
HAL Id: tel-03118044
https://theses.hal.science/tel-03118044v1

Submitted on 21 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Exchange from Relational Databases to RDF with
Target Shape Schemas
Jose Martin Lozano Aparicio

To cite this version:
Jose Martin Lozano Aparicio. Data Exchange from Relational Databases to RDF with Target Shape
Schemas. Computer Science [cs]. Universite de Lille, Lille, FRA.; Universite de Lille, 2020. English.
�NNT : �. �tel-03118044�

https://theses.hal.science/tel-03118044v1
https://hal.archives-ouvertes.fr

Université de Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille

Region Hauts-de-France

THÈSE
présentée et soutenue le 14 décembre 2020

Spécialité : INFORMATIQUE

par

Jose Martin LOZANO APARICIO

Data Exchange from Relational
Databases to RDF with Target Shape

Schemas
Échange de données de bases de données relationnelles vers RDF avec

des schémas des constraintes sur cible

sous la direction de
Sławek STAWORKO

et
Iovka BONEVA

Jury :

Rapporteurs : Jef WIJSEN - Université de Mons
Mirian HALFELD-FERRARI - Université d’Orléans

Directeur : Sławek STAWORKO - Université de Lille
Co-encadrante : Iovka BONEVA - Université de Lille
Examinateurs : Anne ETIEN - Université de Lille

Federico ULLIANA - Université de Montpellier

i

Abstract: Resource Description Framework (RDF) is a graph data model which has

recently found the use of publishing on the web data from relational databases. We

investigate data exchange from relational databases to RDF graphs with target shapes

schemas. Essentially, data exchange models a process of transforming an instance of

a relational schema, called the source schema, to a RDF graph constrained by a target

schema, according to a set of rules, called source-to-target tuple generating dependen-

cies. The output RDF graph is called a solution. Because the tuple generating dependen-

cies define this process in a declarative fashion, there might be many possible solutions

or no solution at all. We study constructive relational to RDF data exchange setting

with target shapes schemas, which is composed of a relational source schema, a shapes

schema for the target schema, a set of mappings that uses IRI constructors. Furthermore,

we assume that any two IRI constructors are non-overlapping.

We propose a visual mapping language (VML) that helps non-expert users to spec-

ify mappings in this setting. Moreover, we develop a tool called ShERML that performs

data exchange with the use of VML and for users that want to understand the model be-

hind VML mappings, we define R2VML, a text-based mapping language, that captures

VML and presents a succinct syntax for defining mappings.

We investigate the problem of checking consistency: a data exchange setting is con-

sistent if for every input source instance, there is at least one solution. We show that the

consistency problem is coNP-complete and provide a static analysis algorithm of the

setting that allows to decide if the setting is consistent or not.

We study the problem of computing certain answers. An answer is certain if the

answer holds in every solution. Typically, certain answers are computed using a uni-

versal solution. However, in our setting a universal solution might not exist. Thus, we

introduce the notion of universal simulation solution, which always exists and allows

to compute certain answers to any class of queries that is robust under simulation. One

such class is nested regular expressions (NREs) that are forward i.e., do not use the in-

verse operation. Using universal simulation solution renders tractable the computation

of certain answers to forward NREs (data-complexity).

Finally, we investigate the shapes schema elicitation problem that consists of con-

structing a target shapes schema from a constructive relational to RDF data exchange

setting without the target shapes schema. We identity two desirable properties of a good

ii

target schema, which are soundness i.e., every produced RDF graph is accepted by the

target schema; and completeness i.e., every RDF graph accepted by the target schema

can be produced. We propose an elicitation algorithm that is sound for any schema-less

data exchange setting, but also that is complete for a large practical class of schema-less

settings.

Keywords: Data Exchange, Shapes Schema, Certain Query Answering, Consis-

tency, Visual Mapping Language, Schema Elicitation

iii

Résumé: Resource Description Framework (RDF) est un modèle de graphe utilisé pour

publier des données sur le Web à partir de bases de données relationnelles. Nous

étudions l’échange de données depuis des bases de données relationnelles vers des

graphes RDF avec des schémas de formes cibles. Essentiellement, échange de données

modélise un processus de transformation d’une instance d’un schéma relationnel, appelé

schéma source, en un graphe RDF contraint par un schéma cible, selon un ensemble de

règles, appelé tuple source-cible générant des dépendances. Le graphe RDF obtenu est

appelé une solution. Étant donné que les dépendances générant des tuple définissent

ce processus de manière déclarative, il peut y avoir de nombreuses solutions possibles

ou aucune solution du tout. Nous étudions le système d’échange de données relation-

nel avec RDF constructive avec des schémas de formes cibles, qui est composé d’un

schéma source relationnel, un schéma de formes pour le schéma cible, un ensemble de

mappages utilisant des constructeurs IRI. De plus, nous supposons que deux construc-

teurs IRI ne se chevauchent pas.

Nous proposons un langage visuel pour l’spécification des correspondances (VML)

qui aide les utilisateurs non experts à spécifier des mappages dans ce système. De

plus, nous développons un outil appelé ShERML qui effectue l’échange de données

avec l’utilisation de VML et pour les utilisateurs qui souhaitent comprendre le modèle

derrière les mappages VML, nous définissons R2VML, un langage texte, qui capture

VML et présente une syntaxe succincte pour définition des mappages.

Nous étudions le problème de la vérification de la consistance: un système d’échange

de données est consistent si pour chaque instance de source d’entrée, il existe au moins

une solution. Nous montrons que le problème de consistance est coNP-complet et four-

nissons un algorithme d’analyse statique du système qui permet de décider si le système

est consistent ou non.

Nous étudions le problème du calcul de réponses certaines. Une réponse est certain

si la réponse tient dans chaque solution. En générale, réponses certaines sont calculées

en utilisant d’une solution universelle. Cependant, dans notre contexte, une solution

universelle pourrait ne pas exister. Ainsi, nous introduisons la notion de solution de

simulation universelle, qui existe toujours et permet de calculer certaines réponses à

n’importe quelle classe de requêtes robustes sous simulation. Une de ces classes sont

les expressions régulières imbriquées (NRE) qui sont forward c’est-à-dire qui n’utilisent

iv

pas le opération inverse. L’utilisation d’une solution de simulation universelle rend

traitable le calcul de réponses certaines pour les NRE (data-complexity).

Enfin, nous étudions le problème d’extraction de schéma des formes qui consiste à

construire un schéma de formes cibles à partir d’un système constructif d’échange de

données relationnel vers RDF sans le schéma de formes cibles. Nous identifions deux

propriétés souhaitables d’un bon schéma cible, qui sont la correction c’est-à-dire que

chaque graphe RDF produit est accepté par le schéma cible; et la complétude c’est-à-dire

que chaque graphe RDF accepté par le schéma cible peut être produit. Nous proposons

un algorithme d’extraction qui convient à tout système d’échange de données sans

schéma, mais qui est également complet pour une grande classe pratique de systèmes

sans schéma.

Mots-clés: Échange de données, schéma de formes, calcul des réponses certaines,

consistance, langage visuel pour la spécification des correspondances, extraction de

schéma

Acknowledgements

First and foremost, I am grateful to the almighty God for blessing and guiding me in all

the works performed for the completion of this research thesis work with his presence

to complete successfully. Each moment during the course of this work, I experienced

the grace of our Lord Jesus Christ, who continuously enhanced my intelligence even at

the moments of despair, inspired me to move forward, opened before me unexpected

avenues and enlightened my thoughts with His wisdom. Also, I am grateful to the

Blessed Virgin Mary and all saints in heaven who with their intercession I obtained the

perseverance to finish this thesis.

I would like to express gratitude to my supervisor Dr. Sławek Staworko and co-

advisor Dr. Iovka Boneva. I appreciate their simplicity and art of feeding knowledge

patiently to bring out the researching capability and deliver my research product suc-

cessfully all through the endeavour.

This research benefits from the support of the Région Hauts-de-France by a grant

from CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies

2015-2020 and by the ANR project DataCert ANR-15-CE39-0009.

Last but not least, I would be glad to thank my dear parents, Nilda and Walter,

and my dear wife, Edith. My immense gratitude to them, for their encouragement and

advice. Their support throughout the years has been unwavering.

vi

Contents

Contents vii

1 Preliminaries 9

1.1 Logic . 9

1.2 Relational databases . 13

1.2.1 Relational schema and dependencies 16

1.2.2 Logic formalization . 18

1.2.3 Database queries . 20

1.3 Relational data exchange . 22

1.3.1 Data exchange setting . 25

1.3.2 Chase procedure . 26

1.3.3 Universal solution . 34

1.3.4 Certain query answering . 37

1.3.5 Consistency . 40

1.4 Resource description framework . 41

1.4.1 RDF graph . 44

1.4.2 Logic formalization . 45

1.5 Schemas for RDF graphs . 45

1.5.1 Typed RDF graph . 50

1.5.2 Shape constraints language . 50

1.5.3 Logic formalization . 52

1.5.4 Shape constraints as dependencies 53

2 Relational to RDF data exchange 57

2.1 Relational to RDF data exchange setting 57

vii

viii CONTENTS

2.2 R2RML: proof of concept . 64

2.3 Problems of interest . 68

2.3.1 Checking consistency . 69

2.3.2 Computing certain answers . 69

2.3.3 Visual mapping language . 70

2.3.4 Schema elicitation . 71

2.4 Related work . 73

3 Consistency 75

3.1 The opposite side of consistency: inconsistency 75

3.1.1 Sources of inconsistency . 78

3.1.2 Importance of core pre-solution 79

3.2 Value consistency . 79

3.2.1 Testing value consistency . 80

3.3 Node kind consistency . 95

3.3.1 Co-typing of a data exchange setting and co-typing graph 97

3.3.2 Co-typing of a graph . 98

3.3.3 Formalization . 101

3.3.4 Necessary condition . 101

3.3.5 Algorithm for testing node kind consistency 102

3.4 Deciding consistency . 104

3.4.1 Decidability . 105

3.5 Conclusion . 110

3.6 Related work . 111

4 Certain query answering 113

4.1 Motivation and problems . 113

4.2 Results from existing approaches . 114

4.2.1 Super-weakly acyclic tgds . 114

4.2.2 Guarded tgds . 120

4.3 Simulation-based approach . 121

4.3.1 Preliminar notions . 121

4.3.2 Forward NRE-based Boolean query language 123

CONTENTS ix

4.3.3 Robust query classes . 124

4.3.4 Universal simulation solution 126

4.4 Conclusion . 135

4.5 Related work . 136

5 Visual mapping language 141

5.1 Motivation and use case . 141

5.2 Preliminary notions . 144

5.3 The intermediary language . 145

5.4 The visual mapping language . 149

5.5 ShERML . 154

5.5.1 Architecture . 154

5.5.2 VML Editor . 155

5.5.3 Materializer . 158

5.5.4 Converter . 160

5.5.5 Consistency checking . 161

5.5.6 Additional features . 162

5.6 Evaluation . 163

5.6.1 Methodology . 163

5.6.2 Results . 164

5.7 Discussion and conclusion . 166

5.8 Related work . 166

6 Shapes schema elicitation 171

6.1 Motivation . 171

6.2 Problem statement . 175

6.2.1 Schema-less data exchange setting 175

6.2.2 Elicitation Problem . 178

6.3 M3 Elicitation algorithm . 179

6.3.1 Preliminary notions . 182

6.3.2 Algorithm . 190

6.4 Soundness . 191

6.5 Completeness . 193

x CONTENTS

6.6 Negative results . 202

6.7 Conclusion . 205

6.8 Related work . 206

Bibliography 213

Introduction

Motivation

Resource Description Framework (RDF) [Lassila & Swick 1999] is a well-established

format that finds usage as data exchange language between web applications [Baker

et al. 2012]. In many of these web applications, the data is exported from relational

databases as evidenced by the proliferation of languages for mapping relational databases

to RDF, such as R2RML [Das et al. 2011], direct mapping (DM) [Arenas et al. 2012]

or YARRRML [Heyvaert et al. 2018] .

Take for instance R2RML [Das et al. 2011], which is a declarative mapping lan-

guage recommended by W3C that allows the customization of what information from a

relational database is relevant to be exported to RDF. As an example, consider the two

following R2RML mappings, themselves in RDF format presented in Turtle syntax,

exporting data about employees and departments from a relational database to RDF.

<#DeptMap>

rr:logicalTable[rr:tableName “Dept”];

rr:subjectMap[rr:template “dept:{did}”; rr:class :TDept];

rr:predicateObjectMap[rr:predicate :name; rr:objectMap[rr:column “name”]].

<#EmpMap>

rr:logicalTable[rr:sqlQuery “SELECT eid, name, email, did

FROM Emp NATURAL JOIN Email ”];

rr:subjectMap[rr:template “emp:{eid}”; rr:class :TEmp];

rr:predicateObjectMap[rr:predicate :name; rr:objectMap[rr:column “name”]];

rr:predicateObjectMap[rr:predicate:email; rr:objectMap [rr:column “email”]];

rr:predicateObjectMap [rr:predicate :works; rr:objectMap[rr:template “dept:{did}”]];

1

2 CONTENTS

In general, R2RML maps data from relational tables or query outputs and produces

set of triples using templates for subjects, explicitly stated predicate names, and for

objects either literal values coming from columns or templates. Additionally, a type for

the subject can be declared. For instance, the first mapping maps data from relation

Dept(did , name) into a set of triples with predicate :name. For every department, it

creates a dedicated Internationalized Resource Identifier (IRI) and the class (rr:class) of

each department IRI is declared as :TDept.

RDF has been originally proposed schema-less to promote its adoption but the need

for schema languages for RDF has been since identified and deemed particularly im-

portant in the context of exchange of data between applications [Gayo et al. 2017,

W3C 2013]. Having schema allows to validate RDF graphs and one of the benefits

of working with data conforming to a schema is an increased execution safety: applica-

tions need not to worry about handling malformed or invalid data that could otherwise

cause undesirable and difficult to predict side-effects.

One family of proposed schema formalisms for RDF is based on shape constraints.

This class includes shape constraint language (SHACL) [Knublauch & Kontokostas 2017,

Corman et al. 2018] and shape expressions schemas (ShEx) [Prud’hommeaux et al. 2018,

Boneva et al. 2017, Staworko et al. 2015]. The two languages allow to define a set of

types that impose structural constraints on nodes and their immediate neighborhood in

an RDF graph. For instance, the types :TEmp and :TDept have the following ShEx

definition

:TDept { :name xsd:Literal; :address xsd:Literal}

:TEmp { :name xsd:Literal; :email xsd:Literal?; :works @:TDept+ }

(where xsd:Literal is a new datatype that we introduce to XSD vocabulary). Essentially,

every department IRI must have exactly one :name and :address property; and every

employee IRI must have a single :name property, an optional :email property, and at

least one :works property each leading to a department IRI (satisfying type :TDept).

We are considering the task of converting databases to RDF graphs. It is typically

accomplished by a declarative formalism such as R2RML, DM, or YARRRML. Because

of the importance of schema for RDF, we also require a target schema in any of the

CONTENTS 3

declarative formalisms. As a consequence of this lastly consideration, the following

concerns arise:

1. Conceptual complexity of designing mappings in particular when schemas are

large can become easily an error-prone process. Can we offer static analysis tools

for identification of design errors.

2. The existence of a schema and the fact that mappings are expressed in a declara-

tive way makes possible existence of different solutions to a given input. Which

solution is most suitable and if it exists, can it be constructed, what can be said

about querying such a solution.

3. The mapping needs to be specified using a formal language which can be chal-

lenging to a non-expert user. Can we render this process more accessible while

maintaining expressivity.

4. Many already existing solutions of exporting relational to RDF data only consider

relational schema and mappings with no target schema. Can we propose a way to

construct a schema and what is the good schema to the output graphs.

Formalization

We approach the above concerns by first formalizing the export of relational data to RDF

as a data exchange problem. Data exchange has been mainly studied in the context of

relational databases [Kolaitis 2005, Arenas et al. 2010, Barceló 2009]. Data exchange

from relational databases to RDF has been studied recently [Sequeda et al. 2012,Boneva

et al. 2015], but with little to no schema information for the output RDF graph. None

of these previous works can be used to address precisely the setting we have at hand.

In this manuscript, we formalize the process of exporting a relational database to

RDF with target schema as a constructive data exchange setting where we use source-

to-target generating dependencies as mappings. These mappings use an abstraction of

IRI templates which we call IRI constructors to map entities from the relational database

to IRIs in the RDF.

4 CONTENTS

R2RML mappings presented at the beginning of this section can be expressed with

the following logical formalism

Dept(did , name)⇒ Triple(dep2iri(did),:name, name) ∧ TDept(dep2iri(did)),

Emp(eid , name, did) ∧ Email(eid , email)⇒

Triple(emp2iri(eid),:name, name) ∧ Triple(emp2iri(eid),:email, email) ∧

Triple(emp2iri(eid),:works, dep2iri(did)) ∧ TEmp(emp2iri(eid)),

where dep2iri(did) = "dept:{did}" constructs an IRI for each department and the

other IRI constructor emp2iri(eid) = "emp:{eid}" generates an IRI for each em-

ployee.

This formalization trivially captures direct mapping (DM) [Arenas et al. 2012], large

fragment of R2RML, and YARRRML since it is a succinct syntax for R2RML. Indeed,

this formalization can express all four uses cases of R2RML [Auer et al. 2010] and it

can cover 38 out of 54 test cases for R2RML implementations [Villazón & Hausen-

blas 2012]. The test cases that we do not cover are those that use pattern-based function

to transform data values and we do not cover those that use SQL statements with ag-

gregation functions. With this formalization, we address 8 out of the 11 core function

requirements for R2RML [Auer et al. 2010]. A relatively straightforward extension

of this formalization to node datatypes can cover 10 out of the 11 core function re-

quirements. However, for relative simplicity, we do not study our formalization with

datatypes.

Problems of interest

In this manuscript, we employ the above formalization and address the previously iden-

tified concerns by studying the following problems of interest.

Checking Consistency. A classical static analysis problem is testing consistency: check-

ing whether for a given source instance of a relational schema there will be always a

well-defined target instance. If the setting is inconsistent then there is possible error in

the designing of mapping. Then, the static analysis allows to find errors and if it identi-

CONTENTS 5

fies conditions that generate inconsistency then it is conceivable to extend to other kind

of static analysis. This problem is complex because the source and target languages

express constraints differently in an incompatible way. Additionally the mappings can

add new constraints. In fact, we can view the problem of checking consistency as a

variant of the problem of language containment i.e., does the language of the shapes

schema contains the language of graphs produced from the source schema by applying

the mappings.

Certain query answering and universal solutions. Certain answers allow to identify the

important answers because they are present in every solution. As such, we are interested

in finding a good solution that has the property of allowing to easily compute certain

answers. Thus, we study the problem of certain query answering where certain answers

typically are computed on a universal solution because it preserves information [Fagin

et al. 2005a]. However, in the context of relational to RDF data exchange, a finite

universal solution might not exist even if the setting is consistent and admits solutions.

Thus, an interesting problem is to check if it is possible to construct a finite solution

that has similar properties to a universal solution and to identify the family of queries

for which it can be used to compute certain query answers. Also, we are interesting in a

low complexity for the construction of this finite solution.

Visual mapping language. It has been argued [Shneiderman 1983] that a simple graph-

ical interface facilitates the specification of mappings by the direct manipulation with

drag-and-drop techniques and a visual language. Those kind of visual mapping lan-

guages are known to be easy for non-expert users as evidenced by Clio system [Fagin

et al. 2009]. The challenge in this problem comes in identifying the trade-off between

simplicity and expressivisity. The goal is to provide an interface based on a visual map-

ping language that is easy to use but does not hinder users with unnecessary details while

allows to cover the most possible number of use cases or it is expressible as possible.

Schema elicitation. Shapes schema elicitation aims at constructing a target schema

from a set of mappings and a relational schema. An important issue in this construction

is to define the properties of the desired target schema because there can be trivial solu-

tions that produce a schema. For instance, solutions that produce universal schemas that

accept any graph and not only graphs produced by the mapping. We want an algorithm

6 CONTENTS

that makes an honest effort in capturing the structure of the graphs produced.

Contributions

In this section, we describe the contributions presented to solve the problems above.

Consistency. We have solved the problem of consistency by identifying a set of nec-

essary and sufficient conditions that guarantees the consistency. This characterization

aims at constructing an inconsistent instance. One such condition is value consistency

that guarantees that no two different values are equated to satisfy the shapes schema.

For instance, in the previous example, an employee that has two different names is an

example of value inconsistency. On the other hand, a mapping rule may declare the

type of nodes it constructs as IRI or literal. A malformed set of rules may inconspic-

uously produce a graph with a node whose declared type is both IRI node and literal

node. The condition of node kind consistency guarantees the no co-occurrence of literal

and non literal types for a node. We have developed an static analysis tool that allows

to decided if a setting is consistent. The complexity of checking those conditions is

coNP-complete. Initial findings have been published in AMW [Boneva et al. 2018] and

further developed in ADBIS [Boneva et al. 2020].

Certain query answering. We have proposed a novel notion of universal simulation so-

lution, which is an adaptation of universal solution by replacing homomomorphisms

with a weaker notion of simulation. A universal simulation solution always exists and it

allows to compute certain answers to classes of queries that are robust under simulation.

Intuitively, a robust query class is when a query is evaluated on a node, the query will

behave in a same way under any node that is simulated. We can construct a minimal-

size universal simulation solution to a given instance of the relational schema w.r.t. a

constructive setting is exponential in the size of the shapes schema. If we consider the

class of nested regular expressions, which are used as a navigational query language by

SPARQL [Pérez et al. 2010] to query RDF, then the forward fragment is robust under

simulation. The data complexity of computing certain answers for nested regular ex-

pressions and any constructive data exchange setting is PTIME. We have published this

result in ADBIS [Boneva et al. 2020].

CONTENTS 7

Visual mapping language. We have proposed a visual mapping language (VML) that

covers a large fragment of constructive relational to RDF data exchange setting. Also,

we have developed ShERML, a tool that guides a user through interactive functionali-

ties in the process of exporting relational data to RDF. In addition, we have proposed

R2VML, a declarative mapping language that captures VML mappings and presents a

user-friendly and succinct syntax for defining mappings. We have published the result

related to the visual mapping language in ISWC [Boneva et al. 2019].

Shapes schema elicitation. We have investigated the problem of shapes schema elici-

tation and we have identified two desirable properties of the target schema, which are

soundness i.e., every produced RDF graph is accepted by the target schema; and com-

pleteness i.e., every RDF graph accepted by the target schema can be produced. We have

proposed an algorithm called M3, based on a method of minimal and maximal models,

that produces a sound schema for any relational schema and set of mappings. We have

shown that for relational schemas and mappings that are the result of the straightforward

translation of a class of ER diagrams, the schema produced by M3 is also complete.

Finally, we have presented two inherent limitations of the task at hand: a sound and

complete schema might be of exponential size or worst even it might not exist. We are

currently preparing for publication.

Organization

In this section, we describe briefly the content of each chapter of the manuscript.

Preliminaries. Chapter 1 provides the basic definitions and notations used throughout

this manuscript. First, we recall the notions of signatures, models, semantics and classes

of formulas. Second, relational databases and dependencies are introduced with the

definition and formalization of them. Third, we describe the concepts that are related to

relational data exchange setting, which are chase, universal solution, certain query an-

swering and consistency. Fourth, RDF is presented and formalized. Finally, we present

the shapes constraints language and show how these constraints can be expressed with

dependencies.

Relational to RDF data exchange. Chapter 2 illustrates a relational to RDF data ex-

8 CONTENTS

change setting. We present its formalization and define what is a solution to our setting.

Also, we present R2RML and show which part of it is captured by our setting, and how

this is captured. We end with an introductory presentation of the problems of interest.

Consistency. Chapter 3 provides the study of consistency problem. First, we identify

the sources of inconsistency by an example. Then, we present two conditions that will

guarantee the absence of the source of inconsistency. Each condition is shown to be

necessary for deciding consistency and an algorithm is presented for each condition to

identify if the setting satisfies it. At the end of the chapter, we show that consistency is

decidable.

Certain query answering. Chapter 4 provides the study of certain query answering prob-

lem. We start with an adaptation of two existing approaches to the problem of certain

query answering. Then, we present our approach that investigates forward nested regu-

lar expressions and introduces the notion of a universal simulation solution that allows

to compute certain answers efficiently. We present the construction of a size-minimal

universal simulation solution and show that its size is polynomial in the size of the

source instance, but might be exponential in the size of the constraints.

Visual mapping language. Chapter 5 provides a tool that defines visual mappings. The

notions of human-computer interaction used to develop the tool are described at the be-

ginning. Then, a text-based mapping language is defined and on top of this language is

defined a visual mapping language. Based on these languages, we describe the tool de-

veloped for facilitating the definition of mappings in a relational to RDF data exchange

context. We do an evaluation of the tool and present its results.

Shapes schema elicitation. Chapter 6 defines the shapes schema elicitation problem

where the notions of soundness and completeness of a desirable target schema are de-

fined. An elicitation algorithm is proposed based on minimal and maximal models

described in the same section. Then, we show the soundness of the algorithm. We

identify a class where the proposed algorithm is complete. Finally, we present inherent

limitations of the task of producing sound and complete schema.

Chapter 1

Preliminaries

In this chapter, we recall the basic concepts and introduce the notation that will be

used throughout this manuscript. We start in Section 1.1 by recapping fundamentals of

logic. In Section 1.2, we recall basic notions of relational databases. Next, we describe

a general notion of relational data exchange in Section 1.3. Then we describe RDF

graphs and their formalization in Section 1.4. Finally, in Section 1.5, we discuss the

notion of schemas for RDF graphs and introduce an abstraction formalism that captures

a common fragment of two well-known schemas ShEx and SHACL.

1.1 Logic

We fix an enumerable set Dom of constant values. Because we deal with relational

databases and RDF graphs in this manuscript, we need to distinguish for RDF, nodes

and literals where nodes and literals can have null values; and we need to distinguish

for relational databases, constants and null values. Thus, we specify the domain to be

partitioned into three infinite subsets Dom = Iri ∪ Lit ∪ Blank, of IRIs, literals, and

blank node identifiers respectively. Because relational databases deal with null values

that are not blank nodes, we assume an infinite set of null literals NullLit ⊆ Lit for

relational databases; and the set of all null values Null = NullLit ∪ Blank. We refer

to the remaining elements as constants Const = Dom \ Null, and additionally, because

relational databases use constants that are neither IRIs nor null literals, we identify non-

null literals ConstLit = Lit \ NullLit = Const ∩ Lit.

The relational vocabulary is an enumerable set of symbols V = Va ∪ VR ∪ Vf

9

10 CHAPTER 1. PRELIMINARIES

partitioned into three pair-wise disjoint subsets: the set of first-order names Va, the set

of relation names VR, and the set of function names Vf . In our formulas, we are going

to use names of the constant values of Dom. So, we specify the set of first-order names,

Va = VV ∪ Dom as a set of variable names VV and a set of names of the domain

corresponding to IRIs, literals and blank nodes.

For a function name or relational name, the number of inputs is called the arity of

the function or relational name. We assume that each relation and function name come

with a fixed arity. In the sequel, by V
(m)
R we denote the set of relation names of arity m,

and analogously, by V
(n)
f we denote the set of function names of arity n. Every element

of the vocabulary has its domain, the set of compatible values:

dom(v) = Dom, dom(R) = 2Domm

, dom(f) = DomDomn

, dom(c) = {c}

for any v ∈ VV, c ∈ Dom, R ∈ VR with arity m, and for any f ∈ Vf with arity n. We

point out that the domain of a constant symbol is the same constant value.

Syntax. A term is defined by the following recursive syntax:

t ::= a | f(t, . . . , t)

where a ∈Va, and f ∈Vf . A formula is defined with the following syntax:

ϕ ::= R(t, . . . , t) | ¬ϕ | ϕ ∧ ϕ | ∃v. ϕ | t = t

where R ∈ VR, t is a term, and v ranges over V \Vf . We use the following syntactic-

sugar:

∀v. ϕ ::= ¬∃v. ¬ϕ, ϕ ∨ ψ ::= ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ ::= ¬ϕ ∨ ψ.

Signatures and models. A relational signature R ⊆ V is a finite set of symbols. A

relational structure of R, or a model of R, is a function M that assigns to every symbol

v ∈ R a compatible value vM ∈ dom(v). In essence, relational signature identifies a

set of names whose interpretation is provided by a model. The size of a signature R,

denoted by |R|, is the number of symbols in the signature.

1.1. LOGIC 11

The union of two models M1 of R1 and M2 of R2, whose signatures are disjoint

R1∩R2 = ∅, is a modelM1∪M2 of R1∪R2 defined as follows (for any v ∈R1∪R2):

vM1∪M2 =

v
M1 if v ∈R1,

vM2 if v ∈R2.

Given two models M1 of R1 and M2 of R2, M1 is compatible with M2 if for all v ∈

R1 ∩R2, vM1 = vM2 . The merge of two compatible models M1 of R1 and M2 of R2

is a model M1]M2 of R1 ∪R2 defined as follows (for any v ∈R1 ∪R2):

vM1]M2 =

v
M1 if v ∈R1,

vM2 if v ∈R2 \R1.

A term over a signature R is defined with

t ::= a | f(t, . . . , t)

where a ∈Va ∩R, and f ∈Vf ∩R. A formula over a signature R is defined with:

ϕ ::= R(t, . . . , t) | ¬ϕ | ϕ ∧ ϕ | ∃v. ϕ | t = t

whereR ∈VR∩R, t is a term over R, and v ∈VV∪(Va∩R). Implicitly, all signatures

will allow to use equality symbol =.

Classes of formulas. We point out that any symbol in V can serve the purpose of a vari-

able, in particular the symbol present in a relational signature R can also be bound with

a quantifier (overriding whatever interpretation the structure assigns to this symbol). We

identify the set of symbols used in a term as follows:

Vocab(a) = {a}

Vocab(f(t1, . . . , tn)) = {f} ∪
⋃n
i=1 Vocab(ti),

12 CHAPTER 1. PRELIMINARIES

and the set of symbols used in a formula,

Vocab(R(t1, . . . , tm)) = {R} ∪
⋃m
i=1 Vocab(ti), Vocab(¬ϕ) = Vocab(ϕ),

Vocab(ϕ1 ∧ ϕ2) = Vocab(ϕ1) ∪ Vocab(ϕ2), Vocab(∃v. ϕ) = Vocab(ϕ),

Vocab(t1 = t2) = Vocab(t1) ∪ Vocab(t2).

Similarly, we can identify the set of unbound symbols used in a formula

Unbd(R(t1, . . . , tm)) = {R} ∪
⋃m
i=1 Vocab(ti), Unbd(¬ϕ) = Unbd(ϕ),

Unbd(ϕ1 ∧ ϕ2) = Unbd(ϕ1) ∪ Unbd(ϕ2), Unbd(∃v. ϕ) = Unbd(ϕ) \ {v},

Unbd(t1 = t2) = Vocab(t1) ∪ Vocab(t2)

Now, let R be a relational signature and ϕ a formula over R. The set of variables

used in ϕ is varsR(ϕ) = Vocab(ϕ) \R. The set of free variables of a formula ϕ is

fvarsR(ϕ) = Unbd(ϕ) \ R. The formula ϕ is closed iff it has no free variable i.e.,

fvarsR(ϕ) = ∅. An atomic formula has the form R(t, . . . , t), where R ∈ VR. A

formula is ground if it uses no variables whatsoever. A relational atom does not use any

function symbols. A fact is a ground relational atom. A first-order (FO) formula over

R uses only first-order variables i.e., varsR(ϕ) ⊆ Va. A second-order (SO) formula

over R uses second-order variables in addition to first-order variables i.e., varsR(ϕ) ⊆

Va ∪ VR ∪ Vf . A monadic SO logic (MSO) formula over R uses no second-order

functional variable and no second-order relational variable of arity higher than 1 i.e.,

varsR(ϕ) ⊆V
(1)
R ∪Va. An existential second-order (∃SO) formula over R has the form

ϕ = ∃X1, . . . , Xn. ϕ, where X1, . . . , Xn ∈ VR ∪Vf , and ϕ does not have a quantifier

with a second-order variable in VR ∪Vf . If furthermore, all X1, . . . , Xn ∈V
(1)
R , then ϕ

is an existential monadic SO (∃MSO) formula.

Semantics. We define the entailment relation between a relational structure M of R

and a formula ϕ over R. First, we define an expression E over R as any term, variable

name, function name or relation name. We identify the free variables V ⊆ fvarsR(E)

of an expression. A valuation of V is a function θ that takes a symbol v ∈ V and yields

a value in dom(v). By ∅ we denote the empty valuation of the empty set of symbols.

Given a valuation θ of V , a symbol v ∈ V \R, and a value w ∈ dom(v), θ[v/w] is

1.2. RELATIONAL DATABASES 13

valuation θ′ of V ∪{v} such that θ′(v) = w and θ′(z) = θ(z) for any z ∈ V \{v}. Given

a relational signature R, a model M of R, an expression E over R and a valuation θ of

V such that fvarsR(E) ⊆ dom(θ) where dom returns the domain of θ, the interpretation

of E w.r.t. θ and M is defined as follows:

v(M,θ) =

v
M if v ∈ Dom

θ(v) Otherwise.
for any v ∈ V,

R(M,θ) =

R
M if R 6∈ dom(θ)

θ(R) Otherwise.
for any R ∈ V ,

f (M,θ) =

f
M if f 6∈ dom(θ)

θ(f) Otherwise.
for any f ∈ V ,

f(t1, . . . , tn)(M,θ) = f (M,θ)(t
(M,θ)
1 , . . . , t(M,θ)

n)

t(M,θ) =

v
(M,θ) if t = v,

f(t1, . . . , tn)(M,θ) Otherwise.
for any term t.

Below, we define the entailment relation (M, θ) |= ϕ of a formula ϕ over R w.r.t. a

model M of R and a valuation such that dom(θ) ⊆ fvarsR(ϕ) is defined as follows:

(M, θ) |= R(t1, . . . , tn) iff (t
(M,θ)
1 , . . . , t(M,θ)

n) ∈ R(M,θ),

(M, θ) |= ¬ϕ iff it is not true that (M, θ) |= ϕ,

(M, θ) |= (ϕ1 ∧ ϕ2) iff (M, θ) |= ϕ1 and (M, θ) |= ϕ2,

(M, θ) |= ∃v. ϕ iff (M, θ[v/w]) |= ϕ for some w ∈ dom(v).

(M, θ) |= t1 = t2 iff (M, θ) |= t
(M,θ)
1 = t

(M,θ)
2 .

Finally, we say that ϕ is satisfied in M , in symbols M |= ϕ iff (M, ∅) |= ϕ.

1.2 Relational databases

We recall the basic notions of relational databases [Garcia-Molina et al. 2009]. A rela-

tional database is a collection of tables where each table has a name and each column

14 CHAPTER 1. PRELIMINARIES

of a table also has a name called attribute. From the modeling point of view, a table is

seen as a relation. Each table gives some structural information on the relation, and the

whole structural information of all relations is called the schema. Each row of the table

is called a tuple and stores the attribute values. The set of tuples is the content of a table

and the content of the whole database is called an instance. The schema also includes

a set of constraints, which defines consistency of the instance. Here, we focus only on

functional dependencies and inclusion dependencies. We illustrate the above notions

with the following example.

Example 1.2.1. Consider the database in Figure 1.1 of an academic institute that or-

ganizes conferences. Figure 1.1 shows an instance together with a schema including

primary keys which are the attributes that are underlined and foreign keys which are rep-

resented with arrows. This database stores information structured in a set of tables about

researchers that have attended conferences, presented talks and for each talk stores the

collaborators. This information is structured in the following tables:

• Table Researcher stores researchers with their name, email, expertise and team.

• Table UniTeam stores teams associated to a university and located in a place.

• Table Conference stores conferences with their name, year and place.

• Table Registration stores the date when a researcher is registered in a conference.

• Table Talk stores the title of a researcher talk done in a conference;

• Table Collaborator stores tuples that indicate a researcher that has collaborated in

a paper presented in a talk.

The schema of the conference database is composed of the relations that are the

tables presented above and defines the following set of constraints:

(R1) every researcher and every conference have a unique identifier;

(R2) every team of a university is identified by a unique name;

(R3) every collaborator is identified by a unique research ID, conference ID, title, and

other research ID;

1.2. RELATIONAL DATABASES 15

Researcher
Idr Name Email Expertise Team

1 Jose Lozano j@s.fr Maths ALG
2 Edith Tupac p@m.fr Logic Pi
3 Steve s@s.fr Algebra ALG
4 Bernard b@r.fr Geometry Pi

UniTeam
Team University Place

Pi University of Lille Lille
ALG University of Lille Lille

Conference
Idc Name Year Place

1 ICDT 2019 Lille
2 ISWC 2019 Chile

Registration
Idr Idc Date

1 1 03-10-19
3 2 16-10-19

Talk
Idr Idc Title

1 1 Tutoring Web math platform
1 1 Skolemization of prenex formulas
3 2 On algebraic connectivity of graphs

Collaborator
Idr Idc Title Idrc

1 1 Tutoring Web math platform 4
3 2 On algebraic connectivity of graphs 2

Figure 1.1: Database instance of conference schema.

(R4) every registration and every talk are identified by a unique pair of research ID and

conference ID;

(R5) every registration has a reference to the relation Researcher and a reference to the

relation Conference;

(R6) every talk has a reference to the relation Registration;

16 CHAPTER 1. PRELIMINARIES

(R7) every collaborator has a reference to the relation Talk and a reference to the rela-

tion Researcher; and

(R8) every researcher has a reference to the relation UniTeam.

We can create the schema of the conference database in RDBMS using SQL syntax as

shown in Figure 1.2. The primary keys in RDBMS are rules from R1 to R4, and the

foreign keys are rules from R5 to R8.

CREATE TABLE UniTeam (
Team varchar,
University varchar,
Place varchar,
PRIMARY KEY (Team,University)

);
CREATE TABLE Conference (

Idc int,
Name varchar,
Year date,
Place varchar,
PRIMARY KEY(Idc)

);
CREATE TABLE Registration (

Idr int,
Idc int,
Date date,
PRIMARY KEY (Idr,Idc),
FOREIGN KEY (Idr)

REFERENCES Researcher(Id),
FOREIGN KEY (Idc)

REFERENCES Conference(Id)
);
CREATE TABLE Talk (

Idr int,
Idc int,
Title varchar,
PRIMARY KEY (Idp,Idc,Title),
FOREIGN KEY (Idr,Idc)

REFERENCES Registration(Idr,Idc)
);

CREATE TABLE Researcher (
Idr int,
Name varchar,
Email varchar,
Expertise varchar,
Team varchar,
PRIMARY KEY(Idr),
FOREIGN KEY (Team)

REFERENCES UniTeam(Team)
);
CREATE TABLE Collaborator (

Idr int,
Idc int,
Title varchar,
Idrc int,
PRIMARY KEY (Idr,Idc,Title,Idrc),
FOREIGN KEY (Idr,Idc,Title)

REFERENCES Talk(Idr,Idc,Title),
FOREIGN KEY (Idrc)

REFERENCES Researcher(Id)
);

Figure 1.2: Relational schema creation with SQL syntax.

1.2.1 Relational schema and dependencies

We assume an infinite set of attribute names A ⊆ Va. A relational schema is a tuple

R = (R, attrs ,Σfd,Σind) where

1.2. RELATIONAL DATABASES 17

• R is a finite set of relation names, each relation name with a given arity;

• attrs is a function attrs:R → P(A) that assigns to each relation name R ∈ R

a finite set of attribute names whose cardinality is equal to the arity of R;

• Σfd is a set of functional dependencies (fds) of the form R : X → Y , where

R ∈R is a relation name, and X, Y ⊆ attrs(R), and

• Σind is a set of inclusion dependencies of the form R[X] ⊆ P [Y], where R,P ∈

R are relation names, X ⊆ attrs(R) and Y ⊆ attrs(P) and |X| = |Y |.

Also, we assume that the set of attribute names of every relation have a fixed order.

Intuitively, a fd R : X → Y means that values of attribute names in X determine

the values of attribute names in Y in every tuple; and an inclusion dependency between

two relations R and P , R[X] ⊆ P [Y], means that every value of an attribute in X is the

same value of an attribute in Y . We point out that key dependencies (kds) are a special

case of functional dependencies where Y = attrs(R). Also, foreign key constraints are

a special case of inclusion dependencies where Y is a primary key in P .

Given a finite set A ⊆ A of attribute names, a tuple over A is a function that maps

from an attribute name to a value, i.e., t : A → Dom. We view a tuple as a record,

consequently we write t.a for t(a). Let X ⊆ A be a set of attributes, by t.X we

denote a tuple over X that consists of precisely the value of t on attributes in X , i.e.,

t : X → Dom and t.X(a) = t(a) for a ∈ X . An instance I of a relational schema R

is a function I that maps every relation name R ∈ R to a finite set I(R) of tuples over

attributes of R. The size of an instance I of R, denoted by |I| is the sum of number of

tuples by relation mapped by I .

An instance I of a relational schema R satisfies a fd R : X → Y , denoted by

I |= R : X → Y , if for any pair of tuples in I(R) that agree on X also agree on Y .

Formally, I |= R : X → Y iff ∀t1, t2 ∈ I(R). t1.X = t2.X ⇒ t1.Y = t2.Y .

An instance I of a relational schema R satisfies an inclusion dependency R[X] ⊆

P [Y], denoted by I |= R[X] ⊆ P [Y], if for any tuple t ∈ I(R), there is a tuple t′ ∈ I(P)

such that the tuple t over X agrees with t′ over Y . Formally, I |= R[X] ⊆ P [Y] iff

∀t ∈ I(R). ∃t′ ∈ I(P). ran(t) ⊆ ran(t′) ∧ t.X = t′.Y where ran returns the range of

t. Finally, we say that an instance I is consistent if I satisfies the set of dependencies

18 CHAPTER 1. PRELIMINARIES

Σfd ∪ Σind. The active domain adom(I) of the instance I is the set of values from

Dom used in I . For ease of use, when writing a functional dependency or inclusion

dependency, we write a set of attributes A = {a1, . . . , an} as A = a1 . . . an. We denote

the set of instances of a relational schema R by Inst(R).

