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Les inondations en général affectent plus de personnes que tout autre catastrophe. Au cours de la dernière décennie du 20ème siècle, plus de 1.5 milliard de personnes ont été affectées. Afin d'atténuer l'impact de ce type de catastrophe, un effort scientifique significatif a été consacré à la constitution de codes de simulation numériques pour la gestion des risques. Les codes disponibles permettent désormais de modéliser correctement les événements d'inondation côtière à une résolution assez élevée. Malheureusement, leur utilisation est fortement limitée pour l'alerte précoce, avec une simulation de quelques heures de dynamique maritime prenant plusieurs heures à plusieurs jours de temps de calcul. Cette thèse fait partie du projet ANR RISCOPE, qui vise à remédier cette limitation en construisant des métamodèles pour substituer les codes hydrodynamiques coûteux en temps de calcul.

En tant qu'exigence particulière de cette application, le métamodèle doit être capable de traiter des entrées fonctionnelles correspondant à des conditions maritimes variant dans le temps. À cette fin, nous nous sommes concentrés sur les métamodèles de processus Gaussiens, développés à l'origine pour des entrées scalaires, mais maintenant disponibles aussi pour des entrées fonctionnelles. La nature des entrées a donné lieu à un certain nombre de questions sur la bonne façon de les représenter dans le métamodèle: (i) quelles entrées fonctionnelles méritent d'être conservées en tant que prédicteurs, (ii) quelle méthode de réduction de dimension (e.g., B-splines, PCA, PLS) est idéale, (iii) quelle est une dimension de projection appropriée, et (iv) quelle est une distance adéquate pour mesurer les similitudes entre les points d'entrée fonctionnels dans la fonction de covariance. Certaines de ces caractéristiques -appelées ici paramètres structurels -du modèle et d'autres telles que la famille de covariance (e.g., Gaussien, Matérn 5/2) sont souvent arbitrairement choisies a priori. Comme nous l'avons montré à travers des expériences, ces décisions peuvent avoir un fort impact sur la capacité de prédiction du métamodèle. Ainsi, sans perdre de vue notre but de contribuer à l'amélioration de l'alerte précoce des inondations côtières, nous avons entrepris la construction d'une méthodologie efficace pour définir les paramètres structurels du modèle.

Comme première solution, nous avons proposé une approche d'exploration basée sur la Méthodologie de Surface de Réponse. Elle a été utilisé efficacement pour configurer le métamodèle requis pour une fonction de test analytique, ainsi que pour une version simplifiée du code étudié dans RISCOPE. Bien que relativement simple, la méthodologie proposée a pu trouver des configurations de métamodèles de capacité de prédiction élevée avec des économies allant jusqu'à 76.7% et 38.7% du temps de calcul utilisé par une approche d'exploration exhaustive dans les deux cas étudiés. La solution trouvée par notre méthodologie était optimale dans la plupart des cas. Nous avons développé plus tard un deuxième prototype basé sur l'Optimisation par Colonies de Fourmis. Cette nouvelle approche est supérieure en termes de temps de solution et de flexibilité sur les configurations du modèle qu'elle permet d'explorer. Cette méthode explore intelligemment l'espace de solution et converge progressivement vers la configuration optimale. La collection d'outils statistiques utilisés dans cette thèse a motivé le développement d'un package R appelé funGp. Celui-ci est maintenant disponible dans GitHub et sera soumis prochainement au CRAN.

Dans un travail indépendant, nous avons étudié l'estimation des paramètres de covariance d'un processus Gaussien transformé par Maximum de Vraisemblance (MV) et Validation Croisée. Nous avons montré la consistance et la normalité asymptotique des deux estimateurs. Dans le cas du MV, ces résultats peuvent être interprétés comme une preuve de robustesse du MV Gaussien dans le cas de processus non Gaussiens. v
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Chapter 1 Introduction 1.1 Research context

In the early 20s, Ronald Fisher developed the base concepts of modern design of experiments [START_REF] Kirk | Experimental design[END_REF]. At the time, the only way to get data about a system of interest was to conduct a physical experiment. The outstanding evolution of computer technology has took those concepts to a whole new level, where in-field measurements can now be replaced by reliable and detailed computer simulations. This possibility has enabled the study of a variety of complex systems that otherwise would be too expensive or too difficult to observe. We refer, for instance, to the optimal design of nuclear reactors [2] and space vehicles [START_REF] Vaden | Computer aided design of ka-band waveguide power combining architectures for interplanetary spacecraft[END_REF], or the modeling and prediction of natural hazards [4]. Despite their advantages in terms of costs and control over the experiment, computer codes for environmental and industrial applications often happen to be too time-consuming for direct application (e.g., for uncertainty quantification or fast prediction) [START_REF] Villemonteix | An informational approach to the global optimization of expensive-to-evaluate functions[END_REF]. This obstacle is typically circumvented by creating quick-to-evaluate mathematical emulators of those numerical codes, based on a limited collection of runs (see e.g., [6]); such emulators are often called surrogate models or metamodels. This thesis makes part of the ANR RISCOPE project (https://perso.math.univ-toulouse.fr/riscope/ ), devoted to the application of metamodeling techniques for the improvement of coastal flooding early warning.

One of the particularities of the codes studied here, is that they receive multiple time series as inputs. Those correspond to key maritime conditions such as the tide, atmospheric storm surge, and significant wave height. The proper modeling of functional inputs has been of main interest in the project since the beginning, and the manuscript makes strong emphasis on this subject. In this regard, we have studied the possibility of implementing dimension reduction techniques in order to simplify the input data structures and obtain lighter models. Our work is focused on Gaussian process metamodels, featured by the degree of flexibility they allow in the input-output relationship, their interpretability, and remarkable tractability. The handling of functional inputs and our choice to work with Gaussian process models give rise to a number of questions about the ideal model setup. Specifically, we aimed to decide:

1) the scalar and functional inputs to keep as predictors; 2) the dimension reduction method to use for each input; 3) the projection dimension for each input; 4) the kernel function of the model; 5) the distance used to measure similarity between functional input coordinates within the kernel function.

We call those features structural parameters of the model. Some of these characteristics of the model are often arbitrarily fixed. Through a set of computer experiments, we show that the structural parameters may have a strong impact on the prediction capability of the resulting model. We further conclude that the ideal model setup will vary from one application to the other, and thus it should be optimized each time a model is built, in order to get the best results of it. This thesis introduces an algorithm to conduct such an optimization task. We validate the algorithm in the RISCOPE case. All the obtained metamodels were of outstanding prediction quality.

Contributions of the thesis

This thesis focuses on the construction of Gaussian process metamodels for the substitution of complex hydrodynamic codes in the frame of coastal flood early warning. Our main contributions in this regard are summarized below.

A set of metamodels for direct application in coastal flood early warning

The RISCOPE project works on a real life case study, focused on the coastal French municipality of Gâvres. This region has experienced more than ten coastal flooding events since 1864, two of the most dramatic ones during the 21st century. We have worked in direct contact with the mayor, representatives of the fire department, and other local authorities in order to make the results of the project as useful as possible for them. The GeoHyd group, partner in the project, is in charge of the development of a web-based decision support system for early warning. This tool is expected to implement various of the metamodels obtained from this thesis.

An algorithm for model selection in the frame of Gaussian process models

As explained in the description of the research context, the types of inputs used by the hydrodynamic computer codes, along with our decision to work with Gaussian process models, result in a number of potential model structures, one of which will be the optimal choice. We consider a total of five model features to calibrate, those being: (i) the state of each input in the model (inactive or active), (ii) the dimension reduction method to use for each input (e.g., B-splines, PCA), (iii) the projection dimension for each input, (iv) the kernel function of the model (e.g., Gaussian, Matérn 5/2), and (v) the distance to measure similarities between functional input coordinates. We develop an Ant Colony based algorithm able to find, in a short time, a combination of structural parameters leading to a model of superior predictability. We use this algorithm to tune the models for the RISCOPE application.

An R package implementing the metamodeling techniques used here

This thesis gives rise to the R package funGp. This package tackles regression problems involving scalar and/or functional inputs and a scalar output through the fairly general Gaussian process model. Rather than imposing or requiring any particular parametric input-output relationship in advance, it learns this information directly from the data. The package offers built-in dimension reduction methods oriented to simplify the representation of the functional inputs in order to get lighter models. funGp also implements the Ant Colony algorithm developed here for the calibration of the structural parameters of the model. Both the package and its manual have been structured with the intention of them being usable for users within a wide range of knowledge in mathematics or statistics. Therefore, all the functions offer default parameters, but great degree of customization is also offered for the more experienced users. funGp has been made available in GitHub and CRAN .

In an excursion outside the coastal flooding application, we also worked on theoretical aspects of Gaussian process metamodeling. In many applications the data presents some signs of non-Gaussianity, such as boundary constraints or skewness. This study is motivated by the question of what we can expect in those cases, if we still model the output as Gaussian. Our contributions in this front are explained below.

Results on the asymptotics of ML and CV for trans-Gaussian processes

We study the estimation of the covariance parameters of transformed Gaussian processes through Gaussian Maximum Likelihood (ML) and Cross Validation (CV). We show that both estimators are consistent and asymptotically normal. These results can be interpreted as a proof of robustness of Gaussian ML in the case of non-Gaussian processes. We conclude that by modeling a random process as Gaussian, we can estimate well its covariance parameters, even if the process is not Gaussian in reality.

In the regression framework, this points out to the conclusion that we can remove the assumption of Gaussianity of the data and still manage to build a Gaussian process model well suited to the data.

Outline of the manuscript

The remaining of this manuscript is composed as follows:

Chapter 2: Gaussian process metamodeling of functional-input code for coastal flood hazard assessment

This chapter presents our first approach to address the metamodeling problem studied in the RISCOPE project. It is an exact copy of our article [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF], published in Reliability Engineering & System Safety. The chapter covers good part of the foundations of this thesis. It includes a discussion on related literature, a description of RISCOPE dataset, a synthesis of modeling through Gaussian processes, along with a detailed explanation of our metamodeling approach. Hence, this chapter is fundamental for the effective comprehension of the others. At the time of writing the article, the target hydrodynamic code was in calibration. Therefore, we were using a simplified version of it, which ignored some of the hydrometeorological forcing conditions. The simplified code was much quicker to evaluate but less detailed and precise. This code, however, allowed us to generate a large number of observations, which were of great importance for the stabilization and optimization of our metamodeling routines. On the other hand, we were able to test various ways to include the functional inputs in the model. Through a large number of computer experiments, we showed the potential impact of the structural parameters in the predictability of the model. This article gave rise to our first prototype of methodology for the calibration of the structural parameters of the model, which was inspired by the Response Surface Methodology [START_REF] Pulido | Análisis y diseño de experimentos[END_REF].

While relatively simple, the proposed methodology proved its effectiveness through an analytical case study and our coastal flooding application. In both cases it led to metamodel configurations of outstanding performance, able to accurately predict the output of the code. We proved the efficiency of this methodology through comparison against an exhaustive search approach. In most cases our methodology was able to find the optimal configuration, and made time savings of up to 76.7% and 38.7% with respect to the time spent by the exhaustive search in the analytic and the coastal flooding case, respectively. Despite such positive results, we recognized the limitation of this approach to problems with few number of structural parameters and levels of those. Having proved the pertinence of this research line, we developed a second methodology able to explore the space in a more efficient manner. Such a methodology is the topic of Chapter 3.

Chapter 3: Ant Colony based model selection for functional-input Gaussian process regression

The previous chapter presents our first prototype of methodology for the calibration of structural parameters of the metamodel. We used that methodology to tune the metamodel for a simplified version of our hydrodynamic code, which received only part of the variables used by our target code. Athough the proposed methodology proved to be effective for such application, we concluded the need for more sophisticated exploration techniques in order to scale to bigger problems involving (i) a larger number of inputs, (ii) more structural parameters and (iii) more levels per structural parameter. In Chapter 3 we address this need by introducing an Ant Colony based smart exploration algorithm.

Ant colony optimization (ACO) encompasses a large variety of optimization metaheuristics derived from the seminal work of Dorigo et al. in the early 90s [START_REF] Dorigo | Positive feedback as a search strategy[END_REF][START_REF] Dorigo | Optimization, learning and natural algorithms[END_REF]. Since then, ACO based heurstics have been proved to give remarkable results in a wide range of optimization problems, including DNA sequencing [START_REF] Blum | An ant colony optimization algorithm for dna sequencing by hybridization[END_REF], scheduling [START_REF] Li | Cloud task scheduling based on load balancing ant colony optimization[END_REF], protein-ligand docking [START_REF] Korb | An ant colony optimization approach to flexible protein-ligand docking[END_REF], assembly line balancing [START_REF] Simaria | 2-antbal: An ant colony optimisation algorithm for balancing two-sided assembly lines[END_REF] and packet-switched routing [START_REF] Zhao | An improved ant colony optimization for communication network routing problem[END_REF]. ACO has been recognized as one of the most successful research lines in the area of swarm intelligence [START_REF] Bonabeau | Swarm intelligence: from natural to artificial systems[END_REF][START_REF] Bonabeau | Inspiration for optimization from social insect behaviour[END_REF], and always seats beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search among the top metaheuristic techniques [START_REF] Blum | Ant colony optimization: Introduction and recent trends[END_REF]. This chapter is an exact copy of our technical report [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF], which recalls the foundations of Ant Colony Optimization and elaborates on top of them to make the algorithm suitable for our structural optimization problem. To the best of our knowledge, this is the first algorithm addressing the structural optimization problem for Gaussian process models.

We use the proposed algorithm to calibrate the metamodel for three analytic black-box functions. The models obtained were in all cases of outstanding prediction quality. In Chapter 5 we use the algorithm to calibrate the metamodel for the full hydrodynamic code of the RISCOPE application.

Chapter 4: Gaussian process regression for scalar and functional inputs with funGp: The in-depth tour

The two previous chapters led us to the creation of the R package called funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF], which is oriented to the construction and smart selection of Gaussian process models with emphasis on the treatment of functional inputs. Chapter 4 is an exact copy of its user manual [START_REF] Betancourt | Gaussian process regression for scalar and functional inputs with fungp -the in-depth tour[END_REF].

What does funGp bring to the table?

• Flexible modeling of functional-input regression problems

A few R packages address regression with functional inputs (e.g., time series). The vast majority of those packages rely on models limited by strong assumptions on the relationship between inputs and outputs (e.g., Linear, Generalized Linear or Generalized Additive Models). funGp tackles regression problems involving scalar and/or functional inputs through the fairly general Gaussian process model, which removes any need to set a particular input-output parametric relationship in advance, and rather learns this information directly from the data.

• Built-in dimension reduction funGp is self-contained in the sense that it does not depend on other packages to perform dimension reduction on the functional inputs. At this point, it offers projection onto Bsplines or PCA bases. The package was designed to enable a straightforward extension to other bases in further versions.

• Heuristic model selection

The possibilities offered by a package often translate into alternative model structures.

Decision support is rarely offered in order to select a suitable configuration for the problem at hand. We acknowledge the potential impact of such a decision in the performance of the model [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF][START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a datadriven approach[END_REF] and also the practical difficulties that arise from offering possibilities without decision support. Therefore, funGp was equipped with a model selection functionality which implements the Ant Colony based algorithm presented in 3. The user has the possibility to decide to either build a model with an arbitrary structural configuration, or call the model factory and let the ants do the work.

• All-level-user-friendly

We aim funGp to be a helpful tool for users within a wide range of knowledge in mathematics or statistics. Thus, we have made an effort to make simple and intuitive the way the package works. Most of the arguments in the functions have been provided default values so that the user can start experimenting with them at its own pace. Once the user gets ready, it will be able to start playing with the nugget effect, basis type, kernel type, multi-start option, parallelization and even the parameters of the heuristic for structural configuration. However, to have a first funGp model built, the only thing to do is to provide the data.

funGp relies on a variety of concepts at a crossroad between mathematics, statistics and optimization. As such, it merits a sufficiently wide documentation helping the user to shorten its learning curve. It does not matter what a tool has to offer if people do not understand well how to use it. The user manual presented in Chapter 4 explains all the functionalities of the package through a set of short examples in the form of code snippets copy/pasteable directly to R. We are confident that, with the help of this manual, the user will be able to have its first funGp model working in a matter of just a few minutes.

Chapter 5 Structural parameter optimization in the coastal flooding RISCOPE case

Chapters 2, 3 and 4 address the introduction to the RISCOPE coastal flooding application, the development of an Ant Colony algorithm for the efficient optimization of the structural parameters of the metamodel, and the consolidation of the R package funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF], respectively. Chapter 5 is a follow up to the RISCOPE case. The description given in Chapter 2 for this application remains mostly valid, except for the three following aspects:

1) Updated hydrodynamic code: at the time of writing Chapter 2, the target hydrodynamic code was in calibration. Thus, we used a simplified version of it which was quicker but less precise and detailed. At this time the target hydrodynamic code is complete.

2) Significantly less observations: the new hydrodynamic code takes much more time per computation (several hours to days) than the simplified version used in Chapter 2 (around 20 seconds). Thus, current developments are much more limited in the amount of simulations that we can conduct.

3) Several output variables: the new hydrodynamic code enables the extraction of diverse types of information of interest such as the maximum flooded area, the water height at surveillance points and coefficients of trafficability of critical roads. In this chapter we consider a total of 13 scalar outputs and we build a metamodel for each of them.

The Ant Colony algorithm proved its pertinency and effectiveness by finding high quality structural configurations for all the 13 outputs under analysis. In all cases, the selected configuration outperformed several others, including the default choices of using: (i) only a scalar representation of each functional input; (ii) the full set of scalar and functional representations of the inputs; and (iii) a scalar representation of each functional input, plus the functional representation of some key input variables. Even for the variables the most difficult to fit, our algorithm was able to find a configuration superior to the aforementioned alternatives. All the analysis was conducted using our R package funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF].

Chapter 2

Gaussian process metamodeling of functional-input code for coastal flood hazard assessment The chapter in brief

This chapter presents our first approach to address the metamodeling problem studied in the RISCOPE project. It is an exact copy of our article [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF], published in Reliability Engineering & System Safety. The chapter covers good part of the foundations of this thesis. It includes a discussion on related literature, a description of RISCOPE dataset, a synthesis of modeling through Gaussian processes, along with a detailed explanation of our metamodeling approach. Hence, this chapter is fundamental for the effective comprehension of the others.

At the time of writing the article, the target hydrodynamic code was in calibration. Therefore, we were using a simplified version of it, which ignored some of the inputs of the target code. The simplified code was much quicker to evaluate but less detailed and precise. This code, however, allowed us to generate a large number of observations, which were of great importance for the stabilization and optimization of our metamodeling routines. On the other hand, we were able to test various ways to include the functional inputs in the model. Through a large number of computer experiments, we showed the potential impact of the structural parameters in the predictability of the model. This article gave rise to our first prototype of methodology for the calibration of the structural parameters of the model, which was inspired by the Response Surface Methodology [START_REF] Pulido | Análisis y diseño de experimentos[END_REF].

While relatively simple, the proposed methodology proved its effectiveness through an analytical case study and our coastal flooding application. In both cases it led to metamodel configurations of outstanding performance, able to accurately predict the output of the code. We proved the efficiency of this methodology through comparison against an exhaustive search approach. In most cases our methodology was able to find the optimal configuration, and made time savings of up to 76.7% and 38.7% with respect to the time spent by the exhaustive search in the analytic and the coastal flooding case, respectively.

Introduction

The use of computer codes for the study of complex systems is, nowadays, a well extended practice. On the one hand, they offer the possibility of simulating realizations of the system under study at a lower resource expense/risk than if observations were taken from the real system. On the other hand, they provide a solution for cases when the real system is a natural process (e.g., volcanic activity) and some input-output conditions are rarely observed. In the coastal flooding domain, for instance, by focusing on flooding on sites never or rarely flooded, it is not possible to obtain a sufficient number of observations from historical registers [START_REF] Rohmer | A meta-modelling strategy to identify the critical offshore conditions for coastal flooding[END_REF][START_REF] Jia | Kriging metamodeling for approximation of highdimensional wave and surge responses in real-time storm/hurricane risk assessment[END_REF][START_REF] Rueda | The use of wave propagation and reduced complexity inundation models and metamodels for coastal flood risk assessment[END_REF]. In those cases, computer codes can be used to produce the required observations to complement historical data. Despite the aforementioned advantages, computer codes for environmental and industrial applications often happen to be too time-consuming for direct application (e.g., for uncertainty quantification or fast prediction within an early warning system) [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF][START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF]. This difficulty is usually resolved by creating quick-to-evaluate mathematical emulators of those numerical codes, based on a limited collection of runs [6,[START_REF] Santner | The design and analysis of computer experiments[END_REF][START_REF] Lataniotis | The gaussian process modelling module in uqlab[END_REF]; such emulators are often called surrogate models or metamodels. In this paper, we illustrate an intermediate step in the development of a surrogate model of a complex hydrodynamic code used in the context of early warning for coastal flooding hazards. This work is said to be an intermediate step as the target hydrodynamic code to emulate is still under calibration. In the meantime, we use a simplified fast-running version of it which allows us to study the dynamics of the system and the specificities of the metamodeling task at hand.

The simplified hydrodynamic code receives four inputs and delivers a single output, all of them functions of time. As usual in practice, each function is supplied to and delivered by the code in the format of a time series represented by a long vector. Even though, we keep referring to them as functional inputs (resp. functional output) since the notions of order and/or proximity between time points hold for them. The focus of this article is on the modeling of functional inputs. Thus, we keep their full complexity into account, but we reduce the problem by only considering a scalar representation of the output, which corresponds to the cumulative sum of its values over time.

The main difficutly of functional-input regression is the large number of predictors that one may end up dealing with. In our coastal flooding application, for instance, each input variable is a time series with 37 time points. Some applications involve inputs with more then 1000 time points (see e.g., [START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF]). Such a large number of covariates naturally hampers the tractability and processing speed of the metamodel while making it more prone to overfitting. A common approach to overcome this problem is to make a projection of each functional input onto a space of lower dimension while preserving the main statistical or geometric properties of the variable [START_REF] Ramsay | Applied functional data analysis: methods and case studies[END_REF][START_REF] Marrel | Global sensitivity analysis for models with spatially dependent outputs[END_REF][START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF][START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF]. The projection is sometimes preceeded by time warping if an input shows a cyclical pattern which is consistent among functions [START_REF] Mai | Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping[END_REF]. A suitable basis for the projection space may come from a variety of families, including B-splines, PCA, Legendre polynomials, wavelets, Fourier and many others. The ideal basis family seems to vary from one application to the other. However, most studies set this feature a priori, leaving wide margin for potential improvement of the metamodel.

The approach based on the projection of the inputs also requires the selection of the projection dimension. Seeking for a balance between speed/tractability and prediction quality, the goal should be to set the new dimension considerably lower than the original one, but still sufficiently large to allow for good predictions. Thus, for forecast purposes, dimensionality reduction of the inputs should be primarily leaded by metamodel predictability. However, the new dimension p is often chosen to retain certain amount of information on the input. For instance, so that most information on its variability is concentrated on the first p components [START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF] or by minimizing the projection error [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF]. Some alternative techniques better incorporate the idea of focusing on metamodel predictability. These include scalar-onfunction regression [START_REF] Reiss | Methods for scalar-onfunction regression[END_REF][START_REF] Antoniadis | Spatio-temporal metamodeling for west african monsoon[END_REF][START_REF] Rohmer | Boosting kernel-based dimension reduction for jointly propagating spatial variability and parameter uncertainty in long-running flow simulators[END_REF], methods in the field of active subspaces [START_REF] Constantine | Active subspaces: Emerging ideas for dimension reduction in parameter studies[END_REF], as well as stack models composed of a dimensionality reduction and a metamodeling technique put together and trained using backpropagation [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF][START_REF] Damianou | Deep gaussian processes[END_REF][START_REF] Huang | Scalable gaussian process regression using deep neural networks[END_REF][START_REF] Calandra | Manifold gaussian processes for regression[END_REF]. Despite the advantages of these methods in terms of simplicity or predictablity, their application in this paper is prevented by a set of factors. First of all, developments of scalar-on-function regression are mainly related to the linear regression framework, whose scope is exceeded by the complexity of the coastal flooding phenomenon. Secondly, active subspaces techniques often rely on the gradient of the output w.r.t the inputs. This information is rarely available and has to be approximated from data [START_REF] Fornasier | Learning functions of few arbitrary linear parameters in high dimensions[END_REF], a sometimes difficult task when inputs are structured objects such as time series or spatial fields [START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a datadriven approach[END_REF]. Finally, techniques relying on stacked models turn out to be quite restrictive regarding the combination of components of the stack; most of the proposals are limited to one specific combination of dimensionality reduction and metamodeling technique. Rather than restricting oneself to some particular dimensionality reduction method, this paper aims to define a way to explore and select among available alternatives. Among all metamodel-based solutions (polynomials, splines, neural networks, etc.), we focus on Gaussian processes [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Oakley | Bayesian inference for the uncertainty distribution of computer model outputs[END_REF][START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. These are one of the most popular metamodeling alternatives, partly due to their ability to provide both an interpolation of the data and an uncertainty quantification in the unexplored regions. Although Gaussian processes for scalarvalued inputs and outputs have been studied for almost 30 years, the functional framework is still a relatively new and much less developed research area [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF]. The essence of extending Gaussian process models to receive functional inputs lies in the adaption of the distance used to measure similarity/proximity between pairs of input points. In the case of scalar inputs, the standard is to use a weighted Euclidean distance where each input variable is assigned a weight [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. These weights are then optimized, typically through the Maximum Likelihood or Cross Validation method [START_REF] Stein | Interpolation of spatial data: some theory for kriging[END_REF]. When dealing with functional inputs, the selection of the distance will strongly depend on the way of representing the inputs in the metamodel. For projections, a popular approach is to use the projection coefficients as individual scalar inputs of the model and proceed as described before [START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF]. In that case, each projection coefficient would be assigned a weight. Another alternative is to aknowledge the fact that certain coefficients correspond to the same input variable. Then, each set of projection coefficients, corresponding to the same input variable, would be assigned a single weight [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF]. These two and any other suitable norm are valid choices and once again, the best option will likely depend on the application.

The preceding discussion addresses some of the specificities of functional-input metamodeling; the last paragraph making emphasis on Gaussian processes which are the type of metamodel studied here. In line with that discussion, our main contribution is a methodology to simultaneously tune multiple characteristics of a functional-input metamodel. Here we use it to calibrate: (i) the family of basis functions to project the functional inputs; (ii) the projection dimension; (iii) the distance function to measure similarity between functional input points; and (iv) the set of functional predictors to keep active. As mentioned earlier, these types of metamodeling choices, herein called structural parameters of the metamodel, are often fixed arbitrarily or based on results from other applications. However, as will be shown in this paper through a set of computer experiments, the ideal metamodel configuration depends on the particular application. Thus, this kind of setting should be optimized each time a metamodel is to be built in order to get the best results from it [START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a datadriven approach[END_REF]. Our proposal is a staged exploration strategy which optimizes the set of structural parameters for metamodel predictability. Although relatively simple, the methodology presented here seems to be an effective tool to perform such an optimization task.

The remainder of this paper is organized as follows. Section 2.2 describes the coastal flooding application case that motivates this study. The set of technical details concerning the modeling of functional inputs within Gaussian process metamodels are provided in Section 2.3. Section 2.4 describes the exploration approach proposed here to calibrate the structural parameters of the metamodel. This section also presents an analytic case study to illustrate the methodology. In Section 2.5, we apply the exploration strategy to setup the metamodel for the coastal flooding application. In Section 2.6, we conduct an experiment to assess the robustness of the proposed methodologies to changes in the training and validation set size. A final section synthesizes the main results of this paper and proposes some future research lines.

Motivating case: coastal flooding prediction at Gâvres, France

This study is motivated by the Gâvres coastal flooding case study extracted from the ANR research project RISCOPE [START_REF]Anr riscope project[END_REF]. RISCOPE focuses on the development of risk-based methods relying on metamodeling for forecasting, early warning and prevention of coastal flooding.

Our case study considers the coastal French municipality of Gâvres, located on a peninsula at the Blavet river mouth, in the conurbation of Pays de Lorient (Morbihan). This region is representative of a significant part of French mainland coasts in terms of variety and complexity of flooding processes, as well as available offshore data. Since 1864, Gâvres has had to deal with more than ten coastal flooding events, two of the most dramatic ones taking place in the 21st century. Flooding processes at Gâvres are known to be complex enough (tide influence and overtopping) to cover most of the flooding cases along the French mainland coasts. This ensures the scalability of the methods presented here, to any coastal flooding type.

Hydrodynamic code

Here we consider a simplified fast running code defined on a cross-shore transect model (see Figure 2.1, and the next paragraph for the description). The code takes four variables with physical interpretability as inputs. Those are the tide (Td), atmospheric storm surge (Sg), significant wave height (Hs) and peak wave period (Tp). Each input should be provided to the system in a time series format, so that Td = (Td t ) t=1,...,L , and similarly for the other three inputs. The code outputs a time series of the same length of the inputs, with the value at time t ∈ {1, . . . , L} indicating the overtopped and overflowed water volume during a period equal to the time span between any pair of consecutive instants. From that series, it is naturally possible to compute the cumulative overtopped and overflowed water volume along this transect until time instant t. We denote that quantity by CV t . As explained in the introduction of the article, here we focus on the management of functional inputs and try to keep the output as simple as possible. Therefore, we study a scalar output instead of a functional one. In particular, we consider as the output the total overtopped and overflowed water volume during the span of an event. It corresponds to the last value of the CV t series, CV L . From here on, we denote this quantity by FCV , which stands for final cumulative volume.

Calculations in the computer code involve the statistical model SWAN [START_REF] Booij | The" swan" wave model for shallow water[END_REF] and the Eu-rOtop equations [START_REF] Van Der Meer | Eurotop: Manual on wave overtopping of sea defences and related sturctures: an overtopping manual largely based on european research, but for worlwide application[END_REF], both described below.

Inputs → SWAN → EurOtop → Outputs
• SWAN is a spectral wave model which allows computing the wave conditions at the coastal defence toe, accounting for water level variations induced by tide and surge.

• EurOtop refers to the use of the overtopping and overflow discharge formulas provided in the Eurotop (2018) manual ( [START_REF] Van Der Meer | Eurotop: Manual on wave overtopping of sea defences and related sturctures: an overtopping manual largely based on european research, but for worlwide application[END_REF], Eq. 5.11 and 5.20). These formulas require as input the wave conditions at the coastal defence toe, the crest freeboard (water height above the coastal defence crest, including the wave setup computed by SWAN plus the tide and surge) and coastal defence characteristics. Based on the discharge, the overtopped and overflowed water volume along the transect is finally computed. Vertical location is referenced to the altimetric French system IGN69.

We are aware that the adoption of a cross shore configuration does not allow to properly model all the complexities of the phenomenon under study. However, in the frame of the RISCOPE project, the analysis presented here is considered an intermediate step in the development of methodologies for functional metamodeling, that could be later implemented for more realistic computer codes. The use of a simplified computer code at this stage enables a wider exploration and understanding of the physical phenomenon, before dealing with more detailed and more computationally time consuming models. We remark that in this simplified code, FCV is equal to the sum over time of the overtopped and overflowed water volume; this latter being estimated from scalar quantities. Thus, for this simplified code, a metamodel based on a scalar representation of the inputs may provide relatively good predictions. However, in a future stage of the RISCOPE project we will address intrinsically functional problems such as the estimation of the water height at different points on land (i.e., in the space between the back of the coastal defense and inland). At that point, we expect the functional metamodels to be able to better reproduce the shape of the output than the scalar ones.

Dataset

For purposes of training and validation of the metamodel, we rely on a dataset composed of hindcasts of past conditions of Td, Sg, Hs and Tp. All registers are located offshore of the study site over the period 1900-2016. The dataset is constituted by the concatenation of hindcasts of different sources (see 2.A), with bias corrections between the hindcasts through a quantile-quantile correction method (for more details, see [START_REF] Idier | Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards[END_REF]). The various hindcasts have different time steps. As the main driver, Td, significantly changes in 10 minutes, the other three inputs were also interpolated at a 10 min time step. Then, the long dataset was split into a collection of tidal events, each covering a period of ± 3 hours around a high tide. A time series of 37 elements (corresponding to a time lapse of 6 hours with the time step of 10 min) was used to represent each functional input at each event (see Figure 2.2). Only events where the tide peak reached at least 2.342m (IGN69) were kept. This value corresponds to the mean spring high tide level below which no flooding event ever happened in Gâvres. As a result, a total of 20557 events were obtained. The Td series has a characteristic parabolic shape, which is consistent among events. In fact, its peak (always located at time instant t = 19) is known to be highly influential on the output of the code. In contrast, the majority of Sg, Hs and Tp curves are almost constant or linear with small slope. It means that the range of variation of those three inputs within each event is relatively small compared to their range of variation among events. Based on that, one could presume that just one or two scalar parameters associated to the height and/or slope would be enough to characterise those curves. However, beyond any conclusion that we could reach by visual inspection, the ideal dimension to represent each input will depend on the sensitivity of the output of the code to changes on it. Even quite small and visually negligible changes on some input might cause important changes in the ouput depending on the interactions that happen within the code.

Theoretical background

Scalar and functional inputs of computer codes

In this paper we study the emulation of an expensive-to-run computer model f code by means of a metamodel. Throughout our discussions, we discriminate between scalar and functional inputs. For the sake of clarity, we stick to the following vocabulary and definitions:

(a) When the code is x → f code (x), with x = x (1) , . . . , x (ds) and x (k) ∈ R for k = 1, . . . , ds, we say that the code has ds ∈ N scalar inputs, we call x (k) for k = 1, . . . , ds a scalar input, and we call x a vector of scalar inputs. For simplicity, we may also refer to x as scalar inputs.

(b) When the code is f → f code (f ), with f = f (1) , . . . , f (df ) and f (k) : T k ⊂ R → R for k = 1, . . . , df , we say that the code has df ∈ N functional inputs, we call f (k) for k = 1, . . . , df a functional input, and we call f a vector of functional inputs. For simplicity, we may also refer to f as functional inputs.

(c) When the code is (x, f ) → f code (x, f ), we say that the code has ds scalar inputs and df functional inputs, and we use the same vocabulary as before for x and f .

Gaussian process metamodeling of scalar-input codes

Let us first consider the scalar-input setting where f code models the relationship between a vector of scalar inputs x = x (1) , . . . , x (ds) ∈ R ds and an output variable of interest y ∈ R, with y = f code (x). As the evaluation of f code is computationally costly, it is proposed to build a light-to-run statistical model to approximate it. To this end, there is available a learning set D = {(x 1 , y 1 ), . . . , (x n , y n )}. In this context, Gaussian processes are nonparametric regression models which treat the fixed function f code as a realization of a Gaussian process ξ, specified by its mean and covariance functions m and k. For any pair of input vectors x, x ∈ R ds , the Gaussian process model can be written as:

ξ(•) ∼ GP(m(•), k(•, •)), (2.1) 
with

m(x) = E[ξ(x)] and k(x, x) = E[(ξ(x) -m(x))(ξ(x) -m(x))]. ( 2.2) 
Gaussian processes present diverse attributes that have contributed to their popularity in many applications. They provide a mean estimate along with an indication of the uncertainty attached to it. They are able to reproduce the observations exactly, but there is a simple way to switch from interpolation to smoothing by means of a nugget effect, if required (see [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF] for more details). Furthermore, the Gaussian process model often has a very high prediction power compared to other approaches [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF]. In addition, the conditional distribution of Gaussian processes, given observed values, is particularly tractable in practice and closed form expressions exist for the conditional mean and variance. We discuss them below.

Let X = (x 1 , . . . , x n ) be the n × ds inputs matrix extracted from the learning set (where x i for i = 1, . . . , n is a column vector), and let y = (y 1 , . . . , y n ) be the vector of corresponding output values. Similarly, let X * = (x * ,1 , . . . , x * ,n * ) be a n * × ds inputs matrix of prediction points. The Gaussian conditioning theorem (see e.g., [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]) implies that, conditionally to y, ξ is a Gaussian process with mean and covariance functions m n and k n defined by

m n (X * ) := E[ξ (X * ) |y] = K(X * , X)K(X, X) -1 y (2.3) and k n (X * , X * ) := Cov[ξ (X * ) , ξ (X * ) |y] = K(X * , X * ) -K(X * , X)K(X, X) -1 K(X, X * ), (2.4) 
where K(X, X) denotes the n × n matrix of covariances (k(x i , x j )) 1≤i,j≤n among all pairs of training input points, and similarly for the other entries K(X, X * ), K(X * , X) and K(X * , X * ). We remark that m n (X * ) and k n (X * , X * ) are of the form

m n (X * ) = (E[ξ(x * ,i )|ξ(x 1 ) = y 1 , . . . , ξ(x n ) = y n ]) 1≤i≤n * , k n (X * , X * ) = (Cov[ξ(x * ,i ), ξ(x * ,j )|ξ(x 1 ) = y 1 , . . . , ξ(x n ) = y n ]) 1≤i,j≤n * .
In practice the conditional mean (2.3) is used as an estimation of the true function f code at the test points X * , while the conditional variance (2.4) is often interpreted as a measure of the local error of the prediction [START_REF] Lataniotis | The gaussian process modelling module in uqlab[END_REF].

