. With light nucleus such as the Hydrogen neutrons can lose their entire kinetic
energy in a single interaction.

The most common LWR is the pressurized water reactor (PWR) which constitutes
the majority of the world’s NPP. As the name implies, a heavy pressure vessel and piping
is used to reach about 155 bars maintaining the water in the primary circuit in a liquid
state at about 300 ◦C. The coolant is pumped at high pressure through the core carrying
the heated water to the steam generator. In the secondary circuit, the steam flows to the
turbines that spin an electric generator producing electricity. A scheme of this process
is shown in Fig. 1.2. To control the rate at which the neutron population changes
i.e., regulate the power output, neutron absorbers such as retractile control rods made
of boron, cadmium or indium which are potent neutron absorbers, are use at the core.
Boron diluted in the primary circuit is also used. The fissile material is in the form of fuel

1As opposed to heavy water consisting mainly of D2O.
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pellets composed of a uranium oxide ceramic (UO2) enriched up to 3% in 235U or MOX
fuels2. These are inserted into Zircaloy tubes of about 1 cm in diameter and 4 meters long
that are bundled together forming a Fuel Assembly (FA) typically in a 14×14 or 17×17
arrangement as shown in Fig. 1.3.

Figure 1.2: Nuclear reactor power generation. In the primary circuit the pressurizer
is used to control the pressure and the control rods to control the neutron reaction.
Heat produced in the core is transported through the primary circuit towards the steam
generator. In the secondary circuit the produced steam is used to spin the generator and
produce electricity. Image from [2].

In NPP the mechanical integrity of the fuel assembly must be assured for extreme con-
ditions of very high pressure and temperature under irradiation, where complex processes
such as pellet-cladding interaction and fuel swelling take place. The fuel temperature
depends on the thermo-hydraulic regime throughout the core. A reflector composed of
steel and water usually surrounds the core to reduce the amount of neutron leaving the
system and reaching the vessel.

Figure 1.3: Typical fuel assembly of a PWR reactor. The square 17×17 arrangement can
be noticed together with the upper nozzle and the space grids to reduce the vibrations
caused by the coolant. The cladding is made of Zircaloy, a special alloy transparent to
neutrons. The fuel pellets are composed of an uranium oxide ceramic (UO2) enriched up
to 3% in 235U.

2Mixed oxide fuel (MOX) is a blend of plutonium, occasionally sourced from reprocessing, with natural
or depleted uranium. MOX fuel is an alternative to UO2 which currently predominates in LWR cores.
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1.2 Interaction of neutrons with matter

Neutrons interactions with matter are described by nuclear cross section. An intuitive
definition is as a proportionality factor in irradiation experiments over a target: it’s
observed that the surfacic reaction rate dRr (number of nuclear reactions of type r per
unit of time and unit surface) is proportional to the number density of nuclei in the target
C, the intensity of the beam I and the width of the target ds. Equality is obtained by
the introduction of nuclear cross section (σr)

dRr = σrCIds. (1.1)

This relation dictates that σr has units of cm2 usually measured in barns 1b =1E-24 cm2

[3]. Nuclear cross section data is tabulated in the form σr,i(E, T ) for the reaction r of
isotope i in function of energy E and the temperature T of the medium3. These, sometimes
called point-wise evaluated cross sections, are obtained from experiments coupled with
mathematical models for different reaction types: absorption, fission or scattering.

1.2.1 Nuclear cross sections

Nuclear cross sections result from nuclear interactions between an incident neutron (n)
on a target nucleus A. A complete definition from fundamental physics can be found in
[5].

A scattering cross section is in the form n + A → A + n for potential and elastic
(a compound nucleus is formed) interactions where the neutron may transfer energy to
the nucleus A. In inelastic scattering, the target nucleus may additionally lose energy by
emitting gamma photons (γ).

Fission cross sections are in the form n+A→ FP1 +FP2 +νn which is an exothermic
process in which the target nucleus is split into two fission products (FP ) liberating ∼ 200
MeV. Among other particles (α, β), an amount of ν neutrons are emitted. Fission is
responsible for the energy generated in a reactor and for sustaining the chain reaction.
The neutron energy threshold for which this reaction takes place differentiates fissile
isotopes (235U, 239Pu) from fissionable isotopes (238U, 240Pu).

In a capture interaction of the form n + A → (A + 1) + γ the neutron is trapped
by the nucleus. This type of reaction causes a loss of neutrons in the system but is also
essential to control the reaction chain. The absorption cross section is the sum of fission
and capture cross sections. In general, nuclear cross section are inversely proportional to
the neutron’s velocity v, following the 1/v law as can be seen in Fig 1.4. An intuitive
explanation is that slower neutrons stay a longer time in the vicinity of a nucleus thus
increasing the probability of a nuclear interaction. Absorption and fission cross sections
present resonances when the incident neutrons has a kinetic energy matching the discrete
excitation states of the nucleus. As energy increases, resonances start to overlap reaching
the “unresolved resonance region”.

3�medium� refers to isotope, temperature and the chemical, or crystal structure of matter. The latter
becomes relevant for low energy neutrons [4].
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Figure 1.4: Nuclear �ssion cross section of 235U. Three distinct regions can be observed:
of 1/v up to 1E-1 eV, the region of resolved resonances whose overlapping results in the
unresolved or continuum region after 6E3 eV.

1.2.2 Neutron transport equation

The thermal output in a nuclear power plant is proportional to the neutron population
in the core. Nuclear cross sections are used in the Boltzmann neutron transport equation
to describe the neutron field in a multiplying media in function of space, energy, angle,
and time [6]

1
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+
1

4π

∑
k

λd,kCk(~r, t)χd,k(E) + Sext(~r, E, ~Ω, t).

(1.2)

This integro-differentiable equation establishes a neutron balance of 7 terms for the vari-
ation of the flux in a phase-space defined by d~rd~ΩdE. These are, in order: neutrons
traversing the boundaries of the volume near ~r, interactions that remove neutrons by ab-
sorption or scattering, neutrons entering the phase space due to scattering, fission source
of prompt neutrons, fission source due to isotope decay, fission source of delayed neutrons
and an external source. More details can be found in [3, 6].

The solution of interest is the (scalar) neutron flux φ =
∫

4π
ψd~Ω used to calculate the
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reaction rates that define the power output and the fuel evolution.

1.2.3 Isotopic depletion

The exposure of matter to the neutron flux produces nuclear reactions that modify its
composition. This change is called depletion, mainly produced by neutron absorption,
fission or radioactive decay. For each depleting isotope i, the time-dependent number
density Ci(~r, t) is

dCi(~r, t)

dt
=
∑
m6=i

(ζi←m(~r, t) + λi←m)Cm(~r, t)

−(λiCi(~r, t) + ζi(~r, t))Ci(~r, t).

(1.3)

The change in time of Ci(~r, t) depends on the reaction rates4 ζ(~r, t) and the radioactive
decay (λ); specifically on the formation of isotope i from other m isotopes due to nuclear
interactions and radioactive decay, and its own rate of destruction due to these processes.

This equation governs the concentration of every isotope present in the core that
undergoes depletion forming the Bateman equations. Some produced isotopes may, in
time, decay to another different isotope 5 forming a set of relations called depletion chains.
Heavy nuclei present in the fuel or neutron absorbers in the control rods change the most
during reactor operation. Different fuel types usually employ different depletion chains
which are subject to modeling and simplification. The time scale of this process is slow
enough to use a steady-state solution of the neutron transport equation.

1.2.4 Other magnitudes of interest

Macroscopic cross sections describe the probability that the neutron undergoes a specific
interaction in a given volume of material accounting for the concentrations (C) of all
isotopes (I) therein

Σr(~r, E, t) =
I∑
j=1

σj(~r, E)Cj(~r, t). (1.4)

In the following section the difficulties posed by Eq. 1.2 and how to deal with them will be
presented. One of these steps is defining the multi-group balance equations [6] which can
be written as a generalized eigenvalue problem by the introduction of the multiplication
factor k∞6 {

(Σa,1 + Σ1→2)φ1 = Σ2→1φ2 + (ν1Σf,1φ1 + ν2Σf,2φ2) /k∞,

(Σa,2 + Σ2→1)φ2 = Σ1→2φ1.
(1.5)

4the microscopic reaction rate ζi←m(~r, t) =
∑
q

∫∞
0
σq,k←m(E)φ(~r,E, T )dE is the rate of formation of

isotope i from isotopes m for reaction types q. The scalar �ux is required for this calculation.
5Speci�cally beta decays give origin to the term λC in Eq. 1.2 which is what actually allows nuclear

reactors to be controlled as they have a characteristic time of a few seconds.
6For a two-group in�nite homogeneous medium. More details can be found in [7].
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Thus,

k∞ =
ν1Σf,1SI + ν2Σf,2

(Σa,1 + Σ1→2)SI− Σ2→1

. (1.6)

k∞ defines the rate of change in the neutron population of the core. The complementary
SI is defined as

SI = (Σa,2 + Σ2→1)/Σ1→2, (1.7)

is the ratio of fast flux to thermal flux which is an important parameter for the reactor
state and fuel evolution.

1.3 Core simulations

It is not a trivial task to properly convey the extent of what lays under the term “core sim-
ulations”. They are used throughout the lifetime of a reactor from design, construction,
operation to eventual decommissioning; allowing to simulate the reactor for day-to-day
steady-state operation, transients and accidental conditions not leading to core damage
(i.e. not leading to any change in the geometry of the core), and severe accidents (where
there is core damage) [8]. Core simulations are assessed from a safety, logistic, and oper-
ational perspectives, which usually are in contradiction with each other. Typical calcula-
tions also include fuel management, power calculation, safety margins, reload operations,
core planning, isotope follow-up (over the lifetime of each full assembly), evaluation of
every system component, etc.

1.3.1 Challenges of core calculations

Solving the transport equation for assessing the state of the core is a challenging task as
NPP are big, heterogeneous, complex, multi-scale systems, typically containing between
150-800 fuel assemblies (PWR) [8] of square lattices forming the reactor core as shown
in Fig 1.5. Local perturbations may modify the state of the whole plant while a global
perturbation changes the properties of the media in all scales.

The reactor core is also a multi-physics system with a high degree of coupling be-
tween the neutron and the thermo-hydraulic phenomena. For example in the thermal
Doppler broadening effect, by an increase of the kinetic energy of materials (temperature)
the nuclear resonances broaden, increasing the probability of the nuclear reaction. This
phenomenon plays a major role in the negative fuel temperature coefficient in LWR. The
thermalization processes, in which neutrons lose energy by scattering interactions reaching
thermal energies, depends on the temperature and density of water, the moderator.

A direct calculation of neutron flux distribution as expressed in Eq. 1.2 using an ultra-
fine discretization in energy and space requires an unattainable computational effort in
both processing and memory requirements. Dropping the time dependence, Eq. 1.2 is still
a 7 variable integro-differential problem requiring discretizations of mm and eV to model,
for example, localized depletion (plutonium skin effect, burnable poison onion effect)
and nuclear resonances. The thermo-hydraulic field, tightly coupled with the neutron
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phenomena, changes throughout the core in both radial and axial dimensions. Each fuel
assembly undergoes a different depletion processes under these conditions. Dedicated
computational tools able to cope with this modeling problem have been developed over
the last 70 years.

Figure 1.5: The multi-scale structure involved in core calculations. About 200 fuel as-
semblies typically compose the core of dimensions ∼ 4m × 4m. Each fuel assembly is a
bundle arranged in a 17 × 17 lattice. Each fuel pin contains UO2 pellets. About 50000
fuel rods and 18 million fuel pellets may be present in a PWR core.

One strategy to treat the three-dimensional continuous-energy equation directly, is by
stochastic methods which perform very few approximations. Many millions of particles
histories are simulated based on sequences of random numbers taking into account the
neutron interactions, using a fine energy discretization, and an accurate representation of
the geometric domain. Though elegant, these methods are slow to converge, especially for
big heterogeneous systems such as reactor cores. They are quite suited for certain tasks
(biological shielding, dose calculations, reference solutions, very small systems, or with
high neutron streaming or otherwise pure particle transport problems) but unpractical
for day-to-day operation PWR calculations.

Another strategy is the deterministic calculation scheme where numerical analysis
techniques are used to estimate the solution of Eq. 1.2 by discretizing the space, energy
and angular domains. The core modeling consists of calculations carried out in two
distinct steps. If done correctly, NPP are modeled at a relatively modest computational
cost, and in a practical way. Cross section libraries, analyzed in this thesis, are the key
linking element between these two-step calculations.

1.3.2 Two-step deterministic calculation scheme

In the deterministic calculation schemes a two-step approach is used were nuclear data
are homogenized in space and condensed in energy by means of lattice calculations. In the
first step (1) lattice or transport calculations are performed with high spatial and energy
discretization but only for small representative regions of the core. Resulting homogenized
few group cross sections feed core calculation (2) which are carried out using coarse meshes
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but for the entire system. In this way local effects at the fuel assembly level are modeled
somewhat independently of global reactor effects, that are treated for the entire core.

(1) Lattice calculations

Corrected nuclear cross sections accounting for depression in the flux due to resonances are
obtained from self-shielding calculations7. These are used in a highly discretized spatial
mesh of the two-dimension fuel lattice to calculate a multi-group scalar flux φ(~r, E). It can
be obtained using different treatments of the transport equation for single or multiple fuel
assemblies as dictated by the core plan. A periodic environment is normally considered
by reflective boundary conditions. Cross sections are then condensed in energy to a broad
group structure and homogenized in space

σv,i,r,g =

∫
v

∫
g
(σi,rφ)(~r, E)dEd~r∫

v

∫
g
φ(~r, E)dEd~r

. (1.8)

A scheme of this process is presented in Figure 1.6. The fuel inventory is calculated at
different burnup steps using complete depletion chains, and critical neutron spectra is
achieved by a leakage model [9]. The few groups structure and their energy boundaries
depend on the specific application. PWR modeling usually uses two groups, simply called
the fast and the thermal group with energy cut-off at 0.625 eV while for fast reactors,
where fission take place at higher energies, require more groups. Homogenization may be
performed over the entire fuel assembly, quarters or pin-by-pin depending on the modeling
objectives and the specific reactor. The results of this calculation are the homogenized
few-group cross sections and possibly the additional equivalence factors, which are stored
in a compact few-group cross section library for later use in the whole core calculation.

Calculations in detailed environments of multiple assemblies (colorset calculations) are
quite common for modeling the reflector. Some important industry codes are APOLLO2
[10], APOLLO3 [11], CASMO [12], DRAGON [13], etc.

(2) Core calculations

Resulting homogenized few-group cross sections are the input of the two group diffusion
equations 8, which are the most extended option for three dimensional LWR core cal-
culation in industry [14]. Cross section data, calculated a priori in step (1) and store
in few-groups cross section libraries, are used to reconstruct cross sections on demand.
Modern codes also provide the capability to compute the evolution of the main nuclide
concentrations throughout the fuel cycle. These are the most important fissile isotopes,
fission products, and burnable absorbers using reduced depletion chains. Some important
industry codes counting with these capabilities are APOLLO3 [11], the package ARCA-
DIA [15], SIMULATE4 [16], POLCA-T [17], COCAGNE [18], etc.

7For performing the self-shielding calculation an analytical energy spectrum consists of a �ssion spec-
trum for the high-energy range, a slowing-down spectrum for the intermediate range and a Maxwellian
thermal spectrum for energy lower than 0.625 eV may be used.

8The di�usion equations are obtained by using the Flick law between the integrated �ux and the
currents, i.e. ~J(~r,E) = −D(~r,E)∇φ(~r,E) in the multi-group balance equation.
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Figure 1.6: Two-step calculation scheme. Evaluated nuclear data are treated by NJOY
which generates continuous energy �les to be used by the lattice code. The latter performs
self-shielding and �ux calculations to homogenize and condense nuclear data generating
few-group cross section libraries which are the input of core calculations.

1.3.3 Modeling errors of the two-step modeling scheme

Different sources of errors result from this scheme, mainly: [19]

• The significant transport effect (neutron streaming) in very inhomogeneous cores
(core calculations using MOX/UO2 fuels or being axially asymmetrical) are intrin-
sically difficult to model using the diffusion approximation. Higher order transport
solvers such as SPN may be used instead [20].

• The spatial homogenization and energy collapsing of nuclear data. Reflective bound-
ary conditions are used in a priori cross section preparation, so the collapsing flux
used in Eq. 1.8 does not take into account actual reactor conditions which may
introduce significant flux gradient that differ from the infinite medium distribution.
Classical techniques to deal with these issues belong to the Generalized Equivalence
Theory (GET). If proven insufficient, pin-by-pin homogenization may be considered
resulting in a more heterogeneous core model [21]. Techniques for embedding the
lattice transport [19] in core calculations dropping energy condensation altogether,
are being studied. These are generally considered too computationally expensive9

especially for transient calculations [14].

• The few group cross section representation used at the core level, which are recon-
9In a standard lattice calculation the neutron �ux is solved for each neutronically distinct reactor

component (di�erent fuels and re�ector) with a calculation time of O(min) for every calculation point.
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structed on the fly from the pre-calculated data libraries in step (1).

The subject of this thesis unfolds within this third item. In what follows only few-
group (homogenized) cross sections will be analyzed, simply called “cross sections”.

1.3.4 Lattice calculation implementation

In order to represent operational and accidental conditions homogenized data are func-
tionalized by means of reactor “state-parameters”, which are physical quantities showing
high sensitivity on the neutron reactivity, being reactor-dependent as well. In standard
lattice calculations the wide range of possible reactor states are approximated as per-
turbed conditions with respect to a reference configuration, which is the most probable
along fuel exposure at hot full power10. So, “branch calculations” are derived for instan-
taneous changes at operation from a “nominal depletion history”, where in principle the
only varying state parameter is the burnup in GWd/t11 (or fuel exposure) as depicted in
Fig 1.7. Since the weighting neutron spectra depends on the exposure history, the lattice
depletion conditions ought to be the most representative of the average core history for
attaining accurate cross section reconstructions.

The burnup discretization depends in part on inner convergence criteria of the lattice
code, and sometimes the exact value cannot be easily imposed. Some configuration of
state-parameters may result in a non-converging lattice calculation, at least for the settings
used in that particular calculation. Even if branch calculation could be calculated freely,
many core codes may require a specific construction e.g. a Cartesian scheme for the
cross section library equipped with its corresponding “generator vectors” for indexing. In
practice the freedom of the user to impose in which points the cross section library is
generated may be somewhat limited.

1.3.5 Cross section variables

The difference between depletion and branch calculations gives rise to the so called his-
tory variables that account for condition changes during isotope depletion. Indeed the
burnup is the first history variable, and others may be considered, e.g. moderator density
or control rods. This implementation caveat, has significant consequences in how deter-
ministic calculations are set up, and can explicitly appear in cross section dependencies
as σ(xh,1, . . . , xh,n;xb,1, . . . , xb,m). We identified n history variables (h) and m as branch
(or instantaneous) variables (b) being n+m = d, i.e. the total amount of dimensions.

Though conceptually different, in the majority of the thesis no distinction is made
10Other schemes have been proposed where many independent burnup calculations are performed with

rather few branch calculations. In such scheme the history parameter space covers in a signi�cant extent
the classical instantaneous parameter space [22].

11This parameter describes the isotope evolution with exposure under nominal conditions and is ex-
pressed in units of time-integrated power release per unit of initial heavy metal, i.e. (Giga-Watts-day per
tonne of heavy metal)
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between the two. Cross section are therefore treated as

σ(~x) = σ(x1, . . . , xd). (1.9)

Figure 1.7: Nominal calculations where other history parameters may be present de�ning
one or several depletion histories. For each point, branch calculation in di�erent instan-
taneous variables may be performed. In this illustration the fuel temperature (Tf ), boron
concentration (CB) and moderator density (δM) are considered.

Common choices of instantaneous variables for PWR calculations are the temperature
or/and density of the coolant, covering all regimes of heat transfer and thermal-hydraulics
in the core, an average temperature in the fuel elements to reproduce the Doppler effect,
the amount of 135Xe at equilibrium with the power level and the amount of diluted boron
in water. Other required variables may be control rods12, blades, detectors, water gap,
proximity to reflector, etc13.

1.4 Cross sections representation

Provided linear independence of all the parameters in the model cross sections are treated
as real valued scalar functions defined over a physical domain Ud. Without loss of gener-
ality, we consider the mapping into the unit hyper-cube

X = {~x = (x1, . . . , xd) ∈ [0, 1]d : xi =
ιi − ai
bi − ai

, ιi ∈ Ui, 1 ≤ i ≤ d}, (1.10)

12Control rods can sometimes induce additional ∆σCR terms which can be simpler than the original
cross section data. Adequate lattice calculation data, possibly matching the remainder state-parameters,
is needed [23].

13From an implementation point of view, this history parameters may pose a challenge to lattice calcula-
tions parallelization, while in principle calculations in di�erent instantaneous parameters are intrinsically
parallelizable.
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called input space, of dimensionality d = |~x|, ~x ∈ X . For obtaining cross section data, this
space must be sampled by the lattice code in some specific way. Many times a “full grid”
or Cartesian grid resulting from tensor product rule is used

XP = ~X1 × . . .× ~Xd =
d∏
i=1

~Xi. (1.11)

The subscript in XP indicates that this is a discrete sampling of the space X having an
amount of point conforming it (cardinality) of |XP |. This is the standard sampling strategy
in many industry applications [24], were d and the variables range (Ui, 1 ≤ i ≤ d) depend
on the reactor and scope of the simulation. The word pool (P) is suggestive, indicating
the totality of available data, and as it will be seen later, significant parts of it may prove
superfluous when obtained from a Cartesian sampling rule. One of the properties of such
domain is being “rectangular” with an hyper-dimensional enveloping box of the data. It’s
also regular meaning that the points belong to an underling structure. In this particular
case corresponding to the generator vectors ~Xi, 1 ≤ i ≤ d. In an unstructured support no
reduced representation of the data points is possible.

Each lattice calculation point delivers the entire cross section set denominated output
space

Y = {σirg : ~x→ W,~x ∈ X , i, r, g ∈ I · R · G}14, (1.12)

normally W ⊂ R≥0. The total amount of cross sections is the cardinality, |Y| = |I ·R · G|
for each specialized isotope i ∈ I, reaction type r ∈ R and group g ∈ G. The notation
I · R · G designates a product different from a tensor rule since, for example, fission
products do not have fission cross sections or the amount of scattering cross section can
be isotope dependent (for a large G).

In general, cross sections present smooth non-linear profiles with possibly strong vari-
ations in localized regions, low order dependence among the variables and low noise 15.
As seen in Fig 1.8. Cross section variance may not be equally distributed in the different
dimensions where much of the complex behavior lays, for example, in the burnup vari-
able. This type of physical insight on cross section dependence on state-parameters is a
valuable asset which, unfortunately, may not always be available.

For each cross section, a subset of data composed of pairs {~x, σ(~x)} extracted from
the pool is called the support

Sσ = {σ(~xi), ~xi ∈ XS}. (1.13)

This is the available information to build a model sometimes called “data sites”, “response
vectors” or “learning space” with |Sσ| = |XS |, XS ⊂ XP . A lattice calculation point

14The isotope i is marked with the mass number of the nuclide A, thus unequivocally identify each
isotope of each element in this work. In this work homogenization is performed over the entire fuel
assembly.

15The �low noise� claim is somewhat tricky. Deterministic calculations present convergence errors which,
in principle are small in magnitude. Activation/deactivation of di�erent modules, whether be modeling
of physical phenomena, numerical solver or acceleration techniques may as well introduce discontinuities
or noise. If cross sections were to come from stochastic calculations signi�cant statistical noise may be
encountered [25].
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delivers all the cross section so, in principle, they “share support”. This tends to be the
case in many industry settings though it is not mandatory.

Now we are in condition to state the subject of this thesis: finding the set of
approximations 16

F = {σ̂ ' σ|Sσ,∀σ ∈ Y}. (1.14)

Which reads as “finding the set of approximations called F composed of σ̂ similar to σ
knowing the support Sσ for every cross section in Y ”.

(a) (b) (c)

Figure 1.8: Cross section in function of the burnup and the fuel temperature for 239Pu,
Σres and 238U. (a) Thermal �ssion cross section σ239,f,2 which becomes an important �ssile
isotope as burnup increases .(b) Up-scattering cross section Σres,2→1 mainly due to the
water in the moderator modeled in the residual cross section. (c) Fast �ssion cross section
σ238,f,1 which present a very high concentration in UO2 fuels and contributes signi�cantly
to the reactivity even in a thermal reactor.

1.4.1 Modeling requirements

Current cross sections models need not only to deal with ever growing volumes of data
[26], but also a larger quantity of cross section reconstructions per core calculation point.
In many industry implementations cross sections are modeled by a first order piece-wise
polynomial interpolation, here called multi-linear, usually adopting a Cartesian sampling
rule of the input space as presented in Eq. [24]. In this simple schema data are simply
stored to be quickly interpolated on demand. However, the number of data points may
grow exponentially with increasing dimensions which is known as the “Curse of dimen-
sionality” [27]. Highly discretized grids may be specially required for O(1) approximations
such as multi-linear, especially in view of modern microscopic cross section target rela-
tive errors laying between 1E-1% and 1E-2% [28, 29]. Under the reasonable assumption
that a shared support is used by all cross section, built using a tensor product rule, this
requirement raises a storage problem that can be easily understood with an example. Let
R = 3 for absorption, fission, and scattering, the latter increasing quadratically with the
number of groups. Indeed scattering reactions are in the form {σg→g′ ,∀g, g′ ∈ G}. This

16Identi�cation of the best state-parameters (type of variables and dimensionality of X ), or the de�ni-
tion of the set Y for that matter, is not treated in this work and relays in �expert's knowledge� for the
modeling problem at hand.
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data is normally store in full rank matrices at least up to 20 groups of energy taking large
percentages of the cross section data. Then, let size(float) = 32 byte,

size(Y × X ) ∼ |I| × |V| × (2|G|+ |G|2)× (NBu +Nd−1
b )× 32GB

1E-9 . (1.15)

For d = 4, let X = Bu× Tf × Cb × δM with discretization NBu = 50 for the burnup and
Nb = 6 for each branch variable, an acceptable choice for multi-linear interpolation in most
cases. Library sizes are presented in Tab. 1.1. An 8 group scheme using 16 homogenization
regions or a 20 group scheme with a pin-by-pin homogenization are common in industry
[18]. When further increasing the dimensions of the input and output space the library
size can reach the TB. And this, for a single depletion history while up to 400 can be
required for modeling large cores [19]. In [30] for example, a 1 GB is already considered
an excessive library size.

Dimensions (d) Isotopes (|I|) Groups (|G|) Regions (|V|) Library size
3 10 2 1 1 MB
4 30 2 4 500 MB
4 30 8 16 1 GB
4 10 20 289 300 GB
4 100 20 289 3 TB

Table 1.1: Library size with increasing input (dimension d) and output space (specialized
isotopes |I|, energy groups |G|, and homogenization regions |V|). Two common discretiza-
tion schemes are 16 regions for an 8 group energy structure and pin-by-pin homogenization
(289 regions) for a 20 group energy structure. Very large library sizes may be encountered.

For a standard PWR reactor, a gross estimate of the amount of cells (Ncell) composing
the core model is

Ncell ∼ number(Fuel Assembly)× number(Axial Discretization)×
number(Homogenization regions) ∼ 300× 50× |V| (1.16)

For 50 specialized isotopes in a 8 group energy scheme |V| ∼ 16 are used, which implies
a total of 1E9 cross section reconstructions. If 20 energy groups are used in a pin-by-pin
discretization (|V| ∼ 289) the amount of cross section reconstruction goes to 1E11 for a
single core calculation. Between 10 and 30 iterations may be required to converge the
thermo-hydraulic module. Compromises are made to define the adequate cardinality of
the input and output space depending on the scope of the simulation, yet, a reconstruc-
tion speed of at least ∼ 1E-5 s/σ is required to perform a core calculation point in a time
of O(min). This speed constraint means that the storage size can be a crippling factor in
cross section reconstructions due to the memory accessing speed. Retrieving data at CPU
cache, RAM and disk memory is about 10, 100, 1000 clock cycles respectively. The ac-
cessing speed problem, induced by the size of the library, undermines the homogenization
and equivalence effort of the two-step calculation strategy presented in Section 1.3.

Recapitulating, accuracy, library size, and evaluation speed will be the main criteria
for judging the models in this thesis in concordance with other works [31]. Secondary
modeling objectives are shown in Fig 1.9. The lattice calculation time may be up to 4 min
per calculation point which is considerable. In reactor design, cross section data may be
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generated several times, and requiring less, rather than more points is preferred. Though
the preparation of the library itself may be regarded as an “off-line” phase, this may have
to be carried out several times for different studies and so a predictable, consistent, and
if possible shorter time is preferred. The possibility of including lattice calculation points
in an on-line fashion is of interest as well. Finally, all thing being equal, a low complexity
model, that may be interpretable in physical terms is preferred.

Figure 1.9: Most important few-group cross section modeling requirements. An accuracy
in the vicinity of 1E-2% average error and an evaluation speed >1E-5 seconds per cross
section (or evaluation time <1E-5 seconds) are typical thresholds found in the literature.
The size of the library can su�er from the �Curse of dimensionality� specially for tensor
product rules as commonly used in industry. Other criteria for judging a model is the
total amount of required lattice calculation, the preparation time of the library itself and
the complexity of the model.

1.4.2 Modern trends in core simulations

Modern modeling trends mentioned so far are: increasing in the number of energy groups
[20] and specialized isotopes, and the coupling with multi-physics codes [8, 23]. Others
are:

• Interested in reactor simulations in a load following scheme which may require to
examine current history modeling strategies with changing depletion conditions with
special attention to control rod insertion.

• Modeling of UO2/MOX mix loaded cores, which could result in larger library sizes
in order to deal with the boundary condition problems or additional cross section
variables.

• An effort to unify codes dedicated to steady-state and transient calculations, as
to assure consistency and reduce overall iterations between simulations [23]. Cross
section models able to perform well in these two distinct types of simulations could
prove more challenging.

• For dealing with innovative reactor concepts, that present strong axial asymmetries,
it has been suggested to produce the cross section library using stochastic codes
[32]. Such stochastic/deterministic scheme could require advanced regularization
techniques in cross section modeling.
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1.5 Modeling challenges and state-of-the-art

A chronological literature review of cross sections modeling is presented in Fig. 1.10 where
some distinct periods and corresponding strategies can be devised.

Figure 1.10: Chronological literature review of few-group cross sections modeling. Three
periods can be distinguished in a loosely manner. The '00 characterized by Taylor ex-
pansions tweaked by the user's expert knowledge relaying in few terms for the expansion.
Multi-linear and higher order interpolation in full grids to better cope with multi-physics
coupling and improve best estimate calculations. Then, several works on regression and
sparse grid interpolation in order to reduce the libraries size. The latest works concen-
trate in machine learning techniques to let the approximation process learn which is the
optimal function space to use and/or in which support points.

In some early works, only macroscopic cross sections where tabulated applying correc-
tion factors in the form Σ0 +

∑
i ∆Σi which where constructed in a rather heuristic way,

based on physical insight and different for every reactor type accounting for both history
and instantaneous effects. Discussion was focused in minimizing the amount of variables
by, for example, parameterizing with time instead of burnup to account for the boron
concentration in an easier way since it was hard-coded by the lattice solver into Σ0. Only
1-dimensional linear interpolation on exposure was used [33].

Approximations had simple dependencies without cross terms. The POLX-1 code [34]
for example, used a quadratic polynomial in the form

Σ(x1, . . . , xd) = Σ0 +
d∑
i

C1,ixi + C2,ix
2
i . (1.17)
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Coefficients where found by ordinary least squares. Higher order polynomials where ex-
plicitly avoided due to possible oscillations and, if necessary, the (exposure) domain was
sub-divided by hand or pre-treated to ease the modelization (e.g. parameterizing with
the square root of the fuel temperature). In [35] a similar form to Eq. 1.17 but up to
degree 3 was used considering cross terms of only two variables at the most. These ex-
amples and others [36, 37, 38] can be globally encapsulated as Taylor expansion where
retained terms and truncation was defined by “trial and error” [35]. Models came from
“expert knowledge” and were ultimately case dependent. Resulting libraries were small,
with models fast to evaluate, as only few coefficients were used. These lend themselves to
physical interpretation, as for example a positivity thermal absorption coefficient with fuel
temperature due to the Doppler broadening effect or a scattering increase with moderator
density, as detailed in [39]. Though such approximations only hold local validity [26], they
can be used for small perturbations like usually encountered in open pool MTRs [40, 41]
or steady-state calculations [42]. With a proper assessment of the quality of the represen-
tation [39], they can still be used like in POLCA7 [43] which counts with several history
parameters, spectral corrections and specialized isotopes in a multi-table approach. They
have been proposed for pin-by-pin homogenization [44].

