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General introduction

The characterization and assessment of damage is a key point for controlling the durability
and reliability of structures and materials in service. A growing number of concrete
structures have shown the appearance of different signs of deterioration. Indeed, the
changes in the manufacturing and specifications of different constituents such as cement
and the use of alternative materials and admixtures made many international standards
inadequate. Consequently, particular attention was given to the development of test
methods, which are related to durability performance and integrity. In that sense, the
number of scientific and technical contributions to detect the presence of damage within
these materials and estimating their remaining lifetime has not stopped growing.

In the past three decades, significant efforts have been made towards the development
of structural health monitoring (SHM) systems for concrete structures (bridges, power
plants, etc.). Among the proposed techniques, acoustic emission (AE) has been widely
used. Indeed, compared with other nondestructive techniques, the advantage of AE is
that the creation and propagation of damage can be determined in real-time through the
detected AE events. The latter represent the transient elastic waves emitted by the defects
during their creation and/or propagation. In addition, based on the detected AE signals,
damage mechanisms within the materials of interest can be characterized using either a
quantitative or a phenomenological approach. The quantitative approach requires the
understanding of the physics related to the AE sources, the propagation of the involved
elastic waves (the knowledge of the Green function), the calibration of the sensors and
the acquisition system, etc. However, it remains possible to use a phenomenological
approach, whose purpose is to establish links between damage mechanisms and the time
and/or frequency parameters of the detected AE signals.

In general, complex materials such as concrete (it could also be rocks, composites, or
micro-cracked materials) have a particular mechanical behavior at the micro-scale level
and are denoted as Nonlinear Mesoscopic Elastic Materials (NMEM). They exhibit a
non-classical nonlinear behavior, which is characterized by the presence of hysteresis and
memory effects in their stress-strain equation. In the last decades, numerous studies
have been developed to characterize the evolution of the microstructural changes (micro-
cracks, contacts, etc.) within NMEM with the help of dynamic excitation. According to
these studies, which are still relevant, hysteretic elastic nonlinearity is composed of two
interlinked effects: the fast dynamics (FD) and the slow dynamics (SD). FD refers to
instantaneous changes experimentally observed through harmonics generation, resonance
frequency shift or dumping increase. The SD refers to the long-time dependence recovery
of the elastic modulus and/or damping to its initial value (relaxation) after being softened
by a large amplitude dynamic strain. The materials that exhibit FD and SD are char-
acterized by soft regions within a small volume surrounded by hard regions. Despite the
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experiments and modeling developed in this field, the comprehension and experimental
evidence of the physics, which lies behind the macroscopic observations are still needed.

There is abundant literature showing the good performances of AE as a tool to moni-
tor the creation and propagation of the micro-cracking created within structural materials
during quasi-static or dynamic mechanical tests. By performing adequate signal pro-
cessing techniques on the detected AE signals, reliable correlations between the different
damage mechanisms (e.g. matrix cracking, interface debonding, etc.) and AE events were
established. In general, AE data are collected during the creation of the micro-cracks. Be-
yond the fact that AE cannot be considered as completely nondestructive (from the point
of view of the damage creation), AE is never used when it comes to control or to charac-
terize the existing defects (or micro-cracks) within complex materials. In previous work,
an interesting correlation between the energy of AE hits, recorded during the progressive
damaging of composites, and the evolution of the relaxation time recorded during slow dy-
namic experiments, has been experimentally proved [Bentahar and El Guerjouma, 2009].
The latter reference showed that AE has great potential to link micromechanisms to
macroscopic observations made during nonlinear acoustic experiments.

In order to advance knowledge around the micro-mechanisms involved in the nonlinear
behavior of complex materials, this thesis proposes to follow the evolution of the nonlinear
relaxation of micro-cracked concrete samples according to an original protocol. The latter
is based on the listening of the acoustic activity during passive relaxation by means of
calibrated piezoelectric sensors. The thesis is divided into four chapters.

In Chapter 1, as a short review, we introduce the fundamental background of the
necessary knowledge for this thesis. This chapter starts by presenting the historical
and theoretical basis of the elastic waves and the acoustic emission (AE) technique. In
consideration of some general ideas of the relation between AE technique and damage
mechanisms identification, our research is focused on the AE source theory, elastic wave
propagation, AE source characterization, and AE acquisition system. In the second part
of this chapter, from the classical nonlinear theory to non-classical nonlinear theory, theo-
retical knowledge and experimental observations are presented. Finally, based on existing
experimental results of fast dynamics (FD) and the slow dynamics (SD) performed on
different materials, the dynamic behavior of nonlinear mesoscopic elastic materials is pre-
sented, which leads to the motivation of this research study. To establish the link between
nonlinear mesoscopic elasticity and damage mechanisms in the complex materials (poly-
mer concrete and civil engineering concrete), we propose an original approach by using
AE to probe the acoustic activity during the quasi-static mechanical tests and the passive
relaxation of the same samples.

In Chapter 2, our research is mainly focused on the phenomenological signal-based
AE analysis. Each detected AE signal has properties related to the characteristics of the
created source. The aim of our work is to propose a relevant method, which can associate
AE signals with damage mechanisms. Based on the literature research on the AE fea-
ture extraction and signal classification, we proposed an unsupervised pattern recognition
process, which is an automated technique to select promising feature combinations for
unsupervised clustering of detected AE signals. In addition, by using the time-frequency
characteristics of AE signals and the deep learning ability of computer science, we propose
a novel ‘image-based AE classification’ approach to classify AE signals.

Chapter 3 is devoted to the presentation of quasi-static three-point bending tests
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performed on different concrete samples. In addition, during the tests, the evolution
of damages is monitored. The aim of this study is to analyze the fracture process of
samples during the quasi-static mechanical tests and identify the damage mechanism
by using the detected AE data. For civil engineering concrete samples, the results of
crack mode classification obtained from the unsupervised pattern recognition approach are
compared to the ones of the parametric approach (average frequency and RA value of AE
signal). For polymer concrete (PC) samples, damage mechanisms are clustered using the
proposed unsupervised pattern recognition, which applied on the manufactured specific
samples. Then AE data in the PC specimen is also analyzed by using the proposed ‘image-
based AE classification’ approach based on continuous wavelet transform (CWT) and
convolutional neural network (CNN). Results show that according to the time-frequency
characteristics of AE data and transfer learning technique, retrained AlexNet algorithm
has high classification accuracy.

Chapter 4 is dedicated to the characterizing of the hysteretic nonlinear dynamic be-
havior of polymer concrete (PC) and civil engineering concrete samples around their third
flexural resonance modes. Firstly, the experimental device is calibrated to ensure of its
linear behavior at the frequencies and amplitudes of excitation applied. By using the
calibrated experimental setup, the evolution of dynamic behavior of the samples taken at
intact and damaged states are followed during fast and slow nonlinear dynamic experi-
ments. In addition, we proposed a novel passive relaxation monitoring protocol, which
uses AE sensors to probe the nonlinear behavior of the materials during the relaxation
phase. Compare this passive method with the one using a common low amplitude probe
signal (active method) during the relaxation phase, the results show a very good cor-
relation between the two approaches. Furthermore, the signal processing of AE signals
recorded during passive relaxation shows that these signals are obviously similar to those
obtained from quasi-static mechanical tests performed on the same concrete sample. This
approach will certainly help to better identify the damage mechanisms that contribute the
most to the evolution of the nonlinear hysteretic behavior of damaged concretes during
the relaxation.
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Chapter 1

State of the art

This chapter introduces the basic background of the acoustic emission (AE) technique
and the nonlinear mesoscopic elastic materials (NMEM). As a short review, the study
is focused on the theoretical concepts and experimental research of AE and nonlinear
dynamic behavior in complex materials (civil engineering concrete and polymer concrete).
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State of the art

1.1 Theory background of elastic waves

1.1.1 Elastic waves theory

Wave motion is a phenomenon during which the particle motion is dynamically transferred
to neighboring particles. It complies that each particle vibrates around its equilibrium
position and does not move. The originating wave is defined on the basis of orientations
of particle motions and directions of propagations and propagates with its characteristic
velocity. In homogenous isotropic solids, the excitation of the medium by a source causes
the propagation of two types of transient mechanical bulk waves which propagate in
concentric spheres centered on the source:

1 - Longitudinal wave (P-wave): In the case of longitudinal waves, particles vibrate
along the direction in which the wave propagates. The longitudinal wave can propagate
through all medium types (solids, liquids, and gases) and is the fastest of elastic waves.

2 - Transverse wave (S-wave): In the case of transverse waves, particles vibrate per-
pendicular to the direction in which the wave propagates. The transverse wave is also
called a shear wave and propagates through solids but not through liquids and gases.

x

z wave propagation wave propagation

particle movement

particle movement

Figure 1.1: Schematic illustration of longitudinal and transverse elastic waves propagating.

The propagation of an elastic wave can thus be described by the independent lon-
gitudinal wave and transverse wave propagation as shown in Figure 1.1. The theory of
elastic waves describes the propagation of deformations within the solid for small initial
deformation. For a homogeneous isotropic medium, the fundamental equation governing
the propagation of elastic waves is written as [Royer and Dieulesaint, 1999]:

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u, (1.1)

where u is the displacement vector, ρ is the material density, λ and µ are the Lamé
constants. In general, we consider a time harmonic solution of Equation (1.1) in the
form:

u = Aeiω(S−t), (1.2)

where S and A are functions of x which are to be determined and ω is the constant
angular frequency of the solutions. For simplicity, we assume that S is independent of ω
and A has an expansion of the form:

A =
∞∑

n=0

(iω)−nAn. (1.3)
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The vectorsAn are functions of x which needs to be determined. For the case n = 0, Equa-
tion (1.1) can be represented by the following two equations [Karal Jr and Keller, 1959]:

[
−ρ+ (λ+ 2µ)(∇S)2

]
A0 ·∇S = 0 (1.4)

and [
−ρ+ µ(∇S)2

]
A0 ×∇S = 0. (1.5)

In the case where neither A0 nor ∇S is zero, Equations (1.4) and (1.5) show that
one of the products A0 ·∇S and A0 × ∇S is zero. At the same time, on the bracketed
expression within the above mentioned equations can also vanish. This will lead to the
following equations:

A0 ·∇S = 0, (1.6)

(∇S)2 = ρ/(λ+ 2µ), (1.7)

A0 ×∇S = 0, (1.8)

(∇S)2 = ρ/µ. (1.9)

Based on considerations relating to geometric optics, Equations (1.7) and (1.9) deter-
mine the phase functions S and the corresponding laws i.e., the original trajectories of
S = constant. It comes out that the rays are straight lines in the case of a homogeneous
medium. It follows from Equation (1.6) that A0 is parallel to ∇S which corresponds to
the propagation of a longitudinal wave with the velocity cL:

cL =

√
λ+ 2µ

ρ
. (1.10)

In this case, S is a linear function of arc length s along a ray and is given by:

S = S0 +
[
ρ(λ+ 2µ)−1

] 1

2 (s− s0) , (1.11)

where S0 is the value of S at the point s0 on the ray. Similarity, from Equation (1.8), A0

is perpendicular to ∇S, which corresponds to the propagation of transverse wave with
the velocity cT :

cT =

√
µ

ρ
. (1.12)

In this case, S is also a linear function of s along a ray and is given by:

S = S0 +
(
ρµ−1

) 1

2 (s− s0) . (1.13)

Finally, we note that the elastic properties of homogeneous isotropic solids can also
be expressed as a function of Young’s modulus E and Poisson’s ratio ν, where:

E =
µ(3λ+ 2µ)

λ+ µ
(1.14)

and

ν =
λ

2(λ+ µ)
. (1.15)

7



State of the art

1.1.2 Propagation in a semi-infinite space

Longitudinal and transverse waves are always generated within elastic solids. Following
their arrival at the surface of a semi-infinite medium, a surface wave called ‘Rayleigh wave’
is generated. In that case (see Figure 1.2), particles near the surface move elliptically,
and their motion decreases exponentially with depth.

wave propagation

x

z

particle movement

surface level

solid

air

Figure 1.2: Schematic illustration of a Rayleigh wave propagating at the solid-air interface.

Rayleigh wave propagates at a lower rate than bulk waves. Its velocity cR is often given
by an approximation formula such as the one given below [Bergman and Shahbender, 1958]:

cR ≈ 0.874 + 1.12ν

1 + ν
cT (1.16)

where ν is Poisson’s radio. Finally, note that in general, Rayleigh wave velocity is roughly
0.9 times shear wave velocity.

1.1.3 Propagation in a plate

Wave propagation in a plate or 1-D waveguide is different from that in solid materials.
In fact, when the plate is thin enough (thickness of the order of involved wavelength).
The coupling between longitudinal and transverse waves reflected at the top and bottom
of the plate produces additional waves. In such a case, Lamb waves are generated, as

wave propagation

wave propagation

Antisymmetric (A) mode

Symmetric (S) mode
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z
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Figure 1.3: (a) Schematic illustration of antisymmetric (A) and symmetric (S) Lamb
modes propagating in a plate. (b) Dispersion curves of Lamb modes for an aluminum
plate (CL = 5940m/s and CT = 3100m/s).
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the plate vibrates. Lamb waves are therefore guided by the faces of the plate and this
leads to two main properties: (a) they are geometrically dispersive, their velocities depend
on the wavelength/thickness ratio and (b) they propagate in the form of symmetric (S)
and antisymmetric (A) modes. Symmetric modes are modes in which the plate thick-
ness changes symmetrically and antisymmetric modes are modes that interact with the
plate anti-symmetrically with respect to the medium plane (the thickness remains con-
stant), as shown in Figure 1.3(a). Lamb waves are described by dispersion curves, which
represent the variation of velocity as a function of the product (Frequency×Thickness).
Figure 1.3(b) shows an example of phase velocity dispersion curves for an aluminum plate.

1.2 Acoustic emission (AE)

1.2.1 Introduction

Acoustic emission (AE) is the phenomenon of energy release, in the form of transient
elastic waves, resulting from micro-local displacements within a material subjected to
static or dynamic stress (standard AFNOR NFA 09350). Part of the energy is released
as an elastic wave that propagates in all directions to the boundaries of the material. By
analyzing the vibration of the elastic waves detected at the surface of the material, it
becomes possible to collect information on the event at the origin of these vibrations.

The typical example of AE is the ‘tin cry’, known since the Middle Ages by black-
smiths. This manifestation of AE in the field of audibility was attributed to the twinning
phenomenon (its source mechanism) in 1916 by Czochralski [Czochralski, 1916]. How-
ever, AE technology began to be investigated in the middle of the 20th century. Joseph
Kaiser [Kaiser, 1950] tested tensile specimens of metallic materials and recorded the AE
signals. He discovered a famous phenomenon, which is now called the ‘Kaiser effect’.
A few years later, Schofield [Schofield, 1963] reexamined Kaiser’s works and published
pioneering work entitled ‘Acoustic Emission’, which was the first use of the terminol-
ogy of AE in history. At present, AE technology applies to different fields: struc-
tural health monitoring (SHM), quality control of materials, characterization of damage,
etc [Giurgiutiu, 2007, Grosse and Ohtsu, 2008].

1.2.2 Acoustic emission and damage mechanisms

Acoustic emission (AE) can be separated in terms of discrete and continuous emissions.
The discrete emission is in the form of damped or sine waves (resonant AE sensors) or very
short pulses (broadband AE sensors). It is often associated with damage phenomena such
as crack initiation and propagation, stress corrosion, and fiber ruptures. The continuous
emission happens when signals are frequent and overlap in a way that they cannot be
separated in bursts. They are mainly observed in metallic materials and are associated
with dislocations movement due to the plastic deformation [Godin et al., 2018a]. Damage
mechanisms as the origin of AE have different properties. They can be divided into two
types: chemical sources (e.g., corrosion) and mechanical sources. This thesis mainly
studies the mechanical sources of AE created during mechanical tests and/or excited
using low-frequency vibrations.
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Figure 1.4(a) presents a schematic experimental setup of a tensile test monitored
by AE on a glass fiber reinforced polyester composite in laboratory conditions. The
created cracks during the tensile test release elastic waves that propagate following one
of the presented wave modes. AE sensors capture these elastic waves at the material’s
surface and transform the energy of the transient elastic wave to an electric waveform,
which passes in general through the pre-amplifier. The AE signals are then digitized and
recorded by the AE system shown in Figure 1.4(b).

AE Sensor

AE Sensor

Cracks

Pre-amplifier

Pre-amplifier

AE System

(MISTRAS)

Force

Force

Counts

Amplitude

Rise time

Duration

(a) (b)

Threshold

Figure 1.4: (a) Schematic experimental setup of a tensile test with AE monitoring on
a glass fibre reinforced polyester composite. (b) A recorded AE signal and some of its
associated features.

The AE process is therefore affected by different parameters:

– the physical and geometrical characteristics of the source, represented by E(t);

– the propagation medium, represented by G(t);

– the sensor used for measurement, with its function R(t);

– the acquisition system (pre-amplifier, cable, signal processor system, etc.), with its
function H(t).

Finally, the detected AE signal V (t) is a complex signal generated by the following
convolution product [Scott, 1991, Godin et al., 2018b]:

V (t) = E(t) ∗G(t) ∗R(t) ∗H(t). (1.17)

In acoustic emission analysis, the source signal E(t) corresponding to the damage mech-
anism is always the most interesting. The phenomenological AE approach requires to
establish the empirical correlations between the damage mechanism and the measured
AE signal. A comprehensive quantitative AE study requires understanding the physical
theory of AE source, AE wave propagation, calibration of the sensors, and the acquisition
system. These contents will be introduced and discussed in the following sections.

1.3 Sources of acoustic emission

The origin of AE events has been studied by modeling the damage mechanism. Since few
decades, many researchers have applied analytical or numerical methods to the simula-
tions of AE source formation. When source characteristics are specified, the AE waveform
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can be calculated by convolving the source function with an appropriate Green’s function.
This method is called a forward problem or simulation analysis. When source character-
istics are obtained from measured waveforms and Green’s functions, this is referred to
as an inverse problem or deconvolution analysis [Breckenridge et al., 1975]. In the prac-
tical application of acoustic emission, due to a large number of combinations of feasible
source characteristics and possible propagation paths, the inverse problem cannot be easily
adopted. In order to completely determine the source characteristics and location, a large
number of AE sensors might be needed. Therefore, studies were focused on the source and
propagation modeling and validation. The moment tensor analysis (MTA) is the most
early used AE analytical method of source modeling representation [Scruby et al., 1983,
Ohtsu and Ono, 1986, Ohtsu, 1988]. M.Ohtsu [Ohtsu, 1991] developed an improved MTA
technique named Simplified Green’s Function (SiGMA) by considering the first motions of
AE amplitudes, which was later applied on concrete materials [Shigeishi and Ohtsu, 2001].
In recent years, various studies, such as the AE sources and wave propagations in plates
were based on the Finite Element Method (FEM), which is one of the most commonly used
numerical methods [Sause and Horn, 2010, Sause and Richler, 2015, Le Gall et al., 2018].

1.3.1 Theory of acoustic emission and moment tensor analysis

Based on a generalized theory of acoustic emission, the displacement field ui(x, t) at
location x due to a dislocation in terms of the Burgers vector bk(y, t) on a crack surface
F is represented by the following equation [Ohtsu and Ono, 1986]:

ui(x, t) =

∫

F

Tik(x,y, t) ∗ bk(y, t)dS, (1.18)

where ∗ indicates a convolution, Tik is the traction associated with Green’s function which
is called Green’s function of the second kind. In the case of small-scale dislocations, time
and spatial dependencies of the crack vector bk(y, t) can be separated as:

∫

F

bk(y, t)dS = blkS(t), (1.19)

where b represents the magnitude of the crack displacement, vector lk denote the direction
of the crack movement, and S(t) denotes the time dependence of the crack formation,
which is called the source-time function. However, Equation (1.18) can also be represented
as [Scruby et al., 1983]:

ui(x, t) = Gip,q(x,y, t)mpq ∗ S(t), (1.20)

where ∗ denotes the convolution operation, Gip,q(x,y, t) represents the spatial derivatives
of Green’s functions. mpq is called a moment tensor and is written as:

mpq = Cpqkllknl (1.21)

where Cpqkl are the second order elastic constants and nl is the normal vector over the crack
surface. In addition, symbols p, q, k, l represent the space directions x, y and z. Figure 1.5
depicts the dislocation model of a microcrack and its equivalent tensor components.

In the case of isotropic materials, mpq is expressed as:

mpq = b [λlknkδρq + µ (nρlq + nqlρ)] , (1.22)
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Figure 1.5: Dislocation model for a microcrack and its equivalent tensor components.

where λ and µ are Lamé constants and M = [mpq] can be represented as a 3× 3 symmet-
rical matrix as shown below:

M = [mpq] = b




λlknk + 2µl1n1 µ (l1n2 + l2n1) µ (l1n3 + l3n1)
µ (l1n2 + l2n1) λlknk + 2µl2n2 µ (l2n3 + l3n2)
µ (l1n3 + l3n1) µ (l2n3 + l3n2) λlknk + 2µl3n3


 , (1.23)

where lk = (l1, l2, l3) and nk = (n1, n2, n3).

In the model proposed in [Scruby et al., 1983] and [Ohtsu and Ono, 1986], based on
Equation (1.23), AE source of tensile crack and shear crack are defined as shown in
Figure 1.6.
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Figure 1.6: Schematic illustration of (a) a tensile dislocation model for a tensile crack on
dislocation surface located on the x2 − x3 plan with the corresponding force components
of the moments tensor and moment tensor matrix and (b) a shear dislocation model for
a shear crack on dislocation surface located on the x2 − x3 plan with the corresponding
force components of the moments tensor and moment tensor matrix.

Based on the MTA model of AE analysis, crack kinematics, crack classification, and
crack volume can be analyzed from the recorded AE signals. In [Rice, 1980], Rice in-
troduced the relationship between the stress and displacement in a homogeneous elas-
tic isotropic solid due to the appearance of a micro-crack or a sliding phenomenon.

12



State of the art

Scruby [Scruby et al., 1985] used this model to study the micro-cracking during the prop-
agation of a fatigue crack in aluminum samples. Ohtsu and Ono [Ohtsu and Ono, 1988]
proposed that dynamic motions in an elastic medium always generate P-waves which
have the faster velocities and are likely to arrive first at any observation point on the sur-
face. Compared with surface waves and other waves generated by diffractions, which are
dispersive, AE arrival time differences of P-waves are most suited for the source localiza-
tion technique. Simplified Green’s Function (SiGMA) method is mostly used in concrete
applications in order to estimate the size, orientation, crack classification, location, and
fracture mode of individual micro-cracking [Chang and Lee, 2004, Uddin et al., 2006]. In
SiGMA analysis, the type of crack is classified into three modes, namely shear mode, ten-
sile mode, and mixed mode. Figure 1.7 shows the way the crack motion vector (arrow) is
located relative to the crack surface (taken as a circular disc) for the three modes. Results
of studies based on the SiGMA technique were compared with AE parametric analysis
and experimental observations [Ohno and Ohtsu, 2010].

Tensile Crack Mixed-mode Crack Shear Crack

Figure 1.7: Classification of three main modes of cracking. [Ohno and Ohtsu, 2010]

1.3.2 Finite element method analysis

Modeling of AE events was also performed using the Finite Element Method (FEM) anal-
ysis. AE sources were therefore simulated by considering, in general, pointed forces to sim-
ulate surface sources and force dipoles to simulate internal sources. In the case of AE wave
propagation in plates, many studies applied the FEM to simulate the different AE sources
at the origins of the detected elastic waves. Results were used to better understand the nu-
merous experiments performed on composites [Sause et al., 2012b, Zelenyak et al., 2015,
Le Gall et al., 2018]. In particular, the characteristics of the displacement fields created

Figure 1.8: Different simulated damage mechanisms obtained using FEM in fiber-
reinforced composite. [Sause and Horn, 2010]

by different damage mechanisms (the main ones or the most emissive) were studied in the
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case of matrix cracking, fiber breakage, and fiber-matrix interface. In order to illustrate
these effects, Figure 1.8 shows the main differences existing in the displacement fields
excited by the crack surface displacement of the above-mentioned three main damage
mechanisms [Sause and Horn, 2010].

1.4 Acoustic emission waves propagation in inhomo-

geneous medium

Elastic wave propagation in an inhomogeneous medium is very complex. For an isotropic
inhomogeneous elastic medium the equation of motion can be written as:

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u+∇λ(∇ · u) +∇µ× (∇× u) + 2(∇µ ·∇)u, (1.24)

where u is the displacement vector, ρ is the material density, λ and µ are the Lamé
constants, respectively.

If we suppose that the elastic wave is produced by a point source Q. First, we must
determine the two families of rays (shear and compressional), which emanate from Q. In
a homogeneous medium, they will both be straight lines leaving Q in all directions. In
an inhomogeneous medium there will be two families of curved lines, also starting from
Q in all directions. Next, we compute the phase S and then the amplitudes A0,A1,...
on each ray using the formulas for transverse waves on the transverse rays and those for
longitudinal waves on the longitudinal rays [Karal Jr and Keller, 1959]. Equations (1.11)
and (1.13) will be denoted in the inhomogeneous case as:

Longitudinal case S = S0 +

∫ s

s0

[
ρ(λ+ 2µ)−1

] 1

2 ds (1.25)

Transverse case S = S0 +

∫ s

s0

(
ρµ−1

) 1

2 ds (1.26)

where s is measures positively in the direction of propagation and S0 is the value of S at
point s0 on the ray. However, the wave propagation rays in the inhomogeneous media are
no longer straight lines. If the medium has boundaries or contains obstacles or interfaces
some of the incident rays from the source will hit them. These rays will produce reflected
and refracted rays and possibly diffracted and surface rays. With each new family of rays,
a new wave is associated. In this way, reflected, refracted, diffracted, and surface waves
arise and all the preceding considerations will also apply to them.

In addition, from the elastodynamics, heterogeneity is dependent on the ratio between
the wavelength and the size of heterogeneity (i.e., aggregate in concrete). When the wave-
lengths are larger than the sizes of aggregates, the effect of heterogeneity becomes minor
and vice versa. For example, in [Ohno and Ohtsu, 2010], P-wave velocity in concrete is
about 4000m/s and the wavelength becomes 40mm at 100 kHz. Therefore, AE waveforms
with a frequency range smaller than 100 kHz are supposed to propagate in an isotropic
homogeneous medium since the maximum size of aggregate is 20mm. At the higher
frequency range, the wavelength becomes smaller and the scattering due to aggregation
becomes important. Therefore, it is necessary to pay attention to the attenuation and in
particular to the scattering effects under considering the inhomogeneous nature of mate-
rials. The wave scattering within extremely heterogeneous materials such as concrete is
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mainly due to the existing pores, air bubbles, sand grain, aggregates as well as distributed
cracks [Prosser, 1996, Philippidis and Aggelis, 2005]. In order to highlight their effects,
various experimental studies have been performed on concrete and/or mortar specimens.
For instance, Aggelis and Shiotani [Aggelis and Shiotani, 2007, Aggelis et al., 2012] stud-
ied the influence of scatterers on Rayleigh and longitudinal waves propagating in mortar
samples (see Figures 1.9(a)-(c)). They have found that the existing cracks on the path of
AE signals disturb their waveforms, which confuses the crack mode (shear mode or tensile
mode) identification (see Figures 1.9(d) and (e)).
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Figure 1.9: Schematic illustration of elastic wave propagation in a mortar specimen with
(a) no scatterer, (b) distributed scatterers and (c) different arrangement of distributed
scatterer. [Aggelis and Shiotani, 2007] (d) Schematic representation of surface wave mea-
surements in cracked concrete and (e) detected AE waveforms from two different sensors
at different positions. [Aggelis et al., 2012]

1.5 Acoustic emission sources characterization

1.5.1 Source localization

The localization technique is required for quantitative methods in AE analysis in order
to accurately obtain the spatial source coordinates form the detected AE events. In
AE analysis, a longitudinal wave is, in general, non-dispersive, whereas almost all the
surface waves and other waves generated by diffraction are dispersive. Since the veloc-
ities of dispersive waves depend on the excitation frequency, it becomes appropriate to
compare the arrival time difference of longitudinal waves for AE source location technol-
ogy [Ohtsu and Ono, 1988].

Several works have been developed to study the source localization in different spec-
imen geometries [Grosse et al., 1997, Salinas et al., 2010, Han et al., 2015]. In general,
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they recommend verifying if the area near the AE sensors is free of cracks. Then the
localization can be one-dimensional to monitor large structures, such as buildings and
pipelines, or two-dimensional, which is usually applied in the case of structures with small
thicknesses (see Figure 1.10). In this case, only three unknowns (two source coordinates

AE source

Sensor No.1

Sensor No.2

Sensor No.3
t
1

t
2

t
3 Elastic wave

Figure 1.10: Schematic representation of two-dimensional localization method with three
AE sensors.

and source time) need to be determined using three sensors’ records. Three-dimension
localization problem is accurately determined when four travel times are available to cal-
culate the three coordinates and the source time of an AE event which needs at least four
sensors and good arrangement.

1.5.2 Acoustic emission signal classification

The present thesis is mainly focused on the characterization of damages created in poly-
mer concrete (PC) and civil engineering concrete samples. When submitted to quasi-static
stresses, the forces distribution at the different main constituents (matrix, aggregate, in-
terface) of the concrete samples will play an important role. Indeed, when the local force
reaches the fracture limit of one of the constituents, damage starts to develop at the micro-
scopic scale. Micro-cracking, which appears in the matrix will cause cracks to propagate in
a direction perpendicular to the stress. The stress at the micro cracks will lead to interface
or aggregate cracking [Elaqra et al., 2007, Soulioti et al., 2009, Sagar and Prasad, 2011,
Aggelis et al., 2013a].

For civil engineering concrete and mortar specimens, under three-point bending tests,
the matrix cracking is the only damage mechanism detected by AE sensors before the
macroscopic main crack deformation [Aggelis, 2011, Aggelis et al., 2013b]. Therefore,
studies were mainly focused on the crack mode classification by using parametric analysis
based on the following characteristics of the detected AE signals, namely rise time, ampli-
tude, and average frequency [Soulioti et al., 2009, Aggelis et al., 2013a]. This approach
and these parameters are presented below.

1.5.2.1 Parametric approach of crack mode classification

As presented earlier, the moment tensor analysis (MTA) appears to be the most ap-
propriate method in crack mode classification analysis, while each cracking event needs
to be detected by at least six sensors [Ohno and Ohtsu, 2010]. Various researches have
shown that some AE features can be used to describe each specific type of crack. For
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example, tensile crack deformation caused by the opposing movement of the crack sides
is expected to generate AE waveforms with short rise time and high frequency. Instead,
shear-type cracks result in signals with a lower frequency and longer rise time. Based on
these indicators, the parametric classification approach is established by computing two
AE parameters: RA value and average frequency (AF). The RA value is derived from the
rise time and peak amplitude of the AE signal and AF is defined as the counts over the
AE signal duration.

This classification approach has been highly investigated particularly on concrete and
mortar specimens [Ohno and Ohtsu, 2010, Aggelis, 2011, Aldahdooh and Bunnori, 2013],
fiber composites [Aggelis et al., 2010] and rocks [Shiotani, 2006]. Experimental results
showed the existence of a good agreement between ratios of tensile/shear crack identified
by parametric analysis and those obtained using the SiGMA analysis (based on moment
tensor analysis). Details of the parametric approach and its application on concrete
specimens will be discussed in Chapter 2 and Chapter 3.

1.5.2.2 Pattern recognition of acoustic emission signals clustering

In AE analysis, one of the main objectives is to identify the nature of AE sources. Each
detected signal can be considered as an acoustic signature of a damage mechanism. In
view of the huge number of unlabeled AE events, the relation between the AE signals and
damage mechanisms can be described by a statistic method such a multi-parametric unsu-
pervised pattern recognition analysis [Doan et al., 2015]. This method consists of several
relevant AE features and an effective unsupervised clustering approach that overcomes the
drawbacks of simplified AE parametric analysis and is more accurate. The proposed un-
supervised pattern recognition involves AE feature selection, cluster analysis, and cluster
validity. For unsupervised cluster analysis of AE signals, k-means algorithm is the most
used method [Godin et al., 2004, Sause et al., 2012a, Pashmforoush et al., 2012]. How-
ever, another method for unsupervised data classification is the Kohonen’s Self Orga-
nizing Map (SOM) [Huguet et al., 2002, Crivelli et al., 2014], which separates AE data
by neural network procedures. The SOM is one of the most prominent artificial neural
network models adhering to the unsupervised learning example.

In this thesis, we use multi-parametric unsupervised pattern recognition analysis based
on the k-means algorithm to cluster AE data, to separate damage mechanisms, and to
track their evolution in time. The details of the above-mentioned processing will be
introduced and discussed in the next Chapter.

1.6 Acoustic emission sensors and acquisition system

1.6.1 Acoustic emission sensors

There is a large variety of AE sensors available today, which are in general based on the
piezoelectric effect which transforms the vibrations detected at the material surface into
electric signals. AE sensors could be either resonant or broadband. Resonant sensors
with appropriate resonant frequencies are required to supply maximum sensitivity and
reduce or eliminate background noise. Broadband sensors are less sensitive compared
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with resonant sensors, however, they are capable of responding almost uniformly at the
same sensitivity over a large frequency bandwidth [Keprt and Benes, 2009].

Figure 1.11(a) shows the sensitivity of a resonant AE sensor (Mistras R15α with res-
onance frequency at 150 kHz). When an AE signal reaches the resonance sensor, it is re-
flected repeatedly inside the piezoelectric element. The reflections interfere constructively
around the PZT resonance frequencies, which makes it possible to increase the sensitivity
to displacement and/or to stress. In return, using resonant PZT sensors makes the anal-
ysis of the characteristics of the incident wave (source) very delicate [Sause et al., 2012c].
In the case of broadband AE sensors, the PZT disc is covered with a damping material
such as tungsten-enriched epoxy [Goujon and Baboux, 2003]. In such a case, the received
elastic waves pass from the PZT to the damping material by reducing the reflections on
the edge of the PZR disc [Boulay, 2017]. Therefore, a loss of sensitivity is generated but
with a flat frequency response over a wide frequency bandwidth (see Figure 1.11(b)).