Gaussian process models are flexible by incorporating diverse types of covariance functions (a.k.a. kernels), being aware that only functions that yield symmetric positive semidefinite covariance matrices are valid choices [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. The selection of the covariance function encodes assumptions such as the degree of regularity of the underlying process [START_REF] Moustapha | Quantile-based optimization under uncertainties using adaptive kriging surrogate models[END_REF]. A general expression for the covariance between any pair of scalar input points x, x ∈ R ds is given by

k(x -x; σ 2 , θ s ) = σ 2 R(x -x; θ s ), (2.5) 
where σ 2 is the variance of the stochastic process and R denotes the correlation function which governs the degree of similitude between input points through the use of the vector of lengthscale parameters θ s = θ (1) s , . . . , θ (ds) s . Together, σ 2 and θ s are the so-called hyperparameters of the model which have to be estimated.

Examples of standard covariance functions are given for instance in [START_REF] Stein | Interpolation of spatial data: some theory for kriging[END_REF] and [START_REF] Abrahamsen | A review of gaussian random fields and correlation functions[END_REF]. Without loss of generality, in this paper we make use of the Matérn 5/2 kernel defined in its anisotropic form for scalar inputs as

k(τ ; σ 2 , θ s ) = σ 2 1+ √ 5 τ L 2 ,θs + 5 τ 2 L 2 ,θs 3 exp - √ 5 τ L 2 ,θs , (2.6) 
where τ = xx and τ L 2 ,θs denotes the anisotropic L 2 norm of xx which can be written as

x -x L 2 ,θs = ds k=1 x (k) -x(k) 2 θ (k) s 2 .
(2.7)

In the equation above, • is the Euclidean norm in R, which by definition is just the absolute value of the quantity. Intuitively, if x = x, then the correlation is 1, whereas if the distance between both vectors tends to infinity, then the correlation tends to 0.

Gaussian process metamodeling of functional-input codes

Let us now consider the functional-input setting where f code models the relationship between a vector of functional inputs f = f (1) , . . . , f (df ) , with f (k) : T k ⊂ R → R for k = 1, . . . , df , and an output variable of interest y ∈ R, so that y = f code (f ). Similarly to the scalarinput case, we assume that there is available a learning set D = {(f 1 , y 1 ), . . . , (f n , y n )}. The extension of Gaussian processes to functional inputs reduces to the selection of a suitable distance for functions to be used within the correlation function. That is the topic of this section.

Three distances for functional inputs

Let us consider two functional data points f = f (1) , . . . , f (df ) and f = f (1) , . . . , f (df ) .

The anisotropic L 2 norm of ff can be written

f -f L 2 ,θ f = df k=1 f (k) -f (k) 2 θ (k) f 2 , ( 2.8) 
where

θ f = θ (1) f , . . . , θ (df ) f
is the vector of length-scale parameters for the df functional input variables and • is any norm for functions.

Note that (2.8) is just the straightforward extension of (2.7) for functional inputs. However, the norm in each term is no longer as trivial as in the scalar case and different paths can be followed from here. Most times in the literature, the norm is computed using one of the three distances that we discuss now.

The first approach is to use the L 2 norm for functions, under the mild assumption that f ( ) and f ( ) for = 1, . . . , df have finite L 2 norm. In that case, (2.8) becomes

f -f F,θ f := df k=1 T k f (k) (t) -f (k) (t) 2 dt θ (k) f 2 , ( 2.9) 
where T k ⊂ R is the domain of the functions f (k) and f (k) .

The second approach is to make a projection of f (k) and f (k) for k = 1, . . . , df onto a subspace of finite, small or moderate dimension, and then use the L 2 norm of the projections in (2.8) instead of the L 2 norm of the original functions. For illustration, let Π f (k) and Π f (k) denote the projections of f (k) and f (k) onto the space generated by a basis

B (k) = B (k) 1 , . . . , B (k)
p k . For k = 1, . . . , df , the expression to obtain Π f (k) and Π f (k) can then be written as

Π f (k) (t) = p k r=1 α (k) r B (k) r (t) and Π f (k) (t) = p k r=1 α(k) r B (k) r (t), (2.10) 
respectively. The projection dimension p k has to be chosen strategically so that the functions are represented well enough and computations for the metamodel remain tractable. The

projection coefficients α (k) = α (k) 1 , . . . , α (k) p k and α(k) = α(k) 1 , . . . , α(k) p k
are typically set up to minimize the error of the projection with respect to the original input function. Diverse methods such as B-splines, Fourier, PCA, kPCA or PLS can be used to generate the basis functions for the projection of each input variable. The only requirement is that the projection has the structure diplayed in (2.10).

Once the projection of each curve is made, the norm

f (k) -f (k) L 2 can be replaced by its projection based approximation Π f (k) -Π f (k) L 2 in (2.9) to obtain Π f -Π f D,θ f := df k=1 T k p k r=1 α (k) r -α(k) r B (k) r (t) 2 dt θ (k) f 2 .
(2.11)

As noted by [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF], an efficient computation of Π f

(k) -Π f (k) L 2 is possible, by reduc- tion to a norm in R p k : Π f (k) -Π f (k) 2 L 2 = T k p k r=1 α (k) r -α(k) r B (k) r (t) 2 dt := T k p k r=1 δ (k) r B (k) r (t) 2 dt = δ (k) J (k) δ (k) = δ (k) 2 J (k) , (2.12) 
where

J (k) is the p k × p k Gram matrix T k B (k) i (t)B (k) j (t)dt 1≤i,j≤p k
. The interesting fact about (2.12) is that J (k) does not depend on the coefficients of the decomposition, but only on the set of basis functions. Thus, it can be stored and reused, saving processing time. Moreover, when the projection basis is an orthonormal family of vectors (e.g., PCA basis), J (k) is simply the identity matrix of dimension p k × p k . The third approach is a variation of the second one, where the distance only considers the coefficients of the decomposition and disregards the information in the basis functions. In addition, this approach works with p k length-scale parameters for the k-th model input instead of only one as in (2.9) and (2.11):

Π f -Π f S, θ f := df k=1 p k r=1 α (k) r -α(k) r 2 θ(k) f,r 2 .
(2.13)

Note that here we denote the vector of length-scale coefficients by θf , with elements ( θ(k) f,r ) 1≤r≤p k ,1≤k≤df , to differentiate with the shorter vector θ f , with elements (θ

(k)
f ) 1≤k≤df used in (2.9) and (2.11). Also note that (2.13) can be interpreted as if each projection coefficient α (k) r was taken as an individual scalar input of the model, since (2.13) matches the structure of the anisotropic L 2 norm for scalars shown in (2.7).

For applications of the three approaches, the reader is referred to [START_REF] Ginsbourger | Distancebased kriging relying on proxy simulations for inverse conditioning[END_REF], [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF] and [START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF], in the corresponding order. For the sake of theory, we expressed (2.9), (2.11) and (2.12) in terms of infinite-dimensional inputs f (k) : T k ⊂ R → R. However, in practice one typically does not have access to the infinite-dimensional function, but to a vectorial representation of it

f (k) t (k) 1 . . . , f (k) t (k) L k , with t (k) 1 , . . . , t (k) L k ⊂ T k ,
as is the case in our costal flooding application. In (2.9), if a vectorial representation of the input is provided, the integral could be computed by numerical approximation or substituted by the Euclidean norm of a vector. A numerical approximation of the integral can be used in (2.11) and (2.12) as well.

To the best of our knowledge, up to now there is no evidence of the superiority of any of the three methods over the others in terms of metamodel predictability. However, the two distances based on the projection of the inputs are motivated by potential gains in speed and tractability. The dimension of our inputs in the coastal flooding application case is large enough (time series of length 37) to take this advantage into consideration. Therefore, in this paper we focus on the two approaches based on the functional decomposition of the inputs, i.e., distances (2.11) and (2.13).

Gaussian process metamodeling with scalar and functional inputs

Our coastal flooding application matches the functional-input setting f → f code (f ), with f = (Td, Sg, Hs, Tp) . However, we want to provide the metamodel with some flexibility so that if we find convenient to remove a functional input from the explanatory variables, we can still keep active a scalar representation of it (e.g., its temporal mean). To do so, we consider the hybrid-input setting where f code models the relationship between a vector of scalar inputs x = x (1) , . . . , x (ds) ∈ R ds , a vector of functional inputs f = f (1) , . . . , f (df ) , with

f (k) : T k ⊂ R → R for k = 1, . . . , df
, and an output variable of interest y ∈ R, with y = f code (x, f ). We model the correlation between scalar points and the correlation between functional points as described in Sections 2.3.2 and 2.3.3, respectively. To integrate both types of inputs in the model, we follow the approach in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF] and adopt an anisotropic, tensor-product kernel of the form

Cov(ξ(x, f ), ξ(x, f )) = σ 2 R(x-x; θ s ) R f -f ; θ z , ( 2.14) 
with θ z denoting either the vector θ f or the vector θf , depending on whether the distance

• D,θ f or • S, θf is used.
To illustrate, if we take our tensor-product kernel from the Matérn 5/2 family (2.6) and we use the distance • D,θ f for the functional inputs, we obtain:

Cov(ξ(x, f ), ξ(x, f )) = σ 2 1+ √ 5 x -x L 2 ,θs + 5 x -x 2 L 2 ,θs 3 exp - √ 5 x -x L 2 ,θs   1+ √ 5 f -f D,θ f + 5 f -f 2 D,θ f 3   exp - √ 5 f -f D,θ f . (2.15)

Exploration strategy

The construction of a surrogate model requires making a series of decisions that may have significant impact on its performance. The projection method and projection dimension, the distance function to measure similarity between functional input points, as well as the set of functional predictors to keep active make all part of those decisions. The ideal combination of those parameters varies from one application to the other. In this section, we present an exploration methodology designed to select a suitable combination of these or some other structural parameters. A scheme of the proposed methodology is presented in Figure 2.3 and its main steps are briefly described below. 

1.

Screening. This step is intended to provide an overview of the effect that each parameter has on the performance of the metamodel. The main objectives here are to:

• Identify patterns, as could be the dominance of certain levels of a given parameter over its other levels. For intance, determine if some projection method clearly outperforms the others.

• Detect trend in numerical parameters. For example, determine if the performance of the metamodel improves by increasing or decreasing the projection dimension.

• Determine if the functional representation of each functional input variable adds information to the metamodel or if a scalar representation of it is enough. To do so, a metamodel using only a scalar representation of each functional input is used as a benchmark.

Since one of the main purposes of the exploration methodology is to reduce the dimension of the inputs considerably, we start by exploring configurations with the lowest possible dimension. For instance, configurations using projections of dimension 1, 2 and 3.

2.

Cleaning. If the screening stage allows to detect a trend to better performance with larger projection dimension, the exploration is extended in that direction. However, depending on the number of structural parameters under study, the extension of the experiment could become too time consuming. Therefore, the cleaning stage consists on discarding dominated levels of the parameters, identified in screening stage.

Descent.

Once the dominated levels of the parameters have been discarded, greater values of projection dimension are evaluated. To do so, a new factorial design of experiments is built, considering only the non-dominated levels of the other parameters. We call this stage descent as its purpose is to explore a new region in the domain of the structural parameters, where the projection error will likely be reduced. Similarly to the response surface methodology [START_REF] Pulido | Análisis y diseño de experimentos[END_REF][START_REF] Montgomery | Design and analysis of experiments[END_REF], this stage is repeated until a stationary point is identified.

Scope of the methodology

This section briefly discusses some of the concerns that users may have on the scope and adaptability of the proposed methodology. This discussion seeks to provide an insight on the possible uses of the methodology for a variety of modeling scenarios.

• Learning and validation sample size: generally speaking, the quality of a regression model has direct correlation with the number of training points. On the other hand, the robustness of the performance statistic used to assess its quality correlates with the number of validation points. Hence, in the frame of this, or any other exploration methodology, fewer training points will reduce the quality of every configuration and fewer validation points will reduce the robustness of the measure used for comparison.

This cleared up, we could say that the proposed methodology is suitable for both, scenarios of relatively large or considerably short data availability (samples of the code). This aspect is thoroughly discussed in Section 2.6. For cases of very limited data the performance of each configuration could be assessed by means of cross-validation/bootstrap methods [START_REF] Friedman | The elements of statistical learning[END_REF]. These adopt resampling techniques to estimate the performance of a regression model using training and validation sets of modest size. Efficient formulas exist, e.g., for Gaussian processes [START_REF] Ripley | Spatial statistics[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF] and polynomial chaos expansions [START_REF] Mai | Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping[END_REF].

• Large number of features or levels: in the proposed method, the number of experimental conditions to test grows exponentially with the number of structural parameters. The growth rate, in turn, increases with the number of levels of each parameter. A convenient fact is that all configurations can be trained and validated using the same set of samples of the expensive code. Nonetheless, we have to acknowledge that the processing time to build all metamodel configurations may turn prohibitive for some applications with several inputs and/or levels. A possible way to circumvent this inconvenience, and a potential topic of future research, is to extend the methodology towards a metaheuristic-based algorithm able to deal with wider solution spaces. In this regard, Ant colony programming [START_REF] Green | Automatic programming with ant colony optimization[END_REF], Artificial bee colony programming [START_REF] Karaboga | Artificial bee colony programming for symbolic regression[END_REF] and Genetic programming [START_REF] Uy | Semanticallybased crossover in genetic programming: application to real-valued symbolic regression[END_REF] could be suitable choices based on their recurrent usage to solve symbolic regression and automatic programming problems whose nature is quite close to that of the problem discussed here.

• Functional inputs in larger dimensions: in both case studies revised here, the functional inputs are time series (functions in dimension one). However, the exploration strategy is generic enough to account for inputs in larger dimensions such as fields or images (functions in dimension two). To do so, tensorized finite dimensional projection spaces could be considered (see e.g., [START_REF] Maatouk | A new rejection sampling method for truncated multivariate gaussian random variables restricted to convex sets[END_REF] or [START_REF] López-Lopera | Finite-dimensional gaussian approximation with linear inequality constraints[END_REF]). If the functional inputs are functions from T ⊂ R d → R, then for tensorized projection spaces, the projection dimension is of the form p (1) × ... × p (d) , where p (1) , . . . , p (d) can be defined as structural parameters and the already defined steps and rules will hold.

• Functional output: the exploration methodology can be used in case of both, scalar and functional outputs. The latter can be handled in at least two ways which are described in the following paragraphs.

The first way is to transform the problem to a scalar-output version of it. For instance, if the original output is a time series, an individual metamodel can be used to predict the output at each time instant or the time index can be taken as an input of the metamodel, making the output scalar (see e.g., [START_REF] Rougier | Efficient emulators for multivariate deterministic functions[END_REF]). In both cases, our methodology will proceed as illustrated in the case studies.

The second way is to project the output onto a space of lower dimension and then fit an individual metamodel to predict each component of the projection (see e.g., [START_REF] Marrel | Global sensitivity analysis for models with spatially dependent outputs[END_REF] or [START_REF] Rougier | Efficient emulators for multivariate deterministic functions[END_REF]).

For each individual metamodel, our methodology will proceed as in the case studies.

It is worth mentioning that for this approach, the optimum projection dimension for the output, in terms of projection error, will be the largest possible one. This value, however, will not necessarily be the optimum in terms of metamodel predictability and will likely be a highly expensive choice in terms of computational time. Thereby, a sound approach would be to optimize the output projection dimension w.r.t the prediction error of the metamodel and consider the processing time of the metamodel as a second objective function or as a constraint (i.e., discard any configuration whose processing time exceeds certain limit).

• Stochastic code: metamodeling with stochastic codes often reduces to multiple subproblems consisting on estimating moments or quantiles of the output distribution given an input value (see e.g., [START_REF] Marrel | Global sensitivity analysis of stochastic computer models with joint metamodels[END_REF] and [START_REF] Picheny | Quantile-based optimization of noisy computer experiments with tunable precision[END_REF], respectively). All these are scalar-output problems that can be addressed similarly to our case studies.

More advanced techniques predict the probability density function (pdf) [START_REF] Moutoussamy | Emulators for stochastic simulation codes[END_REF] or the quantile function [START_REF] Browne | Stochastic simulators based optimization by gaussian process metamodels -application to maintenance investments planning issues[END_REF] of the output given an input value. If the output is scalar, then this case can be perceived and approached as the functional output problems described in the previous item. If the output is functional, for instance a time series, a pdf could be built for each observation at each time step. Then, one could put the time index as an input and the problem will likewise reduce to the case of functional output already discussed.

Analytic case

In this section we illustrate our exploration methodology by means of a toy case. It corresponds to the second analytic case presented in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF], with a slight different domain for the functional inputs. In [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF], a functional-input Gaussian process metamodel is built using Bspline projections of dimension 5 and order 4. Here, we use the exploration strategy presented in previous section to find an attractive metamodel configuration. Let F be the set of continuous functions from [0, 1] to R. Consider a black box computer code receiving the scalar inputs x = x (1) , x (2) ∈ [0, 1] 2 and the continous functional inputs f = (f (1) , f (2) ) ∈ F 2 defined as:

G : [0, 1] 2 × F 2 → R, (x, f ) → x (2) - 5 4π 2 x (1) 2 + 5 π x (1) -6 2 + 10 1 - 1 8π cos x (1) + 10 + 4 3 π 42 1 0 15 f (1) (t) (1 -t) -5 dt + π x (1) + 5 5 + 15 
1 0 15 t f (2) (t)dt .
Note that G is an instrinstic functional code, since the integrals over the domain of the inputs and the interactions between functional and scalar variables make it unfeasible to recover the output by means of independent computations on scalar representations of the input over its domain. This fact gives an insight on the type of metamodel that should be used; at least, we expect functional metamodels to be an interesting alternative here.

Dataset

We started by creating a dataset with 5000 runs of the code that could be used later to generate multiple independent training and validation sets. The coordinates of the 5000 scalar input points where uniformily sampled over their domain. For the functional part, we followed the approach proposed in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF] by making the design over the coefficients of a functional decomposition. To this end, we modeled each functional input as a B-spline of dimension 5 and order 4. Then, we built a Latin Hypercube design [START_REF] Mckay | Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] with 5000 points taking the decomposition coefficients as coordinates. We remark that the order and dimension used for the constitution of the dataset is independent of the order and dimension to be used later for the representation of the inputs in the metamodel. As the focus of this paper is not on the optimal design of experiments, we do not develop further this aspect and match the 5000 scalar coordinates to the 5000 functional coordinates using a random permutation. For a more elaborated approach to perform this pairing, the reader is referred to [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF]. The full dataset and a set of 25 trajectories of the function f (1) 

Screening

Once the dataset was obtained, we set up the screening experiment, which implies the definition of a scalar metamodel to be used as a benchmark for the functional ones. Let f = ( f (1) , f (2) ) be the vector of scalar representations of the functional inputs f (1) and f (2) . Different scalar parameters could be used to represent the inputs, depending on the geometry and/or the physical meaning of the curves. For simplicity, and as the functions in this theoretical example do not have any physical meaning, here we set the average over [0, 1000] of each function as its scalar representation. Then, we define the scalar metamodel as:

M 00 : [0, 1] 2 × [0, 1] 2 →R, (x, f ) →M 00 (x, f ). (2.16)
For the funtional metamodels, let us consider a shifted version of f , computed as f = ff . Then, let Π = (Π 1 , Π 2 ) denote the vector of projections of the elements in f onto a space of dimension p. For every functional metamodel, we keep x and f as inputs and we add at least one element of Π p . This way, the difference in performance between the scalar metamodel and any functional metamodel will be attributed to the addition of the corresponding projections. As an example, metamodels with (a) only Π 1 active, (b) only Π 2 active, and (c) both, Π 1 and Π 2 active, are defined in (2.17), (2.18) and (2.19), respectively.

M f 0 : [0, 1] 2 × [0, 1] 2 × R p →R, (x, f , Π 1 ) →M f 0 (x, f , Π 1 ).
(2.17)

M 0f : [0, 1] 2 × [0, 1] 2 × R p →R, (x, f , Π 2 ) →M 0f (x, f , Π 2 ).
(2.18)

M f f : [0, 1] 2 × [0, 1] 2 × (R p ) 2 →R, (x, f , Π) →M f f (x, f , Π). (2.19) 
In this notation, the subscript indicates which functional decompositions are active. For instance, in M 00 both functional decompositions are inactive, while in M 0f only Π 2 is active. However, the notation is generic in the sense that each of the metamodels, (2.17), (2.18) and (2.19), might represent configurations involving diverse combinations of projection method, projection dimension and distance measure.

A total of 37 experimental conditions were included in the screening experiment, resulting from the scalar metamodel M 00 , plus all combinations of the levels of the structural parameters (see Table 2.1), except for those cases where both Π 1 and Π 2 are inactive. Those correspond to redundant counts of the scalar metamodel. In the rest of the paper, for concision, we write • D,θ f as • D,θ and • S, θf as • S,θ . For the numerical experiments, we concentrate on the B-splines and PCA projection methods, which have consistently appeared as effective ways to model functional data (see e.g., [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF][START_REF] Boor | A practical guide to splines[END_REF][START_REF] Ramsay | Applied functional data analysis: methods and case studies[END_REF] for applications of B-splines and [START_REF] Nanty | Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs[END_REF][START_REF] Nanty | Uncertainty quantification for functional dependent random variables[END_REF] for applications of PCA). Both methods work with a projection of the form (2.10) and thus, they are suitable choices in our framework. For a full derivation of B-splines and PCA equations, the interested reader may refer to [START_REF] Boor | A practical guide to splines[END_REF] and [START_REF] Jolliffe | Principal component analysis[END_REF], respectively. Other projection methods such as PLS [START_REF] Papaioannou | Pls-based adaptation for efficient pce representation in high dimensions[END_REF] or kPCA [START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a datadriven approach[END_REF] are valid choices as well, and we encourage the inclusion of multiple projection methods in the analysis for comparison. Furthermore, we impose the projection dimension of every functional input to be the same, for simplicity of exposition. That is, we let p 1 = ... = p df = p, with the notation of Section 2.3. In all cases, we set the projection coefficients α (k) 1 , . . . , α (k) p k using an ordinary least squares formulation (see Appendix 2.B). We used the Matérn 5/2 kernel (2.6) and estimated the hyperparameters of each metamodel by maximizing the joint likelihood of the data [START_REF] Marrel | An efficient methodology for modeling complex computer codes with gaussian processes[END_REF][START_REF] Stein | Interpolation of spatial data: some theory for kriging[END_REF] in a similar way to the R package DiceKriging [START_REF] Roustant | Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodelling and optimization[END_REF]. The optimization was done by the R-function optim.

Parameter

We assessed the quality of each configuration by means of the predictive squared correlation coefficient Q 2 , which corresponds to the classical coefficient of determination R 2 for a test sample, i.e., for prediction residuals [START_REF] Nilsson | Multiway calibration in 3d qsar[END_REF]. For a test set of n * output values y * ,1 , . . . , y * ,n * , with average denoted by ȳ * , and corresponding predictions ŷ * ,1 , . . . , ŷ * ,n * , the Q 2 is defined as

Q 2 = 1 - σ 2 E σ 2 T , ( 2.20) 
with

σ 2 E = n * i=1 (y * ,i -ŷ * ,i ) 2 n * and σ 2 T = n * i=1 (y * ,i -ȳ * ) 2 n * .
The Q 2 takes values in [-∞, 1] where 1 indicates perfect fitting to the test data. Thus, it not only allows to make comparisons between configurations, but it also provides information on the absolute quality of each configuration.

To account for the sampling noise, we used a total of 30 independent pairs of training and validation sets for each of the 37 metamodel configurations. Thus, the statistic for comparison between configurations, denoted by Q2 , is obtained by computing (2.20) for each of the 30 samples and then taking the average of the results:

Q2 := 1 30 30 s=1 Q 2 s .
(2.21)

The 30 pairs were kept fixed for all configurations in order to make the comparison fair. We remark that the correlation between input and output is implicitly taken into account when optimizing a predictability indicator such as the Q2 , since the methodology will select a projection dimension sufficiently large to retain the amount of temporal/spatial information of the inputs necessary to accurately reproduce the output.

We let the exploration run until fulfilling one of the following convergence-oriented stopping conditions: The first rule seeks to prevent the extension of the experiment unless evidence of potential improvement of the Q2 was found during screening. On the other hand, the second rule is oriented to stop if a prospect local optimum is detected or the strategy reached certain degree of convergence. Note that the slope of the linear least squares fitting is updated each time the projection dimension is increased, and the fitting only takes into account the last two projection dimensions. This seeks to obtain clear information on how the Q2 is behaving locally. If other projection dimensions were considered in the fitting, one might end up mistakenly thinking that the Q2 is still improving, when it is not. Also note that we do not stop the search the first time we notice a flat step, but after z consecutive counts. This is to prevent premature stops due to saddle points. Similar stopping rules are often used in general for optimization, e.g., for gradient based methods [START_REF] Shen | An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach[END_REF] and heuristics [START_REF] Taillard | Some efficient heuristic methods for the flow shop sequencing problem[END_REF].

(i) Stop if
Figure 2.5 illustrates the performance in terms of Q2 of the 37 metamodel configurations, using 800 training points and 1500 validation points. Those results were obtained using m * = 10 -4 and z = 3 for the stopping conditions, which based on a set of preliminary tests seem to provide a good balance between degree of exploration and convergence rate. For convenience in the analysis, the plot classifies metamodel configurations into three groups based on their performance: (i) the scalar metamodel M 00 , (ii) all metamodels with active functional representation of both functional inputs M f f , (iii) all metamodels with at least one functional representation inactive (except for the scalar metamodel).

For a detailed list of the experimental conditions and corresponding results of the screening stage, the reader is referred to Appendix 2.C, Table 2.7. As a first noticeable result, the scalar metamodel was the worst performing configuration, closely followed by a metamodel with p = 1 (configuration 8). For p = 2 and 3, configurations with both functional representations active (i.e., configurations 16+3i, i = 0 . . . , 7) performed better than the others, while for p = 1 only those configurations with PCA representation of both functional inputs (configurations 7 and 13) had outstanding performance. On the other hand, it is visible that the Q2 tends to grow as the number of basis functions increases. In fact, the best performing metamodel of the screening stage (configuration 37) was found for p = 3, the largest value tested so far. Since the slope of the linear trend was larger than the critical value m = 10 -4 , we proceed to cleaning and descent.

Cleaning and descent

Appart from a positive trend of the Q2 for increments in p, the screening stage revealed that configurations with the functional representation of both inputs being active dominate any other configuration. Therefore, only this type of metamodel is retained and we start expanding the experiment by increasing p by steps of a unity. At each step, we inspect again for patterns or changes in trend, and cleaning is performed if possible. The Q2 of the new configurations is plotted in Figure 2.6. A detailed list of the experimental conditions and corresponding results of this stage is provided in Appendix 2.C, Table 2.8. From p = 3 to p = 4, and also from p = 4 to p = 5, we registered a flat step. At p = 5, we removed the configurations using the scalar distance • S,θ , as those were clearly dominated by configurations using the decomposition-based distance • D,θ . Then, p = 5 to p = 6 we registered a third flat step, which fulfilled our secont stopping condition. Thus, at p = 6 we stopped. The metamodel with an active B-splines representation of size p = 5 for both functional inputs, using the decomposition-based distance • D,θ (condition 44) is the most attractive configuration found. As we do not know the shape of the Q2 surface, we cannot guarantee that such a configuration provides the global optimum. However, we know that its Q2 is 18.8 times as large as the Q2 of the worst configuration assessed (condition 1). Considering that, and based on the patterns found during the exploration, condition 44 is likely one of the best metamodel configurations in terms of Q2 for this case study.

The fitting of the ordered true output for the best performing sample of the best configuration is illustrated in Figure 2.7. For this sample, the proportion of output values lying within the confidence intervals at 99%, 95% and 90% was 89%, 77% and 68%, respectively. Left-top subplot illustrates the whole set of 1500 output values in increasing order; this subplot is then subdivided to generate the remaining 5 subplots by splitting the abscissa into 5 sections and zooming the resulting figures.

On the other hand, the calibration plot for the best and worst samples of the best configuration are presented in Figures 2.8a and 2.8b, respectively. Based on these results, we may conclude that this metamodel provides good predictions with no evident fitting problems (e.g., skewness, heavy tails). 

Coastal flooding case study

In this section, we address the application case introduced in Section 2.2. Similarly to the analytic case, we implement our exploration methodology to tune the structural parameters of the metamodel. Note that the computer code under study is actually a concatenation of two blocks: (i) the spectral wave model SWAN; and (ii) the EurOtop overtopping and overflow discharge formulas (see the system description in Section 2.2.1). A possible way to handle problems involving multiple nested blocks is to use multiple metamodels, one for each block of the system. In a recent work this method was compared to the classical approach based on a single metamodel, using Gaussian processes in both cases [START_REF] Marque-Pucheu | Gaussian process regression of two nested computer codes[END_REF][START_REF] Marque-Pucheu | Efficient sequential experimental design for surrogate modeling of nested codes[END_REF]. A set of numerical experiments showed a superior prediction capacity when using multiple nested metamodels instead of a single one, however no theoretical guarantees were provided. In the present paper we preferred to keep the simpler yet powerful single metamodel approach and focus on the modeling of functional inputs and optimization of structural parameters. We outlook the comparison of the two approaches for our application case as an interesting topic of future research.

Screening

Following the exploration methodology described in Section 2.4, we start by the screening stage oriented to identify patterns, detect trend and determine if the functional representation of the inputs adds value to the metamodel. We denote by f = (Td, Sg, Hs, Tp) the vector of functional inputs in a time series format (see Section 2.2) and correspondingly, we denote by f = ( Td, Sg, Ḧs, Tp) the vector of shifted scalar representations of the elements in f . From the physical perspective, the Td peak (its value at time [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF] is the point in the series with the most influence on the output. Thus, we use that quantity as its scalar representation. For Sg, Hs and Tp we use the average of the series over 37 time points, given their smooth and almost constant behavior in the historical dataset (see Figure 2.2). Using a similar notation to that used for the analytic case, we define the scalar benchmark metamodel as:

M 000 : R 4 →R, f →M 000 ( f ). (2.22)
As before, the funtional metamodels require the definition of a shifted version of f computed as f = ff . However, the coastal flooding application has four functional inputs, in contrast to the analytic case which had only two. As mentioned earlier, in the proposed exploration method the number of experimental conditions grows exponentially with the number of functional inputs, and so does the processing time. In Section 2.4.1 we proposed an extension to deal with a larger number of structural parameters and levels. Such an extension would certainly be of service here. However, its development requires a considerable amount of additional work which is out of the scope of this paper. Thus, in this section we adopt the simpler approach of performing a classic principal component analysis to determine if any shifted functional input could be discarded from exploration (see Figure 2.9). Note that the plot is built for the shifted inputs as those are the ones that will potentially be used as functional inputs of the metamodel (see the setup for the analytic case in Section 2.4.2). Based on the plots, Hs is the input requiring fewer components to be well described, while Sg and Tp require a considerable number of components. Hence, we discard Hs as a functional input of the metamodel, but keep its scalar representation Ḧs active as it does not affect the number of experimental conditions to run, but may help to improve predictions. Although Td is also well described by just a few components, the tide is known to be a primary forcing factor of coastal flooding. Both, statistical and physical reasoning are relevant for this filtering process. Thus, we decided to keep Td in the experiment. Now we let Π = (Π 1 , Π 2 , Π 3 ) denote the vector of projections of dimension p for Td, Sg and Tp. For every functional metamodel, we keep all the elements in f active and we add at least one element of Π as a functional input. Functional metamodels are defined similarly to the analytic case. For instance, metamodels with (a) only Π 1 active, (b) Π 2 and Π 3 active, and (c) all three projections active, are defined in (2.23), (2.24) and (2.25), respectively.

M f 00 : [0, 1] 4 × R p →R, ( f , Π 1 ) →M f 00 ( f , Π 1 ).
(2.23)

M 0f f : [0, 1] 4 × R p × R p →R, ( f , Π 2 , Π 3 ) →M 0f f ( f , Π 2 , Π 3 ). (2.24) M f f f : [0, 1] 4 × (R p ) 3 →R, ( f , Π) →M f f f ( f , Π). (2.25)
The interpretation of this notation is analogous to that for the analytic case. The subscript of M indicates which functional decompositions are active. The notation remains generic in the sense that (2.23), (2.24) and (2.25), might all represent configurations involving diverse combinations of projection method, projection dimension and distance measure.

A total of 85 experimental conditions were included in the screening experiment. Those correspond to the scalar metamodel plus all combinations of the levels of the parameters listed in Table 2 In the analytical example, we used an ordinary least squares formulation to set the projection coefficients, given that all points in the input series were considered equally important. For the RISCOPE application, the midpoint of the series is of particular relevance, as it corresponds to the moment of high tide. Therefore, in this case we used a weighted least squares formulation instead (see Appendix 2.B). A constrained or weighted constrained formulation could also be suitable choices here. Those are used for further analysis in Section 2.5.2.

For the weighted least squares formulation we denote the vector of weights by w = (w 1 , . . . , w T ), with T = 37 and w t given by:

w t =              1 : if t = t * λ : if 0 < |t -t * | ≤ δ λ exp - (|t -t * | -δ) 2 2σ 2 : if |t -t * | > δ,
(2.26)

with σ 2 = -(ω 2 )/(2 ln(γ)) controlling the decay rate of the function. Models like (2.26) are often used to represent the relevance of results for queries on search engines [START_REF] Dixit | Elasticsearch Essentials[END_REF]. It retains some interesting properties from the Gaussian pdf, such as the non-negativity and the existence of at least one maximum located at the origin t * . A particular shape can be given to the curve by setting the value of its parameters as follows. First, δ should be choosen from [0, t * ]. Then, ω should be set in [0, t * -δ]. Finally, λ and γ should be set, each in [0, 1]. This setting along with the first case of (2.26) ensure that the greatest possible score in w is 1. The weighting curve produced by such a model is illustrated in Figure 2.10 with the parameterization used for the coastal flooding case. Figure 2.11 shows the Q2 of the 85 metamodel configurations, using 800 training points and 1500 validation points. A total of 30 independent pairs of training and validation sets were used and the Q2 for each was computed. We used the same stopping conditions and parameters (m * , z) as for the analytic case. That is m * = 10 -4 and z = 3. For exposition, Figure 2.11 classifies metamodel configurations into three groups based on their performance:

(i) the scalar metamodel M 000 , (ii) all metamodels using a decomposition-based distance • D,θ , (iii) all metamodels using a scalar distance • S,θ . The scalar metamodel and the functional ones using the decomposition-based distance • D,θ performed similarly and outperformed almost every configuration using the scalar distance • S,θ , except for a few ones with p = 1. Regarding the Q2 trend, here it seems that lower p values work better. Since the slope of the linear fitting of the best configurations was smaller than the critical value m = 10 -4 during screening, we fulfill stopping condition number two. Thus, we stop the search and keep the current best configuration. Strictly speaking, such a configuration corresponds to experimental condition number 18; a metamodel with an active B-spline representation of size p = 1 for Td and Sg, using the decomposition-based distance • D,θ . However, in practice any of the dominant configurations included in Figure 2.11b could be a good choice, since the Q2 of all that group of configurations was quite similar and processing times were all reasonable (see Appendix 2.D, Table 2.9).

It is inquiring to see that the Q2 values reported in Figure 2.11 are quite moderate, even for the best configurations. Operationally, the problem is that almost in each of the 30 samples of each configuration, there is at least one of the 1500 validation points, whose prediction is significantly bad. To illustrate, in Figure 2.12 we report the squared error of the 1500 validation points for each of the 30 samples of metamodel configuration 18 -the best configuration of the coastal flooding case. In almost every sample a few points behave as outliers, increasing the sum of squared errors and thus, decreasing the Q2 . We think that the problem comes from a strong imbalance in the dataset between mild events (leading to minor or no flooding) and strong events (leading to major flooding). In fact, after simulating each of the 20557 available hindcast events (see Section 2.2), we found 90% of the output values below 4 m 3 although the largest output value found was 3455 m 3 . This proportion of mild events has total physical sense as most part of the time Gâvres is not flooded. In that sense, strong events (like Johanna storm, which hit Gâvres in 2008) are rather statistically uncommon. However, this natural bias impacts the efficiency of metamodel training, as the majority of learning data will match mild events (see Figure 2.13). A possible way to deal with this issue is to use sequential design techniques [START_REF] Hendrickx | Grid enabled sequential design and adaptive metamodeling[END_REF][START_REF] Hendrickx | Sequential design and rational metamodelling[END_REF] to dynamically add events to the learning set, seeking to diminish the bias in the data. Further analysis on this issue is out of the scope of this paper. One may say that one or two bad predictions over 1500 is not exactly a bad performance. Here the issue is that the Q2 is overly affected by only these few very large errors. Therefore, in this case, a more robust and appropriate way to assess the absolute quality of each metamodel is to compute the Q2 , which we define as the Q2 in (2.21), but using σ2

E = median ({(y * ,i -ŷ * ,i ) 2 } i=1,...,n * ) instead of σ 2 E and σ2 T = median ({(y * ,i -ȳ * ) 2 } i=1,...,n * ) instead of σ 2
T . Here median ({u 1 , . . . , u a }) is the empirical median of u 1 , . . . , u a ∈ R. Configurations 18 and 71, the best and worst metamodels of the screening, reported Q2 values of 0.7247 and 0.6371, respectively. In contrast, if we compute their Q2 , we obtain 0.9999857 and 0.9997, in the same order. Hence, the metamodel predictions are accurate for the large majority of the elements in the testbase. The fitting of the ordered true output for the best performing sample of the best configuration is illustrated in Figure 2.14. For this sample, the proportion of output values lying within confidence intervals at 99%, 95% and 90% was 92%, 91% and 89%, respectively. In this case, the plot shows more variability in the confidence intervals than for the analytic case. However, this is just a visual matter as the scale of each subplot is custom to the range of the output values at each segment. Based on the results, we may conclude that the selected metamodel provides good predictions for the majority of data and could be improved by means of strategic sampling/sequential design techniques.