By the early ’00 point kinetic/1-dimensional thermo-hydraulic modeling shifted to
fully coupled three-dimensional neutronic-thermal-hydraulic simulations for transient and
accidental analysis [26]; of particular use in PWR having an open lattice with radial
cross-flow [45]. Additionally, further core optimization and improvement in best estimate
calculations for increase plant availability [46] required an update in the cross section
models [45]. In a asymmetric steam line brake accident for example, that requires a 3D
modeling of the moderator density, difference between commercial codes (SIMULATE-
3 and CORETRAN) were observed, specifically due to the cross section models [47].
Though the same homogenize cross section data was used for both, simplifications in
the cross section dependence in boron concentration and moderator density which led to
non-negligible differences in power evolution during the accident of up to 20% in the pin
power distribution.

Multi-linear interpolation in a full grid has commonly been used to address these kind
of issues [46, 29]. User-imposed coefficients are avoided, all inter-dependencies among
the variables are accounted for, the reconstruction process is simple and evaluation fast,
provided an efficient sorting algorithm. However with an error convergence of only O(1),
usually large library sizes are needed to meet the accuracy requirements [27]. Not only
cross section accuracies are of concern, but also the estimation of core feedback coefficient
which many times amount to reactivity derivatives. If a Cartesian quadrature is used,
an exponential in d amount of computationally expensive lattice calculations are needed,
raising the Curse of Dimensionality [48] which may hinder evaluation times 17. For this
reason in some implementations a division exists between a master library considering
only history variables from which a transient library can be derived to model specific
transients by performing branch calculations on the region of interest only [19]. Higher
order approximation (splines) [49] and projection into dedicated sub-libraries can mitigate
this to some extent. Splines ensure a smooth interpolating approximation that requires
fewer points, sometimes called “High-order table lookup method” [45]. Possible oscillation

17A naive implementation of multi-linear interpolation on unstructured grids that require complicated
searches of the neighbor's points, can prove quite impractical [14].
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problems have been reported [46]. Examples of codes using parametrized libraries are
CORETRAN while using tables are SIMULATE, CRONOS, DYN3D [14].

An hybrid spline interpolation/polynomial regression scheme was tested in [29] where
macroscopic cross section took the form Σ = Σbase(Bu) + Σbranch

Bu (x2, . . . , xd). A quintic
spline was used only in the burnup and a step-wise algorithm provided a global polynomial
for the instantaneous variables. Coefficients were obtained with last square regression. A
significance test based on a “bias vs variance” trade-off was used to generate a suitable,
though not necessarily optimal model. This selection methodology was tested in a some-
what moderate amount of state variables [22]. A Legendre polynomial base was used to
improve matrix conditioning.

In [31] macroscopic cross sections were modeled with global Legendre polynomials of
the form

Σ =
∑
~k

β~kφ~k (1.18)

for a pebble bed modular reactor (using a somewhat unorthodox parameter state selection
as required by the benchmark). The main issue of such methodology is the computation
cost of solving the integral quadrature for obtaining the coefficients β~k given the basis φ~k.
In [31] a Randomized Quasi-Monte-Carlo Integration (RQMCI) was used to find by quasi-
regression, rejecting unimportant ones (only 30 coefficients were retained from the original
15600)18. Low-discrepancy Sobol sequences that sample the multidimensional space in a
relatively uniform way exhibited the best convergence rates and data scrambling was used
to estimate the numerical error of the coefficients β~k. However this came at the cost of
1E6 lattice calculation points for a relatively low d. These works show that in practice,
cross section dependence on state-variables can be thought of as the sum of relatively
low-dimension functions, they exhibit “low practical dimensionality” [27] coherent with
previous observations [35]. This insight allowed the enhancement of the methodology by
using Sparse Grid Integration [50] which explicitly restrains the order of the approximation
and thus the terms of the expression in Eq. 1.18 [27].

Quasi-regression has to deal with both truncation and coefficient’s estimation errors.
Additionally an enveloping multidimensional square box is required for the domain since
basis function need to be defined everywhere. Even if some heuristic schemes of explo-
ration/estimation were suggested for dealing with a larger amount of coefficients, ac-
cording to [22] actual accuracy needs may require unrealistically big amount of lattice
calculations. Possible difficulties in capturing local behavior (e.g. xenon transient) or the
retention of very high order terms can also occur [51].

Approximation of smooth functions in a high dimensional domain can profit from a
sparse grid discretization [52]. Multi-linear hierarchical interpolation using equidistant
nodes was used to approximate cross section in a level-based function representation [53].
The central idea is to restrict the tensor product rule, thus obtaining a sparse grid. Even
for a possibly suboptimal first order approximation space, the use of sparse grid in com-
parison to tensor product rules resulted in an order of magnitude reduction in the library
size. The methodology was later utilized [51] with a Lagrange basis where Chebyshev

18Coe�cient rejection or shrinking a posteriori are techniques for discarding unimportant terms in
function approximation. Some sort of signi�cance test is employed to judge which coe�cient to reject.
With orthonormal basis the coe�cient's module is usually used.
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nodes were required to deal with the Runge phenomenon19 [54]. Dimension-wise sparse
grid anisotropy allowed to better sample the dimensions that contribute more to the vari-
ance [28]. Provided a multidimensional cardinal base, nested rules yielded the inversions
of smaller, level-based collocation (inversion) systems at the expense of including all the
previous nodes in the basis used to perform the expansion. These methods resulted in
global approximations on sparse, though regular and nested, domains attaining the de-
sired accuracy with a relatively small cross section library after shrinking. As with any
global expansion method using orthonormal basis, the contribution to the total variance
of the approximation is proportional to the coefficient’s module. This allows to wage rejec-
tion techniques to perform shrinking a posterior and facilitates the interpretation of cross
section dependences. Interpolation with a Lagrange base yields superior accuracy than
quasi-regression in sparse grid according to [55]. In a posterior study, this methodology
was successfully tested on MOX fuel as well [55].

Optimization on the anisotropic sampling can be found in [14] with respect to k∞,
though limited to non-uniform Cartesian grids. In this article, it’s noted that integral
parameters such as the multiplication factor are not equally sensitive to the different
cross sections discussing the possibility of considering other elements for the optimization
of the library [14].

Though modern machine learning terminology is not present [29], [31], [27] are ex-
amples of a supervised learning process, where expansion bases are predefined without
knowing in advanced the retained combinations, which result from significance tests. In
[14, 28] supervised searches for optimal sampling schemes are presented, though con-
strained to regular grids.

Another example of supervised learning for model selection can be found in [56]. A
genetic algorithm selects from the model by combining monomial functions that minimize
the MSE. Discussion is framed in terms of optimal custom function space but the global
polynomial used has relativity high errors of about 1%. Here the concept of optimizing
the expansion space itself instead of the support is discussed. This is the case in [57]
where each cross section participates in the formation of an optimal function space on
which to perform the expansion using the Karhunen–Loève quadrature. Additionally the
“Empirical Interpolation Method” defines an un-structured, or scattered support on which
to build the library. Yet, this supervised learning implementation is severely intertwined
with the expansion space: support points candidates result from a combinatorial proce-
dure based on the error of the eigen-functions. The sampling is restrained to a “Tucker
grid” (built to obtain the eigen functions) and subjected to a second selection process
for lowering the amount of additional lattice calculations. A posteriori shrinking is then
performed to eliminate unimportant terms. The error analysis was somewhat limited and
possible conditioning number problems not reported.

19Runge phenomenon is the problem of very strong oscillations in polynomial interpolation when using
equidistant nodes. This can occur at relatively low order polynomial orders that approximate well behaved
smooth functions.
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1.5.1 Final thoughts and discussion

As indicated in Fig 1.10 three distinct periods are loosely identified. In the ’90, in the
context of very low computation resources by today standards, core simulations and cross
section models were quite reduced in scope, the latter basically circumscribed to global
polynomials with a few terms. In the ’00 a demand for best estimates calculations con-
verged to piece-wise approximations in full grids, possibly employing sub-tables to render
the library size more manageable. From then onward the design of more challenging
reactors, a shift towards the treatment of high dimensionality problems and interest in
black-box approximations schemes stimulated the search for automatic model construc-
tions. Many works are dedicated to supervised learning techniques for sampling the cross
section domain while others try to produce tailored function spaces to facilitate the ap-
proximation.

This cross section modeling results in some highlights guiding our work:

• A full grid support suffers not only from the “Curse of dimensionality”, but can
include significant amounts of unnecessary data as evidenced by the low errors
attained with sparse grids [28], by the variability of retained regression coefficient
cross section-wise [22], and the success of a posteriori shrinking in virtually every
method counting with an orthonormal bases.

• A posteriori shrinking has proven quite successful, but it also implies that effort in
producing lattice calculation data and preparing the library has been discarded.

• A tabulated library not including any type of functionalization doesn’t easily allow
for an undesirable, but possible request of extrapolation in cross section evaluation.

• In traditional regression techniques the tensor product rule is not required for sam-
pling the approximation’s support. However the Curse of dimensionality can still
“creep into” the regression model in the form of the amount of high order terms
that need to be retained [27] or the user’s effort in imposing the right structure.

• Problems with global approximations, either in regression or interpolation, have
been reported particularly for capturing local variations and avoiding the Runge
phenomenon. Local approaches are therefore of interest.

• Piece-wise approximations with splines are reported in the literature, but without
detailing its properties. Using a B-spline basis is only mentioned without provid-
ing additional information on the boundary conditions, knot vector, order of the
approximation, or typical approximation difficulties of higher order interpolation.

• In general, cross sections exhibit smooth profiles, which is a natural consequence of
the underling physical phenomena. However, in practice, numerical lattice code can
occasionally introduce noise [27] and approximations should, if possible, be able to
deal with this potential issue.

• Benefits of using unstructured support with respect to full grids have been suggested
though the majority of supervised learning techniques have only been applied to
regular grids [28, 14]. Many times nodes are selected in view of the quadrature
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system (Tucker or Chebyshev), but are clearly not optimal from an information
point of view. For example in a Chebyshev discretization the first and last burnup
regions are equally sampled, which incidentally may not be attainable with the
precision required to deal with possible numerical problems in the approximation.

• Works using unstructured supports [57] have shown great potential but without
providing comparisons with more traditional function spaces as used in industry.

• In general no comparative analysis is to be found on selection criteria for supervised
learning techniques that compare σ, Σ, and k∞ and their resulting errors. Neither
the interplay between cross section sharing support and the supervised learning
procedure.

• Custom function spaces [57] are a very interesting feature though, if low order
functions can indeed describe well the data [27], the benefit of such tailored basis
may be of secondary importance.

• Artificial Neural Networks have been used before in Nuclear Engineering but sparsely
in cross section modeling [58]. This area of nuclear engineering has not profited from
the rapidly developing machine learning community and their computational frame-
works.

• No work is to be found were a single model deals with the entire cross section set.
A “multi-output” central model has not been treated yet.

The objectives of this thesis is to analyze few-group cross section modeling
using splines with B-splines, Kernel Methods with Pool Active learning and
Artificial Neural Networks in single and muli-output models. These models are
assessed in view of an adequate accuracy, evaluation speed and library storage reduction.
Splines represent the state-of-the-art in many industry codes, and are a high order local
approximation. Kernel Methods allow to consider very general supports, subjecto to
active learning techniques, where a vast variety of function space can be reproduced at
a reduced computational cost. Artificial Neural Networks can learn relations from data
allowing to treat the totality of the cross section set with a single, very efficient model.
Hopefully this thesis is well aligned with the points previously mentioned for which new
answers or research paths will be provided. Each methodology will be introduced in their
corresponding chapters and compared to each other. The approximations resulting from
these methodologies will be compared to multi-linear interpolation in a Cartesian grid
which is the standard in many industry applications [59, 18, 24, 30, 46, 45, 29].

1.6 Organization of thesis

This thesis is organized as follows:

• In chapter 1 a brief introduction to nuclear power plants, nuclear reactors and their
governing equations was provided. Different calculation strategies were discussed,
emphasizing the deterministic two-step scheme from which few-group cross sections
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are obtained, presenting its implementation and requirements. This was followed
by a thorough literature review extracting the main modeling tendencies with their
advantages and drawbacks. The thesis’ main objectives and modeling strategies
were outlined.

• In chapter 2 the use case considered throughout the thesis is provided, recalling the
most important characteristics and detailing the lattice calculation settings. The
constitution of the input and output space is presented showing some grid examples.
The cross section data division to construct and test the approximations is shown.
The performance metrics are presented for σ, k∞ and Σ introducing for the latter
the notion of importance. An analysis of the cross section’s variance is carried out
as well.

• In chapter 3 a review of global and local interpolating approximations using uni-
variate expansion basis is carried out showing its benefits and limitations. Piece-
wise polynomial interpolation is analyzed in detail specifically for Splines utiliz-
ing a B-spline basis, which is a classical approximation technique, representing the
state-of-the-art in many industry implementations. Some aspects of this type of
approximations such as the knot vector construction and possible oscillations in
the approximation are examined setting the ground of comparison for other, more
innovative methodologies.

• In chapter 4, Kernel methods are used for cross section modeling in the context of
ridge regression approximations. A kernel induces a function space that requires no
particular structure of the support allowing to wage Active learning techniques to
select the support points of the cross section data set. The decision criterion is based
on loss functions that use σ, Σ or k∞ with and without a shared support condition
for the cross section set. A sensitivity analysis on regularization, preconditioning
and the approximation’s order is carried out. The higher order approximations
obtained overcome the difficulties found in chapter 3 related to the use of the tensor
product rule and the need of regularization.

• In chapter 5 approximation by Artificial Neural Networks is presented discussing the
main aspect of the methodology. A parametric study on learning hyper-parameters,
network’s size, and topology is carried for feed forward fully connected multi-layer
networks. Results are compared to multi-linear interpolation in terms of library
size reduction, accuracy and evaluation speed. Multi-output models were the entire
cross section library is modeled with a single network are examined together with
their performance and characteristics.

• In chapter 6 the main conclusions and overall thesis contributions and perspectives
are provided.

In the Appendix C a review of history effects modeling strategies is carried out
analysing their improvement capabilities and possible difficulties with certain non-nominal
exposure conditions. This is a self-contained, independent study.





Chapter 2

Use case and performance metrics

In this chapter the use case considered throughout the thesis is presented, recalling the
most important characteristics and detailing the lattice calculation settings. The consti-
tution of the input and output space is provided showing some grid examples and the
data division to construct and test the approximations. The performance metrics are
presented for σ, k∞, and Σ, introducing for the latter the notion of importance. The
error bounds discussed in the introduction are further studied with the aid of a sensitivity
coefficient on the multiplication factor. An analysis of the cross sections variance and
scatter projections of the data for important cross sections is carried out as well.

2.1 PWR standard UO2 fuel assembly

The modeling methodologies in this thesis are analyzed with a specific use case provided
by the OECD-NEA Burn-up Credit Criticality Benchmark (Phase-IID) which studies the
effects on depletion of prolongued control rod insertions [60]. It’s a classical PWR fuel
assembly as shown in Fig. 2.1 composed of 17×17 UO2 fuel rods with 4% enrichment w/o
235U and with 25 guide tubes. Material and geometrical specifications are fully available
in the benchmark report [60]. The State-parameters used for the depletion calculation
are: a constant boron concentration of CB,0 = 456 ppm diluted in the moderator, a fuel
temperature of Tf,0 = 600 ◦C and a moderator density of 0.72 g/cm3. The concentration
of 135Xe is not fixed by the power but set “free” to change with exposure.

2.2 Lattice calculation settings

The lattice code employed was APOLLO 2.8 [10]. Self-shielding calculations were per-
formed using the Livolant-Jeanpierre formalism [61, 3] for all actinide isotopes, principal
fission products and the constituents of the cladding, burnable absorber pins and control
rods. These are: 107Ag, 109Ag, 110Cd, 113Cd, 241Am, 243Am, natCr, 133Cs, 153Eu, natFe,
154Gd, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd, 115In, 95Mo, 143Nd, 145Nd, natNi, 237Np, 238Pu,
239Pu, 240Pu, 241Pu, 242Pu, 103Rh, 101Ru, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 99Tc, 234U,

45
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Figure 2.1: Layout of 1/4 UO2 PWR fuel element for the Credit Criticality Benchmark
[60]. The meshing of depleting materials is shown. A re�ective boundary condition is
used.

235U, 236U, 238U, and natZr. The options for the treatment of the resonance interferences
(resonant mixtures model) are chosen for 235U, 238U, 239Pu, and 240Pu.

Flux calculations were carried out using the Method of Characteristics (MOC) to
model the transport equation with the P3 anisotropic scattering. The spatial mesh is
presented in the Fig. 2.1. A 281-multi-group cross section library based on JEFF-3.1.1
with a reflective boundary conditions are used imposing the B1 fundamental mode leakage
model to obtain a critical flux [3]. The trajectories along which the MOC solves the
balance and transmission equations were defined using parallel trajectories spacing equal
to ∼ 0.05 cm, with the angular quadrature of product type, where the azimuthal spacing
was π/24, with three polar angles following the Legendre quadrature between 0 and π/2.

Every pin and ring within depletes independently. The calculation uses the predictor-
corrector scheme based on polynomial interpolation of the reaction rates, while solving
the Bateman equations with the fourth order Runge-Kutta method. At each depletion
step the flux is recalculated. Aditional details can be found in [62] and [63].

2.2.1 Input space composition

In this thesis the state-variables that conform the input space are the burnup (Bu),
fuel temperature (Tf ), and boron concentration (CB) with cross sections in the form
σ(Bu, Tf , CB). The target exposure of 45 GWd/t represents a plausible utilization option.
The boron concentration is in the interval [100,1500] ppm and the fuel temperature,
averaged over the fuel rod, in the range [200,2000] ◦C. In this thesis this three dimensional
input space (d = 3) is normalized to the unit hyper-cube as presented in Eq. 1.10, hence
~x ∈ [0, 1]3.
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In the Appendix C, for analysing the history effects, another calculation scheme pre-
sented therein is used. It basically consists in several independent burnup calculations
at different conditions (moderator density, control rod position, etc), but without branch
calculations.

2.2.2 Data set discretization

The data set is formed from a Cartesian sampling of the domain using a discretization
Bu × Tf × CB = 170 × 16 × 16 as presented in Table 2.1. This is a sufficiently dense1

sampling of the input space to extract two disjoints sets, one to build the approximation,
and others to perform the error analysis.

Index(i) Variable Range
Discretization (|Xi|)

Data set Industry set (X?)
1 Bu [GWd/t] [0,45] 170 35
2 Tf [◦C] [200,2000] 16 6
3 CB [ppm] [100,1500] 16 5

Table 2.1: Constitution and sampling of the input space. The three state-variables con-
sidered in this thesis are the burnup, fuel temperature, and boron concentration sampled
using a Cartesian grid whose discretization is presented in the Data set column. Addi-
tionally an industry set is shown representing a plausible discretization option for this
type of fuel assembly.

A special support called the Industry set (X? ⊂ XP), having 1050 points for each cross
section, represents a reasonable discretization for an UO2 fuel assembly in this range of
variation and provides a specific support to compare the methodologies. It’s common
practice to perform lattice calculations using a fine discretization for the burnup, as to
assure proper convergence, and then build the cross section library from a subset of the
data.

The data set coming from lattice calculations is divided into the pool XP , from which
different supports are extracted XS ⊂ XP , and the test set T for evaluating the cross
sections errors. The large amount of points allows for such separation, fixing the test set
independently of any support, resulting in a stable error evaluation as XS ⊂ XP ∩ T =
∅ for any methodologies treated in this work. Care has been taken to assure that if
|XS | < |X?| then XS ⊂ X? as to have a pleasant progression towards the error of the
industry data set. Also, the borders of the hyper-cube are always considered for any
support, as to exclude extrapolations in the error analysis. Throughout the majority of
the thesis the size of the pool is limited to |XP | = 2500 (instead of 170×16×16) which is
enough to contain the Industry set and attain the target errors. It has been noticed that
additional, independent lattice calculations, especially for different burnup discretizations,
can produce incongruent tests with respect to the original data set, difficult to deal with.
As very high cross section accuracies are required, these type of inconcistancies can have
deleterious affects in the error analysis [64].

1This represent about 500MB of data with 43520 points of data for every cross section. In [30] for
example, a GB of data is already considered a problematic library size.
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Two different test sets are considered. In the first one a relativity homogeneous sam-
pling distribution is obtained, by dropping points in the first burnup values, |Tflat| = 3000.
This will be the test set mostly used in the thesis. The second one follows the distribution
of the original data set thus having a high density in the first burnup values, |TXe| = 5000.
In Fig. 2.2a the density of the pool and test points is shown for the two data sets. In
Fig. 2.2b grid points are shown for the burnup and fuel temperature at nominal boron
concentration. The Cartesian structure can be appreciated were data has been divided
into the pool, which is the total set of available points for defining a support (blue), and
the test set Tflat for evaluating the approximations (green). Test points are located only
where pool points are also available to facilitate the comparison with multi-linear and
to reduce the computational burden of the error analysis. As an example the Industry
support presented in Tab. 2.1 is shown in red.
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Figure 2.2: Density of pool and test points projected onto the burnup dimension. TXe
concentrate more test points in the �rst burnup values. (b) Example of a 2D grid slice
showing the pool and test points. In red the Industry set support which is extracted from
the pool which hereditates the regular structure from the original lattice data. In green
the test points used for error analysis. In gray unused lattice calculation data.

2.2.3 Output space composition

In regards to the output space, the spatial homogenization of nuclear data is performed
over the whole assembly and a two energy group scheme is used (cut-off at 0.625 eV). The
set of specialized isotopes is:

I = {109Ag, 243Am, 153Eu, 155Gd, 95Mo, 143Nd, 145Nd, 237Np, 238Pu, 239Pu, 240Pu,
241Pu, 242Pu, 103Rh, 101Ru, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 99Tc, 234U,

235U, 236U, 238U, 133Cs, 135Xe, 135I}, (2.1)

following the recommended isotopic specialization for criticality safety analysis [65]. The
remaining isotopes are lumped together in a residual macroscopic cross section Σres that
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has a constant concentration of 1, see Eq. 2.10. The total number of isotopes treated in
this thesis is |I|+1 = 30. This is a significant amount of specialized isotopes, for example
in the state-of-the-art ARTEMIS core simulator about 50 are normally used [23]. In this
work only cross section participating in the infinite multiplicity factor are analyzed, being
{σa1, σa2, σf1, σf2, σ1→2, σ2→1}2. The cardinality of the output space, i.e. the total amount
of functions to approximate, is |Y| = 144. The total size of the cross section library using
the Industry set is therefore |Y| × |X?| = 144× 1050 =1.5E5 terms.

2.3 Quantities of interest and performance metrics

In this work the accuracy of cross sections approximations (see Eq. 1.14) is assessed by
computing the absolute value of the error

∆σ = abs(σ̂ − σ). (2.2)

The approximation σ̂ is usually evaluated in the test set. A direct analysis of the error
distribution can facilitate the detection of “difficult” regions to approximate. A mean
cross section error is defined as

Eσ =

∑|T |
i=1 ∆σi
|T | , (2.3)

measured in absolute values 1E− 24 cm2=1 barn. A mean relative error is

REσ =
100

|T |

|T |∑
i=1

∆σi/σi, (2.4)

in % which is convenient due to the significant variation in cross sections absolute values
(σ135Xe,a,2 ∼ 1E6 barn while σ238,f,1 ∼ 1E-1 barn)3. REσ helps to identified approximations
with high error.

The model’s overall accuracy can be set forth in different ways. The simplest one is
considering the error in both the test set T for all cross section of the model Y (i.e. the
approximation’s errors in F, see Eq. 1.14)

AVσ =

∑|Y|
i=1 REi
|Y| . (2.5)

This gives an overall model’s error which can be easily compared between different
methodologies. As mentioned in Sec. 1.4.1 modern target relative errors are between
1E-2% and 1E-1%. Another useful point of comparisons is multi-linear interpolation in a

2In this work the �ssion cross section is a�ected by the ν parameter being actually νσf . Reactions in
the form n+ A → 2n+ (A− 1) n+ A → 3n+ (A− 2) are not included in the absorption cross section.
Only the scattering cross section corresponding to the P0 term are analyzed.

3A tolerance is considered for a possible case where the error may be small, but the cross section's
absolute value so small that the relative becomes disproportional large. The condition to exclude such
point is ∆σ)/σ > 5 and .98 ≤ σ̂/σ ≤ 1.02. The �rst part requires the relative error to be bigger than
5%. The second demands for the approximation σ̂ to be within ±2% of σ. Bad approximations won't
be excluded of the error analysis but good ones with high relative errors will. In practice this condition
never rose.
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full grid using the Industry set, representative of industry applications. This type of error
however, may average out variations in Eσ which thus analyzed as well.

The overall model error can, for example, be discriminating by groups

AVσ,1 =

|Y|g=1∑
i=1

REi/|Y|g=1,

AVσ,2 =

|Y|g=2∑
i=1

REi/|Y|g=1,

(2.6)

and so forth for reaction type r or even isotope i. The use of these types of errors will be
limited, but they can depict the error distribution within Y .

The maximum relative error (in %) is
MAXσ = max

x∈T ,σ∈Y
100∆σ(x)/σ(x), (2.7)

for all the cross section in Y . Similar error definitions are used for macroscopic cross
sections Σ which can be though off as an error on σ weighted by the concentrations. Also
the error on infinite multiplication factor k∞, derived from macroscopic cross sections, are
analyzed. L1 norms on relative errors are used in this work following the recomendations
found in litterature for assessing the cross section models [14, 29]. Many times cross
section library size will be compared at constant error. This viewpoint, implies a “test of
significance” of the parameters of the model, quantifying how much information are they
able to convey. All the methodologies were tested with a CPU hardware of 24 cores of
2300 MHz and 126 GB of RAM with a GeForce GTX 1080, Python2.7 [66], and Cuda
10.1 [67].

2.3.1 Multiplication factor sensitivity to cross section error

To provide some insight into the rationale behind the relative errors targets of [1E-2%, 1E-
1%] a sensitivity coefficient from Eq. 1.6 is considered. The derivative of the multiplication
factor with respect to the macroscopic thermal fission cross section is

Sf,2 =
∂k∞

∂ν2Σf,2

=
1

(Σa,1 + Σ1→2)(Σa,2 + Σ2→1)/Σ1→2 − Σ2→1

. (2.8)

For the use case treated in this work, Sf,2(0, T0, CB,0) ∼ 9. Then,
|∆k∞| ∼ 9|∆ν2Σf,2|. (2.9)

In a UO2 fresh fuel, ν2Σf,2 = C235Uσ235,f,2 with, in this case, C235U ∼ 2.51E-4/(barn cm)
and σ235,f,2 ∼ 600 barn. Then a ∆σ235f,2 = 1%, which is about 6 barn, results in an
unacceptable |∆k∞| ∼ 1300 pcm4 only due to reconstruction error in the cross sections.
If a more acceptable error of |∆k∞| = 10 pcm is demanded, a |∆σ235,f,2| ∼ 0.05 barn,
i.e., about 1E-2% relative error is required. Though this is possibly an upper bound, Σ is
usually composed of many cross sections where error cancellation can occur and the error
targets prescribed by the literature seem justified.

4This is about two dollars worth of reactivity, being the βeff of a PWR about 650 pcm. This unit is
relative to the prompt critical state, in which the chain reaction is no longer controlled. Such error, is of
course, unacceptable.
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2.3.2 Important microscopic cross sections

Isotopes participate differently in the macroscopic cross section due to their changing
concentration Ci(Bu) with burnup and cross section absolute value. For a given reaction
and group, the Importance is

Iσ(Bu) = Ii,r,g(Bu) = σi,r,g(Bu, Tf,0, Cb,0)Ci(Bu)/Σr,g(Bu, Tf,0, Cb,0). i ∈ I, (2.10)

being 0 ≤ Iσ ≤ 1. The importance function depends mainly on the burnup showing low
sensitivity to instantaneous values so nominal are used. It’s shown in Fig 2.3 for isotopes
with max(Iσ) > 0.1 were the apparition of fission products in the absorption cross section,
of plutonium in thermal fission and the effect of spectrum hardening in the fast fission
(238U) can be noted. With respect to Σ1→2 it’s composed up to 99.7% of Σres and Σ2→1

is 90% Σres and 9% 238U (1% others). This already announces a potential conflict in
modeling objectives: not only few specialized isotopes participate significantly in Σ, but
in particular the scattering cross sections, that can be the most demanding in library
storage, can have negligible fractions of Σ.
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Figure 2.3: Evolution of cross section importance with burnup. At very low values
235U, 238U, and Σres constitute the totality of the macroscopic cross section. With in-
creasing burnup actinides and �ssion product start to form. Only cross section with
max(Iσ(Bu)) > 0.1 are plotted. (a) In fast absorption the Pu element becomes pro-
gressively important. (b) A similar process is observed including the neutronic poisons
135Xe and 149Sm. (c) Fissionable isotopes such as 238U participates in the fast �ssion
macroscopic cross section. Being the concentration of 238U practically constant it gains
importance as 235U depletes. (d) Only isotopes with a pair mass number are �ssile. 239Pu
plays a major role in sustaining the chain reaction at high burnup values.

2.4 Analysis of variance

Cross section data projection into the state-parameters is displayed in Fig. 2.4 for the
isotope 235U and in Fig. 2.5 for Σres discriminating by reaction type and energy group.
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To ease the comparisons, each cross section is affected by

σ ← σ −mean(σ),∀σ ∈ Y , (2.11)

thus having a zero mean. It can be seen that cross section data exhibits a complex
dependence with burnup, particularly for thermal absorption and fission. The “effective
low order” (yet not-linear) dependence for instantaneous variables can be observed. 235U
has a similar dependence on both instantaneous variables while Σres changes significantly
with boron concentration since it includes the moderator on which the boron is diluted. In
Fig. 2.5a each line of data for Σa,2 includes all the values with changing Tf that has a very
mild spectral influence on the residual cross section, stripped away of the majority of fission
product and actinides. For every cross section, the cloud of data is proportional to the
variance that could be correlated with complexity and thus difficulty of approximation.
The discretization discussed in Table 2.1 are apparent here were 16 columns of data
corresponding to the Cartesian sampling scheme for the lattice calculations can be seen.

(a) 235U (b) 235U

Figure 2.4: Zero mean cross section projections for the isotope 235U using the entire data
set (d = 3) discriminated by reaction and group. (a) Signi�cant variation is observed in
function of the burnup, specially for �ssion and absorption cross section. The scattered
cloud of mainly thermal cross section data is due to the projection of the fuel temperature
and boron concentration into the burnup dimension. In (b) �low order� but not linear
dependence of cross section data with the fuel temperature can be observed.

σ σ238U,f,1 σ235,f,2 σ235,a,1 σ235,a,2 σ239,f,2 σ238Pu,f,1σ135Xe,a,2Σ2→1 Σ1→2

Var(σ) 7.9E-6 92.29 0.006 20.07 4.5E3 0.25 1.6E9 7.1E-8 3.4E-7

Var(σ)/
mean(σ)

2.4E-5 1.5E-1 5.1E-4 0.07 2.4 1.0E-5 1.1E3 2.0E-5 3.4E-5

Table 2.2: Variance of some important cross sections. It can be noticed that in general
thermal cross sections exhibit a higher variance than fast cross sections.

The variance is presented in Table 2.2 for some important cross sections. It can change
significantly between isotopes and specially between groups. In Fig. 2.6a several more
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(a) Σres (b) Σres

Figure 2.5: Zero mean cross section projections for Σres in using entire data set (d = 3)
discriminated by reaction and group. (a) Signi�cant variations are observed for the ab-
sorption reaction. Each line includes all the data for the fuel temperature which has a
mild spectral e�ect in the moderator's absorption. In (b) the dependence of the moder-
ator's absorption cross section with boron concentration is apparent since this neutron
poison is diluted in the water.

isotopes are plotted for σ(Bu, Tf,0, CB,0) to have a clearer figure (i.e. d = 1). Significant
variations within the first burnup values are noticed, specially for the plutonium element.
In [30] it’s suggested that these strong variations are due to passing from an initial zero
concentration infinite-diluted high cross section values to self-shielded values. Also, as
the isotopic content of the fuel changes, the spectrum of the collapsing flux varies as
well. Difference between the fast and thermal group are further exhibited in Fig. 2.6b by
plotting the entire data set (d = 3) discriminated by energy group. Fast cross section have
quite smaller values and are thus relatively more sensitive to possible numerical artifacts.
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Figure 2.6: Cross sections variation with burnup discriminated by isotope, reaction and
group. (a) Cross section discriminating by reaction and isotope for σ(Bu, Tf,0, CB,0).
Absorption and �ssion cross section tend to present the highest variance. (b) Entire cross
section data set discriminated only by energy group. Higher absolute values and variance
are observed for thermal cross sections.

2.5 Final thoughts and discussion

This chapter presented the use case to assess the approximation methodologies detailing
the calculation settings and the composition of the input and output space. The main
conclusions are:

• A standard PWR fuel assembly composed of 17×17 UO2 fuel rods with 4% enrich-
ment w/o 235U [60] was presented for classical lattice calculation settings using a
full grid sampling of the domain.

• The output space considered counts with 29 specialized isotopes from which Y = 144
functions are retained for approximation. This kind of isotope specialization can be
found in criticality safety analysis [65] and is not very different to those utilized in
state-of-the-art industry applications [23]. The reactions considered are {σa1, σa2,
σf1, σf2, σ1→2, σ2→1}.