Example 1.2.2 (cont. Example 1.2.1). Take the conference database, the relational

schema R0 = (R0, attrs ,Σfd,Σind) has the following relation names

R0 = {Researcher,UniTeam,Conference,Registration,Talk,Collaborator},

and we express the set of constraints with the following dependencies Σfd ∪ Σind :

Researcher : Idr → Idr Name Email Expertise Team (R1)

Conference : Idc → Idc Name Year Place (R1)

UniTeam : Team University → Team University Place (R2)

Collaborator : Idr Idc Title Idrc → Idr Idc Title Idrc (R3)

Registration : Idr Idc → Idr Idc Date (R4)

Talk : Idr Idc Title → Idr Idc Title (R4)

Registration[Idc] ⊆ Conference[Idc] (R5)

Registration[Idr] ⊆ Researcher[Idr] (R5)

Talk[Idr Idc] ⊆ Registration[Idr Idc] (R6)

Collaborator[Idr Idc Title] ⊆ Talk[Idr Idc Title] (R7)

Collaborator[Idrc] ⊆ Researcher[Id] (R7)

Researcher[Team] ⊆ UniTeam[Team] (R8)

We recall that the set of functional dependencies in this example are primary keys and

the inclusion dependencies are foreign key constraints.

1.2.2 Logic formalization

The relational signature of the relational schema R = (R, attrs ,Σfd,Σind) is the set

of relation names R. For a given relational schema R and a database instance I of R,

1.2. RELATIONAL DATABASES 19

by MI we define the relational structure over R corresponding to I with RMI = I(R)

for all R ∈ R. In the sequel, we treat database instances interchangeably with their

relational structures, and unless we state otherwise, we work only with instances that

use literal constants from ConstLit.

In general, given a relational schema R = (R, attrs ,Σfd,Σind), a database con-

straint either functional or inclusion dependency is modeled by a dependency, which is

any closed formula σ over R of the form

∀x,y. ϕ(x,y)⇒ ∃z. ψ(y, z)

where

• x,y and z are sequences of variables,

• ϕ(x,y) is a conjunction of atomic formulas over R and is called the body of σ,

denoted as body(σ); and

• ψ(y, z) is called the head of σ, denoted as head(σ), and is either a conjunction of

equality terms or a conjunction of atomic formulas over R.

We distinguish two types of dependencies by the form of head(σ):

• equality generating dependency (egd) if the dependency is a conjunction of equal-

ity terms; and

• tuple generating dependency (tgd) if the dependency is a conjunction of atomic

formulas.

In the sequel, we write x to denote a sequence of variables and for writing dependencies,

we often drop the universal quantifier and write simply ϕ(x,y)⇒ ∃z. ψ(y, z); and we

assume that implicitly all free variables are universally quantified.

Any inclusion dependency can be expressed with tgds and any fd is in fact an egd.

For instance, the following example illustrates how fds and inclusion dependencies can

be expressed with tgds and egds.

Example 1.2.3 (cont. Example 1.2.2). We express the functional dependencies with the

20 CHAPTER 1. PRELIMINARIES

following formulas over R0:

Researcher(x1, y2, y3, y4, y5) ∧ Researcher(x1, z2, z3, z4, z5)⇒
5∧
i=2

yi = zi,

Registration(x1, x2, x3) ∧ Registration(x1, x2, y3)⇒ x3 = y3,

Conference(x1, y2, y3, y4) ∧ Conference(x1, z2, z3, z4)⇒ y2 = z2 ∧ y3 = z3 ∧ y4 = z4,

Talk(x1, x2, x3) ∧ Talk(x1, x2, x3)⇒ x1 = x1 ∧ x2 = x2 ∧ x3 = x3.

We omit the key dependencies for UniTeam and Collaborator since there are similar to

Talk because they do not imply other attributes. Now, we express the inclusion depen-

dencies with the following formulas over R0:

Registration(x1, x2, x3)⇒ ∃y. Conference(x1, y),

Registration(x1, x2, x3)⇒ ∃y1, y2, y3, y4. Researcher(x1, y1, y2, y3, y4),

Talk(x1, x2, x3)⇒ ∃y. Registration(x1, x2, y),

Collaborator(x1, x2, x3, x4)⇒ ∃y. Talk(x1, x2, x3),

Researcher(x1, x2, x3, x4, x5)⇒ ∃y1, y2. UniTeam(x5, y1, y2).

Finally, an instance I of R satisfies a dependency σ if I |= σ.

1.2.3 Database queries

A database query extracts data from an instance of a relational schema. Such extracted

data is called an answer. Typically, a query is modeled by a first-order formula. Here we

also treat Boolean queries where the answers are true or false. We illustrate an answer

to a query in the next example.

Example 1.2.4 (cont. Example 1.2.2). Recall the conference database in Example 1.2.2.

Consider the query ϕ1 which asks the talks of Steve on the ISWC conference in the year

2019:

ϕ1(y) = ∃x1, x2, x3, x4, x5, x6. Researcher(x1,Steve, x2, x3, x4)∧

Conference(x5, ISWC, 2019, x6) ∧ Talk(x1, x5, y). (1.1)

1.2. RELATIONAL DATABASES 21

The set of answers to ϕ1 is {(Skolemization of prenex formulas)}.

Now, consider a Boolean query ϕ2 which asks if Steve has presented a talk on a

ICDT conference in the year 2019:

ϕ2() = ∃x1, x2, x3, x4, x5, x6, x7. Researcher(x1,Steve, x2, x3, x4)∧

Conference(x5, ICDT, 2019, x6) ∧ Talk(x1, x5, x7). (1.2)

The answer to this query is false.

We define queries using formulas. Let R = (R, attrs ,Σfd,Σind) be a relational

schema. Let I be a database instance of R and let ϕ be a first-order formula. A valuation

val of fvarsR(ϕ) is an answer to a query ϕ in I if and only if (I, val) |= ϕ. The set of

answers to a query ϕ in I is QA(ϕ, I) = {val | (I, val) |= ϕ}. If a query is a closed

formula, the answers are Boolean: true if QA(ϕ, I) = {∅}, otherwise is false. This

kind of query is called Boolean query.

A conjunctive query is an existentially quantified conjunction of atomic formulas

over a relational signature R and Boolean conjunctive query (BCQ) is conjunction of

closed atomic formulas. The size of a conjunctive query Q is denoted by |Q| and it

represents the number of atoms in Q.

A conjunctive query ϕ is acyclic if it has a join-tree, otherwise is cyclic. A join-tree

is a tree T such that nodes are the relational atoms of the conjunctive query ϕ and for

every variable x of ϕ the set of relational atoms with x forms a subtree of T .

Example 1.2.5. Consider a query ϕ(x, y) = ∃z, w. E(x, z) ∧ E(z, w) ∧ E(y, z). This

query is acyclic because it has a join tree as seen in Figure 1.3.

E(x,z)

E(y,z) E(z,w)

Figure 1.3: Join tree of a conjunctive query.

22 CHAPTER 1. PRELIMINARIES

1.3 Relational data exchange

We recall the classical data management problem called data exchange. Relational data

exchange is the transformation from a source relational database to a target relational

database. Such a transformation is defined by a set of mappings from the source rela-

tional schema to the target schema. These elements constitute the data exchange setting.

The result of a transformation of a source instance is an instance of the target schema,

and if it satisfies the constraints (of target schema), it is called a solution. We illustrate

the above notions with the help of the following example.

Example 1.3.1 (cont. Example 1.2.1 and 1.2.2). Suppose that the conference database

needs to be transformed into a database that follows a different relational schema. Let

this target schema contain the relations: Author, Publication and Conference; and the

constraints be the following dependencies:

Author : IdAuthor → IdAuthor Name Country

Conference : Name Year → Name Year BookTitle Place

Publication : IdAuthor Title → IdAuthor Title BookTitle

Publication : Title → Title BookTitle

Publication[BookTitle] ⊆ Conference[BookTitle]

Publication[IdAuthor] ⊆ Author[IdAuthor]

The relation Author stores the names of authors and their countries. The relation Con-

ference stores conference names, the year of realization, the booktitle and the place. The

relation Publication stores publications, the authors of each publication and the book-

title. Now, the following rules for transforming the conference database into the new

schema are listed. We also give the logical definition that we explain latter.

• A talk presented by a researcher is mapped to a publication and the researcher

1.3. RELATIONAL DATA EXCHANGE 23

who authors such a talk is mapped to an author. Formally,

Researcher(x1, x2, x3, x4, x5)∧Talk(x1, x6, x7)⇒ ∃y1, y2. Author(x1, x2, y1)∧

Publication(x1, x6, y2). (1.3)

• A paper presented in a talk that was written by collaborator researcher is mapped

to a publication and the collaborator researcher is mapped to an author. Formally,

Collaborator(x1, x2, x3, x4) ∧ Researcher(x4, x5, x6, x7, x8)⇒ ∃y1, y2.

Author(x4, x5, y1) ∧ Publication(x1, x3, y2). (1.4)

• Every conference is mapped to a conference in the new schema. Formally,

Conference(x1, x2, x3, x4)⇒ ∃y1. Conference(x2, x3, y1, x4). (1.5)

Figure 1.4 shows a target instance of the target schema obtained from the applica-

tion of the set of rules to the source instance (conference database). This target instance

includes null values (⊥1,⊥2,⊥3) to fill those attribute values that were not extracted

from the source instance. We see that this target instance is a solution because the set of

functional and inclusion dependencies are satisfied. We denote this data exchange set-

ting byE0 that is composed of the source relational schema of the conference database,

the target relational schema and the set of rules specified before.

In the data exchange setting of Example 1.3, the existential variables represent the

new fresh values that will be introduced in a tuple. There are cases where these new

attribute values depend on the source instance such as transformation or extraction of

attribute values or a set of attribute values. The representation of such transformation

or extraction is done by the help of function names. If the function creates fresh values

that depend on the set of all attributes then the function is called Skolem function. We

illustrate the use of function names with the next example.

Example 1.3.2. Consider the target instance of Example 1.4 as the source database for

a new data exchange setting. The target schema of this data exchange setting contains

24 CHAPTER 1. PRELIMINARIES

Author
Id Name Country
1 Jose Lozano ⊥1

2 Edith Tupac ⊥1

3 Steve ⊥1

4 Bernard ⊥1

5 Lucia ⊥1

Conference
Name Year BookTitle Place
ICDT 2019 ⊥2 Lille
ISWC 2019 ⊥3 Chile
AMW 2015 Proc. AMW Cuba

Publication
IdAuthor Title BookTitle

1 Tutoring Web math platform ⊥2

1 Skolemization of prenex formulas ⊥2

2 On algebraic connectivity of graphs ⊥3

3 On algebraic connectivity of graphs ⊥3

4 Tutoring Web math platform ⊥2

5 Skolemization of prenex formulas ⊥2

Figure 1.4: Example of a solution.

only the relation Book, which stores a list of books with the attributes: id, title, country

key abbreviated by ck and editor. The rule for transformation is that every conference is

mapped to a book where:

• id is a number generated by a function whose parameters are name and year of

conference;

• title is the booktitle;

• ck is the value that depends on the transformation of place; and

• editor is an invented value that depends on all attributes of conference.

Formally,

∃fed. Conference(x1, x2, x3, x4)⇒

Book(fid(x3, x4), x3, fck(x4), fed(x1, x2, x3, x4)), (1.6)

1.3. RELATIONAL DATA EXCHANGE 25

where fed is a Skolem function, fid and fck are function names whose interpretations

are as follows.

• fid performs the hash of the concatenation of name with year; and

• fck assigns an international country code by the value of the place.

A solution for this new data exchange setting is shown in Figure 1.5.

Book
Id Name Ck Editor

422f7196b35 ⊥2 33 fed(ICDT, 2019,⊥2,Lille)
9d1a8988af4 ⊥3 56 fed(ISWC, 2019,⊥3,Chile)
fe257fa3467 Proc. AMW 53 fed(AMW, 2015,Proc. AMW,Cuba)

Figure 1.5: A solution for data exchange setting with function names.

1.3.1 Data exchange setting

A data exchange setting is a tuple E = (R,S,Σst,F), where

• R = (RR, attrsR,Σ
R
fd,Σ

R
ind) is a source relational schema,

• S = (RS, attrsS,Σ
S
fd,Σ

S
ind) is a target relational schema,

• F ⊆Vf is a set of function names and

• Σst is a set of source-to-target tuple generating dependencies (st-tgds) where each

st-tgd σ is of the form

∀x. ϕ(x)⇒ ∃y. ψ(x,y).

We distinguish two sub-classes:

• when F = ∅, we call it first-order data exchange and we write w.l.o.g. E =

(R,S,Σst)

• otherwise, we call it Skolemized data exchange.

Usually, the set of inclusion dependencies in the target schema are called target

tuple generating dependencies (t-tgds) because the dependencies are expressed as tgds.

We recall that the set of functional dependencies are expressed as egds. Given a data

26 CHAPTER 1. PRELIMINARIES

exchange setting E = (R,S,Σst) and a consistent instance I of relational schema R, a

solution to I w.r.t. E is any instance J of S such that I∪J satisfy the set of dependencies

Σst. By solE(I), we denote the set of all solutions to I w.r.t. E.

1.3.2 Chase procedure

The chase algorithm was originally used to decide logical implication of first-order

constraints [Maier et al. 1979]. Here, we use the chase to construct solutions to data

exchange. The chase procedure begins with a given source instance and iteratively

constructs the solution by applying the given set of dependencies, which can be tgds and

egds. At each step the chase identifies a dependency that is triggered i.e., the body of the

dependency is satisfied and the head is not, and then applies it, i.e., if the dependency is

a tgd, then its application generates new tuples, and if the dependency is an egd, then its

application attempts an equation of values, which may result in a failure if the values are

different constants. In general, the chase sequence might be infinite, but if it terminates,

then it can end with a failure or give a consistent solution. This chase variant is called

restricted chase. We recall the notion of chase with the help of the following example.

Example 1.3.3 (cont. Example 1.3.1 and 1.2.2). Recall the conference database I and

the set of st-tgds Σst (rules in Example 1.3.1). The procedure initializes with an empty

instance J of the target schema. In Figure 1.6 we observe that the st-tgd (1.3) is triggered

because the body of the dependency matches values in the instance I and the head of the

dependency does not match values in instance J . The application of this dependency

generates fresh values for matching the head of the dependency in J . By triggering the

rules in Example 1.3.1, we get the following chase sequence.

• Dependency (1.3) is triggered by two tuples

Researcher(1, Jose Lozano, j@s.fr,Math,ALG) and Talk(1, 1,Tutor. . .)

and applying this dependency results in adding the tuples

Author(1, Jose Lozano,⊥4),Publication(1,Tutor. . . ,⊥5).

1.3. RELATIONAL DATA EXCHANGE 27

Researcher(x1, x2, x3, x4, x5) ∧ Talk(x1, x6, x7)⇒ ∃y1, y2. Author(x1, x2, y1)∧
Publication(x1, x6, y2)

Researcher
Idr Name Email Expertise Team
1 Jose Lozano j@s.fr Math ALG
3 Steve s@s.fr Algebra ALG

Talk
Idr Idc Title

1 1 Tutoring Web math platform

1 1 Skolemization of prenex formulas
3 2 On algebraic connectivity of graphs

Researcher Talk
x1 x2 x3 x4 x5 x1 x6 x7

1 Jose Lozano j@s.fr Math ALG 1 1 Tutor. . .

Author
x1 x2 y1

1 Jose Lozano ⊥4

Publication
x1 x6 y2

1 Tutor. . . ⊥5

Figure 1.6: Matching of the body and the application of the head of the st-tgd 1.3.

• Dependency (1.3) is triggered by two tuples

Researcher(1, Jose Lozano, j@s.fr,Math,ALG) and Talk(1, 1,Skol. . .)

and applying this dependency results in adding only the tuple

Publication(1,Skol. . . ,⊥6).

Recall that Author(1, Jose Lozano,⊥4) is already there. We observe that the ap-

plication of a tgd not always generates the whole head.

• Analogously, other dependencies are triggered and applied until there is no de-

28 CHAPTER 1. PRELIMINARIES

pendency that is triggered. Those dependencies are (1.3), which is triggered one

more time, (1.4), which is triggered twice, and (1.5), which is triggered twice.

At the end of the chase sequence, we have the target instance, which we denote by J0,

seen in Figure 1.7. This instance is called a pre-solution. We point out that the chase

with the set of st-tgds always terminates.

Author
Id Name Country
1 Jose Lozano ⊥4

2 Edith Tupac ⊥10

3 Steve ⊥11

4 Bernard ⊥12

Conference
Name Year BookTitle Place
ICDT 2019 ⊥13 Peru
ISWC 2019 ⊥14 Chile

Publication
IdAuthor Title BookTitle

1 Tutoring Web math platform ⊥5

1 Skolemization of prenex formulas ⊥6

2 On algebraic connectivity of graphs ⊥7

3 On algebraic connectivity of graphs ⊥8

4 Tutoring Web math platform ⊥9

Figure 1.7: A pre-solution.

Now, we proceed with the set of target constraints where the chase is used to enforce

the satisfaction of these constraints on the instance J0. We take those constraints as set

of dependencies (tgds and egds).

Author(x1, x2, x3) ∧ Author(x1, y2, y3)⇒ x2 = y2 ∧ x3 = y3, (1.7)

Conference(x1, x2, x3, x4) ∧ Conference(x1, x2, y3, y4)⇒ x3 = y3 ∧ x4 = y4, (1.8)

Publication(x1, x2, x3) ∧ Publication(x1, x2, y3)⇒ x3 = y3, (1.9)

Publication(x1, x2, x3) ∧ Publication(x4, x2, y3)⇒ x3 = y3, (1.10)

Publication(x1, x2, x3)⇒ ∃y1, y2, y3. Conference(y1, y2, x3, y3), (1.11)

Publication(x1, x2, x3)⇒ ∃y1, y2. Author(x1, y1, y2). (1.12)

1.3. RELATIONAL DATA EXCHANGE 29

The chase sequence is as follows.

• Dependency (1.10) is triggered by two tuples

Publication(1,Tutor. . . ,⊥5) and Publication(4,Tutor. . . ,⊥9)

and applying this dependency results in equating the values

⊥9 = ⊥5.

• This dependency also triggers for publication of title On alg. . . and equates

⊥7 = ⊥8.

• Dependency (1.11) is triggered three times adding new tuples.

The chase sequence ends with the following solution seen in Figure 1.9.

The chase sequence with these target dependencies and the rules of Example 1.3.1

is finite. However, the chase sequence can finish with a failure or even be infinite. A

failure is when in the application of the egd, the two values to be equated are constants

and not equal. In the following example, we illustrate the notion of failure.

Example 1.3.4. Suppose we have the table conference in Figure 1.8 of Conference

database. During the chase, dependency (1.5) is triggered by this tuple adding

Conference
Idc Name Year Place
1 ICDT 2019 Peru
2 ISWC 2019 Chile
3 ICDT 2019 Chile

Figure 1.8: An instance of conference table.

Conference(ICDT, 2019,⊥,Chile).

Dependency (1.8) is triggered by the last tuple added and the tuple

Conference(ICDT, 2019,⊥,Peru).

30 CHAPTER 1. PRELIMINARIES

But the application cannot equate

Peru = Chile.

Thus, the chase ends with a failure.

A chase sequence is infinite when the application of a tgd always triggers another

tgd. In the following example, we illustrate an infinite chase.

Example 1.3.5. Consider the source schema R1 with relation Worker(id , name, age),

and the target schema R2 with two relations Emp(id , name) and Sup(super id , emp id).

The target schema also contains the following tgd constraints.

Sup(x1, x2)⇒ ∃y. Emp(x1, y),

Sup(x1, x2)⇒ ∃y. Emp(x2, y), (1.13)

Emp(x1, x2)⇒ ∃y. Sup(x1, y). (1.14)

These constraints impose that every employee has a supervisor and the value of emp id

needs to exist in the database as an employee and the supervisor also is an employee.

The st-tgd for exchanging data is

Worker(x1, x2, x3)⇒ Emp(x1, x2).

Take the following source instance Worker(1, Jose, 30). After applying the st-tgd

we have an instance J1 with only one tuple Emp(1, Jose) and we observe that the tgd

(1.14) is triggered which results in adding the tuple Sup(⊥1, 1). Then this triggers the

tgd (1.13) which results in adding Emp(⊥1,⊥2). Then, the tgd (1.14) is triggered again,

which results in adding the tuple Sup(⊥3,⊥1) that causes tgd (1.13) to be triggered again

adding the tuple Emp(⊥3,⊥4). Such result triggers the tgd (1.14) already triggered

before adding Sup(⊥5,⊥3). This tgd (1.14) together with the tgd (1.13) are triggered ad

infinitum.

1.3. RELATIONAL DATA EXCHANGE 31

Author
Id Name Country
1 Jose Lozano ⊥4

2 Edith Tupac ⊥10

3 Steve ⊥11

4 Bernard ⊥12

Conference
Name Year BookTitle Place
ICDT 2019 ⊥13 Peru
ISWC 2019 ⊥14 Chile
⊥15 ⊥16 ⊥5 ⊥17

⊥18 ⊥19 ⊥6 ⊥20

⊥21 ⊥22 ⊥7 ⊥23

Publication
IdAuthor Title BookTitle

1 Tutoring Web math platform ⊥5

1 Skolemization of prenex formulas ⊥6

2 On algebraic connectivity of graphs ⊥7

3 On algebraic connectivity of graphs ⊥7

4 Tutoring Web math platform ⊥5

Figure 1.9: A Universal Solution.

Homomorphism

We define triggering of a dependency with the classical notion of homomorphism. First,

we define a function called substitution as follows h : Va ∪ Dom → Va ∪ Dom. This

function is different from the identity function on the set of null values and variables,

which we denote by adom(h). Furthermore, h assigns a value in Dom to every element

in adom(h).

Now, a homomorphism h : I1 → I2 between two relational structures I1, I2 of the

same relational signature R is a substitution from adom(I1) to adom(I2) that

• preserves the constant values i.e., h(a) = a whenever a ∈ Const, and

• for every R ∈ R and every (a1, . . . , an) ∈ I1(R) we have (h(a1), . . . , h(an)) ∈

I2(R) and n is the arity of R.

A homomorphism h′ extends a homomorphism h, written h ⊆ h′, if adom(h) ⊆

adom(h′) and h′(x) = h(x) for all x ∈ adom(h).

32 CHAPTER 1. PRELIMINARIES

We define a mapping hF that will be used to define the notion of homomorphism

from a formula into an instance. We use the notion of this homomorphism for chase

purposes. Let F be a function signature and F be an interpretation of F. For a term t

over F and a substitution h : Va ∪ Dom→Va ∪ Dom, we define hF (t) as:

hF (t) =

h(x) if t = x ∈Va

a if t = a ∈ Dom

f(hF (t′)) if t = f(t′) is a function term.

The mapping hF is extended on atoms and conjunctions of atoms as expected:

hF (R(t, . . . , t)) = R(hF (t, . . . , t)) and hF (
∧
i∈1..k

Ri(ti, . . . , ti)) =
∧
i∈1..k

hF (Ri(ti, . . . , ti)).

Note that if the argument of hF does not contain function terms, the interpretation F

is irrelevant so we allow to omit the F superscript and write e.g. h(t, . . . , t) instead of

hF (t, . . . , t). A homomorphism h : ϕ → I ∪ F between the conjunction of atoms ϕ

over signature R ∪F to an instance union the interpretation of function symbols, is a

mapping from fvarsR∪F(ϕ) to Dom s.t. for every atom R(t, . . . , t) in ϕ it holds that

R(hF (t, . . . , t)) ∈ I . Remark that if ϕ does not contain function terms, then F in the

above definition is irrelevant and we write h : ϕ → I instead of h : ϕ → I ∪ F and

h(t, . . . , t) instead of hF (t, . . . , t).

Chase

We define formally the chase procedure for tgds and egds. Let I be a database instance

of a relational schema R = (R, attrs ,Σfd,Σind). Let σ be a tgd of the form

∀x. ϕ⇒ ∃y. ψ

where ϕ and ψ are over R. We say that σ is triggered in I by h if

• adom(h) = x,

• h(ϕ) ⊆ I , and

1.3. RELATIONAL DATA EXCHANGE 33

• there is no extension h′ of h such that h′(ψ) ⊆ I .

It has a successful execution h′ yielding I ′, in symbols I
σ,h′−−→ I ′, if h′ is an extension of

h such that

adom(h′) = x ∪ y and I ′ = I ∪ h′(ψ).

Next, let σ be an egd of the form

∀x. ϕ⇒ xi = xj

where {xi, xj} ⊆ x. We say that σ is triggered in I by h if

• adom(h) = x,

• h(ϕ) ⊆ I , and

• h(xi) 6= h(xj).

It has a successful execution h′ yielding I ′, in symbols I
σ,h′−−→ I ′, if there is a homomor-

phism h′ such that adom(h′) = h(adom(h)) ∩ Null i.e., h′ assigns values to the null

values used by h, and we have h′(h(xi)) = h′(h(xj)) while the other null values remain

the same; and I ′ = h′(I). If σ is triggered in I by h but does not have a successful

execution, we say that it fails, in symbols I
σ,h−→ ⊥.

Now, we define the chase for a st-tgd. LetE = (R,S,Σ) be a data exchange setting.

A st-tgd σ ∈ Σ is a tgd with the difference that ϕ is over the source signature RR and

ψ is over the target signature RS. Here the chase takes an instance I = IR ∪ IS, where

IR is the source instance and IS is the target instance. We say that σ is triggered in I by

h if

• adom(h) = x,

• h(ϕ) ⊆ IR, and

• there is no extension h′ of h such that h′(ψ) ⊆ IS.

It has a successful execution h′ yielding I ′, in symbols I
σ,h′−−→ I ′, if h′ is an extension of

h such that

adom(h′) = x ∪ y and I ′ = I ∪ h′(ψ).

34 CHAPTER 1. PRELIMINARIES

Each time a dependency σ is triggered in I by a homomorphism h is called a chase

step. Now, given an instance I and a set Σst of st-tgds together with a set of t-tgds Σind

and egds Σfd, a chase sequence of I with Σst∪Σind∪Σfd is a possibly infinite sequence

of chase steps I0
σ0,h0−−−→ I1

σ1,h1−−−→ I2 . . ., where I0 = I and σi ∈ Σst ∪ Σfd ∪ Σind for

all i. A terminating chase sequence ends with a failure or an instance that triggers no

dependency in Σst ∪ Σind ∪ Σfd. Since at each step we non deterministically trigger a

tgd and egd, then the chase returns different instances. In general, given a relational

schema R, a set of set of tgds and egds Σ, and a target schema S, a chase is a relation

chase ⊆ Inst(R)×2Σ×Inst(S). But, if Σ is composed only of egds or tgds that do not

have existential quantifiers then the chase is a function because returns only one target

instance such that J = chase(I,Σ).

1.3.3 Universal solution

Given a data exchange setting and a source instance, there might be no solution or

possibly infinite number of solutions, and a considerable amount of work has focused

on finding universal solutions that represent the entire space of solutions. Intuitively, a

universal solution is the most general solution that is included in all specific solutions.

As we shall see later on, universal solutions are useful for computing answers to a given

query over all solutions. We illustrate the significance of being a particular and general

solution by their comparison in the following example.

Example 1.3.6. Recall the solution in Figure 1.9 denoted by J and the solution in

Figure 1.4 denoted by J1. We make the following observations.

• J1 contains data values not present in the source instance e.g., author Lucia and

the conference name AMW. Also this solution contains facts that cannot be de-

rived from source instance using st-tgds. For instance, the publication with title

On algebraic connectivity of graphs is in the conference ISWC.

• In J1, all authors are from the same country.

• On the other hand, J contains only data values that are present in the source

instance and null values invented to satisfy target constraints. Also, J contains

only facts that are derived from source instance.

1.3. RELATIONAL DATA EXCHANGE 35

Comparing these two solutions, we observe that J1 has been constructed with some

additional information that makes it more specific solution than J. Furthermore, we

see all the information of J can be found in J1, but not all the information of J1 can be

found in J.

We use homomorphisms to compare solutions: we say that J subsumes J ′ if there

is a homomorphism from J to J ′.

Example 1.3.7. We define a homomorphism h from J to J1 such that h(J) ⊆ J1 as

follows.

h(⊥4) = ⊥1 h(⊥10) = ⊥1 h(⊥11) = ⊥1 h(⊥12) = ⊥1

h(⊥15) = ICDT h(⊥18) = ICDT h(⊥21) = ISWC h(⊥16) = 2019

h(⊥19) = 2019 h(⊥22) = 2019 h(⊥5) = ⊥2 h(⊥6) = ⊥2

h(⊥13) = ⊥2 h(⊥7) = ⊥3 h(⊥14) = ⊥3 h(⊥17) = Peru

h(⊥20) = Peru h(⊥23) = Chile

We start by mapping all tuples of Conference from J to J1 using h previously de-

fined such that the image of every tuple of J can be found in J1. For instance, the tuple

Conference(ICDT, 2019,⊥13,Peru) is mapped to Conference(ICDT, 2019,⊥2,Peru) by

h(⊥13) = ⊥2. Then all tuples of Author from J are mapped to J1. For instance,

the tuple Author(3,Steve,⊥11) is mapped to Author(3,Steve,⊥1) by h(⊥11) = ⊥1.

Finally all tuples of Publication from J are mapped to J1. For instance, the tuple

Publication(1,Tutoring. . . ,⊥5) is mapped to Publication(1,Tutoring. . . ,⊥2) by apply-

ing h(⊥5) = ⊥2. These mappings seen in Figure 1.10 prove that J1 is subsumed by

J.

A universal solution subsumes every solution from the set of solutions for a given

instance w.r.t. a data exchange setting. Formally, we define a universal solution as fol-

lows.

Definition 1.3.8. Given a data exchange setting E and a source instance I , a solution

J ∈ solE(I) is universal iff for every solution J ′ to I w.r.t. E there is a homomorphism

h from J to J ′.

36 CHAPTER 1. PRELIMINARIES

Conference

ICDT 2019 ⊥13 Peru

⊥15 ⊥16 ⊥5 ⊥17

⊥18 ⊥19 ⊥6 ⊥20

ISWC 2019 ⊥14 Chile

⊥21 ⊥22 ⊥7 ⊥23

Conference

ICDT 2019 ⊥2 Peru

ISWC 2019 ⊥3 Chile

AMW 2015 Proc. . . Cuba

Author

1 Jose Lozano ⊥4

2 Edith Tupac ⊥10

3 Steve ⊥11

4 Bernard ⊥12

Author

1 Jose Lozano ⊥1

2 Edith Tupac ⊥1

3 Steve ⊥1

4 Bernard ⊥1

5 Lucia ⊥1

Publication

1 Tutoring. . . ⊥5

1 Skolemiz. . . ⊥6

2 On algebr. . . ⊥7

3 On algebr. . . ⊥7

4 Tutoring. . . ⊥5

Publication

1 Tutoring. . . ⊥2

1 Skolemiz. . . ⊥2

2 On algebr. . . ⊥3

3 On algebr. . . ⊥3

4 Tutoring. . . ⊥2

5 Skolemiz. . . ⊥2

J
J1Figure 1.10: Example of mapping with h.

1.3. RELATIONAL DATA EXCHANGE 37

Existence of universal solution

As we have mentioned before, there are cases where chase sequence is infinite for a

given instance and a data exchange setting. However in such cases, a solution may still

exist. In the Example 1.3.5 we have presented an infinite chase sequence for a setting

and a source instance, yet in Figure 1.11 we present a number of solutions. It has proven

in [Fagin et al. 2005a] that infinite chase implies there is no finite universal solution. In

J1

Emp Sup
id name super id emp id
1 Jose 1 1

J2

Emp Sup
id name super id emp id
1 Jose ⊥1 1
⊥1 ⊥2 1 ⊥1

J3

Emp Sup
id name super id emp id
1 Jose ⊥1 1
⊥1 ⊥2 ⊥3 ⊥1

⊥3 ⊥4 1 ⊥1

Figure 1.11: Solutions for Example 1.3.5.

Figure 1.11, we view solutions as graphs where nodes are the data values and edges

are the relation names that contain the data values. The corresponding graph of each

solution is seen in Figure 1.12. In general, for any i ∈ N, we can construct Ji that

corresponds to a cycle of length i and uses 2 ∗ i − 2 null values. We observe that if

a solution J exists and there is a homomorphism from J to Ji then J needs 2 ∗ i − 2

different null values. So if a universal solution exists then a homomorpshim exists

from J to Ji for any i that belongs that set of natural numbers, which is an infinite set.

Therefore, J would have infinite null values. In fact, chase is attempting to construct an

instance that is a path that never ends.

1.3.4 Certain query answering

Next, we consider the problem of query answering. We know the definition of an answer

to a query over a single database. Here the challenge is to define what is an answer to a

query over a set of instances. The framework possible-world semantics allows to answer

this question.

38 CHAPTER 1. PRELIMINARIES

Jose

1

E
m

p Sup

Jose

1

E
m

p ⊥1Sup

Sup

⊥2 E
m

p Jose

1

E
m

p ⊥1

⊥2 E
m

p

⊥3

Sup

S
up

Sup

⊥4

Emp

J1 J2
J3

• • •

Figure 1.12: Graph representation of the set of solutions in Figure 1.11.

Possible-world semantics has been introduced to handle uncertain databases. An

uncertain database is a database with named null values and it represents a set of ground

databases where null values have been replaced with concrete values. A certain answer

to a query over an uncertain database is an answer present in every ground database of

the uncertain database.

This framework serves as inspiration for defining certain answers to a query over a

set of solutions. Formally, we define certain answers as follows.

Definition 1.3.9. Given a data exchange setting E = (R,S,Σst), a source instance I

and a query Q over the target schema S, an answer to query Q with respect to I is

certain if this answer is an answer to query Q in every solution to I w.r.t. E.

In case of Boolean queries, true is the certain answer to Boolean query Q if true

is the answer to query Q in every solution to I w.r.t. E. We illustrate answers that are

certain and not certain to a query in the following example.

Example 1.3.10. Recall the solution J in Figure 1.9 and the solution J1 in Figure 1.4

for the source instance I in Figure 1.1 w.r.t. data exchange setting E0 in Example 1.3.1.

Consider the query Q1(y) = ∃x1, x2, x3. Conference(y, x1, x2, x3) asking what are the

names of the conferences. In fact, we see that the certain answers are (ICDT) and

(ISWC). An example of not certain answer is AMW.

Query
Solution

J1 J

Q1 {(ICDT), (ISWC), (AMW)} {(ICDT), (ISWC),
(⊥15), (⊥18), (⊥21)}

Figure 1.13: Answers to queries Q1 in solutions J1 and J.

1.3. RELATIONAL DATA EXCHANGE 39

Consider the following Boolean queries:

(Q2) ∃x1, x2, x3, x4, x5. Author(x1,Steve, x2) ∧ Conference(ISWC, 2019, x3, x4) ∧

Publication(x1, x5, x3) asking if Steve has a publication in an ISWC conference,

and

(Q3) ∃x1, x2, x3, x4, x5, x6. Author(x1, Jose Lozano, x2) ∧ Author(x3, ‘Bernard, x4) ∧

Publication(x1, x5, x6) ∧ Publication(x3, x5, x6) asking if authors Jose Lozano

and Bernard have co-authored the same publication.

J1 J

Q2 true false
Q3 true true

Figure 1.14: Answers to Boolean queries Q2 and Q3 in solutions J1 and J.

Figure 1.14 shows that true is not certain answer to query Q2.

A straightforward attempt at computing certain answers is to evaluate the query in

all solutions and to return the intersection of all answers corresponding to each solution.

However this attempt is not feasible when the number of solutions is infinite. An alter-

native solution, which is proposed by Fagin et.al [Fagin et al. 2005a], is the evaluation

of the query over a universal solution.

Example 1.3.11. Consider the source instance I in Figure 1.1 and the data exchange

setting E0 in Example 1.3.1. Take J that is a universal solution and the set of answers

to Q1. Tuples that contain null values are dropped from the result obtaining that (ICDT)

and (ISWC) are certain answers. Also for the Boolean query Q3 take J and true is the

certain answer.

Computing certain answers is defined as follows. We fix a source instance I , data

exchange setting E and a query Q, we denote the set of certain answers for a query ϕ

of I w.r.t. E by certE(Q, I). Formally, certain answers is defined by the intersection of

the set of answers to query Q over each solution of the set of solutions to I w.r.t. E, in

symbols

certE(Q, I) =
⋂
{QA(Q, J) | J ∈ solE(I)}.

40 CHAPTER 1. PRELIMINARIES

1.3.5 Consistency

A data exchange setting is inconsistent if there is a source relational instance for which

the set of solutions is empty. If a data exchange setting admits solutions for every source

instance then it is called consistent. We illustrate a setting that is not consistent and how

it becomes consistent with another set of source constraints.

Example 1.3.12. Recall the data exchange setting in Example 1.3.1. This setting is not

consistent because there is no solution for the source instance in Figure 1.15a. Indeed,

Conference
Idc Name Year Place
1 ICDT 2019 Peru
2 ISWC 2019 Chile
3 ICDT 2019 Chile

(a) Source instance.

Conference
Name Year BookTitle Place
ICDT 2019 ⊥27 Peru
ISWC 2019 ⊥28 Chile
ICDT 2019 ⊥29 Chile

(b) Target instance not satisfying
schema.

Figure 1.15: Example of consistency problem.

after applying the set of st-tgds we obtain the instance in Figure 1.15b, where we have

two tuples containing the same name and year but with different places. This violates

the fd

Conference : Name Year → BookTitle Place.

Since any solution must contains tuples from Figure 1.15b module renaming of the null

values, no solution can exist. Therefore the setting is not consistent.

This fd fails because in the source instance of conference database the schema al-

lows to have conferences with the same name but different places. We can prevent it

by making the set of attributes Name, Year a secondary key, i.e, adding the following

functional dependency in the source schema:

Conference : Name Year → Place.

Source instances that contain same conference name and different places will be re-

moved for consideration, and in fact there is a solution for every consistent source in-

stance.

1.4. RESOURCE DESCRIPTION FRAMEWORK 41

Checking consistency is defined as a decision problem that takes as input a data

exchange setting and outputs if the setting is consistent or not. Formally, we define

consistency as follows.

Definition 1.3.13. A data exchange setting E is consistent if every consistent source

instance admits a solution.

1.4 Resource description framework

We present the well-known framework for publishing data on the web that is called

Resource Description Framework (RDF). The nodes of RDF is composed of resources

and simple literal values. A resource is anything that is recognized by a unique identifier

called International Resource Identifier (IRI). When an IRI is an anonymous node with

no IRI, the resource is called a blank node. Properly, RDF dataset is a set of triples of the

form subject predicate object. This form of triple is also called a statement. A natural

way to see the set of triples is as a graph where subjects and objects are nodes and the

triples themselves are the labeled edges. There are different formats for presenting RDF,

among those we focus on N-Triples and Turtle. In the following example, we illustrate

these notions.

Example 1.4.1. Suppose the information on math researchers are required to be acces-

sible and identifiable through the Web. The RDF is a model that allows to represent

this information with IRIs, literals and blank nodes. An RDF model can be expressed in

different formats. We illustrate the same RDF model for math researchers in the formats

of N-Triples and Turtle in Figures 1.16 and 1.18, respectively.

Now, we observe in Figure 1.16 the statement that represents the information of the

age of researcher “Jose Lozano”. We identify three elements in this statement, which

are :

• subject that identifies the resource we are describing such as

https://www.univ−lille.fr/jlozano,

42 CHAPTER 1. PRELIMINARIES

<https://www.univ-lille.fr/jlozano>
<http://xmlns.com/foaf/0.1/name> "Jose Lozano".

<https://www.univ-lille.fr/jlozano>
<http://example.com/ns#masters> <http://dbpedia.org/resource/
↪→ Mathematics>.

<https://www.univ-lille.fr/jlozano>
<http://example.com/ns#masters> <http://dbpedia.org/resource/Logic
↪→ >.

<https://www.univ-lille.fr/jlozano>
<http://xmlns.com/foaf/0.1/mbox> "j@s.fr".

<https://www.univ-lille.fr/jlozano>
<http://xmlns.com/foaf/0.1/age> "29".

<https://www.univ-lille.fr/jlozano>
<http://example.com/ns#worksIn> <https://www.univ-lille.fr/>;

<https://www.univ-lille.fr/jlozano>
<http://xmlns.com/foaf/0.1/homepage> _:b.

Figure 1.16: Set of statements in N-Triples format.

prefix namespace
ex: http://example.com/ns#

univ: http://ex.universities/
foaf: http://xmlns.com/foaf/0.1/
xsd: http://www.w3.org/2001/XMLSchema#
dbp: http://dbpedia.org/resource/

dblp: http://dblp.uni− trier.de/rdf/schema−2015−01−26#
ulille: https://www.univ−lille.fr/

sh: http://www.w3.org/ns/shacl#

Table 1.1: RDF prefixes.

• predicate that identifies the property of the resource such as

http://xmlns.com/foaf/0.1/age,

• object that identifies the value of the property being another resource or literal

value such as “29”.

RDF specifies restrictions on the subject and predicate of a triple: the subject cannot be

a literal, and the predicate must be an IRI.