Interestingly, whilst the inputs of the code are time series of dimension 37, it was possible to achieve quite good metamodel predictability just by using a scalar representation of them. This result may be explained by the fact that, as commented in Section 2.2.1, the simplified code considered here can be seen as the sum of independent scalar-to-scalar problems. Thus, if we represent the functional inputs by a scalar related to a key time instant in the evolution of the output, we may expect to have reasonable predictions. We would not expect this kind of result if the code was intrinsically functional as in the analytic case studied in Section 2.4.2. There, the best configuration found was a metamodel using a projection of dimension 5.

Dimension selection based on projection error

Earlier in the paper, we have commented the common practice in the literature to set up the projection dimension p, which is using the accuracy of the projection itself as criterion. The problem with this approach, as mentioned earlier, is that the projection dimension offering a good fit of the input does not necessarily lead to a better performance of the metamodel. In this section, we take advantage of the RISCOPE case study to illustrate such an inconsistency. To do so, we first set p based on the projection error, and then we assess the performance of the corresponding metamodels based on their Q2 . Finally, we compare results with those of the metamodels assessed in the frame of our exploration methodology.

Selecting the dimension for each input based on projection error

Here we follow an approach which consists in the definition of an error tolerance for each input, and the posterior search of the lowest dimension for which the tolerance is reached. Based on knowledge of the coastal flooding phenomenon, we set a maximum error of 1 cm, 1.5 cm, and 1 s, for the projections of Td, Sg and Tp, respectively. This tolerance should be achieved within the critical time window t = {13, . . . , 25}, which corresponds to the moment of maximum tide ± 1 hour. Hence, the procedure will point out to find the lowest projection dimension, for which every curve of the hindcast dataset satisfies the stated tolerance. We also use this experiment to compare the four least squares formulations presented in Appendix 2.B to set the coefficients of the projection, those being: the ordinary, weighted, constrained and weighted-constrained formulation. The last three, could be interesting choices here as the points of the series lying in the critical time window have greater importance than the others; in particular at point t 19 . Results are condensed in Figure 2.15. As suggested in Section 2.4, by focusing on the error of the projection one may end up with an unnecessarily large projection dimension. For instance, the projection error for Td using any of the formulations was already quite low at p = 6, however, the constrained and weighted-constrained formulations required at least p = 13 to reach the tolerance. What makes it even worst is that usually, there are only a couple of curves in the dataset that require such a high projection dimension. For instance, in Figure 2.16 we show how for the B-splines projection method and the constrained formulation, almost all the curves of Td had already reached the tolerance at p = 6. However, seven additional dimensions where required to be compliant for all the curves. Although the demanding constraint of perfect fitting at t 19 has part on such behavior, the problem is also present in the ordinary and weighted formulations, which do not implement the constraint. See for instance the curve of the weighted formulation in Figure 2.15e. At p = 5 the error was considerably low, however, it required p = 10 to meet the tolerance. 

Efficiency of configurations based on projection error

The weighted formulation was the best performing one in the experiment above. It required the lowest dimension in all cases and its maximum error remained almost always below that of all the other formulations. Therefore, in this section we assess the performance of the metamodel using the projection dimension suggested by that formulation. Similarly to the previous experiments, here we evaluate all the possible combinations of the following structural parameters: state of each projection (inactive or active), projection method (Bsplines or PCA) and distance ( • S,θ or • D,θ ). In this case the projection dimension p is not taken as a factor of the experiment, as its values are taken from results of the selection based on projection error. Those values are listed in Table 2.3 for each combination of input and projection method. In addition, in this experiment we do not consider the case where all functional decompositions are inactive, as it corresponds to the scalar metamodel, which we already evaluated as part of the selection based on metamodel predictability in Section 2.5.1.

Td Sg Tp B-splines 4 15 10 PCA 4 10 6

Table 2.3 -Selected dimension based on projection error.

A total of 28 experimental conditions were evaluated this time. A detailed list of them and their corresponding results is provided in Appendix 2.D, Table 2.10. The Q2 of each of these experimental conditions is reported in Figure 2.17, along with that of the best configuration found with the approach based on metamodel predictability. To recall, the latter corresponds to configuration 18, which has an active B-spline representation of size p = 1 only for Td, using the decomposition-based distance • D,θ . Once again, results with the decomposition-based distance • D,θ were better than those with the scalar one. The former has consistently been showing better performance throughout the paper. Its advantage over the scalar distance is presumably the fact that it keeps the number of length-scale parameters controlled, which in turn maintains the learning problem handy and so its resolution time. Conversely, the scalar distance implies in some cases many more hyperparameters. To illustrate, the average training time of the fourteen configurations reported in Figure 2.17 for the scalar distance was 384.7 s, which corresponds to 10 times the average training time of configuration 18. In contrast, the same quantity for the fourteen configurations using the decomposition-based distance was 56.7 s, or 1.5 times the average training time of configuration 18.

None of the new metamodels outperformed the best configuration found by means of our exploration methodology. Metamodels selected with the approach based on the projection error are in general more comptationally demanding. Our exploration strategy eludes this problem by only increasing the projection dimension if there is evidence of potential improvement in accuracy.

Robustness to changes in the amount of training/validation data

We close the experimental segment of the article with an analysis on the behavior of our exploration methodology when different amounts of training and validation data are used. In Sections 2.4.2 and 2.5.1, the exploration strategy was used to calibrate the structural parameters of a metamodel for the analytic case study and the coastal flooding application, respectively. In both cases, we used training sets of size 800 and validation sets of size 1500. Those numbers were selected during a preliminary verification of functionality of our codes, taking into consideration the numerical stability of the metamodel (e.g., when computing inverse correlation matrices), its predictability and the stability of performance statistics for it. However, the number of training and validation points are undoubtedly influential factors in regression and also in model selection. If different numbers of training and validation sets are chosen, the performance statistics of any metamodel previously assessed will most likely change, so will the optimal choice of a metamodel configuration. Then, a critical question is if the exploration methodology under use is robust to such changes. In other words, if it is able to efficiently identify good metamodel configurations when we change the amount of information available to train and validate. In this section we conduct an experiment to test this attribute of our exploration methodology.

Experiment setting

The experiment is based on the two case studies previously addressed in the paper. For each of them, we search the optimal metamodel configuration, given different amounts of training and validation data. To do so, we use an exhaustive search (ES) approach, where we evaluate all possible combinations of the structural parameters. Then, we use the data generated by ES ( Q2 of each configuration) and emulate the exploration process using our search methodology, which we will refer to in this section as SS, standing for strategic search. Finally, we assess the performance of SS by comparisson against ES.

To keep the experiment tractable, for each case study we consider a solution space including all levels of the structural parameters already evaluated, except for the projection dimension. For this latter, we only explore a range of levels large enough to cover all metamodel configurations assessed in Sections 2.4.2 and 2.5. Thus, for the new experiment we make the ES method explore all configurations with projections of dimension up to 8 for the analytic case and up to 4 for the coastal flooding case. Conversely, we make the SS method run until fulfilling one of the convergence-oriented stopping conditions used in Sections 2.4.2 and 2.5 (with m * = 10 -4 and z = 3), or until reaching a corner of the solution space.

Performance statistics

In this paper we evaluate our exploration strategy in terms of solution quality and runtime. To do so, we define the following two indicators:

1. Optimality gap. Relative difference between the Q2 of the optimal solution found by the ES method and that of the solution found by our SS method:

∆ Q2 := Q2 ES -Q2 SS Q2 ES × 100%, (2.27) 
with Q2

ES and Q2 SS denoting the Q2 of the best solution for the ES and the SS method, respectively, computed with (2.21).

2. Time saving. Relative difference between the runtime of the ES method and that of our SS method:

∆Time := T ES -T SS T ES × 100%, (2.28) 
where T ES denotes the sum of training and validation times of all the configurations evaluated by the ES method, and similarly for T SS .

The Q2 values, training times and validation times recovered by ES are recycled by SS in order to have a fair comparisson among exploration methods. To preserve the legitimacy of the results, the optimal configuration is kept unknown until SS has been run and formal stopping conditions are used. Similarly as before, 30 pairs of training and validation points are used to account for noise.

Analysis

Statistics for the analytic and the coastal flooding case are presented in Tables 2.4 and 2.5, respectively. The results suggest the following findings: (1) the number of training points has greater impact on the optimal combination of structural parameters than the number of validation points. Configurations tend to vary more between rows than between columns; (2) greater number of training points leads to selection of configurations with larger projection dimension when the problem is intrinsically functional, as in the analytic case;

(3) the decomposition-based distance • D,θ could be in general a better choice than the scalar distance • S,θ . The former was the optimal choice in almost all cases except for two instances for the coastal flooding application.

Regarding the performance of the exploration methodology proposed in this paper, results show that: (1) the methodology is robust to changes in both, the amount of training and validation data. Its configuration choice was optimal in the vast majority of cases. In the remaining ones, the optimality gap ∆ Q2 was always negligible (worst case in the order of 1e-2%); (2) our exploration strategy provides an efficient way to solve the problem of structural parameter calibration. It caused time savings of at least 64.4% for the analytic case and 28.7% for the coastal flooding case. We remark that the times reported in Tables 2.4 and 2.5 are the sums of training and validation times of the 30 samples of every configuration evaluated by each exploration method (ES and SS). At each combination of number of training and validation points, ES evaluated 97 configurations in the analytic case and 113 in the coastal flooding case. For the instance with 1000 training points and 2000 validation points, SS evaluated 47 configurations in the analytic case and 85 in the coastal flooding case. This gives average metamodel construction times (training and validation) for the analytic case of 2.19 min for ES and 1.42 min for SS. For the coastal flooding case, the average construction times are 2.08 min for ES and 1.71 min for SS.
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Val 500 1000 1500 2000 

B -3 B -3 B -3 B -3 B -3 B -3 B -3 B -3 M f f M f f M f f M f f M f f M f f M f f M f f • D,θ • D,θ • D,θ • D,θ • D,θ • D,θ • D,θ • D,
M f f M f f M f f M f f M f f M f f M f f M f f • D,θ • D,θ • D,θ • D,θ • D,θ • D,θ • D,θ • D,θ ∆ Q2 : 0.0% ∆ Q2 :
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T ES : 4.3 d T SS : 1.3 d T ES : 4.3 d T SS : 1.3 d T ES : 4.4 d T SS : 1.4 d T ES : 4.4 d T SS : 1.4 d 1000 
Table 2.4 -Analytic case: robustness to changes in the amount of training and validation data. Each intersection contains the configuration selected by (i) the ES method (darker colored cell ) and (ii) the SS method (lighter colored cell ), as well as the performance statistics computed with (2.27) and (2.28). The convention used to denote a configuration is to divide its components in three lines. First line contains the projection method (P: PCA, B:B-splines) and dimension (1, . . . , 8) separated by a script. Second line indicates the active functional inputs (M 00 , M 0f , M f 0 , M f f ). Finally, the third line indicates the type of distance ( • S,θ , • D,θ ). For example, the configuration selected by ES for 400 training and 500 validation points is a metamodel with a B-splines projection of dimension 3 for both functional inputs, using the distance • D,θ . T ES and T SS are provided in minutes (m), hours (h) and days (d). T SS : 6.9 h T SS :
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Conclusions

In this article we propose a methodology to simultaneously tune multiple characteristics of a functional-input metamodel. Its construction is motivated by a coastal flooding application where a surrogate of a functional-input hydrodynamic code is to be built for early warning. The nature of the inputs gives rise to a number of questions about the proper way to represent them in the metamodel: which inputs should be kept as predictors, what is a good method to reduce their dimension, which dimension is ideal, and given our choice to work with Gaussian process metamodels which are kernel based methods, also the question of which is a convenient distance to measure similarities between functional input points. The proposed methodology is intended to find dominant combinations of these types of features of the metamodel, which we call structural parameters. One of its main features is the possibility to calibrate the projection of the inputs (method and dimension) based on metamodel predictability, rather than projection error which is the common approach.

The proposed methodology works in a staged fashion. First it explores some low levels of projection dimension with all possible combinations of the remaining structural parameters. From there, the exploration evolves by detecting trends and patterns indicating the direction of improvement on the performance of the metamodel. Dominated levels of the structural parameters are discarded along the way to speed up the exploration. The exploration ends when a potential local optimum is detected or the performance statistic reaches certain degree of convergence.

While relatively simple, the proposed methodology proved its effectiveness through a theoretical case study and our coastal flooding application. In both cases it allowed to find metamodel configurations of outstanding performance able to accurately predict the output of the numerical model. The ideal projection method and projection dimension proved to vary from one application to the other, and even for different instances of the same application. For instance, for intrinsic functional problems where the output of the code cannot be reconstructed by iterative scalar-input runs, greater number of training points seem to lead to the selection of larger projection dimensions. Regarding the distance to measure similarity among functional input points, the decomposition-based distance • D,θ consistently reported better results than the scalar distance • S,θ throughout the experiments. Apparently, decomposition-based distance is a useful alternative to integrate functional inputs in a kernel-based model while keeping the complexity of the learning process manageable.

Interestingly, our application case made evident that even when the inputs of the code are functional, it could be possible to obtain good predictions just by using a scalar representation of them. Whether this is the case will depend on the way the numerical model exploits the inputs to produce the outputs. Therefore, our main premise throughout the article has been that dimensionality reduction of the inputs should be mainly guided by metamodel performance. Our comparison with an approach based on a tolerance of projection error illustrated how this type of approach may lead to an unnecessarily large projection dimension. Depending on other metamodeling choices, such as the type of distance used to measure similarities between functional input points, large projection dimensions may imply a significant increase in processing time, not justified by any improvement in prediction accuracy.

The proposed methodology showed its efficiency through an experiment where it was compared to an exhaustive search approach. Our method was able to find an attractive solution while saving up to 76.7% and 38.7% of the time spent by the exhaustive search in the analytic case and coastal flooding case, respectively. The solution found by our methodology was optimal in most cases. A critical factor on its efficiency is that it applies the principles of exploration and exploitation present in many classical meta-heuristics such as Genetic Algorithms [START_REF] Davis | Handbook of genetic algorithms[END_REF] and Ant Colony Optimization [START_REF] Dorigo | Ant colony optimization[END_REF]. The first principle points out to start the exploration with a screening of a wide variety of metamodel configurations. Then, the second principle leads to concentrate around the best solutions so far and seek for local improvements. Given the positive results obtained in this study, an interesting research avenue would be the extension of the proposed methodology towards an heuristic-based optimization algorithm. Other studies in the field of computer experiments have pointed out this possibility as well [START_REF] Mai | Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping[END_REF].

Another potential direction of research is to develop one of the functional-input regression methods cited in the introduction. The extension of scalar-on-function techniques to nonlinear settings could be achieved, for instance, by defining penalized likelihood and cross validation formulations [START_REF] Reiss | Methods for scalar-onfunction regression[END_REF]. This would pave the road to the selection of the relevant components of the inputs during the optimization of the hyperparameters for powerful non-linear metamodels such as Gaussian processes.

As the two case studies presented here consider a discretized representation of the functional inputs, it seems interesting to assess alternative distances adapted to time series [START_REF] Mori | Distance measures for time series in r: The tsdist package[END_REF] or try to adapt the work of [START_REF] Bigot | Geodesic pca in the wasserstein space by convex pca[END_REF] where a Geodesic PCA for density functions is introduced.

Appendix 2.B Setting the projection coefficients

Here we discuss the calibration of the projection coefficients. For the sake of presentation, let us consider a single functional input variable provided in a time series format over the set t = {t 1 , . . . , t L }, with L ∈ N. Let F be a matrix of dimension L × n containing n ∈ N observations of that input variable. By adapting the expression for projections provided in (2.10) to discretized functions, and generalizing for the simultaneous projection of multiple curves, we obtain

F ≈ Π(F ) = Bα,
where B is a L × p matrix containing p basis functions discretized into the L points in t and α is a p × n matrix containing the p projection coefficients required to represent the n input curves. Assuming that the matrix B is produced by means of a standard method such as PLS, B-splines or PCA, the problem reduces to setting the values of the matrix α. This task is often completed using standard least squares optimization formulations. Closed form expressions for four variations of the problem are provided below. In the formulations we use A i,• to denote the i-th row of a matrix A and similarly A •,j to denote its j-th column. In addition, the orientation of the elements holds so that A i,• is a row vector whilst A •,j is a column vector

• Weighted Least Squares (WLS)
Sometimes, certain points in the domain of the inputs are more important than others or the information about the input is more reliable there. This can be taken into account in the selection of the projection coefficients by introducing a diagonal weight matrix W of dimension L × L indicating the importance of each point in t. Then, the projection coefficients can be found by minimizing the weighted sum of squared residuals. For j = 1, . . . , n, the optimization problem can be written:

min α •,j ∈R p (F •,j -Bα •,j ) W (F •,j -Bα •,j ).
(2.29)

The integrated solution by derivatives for the n problems yields:

α = (B W B) -1 B W F . (2.30) • Ordinary Least Squares (OLS)
If all points in t are equaly important and the information at all points is equally reliable, the matrix W can be replaced by the identity matrix of dimension L × L in (2.29) and (2.30) or simply removed from the equations.

• Weighted-Constrained Least Squares (WCLS)

If in addition to a set of important points in the domain of the inputs, there is some point t i * ∈ t of outstanding relevance, a weighted-constrained formulation could be used. It allows to enforce the projection to interpolate exactly the true function at t i * , while keeping relatively good precision on the remaining critical points. In this case, the coefficients of the projection can be found by solving (2.29), subject to the constraint

B i * ,• α •,j -F i * ,j = 0.
(2.31)

To solve this problem we use the well known method of Lagrange multipliers [START_REF] Bertsekas | Nonlinear programming[END_REF] which allows to include equality constraints as part of the objective function in order to solve the problem by derivatives. For j = 1, . . . , n, the Lagrange function to minimize can be writen as

L(α •,j , λ j ) = (F •,j -Bα •,j ) W (F •,j -Bα •,j ) +λ j (B i * ,• α •,j -F i * ,j ), (2.32) 
with λ j ∈ R denoting the Lagrange multiplier for the optimization problem j. If we collect the values of the n Lagrange multipliers into a row vector λ, the integrated solution by derivatives for the n optimization problems yields

α = (B W B) -1 B W F - 1 2 B i * ,• λ , (2.33) with λ = 2 [B i * ,• (B W B) -1 B W F -F i * ,• ] B i * ,• (B W B) -1 B i * ,• . ( 2.34) 
• Constrained Least Squares (CLS)

The WCLS formulation can be easily modified for cases where only the point t i * is of particular relevance. It suffices to replace the matrix W in (2.33) and (2.34) by the identity matrix of dimension L × L.

We remark that the closed form solutions provided in (2.30), (2.33) and (2.34) work as vectorized expressions for multiple simultaneous projections (i.e., they do not require loops in code if matrix oriented coding environments like R or Matlab are used). 

Appendix 2.C Conditions and results for analytic case

Appendix 2.D Conditions and results for coastal flooding case
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Chapter 3 Ant Colony based model selection for functional-input Gaussian process regression The chapter in brief

Chapter 2 presented our first prototype of methodology for the calibration of structural parameters of the metamodel. We used that methodology to tune the metamodel for a simplified version of our hydrodynamic code, which received only part of the variables used by our target code. Athough the proposed methodology proved to be effective for such application, we concluded the need for more sophisticated exploration techniques in order to scale to bigger problems involving (i) a larger number of inputs, (ii) more structural parameters and (iii) more levels per structural parameter. In Chapter 3 we address this need by introducing an Ant Colony based smart exploration algorithm. Ant colony optimization (ACO) encompasses a large variety of optimization metaheuristics derived from the seminal work of Dorigo et al. in the early 90s [START_REF] Dorigo | Positive feedback as a search strategy[END_REF][START_REF] Dorigo | Optimization, learning and natural algorithms[END_REF]. Since then, ACO based heuristics have been proved to give remarkable results in a wide range of optimization problems, including DNA sequencing [START_REF] Blum | An ant colony optimization algorithm for dna sequencing by hybridization[END_REF], scheduling [START_REF] Li | Cloud task scheduling based on load balancing ant colony optimization[END_REF], protein-ligand docking [START_REF] Korb | An ant colony optimization approach to flexible protein-ligand docking[END_REF], assembly line balancing [START_REF] Simaria | 2-antbal: An ant colony optimisation algorithm for balancing two-sided assembly lines[END_REF] and packet-switched routing [START_REF] Zhao | An improved ant colony optimization for communication network routing problem[END_REF]. ACO has been recognized as one of the most successful research lines in the area of swarm intelligence [START_REF] Bonabeau | Swarm intelligence: from natural to artificial systems[END_REF][START_REF] Bonabeau | Inspiration for optimization from social insect behaviour[END_REF], and always seats beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search among the top metaheuristic techniques [START_REF] Blum | Ant colony optimization: Introduction and recent trends[END_REF]. This chapter is an exact copy of our technical report [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF], which recalls the foundations of Ant Colony Optimization and elaborates on top of them to make the algorithm suitable for our structural optimization problem. To the best of our knowledge, this is the first algorithm addressing the structural optimization problem for Gaussian process models.

We use the proposed algorithm to calibrate the metamodel for three analytic black-box functions. The models obtained were in all cases of outstanding prediction quality. In Chapter 5 we use the algorithm to calibrate the metamodel for the full hydrodynamic code of the RISCOPE application. 

Introduction

Gaussian process models (a.k.a. Kriging models) are one of the preferred choices for metamodeling nowadays [START_REF] Marrel | An efficient methodology for modeling complex computer codes with gaussian processes[END_REF], competing with a few others like polynomials, splines, generalized linear models and neural networks [START_REF] Beezer | The elements of statistical learning: Data mining, inference and prediction[END_REF][START_REF] Fang | Design and modeling for computer experiments[END_REF]. While sometimes similar in prediction accuracy to the other cited methods, Gaussian processes present among other advantages: (i) the capability to reproduce complex (and a priori unknown) nonlinear input-output relationships, (ii) the ability to interpolate the observations, and (iii) the interpretability of predictions which include an estimation of the uncertainty at each prediction point. Gaussian process metamodels were originally developed for scalar inputs, but are now also available for functional inputs. The extension to functional inputs gives rise to a number of questions about the proper way to represent them in the metamodel: (i) which functional inputs are worth keeping as predictors, (ii) which dimension reduction method (DR) is ideal to use (e.g., B-splines, PCA, PLS), (iii) which is a suitable projection dimension, and given our choice to work with Gaussian process metamodels, also the question of (iv) which is a convenient distance to measure similarities between functional input points within the kernel function. Some of these characteristics -hereon called structural parameters -of the model and some others such as the family of kernel (e.g., Gaussian, Matérn 5/2) are often chosen a priori, either based on the familiarity of the modeler with certain methods or in the results of other metamodeling experiences. As one may intuit and has been shown by us through experiments in [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF], the configuration of the structural parameters of the model has a strong impact on its prediction capability. In this report, we introduce an heuristic optimization method for the selection of a convenient combination of structural parameters in the context of functional-input Gaussian process models. The architecture of the algorithm was made custom to the aforementioned problem, however, its principles are general enough and the method can be easily extended to other model selection frameworks.

The ant colony system

Ant colony optimization (ACO) encompasses a large variety of optimization metaheuristics derived from the seminal work of Dorigo et al. in the early 90s [START_REF] Dorigo | Positive feedback as a search strategy[END_REF][START_REF] Dorigo | Optimization, learning and natural algorithms[END_REF]. Since then, ACO based heurstics have been proved to give remarkable results in a wide range of optimization problems, including DNA sequencing [START_REF] Blum | An ant colony optimization algorithm for dna sequencing by hybridization[END_REF], scheduling [START_REF] Li | Cloud task scheduling based on load balancing ant colony optimization[END_REF], protein-ligand docking [START_REF] Korb | An ant colony optimization approach to flexible protein-ligand docking[END_REF], assembly line balancing [START_REF] Simaria | 2-antbal: An ant colony optimisation algorithm for balancing two-sided assembly lines[END_REF] and packet-switched routing [START_REF] Zhao | An improved ant colony optimization for communication network routing problem[END_REF]. ACO has been recognized as one of the most successful research lines in the area of swarm intelligence [START_REF] Bonabeau | Swarm intelligence: from natural to artificial systems[END_REF][START_REF] Bonabeau | Inspiration for optimization from social insect behaviour[END_REF], and always seats beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search among the top metaheuristic techniques [START_REF] Blum | Ant colony optimization: Introduction and recent trends[END_REF].

Biological inspiration

ACO algorithms work based on stigmergy, a mechanism for indirect inter-agent communication through traces left in the environment. Ants employ this type of communication to find efficient routes during foraging1 . The way it works is traditionally explained through a picture similar to the one displayed in Figure 3.1. The frame sequence in alphabetical order illustrates the variant of the double bridge experiment performed by Goss et al. in the 80s [START_REF] Goss | Self-organized shortcuts in the argentine ant[END_REF]. In the experiment, the nest of a colony of ants was connected to a food source by two paths, one significantly longer than the other (frame A). At first the ants began to explore the environment by randomly distributing themselves in the two paths (frame B). Along its way, each ant left pheromone trails noticeable by its mates. As expected, the ants that took the shortest path met the food before (frame C). Most part of the ants that started first the way back to the nest, perceived the larger load of pheromones in the shortest path and went through it. The shortest path kept receiving pheromones at a incrementally higher rate than the longer one, gradually reducing the chances of an ant taking this last (frame D). After some time, the whole colony converged towards the use of the shortest path (frame E). 

The optimization algorithm

In ACO algorithms, a colony of artificial ants evaluate solutions to the optimization problem at hand. The quality of those solutions is informed to the colony through virtual pheromone trails which help the algorithm to converge towards a high quality solution. To this day there is more than a dozen ACO metaheuristics and probably hundreds of ACO based heuristics2 . The algorithm proposed here is inspired in the ant colony system (ACS), introduced by Dorigo and Gambardella in the late 90s [START_REF] Dorigo | Ant colony system: a cooperative learning approach to the traveling salesman problem[END_REF]. In this report we proceed directly with the explanation of our heuristic for model selection. The aforementioned reference is recommended to the reader interested in the original version of ACS.

The ACS operates over a decision network that must be defined in advance based on the structure of the solution space. To start, each ant is located on a base spot and the pheromone value of each link is initialized. Each ant generates a solution to the optimization problem by adding nodes of the decision network to its path according to a pseudo-random system of rules biased by the pheromone loads in the network. Each time an ant traverses a link, a local pheromone update takes place; the pheromone load of the link is slightly reduced in order to foment the diversification of solutions (principle of exploration). Once all ants have made a complete solution, the quality of each solution is evaluated and a global pheromone update occurs; the pheromone load of the links traversed by the best ants is increased in proportion to the quality of their corresponding solutions, striving for convergence towards high quality solutions (principle of exploitation). The process is then iterated until some stopping conditions are reached. A pseudocode for the ACS is presented in Algorithm 1. increase pheromone load of links in best solutions 14:

Algorithm 1 Generic ACS structure

P * ← best solution so far 15: end while 16: return P *

Adaption to model selection Decision network

Considering the framework described in Section 3.1 for a set of ds scalar inputs and df functional inputs our optimization problem consists on making the following decisions:

• State of the i-th scalar input, from {inactive, active};

• State of the j-th functional input, from {inactive, active};

• Projection basis for the j-th functional input, from {B 1 , . . . , B z };

• Projection dimension for the j-th functional input, from {0, . . . , k j };

• Distance for the j-th functional input, from {D 1 , . . . , D w };

• Kernel type, from {K 1 , . . . , K x }, with i ∈ {1, . . . ds}, j ∈ {1, . . . df } and k j the original dimension of input j. The sets {B 1 , . . . , B z }, {D 1 , . . . , D w } and {K 1 , . . . , K x } correspond to the basis, distance and kernel families to be considered, in that order. The projection dimension 0 denotes no projection. In order to find a suitable combination of the parameters listed above, we let our artificial ants to move through a network with a structure similar to the one depicted in Figure 3.2. Such a structure prevents the constitution of senseless solutions (e.g., an input being both, inactive and active) and helps to keep the network data structures considerably simple by only defining strictly necessary links. 

=    Rule 1 if q ≤ q 0 , Rule 2 otherwise, (3.1) 
with q 0 a parameter ∈ [0, 1] and q a random value from U (0, 1). For ant r located at node a, our transition rules are defined as follows:

Rule 1. Move to the feasible neighbor node with greatest pheromone load. Mathematically, it is to move to the node s specified by

s = argmax b∈Jr(a) τ ab , ( 3.2) 
with J r (a) the set of feasible neighbor nodes for ant r located at node a, and τ ab the pheromone load of link (a, b).

Rule 2. Pick the next node based on a probability distribution proportional to the pheromone load of the feasible neighbor nodes. Formally, this can be expressed as moving to node b with probability

P (b) = τ ab b∈Jr(a) τ ab , ( 3.3) 
with J r (a) and τ ab interpreted as in rule 1.

Note that the proposed algorithm does not make use of the heuristic visibility value considered in [START_REF] Dorigo | Ant colony system: a cooperative learning approach to the traveling salesman problem[END_REF] and often present in ACO algorithms. The role of this value, typically denoted η ab for the link (a, b), is to introduce a priori information about the potential benefit of including each link in the solution. For many optimization problems like routing-oriented and scheduling-oriented ones, the visibility of a link is naturally set to be a function of its inverse generalized cost (see e.g., [START_REF] Das | The minimum power broadcast problem in wireless networks: an ant colony system approach[END_REF] and [START_REF] Garmsiri | Resource leveling scheduling by an ant colony-based model[END_REF]). For optimization problems involving categorical variables (such as model selection problem at hand), this set up is often less intuitive since the order of preferences over different levels of the same factor and the relative degree of preference of each level are hard to estimate. For instance, consider the questions of: (i) what would be the order of preference over a set of 5 types of basis families, and (ii) how preferred each basis family should be. Since there is no published evidence of the superiority of certain basis family over the others irrespective of the regression problem at hand, it could be hard to answer these two questions. In order to include η ab in the algorithm, the same two questions would have to be answered for the distance and the kernel family, and every other feature of the regression model. Hence, we decided to remove the visibility from our model, while keeping in mind that a priori information can also be introduced in the algorithm through the initial pheromone load. This possibility will be discussed later, at the end of this section.

Pheromone update

As explained in Section 3.2.2, ACS implements two pheromone update mechanisms -local and global -responsible for the diversification of solutions and the exploitation of acquired knowledge about the structure of high quality solutions. The local pheromone update is triggered each time an ant adds a note to its sequence. The pheromone load of the traverse link is slightly reduced and as a consequence, other ants are less motivated to use the same link in further decisions. In the proposed algorithm, the local pheromone update operates on the link (a, b) based on the assignment

τ ab ← (1 -ρ l ) • τ ab + ρ l • τ 0 , (3.4)
where τ ab is the current pheromone load of the link, τ 0 is its initial pheromone load, and ρ l ∈ [0, 1] is a parameter that can be interpreted as the pheromone evaporation rate.

On the other hand, global pheromone update takes place each time that a colony becomes complete, i.e., each time all ants in a colony complete a solution. This time, the pheromone load of links belonging to the best ants is increased in proportion to the quality of the corresponding solutions. For each high quality ant, the global pheromone operates on the link (a, b) based on the assignment

τ ab ← (1 -ρ g ) • τ ab + ρ g • ψ, (3.5)
where τ ab is interpreted as in (3.4), ψ is a measure of the quality of the solution, and ρ g ∈ [0, 1] is a parameter that can be interpreted as the learning reinforcement rate. If multiple ants are used in the global update, (3.4) is applied in an iterated manner over the set of best ants.

Initial pheromone load

The ACS initiates with a base pheromone load on every link. This quantity is modified by the virtual ants during the optimization to communicate actions and learning with their peers. The initial pheromone load must be set with caution, since this value will be determinant on the proper functioning of the algorithm;

• If it is set too low, the heuristic will be prematurely and irreversibly biased towards the best solution of the first iteration, breaking down the learning capability of the system. In addition, the first iteration does not count with any learned information. Thus, the solution at which the system would get stuck might be of regular quality.

• If it is conversely set too high, the system will struggle to converge (if it manages to do so). High quality solutions will not drag the attention they deserve and ants will not be able to focus their exploration around them.

In the proposed algorithm, pheromones are implicitly configured to take values exclusively in [0, 1]. Thanks to the structure of the updating queries (3.4) and (3.5), this is easily achieved by just setting the initial pheromone load of every link in the range [0, 1] and using a quality measure ψ for the solutions in that same range. For the model selection problem, one can pick for instance the Leave-one-out (LOO) cross-validated squared correlation coefficient Q 2 loocv (3.6), or alternatively its hold-out analogous, the predictive squared correlation coefficient Q 2 hout (see e.g., [START_REF] Nilsson | Multiway calibration in 3d qsar[END_REF]).

Q 2 loocv :=          1 - n.tr i=1 (y i -ŷi,-i ) 2 n.tr i=1 (y i -ȳ) 2          0 , ( 3.6) 
with (y i ) i=1,...,n.tr the vector of observed output values, ȳ the average of that vector, ŷi,-i the LOO estimation of y i , and the operator • l defined as:

x l =    x if x ≥ l, l otherwise.
Several numerical trials allowed us to identify an initial pheromone load of 0.1, combined with populations of size 10, as a suitable configuration taking into account the setup described in the previous paragraphs. During those trials, we observed the affectation of the pheromone level and the overall behavior of the algorithm along the iterations. In addition, we were able to corroborate the drawbacks associated to excessively low or high τ 0 values, explained in the introductory paragraph of this subsection.

A special treatment for the assignment of the initial pheromone load was given to the links connecting a distance type with a projection dimension (see Figure 3.2). The framework presented here is general enough to account for any number and type of distance families, however, for practical purposes we adopted the norms • D,θ f and • S, θf defined in [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF] as a baseline. The selection of one of these two norms not only might have a relevant impact on the predictability of the model, but also on its tractability. The norm • D,θ f requires a single length-scale parameter per functional input, indifferently of its projection dimension. In contrast, for each functional input, the norm • S, θf requires as many length-scale coefficients as projection terms. That means that the optimization of the hyperparameters of the model will almost always involve a larger number of decisions variables when using the norm • S, θf . This norm must be considered as an option as it could be the optimal choice in terms of predictability. However, if the projection dimension is allowed to take too high values, the norm • S, θf may imply substantially harder and more time consuming hyperparameters learning sessions than the norm • D,θ f . As a mechanism of regularization, we set up the initial pheromone load for the links pointing out to the norm • S, θf , based on a loss function of the form

τ f (x; k j , τ 0 , δ j , w j ) =                  τ 0 exp - |k j -1| -δ j 2σ 2 if x = 0, τ 0 if 0 < x ≤ δ j , τ 0 exp - |x -1| -δ j 2σ 2 otherwise, (3.7) 
where k j is the original dimension of input j, x takes integer values corresponding to its possible projection dimensions, τ 0 denotes the general initial pheromone load of the heuristic, and

σ 2 = - w 2 j 2 log(.5
) .

The parameters δ j and w j draw the shape of the loss function by specifying the extension of its flat section and the smoothness of its decreasing section (see Figure 3.3). The first condition in (3.7) controls the case where the projection dimension is equal to zero, which as stated earlier in the document denotes no projection. For every functional input, the values of δ j and w j can be tuned by observing the normalized loss curve with sum equal to 1. This curve matches the values of the probability pie defined in transition rule 2 (see (3.3)), and will be used by the ants during the first iteration of the algorithm, each time that this rule is implemented. Some examples of the normalized loss function are provided in Figure 3.4, where we illustrate the effect of w and δ on the shape of the curve. Suitable w and δ values will vary depending on particularities of the regression task. For instance, if there are many candidate functional inputs, both values could be set relatively low in order to prevent the heuristic from building too heavy models.

As a closing remark, the initial pheromone value can be used to induce preferences on the behavior of the ants. Whenever there is some hint that one level of some feature will perform better than the others, this information can be directly placed in the initial pheromone loads of that feature. By doing so, the ants will be stimulated to test more often configurations including the expected best performing level of the feature. The advantage of specifying this information through the pheromones and not through a visibility value (see the discussion on the transition rules) is that in case the induced bias was erroneous, the ants will be able to systematically remove it through the local pheromone update. Conversely, the ants will be able to reinforce the bias through the global pheromone update if they find it fruitful.

Analytic test cases

Let us now check the performance of the heuristic. We set ourselves in a metamodeling framework where an expensive-to-evaluate computer code is to be substituted by a light-torun statistical model (see e.g., [START_REF] Marrel | Calculations of sobol indices for the gaussian process metamodel[END_REF] or [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF] for more details on the metamodeling problem). We consider three analytic black-box functions and we undertake the model selection problem for each of them. We proceed below with the definition of our black-box functions.

Black-box functions

Let F be the set of continuous functions from [0, 1] to R.