• A three dimensional (d = 3) input space consisting of the state-parameters bur-
nup, fuel temperature, and boron concentration with plausible utilization ranges is
considered.

• Though a relativity low dimensionality input space is used 5, it is sufficiently densely
5Di�culties were encountered in cross section data generation. When scheduled, the APOLLO3 code

was in development and the APOLLO2 code was used instead. Auxiliary executable programs were
provided to read the cross section data �les (sbr.exe) that, after debugging, still required about 100
seconds to extract each calculation point for large �les. These issues are being process limiting the scope
of the considered dimensions to only 3.
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sampled to extract two distinct test sets which are independent of the pool used to
build the approximations.

• The data, pool, and test set were shown together with some support examples. The
Industry set was defined standing as an additional element of comparison between
the cross section models.

• The performance metric, i.e. the cross section error definitions were presented em-
phasizing the need to consider relative errors though discussing possible pitfalls for
fast cross sections. Errors discriminated by isotope, reaction, or group can be used
to depict the error distribution within the set and reveal a possible error compen-
sation.

• A sensitivity coefficient on the multiplication factor due to cross section error was
presented. The target relative errors discussed in chapter 1, laying between [0.1 %,
0.01 %], imply a maximum error of 10 pcm while an 1 % error in σ235,f,2 can lead
to a multiplication factor error of 1300 pcm which is unacceptably big due to safety
concerns. An error of 0.01 % can be really small of only 0.5 barn which is why very
high accuracy models are needed.

• A definition of cross section importance was provided, showing that only a few cross
sections have a large participation in the macroscopic cross section. This is especially
the case for scattering reaction that can require large portions of the library size.

• Cross section variance and projections in the state-parameters were presented show-
ing the variability within Y for different isotopes, reactions, and groups. In partic-
ular a significant part of the function’s variance is located in the burnup dimension
and specifically in the first burnup values.

• Thermal cross sections exhibit larger variances than fast cross section data, espe-
cially for the absorption and fission cross section on the burnup dimension. The
other exhibit a “low order”, yet non linear, dependencies and some insights of the
underling physical phenomena governing this behaviour were presented.



Chapter 3

Spline interpolation

In this chapter a review of global and local interpolating approximations using univariate
expansion basis is carried out showing its benefits and limitations. Piece-wise polyno-
mial interpolation is analyzed in detail specifically for splines utilizing a B-spline basis,
which is a classical approximation technique representing the state-of-the-art in many
industrial implementations. Some aspects of this type of approximations such as the knot
vector construction and possible oscillations in the approximation are examined setting
the ground of comparison for other, more innovative methodologies.

3.1 Interpolating approximation using univariate basis

functions

An approximation ŷ ' y (y is the function being approximated, the cross section σ of
Eq. 1.14) can be built as a linear combination of the tensor product of univariate basis
functions ψ(xi), xi ∈ ~x, 1 ≤ i ≤ d

y(~x) ' ŷ(~x) =

N1∑
j1=1

. . .

Nd∑
jd=1

αj1,...,jd

d∏
i=1

ψi,j1,...,jd(xi), (3.1)

being d the dimension of the input space. For finding the coefficients ~α which are the
parameters of the model, a support coming from the pool S ∈ P is used to impose the
interpolation condition

ŷ(~xj) = y(~xj), 1 ≤ j ≤ |S|. (3.2)

In view of Eq. 3.1 the collocation system is

A~α = ~y, (3.3)

57
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where Ak,j =
∏d

i=1 ψi,j1,...,jd(xi,k) with 1 ≤ k ≤ |S| and the basis function with the
index 1 ≤ ji ≤ Ni for 1 ≤ i ≤ d. Using a tensor product rule for the support the total
amount of basis functions, equal to the amount of coefficients, is

∏d
i=1 Ni =

∏d
i=1 |Xi|;

thus accounting for all possible cross-terms between the variables, effectively treating y as
a “black-box”. A vast amount of “classical” representations methodologies can be found
under this scheme. However, “The major limitation of the methodology described is the
requirement for the function to be defined everywhere in the rectangular problem domain.
As a result, it is not applicable in the cases where there are unphysical domains of state
parameters” [31].

3.2 Global polynomial representation

Lets start with a 1 dimensional case for the use case considered in this work corresponding
to cross sections in the form σ(Bu, Tf,0, CB,0). Polynomials can be evaluated, differentiated
and integrated easily using basic arithmetic operations. A global polynomial is defined as

ŷ(x) = p(x) =
N∑
j=1

αjψj(x). (3.4)

They are a very well understood function space and the building blocks of more advanced
representation methods. The polynomials p of order N and degree N − 1 form the linear
space p ∈ Π<N from which a unique polynomail that interpolates the support XS can be
extracted [68].

Possibly the simplest base example is the monomial base composed of ψj(x) = xj−1

for 1 ≤ j ≤ N . This basis, used in [56], leads to impractical full rank matrices to
invert in Eq. 3.3. A more convenient basis in this regard is the Lagrange base ψj(x) =

N∏
k=1,k 6=j

(x−xk)(xj−xk), 1 ≤ j ≤ N defining a trivial collocation system since ψj(xk) = δjk.

This property was exploited in [28] to facilitate the independent addition of new points to
the system. Unfortunately this base also entails a relativity expensive evaluation effort1.

The polynomial interpolation package used in this work [69] utilizes the Newton base
defined by ψj(x) =

∏j−1
k=1(x − xk), 2 ≤ j ≤ N , (ψ1(x) = 1). The divided differences

algorithm can be used to find ~α and the Horner’s scheme to evaluate ŷ in a particullary
efficent way2.

1Rejection techniques can be used due to the orthonormal character of the Lagrange base. This
technique is exploited in many works but attention must be drawn to the points actually de�ning the
base as the productory in Lagrange base is not changed by shrinking and low evaluation speed of ŷ could
be encountered. The basis evaluation cost is (2N − 2)A+ (N − 2)M + (N − 1)D operations where A, M ,
D stand for addition, multiplication and division respectively.

2The divided di�erences algorithm has a computational cost of N(2N−1)A+N(N−1)D/2 operations
[68] and the Horner's scheme pro�ting from a nested expression of ŷ a cost of (N−1)(2A+M) operations
[70].
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3.2.1 Limitations of global approximations

Global polynomials are efficient solutions for “small” problems but struggle when increas-
ing the size of the support, especially for non-smooth functions. A function y badly
behaved anywhere can badly condition ŷ everywhere [68]. A bound on the global polyno-
mial approximation is ||p|| ≤ λ||y|| with the uniform norm defined by

||y|| = max
x∈X

(abs(y(x))). (3.5)

If, for example, the support is sampled using an uniform distribution as done in [53],
the Lebesgue constant is ||λ|| ∼ 2N/(e ln(N)) scaling quite badly with N . A Chebyshev
distribution for sampling the support mitigates this to some extent [68], with a Lebesgue
constant of ||λ|| = ||λc|| ∼ (2/π) ln(N) + 4 which can be convenient, even at the expense
suboptimal burnup grid as usued in [28, 42]. Nonetheless the order of the polynomial
approximation is not the only caveat. A bound to the approximation error is

||y − ŷ|| ≤ (1 + ||λc||)dist(y,Π<N),

with the term distance to the global polynomial function space bounded by

dist(y,Π<N) = min
p∈Π<N

||y − ŷ||.

Considering an approximation using Chebyshev nodes results in

dist(y,Π<N) ≤ 2
(1

4

)N ||y(N)||
N !

meaning that for non-smooth functions the error may still grow at the rate of ||y(N)||.
These two limitations related to the size of the support (|XS |) and the variations of
the function being approximated (||y(N)||) may render global polynomials inadequate for
cross sections modeling. A mere |XS | ∼ 10 can be sufficient to triggering un-bounded
oscillations as shown in Fig. 3.1 (Runge phenomenon [68]). In fact, high values of ||y(N)||
near the border of the domain, and possible large |XS | with non-uniform distributions,
are the norm rather than the exception.

3.3 High order piece-wise polynomial approximations

Some of the problems analyzed in the previous section can be overcome by subdividing the
domain and approximating the resulting pieces with lower order polynomials. These piece-
wise polynomials noted as pp, are composed of l polynomials of order K � N and joined
together at the breaks (~ξ ∈ X ) that form the strictly increasing sequence |~ξ| = l + 1. pp
are local approximations as only data belonging to the sub-domains defined at the breaks
are used in each piece.
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(a) (b)

Figure 3.1: Divergent global polynomial approximation in cross section modeling using
only support 11 points marked in red that de�nes the breaks (~ξ) of the piece-wise ap-
proximation. A local linear approximation on the other hand, is bounded by the support.
(a) Σres,1→2 exhibit unbound oscillation due to the Runge phenomenon. (b) A divergent
error is observed for σ235,f,2. The �rst point corresponding to a zero concentration of 135Xe
badly conditions the system locally a�ecting the global approximation everywhere in the
domain.

These functions define the space pp ∈ Π<K,~ξ of dimension Kl that can be thought
of as the direct sum of l pieces of p ∈ Π<N . Approximations need not to be smooth
or continuous at the breaks, though such level of generality is not usually desired in
many application including cross section modeling. A classical example of piece-wise
approximation is linear interpolation of order K = 2 (and degree 1). As only continuity is
imposed, the approximation is local though not smooth. Points are connected by straight
lines and the first derivative may not exist at the breaks as can be observed in Fig. 3.1.
Higher order pp approximation allow to impose additional smoothness conditions ideally
requiring less points to describe a smooth curve. A common term to refer to these type
of curves, specially when showcasing a “clean” and “smooth” profile without wiggles is
splines in relation to the tools used in naval engineering at the beginning of the XXth

century.

Smooth conditions at the breaks are formally defined with the aid of the continuity
vector ~ν that expresses the amount of derivatives that exist at the breaks. This is a piece-
wise polynomial sub-space Π<K,~ξ,~ν ⊂ Π<K,~ξ

3. Its construction and evaluation is achieved
in a stable and efficient way by using B-splines where “B” stands for basis.

3The continuity vector imposes the existence of the derivative up to (νj − 1) imposing that no �jump�
occures at the breaks: jump(ŷ(ξj)

(k−1)) = 0, for 1 ≤ k ≤ νj and 2 ≤ j ≤ l. Finding a proper base
for Π<K,~ξ,~ν results in solving a smaller collocation system than in Π<K,~ξ as in the latter the additional

(homogeneous) continuity conditions must be included. In fact, for di�erent supports the solutions in the
same functional space Π<K,~ξ require solving the very same continuity conditions repeatedly (see page 80

of [68]).



3.3. HIGH ORDER PIECE-WISE POLYNOMIAL APPROXIMATIONS 61

3.3.1 B-splines as basis of a piece-wise polynomial space

Let K,N ∈ Z>1 and the non-decreasing knot vector ~t with tj ∈ R, 1 ≤ j ≤ N +K. Then,
a B-spline (Bj,K) is a piece-wise polynomial of order K defined by the recurrence relation

Bj,K = wj,KBj,K−1 + (1− wj+1,K)Bj+1,K−1, wj,K =
x− tj

tj+K−1 − tj
,

Bj,1 =

{
1, tj ≤ x ≤ tj+1,

0, otherwise.

(3.6)

Some of these basis functions are shown in Fig 3.2a. The smoothness or regularity of
each basis term increases with the order K. A spline is a linear combination of B-splines
that can be used to approximate y

y(x) ' ŷ(x) = s(x) =
N∑
j=1

αjBj,K(x), (3.7)

with αj ∈ R forming the linear space s ∈ $K,~t. The connection between the spline
space $K,~t and Π<K,~ξ,~ν is provided by the Curry and Schoenberg theorem presented in the
Appendix A.1. B-splines are characterized by:

• Positivity: Bj,K > 0 if x ∈ [tj, tj+K ].

• Locality: Bj,K = 0 if x /∈ [tj, tj+K ].

• Partition of unity:
∑N

j=1Bj,K = 1 if x ∈ IK,~t = [tK , tN+1].

These properties make of B-splines an extremely convenient basis for representing
functions. As shown in Fig. 3.2b they define positive banded matrices for the collocation
system in Eq. 3.3 for which very efficient resolution routines are available [71]. Being the
basis local and having partition of unity the approximation is bounded by the coefficients
(Convex hull property)

min(αj+1−K , . . . , αj) ≤ s(x) ≤ max(αj+1−K , . . . , αj), (3.8)

for tj ≤ x ≤ tj+1. For this reason the coefficients are sometimes referred to as “control
points”, and a total of only K participates in the evaluation of s(x)4. Due to the bounded
nature of B-splines and the very well conditioned collocation matrices the coefficient’s
module have values that reflect the support’s data. Depending on the field the word
“splines” may refer to parametric curves consisting of a set of spline functions in the form
(s1(θ),s2(θ),. . . ).

4Just as it would be the case in a piece-wise representation ΠK,~ξ,~ν that requires the evaluation of a
polynomial of order K.
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(a) (b)

Figure 3.2: Properties B-splines basis. (a) The order of the spline de�nes its regularity.
This local basis has non-zero values in a small region of the domain de�ned by the orderK.
(b) The properties of locality, positivity, and partition of unity positive banded matrices
in the collocation system for which very e�cient routines are available.

3.3.2 Interpolant piece-wise approximations with B-splines

An approximation s ∈ $K,~t is a solution of Eq. 3.2 for a support defined over S by
the fulfilment of Theorem 1 which establishes two condition on ~t. First, the maximum
multiplicity r, the repetitions of an element in the knot vector, for any interior knot must
be r < K − 1, only the first and last knots are allowed to have r = K. The multiplicity
defines the order up to which the derivative exists at the breaks. A total amount of interior
knots |IK,~t| = |~t| − 2K = N −K is defined from |S| − 2 = N − 2 unused support points.
The interplay between these two, the data for interpolation, and the location of the breaks
with their corresponding multiplicity define the quality of the spline approximation.

Theorem 1 (Schoenberg and Whitney theorem [68]). Let XS be strictly increasing se-
quence and 0 < tj = · · · = tj+r = xj < 1 implies

r < K − 1 (3.9)

then the system in Eq. 3.2 is invertible if and only if Bj,K(xj) > 0 which happens if

tj < xj < tj+K for 1 ≤ j ≤ N. (3.10)

xj = tj is allowed for j = 1 and j = N regardless of condition 3.9 and 3.10.

3.4 Knot vector constructions

Smooth approximations increase cross section accuracy and are particualrry relevant in
core feedback coefficients calculations. Several recepies for computing valid knot vectors
from a given support are presented in [68].
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Linear approximation

For K = 2, r = 0 meaning that every interior knot can appear only once thus imposing
a single condition at the breaks: continuity. I2,~t = N and therefore

tj+2 = xj+1 for 1 < j < N, x ∈ XS , (3.11)

thus ~t = (0, 0, x2, . . . , xN−1, 1, 1). A solution to Eq. 3.3 is trivial, αj = y(xj) for 1 ≤ j ≤
N , and due to the convex hull property the local interpolant approximation is bounded
by the support. Let y have two continuous derivatives (y(2)), an error bound is

||y − ŷ|| ≤ 1

8
||∆X||2||y(2)||, (3.12)

which is of O(N−2). A support increase leading to a reduction of the interval in the
support ||∆X||, improves the accuracy without changing the complexity of ŷ which are
straight lines. It does increase the total amount of points required by the approximation5.

Not-a-knot spline

For K > 2 interior knots of multiplicity equal to 1 correspond to a smooth approximation
at the breaks being a solution of Eq. 3.2 whose existence is assure by the Schoenberg
and Whitney theorem. The amount of interior knots tK+1, . . . , tN is smaller than the
amount of support points. One strategy for computing ~t is, for an even order K = 2m
with m ∈ Z≥1 the assignation

tK+j = xm+j, 1 ≤ j ≤ N −K. (3.13)

It can be noticed that indeed m data sites do not appear in the knot vector. For
K = 4 this is the cubic spline with the “not-a-knot” end condition.

Oddend spline

If K is odd an assignation of the form 3.13 can be consider by dropping an additional
data sites at either extreme of the interior knots. Dropping the last knot is considered.

Splop spline

A so called optimal or “crowned” knot vector is obtained by using the routine of the same
name found in [68]6. Another knot vector, similar to splop is given by

tK+j = (xj+1 + · · ·+ xj+K−1)/(K − 1), 1 ≤ j ≤ n−K. (3.14)

which is called here Pre-Splop.
5In the particular case of a uniform mesh the classical error bound for linear interpolation is obtained

||y − ŷ|| ≤ 1
8

(
b−a
n−1

)2

||y(2)|| with in this case b = 1 and a = 0.
6The motivation is to minimize the term (1 + ||ŷ||) of the error bound presented detailed later in Eq

3.17.
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Approxima- MAXσ AVσ MAXΣ AVΣ MAXk∞ AVk∞ Library Size
-tion type [%] [pcm] Coef. ∆[%]

Multi-linear 7E-1 1.25E-2 8E-2 1.1E-2 2.0 4.7 5E3 -
Not-a-knot 5E-1 2E-3 2E-2 6E-4 2.0 0.5 2.2E3 56
Splop 5E-1 2E-3 2E-2 8E-4 2.0 0.6 2.2E3 56
Pre-plop 5E-1 2E-3 2E-2 8E-4 2.0 0.5 2.2E3 56
Odd-end 4E-1 3.5E-3 2E-2 1.8E-3 4.1 1.1 2.9E3 42

Table 3.1: Approximations for d = 1 with di�erent spline types di�ering in the order
and knot vector construction strategy. Maximum and average errors are calculated at the
support corresponding to the industry set. The library size and corresponding reductions
are calculated at the constant average error (AVσ,?) of multi-linear.

3.5 Spline cross section approximation

In this section the different model’s errors for piece-wise approximation using linear and
higher order splines are presented. In this work we consider five types of spline approx-
imation: Linear (K = 2), Not-a-knot (K = 4), Odd-end (K = 3), Splop (K = 3), and
Pre-plop (K = 3).

3.6 Spline error analysis for d = 1

Average and maximum cross section errors (see Eq. 2.5 and Eq. 2.7) are presented in Fig.
3.3a and Fig. 3.3b in function of the library size (total amount of coefficients). For the
linear spline (order K = 2) the mean error monotonously diminishes when increasing the
support. Higher order interpolation tends to perform better than linear interpolation: a
smaller support is required at a given error (e.g. at AVσ,∗ or 1E-2%), or equivalently a
better accuracy is obtained for a given library size. Different knot vectors offer the same
representation quality with the exception of oddend that has a somewhat higher error7.
Plots with the same overall error tendencies are obtained for k∞ and thus are not shown.
Errors for the industry set, which was first introduced in Section 2.2.2, are presented in
Table 3.1.

Even for this rather simple 1-dimensional case, higher order splines maximum or av-
erage errors do not decrease monotonously. If the order of the spline is further increased
this problem gets exacerbated as shown in Fig 3.3d. With a low support, all cross sections
approximations have a similar poor accuracy which can be observed in both Fig. 3.3a and
Fig. 3.3a. By comparing them it can be noted that the error profile of linear approxima-
tions are similar in σ and Σ. This is not the case for high order spline approximations,
when increasing the support, since AVΣ<AVσ. In order to find the roots of this behavior
it’s necessary to further analyze the cross section errors.

7The knot vector construction for k = 3 dropping a data site at the beginning instead of at the end
performed poorly having even divergent errors. A higher order for the odd-end knot vector resulted in a
divergent approximation. It's therefore not presented nor discussed further.
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(a) (b)

(c) (d)

Figure 3.3: Error pro�les for di�erent spline approximation for d = 1. (a) Average error
in σ. Multi-linear error diminishes monotonously and the Industry set error is withing
the target boundaries. Higher order splines exhibit a higher accuracy. (b) Maximum
error in σ. Higher order splines can present larger errors than multi-linear. (c) Average
error in Σ. Multi-linear error diminishes monotonously and the Industry set error is
withing the target boundaries. Higher order splines perform better in this case than with
σ. (d) Higher order splines with additional smoothness conditions. The performance
deteriorates. Straight line helps to visualize the trend.

3.6.1 Non-monotonically error behavior high order splines

To further explore the non-monotonously decreasing error with support in higher order
splines, the error REσ for the Industry set is presented in Fig. 3.4. This is an information
dense figure, but helps to pinpoint the sources of the error. In the horizontal axis reaction
type per group are located and the specialized isotopes in the vertical. Some cross sections
present a much higher error that the average as for example, σ240,a,1 that participates
significantly in Σ (see Fig. 2.3a).
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Figure 3.4: REσ for the oddend spline with the support X? and d = 1. Though the
majority of the cross sections are well predicted having a relative error value smaller than
0.05%, others present large average relative errors.

Some of the cross sections with the highest error are plotted in Fig 3.5. It can be seen
that abrupt changes in the cross section values for the very first burnup points triggers
spline overshoots and oscillations. This problem does not affect the linear interpolation,
bounded by the support. Near S? the support is large enough to include points in this
difficult regions, inducing the oscillations, but sufficient to limit them. Since this happens
for low burnup values, where many isotopes have near zero concentrations, AVΣ< AVσ as
noticed in Fig. 3.3a.

It could be argue that these errors are small and maybe globally inconsequential.
Indeed they are on the order of ∼ 1 barn and, at least for a 1-dimensional case, a library
reduction is obtained with higher order splines. To this, it’s important to note that in view
of isotopes concentrations, actual cross section values, and spectral conditions it’s actually
hard to judge the aggregated effect of such nonphysical modeling errors in for example,
the integral or feedback parameters of core calculations. The onset of oscillations leading
to non-trivial dependence with the support in the region of interest are unexpected and
hard to predict. Though small in absolute values, these overshoots are of the same order of
magnitude than the spectral effect 135Xe concentration change. In the Appendix A.1 it’s
shown that further increase in the support does help, though performance varies depending
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on the test set used. This type of oscillation problems have been mentioned before [46],
but not investigated in detail for cross section approximations. From a modeling point a
view, the need of regularization is evident which will be treated in the next chapter.
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Figure 3.5: High order spline approximation for di�cult cross section. Nonphysical os-
cillations of the same order of magnitude that the spectral e�ect of the Xe transient can
be observed. The cross sections presented are σ240,a,1, σ95,a,1, σ241,f,2 in (a), (b), and (c)
respectively.

3.6.2 The drive of spline oscillations

Another example is for σ240,a,1 presented in Fig 3.6. The variation of cross section data
could be possibly due to the activation of the self-shielding phenomenon combined with
the xenon build-up and even numerical noise which can be more relevant for fast cross
section. Indeed this behavior happens, more often than not, for cross section with zero
initial concentration. The oscillations are driven by the smooth condition imposed at the
knots. By taking a closer look, we observe that the fourth knot actually falls within the
“jump”

~tpre−splop = (0.0, 0.0, 0.0, 5.29E− 4, 1.27E− 3, 2.54E− 3, 4.38E− 3 . . . (3.15)

. . . , 1, 1, 1}.

Therefore by considering a double knot in this specific position only continuity is
imposed and the spline’s wiggles disappear. This “relaxed”, hand crafted knot vector

~tpre−splop = (0.0, 0.0, 0.0, 5.29E− 4, 1.27E− 3, 1.27E− 3, 4.38E− 3 . . . (3.16)

. . . , 1, 1, 1},
generates an approximation smooth everywhere except at the “jump” where only conti-
nuity is imposed. Inspired by this example, several strategies to modified the knot vector
by introducing multiplicities and thus relaxing the smooth condition have been tested and
are presented in the Appendix A.2. Unfortunately the overall error improvement remains
marginal.
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Figure 3.6: A high order modi�ed spline approximation based on the pre-splop knot
vector construction considers a double multiplicity knot at the data �jump� tempering
the oscillations. This �relaxed� knot vector generates a smooth approximation everywhere
except at this point in which only continuity is imposed.

3.6.3 Theoretical investigation of the spline error

A spline approximation error bound is [68]

||y − ŷ|| ≤ (1 + ||ŷ||)dist(y, $K,~t). (3.17)

Let y have K continuous derivatives, then the distance of the function to the spline
function space is bounded by

dist(y, $K,~t) ≤ constKmax(∆t)K ||y(K)||, (3.18)

which means that the best possible (though indeterminate) spline approximation s ∈ $K,~t
to a smooth function can at best go to zero as fast as the K-th power of the mesh
size. Though this type of bound can profit from the approximation’s order and the
discretization of X , significant variation in the data, specially for higher orders, can
compromise the error bound. The choice of the data sites not only impacts the bound
in Eq. 3.17 by defining the information available to ŷ but also in view of the following
bound

||ŷ|| ≥ cteK min
xi∈XS

{tj+K−1 − tj : (tj . . . tj+K−1)
⋂

(xi . . . xi+1) 6= ∅}
∆xi

. (3.19)

The numerator grows as the intersection between the knot vector and grid in which
the support is defined augments. The denominator diminishes with increasing support
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Approxima- MAXσ AVσ MAXΣ AVΣ MAXk∞ AVk∞ Library Size
-tion type [%] [pcm] Coef. ∆[%]

Multi-linear 1.9 2.1E-2 3E-1 1.8E-2 90 15 1.5E5 -
Not-a-knot
(Mod.)

1.9 1.4E-2 2E-1 1.0E-2 80 12 1.1E5 26

Table 3.2: The high order approximation considered a modi�ed not-a-knot spline for
the burnup dimension. Maximum and average errors are calculated at the support corre-
sponding to the industry set. The library size and corresponding reductions are calculated
at the constant average error (AVΣ,?) of multi-linear.

cardinality, having smaller minimum intervals. Therefore irregularity in the sampling of
the support can both increase the numerator and decreace the denominator augmenting
the error bound. Indeed with increasing ||ŷ|| “the approximation process becomes less
local. This means that the error at one part of the domain may very well depend on the
function y anywhere. [. . . ] If this is detected it makes no sense to keep adapting the knot
vector to the irregularities of y”[68]. This explains the difficulties observed with splines
exacerbated by the order K, the variation in σ and irregularities in the sampling of X as
empirically observed. Indeed the optimal order K is not evident and any K > 4 showed
very poor accuracy.

3.6.4 Multi-dimensional spline approximation in a Cartesian grid

The advantage of a Cartesian support is that the multi-dimensional collocation system
can be expressed in the form of

(A1 ⊗ · · · ⊗ Ad)~α = ~σ, (3.20)

with Ai a 1-dimensional collocation system (see Eq. 3.3) which can be solved by a
repeted application of their corresponding and possibly optimized solvers [71]. This is
exploited in the the package used in this thesis [69]. It uses very efficient solvers to deal
with the collocation system obtained from [72], and that have been refracted for increased
performance.

3.7 Spline approximation in higher dimensional space

In Figure 3.7 a high order spline space is shown in function of the support size for the
three dimensional use case (d = 3). Multi-linear approximation’s errors diminishes mono-
tonically, bounded by σ(~x), though not reaching zero, being the useful information in the
pool limited, and Tflat fixed.

A higher order spline is able to offer some marginal library size reduction which is
detailed in Table 3.2. However the gains remain very small. This is made worst by the
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fact that a modified spline knot vector is actually being used and combine with multi-
linear in the other instantaneous variables for the Tflat test case that has a lower density of
points in the first burnup values. All other combinations of function spaces with or without
modified knot vector are treated in the Appendix A.2 where performance deteriorates even
more, specially for TXe. The tensor product rule and the lack of regularization greatly
hinders the storage reduction capabilities of these approximations. This is why research
using full grids were abandoned from the ’00 onward, though they still are the industrial
standard.

(a) σ

Figure 3.7: AVσ for higher order modi�ed splines using a linear function space for the fuel
temperature and boron concentration. Though some accuracy gains are observed these
tend to be rather small. The test set is on Tflat straight line helps to visualize the trend.

3.8 Final thoughts and discussion

In this chapter global and local polynomial approximations were studied, the latter using
high order splines with B-spline basis trying different orders and knot vectors construc-
tions. We observed that:

• Polynomial approximations dispose of an extensive and accessible literature armed
with a rich set of computational tools and libraries. The monomial, Lagrange and
Newton basis, appearing in the literature review of chapter 1, were presented dis-
cussing some of their characteristics.

• Unfortunately, for cross section approximation global polynomials interpolation
proved inadequate, at least without using special discretizations in XS . Divergent
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errors where obtained with just a few support points. Setting free the 135Xe con-
centration probably augments significantly the modeling challenge as reported in
[64].

• For 1-dimensional cross section modeling, spline approximation resulted in an accu-
racy increase. Though this is not an exhaustive study on knot vector construction,
several recepies as suggested in [68] were tested in accordance to questions raised in
[46]. At least for this use case these have a minor impact on the spline approximation
power.

• A formal treatment of spline interpolation and its link to a B-spline basis were pre-
sented introducing the two main Theorems that govern this function space (Theo. 1
and Theo. 2, presented in Appendix A.1). Specifically giving the condition for which
a s ∈ $K,~t = ΠK,~ξ,~ν ⊂ ΠK,~ξ fulfills the interpolation condition s(xi) = σ(xi)∀xi ∈ Sσ.
This degree of formalism has not been provided before in cross section modeling
even when using splines and facilitates the manipulation of the smooth conditions
at the breaks.

• B-splines are indeed a convenient base with a positive banded collocation matrix
and low variation in the coefficient’s module of the expansion terms. Only K expan-
sion terms are required in evaluation due to the local support property regaining a
polynomial piece-wise evaluation cost.

• A tensor product rule for the support allows fo the iterative application of 1-
dimensional solvers to find the coefficients of the multi-dimensional collocation sys-
tem. These algorithms are readily available in efficient FORTRAN routines [72] and
nicely packed into the Python package developed recently [69].

• Splines using B-splines are bounded by the coefficients (convex hull property), equal
to cross section values for multi-linear interpolation (K = 2). On the other hand
high order splines can present oscillations and large enough relative errors that
compromise the accuracy in the region of interest.

• A theoretical investigation showed that though the approximations are local, the
error bound increases with the order (K), the irregularity of either the support or
knot vector, and the derivative of the data as empirically observed.

• Oscillation problems have been mentioned before [46]. These were unexpected and
hard to predict, leading to non-trivial dependence of the error with the support in
the region of interest. Equipped with the complete B-spline formalism, attempt were
made to modify the knot vector by increasing the multiplicity of certain knots for the
Splop and not-a-knot vector constructions. Unfortunately only a mild improvement
was obtained not leading to a major library size reduction .

• Different combinations of functional spaces for any of the two test sets resulted in
moderate library size reductions for d = 3. This is mainly attributed to the underling
tensor product rule usually used in industrial implementations and mandatory in
[69]. This observation is in concordance with other works [30] where higher order
piece-wise models were dropped altogether in favor of linear ones, which are simpler
to code and to use, without penalizing significantly the accuracy.
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• In [23] a tensor product of 1 dimensional splines (or polynomials) is used with the
additional property of reducing, possibly a posteriori, certain terms of the represen-
tation. Though this technique is of interest, no details of the procedure are provided
and the need of regularization remains unattended.

• Multi-linear interpolation presented a monotonically diminishing error with the sup-
port size for σ, Σ and k∞. Due to the bounding of the approximation with σ, impor-
tant properties such as cross sections positivity is assured. Multi-linear interpolation
can only have a second order error in relations like Σt,1 = Σa,1 + Σ1→1 + Σ1→2.

In view of these results and the industrial applications multi-linear interpolation using
a Cartesian grid is retained as the default methods for comparing other, more advanced
methodologies. The next step is the use of local smooth approximation including regular-
ization techniques even at the expense of non-interpolating approximations and without
a tensor grid construction. This will be studied in the next chapter.



Chapter 4

Kernel methods and active learning

In this chapter, “Kernel methods” are used for cross section modeling in the context
of ridge regression approximations. A kernel induces a function space that requires no
particular structure of the support allowing to wage Active learning techniques to select
the support points of the cross section data set. The decision criterion is based on loss
functions that use σ, Σ, or k∞ with and without a shared support condition for the cross
section set. A sensitivity analysis on regularization, preconditioning and the approxi-
mation’s order is carried out. The higher order approximations obtained overcome the
difficulties found in chapter 3, related to the use of the tensor product rule and the need
of regularization.

4.1 Machine learning and kernel methods

Reproducing Kernel Hilbert spaces (RKHS) has been largely used in the machine learning
community for at least 20 years [73] reaching its apogee in the ’90. They are a very
general framework used to pose in a vector space, equipped with a norm, a vast quantity
of machine learning problems. RKHS belongs to a broader family of methodologies called
“Kernel Methods” that include, Kriging and Gaussian processes [74] usually employed
for regression, and Support Vector Machines (SVM) for classification problems. Their
underling feature is that strongly non linear problems, become separable and are linearly
solved in a higher dimensional space without incurring in the significant costs of explicitly
operating in this augmented space. In this thesis the terms RKHS and kernel methods
are used interchangeably.

4.2 Introduction to Reproducing Kernel Hilbert Spaces

(RKHS)

Kernel functions k(x, z) associate objects of a rather general domain X to R as

k : X × X → R. (4.1)

73
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They are positively definite
n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0, (4.2)

given x1, . . . , xn ∈ X and a1, . . . , an ∈ R. Also called similarity function they are sym-
metric, k(x, z) = k(z, x).