(a) (b)

Figure 1.11: Manufacturer’s sensitivity curves of (a) the R15α resonant sensor and (b)
WSα broadband sensor (from the website of R15a and WSa). Here, 0 dB corresponds to
1V/µBar.

1.6.2 Acoustic emission acquisition system

Thanks to piezoelectric effect, AE sensors transform strain (or displacement) into volt-
age. The small amplitude of signals requires the use of significant amplification to better
process, where the pre-amplification is 40 dB or 60 dB. In addition, frequency filtering is
performed directly on the pre-amplifier a high-pass filter to eliminate the operating noise
of the installation. Amplified signals are then transferred into the AE system. In this
thesis, we use a Physical Acoustic (MISTRAS) PCI-2 AE system with two measurement
channels. The elastic energy freed by cracks initiation and/or propagation is associated
with an ‘AE event’ and can be detected and digitized by the AE system as an ‘AE hit’.
The detection of AE hits depends on different time windows and parameters: threshold,
Peak-Definition-Time (PDT), Hit-Definition-Time (HDT), and Hit-Lockout-Time (HLT)
as shown in Figure 1.12.

• Threshold: this parameter is fixed at a suitable value (in dB), which is big enough
for filtering the background noise.

• Peak Definition Time (PDT): it enables to determine the time of the true peak in
the waveform.
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• Hit Definition Time (HDT): it enables the system to determine the end of the AE
hit. It is the time of which the acquisition of the AE hit stops.

• Hit Lockout Time (HLT): it inhibits the measurement of reflection and late-arriving
parts of the AE signal, so that data from wave arrivals can be acquired.

Figure 1.12: Representation of acquisition parameters. [Shateri et al., 2017]

1.6.3 Acoustic emission Q-value analysis

As mentioned in subsection 1.2.2, AE waveforms are achieved as a convolution of source
functions E(t), propagation medium function G(t), sensors function R(t) and acquisition
system function H(t) in the time domain. The frequency responses can be formulated in
the frequency domain as:

V (f) = E(f)G(f)R(f)H(f), (1.27)

where V (f), E(f), G(f), R(f), H(f) are the Fourier transforms of detected AE wave-
forms, AE source, propagation medium, sensor and acquisition system, respectively. G(f)
in Equation (1.27) is a target to quantify the damage. Therefore, it is very important to
identify G(f) irrespective of source time function since E(f) is not easily achievable in
the AE technique.

One of the ways to get rid of the effects of the sensor and acquisition system would
be to consider two AE signals obtained by two identical sensors for the same AE source.
When the frequency responses of AE sensors are the same, the comparison of detected
AE signals may conform as:

V2(f)

V1(f)
=

R2(f)

R1(f)
·
G2(f)

G1(f)
=

G1(f)

G2(f)
. (1.28)

Furthermore, considering the dependence ofG(f) on propagation distance, Equation (1.28)
might be introduced as [Shiotani, 2012]:

G(f) = exp

(
− πf

V Q
d

)
(1.29)
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where f is the frequency (Hz), V is the P-wave velocity (m/s) and Q is a normalized
value of the attenuation rate. By combining Equation (1.28) and Equation (1.29), Equa-
tion (1.30) is then obtained:

X2(f)

X1(f)
=

Di(f)

D1(f)
= exp

(
− πf

V Q
∆di

)
,

∆di = di − d1 (di ≥ d) (i = 2, . . . , n).

(1.30)

Equation (1.30) shows that a function of frequency response can be expressed by an
exponential function composing from the difference of distance ∆d and frequency f .

The frequency response ratios for different propagation distances are shown in Fig-
ure 1.13(a). We observe the decrease of the ratio for high frequencies (above 100 kHz)
becomes larger as the difference in propagation distances increases. As this trend is in
good accordance with Equation (1.30), the slop of the ratios γ in Figure 1.13(b) was
calculated as:

γ =

(
π∆d

V Q

)
. (1.31)

Figure 1.13(b) shows the relation between the slope γ and the difference of propaga-
tion distances. The relation can be approximated by a linear equation, resulting in good
agreement with Equation (1.31). The slope γ correlates well to the difference of propaga-
tion distance, but more likely to demonstrate the properties of the propagation medium.
However, we note that the frequency range is only under 200 kHz where the wavelength
is larger than the size of the aggregates, meaning the propagation can be considered in a
homogenous medium.
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Figure 1.13: (a) Frequency responses ratio as a function of the difference of propaga-
tion distances. (b) Linear evolution of frequency response as a function of difference of
propagation distances. [Shiotani, 2012]

1.7 Nonlinear acoustic theory and Nonlinear Meso-

scopic Elastic theory

In this PhD work, the AE technique is used in two cases: to probe damage creation and
propagation in complex samples (polymer concrete and civil engineering concrete) during
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quasi-static tests and during the nonlinear relaxation of the same samples. The aim of this
section is to present the main characteristics of nonlinear elastic materials when submitted
to dynamic excitation. It will therefore include classical and non-classical nonlinear effects.

1.7.1 Classical nonlinear theory

The linear elastic theory is based on the assumption which considers infinitesimal strains
and a linear relationship between stress (σ) and strain (ε) which is described by the
famous Hook’s law:

σ = Kε, (1.32)

where K is the elastic modulus of the material. However, when the two above-mentioned
conditions are not satisfied, classical nonlinearity appears. The latter can be divided into
two types: geometric nonlinearity and physical nonlinearity.

The geometric nonlinearity comes from an extrinsic reason, related to deformation.
Indeed, when the deformation is big enough, its infinitesimal aspect is no longer valid. In
this case, even if the material is perfectly elastic (elastic modulusK remains constant), the
linearity between the deformation and the stress is broken by the change of the geometry.
This effect is at the origin of the so-called ‘geometric nonlinearity’. On the other hand, the
physical nonlinearity comes from the intrinsic nonlinearity resulting from the nonlinearity
at the smallest scales, such as the nonlinearity of the interaction potential between atoms
of a crystal.

In general, studies of the classical nonlinear theory for a one-dimensional system have
the stress-strain relation which can be expressed as:

σ = K0

(
ε+ βε2 + δε3 + · · ·

)
, (1.33)

where K0 is the linear elastic modulus, β and δ are the quadratic and the cubic nonlinear
coefficients, respectively. In Equation (1.33), the first-order term K0ε corresponds to
linear elastic behavior, while the higher-order terms correspond to the second and the
third order nonlinear behaviors, respectively.

In the case of an elastic wave propagating in an isotropic solid, the nonlinear coefficients
β and δ are:

β =
3

2
+

l + 2m

λ+ 2µ
δ =

3l + 2m

2λ+ 2µ
(1.34)

where λ and µ are the Lamé constants, l, m and n are the third order elastic constants
of Murnaghan [Ostrovsky and Johnson, 2001].

When materials exhibiting classical nonlinearity are excited with a pure monochro-
matic wave with angular frequency ω (ω = 2πf), they can distort the propagating wave
and generate higher-order harmonics (2ω, 3ω, etc.). In such a case, the quadratic nonlin-
ear parameter β, for instance, can be obtained from a measurement of the displacement
amplitude A2 at the second harmonic generated at a distance x as [Meegan Jr et al., 1993]:

β =
2A2c

2

A2
1ω

2x
, (1.35)

where A1 is the displacement amplitude at the fundamental frequency and c is the wave
velocity.
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Besides, the classical nonlinearity could be observed through the resonance frequency
shifts as a function of the dynamic strain in the form [Idjimarene, 2013]:

ωr − ωl

ωl

∝ 1

2
δε2max (1.36)

where ωl and ωr are resonance frequency in the linear limit and measured resonance
frequency in the nonlinear limit, respectively, εmax is the maximum strain amplitude and
δ is the cubic nonlinear coefficient.

1.7.2 Non classical nonlinear theory

The classical nonlinear theory was used successfully to describe the nonlinear elastic be-
havior of air, water, and mono-crystalline materials (such as intact metals). In general,
the elastic nonlinear behaviors are in accordance with the macroscopic observations of
interactions at the microscopic and/or atomic scales [Landau et al., 1986]. However, this
theory was unable to describe the nonlinear behavior observed in cracked metals, rocks,
concrete, composites, etc., which belong to the class of Nonlinear Mesoscopic Elastic
Materials (NMEM) (or micro-inhomogeneous materials) for which micro-inhomogeneities
are of the order of 10µm - 100µm [Guyer et al., 1999, Guyer and Johnson, 1999]. Indeed,
these materials obey generally to the classical nonlinear theory of elasticity for the strain
amplitudes corresponding to approximately 10−6 and lower. At higher strain amplitudes
(ε ≳ 10−6), their behavior is no longer adequately described by the classical nonlin-
ear theory of elasticity. Many experimental observations were reported from quasi-static
stress-strain experiments [Gist, 1994, Guyer et al., 1997, Darling et al., 2006] and dynam-
ics experiments [Pasqualini et al., 2007, Muller et al., 2005, Remillieux et al., 2016].

Figure 1.14: (a) Axial quasi-static protocol. (b) Stress-strain curve showing hysteresis
loops corresponding to the protocol in subplot(a). [Guyer and Johnson, 1999]

Quasi-static stress-strain experiments allowed to get the first observations of non-
classical nonlinearity in solid. Figure 1.14(b) presents the stress-strain curve with hys-
teresis loops when a given axial stress protocol (see Figure 1.14(a)) is applied to a geolog-
ical material. The applied stress is varied very slowly to ensure quasi-static (equilibrium)
conditions at each strain and the resulting plot shows that tested materials are nonlinear
and present hysteresis and discrete memory which can be observed through the inner-
loops. For such a material behavior, the stress-strain relationship must take into account
the existing hysteresis and discrete memory [Guyer et al., 1995]. The one-dimensional
stress-strain relationship can be expressed as [McCall and Guyer, 1994]:

σ(ε) = K0

(
ε+ βε2 + δε3 + · · ·

)
+H[ε, sign(ε̇)], (1.37)
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where σ is the stress, ε is the strain, K0 is the linear elastic modulus, β and δ are the
classical quadratic and cubic nonlinear parameters, respectively, and H is a function de-
scribing the hysteresis where ε̇ is the strain rate, sign(ε̇) = 1 when ε̇ > 0 and sign(ε̇) = −1
when ε̇ < 0 [Guyer and Johnson, 2009]. The function H in Equation (1.37) take into ac-
count the fact that hysteresis in the stress-strain relationship cannot be described by an
analytic function. For that reason, phenomenological modeling can be performed, for in-
stance, such as the Preisach-Mayergoyz (P-M) space approach [Mayergoyz, 1985] in order
to take into account the hysteresis and the memory effect as well [McCall and Guyer, 1994,
Guyer et al., 1995, Delsanto and Scalerandi, 2003].

The effects of classical and hysteretic nonlinearity on a sinusoidal waveform are sum-
marized in Figure 1.15.

Figure 1.15: Effects of pure classical nonlinearity and pure hysteretic nonlinear-
ity on the evolution of a sinusoidal waveform in the time and frequency do-
mains. [Van Den Abeele et al., 2000]

1.8 Dynamic behavior of Nonlinear Mesoscopic Elas-

tic Materials (NMEM)

The dynamic behavior of Nonlinear Mesoscopic Elastic Materials (NMEM) has been ob-
served and discussed in many references [Guyer and Johnson, 2009, Antonaci et al., 2010].
Most of these experiments are showing an anomalous behavior when a time-dependent per-
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turbation is applied. Like it was shown in the classical nonlinear case, the dynamic nonlin-
ear response may manifest itself in a variety of ways (transient regime, standing waves...).
Therefore many indicators of nonlinearity could be defined, linking the evolution of strain
amplitudes to the generated harmonics [Ostrovsky and Johnson, 2001, Novak et al., 2012,
Liu et al., 2012], resonance frequency shift [Muller et al., 2005, Zaitsev et al., 2005], break
the superposition principle [Scalerandi et al., 2008, Bruno et al., 2009]. Furthermore, ad-
ditional indicators related to memory effects can also be introduced exploiting the prop-
erties linked to slow dynamics.

In the following, we will mainly focus on two types of experiments called fast and slow
dynamics, both based on the memory effect existing within NMEM.

1.8.1 Fast dynamic experiments

Fast dynamic (FD) experiments are performed when the material is excited increasingly
in either transient or standing waves conditions. For instance, we often probe the reso-
nance frequency (elastic modulus) and the quality factor Q decrease as a function of the
amplitude of excitation. We can also expect a distortion of the propagating waves which
is manifested by a decrease in the propagation velocities, and the generation of harmonics
(notably odd harmonics) [TenCate et al., 2004, Chen et al., 2011].

Figure 1.16(a) presents an example of the FD behavior of the sandstone sample. The
relative change of the resonance frequency and the quality factor of different materials
are shown in Figures 1.16(b) and (c).
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Figure 1.16: (a) Fast dynamics behavior of a sandstone sample: frequency resonance
curves in the function of different strain levels. [TenCate et al., 2004] (b) Resonance
frequency and (c) damping shifts on different strain level for several tested materi-
als. [Haupert et al., 2011]

Numerous studies [Johnson et al., 2004, Johnson and Sutin, 2005, Haupert et al., 2011,
Remillieux et al., 2017] have shown that in the FD experiments, the resonance frequency
f(ε) and the damping 1/Q(ε) change linearly as a function of the strain amplitude ε at
high strain rates (ε ≳ 10−6). Two parameters αf and αQ representing the change of
modulus and damping can be defined as:

f (ε)− f0
f0

= −αfε, (1.38)

1

Q(ε)
− 1

Q0

= −αQε, (1.39)
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where f0 is the linear resonance frequency, Q0 is the linear quality factor of the tested
materials.

1.8.2 Slow dynamic experiments

Slow dynamics (SD) refers to the logarithmic time dependence recovery of the elastic mod-
ulus and damping to their initial values after being softened by a large amplitude dynamic
strain (10−6 or higher). It includes two different time scale mechanisms: conditioning,
which takes seconds to minutes and relaxation, which takes a long time of the order
of 103 seconds to days depending on the configuration [Ten Cate and Shankland, 1996,
TenCate et al., 2000b, Shokouhi et al., 2017, Bittner and Popovics, 2019].

As shown in Figure 1.17(a), the illustration of the experimental excitation protocol
consists of three phases: preconditioning (low-amplitude excitation), conditioning (high-
amplitude excitation) and relaxation (same as preconditioning). Figure 1.17(b) depicts
a typical result for the evolution of relative change of resonance frequency (or elastic
modulus) as a function of time measured for three measurement conditions on a NMEM
sample.

Figure 1.17: (a) Schematic illustration of excitation protocol in three phases: precondi-
tioning (the sample is excited with a low-amplitude signal), conditioning (high excitation
amplitudes) and relaxation (the excitation signal is the same as that of the precondi-
tioning). (b) Schematic sketch of the evolution of the relative variation of resonance
frequency (or elastic modulus) as a function of time during preconditioning, conditioning
and relaxation.

1.8.2.1 Conditioning

The softening of the material, also termed conditioning, occurs at dynamic strain levels
(ε ≳ 10−6). When a high excitation level is applied to NMEM repeatedly, the material’s
viscoelastic properties will change depending on the excitation level and the material’s
state. Under the effect of such a dynamic excitation, the material goes to an out of
equilibrium phase until the full conditioning is obtained, meaning the material reached a
new equilibrium state [Mechri et al., 2017].

The conditioning effect can be observed through the evolution of the resonance fre-
quency (elastic modulus, wave velocity, etc.) and the quality factor (damping) during
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the application of the dynamic excitation. Numerous references [TenCate et al., 2000a,
Delsanto and Scalerandi, 2003, Scalerandi et al., 2010, Gliozzi et al., 2010] have shown that
the total decrease in elastic modulus (i.e., material softening) becomes greater and when
the duration and amplitude of the excitation are significant.

Figure 1.18 shows an example of the conditioning experiment, in which a large-
amplitude of excitation is applied to a cylindrical damaged concrete sample during a
long time (more than 1500 s). An ultrasonic wave with a weak linear amplitude is used to
test the sample by measuring the wave velocity at different times during the condition-
ing process. The curve shows that the velocity (blue triangle) drops continuously until
reaching a stationary state which is a typical observation of conditioning. Simultaneously,
the defined nonlinear indicators (red circles - SSM indicator; black squares - harmonics
indicator) increase continuously as well, until the new equilibrium state is reached. In the
experiment, the temperature (green diamond) and humidity are controlled to separate
the conditioning effects from those due to fluctuations in the environmental parameters.

Figure 1.18: Conditioning on a damaged concrete sample. As conditioning time in-
creased, the wave velocity (or elastic modulus) diminishes (blue triangle), while the non-
linearity of the sample (indicator θ) increases and harmonics indicators increase, respec-
tively. [Scalerandi et al., 2010]

1.8.2.2 Relaxation

After the material is conditioned, the high excitation level is turned off and the sample’s
properties return back slowly to their original values. This slow recovery behavior is
probed by a very weak signal to monitor the material’s relaxation, which lasts for a
long time (minutes to days depending on the strain amplitude used for conditioning and
the conditioning duration as well). The recovery evolves in general as the logarithm of
time [TenCate et al., 2000b, Johnson and Sutin, 2005, Zaitsev et al., 2014].

As an example, Figure 1.19(a) depicts the relaxation effects on a damaged concrete
sample after full conditioning is obtained. During relaxation monitoring, successive sweeps
are repeated around the resonance mode at the lowest excitation amplitude and the
resonance frequency is monitored over time. Here we observe that immediately after
conditioning, a significant recovery is observed in a quasi-continuous way slowly in time,
frequency recovery evolves continuously until the elastic modulus returns back to its
original value (see Figure 1.19(b)). At the time when the mechanisms at the origin of
conditioning and relaxation remain diverse and varied depending on the material studied
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Figure 1.19: (a) Relaxation effects on a damaged concrete sample represented by recovery
of resonance curves during the relaxation process. [Bentahar et al., 2006] (b) Resonance
frequency versus logarithmic relaxation time for four different materials. [TenCate, 2011]

(rocks, composites, concrete, glass, etc.), it remains very difficult to find a unique reason
which explains alone the observed log-time evolution. This is the reason for which, we
propose in this thesis to use AE during relaxation in order to provide the necessary
evidence to show the link between the damage mechanisms and nonlinear relaxation.

1.9 Conclusions

In this chapter, firstly, the elastic wave theory is shown which leads to the propagation of
acoustic emission (AE) events. Acoustic emission has been proved to be a significant tech-
nique in damage mechanisms studies. The quantitative AE study requires understanding
the physical theory of AE source, AE wave propagation, calibration of the sensors, and the
acquisition system, which have been presented. In this thesis, we use the phenomenologi-
cal AE approach to establish the link between the damage mechanisms and the measured
AE signals in complex materials during the mechanical tests. This approach needs knowl-
edge of signal processing, pattern recognition, and deep learning, which will be presented
in Chapter 2.

Nonlinear Mesoscopic Elastic Materials (NMEM) always have hysteretic nonlinear
behavior in dynamic experiments which has been introduced by literature studies and
experimental observations in this chapter. To investigate the link between nonlinear
mesoscopic elasticity and damage mechanisms in the complex materials (polymer concrete
and civil engineering concrete), we use the AE technique to probe the damage creation and
propagation in the complex materials during the quasi-static mechanical tests (Chapter 3)
and during the nonlinear dynamic tests of the same samples (Chapter 4).
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Chapter 2

Signal based acoustic emission signal

analysis

This Chapter presents signal processing tools used to analyze Acoustic Emission (AE)
signals and associate each AE signal with corresponding damage mechanisms. In this
study, the AE system records AE waveforms instead of several AE parameters (AE feature
extraction), the raw signal waveform analysis offers a better interpretation. Thus, the
relation between the AE signals and damage mechanisms can be described by the statistic
method which is the multi-parametric unsupervised pattern recognition analysis.

Additionally, due to artificial intelligence (AI) technology has made great progress in
recent years, we propose a novel approach for AE signal classification combining contin-
uous wavelet transform (CWT) and convolution neural network (CNN). This approach
uses the time-frequency representation of the AE signal and deep learning algorithm that
may have a good outlook.
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2.1 Acoustic emission features extraction

One main purpose of the AE signal analysis is to associate a signal with a source mech-
anism (damage mechanism). The AE phenomenological approach to the identification of
sources of AE is based on a fundamental assumption: each recorded AE signal has prop-
erties related to the characteristics of the created source. To analyze AE signals, the most
mentioned method is the feature-based approach which is based on that the AE signal
is completely described by a set of features [Sikorski, 2012]. The association of damage
mechanisms with AE signals is based on the signal features.

2.1.1 Time domain features

An AE signal x(t) with several AE time features is shown in Figure 2.1. It is reason-
able to suggest that the energy in the AE waveform is proportional to the energy of the
associated events [Curtis, 1975, Landis and Baillon, 2002]. It is reasonably assumed as
well that the AE signal depends on its source, specifically the intensity and the dam-
age mode [Sagar and Prasad, 2011, Van Tittelboom et al., 2012]. The shape of the AE
waveform is related to the cracking event that gave rise to damage mode. In literature
related to AE, feature extraction has been well studied up to now and the features are
calculated in real-time by the AE system. However, in this study, by using the Physical
Acoustic (MISTRAS) PCI-2 AE system, waveforms of detected AE hits are saved and the
features are computed implemented on an external software (Matlab). The MISTRAS
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Figure 2.1: Extraction of time features from acoustic emission signal x(t).

AE system uses a fixed threshold to detect a signal arrival time and also to detect the
end of the signal. The detected AE events are dependent on this threshold, meaning that
the analyzed signal lies between the first and the last threshold crossing. Some of the AE
features defined in time domain can be defined as follows [Grosse and Ohtsu, 2008]:

– Amplitude (A) [dB]: calculated by the maximum value of the AE signal and the
value of the gain of the pre-amplifier of the AE sensors, with the expression :

A = 20× log(
Vmax

Vref

)−Gain, (2.1)

where Vmax is the maximum value of signal in Volts, Vref is the reference voltage (1µV),
Gain is the pre-amplifier’s gain (e.g. 40 dB).
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– AE Energy (E) [aJ]: the area under the square of voltage-time envelope (aJ, atto
Joules with 1 aJ = 1× 10−18 J).

E =

∫ tf

td

x(t)2 dt, (2.2)

where td is the starting time of the AE signal x(t) and tf is the ending time of this signal.

– Duration (DU) [µs]: it corresponds to the time between the first and the last crossing
of the threshold.

– Rise Time (RT) [µs]: the time interval from the first threshold crossing to the
maximum amplitude.

– Count (CNTS) : number of crossing thresholds over the duration of the signal.

– Average Frequency (AF) [kHz]: number of counts divided by duration, which deter-
mines number of threshold crossing per unit time over one AE hit.

– RA value (RA) [µs/V]: rise time divided by amplitude (measured in voltage).

In reference [Ni and Iwamoto, 2002], Q.Ni and M.Iwamoto have shown that the fre-
quency component of the AE signals was less changed by the distance between the AE
source and the sensor, which can be used as useful feature to represent the signals. Be-
sides, each damage mechanism generates different intrinsic frequencies that has been
discovered in many articles. In fiber/resin composites [Bohse, 2000], matrix cracking has
low-frequency signal and fiber failure generates high-frequency components. In addition,
in concrete, tensile cracks always have higher frequencies than shear cracks [Aggelis, 2011,
Farhidzadeh et al., 2014].

In this study, due to the fact that specimens are of small dimension, influence of
attenuation can be controlled. In the next subsection, AE features extracted from the
frequency domain will be presented.

2.1.2 Frequency domain features

In this section, the Fourier Transform (FT) provides the frequency spectral information
of an AE signal which makes it possible to establish its frequency features. The analytical
expressions of the Fourier Transform (TF) and the Inverse Fourier Transform (IFT) of
signal x(t) are defined as follows:

x̂(f) =

∫ ∞

−∞

e−2πiftx(t) dt (2.3)

and

x(t) =

∫ ∞

−∞

e2πiftx̂(f) df, (2.4)

where the x̂(f) is a complex-valued function of frequency. The frequency spectrum is the
distribution of the amplitudes and phases of each frequency component against frequency
of signal x(t). For x̂(f), its magnitude component is spectrum amplitude (|x̂(f)|) and
complex argument is the phase [Bracewell, 1986].

In this study, the spectral analysis of the digital AE signals is calculated using the
Fast Fourier Transform (FFT) which is based on the Discrete Fourier Transform (DFT)
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by software Matlab [Van Loan, 1992]. For the AE signal x(t), we calculate its FFT.
Figure 2.2 shows the spectral amplitude of signal x(t) and some of its associated spectral
features. The frequency features are calculated on the frequency spectrum of the signal
x(t) with the expressions as [Grosse and Ohtsu, 2008]:
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Figure 2.2: Extraction of features from AE signal x(t) in frequency domain.

– Peak Frequency (PF) [kHz]: denoted as PF, which is the frequency corresponding
to the maximum of amplitude on the spectrum.

– Frequency Centroid (FC) [kHz]: denoted as FC, it is the average frequency content
of the signal expressed as:

FC =

∫∞

−∞
f · |x̂(f)| df∫∞

−∞
|x̂(f)| df

, (2.5)

where for each point of the frequency spectrum, f is the frequency value and |x̂(f)| is the
amplitude of spectrum.

– Weighted Frequency (WF) [kHz]: denoted as WF, which is square root of Frequency
Centroid and Peak Frequency multiplication, with expression as:

WF =
√
PF× FC (2.6)

– Partial Power [%]: which is the fraction of power with different band of frequency
in the band between 0 kHz and 1200 kHz with expression as:

PPn =

∫ ff
fd

|x̂(f)|2 df
∫ 1200kHz

0Hz
|x̂(f)|2 df

, (2.7)

where the number of band n ∈ [1:5] and |x̂(f)| is the spectrum amplitude. They measure
the signals frequency contribution within a given interval and are thus used to capture
the frequency composition of the signal in more than a single characteristic value. Each
Partial Power is computed with frequency range is:

– Partial Power 1 (PP1): fd = 0kHz; ff = 150 kHz;

– Partial Power 2 (PP2): fd = 150 kHz; ff = 300 kHz;

– Partial Power 3 (PP3): fd = 300 kHz; ff = 500 kHz;

– Partial Power 4 (PP4): fd = 500 kHz; ff = 800 kHz;
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– Partial Power 5 (PP5): fd = 800 kHz; ff = 1200 kHz.

Based on the above-mentioned frequency features, many studies have been performed
on the damage mechanisms of composite materials. Gutkin et al. [Gutkin et al., 2011]
studied the AE signals in damaged carbon fiber reinforced plastics by using peak frequency
analysis. In [Maillet and Morscher, 2015], Maillet and Morscher concluded that frequency
centroid takes into account the whole frequency spectrum and as a result gives a finer
image of signal’s frequency content and is less sensitive than peak frequency to slight
variations in the spectrum. In [Li et al., 2014] and [Li et al., 2015], Li et al. used weighted
frequency as a frequency feature in the clustering analysis of woven glass fiber reinforced
laminate composite. Indeed, in this thesis, for each AE signal, 15 features are computed
as shown in Table 2.1.

No. Features Dimension No. Features Dimension

1 Peak Amplitude (PA) dB 9 Frequency Centroid (FC) kHz
2 AE Energy (E) aJ 10 Weighted Frequency (WF) kHz
3 Duration (DU) µs 11 Partial Power 1
4 Rise time (RT) µs 12 Partial Power 2
5 Counts (CNTS) 13 Partial Power 3
6 Average Frequency (AF) kHz 14 Partial Power 4
7 RA value (RA) µs/V 15 Partial Power 5
8 Peak Frequency (PF) kHz

Table 2.1: AE Features calculated from AE waveform.

Different works have shown that using AE features in the classification analysis of the
AE signal is possible. Since AE signals in complex materials are transient, time-scale
methods are used to determine new relevant features to be introduced in the classifi-
cation process in order to improve the characterization and the discrimination of the
damage mechanisms. [De Groot et al., 1995] studied AE signals through a short-time
Fourier transform as frequency bands evolving in time, characteristic of each damage
mechanism are determined during the tensile tests on carbon/epoxy materials. Marec et
al. [Marec et al., 2008] used continuous and discrete wavelet transform to get time-scale
features on AE signals of glass-fiber-reinforced plastic composite and they found a better
discrimination of damage mechanisms than some time-based features. For this purpose,
in section 2.2, the time-frequency analysis of AE signals will be introduced and discussed.

2.2 Time-frequency signal analysis

In this section, the AE signals will be represented in the time-frequency domain. The
classification of AE signals to characterize damage is done conventionally from time and
frequency features. However, the AE signals are non-stationary, the features resulting
from the temporal or frequency analysis are insufficient for the study of damage (source
characterization algorithms) in complex materials. Time-frequency features contain more
information than time or frequency features [Hamstad et al., 2002, Marec et al., 2008].
The time-frequency features of AE signals can be evaluated using the wavelet transform.
The wavelet analysis of AE signals makes it possible to define new features that are
more relevant and effective for studying the damage mechanisms [Suzuki et al., 1996,
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Ferreira et al., 2004]. The purpose of this part is to give a short introduction to the
wavelets used in this study. The more general framework of time-frequency analysis will
be presented, some of their main properties will be reminded and its application to AE
signals will be shown in this section. First, subsection 2.2.1 presents the energy localization
of a signal in time-frequency domain.

2.2.1 Energy localization in time and frequency

In signal processing, the total energy Ex of a signal x(t) is defined as the area under the
squared magnitude of the considered signal, expressed as follows:

Ex = 〈x(t), x(t)〉 =
∫ ∞

−∞

|x(t)|2 dt, (2.8)

Parseval’s theorem gives an alternate expression for the energy of the signal x(t) in
the frequency domain as:

Ex =

∫ ∞

−∞

|x(t)|2 dt =

∫ ∞

−∞

|x̂(f)|2 df, (2.9)

where x̂(f) is the Fourier transform of x(t) and Sxx(f) = |x̂(f)|2 is the spectral density
of signal x(t) [Daubechies, 1990].
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Figure 2.3: Localization of a signal in the time-frequency plane.

However, the energy Ex of signal x(t) can be localized in the time-frequency plane.
Figure 2.3 shows this energy localization. In this plane, the representation of the signal
shows the localization of its energy in time and frequency [Auger and Flandrin, 1995].
The time location depends on the center time t and frequency location depends on the
center frequency f which are given respectively by:

t =
1

Ex

∫ ∞

−∞

t |x(t)|2 dt, f =
1

Ex

∫ ∞

−∞

f |x̂(f)|2 df, (2.10)

which means energy Ex is localized in time t and frequency f . The time resolution ∆t
and frequency resolution ∆f are defined respectively by:

∆t =

√
1

Ex

∫ ∞

−∞

(t− t)2 |x(t)|2 dt, ∆f =

√
1

Ex

∫ ∞

−∞

(f − f)2 |x̂(f)|2 df (2.11)

which presents the spread around t and f . The representation of the signal in the time-
frequency plane introduces a frequency dependence on time. The rectangle centered at
(t, f), has a size (2∆t× 2∆f). This energy localization in time and frequency is the core
of time-frequency analysis of signal [Shafi et al., 2009].
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2.2.2 Short-time Fourier transform

Before the description of the Wavelet transform, there is another Fourier-related transform
that represents signals in time and frequency domain. The short-time Fourier transform
(STFT) overcomes the drawback of FT to some extent. It consists of multiplying a signal
x(t) with a short window function w(t− τ), centered at time τ in which the window shifts
along with the signal duration with the same size of all frequency and computing the
Fourier transform of product x(t)w(t − τ) [Rioul and Vetterli, 1991]. The expression of
the STFT is:

STFTx(τ, f) =

∫ ∞

−∞

x(t)w(t− τ)e−2πiftdt, (2.12)

where the window function w(t − τ), is short relative to the signal duration. When the
window function is Gaussian as:

w(t− τ) = e−(t−τ)2/σ, (2.13)

with a constant σ, the STFT is also called Gabor transform. The analysis depends
critically on the choice of window w(t).

Spectrogram The STFT is defined as complex-valued functions and thus include both
modulus and phase information. The spectrogram is defined as the energy distribution
associated with the STFT, that is:

S(τ, f) = |STFTx(τ, f)|
2 . (2.14)

The spectrogram is based on the squared modulus of STFT that represents how the energy
of signal x(t) is distributed in the time-frequency plane. It means that the energy x(t) is
measured in position of (τ, f) but in a Heisenberg rectangle [Cohen, 1989]. Figure 2.4(a)
shows that for a given window w(t), the two Heisenberg rectangles centered at (t1, f1)
and (t2, f2), have the same time resolution σt and frequency resolution σf with respective
expressions as:

σt =

√∫ ∞

−∞

t2|w(t)|2dt; σf =

√∫ ∞

0

f 2|ŵ(f)|2df, (2.15)

where the ŵ(f) is the Fourier transform of w(t) [Cohen, 1995, Mallat, 1999]. The time
resolution σt and frequency resolution σf are independent of position of the Heisenberg
rectangle. Thus, w(t1,f1)(t) = w(t− t1)e

2πf1t corresponds to a Heisenberg rectangle of area
(σt × σf ) centered at (t1, f1), the same as w(t2,f2)(t) centered at (t2, f2).

There is a classical time-frequency resolution problem in time-frequency analysis,
which underlies the structure of spectrogram because of the Heisenberg inequality:

σtσf ≥ 1

4π
. (2.16)

The choice of the window of short duration ensures a good time resolution but at the
expense of a poor frequency resolution and vice-versa. It means that once an analyzing
window has been chosen, the resolution capabilities of the spectrogram remain fixed for
all time and frequency parameters (see Figure 2.4(a)).
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2.2.3 Wavelet transform and continuous wavelet transform

The wavelet transform (WT) is a time-frequency representation of the signal that is
described as a time-scale transform [Qi, 2000, Zitto et al., 2012]. The WT is an alter-
native to the STFT and has been applied in several areas, including data compres-
sion [Chang et al., 2000], image processing [Bovik, 2010], time-frequency spectral esti-
mation and in the field of acoustic emission [Ni and Iwamoto, 2002]. The WT is useful
in analyzing the frequency component of an AE signal as a function of time, denoising
low-amplitude AE signals on the tensile test of cross-ply composite [Satour et al., 2014]
and locate the source of AE signals in plate-type structures [Mostafapour et al., 2014].
Compared with the TF and the STFT, the WT is superior due to its ability to mea-
sure the time-frequency variations of a signal at different time-frequency resolutions.
In [Tang, 2000], Tang et al. slated that in AE signal analysis, WT improves remark-
ably the ability to locate short time energy variation of AE signals while saving main
frequencies characteristics.