Let x = (x 1 , x 2 ) ∈ [0, 1] 2 and f = (f 1 , f 2 ) ∈ F 2 be
the vectors of scalar and continuous functional inputs in that order. Then, consider the black-box computer codes specified by the following analytic functions:

• Analytic black-box 1 G 1 : [0, 1] 2 × F 2 → R, (x, f ) → x 1 sin(x 2 ) + x 1 1 0 f 1 dt 1 -x 2 2 (max T 2 f 2 ) -(min T 2 f 2 ) . (3.8) • Analytic black-box 2 G 2 : [0, 1] 2 × F 2 → R, (x, f ) → x 1 sin(x 2 ) + 1 0 exp(x 1 t 1 )f 1 dt 1 -x 2 2 1 0 f 2 t 2 dt 1 .
(3.9)

• Analytic black-box 3

G 3 : [0, 1] 2 × F 2 → R, (x, f ) → x 1 -2x 2 + 4 1 0 t 1 f 1 dt 1 + 1 0 f 2 dt 2 . (3.10)
Note that the three functions above are totally independent and the only purpose of resolving the model selection problem for all of them is to check the robustness of our proposed algorithm to variations on the structure of the underlying input-output true model.

Data generation and heuristic setup

Here, we focus on the solution of the model selection problem and we keep the generation of synthetic input data (the experimental design) very simple. For all the three analytic functions we use the same input and output data. We generate the scalar part of the design from a grid over [0, 1] 2 . We assume that the functional inputs f 1 and f 2 are represented by vectors of size 10 and 22, respectively. We made this choice in order to include functional inputs with heterogeneous discretization in the experiment. We sampled all the values of each function randomly from U (0, 1). In total, we generated an arbitrary number of 100 input points. For each point, we computed the corresponding output values using (3.8), (3.9) and (3.10).

As mentioned earlier in the discussion about the initial pheromone load (Section 3.2.3), a series of numerical trials allowed us to identify the combination τ 0 = 0.1 with a population of size 10 to work properly for our application. During these tests, we also allowed the decision probability boundary q 0 , the evaporation rate ρ l and the learning reinforcement rate ρ g vary. More specifically, we tried values in the vicinity of (0.9, 0.1, 0.1), the values used for those parameters (in the corresponding order) by Dorigo et al. in [START_REF] Dorigo | Ant colony system: a cooperative learning approach to the traveling salesman problem[END_REF]. We found the triple (0.95, 0.1, 0.1) to offer a good trade-off between solution discovery and convergence. Finally, we fixed the regularization parameters δ and w at 2 and 1.4, respectively for both functional inputs. This setup produces the normalized loss functions displayed in Figure 3.5. 

Results

In this section we check the performance of our algorithm from three different perspectives:

1) the absolute quality of the selected model; 2) the relative quality of the selected model; 3) the evolution of the solutions found throughout the iterations.

Each of them is better described in the corresponding subsection. An ideal general number of iterations that will work well for any model selection problem may likely not exist. Since our purpose is merely to show the performance of the heuristic, we used and arbitrary number of 20 iterations. For actual applications where the interest is to find the best possible solution the algorithm can give, we recommend instead using a stopping condition based on processing time. This way, we will have the best possible solution given our time constraints.

Absolute model quality

The absolute quality of the model refers to its predictability, regardless of the quality of the other explored models. This dimension of quality can be assessed, for instance, by means of the Q 2 loocv or Q 2 hout statistics (see the discussion about the initial pheromone load in Section 3.2.3). Those are conveniently interpretable measures thanks to the fact that they get values in [0, 1] (for any worthwhile model), with a value of 1 indicating perfect fitting and 0 indicating a very poor one. Here we optimize the model structure in terms of the Q 2 loocv . Figure 3.6 displays the calibration plot and the Q 2 loocv for the model selected for each of the black-box functions. Based on the calibration plots, all the models are good in terms of accuracy and precision. No evident fitting problems (e.g., skewness, heavy tails) are present in any of the models.

Relative model quality

The relative quality of the selected model is assessed by comparing it to the other explored models. This dimension of quality allows to see how special our model is. For instance, a Q 2 loocv of 0.95 is not that especial if the vast majority of models had a metrics over 0.92, and similarly, a Q 2 loocv of 0.58 is not that bad if most of the models had metrics below 0.35. In In the three cases an important portion of the explored models reported a Q 2 loocv that fell well below that of the selected model. Two important takeaways from these plots are:

• the arbitrary selection of the structural parameters is an unsafe move that may be the difference between a poorly performing model and a model of high prediction quality;

• even if there are multiple relatively good models (as for black-boxes 1 and 2), the proposed heuristic will go one step forward and deliver simply the best one.

Evolution

Finally, the analysis of the evolution of the solutions found by the algorithm along the iterations helps to verify that its learning mechanism is working properly. In Figure 3.8 we plot the Q 2 loocv of the models explored at each iteration of the heuristic during the optimization for each black-box function, along with the per-iteration maximum and median Q 2 loocv values. In all cases, the maximum and median Q 2 loocv progressively improve, and the models gradually converge towards the best solution found. The sporadic drops of the median are just an effect of the randomness and the degree of exploration requested via the parameter q 0 (see (3.1)). This phenomenon is by no means a bad thing, since it prevents the algorithm from getting trapped in local optima and allows it to keep improving the best solution as we see in the plots. The optimizations presented here ran in 77.7, 30.4 and 25.8 seconds, for black-boxes 1, 2 and 3, respectively.

Conclusions

This technical report introduces an ant colony based algorithm for model selection, specially oriented to the treatment of functional inputs. After almost 30 decades of their introduction to the scientific community, the ant colony algorithms remain as powerful optimization tools for concurrent research problems of notable relevance. In this report, we validated the ability of our algorithm to develop high quality regression models through three analytic test cases. In all of them the results were satisfactory. It is important to note that the absence of a smart exploration tool like this, does not leave one exposed to the possibility of selecting exclusively one of the other high quality model structures. As evidenced through the plots on the relative quality of the models, in all the three test cases, a large number of models had regular to bad quality. Thus, the absence of this type of tool actually leaves one vulnerable to end up with a low quality model, or at least one much inferior to the one that a smart method could have found. We have already done some tests with the RISCOPE data (see [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF] and [START_REF] Idier | Toward a user-based, robust and fast running method for coastal flooding forecast, early warning, and risk prevention[END_REF] for more details on the data) and the results seem promising as well. An R package for Gaussian process regression with scalar and functional inputs is currently under implementation in the frame of the RISCOPE project. The proposed ant colony based algorithm is expected to be one of the main components of the package, allowing the user not only to make individual particular models, but also to find high quality model structures.
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Chapter 4

Gaussian process regression for scalar and functional inputs with funGp:

The in-depth tour

The chapter in brief

The two previous chapters led us to the creation of the R package called funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF], which is oriented to the construction and smart selection of Gaussian process models with emphasis on the treatment of functional inputs. This chapter is an exact copy of its user manual [START_REF] Betancourt | Gaussian process regression for scalar and functional inputs with fungp -the in-depth tour[END_REF]. funGp relies on a variety of concepts at a crossroad between mathematics, statistics and optimization. As such, it merits a sufficiently wide documentation helping the user to shorten its learning curve. It does not matter what a tool has to offer if people do not understand well how to use it. The user manual presented in this chapter explains all the functionalities of the package through a set of short examples in the form of code snippets copy/pasteable directly to R. We are confident that, with the help of this manual, the user will be able to have its first funGp model working in a matter of just a few minutes.

Gaussian Process Regression for Scalar and Functional Inputs with funGp

The in-depth tour This is a comprehensive guide to creating and manipulating Gaussian process regression models using the R package funGp. It illustrates through examples, the usage of every function in the package and each example is accompanied by a code snippet to shorten the learning curve through direct usage of the functions. 

Authors

What does funGp bring to the table?

• Flexible modeling of functional-input regression problems A narrow class of R packages address regression with functional inputs (e.g., time series). The vast majority of those packages rely on models limited by strong assumptions on the relationship between inputs and outputs (e.g., Linear, Generalized Linear or Generalized Additive Models). The few ones that suppress these limitations through more general models (e.g., Kernel Smoothing) often require the output to be a function defined over the same domain as the functional inputs, which is frequently not the case and leaves the scalar-output problem unresolved. funGp tackles regression problems involving scalar and/or functional inputs and a scalar output through the fairly general Gaussian process model. This is a non-parametric type of model which removes any need to set a particular input-output parametric relationship in advance, and learns this information directly from the data.

• Built-in dimension reduction

A common practice when working with functional data is to start by making a projection of it onto a space of lower dimension, a procedure known as dimension reduction (DR). This allows to reduce the complexity of the model while preserving the main statistical or geometric characteristics of the functions. funGp is self-contained in the sense that it does not depend on other packages to perform DR on the functional inputs. At this point, we provide projection onto B-splines or PCA bases. The package was designed to enable a straightforward extension to other bases in further versions.

• Heuristic model selection

The possibilities offered by a package often translate into alternative model structures. Just to give an example, most packages that support Gaussian process models allow to select the kernel function from a set of standard families (e.g., Gaussian, Matérn 5/2, Matérn 3/2). However, decision support is rarely offered in order to select a suitable configuration for the problem at hand. We acknowledge the potential impact of such a decision in the performance of the model [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF][START_REF] Lataniotis | Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a datadriven approach[END_REF] and also the practical difficulties that arise from offering possibilities without decision support. Thus, funGp was equipped with a model selection functionality that allows the user to automatically search for a good combination of the so-called structural parameters of the model. At this point, an Ant-Colony-based algorithm is implemented to perform this task.

• All-level-user-friendly

We aim funGp to be a helpful tool for users within a wide range of knowledge in mathematics or statistics. Thus, we have made an effort to make simple and intuitive the way the package work. Most of the arguments in the functions have been provided default values so that the user can start experimenting with them at its own pace. Once you get ready, you will be able to start playing with the nugget effect, basis type, kernel type, multi-start option, parallelization and even the parameters of the heuristic for model selection. However, to have your first model built by funGp, the only thing you need to provide is your data. 

In-code notation

Base functionalities

This section starts from the bottom with the fundamental tasks implemented in funGp.

Those are: (i) creation of regression models, (ii) prediction of the output at unobserved input points, (iii) simulation of trajectories from the underlying Gaussian process linked to any funGp model, and (iv) updating an existing model. The workflow for each of the four functionalities listed above is illustrated through a followalong example based on the analytic black-box function

G 1 : [0, 1] 2 × F 2 → R, (x, f ) → x (1) + 2x (2) + 4 1 0 tf (1) (t) dt + 1 0 f (2) (t) dt,
with x = x (1) , x (2) , x (3) , x (4) , x (5) the scalar inputs, f = f (1) , f (2) the functional inputs, and F the set of continuous functions from [0, 1] to R. This function corresponds to the first analytic example presented in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF], and is accessible in funGp through the black-box function fgp_BB3.

All code snippets are copy/paste-able directly to R.

Create a funGp model

Let us start by creating a model. To do so, we must first put the input and output data in a suitable format. The scalar inputs should be provided as a matrix or data.frame. The functional inputs should be provided as a list of matrices, one per functional input. The output should be provided as an array or single-colum matrix. In the case of the inputs, each row of a matrix must correspond to an input point. Here, we will use synthetic data based on the analytic case defined in the introductory paragraph of this section, which involves two scalar inputs and two functional inputs. To generate the input data, we took the scalar input points from a factorial design over [0, 1]. For the functional inputs we assumed that those were measured at 10 and 22 time instants. This, just to emphasize the fact that functional inputs with heterogeneous discretization are valid funGp inputs. Just to have some data to work with, we sampled all the values of each function randomly from U(0, 1). We also picked an arbitrary number of [START_REF] Golchi | Monotone emulation of computer experiments[END_REF] The model diagnostic plot also displays a measure of the external prediction capability of the model. It corresponds to the LOO cross-validated squared correlation coefficient Q 2 loocv , defined as:

Q 2 loocv := 1 - n.tr i=1 (y i -ŷi,-i ) 2 n.tr i=1 (y i -ȳ) 2
, with (y i ) i=1,...,n.tr the vector of observed output values, ȳ the average of that vector and ŷi,-i the LOO prediction of y i .

Main ----:|:---------:|:---------:|:---------:|:----------: The field Proj. dim is related to the possibility of requesting DR1 for the functional inputs. DR allows to project a functional input of dimension k i onto a space of lower dimension p i while preserving the main statistical or geometric properties of the variable [START_REF] Ramsay | Applied functional data analysis: methods and case studies[END_REF][START_REF] Marrel | Global sensitivity analysis for models with spatially dependent outputs[END_REF]. This process often leads to p i << k i , which improves the tractability and processing speed of the model. By default, the fgpm function sets p i = 3 for all the functional inputs. The user is allowed to pick a custom projection dimension for each input and also not to project some of them. Different projection methods (basis families) are also available. The projection method used for each input is indicated under the field Basis. The manipulation of the projection dimension and projection method are discussed in more detail in Section 4.2.2 and Section 4.2.3, respectively.

Predict using a funGp model

Now let us use our model to make predictions. To do so, we must prepare the input data corresponding to the coordinates at which the output is to be estimated. The inputs should have the same format as used for creating the model with the fgpm function in Section 4.1.1.

The scalar inputs should be provided as a matrix or data.frame and the functional inputs should be provided as a list of matrices, one per functional input. This time, each row of an input matrix must correspond to a prediction point.

For the example, we generated the input points in a similar way as for training, i.e., the scalar inputs from a factorial design over [0, 1] and the functional values randomly from U(0, 1). § With functional inputs, the simple Out-vs-In scatter plots are no longer an option. Thus, plotPreds displays the increasingly sorted mean and corresponding confidence intervals instead. This plot can be used as a diagnostic tool for identifying potential problems related to the hyperparameters optimization, for instance:

• Excessively wide confidence intervals could indicate a far-from-optimal hyperparameters' estimation, especially if it happens for all or a large number of prediction points;

• When a prediction point is included in the training set, the model interpolates the output and no confidence interval is displayed for that point. In any other case, missing confidence intervals may be indicative of far-from-optimal hyperparameters' estimation.

Figures illustrating the two aforementioned potential scenarios are displayed below.

The plotPreds function can also be used to compare predictions against true output values.

In that case, an observed-vs-predicted calibration plot will be added on top of the sortedoutput plot shown before. § # validating against true output sOut.pr <-fgp_BB3(sIn.pr, fIn.pr, n.pr) plotPreds(m1, m1.preds, sOut.pr)

¦ ¥

The calibration plot made by plotPreds will display the predictive squared correlation coefficient Q 2 hout , which corresponds to the classical coefficient of determination R 2 for a test sample, i.e., for prediction residuals [START_REF] Nilsson | Multiway calibration in 3d qsar[END_REF]. On the other hand, the ordering in the sorted-output plot will be lead by the true output vector instead of the predicted mean vector. This way of sorting is convenient for comparing results of different models fitting the same data. Either the calibration plot or the sorted-output plot can be displayed alone by specifying the argument sortp = FALSE or calib = FALSE, respectively, when calling plotPreds. Note: by default the predict function in funGp returns so-called light predictions, which include the predicted mean, standard deviation and limits of the 95% confidence intervals. Some users might be interested in full predictions, which also include the training-prediction crosscovariance matrix K.tp and the prediction auto-covariance matrix K.pp. To make full predictions, it suffices to set detail = "full" when calling predict. The behavior of plotPreds is not affected by this selection. § # making full predictions m1.preds_f <-predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full") # checking content of the list summary(m1.preds_f) R output:

Length Class Mode mean 100 -none-numeric sd 100 -none-numeric K.tp 2500 -none-numeric K.pp 10000 -none-numeric lower95 100 -none-numeric upper95 100 -none-numeric ¦ ¥

Simulate from a funGp model

Simulations in funGp are requested through the simulate function, in a similar way to predictions. The scalar inputs should be provided as a matrix or data.frame and the functional inputs should be provided as a list of matrices, one per functional input. Each row of an input matrix will be interpreted as a point at which to provide simulations. By default, simulate will perform so-called light simulations, returning a n.rep × n.sm matrix, with n.rep the number of replications to produce at each input point and n.sm the number of input points. For the example we took the scalar inputs from a factorial design over [0,1] and the functional values randomly from U(0, 1). § Full simulations can also be plotted using the plotSims function. By default, the plot of full simulations will include the predicted mean and limits of the confidence intervals. § # plotting full simulations in full mode plotSims(m1, m1.sims_f)

¦ ¥

A light plot without the mean and confidence intervals is also available for full simulations by setting detail = "light" when calling plotSims.

Update a funGp model

As simple as it might appear, the update function allows to perform nine different updating tasks on a funGp model:

• Operations over the @sIn, @fIn and @sOut slots 1. Deletion of data points 2. Substitution of data points

Addition of data points

• Operations over the @kern@varHyp, @kern@s_lsHyps and @kern@s_lsHyps slots It is possible to request multiple tasks from the different categories listed above in a single call to update. When doing so, it is convenient to keep in mind that tasks will be performed in the following order: data deletion/substitution → data addition → hypers substitution/re-estimation It is also good to remember that the following two combinations are unfeasible:

• Data points deletion and substitution;

• Substitution and re-estimation of the same hyperparameter.

Model customizations

There are multiple things we can do in order to improve the tractability and predictability of a funGp model. In this section we discuss the customization of the model through its so-called structural parameters. It refers to a set of categorical features such as the kernel function or the projection basis, whose levels could be alternated in order to generate different models departing from the same input-output data. Without going too deep into the technical details, this section explains how to start working on these features within funGp and the interested reader is referred to [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF] for a formal and more detailed explanation of the underlying theory.

Kernel family

The selection of a suitable kernel function is something that naturally comes to mind when working with Gaussian process models. At this point, funGp offers the possibility to choose among the Gaussian, Matérn 5/2 and Matérn 3/2 kernels. This selection can be specified when calling the fgpm function, through the parameter kertype. Valid values for this attribute are "gauss", "matern5_2" and "matern3_2". See for instance the example below with the Gaussian kernel. 

Projection basis

In earlier sections of the manual we talked about DR2 , the process of reducing the dimension of your data structures in such a way and extent that the model becomes significantly more tractable and the loss in terms of predictability is negligible, if some. A common DR approach when dealing with functional inputs is to project each functional-input matrix onto a space of lower dimension. This method requires the construction of a set of basis vectors on which the original curves are projected. Those vectors (typically referred to as basis functions) may come from diverse families, including among the most popular ones the B-splines [START_REF] Boor | A practical guide to splines[END_REF], PCA [START_REF] Jolliffe | Principal component analysis[END_REF], PLS [START_REF] Papaioannou | Pls-based adaptation for efficient pce representation in high dimensions[END_REF], wavelets [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] and kPCA [START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]. The suitability of a given basis type might depend on the regression instance at hand. The B-splines and PCA bases are currently implemented in funGp for the projection of functional inputs. This option is accessible in the fgpm function through the parameter f_basType, which can be set to the values "B-splines" or "PCA".

When multiple functional inputs are provided, a custom basis can be selected for each of them, by passing an array with the selection for each input. If multiple functional inputs are provided, but a single f_basType value is specified, that selection is used for all the inputs. Both cases are illustrated below. By default, all functional inputs use a B-splines basis. § # same basis for both functional inputs m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = "PCA")

Projection dimension

This parameter is highly influential in both, the predication quality and the tractability of the model. Ideally, one wants to set the projection dimension considerably lower than the original one, but not so low that significant prediction power is lost. In the fgpm function, you can specify the projection dimension for each input by setting the argument f_pdims.

Valid inputs are all the integer numbers from 0 to the original dimension of the curves. The value 0 is used to request to not perform the projection of an input. If there are multiple functional inputs, an array can be provided instead of a single value in order to specify custom projection dimensions. If a single value is specified and multiple functional inputs are identified, the value is used as projection dimension for all the functional inputs. By default, all functional inputs are projected onto a space of dimension 3. § 

Distance for functions

Many regression models require the computation of the distance between the design points in order to determine which ones are the most influential in a given prediction. This is the case of Gaussian process models, which use such distances to compute the correlation between pairs of observations. A set of scaling factors called length-scale coefficients are normally used to quantify the rate of change of the output in terms of each input. For scenarios with only scalar inputs, the rule is simply to use one length-scale parameter per input, which yields the distance

x -x L 2 ,θs := ds k=1 x (k) -x(k) 2 θ (k) s 2 , ( 4.1) 
with x = x (1) , . . . , x (ds) and x = x(1) , . . . , x(ds) two scalar input points, ds the number of scalar inputs in the model, • the L 2 norm for scalars (just the absolute value), and θ s = θ (1) s , . . . , θ (ds) s the vector of length-scale parameters for the scalar inputs.

In an instance with functional inputs, the norm • needs to be replaced by a norm suitable for functions. Two options are currently implemented in funGp, both based on a projection of each functional inputs of the form

Π f (k) (t) = p k r=1 α (k) r B (k) r (t), (4.2) 
with f (k) a curve of the k-th functional input, B (k) r the r-th basis function used for its projection, α (k) r the corresponding projection coefficient, and p k the projection dimension. The first type of distance implemented for functions considers each curve as a whole and uses a single length-scale parameter per functional input. This distance is defined as

Π f -Π f D,θ f := df k=1 T k p k r=1 α (k) r -α(k) r B (k) r (t) 2 dt θ (k) f 2 , ( 4.3) 
with f = f (1) , . . . , f (df ) and f = f (1) , . . . , f (df ) two functional input points, df the number of scalar inputs in the model, T k ⊂ R the domain of f (k) , and

θ f = θ (1) f , . . . , θ (df ) f
the vector of length-scale parameters for the functional inputs. This distance is identified in the package as L2_bygroup, since it uses a single length-scale parameter for the group of projection terms corresponding to one functional input. funGp implements an efficient computation of (4.3), introduced in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF] and further studied in [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF].

The second type of distance works only with the projection coefficients and disregards the basis functions. The distance is defined as

Π f -Π f S, θ f := df k=1 p k r=1 α (k) r -α(k) r 2 θ(k) f,r 2 , ( 4.4) 
where θf = ( θ(k) f,r ) 1≤r≤p k ,1≤k≤df denotes the vector of functional length-scale coefficients. Note that this distance uses one length-scale coefficient per projection term. This might enable a better modeling of the input-output relationship, but in turn it implies a larger number of decision variables involved in the learning process, which makes it a harder/longer task. This distance is identified in the package as L2_byindex since it involves a length-scale parameter per projection index. It corresponds to the most common approach nowadays, which is to perform the projection of the inputs and then use each projection coefficient as an individual scalar input of the model.

In the case that no projection is requested for some input, both distances (4.3) and (4.4) use the original function values instead of the projection coefficients, and the identity is used in (4.3) as the matrix of basis functions. Our aim is to keep this manual friendly with users not expert in statistics. Thus, we leave at this point the technical discussion on the distances, and we refer the interested user to [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF], where this aspect is discussed formally and in more detail. Below, there are some examples on the selection of the distance through fgpm. § # building the model # the first f. input using by-index distance and no projection -> 10 length-scale parameters # the second f. input using by-group distance -> 1 length-scale parameter m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = c("L2_byindex", "L2_bygroup"))

# both f. inputs using by-group distance -> 2 length-scale parameters m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_bygroup") # both f. inputs using by-index distance -> (10+5) = 15 length-scale parameters m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_byindex") ¦ ¥

Heuristic model selection

In the previous section, we covered the base functionalities of funGp. Now, we present a boosting feature that takes funGp models one step further: the funGp model factory.

Concept

The fgpm function, explored in Section 4.1.1, allows to specify through its arguments a number of characteristics of the model, oriented to make it adaptive to the particularities of the regression problem at hand. In Section 4.2 we catalogued those features under the name of structural parameters of the model, and we illustrated through examples the way of specifying the required configuration of them to the fgpm function. In its current version, funGp includes the kernel family, the projection basis, the projection dimension and the distance for functions as structural parameters modifiable by the user. But, which combination of structural parameters should you use? If you have strong evidence to think that some level of one of these features will perform better than the others, then you are good to go. Otherwise, it would be better to make some tests in order to make such a decision. As shown by us through a set of computer experiments in [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF], the ideal model configuration might likely depend on the particular regression task. Through the fgpm_factory function we enable the user to conduct a smart exploration of the solution space composed of all the possible structural parameter configurations. Variable selection is embedded in the optimization through the definition of structural parameters related to the state of each scalar and functional input in the model (active or inactive).

At this point, funGp performs heuristic optimization of structural parameters (model selection) by means of the ant colony based algorithm introduced by us in [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF] (find online ). For a set of ds scalar inputs and df functional inputs, the optimization problem addressed by our algorithm consists in making the following decisions:

• State of the i-th scalar input (inactive, active);

• State of the j-th functional input (inactive, active);

• Projection basis for the j-th functional input (B 1 , . . . , B z );

• Projection dimension for the j-th functional input (0, . . . , k j );

• Distance for the j-th functional input (D 1 , . . . , D w );

• Kernel type (K 1 , . . . , K x ), with i ∈ {1, . . . ds}, j ∈ {1, . . . df } and k j the original dimension of input j. The sets {B 1 , . . . , B z }, {D 1 , . . . , D w } and {K 1 , . . . , K x } correspond to the basis, distance and kernel families to be considered, in that order. The projection dimension 0 denotes no projection.

In order to find a suitable combination of the parameters listed above, we let our artificial ants to move through a network with a structure similar to the one depicted in Figure 4.1. Such a structure prevents the constitution of senseless solutions (e.g., an input being both, inactive and active) and helps to keep the network data structures considerably simple by only defining strictly necessary links. However, both the foundations of the approach and the code implementations are general enough to be easily extended to other levels in future versions of the package. This manual does not go further into the methodological details of the algorithm, however, a detailed explanation of it is offered in [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF] for the interested reader.

Using the model factory in funGp

In this section we explain how to manipulate the fgpm_factory function in order to get optimized model structures. The examples in this section are based on the analytic blackbox function

G 2 : [0, 1] 5 × F 2 → R, (x, f ) → x (2) + 4x (3) - 5 4π 2 x (1) 2 + 5 π x (1) -6 2 + 10 1 - 1 8π cos x (1) x (2) 2 x (5) 3 + 10 + 4 3 π 42 sin x (4) 1 0 15 f (1) (t) (1 -t) -5 dt + π
x (1) x (5) + 5 5 + 15 1 0 15 t f (2) (t)dt , with x = x (1) , x (2) , x (3) , x (4) , x (5) the scalar inputs, f = f (1) , f (2) the functional inputs, and F the set of continuous functions from [0, 1] to R. This function is inspired by the second analytic example studied in [START_REF] Muehlenstaedt | Computer experiments with functional inputs and scalar outputs by a norm-based approach[END_REF], with three additional scalar inputs allocated over the different terms of the equations to increase a bit its complexity. This function is accessible in funGp through the black-box function fgp_BB7. Here we generate the scalar and functional input values in a similar way to how we did in the previous sections.

• Getting started

Let us open this section with a basic call to the factory using its default attribute values. The output of fgpm_factory is an object of class Xfgpm. It includes a variety of information on it that we will be explored later in detail, towards the end of this section. For now, let us concentrate on the @model slot, which contains the selected regression model. This is an object of type fgpm, which can be plotted using the Right away, just by calling fgpm_factory with its default arguments, we were able to find a model of greater quality. Some key points in the light of this first result are:

• Firstly, the superiority of the optimized model does not imply that the default argument values of the fgpm function are bad. They are just not tailored to this specific regression instance, contrarily to the structural parameters selected by fgpm_factory. That is the purpose of having fgpm_factory in the package, to be able to find good structural parameters for any regression instance that fgpm could handle.

• Secondly, the result does not mean that funGp models should always be made through fgpm_factory. In this example we see how the unoptimized model still presents a high Q 2 loocv . However, if there is time, we strongly recommend to perform the optimization.

• Finally, the superiority of the model delivered by fgpm_factory is exclusively fostered by the optimization of the structural parameter configuration, and has nothing to do with the mechanism for the optimization of the hyperparameters. Each model evaluated by fgpm_factory is internally created by a call to fgpm. Thus, the same mechanism of hyperparameter optimization is used by both functions.

Let us move on with the explanation of the usage of fgpm_factory. The outputs of this function can be plotted by either the plotX or the plotEvol function. The former one provides a notion of the absolute and relative quality of the selected model, and the second one illustrates the evolution of the quality of the explored models along the iterations. § Even after multiple iterations, some points still fall relatively far from the maximum. This happens mainly because we have multiple categorical features, whose alteration might change the performance statistic in a nonsmooth way. Nonetheless, the median stays close to the maximum, which confirms that the exploration is converging towards the best known solutions. On the other hand, the points that fall bellow zero usually correspond to models whose hyperparameters were hard to optimize. This occurs sporadically during the log-likelihood optimization for Gaussian processes, due to the non-linearity of the objective function.

An easy way to improve the quality of the selected model is just to let the algorithm complete more iterations. This can be done through the argument setup, as below. § 

¦ ¥

In the examples above, fgpm_factory optimized the model structure for Q 2 loocv . Optimizing for Q 2 hout (i.e., validating against external observations) is also possible. This type of optimization can be requested by specifying the indices that should be used for training and validation. For instance, assume that we have the same data as in the previous example, but now we want to use about 85% of the points for training and the remaining ones for validation. This can be specified to fgpm_factory through the ind.vl argument as follows. § # generating validation indices ind.vl <-sample(seq_len(n.tr), 5) # about 15% of points for validation # calling the funGp factory xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~2 seconds)

¦ ¥

With this call, the factory trains each model using all the data except for the points specified by ind.vl. Once built, each model is used to predict the output at the points ignored during training, and the predictive squared correlation coefficient Q 2 hout [START_REF] Nilsson | Multiway calibration in 3d qsar[END_REF] is computed. This procedure ensures fairness in the comparison, since all the models use the same training and validation sets. In order to account for the sampling noise, the user may want to use multiple training-validation pairs of sets. This option is easily requested to the factory by passing a matrix instead of an array through the argument ind.vl. Such a matrix should have the indices for one training set on each column. This means, that the matrix should have as many rows as validation points, and as many columns as replicates. § # generating validation indices ind.vl <-replicate(30, sample(seq_len(n.tr), 5)) # about 15% of points for validation, 30 replicates # calling the funGp factory xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~4 minutes)

¦ ¥

The larger the number of replicates, the longer the optimization will be, but also the less noise will appear on the statistics used to compare the models. Section 4.4 addresses the reduction of processing time through parallelization.

Note that the calibration plot produced by plotX will always report the Q 2 loocv statistic, regardless of whether this or the Q 2 hout was used for the optimization of the structural parameters. In contrast, the bottom frame will always display the statistic used during the optimization. When validation indices are provided, the model stored in the @model slot of the Xfgpm object will be one trained with as many points as remain once the specified validation points are removed. When multiple validation sets are specified, the model stored in the @model slot of the Xfgpm object will be selected in two steps by: (i) identifying the structural configuration of higher average Q 2 hout ; and (ii) pick the replicate of best structural configuration with higher Q 2 hout .

• Setting up the parameters of the heuristic

Our model selection algorithm relies on a set of parameters typical of any ant colony based method. Roughly speaking, those parameters control the number of individuals and iterations, the degree of exploration and rate of convergence, along with the learning-reinforcement mechanism in the algorithm. The default values of those parameters in funGp were selected based on the values used by Dorigo et al. in the introductory paper of the Ant Colony System [START_REF] Dorigo | Ant colony system: a cooperative learning approach to the traveling salesman problem[END_REF]. We validated the suitability of that setting for our model selection problem through a large set of trials involving different black-box functions like the one defined at the beginning of this manual (Section 4.1), and more than 10 others that raised in the frame of the RISCOPE research project [START_REF]Anr riscope project[END_REF] (see [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF] for more details). Here we explain how to modify the parameters of the heuristic in case the user wants to experiment with them. Our algorithm performs based on the following list of parameters:

Initial pheromone load

• tao0: initial pheromone load on links pointing out to the selection of a distance type, a projection basis or a kernel type. Default: 0.1.

• dop.s: factor to control how likely it is to activate a scalar input. It operates on a relation of the type A = dop.s * I, where A is the initial pheromone load of links pointing out to the activation of scalar inputs and I is the initial pheromone load of links pointing out to their inactivation. Default: 1.

• dop.f: analogous to dop.s for functional inputs. Default: 1.

• delta.f and dispr.f: shape parameters for the regularization function that determines the initial pheromone values on the links connecting the L2_byindex distance (see Section 4.2.4) with the projection dimension*. Default: 2 and 1.4, respectively.

Local pheromone update

• rho.l: pheromone evaporation rate*. Default: 0.1.

Global pheromone update

• u.gbest: the algorithm works in an iterative fashion; should the pheromone load on the links of the best ant so far over all the iterations be reinforced? Default: FALSE.

• n.ibest: the algorithm always reinforces the links of the best n.ibest ants of each iteration; how many ants should be considered for reinforcement? Default: 1.

• rho.g: learning reinforcement rate*. Default: 0.1.

Population factors

• n.iter: number of iterations. Each iteration involves the exploration of the solution space, constitution of a set of model configurations, evaluation of their performance in prediction and system feedback. Default: 15.

• n.pop: number of ants per iteration; each ant corresponds to one solution to the problem, in this case, a structural configuration for the model. Default: 10.

Bias strength

• q0: ants use one of two rules to select their next node at each step. The first rule leads the ant through the link with higher pheromone load; the second rule works based on probabilities which are proportional to the pheromone load on the feasible links. The ants will randomly chose one of the two rules at each time. They will opt for rule 1 with probabilityq0 *. Default: 0.95. For larger number of input variables, we recommend to slightly reduce it to e.g., 0.90. This might facilitate the testing of each input in at least a few models.

The parameters marked with an asterisk (*) are explained more thoroughly in [START_REF] Betancourt | Technical report: Ant colony based model selection for functional-input gaussian process regression[END_REF]. All the parameters listed above can be accessed in a fgpm_factory call through the argument setup, which should be a list. Below an example using arbitrary setup values. § # calling the funGp factory with an arbitrary setup mysup <-list(tao0 = .15, dop.s = 1.2, dop.f = 1.3, delta.f = 4, dispr.f = 1.1, rho.l = .2, u.gbest = TRUE, n.ibest = 2, rho.g = .08, n.iter = 30, n.pop = 12, q0 = .85) xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup) # (~18 seconds) ¦ ¥

• Defining the solution space

By default, fgpm_factory considers feasible all possible combinations of: inputs state, distance type, projection dimension, basis family, and kernel family. However, the user is allowed to modify the solution space by imposing a system of constraints. This is achieved through the ctraints argument, which should be provided as a list. Below an example. § This call to the factory will exclusively explore models that fulfill the constraints passed through ctraints. This can be verified by inspecting the @log.success@sols slot of the Xfgpm object returned by fgpm_factory. § # checking log of some successfully built models cbind(xm@log.success@sols, "Q2" = xm@log.success@fitness)

However, in the wild it is hard to know in advance which number of iterations will be suitable for the problem at hand, and even if one had an idea, it would still be difficult to estimate how much processing time that would suppose. In practice we recommend to use instead a time based stopping condition. It works by defining a time budget for structural optimization, and then letting the heuristic run until the budget is exhausted. This possibility has been implemented in fgpm_factory, and is accessible through the time.lim argument. § When using the time based stopping condition, the number of iterations should be set sufficiently large so that it does not cause a premature stop of the exploration. The argument time.lim should always be provided in seconds. Once the time limit is reached, the algorithm will attempt to stop as soon as possible, however, the ongoing training process of a model will never be interrupted. Thus, the actual processing time will normally exceed the specified time budget for a bit. This discrepancy might be more noticeable for problems involving heavier model configurations with larger number of inputs or a larger amount of data.

• Further exploring the Xfgpm object After checking different things that can be done through a fgpm_factory call, it is good time to dedicate some attention to the information contained in the object delivered by the function. The object is of class Xfgpm, which includes diverse information about the selected model and also about the model selection process carried on. Below a list of the slots of the object with a short description of each.

Selected model

• @model: selected model delivered by the fgpm function.

• @structure: data.frame with the selected structural configuration.

• @stat and @fitness: type and value of the performance statistic used for the optimization of the structural parameters. Currently, the type of performance statistic can be either Q 2 loocv or Q 2 hout (see Sections 4.1.1 and 4.1.2 for details on these measures).

Record of explored models

• @log.success: object of class antsLog with the structure, function calls and performance statistic of all models successfully made during the optimization, organized in decreasing order of performance.

• @log.crashes: object of class antsLog with the structure and function calls of all models whose fgpm function call crashed.

Exploration extent

• @n.solspace: total number of structural configurations that could be made, based on the specified solution space.

• @n.explored: total number of structural configurations successfully built and evaluated during the exploration.

Further information

• @details: a list containing: (i) the set of heuristic parameters used; and (ii) the series of fitness vectors over the iterations of the heuristic.

• @factoryCall: a reminder of the expression used in the fgpm_factory call.