For each x ∈ X a function space H composed of k(x, ·) ∈ H can be constructed. The
dot notation (·) indicates a variable and in this case x could be though of as a parameter.
Being the kernel symmetric these positions are, of course, interchangeable. The Hilbert
space H is a Reproducing Kernel Hilbert Space (RKHS) noted as Hk if

(1) ∀x ∈ X , k(x, ·) ∈ Hk,

(2) ψ(x) = 〈ψ(·), k(·, x)〉Hk∀x ∈ X ,∀ψ(·) ∈ Hk.
(4.3)

Let the function ψ(·) = k(z, ·), z ∈ X and ψ(x) = k(z, x), x ∈ X then, by (2)1,

k(z, x) = 〈k(·, z), k(·, x)〉Hk , (4.4)

which is known as the kernel trick [77]. The Theorem of Moore-Aronszajn establishes that
to every positively definite kernel an RKHS corresponds and vice-versa. We hence equate
a positively definite kernel to a reproducing kernel nominated just as kernel. For any
ψ ∈ Hk, an inner product induces a norm ||ψ||Hk =

√
〈ψ, ψ, 〉Hk which can be obtained

by kernel evaluation without explicitly formulating ψ(·) due to the kernel trick. Its utility
will be apparent in the next section when dealing with a ridge regression problem. Other
properties of RKHS are:

• The kernel associated to an RKHS is unique.

• Let k1, k2 be valid kernels, then they can be added k = αk1 + βk2, α, β ∈ R and
multiply k = k1× k2 allowing the construction of more complex, compound kernels.

4.2.1 Approximation by kernel methods

Provided a support S (see Eq. 1.13) composed by a number of observations N = |S|, a
general regression problem using a function space belonging to an RKHS is

arg min
ŷ∈Hk

N∑
i=1

L(yi, ŷ(~xi)) + λJ (f), with λ ∈ R. (4.5)

For the use case considered in this work ~x ∈ [0, 1]3. L is a measure of discrepancy with
respect to the available data and J a penalty function acting on the approximation. The

1The provided de�nition of an RKHS and its linking with reproducing kernels can be considered
somewhat dogmatic. A more sophisticated elaboration demands only that a RKHS have bounded eval-
uation functional: |Lxf | = |f(x)| ≤ M ||f ||H,M > 0 ∈ R,∀f ∈ H,∀x ∈ X [75]. This allows for Hk
to use the Riesz representation theorem: each linear functional φ ∈ Hk, can be expressed in the form
φ(h) = 〈h, f〉Hk

, f, h ∈ Hk where f is uniquely determined by the functional φ. The theorem provides
the connection between the inner products within Hk that is reproduced by the evaluation of elements in
Hk. The details of such presentation are beyond the scopes of this work and can be found elsewere [76].
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hyper-parameter λ defines what is commonly called the “variance versus bias” trade-off,
i.e. the fidelity of the approximation to the data in opposition to the bias (“smoothness”
or “regularity”) of the approximation ŷ(~x). Excessive variance can lead to over-fitting,
were very irregular approximations follow the support data quite well, and excessive bias
to the opposite situation called under-fitting. The approximation problem in Eq. 4.5 can
be generalized in terms of linear operators using the average square loss for the evaluation
functional and a square penalty functional leading to a ridge regression approximation
problem

arg min
ŷ∈Hk

N∑
i=1

(yi − ŷ(~xi))
2 + λ||ŷ||2Hk , with λ ∈ R. (4.6)

By the Representer Theorem [73] the optimal approximation can be expressed in terms
of the kernel (reproducing property)

ŷ(~x) =
N∑
i=1

αik(~x, ~xi), (4.7)

with ~xi ∈ XS . Then from Eq. 4.7, ||ŷ||2Hk = ~αTK~α being the positive definite and
symmetric Gram matrix Ki,j = 〈k(~xi, ·), k(~xj, ·)〉Hk = k(~xi, ~xj) of size N ×N . The ridge
regression problem can then be written as

arg min
~α∈RN

1

N
(~y −K~α)T (~y −K~α) + λ~αTK~α, (4.8)

and by considering the derivative with respect to ~α

0 =
2

N
(~y −K~α)(−K) + 2λK~α. (4.9)

K−1 exist for distinct sampling of xi ∈ X . The solution is found by solving the linear
system

(K +NλI)~α = ~y, (4.10)

which is invertible if the regression coefficient λ ≥ 0 and for λ = 0 the solution interpolates
the support points2. The terms αi can be interpreted as a priori weights of the observations
~xi from the functions k(~xi, ·).

In Eq. 4.10, solving a linear system leads to a non-linear solution belonging to the
function space reproduced by the kernel. Through the kernel trick ~α is obtained by
kernel evaluation without explicitly finding the mapping or feature space3. The kernel
reproduces the function space and the inner product allows to even treat an infinite amount
of dimensions with exact computations.

2In some methodologies such as Kriging, maximum likelihood techniques are used to estimate the
coe�cient directly from the data, specially in the presence of signi�cant noise or numerical error [76].

3We recognize ψ(·) = k(x, ·) ∈ Hk. For example, the polynomial kernel k(~x, ~z) = ((~x · ~z) + 1)d

reproduces a function space of polynomials of degree d with a mapping ψ : X → Hk. Let d = 2,
x = (x1, x2) ∈ X , ψ(·) = (x2

1, x
2
2,
√

2x1,
√

2x2,
√

2x1x2, 1) that using the kernel trick 〈ψ(~x), ψ(~z)〉 =
((~x · ~z) + 1)2 = k(~x, ~z). The computation gains are evident, specially for very high values of d.



76 CHAPTER 4. KERNEL METHODS AND ACTIVE LEARNING

4.2.2 Advantages and drawbacks of the methodology

One of the interests of Kernel Methods, is that the representation of data, whether be
cross sections, text, DNA molecule, engineering data, or other, is embedded in the feature
space generated by the kernel and thus separated from the resolution and optimization
methods. This is the source of many advantages:

• With no restriction in the structure of the support (XS), Active Learning opti-
mization techniques can be used to choose the most convenient observations. This
feature is aligned with modern works on the application of machine learning tech-
niques [57, 14].

• By the Representer Theorem the ridge regression problem (Eq. 4.10) is transformed
into a convex optimization problem, independent of the function space.

• The approximations are expressed in terms of the kernel, not requiring to explicitly
compute the mapping from ψ : X → Hk (kernel trick). An exact evaluation of the
terms in the Gram matrix is provided by the kernel avoiding numerical estimations.

• A large variety of kernel functions are available reproducing a quite diverse collection
of function spaces. Further customization is possible with hyper-parameters [74, 78].

• The regularization term λ can be used to easily handle variance versus bias trade-off
defining the smoothness or regularity of the approximation. An automatic estima-
tion methodology called “generalized cross validation” is proposed in [76].

• When modeling in this framework the function space to represent the data, the
numerical solvers, and the possible active learning procedures are decoupled.

As with any methodology, drawbacks can be identified:

• A linear system given from a full rank Gram matrices of size N × N needs to be
solved, possibly using the Cholesky or Singular Value Decomposition methods.

• These may present large conditioning numbers, especially for big support sizes. In-
deed this kind of methodologies are not well suited for a support sizes with N >5E3,
worsening with increased dimensionality [79]. Pre-conditioning is usually required.

• The evaluation cost of an approximation in the form of Eq. 4.7 increases linearly
with the support’s size N , since all observations are recalled to perform an evalua-
tion.

• Kernel selection or even kernel design is required. The hyper-parameters can have
a strong influence in the approximation quality and sensitivity studies are usually
performed.

• Kernels are not orthonormal functions and possible high coefficients values may
be encountered in relation to the bad conditioning number of the Gram matrix.
Rejection techniques cannot therefore be easily applied.
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4.3 Local function spaces reproduced by the kernel

Piece-wise polynomials are local approximation well suited for cross section approximation
that exhibit “low practical dimensionality” [27]. However, difficulties were encountered
in chapter 3 with respect to the need of regularization and the use of a tensor product
structure in the support. This limiting set up is encountered in many state-of-the-art
industry applications using, for example, multi-linear interpolation in a Cartesian grid.

The type of Spline spaces used in the previous chapter belongs to a Sobolev space

Wm([0, 1]) = {f ∈ [0, 1]→ R/f (1), f (2), . . . , f (m−1) ⊂ C1, f (m) ∈ L2([0, 1])}. (4.11)

with m the order of the functions f populating the space. For m > 1 these functions are
smooth, adequate to model smooth data. For reproducing this function space in RKHS
two kernel types are considered: the spline kernel and the Bernoulli kernel.

4.3.1 The Bernoulli kernel

A Wm([0, 1]) is reproduced by the Bernoulli kernel

km(x, z) =
m∑
l=0

1

(l!)2
Bl(x)Bl(z) +

(−1)m+1

(2m)!
B2m(abs(x− z)), (4.12)

Though the kernel may seem complicated, we notice that in actuality form = 1, k1(x, z) =
1 +B1(x)B1(z) + 1

2
B2(abs(x− z)) with

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+ 1/6,

B4(x) = x(x(x(x(−2) + 1)))− 1/30, (for m = 2) .
(4.13)

In particular the norm of a f ∈ Wm[0, 1] is

||f ||2 =
m−1∑
l=0

∫ 1

0

(f (l)(x))2dx+

∫ 1

0

(f (m)(x))2dx. (4.14)

4.3.2 The spline kernel

For an m differentiable function space the spline kernel is

km,0(x, z) =
m−1∑
i=0

xizi

i!i!
+ km,1(x, z), km,1(x, z) =

∫ 1

0

(x− u)m−1
+ (z − u)m−1

+

(m− 1)!(m− 1!)
du. (4.15)

By kernel composition km(x, z) = km,0(x, z) + km,1(x, z). Then, for m = 1 the spline
kernel is

k1(x, z) = 1 + max(x, z). (4.16)
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reproducing a linear space. For order m = 2

k2(x, z) = 1 + uv + u2(v − u/3)/2, (4.17)

with u = x, v = z if x < z or u = z, v = x if x > z. In particular the norm of a
f ∈ Wm[0, 1] is

||f ||2 =
m−1∑
l=0

(f (l)(0))2 +

∫ 1

0

(f (m)(x))2dx. (4.18)

The spline kernel reproduces an approximation where the moment of order 2 (
∫ 1

0
(ŷ(m)(u))2du)

can be interpreted as an energy minimization. According to [76] the functional space
reproduced by these two kernels types is of special interest since is one of “the best non-
parametric curve smoothing method”.

4.4 Results

In the following sections results are presented using the Bernoulli and the Spline ker-
nels simply reproducing a high order approximation space for m ≥ 2. For treating a
multidimensional case the tensorization

k(~x, ~xi) =
d∏
j=1

kj(xj, xj,i), d = 3, (4.19)

has been considered. Though kernel composition allows to select different kj for 1 ≤ j ≤ d,
the same kernel is used in every dimension for simplicity . The approximation’s errors are
computed on the test set Tflat which stands as a relatively homogeneous sampling of the
input space (see Section 2.2.2) not belonging to the support Sσ. It’s important to remark
that though local approximation are used, an evaluation in the form of Eq. 4.7 requires
the computation of all the observations.

4.4.1 Comparison of Spline and Bernoulli kernels

In Tab. 4.1 the relative error average AVσ, is shown for the spline and Bernoulli kernels
(see Eq. 4.15, 4.12) using the Industry set for the support. The linear spline kernel re-
produces the multi-linear approximation achieving the same bounded interpolation error,
without requiring preconditioning or regularization (λ = 0). This facilitates a system-
atic analysis on the different active learning strategies and, though maybe sub-optimal
for smooth data, it’s a function space of particular interest since is often used in indus-
try. In concordance with the studies of chapter 3, higher order approximation requires
regularization and possibly preconditioning to be consistently superior to linear schemes.
These local approximations perform well in comparison to other kernels that use hyper
parameters which are examined in the Appendix B.1.
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Approximation name Order (m) AVσ AVΣ AVk∞

Multi-linear (B-splines) 1 0.021 0.016 14
Bernoulli kernel 1 0.051 0.032 21
Bernoulli kernel 2 0.059 0.02 23
Spline kernel 1 0.021 0.016 14
Spline kernel 2 0.061 0.022 35

Table 4.1: Approximation's error using the Bernoulli and Spline kernels for the full grid
support S?. The spline kernel reproduces the multi-linear error (in green) while this is not
the case for the Bernoulli kernel (in red). High order approximation exhibit larger errors
possibly requiring regularization. The same errors trends are present for all supports.

4.5 Supervised Learning

The literature review carried out in chapter 1 showed that tensor product rules com-
promise library reduction techniques by including vast amounts of possibly unnecessary
information. This is precisly the type of grid used in industry settings for multi-linear
interpolation. Kernel Methods on the other hand, impose no condition on the support’s
structure, thus enabling the use of supervised learning4 procedures from the field of ma-
chine learning. Pool active learning, referred to from now on as active learning, is per-
formed by computing the extrema of a loss function L, which lays at the heart of the
active learning process defining the optimization metrics. The term “pool” indicates that
a possibly big and fix amount of information is available. The learning procedure must
be aligned with the modeling objectives, and can be conceptualize as [80]:

• Assure an information dense set by selecting points with high incertitude/error, that
maximize the model’s variation or investigate regions of high disagreement between
models (query by committee).

• Assure a representative coverage of the domain for a given metric (homogeneous,
based on the test density, etc) or correlate the sampling to the variance density
explicitly modulating the support’s anisotropy. Care must be given to the treatment
of outliers that could claim a lot of attention.

• Assure a diverse sampling of the space under some metric, for example by exploring
every possible clusters of data, independently of the local error or variance within
them.

A clear cut distinction between these criteria is not always straightforward, depending
on the algorithm and the approximation at hand. This thesis mainly focuses on the
first criterion: maximize prediction capabilities while minimizing the number of support
points.

4Supervised learning refers to the learning agent being subject to a �teacher that supervises� the
process by correcting the learner's predictions in view of the correct answers. In other forms of machine
learning such as unsupervised learning the �correct� answers may not exist beforehand.
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4.5.1 Active learning for cross section modeling

Cross section approximations are the agent subject to active learning as presented in
pseudo code in Algo. 1. The model starts with an initial small support S0 ⊂ SP , of 5
points chosen at random, and loss function values are computed within the loop to find
new optimal points, ~x† ∈ X† ⊂ XP . The algorithm iterates until the break condition is
reached, in this case a user defined budget b, for the library size. The result is an optimal
support S† = {σ(~xi), ~xi ∈ X†} with X† sheared between the cross sections.

Data: SP , S0, b, L
1 X† = X0

2 while |X†| ≤ b do
3 ŷ = ŷ(~x|S†),∀y ∈ Y
4 ~x† = arg max

~x∈XP\X†
L(ŷ(~x), y(~x)) X† = X† ∪ ~x†

5 end
Result: An optimal sampling by active learning

X† from a discrepancy function L of size
b.

Algorithm 1: Active learning pseudo code for cross sections sharing support. The
variable y can be σ, Σ, or k∞. An initial small support, of size |S0| = 5, is increased
by adding points ~x† ∈ XP that de�ne an optimal sampling X†, with respect to a loss
function L. It recieves a vector (of errors) from which the corresponding x† is selected.
In each step the approximations ŷ are computed as required by the loss function for
the sampling X† de�ned in the previous iteration until the break condition de�ned by
budget b is reached.

In other works an optimization using the infinite multiplication factor in an interative
way, one dimension at the time [14] or microscopic cross sections [31, 55] (essentialy by
hand) has been explored but restricted to a Cartesian and sparse grid respectively. In
[57] an unstructured support is explored but limited to the grid employed to numerically
solve a quadrature problem (Tucker grid).

In this thesis a broader range of loss functions listed in Tab. 4.2, in increasing order
of complexity, are examined. First, a simple random selection of the support’s points
(RAND) analyzes the effect of using unstructured supports as opposed to full grid, but
without active learning. With U only the uranium thermal fission cross section is consid-
ered. For RXS, RXSI, and XSI all cross sections are used, weighting with the importance
(see Eq. 2.10) in the latter two. XSI is the only loss function that uses absolutes errors
for the cross section set. The loss functions M and MF consider the absolute error of the
set of macroscopic cross sections and the multiplication factor respectively. They require
computing the approximation for every cross section.
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Loss function (L)
Description

Name Function

RAND rand Random error.
U |σ̂235,f,2 − σ235,f,2| Absolute errors of a single cross section.

RXS arg max ∆σ/σ
σ∈Y

Relative errors for the entire cross sections set.

RXSI arg max Iσ∆σ/σ
σ∈Y

Relative errors for the entire cross sections set
weighted with the importance.

RIXS arg max Iσ∆σ/σ
σ∈Y if max(Iσ)>0.2

Relative error for a subset of cross section with high
importance.

XSI arg max Iσ∆σ
σ∈Y

Absolute errors for the entire cross sections set.

M arg max ∆Σ
Σ∈YΣ

Absolute error for the entire macroscopic cross section
set reconstructed from microscopic cross sections

MF |k̂∞ − k∞| Absolute error for the in�nite multiplication factor
reconstructed from macroscopic cross sections.

Table 4.2: Loss functions (L) acting on σ, Σ or k∞ expressed as y. When a set of
approximation is considered, that with the highest error computed on the unused points
of the pool is selected (this is the approximation participating in the active learning for
that point). The loss functions RXS, RXSI, XSI, M and MF require the computation of
the entire microscopic cross section set |Y| = 144. The acronyms stand as R for relative,
XS for including all cross section and I for importance.

4.5.2 Computational cost of Active Learning

The Active learning process presented in Algo. 1 can be computationally expensive. The
size of the support N = |XS |, that defines the Gram matrix of size(K) = N ×N , and the
amount of coefficient in Eq. 4.7 increases as |X0| → b < |XP |. For each cross section and
iteration (W ) of Algo. 1, the step 3 requires the computation of K and ~α5 while the step
4 of ŷ(~xi),∀~xi ∈ XP\X†. Evaluations are performed onM = |XP |− |X†| points candidates
from the pool, not used by the support. The amount of kernel evaluation (Eq. 4.1) for
each cross section and each iteration is

d(N2 +NM), (4.20)

were the tensorization has been accounted for. In order to provide a simple estimation of
the active learning cost, expressed in total kernel evaluation being X0 = 5 and |XP | = 2500,
let N = M = W = 1250 (i.e. half the pool). Then, for a single cross section, the total
amount of kernel evaluations is ∼ 1.1E11, which is significant.

The type of loss function considered directly impacts the computational cost. RXS,
RXSI, XSI, M, and MF require the computation of the entire cross section set. RIXS
only uses a subset of important cross sections (of max(Iσ) > 0.2) reducing the overall
active learning cost. A random selection of support points has no significant associated
cost. Actual active learning times are presented in Sec. 4.10. The cost of computing ~α
has been neglected in this analysis.

5Possibly thorough a Cholesky or singular value decomposition.
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4.6 Kernel methods using active learning in a shared

support scheme

The error AVσ in function of the library size is presented in Fig. 4.1a for the loss functions
of Tab. 4.2. The same linear piece-wise function space is used, indicated in blue the use
of a Cartesian grid and specifically with a star the Industry set. Errors, bounded by
the support, diminish monotonically and converge as the support increases. The different
grid’s anisotropies induced by L, are compared for a library size of 2.2E4 coefficients where
they are the most diverse6. Grid density plots projected onto the burnup are shown in Fig
4.1b, 4.1c, 4.1d. For this relativity low support the full grid is still missing some points
between 0.5 and 0.75.

A random selection (RAND) presented in Fig. 4.1b already produces significant im-
provements as expected: collinearity undermines the informativeness of an approxima-
tion’s support [29, 22]. In fact, for every support size, this accuracy gain rivalizes with
the use of higher order splines in chapter 3 even if it’s only following the discretization of
the pool. In a way this isolates the benefit of just using an unstructured support reducing
the library size by half without added computational cost. All active learning strategies
further improve the accuracy.

The lowest AVσ error is obtained with RXS since each new point ~x† is chosen by
comparing relative errors throughout the entire cross section set. The grid distribution
is shown Fig. 4.1b where a high density is observed at the first burnup values. Error
histogram are shown in Fig. 4.2 characterized by centred means, almost a normally
distributed shape, small standard deviations and no error trails for RXS which is not the
case for multi-linear with a small support. Similar histograms are noticed for the other
active learning strategies.

Absolute errors, even if weighted by the importance (XSI), result in a single cross
section participating in the active learning: σ135,a,2 due to its significantly larger absolute
values. Consequently, the computation of step 3 and step 4 in Algo. 1 is carried for
every cross section but systematically unused |Y| − 1 times. The support’s anisotropy
and resulting error profile are however, rather similar to the other strategies as shown in
Fig. 4.1d.

In Tab. 4.3 the error for σ, Σ, and k∞ is presented for a library size of 2.2E4 coefficients.
Library size reductions are provided at constant average macroscopic cross section error,
AVΣ,?. Considering the infinite multiplication factor (M) does have a marginal benefit in
macroscopic cross sections maximum error though comparable results are obtained with
RXSI or RIXS. These loss functions seem to allocate more points towards the middle of
the burnup as shown in Fig. 4.1c, away of regions with very low concentrations like the
low burnup values for many isotopes. MF achieves the lowest errors in k∞ but not in σ
or Σ.

The magnitude in library size reduction with respect to a Cartesian grid is coherent

6Since It's su�cient to manifest the e�ect of di�erent active learning strategies without imposing
additional point due to a budget similar to the size of the pool. Indeed as the unstructured grid X† → XP
the grid density tends towards the pool presented in chapter 2 (see Fig. 2.6).
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Grid type
MAXσ AVσ MAXΣ AVΣ MAXk∞ AVk∞ Library Size

[%] [pcm] Coef. ∆[%]

Cartesian
Grid

13.488 0.503 2.500 0.285 498 149 1.5E5 -

RAND 13.457 0.084 2.256 0.047 161 13 4.3E4 21
U 1.465 0.025 0.318 0.012 56 7 1.8E4 88
XSI∗ 1.627 0.019 0.318 0.010 38 5 1.9E4 87
RXS∗ 1.901 0.014 0.345 0.009 31 5 1.3E4 91
RXSI∗ 1.933 0.018 0.319 0.010 26 4 1.4E4 90
RIXS 1.671 0.022 0.318 0.010 37 6 1.1E4 92
M∗ 1.946 0.016 0.318 0.009 21 3 1.1E4 92
MF∗ 1.890 0.036 0.443 0.019 21 3 2.6E4 83

Table 4.3: All approximations consider a linear approximation space with di�erent grid
types. The Cartesian grid is de�ned by the user. RAND is an unstructured grid chosen
randomly. The others are subject to active learning using di�erent loss functions. Maxi-
mum and average errors are calculated at the support corresponding to a library size of
2.2× 104 coe�cients. The library size and corresponding reductions are calculated at the
constant average error (AVΣ,?) of multi-linear. ∗ approximations are computed for the
entire cross section set Y = 144.

with other works [53] that use the same linear function space. On the other hand this
methodology, RKHS subject to active learning, is not constrained to a regular structure
and requires no particular discretization of the pool. For this case similar gains are
observed when performing the optimization using very diverse objects (σ, Σ and k∞)
suggesting a certain robustness of the methodology. The use of integral parameters, as
done elsewere [14], does not provide significant benefits.

Though active learning could be considered an “off-line” task, performed only once
during cross section preparation, is computationally intensive as discussed in Section
4.5.2. The loss functions XSI, RXS, RXSI, M, and MF require the computation of the
whole cross section set unlike RIXS or U, that attain similar error profiles at smaller
computational cost. RIXS is selected as the “best” strategy maximizing the information
of the model at a relativity moderated computational cost.
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(a) (b)

(c) (d)

Figure 4.1: Average microscopic cross section error using linear piece-wise approximations
with di�erent grids in a shared support scheme. In blue a Cartesian grid is used while
in the others di�erent active learning strategies are used. (a) AVσ error noting two lines
of comparison, grid distribution at relativity low support (2.2E4 coe�cients or 150 coe�-
cients per cross section) and line of constant error (AVσ,?). Grid distribution projected in
the burnup are presented in (b), (c), and (d). The test set Tflat is also presented facilitat-
ing comparisons between the plots. (b) A random selection of points follows the original
data distribution of the pool. (c) When considering the isotope's concentration the mid-
dle burnup region is sampled more. (d) When optimizing with a single cross section, the
optimal support has a similar pro�le than with RXS.
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(a) Library size of 2.2× 104 (b) Library size of |X?|

Figure 4.2: Relative error histogram over Tflat for every cross section. A Cartesian grid
is compared to the RXS active learning strategy which exhibit smaller errors using the
same linear approximation space. (a) RXS is characterized by centered means, almost
normally distributed shape, small standard deviations and no error trails which is not the
case for multi-linear with a total library size of 2.2E4 coe�cients (b). When the Industry
set is used, multi-linear's error improves though outperformed by RXS.
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4.7 Cross section clustering in active learning

Actual loss function values are plotted for RXS and RXSI in Fig.4.3a discriminating per
cross section. A clustering effect can be noticed where the cross sections participating
(independently) in the selection of each support point, end up grouped together in a few
blocks mainly dominated by σ239,f,2, σ235,f,1, Σres,2→1, and Σres,a,1.

The use of the importance further solidifies this trend: for RXS a total of 50 cross
sections appear (many marked in gray) while for RXSI only 10, since Iσ ∼ 0 for a large
amount of cross sections. L values are bigger for RXS than for RXSI (since Iσ ≤ 1)
but the overall profile and error stagnation (|XS | > 1000) remains the same, suggesting
that the useful information is being extracted at a similar rate from XP . For this reason
the importance was successfully used to pre-select a small cross section subset (RIXS)
obtaining similar grid distributions at a lower computational cost. The profiles present
breaks in the derivative (at about 200 and 1000) that can be understood as a change in
the “relevance” of the points being added to the model and could even be used as a stop
criterion for Algo. 1.

To further exhibit this, partial loss function values

Lσ = 100|σ̂/σ − 1|∞, (4.21)

are presented in Fig. 4.3b for a few cross section. Lσ235,f,1
and LΣres,2→1 exhibit jumps due

to the ongoing active learning process 7. However, for the remaining cross section not in
the cluster, significant plateaus in their partial loss function profiles are observed, induced
by the shared support condition that forces the model to incorporate a common ~x† for
every cross section. For example, Lσ239,f,2

clearly stagnates, especially after 600 points.
The clustering effect is a consequence of using a share support scheme. At least with
respect to the infinite norm used in this work, the optimization effort is subordinated
to a small subset of cross sections, forcing the model to incorporate large amounts of
unnecessary data.

4.7.1 Independent cross section pool active learning

In the cross section modeling literature it was observed that cross section complexity varies
significantly within Y . Partial loss function values suggest that the model could benefit
from dropping the shared support condition and performing an active learning process
independently per cross sections, especially since only the approximation’s coefficients
need to be stored. This is presented in Algo. 2 using, again, a linear function space. For
the error tolerance in the break condition two methods are considered. In “No shared
support”(NoS) a constant tolerance δσ = δ is used for every cross section. In “Importance
no shared support” (ImpNoS) the tolerance is weighted with the importance for each cross
section, δσ = mean(Iσ)δ. The constant tolerance values used for both methods is δ =0.1,
0.01, 0.001.

7Though di�cult to appreciate in the picture the very �rst cross section used for selecting the points
is σ239,a,1 that in relative terms can manifest big maximums errors as analyzed in chapter 3.
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(a) (b)

Figure 4.3: (a) Loss function values for RXS and RXSI discriminated by cross section.
Only a few subset of cross sections dominate the process. Loss function pro�les quantify
the �relevance� of the support points being added to the model. (b) Partial loss function
values (Lσ) for RXSI showing signi�cant plateaus (with respect to the in�nite norm) for
several isotopes. These cross section do not participate in the active learning, but due to
the share support condition are forced to incorporate additional support points.

AVΣ in function of the library size is presented in Fig. 4.4a. Errors for Σ and k∞ are
presented in Tab. 4.4. With NoS a reduction in the library size (or gain in accuracy)
is observed with respect to both a Cartesian grid and RIXS. For ImpNoS at AVΣ,? the
library size is reduced another order of magnitude arriving at 1% of multi-linear in a
Cartesian grid. The multiplication factor is also quite well predicted. However only cross
section with significant Iσ have a small error tolerance and thus high AVσ is noticed.
Though integral parameters such as k∞ or Σ have important physical meaning, the latter
being actually used by the core solver, the need of keeping track of the original functions
in multi-objective optimization is evident in this case.

The constitution of these two types of cross section libraries are further studied in
Fig. 4.5b and Fig. 4.5a for a size of 1E4 coefficients. A Square plot is used, where the
amount of terms relative to the library size defines the area of each cross section. The
same colorbar indicates their absolute amount. In the ImpNoS cross section library only
σ235,a1, σ235,f1, Σres,1→2, and Σres,2→1 surpass 300 coefficients, while this is the case for
the majority of cross sections in NoS. The active learning only focuses in cross sections
relevant to Σ. The scattering cross sections are strongly affected by this since many of
them have Iσ = 0.

In Fig. 4.5c relative cross section errors for the ImpNoS library are presented discrim-
inated by isotope, reaction, and group. Many unimportant cross section indeed exhibit
big errors. Scattering cross sections are only well approximated for Σres and 238U and to
some extent 235U. A reaction may be well approximated in one energy group but not in
the other as it’s the case for σ135,a,2 and σ238,f,1. For NoS all cross sections are equally
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Data: SP , S0, δσ
1 for y ∈ Y do
2 Xσ,† = X0

3 while max(err) ≤ δσ do
4 σ̂ = σ̂(~x|Sσ,†)
5 err = σ̂(~x)/σ(~x)− 1
6 ~xσ,† = arg max

~x∈XP\Xσ,†
err

7 Xσ,† = Xσ,† ∪ ~xσ,†
8 end

9 end
Result: An optimal set Xσ,†.

Algorithm 2: Pseudo code for Pool Active Learning without cross section sharing
the support. The support is optimized independently for every cross section resulting
in a varying number of coe�cient when the break condition is reached. This is de�ned
as an error tolerance that can depend on the cross section. Relative errors with the
in�nite norm are used.

well approximated and thus the plot not shown.

In [29] it was reported that thermal cross section required the double of regression
terms than fast cross sections. This coincides with the observations in chapter 2 that
they, in general, have larger variances. On the other hand with relative errors, required
to make meaningful comparisons among cross section, fast cross section could pose an
additional challenge. Without the shared support condition for a fix tolerance (NoS)
using a linear function space, it was observed a rate of fast/thermal coefficients of 0.56,
0.73, 1.05 for δσ = 0.1, 0.01, 0.001. It could be argued that when decreasing the relative
error tolerance, the modeling challenge driven by the variance is progressively dominated
by the bigger relative challenge and even possible numerical noise or outliers in fast cross
sections.

When using an expansion method for cross section approximations that only requires
to store the coefficients, dropping the share support condition could be convenient as the
required amount of support points vary within the cross section set. It could even be argue
that in an active learning context the amount of required observation is proportional to the
cross section complexity, possibly characterized by the derivative being thus |Sσ| ∝ σ(2)

which further specializes the library without a shared support condition. The actual
applicability of weighting with the importance is probably limited. In this particular
case, unimportant scattering cross section were shut-down from the library, which may,
or may not be acceptable depending on the modeling objectives. Conceptually the loss
function is the right place to define the modeling objectives of the cross section library
and where any physical insight could be enforced.
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(a)

Approximation
MAXσ AVσ MAXΣ AVΣ MAXk∞ AVk∞ Library Size

[%] [pcm] Coef. ∆[%]

Multi-linear 40 1.1 4.5 1 1200 400 1.5E5 -
NoS 1.8 1.4E-2 3E-1 0.011 45 9 9.0E3 94

ImpNoS 48.847 2.569 3E-1 0.007 15 3 2.2E3 99
RIXS 2.9 6E-2 4E-1 2.8E-2 80 18 1.1E4 92

(b)

Figure 4.4: Errors for linear piece-wise approximations with independent active learning
per cross section (no shared support). The three points of the curve correspond to a δ
of 0.1, 0.01, and 0.001. In ImpNoS this value is a�ected by the importance. (a) AVΣ

error without a shared support condition. At constant error AVΣ,? almost two order
of magnitude in library reduction are obtained with ImpNoS where error tolerance is
modulated by the cross section importance. NoS also reduced the library size with respect
to a Cartesian grid and to RIXS. (b) Errors for active learning models without shared
support for σ, Σ, k∞. Errors at constant support ∼ 1.1E4 coe�cients. Library size at
constant error AVΣ,?. High microscopic cross section error can be seen for ImpNoS.
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(a) NoS (Library size of 3.7E4) (b) ImpNoS (Library size of 1.1E4)

(c) ImpNoS (Library size of 1.1E4)

Figure 4.5: Library composition at maximal size for the two for active learning without a
shared support condition. The area marks the amount of coe�cients relative to the library
size. The same colorbar is used in both �gures. (a) In NoS the amount of coe�cients
vary in order to attain the same error tolerance for each cross section. (b) In ImpNoS the
importance is considered in the active learning process and thus the cross section relevant
to Sigma compose the majority of the library. (c) σ relative errors of ImpNoS at 1.1E4
discriminated by reaction, group, and isotope. A strong correlation with the number of
coe�cients composing the library is noted.
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4.8 Higher order RKHS approximation

Local smooth approximations are of interest due to the underlying physical phenomena
producing cross section data. RKHS can reproduce this function space without the limi-
tations previously encountered in chapter 3, since a regularization coefficient λ naturally
appears in the kernel ridge regression problem (Eq. 4.6).