As we have seen in format N-Triples, the writing of triples is too verbose. Due to

this fact, a set of prefixes is used to shorten the writing of IRIs. A prefix is a short name

concatenated with the symbol “:”. Every prefix is associated to a unique IRI called

namespace. A namespace is contained in a full IRI and it is usually shorten than the full

1.4. RESOURCE DESCRIPTION FRAMEWORK 43

IRI. A set of IRIs can share the same namespace. For instance, one namespace in the

RDF model of math researchers is https://www.univ−lille.fr. We define the prefix ulille:

to be associated to this namespace. Then, the writing of IRIs are shortened as seen in

Turtle format (Figure 1.18). For instance, the full IRI https://www.univ−lille.fr/jlozano

is rewritten as ulille:jlozano. The set of prefixes used in this manuscript is shown in

Table 1.1.

ulille:jlozano

“29”
ex:age

“Jose Lozano”
foaf:name

ulille:etupac
foaf:knows

dbp:Mathematics

ex
:m

as
ter

s

“Math”

ex
:n

am
e

ulille:

ex
:w

or
ks

In ex:worksIn

“University of Lille”
ulille:name

“Edith Tupac”
foaf:name

“j@s.fr”

foaf:mbox

:b1
ex:address

“Lille”
ex:city

“59000”

ex:zip

dbp:Logic

ex:m
aste

rs

ex:m
asters

“Tree automata for infinite trees”

ex:authors

“Containment problem for Register Automata”

ex:authors

“Logic”

ex
:n

am
e

Figure 1.17: An RDF graph where prefixes are in Table1.1.

ulille:jlozano
foaf:name "Jose Lozano";
ex:masters dbp:Mathematics , dbp:Logic;
foaf:mbox "j@s.fr" ;
foaf:age "29";
ex:worksIn ulille:;

foaf:homepage _:b.

Figure 1.18: Set of statements written in Turtle.

Now, we consider an RDF graph in Figure 1.17 that describes the same researcher

“Jose Lozano” with the same information in Figure 1.16 and also describes his col-

league “Edith Tupac” with the following information: she works also in the “University

of Lille” and has authored two papers: “Tree automata for infinite trees” and “Con-

tainment problem for Register Automata”. The IRI node is shown with an oval and the

literal value within quotes. We point out that :b1 is a blank node shown with an oval

44 CHAPTER 1. PRELIMINARIES

although is not an IRI.

ulille:etupac
foaf:name "Edith Tupac";
ex:masters dbp:Logic;
ex:worksIn ulille:;
ex:authors "Tree automata for infinite trees" ,

"Containment problem for Register Automata".

Figure 1.19: Serialization of a neighborhood of node ulille:etupac in Turtle.

The outgoing edges of the IRI node ulille:etupac is serialized in Turtle format in

Figure 1.19 where we make the following observations:

• when the subject is the same, the set of predicate-object is grouped into a list

separating each of them by “;” such as for the subject ulille:etupac; and

• when the subject and predicate are the same, the objects are grouped into a list

separating each of them by “,” such as for ex:authors.

Given a blank node that has one or more outgoing edges, Turtle simplifies the seri-

alization of this information by writing the outgoing edges inside brackets []. The use

of brackets in Turtle represents that a blank node is the subject of the set of predicate

objects contained in the brackets. For instance, we serialize the outgoing edges of ulille:

in Figure1.20 where one of the target nodes is a blank node.

ulille:
ulille:name "University of Lille";
ex:address [

ex:city "Lille";
ex:zip "59000"].

Figure 1.20: Serialization of the neighborhood of node ulille: in Turtle.

1.4.1 RDF graph

An RDF graph (or simply a graph) is a finite set G of triples such that

G ⊆ (Iri ∪ Blank)× Iri× (Iri ∪ Blank ∪ Lit).

1.5. SCHEMAS FOR RDF GRAPHS 45

We view G as an edge labeled graph by interpreting a triple (s, p, o) as a p-labeled edge

from the node s to the node o. The set of nodes of G, denoted nodes(G), is the set of

elements that appear on first or third position of a triple in G.

1.4.2 Logic formalization

The relational signature for a graph is G = {Triple} where Triple a relation name

of arity three. For a given graph G, we define the relational structure MG over G as

TripleMG = G.

1.5 Schemas for RDF graphs

We present the notion of schema based on shapes for RDF graphs used throughout this

manuscript. A schema for RDF graph, like a schema for a relational database, defines a

structure that a graph should follow and establishes a set of constraints that ensure the

integrity of its data. The structure of a graph is given by a set of types that are associated

with a node and each type of node comes with a set of constraints. These constraints

defined in a type ensure that the number of outgoing edges of a node assigned to the

given type is within bounds defined in the constraint. An important use of the schema

in RDF is the validation whether those constraints are satisfied over the graph verifying

that a node assigned to a given type satisfies the constraints defined in the type. Among

the different schemas for RDF graph that have been defined we focus on two of them:

Shape Constraint Language and Shape Expression Schema. Both schema languages

are based on the notion of shapes that is analogy to DTD [Bray et al. 2008] and XML

Schema (XSD) [Thompson et al. 2012]. SHACL syntax is RDF while ShEx syntax

follows a more human-readable grammar defined in [Staworko et al. 2015].

Example 1.5.1. Consider the following shape constraints that capture the structure of

the graph G1 in Figure 1.17. We define four shapes ShTopic, ShAddress, ShUniversity

and ShResearcher. We present the set of shape definitions using an abstract syntax as

follows:

46 CHAPTER 1. PRELIMINARIES

ShTopic→ ex:name :: Lit1

ShAddress→ ex:city :: Lit1;

ex:zip :: Lit1

ShUniversity→ ex:name :: Lit1;

ex:address :: ShAddress1

ShResearcher→ foaf:name :: Lit1;

foaf:knows :: ShResearcher*;

ex:masters :: ShTopic+;

ex:authors :: Lit*;

ex:worksIn :: ShUniversity1;

foaf:mbox :: Lit?

A shape definition describes a set of triple constraints that restricts the neighborhood

with a specific label, the type of the target node and a cardinality that limits the number

of outgoing edges with such label. We point out that the labels used in each definition

are IRIs and the set of prefixes are defined in Table 1.1. Now, we describe how graph

G1 satisfies the shapes schema presented above by describing each shape definition and

how G1 satisfies it.

The shape ShTopic requires:

• exactly one edge labeled with ex:name to a literal node.

In G1, the nodes dbp:Mathematics and dbp:Logic satisfy the shape constraint ShTopic

because for each node there is only one outgoing edge labeled with ex:name.

The shape ShAddress requires:

• exactly one edge labeled with ex:city to a literal node; and

• exactly one edge labeled with ex:zip to a literal node.

In G1, the node :b1 satisfies the shape constraint ShAddress because there are only two

outgoing edges with labels ex:city and ex:zip.

1.5. SCHEMAS FOR RDF GRAPHS 47

The shape ShUniversity requires:

• exactly one edge labeled with ex:name to a literal node; and

• exactly one edge labeled with ex:address to node of type ShAddress.

In G1, the node ulille: satisfies ShUniversity because there is only one outgoing edge

with label ex:name and one outgoing edge with label ex:address.

The shape ShResearcher requires:

• exactly one edge labeled with foaf:name to a literal node;

• zero or more edges labeled with foaf:knows to nodes that satisfy shape

ShResearcher;

• one or more edges labeled with ex:masters to nodes that satisfy shape ShTopic;

• zero or more edges labeled with ex:authors to literal nodes;

• exactly one edge labeled with ex:worksIn to a node that satisfies shape ShUniversity;

and

• zero or one edges labeled with foaf:mbox to a literal node.

The node ulille:jlozano satisfies the triple constraints of ShResearcher on the labels

foaf:name, foaf:knows, ex:masters, ex:worksIn and foaf:mbox because the number of

outgoing edges with these labels is within the bounds of the interval defined by each

triple constraint. The constraint with label ex:authors also is satisfied even if there is no

outgoing edge with this label since the minimum number of outgoing edges is zero. For

the node ulille:etupac, it is easy to see that the triple constraints of ShResearcher on the

labels foaf:name, ex:masters, ex:authors, ex:worksIn are satisfied. The triple constraints

with labels foaf:knows and foaf:mbox are satisfied even if there are no outgoing edges

because the minimum number of outgoing edges is zero.

We point out the fact that there is an outgoing edge with ex:age from ulille:jlozano

does not make that this node not to satisfy ShResearcher since there is no constraint

with label ex:age in this shape. Finally, the literal nodes of G1 are assigned to a shape

called Lit that does not constraint the neighbors of literal nodes. We say that the graph

48 CHAPTER 1. PRELIMINARIES

ex:ShTopic
a sh:NodeShape;
sh:targetNode

dbp:Mathematics,
dbp:Logic;

sh:Property[
sh:path ex:name;
sh:minCount 1;
sh:maxCount 1;
sh:datatype xsd:Lit].

ex:ShAddress
a sh:NodeShape;
sh:targetNode _:b1 ;
sh:Property[

sh:path ex:city;
sh:minCount 1;
sh:maxCount 1;
sh:datatype xsd:Lit];

sh:Property[
sh:path ex:zip;
sh:minCount 1;
sh:maxCount 1;
sh:datatype xsd:Lit].

ex:ShUniversity
a sh:NodeShape;
sh:targetNode ulille: ;
sh:Property[

sh:path ulille:name;
sh:minCount 1;
sh:maxCount 1;
sh:datatype xsd:Lit];

sh:Property[
sh:path ex:address;
sh:node ex:ShAddress;
sh:maxCount 1;
sh:datatype IRI].

ex:ShResearcher
a sh:NodeShape;
sh:targetNode

ulille:jlozano,
ulille:etupac;

sh:Property[
sh:path foaf:name;
sh:minCount 1;
sh:maxCount 1;
sh:datatype xsd:Lit];

sh:Property[
sh:path ex:masters;
sh:minCount 1;
sh:node ex:ShTopic];

sh:Property[
sh:path foaf:knows;
sh:node ex:ShResearcher];

sh:Property[
sh:path ex:authors;
sh:datatype xsd:Lit];

sh:Property[
sh:path ex:worksIn;
sh:minCount 1;
sh:maxCount 1;
sh:node ex:ShUniversity];

sh:Property[
sh:path foaf:mbox;
sh:minCount 0;
sh:maxCount 1;
sh:datatype xsd:Lit].

Figure 1.21: Example of schema for RDF written in SHACL where prefixes are de-
scribed in Table 1.1.

G1 satisfies the shapes schema because for every shape and every node associated with

a shape, the set of constraints is satisfied on the outgoing edges of the node.

In the above exampe, if we define in XSD the type Lit then these shape definitions

can be written in SHACL as shown in Figure 1.21 and ShEx as shown in Figure 1.22.

As we see in these figures, the shape names are IRIs where ex is the prefix defined in

Table 1.1 and the rest of an IRI is a name, but in the abstract formalism for ease of

notation, we use only the name.

1.5. SCHEMAS FOR RDF GRAPHS 49

ex:ShTopic{
ex:name xsd:Lit

}
ex:ShAddress{

ex:city xsd:Lit;
ex:zip xsd:Lit

}
ex:ShUniversity{

ulille:name xsd:Lit;
ex:address @ex:ShAddress

}
ex:Researcher{

foaf:name xsd:Lit;
foaf:knows @ex:Researcher *;
foaf:mbox xsd:Lit ?;
ex:authors xsd:Lit *;
ex:worksIn @ex:University;
ex:masters @ex:Topic +

}

Figure 1.22: Example of schema for RDF written in ShEx where prefixes are described
in Table 1.1.

Now, we describe differences between SHACL and ShEx. We point out that in

SHACL we have to declare which nodes are going to be validated in the shape. For

instance the triple

(ex:ShTopic, sh:targetNode, dbp:Mathematics)

specifies that the node dbp:Mathematics must be validated with respect to the shape

ShTopic. Also, a triple constraint in SHACL is called a property shape. Compared to

SHACL, ShEx does not require the nodes to be specified in the definition while SHACL

does. Also, ShEx does not use too many words to express a triple constraint. This makes

an easy comprehension of the constraint language. Also, another difference is that ShEx

defines a validation method that associates a shape to a node when the node satisfies the

constraints imposed by the shape while SHACL validates a graph from the target nodes

declared for a shape.

50 CHAPTER 1. PRELIMINARIES

1.5.1 Typed RDF graph

Validation of graphs requires assigning type names to nodes, in particular, with a typing

function. Together the graph and the typing function is called a typed RDF graph. We

illustrate the notion of typed RDF graph with the following example.

Example 1.5.2. Consider the RDF graph G0 in Figure 1.17 and the set of type names

T0 = {ShResearcher, ShTopic, ShUniversity, ShAddress}.

We define a typing0 function for the nodes of G0.

typing0(dbp:Mathematics) = {ShTopic}

typing0(:b1) = {ShAddress}

typing0(ulille:jlozano) = {ShResearcher}

typing0(ulille:) = {ShUniversity}

typing0(“Jose Lozano”) = {Lit}

Then the pair (G0, typing0) is called a typed RDF graph.

Let T ⊆V
(1)
R be a finite set of type names. A T-typed graph is a pair (G, typing),

where G is a graph and typing : nodes(G) → 2(T∪{Lit}) is a function that assigns to

every node of the graph G a (possibly empty) set of types, where Lit is the special type

for literal nodes.

1.5.2 Shape constraints language

We now introduce the abstract Shape Constraint Language. Its syntax is very similar to

ShEx compact syntax. We fix a finite set of shape names T ⊆V
(1)
R . A triple constraint

over T ∪ {Lit} is a tuple (p, T, µ) ∈ Iri× (T ∪ {Lit})× {1, ?, *, +}, where

• p is referred to as a property label,

• T is referred to as a target shape

1.5. SCHEMAS FOR RDF GRAPHS 51

• µ is referred to as a multiplicity that constraints the number of occurrences of

outgoing edges. We interpret multiplicities with intervals as follows (an interval

[n;m] is a finite representation of the set {k | n ≤ k ≤ m}).

– 1 is exactly one and its corresponding interval is [1; 1],

– ? is at most one and its corresponding interval is [0; 1],

– * is any and its corresponding interval is [0;∞], and

– + is at least one and its corresponding interval is [1;∞].

The intervals 1, ?, *, + are called basic intervals.

We often write a triple constraint (p, T, µ) as p :: T µ. We denote the set of triple con-

straints over a set of types T ∪ {Lit} by triConstr .

In this manuscript (except for Chapter 6), shapes schemas are interpreted under

open interpretation, which means that a graph satisfies a shapes schema even if there is

a triple that is not constrained by the shapes schema. Now, a shapes schema is a pair

S = (T, δ), where

• T is a finite set of shapes, and

• δ : T → P(triConstrT∪{Lit}) is a function called shape definition that maps

every symbol T ∈ T to a finite set of triple constraints over T ∪ {Lit}.

In this manuscript, we focus on deterministic shapes schemas, i.e. for every type name

T and for every property label p ∈ Iri there is at most one triple constraint using p.

Now, we define the semantics of shapes schema. Given a graph G, the outbound

neighborhood of a node n ∈ nodes(G) with respect to an edge label p ∈ Iri is

outG(n, p) = {o | (n, p, o) ∈ G}.

Take a T-typed graph (G, typing), a node n, and a triple constraint p :: T µ. The

node n satisfies the triple constraint p :: T µ if

• every neighbor node of nwith edge label p has type T , i.e., for anym ∈ outG(n, p)

it holds that T ∈ typing(m); and

52 CHAPTER 1. PRELIMINARIES

• the cardinality of outG(n, p) is within the interval of µ.

A T-typed graph (G, typing) satisfies a shapes schema S = (T, δ) if for any n ∈

nodes(G) and any T ∈ typing(n) the node n satisfies every triple constraint in δ(T).

Also, we define the language of a shapes schema as the set L(S) = {(G, typing) |

(G, typing) |= S}.

We define a graphical representation of shapes schema called shape graph, denoted

by GS. A shape graph of a shapes schema S = (T, δ) over T is a pair GS = (T ∪

{Lit}, ES) where T ∪ {Lit} is the set nodes and ES is the set of edges with two labels

defined as follows.

ES = {(T, p, µ, S) ∈ T × Iri× {0, 1, ?, *, +} × (T ∪ {Lit}) | p :: Sµ ∈ δ(T)},

where nodes are T, S and (p, µ) is the pair of labels of the edge. For instance, the shape

graph of the shapes schema of Example 1.5.1 is shown in Figure 1.23.

ShResearcher

ShTopic ShUniversity ShAddress

Lit

ex:knows
*

ex:address

1

ex:m
aste

r

+

ex:worksIn1

ex:authors
*

foaf:m
b

ox

?

ex
:n

am
e

1

ex:nam
e1 ex

:nam
e

1 ex:city

1
ex:zip

1

Figure 1.23: Shape graph of shapes schema in Example 1.5.1.

1.5.3 Logic formalization

The relational signature of a shapes schema S and a typing graph (G, typing) over a set

of types T is RS = T∪{Lit}. We observe that any T-typed graph (G, typing) can be

easily converted to a relational structure over the relational signature GT = {Triple} ∪

1.5. SCHEMAS FOR RDF GRAPHS 53

T ∪ {Lit}. Consequently, in the sequel, we may view a T-typed graph (G, typing) as

the corresponding relational structure overGT. For a given shapes schema S and a typed

graph (G, typing), we define the relational structure MS over RS ∪GT corresponding

to (G, typing) with

TMS = {n ∈ nodes(G) | T ∈ typing(n)} for any T ∈ T,

LitMS = {n ∈ nodes(G) ∩ Lit | Lit ∈ typing(n)}.

Additionally, we define a function called types over the relational structure of a typed

RDF graph G where its input is a node and outputs the types associated in the graph, in

symbols

typesG(n) = {T | T (n) ∈ G}.

1.5.4 Shape constraints as dependencies

A deterministic shapes schema S over a set of types T can be captured with a set ΣS

of dependencies. Next, we define the following rules that are used to capture a triple

constraint p :: Sµ that is in the definition of a type T :

• the type propagation rule:

TP(T, p, S) = ∀x, y. T (x) ∧ Triple(x, p, y)⇒ S(y),

• the predicate existence rule:

PE(T, p) = ∀x. T (x)⇒ ∃y. Triple(x, p, y),

• the predicate functionality rule:

PF(T, p) = ∀x, y, z. T (x) ∧ Triple(x, p, y) ∧ Triple(x, p, z)⇒ y = z .

We point out that in terms of the classical relational data exchange, TP and PE are target

tuple generating dependencies (t-tgds), and PF is an equality generating dependency

54 CHAPTER 1. PRELIMINARIES

(egd). We capture the shapes schema S with the following set of dependencies:

ΣS = {TP(T, p, S) | T ∈ T, p :: Sµ ∈ δ(T)} ∪

{PE(T, p) | T ∈ T, p :: Sµ ∈ δ(T), µ ∈ {1, +}} ∪

{PF(T, p) | T ∈ T, p :: Sµ ∈ δ(T), µ ∈ {1, ?}}.

In the sequel, the set of TP-dependencies of S is denoted by ΣTP
S , the set of PE-

dependencies of S by ΣPE
S and the set of PF-dependencies of S by ΣPF

S . We state the

following lemma to prove that a given shapes schema is equivalent to a set of TP,PF,

and PE dependencies.

Lemma 1.5.1. For every shapes schema S = (T, δ) and every T-typed RDF graph

(G, typing), (G, typing) satisfies S iff (G, typing) |= ΣS.

Proof. We fix a T-typed graph (G, typing) and shapes schema S = (T, δ).

For the⇒ direction, we prove by contraposition. Assume that (G, typing) 6|= ΣS.

Our goal is to prove (G, typing) does not satisfies S. By definition of entailment, there

is a dependency σ ∈ ΣS that is not satisfied. The dependency σ can be of the following

forms:

• TP(Ts, p, To). By construction of ΣS, the dependency σ occurs when a triple

constraint is of the form p :: T µo where µ ∈ {1, ?, *, +}. Since σ is not satisfied,

(s, p, o) ∈ G and Ts ∈ typing(s). Because the node o ∈ nodes(G), it must hold

To ∈ typing(o). But this fact is not, then the T-typed graph (G, typing) does not

satisfy S.

• PE(Ts, p). By construction of ΣS, the dependency σ occurs when a triple con-

straint is of the form p :: T µo for some µ ∈ {1, +} and some To ∈ T. Since σ

is not satisfied, then Ts ∈ typing(n) for some node n ∈ nodes(G). Because the

cardinality of outbound neighborhood of n w.r.t. an edge label p is 0, the T-typed

graph (G, typing) does not satisfy S.

• PF(Ts, p). By construction of ΣS, the dependency σ occurs when a triple con-

straint is of the form p :: T µo for some µ ∈ {1, ?} and some To ∈ T. Since σ is

1.5. SCHEMAS FOR RDF GRAPHS 55

not satisfied, we have that (s, p, o1) ∈ G and (s, p, o2) ∈ G and Ts ∈ typing(s),

which makes the T-typed graph (G, typing) to not satisfy S.

For the⇐ direction, assume that (G, typing) |= ΣS. Our goal is to prove (G, typing)

satisfies S. We prove by contradiction. Suppose that (G, typing) does not satisfy S.

Then there is a node n ∈ nodes(G) and T ∈ typing(n) for which there is a triple con-

straint p :: Sµ ∈ δ(T) that is not satisfied. This can occur because of the following two

cases:

• There is a triple (n, p,m) ∈ G such that S 6∈ typing(m). Since T (n) and

Triple(n, p,m) are facts in (G, typing) and (G, typing) |= TP(T, p, S), then

S(m) is a fact in (G, typing). Thus, S ∈ typing(m); a contradiction.

• The cardinality of the outbound neighborhood of n w.r.t. p is not in the interval

of µ.

– When µ = 1 and |outG(n, p)| 6= 1. It follows that PF(T, p) ∈ ΣS and

PE(T, p) ∈ ΣS. Since (G, typing) |= ΣS, then |outG(n, p)| = 1; a contra-

diction.

– When µ = ? and |outG(n, p)| > 1. It follows that PF(T, p) ∈ ΣS. Since

(G, typing) |= ΣS, then |outG(n, p)| ≤ 1; a contradiction.

– When µ = + and |outG(n, p)| < 1. It follows that PE(T, p) ∈ ΣS. Since

(G, typing) |= ΣS, then |outG(n, p)| ≥ 1; a contradiction.

56 CHAPTER 1. PRELIMINARIES

Chapter 2

Relational to RDF data exchange

In this chapter, we present the framework for relational to RDF data exchange and the

problems that we address in this manuscript.

2.1 Relational to RDF data exchange setting

In this section, we formalize the relational database to RDF graph data exchange prob-

lem and, compare to relational data exchange, we identify two new challenges: convert-

ing data values from databases to IRIs and associating the shapes schema for constrain-

ing the RDF graph. For the first challenge, we use IRI constructors. An IRI constructor

is a function that takes a data value and converts it to a IRI. For the second challenge, we

use the signature of shapes schema in the rule specification. We illustrate our approach

with the following example.

Example 2.1.1. Recall the database schema of the academic institute in Example 1.2.1

which has six relations:

UniTeam(Team,University ,Place),

Researcher(Idr ,Name,Email ,Expertise,Team),

Talk(Idr , Idc,Title)

Conference(Idc,Name,Year ,Place),

Registration(Idr , Idc,Date),

Collaborator(Idr , Idc,Title, Idrc).

57

58 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

and the set of inclusion dependencies:

Registration[Idc] ⊆ Conference[Idc]

Registration[Idp] ⊆ Researcher[Idr]

Talk[Idp Idc] ⊆ Registration[Idr Idc]

Collaborator[Idr Idc Title] ⊆ Talk[Idr Idc Title]

Researcher[Team] ⊆ UniTeam[Team]

ShUniversity→ ex:name :: Lit1;

ex:address :: ShAddress1

ShAddress→ ex:city :: Lit1;

ex:zip :: Lit1

ShTopic→ ex:name :: Lit1

ShResearcher→ foaf:name :: Lit1;

ex:masters :: ShTopic+;

ex:worksIn :: ShUniversity1;

ex:authors :: ShPaper+;

foaf:knows :: ShResearcher*;

foaf:mbox :: Lit?

ShPaper→ ex:name :: Lit1;

ex:in :: ShConference1

ShConference→ ex:name :: Lit1;

ex:year :: Lit1;

ex:place :: Lit1;

ex:chair :: ShResearcher+;

ex:sponsor :: ShUniversity*

Figure 2.1: Example of shapes schema.

We show how to define mappings between a database schema and a shapes schema.

We want to export this database to an RDF, where we want to export universities, re-

searchers, papers and conferences. For each university, we want to export its researchers

and for each researcher their papers. Also we want to map the experience of a researcher

on a topic, we want to export the information on conferences where the paper was pub-

lished and the fact that a researcher knows other researcher when they wrote the same

2.1. RELATIONAL TO RDF DATA EXCHANGE SETTING 59

paper. The graph must follow the structure that is described in Figure 2.1.

We recall that RDF requires IRIs as their nodes and the information stored in the

database are data values. IRI constructors solve the problem of mapping data values

to IRIs. We can define a range of IRI constructors according to the needs. The IRI

constructors are used for the task of specifying mappings from a relational schema to a

shapes schema.

Example 2.1.2 (cont. Example 2.1.1). We define the following IRI constructors and we

point out that each constructor is associated to a shape name:

• funi2iri takes the name of the university and replaces blank spaces with character

“-”. Then the function adds with the prefix univ:. For instance,

funi2iri(University of Lille) = univ:university-of-lille;

• ftop2iri adds the prefix dbp: with the name of the topic. For instance,

ftop2iri(Maths) = dbp:maths;

• fres2iri takes the id of the researcher and retrieves from the academic institute

database the name associated to the id. Then, this function generates a shorten

identifier for this name. Finally, the function adds the prefix ulille:res/. For in-

stance for id with value 1, the name is jose lozano and the function returning:

fres2iri(1) = ulille:res/jlozano;

• fpap2iri takes the name and year of a Conference and the title of a Talk presented

in the given conference. It outputs an IRI consisting of the prefix dblp:paper#

with a unique integer associated to the paper. For instance,

fpap2iri(icdt, 2019,Tutoring Web math platform) = dblp:paper#1;

fpap2iri(icdt, 2019,Skolemization of prenex formulas) = dblp:paper#2;

fpap2iri(iswc, 2019,On algebraic connectivity of graphs) = dblp:paper#3.

60 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

• fcon2iri takes the name and year of the conference and adds the prefix dblp:. For

instance,

fcon2iri(ICDT, 2019) = dblp:icdt2019.

Now, we introduce nodes with IRI constructors in the mapping definition. We also

need to associate types to the nodes in the transformation rules.

Example 2.1.3 (cont. Example 2.1.2). In this case, the set of transformation rules are

specified as follows:

• a university is mapped to a node of shape ShUniversity. Formally,

UniTeam(x1, x2, x3)⇒ Triple(funi2iri(x2), ex:name, x2) ∧

ShUniversity(funi2iri(x2)); (2.1)

• the expertise of researcher is mapped to a node of shape ShTopic. Formally,

Researcher(x1, x2, x3, x4, x5)⇒ Triple(ftop2iri(x4), ex:name, x4) ∧

ShTopic(ftop2iri(x4)); (2.2)

• a researcher is mapped to a node of shape ShResearcher with the outgoing edges

that identify name (foaf:name), mail (foaf:mbox), and a topic where the researcher

is an expert (ex:masters). Formally,

Researcher(x1, x2, x3, x4, x5)⇒ Triple(fres2iri(x1), foaf:name, x2) ∧

Triple(fres2iri(x1), ex:masters, ftop2iri(x4)) ∧

Triple(fres2iri(x1), foaf:mbox, x3) ∧

ShResearcher(fres2iri(x1)); (2.3)

• a talk is mapped to a node of shape ShPaper with an outgoing edge ex:in that iden-

tify the name of the paper (ex:name) and the conference where talk is presented

2.1. RELATIONAL TO RDF DATA EXCHANGE SETTING 61

(ex:in). Formally,

Talk(x1, x2, x3) ∧ Conference(x2, x4, x5, x6)⇒

Triple(fpap2iri(x4, x5, x3), ex:name, x3) ∧

Triple(fpap2iri(x4, x5, x3), ex:in, fcon2iri(x4, x5)) ∧

ShPaper(fpap2iri(x4, x5, x3)) (2.4)

• a conference is mapped to a node of shape ShConference with its name, year and

place. Formally,

Conference(x1, x2, x3, x4)⇒ Triple(fcon2iri(x2, x3), ex:name, x2) ∧

Triple(fcon2iri(x2, x3), ex:year, x3) ∧

Triple(fcon2iri(x2, x3), ex:place, x4) ∧

ShConference(fcon2iri(x2, x3)); (2.5)

• whenever a researcher is part of a team that corresponds to a university, there is

an edge ex:worksIn between a node corresponding to the researcher and a node

corresponding to the university. Formally,

Researcher(x1, x2, x3, x4, x5) ∧ UniTeam(x5, x6, x7)⇒

Triple(fres2iri(x1), ex:worksIn, funi2iri(x6)); (2.6)

• for any talk presented or collaborated on by a researcher there is an edge from

node corresponding to this researcher to the node corresponding to the talk. For-

mally, this involves two st-tgds respectively

Researcher(x1, x2, x3, x4, x5)∧Talk(x1, x6, x7)∧Conference(x6, x8, x9, x10)⇒

Triple(fres2iri(x1), ex:authors, fpap2iri(x8, x9, x7)) (2.7)

62 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

Researcher(x1, x2, x3, x4, x5) ∧

Collaborator(x6, x7, x8, x1) ∧ Conference(x7, x9, x10, x11)

⇒ Triple(fres2iri(x1), ex:authors, fpap2iri(x9, x10, x8)); (2.8)

• and whenever a researcher and an other researcher authored a talk, there is an

edge foaf:knows from the node corresponding to the former researcher to the node

corresponding the later researcher. Formally,

Collaborator(x1, x2, x3, x4) ⇒ Triple(fres2iri(x1), foaf:knows, fres2iri(x4)).

(2.9)

ulille:res/jlozano

“Jose Lozano”

foaf:nam
e

ulille:res/etupac
foaf:knows

dbp:Mathematics

ex:m
asters

“Math”

ex
:n

am
e

ulille:res/steveulille:res/bernard

univ:university-of-lille

ex
:w

orks
In

ex:worksIn

ex
:w

or
ks

Inex:worksIn

“University of Lille”

ex:nam
e

“Edith Tupac”

foaf:nam
e

“j@s.fr”

foaf:mbox

⊥1

ex
:a

dd
re

ss
⊥3

ex
:c

ity

⊥2

ex:zip

dbp:Logic

ex:m
asters

“Logic”

ex
:n

am
e

dbp:Geometry

ex:m
asters

dbp:Algebra

ex:m
asters

“Bernard”
foaf:name

“Steve”
foaf:name

“b@r.fr”
foaf:mbox

“s@s.fr”

foaf:mbox

“p@m.fr”

foaf:mbox

“Geometry”
ex:name

“Algebra”
ex:name

dblp:paper#1

ex
:a

ut
ho

rs

ex:authors

dblp:paper#3

ex:authors

ex
:a

ut
ho

rs

dblp:paper#2

ex:authors

dblp:icdt2019
ex:chair

ex
:in

ex
:in

dblp:iswc2019
ex:chair

ex:in

“ICDT”

ex:name

“Lille”

ex
:p

la
ce

“2019”

ex
:ye

ar

“ISWC”

ex:name

“Chile”

ex:place

“2019”

ex:ye
ar

“On alge. . . ”

ex:name

“Tutoring. . . ”

ex
:name

“Skolem. . . ”
ex:name

Figure 2.2: A solution for the Example 2.1.1.

The result of applying the rules is a typed graph composed of a graph and a typing.

2.1. RELATIONAL TO RDF DATA EXCHANGE SETTING 63

In this data exchange setting, the graph is shown in Figure 2.2 and the typing is presented

in Figure 2.3.

ShTopic ShUniversity
dbp:Mathematics univ:university-of-lille

dbp:Logic
dbp:Algebra

dbp:Geometry

ShResearcher ShConference ShPaper
ulille:res/jlozano dblp:icdt2019 dblp:paper#1
ulille:res/etupac dblp:iswc2019 dblp:paper#2
ulille:res/steve dblp:paper#3

ulille:res/bernard

Figure 2.3: Typing of graph in Example 2.2.

Formalization. We now formalize the data exchange setting that we work throughout

this manuscript. We define a library of IRI constructors as a pair F = (F, F), where

F is a set of function names, and F is their interpretation i.e., a mapping that assigns to

every IRI constructor name f ∈ F a function fF : ConstLitk ⇒ Iri, where k is the arity

of f . A library F is non-overlapping if F assigns to elements of F injective functions

with pairwise disjoint ranges. In the sequel, we consider settings where the library is

non-overlapping.

We adapt the definition of relational data exchange to treat graphs and define the

setting as follows.

Definition 2.1.4. A constructive relational to RDF data exchange setting is a tuple

E = (R,S,Σst,F), where

• R = (R, attrs ,Σfd,Σind) is a source relational schema,

• S = (T, δ) is a target shapes schema,

• F = (F, F) is a library of non-overlapping IRI constructors,

• Σst is a set of source-to-target tuple generating dependencies (st-tgds) whose bod-

ies are conjunction of atomic formulas over R and whose heads are conjunction

of atomic formulas over GT ∪F where GT = {Triple,Lit} ∪T and these for-

mulas do not contain existential variables and use IRI constructors.

64 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

Moreover, for any st-tgd σ ∈ Σst, we assume there is no monadic atom of the following

form:

• T (x) with sequence of variables of length one x ⊆ vars(σ) and T ∈ T in the

head of σ and

• Lit(f(x)) with some IRI constructor f ∈ F and some sequence of variables

x ⊆ vars(σ).

In the sequel, we adapt the definition of solution of relational data exchange as follows.

Definition 2.1.5 (Solution). Take a data exchange setting E = (R,S,Σst,F), and let

I be a consistent instance of R. Then, a solution to I w.r.t. E is any T-typed graph J

such that I ∪ J ∪ F |= Σst and J satisfies the shapes schema S. The set of solutions to

I w.r.t. E is denoted as solE(I).

Additionally, we consider the notion of core pre-solution, which is the result of

exporting the relational data to triples with Σst and then propagating types with ΣTP
S

(without creating any new nodes). We define the core pre-solution as follows.

Definition 2.1.6 (Core pre-solution). The core pre-solution for I toE is the unique min-

imal graph J0 that satisfies J0∪I |= Σst∪ΣTP
S , where ΣTP

S is the set of TP-dependencies

generated by the shapes schema S.

We observe that given a consistent instance I of R and constructive data exchange

setting E, the core pre-solution J0 to I w.r.t. E always exists because there is always a

finite chase sequence on I with Σst and ΣTP
S . We have a finite chase sequence because

the chase does not introduce any null values and there is no equality dependencies. By

property of the chase with these kind of dependencies [Fagin et al. 2005a], the result is

unique and minimal because no new null values are added.

2.2 R2RML: proof of concept

In this section, we describe the core definitions and assumptions of R2RML that pro-

vide rationale for using constructive data exchange to model the process of exporting

data from relational databases to RDF. Following the definition of Rodrı́guez-Muro and

2.2. R2RML: PROOF OF CONCEPT 65

rr:tripleMap

rr:LogicalTable

rr:SubjectMap

rr:PredicateObjectMap

IRI

rr:PredicateMap

rr:ObjectMap

rr:logicalTable

rr:subjectMap

rr:predicateObjectMap

+

rr:class *

rr:predicate 1

rr:objectMap

1

Figure 2.4: A well-formed R2RML mapping node from [Rodriguez-Muro &
Rezk 2015].

Rezk [Rodriguez-Muro & Rezk 2015], a R2RML mapping is expressed as an RDF

graph. The graph is not arbitrary, a well-formed mapping consists of one or more trees

called triple maps with structure as shown in Fig 2.4. Each tree has a root node, called

triple map node, which is connected to exactly one logical table node (rr:logicalTable),

one subject map node (rr:subjectMap) and one or more predicate-object map nodes

(rr:predicateObjectMap).

The logical table of a triple map is a SQL query and its result is mapped to RDF

triples. It may be either (i) a table, (ii) or a complex SQL query. A table is represented

by a resource that has exactly one rr:tableName property with the string denoting the

table. A SQL query is represented by a resource with exactly one rr:sqlQuery property

whose value is a SQL query string. A logical table row is a tuple obtained from the

execution of the SQL query in the input database. Each row in the logical table entails

a triple for every predicate object. Given a row, all triples generated from it share the

same subject. Predicate, object and subject maps are constructed using term maps.

A term map specifies what is the RDF term used for a subject, predicate, or object.

For a subject, the RDF term is always an IRI template, for the predicate the RDF term

is an IRI value, for an object the RDF term is either an IRI template or RDF constant

(literal or IRI value). An IRI template indicates how to construct an IRI using an IRI

and attribute values from rows. These elements are represented as follows:

• If the element is an IRI template then it is represented by rr:template property

whose value is an IRI that includes the name of attributes that come from the

66 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

SQL query or table result. An IRI template generates a unique IRI.

• If the element is an attribute name then it is represented by rr:column whose value

is an attribute name.

• If the element is an RDF constant then it is represented by rr:constant whose value

is an IRI or literal value.

A subject map may specify zero or more class IRI’s represented by the rr:class property.

The value of the property must be a valid IRI. A term map when is used in an object

map optionally allows to specify the datatype (rr:datatype) in case of an attribute name

and RDF constant. A predicate map is specified with rr:predicate property. Finally, the

object map is specified with rr:objectMap.

<#TriplesMap1>
rr:logicalTable [rr:sqlQuery
""" SELECT title,name,year FROM Talk natural join Conference """];

rr:subjectMap [
rr:template
"https://example.com/ShPaper/{name}/{year}/{title}";
rr:class ex:ShPaper];

rr:predicateObjectMap [rr:predicate ex:name;
rr:objectMap [rr:column "name"]];

rr:predicateObjectMap [rr:predicate ex:in;
rr:objectMap [rr:template
"https://example.com/ShConference/ {name}/{year}"]].

Talk(x1, x2, x3) ∧ Conference(x2, x4, x5, x6)

Triple(fpap2iri(x4, x5, x3), ex:name, x3)

Triple(fpap2iri(x4, x5, x3), ex:in, fcon2iri(x4, x5))

ex:ShPaper(fpap2iri(x4, x5, x3))

Figure 2.5: A R2RML mapping captured by a constructive st-tgd.

Now, we argue that constructive st-tgds are suitable for modeling a large fragment

of R2RML. We show a translation of R2RML to constructive st-tgds.

Talk(x1, x2, x3) ∧

Conference(x2, x4, x5, x6)⇒ Triple(fpap2iri(x4, x5, x3), ex:name, x3) ∧

Triple(fpap2iri(x4, x5, x3), ex:in, fcon2iri(x4, x5)) ∧

ex:ShPaper(fpap2iri(x4, x5, x3))

Every triple map gives one constructive st-tgd. For instance, we consider the R2RML

mapping shown in Figure 2.5 that exports contents of relational database presented

in Example 1.1. This mapping takes the result of executing the query specified in

2.2. R2RML: PROOF OF CONCEPT 67

rr:sqlQuery and generates triples with subject nodes of class ex:ShPaper and two out-

going edges with labels ex:name and ex:in. The construction of a constructive st-tgd

is as follows. We take the SQL query of rr:sqlQuery and convert to a conjunction of

relational atoms where the shared variables are in the positions corresponding to the

attributes used in the join or cross product with equality of attributes and the other posi-

tions are filled with fresh variables. If no join or cross product with equality of attributes

is present in the query, then there are no shared variables. We only support natural, inner

joins and cross product with equality of attributes. As a result, we have the following

conjunction of atoms for the body of the constructive st-tgd

Talk(x1, x2, x3) ∧ Conference(x2, x4, x5, x6)

where x2 corresponds to the position of the attribute Idc used to do the natural join. We

observe that the interpretation of this body of a st-tgd is different from the interpretation

of the SQL query. However, if no attributes are specified in the projection, but it is

used the symbol ∗, then the interpretation of the body of a st-tgd is the same as the

interpretation of the query. We point out that SQL projections, where not all attributes

are specified, are not captured by the body of a st-tgd, but the interpretation of a R2RML

mapping generates the same result that the interpretation of a st-tgd generates.

Now, we take the subject map and assume it is represented by an IRI template. We

create a function term with a function symbol where the arguments are the variables

that appeared in the position of the attributes name, year and title. In our mapping, we

construct the following function term

fpap2iri(x4, x5, x3)

where x4, x5 corresponds to the attributes name and year of Conference, and x3 corre-

sponds to the attribute title of Talk. Then, for each predicate object map, we create a

triple atom where a function term is created for the subject map. We dedicate a unique

function symbol to each IRI template and assign the IRI template as the interpretation

of the function symbol. This function term is placed in the subject position of the triple

atom. The value of the term map of the predicate map is placed in the predicate position

68 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

of the triple atom. Finally, we take the object map. If the term map is an IRI template,

we create a function term as done for the subject map. If the term map is a value, then

we place the value directly in the st-tgd. If the value is an attribute name, then we put the

variable that appears in the position of the attribute of some relation being in the query.

If the rr:class property is specified, then we create a monadic relational atom where the

name of this relational atom is the name specified with rr:class and the argument of this

monadic relational atom is the function term created for the subject map. Following this

process, we obtain that the head of the constructive st-tgd is as follows:

ex:ShPaper(fpap2iri(x4, x5, x3)) ∧ Triple(fpap2iri(x4, x5, x3), ex:name, x3) ∧

Triple(fpap2iri(x4, x5, x3), ex:in, fcon2iri(x4, x5)).

We make several assumptions in the process above and not all R2RML follow those

assumptions. Still we cover a large fragment of R2RML where no aggregate functions

are present and no RDF data types are declared in the R2RML mappings. We discuss

the limitations of our framework to capture R2RML: not every R2RML mapping has

an equivalent constructive st-tgd interpretation. Concerning the SQL query, aggregate

queries are not convertible to constructive st-tgds. For the object map, we do not cap-

ture the optional property that specifies the type of literal values because we do not

have in the shapes schema. However, we can extend the framework by adding types to

relational database and types to shapes schema but will require to lead with all the inter-

operability issues because XSD datatypes are not the same as SQL datatypes. Also this

extension will arise technical complications in the study of consistency problem, but the

complexity of the theoretical model of constructive st-tgds is the same. Therefore, for

simplicity we abstract RDF datatypes for our consideration. Aggregation queries can

not be handled in any extension of our framework.

2.3 Problems of interest

In this manuscript, we study several problems related to relational to RDF data exchange

described below.

2.3. PROBLEMS OF INTEREST 69

2.3.1 Checking consistency

The ability to issue warnings that a data exchange setting does not admit solutions for

some source instance would be the most welcome feature for a data administrator. A

relational to RDF data exchange setting is consistent if for every source instance, there

is a graph that satisfies the shapes schema.