By conducting the structural optimization through fgpm_factory, one obtains not only one but a set of high quality models. Those are accessible through the @log.success@sols and @log.success@args slots. The former contains a data frame with all the levels of structural parameters selected for each explored model. This data structure could be useful to make a posterior analysis on patterns that lead to high quality models. The @log.success@args slot contains exactly the same information, but in a format that allows the easy reconstruction of any of the explored models. We illustrate this possibility with the following example. We start by performing a structural optimization. § # re-building the three best models based on the new data (one model at a time) # m1 <-eval(parse(text = xm@log.success@args[ [START_REF] Kirk | Experimental design[END_REF]]@string)[ [START_REF] Kirk | Experimental design[END_REF]]) # m2 <-eval(parse(text = xm@log.success@args[ [2]]@string)[ [START_REF] Kirk | Experimental design[END_REF]]) # m3 <-eval(parse(text = xm@log.success@args[ [START_REF] Vaden | Computer aided design of ka-band waveguide power combining architectures for interplanetary spacecraft[END_REF]]@string)[ [START_REF] Kirk | Experimental design[END_REF]]) # re-building the three best models based on the new data (compact code with all 3 calls) modStack <-lapply(1:3, function(i) eval(parse(text = xm@log.success@args[

[i]]@string)[[1]])) ¦ ¥
Finally, we use each model for prediction. Here, the format4pred function will generate a list with the scalar and functional inputs to use for each model. If any of the two types of inputs is not present in the model, format4pred will set it to NULL, which will be properly interpreted by the fgpm function. 

Parallelized hyperparameters optimization

Let us start with the fgpm function, used to create regression models (see Section 4.1.1). In funGp, the selection of the hyperparameters of the model is made by likelihood maximization. For Gaussian processes, this corresponds to a nonlinear optimization problem, sometimes strongly affected by the selection of the starting points. A common way to deal with this issue is to start the optimization multiple times from different points, which prevents the stagnation in local optima. This can be requested to fgpm through the argument n.starts, which should be assigned an integer value corresponding to the number of starting points to use. Below an example using 10 starting points. § Since each starting point triggers an independent optimization process, the requested task can be performed in parallel. To do so, the user must define a parallel processing cluster and then pass it to fgpm through the par.clust argument. § As a good practice, the cluster must be stopped right after finishing the requested task in order to prevent memory issues.

Remark: in order to provide progress bars for the monitoring of time consuming processes ran in parallel, funGp relies on the doFuture [START_REF] Bengtsson | doFuture: A Universal Foreach Parallel Adapter using the Future API of the 'future' Package[END_REF] and future [START_REF] Bengtsson | future: Unified Parallel and Distributed Processing in R for Everyone[END_REF] R packages. Unfortunately, under this setting, parallel processes suddenly interrupted tend to leave corrupt connections that will show up as an error next time you try to perform the parallelized task. To make it clear, if you launch fgpm in parallel and you stop the process by hand, before it ends, and then you try to repeat the call in parallel, you may likely find and error indicating that ... the connection to the worker is corrupt.... If that happens to you, the following workaround will help to regain control of parallel processing. Once you get the error, repeat the function call using a different number of nodes. For instance, let us assume that you had run with 3 nodes in the call that produced the error. We can make the new function call, for instance with 2 nodes. § There is no need to let this process become complete, you can stop it by hand a couple seconds after making the function call. That is it. Now you can launch again the process in parallel with the number of nodes that you were originally using. We acknowledge that this is more a trick than an ideal way to resolve this types of issues. However, this problem is originated outside funGp, which limits our control over it. We find the approach shown above a pragmatic solution for most users. We will remain attentive in case it appears a more elegant solution to this problem. All this discussion also applies for parallelized calls to fgpm_factory, which will be discussed in the next section.

Parallelized model selection

Parallelization is also present in the model factory. Each ant in our heuristic algorithm represents a structural configuration, and eventually translates into a regression model. Each ant influence on the decisions made by the others since they share a common decision network and all of them affect the pheromone load in the links. Nonetheless, each time all the ants of one iteration complete a model structure, each of the models is built and evaluated for performance in an independent fashion. Thus, once all the structural configurations of one iteration are complete, the construction of the corresponding models is a task that can be performed in parallel. The way to do that is identical to how it is done in the fgpm function.

For this, the user must define a parallel processing cluster and then pass it to fgpm_factory through the par.clust argument, as below. § The advice given when explaining the parallelization in the fgpm function applies here; the cluster must be stopped right after finishing the requested task in order to prevent memory issues. In addition, we clarify that parallelized processing should be reserved for cases where each individual process (call to fgpm) takes a significant amount of time. If the call in sequence is already long due to the large number of processes it involves, but each process runs almost immediately, the benefit of parallelization might become null. Thus, we prescribe the use of this feature for problems where the evaluation of a single model takes several seconds or more.

In such a context, parallelization will allow the evaluation of a larger number of structural configurations in the same amount of time.

Closing discussion

funGp started as a set of scripts enabling to include functional inputs in a regression model. What we present in this tutorial is that and much more. We have done our best to provide a powerful regression tool for all-level users. No impositions on the type of relationship between inputs and outputs, no need of pre-processing of the functional inputs, no need for complex data structures. You put the data and we put the power of the Gaussian process models in order to efficiently extract the underlying information from it. The more expertise the user has in statistics and also in the usage of the package, the more it will be able to discover new possibilities and features. We make strong emphasis on the model selection functionality, which takes models' construction to a whole new level. Any regression package gives you a model in response for your data. Some packages return different types of models depending on your specifications. Not very often a package helps you to choose the good model, and this is what funGp does. During the implementation, we kept present at all time the need for efficiency, and we made an effort to make everything run fast and smooth. Parallelization in the fgpm and fgpm_factory functions is a valuable commodity in this regard. We envisage the extension of the package in multiple different aspects, and therefore, we made the implementations with scalability in mind. All the structural parameters are modifiable in order to include additional levels or even other structural parameters than those currently available. The heuristic model selection algorithm was also designed to be easily adaptable to this type of extension. Going further, the fgpm_factory function was structured in such a way that other model selection methods could be added later. Being funGp a piece of open source, we encourage the community to make contributions in any line found pertinent.

Chapter 5

Structural parameter optimization in the coastal flooding RISCOPE case

The chapter in brief

The previous three chapters addressed the introduction to the RISCOPE coastal flooding application, the development of an Ant Colony algorithm for the efficient optimization of the structural parameters of the metamodel, and the consolidation of the R package funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF], respectively. Chapter 5 is a follow up to the RISCOPE case. The description given in Chapter 2 for this application remains mostly valid, except for the three following aspects:

1) Updated hydrodynamic code: at the time of writing Chapter 2, the target hydrodynamic code was in calibration. Thus, we used a simplified version of it which was quicker but less precise and detailed. At this time the target hydrodynamic code is complete.

2) Significantly less observations: the new hydrodynamic code takes much more time per computation (several hours to days) than the simplified version used in Chapter 2 (around 20 seconds). Thus, current developments are much more limited in the amount of simulations that we can conduct. Up to now, we have completed a total of 135 simulations. The (functional) input coordinates for those simulations were selected by means of an adaption of Extreme Value Analysis (see e.g., [START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone[END_REF]) to functional data. Such a methodology is intended to produce input conditions leading (more often) to significative flooding events, while preserving the main statistical properties of each input variable. We reserve the details of this methodology for future dissemination to the scientific community.

3) Several output variables: the new hydrodynamic code enables the extraction of diverse types of information of interest such as the maximum flooded area, the water height at surveillance points and coefficients of trafficability of critical roads. In this chapter we consider a total of 13 scalar outputs and we build a metamodel for each of them.

The Ant Colony algorithm proved its pertinency and effectiveness by finding high quality structural configurations for all the 13 outputs under analysis. In all cases, the selected configuration outperformed several others, including the default choices of using: (i) only a scalar representation of each functional input; (ii) the full set of scalar and functional representations of the inputs; and (iii) a scalar representation of each functional input, plus the functional representation of some key input variables. Even for the variables the most difficult to fit, our algorithm was able to find a configuration superior to the aforementioned alternatives. All the analysis was conducted using our R package funGp [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF].

Introduction

This chapter is a brief update of the RISCOPE application based on the developments made in the previous chapters, and also on the evolution of the hydrodynamic computer code. The new hydrodynamic code allows us to retrieve a variety of useful information. Here we use our Ant Colony algorithm (see Chapter 3) for the structural parameter optimization of the metamodel built for 13 scalar output variables. Rather than constituting a document in the form of a research paper (as Chapter 2 and Chapter 6, for instance), this chapter is intended to concisely show for the first time in the manuscript the performance of our algorithm in the RISCOPE application.

The new hydrodynamic code

The hydrodynamic code used in Chapter 2 received four variables with physical interpretability as inputs. Those were the tide (Td), atmospheric storm surge (Sg), significant wave height (Hs) and peak wave period (Tp). In addition to those, the new code receives the peak wave direction (Dp), the wind speed (U ) and the wind direction (Du). Moreover, in Chapter 2 we were considering a version of (Td) which had integrated the mean sea level (Msl). In the new analysis we consider both inputs separately. This makes a total of eight functional inputs for the new code. Each of them should be provided to the system in a time series format, similarly as in Chapter 2. All the input time series should be of dimension 37. The code delivers several output variables, also in the form of time series and spatial maps. For now, we focus on scalar quantities representing those outputs. In particular, we consider the following list of scalar output variables:

• Ysurf_max: largest area flooded during the event, in m 2 ;

• Ysurf_fin: extension of land flooded at the end of the event, in m 2 ; • Yvol_fin: total amount of water entered in land during the event, in m 3 ; • Ytr_ft1 and Ytr_fh1: indices of trafficability for main road 1; • Ytr_ft2 and Ytr_fh2: indices of trafficability for main road 2; • Ytr_ft3 and Ytr_fh3: indices of trafficability for main road 3; • Yhcb_max1 and Yhcb_max2: maximum water height at surveillance points 1 and 2;

• Yhcb_fin1 and Yhcb_fin2: water height at the end of the event at points 1 and 2. 

Structural parameter optimization

For the purpose of metamodeling we are decomposing each functional input into a scalar and a functional representation, similarly to what we did in Sections 2.4.2.2 and 2.5.1 of Chapter 2. A shifted functional input is one whose scalar representation has been subtracted. This, with the aim of letting the algorithm the possibility to decide separately if either the scalar representation, the shifted functional representation, or both parts of an input should be kept active in the model. For Td we used the maximum value of the series as the scalar representation. For all the other inputs except Msl, we used the average value of the series. The Msl is the only input variable for which only the scalar representation is considered, and it comes from the fact that this input is almost always a constant function during a six hour event like the ones we are considering. This setup results in a total of 8 scalar inputs and 7 shifted functional inputs with the potential of being included in the metamodel. In addition to the active scalar and functional inputs, in this section we also use our Ant Colony algorithm to set:

1) the dimension reduction method to use for each input; 2) the projection dimension for each input; 3) the kernel function of the model; 4) the distance used to measure similarity between functional input coordinates within the kernel function.

For the sake of comparison, we also build the metamodel with some arbitrary structural configurations that one may choose in the absence of an algorithm like ours. Specifically, we consider metamodels with: a) all the scalar inputs, but no functional inputs active; b) all the scalar and functional inputs active; c) all the scalar inputs, plus the main functional inputs from the physical perspective. For this experiment we keep active the functional representations of Td, Sg, Hs and Tp. The Q 2 hout obtained by each benchmark configuration, as well as that for the configuration delivered by our algorithm are reported in the table. The darker colored cells are those related to a better prediction quality. The active scalar and functional inputs kept active in the configuration delivered by the Ant Colony algorithm are displayed as well in the two columns at the right side of the table. The numbers 1 to 8 correspond to the inputs Msl, Td, Sg, Hs, Tp, Dp, U , Du, in that order.

The configuration found by our Ant Colony algorithm outperformed the three benchmark configurations in all the instances. Even in the cases were the output was relatively hard to fit (e.g., for Ytr_ft3), the algorithm was able to build a model of considerably higher Q 2 hout . The improvement should not be undervaluated in the cases where the other configurations give similar Q 2 hout values (e.g., for Ytr_fh2). On the one hand, the algorithm is already coded and made available in an R package. The only price we paid in order to obtain a better configuration was just 10 minutes of computation, which in most metamodeling contexts (involving numerical simulations lasting for hours and days) is negligible. On the other hand, RISCOPE deals with an application involving human lifes at risk. Any improvement we could have in prediction, is therefore highly valuable.

Conclusions

This chapter presented the application of the Ant Colony algorithm for the calibration of the structural configuration of 13 different metamodels required in the RISCOPE case study. We let the algorithm run for a relatively short period of just 10 minutes. This time was enough for it to find a structural configuration of relatively high prediction quality in all cases. The selected configuration outperformed 3 benchmark structural configurations that one may choose in the absence of an automated selection tool like this. The results obtained prove the robustness of the algorithm to changes in the input-output relationship. Moreover, the instances resolved in this chapter involved 8 scalar and 7 functional inputs, which shows the suitability of the algorithm for problems of larger size than those used for illustration in Chapters 3 and 4.

Chapter 6

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

The chapter in brief

This chapter presents a theoretical study which is independent from the RISCOPE coastal flooding application. The chapter is an exact copy of our article [START_REF] Bachoc | Asymptotic properties of the maximum likelihood and cross validation estimators for transformed gaussian processes[END_REF], published in Electronic Journal of Statistics. There, we study the asymptotics of the maximum likelihood (ML) and cross validation (CV) estimators for the covariance parameters of a non-Gaussian process. We are motivated by the fact that many real applications involve output variables that present certain markedly non-Gaussian characteristics such as nonnegativity (e.g., [START_REF] López-Lopera | Finite-dimensional gaussian approximation with linear inequality constraints[END_REF]) and monotonicity (e.g., [START_REF] Golchi | Monotone emulation of computer experiments[END_REF]), but they are still modeled as Gaussian without further considerations. This gives rise to the questions of: what can we expect from the estimation of the covariance parameters if we model a non-Gaussian process as Gaussian? In case of suspicion of non-Gaussianity would it be beneficial to apply some transformation to the output before implementing the Gaussian process model? Chapter 6 addresses the first question and gives the bases to undertake the second one.

In particular, we consider the case where the non-Gaussian process results from an unknown non-linear transformation of a Gaussian process. We further assume that the transformation is not modeled or estimated. We show that the ML and CV estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. Our results can thus be interpreted as a robustness of (Gaussian) ML and CV towards non-Gaussianity. This study could be extended to the case where the transformation parameters are estimated along with the covariance parameters. We expect such an approach to be beneficial at least for taking into account non-Gaussian characteristics of the process of interest such as the aforementioned nonnegativity or more generally speaking, boundary constraints.

Introduction

Kriging [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] consists of inferring the values of a (Gaussian) random field given observations at a finite set of points. It has become a popular method for a large range of applications, such as geostatistics [START_REF] Matheron | La Théorie des Variables Régionalisées et ses Applications[END_REF], numerical code approximation [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF][START_REF] Bachoc | Improvement of code behavior in a design of experiments by metamodeling[END_REF], calibration [START_REF] Paulo | Calibration of computer models with multivariate output[END_REF][START_REF] Bachoc | Calibration and improved prediction of computer models by universal Kriging[END_REF], global optimization [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF], and machine learning [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF].

When considering a Gaussian process, one has to deal with the estimation of its covariance function. Usually, it is assumed that the covariance function belongs to a given parametric family (see [START_REF] Abrahamsen | A review of Gaussian random fields and correlation functions[END_REF] for a review of classical families). In this case, the estimation boils down to estimating the corresponding covariance parameters. Nowadays, the main estimation techniques are based on maximum likelihood [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF], cross-validation [START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF] and variation estimators [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF][START_REF] Anderes | On the consistent separation of scale and variance for Gaussian random fields[END_REF][START_REF] Azaïs | Semiparametric estimation of the variogram of a Gaussian process with stationary increments[END_REF].

The asymptotic properties of estimators of the covariance parameters have been widely studied in the two following frameworks. The fixed-domain asymptotic framework, sometimes called infill asymptotics [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF][START_REF] Cressie | Statistics for Spatial Data[END_REF], corresponds to the case where more and more data are observed in some fixed bounded sampling domain. The increasing-domain asymptotic framework corresponds to the case where the sampling domain increases with the number of observed data.

Under fixed-domain asymptotics, and particularly in low dimensional settings, not all covariance parameters can be estimated consistently (see [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]). Hence, the distinction is made between microergodic and non-microergodic covariance parameters [START_REF] Ibragimov | Gaussian Random Processes[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF]. Although non-microergodic parameters cannot be estimated consistently, they have an asymptotically negligible impact on prediction [START_REF] Stein | Asymptotically efficient prediction of a random field with a misspecified covariance function[END_REF][START_REF] Stein | Bounds on the efficiency of linear predictions using an incorrect covariance function[END_REF][START_REF] Stein | Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure[END_REF][START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF]. There is, however, a fair amount of literature on the consistent estimation of microergodic parameters (see for instance [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics[END_REF][START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF][START_REF] Du | Fixed-domain asymptotic properties of tapered maximum likelihood estimators[END_REF][START_REF] Wang | On fixed-domain asymptotics and covariance tapering in Gaussian random field models[END_REF][START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF][START_REF] Ying | Maximum likelihood estimation of parameters under a spatial sampling scheme[END_REF]).

This paper focuses on the increasing-domain asymptotic framework. Indeed, generally speaking, increasing-domain asymptotic results hold for significantly more general families of covariance functions than fixed-domain ones. Under increasing-domain asymptotics, the maximum likelihood and cross validation estimators of the covariance parameters are consistent and asymptotically normal under mild regularity conditions [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF].

All the asymptotic results discussed above are based on the assumption that the data come from a Gaussian random field. This assumption is indeed theoretically convenient but might be unrealistic for real applications. When the data stem from a non-Gaussian random field, it is still relevant to estimate the covariance function of this random field. Hence, it would be valuable to extend the asymptotic results discussed above to the problem of estimating the covariance parameters of a non-Gaussian random field.

In this paper, we provide such an extension, in the special case where the non-Gaussian random field is a deterministic (unknown) transformation of a Gaussian random field. Models of transformed Gaussian random fields have been used extensively in practice (for example in [START_REF] Chiles | Geostatistics: Modeling Spatial Uncertainty[END_REF][START_REF] Xu | Tukey g-and-h random fields[END_REF][START_REF] Alegría | Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere[END_REF][START_REF] Yan | Gaussian likelihood inference on data from trans-Gaussian random fields with Matérn covariance function[END_REF]).

We provide various asymptotic results, under reasonable regularity assumptions. In particular, our assumptions on the transformation function are mild. For most of our results, only sub-exponentiality is required.

We prove that applying the (Gaussian) maximum likelihood estimator to data from a transformed Gaussian random field yields a consistent and asymptotically normal estimator of the covariance parameters of the transformed random field. This (Gaussian) maximum likelihood estimator corresponds to what would typically be done in practice when applying a Gaussian process model to a non-Gaussian spatial process. This estimator does not need to know the existence of the non-linear transformation function and is not based on the exact density of the non-Gaussian data. We refer to Remark 5 for further details and discussion on this point.

We then obtain the same consistency and asymptotic normality result when considering a cross validation estimator. In addition, we establish the joint asymptotic normality of both these estimators, which provides the asymptotic distribution of a large family of aggregated estimators. Our asymptotic results on maximum likelihood and cross validation are illustrated by numerical simulations.

To the best of our knowledge, our results (Theorems 3, 4, 5, 6 and 7) provide the first increasing-domain asymptotic analysis of Gaussian maximum likelihood and cross validation for non-Gaussian random fields. Our proofs intensively rely on Theorems 1 and 2. Theorem 1 shows that the components of inverse covariance matrices are bounded by inverse polynomial functions of the corresponding distance between observation locations. Theorem 2 provides a generic central limit theorem for quadratic forms constructed from transformed Gaussian processes. These two theorems have an interest in themselves.

The rest of the paper is organized as follows. In Section 6.2, general properties of transformed Gaussian processes are provided. In Section 6.3, Theorems 1 and 2 are stated. In Section 6.4, an application of these two theorems is given to the case of estimating a single variance parameter. In Section 6.5, the consistency and asymptotic normality results for general covariance parameters are given. The joint asymptotic normality result is also given in this section. Section 6.6 discusses some extensions of the results of the previous sections. The simulation results are provided in Section 6.7. All the proofs are provided in the appendix.

General properties of transformed Gaussian processes

In applications, the use of Gaussian process models may be too restrictive. One possibility for obtaining larger and more flexible classes of random fields is to consider transformations of Gaussian processes. In this section, we now introduce the family of transformed Gaussian processes that we will study asymptotically in this paper. This family is determined by regularity conditions on the covariance function of the original Gaussian process and on the transformation function.

Let us first introduce some notation. Throughout the paper, C inf > 0 (resp. C sup < ∞) denotes a generic strictly positive (resp. finite) constant. This constant never depends on the number of observations n, or on the covariance parameters (see Section 6.5), but is allowed to depend on other variables. We mention these dependences explicitly in cases of ambiguity. The values of C inf and C sup may change across different occurrences. Further, we define the Fourier transform of a function h : R d → R by ĥ

(f ) = (2π) -d R d h(t)e -if t dt,
where i 2 = -1, for f ∈ R d . When mentioning the Fourier transform of a function h, we implicitly assume that Fourier inversion holds, that is ĥ is summable and, for s ∈ R d , h(s) = R d ĥ(f )e is f df . For a sequence of observation locations, the next condition ensures that a fixed distance between any two observation locations exists. This condition is classical [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF].

Condition 1. We say that a sequence of observation locations, (x

i ) i∈N , x i ∈ R d , is asymp- totically well-separated if we have inf i,j∈N,i =j |x i -x j | > 0.
The next condition on a stationary covariance function is classical under increasingdomain asymptotics. This condition provides asymptotic decorrelation for pairs of distant observation locations and implies that covariance matrices are asymptotically well-conditioned when a minimal distance between any two distinct observation locations exists [START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

Condition 2. We say that a stationary covariance function k on R d is sub-exponential and asymptotically positive if:

i) C sup and C inf exist such that, for all s ∈ R d , we have

|k(s)| ≤ C sup exp (-C inf |s|); (6.1)
ii) For any sequence (x i ) i∈N satisfying Condition 1, we have inf n∈N λ n (Σ) > 0, where Σ is the n × n matrix (k(x i -x j )) i,j=1,...,n .

In Condition 2, we remark that k : R d → R is called a stationary covariance function in the sense that (x 1 , x 2 ) → k(x 1 -x 2 ) is a covariance function. We use this slight language abuse for convenience.

We also remark that, when non-transformed Gaussian processes are considered, a polynomial decay of the covariance function in Condition 2 i) is sufficient to obtain asymptotic results [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case[END_REF]. Here an exponential decay is needed in the proofs to deal with the non-Gaussian case. Nevertheless, most classical covariance functions satisfy inequality (6.1). In particular, the Matérn covariance functions [START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF], the generalized Wendland covariance functions [START_REF] Bevilacqua | Estimation and prediction using generalized wendland covariance functions under fixed domain asymptotics[END_REF] and some of the power exponential covariance functions [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF] satisfy inequality (6.1). On the other hand, for instance, the covariance functions in the Cauchy class [START_REF] Gneiting | Stochastic models that separate fractal dimension and the hurst effect[END_REF] do not satisfy inequality (6.1).

When considering a transformed Gaussian process, we will consider a transformation satisfying the following regularity condition, which enables us to subsequently obtain regularity conditions on the covariance function of the transformed Gaussian process. ii) The function F is non-decreasing on R.

Regarding Condition 3 ii), we point out that many transformations of Gaussian processes considered in the literature are indeed non-decreasing, for instance the Tukey's g-and-h transformation in [START_REF] Xu | Tukey g-and-h random fields[END_REF] and the exponential transformation for log-Gaussian processes. Furthermore, Condition 3 ii) need not always be assumed for the results of the present paper to hold, see Remarks 4 and 9.

In the following lemma, we show that the covariance function of a transformed Gaussian process satisfies Condition 2, when Conditions 2 and 3 are satisfied, for the original process and for the transformation.

Lemma 1. Assume that the stationary covariance function k satisfies Condition 2 and that the transformation F satisfies Condition 3. Let X be a zero-mean Gaussian process with covariance function k and let k be the stationary covariance function of F (X(•)). Then, k satisfies Condition 2.

In the next lemma, we show that we can replace the condition of an increasing transformation by the condition of a monomial transformation of even degree (with an additive constant).

Lemma 2. If a covariance function k satisfies Condition 2 i) and if the Fourier transform

k of k is strictly positive on R d , then k satisfies Condition 2 ii). Furthermore, in this case, in Lemma 1, Condition 3 ii) can be replaced by the condition F (x) = x 2r + u for r ∈ N, u ∈ R and x ∈ R.

Two main technical results

Transformed Gaussian process framework

In the rest of the paper, we will consider an unobserved Gaussian process Z on R d with d ∈ N fixed. Assume that Z has zero-mean and stationary covariance function k Z . We assume throughout that k Z satisfies Condition 2.

We consider a fixed transformation function T satisfying Condition 3. We assume that we observe the transformed Gaussian process Y , defined by Y (s) = T (Z(s)) for any s ∈ R d .

We assume throughout that the random field Y has zero-mean. We remark that, for a non-linear transformation F : R → R, for s ∈ R d , the fact that Z(s) has zero-mean does not imply that the random variable F (Z(s)) has zero-mean. Hence, we implicitly assume that T is of the form F -E[F (Z(x))], where F satisfies Condition 3 and x ∈ R d is arbitrary. Note that E[F (Z(x))] is constant in x by stationarity and that, if F satisfies Condition 3 or the condition specified in Lemma 2, then F -E[F (Z(x))] also satisfies these conditions. We remark that the assumption of zero-mean (or equivalently of a known mean function for Y ) is common in the literature. We provide a further discussion of this assumption in Section 6.6.2.

We let k Y be the covariance function of Y . We remark that, from Lemma 1 (applied with F = T and X = Z and thus k = k Y ), k Y also satisfies Condition 2.

We let (s i ) i∈N be the sequence of observation locations, with s i ∈ R d for i ∈ N. We assume that (s i ) i∈N satisfies Condition 1.

For n ∈ N, we let y = (y 1 , . . . , y n ) = (Y (s 1 ), . . . , Y (s n )) be the (non-Gaussian) observation vector and R = (k Y (s i -s j )) i,j=1,...,n be its covariance matrix.

The problem of estimating the covariance function k Y from the observation vector y is crucial and has been extensively studied in the Gaussian case (when T is a linear function). Classically, we assume that k Y belongs to a parametric family of covariance functions. We will provide the asymptotic properties of two of the most popular estimators of the covariance parameters: the one based on the (Gaussian) maximum likelihood [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Stein | Interpolation of Spatial Data: Some Theory for Kriging[END_REF] and the one based on cross validation [START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF][START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF]. To our knowledge, such properties are currently known only for Gaussian processes, and we will provide analogous properties in the transformed Gaussian framework.

Bounds on the elements of inverse covariance matrices

In the case of (non-transformed) Gaussian processes, one important argument for establishing the asymptotic properties of the maximum likelihood and cross validation estimators is to bound the largest eigenvalue of the inverse covariance matrix R -1 . Unfortunately, due to the non-linearity of the transformation T , such a bound on the largest eigenvalue is no longer sufficient in our setting.

To circumvent this issue, we obtain in the following theorem stronger control over the matrix R -1 : we show that its coefficients decrease polynomially quickly with respect to the corresponding distance between observation locations. This theorem may have an interest in itself.

Theorem 1. Consider the setting of Section 6.3.1. For all fixed 0 < τ < ∞, we have, for all n ∈ N and i, j = 1, . . . , n

R -1 i,j ≤ C sup 1 + |s i -s j | d+τ ,
where C sup depends on τ but does not depend on n, i, j.

Central limit theorem for quadratic forms of transformed Gaussian processes

In the proofs on covariance parameter estimation of Gaussian processes, a central step is to show the asymptotic normality of quadratic forms of large Gaussian vectors. This asymptotic normality is established by diagonalizing the matrices of the quadratic forms. This diagonalization provides sums of squares of decorrelated Gaussian variables and thus sums of independent variables [START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF][START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

In the transformed Gaussian case, one has to deal with quadratic forms involving transformations of Gaussian vectors. Hence, the previous arguments are not longer valid. To overcome this issue, we provide below a general central limit theorem for quadratic forms of transformed Gaussian vectors. This theorem may have an interest in itself.

This asymptotic normality result is established by considering a metric d w generating the topology of weak convergence on the set of Borel probability measures on Euclidean spaces (see, e.g., [START_REF] Dudley | Real Analysis and Probability[END_REF] p. 393). We prove that the distance between the sequence of the standardized distributions of the quadratic forms and Gaussian distributions decreases to zero when n increases. The introduction of the metric d w enables us to formulate asymptotic normality results in cases when the sequence of standardized variances of the quadratic forms does not necessarily converge as n → ∞. Theorem 2. Consider the setting of Section 6.3.1. Let (A n ) n∈N be a sequence of matrices such that A n has dimension n × n for any n ∈ N. Let A = A n for concision. Assume that for all n ∈ N and for all i, j = 1, . . . , n,

|A i,j | ≤ C sup 1 + |s i -s j | d+C inf ,
where C sup does not depend on i, j. Let

V n = 1 n y Ay. (6.2) Let L n be the distribution of √ n(V n -E[V n ]). Then, as n → ∞, d w L n , N [0, n Var(V n )] → 0.
In addition, the sequence (n Var(V n )) n∈N is bounded.

Remark 1.

In the case where limits E ∞ and σ ∞ exist, such that

E[V n ] -E ∞ = o(n -1/2
) and the sequence (n Var(V n )) n∈N converges to a fixed variance σ 2 ∞ , the result of Theorem 2 can be written in the classical form

√ n (V n -E ∞ ) L → N [0, σ 2 ∞ ], as n → ∞.
Remark 2. Throughout Section 6.3, we assume that k Z satisfies Condition 2. Note that this condition does not impose k Z to be continuous at zero. Hence, Theorems 1 and 2 allow for a decomposition k Z (s) = kZ (s) + η1 s=0 , for s ∈ R d , where kZ : R d → R is a continuous stationary covariance function and η ≥ 0. Hence, Theorems 1 and 2 allow for an additive nugget effect, with variance η, on the unobserved Gaussian process Z. Furthermore, we remark that in this case, when η > 0, k Z automatically satisfies Condition 2 ii), as the eigenvalues of covariance matrices obtained from k Z are larger than η. Remark 3. One can check that in the proofs of Theorems 1 and 2, it is not necessary that k Z satisfies Condition 2 ii). Hence, these two theorems hold whenever T satisfies Condition 3, k Y satisfies Condition 2 i) and ii) and k Z satisfies Condition 2 i). There are various assumptions that can be made, in order to guarantee that k Y satisfies Condition 2 ii).

First, if a nugget effect as described in Remark 2 is assumed on the covariance function k Z , then k Z automatically satisfies Condition 2 ii) and thus, from Lemma 

∈ R d , Ň (s) = Ť (ζ(s)), where ζ is a centered Gaussian random field, independent of Z, with Cov(ζ(u), ζ(v)) = κ1 u=v for u, v ∈ R d , with κ > 0.
In this case, one can check that Theorems 1 and 2 hold in this modified setting for Y , with proofs that are minor but straightforward modifications of those given in the appendix (see also the proof of Proposition 1 in the appendix). Note that this modified setting is equivalent to letting the observation vector y be defined by y i = T (Z(s i )) + ξ i , i = 1, . . . , n, where ξ 1 , . . . , ξ n are i.i.d, independent of Z, with zero-mean and variance η, since s 1 , . . . , s n are two-by-two distinct.

Third, in the case where k Y and k Z are continuous, we have shown in Lemma 1 that if k Z satisfies Condition 2 ii), then k Y satisfies Condition 2 ii). In Sections 6.3 and 6.4, we thus simply assume that k Z satisfies Condition 2 ii). A classical assumption that guarantees k Z to satisfy Condition 2 ii) is that k Z has a strictly positive Fourier transform [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF] (see also the proof of Lemma 2).

Finally, when k Y is continuous, one could also assume that its Fourier transform is strictly positive to guarantee that k Y satisfies Condition 2 ii). In fact, this is what we do in Section 6.5, see Condition 5.

Estimation of a single variance parameter

We let σ 2 0 be the marginal variance of Y , that is Var(Y (s)) = σ 2 0 for any s ∈ R d . We let k Y = σ 2 0 c Y be the stationary covariance function of Y , where c Y is a correlation function. We assume that the same conditions as in Section 6.3 hold. Then, the standard Gaussian maximum likelihood estimator of the variance parameter is

σ2 ML = 1 n y C -1 y,
where C = (c Y (s i -s j )) 1≤i,j≤n . One can simply show that E[σ 2 ML ] = σ 2 0 even though y is not a Gaussian vector, since y has mean vector 0 and covariance matrix σ 2 0 C. Hence, a direct consequence of Theorems 1 and 2 is then that the maximum likelihood estimator is asymptotically Gaussian, with a n 1/2 rate of convergence, even though the transformed process Y is not a Gaussian process.

Corollary 1. Let L n be the distribution of √ n(σ 2 ML -σ 2 0 ). Then, as n → ∞, d w L n , N [0, n Var(σ 2 ML -σ 2 0 )] → 0.
In addition, the sequence n Var(σ

2 ML -σ 2 0 ) n∈N is bounded.
The proof of Theorem 2 actually allows us to study another estimator of the variance σ 2 0 of the form

σ2 ML,K = 1 n y C -1 K y, where (C -1 K ) i,j = (C -1 ) i,j 1 |s i -s j |≤K .
The proof of Theorem 2 then directly implies the following.

Corollary 2. Let K n be any sequence of positive numbers tending to infinity. Let L Kn,n be the distribution of

√ n(σ 2 ML,Kn -σ 2 0 ). Then, as n → ∞, d w L Kn,n , N [0, n Var(σ 2 ML,Kn -σ 2 0 )] → 0. In addition, we have n Var(σ 2 ML,Kn -σ 2 0 ) -n Var(σ 2 ML -σ 2 0 ) → 0.
The above corollary shows that one can taper the elements of C -1 when estimating the variance parameter, and obtain the same asymptotic distribution of the error, as long as the taper range goes to infinity, with no rate assumption. This result may have an interest in itself, in view of the existing literature on covariance tapering for Gaussian processes under increasing-domain asymptotics [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF]. We also remark that the computation costs of σ2 ML,K and σ2 ML have the same orders of magnitude because C -1 needs to be computed in both cases.

Remark 4.

In the results of this section, the condition that F is non-decreasing in Condition 3 ii) can be replaced by the condition that C has its smallest eigenvalue bounded away from zero. This can be checked in the corresponding proofs.

General covariance 6.5.1 Framework

As in Section 6.3.1, we consider a zero-mean Gaussian process Z defined on R d with covariance function k Z satisfying Condition 2. Let Y be the random field defined for any s ∈ R d by Y (s) = T (Z(s)), where T is a fixed function satisfying Condition 3. Furthermore we assume that Y has zero-mean function and we recall that from Lemma 1, its covariance function k Y also satisfies Condition 2. Finally, the sequence of observation locations (s i ) i∈N satisfies Condition 1.

Let {k Y,θ ; θ ∈ Θ} be a parametric set of stationary covariance functions on R d , with Θ a compact set of R p . We consider the following condition on this parametric set of covariance functions.

Condition 4. For all s ∈ R d , k Y,θ (s) is three times continuously differentiable with respect to θ, and we have

sup θ∈Θ |k Y,θ (s)| ≤ C sup exp (-C inf |s|), (6.3) 
sup θ∈Θ =1,2,3 i 1 ,...,i =1,...,p ∂k Y,θ (s) ∂θ i 1 , . . . , ∂θ i ≤ C sup 1 + |s| d+C inf . ( 6.4) 
The smoothness condition in (6.4) is classical and is assumed for instance in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. As discussed after Condition 2, milder versions of (6.3) can be assumed for non-transformed Gaussian processes, but (6.3) is satisfied by most classical families of covariance functions nonetheless.

The next condition, on the Fourier transforms of the covariance functions in the model, is standard. Condition 5. We let kY,θ be the Fourier transform of k Y,θ . Then kY,θ (f ) is jointly continuous with respect to θ and f and is strictly positive on Θ × R d .

We remark that Condition 5 does not automatically follow from Condition 4 (nor from Conditions 6 to 10 below). For instance, in the case d = 1, the family of triangular covariance functions {σ 2 c Y ; σ 2 ∈ [σ 2 inf , σ 2 sup ]}, with 0 < σ 2 inf < σ 2 sup < ∞ and with c Y (x) = (1 -|x|) + for x ∈ R, satisfies Condition 4 but not Condition 5 [START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF].

Finally, the next condition means that we address the well-specified case [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF][START_REF] Bachoc | Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case[END_REF], where the family of covariance functions does contain the true covariance function of Y . The wellspecified case is considered in the majority of the literature on Gaussian processes. Condition 6. There exists θ 0 in the interior of Θ such that k Y = k Y,θ 0 .

In the next two subsections, we study the asymptotic properties of two classical estimators (maximum likelihood and cross validation) for the covariance parameter θ 0 . The asymptotic properties of these estimators are already known for Gaussian processes and we extend them to the non-Gaussian process Y .

Maximum Likelihood

For n ∈ N, let R θ be the n × n matrix k Y,θ (s i -s j ) i,j=1,...,n
, and let θML ∈ argmin θ∈Θ L θ (6.5)

with

L θ = 1 n log(det(R θ )) + y R -1 θ y
be a maximum likelihood estimator. We will provide its consistency under the following condition.

Condition 7.