4.8.1 Regularization and preconditioning

A sensitivity study was carried out for the regularization term λ of Eq. 4.10 that defines
the “variance versus bias” trade off. In Fig. 4.6a the results are shown for the spline
kernel presented in Eq. 4.17. High errors are found for λ ∼1E-4 (high bias) and λ ∼1E-
18 (high variance) being the best compromise λ ∼1E-11. Average k∞ errors are ∼ 200
pcm and maximum errors can reach 1000 pcm with inadequate regularization. In Fig.
4.6b an example for the cross section in function of the burnup Σres,a,1(Bu, Tf,0, CB,0)
is provided where high bias does not allow the approximation to follow the data while
high variance generate an offset, possible due to numerical errors associated to the bad
condition number of the Gram matrix.

Error histograms for the absorption cross section, discriminated by isotope, are pre-
sented in Fig. 4.7 for λ=1E-4 (high bias), λ=1E-11 (optimal) and λ=1E-18 (high vari-
ance). Only the 10 cross section with the highest errors are shown. Errors with high
bias do exhibit a zero mean but have large standard deviations. For λ=1E-11 normal
distribution are seen with a relatively reduced amount of outliers. For λ=1E-18 many
error have significant offset errors and large standard deviations.

Utilizing square root for the variables marginally improves the conditioning number of
the matrix K, either first or second order splines as shown in Tab. 4.5. Therefore a λ=1E-
11 and the square root for preconditioning are the two candidates to generate adequate
high order smooth cross section approximations, able to cope with strong variation in the
first burnup regions.

4.8.2 Higher order spline approximation with RKHS and active

learning

An active learning procedure using the RIXS loss function for a high order spline kernel
with preconditioning (square root) and regularization (λ =1E-11) is presented in Fig.
4.8a. Though preconditioning or regularization alone are not satisfactory, the combination
of the two result in a monotonically decreasing error similar to linear approximations.
However, being a second order differentiable space, a gain in accuracy of up to one order
of magnitude , is systematically obtained. In Fig. 4.8b the maximum relative error of
the entire cross section set is presented for TXe where a very fast convergence is obtained,
showing that the approximation is, in practice, bounded by the support. Two cross section
examples are shown in Fig. 4.8c and Fig. 4.8d where this regularized spline approximation
is able to follow the data quite well. Errors for Σ and k∞ are presented in Table 4.4 where
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Figure 4.6: E�ect of regularization in microscopic cross section approximation using a high
order spline kernel. (a) AVσ for di�erent regularization coe�cients λ. The lowest error is
achieved with λ=1E-11 (b) Example of cross section approximation Σres,a,1(Bu, Tf,0, CB,0)
using the industry set support X?. An approximation with a large λ is unable to follow the
data, while a low λ can cause numerical errors that generate o�sets in the approximation.

Figure 4.7: Error histogram of fast absorption cross section discriminated by isotope using
di�erent regularization values for a high order spline kernel in a full grid. From left to
right: a high bias approximation (λ =1E-4) has centered means but very large standard
deviations since the approximation fails to follow the data. Adequate compromise (λ =1E-
11) with centered means and acceptable errors. High variance approximation (λ =1E-18)
where possible numerical errors generate signi�cant o�sets.

the maximum error of k∞ passes from 500 pcm with multi-linear in a Cartesain grid to 15
pcm. This is the type of approximation searched for: a local, smooth, that (practicality)
interpolates the data, and can cope with strong local variation being in practice, bounded
by the arbitrarily chosen support.
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Similar results are presented in the Appendix B.2 for the Bernoulli kernel where third
order kernel are explored as well, not leading to further improvement.
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Figure 4.8: RKHS approximation using a high order spline kernel with preconditioning
(square root) and a regularization (λ=1E-11) subject to active learning with RIXS loss
functions. (a) Average microscopic cross section error in Tflat monotonously diminishes
with increasing support resulting in an order of magnitude gain in library size or accuracy.
(b) Maximum error for TXe is virtually �at with the support increase suggesting an error
bounded by the support. (c) and (d) the approximation method is able to follow strong
variation of cross sections without oscillations.
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Approximation
MAXσ AVσ MAXΣ AVΣ MAXk∞ AVk∞ Library Size

[%] [pcm] Coef. ∆[%]

Multi-linear 1.9 2.1E-2 3E-1 1.8E-2 90 15 1.5E5 -
RKHS (m = 2) 1.9 3E-3 1.5E-1 1.8E-3 8 0.6 2.1E4 86
RKHS (m = 1) 1.9 9E-3 3E-1 6.5E-3 18 2 1.1E4 92

Table 4.4: High order spline kernel with preconditioning (square root), regularization
(λ=1E-11) using the RIXS loss function for active learning. Average and maximum errors
for σ, Σ, k∞ at constant support X?. Library size at constant error AVΣ,?.

4.9 Conditioning of the Gram matrix

In RKHS the potentially badly conditioned system of Eq. 4.10 needs to be solved to find
the approximation’s coefficients. It’s known that for a support size larger than 3000-5000
points, inversion problems can rise [79]. In this work the inversion is performed with the
Moore-Pernose pseudo inverse routine that uses a Singular Value Decomposition with a
default tolerance of λ =1E-15 [81].

The conditioning number increases with the order of the spline kernel as shown in
Tab. 4.5 and with the support size as shown in Appendix B.2.1. The conditioning number
strongly depends on the size of the support. For the range of interest using a first order
spline kernel it ranges from 1E6 to 1E10. When increasing the order of the approximation
very high conditioning number leading to numerical errors in the coefficients obtention
are observed without adequate regularization. Active Learning procedure does not affect
the conditioning number suggesting that a high density of point near each other plays a
secondary role. Preconditioning provides a marginal benefit.

4.9.1 Kernel method's coe�cient distribution and shrinking

In The Appendix B.2.1 the coefficient module are plotted showing that they are indirectly
proportional to λ thus arriving a possible numerical error for very low regularization.
Rejection techniques discarding the coefficients with the lowest module are not normally
contemplated in RKHS and the expansion basis does not form an orthonormal system.
When discarding coefficients of low absolute value (∼ 0.1% of the total) a steep error
increase was observed, specially for the second degree spline kernel. This high coefficients
values are possibly a result of ill condition systems and is a weakness of the method.

4.10 Investigation on evaluation speed

Another potential drawbacks of RKHS is related to the evaluation speed since all the
observations in the support participate in Eq. 4.7. The cases of interest analyzed in this
work range |S| ∼ 100-1000. Active learning has a major influence in performance by
keeping this number low.
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Spline kernel or-
der (m)

Support Regularization (λ) Pre-
conditioning

Conditioning
number

1 |S|=2.2E4 1E-15 (defualt) No 1E6
1 S? 1E-15 (defualt) No 1E10
1 S? 1E-15 (defualt) sqrt(Bu) 1E8
2 S? 1E-18 No 1E20
2 S? 1E-11 No 1E14
2 S? 1E-15 (defualt) No 1E20
2 S? 1E-15 (defualt) sqrt(Bu) 1E19
2 S? 1E-15 (defualt) sqrt(all) 1E18
2 S? 1E-4 No 1E7
2 S? 1E-11 sqrt(all) 1E14
2 S? 1E-15 (defualt) sqrt(all) 1E20

Table 4.5: Conditioning number of the system (K + λI) required to �nd the coe�cients
~α for the RKHS approximations. Preconditioning marginally improves the condition-
ing number while active learning doesn't change it. A signi�cant worsening is observed
when increasing the order of the approximation (m). The default limit of Moore-Pernose
inversion routine is 1E-15.

The evaluation speeds depends on the amount of support point and the cost of comput-
ing the kernel. In this work a Python2.7-F2PY-Fortran8 implementation was developed
in an Object-Oriented approach. In what follows time estimates are provided which are
of course machine dependent though they convey an order of magnitude of evaluation
speeds or at least an upper bound.

4.10.1 Evaluation speed of independent cross section models

A first numerical experiment is simply considering, for a single cross section, the evaluation
time increase with the support size N = |S|. A total of 1E5 points coming from a sequence
of random number in [0, 1]d are serially evaluated in a Python loop. A linear increase in
evaluation time t̂ in function of the support size N is observed

t̂N =
∂t̂

∂N
N + t̂0. (4.22)

The slope ∂t̂
∂N

and the intercept t̂0 is presented in Tab. 4.6 for RKHS approximations
and also Splines using B-splines. A t̂0 ∼5E-5 s for both B-splines and RKHS is observed
which could be condition by the Python loop itself. Still, RKHS evaluation times do
increase linearly with the support size and proportionally to the order of the kernel.
Specific evaluation times are presented for the support sizes obtained with active learning
(N ∼ 150) and the industry set (N ∼ 1000). Due to the Fortran routines used by

8The object-oriented classes developed to test these methodologies allows to import compiled mod-
ules for performing the most demanding computations since an interpreted lenguage such as Python is
intrinsically slower. All kernels operations, tensorization, inner product, and matrix calculation routines
were written in Fortran 90 [82] and imported to Python using the F2PY package [83]. The script is fully
available in [84].
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Approximation Derivative Intercept t̂ for [s]
Type Order ( ∂t̂

∂N
) (t̂0) |S| =1E2 |S| =1E3

B-spline (Multi-linear) 1 4.1E-10 6.9E-5 6.9E-5 6.9E-5
B-spline 2 1.3E-9 6.8E-5 6.8E-5 6.8E-5
RKHS 1 (Spline) 1.2E-7 2.6E-5 4.8E-5 1.4E-4
RKHS 2 (Spline) 1.3E-7 2.6E-5 4.8E-5 1.6E-4
RKHS 1 (Bernoulli) 5.9E-7 2.5E-5 1.2E-4 6.2E-4
RKHS 2 (Bernoulli) 7.7E-7 2.1E-5 1.4E-4 8.0E-4

RKHS (accel.) 1 (Spline) 2.3E-9 1.0E-5 1.0E-5 1.2E-5
RKHS (accel.) 2 (Spline) 2.4E-9 1.0E-5 1.0E-5 1.2E-5
RKHS (accel.) 1 (Bernoulli) 5.7E-9 1.0E-5 1.1E-5 1.7E-5
RKHS (accel.) 2 (Bernoulli) 6.9E-9 9.9R-6 1.1E-5 1.8E-5

Table 4.6: Evaluation speed in seconds per cross section evaluation point for RKHS and
B-splines approximations. First and second order approximations are used for B-spline
and RKHS with a spline and Bernoulli kernel. The derivative marks the evaluation time
increase with the support. Accelerated RKHS using a common evaluation vector are
almost independent of the support in the considered range of up to 2500 coe�cients. Two
support sizes of interest are ∼150 coe�cient (satisfactory error with active learning) and
∼1500 coe�cients (Industry set support) for which evaluation times are shown.

the approximation class in Python, for a small enough support of N ∼ 150 the RKHS
implementation is actually faster than B-splines from the package [69]. This result does
moderately deteriorates with increasing the support size. Preconditioning, regularization
and different grid distributions due to active learning have negligible effects on the final
evaluation speed.

For a given support, the actual calculation time of a cell in the core could be compose
of: compute the basis vector (compute( ~B)), find the coefficients (find(~α)), perform the
inner product (〈 ~B, ~α〉). This operations is performed |Y| times since the entire cross
section set is needed. Indeed B-splines scale very well with the support size since they
are local basis with a few terms different than zero and so, compute( ~B) is independent of
the support. However searching the coefficient vector in disk memory in a large library
size (find(~α)) could severely hinder evaluation times. On the same token performing the
operation 〈 ~B, ~α〉 cache memory is practically independent of the vector size itself. In this
scenario the library reductions obtained with active learning could significantly surpass
the convenience of B-spline basis.

4.10.2 Evaluation speed of cross section models with common

evaluation vector

In a shared support scheme using the same function space for every cross section, the
same operation compute( ~B) is performed |Y| times. An acceleration technique could be
to store this evaluation vector in the RAM memory. This conforms the “accelerated”
methods in Tab. 4.6 for RKHS. All resulting evaluation times are smaller than with B-
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splines. Though they don’t share the evaluated basis for the cross sections9 it’s composed
of only a few terms. Especially in this scenario it’s observed that all method have relatively
similar evaluation speed within the targets, yet noticing that order 1 is faster than order
2 and that the Spline kernel is faster than the Bernoulli kernel.

This type of optimization is at the expense of RAM memory which may be limited.
If a different function space was used for each cross section, as it’s the case in [57] or
without the share support condition, this type of acceleration would not be possible.

4.10.3 Active learning computing time

In view of these evaluation times, let the amount of average kernel evaluation for a single
cross section be ∼1.1E10 as presented in Section 4.5.2. If a single non tensorized kernel
evaluation is ∼ 6E-8 s, then loss functions considering the 144 cross sections have an
active learning time of 6.6E-8× 1.1E10× 144 h

3600
= 31 h. Considering a much larger pool

of data for this study would have raise difficulties10.

4.11 Final thoughts and discussion

RKHS employed a scattered support which is an effective tool to deal with the curse of
dimensionality, further enhanced by dropping the share support condition11. Satisfactory
higher order approximation schemes compatible with active learning improved the ap-
proximations accuracy. This type of methodical analysis has not been addressed in the
literature before, especially comparing to multi-linear interpolation in a Cartesian grid as
used in industry applications. The main results are:

RKHS in cross section modeling

• Kernel methods can utilize unstructured supports allowing to wage machine learning
optimization techniques. This is a quite synergic combination: active learning has a
complete freedom to select the observations, whose quantity minimization is crucial
to improve the conditioning number of the Gram matrix and the evaluation speed.

• This is a realistic supervised learning scenario in a “one-trough” two-step calculation
scheme, where rich sets of cross section data are available, but an iterative process
between lattice calculations and library preparation is discouraged.

• Kernels are “observation based” similarity function that don’t require to be de-
fined over an hyper-dimensional rectangle encompassing the input space, which is a

9This option or the possibility to provide evaluation vector was not available in the B-spline package
[69].

10To perform these sensitivity studies an elemental Message passing interface was implemented in
Python [85]. In this way each active learning process could utilize a separate CPU.

11Library size reduction were analyzed at constant AVΣ,? instead of AVσ,? to facilitate the comparison
with no shared support using the importance
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problematic limitation of traditional expansion methods [27].

• Though this work was centered in kernels reproducing local approximations, a large
variety of other functional spaces can be reproduced with RKHS. Kernel design could
lead to very specialized approximation spaces in a similar vain of [57]. Other kernel
functions, provided by [78], did not excel as “out of the box” tools, further solidifying
the interest in piece-wise local function spaces for cross section approximation.

• The linear spline kernel reproduced muli-linear interpolation as commonly used in
industry, but without limitations with respect to the support structure or regular-
ization. Profiting from the linear error bounds it was used for assessing different
loss function in Pool active learning.

Active learning with a �rst order spline kernel with a shared support

• Loss functions acting on σ, Σ, and k∞ were assess in terms of their performance:
accuracy gains, library size reduction, and computational cost. All active learning
strategies improved the cross section library showing the robustness of the method-
ology.

• A random selection (RAND) of the support already produced a significant improve-
ment as expected: collinearity undermines the informativeness of an approximation’s
support [29, 22]. The gains in accuracy rivalizes with higher order splines utilized
in chapter 3 reducing the library size by half.

• The loss function that considers the relative error of all the cross sections (RXS)
exhibited the lowest AVσ performing well in AVΣ and AVk∞ . Relative errors are
required to make meaningful comparisons among cross sections.

• Absolute values, even if weighted with the importance, result in the participation
of only one cross section σ135,a,2. The computation effort for all the others is thus
wasted. Nonetheless the grid distribution obtained is rather similar to the corre-
sponding to U, which produces near optimal results.

• The loss functions U, RXS, XSI exhibit a significant density of point near the first
burnup values, where many cross section show strong variations. On the other
hand when considering the concentration (RXSI, M, MF) more points are allocated
towards the middle burnup region. These method also need the evaluation of the
entire cross section set without a tangible benefit. For this use case optimizing for
integral parameter as done in [14] yielded no additional gains.

• RXSI uses the importance to select a subset of cross sections resulting in the best
compromise between maximizing the information for the cross section’s set and the
computational cost of the active learning procedure.

Active learning with a �rst order spline kernel without a shared support

• In a shared support scheme large amount of unnecessary data can be included in
the model as manifested by the clustering of cross section participating in the active
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learning process. Long plateaus of partial loss function values were observed for
many cross section.

• By dropping the shared support condition, an independent active learning per cross
section (NoS) was carried out further improving the cross section library. This type
of gains could be considered as an a priori optimization equated to a posteriori
rejection techniques, but noting that in the former, no calculation effort is wasted
in discarding terms.

• By additionally adjusting the error tolerance by the importance (ImpNoS) a sig-
nificant library size reduction is obtained. Large error in many microscopic cross
sections are noted however, specially for scattering cross sections. Since it’s not
possible to know in advance which microscopic cross section will be required in a
given simulation, this type of optimization could prove unsatisfactory.

• Though integral parameters such as k∞ or Σ have important physical meaning, the
benefit of keeping track of the original functions in multi-objective optimization is
showcased by this example (ImpNoS).

• Without the shared support condition for active learning using a fix tolerance (NoS)
and relative error, it was observed an increase in the ratio of fast to thermal coeffi-
cients when decreasing the error tolerance. It’s possible that the modeling difficulty
shifts from the cross section’s variance to numerical artifacts in some fast cross
sections.

High order RKHS approximation with spline kernels

• With preconditioning and regularization the high order spline kernel combined with
active learning presented a monotonically decreasing error with the support size,
achieving an order of magnitude improvement with respect to multi-linear.

• The maximum error of this approximation in the TXe was virtually flat being thus,
in practice, a local second order approximation bounded by the support. This type
of smooth approximations are of particular interest for core feedback coefficient [64].

• Thus, the main limitations discussed in chapter 3 are effectively dealt with by this
methodology. Similar results were obtained with the Bernoulli kernel at a slightly
higher computational cost, though the first order does not exactly reproduces multi-
linear interpolation. An order 3 approximations did not improve the results further.

Performance and evaluation speed of RKHS approximations

• Though active learning can be considered an “off line” task, a computation time of
up to 1 day is considerable. On the other hand this methodology assures an optimal
support since all available data is evaluated in each step. In other works [14] the
optimization is a one dimensional iterative process that reaches a local minimum in
L. If only one cross section is considered near optimal results are obtained in 15
minutes.
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• Loss function profiles with increasing support allow to quantify the amount of useful
information in the data set and its extraction rate providing a direct mesure of the
error (in the pool) similar to other methodologies [53, 29].

• Especially without a shared support, it could be argued that the amount of required
observations in RKHS with active learning is proportional, not to the dimensionality
of the input space but to the cross section’s complexity e.g. expressed in terms of
the second derivative |X†| ∼ σ(2). Moreover if an increase in the quantity of cross
sections is correlated to a mean decrease in their complexity, then the aggregated set
of required observations (i.e. the library size) could remain bounded. This suggests
a rather scalable technique with both the input and output space increase.

• For this use case no more than 100 observations per cross section were required with
active learning and up to 2500 were sucesfully tested. In more challenging use cases
the amount of observations usually lays between 1000 and 1600 [55] which falls well
beneath the limit of ∼5E3 under which RKHS is effective [79].

• The evaluation cost of RKHS is linear with the support size and the slope propor-
tional the kernel’s evaluation cost. In the range of 100-1000 terms RKHS approx-
imation had acceptable evaluation speeds being actually faster than splines using
B-splines for 100 terms.

• In actual core calculation the entire cross section set is required. Sharing the evalu-
ation vector among the cross section at the expense of RAM memory resulted in an
evaluation speed under 1E-5 seg for any support and kernel. The benefits of such
acceleration would increase with the output space cardinality.

Though this is a rough, machine-dependent estimation, it showed that Kernel Methods
can be competitive performance-wise for the functional space of interest in cross section
modeling.



Chapter 5

Arti�cial Neural Networks

In this chapter, artificial neural networks are used for cross section modeling. They
adapt to data trough a supervised learning process, called training, without requiring the
formulation of explicit relations among the variables, being naturally able to cope with
high dimensionality in both the input and output spaces. Firstly, a parametric study on
learning hyper-parameters, network’s size, and topology is carried out selecting models of
interest to test with the industry set. Results are compared to multi-linear interpolation
in terms of library size reduction, accuracy and evaluation speed. Multi-output models
where the entire cross section library is modeled with a single network are explored as
well.

5.1 Machine learning

A modeling methodology that is currently leading a machine learning revolution is Deep
Learning [86] using Artificial Neural Networks (ANN) which are computing systems com-
posed of processing elements, called neurons, that connected to each other, emulate their
biological counterparts. State-of-the-art implementations in artificial intelligence, com-
puter vision, natural language processing have achieve outstanding performances [86].
This is mainly driven by [87] data availability (e.g. internet of things), hardware power
increase at a reduced cost (GPU [88], TPU) and breakthroughs in learning algorithms
(back-propagation and its implementations) coupled with free license and mature frame-
works (TensorFlow [89], PyTorch [90]). For regression problems they are sometimes re-
ferred to as black-box universal approximators since a reasonable, well behaved function,
can theoretically be approximated up to an arbitrary degree with an adequate artificial
neural network [91]. Some of the main characteristics are:

• Artificial neural networks are able to approximate non-linear function without direct
user intervention being quite robust with noise, and imposing no prior task-specific
rules which are derived from training, a supervised learning task. Indeed the func-
tional form requires no explicit formulation among the variables prior to the training
process, in contrast to classical techniques.

101
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• These learning systems are naturally able to cope with high dimensionality in both
the input and output spaces; sometimes defined as “A computational mechanism
able to acquire, represent, and compute mapping from one multi-variate space of
information to another, given a set of data representing that mapping” [92].

• Though the definition of an adequate feature representation (i.e. choosing the in-
put space variables) is not dealt with in this thesis, a general purpose representa-
tion system such as multi-layered networks can identified the features automatically
(auto-encoders) [86]. This is one of the main reason of their success in many fields
of computer science [87].

• The training process, which can naturally be performed on-line (mini-batch setup),
can lead to neurons having a small subset of connections resulting in local approxi-
mations.

• Consolidated frameworks to utilize and train artificial neural networks are readily
available [89, 90] facilitating the use of GPU acceleration. Easy-to-use high level
packages are also available (Keras [93]). After the training process, that might
be platform dependent if it uses GPU acceleration, only the network’s parameters
require storage.

Some of the shortcomings are:

• Possibly long training times depending on the quantity of data and the size of the
network. In principle, convergence is not guarantee [92]. Due to their stochas-
tic nature of the optimization algorithms different sessions may result in different
models.

• The amount of architectural and training hyper-parameters to be defined is quite
large, depending as well in the chosen training algorithm. Time consuming para-
metric studies are usually required and dwelling into the details of the training
algorithm and how they condition the emerging network model can be challenging.

• It’s hard to either impose or extract physical insights onto the model as well as
providing an interpretation on the network’s structure. Providing error bounds can
be difficult.

5.2 Arti�cial neural networks in nuclear engineering

They have been applied to a broad range of problems such as core parameter prediction
and control, reactor kinetics [94], fuel management optimization [95], heat transfer mod-
eling [96, 97], and inventory estimation [98]. In general, rather classical machine learning
settings have been used: feed-forward fully connected multi-layer networks of only a few
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layers1. In the specific field of cross section modeling their use has been quite limited.
Good performances were obtained in [58] but using simple architectures with only one
state-parameter, the burnup.

5.2.1 Feed-forward fully connected arti�cial neural networks

In a feed-forward network the information travels forward through the layers as the name
implies. They are sometimes called Shallow if composed of a single layer or Deep or multi-
layer for more. Neurons between layers are fully connected by weights and non-linear
activation functions f(x), x ∈ R complete the output of each processing unit (neurons)
enabling the network to learn complex patterns. A neuron processes a linear combination
of inputs, weights and biases in the form f(~w · ~z + b) with b ∈ R and ~w, ~z ∈ RN l−1

being N l−1 the number of neurons of the previous layer. The aggregated output of all the
activation function in a layer is

f l : RN l−1 → RN l

, 2 ≤ l ≤ L. (5.1)

For L layers the output of an network is

ŷ(~x) = fL ◦ fL−1 ◦ · · · ◦ f 1(~x),

ŷ : ~x ∈ X → RO,
(5.2)

being O the cardinality of the output space in the last layer. This is presented in Fig. 5.1
for a shallow network of 4 neurons ŷ =

∑4
j=1 w2j1f(

∑3
i=1 w1jixi + b1j) + b21 and a scalar

output (O = 1).

The weights, that represents the strength of the connections, and the biases are deter-
mined by a supervised learning process called training that consists on the minimization
of a loss function, L(y, ŷ). A training set provides the samples used in a forward pass
to evaluate the network and define the gradient of the loss function with respect to the
parameters of the network, ∇~w,bL(y, ŷ). The gradients are obtained by a back-propagation
algorithm which is a computationally convenient implementation of the chain rule [100].
For actually optimizing the parameters, stochastic gradient descent algorithms are used.
Conceptually the operation is

(~w, b)← (~w, b)− α∇~w,bL (5.3)

where (~w, b) are the parameters of the network. They are updated following the slope of
the cost function downwards being α > 0 the learning rate. It’s called stochastic because
the small set of randomly chosen examples gives an estimations on the gradient used to
examine the parameter-space (~w, b). One of the most popular choices for gradient descent
optimization is the Adam (Adaptive moment estimation) [101] algorithm that includes an
adaptive momentum term to accelerate convergence and avoid oscillations. It’s considered

1Some exceptions are: in [95] a cascade-network in which each hidden layer receives an input from
all previous layers is reported to accelerate the convergence rate. Extreme machine learning have been
reported to have particularly low training times as the training uses ordinary least square instead of back-
propagation [94]. Nucleide classi�cation in radioactivity monitoring have recently utilized convoluted
neural networks minimizing the feature selection process [99]. In another very recent work [96], properly
deep neural network has been used to model the heat tranfer process in PWR.
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Figure 5.1: Scheme of a single-layer arti�cial neural network. The three type of layers
can be seen in cyan the input (In), in green the hidden layer and in red the output
(Out). The network is fully connected as weights link all the elements from layer to
layer. This shallow network counts with 4 neurons and has an output in the form of
ŷ =

∑4
j=1 w2j1f(

∑3
i=1 w1jixi + b1j) + b21 with the weights and biases learned by training.

one of the best optimizes currently available also having intuitive hyper-parameters, ca-
pability of using non-stationary loss functions and automatic learning rate annealing and
low memory requirements2. It’s used in this thesis following literature recommendations
[96] and for testing “out of the box” tools, readily available with PyTorch. Is customary
to divide the training data into batches and a iteration on the whole training set completes
an epoch.

5.3 Arti�cial neutral networks sensitivity studies

Even for a classical feed forward networks the quantity of problem-dependent parameters
to consider is rather large [92]. The design itself requires to define the amount of hidden
layers, neurons per layer, activation function, parameter’s initialization and possible reg-
ularization layers. Pre-processing of data is mandatory. Training hyper-parameters must
be chosen as well: learning rate, number of batches, loss function with possible regular-
ization, etc. The design of an optimal network remains a difficult and multistage iterative
process due to the high amount of parameters, the wide scale in which they can vary and
the strong inter-dependence among them. This defines sensitivity studies to perform.

5.3.1 Cross section subset

Only the cross sections σ235,f,2 and Σres,a,1 are considered in order to reduce the computa-
tional burden of the sensitivity studies. These two important cross section are different in

2Default gradient decay parameters of the PyTorch package are used: β1 = 0.9 and β2 = 0.99.
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kind, being one a microscopic cross section and the other one a residual one. They are also
of different energy groups and reaction type. A separated network is used to model each.
A single layer network of neurons N = 20 with the activation function f(x) = tanh(x) is
the default model following literature recommendations [98].

5.3.2 Implementation setup

The PyTorch package was used in this work [90] and the developed script is available
in GitHub under MIT license [102]. In order to follow typical training setups, and in
view of the high performance of these packages, data was divided in a randomly sampled
Train/Test split of 80%/20% 3. Train data are further divided in 5 randomly sampled
batches 4 and thus 5 network adaptations occur per epoch. This helps the optimizer to exit
possible local minima adding also a regularization effect to the network. The parametric
studies are performed by analyzing the REσ error in both the test and training set up to
1E5 epochs. Comparing these two errors shows the generalization capability of the model.

Data normalization

Data normalization has a strong effect in the gradient’s absolutes values and thus in
the overall training process. The average relative error REσ is presented in Table 5.1
for different normalizations of X and Y . Without any cross section normalization, the
optimizer is unable to converge with errors of up to 100%. Normalizing by the max(σ(~x))
bounds cross section values to 1. X is already contained in the unit hyper-cube and
errors are marginally decrease when considering

√
Bu in order to standardize the statistical

distribution of burnup data. Normalizing by the variance exhibits the best results, slightly
further improved by using log(σ).

Specially for deep neural networks the initialization of the parameters can severely
condition the training. If the weights are too small the forward pass suffers from di-
minishing values that may nullify the final output preventing the computation of the
gradients. For exessive initial weight values the variance grow between layer may compro-
mise the learning algorithm. However for these small networks different initializations of
the weights using Random, Normal, Uniform, or Xavier-Uniform distributions (see [90])
were analyzed with negligible impact in the REσ and L profiles.

3This is the recommended scheme if the original data set is dense enough to properly analyze the
generalization error [100, 96]. Due to time constraints and in view of the results in previous chapter only
microscopic cross section are analysed. The computational cost of other arrangements such as k-fold
cross validation was considered excessive.

4If the gradient utilized to update the network's weight is calculated for each data point the method-
ology is called stochastic gradient decent. If the entire training set is used it's sometimes called batch
gradient decent. If the training data is divided in subset as done in this thesis, the learning method is
called mini-batch gradient descent.
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Normalization REσ
Input space Output space σ235f,2 Σres,a,1

- σ/max(σ) 3.0E-1 2.1E-1
x1 ←

√
Bu σ/max(σ) 1.5E-1 1.5E-1

x1 ←
√
Bu σ −mean(σ)← σ/max(σ) 1.0E-1 1.5E-1

x1 ←
√
Bu (σ −mean(σ))/std(σ) 2.0E-2 5.0E-2

xi ← xi − mean(xi),
1 ≤ i ≤ d, x1 ←

√
Bu

(σ −mean(σ))/std(σ)← log(σ) 2.0E-2 3.0E-2

Table 5.1: Cross section relative error (REσ) using di�erent normalizations for a single-
layer network with 20 neurons at 1E5 epochs. Utilizing the variance of σ combine with
the log exhibits the lowest error. Without any normalization the network in unable to
learn.

Learning rate

The learning rate (α) modulates the actualization of the weights influencing the conver-
gence rate and the optimizer’s capability to escape possible local minima. If it is too high
the algorithm may not converge and if it is too low it may do so too slowly. This behavior
is confirmed. In Fig. 5.5 for an α =1E-1 errors fluctuated up to 2 orders of magnitude
around a REσ of 5E-1 while for an α =1E-5 it converges smoothly but very slowly and
possibly getting trapped in a local minimum. A value α = 0.001 is chosen as a good com-
promise which systematically provides the lowest error ([1E3,1E5] epochs) though with a
somewhat slow initial convergence (up to 1E3 epochs). Different batches of 1, 5, 100, and
1000 number of training points per batch were tested. For this use case, the totality of
the training data was able to fit into GPU memory which is a typical training limitation5.
A single batch exhibits relatively slow convergence and slightly higher errors, whilst with
1000 batches stronger error fluctuations with increase computational cost was observed.
A value of 5 is chosen as good compromise. For every learning rate a complete overlap
between test and training error is observed. In the 80%/20% split, abundant training
data avoids over-fitting while at the same time, the smooth nature of cross section data,
makes the training quite representative of the test data.

5Limitation that may condition the model itself. The batch size can have a regularization e�ect which
can a�ect what the optimal training hyper-parameters and network's topology (e.g. use of regularization
layers). It could also limit the fraction of the problem that can be modeled with a single network,
thus changing the scope and therefore characteristics of the network. Hardware limitation ought to be
considered in the iteration loop of approximation with arti�cial neural networks.
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Figure 5.2: Σres,a,1 relative error (REσ) in training using di�erent learning rates for a
single-layer network with 20 neurons. The most stable and fastest convergence (after 1E3
epochs) is observed for a learning rate α = 0.001. The test error overlaps with the training
error.