A wavelet is a function ψ (ψ(t) ∈ L2(R)) with zero average (
∫∞

−∞
ψ(t)dt = 0), normal-

ized (‖ψ‖ = 1) and centered in the neighborhood of t = 0. Its Fourier Transform ψ̂(f)
satisfies the admissibility condition as :

∫ ∞

0

∣∣∣ψ̂(f)
∣∣∣
2

f
df < ∞ (2.17)

which ensures the convergence of the integral in the reconstruction formula. Scaling ψ

by a positive factor a and translating it by b ∈ R, we define a family of time-frequency
atoms, ψa,b, as

ψa,b(t) =
1√
a
ψ(

t− b

a
), a, b ∈ R, a > 0. (2.18)

These atoms remain normalized as ‖ψa,b‖ = 1. The variable a (a ∈ R and a > 0)
is the scaling parameter who presents the scale and determines the dilation (a > 1) and
compression (a < 1) of the wavelet ψ(t). The variable b (b ∈ R) is a translation parameter
that allows to delay or advance the wavelet in time. The wavelet ψ(t) can be called a
mother wavelet.

Continuous Wavelet Transforms (CWT) is used to analyze non-stationary signals by
using a time-scale representation of signal. For a given signal x(t), its wavelet coefficients
CWTx(a, b) at time b and scale a is defined as its scalar product with the wavelet ψa,b(t)
as follows:

CWTx(a, b) = 〈x(t),ψa,b(t)〉 =
1√
a

∫ ∞

−∞

x(t)ψ∗(
t− b

a
)dt. (2.19)

It provides the frequency component of signal x(t) corresponding to the scale a and time
location b and ∗ represents the complex conjugate. Varying b for the fixed scale a, a
wavelet is sliding with a fixed bandwidth Ba and with some fixed center frequency fa
along the analyzed signal x(t).

The relationship between the scale a and the real frequency content at this scale of
the particular analyzing wavelet is established by defining two frequency characteristics
of mother wavelet [Mallat, 1999]:
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– The center frequency:

f0 =

∫ ∞

0

f
∣∣∣ψ̂(f)

∣∣∣
2

df (2.20)

– The Bandwidth B0 = σf , centered around f0, with:

σf =

√∫ ∞

0

(f − f0)2
∣∣∣ψ̂(f)

∣∣∣
2

df (2.21)

For a wavelet at scale a, its center frequency (fa) and the bandwidth (Ba) are respec-
tively defined by following equations:

fa =
f0
a
; Ba =

B0

a
=

fmax − fmin

a
, (2.22)

with fmax = f0+B0/2 and fmin = f0−B0/2. The large scales correspond to low frequencies
of signals which present a global information of this signal, whereas small scales (high
frequencies) correspond to a detailed information of the signal [Giurgiutiu, 2007].

When representing wavelet atoms ψa,b(t) in the frequency domain, most of the energy
is in the frequency interval of length Ba = σf/a, centered at fa = f0/a or in the time
domain around b ∈ R in the interval of length aσt with the standard deviation σt defined
by the following integral:

σt =

√∫ ∞

−∞

t2 |ψ(t)|2 dt. (2.23)

With this definition, for every wavelet ψa,b(t), the time-frequency resolution can be con-
sidered as a Heisenberg rectangle, which is centered at (b, f0/a) with the dimension of aσt

along the time axis and σf/a along the frequency axis. Its area σt × σf is independent of
frequency or scale, and its sides represent time resolution and frequency resolution. For a
fixed scale (or frequency), in the time direction, the time-frequency resolution is constant.
For a fixed time, frequency resolution decreases (time resolution increases) as frequency
increases (scale decreases) [Bialasiewicz et al., 2012].

Figure 2.4(b) shows that the resolution in time and frequency depends on different a.
This illustration presents two atoms ψa1,b1 and ψa2,b2 (a2 > a1) and the variables b1 and
b2 don’t influence the resolution. When using the variable a2, the wavelet covers greater
temporal support of the signal making it possible to extract the long-term behavior of
the signal and has a better frequency resolution. Conversely, the smaller variable a1
presents the temporal support decreasing and allows to study local variations at high
frequencies. Comparing with STFT which has a constant time-frequency resolution (see
Figure 2.4(a)), this tunable time-frequency resolution of the CWT obviously suits for
the analysis of signals containing shorts high-frequency components and extended low-
frequency components, which is often the case for AE signals. For this reason, the CWT
can reach better time-frequency resolution in AE analysis [Suzuki et al., 1996].

There are many admissible mother wavelets ψ, the choice of optimal mother wavelet
depends on the local properties of the analyzed signal. In this thesis, the mother wavelet
chosen for the analysis is a ‘Complex Morlet wavelet’. This wavelet achieves the best com-
promise between time-resolution and frequency-resolution and it is widely used for detec-
tion and identification of transient AE events [Lin and Qu, 2000, Ni and Iwamoto, 2002].
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Figure 2.4: The time-frequency resolution of STFT and WT. (a) two Heisenberg rect-
angles of same window function in time-frequency plane. The two Heisenberg rectangles
have the same resolution. (b) Heisenberg rectangles of two wavelets. Smaller scale (a1)
decreases the time spread but increases the frequency support, which is shifted toward
higher frequencies.

The expression of complex Morlet Wavelet is:

ψ(t) =
1√
πfb

e−(t2/fb)e(2πjfct), (2.24)

where fc is the center frequency and fb controls the decay in the time domain and the
corresponding energy spread (bandwidth) in the frequency domain. Increasing fb makes
the wavelet energy more concentrated around the center frequency and results in slower
decay of the wavelet in the time domain. Decreasing fb results in a faster decay of the
wavelet in the time domain and more energy spread in the frequency domain. The value of
fb does not affect the center frequency. When converting from scale to frequency, only the
center frequency affects the frequency values. The energy spread or bandwidth parameter
affects how localized the wavelet in the frequency domain [Teolis and Benedetto, 1998].
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Figure 2.5: The real and imaginary parts of a complex Morlet wavelet.

The real and imaginary parts of a complex Morlet wavelet are shown in Figure 2.5.
The CWT needs to be discretized for computation purposes, therefore, we have used a
discrete version of CWT on Matlab thanks to its ‘Wavelet toolbox’ to compute the wavelet
scalogram of the digital AE signals.
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Wavelet scalogram A wavelet scalogram is a visual representation of the CWT of a
signal, similar to a spectrogram created using a short-time Fourier transform (STFT).
Similar to STFT, wavelet coefficients are also a complex-valued variables. The wavelet
scalogram is defined as the squared modulus of the wavelet coefficients (see Equation 2.19),
with the expression as [Rioul and Flandrin, 1992]:

Scalogram = |CWTx(a, b)|
2 , (2.25)

while the scalogram represents the energy distribution of the signal x(t) in the time-
frequency plane.
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Figure 2.6: (a) Waveform of an AE signal and its (b) wavelet scalogram.

For an AE signal illustrated in Figure 2.6(a), its wavelet scalogram is displayed in
Figure 2.6(b). This time-frequency distribution based on wavelet scalogram is clearly
realized in different frequency components and time variations. Brightness and color can
be used to indicate the energy distribution level of the AE signal, which has high energy
distribution at 50 kHz with a duration of about 100µs. In this case, the characteristics
of the AE signal in time and/or frequency domain can be directly expressed by a two-
dimensional representation as a wavelet scalogram. This time-frequency representation
can also be considered as an image. This observation reminds us to use the wavelet
scalogram to analyze AE data and in AE signal classification. A novel classification
approach is proposed and discussed in section 2.6.

2.2.4 Discrete wavelet transform and decomposition analysis

The Discrete wavelet transforms (DWT) are defined by discretizing the variables a and
b. Equation (2.26) presents the expression of DWT which is the projection of the signal
x(t) on a discrete wavelet basis.

DWTx(j, k) =

∫ ∞

−∞

x(t)ψ∗
j,k(t)dt, (2.26)

and
ψj,k(t) = a

−j/2
0 ψ(a−j

0 t− kb0), j ∈ Z, k ∈ Z, (2.27)

with j represents the scale and k represents the shift in time, x(t) is the analyzed signal
and ψ(t) is the analyzing mother wavelet. Commonly, a0 = 2 and b0 = 1.
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The main application of DWT in the AE domain is the wavelet decomposition of AE
signals and Wavelet packet decomposition of AE signals. The signal passes through two
filters and two signals are obtained, corresponding to the approximation (A) and the detail
(D) coefficients of the first level [Sikorski, 2012]. The approximations are the high scale,
low-frequency components of the signal. The details are the low scale, high-frequency
components. Then, there are two methods:

– Wavelet decomposition: At the next decomposition level, the two filters are just
applied to the resulting approximation coefficients and so on [Mallat, 1999].

– Wavelet packet decomposition [Antonini and Orlandi, 2001]: At the next decompo-
sition level, approximation and detail signals resulting from the previous level are decom-
posed again that can be represented in the form of a tree [Maillet et al., 2014].

Figure 2.7 shows the two methods of decomposition performed on 3 levels. In the next
subsection, some classical time-frequency features which depend on CWT and decompo-
sition of signals by DWT presented in literature will be described.

AE signal

A D

AA AD DA DD

AAA AAD ADA ADD DAA DAD DDA DDD

AE signal

A D

AA AD

AAA

a

AAD

b

Figure 2.7: The decomposition tree on 3 levels: (a) Wavelet decomposition and (b)
Wavelet packet decomposition.

2.2.5 Classical time-frequency features

In [Marec et al., 2008], Marec et al. proposed several scale-frequency features by us-
ing the CWT and DWT which were used in the classification of AE signals on glass
fiber/polyester cross-ply composites and sheet molding compound (SMC). Morizet et
al. [Morizet et al., 2016] used the wavelet packet decomposition to analysis the AE sig-
nals on corrosion. Here, a short review is shown of these existing time-frequency features.

– Feature 1 : The sum of the square modulus of CWT as

fd(a, Ib) =
∑

b

|CWTx(a, b)|
2 , b ∈ Ib. (2.28)

– Feature 2 : The maximum of the square modulus of CWT as

ff (a, Ib) = max |CWTx(a, b)|
2 , b ∈ Ib. (2.29)

Both two features are calculated for each scale (a) on a limited time duration Ib. This
time duration is set from a new threshold which corresponds to a percentage of (10%) of
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the maximum amplitude of the wavelet coefficient. Then the features corresponding to
the most energetic scale are selected as new features.

– Feature 3 : By using the DWT, signal can be decomposed by different level of
details and approximations. The maximum of the square detail coefficients for each level
of decomposition as

f3(j) = max(DWTx(j, k)
2), (2.30)

where DWTx(j, k) are the detail coefficients of each level of decomposition j. Features
fd, ff and f3 are described in literature [Marec et al., 2008].

– Feature 4 : The wavelet packet energy which is the energy percentage of the terminal
nodes of the wavelet packet tree is computed. In some literature leading to 23 = 8 wavelet
packet energy features [Maillet et al., 2014].

However, in this thesis, for AE data analysis, we use the wavelet scalogram to re-
place these conventional features. In fact, in a T-F representation, the wavelet scalogram
has all the T-F information of a time-series signal. Various studies have already pre-
sented the potentiality of the wavelet scalogram in many domains [Jing and Hao, 2009,
Van Drongelen, 2018, Lim et al., 2015]. For this purpose, we propose a method that com-
bines the wavelet scalogram and the convolutional neural network (CNN) to classify the
AE signals. The detail of this classification approach will be presented in the section 2.6.

2.3 Acoustic emission preprocessing

In AE analysis, the detected AE data need a pretreatment. In this section, according to
our needs, we will introduce three preprocessing steps:

– 1. AE signal denoising by Modified Soft Thresholding Technique (MSTT).

– 2. AE features selection based on the Laplace Score (LS) analysis.

– 3. AE features optimization by using the Principal Component Analysis (PCA).

The first technique is used for AE signals detected from nonlinear measurements
(Chapter 4) to improve the feature extraction results of low-energy signals. The other two
processing techniques are important steps to improve cluster analysis of acoustic emission
data in an unsupervised pattern recognition.

2.3.1 Acoustic emission signal denoising

During the measurements, AE hits were recorded by the AE system by using a fixed
acquisition threshold. This threshold was set between 35 dB and 50 dB, depending on
experiments and materials. This limitation is mainly due to the noisy experimental con-
ditions, which makes signals obtained during the recording of AE hits usually mixed with
noise. However, when we use a lower acquisition threshold, some low-amplitude AE sig-
nals can be recorded, which is related to the very weak energy emitted in materials. In
Chapter 4, during the slow dynamics measurements, as the detected AE activity is low
amplitude, the acquisition threshold needs to be very low to detect them. For this rea-
son, we use the CWT denoising method which removes noise in the AE waveform while
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retaining as much as possible the AE features. This denoising method called Modified
Soft Thresholding Technique (MSTT) was proposed by Satour et al. [Satour et al., 2014].

The first step of the MSTT algorithm is gathering a set of real noise signals with a
lower threshold (for example 20 dB). Different wavelet coefficients modulus taken from
the collected real noise signals are calculated by using the CWT. Then these wavelet co-
efficients modulus of the noise signals are used to calculate an estimators as a coefficients
matrix. The suppression of noise was carried out by means of MSTT on the basis of the
wavelet coefficients calculated for the considered AE signal. Finally, denoised signals were
obtained by the reconstruction process with the help of the inverse CWT. This MSTT
algorithm is considered as the original AE signal x(t) has the continuous wavelet trans-
form CWTx(a, b) and this signal after denoising obtains a modified continuous wavelet
transform MCWTx(a, b). The inverse CWT of MCWTx(a, b) give the denoised AE signal
xd(t). The algorithm to compute the modified transform MCWTx(a, b) is considers as
follows:

if {|CWTx(a, b)| > T (a, b)}, then

MCWTx(a, b) = (|CWTx(a, b)|− T (a, b))eiarg(CWTx(a,b))

else,

MCWTx(a, b) = 0;

end

(2.31)

In Equation (2.31), T (a, b) is a noise threshold value associated with the wavelet
coefficient located by parameters a and b in the time-scale plane. This threshold value is
estimated using information extracted from CWT applied to several noise signal n(t). If
we denote Mn(a, b) the modulus of the CWT of the noise signal n(t), the T (a, b) is given
by expression:

T (a, b) = αF ([Mn(a, b)]), (2.32)

where the function F is an estimator (average ofMn(a, b)) of the assumed random variable
Mn(a, b) obtained from numerous noise signal. Parameter α allows tuning the amount of
noise to be removed through the denoising procedure.

In order to separate AE signals from noise signals, we need a coefficient which is
denoted ‘Spectral Flatness’ [Johnston, 1988]. From the power spectral density of the
digital signal x(n), the spectral flatness is computed as the geometric mean (Gx) of the
Fourier coefficients divided by its arithmetic mean (Ax).

Flatness =
Gx

Ax

=

1/N

√∏N−1
k=0 |X(k)|2

1
N

∑N−1
k=0 |X(k)|2

=
exp

(
1
N

∑N−1
k=0 ln |X(k)|2

)

1
N

∑N−1
k=0 |X(k)|2

. (2.33)

where X(k) is computed with a FFT applied to the signal x(n). A high value of spec-
tral flatness means the energy is equally distributed along the spectrum of the signal
(approaching 1.0 for white noise). The low values are obtained when the energy is con-
centrated in a small number of components of the spectrum [Painter and Spanias, 2000].
Since AE signals originate from the impulsive energy, the spectral flatness after denoising
should be smaller.
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2.3.2 Acoustic emission features selection

Feature selection is the process of extracting features that are beneficial to classifica-
tion. ‘Good features’ means that objects of the same class have similar feature values
while objects of different classes have different values. The goal of feature selection is to
find a subset of parameters and eliminate irrelevant and redundant features while pre-
serving relevant features, to improve clustering efficiency and quality. The existence of
irrelevant features in data sets may reduce clustering quality and consume more mem-
ory and computation time. In addition, different subsets of related features may pro-
duce different clusters, which may help to discover different hidden information in AE
data [Alelyani et al., 2018].

For unsupervised feature selection, there exist the following methods: maximum vari-
ance, Laplacian Score, spectral feature selection method, and multi-cluster feature se-
lection method [Zhao and Liu, 2007]. Laplace Score (LS) is an advanced variance anal-
ysis that not only prefers those features with larger variances which have more repre-
sentative power, but it also tends to select features with stronger locality preserving
ability [He et al., 2006]. The basic idea of LS is to evaluate the features according to
their locality preserving power [Benabdeslem and Hindawi, 2011]. A key assumption
in LS is that data from the same class are close to each other. LS is fundamentally
based on Laplacian Eigenmaps [Belkin and Niyogi, 2002] and Locality Preserving Projec-
tion [He and Niyogi, 2004].

Laplacian Score For AE analysis, d features collected from n AE signals are consid-
ered as a data group (or matrix) X(d×n), where X = [x1,x2, ...xn]. In the Laplacian
Score algorithm, n is the sample number, d is the dimension of features and xi is the
ith sample point. Therefore, the Laplacian Score can be computed by the following
steps [He et al., 2006, Li et al., 2017]:

1. Constructing a nearest neighbor graph G: We collect between sample points xi and
xj if xi and xj are ‘close’, i.e. xi is among k nearest neighbors of xj or xj is among k
nearest neighbors of xi (normally k = 5).

2. Choosing the weights of xi and xj: If sample points xi and xj are connected, the
weight Sij between xi and xj has the expression as:

Sij = e−
‖xi−xj‖2

t , (2.34)

where t is a suitable constant (normally t = 1). Otherwise, we set Sij = 0. The weight
matrix S of the graph shows the local structure of the data space.

3. For the rth feature, we define fr as:

fr = [fr1, fr2, · · · , frn]
T , (2.35)

where fri is the rth feature in ith sample. And we define f̃r as:

f̃r = fr −
fTr D1

1TD1
1, (2.36)

where D is a diagonal matrix with Dii =
∑

j Sij and 1 = [1, 1, · · · , 1]T.
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Thus, the estimated variance of the rth feature fr is computed as:

Var (fr) =
∑

i

f̃2riDii = f̃Tr Df̃r (2.37)

4. Computing the Laplacian Score: makes L = D − S, where the matrix L is called
graph Laplacian. Then the Laplacian Score of the rth feature is:

Lr =

∑
i,j (fri − frj)

2 Sij
∑

i

(
fri − 1

n

∑
i fri

)2
Dii

=
f̃Tr Lf̃r

f̃Tr Df̃r
(2.38)

As shown in the references [Li et al., 2015, Carvelli et al., 2017], for AEanalysis, if the
Laplace score of an AE feature is greater than 0.9, it can be considered as a ’good feature‘
and has the ability to cluster the AE signal. In most cases, the selected AE features may
have still a large dimension and the dimension need to be reduced by feature optimization.

2.3.3 Acoustic emission features optimization

The features used for the cluster analysis should be relevant and limited in number. There
are two main reasons for keeping the number of features as small as possible: measurement
cost and classification accuracy [Momon et al., 2012]. The principal component analysis
(PCA) algorithm is important before clustering. It is a mathematical method of data
analysis that can reduce multidimensional data into lower dimensions which project them
into a reduced space [Wold et al., 1987, Oja, 1989] and also improves the results, which
is useful to visualize the data [Oskouei et al., 2012].

Principal component analysis In AE analysis, m features collected from n AE signals
are the components of the n input vectors xi (i = 1, 2, ..., n). Each component includes
AE signals information which represents this signal. The matrix population X (n ×m)
is composed of the n inputs xi as:

X =




xT
1

xT
2
...
xT
n


 =




x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m
...

...
. . .

...
xn,1 xn,2 · · · xn,m


 = [X1,X2, ...,Xm] . (2.39)

The element xi,j represents the jth feature in the ith AE signal, symbol T represents the
transpose of the vector and column vector Xj (j = 1, 2, ...,m) includes all the variables
of the jth feature [MacGregor and Kourti, 1995].

Based on the matrix X, the algorithm of PCA will be presented in five steps:

1. Standardization: The data are first centered and reduced (the mean is null and the
standard deviation is equal to unity for each column) by using expression as:

zi,j =
xi,j −Xj

σXj

(i = 1, 2, ..., n; j = 1, 2, ...,m), (2.40)
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where Xj is the mean of Xj and σXj
is the standard deviation of Xj. The matrix X can

be rewritten as a new matrix Z = (zi,j)n×m. Once the standardization is done, all the
variables will be transformed to the same scale.

2. Covariance matrix computation: In the base of matrix Z, the covariance matrix C
is calculated as [Shlens, 2014]:

C =
1

n− 1
E[ZZT], (2.41)

where the symbol T represents the transpose of matrix and E [ ] is the expected value.
The components of C, denoted by ckl(k = 1, 2, ...,m and l = 1, 2, ...,m) represents the
covariances between the column vectors Zk and Zl:

Zk =




z1,k
z2,k
...

zn,k


 , Zl =




z1,l
z2,l
...

zn,l


 . (2.42)

3. Eigenvectors and eigenvalues of the covariance matrix calculation : As the covari-
ance matrix is a symmetric matrix, an orthogonal basis can be calculated by finding its
eigenvalues and eigenvectors. Using the expression:

|C− λI| = 0, (2.43)

the eigenvalues of matrix C are calculated as λk (k = 1, 2, ...,m). The eigenvalues are
sorted from big to small as λ1 ≥ λ2 ≥ .. ≥ λm and the eigenvectors uk(m × 1) are the
solutions of the equation:

Cuk = λkuk, k = 1, 2, ...,m. (2.44)

4. Variance estimation: For each component (k = 1, 2, ...,m), it is possible to calculate
the variances in percentages αk of component k and cumulative percentages βk as:

αk[%] =
λk∑m
i=1 λi

× 100, (2.45)

βk[%] =

∑k
i=1 λi∑m
i=1 λi

× 100. (2.46)

5. An ordered orthogonal basis can be created with the first eigenvectors having the
direction of the largest variances of the data [Jolliffe, 2011]. Thus, directions in which
the data set has the most significant amounts of energy can be found. Instead of using
all the eigenvectors of the covariance matrix, we may represent the data in terms of only
first several most representative eigenvectors. If Ak (m × k) has the first k eigenvectors
(normally βk ≥ 90%), by transforming the standardization data matrix Z, we obtain:

Y = ZAk, (2.47)

where matrix Y (n × k) represents n AE signals in k-principal components base and it
contains more than 90% of the standard deviation of the original data X. It means that
the remaining principal components could be neglected without losing information (less
than 10%) by reducing the dimension of data. It is an effective and useful multivariate
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analysis method which is usually used to reduce dimension of a large data set to enable
better analysis.

As an example, several AE signals are selected with three features (amplitude, duration
and rise time) that have been computed. Figure 2.8(a) shows the AE data representation
in 3D, each point presents one AE signal. Figure 2.8(b) shows the PCA visualization of
the two uncorrelated features (PC1 and PC2) of these AE signals. As can be seen, the
two principal components contain 91.8% (βk = 91.8%) of the standard derivation of the
original data, meaning the losing information is acceptable. This PCA projection shows
that the distribution of the data does not overlap. Thus, the clustering of the AE signals
is based on the two uncorrelated features. This unsupervised clustering approach will be
detailed in the next section.
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Figure 2.8: (a) Original AE data representation. (b) 2D PCA visualization of the AE
data.

In this thesis, the PCA is used as a feature optimization procedure in Chapter 3 and
Chapter 4. The AE features is applied by PCA and several principal components (based
on βk ≥ 90%) as new uncorrelated features will be used as input of cluster analysis.

2.4 Cluster analysis of acoustic emission data

In AE analysis, the main challenge is to find the relationship between AE events and cor-
responding damage mechanisms. This means discovering the grouping of AE signals in
the clusters. The signals in each cluster, having certain similarities, can be corresponded
to the same damage mechanisms. When detected AE signals are not labeled, the unsu-
pervised clustering algorithm needs to be used. As we know, the most used methods are
k-means [Pashmforoush et al., 2012, Assarar et al., 2015, Li et al., 2016], Self-Organized
Map [Huguet et al., 2002, Godin et al., 2004] and fuzzy-C means [Marec et al., 2008]. In
this study, we choose k-means as the clustering algorithm. In this section, the algorithm of
k-means will be introduced in subsection 2.4.1. In addition, the determination of the rel-
evant number of clusters requires the cluster validity indices, which will also be discussed
in subsection 2.4.2.
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2.4.1 k-means clustering algorithm

The k-means algorithm was first proposed at the 1950s and is still one of the most widely
used algorithms for unsupervised clustering in data analysis. Ease of implementation, sim-
plicity, efficiency, and empirical success are the main reasons for its popularity [Jain, 2010].
The aim of the k-means method is to minimize the sum of squared distances between all
the input vectors of a cluster and its centre [Likas et al., 2003]. This method assumes
the cluster number k to build known and specified in advance. The k-means algorithm is
introduced by using a simple example.

k-means algorithm To cluster a set of n input vectors xj (j = 1, 2, ..., n) into k clusters
(C1, C2, ..., Ck) that ci (i = 1, 2, ..., k) is the mean of cluster Ci, algorithm has four steps
which are:

1. Initialize the clusters centers ci in a random way.

2. Compute the distance between the centers ci and every input vector xj and attribute
each input vector to the closest cluster.

3. Recompute the location of the clusters centers basing on mean of the input vector
in each cluster, so that error function (Equation (2.48)) is minimized.

E =
k∑

i=1

∑

xj∈Ci

‖xj − ci‖2. (2.48)

4. Repeat steps 2 and 3 until Equation (2.48) converge and the centers location do
not change.

In Equation (2.48), ‖ · ‖ is the Euclidean distance. Figure 2.9 shows an illustration of
the k-means algorithm on a 2D data with two clusters.
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Figure 2.9: Illustration of k-means algorithm.

2.4.2 Cluster validity indices

The number of clusters chosen depends on some cluster validity indices. The most used
in the AE literature are Davies-Bouldin (DB) index and the Silhouette coefficient (SC).
The optimal cluster number has the lower Davies-Bouldin index and the higher Silhouette
coefficient [Sause et al., 2012a, Sibil et al., 2012].

47



Signal based acoustic emission signal analysis

Davies-Bouldin index The Davies-Bouldin (DB) index [Davies and Bouldin, 1979] is
a function of the ratio of the sum of within-cluster scatter to between-cluster separation
which is defined as:

DB =
1

k

k∑

i=1

max
j ∕=i

{
di + dj
Dij

}
(2.49)

where k is the number of clusters, di and dj are the average within-cluster distances of
clusters i and j respectively, Dij denotes the distance between the centers of the ith and
jth cluster. To understand Equation (2.49), variable di is defined as:

di =

√√√√ 1

Mi

Mi∑

j=1

|xj − ci|
2 (2.50)

where ci is the center of cluster Ci, xj is the input vector assigned to cluster Ci and Mi

is the size of the cluster Ci (number of input vectors in the cluster Ci). The variable dj
has the same expression. The variable Dij is the Euclidean distance between two centers
ci and cj. The lower is the DB index, the better is the compactness and the separability.

Silhouette Coefficient The Silhouette Coefficient (SC) [Rousseeuw, 1987] has a value
between 0 and 1, the higher score relates the clusters are dense and well separated which
is used as the second measure of clustering quality. For k clusters, if xi is in the cluster
Ca (a ∈ [1, 2, ..., k]), A(i) is the average distance between xi and all other data vectors in
the same cluster with expression as:

A(i) =
1

Ma − 1

∑

j∈Ca,j ∕=i

‖xi − xj‖ (2.51)

where Ma is the number of vectors in cluster Ca. It is possible to interpret A(i) as a
measure of how well xi is assigned to its cluster (the smaller the value, the better the
assignment). The variable B(i) is the smallest average distance between the vector xi

and vectors in another cluster Cb which has expression as:

B(i) = min
a∕=b

1

Mb

∑

j∈Cb

‖xi − xj‖ (2.52)

where Mb is the number of vectors in cluster Cb. For one vector xi, its silhouette value is
defined as:

S(i) =
B(i)− A(i)

max {A(i), B(i)}
(2.53)

The solution quality can be represented either by the average silhouette value for each
cluster or by the average silhouette value of the entire clustering solution composed of k
clusters, denoted SC and calculated as follows for a data set of n vectors:

SC =
1

n

n∑

i=1

S(i). (2.54)

The number k is chosen for each test and its average silhouette SC is computed. A
SC value greater than 0.6 generally assures that the clustering is of sufficient qual-
ity [Gutkin et al., 2011].
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With the lower Davies-Bouldin index and higher Silhouette coefficient, the optimal
cluster number can be confirmed. In AE analysis, the chosen features are normalized and
the PCA is used to reduce the dimension. The relevant number of principal components
are used as the input vectors of the k-means algorithm so that AE signals are grouped
into confirmed number of clusters.

We continue the mentioned example shown in subsection 2.3.3, AE data are repre-
sented by two principal components as inputs of the k-means algorithm, which is shown
in Figure 2.10(a). Figure 2.10(b) shows the Davies-Bouldin (DB) index and the Silhouette
Coefficient (SC) with different numbers of clusters.
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Figure 2.10: (a) 2D presentation of AE data as input of k-means algorithm. (b) Davies
and Bouldin index and the Silhouette Coefficient of AE data for k-means algorithm.

The optimal clustering is obtained with (k = 3) according to the minimum values of
the DB index and the maximum of SC. The k-means clustering algorithm is therefore
applied to AE data with three clusters. Figure 2.11 depicts the projection of the two
clusters of AE signals to the two-dimensional plot by two principal components. These
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Figure 2.11: Illustration of 2D AE data applied by k-means clustering algorithm with
three clusters.

results clearly show that the PCA-based k-means clustering algorithm has good ability of
unsupervised clustering. However, the data between clusters 1 and 2 need to be carefully
treated because of the cluster analysis groups the data in a mathematical way. Therefore,
the clustering results include uncertainty and need observation validation.
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2.5 Unsupervised pattern recognition methodology

In this thesis, in order to associate AE signals with damage mechanisms, we use unsu-
pervised pattern recognition to cluster AE signals. The goal of the unsupervised pattern
recognition method is to create an automatic technique to select promising feature com-
binations for unsupervised clustering of detected AE signals. The visualization of the
complete method is shown as a flow diagram in Figure 2.12. This method comprises four
steps:

AE signals

Feature extraction

Normalization

Feature selection

(Laplacian Score)

Dimensionality optimization

(Principal Component Analysis)

Cluster validity indices  

(DB & SC)

Apply k-means clustering 

Data preprocessing

Cluster analysis

AE feature extraction

Cluster identification

Figure 2.12: Flowchart of the
unsupervised pattern recognition
process.

AE feature extraction AE signals are represented
by the time domain features and the frequency domain
features as an AE dataset (15 features as shown in
Table 2.1).

Data preprocessing First, the AE dataset is nor-
malized between 0 and 1, giving the same weight to all
features. Then the appropriate features are selected
by using the Laplacian Score (LS) and the AE dataset
transformed into the selected feature dataset. The se-
lected feature dataset may still have a large dimension
which is subjected to the principal component analysis
(PCA) algorithm to reduce the dimension. In addition,
the computed principal components are uncorrelated
as features that may improve the clustering results.

Unsupervised cluster analysis Finally, the princi-
pal component dataset is used as input of the k-means
algorithm. The number of clusters is chosen by two
cluster validity indices: the Davies-Bouldin (DB) index
and the Silhouette coefficient (SC). The optimal cluster
number (k) is confirmed by the lowest DB index and
the highest SC value. Then applied by the k-means
algorithm, the dataset is clustered into k clusters.

Cluster identification In addition, the validation
of clustering results and damage mechanism identifi-
cation needs to be further confirmed. This work is
focused on comparing the AE features and/or wavelet
scalogram of AE signals from different clusters which
are shown in Chapters 3 and 4.
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2.6 Image-based acoustic emission data classification

2.6.1 Introduction

In this section, we introduce an acoustic emission (AE) data classification algorithm com-
bining continuous wavelet transform (CWT) and convolution neural network (CNN). The
CWT has the ability to create a time-frequency representation of AE signals, which con-
tains detailed information of the signals and effectively captures relevant frequency com-
ponents. Moreover, this time-frequency representation can be treated as an image (AE
image). Meanwhile, artificial intelligence (AI) and machine learning (ML) technology are
developing rapidly, especially the application of deep learning (DL) in computer vision,
which has made giant progress in recent years.

Convolutional neural network (CNN) [Krizhevsky et al., 2012, Zeiler and Fergus, 2014]
is the core of the recent noticeable progress in deep learning which is most commonly ap-
plied to analyze visual imagery. For this reason, we can use CNN to extract deep features
from these AE images and classify the corresponding AE signals. In the field of biology,
in order to classify human electrocardiogram (ECG) signals, some similar algorithms have
been proposed and a CNN architecture has been designed [Acharya et al., 2017]. Qian
et al. [Qian et al., 2016] used sounds’ spectrogram and DL for multi-feature classification
of the excitation location of snoring sounds in the upper airway which is helpful for the
diagnosis of obstructive sleep apnea (OSA). To correct the identification of the funda-
mental heart sounds, Meintjes et al. [Meintjes et al., 2018] used the CWT and CNN. In
some acoustic studies, such as [Gwardys and Grzywczak, 2014], Gwardys and Grzywczak
used frequency spectrograms of music track as images and to train their CNN model.
In [Valenti et al., 2017], a novel application of CNN for the task of acoustic scene clas-
sification (ASC) was presented which was based on the STFT and a deep CNN. Guan
et al. proposed an intelligent acoustic signal processing system based on deep neural
networks that integrate four working modes (perform acoustic scene classification, audio
tagging, and rare sound event detection) together [Guan et al., 2018]. In addition, Chen
et al. [Chen et al., 2018] proposed an approach to learn audio scene patterns from wavelet
scalogram.

To sum the above up, many similar methods have been done, which give us some en-
lightenment. In this study, continuous wavelet analysis (CWT) and convolutional neural
network (CNN) are integrated together for AE data classification. This section includes
five main parts: I. AE image representation; II. Introduction of CNN; III. AlexNet archi-
tecture; IV. Transfer learning algorithm; V. CWT and CNN-based AE signal classification.