For all χ > 0 we have

lim inf n→∞ inf ||θ-θ 0 ||≥χ 1 n n i,j=1 k Y,θ (s i -s j ) -k Y,θ 0 (s i -s j ) 2 > 0.
Condition 7 can be interpreted as a global indentifiability condition. It implies in particular that two different covariance parameters yield two different distributions for the observation vector. It is used in several studies, for instance [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. Theorem 3. Consider the setting of Section 6.5.1 for Z, T , Y and (s i ) i∈N .

Assume that Conditions 4, 5, 6 and 7 hold. Then, as n → ∞,

θML p → θ 0 .
Remark 5. Let us discuss and interpret Theorem 3. In Theorem 3, there is a Gaussian process Z with zero-mean (see Section 6.6.2 for a discussion of the case where Z has non-zero mean) and covariance function k Z . Consider for the sake of interpretation that the covariance function k Z belongs to a set of covariance functions {k Z,α , α ∈ A},

with k Z = k Z,α 0 , α 0 ∈ A.
In Theorem 3 there is a transformation T : R → R that is fixed and unknown. The aim of this paper is not to estimate T , and in particular we do not assume that T belongs to a known parametric set of transformation functions. This transformation T then defines the non-Gaussian process Y = T (Z). We also assume that Y has zero-mean, the case of a non-zero mean also being discussed in Section 6. 6

.2. In Theorem 3, we assume that the covariance function k Y of Y belongs to the set of covariance functions {k

Y,θ ; θ ∈ Θ}, with k Y = k Y,θ 0 for θ 0 ∈ Θ.
Assume for the sake of interpretation that, for α ∈ A, if the covariance function of Z was k Z,α , then the covariance function of Y would belong to {k Y,θ ; θ ∈ Θ}. Assume also for the sake of discussion that θ → k Y,θ is injective (which is an extension of the requirement in Condition 7). Then, there exists a fixed mapping τ : A → Θ such that, if the covariance function of Z was k Z,α , then the covariance function of Y would be k Y,τ (α) . The mapping τ is uniquely defined because θ → k Y,θ is assumed to be injective.

The process Y is observed at s 1 , . . . , s n , yielding the observation vector y and then the (Gaussian) maximum likelihood estimator θML in Theorem 3. This estimator is based on the false assumption that Y is a Gaussian process but on the correct assumption that the covariance function of Y belongs to {k Y,θ ; θ ∈ Θ}. This estimator is thus misspecified from a likelihood point of view but well-specified from a covariance function point of view. Theorem 3 shows that this estimator is consistent and Theorem 4 below will show that this estimator is asymptotically unbiased with an asymptotic covariance matrix of sandwich form, see (6.6). We remark that this form is typical in misspecified models [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF][START_REF] Fahrmeir | Maximum likelihood estimation in misspecified generalized linear models[END_REF][START_REF] White | Maximum likelihood estimation of misspecified models[END_REF].

If the transformation T was known and injective, one could recover the values Z(s 1 ), . . . , Z(s n ) from Y (s 1 ), . . . , Y (s n ) and thus compute the (well-specified) Gaussian maximum likelihood estimator αML of α 0 . Note that we have θML = τ (α ML ) in general. We remark that one can expect αML to satisfy some type of statistical efficiency principle, as an estimator of α 0 , since it is a well-specified maximum likelihood estimator. Nevertheless, while there is a fair amount of work on efficiency of estimators in the case of i.i.d. data [START_REF] Van Der | Asymptotic statistics[END_REF], almost no counterparts exist, to the best of our knowledge, for the efficiency of estimators of covariance parameters of Gaussian processes. One of the few examples is [START_REF] Van Der | Maximum likelihood estimation under a spatial sampling scheme[END_REF], in the special case of the exponential covariance functions. If an efficiency property could be proved for αML , then one could also expect that τ (α ML ) satisfies a similar efficiency property, as an estimator of θ 0 (for instance, in the spirit of Theorem 25.47 in [START_REF] Van Der | Asymptotic statistics[END_REF]). In particular, one can expect τ (α ML ) to be asymptotically a better estimator of θ 0 than θML . Nevertheless, we emphasize that when T is unknown, τ (α ML ) can not be computed but θML can.

Finally, let us explicit the mapping τ in a special case. Consider that the transformation function is given by T (x) = x 2 -E[Z(0) 2 ] for x ∈ R. Consider also that the covariance models {k Y,θ ; θ ∈ Θ} and {k Z,α ; α ∈ A} are {σ 2 e -ρ||•|| ; (σ 2 , ρ) ∈ Θ} and {σ 2 e -ρ||•|| ; (σ 2 , ρ) ∈ A}, with Θ, A ⊂ (0, ∞) 2 . Then if α 0 = (σ 2 0 , ρ 0 ), by Mehler's formula [START_REF] Azaïs | Level Sets and Extrema of Random Processes and Fields[END_REF], for u, v ∈ R d ,

Cov(Y (u), Y (v)) = 2 Cov(Z(u), Z(v)) 2 = 2σ 4 0 e -2ρ 0 ||u-v|| and thus we have, for α = (α 1 , α 2 ), τ (α) = (2α 2 1 , 2α 2 ).
Condition 8. For any (χ 1 , . . . , χ p ) = (0, . . . , 0), we have

lim inf n→∞ 1 n n i,j=1   p =1 χ ∂k Y,θ 0 (s i -s j ) ∂θ   2 > 0.
Condition 8 can be interpreted as a regularity condition and as a local indentifiability condition around θ 0 . In the next theorem, we provide the asymptotic normality of the maximum likelihood estimator. In this theorem, the matrices M θ 0 and Σ θ 0 depend on the number of observation locations. Theorem 4. Consider the setting of Section 6.5.1 for Z, T , Y and (s i ) i∈N . Assume that Conditions 4, 5, 6, 7 and 8 hold. Let M θ 0 be the p × p matrix defined by

(M θ 0 ) i,j = 1 n tr R -1 θ 0 ∂R θ 0 ∂θ i R -1 θ 0 ∂R θ 0 ∂θ j .
Let Σ θ 0 be the p×p covariance matrix defined by (Σ θ 0 ) i,j = Cov(n 1/2 ∂L θ 0 /∂θ i , n 1/2 ∂L θ 0 /∂θ j ).

Let L θ 0 ,n be the distribution of √ n( θML -θ 0 ). Then, as n → ∞,

d w L θ 0 ,n , N [0, M -1 θ 0 Σ θ 0 M -1 θ 0 ] → 0. (6.6) 
In addition,

lim sup n→∞ λ 1 (M -1 θ 0 Σ θ 0 M -1 θ 0 ) < +∞. (6.7) 
Remark 6. If the sequences of matrices M θ 0 and Σ θ 0 converge as n → ∞, then √ n( θMLθ 0 ) converges in distribution to a fixed centered Gaussian distribution where the limiting covariance matrix is given by

lim n→∞ M -1 θ 0 Σ θ 0 M -1 θ 0 .
Conditions 7 and 8 involve the model of covariance functions {k Y,θ ; θ ∈ Θ} and the sequence of observation locations (s i ) i∈N but not the transformation T . They are further discussed, in a different context, in [START_REF] Bachoc | A Gaussian process regression model for distribution inputs[END_REF]. We believe that these conditions are mild. For instance, Conditions 7 and 8 hold when the sequence of observation locations (s i ) i∈N is a randomly perturbed regular grid, as in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

Lemma 3 (see [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]). For i ∈ N, let s i = g i + i , where (g i ) i∈N is a sequence with, for N ∈ N, {g 1 , . . . , g N d } = {(i 1 , . . . , i d ); i 1 = 1, . . . , N, . . . , i d = 1, . . . , N } and where ( i ) i∈N is a sequence of i.i.d. random variables with distribution on [-1/2 + δ, 1/2 -δ] d with 0 < δ < 1/2. Then, Condition 7 holds almost surely, provided that, for θ = θ 0 , there exists i ∈ Z d \{0} for which k Y,θ (i + 1 -2 ) and k Y,θ 0 (i + 1 -2 ) are not almost surely equal.

Furthermore, Condition 8 holds almost surely, provided that for (χ 1 , . . . , χ p ) = (0, . . . , 0), there exists i ∈ Z d \{0} for which p =1 χ ∂k Y,θ 0 (i + 1 -2 )/∂θ is not almost surely equal to zero.

Cross Validation

We consider the cross validation estimator consisting of minimizing the average of the leaveone-out square errors.

Since the leave-one-out errors do not depend on the variance k Y,θ (0), we introduce some additional notation. In Sections 6.5.3 and 6.5.4, we let Θ = [σ 2 inf , σ 2 sup ] × S where 0 < σ 2 inf < σ 2 sup < ∞ are fixed and where S is compact in R p-1 . We let θ = (σ 2 , ψ) with σ 2 inf ≤ σ 2 ≤ σ 2 sup and ψ ∈ S. We assume that for θ ∈ Θ, k Y,θ = σ 2 c Y,ψ , with c Y,ψ a stationary correlation function. Similarly, we let θ 0 = (σ 2 0 , ψ 0 ). For ψ ∈ S, we let

C ψ = c Y,ψ (s i -s j ) i,j=1,...,n . Cross validation is defined for n ∈ N by ψCV ∈ argmin ψ∈S CV ψ , (6.8) 
with

CV ψ = 1 n y C -1 ψ diag(C -1 ψ ) -2 C -1 ψ y,
where diag(M ) is obtained by setting the off-diagonal elements of a square matrix M to zero. The criterion CV ψ is the average of the leave-one-out square errors, as is shown for instance in [START_REF] Dubrule | Cross validation of Kriging in a unique neighborhood[END_REF][START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF]. More precisely, if we let ŷi,ψ be the best linear predictor of y i based on (y 1 , . . . , y i-1 , y i+1 , . . . , y n ), assuming that Y has covariance function σ 2 c Y,ψ , for any choice of σ 2 ∈ [σ 2 inf , σ 2 sup ], then we have

CV ψ = 1 n n i=1 (y i -ŷi,ψ ) 2 .
In particular, we point out that ŷi,ψ does not depend on σ 2 , because the best linear predictors from the two covariance functions σ 2 1 c Y,ψ and σ 2 2 c Y,ψ are the same, for any

σ 2 1 , σ 2 2 ∈ [σ 2 inf , σ 2 sup ].
Let us insist on the fact that we consider here a cross validation estimator of the correlation parameter ψ 0 but that we do not consider a cross validation estimator of σ 2 0 . Indeed, we consider a cross validation estimator obtained by minimizing the average of the leave-one-out square errors, that depends only on ψ, not on σ 2 .

The asymptotic behaviour of ψCV was studied in the Gaussian framework in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] and under increasing-domain asymptotics.

The next identifiability condition is also made in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

Condition 9. For all χ > 0, we have

lim inf n→∞ inf ||ψ-ψ 0 ||≥χ 1 n n i,j=1 (c Y,ψ (s i -s j ) -c Y,ψ 0 (s i -s j )) 2 > 0.
The next theorem provides the consistency of the cross validation estimator.

Theorem 5. Consider the setting of Section 6.5.1 for Z, T , Y and (s i ) i∈N . Assume that Conditions 4, 5, 6 and 9 hold. Then, as n → ∞,

ψCV p → ψ 0 .
The next condition is a local identifiability condition.

Condition 10. For any (χ 1 , . . . , χ p-1 ) = (0, . . . , 0), we have

lim inf n→∞ 1 n n i,j=1   p-1 =1 χ ∂ ∂ψ (c Y,ψ 0 (s i -s j ))   2 > 0.
In the next theorem, we provide the asymptotic normality of the cross validation estimator. In this theorem, the matrices N ψ 0 and Γ ψ 0 depend on the number of observation locations. Theorem 6. Consider the setting of Section 6.5.1 for Z, T , Y and (s i ) i∈N . Assume that Conditions 4, 5, 6, 9 and 10 hold. Let N ψ 0 be the (p -1) × (p -1) matrix defined by

(N ψ 0 ) i,j = - 8 n tr ∂C ψ 0 ∂ψ j C -1 ψ 0 diag(C -1 ψ 0 ) -3 diag C -1 ψ 0 ∂C ψ 0 ∂ψ i C -1 ψ 0 C -1 ψ 0 + 2 n tr ∂C ψ 0 ∂ψ j C -1 ψ 0 diag(C -1 ψ 0 ) -2 C -1 ψ 0 ∂C ψ 0 ∂ψ i C -1 ψ 0 + 6 n tr diag(C -1 ψ 0 ) -4 diag C -1 ψ 0 ∂C ψ 0 ∂ψ i C -1 ψ 0 diag C -1 ψ 0 ∂C ψ 0 ∂ψ j C -1 ψ 0 C -1 ψ 0 .
Let Γ ψ 0 be the (p-1)×(p-1) covariance matrix defined by

(Γ ψ 0 ) i,j = Cov(n 1/2 ∂CV ψ 0 /∂ψ i , n 1/2 ∂CV ψ 0 /∂ψ j ). Let Q ψ 0 ,n be the distribution of √ n( ψCV -ψ 0 ). Then, as n → ∞, d w Q ψ 0 ,n , N [0, N -1 ψ 0 Γ ψ 0 N -1 ψ 0 ] → 0. (6.9) 
In addition,

lim sup n→∞ λ 1 (N -1 ψ 0 Γ ψ 0 N -1 ψ 0 ) < +∞. (6.10) 
Similarly as for maximum likelihood, Condition 9 is a global identifiability condition for the correlation function. In the same way, Condition 10 is a local identifiability condition for the correlation function around ψ 0 .

We remark that the conditions for cross validation imply those for maximum likelihood. Finally, similarly as for maximum likelihood, we point out that Conditions 9 and 10 hold in the case of a randomly perturbed regular grid, as in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

Lemma 5 (see [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]). Let (s i ) i∈N and ( i ) i∈N be as in Lemma 3. Then, Condition 9 holds almost surely, provided that, for ψ = ψ 0 , there exists i ∈ Z d \{0} for which c Y,ψ (i + 1 -Remark 7. Here we have provided the asymptotic properties of cross validation by minimization of the average of the square leave-one-out errors for estimating ψ 0 . This corresponds to an extension of [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] to the transformed Gaussian framework. We remark that there exist other cross validation methods that provide estimators of both ψ 0 and σ 2 0 [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification[END_REF][START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF][START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Zhang | Kriging and cross validation for massive spatial data[END_REF] but their asymptotic properties are not established under increasing-domain asymptotics, even for Gaussian processes (note that [START_REF] Bachoc | Cross-validation estimation of covariance parameters under fixed-domain asymptotics[END_REF] provides the fixed-domain asymptotic properties of one of these other cross validation methods for the exponential covariance function in dimension one). It would be interesting to extend the results of Section 6.5.3 to these other cross validation methods in future work.

Joint asymptotic normality

From Theorems 4 and 6, both the maximum likelihood and cross validation estimators converge at the standard parametric rate n 1/2 . Let us write θML = (σ 2 ML , ψML ). In the case where T is the identity function (that is, where we observe Gaussian processes instead of transformed Gaussian processes), numerical experiments tend to show that ψML is more accurate than ψCV [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. Indeed, when T is the identity function, maximum likelihood is based on the Gaussian probability density function of the observation vector.

In contrast, when T is not the identity function, ψML is an M-estimator based on a criterion which does not coincide with the observation probability density function anymore. Hence, it is conceivable that ψCV could become more accurate than ψML . Furthermore, it is possible that using linear combinations of these two estimators could result in a third one with improved accuracy [START_REF] Lavancier | A general procedure to combine estimators[END_REF][START_REF] Bates | The combination of forecasts[END_REF].

Motivated by this discussion, we now provide a joint central limit theorem for the maximum likelihood and cross validation estimators. Theorem 7. Consider the setting of Section 6.5.1 for Z, T , Y and (s i ) i∈N . Assume that Conditions 4, 5, 6, 9 and 10 hold. Let D θ 0 be the (2p -1) × (2p -1) block diagonal matrix with first p × p block equal to M θ 0 and second (p -1) × (p -1) block equal to N ψ 0 , with the notation of Theorems 4 and 6. Also let Ψ θ 0 be the (2p -1) × (2p -1) covariance matrix of the vector n 1/2 (∂L θ 0 /∂θ, ∂CV ψ 0 /∂ψ).

Let Q θ 0 ,n be the distribution of

√ n θML -θ 0 ψCV -ψ 0 .
Then, as n → ∞,

d w Q θ 0 ,n , N [0, D -1 θ 0 Ψ θ 0 D -1 θ 0 ] → 0. (6.11)
In addition,

lim sup n→∞ λ 1 (D -1 θ 0 Ψ θ 0 D -1 θ 0 ) < +∞. ( 6.12) 
Remark 8. From Theorem 7, considering any C 1 function f from S 2 → S such that f (ψ, ψ) = ψ for any ψ ∈ S, and applying the classical delta method, we obtain the asymptotic normality of the new estimator f ( ψML , ψCV ). A classical choice for

f is f (ψ 1 , ψ 2 ) = λψ 1 + (1 -λ)ψ 2
, which leads to linear aggregation [START_REF] Lavancier | A general procedure to combine estimators[END_REF][START_REF] Bates | The combination of forecasts[END_REF]. We remark that selecting an optimal λ leading to the smallest asymptotic covariance matrix necessitates an estimation of the asymptotic covariance matrix in Theorem 7. We leave this as an open problem for further research.

Remark 9. In all the results of Section 6.5, the condition that F is non-decreasing in Condition 3 ii) is actually not needed. It can indeed be verified that all the proofs for Section 6.5 do not use this condition. In fact, Condition 3 ii) is used in Lemma 1 to show that covariance matrices have their smallest eigenvalues bounded away from zero. This is already the case in Section 6.5, thanks to Condition 5.

Remark 10. The results and proofs in Section 6.5 rely significantly on the assumption that the set of covariance parameters Θ is compact. This is a common assumption in the literature [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF][START_REF] Kaufman | The role of the range parameter for estimation and prediction in geostatistics[END_REF][START_REF] Shaby | Tapered covariance: Bayesian estimation and asymptotics[END_REF]. Nevertheless, this assumption is, in some aspects, unnatural. For instance, the domain of allowed values of estimators of the (constant) variance of a stationary random field is often [0, ∞).

An extension of the results of this paper to non-compact sets Θ of covariance parameters, while valuable, could turn out to be very challenging, and would definitely require new proof arguments. For instance, we remark that letting correlation length parameters go to zero or infinity may yield asymptotic situations and techniques that are qualitatively different from the ones tackled in this paper, see for instance [START_REF] Salem | Gaussian process based dimension reduction for goal-oriented sequential design[END_REF][START_REF] Xu | Maximum likelihood estimation for a smooth Gaussian random field model[END_REF].

Discussions of extensions 6.6.1 Nugget effect

In Section 6.5, Condition 5 implies that the covariance function k Y,θ is continuous for any θ ∈ Θ. Furthermore the true covariance function k Y = k Y,θ 0 of Y is also continuous. Hence, the results of Section 6.5 hold for models of continuous covariance functions and with errorfree observations of continuous transformed Gaussian processes.

Here, we provide an extension of the results of Section 6.5 to a nugget effect on the covariance function k Y,θ . We assume that for θ ∈ Θ, the covariance function k Y,θ is of the form k Y,θ (s) = kY,θ (s) + η θ 1 s=0 , s ∈ R d , where kY,θ is a continuous stationary covariance function on R d and η θ ≥ 0. In this case, Condition 5 does not hold, but it can be replaced by the following condition.

Condition 11. We have inf θ∈Θ η θ > 0.

We also assume that, for s ∈ R d , Y (s) = T (Z(s)) + Ň (s), where Y and Z still have zero-mean and where there exists Ť : R → R satisfying Condition 3, such that, for s

∈ R d , Ň (s) = Ť (ζ(s)), where ζ is a centered Gaussian random field, independent of Z, with Cov(ζ(u), ζ(v)) = κ1 u=v for u, v ∈ R d , with κ > 0.
We also assume that Ň has zero-mean. We still assume that k Z satisfies Condition 2. Note that k Z is thus not necessarily continuous and can also include a nugget effect as described in Remark 2.

In this setting, the results of Section 6.5 can be extended in a relatively straightforward way.

Proposition 1. Consider the setting of Section 6.6.1. Let Condition 5 be replaced by Condition 11. Let Conditions 4, 6, 7, 8, 9 and 10 be unchanged and applied to the new form of k Y,θ given in this section. Then Theorems 3, 4, 5, 6 and 7 still hold.

We remark that in Proposition 1 we still address the well-specified case. In particular, there exists θ 0 ∈ Θ such that k Y,θ 0 (0) = kY,θ 0 (0) + η θ 0 = Var(T (Z(s))) + Var( Ť (ζ(s))), for all s ∈ R d . We also remark that the setting considered here is equivalent to additive i.i.d. observation errors on a transformed Gaussian process, since the observation points are twoby-two distinct.

Unknown mean

Throughout Section 6.5, we assume that the mean function of Y is constant, known and equal to zero (in particular, the maximum likelihood estimator in (6.5) is based on the density of a centered Gaussian vector). The results of Section 6.5 also apply to the case of any constant known mean ν 0 ∈ R for Y , since one can then also observe the centered process Y -ν 0 . However, the results of Section 6.5 do not apply to the case of a constant unknown mean ν 0 for Y .

In fact, even for (non-transformed) Gaussian processes, there exist very few results on the joint estimation of a constant mean and of covariance parameters by maximum likelihood or cross validation. For instance, the reference [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF], that we extend from the Gaussian to transformed Gaussian case, considers a constant known mean. Among these few results, one can mention [START_REF] Cressie | The asymptotic distribution of REML estimators[END_REF][START_REF] Mardia | Maximum likelihood estimation of models for residual covariance in spatial regression[END_REF], but the conditions there are more difficult to check and to interpret that those given in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

In future work, it would be interesting to extend the results of Section 6.5 to transformed Gaussian processes with constant unknown mean. For instance, one may consider a likelihood criterion to minimize of the form

1 n log(det(R θ )) + (y -v ν ) R -1 θ (y -v ν ) ,
where θ is still the covariance parameter, ν is the mean parameter and v ν = (ν, . . . , ν) is of size n. In this case a first task is to extend the results of [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] to show the consistency and asymptotic normality of the maximum likelihood estimators θML and νML when Y is Gaussian. A second task is to further extend these results to the case where Y is transformed Gaussian.

Finally, in the case where Z or Y has non-zero constant mean, Theorem 2 can be extended as follows.

Corollary 3. Consider the setting of Theorem 2, with the only modification that the Gaussian process Z has a constant mean function µ 0 ∈ R and that the transformed process Y = T (Z) has a constant mean function ν 0 ∈ R. Then the conclusion of Theorem 2 holds, with y replaced by y -v ν 0 . This extension of Theorem 2 can be relevant and useful to the question of extending the results of Section 6.5, as discussed above.

Illustration

In this section we numerically illustrate the convergence of different estimators as stated in Corollary 1 and Theorems 4, 6 and 7. We use the following simulation setup in dimension d = 2. For n = 4(m + 1/2) 2 we define the grid {-m, . . . , m} 2 and add i.i.d. variables with uniform distribution on [-0.4, 0.4] 2 to obtain n observation points. Thus, we have a distance of at least ∆ = 0.2 between the individual observation locations. The zero-mean Gaussian process Z has stationary covariance function k Z (s) = σ 2 0 exp(-||s||/ρ 0 ), s ∈ R 2 and we will denote this reference case as the Gaussian case throughout. We define the zero-mean process Y = T (Z) = Z 2 -σ 2 0 and we will denote this case as the non-Gaussian case. Recall that k Y (s) = 2k Z (2s) = 2σ 4 0 exp(-2||s||/ρ 0 ) (see Remark 5). We set the marginal variance to σ 2 0 = 1.5 and the range to ρ 0 = 2. Hence, in the non-Gaussian case, the marginal variance of Y is 2σ 4 0 = 4.5 with a range of ρ 0 /2 which is equal to a half of that of Z.

To start, we consider the maximum likelihood estimates of the marginal variance parameters, when the range of Y or Z is assumed to be known, i.e., Corollary 1. Figure 6.1 illustrates the empirical densities of L n in Corollary 1 for n = 100, 400 and 900 observation locations based on N = 2500 replicates. For moderate n sizes and in the non-Gaussian case, the asymptotic variance σ 2 ∞ := n Var(σ 2 ML -2σ 4 0 ) (Corollary 1) can be calculated based on (6.26) and using

Cov(y i y j , y k y l ) = 4(k 2 i,k k 2 j,l + k 2 i,l k 2 j,k ) + 16(k i,k k i,l k j,k k j,l + k i,j k i,l k j,k k k,l + k i,j k i,k k j,l k k,l ),
with k i,j = k Z (s i -s j ). The above display follows from tedious computations based on Isserlis' theorem. The densities in red in Figure 6.1 are based on the asymptotic distribution

N [0, σ 2 ∞ ].
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For the general setting, when estimating jointly the variance and range parameter, the asymptotic bivariate covariance matrix is challenging to compute (see Theorem 4) and thus Figure 6.2 illustrates the empirical densities and densities based on the empirical bivariate covariance matrix.

We now consider not only maximum likelihood estimation of the variance and range, but also cross validation estimation of the range (see the beginning of Section 6.5.3). We have observed that the range estimates based on cross validation are much more variable, and in many situations the maximum was attained at the (imposed) boundary. Here we used the bound [2/15, 12], i.e., smaller than the minimal distance between two observation locations and 6 (resp. 12) times the diameter of the observation points of Z (resp. Y ). Estimates at or close to the boundary indicate convergence issues and would imply a second, possibly manual, inspection. For the reported results, we eliminated all cross validation cases that yielded estimates outside [0.14, 11.4]. Figure 6.3 shows the mean squared error, squared bias and variance of σ2 ML , ρML and ρCV under different settings. For maximum likelihood, we consider the univariate case (one parameter is estimated while the other is known) and the bivariate case (both parameters are jointly estimated). For cross validation, only the range parameter is estimated (see the beginning of Section 6.5.3), and thus only the univariate case is considered. The mean squared error is dominated by the variance component. Univariate maximum likelihood estimation for Gaussian cases have low bias and the lowest variance (top left and right panel). Joint maximum likelihood estimation has a somewhat larger variance than individual estimation. Surprisingly, cross validation for Gaussian cases has a higher variance compared to cross validation for non-Gaussian cases. Recall that Theorems 4, 6 and 7 show that, as n increases, the distribution of the standardized estimation error is close to a Gaussian distribution in terms of the metric d w . In Figure 6.4, we illustrate this by computing one-dimensional Wasserstein distances between the empirical distribution of the standardized estimation errors and Gaussian distributions. The figure shows the Wasserstein distance (p = 1) as a function of the number of observation locations n for individual parameters and for specific bivariate settings (similarly as for Figure 6.3). In each case, the samples have been centered around the true mean (true parameter values) and standardized by an empirical standard deviation (n-weighted average over all the samples). Their empirical distribution is compared to the standardized Gaussian distribution. The top left panel shows that the densities of the cross validation parameters are converging slowest whereas their mean squared error is comparable (see Figure 6.3); the densities are highly skewed and thus lead to much larger Wasserstein distances compared to the distributions of the maximum likelihood derived parameters. For the bivariate maximum likelihood estimation the marginal distributions have very similar Wasserstein distances; in the center panels: the dashed and solid colored lines are visually hardly separable. As suggested by the individual panels of Figures 6.1 and 6.2, convergence in the Gaussian case is much faster compared to the non-Gaussian case. The right column of Figure 6.4 illustrates the joint asymptotic normality of the range parameter estimators by maximum likelihood and cross validation. The gray lines there illustrate Theorem 7 and are Wasserstein distances for linear combinations of the range estimates by maximum likelihood and cross validation, i.e., λρ ML + (1 -λ)ρ CV for λ = j/10, j = 1, . . . , 9. The highly skewed distribution of the cross validation-estimated range parameter for Gaussian processes is clearly visible. In the non Gaussian case, the effect of the skewness is less pronounced since the maximum likelihood is skewed as well. 

Conclusion

We have shown that the covariance parameters of transformed Gaussian processes can be estimated by cross validation and Gaussian maximum likelihood, with the same rate of convergence as in the case of non-transformed Gaussian processes. In particular, Gaussian maximum likelihood works well asymptotically, despite the fact that the observations do not have a Gaussian distribution. Hence Gaussian maximum likelihood is here robust with respect to non-Gaussian data. This provides the first step of a theoretical validation of the use of Gaussian maximum likelihood in frequent cases where the data are non-Gaussian.

In future research, it would be interesting to extend the results of this paper to other classes of non-Gaussian random fields rather than only transformed Gaussian processes. In addition, the asymptotic analysis of estimators of the transformation of transformed Gaussian processes is of great interest.

Proof. Let ∆ ≥ 0, i 1 , . . . , i r 1 ∈ N and j 1 , . . . , j r 2 ∈ N such that min a=1,...,r 1 ,b=1,...,r 2 |x ia -x j b | ≥ ∆.

Let 3 ∼ N [0, I r 1 ] and 4 ∼ N [0, I r 2 ], 3 and 4 being independent. Let R be the

r 2 × r 1 matrix (k X (x ja , x i b )) a,b , let C 1 be the r 1 × r 1 matrix (k X (x ia , x i b )) a,b and let C 2 be the r 2 × r 2 matrix (k X (x ja , x j b )) a,b . Let M = RC -1 1 .
Let K be a matrix square root of C 2 -RC -1 1 R . Let K 1 be the unique symmetric matrix square root of C 1 .

Then the vector ((K 1 3 ) , (M K 1 3 + K 4 ) ) has the same distribution as X(x i 1 ), . . . , X(x ir 1 ), X(x j 1 ), . . . , X(x jr 2 ) .

For i = 1, 2, for x = (x 1 , . . . , x r i ) ∈ R r i , let f i (x) = F (x 1 ) • • • F (x r i ) ∈ R. Then we have Cov(W (x i 1 ) • • • W (x ir 1 ), W (x j 1 ) • • • W (x jr 2 )) = Cov (f 1 (K 1 3 ), f 2 (M K 1 3 + K 4 )) .
By a Taylor expansion, there exists a random vector 5 belonging to the segment with endpoints K 4 and M K 1 3 + K 4 such that, with G 2 ( 5 ) the gradient column vector of f 2 at 5 , we have

f 2 (M K 1 3 + K 4 ) = f 2 (K 4 ) + (M K 1 3 ) G 2 ( 5 ). This yields Cov(W (x i 1 ) . . . W (x ir 1 ), W (x j 1 ) . . . W (x jr 2 )) = Cov(f 1 (K 1 3 ), 3 K 1 M G 2 ( 5 )) ≤ E[f 2 1 (K 1 3 )] E[( 3 K 1 M G 2 ( 5 )) 2 ].
From Condition 2 ii) and from the equivalence of norms, we obtain ||M || op ≤ C sup e -C inf ∆ and ||K 1 || op ≤ C sup , where C sup and C inf do not depend on i 1 , . . . , i r 1 , j 1 , . . . , j r 2 , ∆. By equivalence of norms, we then obtain, with C sup and C inf not depending on i 1 , . . . , i r 1 , j 1 , . . . , j r 2 , ∆,

Cov(W (x i 1 ) . . . W (x ir 1 ), W (x j 1 ) . . . W (x jr 2 )) ≤ C sup e -C inf ∆ E[f 2 1 (K 1 3 )]E[(|| 3 || ||G 2 ( 5 )||) 2 ]. Now, || 5 || ≤ ||M K 1 3 || + ||K 4 || ≤ C sup (|| 3 || + || 4 ||) ,
from Condition 2 ii), where, again, C sup does not depend on i 1 , . . . , i r 1 , j 1 , . . . , j r 2 , ∆. Furthermore,

||K 1 3 || ≤ C sup || 3 ||. Eventually, we have Cov(W (x i 1 ) • • • W (x ir 1 ), W (x j 1 ) • • • W (x jr 2 )) ≤ C sup exp(-C inf ∆) E[f 2 1 (K 1 3 )] E || 3 || sup ||x||≤Csup(|| 3 ||+|| 4 ||) ||G 2 (x)|| 2 .
From Condition 3 i), we have |f 1 (K Thus, (6.13) implies the result of the lemma and it suffices to prove (6.13). Let i, j, k, l ∈ {1, . . . , n} and let ∆ = max(d(s k , (s i , s j )), d(s l , (s i , s j ))). By symmetry, we can consider that d(s k , (s i , s j )) = ∆.

If If |s j -s l | ≤ |s k -s l | and |s j -s l | ≤ |s i -s l |, we obtain the same bound by symmetry. We have thus considered all possible cases and the proof of (6.13) is concluded.

In the context of Theorem 2, the following lemma provides an approximation of V n , based on replacing A by a sparse matrix. We remark that a similar approximation was shown in a time series context in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF]. Nevertheless, we find that our assumptions on the random field Y are more transparent and interpretable than the assumptions in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF], where cumulants are used. Because of these differences of assumptions, our proof of the following lemma differs from that in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF].

Then, we have α({v (1) , . . . , v (a) }, {w (1) , . . . , w (b) }) ≤ C sup e -C inf ∆ , where C sup and C inf may depend on a, α 1 , . . . , α a but do not depend on b, (J(j, j)) j=1,...,b, j=1,...,β j and ∆.

Proof. Let I = {I(i, ĩ); i = 1, . . . , a, ĩ = 1, . . . , α i } and let J = {J(j, j); j = 1, . . . , b, j = 1, . . . , β j }. In (6.15), any of the events A (resp. B) is an event defined on the set of random variables {Z(s i )} i∈I (resp. {Z(s j )} j∈J ). We thus obtain α {v (1) , . . . , v (a) }, {w (1) , . . . , w (b) } ≤ α {Z(s i )} i∈I , {Z(s j )} j∈J := sup P(A ∩ B) -P(A)P(B) ; A ∈ σ({Z(s i )} i∈I ), B ∈ σ({Z(s j )} j∈J ) .

Let I 1 < • • • < I ᾱ be such that {I 1 , . . . , I ᾱ} = I and let v Z = (Z(s I 1 ), . . . , Z(s Iᾱ )) . Let J 1 < • • • < Jβ be such that {J 1 , . . . , Jβ} = J and let w Z = (Z(s J 1 ), . . . , Z(s J β )) . From Lemma 1 in Section 2.1 of [START_REF] Doukhan | Mixing, Properties and Examples[END_REF], we have α {Z(s i )} i∈I ,{Z(s j )} j∈J ≤ sup Cov(v v Z , w w Z ) ; Var(v v Z ) = 1, Var(w w Z ) = 1 . (6.16) Let v and w be vectors belonging to the set in (6.16). The smallest eigenvalues of the covariance matrices of v Z and w Z are larger that a constant C inf , not depending on I and J , since k Z satisfies Condition 2. Thus we have where the different C sup and C inf do not depend on b, J and ∆. This concludes the proof from (6.16).

1 = Var(v v Z ) = v Cov(v Z )v ≥ C inf ||v|| 2 .

It follows that ||v||

Lemma 11. Consider a sequence (x i ) i∈N of points in R d satisfying Condition 1. Let τ > 0 be fixed. For n ∈ N, let (A θ ) θ∈Θ and (B θ ) θ∈Θ be families of n × n matrices. Assume that for all n ∈ N, i, j = 1, . . . , n and θ ∈ Θ,

|(A θ ) i,j | ≤ C sup 1 + |x i -x j | d+τ and |(B θ ) i,j | ≤ C sup 1 + |x i -x j | d+τ
where C sup does not depend on n, i, j, θ. Then we have for all n ∈ N, i, j = 1, . . . , n and θ ∈ Θ,

|(A θ B θ ) i,j | ≤ C sup 1 + |x i -x j | d+τ
where C sup does not depend on n, i, j, θ. Proof. Equation (6.20) holds from (6.17). Then, (6.21) follows from (6.20) as in Lemma D.6 in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF].

6.A.2 Proofs of the main results

Proof of Lemma 1. As a special case of Lemma 7, k satisfies Condition 2 i).

Let us now show that k satisfies Condition 2 ii). Let (x i ) satisfy Condition 1. Let n ∈ N be fixed and let R be the n × n covariance matrix k(x i -x j ) i,j=1,...,n . Let a 1 , . . . , a n ∈ R. We have n i,j=1 a i a j R i,j = Var n i=1 a i F (X(x i )) .

We now let z = (X(x 1 ), . . . , X(x n )) and g : R n → R be defined by g(t) = n i=1 a i F (t i ). The gradient of g at t is ∇g(t) = (a 1 F (t 1 ), . . . , a n F (t n )) . We use the inequality in Theorem 3.7 in [START_REF] Cacoullos | On upper and lower bounds for the variance of a function of a random variable[END_REF]. This yields 

a i a j R i,j ≥ C inf n i=1 E 2 [(∇g(z)) i ] = C inf n i=1 a 2 i E[F (z i )] 2 = C inf n i=1 a 2 i E[F (z 1 )] 2 .
From Condition 3, the above expectation is non-zero, which concludes the proof.

Proof of Lemma 2. The fact that k satisfies Condition 2 ii) follows from Theorem 4 in [START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF].