Activation functions

The activation function influences the convergence rate during training and the evalua-
tion cost of the network. The Sigmoid function has been historically popular due to its
biological interpretation. However, it can compromise the training of deep networks due
to a the possible saturation problem in very deep networks. The Tanh activation function
is preferred since the smooth output is contained in [-1,1] with a zero mean. The Relu
activation function does not suffer from saturation, and is very fast to evaluate though
not smooth. However, specially for very small networks, they may generate discontinu-
ities in the derivatives and “dead neurons” as Relu(x) = 0, ∀x < 0 caused by a bad
initialization or learning rate. Some of these issues are addressed by the ELU activation
function used in deep learning [96] though it’s more expensive to evaluate. In Table 5.2
the relative error REσ at 1E5 epochs is presented for these activation functions. Relu
and Tanh are presented in Fig. 5.3. With the exception of HardS all exhibit a similar
performances. Tanh is retained as recommended by the literature.

f(x)
REσ

σ235,f,2 Σres,a,1

HardS (see [90]) 3E-1 3E0
Relu max(0, x) 2E-2 1E-1
Elu max(0, x)+min(0, ex−1) 2E-2 6E-2
Sigmoid (1 + e−x)−1 2E-2 6E-2
Tanh (ex − e−x)(ex + e−x)−1 2E-2 3E-2

Table 5.2: Cross section relative error (REσ) using di�erent activation functions for a
single-layer network with 20 neurons at 1E5 epochs. With the exception of HardS all
activation function have a similar performance.

5The HardS activation function is de�ned as HardS =


x, if x > 0.5,

x, if x < −0.5,

0, otherwise.
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Figure 5.3: Non linear activation function for arti�cial neural networks. The Tanh acti-
vation function produces a smooth output contained in [-1,1] with a zero mean. Relu are
very fast to evaluate though not smooth.

Loss functions

The loss functions considered are presented in Table 5.3. With respect to the REσ, a
metric based on the absolute value of the error, an L1 loss function showed the bests
results, as expected [95].

L(σ̂, σ)
REσ

σ235,f,2 Σres,a,1

mean(|σ̂ − σ|) 2E-2 3E-2
SmoothL1Loss (see [90]) 2E-2 5E-2
mean((σ̂ − σ)2) 2E-2 4E-2
max(|σ̂ − σ|) 1E-1 1E-1

Table 5.3: Cross section relative errors (REσ) using di�erent loss functions for a single-
layer network with 20 neurons at 1E5 epochs. With the exception of using the maximum
error all loss function present a similar error.

5.3.3 ANN architecture

The degrees of freedom defined by network’s topology shapes its approximation power,
provided the proper training hyper-parameters. Though some rules of thump exist, para-
metric studies are required since the optimal structure ultimately depends on the training
set size, the algorithm, and the function’s characteristics such as noise, complexity, and
regularity [100]. Indeed “ It’s impossible to predict the optimal architecture for a given
problem prior to modeling” [97].

Varying number of neurons for a single layer network

Fewer neurons imply a simpler parameter space to explore, faster training times, and
a resulting smaller library size which is faster to process and evaluate. REσ errors for
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REσN
σ235,f,2 Σres,a,1

2 2E-1 5E-1
5 3E-2 2E-1
8 2E-2 4E-2
15 2E-2 3E-2
20 2E-2 3E-2
30 2E-2 3E-2

Table 5.4: Average relative error with training for single-layer networks with a varying
number of neurons at 1E5 epochs. 8 neurons is the smallest number for which the error
are within the target.

shallow network with varying number of neurons are presented in Table 5.4 and Fig. 5.4.
Error profiles during training are quite similar for N ≥ 8 at least up to 1E5 epochs, and
the number of neurons N = 8 is the minimal size to reach the target accuracy6. By
close inspection of Fig. 5.4 it would seem that errors stabilize inversely to the number of
neurons of the network.

Figure 5.4: Average relative error in Σres,a,1 with training for single-layer networks with
a varying number of neurons. It can be observed that with very few neurons the error
stagnates as the model is not equipped with su�cient degrees of freedom to further adapt.
Rapid variations are noted at with 30 neurons after 1E4 epochs. Due to the abundance
of smooth cross section data in the 80%/20% split train errors overlaps with test errors.

Varying number of layers at constant library size

For a fully connected network with N neurons, L layers, I inputs, and O outputs the
amount of network parameters is

|ANN | = (L− 1)N2 + (I + L+O)N +O. (5.4)

6It has been observed that when using a rich data set the approximation power of even very small
arti�cial neural network can signi�cantly surpass traditional interpolation techniques [103].
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REσN
σ235,f,2 Σres,a,1

5 1E-2 1E-1
10 4E-3 4E-2
13 1E-3 4E-2
15 2E-3 4E-2
20 4E-2 6E-2

Table 5.5: Average relative error with training for single-layer networks with a varying
number of neurons at 1E5 epochs. 8 neurons is the smallest number for which the error
are within the target.

For the models considered in these sections I = 3 and O = 1. If augmenting the number
of neurons of a shallow network doesn’t provide the desired accuracy, it’s recommended
to consider a two-layered topology [100]. Therefore, a parametric study on the network’s
layers, at constant library size by virtue of Eq. 5.4, was carried out. “Rectangular” designs
of layers L =1, 2, 3, 4, 5 and neurons N =50, 13, 9, 7, 6 respectively are presented in Fig.
5.5a where each layer is separated by “/” in the scheme. The REσ errors for the σ235,f,2

decreases monotonously up to 1E3 epochs. Then, fluctuations are noticed, possibly as
the optimizer explores the parameter space to escape a possible local minimum. More
than a single layer provides smaller errors and faster convergence, specially for 2 layers
which coincides with other works that approximate similar real value continuous functions
[95, 58]. Test and training errors overlap since cross sections tend to be smooth, noise-free
functions, and training data very abundant in this 80%/20% split (with respect to cross
section variance). In Fig. 5.5b other types of topologies commonly found in literature
[104] are tested, but they do not offer any advantage under these settings. Similar results
are obtained for other cross sections which are thus not shown. In [105] it’s argued that
a 2 layer network is a system able to produce “bumps” of arbitrary high and position
and their number depends on the amount of neurons. Other works provide a similar
interpretation by stating than two layers are required to properly model discontinuities in
the data or strong variations [92]. More than two layers can induce an overly complicated
parameter space that slows down error convergence [100] which is why “for some problems
not only architectures with lower number of neurons suffice but they are able to produce
better results than architectures with higher number of neurons” [97].

Varying the number of neurons for a 2-layer network

The REσ is presented at 1E5 epochs for two-layered networks with varying number of
neurons. In [92] it’s suggested that the maximum number of neurons in the hidden layer
(of a two layered network) should be the double of the amount of inputs, 6 in this case.
This is not confirmed being the optimal size 13 neurons.
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(a) (b)

Figure 5.5: REσ for σ235,f,2 in function of training for di�erent typologies at constant
network size. (a) Constant number of neurons per layer. All networks with more than
one layer perform better than the shallow network. Fluctuation in the error with training
are noticed for more than one layer. The best results are obtained with a 2-layer network
for which the lowest errors are attained. Increasing or decreasing the amount of layer at
constant amount of parameters slows down error progression. (b) Common architectures
with varying neurons per layer at constant network size. All of them perform better than
a single-layer network, particularly the N =16/8/5 network, though do not outperform
the N =13/13 network.

5.3.4 Qualitative analysis on the function space generated by ar-

ti�cial neural networks

The network’s activation function influences the training process but also the quality of
the approximation. Especially for regression problems, some works relate the activation
function to a sort of function space used by the network [106]. For the minimal network
size of 8 neurons, cross section approximation is presented for σ235,f,2 in Fig. 5.6. The
limitations of the Relu activation function for cross section modeling become apparent in
Fig. 5.6a; it shares the multi-linear drawback of breaks in the derivative (in either of the
two dimensions, see Fig 5.6c), but without being bounded by the support. With a higher
number of neurons this phenomenon is attenuated but still present. On the other hand,
the Tanh activation function results in a quite satisfactory approximation. It follows the
training data reasonable well though, as observed in the zoom section of Fig. 5.6b, the
cross section’s rapid change is not followed exactly due to the stochastic nature of the
learning process that introduces some regularization. The 2-dimensional plot is presented
in Fig. 5.6d which is smooth and indistinguishable from the one corresponding to the
network of 20 neurons.
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Figure 5.6: Shallow network of 8 neurons approximating σ235,f,2. For the line
(Bu, Tf0, CB0): (a) Relu activation function. Breaks in the derivative of the approxima-
tions can be observed. (b) Tanh activation function which produces a smooth approxima-
tion that follows the strong variation in the data though introducing some regularization.
For the surface (Bu, Tf , CB0): (c) Relu activation function, resulting in breaks in the
derivative in the two dimensions. (d) Tanh activation function which produces a smooth
approximation.

5.4 Industry data set

The sensitivity studies allowed to define the training hyper-parameters and to identify
two networks of interest: one that maximizes library size reduction (N = 8) and one that
converges fast (N = 13/13) both reaching the target accuracy. In actual core calculations,
the amount of lattice data may be closer to the industry set than to the denser training
set considered so far, which could potentially hamper the supervised learning process. It
is therefore of interest to assess the network’s approximation quality using this restricted
data set. With regard to its structure, for this kind of engineering applications the
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regularity of a Cartesian rule is considered convenient [92]. This shows that machine
learning implementations are fairly empirical approaches. The test error is computed on
the TXe as to compare with the methodologies of the preceding chapters. The Eσ error
evolution with training is showed in Fig. 5.7a and 5.7b for the networks N = 8 and
N = 13/13. Important cross sections are shown.

Multi-linear errors, marked with a star, are reached trough training though after a
relatively high amount of epochs. The network N = 13/13 starts to overfit this smaller
data set after 1E5 epochs and test errors stagnate or even increases for some cross sections.
Training errors on the contrary keep diminishing even reaching ML for all cross section
as the set is being memorized by the network. In [107] the recommended minimum ratio
of training data to wheights is 3 to 1 which is attained for both networks in either the
80%/20% split (162 points per weight) or the industry set (5 points per weight). For
typical lattice calculation data, a relatively small 2-layered network can over-fit and an
“early stopping” criterion is needed.

In Table 5.6 the AVσ and the library size reduction, defined as the ratio of parameters
in the models

100(1− |ANN|/|X?|), (5.5)

is presented also for the split 80%/20%. Errors are reported at 1E6 epochs for N = 8 and
2E4 epochs for N = 13/13 (early stop criterion7). Network’s errors are lower than 1E-1%
and a significant library size reduction of up to 96% is obtained. Actually, this upper
limit is reached with only 6E3 epochs for N = 8 and 7E2 epochs for N = 13/13. An
error histogram discriminated by cross section is presented in Fig. 5.8a at 7E2 epochs for
N = 13/13. It shows centered means, and low overall errors without tails for this netwoks
that converges faster than N = 8 whose profile it’s also presented. The stochastic nature
of the learning process requires a large amount of epochs to reach the target accuracy.

7De�ned as a break condition in the training process when the test error starts to increment while the
training error keeps diminishing.
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(a) (b)

Figure 5.7: Absolute error Eσ for important cross section during training using the indus-
try set and the TXe for test. In general training errors tend to attain multi-linear errors
which are marked with a star. (a) A single layer network of N = 8 which maximizes the
library size reduction. The upper limit of 1E-1% is reached with only 6E3 epochs. (b)
A two-layered network of N = 13/13 where over-�tting starts to occur and the test error
departs from training error. The optimal model is obtained at 2E4 epochs. The upper
limit of 1E-1% is reached with only 7E2 epochs.

(a)

Figure 5.8: Error histogram using the industry set for N = 13/13 at 7E2 epochs discrim-
inated by cross section characterized by centered means, low standard deviation without
tails. In gray the corresponding error histogram for the network N = 8.
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Approximation AVσ 80/20 industry

Multi-linear
Test 1.2E-3 2.1E-2
Size 36096 1050

ANN (N = 8, O = 1)
Train 4.7E-2 3.9E-2
Test 4.4E-2 7.3E-2
|ANN | 41

Library reduction 99% 96%

ANN (N = 13/13, O = 1)
Train 9.0E-3 2.1E-2
Test 8.5E-3 6.0E-2
|ANN | 222

Library reduction 99% 79%

ANN (N = 20/20, O = 144)
Train 2.5E-2 1.9E-2
Test 2.5E-2 3.0E-2
|ANN | 3.1E3

Library reduction 99% 98%

Table 5.6: Average relative errors AVσ using the 80/20 split and the industry set for
multi-linear interpolation and arti�cial neural networks. The errors are tested on XXe
and reported at 1E6 epochs for N = 8 and 2E4 epochs for N = 13/13 (early stop
criterion). The error for the arti�cial neural network are in the region of interest, achieving
signi�cant library size reductions though ultimately unable to reach the corresponding
multi-linear accuracy. Nonetheless both networks are able to pro�t from the richer data
set achieving a higher accuracy with the 80%/20% that with the industry set. The multi-
output network having 3.1E3 coe�cients (equivalent to 3.1E3/144=21 coe�cients per
cross section) achieves the highest compression.
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5.5 Multi-output network

Artificial neural networks can be easily extended from single output (O = 1, as treated so
far) to “multi-output” systems (O > 1) without significant change in the training process,
storage requirements, or parallelizable capabilities. In this sense they truly are mapping
devices between multi-dimensional spaces which is the ultimate cross section modeling
problem. An implicit idea, in a common central model, is its capability to share learned
structures from the data across the output vector. This means that a capture pattern is
stored only once, and used as required for the different cross section. Such behaviour is
explicitly observed in (very) deep neural networks in Computer vision problems. Though
the analysis and identification of emergent features in the network [108] is beyond the
scope of this thesis, it’s worth recalling this concept, as any library compression does
relays in exploiting common elements across the cross section set.

5.5.1 Parametric analysis in the number of neurons for a two-

layered network

In view of previous results, a parametric study on the topology of a two-layer network is
presented in Fig. 5.9a where a single network models the totality of the cross section set
i.e., a function f : x ∈ X d=3 → R|Y|=144. The AVσ error on the train and test set is shown
during training. All the networks reach the targets error of 2E-2 (similar to multi-linear).
A slightly better convergence is observed for a number of neurons N ≥20. No further
improvement is observed with additional neurons, hence a multi-output network of N =
20/20 is considered optimal. From Eq. 5.4 the network’s parameters are |ANN | =3.1E3
which stands as a maximal library reduction of 98% as presented in Table 5.6. In view of
these results no further exploration in subdividing the cross section set was considered.
A multi-output network of N = 20/20, has 3.1E3 parameters which is equivalent to 22
parameters per cross section. A multi-output network of N = 13/13 has 2.1E3 coefficients
which is equivalent to 14 parameters per cross section. This is equivalent to a single-output
shallow network of 2 neurons, quite unable to fit the data, since 8 were needed to meet
this target (having 41 parameters). This evidences that learned patterns in the unique
model are shared among the cross section. Provided an adequate network’s structure and
training, as long as each cross section’s error, and in consequence the average model’s
error, meets the targets the storage size is independent of both input and output space
cardinality. This is the ultimate feature of a library reduction modeling technique.

5.5.2 Error analysis for a two-layer, 20 neurons multi-output ar-

ti�cial neural network

In multi-output networks, an implicit metric is being defined among the cross section
since the layers are fully connected. Moreover, a secondary source of regularization is
added, mainly the minimization of a much larger error set, spammed throughout the
entire domain, which could be detrimental to the capture of the details in the cross
section’s profiles for regions of rapid variation. In Fig. 5.10 and Fig. 5.11a the REσ with
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Figure 5.9: (a)Topological study for a multi-output two-layered network. The error AVσ

is presented in function of the training where all the networks reach the target errors. The
optimal amount of neurons is 20. (b) Every cross section error in function of training for
a multi-output 2 layered network of 20 neuron. In general the multi-linear error marked
with a star is reached and an overlap is observed between the error on the train and test
sets. Up to 1E3 epochs, the error evolution is rather similar for all the cross section of
the set and di�erential error progression is noticed afterwards.

training and cross section plots are presented for σ235,f,2 and Σres,a,1 respectively. Though
resulting from a single multi-output network model, they are rather indistinguishable
from those obtained using a dedicated single model per cross section. No perturbation or
abnormality is observed. By close inspection in the zoom region of Fig. 5.10b a somewhat
paradoxical observation can be made: this multi-output network using the industry set
is able to follow better the cross section profile than a single shallow network using the
much larger 80%/20% split (see Fig. 5.6b). From this observation a very simple rule of
thumb could be extracted for cross section modeling: without some separation between
test and training error (i.e. the onset of over-fitting) small features on the data profile
could be being regularized out of the approximation, a consequence of the stochastic
learning process with very large data set.

In Fig. 5.12a its shown that the approximation is quite able to follow a difficult set of
data for the important cross section σ239,f,2. This is further exhibited in Fig. 5.12c where,
again, a smooth approximation is obtained. In Fig. 5.12b however, some oscillations are
noticed for the σ240,f,1 cross section.
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Figure 5.10: Modeling of σ235,f,2 with a multi-output N = 20/20 network using the
industry set. (a) The onset of over-�tting is observed at 1E5 epochs. The network
reached the error targets. (b) Cross section at σ235,f,2(Bu, Tf , CB0). The smaller industry
data set facilitates following the pro�le change even if the entire cross section set is being
modeled. (c) A smooth approximation without abnormalities is observed. In practice
indistinguishable from a single dedicated model.
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Figure 5.11: Modeling of Σres,a,1 with a multi-output N = 20/20 network using the
industry set. (a) No over-�tting is observed. (b) Cross section at σ235,f,2(Bu, Tf , CB0).
The smaller industry data set facilitates following the pro�le change even if the entire
cross section set is being modeled. (c) A smooth approximation without abnormalities is
observed. In practice indistinguishable from a single dedicated model.
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Figure 5.12: Modeling of σ239,f,2 and σ240,f,1 with a multi-output N = 20/20 network using
the industry set. (a) Cross section at σ239,f,2(Bu, Tf , CB0) is able to almost interpolate
training data. (b) Cross section at σ240,f,1(Bu, Tf , CB0) presents an overshot. (c) A smooth
approximation without abnormalities is observed.
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5.5.3 Weight evolution with training

The parameters of the network determine its behaviour [109], capability of exploiting
common patters in the data, and possibly the error bounds [110]. Though a detailed
analysis of these properties, which belong to an ongoing area of research, are beyond
the scope of this thesis, some observations can be made in view of their evolution with
training. The network’s weights (that connect the neurons) and baiases evolution during
training are presented in Fig. 5.13 discriminated by layer. The networks used in this
thesis are shown (using tanh activation function). Small initialization values give way,
with training, to a single large weight and bias in a shallow network (O = 1) as shown
in Fig. 5.13a. A similar plot is obtained for the network of 8 neurons. This suggest
a similar “network utilization” which is coherent with the approximation’s plot shown
previously8. This few but large parameters, remained bounded in these training settings,
and are located in the hidden layers.

It could be argue that the multi-output network exhibits a higher degree of “parameters
utilization”. Incidently they depart from the bulk of zero centred values at about 1E5
epochs, where differential error evolution was clearly observed in the cross section (see
Fig. 5.9b). Inner layers could define a logical structure within the network while only the
last layer, modulated by the activation function, accounts for the output values of the
network that conform the approximation. The last layer’s parameters (Out) are usually
bounded by 1, as the normalized cross section values.

5.6 Performance remarks

Training and evaluation times are presented in Table 5.7 with a single network adaptation
per epoch (only one batch, equal to the entier training set). The training time ranges
from 1E-3 s/epoch to 1E-1 s/epoch depending on the availability of GPU acceleration.
In the parametric studies, up to 1E6 epochs with 5 batches per epoch were used, which
is a non-negligible calculation time of about 5×(1E-3 s)×1E6=4 h/σ similar to reported
elswere for this kind of networks and accuracy [58]. On the other hand, 7E2 epochs
requiring only a few seconds already produced satisfactory results.

An evaluation vector composed of random numbers in the hyper-cube of size 2.4E5 was
used to estimate the evaluation time expressed per evaluation point and cross section9.
Unlike the Kernel methods or B-spline implementation, the PyTorch module is optimized
for vectorial calculations. Evaluation speed was quite compatible with industry require-
ments especially if GPU acceleration is available.

8Indeed several experiments with up to 1E7 epochs with single layer networks of 100, 200, and 500
neurons systematically resulted in the same parameter's pro�le: a few parameters di�erent from zero and
similar (training) error than, for example, a two layer network ofN = 13/13. No training settings/network
topology was able to have interpolating like training errors. In [111] it is argue that an excessively complex
parameter space can be counter-productive due to the increase probability of the training algorithm
getting trapped in local minima.

9Representing an entire core calculation with the amount of cells equal to 300×50×16.
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Figure 5.13: Network parameter evolution with training. Tanh activation function is
used. (a) 8 neurons shallow network. (b) Two layered 13/13 network. (c) Two layered
n = 20/20 multi-output network.

The training and evaluation times of a network is practically independent of the di-
mensionality of the output. Hence, multi-output times are very similar to those of a
single output, especially if GPU acceleration is available, though for treating the entire
cross section set. Thus a reduction is obtained in a factor proportional to the amount of
cross section modeled by the network. Possible complications with bigger multi-output
networks could arise from GPU memory limitations. To address this the training size
batches (dependent on the input space dimensionality) must be changed depending on
the quantity of cross sections being modeled by the network. Both aspects can influence
the optimal networks topology. Precisely this kind of inter-dependencies are a major
shortcoming of artificial neural networks, since they are generally resolved in a quite
heuristic way.
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N
GPU CPU

Training [s/epoch] Evaluation Training [s/epoch] Evaluation
80/20 Industry [s/point] 80/20 Industry [s/point]

8 2E-3 2E-3 1E-9 7E-3 1E-3 2E-8
50 2E-3 2E-3 2E-9 2E-2 2E-3 3E-7
200 3E-3 2E-3 4E-9 1E-1 5E-3 1E-6
13/13 3E-3 3E-3 8E-10 2E-2 3E-3 1E-7

Table 5.7: Training and evaluation times for arti�cial neural networks. Training times
using with the 80%/20% split (36096) points and the industry set (1050) pints is presented
per epoch with a single batch. They exhibit a relatively low dependence on the number
of neurons for both CPU and GPU calculations. Vectorialized evaluation times per point
and cross section are quite compatible with industry's speed requirements. Multi-output
network training and evaluation times are practically the same since they are independent
of the dimensionality of the output.

5.7 Final thoughts and discussion

In this chapter artificial neural network were used to model cross section, discussing their
main characteristics and shortcomings:

Arti�cial neural networks

• Multi-variate function approximation is often a generalization of uni-variate rep-
resentation methodologies, as for example the tensorization used in the preceding
chapters. Artificial neural networks are a fundamentally different technique, de-
scribed as “universal approximators” or “model-free mapping systems” that can
inherently cope with a high dimensionality of both input and output spaces without
user imposed rules among the variables nor added computational cost.

• They are an intrinsically incremental learning method quite able to cope with an
on-line data steam, not limited to an “off-line” preparation phase as common in a
one-through calculation scheme.

• The training process is an error driven supervised learning task for models that are
able to generalize quite well provided a dense enough data set. Indeed since cross
sections tend to be smooth, noiseless functions, with the 80%/20% split a complete
overlapping between test and training errors was observed for all the networks. This
allows for an error-controlled library preparation as in other works [31].

Sensitivity analysis

• Data normalization had a strong effect in the training process. Without it, the
optimizer was unable to converge with resulting approximations not fitting the data
and errors of 100%. Normalizing the burnup variable with the square root, and the
cross section value by the variance with a zero mean, exhibited the best results.
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• The learning rate (α) modulates the actualization of the weights influencing the
convergence rate and the optimizer’s possibility of escaping local minima. The
value α = 0.001 was found optimal. It’s worth mentioning that big learning rate
values (α = 0.1) did not result in divergent errors.

• With the exception of HardS all activation function exhibit a similar performance for
these small networks and Tanh was selected following literature recommendations.
Qualitative analysis on cross section approximation showed that the Relu activation
function produces nonphysical breaks in the derivative, not present with smooth
activation functions.

• For the use case considered, a single-layer network of only N = 8 having 41 param-
eters is the smallest model that attains the target accuracy.

• Under the condition of constant library size, a two layered network provided the
faster convergence in accordance with [100, 95, 58]. Other topologies commonly
found in literature, provided no further advantage in these settings.

• The parametric studies resulted in optimizations that did not necessarily comply
with rules of thumb found in literature.

• The stochastic nature of the training process has several consequences. Variability
in the final errors of different training session of ±2E-2 was observed. Denser data
sets provide a stronger regularization effect, increased by the use of randomized
batches. When trying to minimize the amount of parameters, over-fitting is not a
major concern and weight decay or regularization layer were not analyzed. Due to
cross section’s regularity, training error generalizes quite well.

Industry set

Two networks of interest were identify, of maximal library size reduction (N = 8) and of
fast error convergence (N = 13/13) that were tested using the industry set.

• Using the industry set for training, multi-linear errors are generally attained by the
training error though after a relatively high amount of epochs. A significant library
size reduction of up to 96% is obtained.

• Over-fitting was observed in the N = 13/13 network using this smaller data set
after 1E5 epochs (test errors increasing with training). The amount of parameters
of such relativity small network are sufficient to over-fit data sets of this size as could
be found in industry. Training errors on the other hand reach those of multi-linear
for all cross section.

• Similar results are obtained for the 80%/20% split, actually reaching an AVσ under
1E-2 though never attaining the multi-linear error.

• It could be argue that artificial neural networks trade storage memory for computa-
tion time, which is a desirable feature in an off-line preparation phase. Indeed the
N = 13/13 network was able to profit from the 80%/20% split achieving a lower
error than with the industry set.
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• An empirical observation for cross section modeling under these settings is that
in order to reproduce the precise shape of a given cross section variation some
separation between training and test error has to occur (i.e. the onset of over-
fitting).

Multi-output

Unlike the other methodologies, artificial neural network can be naturally and easily
extended to multi-output models that approximate the entire cross section set.

• A single network was able to model the entire cross section set reaching an AVσ ∼3E-
2, similar to multi-linear for the industry set. A maximal library size reduction of
98% was obtained having a total of 3.1E3 parameters.

• This would be equivalent to 20 per cross section, that for single-output shallow
networks, represents about 3 neurons which are insufficient to produce satisfactory
approximations. This shows that learnt common patterns are being shared among
the cross sections, enhancing the library reduction capabilities of the method.

• A parametric study on a two-layer multi-output network resulted in 20 neurons as
the optimal value. In view of the satisfactory results no further segregation of cross
sections based on difficulty, reaction type, group, etc was considered.

• Qualitative analysis of important cross sections prove indistinguishable from dedi-
cated (single output) models. No perturbation or abnormal behaviour was observed.
Additionally, the training points of the (smaller) industry set were approximated
better (than a single-output network using the 80%/20% split), even if optimizing
the entire cross section set.

• Multi-output network’s parameters exhibited a larger rate of change with training,
especially after 1E5 epochs where differential error progression was observed in the
cross section set. This suggest that the degrees of freedom are better utilized than
with a single-output network.

Performance

Modern frameworks for artificial neural networks can profit from GPU acceleration:

• The evaluation speed was quite compatible with industry standards, especially if
GPU acceleration is available. CPU evaluation times were inversely proportional to
the amount of neurons in a measurable amount.

• A similar dependency was observed for the training. Some of the studies in this
work considered up to 1E6 epochs using 5 batches per epoch, with thus 4 h worth
of training per cross section, which is considerable. Very high accuracies prove
challenging for artifical neural networks, requiring long training times as reported
elsewhere [98].
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• However, acceptable errors were obtained with only 6E3 epochs for N = 8 and 7E2
epochs for N = 13/13 which corresponds to a training time of a few seconds. For
the networks of interest, the computational cost was independent of the network’s
topology if GPU acceleration is available.

• The training and evaluation time of a multi-output network was independent of
the output’s cardinality, being thus effectively reduced in a factor proportional that
amount. The totality of the training data was able to fit into GPU memory.

Provided an adequate topology and training parameters, multi-output network have
indeed behaved as “model-free” mapping devices. To the author knowledge, no other,
more extensive studies of cross section modeling using artificial neural networks exists to
date.



Chapter 6

Conclusion and Perspectives

This thesis was devoted to few-group cross section approximations methodologies in view
of modern core calculations requirements, characterized by an increase in the amount
of cross sections to model (output space) and the dimensions of their domain (input
space). In general, these are smooth, low order, and virtually noise-free functions of
varying complexity across the state-variables and the cross section set. The main modeling
objectives were to reduce the storage requirements of the library, in order to increase
the computational performance of core calculations, at a target accuracy (AVσ ∼ 1E-
2%) and evaluation speed (>1E-5 s)1. Secondary objectives were to lower the amount
of lattice calculation required, library preparation time, and model’s complexity with a
good conditioning if an expansion basis is used.

The current industry standard is multi-linear or second order interpolation using
Cartesian grids. Though straightforward, simple, and efficient under the right circum-
stances, it does suffers from the “Curse of dimensionality” where storage requirements
may grow exponentially rendering the library inefficient and cumbersome to work with.
Classical methodologies can enforce large amounts of unnecessary data into the model as
evidenced by the success of lighter sampling rules (sparse grids), a posteriori rejection,
regression, or even Taylor expansion methods. The multi-variate modeling aspect of such
method is usually restrained to an extension of uni-variate approximations by a tensor
product rule, for each cross section, independently.

6.1 Main conclusion

Table 6.1 summarizes the main results of the thesis showing the reduction in the library
size2, the accuracy, the evaluation speed and the underling library structure for the three
studied methodologies: Spline interpolation with a B-spline basis, kernel methods

1As an industrial reference for comparison the commercial code APOLLO3 [11] provides an evaluation
speed of 1E-7 s per evaluation point per cross section.

2The library reduction is measured at constant AVσ,? error in percentage as 100(1−|Coef |/|Y|×|X?|)
which is: the total amount of parameter for the entire cross section set (|Coef |) versus the total amount
of terms in the multi-linear interpolation using the industry set (|Y × X?|)

127
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(RKHS) with pool active learning, and artificial neural networks.

Spline approximation using B-splines with a Cartesian grid is an industrial state-of-the-
art methodology that sets the ground of comparison for other, more innovative methods.
It uses a piece-wise smooth approximation space exploiting the computationally efficient,
and freely available B-splines routines that produce well conditioned bases, resilient to
numerical noise. The evaluation time, proportional to the regularity of the approximation
(m), meets the modeling objectives of this proven, yet classical methodology. The overall
improvement with respect to multi-linear is about 26%, rather small due to the underling
library structure and the lack of regularization.

Kernel methods (RKHS) allow to reproduce several function spaces, including high or-
der splines, but introducing regularization and unstructured supports, which are selected
by active learning. The kernel trick avoids explicit computations in this feature space,
facilitating the obtention of the approximations, and making the methodology moderately
resilient to an input dimensionality increase. Supervise learning is able to reflect the func-
tion’s complexity across the state-parameters (|X†| ∼ σ(2)) and even the cross section set
(by dropping the share support) achieving a library reduction of up to 85%. A very high
accuracy was obtained with a second order regularized spline space which also uses an
optimized support. The evaluation speed is similar to splines and systematically above
the modeling objectives if the evaluation vector is shared among the cross sections. High
conditioning number of the kernel matrix and large coefficient’s module in the approxima-
tions were observed. Though with just a few cross section the active learning procedure
was able to select a near optimal support, long active learning times of up to a day were
encountered for the most demanding loss functions.

Artificial neural networks are fundamentally different “model-free” mapping devices
able to cope, in principle, with arbitrary dimensionality increases of both input and output
spaces. These intrinsically parallelizable models, able to profit from GPU acceleration,
drop entirely the notion of support, being able to model a single cross section or the
complete set. A maximal library size reduction, evaluation speed, and good accuracy,
are obtained for a model independent of the cardinality of both input and output space,
provided a suitable network’s topology under an adequate and sufficient training. Indeed
long preparation times may be encountered (especially for single-output networks for the
entire set), and a large quantity of problem dependent, interrelated, hyper-parameter
must be defined. These are not hardware independent, and the resulting models can be
hard to interpret.

These methods used a pool setup, where all the data is already present and without
iterations with the lattice code, which is a natural consequence of the underlying “one-
through” two-step calculation scheme. They could be extended to an “on-line” mode, es-
pecially artificial neural networks. In regards to the approximation robustness expressed
as the module of the coefficients: B-splines systematically offered a very well conditioned
matrix and bounded coefficients value, though for regularity m > 1 over-shots or oscil-
lation were found for some support configurations. Kernel method conditioning number
and coefficients module was systematically large. Nonetheless the spline space repro-
duced, if linear, was naturally bounded by the support and for m > 1 regularization was
successfully applied. Though effort has been made to achieve acceptable computational
performance (by developing relativity efficient compiled libraries) further optimization
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work would probably result in improved evaluation speed.

In view of these results kernel methods utilizing a regularized piece-wise function
space with an optimized support provide an efficient and relatively straightforward method
to improve cross section modeling in industry applications3 [112]. Artificial neural net-
works offer the highest performance potential [113], especially in view of multi-output
networks, capable of exploiting common patterns in the data achieving maximal com-
pression and evaluation speed, but lacking standardization of the modeling phase, or
some sort of guidelines, probably required in industrial applications. High order approx-
imation improve the accuracy, but its benefits in terms of library reduction are limited,
especially if using the intrinsically penalizing Cartesian grids, or possibly even regular
grid. To the author’s knowledge, no other, more extensive studies of cross section mod-
eling using kernel methods or artificial neural networks exist to date. In the following
sections, additional contribution of the thesis and observation are presented, followed
by future perspectives.