2.6.2 Acoustic emission image representation

In this study, we seek to extract the time-frequency information which is hidden in AE
signals by using continuous wavelet transform (CWT). The classical time-frequency rep-
resentation is the wavelet scalogram, which is the squared modulus of the continuous
wavelet transform (CWT). Wavelet scalogram represents the local energy density of a sig-
nal by using different colors. However, for two different signals, their wavelet scalogram
is incomparable because the same color shows different magnitudes in different wavelet
scalogram (see Figures 2.13(a) and (c)). In order to compare different acoustic emission
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signals, each wavelet scalogram uses the same color scale bar. For this reason, each color
presents the same magnitudes in different wavelet scalogram. Each detected AE signal
has different intensity, signals have tension levels from 1mv to 10V. To cover this huge
range (∼ 1× 104), the traditional resolution of the color scale bar is not enough. Hence,
a novel representation is used in this study. The methodology consists in transforming
the magnitude of wavelet coefficients modulus in dB and using the same color scale bar
of intensity values between 20 dB (smallest sensitivity of the AE system) and 100 dB for
each AE signal.

Figure 2.13 shows two AE signals and their wavelet scalogram, which are based on com-
plex Morlet Wavelet and their AE image representations. In Figures 2.13(a) and 2.13(c),
each wavelet scalogram have its own color scale bar. However, in the AE image, each
signal has the same range of color scale bar which makes two images comparable. Fig-
ure 2.13(b) shows that AE signal s1(t) has a high energy distribution around 50kHz with
a duration around 100µs which show the information of scalogram. In Figure 2.13(d),
the AE image shows two high energy distributions around 350 kHz and 100 kHz, which
have different durations. Comparing two AE images, different brightness and colors can
be used to indicate the energy level of each signal. In summary, the visualization in AE
image representation is very useful to analyze the AE signals. This type of representation
(AE image) will be used in our work.

(a) (b)

(c) (d)

Figure 2.13: (a) AE signal s1(t) with its wavelet scalogram and (b) its AE image represen-
tation. (c) AE signal s2(t) with its wavelet scalogram and (d) its AE image representation.
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2.6.3 Deep convolutional neural network

In this subsection, some theoretical background and developments of artificial neural net-
work (ANN) and convolutional neural network (CNN) will be presented. The CNN is one
of the most commonly used types of ANN for image classification [Goodfellow et al., 2016].
As a supervised deep neural network, CNN has multiple hidden layers and needs to be
trained in a robust manner [Géron, 2019]. Generally, CNN architectures consist of convo-
lutional layers, pooling layers, either one or more fully connected layers, as in a standard
feedforward neural network [LeCun et al., 2015].

Figure 2.14 illustrates typical CNN architecture for an image classification task. An
image is an input to the network, and this is followed by several stages of convolution
and pooling. Thereafter, representations from these operations feed one or more fully
connected layers. Finally, the last fully connected layer outputs the corresponding class
label.

Figure 2.14: The pipeline of the general CNN architecture.[Guo et al., 2016]

Different kinds of layers play different roles. Here, we take the famous LeNet-5 as
an example to introduce the main layers in the CNN architecture, because the basic
components of numerous variants of CNN architectures are very similar [Nielsen, 2015].

Figure 2.15: The architecture of the LeNet-5 network, which works well on digit classifi-
cation task. [LeCun et al., 1998]

Convolutional layer The convolutional layers aim to serve as features extractor, they
can feature the representations of the input images [Nielsen, 2015, Schmidhuber, 2015].
Normally, a convolution layer is composed of several convolution kernels (likes filters),
which are used to compute different feature maps (see Figure 2.16(a)). For the LeNet-5,
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the input image (32×32 pixel) has the dimension of 32×32×1 (Height×Breadth×Number
of channels, eg. RGB). It means that the input layer has as a 32×32×1 square of neurons,
the first hidden layer C1 is a convolution layer with 6 different kernels, each kernel has 25
neurons which are called ‘local receptive field’ with the dimension of 5×5×1. The kernel
resembles a little window on the input pixels. The kernel is fielded across the entire input
image, which begins on the top-left corner. Stride (S) controls how does the kernel field.
When the stride is 1, then the kernel is moved by one pixel at a time to the right and up
to down (i.e., by one input neuron). The dimension of the feature map can be calculated
with the expression as follows:

D =
W −K + 2P

S
+ 1, (2.55)

where W is the input volume size, K is the kernel size and P is the number of zero
paddings used on the border. For LeNet-5 (see Figure 2.15), W = 32, K = 5 and P = 0,
if S = 1, the dimension of the feature map is 28. In some cases, setting zero padding
to be P = (K − 1)/2 when the stride S = 1 ensures that the input volume and feature
map will have the same size spatially. The complete feature maps are obtained by using
several different kernels. Mathematically, the feature value at location (i, j) in the kth
feature map ,zi,j,k is calculated by:

zi,j,k = σ(wk
Txi,j + bk). (2.56)

Here, σ is the neural activation function (as sigmoid, tanh and ReLU...), wk and bk are
the weight vector and bias terms of the kth kernel and xi,j is the inputs path center at
location (i, j). For one feature map, we use the same bias to save time. The aim of
the activation function (σ) is to introduce nonlinearities to CNN, which are desirable for
multi-layer networks to detect nonlinear features.

Kernels

Inputs Outputs
Feature maps

Output maps

max

…

Feature maps

fc fc

… …

fc

a b c

Figure 2.16: (a) The operation of a convolutional layer, the kernel has a local receptive
field of 3 × 3. (b) The operation of the max pooling layer. (c) Features maps connect
with three fully-connected layers. [Guo et al., 2016]

Pooling layer Generally, a pooling layer follows a convolutional layer and can be used
to reduce the dimensions of feature maps and network parameters, which will simplify the
information in the output from the convolutional layer (Sub-sampling layer in Figure 2.15).
In detail, a pooling layer takes each feature map output from the convolutional layer and
prepares a condensed feature map. For instance, each unit in the pooling layer may
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summarize a region of 2 × 2 neurons in the previous layer. The pooling technique can
include the max pooling, the average pooling and the L2 pooling (square root of the sum of
the squares of the activation). Figure 2.16(b) gives an example of a max-pooling process.
In max-pooling, a pooling unit simply outputs the maximum activation in the 2×2 input
region. For LeNet-5, the features maps of C1 were reduced to 14× 14 dimensions with a
max-pooling operator which has size 2× 2 and stride 2.

Fully-connected layers Generally, following the last pooling layer in the network,
there are several fully-connected layers converting the 2D feature maps into a 1D feature
vector, for further feature representation (see Figure 2.16(c)). Fully-connected layers
perform like a traditional neural network and contain about 90% of the parameters in
this CNN architecture. It enables us to feed forward the neural network into a vector
with a predefined length. For LeNet-5, F6 is a real fully-connected layer, which has 84
neurons and each neuron is connected with 120 neurons of layer C5. With the tanh
activation function (see Figure 2.18(b)), the output of this layer is connected with the
output layer with 10 neurons. This output layer is a fully-connected layer, its 10 neurons
are labeled ‘0’ to ‘9’. For LeNet-5, its output layer is composed of Euclidean Radials Basis
Function units (RBF). The output of each RBF unit yi is computed as follows:

yi =
∑

j

(xi − wij)
2, (2.57)

where xi is the input vector and wij is the parameter vector, meaning that each output
BRF unit computes the Euclidean distance between its input vector and its parameter
vector.

Supervised learning In general, the network needs to be trained by a large number of
labeled datasets in a supervised manner. The training network has two stages: the forward
stage and the backward stage [Gu et al., 2018]. First, the main goal of the forward stage
is to represent the input image with the current parameters (weights and bias) in each
layer then get the predicted output. The difference between the predicted output and
target (truth labels) can be computed by the ‘cost function’. Secondly, based on the cost
function, the gradient of each parameter is calculated by chain rules in the backward
stage. All the parameters are updated based on the gradients and are prepared for the
next forward computation. After sufficient iterations of the forward and backward stages,
network learning can be stopped when the cost function is minimized.

To understand this training process, we first introduce the backpropagation (BP)
algorithm [Werbos, 1974, Rumelhart et al., 1986, Nielsen, 2015, Géron, 2019]. This al-
gorithm is used to calculate a gradient that is needed in the calculation of the weights
to be used for classification in the network. In order to train the network, training set
{(x1, t1), . . . , (xN , tN)} is given. For a set of input vectors xn, where n = 1, . . . , N , we
denote a corresponding set of target vectors tn. However, when the input vectors xn from
the training set is presented to this network, it produces a predicted output yn different
in general from the target tn. To solve this problem, the quadratic cost function J(yn, tn)
is proposed with the following expression:

J(yn, tn) =
1

2

N∑

n=1

‖yn − tn‖2 . (2.58)
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The purpose of training is to minimize the cost function J using the training dataset and
the gradient descent algorithm to update the parameters. This algorithm is introduced
in Appendix A with a simple example.

With the help of LeNet-5, the main layers and supervised learning of CNN have been
presented. Altogether the LeNet 5 laid the basic foundation for CNN. One of the main
drawbacks is that there was not much computational power available on those days like
GPUs till recently and the CPUs were not faster enough. Furthermore, the introduction
of GPUs to general-purpose computing and CPUs becoming more and more powerful
made deep learning problems solving feasible and efficient with reasonable time cost. In
the next part, we will present another CNN, which can be considered as the first modern
successful CNN architecture named ‘AlexNet’.

2.6.4 AlexNet architecture

AlexNet is a CNN, which was designed by Alex Krizhevsky et al. [Krizhevsky et al., 2012]
that achieved top results on the ILSVRC-2010 and ILSVRC-2012 image classification
tasks. AlexNet is a large network structure with 60 million parameters and more than
650,000 neurons. Since AlexNet is deeper than the LeNet, the concept of going deeper
with network model came into the play after this. Some of the researchers started
building deeper networks, the most famous are GoogLeNet [Szegedy et al., 2015], VG-
GNet [Simonyan and Zisserman, 2014], ResNet [He et al., 2016], etc. Theoretically, the
deeper the number of networks is, the better detection and recognition effect are obtained,
but the higher the time cost complexity is. In this thesis, as a new attempt to connect
the AE wavelet scalogram and CNN, we choosed the AlexNet.

Figure 2.17 shows the illustration of the architecture of the original AlexNet. AlexNet

INPUT

227x227x3

55x55x96
27x27x256

13x13x384 13x13x384 13x13x256 4096 4096
1000

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3 CONV4 CONV5

MAX POOL5

FC6 FC7 FC8

OUTPUT

Figure 2.17: Sectific illustration of the architecture of AlexNet with 8 main layers, each
layer with its output dimension.

contains eight main layers; the first five are convolutional layers, some of them are followed
by max-pooling layers and the last three are fully connected layers. The output of the
last fully-connected layer (FC8) is fed to a 1000-way softmax layer which produces a
distribution over the 1000 class labels. The detailed statistics can be found in Table 2.2.
We consider this network with 25 layers; detailed information of this network will be
introduced below.
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1 ‘Data’ Image input 227×227×3 images with ’zero-center’ normalization
2 ‘Conv1’ Convolution 96 11×11×3 convolutions with stride [4 4] and padding [0 0 0 0]
3 ‘Relu1’ ReLU ReLU
4 ‘Norm1’ Local Response Normalization Local Response Normalization with 5 channels per element
5 ‘Pool1’ Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
6 ‘Conv2’ Convolution 256 5×5×48 convolutions with stride [1 1] and padding [2 2 2 2]
7 ‘Relu2’ ReLU ReLU
8 ‘Norm2’ Local Response Normalization Local Response Normalization with 5 channels per element
9 ‘Pool2’ Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]]
10 ‘Conv3’ Convolution 384 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1]
11 ‘Relu3’ ReLU ReLU
12 ‘Conv4’ Convolution 384 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1]
13 ‘Relu4’ ReLU ReLU
14 ‘Conv5’ Convolution 256 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1]
15 ‘Relu5’ ReLU ReLU
16 ‘Pool5’ Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0]
17 ‘Fc6’ Fully Connected 4096 fully connected layer
18 ‘Relu6’ ReLU ReLU
19 ‘Drop6’ Dropout 50% dropout
20 ‘Fc7’ Fully Connected 4096 fully connected layer
21 ‘Relu7’ ReLU ReLU
22 ‘Drop7’ Dropout 50% dropout
23 ‘Fc8’ Fully Connected 1000 fully connected layer
24 ‘Prob’ Softmax Softmax
25 ‘Output’ Classification Output cross entropy function with 1000 classes

Table 2.2: Parameters in AlexNet.

Rectified Linear Unit (ReLU) The AlexNet first used the non-saturating ReLU
activation function in CNNs. The activation function ReLU has the expression as:

f(x) = max(0, x), (2.59)

while the gradient of ReLU is always 1 if the input is not less than 0. Before AlexNet,
the standard way to model a neuron’s output used activation function f of its input x is
with tanh (eq: f(x) = tanh(x)) or sigmoid (eq: f(x) = (1 + e−x)−1), etc. But in such
so deep models, these functions tend to run into gradient vanishing problem, because the
gradient is a large value only when the input is around a small range of 0. To overcome
this problem, a new non-saturating activation function was used: Rectified Linear Unit
(ReLU), which follows the [Nair and Hinton, 2010]. -Figure 2.18 presents these three
activation functions (sigmoid, tanh and ReLU).
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Figure 2.18: The example of 3 activation functions: sigmoid, tanh and ReLU.

It has been proven that deep networks with ReLU as activation function converge faster
than tanh and sigmoid functions (see Figure 2.19). This acceleration greatly contributed
to the training.
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Figure 2.19: Training times of ReLU versus tanh activations: solid line and dot-
ted line represent the ReLU and tanh activation function of training time, respec-
tively. [Krizhevsky et al., 2012]

Local Response Normalization (LRN) Local Response Normalization (LRN) was
first proposed in AlexNet architecture to normalize the results obtained by ReLU. LRN
is a non-trainable layer that square-normalizes the pixel values in a feature map within a
local neighborhood. The response-normalized activity bi(x,y) has the expression as:

bi(x,y) =
ai(x,y)

(k + α
∑min(N−1,i+n/2)

j=max(0,i−n/2) (a
j
(x,y))

2)β
. (2.60)

We denote by ai(x,y) the activity of a neuron computed by applying kernel i at position (x,y)
and applying the ReLU nonlinearity. The sum runs over n ‘adjacent’ kernel maps at the
same spatial position, and N is the total number of kernels in the layer. The constants k,
n, α and β are hyper-parameters. In [Krizhevsky et al., 2012], authors determined them
by using a validation set: k = 2, n = 5, α = 10−4 and β = 0.75. And this normalization
was used to apply the ReLU nonlinearity in first and second convolution layers of the
AlexNet architecture as shown in Figure 2.17.

Dropout AlexNet uses Dropout technique to overcome overfitting. Overfitting happens
when a model learned the noise in the training data. To some extent, it has a negative

Standard Neural Net After applying dropout

(a) (b)

Figure 2.20: Dropout Neural Net Model. [Srivastava et al., 2014] (a) A standard neural
net with 2 hidden layers. (b) An example of a thinned net produced by applying dropout
to the network on the subplot (a).
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impact on the performance of the model on new data. Dropout randomly freezes (drops)
neurons (along with their connections) from the neural network with a dropout proba-
bility PD. During training phase, those dropped out neurons are not engaged in both
forward and backward pass. During the test phase, all neurons are used but without
outputs multiplied by PD. Figures 2.20(a) and (b) show a plain neural network and the
corresponding dropout neural network where the crossed neurons have been dropped.

Softmax layer The softmax layer is widely used in the last fully connected layer of
CNNs, owing to its simplicity and probabilistic interpretation. In Table 2.2, a softmax
layer (layer 24) is connected to layer ‘Fc8’. However the softmax function P is defined as:

P (xi) =
exi

∑k
i=1 e

xi

, (2.61)

where xi is the output of the class i, i represents the class index, k represents the total
number of class and P (xi) is the probability value. Employing softmax function, the
network gives a probability for each class [Bridle, 1990]. To classify an input value, we
choose the class with the highest probability as the predicted result,x which is the function
of layer 25 in Table 2.2.

Based on these novel techniques, on the benchmark data set at that time, AlexNet’s
classification accuracy was about 10% better than other methods, which was a great
improvement. In this PhD work, we used this architecture for 2D image-based AE signals
classification.

2.6.5 Transfer learning

AlexNet has shown its good classification ability, but to train this deep architecture, it
requires a large amount of labeled data. For personal computers without a powerful GPU,
training is very time-consuming. In real applications, useful data sometimes are very ex-
pensive and in most of the cases, only a few data can be collected. To overcome this
drawback, a technique known as transfer learning has been proposed and applied in many
studies. Transfer learning has been proven to be a highly effective technique, particu-
larly when faced with domains with limited data [Pan and Yang, 2009, Hertel et al., 2015,
Litjens et al., 2017] and with a small number of training images, the transfer learned fea-
tures can be completed quickly [Donahue et al., 2014].

In the CNN, parameters in shallower layers extract low-level features, such as color,
texture, and edges, while deeper layers attempt to capture more complicated and ab-
stract high-level features [Zeiler and Fergus, 2014]. For this reason, the shallower lay-
ers of the architecture are frozen and deeper layers are replaced by new layers and re-
trained by a new task. The transfer learning algorithm has been applied to various stud-
ies [Shin et al., 2016, Lu et al., 2019]. Tajbakhsh et al. have demonstrated that transfer
learning is useful in limited training data for medical image analysis [Tajbakhsh et al., 2016].
An AI system has been developed for the diagnosis of eye diseases and pediatric pneumo-
nia which have performance comparable to that of doctors experts [Kermany et al., 2018].
These examples show that AE images classification with CNN may be achievable.

In this study, we sought to develop an effective transfer learning algorithm in the
pre-trained AlexNet to process the ‘AE image’ to provide an AE signal classification
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system. The pre-trained AlexNet is already trained on 1.2 million labeled images dataset
of ImageNet that have already been learned to extract powerful and informative features
from natural images and use it as a starting point to learn a new task – ‘AE Images’.

The pre-trained AlexNet includes five Convolutional layers (Conv1—Conv5) pursued
by three completely associated fully-connected layers (Fc6—Fc8). In the proposed transfer
learning algorithm, we freeze and extract layers 1–22 meanwhile last three layers are
fine-tuned for the new classification task (AE Images). Layers 23–25 of the pre-trained
AlexNet (in Table 2.2) is replaced with a new fully-connected layer with k neurons (k is
the number of AE class), a softmax layer and a new output classification layer with k
classes. Figure 2.21 presents the diagram of transfer learning for AlexNet.

Pre-trained AlexNet

Full connected

layer

Softmax layer

Classification

layer

...

...

Transfer Layers

Freeze layers

Replaced layers

AE Image

Training Data

layer 23 layer 24 layer 25 

Transferred AlexNet

Transfer Layers
ImageNet

Back propagation retrain by AE Images 

... ... ... Output

1000 classes

Output

AE classes

Figure 2.21: The pipeline of proposed methodology: transfer learning by AlexNet and
AE image training.

The entire architecture is divided into two parts: the transfer layers and the replaced
layers. The parameters in the transfer layers were already trained, and the extracted fea-
tures have been proven effective for classification [Chen et al., 2015, Yosinski et al., 2014].
These parameters may just need marginal adjustment to adapt to the new task (AE im-
ages). While the parameters in the replaced layers are suitable for training on a small
dataset. The replaced layers learn the class-specific features to categorize the AE images
into specific classes. In this study, the proposed algorithm is implemented on Matlab
R2018a with a computer (CPU: Intel i7-4710H, Memory: 16 GB RAM, Graphics Card:
NVIDIA GeForce GTX 960M 4G memory).
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2.6.6 Image-based acoustic emission data classification method-
ology

Combining the advantages of continuous wavelet transform (CWT) and convolutional
neural network (CNN), we propose an acoustic emission signals classification algorithm
which consists of three steps:

– 1. AE signal can be transformed into a wavelet scalogram through time-frequency (T-
F) representation by the CWT. Then wavelet scalogram is represented in dB to recalculate
different intensity of signals in the same range between 20 dB and 100 dB. This novel T-
F representation is denoted ‘AE image’. These AE images, corresponding to different
damage mechanisms, may be different, as the characteristic frequencies and intensity of
the damages are different.

– 2. Pre-trained AlexNet is therefore applied to these AE images, making the archi-
tecture to learn the underlying features of AE images by transfer learning.

– 3. Then, unknown AE signals can be converted into images using the CWT and
classified by the retrained AlexNet, forming an effective AE-based damage mechanism
classification system.

...

Pre-trained AlexNet

Full connected

layer

Softmax layer

Classification

layer

...

...

Transfer Layers

Freeze layers

Replaced layers

Output

1000 classes

AE Images

layer 23 

layer 24 

layer 25 

Transferred AlexNet

Transfer Layers

Back propagation training by AE Images 

Class 1 Class 2

CWT

Identified and labeled AE signals 

(2) Transfer Learning & Fine Tuning(a) AE Image Representation

(3) AE Signals Classification 

Retrained AlexNet

Class 1

Class 2

Class 3

...
unkown AE signals

Unkown AE Image

Classification unkown AE Images

Output

Class 1

Class 2

Class 3

Output

CWT

... ... ...

...

...

Figure 2.22: Flowchart of the proposed classification Methodology.

The flowchart shown in Figure 2.22 illustrates the steps involved in the process of the
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proposed Methodology. Evaluation metrics for the classification performance are based
on the notion of true and false positives (TP and FP), and true and false negatives (TN
and FN). TP (TN) refers to a positive (negative) instance that is correctly classified as
positive (negative). FP (FN) means a negative (positive) instance that is incorrectly
classified as positive (negative). Classification results widely use performance metrics
defined as follows:

Accuracy (ACC) =
TP + TN

TP + TN+ FP + FN
(2.62)

Sensitivity (SN) =
TP

TP + FN
(2.63)

Specificity (SP) =
TN

TN + FP
(2.64)

In this section, we proposed a novel approach for AE signal classification based on
pre-trained CNN (AlexNet) and CWT. In the next Chapter, we present mechanical tests
performed on specific polymer concrete (PC) samples, some damages mechanisms and the
corresponding AE signals that could be identified. The AE images are computed based on
the wavelet scalogram. They can be used as label datasets for transfer learning to retrain
the pre-trained AlexNet. Then, the classification system can be applied to the unlabeled
AE signals collected from new PC samples. Results and discussion will be shown in the
next Chapter.

2.7 Conclusion

In this chapter, we introduced several signal processing methods for investigating the
characteristics of AE signals. All AE waveforms can be represented by AE features as
input data, then performed on the proposed unsupervised pattern recognition analysis,
signals are classified in different classes. We also proposed an ‘image-based AE signal
classification’ approach, which consists on the continuous wavelet transform (CWT) and
convolutional neural network (CNN). These above-mentioned methods will be applied
to analyze the AE signals obtained during quasi-static three-point bending tests and
nonlinear relaxation tests of concrete samples in Chapter 3 and Chapter 4.
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Chapter 3

Acoustic emission characterization of

micro-cracked concrete

The aim of this chapter is to present quasi-static three-point bending tests performed
on concrete samples. In particular, we will focus the study on the monitoring of dam-
age mechanisms using acoustic emission (AE) technique and associated signal processing
methods, which have been presented in Chapter 2. Indeed, total and partial damage stages
of samples are characterized using a parametric approach and an unsupervised pattern
recognition. Furthermore, we propose the use of an ‘image classification’ approach based
on continuous wavelet transform (CWT) and convolutional neural network (CNN). The
relevance of this approach will be evaluated by comparing to the results obtained from
unsupervised pattern recognition.
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3.1 Civil engineering concrete

3.1.1 Materials and specimens

The considered civil engineering concrete is made in laboratory conditions (see Table 3.1).
The cement was first mixed with water (w/c ratio of 0.5:1 by mass). After several minutes
of mixing, the fine aggregates (sand) and coarse aggregates (crushed granite) were mixed
together. Before the casting of the concrete into metallic molds, inner surfaces of molds
were lubricated with oil for easier demolding. The mold was then subjected to vibration
for more than one hour in order to ensure good compaction and reduce the air bubbles
within concrete samples. After the hardening of the samples, they were demolded after 24
hours and then put into water for curing for 28 days before being submitted to mechanical
tests.

Specimen size(mm) 200× 40× 40

Fine aggregates size (mm) 2
Coarse aggregate size (mm) 15
Water to cement (by mass) 0.5:1
Fine aggregate to cement (by mass) 2:1
Coarse aggregates to cement (by mass) 3:1

Table 3.1: Concrete specimen and the mixture characteristics.

Finally, note that the same ingredient (water, cement, sand) were used to prepare
mortar samples, which have the same dimensions as concrete samples.

3.1.2 Experimental setup and procedure

In this study, the cracking of the samples is obtained through the three-point bending
tests. An Instron universal testing machine with a 10 kN capacity was used with a fixed
crosshead velocity of 1mm/min during each test up to the final rupture of samples.
Simultaneously, the AE activity within samples is monitored using the PCI-2 AE system
where AE sensors are glued on the lateral surface of samples. Figure 3.1(a) shows the
experimental setup.

To investigate the mechanical behavior of these quasi-brittle specimens, bending tests
were used according to ASTM C293 [Hashemi and Jamshidi, 2015, Shokrieh et al., 2017].
The flexural strength (σ in MPa) of samples can be written as:

σf =
3FL

2bd2
, (3.1)

where b (mm) and d (mm) are the width and height of the specimen, L (mm) is the
distance between two supports and F (N) is the maximum force applied at the center of
the sample.

Consequently, the flexural strain (εf in mm/mm) at the center of the sample is:

εf =
6Dd

L2
, (3.2)
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where D (mm) is the deflection due to the applied load at the center of the specimen.
These above-mentioned parameters are illustrated in the Figure 3.1(b).

(a) (b)

100 mm

d = 40 mm

b = 40 mm

AE senseor

L = 160 mm

Load

40 mm

D (deflection)

Figure 3.1: (a) Experimental setup of the three-point bending of a concrete specimen
monitored by AE with two AE sensors. (b) Geometry of specimens and localization of
AE sensors.

A two-channel Physical Acoustic (Mistras Group, Inc.) PCI-2 AE acquisition system
was employed to monitor the AE activity during mechanical tests. Two WSα wideband
AE sensors (Mistras Group) with a frequency bandwidth of 100 kHz - 1MHz were glued
on samples by phenyl salicylate (salol) where two clamps were used to secure the fixing.
AE signals were detected by the sensors and enhanced by the pre-amplifiers set on a
fixed gain (40 dB) over the sensor’s frequency bandwidth. The acquisition parameters are
presented in Table 3.2. In addition, the pencil-lead break tests were used to check the
sensitivity of each sensor and to verify that the coupling of all sensors is consistent. Only
the AE signals detected by both sensors are taken into account for the analysis. AE hits
are collected at 5MHz sampling rate and 5120 data points. AE signals are then processed
in order to extract their 15 main features based on Table 2.1.

AE data acquisition setup

Threshold 40 dB
Sample rate 5MHz
Pre-trigger 100 µs
Length 5120 points
Pre-ampli gain 40 dB
Analog filter 100 kHz–1MHz
Digital filter 100 kHz–1MHz
Peak-Definition-Time (PDT) 50 µs
Hit-Definition-Time (HDT) 100 µs
Hit-Lockout-Time (HLT) 400 µs

Table 3.2: Experimental AE system setup

3.1.3 Acoustic emission based fracture process analysis

The fracture process in concrete can be studied through the AE event amplitude distri-
bution, which is known as AE-based b-value analysis [Sagar et al., 2012]. The analysis
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is performed by analogy to observations made in seismology, where events with large
magnitudes occur less frequently than events with small magnitudes. In this fact, the
b-value is defined as the negative gradient of the log-linear graph between earthquake
frequency and magnitude [Colombo et al., 2003]. These parameters are grouped together
in the empirical formula proposed by Gutenberg and Richter [Richter, 1958]:

logN = a− bM (3.3)

where N is the number of earthquakes of magnitude greater than M , b is an empirical
constant and M is the Richter magnitude of earthquakes.

In the case of AE analysis, Equation (3.3) can be rewritten as:

logN = a− b

(
AdB

20

)
, (3.4)

where N is the number of AE events with amplitude greater than the threshold value
used, AdB is the amplitude value of those events in decibels (dB) and b is an empirical
constant which is called ‘AE-based b-value’. The b-value varies systematically with dif-
ferent stages of the fracture growth, so it can be used to estimate the development of
the fracture process [Rao and Lakshmi, 2005]. By using the b-value analysis, it is possi-
ble to identify the development of micro-cracks and macro-cracks within materials under
test, where high b-value corresponds to micro-cracking and low b-value corresponds to
macro-cracking [Carpinteri et al., 2009]. Figure 3.2 shows an example of AE based b-value
calculation.
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Figure 3.2: Example of AE based b-value calculation. (a) Evolution of amplitude of AE
events versus percentage of failure stress. (b) Cumulative AE events versus amplitude
distribution for different stress ranges. (c) The log(N)-AE magnitude chart and its relative
curve fitting for b-value calculation performed for the stress range 1,3 and 5 of subplot(b).

3.1.4 Parametric approach of crack mode classification

According to relevant recommendation [Committee et al., 2010], the shape of AE wave-
forms is considered to be characteristic of the crack mode in concrete structures. Two AE
parameters are used for estimating crack modes: average frequency (AF) and RA value,
which are defined as:

RA [µs/V] =
Rise time (RT)

Amplitude (A)
, (3.5)
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and

AF [kHz] =
Counts (CNTS)

Duration (DU)
. (3.6)

Previous studies [Aggelis, 2011, Aggelis et al., 2013a] have shown that for tensile cracks,
AE rise time would be shorter. Therefore, a tensile-type crack is referred to as an AE
signal with high AF and low RA value. In addition, shear-type crack is identified by low
AF and high RA value as shown in Figure 3.3).

A 

RT 

(a) 

A 

RT 

(b) 
Duration 

Threshold crossin

Threshold 

RA=RT/A 

Mode I 

(tensile)) 

Mode II 

(shear ) 

AE sensor 

Figure 3.3: Crack mode in concrete materials. Typical waveforms of (a) tensile and (b)
shear event. [Soulioti et al., 2009]

Therefore, variations in RA and AF values during the concrete damage process is
likely to identify the changes in the prevalent damage mode within the specimen. The
results in the literature reveal that the detected AE signals during the early stages of
damage are mainly due to tensile crack and have therefore higher AF and lower RA. As
the material approaches to the final failure, the average value of AF increases and RA
decreases, meaning that more shear cracks are formed at this stage. This observation
has been confirmed by many studies and regarded as a relevant indicator in the field of
concrete engineering [Aldahdooh and Bunnori, 2013, Behnia et al., 2014].

3.1.5 Unsupervised pattern recognition

In the present thesis, we have proposed an unsupervised pattern recognition in order to
cluster the huge number of unlabeled AE signals by using several relevant independent
features. The detail of this approach was introduced in section 2.5.

The inherent characteristic of each AE signal is represented by 15 features (see Ta-
ble 2.1). After feature normalization, by using the Laplacian Score (LS) selection ap-
proach, the selected feature dataset consists of the more appropriate features (LS>0.9).
Then we use the principal component analysis (PCA) algorithm to reduce the dimen-
sion of the dataset. Finally, a new dataset containing uncorrelated principal components
with a smaller dimension is used as input of the k-means algorithm. The optimal clus-
ter number (k) is confirmed by the lowest Davies-Bouldin (DB) index and the highest
Silhouette coefficient (SC) value. After application of the k-means algorithm, the AE
signals are separated into k clusters. The identification consists in correlate each cluster
to its corresponding damage mechanism. In fact, clustering does not lead to a unique
solution, and there is no indisputable standard to determine, which classification result is
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more appropriate and more representative of the studied damage mechanism. The main
purpose of this unsupervised pattern recognition is to achieve the well-separated clusters
and assume that each cluster consists of one unique damage mechanism.

In this chapter, some specimens are manufactured by different formulations in order to
isolate damage mechanisms. For civil engineering concrete materials, we use the mortar
specimens and plain concrete specimens to investigate the micro damages mechanisms.
For polymer concrete materials, we used some specific specimens to simplify and validate
the clustering results.

3.2 Damage characterization of mortar

3.2.1 Global observation

Three-point bending tests were performed on the mortar specimen. The test was moni-
tored with AE. Figure 3.4(a) depicts the simultaneous evolution of AE hits amplitude and
the applied force as a function of loading time. In addition, according to Equations (3.1)
and (3.2), the flexural stress versus flexion strain curve is determined and shown in Fig-
ure 3.4(b). Note that, the flexural strength of this mortar specimen is ≃ 9.4MPa.
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Figure 3.4: Three-point bending test performed on a mortar specimen: (a) Evolution of
amplitude of AE signals and applied force versus loading time. (b) Flexural stress-strain
behavior.

Firstly, the cumulative AE hits are used to investigate the evolution of damage process
as a function of the applied force and loading time (see Figure 3.5(a)). From the first AE
signal detected to the main crack formation, the mechanical test can be divided into two
stages separated by following times: t0 = 11 s, t1 = 180 s and t2 = 190 s. In accordance,
the AE based b-values are computed as shown in Figure 3.5(b) for these two stages.

– Stage I (t0 to t1): the rate of AE activity is approximately constant. In this stage,
some micro-cracks begin to emit discontinuous AE events whose count evolves linearly.
The AE activity can be attributed to the local effects, such as pore closing and/or the
micro-crack initiation and formation [Elaqra et al., 2007]. Computed AE-based b-value
during this stage is ≃ 1.48, meaning that micro-cracks are the predominant AE sources
during this stage [Sagar et al., 2012].
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Figure 3.5: (a) Evolution of cumulative AE hits and applied force versus loading time.
(b) Relation between the RA value and the average frequency (AF) during the first stage
(t0, t1) of the bending test.

– Stage II (t1 to t2): a rapid increase of AE hits occurs during this very short period.
This sudden increase in AE activity can be interpreted as a precursor of the final rupture
of specimens, which is mainly attributed to the interconnection of micro-cracks and/or
sand to cement interfaces cracking, leading to the final main crack that emits higher
amplitude AE hits. The involved AE-based b-value is ≃ 0.91 in accordance with the
results of the literature [Colombo et al., 2003].