Let us now consider the case where F is defined by F (x) = x 2r + u. Since we consider a covariance function we can assume that u = 0 without loss of generality. Assume also that k( 0 

2r i c i λ 2r-i A i 1 A 2r-i 2 = 2r i=0 2r i c i λ 2r-i Cov A 2r 1 , A i 1 A 2r-i 2 .
By independence of A 1 and A 2 , we obtain, for i = 0, . . . , 2r,

Cov A 2r 1 , A i 1 A 2r-i 2 = E[A 2r-i 2 ] E[A 2r+i 1 ] -E[A 2r 1 ]E[A i 1 ] . ( 6.22) 
From Isserlis' theorem, one can show that (6.22) is zero if i is odd and is strictly positive if i is even. As a consequence, we have

k (a -b) = r i=0 α i k(a -b) 2i
with α 1 , . . . , α r > 0. Hence, the Fourier transform of k is a linear combination of multiple convolutions of the Fourier transform of k, with strictly positive components. Since the Fourier transform of k is strictly positive everywhere, then also the Fourier transform of k is strictly positive everywhere. Hence, from Theorem 4 in [START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF], k satisfies Condition 2 ii).

Proof of Theorem 1. Condition 1 and Lemma 6 in [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF] imply that the spectral norms of R -1 and R are bounded functions of n. Let C sup = sup n λ 1 (R) < ∞ and C inf = inf n λ n (R) > 0.

We write .23) We remark that the above sum is well-defined because the eigenvalues of I -R/C sup are between 0 and 1 -C inf /C sup . We denote M = I -C -1 sup R and h i,j = |s i -s j |. Let 1 ≤ A < ∞ and a > 0 be fixed such that M i,j ≤ Ae -2ah i,j . Let δ = inf i,j∈N,i =j |s i -s j | > 0 (Condition 1). Let D < ∞ be a constant such that D ≥ 1 and, for any L ≥ δ and i ∈ N, the set {j ∈ N; |s i -s j | ≤ L} has no more than (D/2)L d elements.

R -1 = 1 C sup I -I - R C sup -1 = 1 C sup ∞ =0 I - R C sup . ( 6 
Let 0 < µ < ∞ be fixed. We show by induction over ∈ N that there exists a constant 1 ≤ ϕ < ∞, depending on µ but not depending on , i, j, such that for ≤ µ log(h i,j ),

|(M ) i,j | ≤ A ϕ D h d -d

i,j e -ah i,j . (6.24)

In the case log(h i,j ) < 0, there is nothing to prove in (6.24), so we consider i, j such that log(h i,j ) ≥ 0 when proving (6.24). For = 1, (6.24) holds. Assume that (6.24) holds for some ∈ N. We have + A +1 ϕ D e -ah i,j e -ah i,j r∈N Qr dµ log(h i,j ) e -a(r-1) ,

|(M +1 ) i,j | =
where for the last inequality we let Qr d be an upper bound on the cardinality of {b ∈ N; |s b -s i | ∈ [r -1, r]} for all i ∈ N. The constant Q is finite and depends only on d and δ from Condition 1. We also let ≤ µ log(h i,j ) to show the last above inequality. Hence, in order to finish the proof of (6.24), it remains to show that the term (.) in the above display is a bounded function of h i,j , and to let ϕ/2 ≥ 1 be a bound for the term (.). We have, for h i,j large enough, with • the integer ceiling, e -ah i,j r∈N Qr dµ log(h i,j ) e -a(r-1) = Qe a e -ah i,j r∈N r dµ log(h i,j ) e -ar = Qe a e -ah dµ log(h i,j ) ! 1 1 -e -ar/2 . The above function of h i,j clearly goes to 0 as h i,j goes to ∞. Thus, the above term (.) is bounded and thus (6.24) is proved.

Coming back to (6.23), using (6.24) and using the triangle inequality, we obtain, letting ∆ = 1 -C inf /C sup , and for h i,j large enough, (R -1 ) i,j ≤ 1≤ ≤µ log(h i,j )

A ϕ D h d -d i,j e -ah i,j + µ log(h i,j )≤ ≤∞ ∆ ≤ µ log(h i,j )(AϕD) µ log(h i,j ) h dµ log(h i,j ) i,j e -ah i,j + ∆ µ log(h i,j ) 1 -∆ = µ log(h i,j )(AϕD) µ log(h i,j ) h dµ log(h i,j ) i,j e -ah i,j + h µ log(∆) i,j 1 -∆ . (6.25)

In the above display, for any τ < ∞ in the statement of Theorem 1, we can choose µ such that µ log(∆) ≤ -d -τ . Then, it is clear that the first summand in (6.25) is also smaller than a constant (depending on τ ) time h -d-τ i,j

. This concludes the proof of Theorem as n → ∞. If V = 0, then, from Chebyshev inequality, L φ(n) converges to a Dirac mass at zero and so (6.29) does not hold, yielding a contradiction. Hence it remains to consider the case φ(n) Var(V φ(n) ) → V ∈ (0, ∞) as n → ∞ and where (6.29) holds.

To reach a contradiction, we will show that

φ(n) V φ(n) -E[V φ(n) ] √ V → n→∞ N [0, 1].
We let, for k, l ∈ N and r ≥ 0 ᾱk,l (r) = sup n∈N sup |P(A ∩ B) -P(A)P(B)| ;

A ∈ σ(X n (s I 1 ), . . . , X n (s Ik )), B ∈ σ(X n (s J 1 ), . . . , X n (s Jl )), k ≤ k, l ≤ l, I 1 , . . . , Ik, J 1 , . . . , Jk ∈ {1, . . . , n}, min k=1,..., k, l=1,..., l |s I k -s J l | ≥ r .

Let N K = sup n∈N max i=1,...,n n j=1 1 |s j -s i |≤K . Then N K ≤ C sup , where C sup depends only on K, d and δ from Condition 1. We remark that for i = 1, . . . , n, X n (s i ) is a function of the variables Z(s I(n,i,1) ), . . . , Z(s I(n,i,γ(n,i)) ), with γ(n, i) ≤ N K and with |s I(n,i,γ) -s i | ≤ K for γ = 1, . . . , γ(n, i). Furthermore, for |s i -s j | ≥ r we have for γ i = 1, . . . , γ(n, i) and for γ j = 1, . . . , γ(n, j) that |s I(n,i,γ i ) -s I(n,j,γ j ) | ≥ r -2K. Hence, form Lemma 10, we have, for any k ∈ N sup l∈N ᾱk,l (r) ≤ C sup e -C inf r , where C sup and C inf may depend on k and K.

We now let D = (s i ) i∈N , D n = (s 1 , . . . , s n ), Z i,n = n -1/2 X n (s i ) for n ∈ N and i = 1, . . . , n. We also let c i,n = n -1/2 for n ∈ N and i = 1, . . . , n. We remark that Z i,n /c i,n can be written as f (w) where w is a Gaussian vector of dimension less than N K , with variances 1 and where |f (x)| ≤ C sup e Csup|x| , where C sup does not depend on n ∈ N and i = 1, . . . , n. One can thus show, from the Cauchy-Schwarz inequality and with the same techniques as in Lemma 6, that for any q > 0 lim With the previous notation and with (6.33), one can show that all the assumptions of Corollary 1 in [START_REF] Jenish | Central limit theorems and uniform laws of large numbers for arrays of random fields[END_REF] are satisfied. This shows (6.32) and thus concludes the proof.

Proof of Theorem 3. Let θ ∈ Θ be fixed. We have

Var(L θ ) = 1 n n Var 1 n y R -1 θ y .
From Lemma 13 and Theorem 2, applied with A n = R -1 θ , we obtain Var(L θ ) → 0 as n → ∞. For i = 1, . . . , p,

∂L θ ∂θ i = 1 n tr R -1 θ ∂R θ ∂θ i + 1 n y -R -1 θ ∂R θ ∂θ i R -1 θ y ,
which can be rewritten for convenience as

∂L θ ∂θ i = 1 n tr (P θ,i ) + 1 n y Q θ,i y with P θ,i = R -1 θ ∂R θ ∂θ i and Q θ,i = -R -1 θ ∂R θ ∂θ i R -1 θ .
The matrices R -1 θ and ∂R θ /∂θ i are both valid choices for A θ and B θ in Lemma 11. From Gerschgorin Circle Theorem (GCT) and Lemma 4 in [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF], we obtain sup θ∈Θ λ 1 (P θ,i P θ,i ) ≤ C sup and sup θ∈Θ λ 1 (Q θ,i ) ≤ C sup . This, in turn implies that sup θ∈Θ ρ 1 (P One can check that ∂L θ 0 /∂θ i has mean zero for i = 1, . . . , p, since the mean value of ∂L θ 0 /∂θ i is calculated as if Y were a Gaussian process with zero-mean and covariance function k Y,θ 0 . Let ∂L θ 0 /∂θ be the gradient column vector of L θ at θ 0 . From Theorem 2, with L Σ,θ 0 ,n the distribution of √ n∂L θ 0 /∂θ, as n → ∞, d w (L Σ,θ 0 ,n , N [0, Σ θ 0 ]) → 0. (6.34)

In addition, for i ∈ {1, . . . , p}, the sequence (n Var(∂L θ 0 /∂θ i )) is bounded, which implies that the elements of Σ θ 0 are bounded too.

One can check that the mean value of ∂L θ 0 /∂θ i ∂θ j is (M θ 0 ) i,j (also because this mean value is calculated as if Y were a Gaussian process with zero-mean and covariance function k Y,θ 0 ). Also, for i, j = 1, . . . , p, we have ∂L θ /∂θ i ∂θ j = 1 n tr(C θ,i,j ) + 1 n (y D θ,i,j y),

where C θ,i,j and D θ,i,j are sums of products of the matrices R -1 θ , R θ and the first and second derivative matrices of R θ (see e.g., [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]). Hence, from Condition Thus, the variance of ∂L θ 0 /∂θ i ∂θ j goes to zero as n → ∞ from Theorem 2. Hence ∂L θ 0 /∂θ i ∂θ j → p (M θ 0 ) i,j (6.35) as n → ∞.

It can be shown, similarly as in the proof of Proposition 3. Also, λ 1 (M θ 0 ) is clearly bounded as n → ∞. From Theorem 2, λ 1 (Σ θ 0 ) is bounded as n → ∞. Hence, by considering subsequences along which M θ 0 and Σ θ 0 converge, and using (6.34), (6.35), (6.36) and (6.37), we can proceed as in the proof of Proposition D.10 in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] and show (6.6).

Proof of Theorem 5. Let ψ ∈ S be fixed. We have

Var(CV ψ ) = 1 n n Var 1 n y C -1 ψ diag(C -1 ψ ) -2 C -1 ψ y .
From Lemmas 11, 13 and 14 (that can be trivially adapted by replacing θ by ψ), as well as Theorem 2, applied with A n = C -1 ψ diag(C -1 ψ ) -2 C -1 ψ , we obtain Var(CV ψ ) → 0 as n → ∞. For i = 1, . . . , p -1,

∂CV ψ ∂ψ i = 2 n y A ψ,i y with A ψ,i = C -1 ψ diag(C -1 ψ ) -2 diag C -1 ψ ∂C ψ ∂ψ i C -1 ψ diag(C -1 ψ ) -1 -C -1 ψ ∂C ψ ∂ψ i C -1 ψ .
As in the proof of Theorem 3, GCT and Lemma 4 in [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF] In addition, for i ∈ {1, . . . , p -1}, the sequence (n Var(∂CV ψ 0 /∂ψ i )) is bounded and thus, the elements of Γ ψ 0 are bounded too. One can check that the mean value of ∂CV ψ 0 /∂ψ i ∂ψ j is (N ψ 0 ) i,j . Furthermore, from Theorem 2, the variance of ∂CV ψ 0 /∂ψ i ∂ψ j goes to zero as n → ∞. Hence, as n → ∞, ∂CV ψ 0 /∂ψ i ∂ψ j → p (N ψ 0 ) i,j .

(6.39)

It can be shown, similarly as in the proof of Proposition 3.7 in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] that lim inf n→∞ λ p-1 (N ψ 0 ) > 0. (6.40)

Hence, (6.10) follows. On the other hand, for i, j = 1, . . . , p -1, we have

∂CV ψ ∂ψ i ∂ψ j = 1 n y D ψ,i,j y,
where D ψ,i,j is computed as a sum of products of the matrices C -1 ψ , C ψ , the first and second derivative matrices of C ψ and the diag operator (see e.g., [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]). Hence, from Condition Also, λ 1 (N ψ 0 ) is clearly bounded as n → ∞. From Theorem 2, λ 1 (Γ ψ 0 ) is bounded as n → ∞. Hence, by considering subsequences along which N ψ 0 and Γ ψ 0 converge, and using (6.38), (6.39), (6.40) and (6.41), we can proceed as in the proof of Proposition D.10 in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] and show (6.9).

Proof of Lemma 4. We have, with θ = (σ 2 , ψ) ∈ Θ and θ 0 = (σ 2 0 , ψ 0 ),

1 n n i,j=1
(c Y,ψ (s i -s j ) -c Y,ψ 0 (s i -s j )) As in the proofs of Theorems 4 and 6, one can check that ∂L θ 0 /∂θ i has mean zero for i = 1, . . . , p and ∂CV ψ 0 /∂ψ i has mean zero for i = 1, . . . , p -1. Thus, we can rewrite

W n = J n -E[J n ] + o p (n -1/2 )
with

J n = 1 n y   p i=1 (λ M -1 θ 0 ) i A θ 0 ,i + p-1 i=1 (γ N -1 ψ 0 ) i B ψ 0 ,i   y.
As the vectors λ and γ as well as the matrices M -1 θ 0 and N -1 ψ 0 are fixed, the bound

  p i=1 (λ M -1 θ 0 ) i A θ 0 ,i + p-1 i=1 (γ N -1 ψ 0 ) i B ψ 0 ,i   k,l ≤ C sup 1 + |s k -s l | d+C inf
holds for all k, l ∈ {1, . . . , n}.

Let then L J,θ 0 ,n be the distribution of n 1/2 (J n -E[J n ]). Then, from Theorem 2, as n → ∞, d w (L J,θ 0 ,n , N [0, n Var(J n )]) → 0.

The variance can be written as

n Var(J n ) = p i=1 p j=1 (λ M -1 θ 0 ) i (λ M -1 θ 0 ) j (Σ θ 0 ) i,j + p-1 i=1 p-1 j=1 (γ N -1 ψ 0 ) i (γ N -1 ψ 0 ) j (Γ ψ 0 ) i,j + 2 p i=1 p-1 j=1 (λ M -1 θ 0 ) i (γ N -1 ψ 0 ) j (Ω θ 0 ) i,j
with

Ω i,j = Cov √ n ∂ ∂θ i L θ 0 , √ n ∂ ∂ψ j CV ψ 0 .
Hence, by applying product by blocks we get the matrix form expression

n Var(J n ) = λ , γ D -1 θ 0 Ψ θ 0 D -1 θ 0 λ γ .
We conclude the proof by applying the Wald Theorem.

Proof of Proposition 1. The proofs of the new versions of the theorems are direct extensions of the proofs of these theorems above. In particular, Condition 11 implies (6.17 Then one can check that the proof of Theorem 2 can be repeated, almost identically, by simply replacing Z by Ż and T by Ṫ . Finally, we remark that for (non-transformed) Gaussian processes with a nugget effect, [START_REF] Bachoc | Gaussian field on the symmetric group: Prediction and learning[END_REF][START_REF] Bachoc | A Gaussian process regression model for distribution inputs[END_REF] address the asymptotic properties of maximum likelihood. They observe that the arguments for Gaussian processes without nugget effect in [START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] can be extended directly to Gaussian processes with nugget effect.

Proof of Corollary 3.

When Y has constant mean ν 0 and Z has constant mean µ 0 , then we can apply Theorem 2 to the Gaussian process Ż = Z -µ 0 , to the transformation Ṫ defined by Ṫ (x) = T (x + µ 0 ) for x ∈ R and to the transformed process Ẏ = Ṫ ( Ż) -ν 0 . This yields a central limit theorem for quadratic forms based on the centered observation vector y -v ν 0 , which concludes the proof.

Note that when T satisfies Condition 3, then Ṫ also satisfies Condition 3.

Functional output: the output of the RISCOPE case was scalar. Hence, we focused our experiments in scalar-output black-boxes. However, most functional-output regression problems can be reduced to an aggregation of multiple scalar-output ones. Thus we think our algorithm would still be usable in those cases.

For instance, if the original output is a time series, an individual metamodel could be used to predict the output at each time instant. In that case, we could use our Ant Colony algorithm for tuning the structural parameters of each required metamodel. Another approach to deal with such an output could be to use the time index as an input, making the output scalar (see e.g., [START_REF] Rougier | Efficient emulators for multivariate deterministic functions[END_REF]). If we do so, we would require the new artificial input variable to remain always active in the model in order to be able to properly recover the output shape following prediction. This could be achieved by specifying a constraint to the algorithm, a possibility already implemented in the funGp model factory.

This research line would then consist in assessing the ability of our algorithm to find high quality metamodels in the case of functional-output codes modeled by one of the aforementioned approaches.

More factors and levels: in this thesis, we used our Ant Colony algorithm for calibrating five structural parameters: (i) the state of each input in the model, (ii) the dimension reduction method to use for each input, (iii) the projection dimension for each input, (iv) the kernel function of the model, and (v) the distance to measure similarities between functional input coordinates. We concentrated on those parameters since we found them to be the most relevant ones for our particular application. However, other applications might merit the analysis of other structural parameters as can be the mean structure (e.g., null, constant, polynomial) or the type of transformation of the output (e.g., different Box-Cox functions [START_REF] Box | An analysis of transformations[END_REF]), if relevant.

B. On the treatement of strongly skewed output

Most of the outputs in the RISCOPE application show strongly skewed distributions when observations are taken directly from the nature. This happens because most part of the time, the application site (Gâvres, France) is not flooded. Thus, most of the output values indicating degree of flooding fail close to zero, and only a few ones get far away from zero. This behavior is typical of the vast majority of populated regions in the planet. Unfortunately, this natural bias impacts the efficiency of metamodel training, since the majority of learning data will match mild events (leading to minor or no flooding) and the metamodel will not learn well how to predict strong events (leading to major flooding). Below, we describe three research avenues that could be followed in order to improve this situation.

Adaptive DoE for uniform coverage of the output range: this first line consists of the use of sequential design techniques (e.g., [START_REF] Hendrickx | Sequential design and rational metamodelling[END_REF][START_REF] Hendrickx | Grid enabled sequential design and adaptive metamodeling[END_REF]) oriented to dynamically add events to the learning set while keeping the bias of the output as controlled as possible. In particular, it would be interesting to find a way to account for characteristic features of the functional inputs such as the parabolic shape of the tidal curve. In addition, it would be desirable to be able to model the dependency between time steps of the same input variable and also of different input variables.

Transformation of the output: another action with a strong positive potential is the study of transform functions that could be applied to the output data in order to reduce
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 21 Figure 2.1 -Illustration of the cross-shore transect considered in the RISCOPE application. Vertical location is referenced to the altimetric French system IGN69.

(a) 100

 100 randomly sampled events.(b) 3 sample events on independent plots.
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 22 Figure 2.2 -Illustration of functional inputs. Td, Sg and Hs are given in meters and Tp in seconds.
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 23 Figure 2.3 -Exploration strategy flowchart.
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 a Full dataset. (b) 25 sample functions.
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 24 Figure 2.4 -Illustration of the functional input f 1 .

( a )

 a Analytic case: all configurations of screening. (b) Analytic case: zoom to best configurations of screening. The value of m in the box indicates the slope of the linear least squares fitting of the points.

Figure 2 . 5 -

 25 Figure 2.5 -Analytic case: results of the screening experiment. Points are labeled by projection dimension p; the label 0 corresponds to the scalar metamodel.

( a )

 a Analytic case: all configurations of cleaning and descent. (b) Analytic case: zoom to best configurations of cleaning and descent. The value of m in the box indicates the slope of the linear least squares fitting of the points.
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 26 Figure 2.6 -Analytic case: results of cleaning and descent. Points are labeled by projection dimension p. Configurations from the screening stage with p = 3 are also plotted here for comparison against configurations with larger p.
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 27 Figure 2.7 -Analytic case: fitting of the best performing sample of the best configuration. Left-top subplot illustrates the whole set of 1500 output values in increasing order; this subplot is then subdivided to generate the remaining 5 subplots by splitting the abscissa into 5 sections and zooming the resulting figures.

( a )

 a Analytic case: best sample. (b) Analytic case: worst sample.
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 28 Figure 2.8 -Analytic case: calibration plot with 1500 data points for the best and worst samples of the best performing metamodel (configuration 44).

( a )

 a PCA shifted Td. (b) PCA shifted Sg. (c) PCA shifted Hs. (d) PCA shifted Tp.
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 29 Figure 2.9 -Coastal flooding case: PCA on the shifted inputs; the dotted lines indicate the number of principal components required to explain at least the 99% of the data variability.
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 210 Figure 2.10 -Weighting function for the coastal flooding case. The parameters λ, γ, ω and δ, controling the shape of the curve, were set to 0.7, 0.5, 1.5 and 6, respectively.

( a )

 a Coastal flooding case: all configurations of screening. (b) Coastal flooding case: zoom to best configurations of screening. The value of m in the box indicates the slope of the linear least squares fitting of the points.
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 211 Figure 2.11 -Coastal flooding case: results of the screening experiment. Points are labeled by basis size p; the label 0 corresponds to the scalar metamodel.
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 212 Figure 2.12 -Coastal flooding case: squared errors for each of the 1500 validation points in each of the 30 samples of configuration 18.

( a )

 a Coastal flooding: best sample. (b) Coastal flooding: worst sample.
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 213 Figure 2.13 -Coastal flooding case: calibration plot with 1500 data points for the best and worst samples of the best performing metamodel (configuration 18).
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 214 Figure 2.14 -Coastal flooding case: fitting of the best performing sample of the best configuration. Left-top subplot illustrates the whole set of 1500 output values in increasing order; this subplot is then subdivided to generate the remaining 5 subplots by splitting the abscissa into 5 sections and zooming the resulting figures.

( a )

 a Td -B-splines. (b) Td -PCA. (c) Sg -B-splines. (d) Sg -PCA. (e) Tp -B-splines. (f) Tp -PCA.
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 215 Figure 2.15 -Maximum projection error within the critical time window as a function of the projection dimension p. Td and Sg error in centimeters and Tp error in seconds. In the legends, the quantity in parenthesis indicates the value of p needed to meet the tolerance.
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 216 Figure 2.16 -Distribution of errors (in centimeters) for points in the critical window using the constrained least quares optimization formulation and B-splines for the projection of Td.
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 217 Figure 2.17 -Coastal flooding case: performance of metamodels with the projection dimension based on projection error. Points are labeled by projection dimension; as it varies from one input to the other in the new experiment, those points are labeled using an alphabetic convention where each letter is matched to a triple of integers denoting the projection dimension for each input in the order Td, Sg, Tp: a : (4, 0, 0), b : (0, 15, 0), c : (4, 15, 0), d : (0, 0, 10), e : (4, 0, 10), f : (0, 15, 10), g : (4, 15, 10), h : (0, 10, 0), i : (4, 10, 0), j : (0, 0, 6), k : (4, 0, 6), l : (0, 10, 6), m : (4, 10, 6).
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 31 Figure 3.1 -Stigmergy used by ants to find efficient paths towards a food source. Red ants represent the ones going back from the food source to the nest.

1 :

 1 while <stopping conditions remain unsatisfied> do while <there are still partial ants> do 8: randomly pick a partial ant 9: apply transition rule to select next node in its sequence 10: reduce pheromone load of chosen link 11: end while 12:evaluate the solution made by each ant 13:
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 32 Figure 3.2 -Prototype of the network used in our ACO heuristic.
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 33 Figure 3.3 -Loss function used for regularization in dimension reduction for functional inputs using the norm • S, θf . Built for an hypothetical functional input of dimension 10.

( a )

 a Effect of δ on the normalized loss function. (b) Effect of w on the normalized loss function.
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 34 Figure 3.4 -Normalized loss function for hypothetical input of dimension 10.
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 35 Figure 3.5 -Normalized loss functions used for the analytic cases.

  (a) Black-box 1. (b) Black-box 2. (c) Black-box 3.
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 36 Figure 3.6 -Calibration plot for selected models.

Figure 3 .

 3 Figure 3.7 we display the Q 2 loocv of all the models explored during the optimization for each of the black-box functions.

  (a) Black-box 1. (b) Black-box 2. (c) Black-box 3.
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 37 Figure 3.7 -Relative quality of selected models.

( a )

 a Black-box 1. (b) Black-box 2.(c) Black-box 3.
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 38 Figure 3.8 -Evolution of the heuristic.
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n. tot

 tot Number of points used for prediction n.tr Number of points using for learning of hyperparameters n.pr Number of prediction points n.sm Number of simulation points ds Number of scalar inputs df Number of functional inputs k Array of dimensions for the df functional inputs p Array of projection dimensions for the functional inputs K.tt Training auto-covariance matrix K.pp prediction auto-covariance matrix K.tp Training-prediction cross-covariance matrix L Lower diagonal matrix of a Cholesky decomposition

  training points. § # generating input data for training set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) # generating output data for training sOut <-fgp_BB3(sIn, fIn, n.tr) # creating a funGp model m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut) R output: ** Presampling... ** Optimising... final value 2.841058 # loglikelihood value converged ¦ ¥ The output of the fgpm function is an object of class fgpm. A calibration plot based on the Leave-one-out (LOO) predictions. § # plotting the model plotLOO(m1) ¦ ¥ For a design with n.tr points, LOO consists of removing one observation from the design at a time, each time training the model using the remaining n.tr -1 points and computing the prediction at the ignored point. In its basic version, LOO results expensive as it requires training n.tr models using almost all the data each time. For Gaussian processes, the LOO predictions are often approximated based on the virtual LOO formulas [59, 105], which require a single model training.

  features of the model are printed when calling the show function on the model: § # printing the model m1 # equivalent to show(m1)

#

  building the model set.seed[START_REF] Dorigo | Ant colony system: a cooperative learning approach to the traveling salesman problem[END_REF] n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut) # generating input data for prediction n.pr <-100 sIn.pr <-as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)), x2 = seq(0,1,length = sqrt(n.pr)))) fIn.pr <-list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22)) # making predictions m1.preds <-predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr) # checking content of the list summary(m1.preds)The output of predict is a list containing the estimated mean and standard deviation, along with the lower and upper limits of the 95% confidence intervals for the output at the prediction points. In practice, the estimated mean of a Gaussian process model is used as the prediction of the output while the standard deviation is often interpreted as a measure of the local error of the prediction. Predictions of a funGp model can be easily plotted by calling the plotPreds function on the list returned by predict. Note that the model must also be sent in the function call. § # plotting predictions plotPreds(m1, preds = m1.preds) ¦ ¥

#

  building the model set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut) # generating input data for simulation n.sm <-100 sIn.sm <-as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.sm)), x2 = seq(0,1,length = sqrt(n.sm)))) fIn.sm <-list(f1 = matrix(runif(n.sm*10), ncol = 10), matrix(runif(n.sm*22), ncol = 22)) # making light simulations m1.sims_l <-simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm) ¦ ¥ Simulations in funGp are plotted by the plotSims function. In contrast to prediction plots, simulation plots do not have the output sorted in increasing order, but instead, the simulation index corresponding to the input coordinates specified by the user is set in the abscissa. § # plotting light simulations plotSims(m1, m1.sims_l) ¦ ¥If requested, simulate will return a list containing the simulated output, predicted mean, standard deviation and limits of the 95% confidence intervals at the specified input coordinates. This corresponds to a full simulation, available through the option detail = "full". § # making full simulations m1.sims_f <-simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm, detail = "full")# checking content of the list summary(m1.sims_f)

4. Substitution of the variance hyperparameter 5 .•••

 5 Substitution of the vector of scalar length-scale hyperparameters 6. Substitution of the vector of functional length-scale hyperparameters 7. Re-estimation of the variance hyperparameter 8. Re-estimation of the vector of scalar length-scale hyperparameters 9. Re-estimation of the vector of functional length-scale hyperparameters There are many reasons why you might want to modify an existing model; new observations became available, some of those used for training became obsolete, transcription or typing errors were found in the training data, you want to experiment with different values of the hyperparameters, just to mention some. In most cases, part of the work done during the construction of the original model can be exploited to make the updating process much faster than building a new model from zero. The request of the different updating tasks is illustrated in the code snippets below. If you have not built a model yet using the code provided in previous sections, you can use the following one to obtain a model on which to perform the update tasks of the upcoming examples. § # building the model set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut) ¦ ¥ Deletion and addition of data points § # deleting two points ind.dl <-sample(1:m1@n.tot, 2) m1up <-update(m1, ind.dl = ind.dl) R output: * Complete tasks: -data deletion # adding five points n.nw <-5 sIn.nw <-matrix(runif(n.nw * m1@ds), nrow = n.nw) fIn.nw <-list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22)) sOut.nw <-fgp_BB3(sIn.nw, fIn.nw, n.nw) m1up <-update(m1, sIn.nw = sIn.nw, fIn.nw = fIn.nw, sOut.nw = sOut.nw) substitution of data points § # generating substituting input data for updating n.sb <-2 sIn.sb <-matrix(runif(n.sb * m1@ds), nrow = n.sb) fIn.sb <-list(f1 = matrix(runif(n.sb*10), ncol = 10), f2 = matrix(runif(n.sb*22), ncol = 22)) # generating substituting output data for updating sOut.sb <-fgp_BB3(sIn.sb, fIn.sb, n.sb) # generating indices for substitution ind.sb <-sample(1:(m1@n.tot), n.sb) # updating all, the scalar inputs, functional inputs and the output m1up <-update(m1, sIn.sb = sIn.sb, fIn.sb = fIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb) Substituting points only from some of the data structures is also possible. § # substituting some data structures m1up1 <-update(m1, sIn.sb = sIn.sb, ind.sb = ind.sb) # only the scalar inputs m1up2 <-update(m1, sOut.sb = sOut.sb, ind.sb = ind.sb) # only the output m1up3 <-update(m1, sIn.sb = sIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb) # the scalar inputs and the output R output: * Complete tasks: -data substitution ¦ ¥ Substitution of hyperparameters § # defining hyperparameters for substitution var.sb <-3 ls_s.sb <-c(2.44, 1.15) ls_f.sb <-c(5.83, 4.12) # updating the model m1up <-update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb, ls_f.sb = ls_f.sb) R output: * Complete tasks: -var substitution -scalar length-scale substitution -functional length-scale substitution ¦ ¥ Substituting only one of the three data structures is possible as well. § # updating the model m1up <-update(m1, var.sb = var.sb) # only the variance m1up <-update(m1, ls_f.sb = ls_f.sb) # only the functional length-scale parameters m1up <-update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb) # only the variance and the scalar ls. parameters ¦ ¥ • Re-estimation of hyperparameters § # re-estimating the hyperparameters m1up <-update(m1, var.re = TRUE) # only the variance m1up <-update(m1, ls_s.re = TRUE) # only the scalar length-scale parameters m1up <-update(m1, ls_s.re = TRUE, ls_f.re = TRUE) # all length-scale parameters m1up <-update(m1, var.re = TRUE, ls_s.re = TRUE, ls_f.re = TRUE) # all hyperparameters R output: * Complete tasks: -var re-estimation -scalar length-scale re-estimation -functional length-scale re-estimation ¦ ¥

  § # building the model set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, kerType = "gauss") ¦ ¥By default, fgpm uses the Matérn 5/2 function, which is a popular choice in the Machine Learning (ML) community.

#

  generating input and output data set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) # building the model # different basis for each functional input m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = c("B-splines", "PCA"))

#

  generating input and output data set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr) # building the model # the first input not projected, the second one projected in dimension 7 m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 7)) # both inputs projected in dimension 5 m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = 5) ¦ ¥

#

  generating input and output data set.seed(100) n.tr <-25 sIn <-expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB3(sIn, fIn, n.tr)
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 41 Figure 4.1 -Decision network used by the ant colony based heuristic for model selection. One end-to-end path over the network provides a feasible set of structural parameters.

§

  # generating input and output data set.seed(100) n.tr <-32 sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB7(sIn, fIn, n.tr) # calling the funGp factory xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds) ¦ ¥
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 42 Figure 4.2 -Calibration plot of two structural configurations for the same input and output data. Left panel: optimized configuration. Right panel: unoptimized, arbitrary configuration.

#

  displaying plots on the quality of the selected model plotX(xm) ¦ ¥ § # plotting the evolution of the objective function plotEvol(xm) ¦ ¥

#

  calling the funGp factory set.seed(100) xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = list(n.iter = 30)) # (~6.5 seconds)

#

  generating input and output data set.seed(100) n.tr <-32 sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB7(sIn, fIn, n.tr) # setting up the constraints myctr <-list(s_keepOn = c(1,2), # keep both scalar inputs always on f_keepOn = c(2), # keep f2 always active f_disTypes = list("2" = c("L2_byindex")), # only use L2_byindex distance for f2 f_fixDims = matrix(c(2,4), ncol = 1), # f2 should be projected onto a space of dimension 4 f_maxDims = matrix(c(1,5), ncol = 1), # f1 should be projected onto a space of dimension max 5 f_basTypes = list("1" = c("B-splines")), # only use B-splines projection for f1 kerTypes = c("matern5_2", "gauss")) # test only Matern 5/2 and Gaussian kernels # calling the funGp factory with specific constraints xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr) # (~15 seconds) ¦ ¥

#

  setting up a sufficiently large number of iterations mysup <-list(n.iter = 2000) # defining time limit mytlim <-60 # calling the funGp factory with time based stopping condition xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup, time.lim = mytlim) R output: ** Time limit reached, exploration stopped after 60.01 seconds. # 163 iterations done ¦ ¥

#

  generating input and output data set.seed(100) n.tr <-32 sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB7(sIn, fIn, n.tr) # calling the funGp factory xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds) ¦ ¥ After some time we update our dataset. Now we have 243 points instead of 32. Then, we rebuild the best three models using the new data. § # generating new data n.tr <-243 # more points! sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB7(sIn, fIn, n.tr)

§ 4 . 4

 44 # extracting the fgpm arguments of the three best models argStack <-xm@log.success@args[1:3] # generating input data for prediction n.pr <-32 sIn.pr <-expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)), x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)), x5 = seq(0,1,length = n.pr^(1/5))) fIn.pr <-list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22)) # making predictions based on the three best models (compact code with all 3 calls) preds <-do.call(cbind, Map(function(model, args) { in4matted <-format4pred(sIn.pr = sIn.pr, fIn.pr = fIn.pr, args) predict(model, sIn.pr = in4matted$sIn.pr, fIn.pr = in4matted$fIn.pr)$mean }, modStack, argStack)) # plotting predictions made by the three models require(plyr) # for conciseness plot(1, xlim = c(1,nrow(preds)), ylim = range(preds), xaxt = "n", xlab = "Prediction point index", ylab = "Output", main = "Predictions with best 3 structural configurations") axis(1, 1:nrow(preds)) l_ply(seq_len(n.pr), function(i) lines(rep(i,2), range(preds[i,1:3]), col = "grey35", lty = 3)) points(preds[,1], pch = 21, bg = "black") points(preds[,2], pch = 23, bg = "red") points(preds[,3], pch = 24, bg = "green") legend("bottomleft", legend = c("Model 1", "Model 2", "Model 3"), pch = c(21, 23, 24), pt.bg = c("black", "red", "green"), inset = c(.02,.08)) ¦ ¥ Parallelization in funGp Sections 4.1, 4.2 and 4.3 made a good description of funGp from the perspective of functionality. This last section focuses on efficiency. Both, the fgpm and fgpm_factory functions have been equipped with the ability to exploit the existence of parallel environments. Below we explain how to use this feature.

#

  generating input data for training set.seed(100) n.tr <-243 sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) # generating output data for training sOut <-fgp_BB7(sIn, fIn, n.tr) # calling fgpm with multistart in sequence m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10) # (~22 seconds) ¦ ¥

#

  calling fgpm with multistart in parallel cl <-parallel::makeCluster(3) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl) # (~14 seconds) parallel::stopCluster(cl) ¦ ¥

#

  repeating the call with different number of nodes cl <-parallel::makeCluster(2) m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl) parallel::stopCluster(cl) ¦ ¥

#

  generating input and output data set.seed(100) n.tr <-243 sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)), x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)), x5 = seq(0,1,length = n.tr^(1/5))) fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22)) sOut <-fgp_BB7(sIn, fIn, n.tr) # calling fgpm_factory in parallel cl <-parallel::makeCluster(3) xm.par <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl) # (~200 seconds) parallel::stopCluster(cl) ¦ ¥

  The three main roads and the two surveillance points are shown in the aerial views of Gâvres displayed in Figure5.1.

Figure 5 . 1 -

 51 Figure 5.1 -Aerial view of Gâvres: main roads and surveillance points.

  For a vector x of dimension d we let |x| = max i=1,...,d |x i |. Further, the Euclidean and operator norms are denoted by ||x|| and by ||M || op = sup{||M x|| : ||x|| ≤ 1}, for any matrix M . We let λ 1 (B) ≥ . . . ≥ λ r (B) be the r eigenvalues of a r × r symmetric matrix B. We let ρ 1 (B) ≥ . . . ≥ ρ r (B) ≥ 0 be the r singular values of a r × r matrix B. We let N be the set of non-zero natural numbers.

Condition 3 .

 3 Let F : R → R be a fixed non-constant continuously differentiable function, with derivative F . We say that F is sub-exponential and non-decreasing if: i) For all t ∈ R, we have |F (t)| ≤ C sup exp (C sup |t|) and |F (t)| ≤ C sup exp (C sup |t|);

Lemma 4 .