Example 2.3.1. Consider the data exchange setting of Example 2.1.1. There is no

solution for this instance in Figure 2.6a w.r.t. the data exchange setting. Therefore,

this setting is not consistent. The problem springs from two tuples with ICDT name

Conference
Idc Name Year Place
1 ICDT 2019 Lille
2 ICDT 2019 Chile

(a) Source instance.

dblp:icdt2019

“ICDT”
“2019”

“Lille”

“Chile”

ex:n
am

e ex:
yea

r

ex:place
ex:place

(b) Target instance not satisfying
schema.

Figure 2.6: Example of consistency problem.

and different places in the conference table. These tuples make the graph in Figure 2.6b

contain two outgoing edges with the same label from node dblp:icdt. However, our

shapes schema requires every conference to have precisely one place.

We study techniques to identify if a relational to RDF data exchange setting is con-

sistent in Chapter 3.

2.3.2 Computing certain answers

Given a relational to RDF data exchange setting, certain answers to query Q w.r.t. a

source instance I are answers present in every solution for I and the data exchange

setting. We distinguish two types of shapes schemas: non-recursive and recursive. Re-

lational data exchange framework can be used to compute certain answers for non-

recursive shapes schema. Indeed, non-recursive shapes schema can be expressed with

70 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

super-weakly acyclic tgds, which are known to have chase termination. This guaran-

tees the existence of universal solution, which can be used to compute certain answers

for a given query. On the other hand, recursive shapes schema are not equivalent to

super-weakly acyclic tgds. Furthermore, a universal solution needs not to exist.

Example 2.3.2 (cont. Example 2.1.1). The shapes schema of this Example 2.1.1 is

recursive and, in fact, a finite universal solution for this source database instance I

and data exchange setting E1 does not exist. The chase procedure for this setting will

not terminate because node dblp:2019 requires to have a chair, which is not provided

by the database. Thus a fresh node is created and associated to a type ShResearcher,

which requires to be an author of at least one paper. Again, a fresh node is created and

associated to a type ShPaper, which needs to be in a conference. Thus, a fresh node is

created and associated to a type ShConference, and so on resulting in an infinite chase

sequence as seen in Figure 2.7.

dblp:icdt2019 ⊥1

ex:chair
⊥2

ex:authors
⊥3

ex:in
⊥4

ex:chair
⊥5

ex:authors
• • •

ex:in

Figure 2.7: Part of the infinite solution for the database conference I w.r.t. E1.

In Chapter 4, we propose an alternative notion of universal simulation solution that is

suitable for computing certain answers to a subclass of nested regular expressions [Pérez

et al. 2010]. We study the complexity of computing certain answers and investigate a

minimal-size universal simulation solution whose construction is in low complexity.

2.3.3 Visual mapping language

Non-expert users may have difficulty to learn mapping languages such the one presented

in our framework. We propose a visual mapping language (VML) and an editor that

allows to define VML mappings without using formal mapping language. We point

out that VML captures a rich and expressive subset of our constructive data exchange

setting proposed in Definition 2.1.4.

The specification starts with the tool visualizing in the left side the relational schema

and in the right side the shapes schema and the users draw arrows that map objects and

attributes from one schema to another as needed. The arrow colors correspond to its

role, which are explored in detail in Section 5.4.

2.3. PROBLEMS OF INTEREST 71

Example 2.3.3. Consider a source schema R1 with three relations Product(pid , name),

Supplier(sid , name), and ProdSup(pid , sid); and a target shapes schema defined as

follows.

ShProd→ ex:descr :: Lit1; ex:supplied :: ShSupp+

ShSupp→ ex:name :: Lit1

Figure 2.8 shows mappings from R1 to the shapes schemas described above. We study

the accessibility of the proposed visual mapping language by a user evaluation.

pid
name

Product

ProdSup

pid

sid

ex:descr :: Lit1

ex:supplied :: ShSupp+

ShProd

Supplier

sid
name

ex:name :: Lit1

ShSupp

Figure 2.8: Graphical Mapping Language.

In Chapter 5, we describe ShERML, a tool that facilitates the specification of map-

pings with the use of a visual mapping language.

2.3.4 Schema elicitation

Relational to RDF data exchange setting is defined with the relational schema, set of

mappings, and shapes schema. Since RDF is schema-less and R2RML has been intro-

duced recently, then it is conceivable that many mappings have been written without

schema. For a legacy reason, numerous settings have no target shapes schema provided.

It is useful to have the shapes schema because it permits to understand the structure of

the graph and to check if mappings are well-defined to obtain the desired graph.

72 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

Example 2.3.4. We are provided with a relational schema that has the following re-

lations Book(isbn, title, auth id), Author(auth id , name) and Bio(auth id , bio). The

schema also has the following dependencies.

Bio[auth id] ⊆ Author[auth id]

Book[auth id] ⊆ Author[auth id]

Also, we are given a set of mappings.

Book(x1, x2, x3)⇒Triple(fbook2iri(x1), ex:isbn, x1) ∧

Triple(fbook2iri(x1), ex:title, x2) ∧

Triple(fbook2iri(x1), ex:author, faut2iri(x3);

Author(x1, x2)⇒Triple(faut2iri(x1), ex:name, x2);

Author(x1, x2) ∧ Book(x3, x4, x1)⇒Triple(faut2iri(x1), ex:book, fbook2iri(x3));

Author(x1, x2) ∧ Bio(x1, x3)⇒Triple(faut2iri(x1), ex:bio, x3).

The following schema characterizes possible output RDF graphs produced by the map-

pings.

ShBook→ ex:isbn :: Lit1; ex:title :: Lit1; ex:author :: ShAuth1

ShAuth→ ex:name :: Lit1; ex:bio :: Lit?; ex:book :: ShBook*

Indeed, this schema describes that for a book there might be precisely one isbn, title and

it might be written by precisely one author who might have precisely one name, might

have or not a biographical information and might have a collection of books potentially

empty. This follows from mappings and relational schema.

In Chapter 6, we investigate the problem of generating shapes schemas and iden-

tify two desirable properties for the output target schema. We propose an elicitation

algorithm.

2.4. RELATED WORK 73

2.4 Related work

Here, we only describe related works on formalizing data exchange applications as data

exchange frameworks. For every problem of interest, we will present related work in-

dependently in the corresponding sections.

Data exchange problem is studied in different contexts such as graph to graph [Bar-

celó et al. 2013] or relational to graph [Boneva et al. 2015]. The frameworks proposed

in each context varies according to the type of data that is treated. For our context of

relational to RDF, none of the existent frameworks addresses relational to RDF with

shapes schemas. We present a list of frameworks and the relation of each framework

with our proposal.

The classical relational to relational data exchange framework, which is proposed by

Fagin et al. [Fagin et al. 2005a], is composed of a relational source and target schema,

source-to-target tuple generating dependencies and target dependencies. The authors

define what is a solution for data exchange. We adapt their setting to our context and

define a solution as Fagin et al. did.

XML data exchange [Arenas & Libkin 2008], proposed by Arenas et al., deals

with hierarchical data. Their setting uses source and target DTDs and for the map-

pings a closer formalism to tree patterns [Amer-Yahia et al. 2002] and XPath [Benedikt

et al. 2005]. Solutions are defined as in the relational case. Since DTDs define the

structure of trees, we cannot use DTDs as a schema for graphs. Another approach of ex-

changing hierarchical data is with the use of nested dependencies [Fuxman et al. 2006]

as mappings proposed by Fuxman et al. We took from nested dependencies the idea of

using function symbols, but not Skolem functions because we fix the functions that are

used in the constructive st-tgds.

Direct mapping (DM) [Arenas et al. 2012], proposed by W3C, is also a subclass

of relational to relational data exchange that exchanges relational data to RDF. DM

defines simple transformation rules to generate RDF from relational data such as a rule

to generate the subject IRI or a rule to generate triples. The data exchange setting is a

tuple composed of the relational source schema that contains the relational signature,

primary keys and foreign keys, and a set of st-tgds where the head of each st-tgd is

over the triple signature. Authors define properties that the set of st-tgds must satisfied

74 CHAPTER 2. RELATIONAL TO RDF DATA EXCHANGE

such that the graph contains all the information of the relational database. This setting

does not address our problem because we treat target constraints, we do not limit the

interpretation of IRI constructors to only concatenation and DM is fixed i.e., the user

cannot define it.

Relational to graph data exchange [Boneva et al. 2015] is studied by Boneva et al.

and they proposed a setting composed of a relational schema, target constraints and the

set of st-tgds expressed with nested regular expressions. Also, the authors proposed

a representation of a universal solution that is not a graph but a graph pattern with

regular expressions as edge labels. This is a limitation for data exchange where we want

to materialize the solution. On the other hand, st-tgds and target tgds from [Boneva

et al. 2015] are more expressive than constructive st-tgds.

Finally, graph data exchange is studied by Barceló et al. [Barceló et al. 2013] and

consists of transforming source edge labeled graph to target edge labeled graph. The

authors proposed a setting composed of a set of source and target labels; and the set of

st-tgds are expressed as conjunctive nested regular expressions over the set of source

and target labels. Similar to Boneva et al., the authors proposed a universal solution that

is not a graph but a graph pattern. This setting is not applicable to our case because

authors did not consider either source or target constraints.

Chapter 3

Consistency

3.1 The opposite side of consistency: inconsistency

In this section, we define an inconsistent data exchange setting and show the neces-

sary sufficient conditions for inconsistency. Also, we present the properties of a core

pre-solution related to identifying sufficient conditions for inconsistency. In the se-

quel of this chapter, we fix a constructive relational to RDF data exchange setting

E = (R,S,Σst,F), and we consider that the set of st-tgds Σst is normalized so that

for every st-tgd in Σst, its right-hand side uses exactly one atom. We precise that an

instance I of R refers to an instance of the relational schema R where the set of depen-

dencies is empty. Also, we assume a fixed library of IRI constructors F and we define a

set of properties w.r.t. a shapes schema S = (T, δ). We denoted this set by PropS ⊂ Iri,

and it is defined as follows:

PropS = {p | ∃T ∈ T.∃S ∈ T ∪ {Lit}. ∃µ ∈ {*, 1, +, ?}. p :: Sµ ∈ δ(T)}.

We recall that a data exchange setting is consistent if every consistent source in-

stance admits a solution. Since inconsistency is the opposite of consistency, we define

it as follows:

Definition 3.1.1. A data exchange setting is inconsistent if there is a source instance

that does not admit a solution.

We illustrate with the following example an inconsistent setting.

75

76 CHAPTER 3. CONSISTENCY

Example 3.1.2. We consider the database instance I in Figure 3.1a, the following shape

schema

ShAddress→ ex:name :: Lit1

ShInstitute→ ex:address :: ShAddress1

ShUniversity→ ex:address :: Lit*

ShConference→ ex:name :: Lit1;

ex:year :: Lit1;

ex:place :: Lit1;

ex:sponsor :: ShInstitute1

and the following transformation rules

Conference(x1, x2, x3, x4)⇒ Triple(fcon2iri(x2, x3), ex:name, x2), (σ1)

Conference(x1, x2, x3, x4)⇒ Triple(fcon2iri(x2, x3), ex:year, x3), (σ2)

Conference(x1, x2, x3, x4)⇒ Triple(fcon2iri(x2, x3), ex:place, x4) (σ3)

Conference(x1, x2, x3, x4)⇒ ShConference(fcon2iri(x2, x3)), (σ4)

Conference(x1, x2, x3, x4) ∧ Sponsor(x1, x5)⇒

Triple(fcon2iri(x2, x3), ex:sponsor, funi2iri(x5)), (σ5)

Sponsor(x1, x2)⇒ ShUniversity(funi2iri(x2)), (σ6)

Sponsor(x1, x2) ∧ Conference(x1, x3, x4, x5)⇒

Triple(funi2iri(x2), ex:address, x5). (σ7)

The function interpretations of the IRI constructors fcon2iri and funi2iri are as follows.

The first one concatenates name and year of conference and adds the prefix dblp:. The

other one replaces blank spaces with character “-” of the sponsors name.

Let J0 be the core pre-solution to I w.r.t. the data exchange setting seen in Fig-

ure 3.1b. We observe that J0 has the following facts:

• ShConference(dblp:icdt2019),

• Triple(dblp:icdt2019, ex:place,Chile), and

3.1. THE OPPOSITE SIDE OF CONSISTENCY: INCONSISTENCY 77

• Triple(dblp:icdt2019, ex:place,Peru).

and in the shapes schema we see the triple constraint ex:place :: Lit1 is in the definition

of ShConference. This set of facts mentioned above is called a violation in J0 because

these facts violate the triple constraint with property ex:place. In fact, this is a source of

inconsistency.

Assume that the triple constraint with property label ex:place admits having more

than one edge. Thus, the above set of facts is not a violation in J0. Now remark, that

the node univ:university-of-lille is also of type ShInstitute. Therefore, the node should

have an edge with ex:address and the target node be of type ShAddress, which is an IRI.

This target node also should have an edge with ex:name. We observe that the literal

node “Peru” is not an IRI. Thus, we add a blank node of type ShAddress and a null

literal node. Also, we add an edge with label ex:address from univ:university-of-lille

to the blank node and we add an edge with label ex:name from the blank node to the

null literal node. These nodes and edges require to be added to J0 because we want to

extend J0 to be a solution to I w.r.t. E. But it is impossible to fuse the blank node of

type ShAddress and the null node of type literal. We call these types conflicting types.

In fact, this is another source of inconsistency.

Conference
Idc Name Year Place
1 ICDT 2019 Peru
2 ICDT 2019 Chile

Sponsor
Idc Name
1 University of Lille

(a) Source instance.

Σst ∪ ΣTP
S

dblp:icdt2019

“ICDT”
“2019”

“Peru”

“Chile”
univ:university-of-lille

“Peru”

Lit

ShConference

ShUniversity

ShInstitute

ex:n
am

e ex:
yea

r

ex:place
ex:place

ex:sp
on

sor

ex
:a
d
d
re
ss

(b) The core pre-solution to I w.r.t. E
of Example 3.1.2.

Figure 3.1: Example of a inconsistency setting.

Based on the inconsistency definition, checking inconsistency consists of searching

78 CHAPTER 3. CONSISTENCY

a source instance for which there is no solution w.r.t. the setting. We recall that a typed

graph G is a solution to an instance of R w.r.t. E, if G satisfies the shapes schema S

and the set of st-tgds Σst. Also, we recall that a typed graph G is a pre-solution to an

instance of R w.r.t.E, if G satisfies the set of st-tgds Σst. A graph that together with the

source instance of the relational schema satisfies the set of st-tgds is not the source for

not obtaining a solution because this graph replicates or transforms the relational data

and fits the triple model. But concerning the shapes schema, there are two cases where

a graph that together with a source instance I of the relational schema satisfies the set

of st-tgds is not a solution to I w.r.t. E:

• If there is a node in the graph for which its outgoing edges with the same predicate

are more than one and the shapes schema constraints to be at most one edge.

• If there is a node in the graph for which its outgoing edges with the same predicate

are more than one and one of the target nodes is literal and the other is non-literal.

3.1.1 Sources of inconsistency

Now, we define the notion of violation and conflicting types seen in Example 3.1.2 as

the sources of inconsistency.

Violation

We define a violation as the property of a graph G.

Definition 3.1.3. A graph G has a violation w.r.t. a shapes schema S if the following

conditions are satisfied:

• There is a type T ∈ T for which there is a triple constraint p ::Sµ in its definition

for some S ∈ T ∪ {Lit} and some µ ∈ {1, ?}

• There are two triples with p where the source node is the same for both triples and

T ∈ typing(n) where n is the source node; and the target nodes are two different

constants.

3.2. VALUE CONSISTENCY 79

Conflicting types

We define conflicting types as the property of a graph G.

Definition 3.1.4. A typed graph G has conflicting types w.r.t. a shapes schema S if the

following conditions are satisfied:

• there is a type S ∈ T ∪ {Lit}, a property label p ∈ PropS, a triple constraint

p :: Sµ for some µ ∈ {1, ?} that is in the shape definition of some type T ∈ T;

• there are two triples with predicate p in G where the source node n is the same

for both triples, T ∈ typing(n) and one of the target nodes is a null node; and

• if one of the target nodes is typed with S, the other is a literal if S is in T or not

a literal if S is Lit .

3.1.2 Importance of core pre-solution

In Sections 3.2 and 3.3, we are going to focus on core pre-solutions because there are

necessary and sufficient conditions that are computed over core pre-solutions. First, we

are going to see in Section 3.2 and 3.3 that for a given instance I of R, we can detect

sources of inconsistency in the set of pre-solutions to I w.r.t. E, with the help of core

pre-solution. Then, we are going to show in Sections 3.2 and 3.3 that this detection of

sources of inconsistency are necessary and sufficient conditions for a given instance to

not admit a solution. Finally, we do not consider all the instances of R to verify the

consistency ofE, but only a finite number of instances whose core pre-solutions present

the sources of inconsistency.

3.2 Value consistency

In this section, we define value consistency of the settingE and we present an analysis of

testing value consistency. To define value consistency of E, we start presenting for any

instance I of R, the definition of value consistency of a graph w.r.t. I andE as follows.

A graph G is value consistent w.r.t. E and I if I ∪G |= Σst and G |= ΣTP
S ∪ ΣPF

S .

Let I be a consistent instance of R. We show that a violation in a core pre-solution

to I w.r.t. E is a sufficient condition to claim that there is no solution to I w.r.t. E.

80 CHAPTER 3. CONSISTENCY

Lemma 3.2.1. For any instance I of R, if the core pre-solution to I w.r.t.E is not value

consistent, then I does not admit a solution to E.

Proof. Take an instance I of R. We compute its core pre-solution J0. Assume J0 is

not value consistent. By Definition 2.1.6 of core pre-solution being the unique minimal

graph, every solution to I w.r.t. E contains J0. Therefore, I does not admit a solution to

E.

Now, we formalize the value consistency of the setting E as follows.

Definition 3.2.1 (Value consistency). The relational to RDF data exchange setting E is

value consistent if for every I instance of R, the core pre-solution to I w.r.t. E is value

consistent.

3.2.1 Testing value consistency

Now, we present an analysis and an algorithm for testing value consistency of E. The

analysis consists of

1. preliminary notions that are used to define a finite set of contentious-based in-

stances of the signature R,

2. the construction of this finite set denoted by CInst(Σst), and

3. the proof that if there is an instance I of CInst(Σst) that satisfies functional de-

pendencies of R then there is a violation in the core pre-solution to I w.r.t. E.

This inspection will show that value inconsistency is a sufficient condition for inconsis-

tency of E.

Preliminary notions

Here, we introduce three notions called violation sort, accessibility and contentious st-

tgds. We illustrate them with the following example.

Example 3.2.2. Consider the data exchange setting E of Example 3.1.2. We analyze

how do we get the violation W of Example 3.1.2. By definition of violation in a graph,

there is a triple constraint with property p ∈ PropS associated to some type T ∈ T

3.2. VALUE CONSISTENCY 81

definition that forbids two different objects for the same subject typed with T . Since the

subject is an IRI and any two IRI constructors have disjoint ranges, then there is only

one IRI constructor f ∈ F that produces the subject. Thus, every violation is associated

with at least one sort (T, f, p). We call the tuple (T, f, p) a violation sort.

Consequently, we start computing the set of violation sorts w.r.t. E by combining

the shapes ShConference, ShInstitute and ShAddress, with each IRI constructor fcon2iri

and funi2iri and with each property p ∈ PropS such that there is a triple constraint with

p and multiplicity 1 or ?. We obtain the following result.

Vs = {(ShConference, fcon2iri , ex:name), (ShConference, fcon2iri , ex:year),

(ShConference, fcon2iri , ex:place), (ShConference, fcon2iri , ex:sponsor),

(ShInstitute, funi2iri , ex:address), (ShInstitute, fcon2iri , ex:address)

(ShConference, funi2iri , ex:name), (ShConference, funi2iri , ex:year),

(ShConference, funi2iri , ex:place), (ShConference, funi2iri , ex:sponsor)

(ShAddress, funi2iri , ex:name), (ShAddress, fcon2iri , ex:name)}

We observe that the violation sort of W is (ShConference, fcon2iri , ex:place).

Now in Figure 3.1b, we observe that nodes in the core pre-solution to I w.r.t. E are

generated by the application of rules in Σst. Also, we observe that the set of st-tgds is

normalized, so the head of a rule in Σst is either a typed atom or a triple atom. We inspect

the first two elements of this violation sort (ShConference, fcon2iri) by tracing the rules,

which are in Σst, that were triggered such that we can find a node that is the root of a

path in the core pre-solution whose last node is constructed by fcon2iri and typed with

ShConference. Such a sequence of rules is called a path in E. The rules of the path are

required to be triggered for the existence of the subject node that causes a violation. In

our case, the sequence is composed of σ4 because the triggering of this rule will create

a node of typed ShConference produced by the IRI constructor fcon2iri . We say that the

pair (ShConference, fcon2iri) is accessible in E. We note that a pair can be accessible

and not be related to a violation sort. For instance, the pair (ShUniversity, funi2iri) is

accessible in E but it is not present as part of a violation sort.

Since a rule in ΣTP
S does not produce a node, then the rule σ3 is triggered twice and

82 CHAPTER 3. CONSISTENCY

produces two different objects. Because we assume the instance does not contain null

values, then the triggering two times rule σ3 will always produce two different objects.

Therefore, if (ShConference, fcon2iri) is accessible then rules σ3 and σ3 are contentious

with (ShConference, fcon2iri , ex:place).

Violation sorts. We define the set of violation sorts Vs w.r.t. E as the set of triples

(T, f, p) w.r.t.E such that p is a property label for some triple constraint in the definition

of T , and f is any function name. Formally, Vs = {(T, f, p) ∈ T ×F × PropS | ∃S ∈

T ∪ {Lit}.∃µ ∈ {1, ?}. p :: Sµ ∈ δ(T)}.

In the sequel, we say that G has violation with (T, f, p) if the following set of facts

are in G:

{T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)}

for some tuple of constants a and some b, b′ ∈ Lit∪ Iri. Thus, every violation in the core

pre-solution has a violation sort.

Accessibility in core pre-solution. We define accessibility, and show that (T, f) is ac-

cessible in E if and only if there is an instance I of the signature R such that the fact

T (f(a)) is in the core pre-solution to I w.r.t. E.

Definition 3.2.3. The pair (T, f) ∈ T ×F is called accessible in E with sequence

σ0, σ1, . . . , σn

of st-tgds in Σst if:

• the head of σ0 is of the form T0(f0(x0)), and

• the head of σi is of the form Triple(fi−1(xi), pi, fi(yi)) for every 1 ≤ i ≤ n, and

• pi :: T µii ∈ δ(Ti−1) for every 1 ≤ i ≤ n, and

• T = Tn and f = fn.

for some type symbols Ti, function symbols fi, predicates pi, multiplicities µi and se-

quences of variables xi and yi.

3.2. VALUE CONSISTENCY 83

We call a sequence of rules σ0, . . . , σn for n been less or equal than number of rules

in Σst, where each rule is in Σst, a path in E, denoted by π. We point out that π is

elementary i.e., in the sequence there are no repetitions of rules. Now, we claim the

following lemma.

Lemma 3.2.2. For any (T, f) ∈ T ×F, it holds that (T, f) is accessible in E if and

only if there exists an instance I of R and a tuple of constants a in the domain of I s.t.

the core pre-solution to I w.r.t. E contains the fact T (f(a)).

Proof. Take (T, f) ∈ T ×F. For the⇒ direction. Assume (T, f) is accessible. By

definition, there is a path π = σ0, . . . , σn in E s.t.:

• head(σ0) = T0(f0(x0)), and

• head(σi) = Triple(fi−1(xi−1), pi, fi(yi)) for any 1 ≤ i ≤ n, and

• p :: T µi ∈ δ(Ti−1) for some multiplicity µ, and

• (T, f, p) = (Tn, fn, pn)

for some type symbols {Ti | 0 ≤ i ≤ n} ⊆ T, function symbols {fi | 0 ≤ i ≤ n} ⊆

F, IRIs {pi | 1 ≤ i ≤ n} ⊆ PropS and some sequence of variables xi and yi. We

construct an instance I of R such that adom(I) = {b} for some b ∈ Const. We chase I

with the sequence σ0, . . . , σn and ΣTP
S . This chase sequence of st-tgds and ΣTP

S is finite

because each rule is applied once. As a result of the chase sequence, there is bi for

i ∈ {0, . . . , n} composed of b ∈ adom(I) such that we have the following result:

A = {T0(f0(b0)),Triple(f0(b0), p1, f1(b1)), T1(f1(b1)),Triple(f1(b1), p2, f2(b2)), . . . ,

Triple(fn−1(bn−1), pn, fn(bn)), Tn(fn(bn))}.

By chase sequence definition, A is a universal solution to Σst ∪ ΣTP
S . By definition of

universal solution, there is a homomorphism h : A → J such that h(c) = c for every

c ∈ adom(A) and J a solution to Σst ∪ΣTP
S . Since in A there are no nulls, then A ⊆ J .

A solution to I w.r.t. Σst ∪ ΣTP
S is the core pre-solution to I w.r.t. E. Thus, J contains

the fact Tn(fn(bn)). Because T = Tn and f = fn, it holds that J contains T (f(bn)).

84 CHAPTER 3. CONSISTENCY

For the⇐ direction. Assume there exist an instance I of R and a tuple of constants

a in the domain of I s.t. the core pre-solution to I contains T (f(a)). Since the core pre-

solution to I w.r.t. E can be computed using the chase, then there is a chase sequence

of I with Σst ∪ ΣTP
S such that T (f(a)) is present in the result of the chase sequence. To

prove that (T, f) is accessible in E we require the following claims.

Claim 3.2.2.1. For any I of R, for any finite chase sequence w of I for dependencies

Σst ∪ ΣTP
S , any a ∈ Iri, any S ∈ T, any k ∈ {2, . . . , |w|}, if Jk a result of k chase step

in w contains the fact S(a) and for any k′ < k, there is not S ′ ∈ T, p ∈ PropS and

a′ ∈ Iri such that Jk′ a result of k′ chase step contains the facts S ′(a′),Triple(a′, p, a)

then there is k′ < k′′ ≤ k, a rule σ ∈ Σst and a homomorphism h : σ → Jk′′ such

that head(σ) = S(f(x)) and hF (f(x)) = a for some f ∈ F and some sequence of

variables x.

Proof. Assume the premises of the claim. We recall that Σst is normalized. Because

a ∈ Iri, there is an IRI constructor f ∈ F that has generate a. Because a TP rule in

its terms does not contain an IRI constructor, the generation of a node is done by the

application of a rule σ is in Σst. We recall (1) the restriction of data exchange setting

definition in Section 2.1: there is not T (x) or Lit(f(x)) for some T ∈ T and some

sequence of variable x in a st-tgd. By σ is in Σst, by condition that there is not a′ ∈ Iri,

p ∈ PropS and S ′ ∈ T such that {S ′(a′),Triple(a′, p, a)} ⊆ Jk′ , by definition of a

chase step that only one rule is triggered and (1), then the head σ if of the form S(f(x))

for some x ⊆ vars(σ) and there is k′ < k′′ ≤ k and a homomorphism hF : σ → Jk′′

such that hF (f(x)) = a.

Claim 3.2.2.2. For any finite chase sequence w for Σst∪ΣTP
S , any k ∈ {3, . . . , |w|}, any

b, b′ ∈ Iri and any q ∈ PropS if Jk a result of k chase step contains the fact Triple(b, q, b′)

then there is a k′ ≤ k, a rule σ ∈ Σst such that head(σ) = Triple(f(y1), q, g(y2))

for some f, g ∈ F and y1 and y2 subsets of vars(σ); and there is a homomorphism

hF : σ → Jk′ such that hF (y1) = b and hF (y2) = b′.

Proof. Assume Jk contains the fact Triple(b, q, b′). Because a triple in a graph is not

generated by a TP rule and the set of st-tgds Σst is normalized, then there is a k′ ≤ k for

which a rule σ ∈ Σst has a homomorphism hF : σ → Jk′ . The application of a rule in

3.2. VALUE CONSISTENCY 85

Σst that generates a triple is of form ϕ ⇒ Triple(f(y1), q, g(y2)) for some y1 and y2

subsets of vars(ϕ). Thus, hF is defined with hF (f(y1)) = b and hF (f(y2)) = b′.

Now, we fix a chase sequence s such that Jm is the core pre-solution starting at the

source instance as follows.

I = J0
σ1,h1−−−→ J1

σ2,h2−−−→ . . . Jm−1
σm,hm−−−−→ Jm

where σi a dependency in Σst ∪ ΣTP
S and hFi : σi → Ji a homomorphism for any

i ∈ {1, . . . ,m}.

Let b = f(a). In consequence, the fact T (b) ∈ Jm has been generated by the

application of a rule σ either in Σst or in ΣTP
S in a instance before Jm. If (a) for any

k′ < m, there is not S ∈ T, p ∈ PropS, b′ ∈ Iri such that Jk′ contains the set of

facts {S(b′),Triple(b′, p, b)} then by Claim 3.2.2.1, there is k′ < k ≤ m, σ ∈ Σst, a

homomorphism hFk : σ → Jk such that head(σ) = T (f(x)) where f is defined at the

beginning and hFk (f(x)) = b. By head of σ being of the form T (f(x)) and because in

definition of accessibility the path can be empty, (T, f) is accessible in E.

Otherwise (b) there is a k′ < k, S ∈ T, p ∈ PropS, b′ ∈ Iri such that Jk′ contains

the set of facts {S(b′),Triple(b′, p, b)}. Also, the rule S(x) ∧ Triple(x, p, y) ⇒ T (y)

was triggered in a chase step after k′ and before k generating the fact T (b). The ex-

istence of rule above in ΣTP
S is because there is a triple constraint p :: T µ ∈ δ(S) for

some multiplicity µ. By Claim 3.2.2.2 on (b), there is a k′′ ≤ k′, rule σ′1 ∈ Σst such

that its head is of the form head(σ′1) = Triple(f ′(x1), p, f(x)) for some f ′ ∈ F and

sequence of variables x1 and x and there is a homomorphism hFk′′ : σ′1 → Jk′′ such that

hFk′′(f
′(x1)) = b′ and hFk′′(f(x)) = b.

Now, we observe the fact S(b′) in Jk′ . As done with T (b) in Jm, if condition (a)

and because of existence of rule in ΣTP
S , then (T, f) is accessible with sequence of rules

σ′0, σ
′
1 where σ′0 is the rule triggered by condition (a). Otherwise condition (b).

Conditions (a) and (b) are evaluated each time an instance contains a fact T (b) for

some T ∈ T and some b ∈ Iri. If condition (a) is found, then (T, f) is accessible

because each time condition (b) is found, by Claim 3.2.2.2 there is a rule in Σst that

is added to the sequence of rules such that the conditions for accessibility are satisfied.

Since there is a start in J0 and by Claim 3.2.2.1, then the last condition is always (a).

86 CHAPTER 3. CONSISTENCY

Therefore, (T, f) is accessible in E.

Contentious st-tgds. We define contentious st-tgds as follows.

Definition 3.2.4. Let (T, f, p) be a violation sort. Two st-tgds σ, σ′ ∈ Σst are con-

tentious with sort (T, f, p) if

• the head of σ is Triple(f(z), p, t),

• the head of σ′ is Triple(f(z′), p, t′), and

• (T, f) is accessible in E

for some sequence of variables z, z′ and terms t, t′.

Contentious-based instances

Now, we specify the construction of a finite set of contentious-based instances based on

the set of violation sorts, accessibility and contentious st-tgds.

Let (T, f, p) be a violation sort, σ, σ′ ∈ Σst with sort (T, f, p) be two contentious

st-tgds. Let π = σ0, . . . , σn be a path from which (T, f) is accessible in E, we define

Bπ,σ,σ′ as the union of the bodies of the rules that are in the path π together with σ and

σ′. We assume that each two rules σ, σ′ in π uses mutually disjoint set of variables.

For ease of use, we rename σ and σ′ with σn+1 and σn+2. In symbols, the union of

the bodies of the rules is Bπ,σ,σ′ =
⋃n+2
i=0 body(σi). Then, we define the sequence of

mappings h0, . . . , hn+2 inductively as follows:

• for any 0 ≤ i ≤ n + 2, hi :
⋃i
j=0 varsR(σj) → NullLit is a mapping that is

injective when restricted on varsR(σi);

• for any 1 ≤ i ≤ n+ 2, hi coincides with hi−1 on the domain of hi−1;

• for any 1 ≤ i ≤ n, for any head of σi of the form Triple(fi−1(xi), pi, fi(yi)) for

some function symbols fi, predicate pi and sequence of variables xi,yi, hi(xi) =

hi−1(yi−1) and hi(z) is fresh w.r.t. the image of hn−1 for any z 6∈ xi. That is,

z 6∈ xi implies h(z) is not in the image of hi−1;

3.2. VALUE CONSISTENCY 87

• for head of rule σn+1 of the form Triple(fn(z), p, t) for some function symbol fn,

sequence of variables z and some term t, hn+1(z) = hn(yn) and hn+1(z) is fresh

w.r.t. the image of hn for any z 6∈ z;

• for head of rule σn+2 of the form Triple(fn(z′), p, t′) for some function symbol

fn, sequence of variables z′ and some term t′, hn+2(z′) = hn(yn) and hn+2(z) is

fresh w.r.t. the image of hn+1 for any z 6∈ z′

Now, we define a contentious-based instance denoted by Iπ,σ,σ′ as Iπ,σ,σ′ = hπ,σ,σ′(Bπ,σ,σ′)

where hπ,σ,σ′ is a homomorphism hπ,σ,σ′ : Bπ,σ,σ′ → Iπ,σ,σ′ defined as hπ,σ,σ′ = hn+2.

We illustrate the construction of a contentious-based instance in Example 3.2.5.

Example 3.2.5 (cont. Example 3.1.2 and 3.2.2). We take the following violation sort

(ShInstitute, funi2iri , ex:address) in Vs of E. We recall that a rule can be contentious

with itself. Thus, we take the rule σ7 and repeat this rule changing its variables. We

observe that (ShInstitute, funi2iri) is accessible with rules σ4 and σ5. We rename the

variables of rules σ4, σ5 and σ7 and the repeated rule such that two rules use mutually

disjoint set of variables.

Conference(x1, x2, x3, x4)⇒ ShConference(fcon2iri(x2, x3))

Conference(x5, x6, x7, x8) ∧ Sponsor(x5, x9)⇒ Triple(fcon2iri(x6, x7), ex:sponsor, funi2iri(x9))

Sponsor(y1, y2) ∧ Conference(y1, y3, y4, y5)⇒ Triple(funi2iri(y2), ex:address, y5)

Sponsor(y6, y7) ∧ Conference(y6, y8, y9, z)⇒ Triple(funi2iri(y7), ex:address, z)

The first step in the construction of contentious-based instances is the union of bodies

having as a result:

Bπ,σ,σ′ = {Conference(x1, x2, x3, x4),Conference(x5, x6, x7, x8),

Sponsor(x5, x9), Sponsor(y1, y2),Conference(y1, y3, y4, y5),

Sponsor(y6, y7),Conference(y6, y8, y9, z)}.

From these atoms inBπ,σ,σ′ , we unify some of the values that is assigned to the variables

of Bπ,σ,σ′ in order to get rules σ4, σ5, σ7 and σ7 been triggered one after the other. For

instance, we unify values for variables x2 and x6, with distinct value for variables x3 and

88 CHAPTER 3. CONSISTENCY

x7, then variables x9, y2 and y7. Based on these unifications, we define the sequence

of homomorphisms h1, h2, h3 and h4, which are applied to rules above such that hi

coincides in the domain of hi−1 for i ∈ {2, 3, 4}, as follows.

h1(x2) = h2(x6) = ⊥1 h1(x3) = h2(x7) = ⊥2

h2(x9) = h3(y2) = h4(y7) = ⊥3 h3(y5) = ⊥4 h4(z) = ⊥5

The rest of variables that occur in rules above are mapped to fresh values. Finally, we

apply the homomorphism h4 to Bπ,σ,σ′ obtaining the contentious-based instance:

Iπ,σ,σ′ = {Conference(⊥6,⊥1,⊥2,⊥7),Conference(⊥8,⊥1,⊥2,⊥9),

Sponsor(⊥8,⊥3), Sponsor(⊥10,⊥3),Conference(⊥10,⊥11,⊥12,⊥4),

Sponsor(⊥13,⊥3),Conference(⊥13,⊥14,⊥15,⊥5)}

It remains to prove that this instance is unique.

Lemma 3.2.3. Iπ,σ,σ′ is unique up to isomorphism.

Proof. By construction of Iπ,σ,σ′ there is a homomorphism hπ,σ,σ′ defined from Bπ,σ,σ′

to Iπ,σ,σ′ . The values of Iπ,σ,σ′ depend on the actual values given by hπ,σ,σ′ . If we choose

different values by a bijective renaming function except for values that are equated in

the sequence of mappings defined in the construction, then we obtain an instance that is

isomorphic to Iπ,σ,σ′ .

We define a bijective rename function for null literal names. Take (T, f, p) ∈ Vs.

To prove that Iπ,σ,σ′ is unique, we assume that there is other contentious-based instance

I ′π,σ,σ′ for contentious rules σ and σ′ with sort (T, f, p) such that I ′π,σ,σ′ ⊂ Iπ,σ,σ′ . By

semantics of⊂, I ′π,σ,σ′ contains less facts i.e., there is one rule σi for some i ∈ {0, . . . , n}

from the path π = σ0, . . . , σn inE. But, by definition of contentious, (T, f) is accessible

with π and not with π′ where π′ is the path without the rule σi. Thus σ and σ′ are not

contentious with (T, f, p). Contradiction.

3.2. VALUE CONSISTENCY 89

In the sequel, by Iπ,σ,σ′ we mean an arbitrary instance isomorphic to the one defined

above. Finally, we define the set of contentious-based instances as follows:

CInst(Σst) = {Iπ,σ,σ′ | σ, σ′ ∈ Σst,∃(T, f, p) ∈Vs. (T, f) is accessible in E

with π and σ, σ′ are contentious with (T, f, p)}.

We show with the following proposition that for any instance Iof R, there is a homo-

morphism from Iπ,σ,σ′ to I if and only if there is a violation in the core pre-solution to I

w.r.t. E.

Proposition 3.2.6. For any instance Iof R, there is a violation sort (T, f, p) such that

there exist π, σ, σ′, h s.t. (T, f) is accessible with path π in E, σ, σ′ are contentious st-

tgds with (T, f, p) and h : Iπ,σ,σ′ → I is a homomorphism if and only if there exist a

tuple of constants a from the domain of I and constants b, b′ s.t. the core pre-solution

to I w.r.t. E includes {T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)} with b 6= b′ and

there is triple constraint p ::Sµ ∈ δ(T) with some S ∈ T ∪{Lit} and some µ ∈ {1, ?}.

Proof. Take an instance I of R. For the⇒ direction. Assume there is a violation sort

(T, f, p) and there exists π, σ, σ′, h s.t. (T, f) is accessible with path π in E, σ, σ′ are

contentious st-tgds with (T, f, p) and h : Iπ,σ,σ′ → I is a homomorphism. Because

π is a path for (T, f), then the sequence of st-tgds σ0, . . . , σn that composes π is as

in Definition 3.2.3 and Tn = T and fn = f . Thus, σ0 contains a typed atom and for

σ1, . . . , σn there are triple constraints such that pi :: T µii ∈ δ(Ti−1) for every 1 ≤ i ≤ n.

Because of existence of these triple constraints, then we have ΣTP
S contains the rules

TP(Ti−1, pi, Ti) for any 0 < i ≤ n. By construction of Iπ,σ,σ′ , rules in π and σ, σ′

are rewritten by renaming the variables such that two rules use mutually disjoint set

of variables and there is a homomorphism hπ,σ,σ′ : Bπ,σ,σ′ → Iπ,σ,σ′ . For the purpose

of defining a sequence of mappings such that the nodes generated by the application

of rules of π, σ, σ′ are typed following the TP rules, we define that each variable has

to be distinct in TP rules and be distinct from those used in Bπ,σ,σ′ as follows. Let

TP(Ti−1, pi, Ti) = Ti−1(ui) ∧ Triple(ui, pi, vi) ⇒ Ti(vi) for any 0 < i ≤ n, where

w.l.o.g. ui, vi are fresh w.r.t. the variables used in σ0, . . . , σn, σ, σ
′ and {ui, vi} is disjoint

from {uj, vj} whenever i 6= j.

90 CHAPTER 3. CONSISTENCY

Now we define a mapping h′ from Bπ,σ,σ′ to I as h′ = h ◦ hπ,σ,σ′ . It follows by

definition of Iπ,σ,σ′ and h that I is the disjoint union of h′(Bπ,σ,σ′) and I ′, the latter

containing the facts of I ′ that are not images by h of some fact in Iπ,σ,σ′ . Next, we define

a chase sequence s starting at I with π, σ, σ′ and TP rules; note that in the sequel we

abuse the notation and use h′ as its restriction on any subset of variables in its domain.

The first chase step of s is with rule σ0 i.e., I
σ0, h′−−−→ I0, whose head of σ0 is a

typed atom. Let head(σ0) = T0(f0(x0)). For the following chase steps, we intercalate

a rule of π and a rule of TP. We recall that by renaming of variables done before, the

head of σi in π is of the form Triple(fi−1(xi), pi, fi(yi)), the head of σ is of the form

Triple(fn(xn+1), p, t) and the head of σ′ is of the form Triple(fn(xn+2), p, t′) for some

terms t, t′. We define subsequent chase steps inductively by adding the following two

chase steps for all 0 < i ≤ n:

Ii−1
σi, h

′
−−−→ I ′i

TP(Ti−1,pi,Ti), hi−−−−−−−−−−→ Ii,

where hi is defined by hi(ui) = h′(fi−1(xi)) and hi(vi) = h′(fi(yi)).

Thus s is of the form:

I
σ0, h′−−−→ I0

σ1, h′−−−→ I ′1
TP(T0,p1,T1), h1−−−−−−−−−→ I1 → · · · → In−1

σn, h′−−−→ I ′n
TP(Tn−1,pn,Tn), hn−−−−−−−−−−−→ In.