6.2 Additional contributions of the thesis

6.2.1 Spline interpolation

Piece-wise interpolation in a Cartesian grid stands as a classical industry technique for
cross section modeling which was explored in the third chapter.

• Polynomial approximations dispose of an extensive and accessible literature armed
with a rich set of computational tools and libraries. Unfortunately for cross section
approximation, global polynomials interpolation proved inadequate, at least with-
out special discretizations in the sampling of the support. Divergent errors where
obtained with just a few points.

• Multi-linear interpolation presented a monotonically diminishing error with the sup-
port size for σ, Σ, and k∞. In virtue of the error bound with the support, important
properties such as cross sections positivity and other relations are preserved.

• A formal development of spline interpolation using B-splines, not treated
before in the cross section literature, was presented introducing their main
theorems. B-splines are indeed a convenient base, with a positive banded collocation
matrix, requiring a small quantity of evaluation terms proportional to the regularity
of the approximation.

• Overshots and oscillations were detected in some cross sections, leading to non-trivial
dependence of the error with the support. These issues have been mentioned before
[46], but not analyzed in the literature. Though this is not an exhaustive study
on knot vector construction, equipped with the complete B-spline formalism

3The intrinsic modular character of the method is well suited for actual industry implementations:
the function space selection, the resolution routines of the resulting linear systems and the active learning
phase, further determined by the lose function, are basically decoupled phases.
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several recepies, as suggested in [68], were tested and attempt made to
improve the knot vector. Unfortunately, at least for this use case, knot vector
manipulations had only a minor impact on the spline representation quality.

• Higher order splines outperformed multi-linear interpolation to a small extent, in
accordance with other works [30]. This is mainly attributed to the lack of
regularization in the interpolating solutions, and the underling tensor
product rule.

6.2.2 Kernel methods

In this thesis several kernels (RKHS) were explored for the cross section mod-
eling of a standard PWR fuel assembly, performing the corresponding para-
metric studies, and assessing different active learning strategies for optimizing
the support. Results were presented in chapter four comparing to multi-linear interpo-
lation.

• A formal presentation of Kernel method with active learning was pro-
vided for cross section modeling noticing the synergic combination: active
learning has a complete freedom to select the observations, whose quantity mini-
mization is crucial for performant RKHS.

• These innovative, “observation based” kernels functions, impose no con-
ditions on the data pool thus overcoming the limitations of classical ex-
pansion methods which are circumscribed to an hyper-dimensional rectangle in
the input space [27].

• Several kernels were explored with their corresponding hyper-parameters resulting
in the selection of the regularized spline function space. This matches the
insight obtained from the thorough literature review: efficient cross sec-
tions representation may benefit more from flexibility in the selection of
the support points than the use of exotic function spaces. Muli-linear inter-
polation was reproduced, retaining its error bounds, but for an arbitrary grid. This
facilitated an analysis of active learning strategies highlighting the potential
gains for industry settings.

• A random selection of support points, that reduces the collinearity in the data,
substantially improved the models even with a linear function space,
showcasing the interest of unstructured supports.

• In this thesis loss functions acting on σ, Σ, and k∞ were confronted in terms
of accuracy gains, library size reduction, and computational cost. Comparative
studies with such a varied set of strategies demonstrated the robustness
of the methodology.

• The best compromise between library reduction and the computational cost of ac-
tive learning was achieved when using the importance to pre-select a subset of the
cross sections (RXSI). Loss function profiles allowed to quantify the amount
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of useful information in the data set and its extraction rate providing a
direct measure of the error. The need of relative errors to make meaningful
comparisons among cross sections was discussed in detail, indicating as well
possible difficulties in the fast group.

• In this thesis the effect of the shared support condition was examined by
the clustering of cross section participating in the active learning process
and plateaus in the partial loss function values. A shared support penalizes
the active learning by the most complex cross section, forcing the incorporation of
large volumes of unnecessary data.

• For a given pool of data, the modeling objectives in library preparation can
be imposed through the loss function in the active learning phase. With-
out a shared support, when modulating the error tolerance with the importance
(ImpNoS), a good accuracy in Σ was obtained with a minimal library size though
high error in σ, the original function being approximated were encountered. This
example suggests caution in the use of integral parameters without over-
seeing the original cross section approximations. A detailed characterization
of the σ error discriminated by isotope, reaction, and group showed the link between
the loss function, the library structure, and the corresponding errors.

• A second order spline space with energy minimization was combined with
active learning resulting in a monotonically decreasing average error with
the (optimized) support size, achieving an order of magnitude improvement with
respect to multi-linear and a bounded maximum error. Third order approxima-
tion spaces provided no further gains.

• Particular attention was devoted to the evaluation cost of RKHS which
is linear with the support size and proportional to the kernel’s evaluation cost.
For this use case, 100 observations selected by active learning were sufficient to
achieve the target accuracy, and up to 2500 were successfully tested. In this range,
RKHS approximations had acceptable evaluation speeds being actually faster than
B-splines up to 100 terms. By sharing the evaluation vector across the entire
cross section set required in core calculations, an evaluation time under
1E-5 s was systematically obtained.

Kernel methods may prove quite scalable with both the input and output
space increase. The relative low dimensionality of the input space considered in this
work, may even penalize the library size reduction with respect to a Cartesian grid, being
thus a lower bound. As long as cross section exhibit a low order dependence among
the variables, the amount of observation required should grow with the cross section’s
complexity, here marked with the second derivative: |X†| ∼ σ(2)(x1, . . . , xd)�

∏d
i=1 |Xi|.

With respect to an output space cardinality increase, if correlated to a mean decrease in
cross section’s complexity, requiring thus fewer observation in each, the aggregated set
of observations (i.e. the library size) could remain bounded. Attention must be drown
to the shared support case were, in principle, |X†| ∼ max

i∈Y
(σ

(2)
i ). On the other hand a

shared support facilitated sharing the evaluation vector, which is thus the same among
the cross sections. The benefit of this consideration would increase with the output space
cardinality.
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6.2.3 Arti�cial neural networks

In this thesis artificial neural networks were introduced for modeling the cross
section of a standard PWR fuel assembly performing topological and hyper-
parametric studies using the PyTorch package. Results were presented in chapter
five comparing to multi-linear interpolation .

• A dense enough data set using a 80%/20% split resulted in models that gen-
eralize quite well and a complete overlapping between test and training
errors was observed allowing for an error-controlled library preparation.

• Several data normalization strategies were analysed for both the input
and output space: the square root for the burnup and for cross sections the
variance with a zero mean exhibited the best results. Additional parametric
studies included the learning rate, activation functions, and the network’s
parameter initialization. A qualitative analysis showed a detrimental effect
of non smooth activation function (Relu) in cross section approximation

• Topological parametric studies were carried out obtaining a single lay-
ered network of 8 neurons as the smallest model that attains the target
accuracy, and a two layered network of 13 neurons providing the faster
convergence in accordance with other works [100, 95, 58]. Other topologies com-
monly found in literature, provided no further advantage in these settings.

• Satisfactory results were obtained for networks using the more restrictive In-
dustry set, though over-fitting was observed.

• Artificial neural networks can be naturally extend to multi-output models. Quali-
tative analysis showed that approximations from multi-output model do not differ
from dedicated (single output) models.

• In a 13/13 multi-output network the equivalent amount of parameters per cross
section corresponds to 2 neurons in a shallow single-output network, which is unable
to fit the data. This suggests that some commonalities of the data set are
exploited by a single central model.

• After a topological parametric study the entire cross section set was modeled
with a single network attaining maximal library size reduction of 98%, highest
evaluation speed, and an accuracy comparable to multi-linear.

• A non negligible training time of up to 4 h per cross section was observed without
GPU acceleration. On the other hand, acceptable errors were obtained with a
training time of a few seconds. The training and evaluation time of a multi-
output network was independent of the output’s cardinality, effectively
reducing training time in a factor equal to the amount of cross section modeled. All
evaluation times were quite compatible with industry standards, especially if GPU
acceleration is available.

Artificial neural networks use intrinsically incremental learning methods, quite able to
cope with an on-line data steam, not limited to an “off-line” preparation phase. Provided
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an adequate topology and training parameters, multi-output network have indeed behaved
as “model-free” mapping devices. To the author knowledge, no other, more extensive
studies of cross section modeling using artificial neural networks exists to date.

6.2.4 History E�ects

A review of history effects modeling was carried out analyzing different history
variables for a first order Taylor expansion on σ, Σ, and k∞. The plutonium isotope
exhibit the best performance reducing the average relative error from 0.8% to
0.1% for most cases. However for certain control rod insertion scheme during burnup,
a non monotonic behaviour of the plutonium concentration lead to an error increase for
this parametrization methods suggesting the need of additional history variables.

6.2.5 Developed packages

The developed packages for the cross section modeling are available under a MIT license
for kernel methods [84] and artificial neural networks [102]. The dataset used is also public
[114].

6.3 Perspectives

During the development of the thesis several lines of research were identified for follow up
works in cross section modeling.

6.3.1 Use case

Several specialized isotopes were considered in this thesis but for a relatively small input
space, of only 3 state-variables. Assessing the scalability capabilities of the developed
methodologies and their possible pitfalls would be of interest.

• About 4 state-variables are usually used in steady-state calculation and 5 or more for
transient safety studies. The most challenging input space considered in the entire
literature was of 15 variables [22]. A MOX fuel [14] in a transient variable range
seems to be a quite demanding use case to consider, and of particular interest since
they are a motivation of updates and improvements in core calculations methods
[20].

• A robust test could include PWR and MOX fuels, with a 2, 8, or 20 groups of
energy for the steady-state or transient state-parameters range. Additionally with
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or without modeling the Xe buildup. Two fuels type that have received less attention
are for MTR and especially for PHWR4.

• In regards to augmenting the output space, a subject of debate detected in the liter-
ature review is cross section’s complexity with energy groups: if a somewhat unlucky
partitioning isolates the difficult resonance regions, an increase in the complexity of
the most difficult cross sections could take place. Additionally for an arbitrary en-
ergy group partitioning insights from the 2-group energy scheme are not necessarily
valid. On this regard an increase in difficulty is reported in [25], mentioned in [28],
and also in [64]. On the other hand in [14] it is reported that the modeling problem
becomes easier. The same was reported for MOX fuel in [55] and for VHTR in [30].

• Few group cross section data is usually considered relatively noise-free. This is no
longer the case if Monte-Carlo tools are used [25], and testing the regularization
capabilities of the developed methods could be of interest.

6.3.2 Spline interpolation

• Optimal knot placement and multiplicity control by machine learning techniques
could lead to an improvement in the approximating power of splines, retaining their
convenient properties. Preliminary knot vector manipulations mildly improved the
representation quality.

• Boundary condition analysis in spline approximations has been raised in [46] and
only partially treated in this work, and in a very pragmatical way.

• In view of the results of kernel methods, incorporating in industry application re-
gression approximations using splines that minimize the energy could be considered
(thin splines).

6.3.3 Kernel methods

• Some of the studied kernels present a very low evaluation cost. Nonetheless the ker-
nel representation itself can be explicitly optimized for improved evaluation speed.

• Possibly a major point of improvement for industry application is the the condi-
tioning number of the Gram matrix for finding the coefficients and their resulting
absolute values, to reduce sensitivity to numerical noise.

• To further compare with some works found in the cross section literature, reproduc-
ing an interpolating polynomial space could be used to assess different grid types
(e.g. regular to unstructured grids).

• The relationship between the spline spaces of kernels and B-splines could be formal-
izing further, i.e. the exact link between Hk and $K,~t.

4Of course due to the technology being less widespread and thee simpler state-parameter dependency
(low EOC burnup, very high termalization with constant moderator density and low spectral interaction
among fuels, no boron concentration or void fraction and thus low amount of history e�ects, etc.)
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• Kernel design could lead to very specialized approximation spaces in a similar vain of
the tailored basis functions in [57]. It’s even conceivable a kernel composition which
explicitly incorporates known physical phenomena, such as the xenon or plutonium
build up, the depletion of fissile material or burnable poisons.

• Though kernel methods may be an effective strategy [79], they can only deal with
a moderate amount of samples ≤5E3 which, in principle, could increase with the
amount of dimensions as well as the evaluation cost of the kernel itself. This should
be subject to further testing.

• The considered active learning was quite straightforward, based solely in the ap-
proximation’s error. Other, possibly more sophisticated ways of assessing the obser-
vations is in view of the “coherence” of the new mapping functions with respect to
the observation set. This kind of methodologies, sometimes used in on-line RKHS,
could be of interest [115].

• Least Absolute Shrinkage and Selection Operator (LASSO [116]) regression could
be of interest. It considers an L1 regularization allowing for the complete removal
of unwanted coefficients in the preparation process (not a posteriori).

6.3.4 Arti�cial neural networks

• A complete parametric study in multi-output architecture on a bigger use case
investigating the error bounds would be the next logical step. Further examination
on the interest (if any) of common rules of thumb is of use5.

• A larger data set could pose a challenge to multi-output artificial neural networks.
In such a case a “smart” regrouping (unsupervised learning process) of cross section
to be subject to to a common model could result in improved performance.

• If multi-output artificial neural networks are indeed being able to exploit common
patterns in cross section data, and especially in view of possible GPU memory
limitation in training, two promising use cases could be: pin-by-pin discretizations
and the scattering reactions of a 20 group energy scheme with several specialized
isotopes. The latter take a very large percentage of the library size, they may be
less demanding in terms of accuracy (due to their low importance), tend to be easer
to model, and the set could have a similar functionality with state-parameter which
can be exploited with a central model. Indeed how to regroup the cross section in a
convenient way for multi-output modeling is in itself an unsupervised classification
learning problem.

• A fascinating area of research, well suited for relativity complex multi-out networks,
is the study of its inner structure (why it works). In [109] by studying the response
vector to specific input patterns the coefficients of a pseudo Taylor expansion for
the networks are obtained, facilitating the examinations of its properties.

5In [117] it's recommended that the number of neuron in a feed forward network be about 2/3 of
the input variables and the totality of the outputs; the successful preliminary studies on multi-output
modeling considered far fewer neurons.
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• For the relatively small networks used in this work, second order optimization al-
gorithm that uses the Hessian matrix (Newton method) could provide an accuracy
increase without significant additional cost [100]. A Newton-saddle free optimiza-
tion algorithm able to converge faster and to exit local minima is successfully tested
with small networks in [111]. Additional learning algorithms using feed forward
artifical neural networks in engineering modeling problems can be found in [98].

• Dynamic graphs are supported by machine learning framework in Python allowing
to explore adaptive networks of changing topology during training. Target errors
could potentially be reached with the minimal degrees of freedom required and thus
maximizing library size reduction and avoiding over-fitting.

• If required, special artificial neural networks regression techniques such as dropout
[118] could be analysed.

• Though all activation functions had a similar performance for cross section modeling,
networks using spline activation function subject to training have been reported to
achieve high accuracies [119].

• Special interpolant networks exist [120] though requiring |X | neurons. Such special
systems cannot be easily extended to several output systems. A somewhat ad hoc,
but simple, experiment to improve the accuracy, was to consider two networks in
tandem, one that fits the original function and the second one than fits the residual
error. It’s the author’s opinion that other type of networks or learning algorithms
should be studied first.

• Artificial neural networks could be particularly well suited for dealing with a large
amount history-variables, not requiring them to be define in any particular structure
with regards to instantaneous state-variables. Also, artificial neural networks are a
convenient tool for capturing hidden relations such as, for example, the unexpected
dependencies of the fast diffusion coefficient with 235U concentration [22].

The nuclear engineer community as a whole could not only benefit but to contribute
as well to the growing machine learning community, characterized by the free access to
powerful frame-works and novel modeling approaches.
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Appendix A

Spline interpolation using B-splines

A.1 Piece-wise polynomial representation with B-splines

theoretical discussion

In order to assure that $K,t = Π<K,ξ,ν the continuity conditions in ~ν needs to be expressed
in the space $K,~t by an adequate construction of the knot vector ~t as defined by the Curry
and Schoenberg theorem 2. The theorem enables the construction of a basis of ΠK,~ξ,~ν by
providing the recipe for an appropriate ~t. The set of knots {tj : tj ∈ (a, b), K + 1 ≤ j ≤
n} are called interior knots.

Theorem 2 (Curry and Schoenberg theorem). For a given strictly increasing sequence
~ξ = (ξj)

l+1
1 and a non-negative integer sequence ~ν = (νj)

l
2 with νj ≤ K, ∀j, set

n = K +
l∑

j=2

(K − νj) = Kl −
l∑

j=2

νj = dim(Π<K,~ξ,~ν), (A.1)

and let ~t = (tj)
n+K
1 be the non-decreasing sequence obtained from ~ξ by the following two

requirements:

• for 2 ≤ j ≤ l the number ξj occurs exactly K − νj times in ~t.

• t1 ≤ t2 ≤ · · · ≤ tK ≤ ξ1 and ξl+1 ≤ tn+1 ≤ · · · ≤ tn+K .

then, the sequence B1,K , . . . , Bn,K of B-splines of order K and knot sequence ~t is a basis
for Π<K,~ξ,~ν considered as functions on IK,~t = [tK , tn+1], i.e.

$K,~t = Π<K,~ξ,~ν on IK,~t. (A.2)

The choice at the endpoints of the knot vector is open, but it is customary to consider

ξ1 = a = t1 = t2 = · · · = tK < tK+1 ≤ . . .

· · · ≤ tn < tn+1 = tn+2 = · · · = tK+n = b = ξl+1,
(A.3)
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which translates into ν1 = νl+1 = 0 so no continuity condition is imposed in the endpoints
ξ1 = a and ξl+1 = b.

A.2 Di�cult cross section for Spline approximation

In Fig. A.1 the cross section that exhibited the highest error in Fig. 3.4 are presented
where it can be seen that for the majority of the approximations the oscillations have
been controlled as the support increases.
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Figure A.1: Spline approximation for di�cult cross section for d = 1. Oscillation are
reduced with a support of 119 points per cross sections.

However in Fig. A.2a and Fig. A.2b the error on XXe is presented for d = 1 and d = 3
using the standard knot vector constructions. It can be noted that the solution greatly
deteriorates and no significant library reduction can be obtained with higher order splines.
An effort was made for trying to define modified knot vectors, relaxing the smoothness
conditions by increasing the multiplicity of certain knots, as to reduce oscillations and
increase the accuracy. The proposed knot vector are presented in Table A.1 and Table
A.2. The results are presented in Fig. A.2c and Fig. A.2d for XXe in d = 1. Though
some improvement are noticed the library reductions remain small. Many strategies
not presented here resulted in divergent approximations, especially for the odd-end knot
vector.
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Name Modi�cation
M1 Relaxes the smooth condition at the �rst inner k
M3 Every three inner knots the third gains multiplicity K − 2.
M4 The �rst 1/3 of the knot vector is composed of knots of multiplictiy K−2

M6
The third knot gains multiplicity K − 1 at the expense of its right and
left neighbor.

M8
The third knot gains multiplicity K − 1 at the expense of its right and
left neighbor

M9
The second knot gains multiplicity K − 1 at the expense of its right and
left neighbor

M10
The knots of the �rst 1/3 of the vector gain multiplicty K − 1 at the
expense of its right and left neighbors.

Table A.1: Modi�ed Not-a-Knot splines with di�erent smoothness conditions for the �rst
burnup values.

Name Modi�cation

M1
The �rst inner knot (position K + 1) gains multiplicity K − 1 at the
expense of the knot in the right.

M3
The second inner knot (position K + 2) gains multiplicity K − 1 at the
expense of the knot in the right.

M4
The third inner knot (position K + 3) gains multiplicity K − 1 at the
expense of the knot in the right.

M6
The �rst and third inner knot gains multiplicity K − 1 at the expense of
the knots in the right.

M10
Knots located in the �rst third of knot vector gain multiplicty K − 1 at
the expense of its right neighbor.

Table A.2: Modi�ed Splop splines with di�erent smoothness conditions for the �rst burnup
values.
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Figure A.2: Standard and modi�ed higher order spline approximation for using the using
TXe test.(a) Standard knot vector constructions exhibit a poor performance for d = 1. (b)
and (c) Modi�ed not-a-knot and Splop knot vector respectively. The modi�ed Splop vector
M1 and M6 improve signi�cantely the approximation accuracy. The not-a-knot modi�ed
vector M1 and M3 also improve the accuracy for d = 1. (d) FRE for a) Standard knot
vector constructions using the complete test set. (b) Modi�ed not-a-knot knto vector for
the complete test set. (c) Modi�ed splop knto vector for the complete test set.



Appendix B

Kernel Methods

B.1 Other kernels

In practice the kernel is defined directly implicitly generating a mapping from X to H.
A vas quantity of “standard” kernel choices are available reproducing different function
spaces. Many of them are directly included in the scikit-learn package [121]. An extensive
and detailed analysis on the characteristic of each kernel, their hyper-parameters and the
resulting approximating quality is beyond the scope of this work. However for every kernel
shown in Table B.1 a full grid support was used with an hyper parameter search for every
cross section 1. The resulting errors are presented in Fig. B.1. Though a finer analysis
on the range of interest for the hyper-parameters and maybe kernel composition would
probably have surpass mulit-linear interpolation, its interesting to note that this is not
the case for a blind use of tools “out of the box”. For each support an independent full
grid hyper parameter search is carried out for every cross section. Yet the only promising
kernel in these settings is the Chi2 kernel surpassing multi-liner for some supports.

s

B.2 High order Bernoulli kernel methods

The first order Bernoulli kernel was not used in the main part of the analysis since
its order 1 kernel did not reproduce a multi-linear space, and it actually had a higher
error. However, a similar analysis on pre-conditioning and regularization was conducted
which resulted in similar optimal values for this kernel. Cross section errors on Tflat are
presented in Fig. B.2 using the Bernoulli kernel of order 1,2 and 3 and the RIXS loss
function. Similar results to those of the spline kernel are obtained for the order 1 and 2.
An order 3 kernel does not produce further improvement.

1Using the function GridSearchCV of the scikit-learn package using a 5 fold cross-validation and an
r2 score. A regularization coe�cient λ = [1e−2, 1e−3, 1e−4, 0] following the package recommendations
for these kernel.
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Name Kernel Hyper-
parameter

InnerProduct xTy No
Sigmoid tanh(γ〈x, y〉+ c0) γ, c0

Laplacian e−γ||x−y||1 γ
Polynomial (γxTy + c)d γ, c0, d
Radial Basis Functions e−γ(||x−y||2) γ
Matern see [121] a, b
Chi2 e(−γ

∑
i[(xi−yi)2/(xi+yi)]) γ

Table B.1: Other kernels analyzed. Many use hyper-parameters which are, with their
corresponding possible values γ = [0.1, 10, 100], c0 = [0.1, 1, 10, 100], d = [2, 3, 4], a =
[0.1, 1, 10] and b = [0.5, 1.5, 2.5]. An independent full grid search is carried out for every
cross section.

B.2.1 Kernel method's coe�cient distribution and shrinking

In Fig. B.3b the coefficient are plotted ordered by the module for second order RKHS
approximation with different regularization coefficients λ. The absolute value and to
a certain extent the “slope” increases indirectly proportional to λ. In Fig. B.3a the
conditioning number in function of the library size is provided for an RKHS approximation
using the Bernoullie kernel for orders 1,2 and 3. It can be observed that preconditioning
helps but regularization is needed for the second and third order.
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Figure B.1: Cross section error with other kernels using and hyper-parameter full grid
search. Only the Chi2 exhibits a better accuracy than multi-linear for some supports.



156 APPENDIX B. KERNEL METHODS

104 105 106
10-4

10-3

10-2

10-1

100

Coefficients 

RIXS, order=2, L=1E-11, PC=sqrt
Multi-Linear
RIXS, order=3, L=1E-11, PC=sqrt
RIXS, order=1
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3. An order 3 in unable to provide further improvement in accuracy.
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Figure B.3: (a)Matrix conditioning number for the spline kernel of order 1, 2 and 3 with
di�erent regularization terms in function of the total library size for Y = 144. Very
large conditioning number can be encountered. (b) Order by absolute value coe�cient
distribution (~α) for the second order spline kernel for the Industry set (S?). Large vari-
ation from maximum to minimum values can be observed, inversely proportional to the
regularization coe�cient (λ).





Appendix C

History e�ect modeling

A review of the different techniques reported in literature to account for the history effects
in core calculations for PWR is presented [63]. This is a somewhat separate work that
required a different calculation scheme and is thus presented in its totality as a separate
Annex. With respect to the nomenclature developed in Section 1.3.5 its important to
note that σ(~x) = σ(x1, . . . , xd) = σ(xh,1, . . . , xh,n;xb,1, . . . , xb,m) = σ(Bu,~ι, ~θ) being the
instantaneous state-variables ~ι = xb,1, . . . , xb,m and the history variables ~θ = xh,1, . . . , xh,n.
Another nomenclature related point to make is that in Section 2.2.1 a single depletion
history was used for provide branch calculation on instantaneous state-variables (fuel
temperature and boron concentration) while in this annex the process is different. Cal-
culations in different state-variables throughout the fuel evolution (marked with a B) are
considered but without branch calculations. The nominal fuel evolution is BN and other,
independent fuel evolution with control rods (Bc1, Bc2), moderator density (BI , BO) or
fuel temperature (Bf ) are carried out.

C.1 History e�ects phenomena

The few-group cross section data depends on the weighting neutron spectrum used at
condensation and homogenization. In turn, this spectrum follows from the isotopic content
resulting from previous depletion conditions. Hence, the inter-dependence of the spectrum
and of the local concentrations at these given conditions defines a depletion history.

Whenever temporary deviations from the nominal conditions are noticed along the real
exposure observed in the nodes of the core calculations, local spectra gets farer from those
assumed a-priori at cross section preparation and the predicted homogenized cross sec-
tions may not be sufficiently accurate. Exposure under different spectral conditions yields
inevitably different nuclide contents and homogenizing spectra, thus causing a “history
effect” or spectrum-induced error on the homogenized cross sections from lattice calcula-
tions.

159



160 APPENDIX C. HISTORY EFFECT MODELING

This phenomenon is of particular importance in BWR1 reactor analysis due to the
severe change of the void fraction along the core’s height and permanently controlled
fuel assemblies in the bottom region. For instance, in the NEXUS package developed at
Westinghouse three different depletion histories are usually considered [122] while some
advanced BWR designs show up to four [123].

On the contrary, a single nominal history is usually chosen with PWRs, where branch
calculations are motivated by relatively short insertion periods of control elements during
power operation. Effects due to history phenomena are usually considered as second order
terms in PWR analysis, and this is certainly true for short deviations in time from nominal
conditions.

Nonetheless, the need of load following capabilities has called for more controlled core
patterns in PWRs, especially in France where the electrical power production is largely
coming from nuclear power plants. In addition, it is possible to notice as a general
trend in the design of new PWR units, like the EPR from AREVA [124] or the AP1000
from Westinghouse [125], enhanced control by gray banks permanently inserted or with
prolonged insertion, with the goal of reducing the operational costs of the chemical shim.
Moreover, innovative boron-free Small Modular Reactors envision control rods as a central
feature for reactivity control at normal operation [126, 127, 128], motivating further the
reason of this work.

The presence of control elements in the assemblies hardens the neutron spectrum
because of increased absorption in the thermal range and decreased efficiency in the
neutron slowing down rate. The strength of the control bank in the neutron absorption
is indicated as gray or black. The first means only stainless steel in the rod cluster, while
rods made of boron carbide (B4C) are also used for the second. Safety issues could arise
such as an unexpected positive reactivity excess after the extraction of a bank inserted for
a long period of time, because of a mistaken condensation by a softer spectrum and for
a higher amount of fissile material in the reactor with respect to the computed amount.
Unfortunately, this kind of situations are rather frequent in real calculations, and they
can be source of major error in a few extreme cases as shown by Tomatis et al. [62].

A similar process takes place with the enthalpy increase of the coolant along the fuel
element’s channels resulting in different moderating conditions for neutrons. Although
higher temperature promotes the scattering with hydrogen bound in water, the reduction
of the moderator density decreases the neutron slowing-down rate. Spectrum hardening
is expected towards the core outlet, and enhanced thermalization at inlet.

Different zones in the core, exposed to different power levels, can then undergo different
spectral histories. This requires the introduction of the history parameters, in addition
to the customary instantaneous ones.

1A Boiling Water Reactor (BWR) is the second most common type of electricity generating NPP.
With a bigger vessel, designed for a lower pressure than the PWR, the water in the primary circuit is
turned directly into steam driving an integrated steam turbine. A signi�cant axial asymmetry in the
moderator density results from this design which is somewhat o�set by using control rods inserted from
below the core in normal reactor operation.
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C.2 History parameters

In standard cross section preparation the isotopic changes along fuel exposure are repre-
sented by the burnup (Bu), which can be considered as a first history parameter. The
most probable physical conditions of exposure in the reactor define the nominal depletion
history (BN) and the state parameters are introduced to model a departure from such
conditions.

Provided linear independence of all the parameters in the model, the general function-
alization of the cross section is σ(Bu,~ι, ~θ), where~ι = (ι1, . . . , ιd) represents d instantaneous
state parameters and ~θ = (θ1, . . . , θh) features the set of h history parameters. The depen-
dence on the first parameters is reproduced by branch calculations, while new depletion
histories are used for the second ones. These last histories are called “off-nominal” in this
work. A Cartesian grid is then constructed with all these calculation points provided that
branch calculations are performed on all off-nominal calculations.

Of course, the selection of the supporting depletion calculations is driven by feasibility
reasons according to the available computational resources. For instance, the size of the
data libraries for core calculations is estimated in the order of several gigabytes, and even
if computing a lattice calculation point is in the order of a few tenths of seconds, the
library production time may become promptly prohibitive for the industrial work-frame.
In the previous generation of core calculations few particularized isotopes (I << 10)
were used and history parameters were a needful requirement for realistic simulations.
Denser depletion chains in core calculations have mitigated the history effects, moving
the attention on the pin power distributions. Indeed non-conservative errors in the power
form factors are reported in [23] and the use of history parameters was proposed in [129]
to reduce them.

In an early work [130] the moderator history was used for computing empirical cor-
rective terms stored in look-up tables. It is defined as a burnup-averaged quantity of the
instantaneous moderator density δ:

MH =
1

Bu

∫ Bu

0

δ(Bu′)dBu′. (C.1)

Later, in the code POLCA [131], cross sections calculated at hot full power (HFP)
condition were corrected, with additive terms presenting a quadratic dependence with the
MH. Nowadays, many industrial code simulators take into account history parameters, like
SIMULATE-4 [132] or ARCADIA-BWR [23]. However, when several history parameters
are considered, a large number of additional depletion histories is required. This occurs
with the code NECP [44] that accounts for the control rod and fuel temperature history
for a total of 30 additional depletion calculations.

According to the available literature, a single history parameter was considered in
PWR modeling. A common assumption asserts that changes in the cross sections induced
by spectral variations can be considered as independent of its causing phenomenon [133].
The spectral history SH [134, 135] is defined as:
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SH =
1

Bu

∫ Bu

0

SI(Bu′)
SIN(Bu′)

dBu′, (C.2)

with the ratio between the actual spectral index (SI) and the one from the nominal
calculation here indicated by the subscript N . The spectral index in the two-group model
is the ratio of the fast flux φ1 over the thermal flux φ2 (cut-off energy at 0.625 eV):

SI = φ1/φ2. (C.3)

Although other definitions of the SI are noticed in literature [136, 137], they are
not considered in this work in virtue of the simpler and standard definition above. For
example, the code NEREUS [135] is reported to add a quadratic correction of the kind∑2

i=0 ai(Bu)(SH− 1)i to the macroscopic cross sections.

Despite the spectral index is here considered as an instantaneous parameter, the code
PHOENIX/ANC used the SI evaluated at HFP and hot zero power (HZP) for correcting
microscopic cross sections with a second order polynomial, whose coefficients came by
ordinary least square regression. This correction was applied only to the fission and
to the absorption thermal cross sections of 235U and 239Pu [138]. The model was later
enhanced to correct also the fast group data [139], as reported in the code package NEXUS
by Westinghouse dedicated to LWR simulation [140].

In [141] relative differences in the concentration of the 239Pu are considered, here
simply noted with the chemical symbol and the mass number, as a reliable indicator of
the spectral history in the fuel. Changes in the homogenized cross sections affected by
the history were found to be proportional to the square root of 239Pu so a new history
parameter was proposed with the following linearization [142]:

P =
√

239Pu. (C.4)

In the same work, it is explicitly stated as underling hypothesis that correlations in
the change of the isotopic content causing the history effect can be modeled with a unique
history parameter. This method was implemented in the code DYN3D [143].

The SCIENCE code package by Framatome uses the ratio between the concentrations
of all plutonium isotopes (Pu) and 238U to recover the history [144], i.e.

PU = Pu/238U. (C.5)

A new irradiation history with a different moderator density provides the additional
off-nominal calculation for the parameterization. This interesting feature is retained in
this work for the implementation of the different methodologies under study.