 4 Condition 9 implies Condition 7 and Condition 10 implies Condition 8.

Figure 6 . 1 -

 61 Figure 6.1 -Histograms of standardized and studentized variance maximum likelihood estimates. Blue: empirical density (kernel density estimates), red: asymptotic density, green: asymptotic density based on the empirical variance. The top row shows results for the process Z (Gaussian case), the bottom row for the transformed process Y = Z 2 -σ 2 0 (non-Gaussian case). The columns are for n = 100, 400, 900. All panels are based on N = 2500 replicates.

Figure 6 . 3 -

 63 Figure 6.3 -Mean squared error (top left), squared bias (middle column) and variance (right column) as a function of n for different settings in log-scale. The variance parameter is represented in dashed lines, the range parameter in solid lines. Process Z is shown by reddish colors (Gaussian case), transformed process Y = Z 2 -σ 2 0 in blueish colors (non-Gaussian case). The panels are based on N = 250 replicates that did not reveal any convergence issues.

Figure 6 . 4 -

 64 Figure 6.4 -Wasserstein distance (p = 1). Top left: marginal for each parameter. Center panels: bivariate estimation of range and variance by maximum likelihood as in Theorem 4 and linear combinations thereof; right panels: univariate estimation of the range parameter by maximum likelihood and cross validation and with linear combinations of these two estimators as in Theorem 7. Top middle and right panels: Gaussian cases. Lower row panels: non-Gaussian case. The colors and line styles follow those in Figure 6.3. The gray lines are Wasserstein distances for estimates based on linear combinations of maximum likelihood (center column) and of maximum likelihood and cross validation (right column). The panels are based on N = 250 replicates that did not reveal any convergence issues. The small boxplot on the right in each panel shows the Wasserstein distance for sample size n = 250 of 10000 realizations of N [0, 1]; the horizontal dotted line shows the median thereof.

  exp -C inf max d(s k , (s i , s j )), d(s l , (s i , s j )) ≤ +∞ k=0 C sup (k + 1) 2d exp (-C inf k) < +∞.

  |s k -s l | ≤ |s i -s l | and |s k -s l | ≤ |s j -s l |, then |s i -s l | ≥ ∆/2 and |s j -s l | ≥ ∆/2. Hence, we can apply Lemma 7 with distance ∆/2 to obtain | Cov(y k y l , y i y j )| ≤ C sup exp(-C inf ∆/2), where C sup and C inf do not depend on n, i, j, k, l, ∆.If|s i -s l | ≤ |s k -s l | and |s i -s l | ≤ |s j -s l |, then |s k -s l | ≥ ∆/2. We then have Cov(y i y j , y k y l ) = E[y i y j y k y l ] -E[y i y j ]E[y k y l ] = Cov(y i y j y l , y k ) -Cov(y i , y j ) Cov(y k , y l ) (6.14)since it is assumed that Y has zero-mean. In (6.14), the first and third covariances are bounded in absolute value byC sup exp(-C inf ∆/2) from Lemma 7, because |s k -s l | ≥ ∆/2, |s k -s i | ≥ ∆/2 and |s k -s j | ≥ ∆/2. Hence we have | Cov(y k y l , y i y j )| ≤ C sup exp(-C inf ∆/2),where C sup and C inf do not depend on n, i, j, k, l, ∆.

2 ≤

 2 2 ≤ C sup , where C sup does not depend on I, J and ∆. Similarly||w|| 2 ≤ C sup .We haveCov 2 (v v Z , w w Z ) ≤ || Cov(v v Z , w Z )|| 2 ||w|| 2 ≤ C sup j=1,..., β Cov(v v Z , Z(s J j )) 2 ≤ C sup ||v|| 2 i=1,..., ᾱ j=1,..., β Cov(Z(s I i ), Z(s J j )) 2 ≤ C sup i=1,..., ᾱ j=1,...,n |s j -s i |≥∆ e -C inf |s I i -s j | ,by definition of ∆, since k Z satisfies Condition 2 and where C sup and C inf do not depend on b, J and ∆. For any i ∈ {1, . . . , n}, the number of indices j ∈ {1, . . . , n} such that ∆ ≤ |s i -s j | ≤ ∆ + 1 is smaller than C sup ∆d , from Condition 1 and where C sup only depends on d. This yieldsCov 2 (v v Z , w w Z ) ≤ C sup (α 1 + . . . + α a ) +∞ k=0 C sup (∆ + k) d e -C inf |∆+k| ≤ C sup e -C inf |∆|/2 (α 1 + . . . + α a ) +∞ k=1 (∆ + k) d e -C inf |∆+k|/C sup e -C inf |∆|

Proof.1 1 +

 1 We have,|(A θ B θ ) i,j | = n =1 (A θ ) i, (B θ ) ,j ≤ n =1 C sup 1 + |x i -x | d+τ C sup 1 + |x j -x | d+τ ≤ =1,...,n |x i -x |≤|x j -x | C sup 1 + |x i -x | d+τ C sup 1 + (|x i -x j |/2) d+τ + =1,...,n |x j -x |≤|x i -x | C sup 1 + (|x i -x j |/2) d+τ C sup 1 + |x j -x | d+τ ≤ C sup C sup 1 + |x i -x j | d+τ max a=1,...,n n b=1 |x a -x b | d+τ ≤ C sup 1 + |x i -x j | d+τfrom Lemma 4 in [140]. Lemma 12. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have sup θ∈Θ λ 1 (R

  a i a j R i,j ≥ E [∇g(z)] Cov(z)E [∇g(z)] .From Condition 2 ii), we have λ 1 (Cov(z)) ≥ C inf . This yields n i,j=1

  ) = 1 without loss of generality. From Lemma 7, k satisfies Condition 2 i). Let us show that Condition 2 ii) is satisfied. Let a, b ∈ R d , let c = k(a -b) and let λ = (1 -c 2 ) 1/2 . With (A 1 , A 2 ) ∼ N [0, I 2 ], we have k (a -b) = Cov(A 2r 1 , (cA 1 + λA 2 ) 2r ) = Cov A 2r 1 , 2ri=0

  h d -di,r e -ah i,r Ae -2ah r,j= A +1 ϕ D n r=1 h d -di,r e -ah i,r e -2ah r,j .Let now B i = {x ∈ R d ; |x -s i | ≤ |s i -s j |} and B j = {x ∈ R d ; |x -s j | ≤ |s i -s j |}.From the triangle inequality we obtain|(M +1 ) i,j | ≤ A +1 ϕ D r∈N;sr∈B i ∪B j h d -d i,r e -ah i,r e -2ah r,j + A +1 ϕ D r∈N;sr∈B c i ∩B c j h d -d i,r e -ah i,r e -2ah r,j ≤ A +1 ϕ D 2(D/2)h d i,j h d -d i,j e -ah i,j + A +1 ϕ D e -2ah i,j r∈N;sr∈B c i h d -d i,r e -ah i,r ≤ A +1 ϕ D +1 h d( +1)-d i,je -ah i,j

1 +

 1 |s i -s j | d+C inf ≤ C sup from Lemma 4 in [140]. Hence, n Var(V n ) is bounded as n → ∞. Assume now that d w (L n , N [0, n Var(V n )]) → 0 (6.27)as n → ∞. Because n Var(V n ) is bounded, there exists a subsequence φ(n) such thatd w L φ(n) , N 0, φ(n) Var(V φ(n) ) → 0 (6.28) as n → ∞ and φ(n) Var(V φ(n) ) → V ∈ [0, ∞) as n → ∞. It is then simple to show that this implies d w L φ(n) , N [0, V ] → 0 (6.29)

E

  |Z i,n /c i,n | 2+q 1 |Z i,n /c i,n |≥M = 0. (6.33) 

  4 and Lemma 13 used inside Lemma 11, we have sup θ∈Θ|(C θ,i,j ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ) and sup θ∈Θ |(D θ,i,j ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).

  4 and Lemma 13 used inside Lemma 11, we have sup ψ∈S|(D ψ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).Similarly, for i, j, ∈ {1, . . . , p -1}, we have∂CV ψ ∂ψ i ∂ψ j ∂ψ = 1 n y E ψ,i,j, y,where E ψ,i,j, is a sum of products of the matricesC -1 ψ , C ψ ,the first, second and third derivative matrices of C ψ and the diag operator. Hence, from Condition 4 and Lemma 13 used inside Lemma 11, we have sup ψ∈S |(E ψ,i,j, ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ). Then, from GCT and Lemma 4 in [140], we have sup ψ∈S ρ 1 (E ψ,i,j, ) ≤ C sup . Hence, as in the proof of Theorem 3, we can show, for i, j, ∈ {1, . . . , p -1}, sup ψ∈S ∂CV ψ ∂ψ i ∂ψ j ∂ψ = O p (1). (6.41)

2 > 0 from ( 6 . 2 →Proof of Theorem 7 .

 20627 [START_REF] Damianou | Deep gaussian processes[END_REF]. Hence, Condition 7 holds. Let us now assume that Condition 8 does not hold. We have, with θ = (σ 2 , ψ) ∈ Θ, with θ 0 = (σ 2 0 , ψ 0 ) and with (β 1 , . . . , β p ) = (β 1 , χ 1 , . . . , χ p-1 ), whereβ 1 ∈ R is arbitrary, ψ 0 (s i -s j ) θ 0 (s i -s j ) k Y,θ 0 (0) k Y,θ 0 (s i -s j ) k Y,θ 0 (0) -p =1 β k Y,θ 0 (s i -s j ) ∂ ∂θ k Y,θ 0 (0) k Y,θ 0 (0) 2 k Y,θ 0 (s i -s j ) k Y,θ 0 (0) θ 0 (s i -s j ) ∂ ∂θ k Y,θ 0 (0) k Y,θ 0 (0) 2 C sup comes fromLemma 12 and from the classical control of the square Frobenius norm by n times the largest square eigenvalue, for n × n symmetric matrices. If Condition 8 does not hold, there exists (β 1 , . . . , β p ) = (0, . . . , 0) and a subsequence n m such that θ 0 (s i -s j ) m→∞ 0 and thus, considering the diagonal elements in the double sum above,β 1 = p =1 β ∂ ∂θ k Y,θ 0 (0) = 0.Hence, from (6.43), letting (β 1 , . . . , β p ) = (0, χ 1 , . . . , χ p-1 )ψ 0 (s i -s j ) Let λ and γ be two column vectors in R p and R p-1 . Let alsoW n = λ ( θML -θ 0 ) + γ ( ψCV -ψ 0 ), for n ∈ N.From the proofs of Theorems 4 and 6 (see also the proof of Proposition D.10 in[START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF] that is referred to there), we know√ n( θML -θ 0 ) = √ nM -1 θ 0 ∂ ∂θ L θ 0 + o p (1)and√ n( ψCV -ψ 0 ) = √ nN -1 ψ 0 ∂ ∂ψ CV ψ 0 + o p (1). Also, from Condition 4 and Lemma 13 used inside Lemma 11, we have for i = 1, . . . , p, ∂L θ 0 /∂θ i = 1 n (y A θ 0 ,i y) + c θ 0 , where c θ 0 ∈ R is deterministic and, for i = 1, . . . , p -1, ∂CV ψ 0 /∂ψ i = 1 n (y B ψ 0 ,i y), where A θ,i is a n × n symmetric matrix satisfying sup θ∈Θ |(A θ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ) and B ψ,i is a n × n matrix satisfying sup ψ∈S |(B ψ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).

  ) in Lemma 12. Furthermore, Theorem 2 can be shown to hold. For instance, one can write, fors ∈ R d , Y (s) = T (Z(s)) + Ť (ζ(s)) = Ṫ ( Ż(s)), where Ż = (Z, ζ) is a bivariate zeromean Gaussian process and where Ṫ :R 2 → R satisfies | Ṫ (x)| ≤ C sup exp(C sup ||x||) and |∂/∂x i Ṫ (x)| ≤ C sup exp(C sup ||x||) for x ∈ R 2 and i = 1, 2. We recall that Z and ζ are independent and Cov(ζ(u), ζ(v)) = κ1 u=v , for u, v ∈ R d , with a constant 0 < κ < ∞.

  

  

  

  

  

Table 2 .1 -Analytic

 2 case: parameters and levels for the screening stage.

Table 2 .2 -Coastal

 2 .2, except for those where Π 1 , Π 2 and Π 3 are simultaneously inactive, which are equivalent to the scalar metamodel. A detailed list of the 85 configurations and corresponding results is provided in Appendix 2.D, Table2.9. flooding case: parameters and levels for the screening stage.

	Parameter	Levels
	State of Π 1	inactive, active
	State of Π 2	inactive, active
	State of Π 3	inactive, active
	Projection method	B-splines, PCA
	Projection dimension	1, 2, 3
	Distance	• D,θ , • S,θ

Table 2 . 7 -

 27 Analytic case: experimental conditions and results from screening stage. For training and prediction time, the value displayed is the average over 30 runs using independent training and validation sets of size n = 800 and n * = 1500, respectively. For the functional input, 1 denotes active and 0 denotes inactive.

	Conf.	Functional input f1 f2	Projection method	Covariance function	Projection dimension	Q2	Results CPU time (sec) Train Pred
	1	0	-	-	-	0.0533	14.2	2.0
	2	1	B-splines	• S,θ	1	0.2914	23.2	2.0
	3	0	B-splines	• S,θ	1	0.3425	15.6	2.0
	4	1	B-splines	• S,θ	1	0.6367	17.6	2.0
	5	1	PCA	• S,θ	1	0.1729	18.6	2.0
	6	0	PCA	• S,θ	1	0.7814	19.0	2.0
	7	1	PCA	• S,θ	1	0.9947	53.5	2.1
	8	1	B-splines	• D,θ	1	0.0717	18.7	2.6
	9	0	B-splines	• D,θ	1	0.3603	18.1	2.6
	10	1	B-splines	• D,θ	1	0.4283	21.8	2.6
	11	1	PCA	• D,θ	1	0.4544	25.9	2.6
	12	0	PCA	• D,θ	1	0.5819	23.3	2.6
	13	1	PCA	• D,θ	1	0.9899	86.1	2.7
	14	1	B-splines	• S,θ	2	0.7262	17.3	2.2
	15	0	B-splines	• S,θ	2	0.7959	16.9	2.2
	16	1	B-splines	• S,θ	2	0.9994	32.4	2.3
	17	1	PCA	• S,θ	2	0.7925	37.7	2.3
	18	0	PCA	• S,θ	2	0.8442	38.8	2.3
	19	1	PCA	• S,θ	2	0.9968	53.9	2.4
	20	1	B-splines	• D,θ	2	0.5017	20.9	2.6
	21	0	B-splines	• D,θ	2	0.6813	20.9	2.6
	22	1	B-splines	• D,θ	2	0.9989	49.5	2.9
	23	1	PCA	• D,θ	2	0.5788	33.4	2.6
	24	0	PCA	• D,θ	2	0.7825	36.2	2.6
	25	1	PCA	• D,θ	2	0.9953	89.5	2.9
	26	1	B-splines	• S,θ	3	0.7901	56.6	2.4
	27	0	B-splines	• S,θ	3	0.8452	59.5	2.4
	28	1	B-splines	• S,θ	3	0.9991	27.6	2.4
	29	1	PCA	• S,θ	3	0.8183	95.7	2.3
	30	0	PCA	• S,θ	3	0.8687	91.7	2.1
	31	1	PCA	• S,θ	3	0.9990	35.3	2.2
	32	1	B-splines	• D,θ	3	0.7626	33.0	2.9
	33	0	B-splines	• D,θ	3	0.8187	34.6	2.8
	34	1	B-splines	• D,θ	3	0.9995	45.9	3.1
	35	1	PCA	• D,θ	3	0.7904	43.5	2.8
	36	0	PCA	• D,θ	3	0.8412	44.2	2.8
	37	1	PCA	• D,θ	3	0.9997	42.4	3.1

Table 2 .

 2 

8 -Analytic case: experimental conditions and results from cleaning and descent stages. The training and prediction times are computed as described in Table

2

.7. For the functional input, denotes active and 0 denotes inactive.

Table 2 . 9 -

 29 Coastal flooding case: experimental conditions and results from screenig stage. The training and prediction times are computed as described in Table2.7. For the functional input, 1 denotes active and 0 denotes inactive.

	Sg	T p

Table 2 . 10 -

 210 Coastal flooding case: evaluation of projection dimension selected based on projection error. The training and prediction times are computed as described in Table2.7.

Table 5 .

 5 1 summarizes our experiment. In all cases we ran the Ant Colony algorithm with the default parameters loaded in funGp, except for the exploration coefficient q0 (see Section 4.3.2, Chapter 4), which we set to 0.9 instead of 0.95 to allow more diversification in the solutions built by the ants. We let the algorithm run for 10 minutes in each instance.

	Output ID	All scalar	All scalar + all functional	All scalar + some functional	Ants selection	Ants active scalar	Ants active functional
	Ysurf_max	0,959	0,957	0,962	0,980	{1,2,3,5,6,8}	{2,4}
	Ysurf_fin	0,942	0,916	0,946	0,981	{1,2,3,5,6,7}	{7}
	Yvol_fin	0,929	0,927	0,938	0,961	{1,2,3,5,6}	{3,4,5,7}
	Ytr_ft1	0,927	0,929	0,928	0,963	{1,2,3,5,7,8}	{2}
	Ytr_ft2	0,950	0,958	0,957	0,977	{1,3,5,7,8}	{2,5,6,7}
	Ytr_ft3	0,533	0,655	0,469	0,764	{1,2,3,4,6,8}	{3,5,6}
	Ytr_fh1	0,961	0,954	0,960	0,965	{1,2,3,5,7,8}	{2,4,5,6,7}
	Ytr_fh2	0,941	0,862	0,959	0,974	{1,2,3,4,5,6,7,8}	{2}
	Ytr_fh3	0,791	0,806	0,828	0,887	{1,3,4,5,7,8}	{2,4,5}
	Yhcb_max1	0,576	0,499	0,443	0,900	{1,3,4,5,6}	{2,3,6,7,8}
	Yhcb_max2	0,897	0,895	0,880	0,939	{1,3,4,6,7,8}	{2}
	Yhcb_fin1	0,424	0,274	0,320	0,625	{1,2,4,6,7,8}	{3}
	Yhcb_fin2	0,893	0,883	0,890	0,926	{1,3,5,6,7}	{2,4}
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  1, k Y satisfies Condition 2 ii). where Y and Z still have zero-mean and where Ň is a centered stationary random field on R d , independent of Z, with Cov( Ň (u), Ň (v)) = η1 u=v , for u, v ∈ R d , with η > 0. In this case, the covariance function k Y of Y satisfies Condition 2 ii), similarly as in Remark 2. Furthermore, consider the case where there exists Ť : R → R satisfying Condition 3, such that, for s

Second, it would be possible to assume that for s ∈ R d , we have Y (s) = T (Z(s)) + Ň (s),

  Csup||x|| where C sup does not depend on x and i 1 , . . . , i r 1 , j 1 , . . . , j r 2 , ∆. Hence the above square roots are finite from Lemma 6 and do not depend on i 1 , . . . , i r 1 , j 1 , . . . , j r 2 and ∆. This concludes the proof. Consider the setting of Section 6.3.1, that is k Z satisfies Condition 2 and T satisfies Condition 3. For n ∈ N and i, j = 1, . . . , n we have k,l=1,...,n |Cov (y i y j , y k y l )| ≤ C sup , where C sup does not depend on n, i, j.Proof. We let d(a, (b, c)) = min(|a -b|, |a -c|) for a, b, c ∈ R d . It is enough to show that |Cov(y i y j , y k y l )| ≤ C sup exp -C inf max d(s k , (s i , s j )), d(s l , (s i , s j )) . (6.13)Indeed, let, for t ≥ 0, N i,j,t be the number of pairs (k, l), with 1 ≤ k, l ≤ n such thatt ≤ max(d(s k , (s i , s j )), d(s l , (s i , s j ))) ≤ t + 1.From Condition 1, we can show that we have sup n∈N,i,j=1,...,n N i,j,t ≤ C sup t 2d . Hence, we have

	Lemma 8.

1 x)| ≤ C sup e Csup||x|| and ||G 2 (x)|| ≤ C sup e

  Proof. Conditions 1, 4 and 5 imply (6.17) from Theorem 5 in[START_REF] Bachoc | On the smallest eigenvalues of covariance matrices of multivariate spatial processes[END_REF]. Conditions 1 and 4 imply (6.18) and (6.19) from Lemma 6 in[START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF]. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have, for n ∈ N and i, j ∈ {1, . . . , n},C sup 1 + |s i -s j | d+C inf ,where C sup and C inf do not depend on n, i, j, θ.Proof. One can show that the proof of Theorem 1 can be made uniform over θ ∈ Θ, thus yielding Lemma 13.

		sup	λ 1 (R θ ) ≤ C sup ,	(6.18)
		θ∈Θ		
	and				
	sup θ∈Θ =1,2,3	λ 1	∂R θ ∂θ i 1 . . . ∂θ i	≤ C sup .	(6.19)
	i 1 ,...,i =1,...,p			
	Lemma 13. sup θ∈Θ	(R -1 θ ) i,j ≤
					-1 θ ) ≤ C sup ,	(6.17)

Lemma 14. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have,

inf θ∈Θ λ n (R θ ) ≥ C inf , (

6.20)

inf θ∈Θ λ n (diag(R -1 θ )) ≥ C inf . (

6

.21) 

  i,j 2 a

		dµ log(h i,j )	r∈N	ar 2	dµ log(h i,j )	e -ar
	≤ Qe a e -ah i,j 2 a	dµ log(h i,j )	dµ log(h i,j ) !

r∈N e ar/2 e -ar = Qe a e -ah i,j 2 a dµ log(h i,j )

  1, since also sup n∈N max i,j=1,...,n |(R -1 ) i,j | is bounded by C sup . i,j A k,l Cov(y i y j , y k y l ).

	Proof of Theorem 2. We have			
	n Var(V n ) =	1 n	n i,j,k,l=1	(6.26)
	From Lemma 8, we obtain			
	n Var(V n ) ≤	1 n	C sup	n i,j=1

A

  θ,i ) ≤ C sup . It follows that ≤ C sup + C sup ||y|| 2 n = O p (1).Hence, Theorem 3 can be proved by proceeding as in the proof of Proposition 3.1 in[START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. From the proof of Theorem 3, we have for i = 1, . . . , pwhere P θ,i is a n × n matrix satisfying sup θ∈Θ |(P θ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ) and Q θ,i is a n × n symmetric matrix satisfying sup θ∈Θ |(Q θ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).

	max i=1,...,n	sup θ∈Θ	∂L θ ∂θ	≤ sup θ∈Θ	1 n	tr (P θ,i ) +	1 n	y Q θ,i y
	Proof of Theorem 4. ∂L θ /∂θ i =	1 n	tr(P θ,i ) +	1 n	(y Q θ,i y),

  where E θ,i,j, and F θ,i,j, are sums of products of the matrices R -1 θ , R θ and the first, second and third derivative matrices of R θ . Hence, from Condition 4 and Lemma 13 used inside Lemma 11, we have supθ∈Θ |(E θ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ) and sup θ∈Θ (F θ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).Then, from GCT and Lemma 4 in[START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF], we have sup θ∈Θ ρ 1 (E θ,i ) ≤ C sup and sup θ∈Θ ρ 1 (F θ,i ) ≤ C sup . Hence, as in the proof of Theorem 3, we can show sup

	θ∈Θ	∂L θ ∂θ i ∂θ j ∂θ	= O p (1).	(6.37)
				3 in [122] that
	lim inf n→∞	λ p (M θ 0 ) > 0.	(6.36)
	Hence, (6.7) follows.			

Then, for i, j, ∈ {1, . . . , p}, we have

∂L θ /∂θ i ∂θ j ∂θ = 1 n tr(E θ,i,j, ) + 1 n (y F θ,i,j, y),

  lead us to sup ψ∈S λ 1 (A ψ,i A ψ,i ) ≤ C sup , which in turn implies sup ψ∈S ρ 1 (A ψ,i ) ≤ C sup . It follows that Hence, Theorem 5 can also be proved by proceeding as in the proof of Proposition 3.4 in[START_REF] Bachoc | Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes[END_REF]. From Condition 4 and Lemma 13 used inside Lemma 11, we havefor i = 1, . . . , p -1 where A ψ,i is a n × n matrix satisfying sup ψ∈S |(A ψ,i ) a,b | ≤ C sup /(1 + |s a -s b | d+C inf ).As in the proof of Theorem 4, one can check that ∂CV ψ 0 /∂ψ i has mean zero for i = 1, . . . , p -1. Let ∂CV ψ 0 /∂ψ be the gradient column vector of CV ψ at ψ 0 . From Theorem 2, with L Γ,ψ 0 ,n the distribution of √ n∂CV ψ

	max i=1,...,p-1	sup ψ∈S	∂CV ψ ∂ψ i	≤ sup ψ∈S	2 n	y A ψ,i y
					≤ C sup	||y|| 2 n
					= O p (1).
	Proof of Theorem 6. ∂CV ψ ∂ψ i	=	2 n	y A ψ,i y,

0 /∂ψ, as n → ∞, d w (L Γ,ψ 0 ,n , N [0, Γ ψ 0 ]) → 0. (

6

.38) 

  where the second C sup comes from Lemma 12 and from the classical control of the square Frobenius norm by n times the largest square eigenvalue, for n × n symmetric matrices. If Condition 9 holds, then for all χ > 0, Y,ψ(s i -s j ) -c Y,ψ 0 (s i -s j )) 2 > 0. Consider a sequence θ n = (σ 2 n , ψ n ) ∈ Θ such that ||θ n -θ 0 || ≥ χ.If we can extract a subsequence n m such that lim inf m→∞ (σ 2 nm -σ 0 ) 2 > 0, then clearly Y,θn m (s i -s j ) -k Y,θ 0 (s i -s j ) diagonal terms in the above double sum. If we can not extract such a subsequence, then we can extract a subsequence n m such that ||ψ nm -ψ 0 || ≥ χ/2 and σ 2 nm → σ 2 0 as m → ∞. Along this subsequence

					lim inf n→∞ (c lim inf inf ||ψ-ψ 0 ||≥χ n 1 n i,j=1 m→∞ 1 i,j=1 n m nm						2	> 0
	by considering the lim inf m→∞	1 n m	nm i,j=1						
								2						
	=	1 n	n i,j=1	k Y,θ (s i -s j ) k Y,θ (0)	-	k Y,θ 0 (0) k Y,θ 0 (s i -s j )	2					
	≤	2 n	n i,j=1	k Y,θ (s i -s j ) k Y,θ (0)	-	k Y,θ 0 (s i -s j ) k Y,θ (0)	2	+	2 n	n i,j=1	k Y,θ 0 (s i -s j ) k Y,θ (0)	-	k Y,θ 0 (0) k Y,θ 0 (s i -s j )	2
	≤	C sup n	n i,j=1				2 +		1 k Y,θ (0)	-	1 k Y,θ 0 (0)	2	C sup ,	(6.42)

(k Y,θ (s i -s j ) -k Y,θ 0 (s i -s j )) k k Y,θn m (s i -s j ) -k Y,θ 0 (s i -s j )

Foraging: searching for wild food resources.

Metaheuristic vs. heuristic: a metaheuristic is a generic solution technique that can be applied to a broad set of problems; an heuristic is a solution technique designed to resolve a particular problem. An heuristic might be an adaption of an metaheuristic to the particularities of the optimization task at hand.

DR: dimension reduction.

DR: dimension reduction.

) and c Y,ψ 0 (i + 1 -2 ) are not almost surely equal. Furthermore, Condition 10 holds almost surely, provided that for (χ 1 , . . . , χ p-1 ) = (0, . . . , 0), there exists i ∈ Z d \{0} for which p-1 =1 χ ∂c Y,ψ 0 (i + 1 -2 )/∂ψ is not almost surely equal to zero.
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• Time based stopping condition

The basic stopping condition for any ant colony based algorithm is the number of iterations. This type of stopping condition is often useful during the development stage of the algorithm. For the remaining structural parameters of the benchmark configurations, we keep fixed:

1) the dimension reduction method for all functional inputs at B-splines;

2) the projection dimension for each input at 3; 3) the Matérn 5/2 kernel; 4) the • D,θ f distance defined in (2.11) (Chapter 2), referred to as the L2_bygroup distance in funGp. We recall that this corresponds to the distance that uses a single length-scale coefficient per functional input, in contrast to the • S, θ f defined in (2.13), which uses as many length-scale coefficients as effective dimensions the input has.

For every output, we fitted a metamodel using each of the benchmark structural configurations, and we also ran our Ant Colony algorithm to pick an optimized one. In each case, we looked at the calibration plot and the Q 2 hout statistic, corresponding to the classical coefficient of determination R 2 for a test sample, i.e., for prediction residuals [START_REF] Nilsson | Multiway calibration in 3d qsar[END_REF]. An example for the output variable Ysurf_max is given in Figure 5.2. Appendix 6.A Proofs

6.A.1 Technical results

Lemma 6. Let q ∈ N be fixed. Let g : R q → R + be fixed and satisfy g(x) ≤ C sup exp(C sup |x|).

Let W be a Gaussian vector of dimension q. Then E[g(W )] < ∞.

Proof. Without loss of generality, we can assume that W i has variance 1 for i = 1, . . . , q. We let w i be the mean of W i for i = 1, . . . , q. We have, for t > 1,

where W ∼ N [0, 1]. From the Gaussian tail inequality, we obtain, for

The function of t above is clearly summable as t → +∞. Hence, we have 

where C sup and C inf depend on r 1 , r 2 but not on ∆. Lemma 9. Let, for K, n ∈ N, A (K) be the n × n matrix defined by

Then, under the same assumptions as in Lemma 8, we have

Proof. For any K, n ∈ N we have

where we have used Lemma 8 and where we have observed that |(A -A (K) ) i,j | is equal to 0 or is smaller than C sup / 1 + |s i -s j | d+C inf . We have also used Lemma 4 in [START_REF] Furrer | Asymptotic properties of multivariate tapering for estimation and prediction[END_REF] for the last inequality above. All the above constants C sup and C inf naturally do not depend on n, so the lemma is proved.

Lemma 10. Consider the setting of Section 6.3.1, that is k Z satisfies Condition 2 and T satisfies Condition 3. Let a, b ∈ N. For i ∈ {1, . . . , a}, let α i ∈ N and let I(i, 1), . . . , I(i, α i ) ∈ {1, . . . , n}. For j ∈ {1, . . . , b}, let β j ∈ N and let J(j, 1), . . . , J(j, β j ) ∈ {1, . . . , n}. For i = 1, . . . , a, let f i be a function from R α i to R. For j = 1, . . . , b, let g j be a function from R β j to R. For i = 1, . . . , a, let v (i) = f i (Z(s I(i,1) ), . . . , Z(s I(i,α i ) )). For j = 1, . . . , b, let w (j) = g j (Z(s J(j,1) ), . . . , Z(s J(j,β j ) )). Let α {v (1) , . . . , v (a) }, {w (1) , . . . , w (b) } = sup P(A ∩ B) -P(A)P(B) ; A ∈ σ({v (1) , . . . , v (a) }), B ∈ σ({w (1) , . . . , w (b) }) , (6.15) where, for any set of random variables { 1 , . . . , r }, σ({ 1 , . . . , r }) is the sigma algebra generated by the random variables { 1 , . . . , r }. Let ∆ = inf i∈{1,...,a} j∈{1,...,b} ĩ∈{1,...,α i } j∈{1,...,β j } |s I(i, ĩ) -s J(j, j) |.

To simplify notations in the sequel, without loss of generality, we will consider that φ(n) = n and show that

where n Var(

For K ≥ 0, let

with the notation of Lemma 9. We have

from Lemma 9 and because V > 0. Hence, from Theorem 4.2 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF] (as in [START_REF] Neumann | A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics[END_REF]), it is sufficient to show that there exists L ∈ (0, ∞) such that for any fixed K ≥ L, we have

as n → ∞, in order to prove (6.31) and thus to conclude the proof. We remark that, because of Lemma 9, we have lim inf n→∞ n Var(V (K) n ) -lim inf n→∞ n Var(V n ) goes to 0 as K → ∞. Hence, we may take L such that lim inf n→∞ n Var(V (K) n ) > 0 for K ≥ L. Hence, up to extracting a subsequence, it is sufficient to show

where n Var(

say, where X n can be interpreted as a centered random field defined on (s i ) i∈N . We will now show that the sequence of random fields (X n ) n∈N satisfies the conditions of Corollary 1 of [START_REF] Jenish | Central limit theorems and uniform laws of large numbers for arrays of random fields[END_REF].

Chapter 7

Global conclusions and perspectives

Synthesis

This thesis raised from the RISCOPE project, devoted to the study and development of metamodels for the constitution of a quick and reliable coastal flood early warning system. Since the beginning of the project, we bet for the optimization of the structural parameters as a mechanism to produce high quality metamodels regardless of the application. Chapter 2 served as a proof of this concept, and resulted in our first prototype of methodology for the calibration of structural parameters. In Chapter 3, we took this idea further by introducing an Ant Colony based algorithm able to efficiently search in wider spaces of structural configuration. Chapter 2 also gave place for a long set of computer trials which served for the depuration and optimization of our metamodeling code scripts. In Chapter 4, those scripts were assembled to the Ant Colony algorithm proposed in Chapter 3, giving rise to the R package funGp [START_REF] Betancourt | funGp: Gaussian process models for scalar and functional inputs[END_REF]. Finally, in Chapter 5 we used the model factory implemented in funGp for the construction of the metamodels required for multiple output variables of the hydrodynamic code studied in RISCOPE. At the time of writing this manuscript, RISCOPE still has a year of work ahead. Based on the results obtained in Chapter 5, for now we can say that we are on the right track. On the other hand, in Chapter 6 we conducted a theoretical study which confirms the suitability of the Gaussian process model as regression technique for cases of non-Gaussian outputs. This conclusion covers multiple outputs of the RISCOPE code which present non-Gaussian characteristics such as nonnegativity (e.g., the water height at given points in land). This study could be extended in the future, in order to incorporate the possibility of transforming the output data with the aim of improving learning and inference in the case of non-Gaussian outputs.

Scientific production

Published papers

• Gaussian process metamodeling of functional-input code for coastal flood hazard assessment, Reliability Engineering & System Safety, 2020. In bibliography: [START_REF] Betancourt | Gaussian process metamodeling of functional-input code for coastal flood hazard assessment[END_REF] Online: find it here

Accepted paper

• Toward a user-based, robust and fast running method for coastal flooding forecast, early warning, and risk prevention, Journal of coastal research, proceedings from the International Coastal Symposium (ICS) 2020.

In bibliography: [START_REF] Idier | Toward a user-based, robust and fast running method for coastal flooding forecast, early warning, and risk prevention[END_REF] 

Software

• R package funGp, Available on CRAN and GitHub . In bibliography: [START_REF] Betancourt | fungp: Gaussian process models for scalar and functional inputs[END_REF] * User manual: Gaussian process regression for scalar and functional inputs with funGp -The in-depth tour.

In bibliography: [START_REF] Betancourt | Gaussian process regression for scalar and functional inputs with fungp -the in-depth tour[END_REF] Online: find it here

Research perspectives

For near future development, we propose the following research avenues.

A. On the algorithm for structural parameter optimization

The Ant Colony algorithm presented in Chapter 3 and implemented in the R package funGp, was designed general enough to be usable in a variety of regression contexts. Hence, it would be interesting to use the methodology for addressing some of the following scenarios.

Functional inputs in larger dimensions: in the RISCOPE application, as well as all the other analytic cases revised in this thesis, the functional inputs are time series (functions in dimension one). However, there is nothing at first sight that would prevent our Ant Colony algorithm from properly managing functional inputs in larger dimension, as could be the case of fields or images (functions in dimension two). To do so, tensorized finite dimensional projection spaces could be considered (see e.g., [START_REF] Maatouk | A new rejection sampling method for truncated multivariate gaussian random variables restricted to convex sets[END_REF] or [START_REF] López-Lopera | Finite-dimensional gaussian approximation with linear inequality constraints[END_REF]). For some functional input f from T ⊂ R d to R, the tensorized projection space has a dimension of the form p (1) × • • • × p (d) . Each projection dimension p (1) , . . . , p (d) could be defined as a structural parameter of the model. Then, the Ant Colony algorithm would work the same as for projections of functions in dimension one (e.g., time series). If it performs well, this approach would prove the suitability of our algorithm for a more general class of functional inputs.

the bias (e.g., [START_REF] Box | An analysis of transformations[END_REF][START_REF] Sakia | The box-cox transformation technique: a review[END_REF]). The simplest approach would be to set the parameters of the transformation beforehand and then conduct the optimization of the hyperparameters of the metamodel. This approach could already be beneficial, but a superior method would be to optimize the parameters of the transformation along with those of the metamodel. This way, the transformation will be optimized either for likelihood or metamodel predictability.

Once the optimization of a single transform function has been dominated, one could go one step further and include the type of transformation as one of the structural parameters to calibrate with our Ant Colony algorithm.

Theoretical study of output transformation in Gaussian processes: this research line is a direct extension of the theoretical work presented in Chapter 6 and [START_REF] Bachoc | Asymptotic properties of the maximum likelihood and cross validation estimators for transformed gaussian processes[END_REF]. In that work we proved that the covariance parameters of a non-Gaussian process can be well estimated when we model it as Gaussian. The extension would consist in assessing the case where we perform a parametric transformation of the output and we aim at estimating jointly the parameters of the transformation and the covariance parameters. This theoretical study would help us to get some guarantees about the benefit in learning and inference derivated from such an approach.