We now show that s is indeed a chase sequence. That is, we need to show that the

homomorphism of each step above is indeed a homomorphism from the body of the

dependency being applied to the instance to which the step is applied. It immediately

follows from the definitions and hypotheses that

(1) I0 = I ′ ∪ h′(Bπ,σ,σ′) ∪ T0(h(f0(x0)))

where I ′ contains the facts of I that are not images of some fact of Iπ,σ,σ′ by h. For any

1 ≤ i ≤ n we show the following by induction on i:

(2) I ′i = Ii−1 ∪ h′(head(σ0) ∪ · · · ∪ head(σi));

(3) Ii = I ′i ∪ Ti(h′(fi(yi))).

For the base case i = 1. From (1) it follows that h′ : σ1 → I0 is a homomorphism,

3.2. VALUE CONSISTENCY 91

and by definition of the chase, applying h′ on I0 yields I ′1 = I0 ∪ h′(head(σ1)), thus (2)

holds.

Now from (1) and (2) we know that I ′1 contains the facts

T0(h′(f0(x0))) and Triple(h′(f0(x1)), p1, f1(y1)) = h′(head(σ1)).

Recall that by definition, hπ,σ,σ′(x0) = hπ,σ,σ′(x1), so also h′(x0) = h′(x1), thus h1

is indeed a homomorphism from Ti−1(ui) ∧ Triple(ui, pi, vi) into I ′i and the resulting

instance is indeed I ′i ∪ Ti(h′(fi(yi))).

The same arguments apply for the induction step for showing that h′ : σi → Ii−1 and

hi : TP(Ti−1, pi, Ti) → I ′i are homomorphisms with h(yi−1) = h(xi) and h′(yi−1) =

h′(xi), and their application yields the instances described in (2) and (3).

Consider now the chase sequence

s′ = In
σ, h−−→ Iσ

σ′, h−−→ Iσ′ .

It immediately follows from the definition of h, from (3) and from the definition of a

chase step that

• Iσ = In ∪ {Triple(h(fn(xn+1)), p, h(t))} and

• Iσ′ = Iσ ∪ {Triple(h(fn(xn+2)), p, h(t′))},

where h(xn+1) = h(xn+2) = h(yn).

Finally, we consider the core pre-solution computed using chase. Thus, any chase

sequence with Σst ∪ ΣTP
S is finite because rules in Σst does not contain existential vari-

ables so there is no fresh values and the nodes are created from constants in the domain

of I; and rules in ΣTP
S only type the nodes. Since rules in π are in Σst and the TP rules

used for obtaining Iσ′ are part of ΣTP
S , then the core pre-solution to I w.r.t. E contains

Iσ′ . Therefore, we conclude

{Tn(h′(fn(yn))),Triple(h′(fn(xn+1)), p, h′(t)),Triple(h′(fn(xn+2)), p, h′(t′))} ⊆ J0.

Because of violation sort definition on (Tn, fn, p), there is a triple constraint p :: Sµ ∈

δ(Tn) for some S ∈ T ∪ {Lit} and some µ ∈ {1, ?}.

92 CHAPTER 3. CONSISTENCY

For the⇐ direction. Assume there exist a tuple of constants a from the domain of I

and constants b, b′ s.t. the core pre-solution J0 to I w.r.t.E includes the set of factsW =

{T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)} with b 6= b′ and there is triple con-

straint p ::Sµ ∈ δ(T) with some S ∈ T∪{Lit} and some µ ∈ {1, ?}. By Lemma 3.2.2

on the fact that T (f(a)) is in J0, (T, f) is accessible with path π inE. Since every triple

is generated by the application of a st-tgd, then there are two rules σ and σ′ that were

triggered to generate Triple(f(a), p, b) and Triple(f(a), p, b′). Because every violation

in J0 has a violation sort, then {T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)} has as

sort (T, f, p). Since there is a violation sort (T, f, p) and (T, f) is accessible, then σ and

σ′ are contentious with (T, f, p).

Now, we construct a contentious-based instance Iπ,σ,σ′ from the contentious st-tgds

σ,σ′ and the path π and define an injective function h : Iπ,σ,σ′ → I . We show that h

is a homomorphism. Because every node in J0 is generated by the application of a st-

tgd, and J0 contains the violation with sort (T, f, p), then there is a homomorphism from

h′ : Bπ,σ,σ′ → I . By construction of Iπ,σ,σ′ , there is a homomorphism hπ,σ,σ′ : Bπ,σ,σ′ →

Iπ,σ,σ′ . The function h is defined as follows: for any ⊥ ∈ adom(Iπ,σ,σ′) there is a ∈

adom(I) such that h(⊥) = a if there is x ∈ adom(Bπ,σ,σ′) and hπ,σ,σ′(x) = ⊥ and

h′(x) = a. It is easy to see that for any R ∈R, every R(⊥1, . . . ,⊥n) ∈ Iπ,σ,σ′ where n

is arity of R, there is R(h(⊥1), . . . , h(⊥n)) ∈ I . Thus, h is a homomorphism.

Necessary condition

Now, we show that value consistency of E is a sufficient condition for consistency by

verifying that contentious-based instances are properly consistent instances of R. We

express this with the following theorem.

Theorem 3.2.7. E is not value consistent if and only if there is an instance Iπ,σ,σ′ in

CInst(Σst) such that there is a solution I ′ for Iπ,σ,σ′ to the set of functional dependencies

Σfd of R for which h ◦ hπ,σ,σ′(t) 6= h ◦ hπ,σ,σ′(t′) where h is the unique homomorphism

from Iπ,σ,σ′ to I ′ and t, t′ are two different terms such that head of σ is Triple(f(x), p, t)

and the head of σ′ is Triple(f(x), p, t′) where σ, σ′ are used in the construction of

Iπ,σ,σ′ .

Proof. For the⇒ direction. AssumeE is not value consistent. By negation of definition

3.2. VALUE CONSISTENCY 93

of value consistency of E, there is an instance I of R such that the core pre-solution J0

to I w.r.t. E is not value consistent. By negation of definition of value consistent of

graph and definition of core pre-solution, the core pre-solution does not satisfy the ΣPF
S

rules. This means the core pre-solution J0 has a violation with some sort (T, f, p) in the

set of violations sorts w.r.t. E. Because the existence of a violation, we know there is

the set of facts {T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)} in J0 with some tuple

of constants a in the domain of I and constants b, b′ such that b 6= b′. Also, by existence

of violation, we know there is a triple constraint p ::Sµ ∈ δ(T) for some S ∈ T∪{Lit}

and some µ ∈ {1, ?}. Since J0 is the core pre-solution to I , then there is a function h1

that maps values from I to J0. Because of the existence of violation with sort (T, f, p),

σ, σ′ are contentious with (T, f, p) in Σst by Proposition 3.2.6 and J0 is the result of

application Σst, then h1(t) = b and h1(t′) = b′ where t and t′ are two different terms

such that the head of σ is Triple(f(x), p, t) and the head of σ′ is Triple(f(x), p, t′).

By Proposition 3.2.6, we can construct Iπ,σ,σ′ and there is a homomorphism h′ from

Iπ,σ,σ′ to I . By construction of Iπ,σ,σ′ , we know there is a homomorphism hπ,σ,σ′ :

Bπ,σ,σ′ → Iπ,σ,σ′ . We chase Iπ,σ,σ′ with Σfd obtaining the instance I ′ such that there is

a homomorphism h : Iπ,σ,σ′ → I ′. By property of the chase, I ′ is a universal solution

to Iπ,σ,σ′ w.r.t. Σfd. This means that there is a hu : I ′ → I . Now, we apply h′ to

I ′ obtaining an instance I ′′ and define a function g over the domain of I ′ as follows:

g(d) = h′(h(⊥)) such that h′(⊥) = d with ⊥ ∈ adom(Iπ,σ,σ′) for every d ∈ adom(I).

This function is well-defined because given two ⊥1,⊥2 either they are fused or they are

identities. This means that h′(⊥1) = d and h′(⊥2) = d so h′(h(⊥1)) = h′(h(⊥2)).

Then g is a homomorphism from I to I ′′. We chase I ′′ with the same chase sequence

used for I obtaining the core pre-solution J ′ to I ′′ w.r.t. E. Since J ′ is the core pre-

solution to I ′′, then there is a function h2 that maps values from I ′′ to J ′. Since we have

used the same chase sequence for I and g maps from I to I ′′, then h2 = g ◦ h1.

We assume by contradiction that h2(b) = h2(b′). Here, we have that b, b′ are the

mapped values from terms t and t′ in the head of the contentious st-tgds σ and σ′. Since

a term can be either a variable or a function term, then we have two cases:

• Let t = y and t′ = y′. Since h2 = g◦h1 and by definition of g, then h′◦hπ,σ,σ′(y) =

h′ ◦ hπ,σ,σ′(y′). This means that h(y) = h(y′). Because I ′ is a universal solution

94 CHAPTER 3. CONSISTENCY

to Iπ,σ,σ′ w.r.t. Σfd and hu : I ′ → I , then it is not possible to equate in I ′ and be

different in I . Thus, I 6|= Σfd; a contradiction.

• Let t = f(y) and t′ = f(y′). Since the IRI constructors are non-overlapping and

in J0 every IRI comes from an IRI constructor and h2 = g ◦ h1 and by definition

of g, then h′ ◦ hπ,σ,σ′(f(y)) = h′ ◦ hπ,σ,σ′(f(y′)). Simplifying, h′ ◦ hπ,σ,σ′(y) =

h′◦hπ,σ,σ′(y′) for every y ∈ y and y′ ∈ y′. This means that h(y) = h(y′) for every

y ∈ y and y′ ∈ y′. Because I ′ is a universal solution, I 6|= Σfd; a contradiction.

For the ⇐ direction. Assume there is an instance Iπ,σ,σ′ ∈ CInst(Σst) such that

there is a solution I ′ to Iπ,σ,σ′ w.r.t. Σfd for which h◦hπ,σ,σ′(t) 6= h◦hπ,σ,σ′(t′) where h :

Iπ,σ,σ′ → I ′ is the unique homomorphism and t, t′ are two different terms such that head

of σ is Triple(f(x), p, t) and the head of σ′ is Triple(f(x), p, t′) where σ, σ′ are used in

the construction of Iπ,σ,σ′ . By definition of the set of contentious-based instances, there

is π, σ, σ′, hπ,σ,σ′ s.t. (T, f) is accessible with π in E, σ, σ′ are contentious with sort

(T, f, p) and hπ,σ,σ′ is a homomorphism from Bπ,σ,σ′ to Iπ,σ,σ′ .

Now, we compute the core pre-solution J0 to I ′ w.r.t. E. Since (T, f, p) exists such

that (T, f) is accessible with π in E and σ, σ′ are contentious with (T, f, p) and h :

Iπ,σ,σ′ → I ′ is a homomorphism then by Proposition 3.2.6, there is a triple constraint

p :: T ′µ ∈ δ(T) for some T ′ ∈ T ∪ {Lit} and some µ ∈ {1, ?} and J0 contains the set

of facts

{T (f(a)),Triple(f(a), p, b),Triple(f(a), p, b′)}

for some tuple of constants a in the domain of I ′ and some constants b, b′ where h ◦

hπ,σ,σ′(x) = a, b = h ◦ hπ,σ,σ′(t) and b = h ◦ hπ,σ,σ′(t′). By hypothesis, b 6= b′. Thus,

J0 has a violation with this set of facts, and consequently, J0 is not value consistent. By

Lemma 3.2.1, I ′ does not admit a solution to E.

Algorithm

Now, we summarize the previous analysis for testing value consistency in the Algo-

rithm 1. The argument of this algorithm is a constructive data exchange setting and the

result is a Boolean value. The output is true if the data exchange setting is value consis-

tent. The Algorithm 1 starts computing the set of contentious-based instances VR. Then

3.3. NODE KIND CONSISTENCY 95

we compute a set of consistent contentious-based instances VR by removing from VR

inconsistent instances. Finally, the algorithm outputs false if VR is not empty, otherwise

true.

Algorithm 1: CVC: check value consistency.
Input: a data exchange setting E = (R,S,Σst,F)
Output: true if E is value consistent,false otherwise.

1 VR = {Iπ,σ,σ′ |
σ, σ′ are contentious with (T, f, p) and (T, f) is accessible with π} ;

2 VR = {I ∈ VR | I |= Σfd};
3 if VR 6= ∅ then
4 return false;
5 end
6 else
7 return true;
8 end

3.3 Node kind consistency

In this section, we define node kind consistency and provide a procedure for deciding

if a data exchange setting is node kind consistent. To define node kind consistency, we

require two auxiliary functions co-typing of a data exchange setting and co-typing of a

graph. In both cases, the function defines a set of set of types. In the case of a data

exchange setting E, for a set of types X in the co-typing result it would be possible to

have an instance I in which the types of X co-occurs in the typing of a node of every

solution to I w.r.t. E. In the case of a graph G, for a set of types X in the co-typing

result there is a graph G′ ⊃ G such that G′ satisfies a shapes schema and there is a

node n ∈ nodes(G′) such that all types of X co-occur in the typing of n. We illustrate

co-typing and node kind inconsistency with the following example.

Example 3.3.1. We consider the data exchange setting E of Example 3.1.2. We are

interested in detecting if the setting is node kind inconsistent. For this purpose, we

compute the co-typing graph of E shown in Figure 3.2. A node of this graph is a set of

typesA ⊆ T and an edge with label p between a source node and target node represents

that there is a type T in the source node such that there is a triple constraint in the shape

96 CHAPTER 3. CONSISTENCY

definition of T with property p and multiplicity in {1, +} for which the target type of

this triple constraint is in the target node.

{ShInstitute, ShUniversity} {ShConference}

{ShAddress,Lit}

ex
:a

dd
re

ss

{Lit}

ex:name ex
:n

am
e

ex
:y

ea
r

ex
:p

la
ce

{ShAddress}
ex:name

{ShInstitute}
ex:address

ex:sponsor

Figure 3.2: Co-typing graph of a setting E.

A co-typing graph provides the following information. Given a nodeA ∈ nodes(GE),

it would be possible that there is an instance I of R such that for any solution J to I

w.r.t. E there is a node n ∈ nodes(J) for which two or more types contained in A co-

occurs in the typing of n. For instance, in the co-typing graph seen in Figure 3.2, we

take the node {ShInstitute, ShUniversity}. Indeed, for the instance in Figure 3.1a, the

core pre-solution seen in Figure 3.1b, which is in every solution to I w.r.t. E, has in its

nodes the node univ:university-of-Lille where ShInstitute and ShUniversity co-occurs.

With the information of a co-typing graph, we can compute the co-typing of a graph

G that defines a set of set of types where each set of types will probably co-occur in any

graph that includes G and satisfies the shapes schema. For instance, the co-typing graph

in Figure 3.2 shows that there might exist a node where ShInstitute and ShUniversity

will co-occur and this node will need to have an outgoing edge with ex:address and the

target node will have types Lit and ShAddress. Indeed, even if we have an edge with

ex:address in the core pre-solution we have to add a fresh node of typed ShAddress be-

cause according to the co-typing graph there must be an outgoing edge with ex:name

from this fresh node to a node of type Lit . This outgoing edge with ex:name cannot

be from “Peru” node because it is literal. Here, we observe that the fresh node of type

ShAddress needs to be fused with the node “Peru” because the shapes schema con-

straints to have at most one edge with ex:address from type ShInstitute. Thus, with the

help of co-typing of the core pre-solution, we can identify if there is a conflicting type

in any graph that includes the core pre-solution and satisfies shapes schema. Indeed, it

will be enough to check if there is a literal and non literal type in a node of the nodes of

the co-typing graph.

3.3. NODE KIND CONSISTENCY 97

3.3.1 Co-typing of a data exchange setting and co-typing graph

Here, we define the co-typing of a data exchange setting and the co-typing graph. To

define the co-typing of a data exchange setting, we require two auxiliary functions called

type reachability and obligatory property label. We fix a set of types T. The type

reachability function over a T-based shapes schema S = (T, δ) denoted by

∆ : 2T × PropS → 2T

defines a set of types reachable by p-labeled edge from a node that satisfies the set of

types X , as follows.

∆(X, p) = {S | p :: Sµ ∈ δ(T) for some T ∈ X and µ ∈ {?, 1, +, *}}.

The obligatory property label function over a T-based shapes schema S = (T, δ)

denoted by Req : 2T → 2PropS defines a set of property labels that are required by a set

of types X , as follows.

Req(X) = {p | ∃T ∈ X. ∃S ∈ T.∃µ ∈ {1, +}. p :: Sµ ∈ δ(T) }.

The type accessibility function defines a set of types that are accessible with an IRI

constructor f ∈ F as follows:

Acc(f) = {T | (T, f) accessible in E}.

Based on these two auxiliary functions, we define co-typing of E as follows:

CoTypes(E) =
∞⋃
i=0

Ni,

where N0 = {Acc(f) | f ∈ F}, and Ni = {∆(X, p) | X ∈ Ni−1, p ∈ Req(X)} for

any i ≥ 1. We call N0 the co-base set of a setting. We claim the following property of

the set N0 as follows.

Lemma 3.3.1. For any X ⊆ T, X ∈ N0 iff there is an instance I of R such that for

the core pre-solution J0 to I w.r.t.E, there is a node n ∈ nodes(J0) such that n is typed

98 CHAPTER 3. CONSISTENCY

with all types of X .

Proof. Take X ⊆ T. For the⇒ direction. We assume X ∈ N0. Then by definition of

N0, X = Acc(f) for some f ∈ F. By definition of type accessibility, for any T ∈ X ,

(T, f) is accessible inE. Take T ∈ X . By Lemma 3.2.2, there is an instance I of R and

tuple of constants a in the domain of I s.t. the core pre-solution J0 to I w.r.t.E contains

the fact T (f(a)). Let the domain of I be adom(I) = {a}. Since the active domain of I

is composed of one constant, J0 |= ΣTP
S and for any T ∈ X , (T, f) is accessible in E,

then for all types T ∈ X , we have T (n) ∈ J0 such that n = f(a) in nodes(J0). Thus,

typesJ0(n) = X .

For the⇐ direction. We assume there is an instance I of R such that for the core

pre-solution J0 to I w.r.t. E there is a node n ∈ nodes(J0) s.t. typesJ0(n) = X .

Since J0 |= Σst, then there is an IRI constructor f ∈ F such that f(a) = n for some

vector of constants a. Since typesJ0(n) = X and f is used to generate n, then for any

T ∈ X , (T, f) is accessible in E. Then X = Acc(f) which fulfills definition of N0.

Consequently X ∈ N0.

We point out that this function defines a finite set of set of types because each Ni

construct subsets of a finite set of types T and this process eventually reaches a fix point.

Finally, we construct the co-typing graph ofE as followsGE = {Triple(X, p, Y) | X ∈

CoTypes(E) ∧ p ∈ Req(X) ∧ Y = ∆(X, p)}.

3.3.2 Co-typing of a graph

We define an auxiliary function called frontier that defines a set of pairs node property

where types of the node requires outgoing edges that are missing w.r.t. a shapes schema

S. Formally, the frontier function of a graph G w.r.t. a shapes schema S is as follows:

FS(G) = {(n, p) | n ∈ nodes(G), p ∈ Req(typesG(n)),

@m ∈ nodes(G).Triple(n, p,m) ∈ G}

In the following, we introduce the set M0 called co-base set of a graph defined as

M0 = {X | ∃n ∈ nodes(G). types(n) = X}.

3.3. NODE KIND CONSISTENCY 99

Now, the co-typing of a graph G w.r.t. a shapes schema S is defined as follows.

CoTypes(G) = M0 ∪
⋃
i∈N

NG
i

where NG
i = {∆(X, p) | X ∈ NG

i−1, p ∈ Req(X)} for any i ≥ 1 and NG
0 = {X ∈M0 |

∃(n, p) ∈ FS(G), types(n) = X}.

Now, we show that co-typing of a setting is included in the union, for every instance

I of R, of the co-typing of the core pre-solution to I w.r.t. E.

Lemma 3.3.2. For any relational to RDF data exchange setting E = (R,S,Σst,F), it

holds that CoTypes(E) ⊆
⋃
I instance of R CoTypes(J0) where J0 is the core pre-solution

to I w.r.t. E.

Proof. Take a setX ∈ CoTypes(E). We prove that there is an instance I of R for which

the co-typing of the core pre-solution to I w.r.t.E contains X . We construct an instance

I where the active domain is composed of only one constant i.e., adom(I) = {a}. We

compute the core pre-solution J0 to I w.r.t. E. Since J0 |= ΣTP
S , then a node n in J0 has

all the accessible types with the IRI constructor used to generate n i.e., typesJ0(n) =

Acc(f) where f ∈ F. Based on this fact and that the active domain is only one constant

for every node m ∈ nodes(J0), typesJ0(m) = Acc(g) such that g is used to generate m.

If we compute M0, we obtain the same result. Then N0 = {Acc(f) | f ∈ F} = M0.

Since the definition of NJ0
0 takes an element of M0 and because N0 = M0, then NJ0

i =

Ni for every i ≥ 1. Then, we conclude that X ∈ CoTypes(J0).

Also, given an instance I of R, we show a property of an element of the co-typing

of the core pre-solution to I w.r.t. E.

Lemma 3.3.3. Let I be an instance of R. Let J0 be the core pre-solution to I w.r.t. E

such J0 |= ΣPF
S . If X ∈ CoTypes(J0) then there is a set of types Y ∈ CoTypes(E) such

that X ⊆ Y .

Proof. Let I be an instance of R. Let J0 be the core pre-solution to I w.r.t. E such

J0 |= ΣPF
S . Assume X ∈ CoTypes(J0). By definition of co-typing of a graph, (a)

X ∈ M0 or (b) X ∈
⋃
i∈N N

J0
i . For case (a), we know that M0 is the set of set of

100 CHAPTER 3. CONSISTENCY

types that co-occur in J0 and by property of J0 that every IRI node n ∈ nodes(J0) is

produced by an IRI constructor i.e., there is f ∈ F such that n = f(a) for some vector

of constants a. Let Y = Acc(f). By definition of co-typing of setting, we know Y ∈

CoTypes(E). Since the IRI constructors are non-overlapping and typesJ0(n) = X , then

X ⊆ Y . For case (b), the proof goes by induction. For i = 0, X ∈ NJ0
0 . By definition

of NG
0 , there is (n, p) ∈ FS(J0) such that X = typesJ0(n). Since n ∈ nodes(J0),

there is f ∈ F such that f(a) = n for some vector of constants a. As case (a), there is

Y ∈ CoTypes(E) such thatX ⊆ Y . Now we assume that the hypothesis holds for i = k

for some k > 1 such that if X ∈ NJ0
i then there is Y ∈ CoTypes(E) such that X ⊆ Y .

Assume X ∈ NG
k+1. By definition of co-typing of setting, there is X ′ ∈ NJ0

k such that

X = ∆(X ′, p) and p ∈ Req(X ′). By induction hypothesis, there is Y ′ ∈ CoTypes(E)

such that X ′ ⊆ Y ′. Since p ∈ Req(X ′) and the co-typing graph of the setting must have

an edge with p, then there is Y ∈ CoTypes(E) such that Y = ∆(Y ′, p).

We claim that for any Z,Z ′ ⊆ T, and for any p ∈ Req(Z), if Z ⊆ Z ′ then

∆(Z, p) ⊆ ∆(Z ′, p). The proof of this claim is as follows. Assume that Z ⊆ Z ′.

Take p ∈ Req(Z) and take T ∈ ∆(Z, p). By definition type reachability, there is some

type S ∈ Z such that p :: T µ ∈ δ(S) for some µ ∈ {?, 1, +, *}. Since Z ⊆ Z ′, then

S ∈ Z ′. Since p :: T µ ∈ δ(S) and S ∈ Z ′, then T ∈ ∆(Z ′, p). By this claim, we know

that ∆(X ′, p) ⊆ ∆(Y ′, p). Then X ⊆ Y .

Now, given an instance I of R, we define a T-typed graph called completed w.r.t.

I and E using the co-typing of the core pre-solution J0 to I w.r.t. E. We denote the

completed graph w.r.t. I and E by GE(I). Let CoT J0 = CoTypes(J0) \M0 ∪ NJ0
0 be

the difference of co-typing of J0 with the co-base set of J0. For any X ∈ CoT J0 s.t.

X ⊆ T, let nX be a fresh blank node, i.e. nX ∈ Blank\adom(J0). For anyX ∈ CoT J0

and p ∈ Req(X), let nX,p be a fresh null literal, i.e. nX,p ∈ NullLit \ adom(J). We

3.3. NODE KIND CONSISTENCY 101

define GE(I) as follows:

GE(I) ={Triple(n, p, nX) | (n, p) ∈ FS(J0) ∧X = ∆(typesJ0(n), p) ⊆ T} ∪

{Triple(n, p, nX,p) | (n, p) ∈ FS(J0) ∧∆(typesJ0(n), p) = {Lit}} ∪

{Triple(nX , p, nX′) | X ∈ CoT J0 ∧ p ∈ Req(X) ∧X ′ = ∆(X, p) ⊆ T} ∪

{Triple(nX , p, nX,p) | X ∈ CoT J0 ∧ p ∈ Req(X) ∧∆(X, p) = {Lit}} ∪

{T (nX) | X ∈ CoT J0 ∧ T ∈ X}.

Lemma 3.3.4. Let I be an instance of R. Let J0 be the core pre-solution to I w.r.t. E

and GE(I) the completed graph w.r.t. I andE. The typed graph J0∪GE(I) is a solution

to I w.r.t. E.

Proof. Let J ′ = J0 ∪ GE(I). We prove that J ′ is a solution to I w.r.t. E. Since J0 is

included in J ′, then J ′ ∪ I satisfies Σst. By construction of the completed graph w.r.t.

I and E, the shapes schema S is satisfied i.e., GE(I) |= ΣS. Since GE(I) completes

J0 with nodes and edges that are required by the shapes schema and GE(I) satisfies S,

then J0 ∪GE(I) satisfies S. Therefore, J ′ is a solution to I w.r.t. E.

3.3.3 Formalization

Given an instance I of R, a graphG is node kind consistent w.r.t. E and I ifG is the core

pre-solution to I w.r.t. E and CoTypes(G) does not contain a set X s.t. {T,Lit} ⊆ X

for some T ∈ T.

Now, we formalize the node kind consistency of the setting E as follows:

Definition 3.3.2 (Node kind consistency). The data exchange setting E is node kind

consistent if for every I instance of R, the core pre-solution to I w.r.t. E is node kind

consistent.

3.3.4 Necessary condition

Now, we show that co-typing of the settingE is a necessary and sufficient condition for

testing node kind consistency of the setting E.

102 CHAPTER 3. CONSISTENCY

Theorem 3.3.3. E is not node kind consistent if and only if CoTypes(E) contains a set

X such that {Lit , T} ⊆ X for some type T in T.

Proof. For the⇒ direction. We assume E is not node kind consistent. By the opposite

of definition of node kind consistency of a setting, there is an instance I of R for which

the co-typing of the core pre-solution to I w.r.t. E is not node kind consistent. By the

opposite of definition of node kind consistency of a graph, the co-types of J0 contains

a set X such that {Lit , T} ⊆ X for some T in T. By Lemma 3.3.3, there is Y ∈

CoTypes(E) such that X ⊆ Y . Therefore, we conclude that CoTypes(E) contains a set

Y such that {Lit , T} ⊆ Y .

For the⇐ direction. We assume CoTypes(E) contains a setX such that {Lit , T} ⊆

X for some type T in T. By Lemma 3.3.2, there is an instance I of R such that the core

pre-solution to I w.r.t.E containsX . By negation of definition of node kind consistency

of a setting, we conclude that E is not node kind consistent.

3.3.5 Algorithm for testing node kind consistency

Here, we present an algorithm for testing node kind consistency. This algorithm has as

input a constructive data exchange setting E and as output a Boolean value. True if E

is node kind consistent, otherwise false. We recall the definition of path in a graph. For

any graph G, a path π in G is defined by a sequence of labels p1 · . . . · pk for k ≥ 0 such

that for every two consecutive labels there are two edges in G with these labels such

that target node for the first label is the source node for the second label. If k = 0, we

denote by symbol ε, the empty path. We extend the reachability function over a graphG

to defines a set of nodes that are reachable with a path in a graph G from a set of nodes

in G as follows.

∇G(N, ε) = N,

∇G(N, π · p) = {n | ∃n′ ∈ ∇G(N, π).Triple(n′, p, n) ∈ G}.

First, we describe the Algorithm 2 that constructs the co-typing of E. For every

function symbol f in the set F, we use the type accessibility function (line 3) and store

the result in the set N0. We assign N0 to N and initialize the set NT that will store the

3.3. NODE KIND CONSISTENCY 103

result of the co-typing of E. Then, we repeat the following process until there is no

element of X such that Req(X) = ∅ and there is no new element to be added in NT .

For every element X ∈ N and for every property label p ∈ Req(X), we compute the

type reachability with X and p. Then, we store the result of type reachability in set Ns.

At the end of this process, we update the set N with Ns. If there is no element of N

with a literal and non-literal type, the algorithm returns NT .

Algorithm 2: Cotypes(E)
Input: a data exchange setting E = (R,S,Σst,F)
Output: true if E is node kind consistent, or (false) if E is not

1 N0 = ∅;
2 for f ∈ F do
3 N0 = N0 ∪ {Acc(f)};
4 end
5 N = N0;
6 NT = ∅;
7 while ∃X ∈ N.Req(X) 6= ∅ and N 6⊆ NT do
8 NT = NT ∪N ;
9 Ns = ∅;

10 for X ∈ N do
11 for p ∈ Req(X) do
12 Y = ∆(X, p);
13 Ns = Ns ∪ {Y };
14 end
15 end
16 N = Ns;
17 end
18 return NT ;

Finally, we describe the Algorithm 3 that decides if a data exchange settingE is node

kind consistent. We construct the co-typing graph of E where CoTypes(E) is defined

in Algorithm 2. Then we compute all paths with the function allpaths that returns all

possible paths in GE that are not cycles. Then, for every function symbol f in the set

F and for all ternary combinations of types (T, S, S ′), we verify if (S, f) and (S ′, f)

are accessible. If so, we verify that S and S ′ are in nodes of GE. If so, for every path π

in P , we use twice the function reachability with π, one with N and the other with N ′.

Then, we compare if they are the same and if they contain the type T and Lit . If so, the

algorithm returns false. Otherwise, the algorithm returns true.

104 CHAPTER 3. CONSISTENCY

Algorithm 3: CKC: Check Node Kind Consistency
Input: a data exchange setting E = (R,S,Σst,F)
Output: true if E is node kind consistent, or (false) if E is not

1 GE = {(X, p, Y) | X ∈ CoTypes(E), p ∈ Req(X), Y = ∆(X, p)};
2 P = allpaths(GE);
3 for f ∈ F do
4 for (T, S, S ′) ∈ T ×T ∪ {Lit} ×T ∪ {Lit} do
5 if (S, f) is accessible in E and (S ′, f) is accessible in E then
6 if ∃N ∈ nodes(GE). S ∈ N and ∃N ′ ∈ nodes(GE). S ′ ∈ N ′ then
7 use N and N ′;
8 for π ∈ P do
9 X = ∇GE

(N, π);
10 Y = ∇GE

(N ′, π);
11 if X = Y and T ∈ X and Lit ∈ Y then
12 return false;
13 end
14 end
15 end
16 end
17 return true;

3.4 Deciding consistency

In this section, we show that the two conditions of value consistency and node kind

consistency are necessary and sufficient conditions for testing consistency. Then, we

show these conditions are decidable, and finally, that the problem of consistency for

relational to RDF data exchange setting is decidable. The next lemma establishes that

for E being value consistent and node kind consistent is a sufficient condition for E to

be consistent.

Lemma 3.4.1. Let I be an instance of R. If the core pre-solution to I w.r.t. E is value

consistent and node kind consistent, then I admits a solution to E.

Proof. Take an instance I of R. Assume the core pre-solution J0 to I w.r.t. E is value

consistent and node kind consistent. We prove that there is a typed graph U ⊇ J0 that

is a solution to I w.r.t. E. We recall that J0 is the unique minimal typed graph J0 that

satisfies the st-tgds Σst and the ΣTP
S rules for S (cf. Section 1.5). We compute the

completed graph GE(I) w.r.t. I and E. Let U = J0 ∪ GE(I). By Lemma 3.3.4, U is a

solution.

3.4. DECIDING CONSISTENCY 105

We are now ready to establish our main results regarding consistency.

Theorem 3.4.1. E is consistent iff E is value consistent and node kind consistent.

Proof. For the⇒ direction. We prove by contraposition. Assume E is not value con-

sistent or E is not node kind consistent. We have to prove E is inconsistent.

• When E is not value consistent. By negation of Definition 3.2.1, there is an in-

stance I of R such that the core pre-solution J0 to I w.r.t.E is not value consistent.

Since J0 is contained in every solution then I does not admit a solution w.r.t. E.

Consequently, E is inconsistent.

• When E is not node kind consistent then there is a set X in CoTypes(E) such

that {Lit , T} ⊆ X for some T in T. By Lemma 3.3.2, there is an instance I

of R where the co-typing of its core pre-solution J0 contains X . We construct

an instance I where the active domain is composed of only one constant i.e.,

adom(I) = {a} for some a ∈ Const. Because the active domain is only one

constant, J0 is value consistent. Since CoTypes(J0) contains X , then J0 is not

node kind consistent. Since we require J0 to be value consistent and node kind

consistent by Lemma 3.4.1 for I to admit a solution, then because we have that J0

is value consistent and not node kind consistent, then I does not admit a solution

to E. Consequently, E is inconsistent.

For the ⇐ direction. We assume E is value consistent and node kind consistent.

We prove that E is consistent. We take an instance I of R. By definition of value

consistent and node kind consistent, its core pre-solution is value consistent and node

kind consistent. By Lemma 3.4.1, we know that there is a solution to I w.r.t. E. Then,

we conclude that E is consistent.

3.4.1 Decidability

Now, we show that the checking the two conditions for consistency independently is

decidable.

Node kind consistency

We show that checking node kind consistency is decidable with the following lemma.

106 CHAPTER 3. CONSISTENCY

Lemma 3.4.2. Deciding whether E is node kind consistent is in coNP.

Proof. A certificate for deciding node kind inconsistency is composed of types T, S, S ′ ∈

T and a function symbol f ∈ F. We use the Algorithm 3 to decide if E is node kind

inconsistent. More precisely, we choose non-deterministically T, S, S ′ and f s.t. (S, f)

and (S, f ′) are accessible in E (the latter can be tested in polynomial time). Finding

nodes in GE that contains S and S ′ can be tested in polynomial time. Reachability of

a node in a graph also can be done in polynomial time. Thus the whole algorithm runs

in polynomial time. Consequently, deciding whether E is node kind consistent is in

coNP.

Value consistency

We show that checking value consistency is decidable with the following lemma.

Lemma 3.4.3. Deciding whether E is value consistent is in coNP.

Proof. Theorem 3.2.7 implies that E is value inconsistent if and only if there is an

instance Iπ,σ,σ′ in CInst(Σst) such that there is a solution I ′ for Iπ,σ,σ′ to the set of func-

tional dependencies Σfd of R. This instance I ′ is a certificate for the value inconsistency.

We now argue that such certificate has size polynomial in the size of E and we can test

in polynomial time whether the setting is indeed value inconsistent with Algorithm 1.

Thus, the Algorithm 1 is a procedure that decides ifE is value inconsistent. It remains to

prove that Algorithm 1 runs in polynomial time. By construction of a contentious-based

instance, I is constructed in polynomial time. The construction of VR is in polynomial

size because the set of violation sorts Vs is finite, and the construction of Vs is in poly-

nomial size of T,F and PropS; and the construction of each Iπ,σ,σ′ is in polynomial

size. Then the construction of VR is in polynomial time because for any I ∈ VR, testing

if I satisfies functional dependencies of R can be done with the chase of Σfd. The chase

does not increase the size of the instance, and only a polynomial number of chase steps

can be executed before a solution to I w.r.t. Σfd or a failure is reached. The evaluation

of each chase step is polynomial since all bodies of dependencies in Σfd contain exactly

two atoms, thus require to compute a unique join in order to be evaluated. Finally, test-

ing the emptiness of VR is in polynomial time. Consequently, deciding whether E is

value consistent is in coNP.

3.4. DECIDING CONSISTENCY 107

Finally, based on these results we show that checking consistency forE is decidable

with the following theorem.

Theorem 3.4.2 (Complexity of consistency). Checking consistency of a relational to

RDF data exchange setting is coNP-complete.

Proof. To show that checking consistency is coNP-complete, we show that this problem

is in coNP (upper bound) and it is as hard as all problems that are in coNP (lower bound).

We first prove that deciding consistency is coNP and then the coNP-hardness.

Upper bound. By Theorem 3.4.1, deciding consistency is equivalent to decide

value consistency and node kind consistency. Checking value consistency and node

kind consistency is coNP as shown in Lemmas 3.4.3 and 3.4.2 respectively. Therefore,

deciding consistency is in coNP.

Lower bound. We recall that complement of SAT is coNP-hard. Therefore, to show

coNP-hardness, we reduce from the complement of SAT to deciding consistency. Take

any CNF ϕ = c1 ∧ . . . ∧ cm for m ∈ N, where cj = `j,1 ∨ . . . ∨ `j,kj for kj ∈ N is

a clause over the variables x1, . . . , xn for n ∈ N. We define a data exchange setting

Eϕ = (R,S,Σst,F) that is inconsistent. The relational schema is defined with the

following signature R = {Vt, Vf, R1, . . . , Rn}. The relational schema consists of the

following binary relations (each relation with a single key)

Vt(x, y), Vf(x, y), R1(x, y), . . . , Rn(x, y)

The library of IRI constructors F consists of the following set of IRI constructors

F = {f1, . . . , fn, fn+1}

and their interpretation F is the concatenation of a number, which is the number of

function, and the value of the argument i.e., fi(x) = ”i:” + str(x). The shapes schema

S consists of the following set of types:

T = {T1, . . . , Tn, Tn+1},

108 CHAPTER 3. CONSISTENCY

and the shape constraints:

Tj → p :: T *
j+1 for 1 ≤ j ≤ n and (3.1)

Tn+1 → p :: Lit1. (3.2)

The set of st-tgds Σst are defined as follows. First, we have the two rules:

Vt(x, y)⇒ Triple(fn+1(x), p, y) (3.3)

Vf(x, y)⇒ Triple(fn+1(x), p, y) (3.4)

Next, for any 1 ≤ j ≤ m let cj = `j,1 ∨ . . . ∨ `j,kj and for 1 ≤ k ≤ kj if `j,k = xi for

some i ∈ {1, . . . , n}, then we add this rule

Ri(x, y) ∧ Vt(x, y)⇒ Triple(fj(x), p, fj+1(x)) (3.5)

and otherwise if `j,k = ¬xi, then we add this rule

Ri(x, y) ∧ Vf(x, y)⇒ Triple(fj(x), p, fj+1(x)) (3.6)

And finally, we add the following two rules:

Vt(x, y)⇒ T1(f1(x)) (3.7)

Vf(x, y)⇒ T1(f1(x)) (3.8)

We claim that

ϕ ∈ SAT iff Eϕ is not consistent.

For the⇒ direction. Assume ϕ ∈ SAT. We take a valuation θ that satisfies ϕ and

construct an instance Iθ as follows. We fix 3 constants c, t, and f. The instance is

Iθ = {Vt(c, t), Vf(c, f)} ∪ {Ri(c, t) | i ∈ {1, . . . , n}, θ(xi) = true} ∪

{Ri(c, f) | i ∈ {1, . . . , n}, θ(xi) = false}.

where n is the number of propositional variables that appear in ϕ. It is easy to see that

3.4. DECIDING CONSISTENCY 109

Iθ is consistent of R.

Now the proof goes by induction in the number n of different propositional variables

that appears in ϕ. The base case is that n = 0 i.e., ϕ does not have any propositional

variables. By construction of Eϕ, we have that the relational signature is R = {Vt, Vf},

the set of IRI constructors is F = {f1}, the set of types T = {T1} and the set of st-tgds

Σst is composed of rules: (3.3),(3.3),(3.7) and (3.8). The shapes schema has one shape

definition for T1 that is T1 → a :: Lit1. The instance is Iθ = {Vt(c, t), Vf(c, f)}. We

chase Iθ with Σst ∪ ΣS obtaining a graph J that contains T1(f1(c)) and the two triples

Triple(f1(c), p, t) and Triple(f1(c), p, f) which violates the shape constraint on the type

T1. Suppose that (IH) our claim holds for u number of propositional variables: ϕ′ ∈

SAT iff E′ϕ is not consistent. Let ϕ = ϕ′∧xu+1. We constructE′ϕ = (R′,S′,Σ′st,F),

adding one more relation Ru+1 to the relational signature in Eϕ. Also, we add the IRI

constructor fu+2 to those defined in Eϕ and the corresponding type Tu+2. Then, we add

the triple constraint p :: T *
u+2 in the definition of Tu+1 and the triple constraint p :: Lit1

in the definition of the type Tu+2. Finally, we add to the Σst of Eϕ the following rules:

Vt(x, y)⇒ Triple(fu+2(x), p, y)

Vf(x, y)⇒ Triple(fu+2(x), p, y)

Ru+1(x, y) ∧ Vt(x, y)⇒ Triple(fu+1(x), p, fu+2(x)).

By IH there is a valuation θ that satisfies ϕ. Let θ′(xi) = θ(xi) for i ∈ {1, . . . , u} and

θ′(xu+1) = true. We construct I ′θ = Iθ ∪ {Ru+1(c, t)}. We chase I ′θ with Σ′st ∪ ΣS′

obtaining a graph J that contains Tu+2(fu+2(c)) and the two triples Triple(fu+2(c), p, t)

and Triple(fu+2(c), p, f) which violates the shape constraint on the type Tu+1.