Indeed, mechanical tests performed on mortar specimens as presented in numerous ref-
erences [Wu et al., 2000, Aggelis et al., 2013a, Sagar et al., 2013, Stavrakas et al., 2016]
have shown the possibility to go beyond the b-value description by using the shape of AE
waveforms recorded during the different stages. Therefore, a crack mode description be-
comes possible with the help of the relationship between the previously defined RA value
and the average frequency (AF) [Aggelis, 2011]. In the following, results of the RA-AF
classification are presented and discussed.

3.2.2 Parametric crack mode classification

Figure 3.6(a) is a 3-D plot presenting the evolution of AE hits’ characteristics, namely RA
value and Average Frequency (AF) as a function of loading time. It is clear that at the
initial stages of loading, AE hits have high AF values up to 300 kHz and low RA value.
As a function of the loading time, the detected AE hits have lower AF value and high RA
value AE hits are also recorded at the end of the measurement. The evolution of the AF
and RA are computed by a moving average of 60 hits as in Figure 3.6(b). It makes this
observation easier, where the mean value of AF increases during the test and RA value
decreases. It is, however, important to note that these experimental results can be used
to detect the shift of the cracking mode from tensile to shear.

Indeed, an AE-based classification of cracking modes in cementitious materials can
be performed by comparing the evolution of both parameters RA and AF as shown in
Figure 3.7. The aim of the analysis is to get the relevant RA/AF proportion which is
predefined using a diagonal line to define the type of cracks classification. Above the
diagonal line, signals with high AF and low RA are associated with the tensile cracks,
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Figure 3.6: (a) Evolution of AE signals on RA value and Average Frequency (AF) in a
function of loading time. (b) Moving average of RA and AF versus loading time.

and inversely, shear cracks are characterized by low AF and high RA values.
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Figure 3.7: Illustration of the RA-AF analysis.

The determination of the line’s slop separating signals originating from shear or
tensile cracks is not straightforward. Indeed, based on the moment tensor analysis
(MTA), the crack locations, crack types and orientation can be quantitatively deter-
mined [Shigeishi and Ohtsu, 2001, Kawasaki et al., 2010, Ohno et al., 2014]. Tensile, shear
and mixed-mode crack classification was then possible with the help of the Simplified
Green’s Function (SiGMA) analysis in laboratory conditions when at least six AE sensors
were used for the cracks monitoring [Ohno and Ohtsu, 2010]. When the crack location
is not known a priori, the random distribution of AE sensors in the studied structure
makes the distance between neighboring sensors not convenient to detect a signal crack-
ing with the necessary number of sensor [Aggelis et al., 2013c]. In order to overcome
the problems related to the lack of sensors, long series of fracture tests were performed
in [Aggelis, 2011]. Flexural, tensile and shear tests were used in order to link the AE
activity (trends of AF and RA, etc.) with the micro-cracking stage before, during and af-
ter the main fracture [Carpinteri et al., 2013, Aggelis et al., 2013b, Shahidan et al., 2013,
Aggelis et al., 2013a].

The present thesis does not consider an important number of tests nor an important
number of AE sensors. In such conditions, we propose a first approach to determine the
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diagonal line. This is performed by considering the three-point bending test in different
steps. Figure 3.8 shows that the first stage of damage is mainly dominated by AE hits
with high AF and low RA. This situation is in accordance with the fact that at the initial
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Figure 3.8: The RA-AF relation of detected AE events by different percentage of loading:
(a) 0− 20% of final load; (b) 0− 40% of final load; (c) 0− 60% of final load; (d) 0− 80%
of final load; (e) 0−failure. The blue dot, red square, green triangle, purple prism, orange
star symbols correspond to the AE events detected in five damage stages (0 to 20%, 20
to 40%,..., 80 to 100% of final load), respectively. (f) Average value on RA-AF analysis
for each damage step.

stage of loading, tensile cracks dominate the detected signals. The number of shear cracks
evolves according to the evolution of the mechanical test and becomes more significant
at the final stages. By considering the average value of RA and AF for the five damage
stages, Figure 3.8(f) depicts that the first two stages (0−20% and 20−40% of final load)
have higher AF and relatively low RA, which the last two stages (60−80% and 80−100%
of final load) are characterized by higher RA values. This makes the stage (40 − 60% of
final load) reasonably on the border between the proportion between tensile and shear
cracks in approximately RA/AF ≃ 3000/200 (1/0.067).

Note that the RA/AF proportion is strongly dependent on the material used as
well as the experimental configuration. Aggelis [Aggelis, 2011] proposed a proportion
of 1/0.03 in the case of steel fiber reinforced concrete characterized by two AE sen-
sors (Pico, PAC). In [Ohno and Ohtsu, 2010], the proportion was 1/0.2 using eight AE
sensors of 150 kHz resonance (R15, PAC). However, it should be pointed out that the
proportion we proposed (1/0.067) gives ≃ 33.6% shear cracks AE signals and ≃ 66.4%
tensile cracks AE signals. These values are in accordance with those given by Ohno and
Ohtsu [Ohno and Ohtsu, 2010] where shear and tensile cracks proportion were 37.3% and
62.7%, respectively.

The AE signals separated into two classes are shown in Figure 3.9(a), where the
separation line is presented according to the RA/AF proportion 1/0.067. From the latter,
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Figure 3.9: (a) The RA-AF representation of AE data classification. (b) Evolution of two
crack modes generation versus loading time.

the evolution of the cumulative number of AE signals of the two classes of cracks are
illustrated in Figure 3.9(b) as a function of loading time. We can see that the tensile
crack is more dominant than shear crack during the test and that beyond 100 s, the
evolution of shear cracks becomes faster until the main crack is formed.

Table 3.3 presents the average value of six AE features related to the studied crack
modes. Results show that AE waveforms with shorter rise time and higher frequency
content (FC and AF) are mainly related to tensile cracks. Whereas, shear cracks in
cementitious materials have AE waveforms with longer rise time and lower frequency.
These results confirm that RA and AF values can be considered as two effective parameters
in crack mode classification. However, even if the separation of crack modes seems to be
obvious under laboratory conditions, it still needs to be impressed by taking into accounts
new parameters other than RA and AF. This will be developed in the next subsection.

Crack mode Amplitude [dB] Rise time [µs] FC [kHz] Counts AF [kHz] RA value [µs/V]

Tensile crack 50.5 27.7 395.9 48 150.7 677
Shear crack 45.7 90.2 319.8 30 65.4 4062

Table 3.3: Average value of six features calculated from AE signals related to the two
crack modes.

3.2.3 Unsupervised pattern recognition

Many previous works have shown that before the main crack creation, all the detected
AE signals are due to micro-cracks created within the matrix of cementitious speci-
mens [Soulioti et al., 2009, Aggelis, 2011, Aggelis et al., 2013b]. In this study, the un-
supervised pattern recognition was performed to cluster the AE data. The purpose of
the clustering analysis is to separate and identify the micro-damage mechanisms in spec-
imens during the three-point bending tests before the final crack. The relevant features
are selected from 15 AE features and based on the Laplacian Score (LS), which is more
than 0.9 as described in Chapter 2. Six high score features (counts, energy, frequency
centroid, PP1, PP3, PP4) were therefore selected for mortar specimens. The selected
features were subjected to the PCA to get more independent parameters to be used as
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the input of k-means analysis. Figure 3.10(a) shows the variance and cumulative variance
in percent of each principal component of the mortar specimen. The number of principal
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Figure 3.10: (a) The variance (blue bars) of first 4 principal components of concrete
specimen. The y axis on the right side shows the cumulative variances (red line). (b) The
number of clusters evaluated by Davies-Bouldin value and Silhouette Coefficient (y axis
on the right).

components for the k-means algorithm was chosen to be three, which is based on the cu-
mulative variance of ≃ 95%. Optimal clustering is obtained with two clusters according
to the minimum value of the Davies and Bouldin (DB) index and the maximum value of
the Silhouette coefficient (SC) which is shown in Figure 3.10(b). Finally, for the tested
mortar specimen, the k-means algorithm was therefore applied to AE data with three
principal components as features and with two clusters (k = 2).

The clustering results of AE data is illustrated in Figure 3.11, where 64.4% of total
AE events are classified into cluster CL1 and 35.6% are classified into cluster CL2. These
two AE clusters are then presented in Figure 3.11(a). This result shows that, in the
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Figure 3.11: (a) Illustration of the clustering results of AE data in RA value versus average
frequency plane. (b) Evolution of AE events in two clusters versus loading time.

absence of the RA and AF as input features, k-means algorithm distributed AE data into
two clusters: CL1 with high AF and low RA values and CL2 with low AF and high RA.
In light of the results obtained, we can reasonably propose a line (AF = 0.006 RA+95)
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to separate the two AE clusters. In [Farhidzadeh et al., 2014], a similar line has been
proposed, where AF = 0.005 RA+94.5. In their paper, the three-point bending tests were
performed on mortar specimens where the AE monitoring is performed using broadband
AE sensors (Pco, PAC) and the distance between the center of the specimen and the
sensors was 15mm. With these similar experimental configurations and similar results,
the unsupervised pattern recognition reveal to be reliable in view of the lack of AE sensors
and samples to be tested. Finally, note that the evolution of the cumulative number of
two AE clusters shown in Figure 3.11(b) allows us to draw the same conclusions discussed
in the previous subsection.

Table 3.4 presents the average values and the coefficient of variance of the six features
related to AE data divided into two clusters (CL1/CL2) for mortar. Note that, the
coefficient of variance (COV) is determined as a standard deviation over average. AE
events in cluster CL1 have low rise time and high frequency and AE events in cluster CL2
have high rise time and low frequency.

Cluster Amplitude [dB] Rise time [µs] FC [kHz] Counts AF [kHz] RA value [µs/V]

CL1 Average 50.2 34.1 412.1 45 156.4 882
COV 14.5% 133.5% 9.4% 100.9% 40.6% 122.2%

CL2 Average 47.3 72.1 303.7 38 66.8 3310
COV 11.2% 98.6% 7.8% 86.3% 46.1% 85.99%

Table 3.4: Average results of six features calculated from AE signals related to the two
clusters (CL1 and CL2).

Based on these results, the cluster CL1 is associated with tensile matrix cracking
and the cluster CL2 corresponds to shear matrix cracking. Finally, the occurrence of
sand/matrix interface debonding cannot be separated from matrix cracking by these AE
features and unsupervised pattern recognition analysis. Aggelis et al. [Aggelis et al., 2013a]
have studied mortar specimens submitted to three-point bending tests and monitored
with broadband AE sensors (Pico, PAC). They have reported that ‘tensile’ waveform
has an amplitude much higher than ‘shear’ waveform and also characterized by shorter
rise time (30µs instead of 60µs). Similar experimental configurations (sensor to speci-
men’s center distance 20mm versus 15mm, broadband AE sensors, etc.) present average
values similar to the ones of Table 3.4 which confirms the existing agreement between
the unsupervised pattern recognition analysis with moment tensor analysis (MTA) and
parametric analysis [Soulioti et al., 2009, Ohno and Ohtsu, 2010, Carpinteri et al., 2013,
Shahidan et al., 2013]. On the strength of this observation, the next section will present
the results relating the civil engineering concrete.

3.3 Damage characterization of civil engineering con-

crete

In this section, the three-point bending tests were performed on civil engineering concrete
specimens where the same AE monitoring was used.
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3.3.1 Global observation

Figure 3.12(a) depicts the evolution of AE hits amplitude as a function of applied force
and loading time. Here again, only the AE hits detected by both two sensors are taken
into account. In addition, according to Equations (3.1) and (3.2), the flexural stress versus
strain is determined and shown in Figure 3.12(b). Finally, note that the flexural strength
of the concrete specimen is ≃ 9.5MPa.

Figure 3.12: Three-point bending test results corresponding to concrete specimen: (a)
Evolution of amplitude of AE signals and applied force versus loading time. (b) Flexural
stress-strain behavior during the test.

To better understand the evolution of damage, AE signals rate is plotted as a function
of applied force and loading time in Figure 3.13(a). The AE signal rate is computed

Figure 3.13: Three-point bending test results for concrete specimen: (a) Evolution of AE
signal rate (AE hits per second) and applied force versus loading time. (b) AE based
b-values during the loading time from three stage. The four plotted times are t0 = 51 s,
t1 = 536 s, t2 = 545 s and t3 = 560 s, respectively.

by recording AE hits per unit time taken as 1 s. It can be seen that highest AE signal
rate appears when the main crack is formed. The experimental results show that fracture
processes of specimens are characterized by three stages determined by the following times
t0 = 51 s, t1 = 536 s, t2 = 545 s and t3 = 560 s. In accordance with Equation (3.4), AE
based b-values are computed and shown in Figure 3.13(b).
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In the first stage (t0 to t1), the AE signal rate evolves regularly with time. Some micro-
cracks begin to develop emitting discontinuous AE hits, whose amplitudes are in the range
of 40 to 70 dB representing micro-crack initiation and formation with the matrix. This
observation has been mentioned in many references on concrete [Carpinteri et al., 2009,
Ohno and Ohtsu, 2010] and reinforced concrete [Aggelis, 2011, Carpinteri et al., 2016].
Computed AE-based b-value during this stage is ≃ 1.68, which is the relevant value
corresponding to the micro-cracking generation stage [Carpinteri et al., 2009].

The second stage (t1 to t2) has a very short time period and characterized by an
abrupt increase of the AE signal rate (from 20 to 400 hits per second). The abrupt in-
crease of AE activity can be used as the failure precursor of concrete, which corresponds
to ≃ 95% of maximum peak load. During this stage, initiation, coalescence, and propa-
gation of micro-matrix cracking are the main sources of AE events, leading to eventual
failure [Soulioti et al., 2009]. Additionally, the formation of the visible crack of the spec-
imen appears in the center at the bottom of the specimen which is caused by some much
stronger cracking events (more than 80 dB in Figure 3.12). In this stage, AE-based value
is ≃ 1.01, corresponding to the increase of macro-crack formation [Colombo et al., 2003].

During the third stage (t2 to t3), AE events can be attributed to crack propagation
(macro crack growth and crack opening). As the main crack is formed, it propagates
from the bottom of the specimen to the top as a function of the continuous descent of the
crosshead [Carpinteri et al., 2009]. During this stage, the AE-based value is ≃ 1.11.

Right after the main crack is formed, the mechanical test is stopped. This main
crack was visually localized just before the final failure near the mid-span of the tested
specimen as illustrated in Figure 3.14. In the following, the micro-cracks are defined as
cracks formed before the main crack (between t0 and t2). In the following, the crack mode

Main crack

Force

Figure 3.14: Typical main crack of concrete specimen with illustration of applied force.

classification will be first based on the shape of the AE signal waveform with the help of
the parametric approach used for mortar specimens.

3.3.2 Parametric crack mode classification

For the civil concrete specimen, Figure 3.15(a) depicts the cumulative AE hits and applied
force versus loading time until the main crack formation. As mentioned above, the fracture
process was separated in time by t0 = 51 s, t1 = 536 s and t2 = 545 s before the main crack
is formed.

During the first stage (t0 to t1), AE data are plotted in the RA-AF plan as shown

76



Acoustic emission characterization of micro-cracked concrete

in Figure 3.15(b). We note that most of the signals have low RA and high AF values,
meaning that tensile crack is the dominant AE source during this stage.

Figure 3.15: (a) Evolution of cumulative AE hits and applied force versus loading time
up to the main crack formation. (2) Relation between RA and AF values of the detected
AE signals during the first stage (t0 to t1) of the tests.

In the second stage (t1 to t2), several hundreds of AE hits were detected within short
duration (see Figure 3.15(a)). To better indicate the evolution of the crack characteristics,
the AE hits is plotted as a function of RA and AF as shown in Figure 3.16(a). Then,
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Figure 3.16: (a) Projection of AE data in 3D representation: number of AE hits vs. RA
vs. AF. (b) Evolution of RA and AF by moving average of AE hits during the second
stage (t1 − t2) of the test.

the evolution of AF and RA are computed by a moving average of 60 recent hits during
this stage as shown in Figure 3.16(b), where the increase (or decrease) of both parameters
indicates the shift of the main cracking modes from tensile to shear. As discussed earlier,
unsupervised pattern recognition has shown a very good capacity to analyze damage
mechanisms. Therefore, it will be used to analyze and separate AE data in concrete
samples.
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3.3.3 Unsupervised pattern recognition

The clustering of AE data of concrete is based on the previously defined six AE fea-
tures, which were initially processed thanks the PCA algorithm. Figure 3.17(a) shows
the percent variance and cumulative variance of each principal component of the concrete
specimen. The number of principal components for the k-means algorithm was set to
three, based on the cumulative variance of ≃ 97%. Optimal clustering is obtained with
two clusters according to the minimum value of the Davies and Bouldin (DB) index and
the maximum value of the Silhouette coefficient (SC) as shown in 3.17(b). Finally, the
k-means algorithm was therefore applied to AE data with three principal components and
two clusters (k = 2).
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Figure 3.17: (a) The variance (bars) of first 4 principal components of concrete specimen.
The y axis on the right side shows the cumulative variances (line). (b) The number of
clusters evaluated by Davies-Bouldin value and Silhouette Coefficient (y axis on the right).

The clustering results of AE data are illustrated in Figure 3.18(a). Here, ≃ 62.1% of
total AE events are classified into cluster CL1 and ≃ 37.9% into cluster CL2. Compared
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Figure 3.18: (a) Illustration of the clustering results of AE data in RA value versus AF
plan. (b) The cumulative number of AE data in two clusters versus loading time.

with the results of the mortar specimen, the proportions of clusters are similar, which
allowed us to draw a separation line having the same slope (AF = 0.006 RA+95) between
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the two clusters. Figure 3.18(b) shows the evolution of CL1 and CL2 during the test. The
evolution of the two clusters are approximately equivalent before 300 s, then more tensile
cracks occurred up to the end of the first stage. The experimental results show that in
the first stage, more shear cracks are formed in the concrete specimen than in the mortar
specimen (see Figure 3.11(b)). In the second stage (t1 to t2), as it can be seen from the
slope in the insert, cluster CL2 has a higher evolution speed than cluster CL1.

Table 3.5 presents average value and the coefficient of variation (COV) of the six
features of the two clusters. Indeed, it can be observed that AE events in cluster CL1
have lower rise time and higher frequency (AF and CF) and AE events in cluster CL2
have higher rise time and lower frequency, which correspond to the relevant RA value and
AF. These results are similar to the clustering results in mortar specimen as presented in
Table 3.4.

Cluster Amplitude [dB] Rise time [µs] FC [kHz] Counts AF [kHz] RA value [µs/V]

CL1 Average 50.7 31.3 449.7 53 165.6 758
COV 17.4% 100.9% 11.1% 90.3% 53.1% 113.3%

CL2 Average 47.5 114.6 297.4 39 74.9 3853
COV 12.9% 148.8% 15.7% 95.5% 42.6% 143.1%

Table 3.5: Average results of 6 features calculated from AE data related to the two clusters
(CL1 and CL2) in concrete specimen.

Numerous researchers studied the link between AE waveforms and crack modes in con-
nection with the elastic waves generated by the different modes of crack tips [Aggelis, 2011,
Aggelis et al., 2012, Aldahdooh and Bunnori, 2013]. When a tensile event occurs, due to
the opposite displacement of the sides vertical to the crack plane, a transient volumetric
change occurs in the location of the crack tip. Therefore, most of the energy is released in
the form of a longitudinal wave (P-wave). Note that in such a case, only a small amount
is released in the form of transverse wave (S-wave), whose velocity is relatively low. Thus,
the major part of energy arrives quite early within the waveform which favors a short
rise time (RT) and small RA value. On the other hand, under shear cracking the sides of
the crack move in opposite directions but in parallel to the crack plane, which introduces
a change of shape deformation instead of volume deformation. Most of the emitted en-
ergy is in the form of S-wave and only a small amount is emitted in the form of P-wave.
Therefore, the major part of energy (maximum amplitude) arrives late, leading to longer
RT and consecutively high RA value.

Typical AE waveforms of CL1 and CL2 and their time-frequency representation (TFR)
are presented in Figure 3.19. The TFR is the scalogram (squared modulus of the continu-
ous wavelet transform) of two AE signals computed by continuous wavelet transform. In
general, the AE waveform with a shorter rise time and lower duration usually indicate a
tensile crack (see Figure 3.19(a)) and its TFR depicts high energy area, which is located
in the frequency range of ≃ 500 - 600 kHz with a short duration (see Figure 3.19(b)). In
contrast, the waveform of the shear crack has a longer rise time as in Figure 3.19(c), and
its high energy area is locally distributed in the frequency range of ≃ 200 - 300 kHz with
a longer duration which is illustrated in Figure 3.19(d).

Finally, we note that in the mortar and civil engineering concrete, when submitted
to quasi-static bending tests, many studies have described the detected AE hits as orig-
inating from small events related to the matrix cracking [Carpinteri and Massabo, 1997,
Soulioti et al., 2009, Aggelis, 2011, Farnam et al., 2015, Carpinteri et al., 2016]. For in-
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Figure 3.19: The classical AE waveform associated with two damage mechanisms and
their TFRs. Plots (a) and (b) for tensile matrix cracking (CL1); plots (c) and (d) for
shear matrix cracking (CL2).

stance, in [Farnam et al., 2015], it has been reported that for concrete with w/c = 0.5,
the captured AE events during the splitting test belong mostly to crack formations within
the matrix due to its relatively lower strength, see also [Shah et al., 1995]. This is the
reason for which mortar and concrete specimens have almost the same peak load in
three-point bending tests: the stress concentration mainly occurs in the matrix, which
becomes large enough to initiate micro-crack coalescence. With the applied load in-
creasing, matrix cracking continues to coalesce until the creation of a localized main
crack. In this configuration, nearly all the micro-cracks belong to the matrix and the
interface between matrix and aggregates may not be damaged before the main crack
formation [Mehta and Monteiro, 2006].

On the other hand, unsupervised pattern recognition results show that even in the
absence of AF and RA as input features, AE data were still clustered into two clusters.
The visualization of clusters in the RA-AF plan added valuable information related to
the presence and evolution of shear and tensile cracks.

At this stage, the manufactured concrete samples and the unsupervised pattern recog-
nition have only allowed obtaining two clusters of the recorded AE hits, representing two
cracking modes. In order to go beyond this observation, we propose in the following to
study a new material ‘polymer concrete’ and will try to characterize damage mechanism
in conjunction with the involved constituents of the polymer concrete samples.
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3.4 Polymer Concrete

3.4.1 Introduction

Polymer concrete (PC) is a kind of composite material which consists of mineral fillers
(gravel, sand, ...) and a polymer binder. In comparison with conventional cement con-
crete, it is made by replacing the cement hydrate binders with resin. Its properties such as
mechanical strength, adhesion, watertightness, chemical resistance, freeze-thaw durabil-
ity and abrasion resistance are generally improved to a great extent by polymer replace-
ment [Toufigh et al., 2016]. On the other hand, disadvantages of polymer concrete include
high costs, odor thereof especially in the production process, toxicity and flammability
of polymer materials and their poor resistance to high temperatures [Bedi et al., 2013].
To this end, research and development of polymer concrete have been initiated from the
1950s.

3.4.2 Specimens and mechanical tests

The considered polymer concrete in this study is made in the laboratory following the same
protocol described for the civil engineering concrete. The epoxy is used as polymer, where
the liquid resin mixture consists of two parts: the liquid resin (Sicomin SR-1500) and the
hardener (Sicomin SD 2505) with resin/hardener mix ratio of 100:33 (100:37 in volume).
Aggregates are the most important part of polymer concrete as they constitute the major
part of its total volume and vastly influence its behavior. According to [Marec, 2008]
and [Berbaoui, 2010], two kinds of aggregates (fine sand and coarse gravel) can be used to
prepare polymer concrete specimens. The aggregates were dried to ensure a good bonding
quality between the polymer and the mineral filler (see Table 3.6).

Specimen size(mm) 200× 40× 40

Epoxy resin Sicomin SR 1500
Hardener Sicomin SD 2505
Fine aggregates size (mm) 0.5
Coarse gravel size (mm) 4

Table 3.6: Constituents of polymer concrete samples.

In order to identify the different damage mechanisms of this heterogeneous material
(matrix cracking, interfacial debonding, etc.), we manufactured different samples with
different formulations in terms of matrix and reinforcement (see Table 3.7). Mechanical

Resin (%) Gravel (%) Fine sand (%)

Type-I 40% 60% 0%
Type-II 40% 0% 60%

Polymer concrete 40% 30% 30%

Table 3.7: Volume fraction of constituents of specimens.

testing of these specific samples enables us to more easily correlate the detected AE signals
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with the damage mechanisms. By using these specific specimens (Type-I and Type-II),
the number of damage mechanisms and their frequency of occurrence were controlled in
the experiments. The results of these specific specimens were also used to verify the
identification conducted on polymer concrete samples.

All the specimens were loaded under the same conditions as for civil engineering con-
cretes using three-point bending tests with a distance between external supports equal
to 160mm and under displacement control conditions with a constant crosshead speed of
2mm/min. Flexural strength and flexion stress were computed and for each type of spec-
imen, where three specimens were tested each time to determine the flexural strength.
During the mechanical tests, the acoustic activity was monitored using the previously
described AE system with two sensors (see section 3.1.2 for detail).

Acoustic emission monitoring of mechanical tests was performed using the acquisition
setup presented in Table 3.2. Figure 3.20 illustrates the Laplacian score (LS) of the
initially considered 15 AE features.
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Figure 3.20: Feature selection by using Laplacian score for all tested specimens Sample
Type-I, Sample Type-II and polymer concrete (Sample Type-III). The AE features with
Laplacian score bigger than 0.9 will be used in this study.

Then the same feature selection for all PC samples was performed on a Laplacian Score
higher than 0.9. We recall that a larger score indicates a higher clustering ability of the
investigated feature. Based on this criterion, 11 features are chosen for clustering analysis
namely: peak amplitude, duration, counts, energy, frequency centroid, peak frequency,
weighted frequency, RA value, PP1, PP2, and PP3, as presented in Table 3.8.

No. Features Dimension No. Features Dimension

1 Peak Amplitude (PA or A) dB 7 Weighted Frequency (WF) kHz
2 Duration (DU) µs 8 RA value (RA) µs/V
3 Counts (CNTS) 9 Partial Power 1
4 AE Energy (E) aJ 10 Partial Power 2
5 Frequency Centroid (FC) kHz 11 Partial Power 3
6 Peak Frequency (PF) kHz

Table 3.8: Selected features for AE clustering analysis based on Laplacian Score (LS>0.9).
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3.5 Damage characterization of ‘Type-I’ specimen

Three-point bending tests were performed on ‘Type-I’ specimens which are composed of
60% gravels and 40% epoxy resin in volume fraction (see Table 3.7).

3.5.1 Global Observation

Figure 3.21(a) depicts the evolution of AE signal amplitudes as a function of the applied
load and loading time. Here again, only the AE hits detected by both sensors are taken
into account. In addition, according to Equations 3.1 and 3.2, the flexural stress–strain
curve is shown in Figure 3.21(b).
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Figure 3.21: Three-point bending test results for Type-I specimen: (a) Evolution of
amplitude of AE signals and applied force versus loading time. (b) Flexural stress–strain
behavior during the test.

Figure 3.22(a) shows the cumulative AE energy and the AE signal rate as a function
of loading time. The AE signal rate is computed by recording AE hits per unit time,
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Figure 3.22: (a) Evolution of AE signal rate and cumulative AE energy versus loading
time. (b) Representation of log-(N) versus amplitude-magnitude chart and calculated AE
based b-value.

taken as ‘1 s’. The evolution of AE signals can be divided into three stages determined by

83



Acoustic emission characterization of micro-cracked concrete

the following times t0 = 50 s, t1 = 160 s, t2 = 230 s and t3 = 272 s. The AE-based b-value
is computed for these three stages as illustrated in Figure 3.22(b):

– Stage 1 (from t0 to t1): the AE activity is weak (AE signal rate < 10 hits/s) and
the detected AE signals have small energy. By linearly fitting the data, AE based b-value
during this stage is ≃ 0.68.

– Stage 2 (from t1 to t2): the AE activity evolves linearly, increasing thus the cumu-
lative AE energy. The AE based b-value in this stage is ≃ 0.59.

– Stage 3 (from t2 to t3): more than 50 AE hits are recorded per second, showing
the intense AE activity as the final rupture of the specimen approaches. At ≃ 272 s, the
specimen is split into two parts and the bending test stops. The AE based b-value during
this stage is ≃ 0.57.

The decrease of b-values from 0.68 to 0.57 during the mechanical test shows that
the fracture level increases in loading time (or applied force). Note that this value is
much smaller than those measured in cementitious concrete specimens [Sagar et al., 2012,
Carpinteri et al., 2009]. If we consider the acoustic activity from stage 2 (i.e. neglect the
weak AE activity), the average frequency (AF) and the RA values can be computed by av-
eraging their respective values of every 100 recent hits to investigate the evolution of tensile
crack and shear crack during the test as shown in Figure 3.23. Indeed, the two parameters
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Figure 3.23: Moving average of RA value and average frequency (AF) versus loading time.

AF and RA seem to evolve according to each other, where the decrease of AF and the in-
crease of RA always appear simultaneously. In particular, an abrupt variation was noted
during the last 20 second before the fracture of the specimen, where a large increase of RA
and a huge decrease of AF can be observed. This situation coincides with the highest AE
signal rate (≃ 50 hits/s) shown in Figure 3.22(a). This result also mentioned on some ce-
mentitious concrete [Soulioti et al., 2009, Ohno and Ohtsu, 2010, Carpinteri et al., 2016],
which was interpreted by the fact that it corresponds to the appearance of a large number
of shear cracks before the final fracture within a short time.

3.5.2 Unsupervised pattern recognition

Here, AE signals were clustered using an unsupervised pattern recognition analysis, which
is based on the principal component analysis (PCA) and k-means algorithm. The selected
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features are processed using the PCA algorithm which provides the variance percentage
and cumulative variance of each principal component of ‘Type-I’ specimen. Figure 3.24(a)
shows that the first three principal components produce ≃ 90.8% of the total variance,
meaning that these three principal components are sufficient for the k-means algorithm.
Then, optimal clustering is obtained with two clusters according to the minimum values
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Figure 3.24: (a) The variance (bars) of first 4 principal components of sample Type-I. The
y axis on the right side shows the cumulative variances (line). (b) The number of clusters
evaluated by Davies-Bouldin value and Silhouette Coefficient (y axis on the right).

of the Davies and Bouldin (DB) index and the maximum of Silhouette Coefficient (SC)
as shown in Figure 3.24(b). Indeed, the cluster number is two with SC ≃ 0.87 and DB
≃ 0.62, which verifies that the quality of clustering is acceptable [Gutkin et al., 2011]. The
k-means clustering algorithm can therefore be applied to AE data with three principal
components as input features and two clusters (k = 2).

Figure 3.25 presents the projection of the two clusters (CL1 and CL2) of AE data in
the ‘Type-I’ specimen. We can see that AE signals of both clusters can be easily sepa-
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Figure 3.25: Illustration of the AE data in the two-dimensional plane: Amplitude (dB)
versus Frequency Centroid (kHz) with clustering results of Type-I specimen.

rated in Amplitude. Note that within this sample, three main damage mechanisms can
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be created, namely: matrix cracking, gravel-resin debonding and gravel breakage. Based
on the post mortem observations and other authors’ observations as well [Marec, 2008,
Berbaoui, 2010], CL1 is the AE cluster with amplitude between ∼ 40 dB and 70 dB cor-
responds to matrix cracking which is in accordance with tests performed in epoxy resin
samples. On the other hand, CL2, which is more energetic (∼ 70 dB to 100 dB), corre-
sponds to gravel-resin debonding and gravel breakage.

Figure 3.26 depicts the evolution of the moving average of RA and AF in time for
the two clusters. For cluster CL1, the moving average of RA and AF are approximately
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Figure 3.26: Illustration by moving average of RA value and average frequency in 2
clusters (a) CL1 and (b) CL2 versus time during the mechanical test.

constant up to ≃ 250 s then the increase of RA and the decrease of AF are significant.
However, the evolution of AF and RA for CL2 presents fluctuations during all the test
until the moment where RA increase from ≃ 100µs/V to ≃ 350µs/V. The contrast
between CL1 and CL2 can be explained by the fact that the main crack is developed
within the matrix where a large number of shear cracks appear in the epoxy resin before
the final rupture. However, the tensile/shear transition doesn’t seem to appear clearly
at the interface. Finally, note that the initial stable average AF value is ≃ 130 kHz for
both clusters. The average RA value is ≃ 900µs/V and ≃ 70µs/V for cluster CL1 and
CL2, respectively. This remarkable difference is reasonable since signals in CL2 have a
high amplitude (typically 30 dB higher) and rise time in the range of ≃ 10–500µs, which
corresponds to low RA values.

3.6 Damage characterization of ‘Type-II’ specimen

In this section, three-point bending tests are performed on ‘Type-II’ specimens composed
of 60% sand and 40% epoxy resin in volume fraction (see Table 3.7).

3.6.1 Global Observation

Figure 3.27(a) shows the evolution of AE hits amplitude and applied load versus loading
time during the bending test. In addition, the flexural stress-strain curve is shown in
Figure 3.27(b). When the flexural strength of the material is reached (≃ 34.2MPa),

86



Acoustic emission characterization of micro-cracked concrete

a macroscopic main crack is formed and propagates through the cross-section of the
material. At that moment, the specimen is split into two pieces and the sudden decrease
of the load line also depicts this occurrence.

Figure 3.27: Three-point bending test results for one Type-II specimen: (a) Evolution of
amplitude of AE signals and applied force versus loading time. (b) Flexural stress–strain
behavior during the mechanical test.

Type-II specimens exhibit a rich AE activity and withstand more charge than Type-I
specimens, which means that the fine sand provides more flexural strength to specimens
than gravels. In this resin-sand specimen, all of the AE signals are between ≃ 40 dB
and ≃ 80 dB and the involved amplitudes remain lower than the ones observed in resin-
gravel samples. Therefore, the gravel-resin debonding seems to generate AE events more
energetic than matrix cracking and sand-resin debonding. Here, we assume that fine
sand cannot be damaged under the three-point bending tests. These observations are in
accordance with the results mentioned in the reference [Marec, 2008].