Several authors suggest a unique linear correction term [133, 130, 141, 43] for the
history effect. In general, this can be formalized through first order Taylor expansions
around the history parameter evaluated on the nominal depletion history, i.e. σN =
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σ(Bu,~ι, θN(Bu)). For every isotope, reaction, energy group and homogenization region it
is:

σ(Bu,~ι, θ) ' σ̂ = σN

[
1 +

θN
σN

∂σ

∂θ

∣∣∣∣
θ=θN

( θ

θN
− 1
)]
. (C.6)

The history parameter θ results from the actual node’s state in the core calculation,
while the value of θN from the nominal depletion history must also be determined online
within the core calculations. The derivative is approximated by finite differences requir-
ing the additional “off-nominal” calculations at different depletion conditions. Although
Equation C.6 holds for any ~ι, the derivative term is assumed as weakly dependent on ~ι
itself, so it is here evaluated at a given ~̂ι as:

∂σ

∂θ

∣∣∣∣
θ=θN

' ∂σ

∂θ

∣∣∣∣
θ=θN ,~ι=~̂ι

' σoff (Bu,~̂ι, θoff (Bu))− σN(Bu,~̂ι, θN(Bu))

θoff − θN
. (C.7)

This allows a reduction in the number of lattice calculations and also in the storage
requirements. Considering ~̂ι at the nominal state permits the evaluation at the most
probable conditions of operations but requires an additional branch calculation on the
supporting off-nominal history. This can be avoided by evaluating the derivative at the
off-nominal condition. Of course, the same ~̂ι is used in Equation C.7 for the cross sections
in order to capture only the target history effect. Lastly, σN is customarily reconstructed
in the core calculation by interpolation on ~ι and Bu.

C.3 Use cases for numerical tests

The irradiation histories calculated by the lattice code are denoted by the character B in
Table C.1, with the subscripts indicating the different depletion conditions. These histo-
ries are reproduce by the curves (Bu, ιB(Bu), θB(Bu)). Indeed, they allow to reproduce
the behavior of the core’s node delivering the actual θ values for Equation C.6 and the
isotopes concentrations for Equation 2.10. BN , BI and BO are respectively the irradiation
histories at nominal, inlet and outlet conditions. Branch calculations are executed only
on these depletion histories for computing the derivatives and to implement the method-
ologies. Bf presents a case with high temperature in the fuel, a challenging condition for
spectral history modeling [136].

Gray control rods made of stainless steel AISI316L with a density of 7.8481 g/cm3

and suited for reactor control by prolonged insertion, are used in the first cycle for Bc1
and in the second cycle for Bc2. Their specification is presented in table C.2. They are
characterized by a inner radius of 0.18840 cm and outer radius of 0.43130 cm.

An overview of the departure of the history parameters from the nominal case is
presented in Figure C.1. The plotted relative values allow easily to determine the term
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Description
Tf δM CR-IP
[◦C] [g/cm3] [GWd/t]

BN Nominal condition 600 0.72 Out
BI Inlet condition 600 0.75 Out
BO Outlet condition 600 0.66 Out
Bf High fuel temperature 1200 0.72 Out
Bc1 CR in the 1st cycle 600 0.72 In [0,15]
Bc2 CR in the 2nd cycle 600 0.72 In [15,30]

Table C.1: Depletion histories considered to reproduce the history e�ects and to test the
methodologies proposed in the literature. The insertion period of the control rods (CR-
IP) is given in burnup units. Tf is the average fuel temperature in the pellets and δM is
the density of the cooling water.

Isotope Concentration [1/barn/cm]
natFe 5.5366×E−02

natCr 1.5452×E−02

natNi 9.6629×E−03

natMo 1.2317×E−03

55Mn 1.7206×E−03

natSi 1.6827×E−03

natC 3.1505×E−04

Table C.2: Material composition of the AISI316L control rods. The superscript �nat�
denotes chemical elements with the natural isotopic abundances, see [145].

(θ/θN−1) of Equation C.6 and to show the variation among the history parameters for the
different depletion histories. All off-nominal cases provide reference cross section values
at distinct depletion conditions for benchmarking the physical accuracy.

The spectrum hardening, noticed at the outlet condition with a 15% increment of
the SI, promotes the production of 239Pu by an increasing capture rate of 238U due to
epithermal resonances. All cases show θB > θN but the inlet BI , which is the only depletion
curve that exhibits a decrease in the Pu concentration caused by a softer spectrum. The
monotonic behavior of the SI within the fuel cycles results from the hardening of the
neutron spectrum with exposure since the fissile material in the fuel is depleted at a
constant power level. When the movement of the control rod changes the configuration
of the assembly, the SI shows discontinuity because of the high reactivity worth of the
isotopes in the control rods. Instead the SH always responds in a continuous way due to
its integral definition. After the control rod is withdrawn, the history parameters tend
towards their nominal values.

C.4 Implementation

As defined in Equation C.6, off-nominal calculations are needed to use a new param-
eterization on θ and for the evaluation of the derivative in Equation C.7. The same
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Figure C.1: Ratio of the history parameters P, SH, SI for the di�erent use cases over the
nominal case.

Equation C.6 is specifically introduced in this work to have a common basis to compare
the performances of the different methodologies under reviewing and to offer a unique
implementation. The possibilities to implement the methods considered in this work are
presented in Table C.3 and tested with the use cases defined in Table C.1.

Method History parameter (θ)
O�-nominal Instantaneous
history (θoff ) parameter (~̂ι)

P1

(C.4)

BI BI
P2 BN
P3

BO

BO
P4 BN
PU (C.5)

BOSI (C.3)
SH (C.2)
MH (C.1)

Table C.3: Description of the history e�ect parameterization; Numbers in the second
column refer to the equations used to de�ne the given history parameter, whereas the
depletion histories whose parameters belong to are indicated in the others.

Since the most of the cases show history effects similar to those caused by spectrum
hardening at the core outlet, we choose BO as the off-nominal depletion history to imple-
ment the different methodologies from Section C.2. All the combinations of θoff and ~̂ι are
considered only with the parameter P. As well, in the PU method the sum is performed
over all available plutonium isotopes from I, see Equation 2.1. The methods P1, P2, P3,
P4 are here indicated by P*, and when also considering PU they are referred to as “the
Pu methods”, while those based on SI and SH are called “the spectral methods”.
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Figure C.2: Scheme of the history parameterization.

When performing statistical analysis only points where the history effect has taken
place are considered so the first cycle of Bc2 is excluded, and points with 0 exposure for
all the cases. For uncorrected, P1, P2 and P4 all the use cases are considered. For P3,
PU, SH, SI all cases except BO are considered. For MH only BI is considered.

Figure C.2 illustrates briefly how the corrections are computed. The coefficients S =
(θN/σN)(∆σ/∆θ) are determined by σN and σoff evaluated at ~̂ι by means of branch
calculations for different values of the fuel assembly burnup. They are then stored on
data libraries for subsequent core calculations, where the cross section σN corrected by S
will provide σ̂, i.e. an approximation of the target value σ (in green). These coefficients
become part of the process of the cross section preparation and they must be stored in
the few-group cross section library.

The history coefficients of a few important isotopes are presented in Figure C.3 as
an example. The importance of an isotope is here estimated simply as the fraction of
macroscopic cross sections as (Ciσi,r,g)/Σr,g where Ci is the nuclide concentration of the
isotope i. The isotopes shown in Figure C.3 are those that demonstrate higher importance
for the most of the whole exposure length. Although other definitions focusing on the
isotope importance for the neutron reactivity are available from perturbation theory, this
choice allows for fast classifications when analyzing the results. The absolute values of
the coefficients start at zero, since no history effect has taken place yet, to then smoothly
increase with the burnup. In general if θoff > θN , negative values can be seen as a harder
spectrum lowers the overall chance of neutron capture in the thermal energy range, i.e.
σO < σN and contrarily σI > σN . If θoff < θN , like with the method MH, the coefficients
are usually positive. Neutron up-scattering increases with a harder spectrum whereas
down-scattering decreases.

The weak dependence of the coefficients on ~̂ι is shown in Figure C.4 for the coefficient
of σa,1 of the isotope 240Pu, in fact negligible differences can be observed between P1 and
P2 and between P3 and P4. This allows to avoid additional branch calculations on the
off-nominal depletion calculation (here BI or BO) to homogenize new cross sections at
the nominal condition ~̂ιN . The observations about the 240Pu are a general trend for all
other isotopes. On the other hand, a significant difference of up to 25% can be noticed
by changing θoff from inlet to outlet, like from P1 to P3 for instance. This indicates
possible non linearity and relevance of the higher order terms in the Taylor expansion,
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Figure C.3: History coe�cients of the most important isotopes. σa and νσf identify the
values of both the fast and the thermal groups. The legend in the plot of 235U is common
to the other �gures.

here disregarded to comply with the methods from the literature. Smaller absolute values
for the SI and for the SH coefficients are observed with respect to the Pu methods.
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Figure C.4: History coe�cients of σa,1 of 240Pu for the history parameters.

C.5 Results

The performance of the methods to predict accurate microscopic and macroscopic cross
sections (σ and Σ), still homogenized in the fuel assembly quarter and condensed in the
two group energy mesh, is studied in this section. The multiplication factor and the fun-
damental flux calculated by the associated eigenvalue problem in the infinite homogeneous
medium are also analyzed.

C.5.1 Analysis of the microscopic cross sections

The relative error of the microscopic cross sections for each isotope, reaction and energy
group is defined as:

εσ,B,θ(Bu) = σ̂/σB − 1. (C.8)

σ̂ comes from Equation C.6 while σB is calculated on the depletion history B. Although
both cross sections are evaluated over the curve (Bu,~ιB(Bu), θB(Bu)) the isotopic in-
ventories of the corresponding calculations reproducing them by homogenization differ.
Branch calculations are performed at ~ιB(Bu) thus avoiding the need of any interpolation
to determine σN and the introduction of other source of error. Relative errors permit to
account for every σ regardless of the variations in their absolute values.

Illustrative examples of the history effects are presented in Figure C.5 for the thermal
fission production cross section of 235U, νσf,2. For instance in Bc1, a maximum error of
8 barn, about 1.35%, is achieved at the end of the first cycle for the uncorrected cross
section (σN in light blue). This error is often reduced when considering the corrections
of the history parameters, that is approaching the green curves of the reference target
values. After the withdrawal of the control rod at 15 GWd/t in Bc1 and at 30 GWd/t in
Bc2, the SI exhibits a prompt response underestimating the intended correction, while the
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SH shows a delayed response typical of its integral character. The Pu method provides
better correction here with this fissile isotope.
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Figure C.5: Microscopic cross section νσf,2 of 235U along the burnup with di�erent use
cases.

A simple arithmetic average of the absolute error is proposed in the following to assess
a global overview of the behavior of the error:

εB,θ(Bu) =

∑I
i=1

∑
r

∑
g |εσi,r,g |

M
, (C.9)

where I is inferred from Equation 2.1, and the sum on the reactions and energy groups is
taken on the elements of the set {νσf,1, νσf,2, σa,1, σa,2, σ1→2, σ2→1}. M is the total number
of terms in the sum. These averages provide a global trend, without any quantification of
the error on the neutron reactivity, treated further on. They are available for all cases B
and history parameters θ. The in-scattering cross sections are disregarded in this study,
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because they can be removed from the neutron balance equation. Figures C.6 show the
averages ε in the two cases Bc1 and Bc2.
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Figure C.6: Burnup-dependent average errors of all the microscopic cross sections for all
history parameters.

The uncorrected error shows a monotonic behavior in the different cycles, with a
negative trend after rod withdrawal. Maximum values around 1% are detected at the end
of the insertion periods. General improvement is observed with the history parameters
but for the SI, which overshoots its correction. As already mentioned above, the presence
of strong neutron absorbers in the control rods has a considerable influence on the SI,
and consequently also on the difference (SI/SIN − 1) in Equation C.6. In the first cycle
of Bc1, the module of its history coefficient varies smoothly with the burnup, see Figure
C.3, and so it does accordingly the average error on all the microscopic cross sections.
After the control rods are withdrawn, SI/SIN gets closer to 1 since the isotopic contents,
produced under different depletion conditions, have a negligible impact on the neutron
spectrum in the assembly and εBc1,SI follows the profile of εBc1,N. At the beginning of the
second cycle in Bc2 the severe jump of the SI, together with non-zero history coefficients,
leads to un-physical σ̂, even if no history effect has occurred yet. Bc2 seems slightly more
challenging than Bc1 for the higher errors noticed. Besides, hidden compensation effects
could be quite relevant by considering also the greater coefficients S and ratios θ/θN
computed in the second cycle range. The method PU shows the best results by reducing
the error below 0.1%, outperforming the other P* methods.

Burnup-averaged errors offer quick comparisons to compare the performances of the
methods in the use cases. They are defined hereafter within the generic interval (Bu1, Bu2)
as:

ε̄B,θ =
1

∆Bu

∫ Bu2

Bu1

|εB,θ(Bu)|dBu′, (C.10)

and presented in Figure C.7 on the complete exposure interval ([0,45] GWd/t) for BI , BO,
Bf , and separated per cycle for the other cases.
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Figure C.7: Burnup-averaged error with all the history parameters and for the given use
cases.

A reduction of one order of magnitude in the error is observed with all methods when
testing against BI and BO. This fact is expected indeed, because these cases are used
as off-nominal calculations to compute the history coefficients. Of course, when a case is
used for the implementation of the correction method, then it is automatically neglected
for the tests.

Since inlet conditions are closer to BN , the uncorrected average error is smaller. No
significant change with different off-nominal calculations or history parameters can be
seen for both BI and BO. The best performance is achieved with these cases as expected,
since they were used to compute the history coefficients.

For Bf a reduction in the error can also be seen, though as noted in literature [136],
the spectral methods exhibit poorer performances by reducing the error from 0.8% to
about 0.6%. A possible explanation could be in view of the depletion condition, for a
broadening of the resonances caused by the Doppler effect, that has a direct consequence
on the 239Pu build-up with exposure. As the spectral characteristics of the system are
dominated by the moderator, that remains unaltered, spectral-derived history parameter
may be inadequate for this case just as it was after the control rod removal, presented in
Figure C.6a. For example in Figure C.1, it can be observed that the parameter P in Bf
is higher than in BO, whilst the contrary is true for the SI indicating a possible failure of
this methodology in reproducing the off-nominal condition. This applied to the SH too,
which is derived from the SI.

About BI , BO and Bf the depletion conditions are constant and the cross section error
increases linearly with burnup. This means that ε̄B,θ is quite representative of the slope
of εB,θ(Bu). As the spectral conditions of the depletion histories are closer to BO than to
BI , a marginal gain can indeed be seen with P3 or P4 in comparison to P1 or P2. On
the other hand, considering different ~̂ι (P1 versus P2 or P3 versus P4) does not improve
further the error reduction.
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Finally Equation C.8 is analyzed with the standard deviation (SD), the mean and the
maximum error of all the cross sections by considering all the reference cases detailed in
Section C.4. In Figure C.8, the error distribution for the microscopic cross sections is
presented for σN and σ̂ with PU and in Table C.4 for all the methods.
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Figure C.8: Distribution of microscopic cross section error (bins of 0.25%).

MEAN(εσ,B,θ(Bu)) SD MAX(|εσ,B,θ(Bu)|)
N −0.06 0.8934 4.41
P1 <0.01 0.1984 2.98
P2 <0.01 0.2022 3.00
P3 <0.01 0.1635 2.31
P4 <0.01 0.1389 2.27
PU −0.01 0.0878 1.79
SH −0.03 0.4688 2.96
SI −0.04 0.5755 2.40
MH −0.01 0.0653 0.45

Table C.4: Standard deviation, mean and maximum error of εσ,B,θ(Bu) in %.

A reduction of 90% in the SD is achieved with the PU method followed by P4, P3
with 83% and then P1 and P2 with 77%. The SH presents a reduction of 47% followed
by 34%. A similar trend is found for the maximum error. Uncorrected cross sections do
not present any bias, as well as the ones corrected with the history parameters.

C.5.2 Analysis of the macroscopic cross sections

The input of the nodal equations are macroscopic cross section that define with the flux
the reaction rates dictating the state of the core and the fuel evolution. A similar error
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definition to Equation C.8 is here considered:

εΣ,B,θ(Bu) = Σ̂/ΣB − 1. (C.11)

Macroscopic cross sections Σ̂ and ΣB are computed respectively from σ̂ and σB by
Equation 2.10 using the reference concentrations from the case B for both of them. Con-
sequently εΣ,B,θ relates exclusively to spectrum induced errors, unlike other works where,
due to the cross section representation model, nominal concentrations were used for Σ̂,
emphasizing more the history effect [146].

In Figure C.9, the burnup-averaged of the relative error in Equation C.11:

ε̄Σ,B,θ =
1

∆Bu

∫ Bu2

Bu1

|εΣ,B,θ(Bu)|dBu′, (C.12)

is presented for Bc1 (with integration per cycle).
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Figure C.9: ε̄Σ,B,θ error for Bc1.

A reduction in the error can be seen for every cross section, in particular for the
up-scattering Σ2→1, where the uncorrected error of 1.21% (outside chart) is reduced to
about 0.1%. The error of the absorption and of the fission cross section is roughly 0.05%,
regardless of the size of the uncorrected error in the thermal group in the first cycle. In
the second cycle instead, the history parameterization continues to reduce the error albeit
to a lesser extent. As previously explained, the SI can not improve the results after the
control rod withdrawal. In the third cycle of Bc1 and Bf , BI and BO similar reductions in
ε̄Σ,B,θ are observed.

The error ε̄Σ,B,θ is presented in Figure C.10 for the second and for third cycle of Bc2.
Bad results are observed for the fast cross sections Σa,1, νΣf,1 and Σ1→2. This is addressed
in Section C.5.2. The PU methods significantly outperforms the P* methods especially
in these cases, as already noted in Figure C.5.1. The instantaneous behavior of the SI
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explained for Figure C.6 compromises the correction capabilities in both the first and
second cycle. Here again a marginal gain can be seen for P3 and P4 in comparison to P1
and P2.
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Figure C.10: ε̄Σ,B,θ in Bc2.

Investigation of the poor performances in Bc2

The methodologies examined so far could not provide satisfactory corrections with the case
Bc2, which presents the all-rods-in configuration of the assembly all along the second cycle.
Varying depletion conditions along the fuel irradiation were noted as very challenging for
the modeling of the history effects [146]. In this section, we investigate the causes of the
bad performances noticed with the tested parameterizations.

A cumulative error introduced hereafter is used to spot the major contribution to the
missed corrections:

εj,Σ,B,θ =

∑Ij
i=1(σi,B − σ̂i)Ci

ΣB
, (C.13)

with the concentration Ci of the isotope i, 1 ≤ i ≤ Ij and 1 ≤ j ≤ I. Ij corresponds
to the set of j isotopes Ij ⊆ II , being for instance I1 = {238U}, I2 = {238U, 235U}, . . . ,
until finding the full error on the macroscopic cross section ΣB with II . This criterion is
affected by the compensation of errors with different sign coming from successive isotopes.
Hence the j-th contribution is to be compared with the (j−1)-th to discriminate the major
contributor. The type of cross section with the highest error is the fast neutron absorption,
and specifically the one of 240Pu overshoots the expected correction, see Figure C.11. This
behavior is observed with all history parameters, as illustrated in Figure C.12, where the
errors of this cross section averaged within the second cycle are divided by the original
errors obtained by the uncorrected σN . Values smaller than 1 indicate an improvement
with the applied correction, and bad prediction otherwise. Both figures sort the values by
isotope according to their importance on the macroscopic cross sections (values indicated
in parentheses).
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Figure C.11: Cumulative error of the macroscopic cross sections in the fast group at 22.5
GWd/t (half of the 2-nd cycle).

About the fission production cross section, the error is mainly determined by 235U. We
also noticed wrong predictions of the up-scattering cross section due to the contribution
of the residual mixture, that is Σ2→1 ≈ Σ2→1,res. Thermal cross sections were correctly
reproduced instead. The methods SH and PU provide the better results. In particular,
the slow response in burnup of the SH limits the entity of the unwanted correction.

The control rod insertion in already irradiated fuel induces history effects that be-
come similar to those noticed in BI at the beginning of the cycle, see Figure C.14. BI has
certainly a more thermal neutron spectrum. The same trend is observed on the concen-
tration and on σa,1 of 240Pu. The corrections estimated by all methods rely on a supposed
spectrum hardening in time, that does not occur at the assumed rate. The 240Pu history
coefficient is negative (see Figure C.4) and θc2 > θN (see Figure C.1), thus yielding a
correction in the wrong direction for σa,1.

Figure C.12: Ratio of the corrected and uncorrected microscopic absorption cross sections
in the fast group; the errors are burnup-averaged in the second cycle of Bc2.
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C.6 Concentrations of important isotopes

In Fig. C.13 the concentration of some important isotopes are presented for the reference
case Bc2 together with BN , BI and BO. A non monotonic behavior can be seen in the con-
centration of 240Pu that up to 18 GWd/t actually diminishes towards inlet concentration
(with a hardening spectrum), only to start increasing after 24 GWd/t.
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Figure C.13: Concentration of important isotopes.

The concentration of 240Pu results from the balance equation

d240Pu
dt

= P −D, (C.14)

with the production rate P = (
∑2

g=1 σ239Pu,g,cφg)C239Pu and the destruction rate D =
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Figure C.14: (a) σa,1 of 240Pu in the 2-nd cycle of Bc2. Concentrations of important
isotopes for the reference cases Bc2, BN , BI , BO. (b) Net production rate for 240Pu when
inserting control rods in BN ,Bc1 and Bc2.

(
∑2

g=1 σ240Pu,g,aφg) C240Pu. These are plotted in Figure C.14b for the cases BN , Bc1,
Bc2 were indeed a reduction in the overall production rate can be seen when inserting the
control rods for Bc2. This is contrary to what is observed for Bc1 in the first cycle. For both
Bc1 and Bc2 the production term P starts to increase when the spectrum hardens due to
the increase in the 239Pu concentration. However, the destruction term D instantaneously
grows as well when the control rod is inserted in the second cycle of Bc2. This is not the
case for Bc1 as no 240Pu is yet present at BOC for the UO2 fuel.

A single history parameter may not be enough to reproduce the history of Bc2. More
independent variables may be necessary for the intended corrections. Also, in [142] it’s
suggested that, a big module of the coefficient, like for 240Pu, is a marker of high sensitivity
of the cross section to the changes in the concentration of the isotope, and this could
demand for the use of non-linear functions.

C.6.1 Analysis of the in�nite multiplication factor

Hereafter, we examine the performances of the different history models by comparing
the eigen-pairs of the eigenvalue problems obtained with the corrected cross sections and
without any leakage model. The reference values are produced by the cross sections
calculated by the lattice code on the curves B. The same nuclide concentrations coming
from these curves are used to build the macroscopic cross sections with the corrected
microscopic cross sections. The relative errors of the two integral parameters are computed
as:

εSI,B,θ(Bu) = ŜI/SIB − 1, (C.15a)
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εk∞,B,θ(Bu) = k̂/k∞,B − 1. (C.15b)

The Figures C.15 plots the evolution of εk∞ in Bf , Bc1 and Bc2, together with the
neutron reactivity along the burnup. About the cases Bc1 and Bc2, the corrections achieve
a good reduction of εk∞ in the insertion periods. But they can not reproduce correctly the
assembly reactivity after the insertion, suggesting a change in the correction methodology
at control rod withdrawal by using the SI. The trend observed in BI and BO is very similar
to Bf . Again, the spectral methods are less effective with the applied corrections.

0 10 20 30 40

Burnup [GWd/t]
-20

0

20

40

60

80

100

120

ε k
[p

cm
]

N
P1
P2
P3

P4
PU
SH
SI

(a) Bf

0 10 20 30 40

Burnup [GWd/t]
-10

-5

0

5

10

15

20

25

ρ
N

[%
]

-5

-4

-3

-2

-1

-0

1

2

ρ
B
−
ρ
N

[%
]

Bf
Bc1

BI

BN
Bc2
BO

(b) ρN shown in the left axis and ρB − ρN to
the right.

0 10 20 30 40

Burnup [GWd/t]
-80

-60

-40

-20

0

20

40

60

ε k
[p

cm
]

N
P1
P2
P3

P4
PU
SH
SI

(c) Bc1

0 10 20 30 40

Burnup [GWd/t]
-60

-40

-20

0

20

40

60

80

100

120

140

ε k
[p

cm
]

N
P1
P2
P3
P4
PU
SH
SI

(d) Bc2

Figure C.15: εk∞ with the di�erent correction methods, with the neutron reactivity of all
use cases (top left).

We remind that the possible improvements observed in the macroscopic cross sections
may bring higher error in the fundamental eigen-pair at the end because of systematic
error compensation. However, the differences in the original uncorrected reactivities are



C.7. CONCLUSION 179

rather small compared to those arising in the core calculations, due to the uncertainty
related to the physical core state and to the nuclide concentrations.

The standard deviation, the mean and the maximum absolute error of εk∞ are pre-
sented in Table C.5 for all the history parameters. The statistics take into account the
values from all the available cases from Section C.4. The Pu methods manage on average
to get better results. The method MH is only tested against BI , for lack of cases with a
different moderator density during depletion; at least in this test case, it performs rea-
sonably well. The distribution of these errors are also shown in the Figures C.16, where
only the method PU is reported, being the most successful. The components from the
separate cases appear with different colors in the columns of the histograms.

εk εSI
MEAN SD MAX MEAN SD MAX

N 27 39 132 -0.017 0.062 0.217
P1 2 20 57 -0.014 0.048 0.138
P2 -0 20 48 -0.010 0.048 0.151
P3 -10 21 59 -0.027 0.052 0.129
P4 -5 19 54 -0.028 0.049 0.134
PU -7 23 61 -0.028 0.048 0.134
SH 6 40 98 -0.025 0.050 0.153
SI 10 31 84 -0.026 0.053 0.141
MH 8 6 20 0.002 0.001 0.006

Table C.5: Standard deviation (SD), mean and maximum absolute error (MAX) of εk∞
in pcm and of εSI in %.

The reduction in the standard deviation is strongly driven by the reference cases BI
and Bf . The missed corrections after the rods withdrawal in Bc1 and Bc2 are the main
cause for the high tail in Figure C.6.1, with errors of about -50 pcm in k̂∞ .

C.7 Conclusion

This work discussed a few relevant history effects in PWR analysis caused by the approx-
imations of the standard cross section preparation. These effects arise in core calculations
whenever the fuel assemblies are burning for prolonged periods in time at different expo-
sure conditions other than the ones used by the lattice code in burnup calculations. In
fact, the traditional cross section preparation is generally reproducing the behavior of the
fuel at normal operation on base power load, allowing only short variations in time of the
core state. Recent design of PWR units and boron-free SMRs largely employs protracted
mechanical shim to control and operate the reactor, thus incurring in possible issues with
the modeling of the history effects.

Indeed, this constitutes a well-known problem since the beginning of the development
of light water reactor technology, thus motivating the literature review which is at the
base of this article. This review suggests possible resolutions by increasing the number of
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Figure C.16: Histograms of εk∞ and εSI (uncorrected pro�le in dotted line); bins of 10
pcm and 0.025% respectively.

specialized isotopes in the reduced depletion chains, and the introduction of various models
to correct the homogenized cross sections directly online during the core calculation.
These methodologies are here reviewed and tested with a set of depletion histories of
topical interest on a typical UO2 17 × 17 fuel assembly, whose data specifications follow
from the “Burn-up Credit Criticality Benchmark”.

Although some methods came originally with empirical formulae, we propose here a
common expression justified by a first order Taylor expansion which offer also a common
background for their implementation and discussion. A comparison of the Taylor coeffi-
cients for the first derivative approximated at the core inlet and outlet seems indicating
possible non-linear behaviors, likely recoverable by higher order terms in the expansion.
On the other hand, a weak dependence on the instantaneous parameters of the history
coefficients is noted, thence allowing to avoid additional branch calculations on the off-
nominal burnup calculations. This interesting outcome limits the implementation effort
in the existing schemes of cross section preparation based on lookup tables.
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We used a representative list of isotopes in our reduced depletion chain to cover the
majority of core applications with the current standards in industry. The list is fine enough
to yield small errors in the neutron reactivity and in the spectral index of the fundamental
flux calculated with the two group cross sections, which are spatially homogenized in the
fuel assembly quarter. The reference nuclide concentrations were used in all tests in order
to restrain the source of error to the only microscopic cross sections. Furthermore, all cross
sections requested at the given instantaneous state parameters were produced by lattice
calculations, without making any approximation by the common data interpolation. The
errors noticed in our tests must then be considered as a lower bound for the real error in
core calculations, due to the additional differences arising in the nuclide inventory along
exposure.

Of course, the use of history parameters and of the number of isotopes in the simpli-
fied depletion chains must comply with the computational constraints in time of reactor
calculations. More state parameters or specialized nuclides imply a longer cross section
preparation by lattice calculations and larger reactor data-libraries, as well as more ex-
pensive data interpolation for the multi-physics core calculations.

About the microscopic cross sections, a general reduction of the error is observed with
all the history parameters, but in the use case Bc2. In this case all methods failed with the
fast absorption cross section of 240Pu. This outcome is not noticed in Bc1 suggesting that
a dedicated off-nominal calculation should be used to reproduce the physics of plutonium
during protracted insertion periods in spent fuel with relevant amount of 240Pu.

About the history parameterization, the Pu methods performed better than the spec-
tral methods, with the PU method showing the best results in all test cases. In particular,
the spectral methods did not provide any benefit with the case Bf . The SH avoids however
the sudden changes in value characterizing the SI and canceling the potential corrections.
In conclusion our recommendation is to use the parameter PU.
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peu de groupes d’énergies qui décrivent
les interactions entre les neutrons et la
matière. Cette thèse est consacrée à la
modélisation des sections efficaces par des
techniques académiques innovantes basées
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fini. Trois techniques d’approximation sont
étudiées.

Les méthodes de noyaux, qui utilisent le
cadre général d’apprentissage machine, sont
capables de proposer, dans un espace vecto-
riel normalisé, une grande variété de modèles
de régression ou de classification. Les méth-
odes à noyaux peuvent reproduire différents
espaces de fonctions en utilisant un support
non structuré, qui est optimisé avec des tech-
niques d’apprentissage actif. Les approxi-
mations sont trouvées grâce à un processus
d’optimisation convexe facilité par "l’astuce
du noyau”. Le caractère modulaire intrin-
sèque de la méthode facilite la séparation
des phases de modélisation : sélection de
l’espace de fonctions, application de routines
numériques, et optimisation du support par
apprentissage actif.

Les réseaux de neurones sont des méth-
odes d’approximation universelles capables
d’approcher de façon arbitraire des fonc-
tions continues sans formuler de relations
explicites entre les variables. Une fois for-
més avec des paramètres d’apprentissage
adéquats, les réseaux à sorties multiples (in-
trinsèquement parallélisables) réduisent au
minimum les besoins de stockage tout en of-
frant une vitesse d’évaluation élevée.

Les stratégies que nous proposons sont
comparées entre elles et à l’interpolation
multilinéaire sur une grille cartésienne qui
est la méthode utilisée usuellement dans
l’industrie. L’ensemble des données, des out-
ils, et des scripts développés sont disponibles
librement sous licence MIT.
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Abstract: Modern nuclear reactors uti-
lize core calculations that implement a
thermo-hydraulic feedback requiring accu-
rate homogenized few-group cross sections.
They describe the interactions of neutrons
with matter, and are endowed with the prop-
erties of smoothness and regularity, steam-
ing from their underling physical phenom-
ena. This thesis is devoted to the modeling
of these functions by industry state-of-the-
art and innovative machine learning tech-
niques. Mathematically, the subject can be
defined as the analysis of convenient map-
ping techniques from one multi-dimensional
space to another, conceptualize as the aggre-
gated sum of these functions, whose quan-
tity and domain depends on the simula-
tions objectives. Convenient is intended in
terms of computational performance, such as
the model’s size, evaluation speed, accuracy,
robustness to numerical noise, complexity,
etc; always with respect to the engineering
modeling objectives that specify the multi-
dimensional spaces of interest. In this the-
sis, a standard UO2 PWR fuel assembly is
analyzed for three state-variables, burnup,
fuel temperature, and boron concentration.
Library storage requirements are optimized
meeting the evaluation speed and accuracy
targets in view of microscopic, macroscopic
cross sections and the infinite multiplication
factor. Three approximation techniques are
studied:

The state-of-the-art spline interpolation
using computationally convenient B-spline

basis, that generate high order local approx-
imations. A full grid is used as usually done
in the industry.

Kernel methods, that are a very general
machine learning framework able to pose in
a normed vector space, a large variety of
regression or classification problems. Ker-
nel functions can reproduce different func-
tion spaces using an unstructured support,
which is optimized with pool active learning
techniques. The approximations are found
through a convex optimization process sim-
plified by the kernel trick. The intrinsic
modular character of the method facilitates
segregating the modeling phases: function
space selection, application of numerical rou-
tines and support optimization through ac-
tive learning.

Artificial neural networks which are
“model free” universal approximators able
to approach continuous functions to an arbi-
trary degree without formulating explicit re-
lations among the variables. With adequate
training settings, intrinsically parallelizable
multi-output networks minimize storage re-
quirements offering the highest evaluation
speed.

These strategies are compared to each
other and to multi-linear interpolation in a
Cartesian grid, the industry standard in core
calculations. The data set, the developed
tools, and scripts are freely available under a
MIT license.
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