For the⇐ direction. Assume Eϕ is not consistent. By negation of Theorem 3.4.1,

Eϕ is value inconsistent or node kind inconsistent. It is easy to see that Eϕ is node

kind consistent because by negation of Theorem 3.3.3, the co-typing of Eϕ does not

contain {Lit , T} for some T ∈ T. Thus, Eϕ is value inconsistent. By negation of

Definition 3.2.1, there is an instance I of R such that the core pre-solution J0 to I is

value inconsistent. By negation of definition of graph to be value consistent, there is a

violation in J0. The only triple constraint that can be violated is p :: Lit1 in the type

definition of Tn+1 where n is the number of propositional variables in ϕ. Consequently

110 CHAPTER 3. CONSISTENCY

J0 contains Tn+1(an+1), Triple(an+1, p, t), and Triple(an+1, p, f), for some an+1, f,

and t. Naturally, the two triples must be introduced with the rules (3.3) and (3.3), and

therefore, there is a constant c such that an+1 = fn+1(c), Vt(c, t) ∈ I , and Vf(c, f) ∈ I .

Now, the proof goes by induction in the number n of propositional variables as done

in the proof of the ⇒ direction. It is easy to see with the inductive proof for every

j ∈ {1, . . . , n} we have Tj(fj(c)) ∈ J0, Triple(fj(c), a, fj+1(c)) ∈ J . We observe the

triples Triple(fj(c), a, fj+1(c)) can only be added by chase with the use of rules (3.5)

and (3.6), and the inductive proof also shows that every clause cj has at least one literal

for which the corresponding rule must have been triggered. Since I is consistent of R

then there is not Ri(c, t) and Ri(c, f) in I for i ∈ {1, . . . , n} or I may have none of the

two. We can therefore define the following valuation

θ(xi) =

true if Ri(c, t) ∈ I ,

false otherwise.

We show that valuation θ satisfies ϕ by observing that if for the chase triggers a clause

(3.5) or (3.6) that corresponds to some literal ` of cj , then θ satisfies cj . We finish the

proof by observing that the proposed reduction is polynomial.

3.5 Conclusion

We have studied the problem of checking consistency of a constructive data exchange

setting. We have proposed a static analysis tool that decides if a constructive setting

is consistent or not. This tool consists of checking conditions that are necessary and

sufficient for deciding consistency. These conditions are value consistency and node

kind consistency. Both conditions use the core pre-solution to do the analysis. The first

condition verifies the presence of violations that is when a node has two edges with the

same predicate and the neighbor nodes are constants while the shapes schema constrains

the node to have one outgoing edge with that predicate. The second condition verifies

that there is no malformed rule such that the application of rules can produce a graph

with a node whose type is literal and non-literal. The static analysis tool checks the value

consistency by creating counter-examples from the setting. If they are valid counter-

3.6. RELATED WORK 111

examples, instances that are consistent with the relational schema then the setting is not

value consistent. The checking of node kind consistency is done by creating a co-typing

graph of the setting and evaluating if there is a node where literal and non-literal types

co-occur. Finally, the checking of consistency is coNP-complete.

3.6 Related work

Consistency in the case of relational data exchange is undecidable, and decidable classes

usually rely on chase termination ensured by restrictions such as acyclicity, or guarded

dependencies, or restrictions on the structure of source instances. Relational to RDF

data exchange studied here is a particular case of Relational Data Exchange (except for

the IRI constructors, which however do not bring difficulties), therefore all results on

relational data exchange apply also to the setting studied here.

De Rougemont et Vielleribière studied the problem of source-consistency in the con-

text of approximate data exchange [de Rougemont & Vieilleribière 2007]. The setting

is in the context of trees and words i.e., they transform from a source tree to a target tree,

and from a source word to a target word. The mappings are specified by transducers.

They did not study the problem of checking consistency of the setting, but, the property

of far distance and close distance of an instance to the setting can be adapted to test con-

sistency of our setting. In that sense, the checking tool can construct counter-examples

and adapt the property of far and close distance, and if there is an instance that is far

from the setting then the setting is not consistent. It remains to be proven if it can be

decidable.

On the other hand, we can consider an OBDA system as a data exchange setting

because it is composed of source relational schema, an ontology, and a set of mappings.

Console et Lenzerini [Console & Lenzerini 2014] studied the case of consistency on an

OBDA system. They define two conditions that ensure the consistency of an OBDA

system, which are faithfulness and protection. Protection means that if an instance of

the relational schema does not satisfy the source constraints then there is no solution to

the instance w.r.t. the ontology constraints. Faithfulness means that there is a solution

to an instance if the instance is consistent with the relational schema. These conditions

are related to the condition of value consistency of a constructive setting in the sense

112 CHAPTER 3. CONSISTENCY

that both conditions of OBDA and constructive setting checks if the source constraints

can cause a conflict in the solution w.r.t. the target schema. Authors show that checking

consistency of an OBDA system is undecidable, but for OBDA systems with ontologies

written in DL-Lite [Calvanese et al. 2005], checking consistency is in NP.

Finally, consistency in the case of XML data exchange was studied by Bojańczyk

et al. in [Bojańczyk et al. 2013]. Authors called absolute consistency and it is defined

if for every possible source XML document there is a solution. The complexity of

checking absolute consistency is coNEXP. To our knowledge, there are no other studies

of consistency in other data exchange contexts.

Chapter 4

Certain query answering

4.1 Motivation and problems

Incomplete information is present in the result of the data exchange from relational to

RDF in the presence of shapes schema. Moreover, given a source relational instance,

there is an infinite number of solutions and, an answer to a query over a single solution

does not provide relevant information. We are interested in answers that are preserved

in every solution. Therefore, we focus on the study of certain query answering, which

is the computation of good answers i.e., answers present in all solutions, because these

good answers provide relevant information from graphs that contain incomplete data.

Certain query answering in the context of data exchange involves two main chal-

lenges that are reliable answers and materialization of a good solution [Fagin et al. 2005a].

For the first challenge, we consider reliable answers to a query w.r.t. a data exchange

setting E = (R,S,Σst,F) and a consistent instance I of R those answers that are pre-

served in every solution to I w.r.t.E. For the second challenge, we consider that for any

class of queries Q, for any data exchange settingE and for any instance I of R, a graph

G is a good solution to I w.r.t.E andQ if and only ifG is finite and for any queryQ ∈ Q,

G preserves certain answers to query Q. Then, computing certain answers depends on

the family of queries and the family of data exchange settings.

113

114 CHAPTER 4. CERTAIN QUERY ANSWERING

4.2 Results from existing approaches

In this section, we show how existing results can be easily adapted from relational data

exchange and query answering.

4.2.1 Super-weakly acyclic tgds

Marnette [Marnette 2009] introduces the class of super-weakly acyclic tgds that has the

property of chase termination producing a universal solution, which is used to compute

certain answers.

Definition of super-weakly acyclic tgds

Super-weak acyclicity [Marnette 2009] is defined using a unification algorithm and its

conditions are based on the study of oblivious chase, which is distinguished from re-

stricted chase (presented in Section 1.3.2) in the sense that the rule is triggered even if

the head is already satisfied.

The approach to identify whether a set of tgds is super-weakly acyclic uses the

skolemization method that replaces every existentially-quantified variable by a Skolem

function (cf. Section 1.3) that depends on all the universally-quantified variables that

appear before the existential variable (in the original tgd). Marnette defines the skolem-

ization as follows.

Definition 4.2.1. Given a set of tgds Σ, skolemization, denoted by P(Σ), is the function

that replaces every tgd σ ∈ Σ of the form

ϕ(x,y)⇒ ∃z. ψ(y, z)

by a tgd

ϕ(x,y)⇒ ψ(y, fσz1(x), . . . , fσzn(x))

where n = |z| and fσzj is a fresh function symbol of arity |x|.

We fix Σ to be a set of tgds and let P(Σ) the skolemization of Σ. We recall technical

definitions used by Marnette. A place is a pair (R(t), i) that indicates the term that

appears in the position i of a relational atom R(t) where R(t) is a relational atom of

4.2. RESULTS FROM EXISTING APPROACHES 115

P(Σ) with some vector of terms t and 1 ≤ i ≤ |attrs(R)|. Given a tgd σ ∈ Σ and a

existential variable y ∈ vars(head(σ))\ fvars(head(σ)), we define Out(σ, y) as the set

of places (called output places) in the head of P(σ) where a function term of the form

fσy (t) occurs for some vector of terms t. Given a tgd σ ∈ Σ and a universal variable x

of σ, we define In(σ, x) as the set of places (called input places) in the body of σ where

x occurs.

Given a set of variable names V ⊆ VV, a substitution θ is a function mapping each

v ∈ V to a finite term θ(v) build upon constants and function symbols. Two places

(R(t), i) and (R(t′), j) for some vector of terms t and t′ are unifiable, in symbols

(R(t), i) ∼ (R(t′), j), iff i = j and there exist two substitutions θ and θ′ such that for

every t ∈ t, t′ ∈ t′, it holds that θ(t) = θ′(t′). Given two sets of places P and P ′, we

write P ⊆ P ′ for the containment between two sets of places iff for all p ∈ P there

exists some p′ ∈ P ′ such that p ∼ p′. Given a set P of places, we define Move(Σ, P) as

the smallest set of places P ′ such that P ⊆ P ′, and for every tgd of the form ϕ⇒ ψ in

P(Σ) and for every universal variable x, if Γx(ϕ) ⊆ P ′ then Γx(ψ) ⊆ P ′, where Γx(ϕ)

and Γx(ψ) denote the sets of places in ϕ and ψ where x occurs respectively.

Given two tgds σ, σ′ ∈ Σ, we say that σ triggers σ′ in Σ, in symbols σ σ′, iff

there exists an existential variable y in the head of σ, and a universal variable x in σ

occurring both in the body and the head of σ′ such that:

In(σ′, x) ⊆ Move(Σ,Out(σ, y)).

A trigger relation is acyclic if there is no σ that triggers σ. A set of tgds Σ is super-

weakly acyclic iff the trigger relation is acyclic. We illustrate the evaluation of a set of

tgds that is super weakly acyclic in Example 4.2.4.

Weakly-recursive shapes schema

We identify a family of weakly-recursive shapes schemas whose set of dependencies

is super-weakly acyclic tgds. To define this family of shapes schemas, we define the

dependency graph of a shapes schema, which is a modification of the shape graph of a

shapes schema (cf. Section 1.5.2), as follows.

Definition 4.2.2. Let S = (T, δ) be a shapes schema and GS = (T, ES) be the shape

116 CHAPTER 4. CERTAIN QUERY ANSWERING

graph of S. The dependency graph of S is the directed graph whose set of nodes is

T and has an edge (T, T ′) if there is an edge with T and T ′ in the set of edges of the

shape graph i.e., (T, (p, µ), T ′) ∈ ES for some p ∈ PropS and some µ ∈ {1, ?, +, *}.

There are two kind of edges: (T, T ′) is a strong edge if the edge (T, (p, µ), T ′) ∈ ES

has multiplicity µ in {1, +}; and (T, T ′) is a weak edge if the edge (T, (p, µ), T ′) ∈ ES

has a multiplicity in {*, ?}.

We are now ready to define a kind of shapes schema that guarantees a super-weakly

acyclic set of dependencies.

Definition 4.2.3. A shapes schema is weakly-recursive if for its dependency graph, ev-

ery cycle has at least one weak edge.

For instance, Figure 4.1 shows the dependency graph of shapes schema in Example 1.5.1.

We observe that this dependency graph has only one cycle composed at least of one

weak edge. Thus, the shapes schema in Example 1.5.1 is weakly-recursive.

ShResearcherShTopic ShUniversity

ShAddress

Figure 4.1: Dependency graph of shapes schema in Example 1.5.1.

We recall that a shapes schema can be translated to a set of dependencies as shown in

Section 1.5.4. We illustrate that set of dependencies that captures the weakly-recursive

shapes schema of Example 1.5.1 is super-weakly acyclic.

Example 4.2.4. Consider the dependency graph shown Figure 4.1 of shapes schema in

Example 1.5.1. We consider the following set of tgds ΣS that captures the weak edge

and strong edge of the dependency graph. For a strong edge, there is a PE and TP rule

4.2. RESULTS FROM EXISTING APPROACHES 117

and for a weak edge only a TP rule.

ShResearcher(x) ∧ Triple(x, foaf:knows, y)⇒ ShResearcher(y)

ShResearcher(x)⇒ ∃y.Triple(x, ex:masters, y)

ShResearcher(x) ∧ Triple(x, ex:masters, y)⇒ ShUniversity(y)

ShResearcher(x)⇒ ∃y.Triple(x, ex:worksIn, y)

ShResearcher(x) ∧ Triple(x, ex:worksIn, y)⇒ ShUniversity(y)

ShUniversity(x)⇒ ∃y.Triple(x, ex:address, y)

ShUniversity(x) ∧ Triple(x, ex:address, y)⇒ ShAddress(y)

We skolemize the ΣS obtaining:

σ1 :ShResearcher(x) ∧ Triple(x, foaf:knows, y)⇒ ShResearcher(y)

σ2 :ShResearcher(x)⇒ Triple(x, ex:masters, fσ2y (x))

σ3 :ShResearcher(x) ∧ Triple(x, ex:masters, y)⇒ ShTopic(y)

σ4 :ShResearcher(x)⇒ Triple(x, ex:worksIn, fσ4y (x))

σ5 :ShResearcher(x) ∧ Triple(x, ex:worksIn, y)⇒ ShUniversity(y)

σ6 :ShUniversity(x)⇒ Triple(x, ex:address, fσ6y (x))

σ7 :ShUniversity(x) ∧ Triple(x, ex:address, y)⇒ ShAddress(y)

Then, the set of places in ΣS: p1 = (ShResearcher(x), 1), p2 = (Triple(x, foaf:knows, y), 1), p3 =

(Triple(x, foaf:knows, y), 3), p4 = (ShResearcher(y), 1), p5 = (ShResearcher(x), 1), . . . , p25 =

(ShAddress(y), 1). The set of input places and output places are as follows:

In(σ1, y) = {p3} In(σ2, x) = {p5}

In(σ3, y) = {p10} In(σ4, x) = {p11}

In(σ5, y) = {p17} In(σ6, x) = {p19}

In(σ7, y) = {p24} Out(σ2, y) = {p7}

Out(σ4, y) = {p14} Out(σ6, y) = {p21}

118 CHAPTER 4. CERTAIN QUERY ANSWERING

We can observe that the places p18 and p19 are unifiable because there are two substi-

tutions θ and θ′ such that θ(x) = θ′(y). Another pair of places that are unifiable are

p7 and p10 because there are two substitutions θ and θ′ such that θ(x, ex:masters, y) =

θ′(x, ex:masters, fy(x)). But, places p2 and p6 are not unifiable because there is not

pair (θ, θ′) of substitutions such that θ(x, foaf:knows, y) = θ′(x, ex:masters, y). We can

check that the only pairs of places that are unifiable are the following: p1 ∼ p4, p6 ∼

p9, p7 ∼ p10, p13 ∼ p16, p14 ∼ p17, p20 ∼ p23, p21 ∼ p24, p18 ∼ p19, p19 ∼ p22, p4 ∼

p5, p5 ∼ p8, p8 ∼ p12, p12 ∼ p15. Now, for each set of output places we compute the

move function(cf. Section 4.2.1):

Move(ΣS,Out(σ2, y)) = {p7, p11}

Move(ΣS,Out(σ4, y)) = {p14, p18, p20, p25}

Move(ΣS,Out(σ6, y)) = {p21, p25}

Then we compare each two rules σ, σ′ ∈ ΣS and if for every universal variable in σ′

there is an existential variable y in σ such that In(σ′, x) ⊆ Move(ΣS,Out(σ, y)), we

say that σ triggers σ′. We obtain the following trigger relations: σ4 σ5,σ6 σ7 and

σ2 σ3 because

{p10} = In(σ3, y) ⊆ Move(ΣS,Out(σ2, y)) = {p7, p11}

{p17} = In(σ5, y) ⊆ Move(ΣS,Out(σ4, y)) = {p14, p18, p20, p25}

{p24} = In(σ7, y) ⊆ Move(ΣS,Out(σ6, y)) = {p21, p25}.

We observe that there is no rule σ that triggers itself. Therefore, the set of dependencies

ΣS is super-weakly acyclic.

In general, any cycle with at least one weak edge in the dependency graph of a

shapes schema makes trigger relations to be acyclic. Thus, a set of dependencies that

captures a weakly recursive schema is super-weakly acyclic as shown in the following

lemma.

Lemma 4.2.1. For every shapes schema S, if S is weakly-recursive then ΣS is super-

weakly acyclic.

4.2. RESULTS FROM EXISTING APPROACHES 119

Proof. Take a shapes schema S. Assume S is weakly-recursive. We prove by con-

tradiction. Assume ΣS is not super-weakly acyclic i.e., there is σ ∈ ΣS such that

σ σ. By definition of trigger relation there is an existential variable y in the head

of σ and a universal variable x occurring in body and head of σ such that In(σ, x) ⊆

Move(ΣS,Out(σ, y)). The only kind of rule in ΣS that has an existential variable is

a PE rule, which also has a universal variable occurring in body and head. Let σ be

T (x) ⇒ ∃y.Triple(x, p, y) for some T ∈ T. We compute In(σ, x) and the function

returns a set composed of one position because there is one universal variable occurring

in body and head of σ. Let this position be pi. We compute Out(σ, y) and the function

returns a set compose of one position because there is only one existential variable. Let

this position po. The function Move computes positions in heads of rules that are reach-

able from Out(σ, y) such that those positions corresponds to universal variables in rules

of the skolemization such that head of σ is unifiable with body of σ′ ∈ ΣS in positions

po and some position in body of σ′ and then the head of σ′ is unifiable with body of σ′′

and so on. Then σ′ is a TP rule of the form T (x) ∧ Triple(x, p, y) ⇒ T ′(y) for some

T ′ ∈ T and σ′′ is a PE rule, in essence TP and PE rules are interleaved. By definition

of containment between set of places, there is a position pk ∈ Move(ΣS,Out(σ, y))

such that pi ∼ pk. This means that there are two relational atoms with the same name

that are unifiable in positions pi and pk. This pk is in a tgd that corresponds to a TP

rule such that the head is T (x) and this head is unifiable with the body of σ. Since PE

corresponds to a multiplicity {1, +} and TP rule propagates the type and because this

unification sequence between PE and TP rules, then there is a cycle from T → . . .→ T

composed of only strong edges. Thus, S is not weakly-recursive; a contradiction.

The property of weakly-acyclic tgds w.r.t. query answering identified by Fagin et

al. [Fagin et al. 2005a], is also applicable to super-weakly acyclic tgds [Marnette 2009].

Thus, we get the following corollary.

Corollary 4.2.1. Let E be a relational to RDF data exchange setting with weakly-

recursive target schema. Let I be a consistent instance of R. Let Q be the class of

conjunctive queries over the target schema.

1. If the chase with I and E does not fail then a universal solution J to I w.r.t. E

exists and certE(Q, I) = Q(J) for some Q ∈ Q.

120 CHAPTER 4. CERTAIN QUERY ANSWERING

2. The data complexity of computing certain answers to a query in Q w.r.t. I and E

is in PTIME.

Discussion

This approach of using the result of super-weakly acyclic tgds achieves the two chal-

lenges of query answering. A universal solution is materialized and we can decide if a

tuple of constants from Iri∪Blank∪Lit are certain answers by testing membership in the

universal solution. A limitation of this approach is that it only applies to weakly-based

settings and not all families of data exchange settings.

4.2.2 Guarded tgds

We recall the definition of guarded tgds. A tgd σ is guarded iff it contains an atom in

its body that contains all universally quantified variables of σ. We use the results from

Calı̀ et al. [Calı̀ et al. 2012a] for query answering under guarded tgds.

First, we show that the set of dependencies ΣS that captures the shapes schema is

guarded. We recall that ΣS is constructed with the TP, PF and PE rules. We observe

that the TP rule is guarded because there is a guarded atom that is Triple. For the PE

rule the guarded atom is the type name.

Computing certain answers and data complexity

Based on the results of Calı̀ et al., we can compute certain answers to the family of

Boolean conjunctive queries (BCQ) Q w.r.t. any data exchange setting E. Let I be an

instance of R, a query Q in Q and a data exchange setting E, we construct an auxiliary

finite structure using the guarded chase with I and Σst ∪ΣS as follows. Recall that G =

{Triple} is the relational signature of RDF graphs. For every fact in I , we construct all

exponential descendants in the guarded chase up to (|Q|+ 1) · |G| · (2 · w)w · 2|G|·(2·w)w

where w is the maximal arity of a relation in G. The complexity of the construction of

all descendants is exponential in the size of R. Since the size of the graph signature is

one and the value of w is three, then the construction of descendants for a fact in I is

up to (|Q| + 1) · 216 · 2216. Since |Σst ∪ ΣS| is constant and the guarded chase is seen

as a tree, then every node in this tree has only a constant number of children. Thus, the

4.3. SIMULATION-BASED APPROACH 121

tree can be constructed in constant time, and the number of applications of tgds in it

is constant. Hence, the union of all applications of tgds in the trees of descendants of

all R(a) ∈ I for some R ∈ R and some vector of constants a can also be constructed

in linear time. We compute certain answers to Q w.r.t. I and E by testing existence of

homomorphism of Q in the finite structure. Using the results in data complexity of Calı̀

et al., we claim in the following proposition that data complexity of computing certain

answers to BCQs w.r.t. E is P-complete.

Proposition 4.2.5. For any data exchange setting E and for any instance I of R, the

data complexity of computing certain answers to Boolean conjunctive queries w.r.t. I

and E is P-complete.

Discussion

This approach of using the results of guarded tgds does not achieve the first challenge

of materializing a good solution. The second challenge is achieved but the complexity

of construction of the finite structure is very high likely because the setting proposed by

Calı̀ et al. is more general.

4.3 Simulation-based approach

In this section, we propose a simulation-based approach for certain query answering

and construct a good solution. This approach covers all constructive data exchange set-

tings that we have defined until now and uses a navigational query language for graphs.

Throughout this section, we fix a constructive relational to RDF data exchange setting

E = (R,S,Σst,F) and assume it is consistent. We also fix a consistent source instance

I of R.

4.3.1 Preliminar notions

Now, we recall two main concepts that are used in the definition of bisimulation.

122 CHAPTER 4. CERTAIN QUERY ANSWERING

Graph simulation

The notion of simulation was introduced by Milner [Milner 1971] to define how a pro-

cess is simulated by another process in a program system. Henzinger et al. [Henzinger

et al. 1995] adapted the notion of simulation to graphs as the relation between two

graphs G and H such for every node n ∈ nodes(G) there is a node m ∈ nodes(H)

such that every outgoing edge from n has a corresponding outgoing edge from m. In

the context of RDF graphs, nodes are labeled and there are two kind of nodes IRIs and

literals. Thus, we need to do the following adaptation. Two nodes with different IRIs

or literal values are distinguishable and they cannot be simulated one another. Also an

IRI cannot simulate a literal and vice-versa. Only blank node can simulate an IRI and

null-literal node can simulate a literal value.

Definition 4.3.1. A simulation of a graph G by a graph H is a relation

R ⊆ nodes(G)× nodes(H)

such that for any (n,m) ∈ R, we have

• n is a literal node if and only if m is a literal node,

• if n is not a null node, then m is not a null node and n = m; and

• for any outgoing edge from n with label p that leads to n′ there is a corresponding

outgoing edge from m with label p that leads to m′ such that (n′,m′) ∈ R.

A finite family of sets is closed under union if, for any two element of the family, the

union of these two sets is in family. It is east to see that any finite family closed under

union has exactly one maximal element [Winskel 1993]. The set of simulations of G in

H is closed under union, and consequently, there exists exactly one maximal simulation

of G in H . When both G and H are known from the context, we denote the maximal

simulation of G in H by�, we use it as an infix relation symbol, and we say that n is

simulated by m if n� m. Finally, we say that G is simulated by H if every node of G

is simulated by a node of H .

4.3. SIMULATION-BASED APPROACH 123

Nested regular expressions

Nested regular expressions (NREs) are regular expressions that use concatenation ·,

union +, Kleene’s closure ∗, inverse −, and permit nesting and testing node and edge

labels. Formally, NREs are defined with the following grammar:

E ::= ε | p | � | 〈`〉 | [E] | E∗ | E− | E · E | E + E

where p ∈ PropS, ` ∈ Iri ∪ Lit, and � is a distinguished wildcard predicate symbol. A

NRE E defines a binary relation JEKG on nodes of a graph G as follows.

JεKG = {(n, n) | n ∈ nodes(G)}, J[E]KG = {(n, n) | ∃m. (n,m) ∈ JEKG},

JpKG = {(n,m) | (n, p,m) ∈ G}, J�KG = {(n,m) | ∃p ∈ Iri. (n, p,m) ∈ G},

JE1 + E2KG = JE1KG ∪ JE2KG, J〈`〉KG = {(n, n) | n ∈ nodes(G) ∧ n = `},

JE1 · E2KG = JE1KG ◦ JE2KG, JE∗KG = JEK∗G.

JE−KG = JEK−1
G .

where JEK∗G is the Kleene’s closure of JEKG and JEK−1
G is the inverse relation of JEKG.

An NRE is forward if it does not use the inverse operator. In the sequel, we focus

on the forward NRE. A forward NRE E is satisfied in a graph G, in symbols G |= E,

if and only if JEKG 6= ∅. Also, we define the size of a forward NRE as its number

of symbols: |E1 · E2| = |E1 + E2| = |E1| + |E2| + 1, |[E]| = |E∗| = |E| + 1 and

|ε| = |p| = |〈`〉| = |�| = 1.

4.3.2 Forward NRE-based Boolean query language

A query Q can be expressed using forward NREs. We define an answer and certain

answer to a query expressed with NRE as follows:

Definition 4.3.2. A pair of nodes (n,m) is an answer to a forward NRE E in a graph

G iff (n,m) ∈ JEKG. A pair (n,m) is a certain answer to a forward NRE E in I w.r.t.

E iff (n,m) is an answer in every solution to I w.r.t. E.

A forward-based Boolean query is a query expressed by a forward NRE E such that

its answers is true if there is an answer to E in G, or false otherwise. True is certain

124 CHAPTER 4. CERTAIN QUERY ANSWERING

answer to a forward NRE E in I w.r.t. E iff true is the answer in every solution to I

w.r.t. E.

4.3.3 Robust query classes

Now, we define a class of Boolean queries for which computing certain answers is

possible.

Definition 4.3.3. A class Q of Boolean queries on graphs is robust under simulation iff

for any query Q ∈ Q and any two graphs G and H such that G is simulated by H , if Q

is true in G, then Q is true in H .

Next step, we show that the subclass of forward NREs is robust under simulation.

Lemma 4.3.1. Forward NRE-based Boolean queries are robust under simulation.

Proof. We fix G, H to be graphs and E to be a forward NRE-based Boolean query. We

first prove the following claim.

Claim 4.3.1.1. For any two graphs G and H , for any three nodes n, n′ ∈ nodes(G) and

m ∈ nodes(H) if n� m and (n, n′) ∈ JEKG then there is a node m′ ∈ nodes(H) such

that (m,m′) ∈ JEKH and n′ � m′.

Proof. Take two graphs G,H . Take three nodes n, n′ ∈ nodes(G) and m ∈ nodes(H).

Assume n � m and (n, n′) ∈ JEKG. The proof is by induction on the structure of E.

For a forward NRE E of size |E| = 1, we have the following cases:

• When E = ε, the assumption is (n, n′) ∈ JεKG. Then n′ = n and by assumption

m ∈ nodes(H), trivially (m,m) ∈ JεKH . Then m′ = m. Therefore, n′ � m′.

• When E = p, the assumption is (n, n′) ∈ JpKG. By semantics of JpKG and

n � m, there is a m′ such that (m, p,m′) ∈ H . Since (m, p,m′) ∈ H , then

(m,m′) ∈ JpKH and n′ � m′.

• When E = �, the assumption is (n, n′) ∈ J�KG. By semantics of J�KG and

n � m, there is a m′ ∈ nodes(H), and p ∈ PropS such that (m, p,m′) ∈ H .

Since (m, p,m′) ∈ H , then (m,m′) ∈ JpKH and n′ � m′.

4.3. SIMULATION-BASED APPROACH 125

• When E = 〈`〉, the assumption is (n, n′) ∈ J〈`〉KG. Then n′ = n and n = `. Since

n � m, then m = `. By m = ` and m ∈ nodes(H), then (m,m) ∈ J〈`〉KH . Let

m′ = m, then n′ � m′.

Now, let E be of size i and assume for any sub expression E ′ with size less than i, it

holds the Claim 4.3.1.1. E can be the composition of two sub expressions E1 and E2.

Then, we have the following cases:

1. E = E1 + E2. By semantics of +, (n, n′) ∈ JE1KG or (n, n′) ∈ JE2KG. By

induction hypothesis on E1, there is m′ ∈ nodes(H) such that (m,m′) ∈ JE1KH

and n′ � m′. Therefore, (m,m′) ∈ (JE1KH ∪ JE2KH). By previous result,

(m,m′) ∈ JEKH . The proof for the second case is similar.

2. E = E1·E2. By semantics of ·, (n, n′) ∈ JE1KG◦JE2KG. By composition of binary

relations, there is n2 ∈ nodes(G) such that (n, n2) ∈ JE1KG and (n2, n
′) ∈ JE2KG.

By induction hypothesis on (n, n2) ∈ JE1KG and n� m, there ism2 ∈ nodes(H)

such that (m,m2) ∈ JE1KH and n2 � m2. By induction hypothesis on n2 � m2

and (n2, n
′) ∈ JE2KG, there is a m′ ∈ nodes(H) such that (m2,m

′) ∈ JE2KH

and n′ � m′. By (m,m2) ∈ JE1KH and (m2,m
′) ∈ JE2KH and composition

of binary relation, we have that (m,m′) ∈ JE1KH ◦ JE2KH . By semantics of ·,

(m,m′) ∈ JE1 · E2KH . Thus, we obtain (m,m′) ∈ JEKH and n′ � m′.

Also, E can be composed of only of one subexpression E1 as follows:

1. E = E∗1 . By semantics of Kleene closure ∗, we have that (n, n′) ∈
⋃
k≥0JE1KkG.

By union of binary relation, we obtain

(n, n′) ∈ JεKG ∪ JE1KG ∪ JE1K2
G ∪ JE1K3

G . . .

By definition of binary relation to some number,

(n, n′) ∈ JεKG ∪ JE1KG ∪ JE1KG ◦ JE1KG ∪ JE1KG ◦ JE1K2
G . . .

It was proven for JεKG, that there is m′ ∈ nodes(H) such that (m,m′) ∈ JεKH

and n′ � m′, consequently, (m,m′) ∈ JE1K∗H . Thus, (m,m′) ∈ JEKH . For the

126 CHAPTER 4. CERTAIN QUERY ANSWERING

second case, applying the induction hypothesis on E1, there is a m′ ∈ nodes(H)

such that (m,m′) ∈ JE1KH and n′ � m′. Thus, (m,m′) ∈ JEKH . For the

third case, (n, n′) ∈ JE1KG ◦ JE1KG. It was proven for operator ◦ that there

is m′ ∈ nodes(H) such that (m,m′) ∈ JE1KH ◦ JE1KH and n′ � m′, then

(m,m′) ∈ JEKH . For the fourth case and rest of cases until k, we are going to

have the composition of JE1KG for k times i.e., JE1KG ◦ JE1KG ◦ JE1KG We

rewrite as JE1KG ◦ JE2KG where E2 = E11 · E1k−1
. Since E2 is a sub expression

of E and by proof of ◦, we have that there is m′ ∈ nodes(H) such that (m,m′) ∈

JE1KH ◦ JE2KH and n′ � m′. Thus, (m,m′) ∈ JEKH .

2. E = [E1]. By semantics of [], there is an m′′ ∈ nodes(G) and (n,m′′) ∈

JE1KG. Applying induction hypothesis on E1, there is m′ ∈ nodes(H) such that

(m,m′) ∈ JE1KH and m′′ � m′. By (m,m′) ∈ JE1KH , (m,m) ∈ J[E1]KH . Thus,

we conclude that (m,m) ∈ JEKH .

Next, we show that if G |= E then H |= E. Take any two graphs G and H instances

of G. Assume G � H and G |= E. By definition of G |= E, JEKG 6= ∅, and in

consequence there is a pair (n, n′) ∈ JEKG. By G� H , there is a node m ∈ nodes(H)

such that n � m. By Claim 4.3.1.1, n � m and (n, n′) ∈ JEKG, there is a node

m′ ∈ nodes(H) such that (m,m′) ∈ JEKH . Since JEKH 6= ∅, then H |= E. This ends

the proof.

4.3.4 Universal simulation solution

Now, we define the core component of our approach called universal simulation solu-

tion.

Definition 4.3.4. A universal simulation solution to I w.r.t.E is a T-typed graph U that

is simulated by every solution J to I w.r.t. E.

Construction

We begin the construction of a universal simulation solution to I w.r.t. E with the core

pre-solution J0 to I w.r.t. E because J0 is the unique minimal typed graph that satisfies

4.3. SIMULATION-BASED APPROACH 127

st-tgds Σst and TP rules for S (cf. Section 1.5.4). Then, we compute the completed

graph GE(I) w.r.t. I and E (cf. Section 3.3.2). Thus, we obtain the typed graph U =

J0 ∪ GE(I). Now, we show that U is a universal simulation solution to I w.r.t. E with

the following lemma.

Lemma 4.3.2. Let I be an instance of R. Let J0 be the core pre-solution to I w.r.t. E

andGE(I) be the completed graph w.r.t. I andE. Let U = J0∪GE(I) be a typed graph.

For every solution J ∈ solE(I) to I w.r.t. E, U is simulated by J .

Proof. Take an instance I of R and a solution J ∈ solE(I). Let J0 be the core pre-

solution to I w.r.t. E and GE(I) be the completed graph w.r.t. I and E. We construct

the following relation

R = {(n,m) ∈ nodes(J0)× nodes(J0) | n = m} ∪

{(n,m) | ∃(n0, p0) ∈ FS(J0).∃π = p0 · p1 · . . . · pk.

n ∈ ∇U({n0}, π)∧,m ∈ ∇J({n0}, π)}.

where the function ∇G over a graph and path in a graph are defined in Section 3.3.5.

We show that R is a simulation of U by J . Then, we take any pair (n,m) ∈ R and

p ∈ PropS. We have the following cases:(a) n ∈ nodes(J0) ∧ (n, p) 6∈ FS(J0) and (b)

(n, p) ∈ FS(J0) ∨ n ∈ nodes(GE(I)).

For the case a. We know that (n,m) ∈ nodes(J0) × nodes(J0) and n = m. We

take n′ ∈ nodes(J0) such that Triple(n, p, n′) ∈ J0. As a result of considering m′ = n′,

we obtain m′ ∈ nodes(J0) then m′ ∈ nodes(J). Since Triple(n, p, n′) ∈ J0, then we

have Triple(m, p,m′) ∈ J0, and by (n′,m′) ∈ nodes(J0) × nodes(J0), we conclude

(n′,m′) ∈ R.

To prove the case b, we require the following claim where we use the notion of a path

in a graph G and frontier defined in Section 3.3.2. Also, we use the obligatory property

label and an extension of the type reachability function presented in Section 3.3.1 to

define a set of types reachable by a path as follows:

∆∗(X, π · p) = ∆(∆∗(X, π), p),

∆∗(X, ε) = X.

128 CHAPTER 4. CERTAIN QUERY ANSWERING

Claim 4.3.2.1. For any instance I of R, let J0 be the core pre-solution to I w.r.t. E, let

GE(I) be the completed graph w.r.t. I andE, and let U = J0 ∪GE(I). For any solution

J ∈ solE(I) to I w.r.t. E and for any path π ∈ Prop∗S in U , it holds that π is also in J .

Proof. Take any instance I of R and take any solution J ∈ solE(I) to I w.r.t. E. We

compute the core pre-solution J0 to I w.r.t.E. We compute the completed graph GE(I)

w.r.t. I and E. Let U = J0 ∪ GE(I). Take a path π ∈ Prop∗S. Assume π exists in

U . We prove by induction in the size of π. The base cases is when π is of size 1

and 0 i.e., π = p0 and π = ε. For the case of size 0, trivially holds. For case of

size 1. We distinguish two cases: when π starts at a node that is not in the frontier

of J0 and when π starts at a node that is in the frontier of J0. For the first case, we

know J0 is in every solution, so π is in J . For the second case where π = p0, we

know (n0, p0) ∈ FS(J0) and by definition of frontier p0 ∈ Req(typesJ0(n0)). Since J

is a solution to I w.r.t. E then the outgoing edges required in S by typesJ0(n0) must

be satisfied. Since p0 ∈ Req(typesJ0(n0)), then there is m ∈ nodes(J) such that

Triple(n0, p0,m) ∈ J . Thus, π is in J .

Now, we assume the claim holds for any path π′ in U of length k > 1. Take any path

π in U of length k + 1. By definition of path in a graph, there is a sequence of nodes

n0, . . . , nk such that (ni−1, pi−1, ni) ∈ U where i ∈ {1 . . . , k} and π = p0 · . . . · pk−1.

Let π = π′ ·pk−1 such that |π′| = k−1 and π′ = p0 · . . . ·pk−2. By construction of U , we

distinguish two cases: when π is in J0 and since J0 is included in every solution, then π

is in J . The other case is when π is in GE(I). By hypothesis, we have that π′ is a path in

J and there are mk−2,mk−1 ∈ nodes(J) such that Triple(mk−2, pk−2,mk−1) ∈ J . By

construction of U , every edge inGE(I) is with a obligatory property label, which means

that every solution must have at least one outgoing edge with the obligatory property

label. Since J is a solution to I w.r.t. E, then it holds that Triple(mk−1, pk−1,mk) ∈ J .

Thus, π is a path in J .

We continue the proof of the case b. W.l.o.g., we only consider the case when

n ∈ nodes(GE(I)); the other case is implied by the proof. By n ∈ nodes(GE(I)) and

(n,m) ∈ R, we have that n ∈ ∇U({n0}, π) where π = p1 · . . . · pk and (n0, p1) ∈

FS(J0) and m ∈ ∇J({n0}, π). Then, we take p ∈ PropS, n
′ ∈ nodes(U) such that

Triple(n, p, n′) ∈ U , i.e. n′ ∈ ∇U({n0}, π ·p) and π ·p is a path in U . By Claim 4.3.2.1,

4.3. SIMULATION-BASED APPROACH 129

we have π ·p is a path in J i.e., there is a node m′ ∈ ∇J({n0}, π ·p). Thus, we conclude

that (n′,m′) ∈ R.

Minimal universal simulation solution

The universal simulation solution as constructed above might have nodes that are equiv-

alent, constructing one without redundancy can be done with the notions of bisimulation

and quotient bisimulation. The related notion of bisimulation has found application in

normalizing blank nodes and essentially minimizing RDF graphs without altering its

informational contents [Tzitzikas et al. 2012].

Definition 4.3.5. A bisimulation of a graph G is a simulation R of G by G that is

symmetric and reflexive.

We note that a non-null node is bisimilar to itself because, by definition of simulation

of a graph G, every two non-null nodes n,m ∈ nodes(G) that are simulated, they are

equated n = m. Thus, the simulation is reflexive. Because the two non-null nodes

are in the same graph, then the simulation is symmetric. Therefore, a non-null node is

bisimilar to itself.

Many bisimulations can be defined in a graph. We are interested in the maximal

bisimulation because the minimal universal simulation solution is based on the maximal

bisimulation. We denote the maximal bisimulation by��. It is easy to see that bisimu-

lation is an equivalence relation. We fix a graph G and define the equivalence class of a

node n ∈ nodes(G) by [n] and the set of all equivalence classes by nodes(G)/��. For

each equivalence class C ∈ nodes(G)/�� we fix an arbitrarily chosen representative

node ηC ∈ C.

Now, we define the quotient bisimulation of a graph G denoted by G/�� as follows.

Definition 4.3.6. The quotient bisimulation of a graph G is the set

G/�� = {(η[n], p, η[m]) | (n, p,m) ∈ G}.

The choice of the representative does not matter in the definition of the quotient be-

cause a non-null node is bisimilar only to itself, and consequently, every non-singleton

equivalence class in nodes(G)/�� contains null values only.

130 CHAPTER 4. CERTAIN QUERY ANSWERING

Universal simulation solutions are good solutions, but they can contain redundant

information. Then, this raises the question if among those good solutions, can we have

the best solution. The answer is inspired by the core universal solution proposed in [Fa-

gin et al. 2005b] that is based on using minimality as a key criterion for what constitutes

the best universal solution.

Definition 4.3.7. A minimal universal simulation solution U0 to I w.r.t.E is a universal

simulation solution to I w.r.t. E such that for any universal simulation solution U to I

w.r.t. E, the size of U is greater or equal that the size of U0.

Now, we show that there is a minimal universal simulation solution to I w.r.t.E. We

compute the core pre-solution J0 to I w.r.t. E. Then, we compute the completed graph

GE(I) w.r.t. I and E. Then, we take the bisimulation quotient of GE(I) and together

with the core pre-solution J0 we define the T-typed graph U0 i.e., U0 = J0∪GE(I)/��.

We point out that because J0 does not have any null nodes, we can write the T-typed

graph U0 as U0 = (J0 ∪GE(I))/��. Now, for any universal simulation solution U to I

w.r.t. E, we show that U0 simulated by U .

Lemma 4.3.3. For any universal simulation solution U to I w.r.t.E, U0 is simulated by

U where U0 = (J0 ∪GE(I))/�� and J0 is the core pre-solution to I w.r.t. E.

Proof. We compute the core pre-solution J0 to I w.r.t. E. Take a universal simulation

solution U to I w.r.t. E. Let U ′ = J0 ∪ GE(I). By Lemma 3.3.4, U ′ is a solution to I

w.r.t. E. By Definition 4.3.4, U is simulated by U ′. Let U0 = U ′/��.

Claim 4.3.3.1. U0 is simulated by U ′ and U ′ is simulated by U0.

Proof. First, we show that U0 is simulated by U ′. We construct the relation R0 as

follows.

R0 = {(η[n],m) ∈ nodes(U0)× nodes(U ′) | m ∈ [n]}.

Take (η[n],m) ∈ R0. Since nodes of U0 use the maximal bisimulation of nodes of U ′.