For the damaging of Type-II specimens, the AE signal rate is computed by recording
AE hits per unit time, taken ‘1 s’. As illustrated in Figure 3.28(a), the cumulative AE
energy and the AE signal rate are presented as a function of loading time. Experimental
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Figure 3.28: (a) Evolution of AE signal rate and cumulative AE energy versus loading time
(b) Representation of log-frequency versus amplitude-magnitude chart and calculated AE
based b-value.

results show that the evolution of AE signals can a priori be divided into three stages
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determined by the following times t0 = 100 s, t1 = 160 s, t2 = 270 s and t3 = 314 s. Then,
AE-based b-values are computed for each stage as shown in Figure 3.28(b):

– Stage 1: [t0, t1] The AE activity is weak (AE signal rate < 10 hits/s) and the detected
AE signals have small energy. By linearly fitting the data, AE based b-value in this stage
is ≃ 1.21.

– Stage 2: [t1, t2] The evolution of the AE signal rate evolves linearly and so does the
cumulative AE energy. During this stage, AE based b-value is ≃ 1.01.

– Stage 3: from t2 to the failure of the specimen. More than 110 AE hits are recorded
per second as we get close to the final fracture of this specimen. At ≃ 314 s, the specimen
is split into two parts and bending test stops. The AE based b-value during this stage is
≃ 0.99.

For this specimen, the b-values decrease as a function of the applied force from 1.21
to ≃ 1, where the fracture process is approximately the same in stages 2 and 3. These
b-values, compared to the ones in Type-I specimens, are higher which shows that the
proportion of micro cracks such as sand-resin debonding is higher than the debonding in
Type-I specimen. Lower b-value in Type-I specimen refers more likely to macro cracks
related to gravel-resin debonding and/or matrix cracking. During the Type-II specimen
testing, the sand-resin debonding occur more frequently and generate more AE events
than gravel-resin debonding, but with lower energy.

Figure 3.29 depicts the evolution of RA and AF versus loading time (from 160 s to the
fracture of the specimen) for Type-II specimen. Each point of the curves corresponds to
the moving average for 100 consecutive AE signals. The results show that as the loading
force increases, RA value is almost stable and increase at the end of the test, whereas AF
is gradually decreasing until the end of the experiment, where it shows a sudden decrease
especially during the last 20 s. Note that equivalent behavior has been found in Type-I
specimen, meaning that during the final stage before the specimen fracture, we create
more shear cracks.
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Figure 3.29: Moving average of RA value and average frequency (AF) versus loading time.

However, we think that the multiplication and dispersion of the contact surfaces be-
tween the matrix and the reinforcements (fine sand) is the origin of the significant fluctu-
ation that we observe in the evolution of RA and AF as a function of loading time. This
point will also be verified during the application of unsupervised pattern recognition,
which will be described in the following.
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3.6.2 Unsupervised pattern recognition

The selected features are processed using the PCA algorithm. Figure 3.30(a) shows that
on the basis of the variance and cumulative variance, we can reasonably choose three
principal components for the k-means algorithm, where the cumulative variance exceeds
≃ 93%. Optimal clustering is obtained with two clusters according to the minimum values
of Davies and Bouldin (DB) index ≃ 0.55 and maximum of Silhouette Coefficient (SC)
≃ 0.81 which are shown in Figure 3.30(b).

Figure 3.30: (a) The variance (bars) of first 4 principal components of Type-II specimen.
The y axis on the right side shows the cumulative variances (line). (b) The number of
clusters evaluated by Davies-Bouldin value and Silhouette Coefficient (y axis on the right).

Figure 3.31 shows the projection of the clustering results of AE data in Type-I and
Type-II specimens where two clusters have been separated. Comparison between the two
specimens shows that the unsupervised clustering approach has the ability to separate AE
signals based on the chosen features. As mentioned earlier, CL1 and CL2 are the two AE
clusters found in Type-I specimens. The use of new constituents in Type-II specimens
reasonably suggests that CL3 corresponds to a new damage mechanism, which is the
sand-resin debonding. These results confirm that high amplitude signals which appear in

Figure 3.31: Illustration of the AE data in the two-dimensional plane: Amplitude [dB]
versus Frequency Centroid [kHz] with clustering results of (a) Type-I specimen and (b)
Type-II specimen
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Type-I specimen correspond to the gravel-resin debonding. The frequency and amplitude
characteristic of the three clusters can be therefore presented as shown in Table 3.9.

AE cluster name Amplitude [dB] Frequency Centroid (FC) [kHz]

CL1 (matrix cracking) 40–75 dB 200–300 kHz
CL2 (gravel-resin debonding) 70–100 dB 100–350 kHz
CL3 (sand-resin debonding) 40–70 dB 300–500 kHz

Table 3.9: Amplitude and frequency characteristic of three AE clusters.

Figure 3.32 shows the evolution of RA and AF as a function of loading time for two
clusters CL1 and CL3. The global trend for the two characteristics is in accordance with
the observation made earlier regarding the evolution of the crack mode from tensile to
shear. Here again, the multiplication and dispersion of the tiny contact surfaces between
the resin and sand, generates fluctuation in RA and AF for both clusters. We also note
that CL3 signals have high AF value, meaning that signals are impulsive (short rise
time and short duration). The work carried out made it possible to study the damage
mechanisms separately, where the mixing was only carried out between one constituent
(sand or gravel) and the matrix (resin). This sample definition allowed identifying three
main classes of damage, their evolution during the mechanical test was detailed. The
following study concerns the characterization of damage of polymer concrete samples
using the analysis methods presented above.

Figure 3.32: Illustration by moving average of RA value and average frequency in two
clusters (a) CL1 and (b) CL3 versus time during the bending test of specimen Type-II.

3.7 Damage characterization of polymer concrete spec-

imen

In this section, three-point bending tests are performed on PC specimens composed of
30% sand, 30% gravel and 40% epoxy resin in volume fraction (see Table 3.7).
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3.7.1 Global Observation

Figure 3.33(a) shows experimental results corresponding to a PC sample where the distri-
bution of AE signals and the applied load are plotted versus loading time during a three-
point bending test. In addition, the relation of flexural stress-strain curve is illustrated
in Figure 3.33(b) where the flexural strength is ≃ 22.1MPa. All bending tests showed
a sudden decrease of the applied load around the failure of specimens. This experimen-
tal observation was also mentioned in [Shokrieh et al., 2011, Heidari-Rarani et al., 2014,
Hashemi and Jamshidi, 2015] showing the brittle behavior of resin-based composites when
submitted in the flexural tests.

0 30 60 90 120 150 180 210

Time [s]

40

50

60

70

80

90

100

A
m

p
lit

u
d

e
 [

d
B

]

0

1

2

3

4

5

6

7

L
o

a
d

 [
k
N

]

AE hits
Load

0 2 4 6 8 10

Strain 10
-3

0

5

10

15

20

25

S
tr

e
s
s
 [
M

P
a
]

(a) (b)

Figure 3.33: Three-point bending test results for one polymer concrete specimen: (a)
Evolution of amplitude of AE signals and applied force versus loading time; (b) Flexural
stress-strain behavior during the test.

Figure 3.34(a) presents the cumulative AE energy and the AE signal rate versus loading
time; the evolution of the AE activity has three stages. The results show that the evolution
of AE signals can a priori be divided into three stages determined by the following times
t0 = 60 s, t1 = 120 s, t2 = 190 s and t3 = 208 s. For each stage, the AE-based b-value is
computed as illustrated in Figure 3.34(b):
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Figure 3.34: (a) Variation of RA value and AF versus loading time. (b) Representation of
log-(N) versus amplitude-magnitude chart and calculated AE based b-value during three
stages.
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– Stage 1: [t0, t1] The rate of AE activity is low (<10 hits per second) and the detected
AE signals have small energy. By linear fitting the data, AE based b-value in this stage
is ≃ 0.89.

– Stage 2: [t1, t2] The evolution of the AE signal rate has a linear growth which
increased the cumulative AE energy. During this stage, the AE based b-value in this
stage is ≃ 0.74.

– Stage 3: [t2, t3] The number of failure mechanisms is very high and the AE signal
rate has increased up to more than ≃ 120 hits per second. This intense AE activity
indicates the imminent arrival of the final break of the specimen. During this stage, the
AE based b-value during this stage is ≃ 0.69.

The PC specimens have b-values between 0.9 and 0.7, which is between the minimum
value of the Type-II specimen and the maximum value of the Type-I. The AE-based b-
value can, therefore, be used as an index of damage level, due to the influence of damage
mechanisms on the increase and/or decrease of b-value. Figure 3.35 depicts the variation
of RA value and Average Frequency (AF) versus loading time (from ≃ 120 s until the
fracture of the specimen) for PC specimen. Each point of the curves corresponds to the
moving average for 100 consecutive AE signals. It can be seen from the plot that in
general, the RA value is increasing and AF is decreasing as a function of loading time.
This observation shows that tensile crack mode is predominant in the early stages of
damage before the appearance of a large number of shear cracks as we approach the
break of the PC specimen. Compared with the other two specimens, the variation of RA
and AF is more similar to Type-II specimen with a significant decrease in fluctuations,
which is certainly linked to the presence of reinforcements. The AF decreased from ≃
155 kHz to ≃ 140 kHz and RA increased up to ≃ 1100µs/V. In order to go beyond this
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Figure 3.35: Moving average of RA value and average frequency (AF) versus loading time.

global observation, the damage process of PC specimens will be analyzed using the same
unsupervised pattern recognition method, as it will be presented in the following.

3.7.2 Unsupervised pattern recognition

Figure 3.36(a) shows the variance and cumulative variance corresponding to the damaging
of PC sample. The number of principal components for the k-means algorithm is chosen
as three which is based on a cumulative variance is ≃ 94%. Moreover, optimal clustering
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Figure 3.36: (a) The variance (bars) of first 4 principal components of PC specimen. The
y axis on the right side shows the cumulative variances (line). (b) The number of clusters
evaluated by Davies-Bouldin value and Silhouette Coefficient (y axis on the right).

is obtained with three clusters according to the minimum values of Davies and Bouldin
(DB) index and maximum of Silhouette Coefficient (SC) as shown in in 3.36(b).

Figure 3.37 presents results of clustering of AE data and the evolution of RA and AF
for each AE cluster as a function of loading time. Figure 3.37(a) shows that three clusters

Figure 3.37: (a) Illustration of clustering results of PC specimen. Illustration by moving
average of RA value and average frequency for cluster (b) CL1, (c) CL2 and (d) CL3.

can be clearly separated according to the differences between their different characteristics.

93



Acoustic emission characterization of micro-cracked concrete

In particular, signals in cluster CL1 have small amplitude and low frequency. Cluster
CL2 is mainly characterized by AE signals with high amplitude, whereas AE signals in
cluster CL3 stand out for their high frequency centroid (FC) which can reach the value
of 600 kHz. Note that, these results also confirm the clustering analysis performed on
Type-I and Type-II specimens (see Figure 3.31). For the three clusters, we monitored the
variation of RA and AF as a function of loading time as presented in Figures 3.37(b),
(c) and (d). Recall that, each point of the curves corresponds to the moving average
for 50 consecutive AE signals. In general, we can observe that the evolution of RA and
AF is in accordance with the evolution of the cracking mode from tensile to shear. The
fluctuations mentioned earlier concern the three clusters showing once again the influences
of the existing contact surfaces (dispersion) in the evolution of RA and AF.

The identification of the three AE clusters shown previously on different kind of speci-
mens was obtained by means of an unsupervised pattern recognition algorithm. Therefore,
in order to confirm whether the cluster ‘CL1’ in a given specimen is the same as the cluster
‘CL1’ in another specimen, the average attribute and statistical distribution of all clusters
for each specimen are compared with the box-and-whisker plots. The insert in Figure 3.38
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Figure 3.38: Statistical dispersion of the six AE features versus the three damage mech-
anisms for three specimens (Type-I,Type-II and PC). (a) Amplitude, (b) Rise time, (c)
Frequency centroid, (d) Counts, (e) Average frequency and (f) RA value (in ms/V).
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presents a box-and-whisker plot, where the bottom and top edges of the box indicate the
first quartile Q1 (the first 25%) and the third quartile Q3 (75%), respectively. The median
value (50%) is represented by the line cutting through the box. The whiskers indicate the
lower and upper values located in the interval [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)].

Figure 3.38 shows box and whiskers plots of the three AE clusters determined for Type-
I, Type-II and PC specimens, according to the same AE features and same unsupervised
clustering analysis. Through the evolution of the six considered features, we can see
that cluster CL1 presents quite similar characteristics for the three types of specimens.
Equivalent observations can be made for the evolution of clusters CL2 and CL3 with the
presence of effects between the mean values of certain AE features such as the rise time of
CL2 or the frequency centroid of CL3. Nevertheless, the existing offsets remain acceptable
and the overlap between the whiskers in clearly visible despite the huge difference of the
AE activity between the different inhomogeneous specimens and the complex propagation
of elastic waves in such materials.

The performed study and data analysis confirm that a correspondence between the
clusters of AE events and damage mechanisms is possible. Based on the unsupervised
pattern recognition approach and the different experiments, we propose the following
correspondences: CL1 - matrix cracking; CL2 - gravel-resin debonding; CL3 - sand-resin
debonding. Figure 3.39 shows a comparison between the average values of the selected AE
features corresponding to the above mentioned three clusters. Indeed, the star diagram
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Figure 3.39: Average properties of the three AE clusters on the six features as Amplitude,
Duration, Counts, Frequency Centroid, Average Frequency and RA value.

allows to appreciate the relevance of the selected features and their capacity to assign
each AE signal to one of the three clusters in the configuration space. From the above,
we can propose a quantitative presentation of the six AE features according to thee types
of damage mechanisms, as it can be seen in Table 3.10.

Damage mechanism Amplitude Rise time Frequency centroid Counts Average frequency RA value

Matrix cracking 40–75 dB 20–40µs 100–350 kHz 30–50 50–200 kHz 0–4000µs/V
Gravel-resin debonding 70–100 dB 30–60µs 100–250 kHz 100–200 100–200 kHz 0–100µs/V
Sand-resin debonding 40–70 dB 10–30µs >350 kHz 10–50 >100 kHz 0–1000µs/V

Table 3.10: Synthesis of 6 features calculated on AE signals related to the type of damage
corresponding to a polymer concrete.
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3.8 Image-based classification of AE signals.

3.8.1 Time-frequency representation of AE signals

Another way to appreciate the existing differences between AE signals is to investigate
their time-frequency characteristics. Figure 3.40(a)-(f) presents three typical AE signals
waveforms and their corresponding wavelet scalograms for the three clusters.
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Figure 3.40: The typical AE waveform associated with three damage mechanisms and
their T-F representation. Plots (a) and (b) for micro-matrix cracking; plots (c) and (d)
for gravel-resin depending; plots (e) and (f) for sand-resin debonding.

The wavelet scalogram is obtained by calculating the square of the modulus of wavelet
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coefficients in continuous wavelet transform (CWT) and the time-frequency representa-
tion (TFR) computed by using Morlet wavelet. Through the energy density distribution
in the TFR, it can be seen that the signal in cluster CL1 has a low amplitude and a middle
duration, the frequency distribution of energy is below 250 kHz, which corresponds to the
matrix cracking. The AE signal corresponding to the gravel-resin debonding has a high
amplitude and its energy distribution is mainly located between 200 kHz and 300 kHz.
Finally, the AE signal corresponding to the sand-resin debonding has a short rise time
and is, therefore, more impulsive. Correspondingly, its energy distribution is essentially
between 500 kHz and 600 kHz. The continuous wavelet transform (CWT) analysis clearly
shows that it is possible to classify AE signals according to their time-frequency charac-
teristics. Indeed, the latter can be considered as an image which can serve as a basis for
a learning process with a view to an automated classification. This will be developed in
the case of polymer concrete in the following.

3.8.2 Image-based classification methodology

The proposed AE signal classification approach consists in the association of the contin-
uous wavelet transform (CWT) with the convolutional neural network (CNN) algorithm.
This supervised classification algorithm is applied using the following three steps:

Pre-trained AlexNet

Full connected

layer

Softmax layer

Classification

layer

...

...

Transfer Layers

Freeze layers

Replaced layers

Output

1000 classes

AE Images

layer 23 
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Transfer Layers

Back propagation training by AE Images 
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Specifics specimens
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(2) Transfer Learning & Fine Tuning(a) AE Image Representation
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Retrained AlexNet
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Output
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Output
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Figure 3.41: Flowchart of analysis processing.
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1. Select AE signals taken from the three-point bending tests of Type-I and Type-II
specimens in order to build the training dataset (i.e. AE images) with the help of the
CWT.

2. Transfer learning and retrain the AlexNet network with the training dataset (i.e.
AE images).

3. Classify the AE signals corresponding to the damaging of the polymer concrete
(PC) specimens by using the retrained the AlexNet.

The flowchart shown in Figure 3.41 illustrates the steps involved in the process of this
proposed methodology. In order to build the training dataset, 300 AE signals (100 signals
for each damage mechanism) are selected from the mechanical tests applied on Type-I
and Type-II specimens. In the following, we will present the application of each step on
the selected AE images and will compare with the proposed new classification method
and the classical method in the case of PC specimens.

3.8.3 Acoustic emission (AE) image processing

Each AE signal is first converted to AE image using the continuous Morlet wavelet trans-
form (detail is shown in subsection 2.6.2), where 300 AE images are generated, 100 for
each damage mechanism. For each damage mechanism, 80 images are used to retrain the
AlexNet architecture and parameters and the rest are used for testing.

Figure 3.42 illustrates 3 typical AE image representations corresponding to the three
main damage mechanisms, namely, matrix cracking, gravel-resin debonding and sand-
resin debonding. The limit of frequency axis was fixed at 800 kHz and timescale was
taken up to 500µs, which is long enough to show the main part of the AE signals. Each
image is 224 × 224 × 3 pixels to suit the input of AlexNet algorithm. These three types
of AE images are used as input data for the training of transferred AlexNet algorithm.

(a) CL1 (c) CL3(b) CL2

Figure 3.42: Three typical AE image representations for the corresponding damage mech-
anisms: (a) matrix cracking, (b) gravel-resin debonding and (c) sand-resin debonding.

3.8.4 Transfer learning and training

In order to achieve the transfer learning, the last fully connected layer with the softmax
and the output layer (layer 23-25 in Table 2.2) of the pre-trained AlexNet are replaced
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with a new fully-connected layer (with 3 nodes, 3 is the number of AE classes), a new
softmax layer and an output classification layer.

This transferred AlexNet network was first trained with labeled AE images. The
stochastic gradient descent method was used to train the network with a learning rate of
10−4, where the batch size was taken as 10. The training was performed for 10 epochs,
meaning the network examined every image 10 times (i.e. 10 cycles of forward and
backward propagations) [Goodfellow et al., 2016]. The time taken to train the network
was approximately ≃ 102 s thanks to the transfer learning approach and power of GPU
(Nvidia GeForce GTX 960M). Figures 3.43(a) and (b) illustrate the evolution of the
accuracy and training error of the network. Both figures show that the trining stops
when the accuracy is maximum and the training error approaches 0%.
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Figure 3.43: (a) Accuracy of training data and (b) the variation in training error as a
function of epoch number.

As mentioned earlier, test data were 60 images (20 images for each damage mecha-
nism), which has not been used for the training process. From this consideration, the
confusion matrix presented in Figures 3.44(a) shows that for the 60 test AE images, the
network was able to classify data with an accuracy of 98.3%. In particular, results show
that only one CL3 signal was ‘misclassified’ as CL1 class. Figure 3.44(b) illustrates the

Figure 3.44: (a) Confusion matrix of the test data. (b) The misclassified AE signal and
its corresponding AE image.

waveform and the time-frequency characteristics (AE image) of the ‘misclassified’ signal.
Through the latter, we can see that the signal has a short rise time and a high frequency.
It can, therefore, correspond to the damage mechanism of the sand-resin debonding. How-
ever, the time-frequency representation (TFR) shows that this signal seems to blend the
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characteristics of two damage mechanisms: matrix cracking and sand-resin debonding. In
addition, for this signal, the probabilities belonging to one of the three classes CL1, CL2
and CL3 are 71%, 0.1% and 28.9%, respectively. This result illustrates the fact that the
classification, which we believe to be wrong or misleading, is not necessarily incorrect and
that the presence of signals originating from a mixture of modes in complex materials is
not necessarily an isolated event. In fact, such a mixture is often the product of a main
(or pure) mechanism that occurs in the vicinity of an interface mechanism, such as the
above-described signal. On the strength of these observations, we retain the fact that the
classification carried up till now is obtained with good accuracy. In the following, the
retrained AlexNet network will be used for the classification AE data collected during the
damaging of PC samples.

3.8.5 Classification of AE data of polymer concrete

AE data obtained during the quasi-static bending on PC specimens were processed using
the retrained AlexNet network, following the approach described in subsection 3.8.2. For
each AE signal, AlexNet network computes the probability of belonging to one of the
three main damage mechanisms. Therefore, a given AE signal will have a maximum of
three non-zero probability of belonging.

Firstly, we only considered the highest probability for all signals and have compared
the results with those obtained earlier on the same data with the help of the unsupervised
pattern recognition, as it can be seen in Figure 3.45. The latter shows that the results

Figure 3.45: Illustration of (a) the classification results and (b) clustering results of AE
data in Amplitude versus Frequency centroid plan. Proportion of AE events for each class
(clusters) by (c) AlexNet and (d) unsupervised pattern recognition algorithms.

of the two algorithms coincide with signals of class CL2. For signals in class CL1 and
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CL3, we notice a slight difference in the classification results. Indeed, the main difference
between the classification results in the two algorithms may be related to the fact that
an AE signal is a mix of with two damage mechanisms. This result is also noticed in
the confusion matrix of test data (see Figure 3.44(a)) and the confused data accounts for
≃ 5% of total signals analyzed.

In order to study if the difference between the two classification methods can be
optimized, we carried out a probability threshold study. Indeed, instead of taking the
maximum of the probability of belonging for each AE signal, we fixed threshold, namely
90%, 80% and 70%, above which the probability of belonging will be considered, and
the AE signal will be therefore affected to one of the three classes. If the maximum of
the probability belonging is smaller than the threshold, the AE signal will be put in a
confusion class. This definition led to the results of Figure 3.46.
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Figure 3.46: (a) Proportion of AE signals in different classes versus the threshold. Pro-
portion of AE signals in each class in the case of (b) threshold = 90%, (c) threshold =
80% and (d) threshold = 70%.

Figure 3.46(a) shows that when the threshold is taken at 90%, the created confusion
accounts for ≃ 7% of the total AE signals analyzed (≃ 3600 signals). In that case,
the results of the two classification methods become very close for three classes (see
Figure 3.46(b)). Also, we want to show through this approach that the classification is
not unique and that a change in threshold can modify the results obtained. However,
the quality of a classification method should not be affected by the different threshold
changes. Thus, the robustness of the method that we present can be noticed through
the results of 80% and 70% threshold, where the variation obtained for each class doesn’t
exceed 3% (see Figures 3.46(c) and (d)). Finally, we note that whatever the threshold,
the proportion of AE signal within the confusion class is always under ≃ 7%, which is
consistent with the different classification methods, despite the complexity of the material
studied.
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3.9 Conclusion

In this chapter, damage mechanisms of two types of concrete samples submitted to quasi-
static three-point bending tests are studied by using the acoustic emission (AE) technique
and different signal processing methods. Researches are mainly focused on the fracture
process analysis (b-value) of concrete specimens, parametric approach (RA value and
average frequency) of crack mode classification and multi-parametric unsupervised pattern
recognition of AE data.

For civil engineering concrete, micro-cracks of specimens are separated into two main
modes: shear and tensile cracks by using the recorded AE signals. Results show the ex-
isting agreement between the unsupervised pattern recognition with parametric approach
analysis. For polymer concrete (PC), as a novel kind of composite material, with the
help of the unsupervised pattern recognition approach and different experiments, three
damage mechanisms are identified: CL1 - matrix cracking; CL2 - gravel-resin debonding;
CL3 - sand-resin debonding. AE date in the PC specimen is also analyzed by using a
proposed ‘image-based AE classification’ approach based on continuous wavelet trans-
form (CWT) and convolutional neural network (CNN). Results show that according to
the time-frequency characteristics of AE data and transfer learning technique, retrained
AlexNet algorithm has high classification accuracy.

In the next chapter, in order to explore the correlation between the damage mechanism
and the non-classical (hysteretic) nonlinear behavior of complex materials, we propose
an original protocol to monitor the evolution of the nonlinear relaxation of micro-cracked
concrete samples using AE. In addition, the obtained AE signals will be studied by similar
signal processing methods as the ones used in Chapter 2.
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Chapter 4

Nonlinear dynamic experiments with

acoustic emission

The aim of this chapter is to probe the hysteretic nonlinear dynamic behavior in polymer
concrete (PC) and civil engineering concrete samples. The nonlinear experiments are
performed on intact and damaged samples, and results will initially concern the behavior
of the materials during fast and slow dynamic experiments. Once the nonlinear parameters
are known and the nonlinear behavior well described, the same experiments are reproduced
in order to study the capacity of acoustic emission (AE) to monitor the evolution of the
nonlinear behavior. To this end, we will discuss the advantages and limits of this original
approach.
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4.1 Nonlinear dynamic experiments

4.1.1 Introduction of the experimental setup

The nonlinear dynamic experiments are conducted on the intact and micro-damaged
samples by exciting materials at resonance around one of their bending modes. The
applied standing wave dynamic method is also denoted as ‘Nonlinear Resonant Ultrasound
Spectroscopy’ in some references [Renaud et al., 2013, Johnson and Rasolofosaon, 1996,
Van Den Abeele et al., 2001, TenCate, 2011].

Figure 4.1 depicts the experimental setup for the nonlinear dynamic experiments.
A Stanford Research Systems SR785 analyzer is used to generate the excitation signal
(linear sweep), which is amplified by a power amplifier (B&K type-2719) at a constant
gain. Then, the excitation is conducted with a shaker (B&K type-4809), which is fixed on
a passive damped optical table to avoid external interferences. The sample is firmly linked
to the vibrating pot using a rigid clamping device and a piezoelectric sensor is glued by
phenyl salicylate (salol) on the other edge of the tested sample to detect its response.

Shaker

Sample

Piezo sensor

Computer

Amplifier

Analyzer

Figure 4.1: Schematic representation of the experimental setup used to perform the dy-
namic nonlinear measurements.

Vibration signals are first processed with the dynamic signal analyzer, which computed
automatically amplitudes and phases for each frequency of the sweep source function
around and away from bending modes. The system is controlled and data are transferred
to the computer with the help of a GNU Octave software. This analyzer is very stable for
long-term measurements and its swept-sine excitation (duration and signal-to-noise-ratio)
is ideal for the proposed resonance experiments as it has been shown in different contribu-
tions [Novak et al., 2012, Idriss et al., 2015, Hammami et al., 2016, Toumi et al., 2017].

4.1.2 Linearity of the experimental setup

The quality of nonlinear acoustic measurements depends strongly on the experimental
setup. Therefore, we must ensure that the operation of the experimental device is linear
at the frequencies and amplitudes of applied excitation. As non-classical (hysteretic)
behavior is strain-dependent, the imposed samples displacement needs to be measured to
estimate the dynamic strain amplitude. Our measurements were thus carried out using a
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double head laser Doppler vibrometer (Polytec OFV-5000 controller and OFV 552 Fiber-
Optic Sensor Head) to measure the displacement of the sample at the different levels of
excitation (see Figure 4.2).

Shaker

Sample

Computer

Amplifier

Analyzer

Laser

Laser

Vibrometer Controller

Fiber-Optic Sensor Head

Head 2

Head 1

Figure 4.2: Schematic diagram of the experimental setup used to investigate the linearity
of device.

Linearity measurements were conducted on a resin beam of size and shape similar to
the concrete samples (200 × 40 × 40 mm3), where the real displacement is equal to the
difference of the displacements recorded at the opposite surfaces. Finally, we note that the
displacement is evaluated using the laser conversion coefficient, where 100 nm corresponds
to 1V. The relative vertical displacement is measured at the edge of the tested sample
with two laser beams positioned on the opposite upper and lower sides of the sample.
The excited and detected signals are acquired, digitized by an analyzer and stored in a
computer with the help of GNU Octave software.

The linearity of the experimental device, including the amplifier, the shaker and the
holder with the sample, which is verified in the frequency range from 100Hz up to 20 kHz.
At each frequency, twelve amplitudes of excitation are gradually increased from 10mV to
3.5V, then pass the amplifier (at a constant gain) and conducted to the shaker. Figure 4.3
shows the evolution of the displacement at increasing amplitude around 5500Hz. We can

10
1

10
2

10
3

Excitation amplitude [mV]

10
-8

10
-7

10
-6

10
-5

E
s
ti
m

a
te

d
 s

tr
a

in

10
1

10
2

10
3

Excitation amplitude [mV]

10
0

10
1

10
2

10
3

D
is

p
la

c
e

m
e

n
t 

[n
m

]

(a) (b)

Nonlinear 

regime

Nonlinear 

regime

Figure 4.3: Linearity of the experimental device measurements. (a) The maximum dis-
placement at the edge versus different excitation amplitudes at 5500Hz. (b) The estimated
strain as a function of different excitation amplitudes at 5500Hz.

see through the latter that the experimental device behaves linearly up to 2.5V, above
which a deviation starts to appear. For the maximum linear excitation amplitude (2.5V
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before amplification), the displacement is ∼ 400 nm at resonance. As the thickness of
the sample is 40mm, the estimated strain amplitude is ∼ 10−5 at resonance. For the
minimum excitation amplitude (10mV), the strain amplitude is ∼ 10−8, which shows
that the excitation strain amplitude used to determine the linearity of the experimental
device covers three orders of magnitude.

In the following, the excitation amplitudes are selected up to 2V (maximum voltage
before amplification) for polymer concrete samples and 1.6V (maximum voltage before
amplification) for civil engineering concrete samples. Maximum amplitudes used in the
experiment allow us to work in the nonlinear regime of the tested samples, but still well
within the limits of linearity of the setup.

4.2 Nonlinear dynamics of polymer concrete samples

4.2.1 Materials and experiments

In this section, we will mainly focus on the nonlinear characterization of polymer concrete
(PC) samples. The damaged PC sample was tested at a stress level corresponding to
∼ 70% of its maximum strength using the same three-point bending tests presented in the
previous chapter. Nonlinear acoustic measurements are performed by exciting PC samples
at intact and damaged states in fast dynamic (FD) and slow dynamic (SD) regimes. The
results of both nonlinear dynamic excitations will be presented in the following.

4.2.2 Fast dynamics of polymer concrete samples

Fast dynamics (FD) experiments were conducted on PC samples taken at intact and
damaged states having the same dimensions 200 × 40 × 40 mm3. Both samples were
excited in the frequency range around the third bending resonance (between 5300Hz
and 5450Hz) using the linear sweeps. In the following, we denote Asource as the source
amplitude of the linear sweep, f0 as the linear resonance frequency (the same as the one
obtained at the very low excitation) and Q0 as the linear quality factor. The amplitude of
the excitation signal was gradually increased from 20mV up to 2V (before amplification)
to excite the samples in the linear and nonlinear regimes following the protocol shown in
Figure 4.4. Note that the maximum excitation amplitude, i.e. Asource = 2V, corresponds
to a strain amplitude of ∼ 6× 10−6 at resonance.
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Figure 4.4: Input excitation amplitude during the fast dynamics (FD) analysis. For each
amplitude, a linear sweep is performed around the third bending resonance.
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The experimental results of the PC sample in the intact and damaged states are shown
in Figure 4.5. The latter depicts the amplitudes and phases at resonance as a function
of the normalized frequency (frequency is normalized with respect to the linear reso-
nance frequency f0) for increasing excitation level. At each excitation level, the resonance
frequency (f) is determined by considering the phase shift, which coincides with the fre-
quency at which the phase is zero (see the red circles in Figure 4.5(d)). The quality factor
(Q) at each excitation can also be calculated as the ratio of the resonance frequency to
its half-power bandwidth (Amax−3 dB) from the resonance curves in Figures 4.5(a) and
(b).
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Figure 4.5: Fast dynamics (FD) of a PC sample taken at intact ((a) and (b)) and dam-
aged ((b) and (d)) states: phases and amplitudes (normalized to input amplitude) versus
frequency (normalized to linear resonance frequency f0) of the detected signals at in-
creasing input excitation Asource. Red circles in the phase subplot(d) indicate the zero
phase crossing, from which the resonance frequency could be derived at each amplitude
of excitation.

For an intact PC sample, results are plotted, for the different excitation levels, in
Figures 4.5(a) and (c), where all the normalized curves are superimposed. Meanwhile, in
the intact state, no strain amplitude-dependent phenomenon can be observed. This ob-
servation indicates that both resonance frequency and Q factor are not strain-dependent
and the increase of the excitation does not influence the elastic properties of the material,
within the limits of the linear functioning of the experimental devices. However, from the
results of the damaged state shown in Figures 4.5(b) and (d), the resonance frequency
and Q factor are considerably influenced by the increasing excitation amplitude Asource.
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Figure 4.6(a) illustrates the relative variation of resonance frequency (f − f0)/f0 as a
function of excitation amplitude for one PC sample taken at intact and damaged states,
respectively. In addition, Figure 4.6(b) shows the relative variation of inverse quality
factor (1/Q− 1/Q0)/(1/Q0), which is proportional to damping, versus increasing excita-
tion amplitude Asource for the same states. The hysteretic nonlinearity is known to be
responsible for the downward shift of the resonance frequency (or equivalently in wave
velocity or elastic modulus) in the presence of micro-cracks. In addition, the hysteretic
nonlinearity also leads to the relative change of the damping, and consequently to an
increase in the elastic wave attenuation.
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Figure 4.6: Relative variation of resonance frequency and damping as a function of the
source amplitude a PC sample at intact and damaged states.

The resonance frequency and quality factor decrease with increasing excitation am-
plitude is a result of the change in the viscoelastic properties, which is only observed
in our case when the PC sample is micro-cracked. This observation has been described
in many references where the fast dynamics method has been used as an NDT tool to
highlight the sensitivity of nonlinear effects to the presence of damage [Payan et al., 2007,
Chen et al., 2010, Eiras et al., 2014].