There is a simulation from nodes U ′ by nodes of U ′ that is symmetric and reflexive.

Because n also is in U ′ and m ∈ [n], then n is simulated by m, and consequently, η[n] is

simulated by m. Thus, R0 is a simulation of U0 by U ′.

4.3. SIMULATION-BASED APPROACH 131

Now, we show that U ′ is simulated by U0. We construct the relation R1 as follows.

R1 = {(m, η[n]) ∈ nodes(U ′)× nodes(U0) | m ∈ [n]}

Take (m, η[n]) ∈ R0. Take m′ ∈ nodes(U ′). Assume (m, p,m′) ∈ U ′. Since also

n ∈ nodes(U ′) and m ∈ [n], then there is n′ ∈ nodes(U ′) such that (n, p, n′) ∈ U ′.

Thus, m′ ∈ [n′] and we have (m′, η[n′]) ∈ R1. Therefore, U0 is simulated by U ′ and U ′

is simulated by U0. Now, we show a property of U0.

Finally, we can state that U0 is simulated by U because of Claim 4.3.3.1, the transi-

tivity of simulation, and the following claim.

Claim 4.3.3.2. U ′ is simulated by U .

Proof. We show that U ′ is simulated by U by contradiction. Given two nodes n ∈

nodes(U0) and m ∈ nodes(U), we assume that n is not simulated by m. By negation

of simulation definition, we negate the three conditions. For the first condition, we have

two cases either (1.1) n is literal and m is not literal or (1.2) n is not literal and m is

literal. For the first case and second case, there is a contradiction because U is simulated

by U ′ i.e., m is simulated by n, then m is literal if and only if n is literal. For the second

condition we have n is not null node and n 6= m. Because n 6= m, if m is literal and by

the first condition proved, we have n is literal; a contradiction.

For the third condition, for any outgoing edge (n, p, n′) ∈ U ′ either there is no

outgoing edge from m with p in U or if there exists a corresponding outgoing edge with

(m, p,m′) ∈ U then n′ is not simulated by m′. Recall that U ′ = J0 ∪ GE(I). Assume

(n, p, n′) ∈ U ′. We have the following cases:

• If n ∈ J0, then , by second condition proved, m is in J0 of U . Because m = n,

there is a m′ ∈ nodes(U) and a corresponding edge (m, p,m′) ∈ U ; a contradic-

tion with the no existence of edge with p.

• If n′ ∈ nodes(J0) and n′ is not null node then n′ � m′. Recall that E is consis-

tent, thus there is no co-occurrence of literal and non literal types for a node. If n′

is literal then m′ is literal. Because these nodes are literals, there are no outgoing

edges, and consequently, n′ � m′; a contradiction.

132 CHAPTER 4. CERTAIN QUERY ANSWERING

• When n is a null node, then n ∈ nodes(GE(I)). By construction of GE(I), every

edge in GE(I) corresponds to an obligatory property that must be satisfied in any

solution to I w.r.t. E. Since U is simulated by a solution and p is a obligatory

property label and any solution must satisfy an obligatory property, then there is

m′ ∈ nodes(U) such that (m, p,m′) ∈ U ; a contradiction with the no existence

of edge with p.

• When there is a corresponding outgoing edge with (m, p,m′) ∈ U , then because

from n′ the outgoing edges are those that are required to stay in a solution, then U

contains corresponding edges from m′. Consequently, n′ � m′; a contradiction

with n′ is not simulated by m′.

This ends the proof.

By transitivity of simulation, U0 is simulated by every solution J to I w.r.t.E. There-

fore, U0 is a universal simulation solution. Now, we show that U0 is minimal.

Lemma 4.3.4. Let I be an instance of R. Let J0 be the core pre-solution to I w.r.t. E

and GE(I) be the completed graph w.r.t. I andE. Let U0 = (J0 ∪GE(I))/��. U0 is the

minimal universal simulation solution.

Proof. Let J0 be the core pre-solution to I w.r.t. E and GE(I) the completed graph

w.r.t. I and E. Let U0 = (J0 ∪ GE(I))/��. Take any universal simulation solution

U to I w.r.t. E and create an injective mapping from the nodes of U0 to the nodes of

U . The mapping is an identity on J0 which is contained in any solution. Now, for a

node n ∈ nodes(GE(I)/��) we observe that there must be at least one path π from a

frontier node n0 to n, and because U is simulated by U0, there exists at least one node

m ∈ nodes(U) such that is reachable from n0 by path π. Consequently, we map n to an

arbitrary such m.

Now, suppose by contradiction that two different nodes n1, n2 ∈ nodes(GE(I)/��)

are mapped to the same node m. Because U0 is a bisimulation quotient and the nodes

n1 and n2 are different, they are not bisimilar. However, since U0 is simulated by U , and

vice versa, and n1 is reachable with the same path in U0 as m in U and n1 is reachable

4.3. SIMULATION-BASED APPROACH 133

T T22

T23

T

T32

T33

T34

T

T52 T53

T54

T55

T56

o

o

o

o

o

o
o o

oo

b c d

Figure 4.2: Shape Schema Graph

with the same path in U0 as m in U , n1 is bisimilar to m and m is bisimilar to n2. By

transitivity of bisimulation, we get that n1��n2, a contradiction.

Now, we show the complexity of the construction of U0.

Theorem 4.3.8. We can construct a size-minimal universal simulation solution U0 in

time polynomial in the size of I and by exponential in the size of S. The bound of U0 is

tight.

Proof. Let J0 be the core pre-solution to I w.r.t. E and GE(I) the completed graph of

I w.r.t. E. We construct a typed graph as follows U0 = J0 ∪GE(I)/�� where GE(I)/��

is the bisimulation quotient of GE(I). By Lemma 4.3.4 and Lemma 4.3.3, U0 is the

minimal universal simulation solution to I w.r.t. E.

Finally, we show that the bound of U0 is tight.

Claim 4.3.4.1. For any m ∈ N, there is a constructive data exchange settingE such that

the size of E is linear in m and the size of U0 is exponential in m.

Proof. Take m ∈ N. Let I = {R(1)}, Σst contains only R(x) ⇒ T (f(x)) and S

a shapes schema (shown in Figure 4.2) that contain cycles of length 2, 3, 5, . . . prime

numbers with one shape name different such as T23, T34, and T56. Let Pm stands for the

m-th prime number. When constructing the minimal universal simulation solution U0

we can observe that |U0| ≡ 1(mod 2) and |U0| ≡ 1(mod 3) and so on. Then, we can ap-

ply the Chinese reminder theorem such that |U0| ≡ 1(mod k) such that k = 2∗3 . . .∗Pm.

The product of m prime numbers is approximately 2 ∗ 3 ∗ . . . ∗Pm ≤ 22m. We compute

the size of the minimal universal simulation solution U0 using the prime number count-

ing function, denoted by π(m) that counts the number of primes less or equal to m ∈ N.

It follows from the prime number Theorem that for all m ∈ N, π(m) ∼ m/ log(m)

i.e., lim
m→∞

(π(m) × log(m)/m) = 1. The prime number theorem guarantees that the set

134 CHAPTER 4. CERTAIN QUERY ANSWERING

of all natural numbers up to a fixed size asymptotically contains an exponential number

of prime number. By the prime number Theorem, Pm is asymptotic to m ∗ logm as

m→∞. The sum of m prime numbers is

2 + 3 + . . .+ Pm ≤ m ∗ Pm

≤ m ∗m ∗ logm

≤ m3

The size of E is the sum of the size of the relational schema and the size of the

shapes schema and the size of Σst. Since the size of R and Σst are 1, then the size of E

is linear in m where m is the number of shape names. Finally, we get for m ∈ N, the

size of |U0| is asymptotic to 22m/3. This ends the proof of Theorem 4.3.8.

Computing certain answers

Based on the property of simulation defined previously, certain answers can be com-

puted for Boolean queries that are robust under simulation. Thus, we state our theorem

as follows.

Theorem 4.3.9. Let Q be a class of Boolean graph queries robust under simulation.

For any query Q ∈ Q and for any universal simulation solution U to I w.r.t. E, true is

the certain answer to Q w.r.t. I and E if and only if true is the answer to Q in U .

Proof. Fix a family of Boolean queries Q that are robust under simulation. Take any

query Q ∈ Q. Take a universal simulation solution U to I w.r.t. E.

For the⇒ direction. We assume true is certain answer to Q w.r.t. I andE i.e., true

in all solutions J to I w.r.t. E. Take a solution J . By Lemma 4.3.2, U is simulated by

the solution J . By property of queries that robust under simulation, we conclude true

is an answer to Q in U .

For the⇐ direction. It suffices to notice that a universal simulation solution is also

a solution as shown in Lemma 3.3.4.

4.4. CONCLUSION 135

Data complexity

Now, we evaluate the tractability of our framework for the problem of computing certain

answers to a query w.r.t. I and E. This evaluation is done using data complexity. Data

complexity of evaluating NREs is known to be PTIME [Pérez et al. 2010]. Thus, the

evaluation of our approach with forward NREs is stated in the following theorem.

Theorem 4.3.10. The data complexity of computing certain answers to forward NRE-

based queries w.r.t. E is in PTIME.

Proof. Take a forward NRE-based queryE and an instance I of R. It is known in [Pérez

et al. 2010] that the evaluation of a query E in a graph G is polynomial in the size of the

graph i.e., O(|G| · |E|). Here the forward NRE E is evaluated in a minimal universal

simulation solution U0 to I w.r.t. E. By proof of Theorem 4.3.8, the size of E is linear

in the size of S and constructing U0 is tight. Since S is fixed, then deciding to evaluate

a forward NRE in U0 is in PTIME.

4.4 Conclusion

The current chapter shows an adaptation of existing results in relational data exchange

to certain query answering in relational to RDF data exchange. Our approach proposes

a family of Boolean graph queries that are robust under simulation where computing

certain query answering is decidable. We have shown that forward NRE-based query

language is robust under simulation. We have introduced the notion of universal simula-

tion solution, which can be constructed for any constructive data exchange setting, that

allows to easily compute certain answers to any query class robust under simulation.

We have achieved attractive complexity for certain query answering. Our approach

is different from the adaptation of existing results, as seen in Table 4.1 where M. is the

acronym for materialization. We treat a family of queries that are incomparable with the

family of queries treated in the existing results. Moreover, there is no restriction in the

shapes schemas, so we cover any kind of data exchange settings.

It remains an open question to explore full NRE-based query language and investi-

gate if computing certain query answering is decidable. We envisage as a possible idea

136 CHAPTER 4. CERTAIN QUERY ANSWERING

Approach Q FE M. Complexity
Guarded tgds BCQ Any No PTIME

Super-weakly acyclic tgds CQ Weakly-recursive Yes PTIME
Simulation forward NRE Any Yes PTIME

Table 4.1: Summary of contributions.

to use two way alternating tree automata (2ATA) [Vardi 1998] for infinite trees corre-

sponding to unraveling the universal simulation solution. This idea has been applied

to the closely related problem of computing certain answers to variants of regular path

queries in the presence of ontologies [Jung et al. 2018, Calvanese et al. 2014].

4.5 Related work

A considerable amount of work has been done in the area of certain query answer-

ing [Fagin et al. 2005a, David et al. 2010, Arenas & Libkin 2008, Arenas et al. 2013,

Pérez et al. 2010, Calvanese et al. 2014]. We present those that are close to our work

and compare them.

Query answering for relational data exchange. Fagin et al. [Fagin et al. 2005a] use a

universal solution to compute certain answers to conjunctive queries. The difference

with our contribution is that we compute certain answers to forward NREs that is in-

comporable to conjunctive queries and we compute certain answers for any family of

constructive data exchange settings while their approach can be adapted to a fragment of

constructive setting where the shapes schema has no cycles in its shape graph or every

cycle is only composed of weak edges.

Marnette [Marnette 2009] introduces the class of super-weakly acyclic tgds that

generalizes the class of weakly acyclic tgds identified by Fagin et al. [Fagin et al. 2005a]

that has the same properties with respect query answering. We have used their results in

Section 4.2.1. The same difference in the family of queries as done with Fagin et al., and

the result of Marnette is only applicable to constructive settings where shapes schemas

are weakly-recursive while our approach is applicable to any constructive setting.

Several other results exist on certain query answering, which use chase termina-

tion [Calı̀ et al. 2012b, Baget et al. 2011], or some finite representation of an infinite

universal solution. Those works identify properties of family of tgds that allows to ob-

4.5. RELATED WORK 137

tain chase termination. In particular, Calı̀ et al. [Calı̀ et al. 2012a] present a finite struc-

ture based on the chase of guarded tgds. We have used their results in Section 4.2.2.

Since the shapes schema is captured by a set of tgds that is guarded, then we do not

detail the other classes. The difference with our contribution is that we materialize a

solution.

Arenas et al. [Arenas et al. 2013] propose the use of query rewriting to compute

certain answers in a data exchange context. In this sense, given a data exchange setting

E, given an instance I of R, a query is rewritable under the E if there is a first order

formula over the target schema such that a universal solution to I w.r.t. E satisfies this

formula. But it is undecidable whether a query is rewritable over a universal solution.

Consequently, Arenas et al. identify conditions to know if a query admits a rewriting

over a universal solution. We can adapt this technique to our context but since it uses

a universal solution, then their approach will only work for weakly-recursive shapes

schemas. It is known that if a query is rewritable then query answering is AC0 in

data complexity, which will be better for the particular class of weakly-recursive shapes

schemas.

Query answering for XML data exchange. David et al. [David et al. 2010] study how

to compute certain answers for XML queries. Authors define the notion of maximal

description of a set of databases as a finite set of formulas over the query language that

is satisfied in all structures of databases. In XML, the query language is defined by

tree patterns, which is related to forward NREs because forward NRE does not use the

inverse operator and NRE and queries descendant nodes as tree pattern queries children

nodes. Thus, for a set of XML trees, a pattern is a maximal description if it is modeled

in all XML trees. This pattern is called by authors a certain answer, because there exist

a homomorphism from the pattern to every tree. Authors apply their result to the XML

data exchange context obtaining PTIME in data complexity. The contributions of this

work cannot be used in our context because there is no materialization of a good solution

and tree patterns work only for trees. However, the notion of maximal description is

similar to the universal simulation solution because every solution is simulated by a

universal simulation solution.

Query answering for RDF. The majority of queries for RDF are based on graph pat-

138 CHAPTER 4. CERTAIN QUERY ANSWERING

terns [Barceló et al. 2011]. The standard language for querying RDF is SPARQL

that is based on graph pattern-matching expression. In particular, Pérez et al. [Pérez

et al. 2010] present an extension of SPARQL using NREs to navigate RDF data. We

use a fragment of NREs to define a family of queries where we ensure that any query

of this family on a graph has certain answers. Nikolaou and Koubarakis [Nikolaou &

Koubarakis 2016] introduce the notion of representation system to answer SPARQL

queries over a set of incomplete RDF databases. They identify a fragment of SPARQL

where certain answers are ensured by querying the representation system. This no-

tion of representation system is not a solution and the data complexity, which is coNP-

complete, is higher than ours.

Ciucanu [Ciucanu 2015] studies the problem of query answering in the context of

relational to graph data exchange. He considers only egds as target constraints and de-

fines a family of queries using full NREs. He shows that deciding computing certain

answers to full NRE-based queries is coNP-hard. His work does not subsume our con-

tribution because the set of dependencies that captures shapes schema includes not only

egds but also tgds.

Another language based on graph patterns used for querying RDF is regular path

queries (RPQs) [Cruz et al. 1987]. Barceló et al. [Barceló et al. 2011] study the problem

of certain query answering on graphs, but not in the context of data exchange, which

means that no solution is materialized. Also, authors study many family of queries and

show that the data complexity of computing certain answers to a query in those families

ranges from NLOGSPACE to coNP. It remains an open question to adapt their work to

our context.

Query answering for knowledge bases. The following works are not in the context of

data exchange but they treat the problem of certain query answering on knowledge

bases. Calvanese et al. [Calvanese et al. 2014] study certain query answering with

positive 2-way regular path queries (P2RPQS). They take account of constraints in the

knowledge base as we consider target constraints in the target schema. The drawback

with their approach is that the data complexity of computing certain answers, which is

coNP-complete, is higher than classical approaches and also from our approach. Bi-

envenu et al. [Bienvenu et al. 2013] study the complexity of answering queries over

4.5. RELATED WORK 139

knowledge bases. Authors consider conjunctive two-way regular path queries (C2RPQ)

and the data complexity is NL-complete. Since their approach is not in the data ex-

change context, then there is no materialization of solution. Also, they do not consider

target constraints.

140 CHAPTER 4. CERTAIN QUERY ANSWERING

Chapter 5

Visual mapping language

5.1 Motivation and use case

The majority of relational, XML and graph data exchange frameworks [Fagin et al. 2005a,

Arenas & Libkin 2008, Boneva et al. 2015] use a logical language to express the rules

for exchanging data. There are implementations [Marnette et al. 2011,Fagin et al. 2009,

Raffio et al. 2008] of those frameworks that define a visual language for expressing the

rules to reduce the difficulties of learning a logical language that a user can have. Au-

thors of these implementations develop visual languages on top of text-based languages,

such as SQL.

In the relational to RDF data exchange, an example of text-based language is R2RML.

Sicilia et al. [Sicilia et al. 2017] and Crotti et al. [Junior et al. 2017] have defined visual

languages for R2RML in their tools. Such visual languages facilitate the specification

of mappings. However, we cannot use these tools in the data exchange from relational

database to RDF in presence of shapes schema. In the following use case, we illustrate

how our tool helps a database administrator to define mappings.

Example 5.1.1. Consider the database of software bug reports, presented in Figure 5.1.

Each bug is reported by a user and a bug may have a number of related bugs. Each user

may track a number of bugs. We wish to export the contents of the above relational

database to RDF for using by an existing application. The RDF will use three distinct

IRI prefixes the default prefix ex: for the predicates, bug: for bugs, and usr: for

users. The prefix ex: stands for https://example.com/, the prefix bug: stands for

141

142 CHAPTER 5. VISUAL MAPPING LANGUAGE

https://example.com/ShBug and usr: stands for https://example.com/ShUser.

User
uid name
1 Jose
2 Edith

Email
uid mail
1 j@ex.com

Track
uid bid
1 1
1 2

Bug
bid descr uid
1 Boom! 1
2 Kabang! 1
3 Bang! 2

Rel
bid rid
2 1
1 3

Figure 5.1: Relational source database

The application expects the RDF document to adhere to a ShEx schema. Suppose

that this ShEx schema is expressed with shapes constraints:

ShBug→ ex:descr :: Lit1; ex:rep :: ShUser1; ex:related :: ShBug*

ShUser→ ex:name :: Lit1; ex:email :: Lit1; ex:tracks :: ShBug+

This schema defines two types of nodes: ShBug for bug reports and ShUser for user info.

This shapes schema happens to closely mimic the structure of the relational database

with two exceptions: the type ShUser requires that every user must track at least one bug

and must have a single email while the relational database is free of such constraints.

To assign an IRI to every user and every bug, we define two IRI constructors Bu2iri

and Us2iri that concatenate a value of the argument with the prefix bug: and usr:

respectively.

Given the database instance, the shapes schema and the set of IRI constructors pre-

sented below, a database administrator wants to export this database instance to an RDF

graph that satisfies the shapes schema in some practical way. But, the administrator is

not able to write mappings. Instead, the administrator can load the definition of the re-

lational schema with DDL statements and the source instance of this relational schema

from a SQL script and load the shape definition from JSON script in our tool. Then,

the database administrator will see boxes with text that either represent a table with its

attributes or a shape name with its triple constraints. Then graphically, the database ad-

ministrator defines mappings by drawing arrows from boxes of the relational schema to

boxes of the shapes schema as seen in Figure 5.2. This set of arrows seen in Figure 5.2

corresponds to the following mappings:

5.1. MOTIVATION AND USE CASE 143

Bug(x, y, z) ∧ Rel(x,w)⇒ ShBug(Bu2iri(x)) ∧

Triple(Bu2iri(x), ex:descr, y) ∧

Triple(Bu2iri(x), ex:rep,Us2iri(z))

Triple(Bu2iri(x), ex:related,Bu2iri(w))

User(x, y) ∧ Email(x, z) ∧ Track(x,w)⇒ ShUser(Us2iri(x)) ∧

Triple(Us2iri(x), ex:name, y) ∧

Triple(Us2iri(x), foaf:mbox, z) ∧

Triple(Us2iri(x), ex:tracks,Bu2iri(w))

Then, the user obtains a solution in Turtle format as seen in Figure 5.3. In this solution,

we observe that the symbol “@@@” used in an IRI denotes fresh IRI nodes and alone

itself denotes null literals. We discuss later on the use of symbol “@@@”.

Figure 5.2: ShERML.

144 CHAPTER 5. VISUAL MAPPING LANGUAGE

<https://example.com/ShBug/1>
<https://example.com/descr> ”Boom!”;
<https://example.com/rep> <https://example.com/ShUser/1>.

<https://example.com/ShBug/2>
<https://example.com/descr> ”Kabang”;
<https://example.com/rep> <https://example.com/ShUser/1>.

<https://example.com/ShBug/3>
<https://example.com/descr> ”Bang!”;
<https://example.com/rep> <https://example.com/ShUser/2>.

<https://example.com/ShUser/1>
<https://example.com/name> ”Jose”;
<https://example.com/email> ”j@ex.com”;
<https://example.com/tracks> <https://example.com/ShBug/2> ,

<https://example.com/ShBug/1>.
<https://example.com/ShUser/2>
<https://example.com/name> ”Edith”;
<https://example.com/email> ”@@@”;
<https://example.com/tracks> <https://example.com/ShBug/@@@>.

<https://example.com/ShBug/@@@>
<https://example.com/descr> ”@@@”;
<https://example.com/rep> <https://example.com/ShUser/@@@>.

<https://example.com/ShUser/@@@>
<https://example.com/name> ”@@@”;
<https://example.com/email> ”@@@”;
<https://example.com/tracks> <https://example.com/ShBug/@@@>.

Figure 5.3: Solution in Turtle format.

5.2 Preliminary notions

In this section, we recall basic notions of data visualization and human-computer inter-

action used to develop ShERML.

Visual representations. Interaction between users and computers is done by a graph-

ical interface that uses visual representations of data. Visual representations [Lohse

et al. 1994] are representations assigned to data that use visual variables (graphical ob-

jects in screen) to convey the information to the user. A visual object can be a picture, a

geometric form, or text with color or composition of them.

Visual representations can be more effective than symbolic information such as

text [Treisman 1985] because they amplify the cognition by providing the human more

information, faster and with less cognitive effort. Thus, for non-expert users, the learn-

ing of text-based languages requires a considerable amount of time.

Visual language. Visually encoding on top of a text-based language is one way to en-

5.3. THE INTERMEDIARY LANGUAGE 145

able non-expert users the usage of text-based languages. As a result, we have a visual

language, which is a language that uses visual representations to depict words of a text-

based language A. The alphabet of a visual language is a set of visual objects and visual

representations.

Interaction paradigms. The purpose of an interaction model is to provide guidelines

for guiding designers and developers to create interactive systems. One such interaction

model is direct manipulation [Shneiderman 1983]. This paradigm is based on visual

representations and establishes a guideline when designing an interactive tool. This

guideline consists of four principles: choosing a visual representation, learning compo-

nents of the visual representation, setting operations with the visual representation and

displaying visual representations on the screen. The first principle provides techniques

to clearly and accurately represent the information. The second principle provides tech-

niques to measure the complexity of learning the visual representation by a user. The

third principle provides interaction techniques such as drag and drop. This interaction

technique consists of enabling the user to move visual objects, change a sorting order

or put a visual object in a particular place. The last principle provides techniques for

arranging visual representations so the information is clear to the user. Hutchins et

al. [Hutchins et al. 1985] show that tools following these principles facilitate the tasks

of users.

5.3 The intermediary language

In this section, because VML is constructed on top a text-based language, we present

an intermediary language called R2VML. It is a declarative text-based representation

of the mapping language based on logical rules that uses vocabulary of SQL that is

familiar for users with basic background on databases. R2VML mappings capture a

fragment of constructive st-tgds specified in the data exchange framework presented in

this manuscript as seen in Figure 5.4.

We can observe that writing R2VML mapping is more intuitive than writing st-tgds

for a user that has background on databases. R2VML is presented without using vari-

ables compared to st-tgds and with a Turtle-like style, which is familiar for RDF users.

Also, R2VML constraints the way of writing mappings such that our tool ShERML

146 CHAPTER 5. VISUAL MAPPING LANGUAGE

Bug join Rel
=>
Bu2iri(Bug.bid) as ShBug
ex:descr Bug.descr;
ex:rep Us2iri(Bug.uid);
ex:related Bu2iri(Bug.rid).

Bug(x, y, z) ∧ Rel(x, u)⇒
ShBug(Bu2iri(x)) ∧
Triple(Bu2iri(x), ex:descr, y) ∧
Triple(Bu2iri(x), ex:rep,Us2iri(z)) ∧
Triple(Bu2iri(x), ex:related,Bu2iri(u))

User join Email join Track
=>
Us2iri(User.uid) as ShUser
ex:name User.name;
ex:email Email.mail;
ex:tracks Bu2iri(User.bid).

User(x, y) ∧ Email(x, z) ∧ Track(x,w)⇒
ShUser(Us2iri(x)) ∧
Triple(Us2iri(x), ex:name, y) ∧
Triple(Us2iri(x), foaf:mbox, z) ∧
Triple(Us2iri(x), ex:tracks,Bu2iri(w))

Figure 5.4: Comparison example of R2VML mappings and st-tgds.

is capable of processing. Another reason for having R2VML is that in general some

users prefer to have graphical and text-based mappings. Moreover, users want to un-

derstand the model behind the VML mappings, and so R2VML presents a user-friendly

and succinct syntax for defining mappings.

Now, given a library of IRI constructors F = (F, F), the relational schema R =

(R, attrs ,Σfd,Σind), the shapes schema S = (T, δ), we define a R2VML mapping

with the following the grammar:

RV ::= RelExpr“=>”TriExpr | RelExpr “where” CExpr“=>”TriExpr

RelExpr ::= R | RelExpr “join” RelExpr

CExpr ::= R“.”Aname Op Nro | R“.”Aname Op Str

TriExpr ::= F “(”R“.”Aname“)” “as”T PropExpr

PropExpr ::= pObj “; ”PropExpr | pObj “.”

Obj ::= F “(”R“.”Aname‘)” | R“.”Aname | Fun“(”R“.”Aname“)”

Op ::= “<” | “<=” | “>” | “>=” | “=” | “like”

AName ::= name of attribute in a relation

Fun ::= trim | upper | lower

Nro ::= a number

Str ::= a string value

where R ∈R, F ∈ F, T ∈ T, p ∈ PropS.

5.3. THE INTERMEDIARY LANGUAGE 147

A rule (RV) is composed of a relational expression (RelExpr) and a triple expres-

sion (TriExpr). Both expressions are separated by the symbol =>. Also, a rule can

contain a conditional expression (CExpr) separated from the relational expression by

the string where. The relational expression is either a relational name R or a set of

relation names combined by the string join. The conditional expression is specified by

a relation name, an attribute name (Aname), an operator (Op) and a parameter either

number (Nro) or string (Str). The triple expression is composed of an IRI construc-

tor (F), the type name (T) and the property expression (PropExpr). The argument of

the IRI constructor is inside a parenthesis and is composed of a relation name and an

attribute name separated by the symbol dot. The property expression is composed of

a property (p) and an object (Obj), which is either an IRI constructor or a relational

name with an attribute name or a string function Fun such as trim, upper and lower

that converts the value of an attribute name.

The interpretation of the grammar is as follows. The identifier trim is interpreted as

the function that removes all spaces from text except for single spaces between words.

The identifier upper as the function that converts a string to uppercase letters and the

identifier lower as the function that converts a string to lowercase letters. The identifier

R is interpreted as the name of a table in a database. The identifier F is interpreted

as a function that generates an IRI using the value of the parameter. The relational

expression is interpreted as a SQL query. If the conditional expression is in the rule

is interpreted as the filters on the query result. The triple expression is interpreted as

the generation of triples where the subject is an IRI resulting from the application of an

IRI constructor with the value of the attribute. The property expression is interpreted as

the set of property objects associated with the subject. We allow trim, upper and lower

functions to be applied to data values of the object. The triple objects come from the

values of the attributes specified in the property expression. Some objects can be IRIs

resulting from the application of an IRI constructor with the value of the attribute.

The triple expression is expressed as a Turtle syntax that is a natural way to declare

RDF graphs except the specification of types. The subject of the triple expression in-

cludes in the grammar the symbols “as”T that indicates the type of the subject nodes

that will be generated. It is created a monadic fact with the name T and the subject

node. This constitutes the typing relation that together with the set of triples is the typed

148 CHAPTER 5. VISUAL MAPPING LANGUAGE

graph.

Now, for human-computer interaction reasons, we restrict the kind of R2VML map-

pings that can be defined in ShERML. We set a restriction over the set of tables, which

we call a path, used in a query of R2VML. In ShERML, the drawing of a green or or-

ange arrow requires a path to be specified. We propose a set of paths, so a user is not

concerned to write it. A path in this set has the property that for every two tables of

the path, there exists a foreign key such one table references the other. This property

guarantees that a st-tgd is uniquely defined. For instance, suppose we have the follow-

ing two relations User(uid , name) and Track(tid, uid , track−nbr). Also, we have the

following R2VML.

User join Track => Us2iri(User.uid) as ShUser;

ex:name User.name;

ex:track Track.track-nbr.

This R2VML mapping can correspond to the following st-tgd

User(x, y) ∧ Track(u, x, v)⇒ Triple(Us2iri(x), ex:name, y) ∧

Triple(Us2iri(x), ex:tracks, v) ∧ ShUser(Us2iri(x)) (5.1)

or can correspond to the two following st-tgds

User(x, y)⇒ Triple(Us2iri(x), ex:name, y) ∧ ShUser(Us2iri(x)), (5.2)

User(x, y) ∧ Track(u, x, v)⇒ Triple(Us2iri(x), ex:tracks, v). (5.3)

These two corresponding sets of st-tgds generate two different graphs from a given

instance. A graph generated from st-tgd 5.1 will have nodes of type ShUser only if there

is a user that has some track-nbr. While in a graph generated from st-tgds 5.2 and 5.3,

the number of nodes of type ShUser will be as many users are stored in User. But,

if we assume the existence of a reference from uid of Track to User, then the unique

correspondence of the R2VML mapping is the st-tgd 5.1.

To define a VML mapping, green and orange arrows are grouped by the first element

of the path, which is the table that is connected by a blue arrow. We describe later on

how a VML mapping is created. To define the path to be specified in a R2VML mapping

5.4. THE VISUAL MAPPING LANGUAGE 149

from these arrows, the paths specified on the arrows are combined in a single path such

that there is no repetition of tables and the first element of the path is the table that the

blue arrow connects.

To visually represent a R2VML mapping in a directly way and to define a unique st-

tgd from a R2VML mapping, R2VML is well defined if the primary key of the first table

of the path π is the argument for the IRI constructor and if there is a path π′ composed

with the tables of path π such that for every two elements of π′, there is a foreign key

from one to the other.

5.4 The visual mapping language

In this section, we define a visual mapping language (VML). It is composed of different

types of boxes, arrows that have a label or not, and an orthogonal line that is used to

relate boxes. Each element of VML has its correspondence to an element of R2VML

and its semantics follows from there.

The alphabet of VML is composed of the following visual objects:

VL = { ,
F (a)

, ,
F
, RN , AN , KN , SN , PL , PS }

where

• F is the identifier for an IRI constructor and a is the identifier of the argument for

the IRI constructor,

• RN is the identifier for a relational name in R,

• AN is the identifier for an attribute name of a relational name,

• KN is the identifier for an attribute name that is the primary key in a relation name,

• SN is the identifier for a shape name in T,

• PL is the identifier for a property name such that there is a triple constraint in the

shapes schema with this property where the target type is Lit ,

150 CHAPTER 5. VISUAL MAPPING LANGUAGE

• PS is the identifier for a property name such that there is a non-literal type S and

a triple constraint with this property name and target type S.

For instance in Figure 5.2, we observe the blue arrow with label Us2iri(uid) that

goes from relation name User to shape name ShUser. Here the relational name User

corresponds to RN, the shape name ShUser to SN and the label Us2iri(uid) to F (a).

Then, we observe the green arrow with label Email ./ User that goes from attribute mail

of Email to the triple constraint with property tracks :: ShBug of shape ShUser. Here the

relational names User and Email corresponds to RN, the attribute mail corresponds to

AN, the shape ShUser corresponds to SN, email corresponds to PL, the path of Email ./

User, the dependence of the attribute to a table and the dependence of a triple constraint

to its shape corresponds to the orthogonal line.

Now, given a library of IRI constructors F = (F, F), the relational schema R =

(R, attrs ,Σfd,Σind), the shapes schema S = (T, δ), we define VML mappings with

the following grammar:

VR ::= RN VB
F (a)

SN

VB ::= RN VB | AN PL | KN
F

PS

A visual expression VR allows to relate a query with a shape and its triple constraints

and defines a VML mapping. A VML mapping is composed of a set of visual objects

that represents the relational expression and triple expression of an R2VML mapping.

The mapping starts with a blue arrow between a source box with RN and a target box

with SN. This arrow has as a label an IRI constructor and specifies that the primary

key of the source box is converted to an IRI and is typed with the shape name SN.

The attribute name either AN or KN comes from the result query. The target box of a

green arrow is specified only to property PL of the related shape that comes from a

triple constraint whose target type is Lit . This arrow species that the value of AN is

directly used as the object of the triple that will be generated. A target box of an orange

arrow is specified only to property PS of the related shape that comes from a triple

constraint whose target type is a shape. This arrow specifies that the value of attribute

KN is converted to an IRI by the application of F where its interpretation is given in the

library F.

We illustrate in Figure 5.5, a R2VML mapping and its correspondent VML map-

5.4. THE VISUAL MAPPING LANGUAGE 151

ping. This VML mapping indicates how the graph will be populated with properties

of ShUser where the object values of triples come from the attribute values. In the

case of the orange arrow, there is a conversion of a value of the attribute bid with the

IRI constructor Bu2iri that is in the label of the orange arrow. Here the subjects of

triples are obtained from the application of Us2iri to the values of uid . This VML

mapping is constructed from the R2RML mapping in Figure 5.5 as follows. The query

User joinTrack is mapped to the two boxes related to the orthogonal line. The subject

Us2iri(uid) as ShUser is mapped to the blue arrow with Us2iri(uid) as a label where the

target box has the shape name ShUser. The property expression ex:name ShUser.name

is mapped to the green arrow where the source box has the attribute name that comes

from the query and the target box has the property label ex:name that comes from a

triple constraint in the definition of ShUser where the target type is Lit . The property

expression ex:tracks Bu2iri(Track.bid) is mapped to the orange arrow with Bu2iri as a

label where the source box has the attribute name bid that also comes from the query

and target box has the property label ex:tracks that comes from a triple constraint in the

definition of ShUser but the target type is the shape ShBug.

User join Track => Us2iri(User.uid) as ShUser

ex:name User.name;

ex:tracks Bu2iri(Track.bid).

User

name

Track

bid

ShUser

ex:name

ex:tracks

Us2iri (uid)

Bu2iri

Figure 5.5: A correspondent VML mapping of a R2VML mapping.

Now, we describe in Table 5.1 the correspondence between the visual objects of a

VML mapping and elements of R2VML mapping.

Based on the correspondence given in Table 5.1, we can define the semantics of

152 CHAPTER 5. VISUAL MAPPING LANGUAGE

Visual object Correspondence to

RN R used in the relational expression and the triple expression.

SN T used in the triple expression after the string “as”.

RN R in the relational expression but after the string “join”.

AN
Aname when the object in the property of the triple expression is of the
form either R.Aname or Fun(R.Aname).

KN
Aname but when the object in the property expression is of the form
F (R.Aname).

PL
p in the property expression when the object is of the form either
R.Aname or Fun(R.Aname).

PS
p when the object in the property expression is of the form
F (R.Aname).

F (a) “=>” and F (R.A.name) in the triple expression that appears before the
string “as”.
“=>” and the writing of the property expression p R.Aname or
p Fun(R.Aname).

F
“=>” and the writing of the property expression p F (R.Aname).

Table 5.1: Correspondence of grammar of VML with grammar of R2VML.

VML mappings as follows:

RN
F (a)

SN It defines how rows from table RN are to be mapped to IRI nodes

using the IRI constructor F with the value of the primary key a satisfying the

shape constraint SN. We call this mapping an IRI mapping.

AN PL It defines how table rows are mapped to triples where the predicate

of every triple is the value of PL and the objects are values of AN. This VML

mapping depends on the existence of an IRI mapping. We call this mapping a

property mapping.

KN
F

PS It defines how table rows are mapped to triples where the pred-

icate of every triple is the value of PS and the objects are IRI nodes that are

obtained from the application of F with the values of the attribute KN. As the

property mapping, it depends on the existence of an IRI mapping. We call this

mapping a reference mapping.

The other elements of the relational expression in an R2VML mapping are used as

5.4. THE VISUAL MAPPING LANGUAGE 153

annotations over the visual objects such as the conditional expression and string func-

tions. Figure 5.6 shows an example of a VML mapping with annotations. The con-

ditional expression has no proper visual representation as the other elements, but the

conditional expression has its correspondence as a text annotation over an IRI mapping.

In the case of string functions, they are annotated over a property mapping.

User

name

ShUser

ex:name

Us2iri (uid)

name like “jo”

Figure 5.6: An example of VML mapping with annotations.

The language of st-tgds only captures VML mappings that do not contain a condition

or string function annotations. In Figure 5.7, we observe that each VML mapping is

captured by a st-tgd.

Bug(x, y, z) ∧ Rel(x,w)⇒
ShBug(Bu2iri(x)) ∧
Triple(Bu2iri(x), ex:descr, y) ∧
Triple(Bu2iri(x), ex:rep,Us2iri(z))
Triple(Bu2iri(x), ex:related,Bu2iri(w))

User(x, y) ∧ Email(x, z) ∧ Track(x,w)⇒
ShUser(Us2iri(x)) ∧
Triple(Us2iri(x), ex:name, y) ∧
Triple(Us2iri(x), foaf:mbox, z) ∧
Triple(Us2iri(x), ex:tracks,Bu2iri(w))

Figure 5.7: Example of VML mappings captured by st-tgds.

154 CHAPTER 5. VISUAL MAPPING LANGUAGE

5.5 ShERML

In this section, we describe a tool for data exchange from relational to RDF called

ShERML. Our tool enables users to create mappings between a source relational schema

and a target shapes schema. Also, ShERML verifies consistency of mappings. We have

developed our tool with the direct manipulation paradigm.

5.5.1 Architecture

SHACL

ShEx

RDBM

Visual Mapping
Language Editor

VML

Materializer

Converter
R2RML

RDF

schema

data

Figure 5.8: ShERML Architecture and Workflow.

We now present an overview of ShERML architecture and the flow of data in Fig-

ure 5.8. ShERML receives as input a source relational schema, an instance of the re-

lational schema and a target shapes schema, which can be expressed with SHACL or

ShEx. The output of ShERML is an RDF graph, which is the result of materializing the

database instance with a set of mappings such that the target shapes schema is satisfied.

ShERML has three main components: the VML editor, the materializer and the con-

verter. The VML editor shows the visual representations of source and target schemas

and allows to draw arrows. Each time an arrow is designed, a VML mapping is created.

This component generates a VML script that is the input for the materializer component

that executes it by running SQL queries on the relational database and constructing the

desired RDF graph. Then, the converter component generates a R2RML script that can

be used by third-party applications. We detail these components in the sequel.

5.5. SHERML 155

5.5.2 VML Editor

The VML editor is the main component and is used to define mappings. The definition

of mappings is done by drawing arrows with the drag and drop technique. This compo-

nent receives as inputs the source and target schemas and produces a VML script. The

VML editor seen in Figure 5.9 consists of two panels: the modeling and the mapping

panel. The modeling panel displays graph representations for source and target schema.

The mapping panel displays the VML mappings, which are created by drawing of ar-

rows, with modify and delete buttons.

Figure 5.9: Modeling panel at left side and Mapping panel at right side of VML editor.

The input for starting the mapping process consists of loading the database and the

schema for RDF which can be a ShEx or SHACL script. When the shapes schema is

loaded, ShERML creates for each shape name its corresponding function symbol. This

function symbol is unique and its interpretation is by default the concatenation of an

URL assigned to the shape that is also unique and the value of the argument. Thus,

every IRI constructor in ShERML is used with a unique shape name.

Now, we describe the implemented interactions in the editor. In the modeling panel,

the user can reorder nodes and edges of the graph representations and can draw arrows

from nodes of source schema to nodes of the target schema. Each arrow drawn in the

VML editor creates a VML mapping displayed in the mapping panel. Each VML map-

ping can be modified with the modify button that allows users to add string functions

on property mappings, to modify IRI constructors on an IRI and a reference mapping.

Also in the modify button over an IRI mapping, a user can add filter conditions on the

156 CHAPTER 5. VISUAL MAPPING LANGUAGE

attributes of the relation name. These conditions of attributes are displayed as annota-

tions to the arrows. In the following, we describe the graph representations for source

and target schema, and describe a VML script.

Graph representation for relational and shapes schema. The graph representation for

the relational schema is described in Figure 5.10.

Visual object Representation

RN

KN

AN

The whole visual object is composed of three different visual objects
and represents a relation name with its attributes. The visual object for
a relation name identified with RN is a box with a square anchor. The
visual object for an attribute name identified with AN is composed of a
box and a circular anchor of color green, which represents any attribute
that is not a primary key or foreign key. The visual object identified with
KN is composed of a box with the name of the attribute and a circular
anchor of color orange. If this visual object has the text underline, then
it represents a primary key. Otherwise, it represents a foreign key.

It represents an inclusion dependency. The black arrows are between
relational tables.

Figure 5.10: Graph representation for relational schema.