4.2.3 Slow dynamics of polymer concrete samples

Slow dynamics (SD) experiments were performed on the same set of polymer concrete
(PC) samples (intact and damaged). The experimental setup is identical to the FD,
where the involved amplitudes belong to the linear operating range (see Figure 4.1). The
protocol of the SD experiment was considered in three steps, as shown in Figure 4.7(a):

1 – Preconditioning: the PC sample (intact or damaged) is repeatedly excited with
a very low excitation amplitude around its third bending resonance mode. During this
stage, we verify that the resonance curves (both in amplitude and phase) are perfectly su-
perimposed, indicating that we have an initial linear equilibrium state, which is considered
as a reference.

2 – Conditioning: then, the sample is conditioned with a high amplitude excitation
around the same resonance mode. Note that the excitation amplitude remains constant
during all the conditioning stage. After the first sudden (or instantaneous) variation of
the resonance frequency and damping, the transition of the sample from the linear to a
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non-equilibrium state is observed. When the conditioning time is increased which can
be performed by repeating the high amplitude excitation around resonance, the damping
increases (i.e. the quality factor of the curve decreases) and elastic modulus decreases
(the resonance frequency shifts towards lower values).

3 – Relaxation: after being conditioned by the application of a large dynamic strain
(higher than ∼ 10−6), the high drive amplitude is removed. Then a low excitation am-
plitude is applied (the same as the one used at the preconditioning stage). Under these
conditions, the material properties recover slowly to their initial values until the original
linear equilibrium state (of the preconditioning) is reached. Measurements showed that the
effects of conditioning and relaxation are fully reversible. In general, the relaxation behav-
ior is followed by tracking the evolution of resonance frequency and quality factor Q. Over
time, the system relaxes back to its preconditioning state as the logarithm of time over
minutes, hours, or days depending on the conditioning characteristics [TenCate, 2011].
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Figure 4.7: (a) Protocol of excitation in slow dynamics experiment. Three experimental
steps conducted during slow dynamic experiments and typical results on damaged polymer
concrete samples: preconditioning (b), conditioning (c) and relaxation (d).

In the preconditioning and relaxation stages, the weak excitation amplitude is 10mV
(before amplification). This excitation level is calibrated using the differential Fiber-Optic
Sensor Head as presented in Figure 4.2 during fast dynamics experiments on intact sam-
ples, where the involved strain rates (∼ 10−8) were found to be well below the threshold
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corresponding to the nonlinear behavior of the tested materials. For the conditioning, the
high-level of excitation has an amplitude of 2V. The sweep signals are then amplified, and
the maximum dynamic strain of the samples during these experiments was ∼ 3 × 10−6.
The full conditioning was obtained after more than 1000 s (35 sweep cycles) of high dy-
namic strain conditioning. Then, the nonlinear slow recovery of the elastic properties
was probed by repeating the same resonance sweep at 10mV until the full relaxation is
reached. Figures 4.7(b), (c), and (d) illustrate the results on the damaged PC sample for
each of the three steps (note that the frequency is normalized with respect to the linear
resonance frequency f0). The upper row in each column represents the amplitude of the
resonance curve and the lower row depicts the phase of the resonance curve, recorded
at the same frequency. Finally, we note that the resonance frequency of each curve is
selected by zero phases (see the black circles in the lower subplots).

Based on the relaxation process in the damaged PC samples, the resonance curves
illustrated in Figure 4.7(d) allows us to compute the evolution of the resonance frequency
(elastic modulus) and the quality factor (damping) as a function of time. The relaxation
time as shown in Figure 4.8 is determined when the preconditioning parameters are re-
covered. As mentioned earlier, the sweep duration is ∼ 38 s. The experimental data in
blue dots within the same figure show the times at which the resonance frequencies and
the quality factors were measured. Indeed, the first dot indicates that the relaxation time
recording starts at ∼ 22 s.
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Figure 4.8: Relative variation of resonance frequency (elastic modulus) and inverse Q
factor (damping) as a function of time during the nonlinear relaxation of a polymer
concrete sample taken at intact (a) and damaged (b) states. (c) and (d) represent the
same plots when the relaxation time is in the logarithmic scale.

Figures 4.8(a) and (b) clearly shows the slow recovery of the elastic properties as a
function of time in the case of the damaged PC sample, where the relaxation time is ∼
4200 s (monitoring during 5000 s). Date obtained by repeating the same resonance sweep,

110



Nonlinear dynamic experiments with acoustic emission

show that the tested sample has almost recovered its initial properties, where the variation
of both resonance frequency and damping is less than 0.1%.

The log-time evolution of the resonance frequency and damping are presented in Fig-
ures 4.8(c) and (d). During the first moments of relaxation, when the sample is probed us-
ing a low source amplitude, the tested sample is in a ‘metastable state’, which is similar to
the observations performed in references [Mechri et al., 2019, Bentahar et al., 2020]. In-
deed, in the middle time range, experimental results show that the recovery of elastic mod-
ulus and damping is linearly related to logarithmic relaxation time, in accordance with re-
sults of the literature [TenCate et al., 2000b, Bentahar et al., 2006, Scalerandi et al., 2010,
Scalerandi et al., 2019]. This behavior has been observed for different media (consolidated
and unconsolidated granular, damaged composites or metals, etc.), which is due to the
hysteretic nonlinear relationship existing between stress and strain where different micro-
structural features can be involved (sliding or frictional interfaces, clapping micro-cracks,
etc.). Finally, we mention that the intact PC sample was not subject to relaxation, which
makes the presence of recovery, in this case, a reliable acoustic signature of the presence
and evolution of damage.

Indeed, in literature [Bentahar and El Guerjouma, 2009], Bentahar and El Guerjouma
have demonstrated that the nonlinear relaxation behavior of progressively damaged poly-
mer composites can be quantified and related to the cumulative AE energy recorded at
each damage stage. However, the AE data were not recorded simultaneously with the
nonlinear hysteretic data, namely the relaxation time. In order to better understand the
physical origin of the nonlinear slow dynamics of micro-cracked materials. The present
thesis aims to use acoustic emission (AE) as a passive monitoring tool to investigate the
relaxation of damaged samples by replacing the weak excitation probing. Results related
to the characterization of intact and damaged samples will be presented in the following.

4.3 Passive monitoring of nonlinear relaxation

4.3.1 Materials and experiments

As mentioned earlier, the nonlinear dynamic experiments around resonance showed that
intact PC samples show no relaxation. This was not the case of the partially damaged
polymer concrete (PC). Indeed, compared with the intact PC, the presence of micro-
cracks created during the quasi-static loading, as described in Chapter 3, seems to be at
the origin of the hysteretic nonlinear behavior. To investigate the relationship between
the existing micro-cracks and the nonlinear behavior of the tested materials, the acoustic
emission (AE) was used on the intact and damaged PC samples to detect the existence
of acoustic signatures and thus to monitor the nonlinear relaxation during slow dynamics
experiments.

The experimental setup in this study is illustrated in Figure 4.9. By keeping the
same equipments used for the previously presented classical nonlinear measurements,
samples (intact and damaged) were subjected to standing bending waves around their
third resonance mode. In order to probe the relaxation so as to get rid of the weak
amplitude probe wave, an AE sensor (WSα) was glued by phenyl salicylate (salol) around
the center of the sample (near the damage zone). Detected AE signals are then filtered
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and amplified by the USB AE Node, which is a preamplifier (40 dB) and are collected
thanks to a computer via the AE win Mistras software. The experimental equipments are

Shaker

Sample

Computer

Amplifier

Analyzer

AE sensor

AE system

Piezo sensor

Figure 4.9: Schematic representation of the experimental setup used to perform the non-
linear measurements monitored with the acoustic emission (AE) system.

summarized in Table 4.1 and the proposed excitation to passively probe the relaxation
with AE sensors is shown in Figure 4.10.

Name Brand and model

Dynamic signal analyzer Stanford research system model SR785
Power amplifier B&K type 2719

Shaker B&K type 4809
AE sensor Mistras WSα (100-1000 kHz)
AE system Mistras USB AE Node (40 dB preamplifier)

Table 4.1: Equipments for the proposed passive monitoring experiments.

Note that during the passive monitoring experiments, the room temperature was con-
trolled and fixed at 23 ◦C. According to the proposed protocol, the AE activity was first
monitored on the PC samples during 1 hour in the absence of any dynamic excitation in
order to verify the existence of any acoustic activity due to the environmental conditions
(temperature, humidity, etc.). Then the PC samples were subjected to a weak (linear)
excitation at 10mV during 1 hour around resonance. During this stage, we have noticed
that all resonance curves were superimposed, indicating the samples were at an initial
equilibrium state. On the other hand, we have also noticed the absence of AE activity

Source
0 V 10 mV

Passive relaxation monitoring with AE

2000 mV2000 mV

0 V

1400 s1400 s

1 hour1 hour

> 2 hours

Figure 4.10: Passive relaxation monitoring experiments excitation protocol for polymer
concrete samples.

during this weak excitation stage. Then, the samples were repeatedly excited at the same
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high amplitude excitation signal (35 passes of linear sweeps around resonance frequency
at 2V before amplification) to reach the full conditioning state of the material under test.
The excitation amplitude was then set back to zero to let the samples recover naturally
their initial properties without any interference with a possible probe wave. The Probing
of the relaxation of PC samples was performed passively using the AE system, where
the detection threshold was set at 30 dB (0 dB refers to 1µV). The acquisition parame-
ters were set as follows: Peak-Definition-Time (PDT) 50 µs, Hit-Definition-Time (HDT)
100 µs, Hit-Lockout-Time (HLT) 400 µs. The AE signals were sampled at 5MHz over
5120 points.

4.3.2 Passive relaxation monitoring

The long-time conditioning didn’t have any effect on the intact PC sample. Indeed, passive
monitoring didn’t show the existence of any AE activity when the high voltage excitation
is removed. This is due to the absence of the slow dynamics phenomenon, which can be
also confirmed by the above-mentioned fast dynamic experiments, showing that on intact
PC samples the normalized resonance curves remain unchanged for increasing excitation
amplitude.

In the case of the partially damaged PC samples, we also noticed the absence of AE
activity during the early times of relaxation after the full conditioning (∼ 600 s depending
on the considered PC samples). Following this period of ‘silence’, we started to detect AE
hits whose number was gradually increasing as a function of the relaxation time. The AE
energy of each detected AE hit versus relaxation time is plotted in Figure 4.11(a). In the
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Figure 4.11: (a) AE Energy of the AE signals detected during the relaxation (in log-time)
of the damaged PC sample. (b) Proportionality between cumulative energy of AE signals
and resonance frequency determined during passive and active relaxation monitoring,
respectively.

latter, each dot corresponds to an AE hit with a weak amplitude (between 30 and 34 dB)
where the ‘silence period’ which seems to be a characteristic of the passive relaxation was
around ∼ 550 s for the presented data. The most likely hypothesis regarding the period
of silence would be that the increase in damping due to conditioning will prevent AE hits
from reaching the surface of the sample with a measurable amplitude. Indeed, with the
help of the results presented in Figure 4.8(b), we can see that the silence period (which
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lasts ∼ 550 s) corresponds to a decrease or recovery of the relative damping from ∼ 22% to
∼ 10% with a potential link with the first stage in Figures 4.8(c) and (d) as a ‘metastable
state’, which is also described in references [Mechri et al., 2019, Bentahar et al., 2020].

4.3.3 About the origin of the silence period

During the conditioning experiments, an AE system (PCI-2 Mistras Group, Inc.) was
continuously recording the response of the material under test. Figure 4.12(a) shows
the evolution of the sweeps that excited the damaged PC sample repeatedly around the
third bending resonance. As mentioned earlier, the excitation signal was generated at
a constant amplitude within the linear operating region. The conditioning phase was
performed using 35 sweep cycles. The evolution of the resonance frequency and damping
related to the third bending resonance are presented in Figure 4.12(b). We can see
through the latter that conditioning increases the damping and decreases the frequency
of monitored resonance mode in accordance with the literature.
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Figure 4.12: (a) AE Monitoring of the damaged PC response during conditioning; (b) Evo-
lution of the relative frequency and damping during conditioning; f1 and Q1 correspond
to resonance frequency and quality factor collected from the first cycle, respectively.

Furthermore, it is important to remember that during the conditioning, the AE system
recorded cycle consists of ∼ 300 signals generated around the above-mentioned resonant
frequency using time window 1000µs for each signal. Figure 4.13(a) shows a resonance
curve (the second sweep cycle), where it is easy to notice that the isolated signal is already
affected by the nonlinear behavior of the PC sample. Figure 4.13(b) shows the evolution
of the frequency components related to the isolated signal. Indeed, we note that the
fundamental as well as the higher harmonics are all affected by the conditioning where
the softening of the elastic modulus during the conditioning seems to be continuous up
to a limit value.

When we consider the evolution of the energy of the signals detected with the help of
the AE system during the conditioning, as presented on Figure 4.14(a), we notice that
it fluctuates during the entire conditioning period around an average value, where the
relative evolution doesn’t exceed ∼ 3%.

We recall that the detected AE signals during the passive relaxation have frequency
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Figure 4.13: (a) Representation of the second excitation cycle recorded during the condi-
tioning. The insert represents one of the ∼ 300 signals that make up a resonance curve.
(b) Evolution of the fundamental frequency and harmonics of the isolated signal during
the 35 sweeps used to condition the damaged PC sample.

components well above the ones involved during the conditioning experiments, where
the smallest frequency is around ∼ 100 kHz. In order to investigate the influence of
the ultrasonic wave attenuation due to conditioning, the recorded signals presented in
Figure 4.14(a) are Butterworth high-pass filter processed (we used the order 5) where the
cutoff frequency was fixed at 80 kHz. With the help of Figure 4.14(b), it becomes possible
to notice the monotonous decrease of the high frequency component. Indeed, the total
energy per sweep undergoes a reduction of approximately ∼ 35% of its initial value as a
function of the conditioning time until the full conditioning of the tested damaged PC is
reached.

0 5 10 15 20 25 30 35

Sweep number

1.26

1.28

1.3

1.32

A
E

 E
n
e
rg

y
 [
a
J
]

10
4

0 5 10 15 20 25 30 35

Sweep number

600

700

800

900

1000

A
E

 E
n
e
rg

y
 [
a
J
]

(b)(a)

Figure 4.14: Evolution of total AE energy per sweep of original signals (a) and of filtered
signals (b) during the 35 sweeps.

We believe that this observation is at the origin of the ‘silence period’ highlighted in
Figure 4.11, where the conditioning effect increases the damping of the material even in
the ultrasonic domain. This behavior makes the AE hits emitted at the beginning of
relaxation attenuate considerably before they reach the surface of the sample.

Following the ‘silence period’, we notice that, globally, the more the time advances
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and the more the energy of the detected AE signals decreases. This observation confirms
that the elastic energy released by the material during its relaxation is decreasing as the
material reaches back its initial state. This effect is in accordance with the evolution of
the resonance frequency and damping since the nonlinear relaxation tends to bring them
closer to their initial limit values. For this reason and for geometric reasons related to
the fact that the different ultrasonic paths are equivalent (the damage i.e. micro-cracks is
localized at the center of the sample), we did not perform an attenuation compensation for
the detected AE signals during relaxation in this work. Experimental results showed that
the cumulative energy of the detected AE signals changes as the logarithm of relaxation
time. Therefore, by applying the same conditioning on the damaged PC sample and by
following the relaxation with a weak amplitude signal first and then with acoustic emission
(passive probing), we found an interesting proportionality between the cumulative AE
energy and the relative change of the resonance frequency (see Figure 4.11(b)). Indeed,
the latter shows the linear relationship between the cumulative elastic energy released by
the material and the elastic properties recovery of material during relaxation. Finally,
note that the relaxation experiments were repeated on the intact and damaged samples
at successive days. The trends presented here were reproducible with the range of ±15%
in terms of silence period, signals energy, cumulative energy, etc.

In the active method (monitoring of resonance frequency and damping with a weak
amplitude), the relaxation time is determined once the full recovery of the initial properties
is reached. In the proposed passive method, the relaxation ‘stops’ at the time when no
AE activity is detected, even if the monitoring time (more than 2 h) is much longer than
the relaxation time measured by the above-mentioned active method (i.e. ∼ 4200 s).
Figure 4.15 compares the relaxation times based on both passive and active methods.
The figure shows that both ways of monitoring do not perfectly overlap. However, we
note that at the time when the passive relaxation ‘stops’, the relative resonance frequency
change is 0.005% which means that the material has reached ∼ 97% of its preconditioning
frequency f0. This suggests that the difference in relaxation time between both methods
could be due to the application of the weak (i.e. linear) probe excitation.
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emission) relaxation monitoring methods.
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4.3.4 Nonlinear relaxation and damage mechanisms

The performed AE experiments show that the amplitudes (or energy) of the detected AE
hits during the passive relaxation (∼ 5mV) are significantly lower than those detected
during the quasi-static bending tests (up to 10V). The application of the classical AE
features extraction method is not straightforward in this situation because the weak-
amplitude AE signals are mixed with noise. For this case, we used a denoising method,
named ‘modified soft thresholding technique (MSTT)’ whose application allows computing
the AE features for further analysis.

An AE signal recorded during the nonlinear relaxation and the same signal after de-
noising are shown in Figures 4.16(a) and (b), respectively. The background noise was
significantly reduced thanks to the application of MSTT, which can be seen on the tem-
poral signals.
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Figure 4.16: Modified soft thresholding technique (MSTT) analysis results: (a) Original
(untreated) AE signal. (b) Denoised signal.

Denoised and original signals are firstly compared, as shown in Figure 4.17(a), where
the main waveform features remain similar (amplitude, rise time, etc). In addition,
the difference between the original and denoised is also computed by comparing their
wavelet scalograms (squared modulus of continuous wavelet transform) as illustrated in
Figure 4.17(b). Indeed, the time-frequency representation shows the existence of a blue
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Figure 4.17: (a) Comparison of AE signal before denoising and after MSTT denoising.
(b) Difference between the two signals in time-frequency representation.

area, which corresponds to the lowest differences between signals. This means that the

117



Nonlinear dynamic experiments with acoustic emission

MSTT method removes efficiently the background noise (more than 90% of the energy
reduction in most area) while the useful information of the AE signals is saved. The
blue area, which represents the most energetic part of the AE signal is distributed in the
frequency range of 180 to 300 kHz (see Figure 4.20(c)).

Once the AE signals are denoised, the application of the multi-parameter unsupervised
pattern recognition analysis allowed to separate the detected signals into two classes (CLA
and CLB). In the beginning, both classes of signals are detected right after the ‘silence
period’. However, CLA signals were the only ones to be detected until the end of the
PC relaxation. This can be confirmed by Figure 4.18(a) which presents the evolution of
energy of the detected signals for the two classes versus relaxation time. On the other
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Figure 4.18: (a) Evolution of energy of the detected AE signals as a function of relaxation
time. (b) Cumulative AE energy of the detected AE signals in two classes versus relaxation
time.

hand, Figure 4.18(b) presents the dynamic evolution of both types of signals as a function
of time. We can clearly see that the kinematics of relaxation corresponding to the CLA and
CLB signals is different, where CLB signals relax faster even if their energy contribution
during relaxation is not the most important. Signals in class CLA and CLB are clearly
different which can be also distinguished by other AE features as shown in Table 4.2.

Class Amplitude Energy Rise time Duration Counts PF FC WF

CLA 30-40 dB 5-80 aJ 30-50µs 200-400µs 30-60 100-120 kHz 100-150 kHz 100-120 kHz
CLB 30-33 dB 5-20 aJ 5-20µs 100-200µs 10-30 200-300 kHz 200-300 kHz 180-220 kHz

Table 4.2: Characteristics (AE features) of AE signals (CL A and CL B) detected during
the passive relaxation of damaged PC samples.

Furthermore, the properties of AE signals obtained during the passive relaxation mea-
surements and those corresponding to damage mechanisms created during the quasi-static
tests appeared to be similar. Figure 4.19 presents typical waveforms and time-frequency
representations (TFR) of AE signals corresponding to class CLA and matrix cracking
type. In addition, the comparison between the signals corresponding to class CLB and
the gravel/matrix debonding signals is shown in Figure 4.20.

Here, the energy density in each wavelet scalogram is normalized to the most energetic
magnitude in the time-frequency plan (maximum value in the time-frequency matrix) to
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Figure 4.19: Time-amplitude and time-frequency representations of AE hits detected
during the nonlinear relaxation (CLA) ((a) and (c)) and during the quasi-static tests
(matrix cracking) ((b) and (d)).
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Figure 4.20: Time-amplitude and time-frequency representations of AE hits detected
during the nonlinear relaxation (CLB) ((a) and (c)) and during the quasi-static tests
(gravel/matrix debonding) ((b) and (d)).

make the energy distribution of both types of signals comparable. By comparing the
normalized wavelet scalograms of these two signals, we can see that CLA signals share
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the same energy domain as matrix cracking mechanism in the time-frequency represen-
tation. In this case we note that the highest energy distribution is around ∼ 100 kHz
with a duration of ∼ 200µs. In addition, as shown in Figures 4.20, waveforms and the
energy distribution in the time-frequency representation of the two types of signals are
similar even if their amplitude is significantly different. Their high energy areas are all
located within the frequency range of 180-300 kHz as shown in the wavelet scalogram
representation in the same figure.

Within the limits of the sensitivity of our passive detection system and the envi-
ronmental conditions, we have first verified the absence of any AE signals during the
nonlinear relaxation of the intact PC samples. Once these samples are damaged, the
application of the same nonlinear relaxation experiments revealed the existence of AE
signals. These experimental observations show that the created micro-cracks within the
PC samples are at the origin of the detected AE signals detected during the nonlinear
relaxation. Then, we have compared the obtained waveforms and wavelet scalograms (en-
ergy distribution) of AE signals recorded during the three-point bending quasi-static tests
and the nonlinear relaxation experiments. Measurements, which were performed on the
same samples, revealed the existence of a striking resemblance between AE signals, which
are actually detected under very different experimental conditions. Indeed, the signals
referred to as CLA and CLB strongly resemble the matrix cracking and gravel/matrix
debonding signals. At the same time, we note that all mechanisms are not necessarily
detected during the passive monitoring of the nonlinear relaxation. Indeed, the sand-resin
debonding (presented in Chapter 3) was not detected but that doesn’t mean it doesn’t
exist. This is probably related to the effect of the attenuation on this type of signal which,
in addition to its low amplitude, has frequency components clearly higher than those of
the two mechanisms mentioned above (∼ 600 kHz). We nevertheless retain that from the
energy point of view, the matrix cracking type AE signals are the ones that contribute
the most to the nonlinear relaxation of micro-cracked PC samples. The work thus carried
out shows that the use of AE as a tool to monitor slow dynamics helps to detect the
most emissive (or energetic) events spontaneously operated within materials (in relation
to the micro-mechanisms involved) and brings experimental evidence for the follow-up of
stress variation along the existing cracks for a better understanding of slow dynamics in
complex media.

In the following, the passive monitoring of the nonlinear relaxation will be applied to
a more common material, the civil engineering concrete, before and after being damaged.

4.4 Nonlinear dynamics of civil engineering concrete

samples

4.4.1 Materials and experiments

The civil engineering concrete samples are manufactured in the laboratory by mixing fine
aggregates (sand), coarse aggregates (crushed granite) with cement and water following
the procedure described in Chapter 3. Then, the civil engineering concrete sample is
micro damaged using a three-point bending test, where the maximum load was around
∼ 2 kN, which corresponds to ∼ 75% of its rupture force. Note that the created cracks
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were not visible at the material’s surface. The intact and micro-cracked samples are then
submitted, in the same way as the polymer concrete samples, to fast and slow dynamic
experiments. Finally, passive monitoring of the nonlinear relaxation is performed on
the concrete samples with the help of acoustic emission (AE). Results related to these
experiments will be detailed and discussed in the following.

4.4.2 Fast dynamics of civil engineering concrete samples

The fast dynamic (FD) experiments are conducted on the intact and previously described
damaged concrete sample with the help of the experimental setup illustrated in Figure 4.1.
The tested concrete samples (intact/ damaged) were excited around their third bending
resonance mode following a linear sweep. The sweeping time of each excitation signal
is ∼ 35 s. The source amplitude, which is denoted Asource, is gradually increased from
20mV to 1600mV (before amplification) in order to excite the sample in the linear and
nonlinear regimes. The response of the sample is measured using a piezoelectric sensor
that was glued by phenyl salicylate (salol).

Figure 4.21(a) shows the evolution of resonance curves as a function of frequency for
increasing excitation level of damaged concrete. Results show that at low excitation level
(Asource = 20mV or 50mV), the resonance curves remain unchanged and overlap, meaning
the sample is excited in the linear regime. When Asource increases beyond 100mV and up
to 1600mV, the change in the resonance curves becomes easily observable.
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Figure 4.21: Fast dynamic (FD) of the damaged civil engineering concrete sample: (a)
resonance curves (normalized to input amplitude) versus frequency of the detected signals
at increasing input excitation Asource. (b) Maximum dynamic strain at the edge of the
tested sample at resonance with different input excitation Asource.

In order to explore the involved dynamic strain within the sample during the bending
resonance, a double head laser Doppler vibrometer (Plytec OFV-5000 controller and OFV
552 Fiber-Optic Senior Head) was used to probe its dynamic response. One laser head
was fixed at the upper side and the other was fixed at the opposite side in order to
detect the vertical displacement of the sample. The dynamic strain amplitude of the
sample at resonance is determined and results are illustrated in Figure 4.21(b) for different
excitations. This figure shows the linear correspondence between the excitation amplitude
and the generated dynamic strain. When the strain amplitude is ∼ 4 × 10−8, i.e. input
excitation Asource = 20mV, the tested sample is in the linear regime. This excitation level
will then be used to probe the nonlinear relaxation of this sample in the slow dynamic
(SD) experiments. As the excitation amplitude increases to reach 1600mV, the strain
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amplitude during resonance reaches ∼ 4× 10−6. This value will therefore be used for the
conditioning during SD experiments.

Figure 4.22(a) illustrates the variation of the relative resonance frequency (f − f0)/f0
versus the excitation amplitude for a concrete sample taken at intact and damaged states,
respectively. Results show the downward shift of the resonance frequency (or equivalently
in wave velocity or elastic modulus) when the strain amplitude is increasing for a concrete
sample taken at intact and damaged states. In addition and for the same states, Fig-
ure 4.22(b) depicts the change of the relative inverse quality factor (1/Q− 1/Q0)/(1/Q0),
which is proportional to damping, as a function of the excitation amplitude. Results
show that for both states, resonance frequency and nonlinear damping evolve linearly
when the excitation amplitude increases. Finally, we note that for the damaged state,
when the excitation amplitude increases up to 1600mV, the relative variation of resonance
frequency and damping is ∼ 0.6% and ∼ 5.5%, respectively. In addition, the presence of
the fast dynamic effect within the intact concrete sample is due to the fact that cementi-
tious materials contain naturally diffused micro-cracks within the cement matrix and at
the matrix/aggregates interface. Meanwhile, for the maximum excitation amplitude (i.e.
strain amplitude ∼ 4× 10−6), the relative variation of resonance frequency and damping
is ∼ 0.25% and ∼ 2%, respectively, which are all smaller than the ones observed when
the concrete sample is damaged.
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Figure 4.22: Relative resonance frequency variation (a) and relative inverse quality factor
variation (b) as a function of the source amplitude for the intact and damaged concrete
samples, respectively.

4.4.3 Slow dynamics of civil engineering concrete samples

Slow dynamics (SD) experiments were performed on the above-mentioned intact and
micro-damaged civil engineering concrete samples. The experimental setup is similar to
that of the FD experiments (see Figure 4.1). The excitation protocol of the SD experi-
ments consists of the following three phases: Preconditioning - Conditioning - Relaxation,
as already described for the slow dynamics experiments performed on the PC samples.

The excitation signals are linear sweeps where the frequency evolves around the third
bending resonance mode of the tested sample. The sweeping time of each excitation is ∼
35 s. In the preconditioning phase, 20 resonance sweeps at 20mV were used to excite the
sample around its resonance mode. The recorded resonance curves were superimposed,
which means that the sample was vibrating in a linear regime at resonance. During the
conditioning phase, the sample was repeatedly pumped by the amplified high amplitude
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sweep around the same resonance mode at 1600mV (strain amplitude∼ 4×10−6). The full
conditioning was obtained after more than 10minutes of high dynamic strain conditioning.
Then, the nonlinear slow recovery of the elastic properties was probed by repeating the
same resonance sweep at 20mV until the full relaxation is reached.

For the intact and damaged states, the relative variation of the resonance frequency
and the inverse quality factor (damping) as a function of relaxation time are shown in
Figures 4.23(a) and (b). Results show that after removing the high dynamic strain, the
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Figure 4.23: Evolution of resonance frequency and damping as a function of time during
the nonlinear relaxation of a concrete sample taken at intact (a) and damaged (b) states.
(c) and (d) represent the same plots when the relaxation time is in the logarithmic scale.

changes in resonance frequency and the inverse quality factor are not instantaneous. In
addition, for both damaged and intact states, the elastic modulus (resonance frequency)
increases and the damping (inverse quality factor) decreases versus the relaxation time un-
til recovering their initial linear equilibrium states. At the damaged state, the complete
recovery is observed after ∼ 40minutes of relaxation (monitoring during 80minutes).
Recorded data between 40minutes and 80minutes, by repeating the same resonance
sweep, show that the sample has almost recovered its initial properties, where the varia-
tion of both resonance frequency and damping is less than 0.1%. For the intact state, we
measured a shorter relaxation time of ∼ 8minutes for a monitoring of ∼ 25minutes. This
observation shows that the relaxation time evolves as a function of damage, in accordance
with other results found in literature [Bentahar and El Guerjouma, 2009].

To better investigate the evolution of relaxation, a semi-log representation is used,
as shown in Figures 4.23(c) and (d). As expected, during the first moments of relax-
ation, when the sample is probed using a low source amplitude, the concrete sample
is in a ‘metastable state’. This is true at the damage state, but also, at the intact
state. In the middle time range, the logarithmic time behavior describes well the relax-
ation, in accordance with the results of the literature [Bentahar et al., 2020]. Indeed, the
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recovery behavior of elastic modulus and damping is proportional to the logarithm of
time [TenCate et al., 2000b]. We also note that at the very late (near equilibrium) stages
of relaxation, deviations from the expected log-time behavior are observed. Similar ob-
servations were performed in references [Mechri et al., 2019, Bentahar et al., 2020], where
the same sample was tested using compression resonance modes. Therefore, the behav-
ior in the process of relaxation should thus be described by a kinetic law more complex
than a simple logarithmic function, such as the one proposed in [Snieder et al., 2016] or
multi-scale relaxation model [Shokouhi et al., 2017] or others [Ostrovsky et al., 2019].

4.5 Passive monitoring of nonlinear relaxation

4.5.1 Materials and experiments

As for the PC samples, we used AE sensors to study the nonlinear relaxation of intact
and micro-damaged civil engineering concrete samples during slow dynamic experiments.
In the light of the results obtained for the PC samples, we therefore expect to detect weak
energy amounts which can be emitted by the material during the recovery process. The
experimental setup is illustrated in Figure 4.9 and detailed information are given. The
experimental protocol is shown in Figure 4.24, which presents the following four steps:

Source
0 V 20 mV

Passive relaxation monitoring with AE

1600 mV1600 mV

0 V

Figure 4.24: Passive relaxation monitoring experiments protocol for civil engineering con-
crete samples.

1 – AE monitoring in the absence of excitation: During this phase, after samples
were installed on the shaker, the experimental setup was placed at room temperature
fixed at 23 ◦C and isolated from outside, because concrete is known to be sensitive to the
environmental conditions (temperature, humidity, etc.). Then, samples are monitored
with AE to verify the absence or presence of any acoustic activity that may be created
by any undesirable external source. The acquisition parameters were set the same as PC
samples.

2 – Preconditioning: The sample was repeatedly excited with a low excitation am-
plitude (20mV, strain ∼ 10−8), where the frequency is linearly swept between 3300Hz
and 3450Hz to encompass the third bending resonance mode. We verify that resonance
curves (amplitude and phase) are superimposed with the help of gain-phase analyzer.

3 – Conditioning: The sample is repeatedly excited around the same frequency range
while the excitation amplitude is set at 1600mV (strain>10−6). After more than 10minutes
of high dynamic strain conditioning, we notice a softening within the viscoelastic proper-
ties of the concrete sample. In order to have results that could reasonably be compared
with those of the classical slow nonlinear experiments, the conditioning time was not
changed (20 cycles of sweep excitation), i.e. sufficiently long to reach the full conditioning
state.
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4 – Passive relaxation monitoring with AE: The excitation amplitude was then set
back to zero to let the samples recover naturally. The relaxation of concrete samples is
passively probed with AE, where the detection threshold is 30 dB.

4.5.2 Passive relaxation and conditioning

4.5.2.1 Intact concrete

For the civil engineering concrete sample taken at the initial intact state, results of slow
dynamic experiments presented in Figure 4.23, show the presence of a relaxation time of ∼
8minutes when using the classical probing method. However, during the passive relaxation
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Figure 4.25: (a) AE Monitoring of a intact concrete sample response during conditioning.
(b) Evolution the relative frequency and damping during conditioning; f1 and Q1 corre-
spond to resonance frequency and quality factor collected from the first cycle, respectively.
(c) The first excitation cycle recorded during the conditioning. The insert represents one
of the ∼ 35 signals that make up the resonance curve. (d) Evolution of the fundamental
frequency and harmonics of the isolated signal during the 20 sweeps used to condition the
intact concrete sample.
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experiments, the AE monitoring didn’t show the existence of any acoustic activity within
the same sample, even for a longer monitoring (more than 1 hour). Unlike the intact
PC sample, which has no relaxation, the intact concrete sample has a weak recovery
behavior which is due to the existing micro-cracks. In order to understand the absence of
AE during the relaxation of intact concrete samples, we analyzed the conditioning data
collected using AE sensors (connected to the Mistras USB AE Node acquisition system).
During this phase, the AE sensor positioned at the center of the sample continuously
recorded the material’s response as shown in Figure 4.25(a). The analysis of the data
recorded by the AE system shows that the frequency at resonance drops slightly whereas
the damping doesn’t have a clear evolution (see Figure 4.25(b)). The frequency drop
(even if it’s weak) was also verified on the harmonics generated during the conditioning
(see Figures 4.25(c) and (d)), however no conclusion could be drawn for the damping
related to the different harmonics.

In order to highlight the damping effect on the high frequency components, signals
were high-pass filtered with a cutoff frequency of 80 kHz. Results corresponding to the
evolution of the energy per sweep before and after filtering is plotted in Figure 4.26.
The latter shows that the high-frequency components are decreasing as a function of the
conditioning time until the sample reaches the full conditioning state. Therefore, the
high frequency components are much more affected by the conditioning (and therefore
by post-conditioning) than the low frequencies. Furthermore, we believe that the micro-
cracks distribution (the randomly distributed micro-cracks are non-localized in the case
of intact concrete samples) will not necessarily help emitting elastic waves in the direction
of the AE sensor which is located at the center of the sample. This makes the amplitude
of the detected waves weak enough to be ifnored by the AE sensor.
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Figure 4.26: Total AE energy of recorded signals (a) and of high-pass filtered signals (b)
for each sweep.

4.5.2.2 Damaged concrete

The effect of conditioning on the partially damaged concrete samples is presented in
Figure 4.27. During this phase, the AE sensor positioned at the center of the sample
continuously recorded the material’s response along the applied cycles. The analysis of
the data recorded by the AE system shows an increase in the resonance frequency drop and
a clear evolution of the damping in comparison with the intact state (see Figures 4.27(a)
and (b)). Furthermore, the frequency analysis of a single sweep revealed the existence of
odd harmonics whose frequencies also drop during the conditioning (see Figures 4.27(c)
and (d)).
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Figure 4.27: (a) AE Monitoring of the above-mentioned concrete sample (at the partially
damaged state) response during conditioning. (b) Evolution the relative frequency and
damping during conditioning; f1 and Q1 correspond to resonance frequency and quality
factor collected from the first cycle, respectively. (c) The first excitation cycle recorded
during the conditioning. The insert represents one of the ∼ 35 signals that make up
the resonance curve. (d) Evolution of the fundamental frequency and harmonics of the
isolated signal during the 20 sweeps used to condition the concrete sample at the damaged
state.

On the other hand, the damping effect was also observed on the energy of time-signals
recorded during the conditioning before and after being high-pass filtered with a cutoff
frequency at 80 kHz. Figure 4.28(a) shows that in the absence of filtering the recorded
energy per sweep is just fluctuating during the 20 cycles of excitation. Whereas, the high-
frequency components of the energy are decreasing as a function of the conditioning time
until the sample reaches the full conditioning state. Note also that the amount of high
frequency energy components has decreased from ∼ 90 aJ to ∼ 40 aJ between the intact
and damaged states, and that evolution imposed by the conditioning is smaller in the
case of the damaged state (8 aJ in the damaged state and 50 aJ in the intact state). The
effect of the increase in damping can also be visible in the unfiltered energy values, which
have decreased between the intact (∼ 7.4× 104 aJ) and damaged states (∼ 3.9× 104 aJ).
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Figure 4.28: Total AE energy of recorded signals (a) and of high-pass filtered signals (b)
for each sweep.

Right after the full conditioning, we noticed the absence of AE activity. Indeed, Fig-
ure 4.29 shows the existence of a ‘silence period’ which lasts ∼ 100 s and whose duration
is approximately ∼ 5 times shorter than the ones observed during the relaxation of dam-
aged PC samples. With the help of the results presented in Figure 4.23(b), we notice
that the silence period (which lasts ∼ 100 s) corresponds to a decrease or recovery of the
relative damping from ∼ 2.5% to ∼ 2% with a potential link with the previously described
‘metastable state’.
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Figure 4.29: (a) Energy of the AE signals detected during the relaxation (in log-Time)
of the damaged civil engineering concrete sample. (b) Proportionality between cumula-
tive energy of AE signals and resonance frequency determined during passive and active
relaxation monitoring, respectively.

Following this silence period, AE hits start to be detected and their number was
gradually increasing as a function of the relaxation time. The AE energy of the detected
AE hits versus relaxation time is shown in Figure 4.29(a), where each point represents
an AE signal and the involved amplitudes are between 30 dB and 35 dB. By applying
the same conditioning on the damaged concrete sample and by following the relaxation
with a weak amplitude signal first and then with acoustic emission (passive probing), we
found an interesting proportionality between the cumulative AE energy and the relative
change of the resonance frequency (see Figure 4.29(b)). Indeed, the latter shows a linear
relationship between the cumulative elastic energy released by the material and the elastic
properties recovery of material during relaxation.
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We recall that in the active probing method, the relaxation time is determined once
the full recovery to the initial properties is reached. In the proposed passive method, the
relaxation ‘stops’ at the time when no AE activity is detected, even if the monitoring
time (∼ 1 h) is longer than the relaxation time measured by the above-mentioned active
method (∼ 2400 s). Figure 4.30 compares the relaxation times based on both passive and
active monitoring methods in the case of a damaged concrete sample. We note that the
relaxation times tp ∼ 2000 s and ta ∼ 2400 s are a priori different. However, when the
passive relaxation ‘stops’ (i.e. tp) the relative resonance frequency change is 0.015%, which
means that the material has reached ∼ 95% of its preconditioning frequency recovery.
Finally, we note that active and passive relaxation experiments were repeated on the
same samples at successive days. The trends presented here were reproducible with the
range of ±15% in terms of relaxation time, signals’ energy, cumulative energy, etc.
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Figure 4.30: Comparison between the active (resonance frequency) and passive (acoustic
emission) relaxation monitoring methods. ta and tp correspond to relaxation time based
on both active and passive methods, respectively.

4.5.3 Nonlinear relaxation and damage mechanisms

As mentioned earlier, detected AE signals during the passive relaxation experiments have
weak amplitudes, and are therefore mixed with noise. Before processing the AE signals in
order to extract their features, we used the ‘modified soft thresholding technique (MSTT)’
to reduce the noise and perform further analyses. Figure 4.31(a) compares the waveforms
of denoised and original signals, where the main waveform features remain similar (ampli-
tude, rise time, etc). In addition, the difference between the original and denoised signals
is also computed by comparing their wavelet scalograms as illustrated in Figure 4.31(b).
Indeed, the time-frequency representation shows the existence of a blue area, which cor-
responds to the lowest differences between signals. This result means that the MSTT
method removes efficiently the background noise, while the useful information of the AE
signals is saved.

Once the AE signals are denoised and based on the classification results presented
in chapter 3, the application of the unsupervised pattern recognition analysis allowed to
separate the detected AE hits into two classes, namely CLC and CLD. The AE signals
corresponding to class CLC were the ones to be detected during all the passive relaxation
time whereas CLD signals were only detected during the second half of the relaxation time
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Figure 4.31: (a) Comparison of AE signal before denoising and after MSTT denoising.
(b) Difference between two signal in time-frequency representation.

with a weak appearance. Figure 4.32(a) shows the evolution of AE energy corresponding
to the two detected types of AE signals as a function of the relaxation time. CLD appears
only in the middle of the relaxation process and represents approximately ∼ 20% of the
detected signals. Figure 4.32(b) allows to quantify the amount of the elastic energy freed
by the concrete during the nonlinear relaxation. Indeed, the evolution of the cumulative
AE energy of the two classes shows that CLC and CLD evolve with approximately the
same slope. However, it remains possible to distinguish between both mechanisms using
other AE features.
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Figure 4.32: (a) Evolution of energy of the detected AE signals as a function of relaxation
time. (b) Cumulative energy of the detected AE signals in two classes versus relaxation
time.

In the literature related to AE monitoring of civil engineering concrete samples,
the waveform of the AE signal is directly linked to the cracking mode [Aggelis, 2011,
Aldahdooh and Bunnori, 2013]. For the tensile crack, rise time and duration of tensile
AE signals are always shorter. However, shear AE signals have inverse characteristics. In
that sense, two AE parameters, namely RA value and average frequency (AF) have been
introduced when studying the crack mode classification.

Figures 4.33(a) and (b) depict a 2D projection of the identified AE classes within
the feature plan (Rise time vs. Duration and RA value vs. AF). Results show that the
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AE signals belonging to the CLC class have higher rise time and shorter duration, and
are clearly separated from the ones of the CLD. Additionally, the RA-AF representation
shows that CLC class signals have higher AF and lower RA value compared to CLD class
signals. These results suggest that two classes of AE signals detected during the passive
nonlinear relaxation experiments can be associated with the dynamics of the two kind
of cracking modes whose movement is at the origin of the slow recovery of the concrete
samples. The formation of a tensile crack corresponds to a transient volumetric change
occurring in the location of the crack tip. However, in the case of a shear cracking, the
sides of the crack move in opposite directions but in parallel to the crack plane, which
mainly leads to shape deformation.
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Figure 4.33: Illustration of the AE data with clustering results in the two-dimensional
planes of AE features. (a) The projection of AE data into the plane of Rise time versus
Duration. (b) The projection of AE data into the plane of RA value versus Average
frequency (AF).

Furthermore, the properties of AE signals obtained during the passive relaxation mea-
surements and those corresponding to damage mechanisms created during the quasi-static
tests appeared to be similar. Figure 4.34 shows typical waveforms and wavelet scalogram
of CLC signals and tensile cracking signals. In order to compare the energy distribution
of dynamic and quasi-static AE signals, the energy density within each wavelet scalogram
is normalized to the highest energy in the Time-Frequency (T-F) plan (i.e. maximum
value in the T-F matrix). The waveforms of both signals show that CLC AE hits have a
short rise time in accordance with those of the tensile cracking. From the wavelet scalo-
gram of both types of signals, the highest energy distribution is around 500 kHz. On the
other hand, the comparison between CLD signals and those associated to shear cracking
mechanism obtained during the quasi-static tests is presented in Figure 4.35. The latter
shows that both waveforms have their energy distribution mainly located in between ∼
200 kHz and ∼ 230 kHz with a quiet long duration (∼ 250µs). These last results repre-
sent an additional proof of the relevance of the use of acoustic emission to monitor and
characterize complex phenomena such as nonlinear relaxation.
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Figure 4.34: Time-amplitude and time-frequency representations of AE hits detected
during the nonlinear relaxation (CLC) ((a) and (c)) and during the quasi-static tests
(tensile crack) ((b) and (d)).
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4.6 Conclusion

In this chapter, we characterized the nonlinear behavior of intact and micro-cracked poly-
mer concrete and civil engineering concrete samples. The use of a calibrated experimental
setup allowed us to follow the evolution of their dynamic behavior around their bending
resonances during fast and slow nonlinear dynamic experiments. In order to get rid of
the low amplitude probe signal, commonly used in slow dynamic experiments (active
method), we proposed an original passive relaxation monitoring protocol based on the
use of AE sensors. Results showed a very good correlation between the active and passive
approaches, which validates the use of the passive approach. Furthermore, the signal
processing of the AE signals recorded during the passive relaxation showed a clear re-
semblance to those obtained during the quasi-static mechanical tests applied to the same
concrete samples. The resemblance could be therefore related to the cracking at the in-
terfaces or within the same phase. Finally, this work showed that the use of acoustic
emission could even concern cracking mechanisms such as tensile or shear, which appear
to have an important role during the relaxation of concrete.
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General conclusion

The purpose of this thesis work was to study acoustic emission hits emitted by complex
materials namely polymer concrete and civil engineering concrete. At first, AE hits were
recorded during quasi-static mechanical tests in bending where it was possible to focus on
the fracture process analysis by taking into account parameters such as the one inspired
from observations made in seismology i.e. b-value. We have also used the RA and
AF parameters, based on the shape of AE waveforms. For civil engineering concrete
samples, results showed that micro-cracks of specimens can be separated into two main
modes, namely shear and tensile cracks. This work has shown that a separation of AE
signals originating from shear or tensile cracks is possible according to a specific procedure
in which the RA/AF ratio should be argued and calculated. On the other hand, the
development of an unsupervised pattern recognition method was performed to cluster the
AE data. Indeed, the use of a Principal Components Analysis (PCA) followed by the k-
means analysis allowed to separate AE hits into two classes, where the optimal clustering
is obtained according to the minimum value of the Davies and Bouldin (DB) index and the
maximum value of the Silhouette coefficient (SC). We also note that this result is valid for
both mortar and civil engineering concrete samples and we believe that the resemblance
is most probably due to the fact that crack formations is happening within the matrix
due to its relatively lower strength.

Beyond the application of the abovementioned procedure to probe damage within
polymer concrete samples, this work has also allowed to develop an image-based clas-
sification methodology through the analysis of the time-frequency representation of AE
signals. Indeed, the association of the continuous wavelet transform and the use of a
transfer learning procedure with the conventional neural network algorithm allowed to
obtain the same three main damage mechanisms found when applying the unsupervised
pattern recognition algorithm. Finally, this work has shown that despite the complexity of
the material studied, the quality of the proposed classification method was not affected by
the different threshold changes. Indeed, the proportion of AE signals within the confusion
class was found to be always under ∼ 7%, independently from the chosen threshold.

This thesis has also showed that it is possible to apply acoustic emission as a tech-
nique to verify in situ the existence of micro-cracks within complex materials. Indeed,
in literature AE is used to monitor the creation and propagation of microcracks when
materials and/or structures are under load. Through the work developed, we showed
that by exciting the complex materials around one of their resonance modes, the acoustic
activity can change significantly depending on the microstructural state of the material.
This is true as long as the material is excited in a nonlinear regime, which suggests at the
same time that it is possible to link the acoustic activity to the micro-mechanisms that
are activated during the nonlinear behavior of complex materials.
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The results have shown interesting observations when it comes to characterizing con-
ditioning. Our measurements showed that this was essentially linked to the fact that the
sensitivity was not necessarily localized around the resonance frequencies (low frequen-
cies) and that it was necessary to seek it in the high frequencies either for the resonance
frequency (elastic modulus) or the quality factor (damping). Indeed, the AE probing
during the conditioning of concrete samples is mainly dominated by the low frequency
excitation signal (around bending resonance) and its harmonics. The probing during
the conditioning showed that all of these frequencies are decreasing as a function of the
conditioning time but the energy of the detected signals is almost constant. However,
when we focus on frequencies above 80 kHz, we noticed that the total energy undergoes
a monotonous decrease (of ∼ 35%) as a function of the conditioning time in the case of
damaged concrete samples.

This thesis was also an opportunity to compare the classical nonlinear relaxation
(based on the use of a probe wave) and the original passive relaxation probing. Results
showed the existence of a ‘silence period’ at the first minutes of relaxation. The absence
of AE during this period was naturally attributed to important increase in the attenua-
tion during the conditioning phase. On the other hand, we have shown the existence of
proportionality between cumulative energy of the detected AE signals during the passive
relaxation and the resonance frequency recovery determined during the active relaxation
monitoring. In this regard, we have found that the difference between relaxation times
with the help of AE and the probe wave is very small (the difference starts around ∼ 97%
of the recovery but is always shorter for the AE probing). Nevertheless, we should keep
in mind that the AE monitoring of the nonlinear relaxation is not a way to systematically
replace the monitoring via a probe wave. Indeed, we have shown that in the case of intact
concrete, the probe wave revealed the existence of a nonlinear relaxation while the AE is
absent (may be due to an improper positioning of the AE sensors).

The application of the multi-parameter unsupervised pattern recognition analysis al-
lowed to separate the AE signals detected during the nonlinear relaxation. Indeed, in
the case of PC samples the properties of the latter signals and the ones corresponding to
damage mechanisms (matrix cracking and gravel matrix debonding) created during the
quasi-static tests appeared to be similar. Furthermore, the pattern recognition analysis
showed that the kinematics of relaxation is class-dependent and that their energy contri-
butions can be different by several orders of magnitude. On the other hand, in the case
of civil engineering concrete samples, the existence of two main groups of AE hits was
highlighted. Indeed, results suggest that the two classes of AE signals detected during
the passive nonlinear relaxation experiments can be associated to tensile and/or shear
cracking mechanisms based on the rise time, duration and the wavelet scalogram of AE
signals.
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Perspectives

Slow dynamics is a universal behavior that has been observed on a wide range of mate-
rials. Its universality hinders, very often, the identification of the physical mechanisms
that are the origin of the experimental observations made during the nonlinear dynamic
experiments such as conditioning and/or relaxation. By performing calibrated acoustic
emission measurements, this PhD work made it possible to account for the links that
exists between micro-mechanisms related to damage in concrete samples and slow dy-
namics. Also, this work has also opened up perspectives on possible improvements that
can brought to the use of AE during slow dynamics experiments.

In the light of the results obtained we think that the orientation of the cracks as well
as the type of resonances generated during conditioning could have an important effect
on the detection of AE hits during slow dynamics. Indeed, on the PC sample damaged
using a three-point bending test, we performed slow dynamic experiments with the help of
a compressional wave around resonance. At the time when the evolution of attenuation
and velocity showed a clear evolution due to conditioning, we noticed the absence of
acoustic emission during the relaxation. This result differs from the one we obtained
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Figure 4.36: Experimental setup of the nonlinear measurements monitored with passive
acoustic emission (AE) system in flexural mode (a) and longitudinal mode (b). Com-
parison between the active (resonance frequency or velocity) and passive (AE) relaxation
monitoring methods of the same damaged polymer concrete excited around the bending
(c) and the compressional (d) resonance.
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on the same sample when the conditioning is applied around the bending resonance (see
Figure 4.36). This result shows that the nonlinear response changes as a function of
the way the nonlinear sources are excited and the consequences this could have on the
emission of acoustic signals during the relaxation.

In general, it is difficult to specify the orientation of the cracks within complex ma-
terials. Therefore, a well-studied use of the AE sensors network would allow to better
intercept the acoustic signatures of the nonlinear sources during slow dynamics. We be-
lieve that this step is necessary for the development of quantitative passive AE monitoring
of slow dynamics which can be developed by taking into account simple thermodynamics-
based [Li et al., 2018] or multi-scale relaxation models [Shokouhi et al., 2017] or oth-
ers [Ostrovsky et al., 2019].

Moreover, the sensitivity of consolidated granular materials to environmental condi-
tions requires particular attention with regard to temperature and humidity. Indeed,
we believe that acoustic emission can play an important role in that sense like what we
got when we highlighted the existence of the silence period. Indeed, Figure 4.37 shows
an Environmental Scanning Electron Microscope (ESEM) image of a Portland cement
sample. First, ESEM images show that the high moisture environment creates an adsorp-
tion of water within pores which prevents from seeing the texture. The texture of the
undistributed hydration products in the pores can be observed again one second after the
conditioning. After a recovery of ∼ 67 seconds the moisture is returning again within the
large pore [Bittner and Popovics, 2019]. With regard to civil engineering concrete sam-
ples, these observations show that there is a potential link between the ‘silence period’
and migration of water out of and back into the pore space.

Figure 4.37: ESEM images from the center of the disc sample. The image on sub-
plot(a) shows a measurement in the low moisture environment (RH 30% 10C) and
subplot(b) in the high moisture environment (RH 97% 10C). The subplots(a) and (b)
show the sample in the Before phase, prior to dynamic excitation being applied to the
disc sample; subplot(c) in the Recovery phase 1 s after termination of dynamic exci-
tation and subplot(d) in the Recovery phase 60 s after termination of dynamic excita-
tion. [Bittner and Popovics, 2019]

Finally, we propose to deepen the conventional neural network (CNN) analysis by
studying at first the influence of the representation used. This will concern the seeking of
time-frequency transforms that propose other compromises than the time-scale (constant
relative frequency resolution) such as the classic short-time Fourier transform (STFT).
Besides, as an alternative to the transfer learning technique, we suggest testing the effec-
tiveness of more recent approaches based on neural networks such as GAN (Generative
Adversarial Network). This will allow us to obtain an explainable network in the con-
text of the materials characterization and the nondestructive testing (NDT) and by the
same to specify the properties of acoustic emission signals in connection with the damage
mechanisms.
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Appendix A

Basic knowledge of neural network

In this part, with the help of a sample example, we introduce the neural network and the
backpropagation algorithm in training neural network.

A.1 Artificial neural network

In general, neural networks are popular systems for pattern recognition, which are made
from basic processing units (neurons), linked to each other with weighted and directed con-
nections, such that the output of some units are inputs to others [Goodfellow et al., 2016,
Géron, 2019]. The appellation ‘artificial neural network’ comes from the similarity be-
tween the units of these models and biological neurons.
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Figure A.1: (a) An example of a neural network with input layer, hidden layer and output
layer. (b) The artificial neuron h1, which computes a weighted sum of its inputs, applies
an extra bias, and then an activation function.

Figure A.1(b) shows a model of an artificial neural network, which consists of three
layers: input layer, hidden layer and output layer as shown in Figure A.1(a). The input
features are fed to special passthrough neurons called input neurons: they output whatever
input they are fed. In addition, neurons (or perceptrons) in hidden layer can be considered
as the binary classifiers. As an example, Figure A.1(b) illustrates the model of an artificial
neuron, the inputs and output are numbers, and each input connection is associated with
a weight. The net function computes a weighted sum of its inputs and applies a bias.
Then net output is fed into an activation function (such as tanh (eq: f(x) = tanh(x)),
sigmoid (eq: f(x) = (1+ e−x)−1), etc.). In fact, a single neuron (perceptron) can be used
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for simple linear binary classification. It computes a linear combination of the inputs,
and if the result exceeds a threshold, it outputs the positive class. Otherwise, it outputs
the negative class. For this reason, an artificial neural network can be called a multi-layer
perceptrons [Rumelhart et al., 1986].

A.2 Example of training algorithm

Training a neural network consists of adjusting its parameters, the connection weights so
that the model is able to perform the task at hand. We introduce the backpropagation
algorithm, which consists of calculating the gradient of the error with respect to the
parameters of one layer at a time, starting from the output layer and going sequentially
to the input layer. In this section, the parameters in Figure A.1(a) are defined as: i1 =
0.05, i2 = 0.1, w1 = 0.15, w2 = 0.2, w3 = 0.25, w4 = 0.3, w5 = 0.4, w6 = 0.45, w7 =
0.5, w8 = 0.55, b1 = 0.35, b2 = 0.6, targeto1 = 0.01 and targeto2 = 0.99.

The forward propagation First, we define the total net input neth1 of a neuron h1 as

neth1 = w1 × i1 + w2 × i2 + b1 × 1. (A.1)

As shown in Figure A.1(b), we get the value of neth1:

neth1 = 0.15× 0.05 + 0.2× 0.1 + 0.35× 1 = 0.3775. (A.2)

To simplify the calculation, we define that all the neurons use the sigmoid function as the
activation function. Then we get the output of h1:

outh1 =
1

1 + exp(−neth1)
=

1

1 + exp(−0.3775)
= 0.593. (A.3)

The same process is applied on h2, we get:

outh2 =
1

1 + exp(−neth2)
= 0.597. (A.4)

We repeat this process for the output layer neurons, using the output from the hidden
layer neurons as inputs. For the output o1, we get:

neto1 = w5 × outh1 + w6 × outh1 + b2 × 1 = 1.1059, (A.5)

and

outo1 =
1

1 + exp(−outo1)
= 0.0751. (A.6)

The same process applied to output neuron o2, gives:

outo2 =
1

1 + exp(−outo2)
= 0.7793. (A.7)

For the first epoch of forward propagation, two predicted outputs (outo1 and outo2)
are computed. However, the quadratic cost function J (error) is the difference between
the predicted outputs and targets which has expression as:

J(yn, tn) =
1

2

∑

n

‖yn − tn‖2 . (A.8)
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where yn is the component of the target vector, tn is the component of the output vector.
For this example, we have:

Jo1 =
1

2
(targeto1 − outo1)

2 = 0.2748, (A.9)

Jo2 =
1

2
(targeto2 − outo2)

2 = 0.0236 (A.10)

and

Jtotal = Jo1 + Jo2 = 0.2984, (A.11)

The backward propagation The goal of backpropagation (BP) is to update each of
the weights in the network so that the predicted output is closer to the target output,
thereby minimizing the error for each output neuron and the whole output layer.

First, for weight w5, by using gradient descent algorithm, we calculate the gradient of
Jtotal with respect to w5 which is ∂Jtotal

∂w5

. By applying the chain rule, we get:

∂Jtotal
∂w5

=
∂Jtotal
∂outo1

× ∂outo1
∂neto1

× ∂neto1
∂w5

. (A.12)

Three partial derivative functions can be computed respectively. First, we have the equa-
tion:

Jtotal =
1

2
(targeto1 − outo1)

2 +
1

2
(targeto2 − outo2)

2, (A.13)

then
∂Jtotal
∂outo1

= outo1 − targeto1 = 0.7514− 0.01 = 0.7414. (A.14)

For the second partial derivative function ∂outo1
∂neto1

, we know that:

outo1 =
1

1 + exp(−neto1)
, (A.15)

then
∂outo1
∂neto1

= outo1(1− outo1) = 0.7514× (1− 0.7514) = 0.1868. (A.16)

For the third partial derivative function ∂neto1
∂w5

, by using Equation A.5, we get:

∂neto1
∂w5

= outh1 = 0.5933. (A.17)

In summary, Equation A.12 can be solve as:

∂Jtotal
∂w5

= 0.7414× 0.1868× 0.5933 = 0.0821. (A.18)

To decrease error, we use the learning rate η (here, we set η = 0.5) to update w5 to
w+

5 as:

w+
5 = w5 − η × ∂Jtotal

∂w5

= 0.4− 0.5× 0.0821 = 0.3589. (A.19)
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This process is applied on w6, w7 and w8 respectively, then we can get: w+
6 = 0.4086,

w+
7 = 0.5113 and w+

8 = 0.5613.

In backpropagation algorithm, we use the original weights, not the updated weights to
update each hidden layer. For hidden layer in Figure A.1(a), we take w1 as an example,
then we get:

∂Jtotal
∂w1

=
∂Jtotal
∂outh1

× ∂outh1
∂neth1

× ∂neth1
∂w1

. (A.20)

In this equation, for term ∂Jtotal
∂outh1

we get:

∂Jtotal
∂outh1

=
∂Jo1
∂outh1

+
∂Jo2
∂outh1

. (A.21)

Then we have:
∂Jo1
∂outh1

=
∂Jo1
∂neto1

× ∂neto1
∂outh1

. (A.22)

For ∂Jo1
∂neto1

, with Equation A.14 and Equation A.16, we get:

∂Jo1
∂neto1

=
∂Jo1
∂outo1

× ∂outo1
∂neto1

= 0.7414× 0.1868 = 0.1384. (A.23)

For ∂neto1
∂outh1

, based on expression:

neto1 = w5 × outh1 + w6 × outh2 + b2 × 1, (A.24)

we get
∂neto1
∂outh1

= w5 = 0.40. (A.25)

Now, Equation A.22 can be solved as:

∂Jo1
∂outh1

=
∂Jo1
∂neto1

× ∂neto1
∂outh1

= 0.1384× 0.40 = 0.0553. (A.26)

Following the same process for ∂Jo2
∂outh1

, we get

∂Jo2
∂outh1

= −0.0190. (A.27)

Therefore, Equation A.21 can be computed as:

∂Jtotal
∂outh1

=
∂Jo1
∂outh1

+
∂Jo2
∂outh1

= 0.0553 + (−0.0190) = 0.0363. (A.28)

For term ∂outh1
∂neth1

in Equation A.20, we use the expression as:

outh1 =
1

1 + exp(−neth1)
, (A.29)

and get
∂outh1
∂neth1

= outh1(1− outh1) = 0.5932(1− 0.5933) = 0.2413. (A.30)
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For term ∂neth1
∂w1

in Equation A.20, we use Equation A.1 and get:

∂neth1
∂w1

= i1 = 0.05. (A.31)

Then Equation A.20 can be computed as:

∂Jtotal
∂w1

=
∂Jtotal
∂outh1

× ∂outh1
∂neth1

× ∂neth1
∂w1

= 0.000438568. (A.32)

Now, w1 can be updated by η as:

w+
1 = w1 − η × ∂Jtotal

∂w1

= 0.15− 0.5× 0.000438568 = 0.1497. (A.33)

Repeating this for w2, w3, and w4, we get w+
2 = 0.1995, w+

3 = 0.2497 and w+
4 = 0.2995.

With these updated weights, when we fed forward the input originally i1 = 0.05 and
i2 = 0.1, the error J is 0.2901. However, with more times of update, for example, update
number k = 100, we get outo1 = 0.1782 and outo2 = 0.8768. Normally we define a
minimum value of Jtotal to minimize the cost function (error).
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Appendix B

Publications et Communications

B.1 Articles

1. X. Yu, M. Bentahar, C. Mechri, S. Montrésor, Passive monitoring of nonlinear re-
laxation of cracked polymer concrete samples using acoustic emission, The Jour-
nal of the Acoustical Society of America (2019), 146(4), EL323–EL328. doi:10.1121/1.5127519

2. M. Bentahar, A. Di Bella, C. Mechri, S. Montrésor, M. Scalerandi, X.Yu, Exploiting
Slow Dynamics Effects for Damage Detection in Concrete, Frontiers in Built
Environment (2020), 6. doi:10.3389/fbuil.2020.00064

B.2 Conferences

1. Acoustics ’17 Boston (173rd meeting of the Acoustical Society of America), 25 - 29
June 2017 Boston, Massachusetts, USA

2. CFA (The 14th French Acoustics Congress), 23 - 27 Avril 2018, Le Havre, France

3. COFREND (3nd Doctoriale French confederation for Non Destructive Testing), 28 -
29 Mai 2018, Marne la Vallée, France

4. EWGAE (33rd European Conference on Acoustic Emission Testing), 12 - 14 September
2018, Senlis, France

5. FCAC (2nd Franco-Chinese Acoustics Conference), 29 - 31 October 2018, Le Mans,
France

6. Journée Scientifique de ECND Pays de la Loire, 13 Novembre 2018, Angers, France
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Titre : Émission acoustique dynamique pour la caractérisation du comportement non linéaire des matériaux complexes 

Mots clés : matériaux complexes (béton), quasi-statiques tests et micro-mécanismes, émission acoustique et 
traitement du signal, conditionnement et relaxation non-linéaire, reconnaissance des formes non-supervisée, réseau de 
neurones 

Résumé : L’émission acoustique (EA) est reconnue 
pour être une technique efficace de surveillance de la santé 
des structures permettant de détecter la création et la 
propagation de microfissures dans les matériaux 
structuraux tels que le béton ou les composites lorsqu'ils 
sont soumis à des contraintes quasi-statiques. Sur la base 
de méthodes de traitement de signaux adéquates, 
différentes études ont établi des liens entre les salves d’EA 
et les micro-dommages créés. D'autres travaux ont montré 
qu'il est possible de corréler le temps de relaxation des 
composites et l'énergie des mécanismes d'endommagement 
mesurée durant la charge quasi-statique en utilisant les 
salves d’EA enregistrées. Cette thèse propose d'utiliser un 
protocole expérimental original pour détecter la relaxation 
non-linéaire d'échantillons de bétons à l'état intact et 
endommagés. Ce protocole est basé sur l'utilisation de 
l’EA pour capter passivement la relaxation non-linéaire 
d'échantillons de bétons au lieu du signal de faible 
amplitude habituellement utilisé dans les expériences de 
dynamique lente.  Les résultats montrent que les méthodes 
de détection passives et actives conduisent à des temps de  

relaxation équivalents. De plus, le capteur d’EA révèle 
l’existence d’une ‘période de silence’ pendant les 
premières minutes de la relaxation non-linéaire après 
laquelle les salves d’EA commencent à être détectées. De 
plus, les caractéristiques des salves d’EA enregistrées 
pendant la relaxation passive ont montré une nette 
ressemblance avec celles obtenues lors de 
l'endommagement des mêmes échantillons, où des 
mécanismes de cisaillement et de compression sont 
impliqués. Enfin, nous notons qu’en plus de l'utilisation 
d'une approche de reconnaissance des formes non-
supervisée pour la classification des salves d’EA, ce 
travail propose une nouvelle approche de classification 
des signaux d’EA basé sur l’image de la représentation en 
ondelettes continue (CWT) et le réseau de neurones 
convolutifs (CNN). Les résultats liés aux données d’EA 
dynamiques non-linéaires et quasi-statiques montrent que 
les deux approches de traitement du signal ont une grande 
précision de classification, ce qui représente un intérêt 
certain pour le développement de méthodes d’EA 
dynamiques en présence de microfissures. 

 

Title: Dynamic acoustic emission for the characterization of the nonlinear behavior of complex materials 

Keywords:  complex materials (concrete), quasi-static tests and micro-mechanisms, acoustic emission and signal 
processing, conditioning and nonlinear relaxation, unsupervised pattern recognition, neural network 

Abstract:  Acoustic emission (AE) is well known to be 
an efficient structural health monitoring technique to 
detect the creation and propagation of micro-cracks 
within structural materials such as concrete or composites 
when submitted to quasi-static stresses. Based on 
adequate signal processing methods, different research 
studies have established links between the detected AE 
hits and the created micro-damages. Other works have 
shown that it is possible to correlate the relaxation time 
in composites and the energy of the damage mechanisms 
measured during the quasi-static loading using the 
recorded AE hits.  This thesis proposes to use an original 
experimental protocol to probe the nonlinear relaxation 
of concrete samples at the intact and damaged states. 
This protocol is based on the use of AE to passively 
probe the nonlinear relaxation of concrete samples 
instead of the weak amplitude signal usually used in slow 
dynamics experiments. Results show that passive and 
active probing methods lead to equivalent relaxation 
times.  
 

Furthermore, AE probing reveals the existence of a 
‘silence period’ during the first minutes of the nonlinear 
relaxation after which AE hits start to be detected. In 
addition, the characteristics of AE hits recorded during 
the passive relaxation showed a clear resemblance to 
those obtained during the damaging of the same samples, 
where shear and compression mechanisms are involved. 
For the clustering of the AE hits, in addition to use of an 
unsupervised pattern recognition approach to cluster the 
detected AE hits, this work proposes a novel ‘image-
based AE classification’ approach based on continuous 
wavelet transform (CWT) and convolutional neural 
network (CNN). Results related to the nonlinear dynamic 
and quasi-static AE data show that both signal processing 
approaches have high classification accuracy, which 
represents a great interest in the development of dynamic 
AE methods in the presence of micro-cracks. 
 

 