The graph representation for the shapes schema is described in Figure 5.11. The

Visual object Representation

SN

PS

PL

The whole visual object is composed of three different visual objects
and represents a shape name and the set of triple constraints that the
shape defines. The visual object for a shape name identified with SN
is a box with a square anchor. The visual object for a triple constraint,
where target type is a shape name, identified with PS is composed of
a box and a circular anchor of color orange. The visual object for a
triple constraint, where the target type is literal, identified with PL is
composed of a box and a circular anchor of color green.

It represents the relation between two shape names, i.e a shape name T
is related with S if there is a triple constraint with S that is the definition
of T . The black arrows are between shape names.

Figure 5.11: Graph representation for shapes schema.

anchors in both graph representations are used for creating connections later on.

5.5. SHERML 157

Visual representation of rules. We use arrows as the visual representation of rules. The

arrows are from visual objects of the graph representation of the relational schema to

visual objects of the graph representation of the shapes schema. There are three kinds

of arrows.

IRI arrow it can only connect square anchors. It has as attribute an IRI constructor.

The editor draws an IRI arrow with the name of the IRI constructor and parameter

on top of the arrow. By default, the parameter is the primary key of the table. If

the primary key is composed of more than one attribute, ShERML allows users to

select one attribute of the primary key.

Property arrow it can only connect two green anchors. A property arrow depends

on an IRI arrow. It has as attribute a path. The editor draws a property arrow with

a path on top of it. If the node is connected by the property arrow has incoming

or outgoing edges, ShERML proposes a set of paths where the user has to select

one path. The computation of set of paths is based on the following procedure.

Computes all set of paths by a graph search algorithm. Then, it is filtered only the

paths where the root of the path is already connected by an IRI arrow to the target

node that contains the target anchor connected by the property arrow.

Reference arrow it can only connect two orange anchors. Similarly to a property

arrow, a reference arrow depends on an IRI arrow. It has as attributes an IRI con-

structor and a path. The editor draws the reference arrow with the IRI constructor

on top of it and the path on the bottom of it. As in the property arrow, a set of

paths is computed where the user selects one path. Also, the user has to select the

IRI constructor.

ShERML allows users to delete arrows. If an IRI arrow is deleted then, all property and

reference arrows are deleted as well.

Furthermore, in the mapping panel, the draw of a VML mapping is designed to

avoid the crossing of arrows. From a blue arrow in the editor, it is analyzed all the

paths contained in the set of green and orange arrows that depend on the blue arrow.

First, the arrows that connect the attributes of the relation name. Then, the arrows are

organized according to the length of the set of paths and if the paths have the same length

158 CHAPTER 5. VISUAL MAPPING LANGUAGE

then the paths are organized in lexicographical order. Finally, arrows that connect the

attributes of the same table in the path, first are created the property mappings and then

the reference mappings.

VML script. The output of the editor is a VML script that contains the set of VML map-

pings, R2VML mappings, the graph representations of schemas and the set of positions.

5.5.3 Materializer

We recall that the problem of relational to RDF data exchange is to find a solution i.e.,

a graph that satisfies the shapes schema and the set of mappings. In this sense, the

materializer generates an RDF graph that is a solution to an instance given as input in

ShERML w.r.t. the set of mappings defined in the editor. This component receives as

input a VML script and uses the R2VML mappings that are contained in it and outputs

an RDF graph. In order to extract the data from the tables, we translate the R2VML

mappings to SQL views that will represent the RDF data. The translation is done as

follows. The materializer converts each R2VML mapping to a st-tgd. Every st-tgd is

normalized and translated to a SQL query following the method used by Benedikt et

al. [Benedikt et al. 2017]. This SQL view selects the head of a st-tgd from the data

contained in relations that appear on the left side of the st-tgd. There will be two types

of views: the triple view and the type view. The following SQL query illustrates the

corresponding equivalence of a st-tgd.

Bug(x, y, z) ∧ Rel(x, z)

⇒ ShBug(Bu2iri(x))

Bug(x, y, z) ∧ Rel(x, z)

⇒ Triple(Bu2iri(x), ex:rep, y)

CREATE VIEW TBug (term,type) AS

SELECT CONCAT(’bug:’,bid),

’ShBug’

FROM Bug inner join Rel ON

Bug.bid=Rel.bid;

CREATE VIEW Triple AS

SELECT CONCAT(’bug:’,Bug.bid) as s,

’ex:name’ as p,

CONCAT(’usr:’,Bug.uid) as o

FROM Bug inner join Rel ON

Bug.bid=Rel.bid;

The execution of views previously defined will generate an RDF graph, but there

5.5. SHERML 159

can be constraints that are not yet satisfied. So, the materializer creates the relation

Shape(source, prop,target,mult) in the database that stores the shape names

and its triple constraints with multiplicity 1 or +, i.e., we store the obligatory shape

graph (cf. Section 3.3.5). Then, the materializer constructs two views called Triples

that selects all triple views and Types that select all type views. These views are used

to create another view called TripleSim that generates triples with fresh nodes to

satisfy the triple constraints that are not yet satisfied. This process of generating triples

with fresh nodes can be infinite. We use the symbol “@@@” as the value for generating

the fresh nodes so the process of generating triples arrives at fixed point. The following

SQL query illustrates that fresh nodes are created (line 6) if the constraints are not yet

satisfied (line 11).

1 CREATE VIEW TripleSim (s,p,o) AS

2 SELECT * FROM Triples

3 UNION

4 SELECT Ts.term,

5 Sh.label,

6 CASE WHEN Sh.target =’Lit’ THEN ’@@@’

7 ELSE CONCAT(’ex:’,Sh.target,’/’,’@@@’)

8 END AS typeO

9 FROM Shape AS Sh,Types AS Ts

10 WHERE Ts.type=Sh.typeS AND

11 CONCAT(Ts.term,Sh.source,Sh.prop) NOT IN

12 (SELECT CONCAT(T.s,Ty.type,T.p)

13 FROM Triples as T, Types AS Ty

14 WHERE T.s=Ty.term);

Finally, the converter constructs the view Solution that selects all triples and

the view TypeSol that selects all the content of the view Types and the views that

typed the unknown values. The view Solution is materialized as a table with at-

tributes sub, pred and obj. The data that will contain this table is translated into

an RDF graph by using the methods provided by Apache Jena1. The content of the

view TypeSol with the RDF graph obtained is a solution to an instance of the rela-

tional schema w.r.t. a data exchange setting. ShERML offers three formats to export the

solution: Turtle, N-Triples and RDF/JSON.
1https://jena.apache.org/

https://jena.apache.org/

160 CHAPTER 5. VISUAL MAPPING LANGUAGE

Now, we discuss why we use the symbol “@@@” to represent the null values. To

obtain a solution to a given instance w.r.t. the setting, we use the chase procedure with

the st-tgds and the set of dependencies that captures the shapes schema. Since the chase

can be infinite if there are cycles in the obligatory shape graph, then inventing new

values each time a PE rule is triggered is not a good solution because the chase will

never terminate and we want a finite solution. Thus, we invent a fixed IRI value for

each type so a PE rule with the same type will be triggered only once and a fixed literal

value. Because this fixed literal value must represent a null literal value we decide to

use “@@@” symbol that has no meaning for a user. However, this is also a problem

because the solution will have meaningless information. Here no good solution for the

problem of representing null literal value exists. We use also the “@@@” symbol in

the creation of a fixed IRI value for each type. Since, the chase is implemented in SQL,

we cannot use blank nodes. Because of the approach adopted here, we do not generate

a universal solution. For instance, the solution in Figure 5.3 for the setting and instance

shown in Example 5.1.1 is not universal.

5.5.4 Converter

The converter generates an R2RML script that can be used into other applications. This

component receives as input a VML script and outputs R2RML mappings. The con-

verter uses the set of R2VML mappings contained in the script. The process of con-

verting from R2VML to R2RML is as follows. Each rule in R2VML is converted to a

triple map in R2RML. The relational expression in R2VML is inside rr:logicalTable.

The triple expression is translated to rr:subjectMap and rr:predicateObjectMap. The

IRI constructor is mapped to the IRI value of concatenation specified in the program.

The expression “as”T is translated as an additional rule where the predicate map is

rr:class and the object is T . The application of the predicate map rr:class will generate

a triple with the predicate label rdf:type. For instance, Figure 5.12 shows the translation

of R2VML mapping to R2RML mapping.

5.5. SHERML 161

R2VML R2RML

User =>
Us2iri(User.uid) as ShUser

ex:name User.name.

<#TriplesMap1>
rr:logicalTable [rr:sqlQuery
""" SELECT uid,User.name

FROM User"""];
rr:subjectMap [

rr:template
"https://example.com/ShUser/{uid}";

rr:class ShUser];
rr:predicateObjectMap [

rr:predicate ex:name;
rr:objectMap
[rr:column "name"];].

Figure 5.12: An example of R2VML and R2RML mapping.

5.5.5 Consistency checking

A novelty of our tool that distinguishes from other mapping tools is the consistency ver-

ification. This functionality allows users to know if the set of VML mappings that have

specified in the tool are consistent i.e., for any instance of the relational schema there

is a solution. To deciding consistency we use two algorithms presented in Section 3.2.1

and 3.3.5. The set of st-tgds that captures R2VML mappings specified in ShERML be-

longs to a simpler class where every st-tgd has a triple and a monadic atom that types

the subject term. Given a database, the application of this set of st-tgds will avoid:

• to have conflicting types in any extended graph of the core pre-solution to the

source instance; and

• to compute the whole set of violation sorts and reduce the steps for constructing

the set of contentious-based instances in the algorithm of Section 3.2.1.

Therefore, deciding consistency in ShERML is a simpler version of Algorithm 1.

ShERML translates the set of VML mappings to R2VML mappings and from R2VML

mappings to set of st-tgds as follows. For each R2VML mapping, we take the properties

associated to the subject T and IRI constructor f in the R2VML mapping and for each

property p we create a rule of the form ϕ(x)⇒ T (f(y))∧Triple(f(y), p, t) for y ⊆ x

where ϕ contains relational atoms with the names of relation names contained the re-

lational expression of the R2VML mapping. In the creation of st-tgds, each two rules

use mutually disjoint set of variables. In the end, we have a set of st-tgds Σst where we

analyze if the setting is consistent using the Algorithm 4. This algorithm has as inputs

162 CHAPTER 5. VISUAL MAPPING LANGUAGE

the relational schema R, the shapes schema S, the set of st-tgds Σst and the set of IRI

constructors, and gives as output a Boolean value. True if the setting is consistent, false

otherwise. The algorithm is as follows. For any two rules in Σst, if both rules use the

same IRI constructor f for their subjects and have the same predicate, the same subject

type T and there is a type S ∈ T such that p :: Sµ ∈ δ(T) with µ = 1 or µ = ?, then an

instance I is constructed similarly as a contentious-based instance (line 3 to 5). Then,

the algorithm chases I with the set of functional dependencies (line 6). Finally, the al-

gorithm checks if the result of the chase has equated two different values (line 7), and if

so, the algorithm finishes with a false value. If the algorithm ends without equating two

values (line 7), then the setting is consistent.

Algorithm 4: Deciding consistency in ShERML.
Input: a data exchange setting E = (R,S,Σst,F)
Output: true if E is value consistent,false otherwise.

1 for (σ, σ′) ∈ Σst × Σst do
2 if head(σ) = T (f(x)) ∧ Triple(f(x), p, t1) and

head(σ′) = T (f(x)) ∧ Triple(f(x), p, t2) and ∃S ∈ T. p :: Sµ ∈ δ(T) for
some µ ∈ {1, ?} then

3 Bσ,σ′ = body(σ) ∪ body(σ′);
4 hσ,σ′ : vars(σ) ∪ vars(σ′)→ NullLit;
5 I = hσ,σ′(Bσ,σ′);
6 J = chase(I,Σfd) and the corresponding h : I → J ;
7 if (hσ,σ′ ◦ h)(t1) 6= (hσ,σ′ ◦ h)(t2) then
8 return false ;
9 end

10 end
11 end
12 return true;

5.5.6 Additional features

Now, we describe three features of ShERML: exporting and importing of VML script,

R2VML visualization and color configuration. ShERML allows to export and import

VML scripts so a user can continue defining more mappings or reuse the mappings

already defined in the VML script with other source instance of the same relational

schema and materializes it. R2VML visualization shows the R2VML mappings for

those users that are familiar with text-based languages. Users can find R2VML map-

5.6. EVALUATION 163

pings in a VML script, but these mappings are not readable because the script combines

R2VML mappings with VML mappings and position annotations. The feature of color

configuration allows users to assign colors to the three different kinds of arrows.

5.6 Evaluation

In this section, we have assessed our tool in its usability with six users: three of them

are undergraduate students of computer science, one user is a doctoral student, one user

is a software engineer that works with system databases and the last user is a researcher

on the semantic web. We identify these users with the following letters (a) to (c) for the

undergraduate students, (d) for the doctoral student, (e) for software engineer and (f) for

the researcher.

5.6.1 Methodology

The methodology for testing ShERML consists of three phases: preparation, evaluation

and observation. In the preparation phase, we provide every user a manual of how it

is used ShERML describing its main functionalities. Also, the manual contains a brief

description of what is shapes schema. Then, we provide a testing document containing

four cases where we describe every case as follows. A case is presented with a descrip-

tion of the relational database, a screenshot of graph representations of the relational

and shapes schema, the set of mappings to perform expressed in natural language and

the desired graph that should be obtained when materializing the mappings. Next, we

provide two scripts: a SQL script containing the relational schema and the instance, and

JSON script containing a shapes schema. Finally, we guide the user in the installation of

the application. The tool, all testing scripts, manual and testing document can be found

in this repository htpps://github.com/josemachino/ShERML.

In the evaluation phase, the user can ask questions while doing the mappings if they

do not understand certain functionalities of the tool. If users do not succeed to do the

mappings they can leave the case and pass to another one. Before passing to other cases,

the user sends us the VML mappings. We do not restrict the time for each case.

Finally, in the observation phase, users provide us their impressions of ShERML and

htpps://github.com/josemachino/ShERML

164 CHAPTER 5. VISUAL MAPPING LANGUAGE

we observe if their VML mappings are correct and analyze the reason for the incorrect

mappings. For this purpose, we distinguish two types of mappings. A mapping is simple

if the path is composed of less equal than two relational names, otherwise the mapping

is complex. Case one and two are composed of simple mappings, while cases three and

four are composed of complex mappings.

5.6.2 Results

The results of the correct mappings done by a user in the four different cases are shown

in Table 5.2. In cases one and two, we observe that users (a), (b) and (e) did not succeed

to do the correct mappings because they created property arrows instead of reference

arrows. User (c) did the reference arrows but the IRI constructors were incorrect. Users

(d) and (f) did correctly mappings.

In cases three and four, we observe that users (a) and (c) did not succeed the complex

mappings because the notion of paths is not well understood. One reason can be that

the manual only presented a case of simple mappings and did not emphasize the notion

of paths. The manual did not describe the notion paths because we were interested in

evaluating the interactions of the editor. The result was not as expected because not

all undergraduate students, who have less experience in databases, succeeded to make

complex mappings. For the rest of users, the notion of paths was understood because

they have more experience in databases.

Type of Mapping Case
Expected

number of
mappings

Correct map-
pings per user
a b c d e f

Simple 1 3 2 2 1 3 3 3
2 5 2 3 2 5 2 5

Complex 3 3 1 3 1 3 3 3
4 3 0 3 0 3 3 3

Table 5.2: Correct mappings per case and user.

Now, we analyze the comments of users about ShERML:

• Users (a), (b) and (c): it is not clear the use of the IRI constructor and its pur-

pose. One reason because these users did not have a clear understanding of IRI

5.6. EVALUATION 165

constructors is the lack of knowledge about RDF where the domain is over IRIs

or literals.

• All users: Many arrows crossing each other in the editor for case two. ShERML

cannot arrange the arrows in the editor such that they are not crossed. But in

the mapping panel, ShERML presents the corresponding VML mappings without

crossing lines. However, a solution for the crossing of arrows in the editor is not

possible. This is a drawback of ShERML.

• User (f): Most issues of users with Ontop2, which is an application that relies

on R2RML mappings, comes from bad mapping design. ShERML addresses this

problem through the creation of VML mappings and the conversion to R2RML

script.

Finally, we draw the following conclusion from the evaluation:

• ShERML does not have the right interactions for showing the user the importance

of the IRI constructor. One way to approach the lack of understanding of the IRI

constructor is to have a visual object for the IRI constructor and interaction oper-

ation over it. As it is now, the IRI constructor is over the IRI arrow or reference

arrow as text. According to users, the text over arrows is lost in the editor. One

way to solve this problem is the use of a visual object that captures the attendance

of a user to check if the IRI constructor corresponds to the shape name or triple

constraint that the arrow connects.

• ShERML has to enhance the readability of the graph representation of schemas

by a better distribution of nodes and avoiding the crossing of edges in the panel.

• ShERML helps the creation of complex mappings with the path selector, but it

should be more intuitive for non-expert users such (a) and (b).

• ShERML facilitates the mapping design.

• ShERML is compatible with third-party applications such as Ontop.

2https://ontop-vkg.org/

https://ontop-vkg.org/

166 CHAPTER 5. VISUAL MAPPING LANGUAGE

5.7 Discussion and conclusion

We have achieved in this chapter the definition of a visual mapping language. We have

developed ShERML that hides for non-expert users the complexity of learning a data

exchange framework and creates VML mappings. ShERML is a tool that offers its

users an easy mapping process and a distinct characteristic of this tool is the consistency

verification. The feature of ShERML of import and export of VML script allows users

to reuse the data exchange setting with other instances.

However, ShERML has some limitations inherent to the framework that we have

chosen. For instance, we limit the kind of queries that can be expressed with R2VML

as discussed in Section 5.3. Also, the aim to produce a solution to a given instance of

a relational schema w.r.t. the shapes schema carries the limitation of representing null

values that are meaningless for users as discussed in Section 5.5.3.

As future work, we propose the enhancement of some functionalities and consid-

ering additional features for a better data exchange experience. We will improve the

user feedback in the consistency checking such that a user can know the arrow that is

causing the inconsistency of the setting. In terms of additional features, we will add

the functionality of searching VML mappings in the visualization panel and a graph

visualization of the RDF graph.

5.8 Related work

Different tools [Fagin et al. 2009,Raffio et al. 2008,Pichler & Savenkov 2009,Marnette

et al. 2011,Sengupta et al. 2013,Sicilia et al. 2017] have been developed to assist users

in the definition of mappings in relational, XML and relational to RDF data exchange.

We describe first those tools used for relational and XML data exchange. Then, we

describe the tools used in relational to RDF data exchange.

Clio system [Fagin et al. 2009] presents a graphical interface to assist a user in the

definition of mappings in the relational data exchange context. It uses a tree represen-

tation to show the source and target schemas with constraints. This tree representation

does not capture the inclusion dependencies information. The definition of mappings is

by drawing arrows between attributes. ShERML uses graph representation for relational

5.8. RELATED WORK 167

schema where the inclusion dependencies information is also captured. Our tool is used

in a relational to RDF data exchange context with shape constraints. This implies the

use of IRI constructors and verification of constraints when doing the arrow. Thus, in

ShERML is distinguished two arrows more. Also in Clio, SQL is used to present the

mapping that is less declarative than R2VML.

Clip [Raffio et al. 2008] is a tool used in XML data exchange context. It uses tree

representations to show the source and target XML schemas. The definition of mappings

is done by drawing of arrows and expressed using XQuery. ShERML is used in another

context, but the use of arrows to define mappings is the same approach implemented in

our tool.

Pitchler and Savenkov [Pichler & Savenkov 2009] present a data exchange modeling

tool called DEMo. In this tool, there is no target schema loaded in the input. They define

the target schema while doing the mappings that are SQL queries. This tool does not

use visual representations for schemas. The set of mappings defined in this tool is stored

in a script so users can continue with the mapping definition later on. We take this idea

of storing the set of mappings in a file.

++Spicy [Marnette et al. 2011] is a tool for relational and XML data exchange con-

text. The tool uses tree representations for the source and target schema and the map-

pings are defined with arrows. The tool allows to define filters on the attributes. We take

this idea to be used in ShERML by allowing filters on attributes. The tool considers

target as ShERML does.

Now, we describe tools used for relational to RDF data exchange. One of them uses

D2RQ and the rest use R2RML as the language to define mappings. None of these

tools uses target constraints. RDOTE [Vavliakis et al. 2013] is a tool that develops

a text-based language called D2RQ to define mappings from a relational schema to

an ontology. An ontology defines a set of classes that are organized in a hierarchical

taxonomy, a set of properties of those classes and relationships between those classes.

The input of this tool is a database and an ontology. RDOTE defines D2RQ mappings

manually in a editor form.

Sengupta et al. [Sengupta et al. 2013] present a R2RML mapping editor. This editor

allows the materialization of an RDF graph. Defining a R2RML mapping is done in

an editor form. Also, this editor provides a search utility where given a set of VML

168 CHAPTER 5. VISUAL MAPPING LANGUAGE

mappings defined by the editor, users can search a mapping by the path specify in the

SQL query and the term map used in the subject, predicate and object. This utility can

be added in ShERML to easily find a VML mapping from the list of VML mappings

created by the editor. As it is now, users have to scroll down in the visualizing panel to

find a VML mapping. Their tool does not use visual representations.

Heyvaert et al. [Heyvaert et al. 2016] present a tool called RML editor. This tool

has a visual graph-based user interface, which allows users to create mapping rules

graphically. The tool consists of three panels: input panel, modeling panel and result

panel. In the input panel, a user loads a relational database that is represented with

tabular data. There is no visual representation of a relational schema. Then the user

defines IRI constructors in the modeling panel. The visual object for the IRI constructor

is a circle that contains its definition. Its definition consists of an IRI with attribute

names coming from the relational schema. Then the user drags attributes names from

a table and a visual representation is created in the modeling panel for the attribute

name. Next, the user draws arrows from the visual representation of an IRI constructor

to the visual representation of an attribute name. This arrow is interpreted as a R2RML

mapping. The graph defined in the modeling panel defines a set of R2RML mappings

that is used in the result panel to show the materialized graph. Similar to this tool, we

define IRI constructors but not with a visual object only as text on top of an arrow.

Map-On [Sicilia et al. 2017] is a tool that defines a visual mapping language for

relational to RDF data exchange with an ontology as a target schema. Map-On uses

arrows between elements of the relational schema to elements of the ontology. The vi-

sual representation for each element is a box and they use different colors to distinguish

table, attribute, and type names of the ontology. The set of arrows in the panel creates

R2RML mappings.

Juma [Junior et al. 2017] is a tool that creates R2RML mappings using the block

metaphor. Each R2RML rule is a block and each block is composed of sub-blocks that

construct the rule such a sub-block for the query where the tool gets the data, sub-block

for the subject and other for predicate object. This tool only allows the connection of

blocks that would create a valid mapping. Juma defines a visual mapping language on

top of R2RML using blocks as the visual representation for every element of R2RML.

This tool requires that users must known R2RML syntax while in ShERML we hide

5.8. RELATED WORK 169

the step of learning R2VML. A similar feature to our tool is that we also create valid

mappings.

SQuaRE [Bak et al. 2017] is a tool that allows to create R2RML mappings. The

target schema is an ontology. The user loads a database and an ontology. Because an

ontology is a hierarchy of concepts, the tool uses a tree representation for the ontology.

There is no visual representation of the relational schema. Instead, the user has to

choose a table from the relational and a visual representation only of the table is shown.

SQuaRE has a mapping panel where the user drags types of the ontology and draw

arrows from the attributes to the types in the mapping panel. A feature of this tool is

that they allow conditions on the mappings. From these arrows, a R2RML mapping is

generated. This tool has defined a visual mapping language over the relational signature

and set of types of the ontology. In ShERML, we also allow to set conditions on the

blue arrows and use the arrows to generate mappings.

YARRRML [Heyvaert et al. 2018] is a R2RML editor that uses YAML [Ben-Kiki

et al. 2009] to write R2RML mappings. YAML is a data serialization language that

simplifies the elements of R2RML syntax to be more human friendly. Visual represen-

tations are not used in YARRRML.

Tools VML Text-
based
lan-
guage

VR for
schemas

Mapping
overview

Target
con-
straints

Solution

RDOTE No D2RQ No No No Yes
Sengupta et al. No R2RML No No No Yes
RML editor Yes R2RML No Yes No Yes
SQuaRE No R2RML Yes Yes No Yes
Map-On Yes R2RML Yes Yes No Yes
YARRRML No R2RML No No No Yes
ShERML Yes R2VML Yes Yes Yes Yes

Table 5.3: Summary of tool features.

Finally, Table 5.3 summarizes the main features of the different mapping tools in

the relational to RDF data exchange context and of ShERML presented in this chapter.

The acronym VR is for visual representation and VML for visual mapping language.

The tools are compared with the visual mapping language defined, the text-based map-

ping language used, whether they use visual representations in their tool, whether they

170 CHAPTER 5. VISUAL MAPPING LANGUAGE

provide a panel to see all the mappings created by the tool, whether they are concerned

with target constraints and if they materialized having a solution. Since most these tools

work with an ontology as target schema, they always a produce solution because of the

absence of constraints.

Chapter 6

Shapes schema elicitation

6.1 Motivation

The presence of R2RML standard indicates that there is a considerable amount of web

applications that exchange information using the RDF format. In this context, the ex-

changed information comes from relational databases. R2RML mappings might specify

the type of the nodes that they produce, but in this chapter, we focus on mappings where

no node is typed. Also, we focus on R2RML mappings as modeled by constructive st-

tgds. We consider the problem of schema elicitation which means constructing a shapes

schema that describes the structure of the output graph.

Schema elicitation is not an easy task. We identify the main primary challenge: the

differences between the source and target languages i.e., on one side we have the lan-

guage for expressing constraints of the source relational databases and on the other side

we have the language for expressing target shapes schemas. Also, the set of mappings

can have additional information that must be considered in the elicitation of the target

schema. As consequence of the difference of languages, there might not exist a target

schema that capture all the graphs produced by the mapping.

To address this challenge, we characterize what a good target schema is. We iden-

tify soundness and completeness as properties of a desirable target schema. A sound

schema recognizes every possible output of the mapping. A complete schema recog-

nizes only graphs that can be a possible output of the mapping. Finally, we present an

elicitation algorithm that is sound but also that is complete for a large practical set of

171

172 CHAPTER 6. SHAPES SCHEMA ELICITATION

Sup
super id emp id

Emp
emp id name

Email
emp id email

Access
emp id sys id

Sys
sys id name

Figure 6.1: A relational schema.

source relational schemas and mappings.

Example 6.1.1. Consider the source schema R shown in Figure 6.1 where arrows rep-

resent the inclusion dependencies.

The following constructive st-tgds are given:

Emp(x1, x2)⇒Triple(femp2iri(x1), ex:name, x2), (6.1)

Email(x1, x3)⇒Triple(femp2iri(x1), foaf:mbox, x3), (6.2)

Sys(x1, x2)⇒Triple(fsys2iri(x1), ex:name, x2), (6.3)

Access(x1, x2)⇒Triple(femp2iri(x1), ex:access, fsys2iri(x2)), (6.4)

Access(x1, x2) ∧ Sup(x3, x1)⇒Triple(fsys2iri(x2), ex:admin, femp2iri(x3)). (6.5)

ShEmp ShSys

Lit

ex:nam
e

*

foaf:m
box

*

ex
:n

am
e

*

ex:access
*

ex:admin
*

(a) Sound and not complete

ShEmp ShSys

Lit

ex:nam
e

1

foaf:m
box

?

ex
:n

am
e

1

ex:access
*

ex:admin
+

(b) Sound and complete

Figure 6.2: Shapes schemas elicited.

We examine the set of st-tgds and observe the IRI constructors. We propose for every

IRI constructor a dedicated shape name: ShEmp for femp2iri that represents employees

and ShSys for fsys2iri that represents systems. We can propose two schemas as seen in

Figure 6.2, where one of them is sound and the other is sound and complete. The schema

6.1. MOTIVATION 173

in Figure 6.2a is obtained by simply identifying the outgoing edges of ShEmp and ShSys

and the multiplicity for every edge be *. For instance, there is an outgoing edge with

label ex:name from ShEmp to Lit because in the mapping 6.1 no IRI constructor is

used in the object position. Also, we observe the outgoing edge ex:admin that connects

ShSys with ShEmp. This corresponds to the mapping 6.5 because the IRI constructor

fsys2iri appears in the subject position and the IRI constructor femp2iri in the object

position. This target schema is sound but it is overly general and not complete because

this schema allows to have a shape employee with two emails or no name, and yet this

kind of information is not allowed by the relational schema.

By carefully analyzing the mappings and the set of dependencies of the relational

schema we can refine the previous schema to obtain a sound and complete schema as

shown in Figure 6.2b. This refinement is done by precisely determining the multiplicity

constraints, which are obtained from the analysis of the set of source dependencies and

the mapping. Thus, we will make a better fit for the shapes schema. For the outgoing

edge ex:name from ShEmp and ShSys, the multiplicity constraint is 1 because there is a

key dependency that restricts to have exactly one name for an employee and system. For

the outgoing edge foaf:mbox from ShEmp, we observe the relation Email has an inclu-

sion dependency that references to an employee and the attribute emp id is a primary

key for Email. This means that an employee will have at most one email and sometimes

might have none. Thus, the multiplicity is ? for this outgoing edge. For the outgoing

edge ex:access from ShEmp, we observe that the primary key of Access is composed of

the attributes emp id and sys id with inclusion dependencies to ShEmp and Sys, which

means that an employee might have access to multiple systems and might have access

to none. Thus, the multiplicity is *. Now the rule that indicates that an employee is

an admin of a system is (6.5). Here, we observe the inclusion dependencies related to

Access and Sup. With respect to Access the inclusion dependencies shown in Figure 6.1

indicates that a system must be accessed by at least one employee. With respect to

Sup, the inclusion dependencies shown in Figure 6.1 indicates that an employee must

have a supervisor. From these two observations, we conclude that for the outgoing edge

ex:admin, the multiplicity is +.

Also, we show that there are cases where there might not exist a target schema that

174 CHAPTER 6. SHAPES SCHEMA ELICITATION

is complete or if a complete a schema exists then this schema is of exponential size. In

the next example, we in fact show that a complete target schema might not exist.

ShEmp ShSys

Lit

ex:nam
e

1

ex:sup

1

foaf:m
box

?

ex
:n

am
e

1

ex:access
*

ex:admin
+

Figure 6.3: Sound and not complete.

Example 6.1.2. Now, we consider the additional st-tgd that connects employees with

their supervisors.

Sup(x1, x2)⇒ Triple(femp2iri(x1), ex:sup, femp2iri(x2)).

Following the same procedure of elicitation, we construct the schema shown in Fig-

ure 6.3. This schema is sound, however, it is not complete. We observe the graphs

femp2iri(x1)

femp2iri(x2)

fsys2iri(y)

ex
:s

up

ex:access

ex:admin

Figure 6.4: A triple pattern present in any output of Σ.

obtained from the application of this new set of st-tgds have a triangle pattern shown

in Figure 6.4. Consequently, a complete target schema does not exist because the lan-

guage of shapes schema cannot express such a triangle pattern. Here, we observe that

the differences between the source and target languages for expressing constraints to-

gether with the information coming from the mappings renders elicitation of a complete

shapes schema unfeasible.

6.2. PROBLEM STATEMENT 175

6.2 Problem statement

In this section, we define formally the elicitation problem that takes a relational to RDF

data exchange setting without schema and outputs a target suitable shapes schema and

we propose two desirable properties of target schema.

6.2.1 Schema-less data exchange setting

We define a schema-less data exchange setting that we use as input for the elicitation

problem.

Definition 6.2.1. A schema-less relational to RDF data exchange setting is a tuple

Ed = (R,Σst,F)

such that for every relationR of R,R has a key dependency and the tuple (R,S∅,Σst,F)

is a constructive relational to RDF data exchange setting with S∅ = (∅, ∅) being an

empty shapes schema.

In the sequel, we treat Ed as the corresponding constructive relational to RDF data

exchange setting. In particular by solEd
(I) we denote the set of solutions to I ∈ Inst(R)

w.r.t. Ed i.e., solEd
(I) = {G | I ∪ G |= Σst}. Also, by T (Ed) we denote all graphs

produced by Ed over any instance of the relational schema R i.e.,

T (Ed) = {solEd
(I) | I ∈ Inst(R)}.

Non-deterministic shapes schemas under close interpretation

In previous chapters of this manuscript, we have considered deterministic shapes schemas

interpreted under open interpretation. However, in this chapter, we drop the restriction

of determinism. More precisely, a shapes schema now can have a type whose shape

definition has multiple triple constraints with the same property. For instance, the fol-

lowing shapes schema is non-deterministic because for type TUniv there are two triple

176 CHAPTER 6. SHAPES SCHEMA ELICITATION

constraints with ex:has.

ShUniv→ ex:has :: TEmp1; ex:has :: ShSys+.

ShEmp→ ex:name :: Lit1; ex:sup :: ShAdmin1.

ShAdmin→ ex:name :: Lit1; ex:sup :: ShAdmin?.

ShSys→ ex:id :: Lit1.

Also, we consider the multiplicity 0 with its corresponding interval [0, 0] in the multi-

plicities of a non-deterministic shapes schema.

Now, we define how a graph satisfies a non-deterministic shapes schema under close

interpretation. We recall the definition of embedding [Staworko & Wieczorek 2019].

Recall that we view a shape graph as (p, µ)-labeled graph. First, we identify the set of

all outgoing edges of a node n ∈ nodes(G) with

outG(n) = {(n, p,m) ∈ G}.

Also, we define a function occur over a graphG that assigns an interval to an edge in

G. If the graph is an RDF graph the interval assigned is 1, otherwise, the interval is the

multiplicity contained in the label of the edge. Next, we define the point-wise addition

operator ⊕ between two intervals as follows: [n1;m1]⊕ [n2;m2] = [n1 +n2;m1 +m2].

Now, we define an embedding as follows:

Definition 6.2.2 (Embedding). Given a RDF graph G and a shape graph H , a binary

relation R ⊆ nodes(G)× nodes(H) is a simulation of G and H iff for any (n, n′) ∈ R

we have that

• n is a literal node iff n′ is a literal type,

• n is a non-literal node iff n′ is a non-literal type, and

• there exists a witness of simulation of n by n′ w.r.t. R i.e. a function λn,n′ :

outG(n)→ outH(n′) such that for every (n, p,m) ∈ outG(n)

– there is m′ ∈ nodes(H) and µ ∈ {0, 1, ?, +, *} such that (n′, (p, µ),m′) ∈

outH(n′), λn,n′((n, p,m)) = (n′, (p, µ),m′) and (m,m′) ∈ R,

6.2. PROBLEM STATEMENT 177

– for every (n′, (q, µ),m′) ∈ H it holds that

⊕
{occurG((n, q, o)) | (n, q, o) ∈ G,

λ((n, q, o)) = (n′, (q, µ),m′)} ⊆ occurH((n′, (q, µ),m′)).

An embedding of G in H is a simulation R of G in H such that adom(R) = nodes(G),

and we write G 4 H if G can be embedded in H .

A graph G satisfies a shapes schema S, if there is an embedding from G into the shape

graph of S, i.e., G 4 GS. We illustrate graphically an embedding in the following

example.

Example 6.2.3. Consider the shapes schema S presented previously and the graph G

presented in the left hand side of Figure 6.5, with the interval 1 added to each edge for

the purpose of illustrating the embedding. In the right hand side, we have the shape

graph of the S. This graph satisfies the non-deterministic shapes schema because there

is embedding as shown in Figure 6.5.

ulille:

ex:sys#1

ex:emp#1 “Jose”

“Lg”

ex:has

1

ex
:h

as

1

ex:name

1

ex:id

1
ex:sup

1

ShUniv

ShSys Lit

ShEmp ShAdmin Lit
ex:has

1

ex:h
as

+

ex:id

1

ex:sup

1

ex:sup

?

ex:name

1

ex:name

1

Figure 6.5: An example of embedding.

Finally, we define the language of a non-deterministic shapes schema under close in-

terpretation as the set of graphs that can be embedded in the shape graph of the shapes

schema i.e.,

LC(S) = {G | GS is the shape graph of S, G 4 GS}.

178 CHAPTER 6. SHAPES SCHEMA ELICITATION

6.2.2 Elicitation Problem

The schema elicitation problem aims at constructing a target schema for a given rela-

tional to RDF schema-less data exchange setting. We identify two desirable properties

of the target schema. The first property is soundness that requires the target schema

to recognize every output of the mapping. This property is not enough because trivial

solutions do not inspect schemas and obtain universal schemas, which are also sound.

The second property is completeness, which intuitively means that the target schema

recognizes only graphs that can be produced by the mapping. Formalizing complete-

ness is challenging because graphs produced by mappings use node identifiers that are

generated by IRI constructors and those may have limited range. We circumvent this

problem by employing the standard notion of isomorphism.

Example 6.2.4 (cont. Example 6.1.1.). In this example, we assume that for an employee

the IRI constructor is

femp2iri(id) = “univ:emp#” + str(id)

and for a system, the IRI constructor is

fsys2iri(id) = “univ:sys#” + str(id).

Take a graph G0 recognized by the language of S shown in Figure 6.2b. The identifier

that we use in the graph G0 cannot be obtained by the IRI constructors described above.

FromG0, we construct an instance of the relational schema as presented in Figure 6.6. If

we apply the mappings with Σst, then we get an isomorphic graph as shown on the right

side in Figure 6.6. Here, we observe that both graphs are recognized by the language of

the schema shown in Figure 6.2b.

Formally, two graphs G and G′ are isomorphic, denoted by G ∼= G′, if there is a

bijective homomorphism from G to G′. Also, for two set of graphs G and H, we write

G ⊆iso H iff for any graph G ∈ G, there is a graph G′ ∈ H such that G and G′ are

isomorphic. Now, we can formally state the two desirable properties as follows.

Definition 6.2.5. Given a schema-less data exchange setting Ed, a target schema is

6.3. M3 ELICITATION ALGORITHM 179

emp1

jose

emp2

edith

ex:sup

ex:sup

ex:nam
e

ex:nam
e

sys1

SpesG0 :
ex

:a
cc

es
s ex:access

ex
:a

dm
in

ex:name

Emp
1 jose
2 edith

Sup
2 1
2 2

Sys
1 Spes

Access
1 1
2 1

Σst

univ:emp#1

jose

univ:emp#2

edith

ex:sup

ex:sup

ex:nam
e

ex:nam
e

univ:sys#1

G : Spes

ex
:a

cc
es

s ex:access

ex
:a

dm
in

ex:name

Figure 6.6: Example of graphs that are isomorphic.

1. sound w.r.t. Ed iff all graphs produced by the setting are recognized by the lan-

guage of the schema under close interpretation i.e., T (Ed) ⊆ LC(S), and

2. complete w.r.t. Ed iff for any graph that a schema recognizes a mapping can pro-

duce a isomorphic one, in symbols LC(S) ⊆iso T (Ed).

In the sequel, we fix a schema-less data exchange setting Ed = (R,Σst,F).

6.3 M3 Elicitation algorithm

In this section, we propose an elicitation algorithm called min-max models (M3), which

constructs the minimum and maximum models that describe the minimum and maxi-

mum multiplicities in the output schema. For every IRI constructor f , the algorithm

constructs a type Tf of nodes constructed by f obtaining that the set of types T for the

target schema is defined as follows:

T = {Tf | f ∈ F}.

We illustrate the M3 algorithm with the following example.

180 CHAPTER 6. SHAPES SCHEMA ELICITATION

Example 6.3.1. Consider the schema-less setting where the relational schema has two

relations R(x, y), P (x, y) and the inclusion dependency P [x] ⊆ R[x]. The set of map-

pings Σst is

R(x, y)⇒ Triple(f(x), r, y), (6.6)

P (x, y)⇒ Triple(f(x), p, y). (6.7)

First, for each mapping, we construct the minimal model as follows. We take map-

ping (6.6) and construct from it a canonical instance I1 = {R(x, y)}. We observe it is

consistent with R. Then, we apply the mappings and obtain the graph

G1
min = {Triple(f(x), r, y)}. (6.8)

From G1
min, we construct a shape expression for Tf , which is a set of triple constraints.

So we observe that G1
min has a triple with f(x) and r and, therefore, there must be a

triple constraint with label r and multiplicity 1. Because in the set of mappings there

is a triple atom with p and this graph has no outgoing edges with p from f(x), there

must be a triple constraint with p and multiplicity 0. We obtain the following shape

expression that fits this particular graph:

r :: Lit1; p :: Lit0

We do an analysis later on over the corresponding shape expression. Now, we process

the mapping (6.7) and construct the canonical instance I2 = {P (x, y)}. We notice

that I2 is not consistent with R because of the inclusion dependency P [x] ⊆ R[x].

Therefore, we chase it with ΣR obtaining I ′2 = {P (x, y), R(x,⊥)}. Next, we apply the

mappings obtaining the graph

G2
min = {Triple(f(x), r,⊥),Triple(f(x), p, y)} (6.9)

Upon inspection, G2
min yields shape expression for Tf

r :: Lit1; p :: Lit1

6.3. M3 ELICITATION ALGORITHM 181

Now, we proceed to construct the maximal model as follows. We take the graph pro-

duced by all mappings with f in the subject

Gf
max = {Triple(f(x), r,⊥1),Triple(f(x), p,⊥2)}.

Next, we saturate it by duplicating each outgoing edge label with fresh null values for

the target nodes. The result is the following graph

G′fmax = {Triple(f(x), r,⊥1),Triple(f(x), r,⊥3),Triple(f(x), p,⊥2),

Triple(f(x), p,⊥4)}.

Then, we apply backwards the mappings Σst to G′fmax obtaining the following instance

Imax = {R(x,⊥1), R(x,⊥3), P (x,⊥2), P (x,⊥4)}.

Here, we observe that Imax satisfies the inclusion dependencies, but the functional de-

pendency R : x → y is not satisfied. Thus, we perform the chase, which equates

the null values ⊥1 and ⊥3, yielding I ′max = {R(x,⊥1), P (x,⊥2), P (x,⊥4)}. Then, we

apply the mappings to I ′0 yielding a graph

G′′fmax = {Triple(f(x), r,⊥1),Triple(f(x), p,⊥2),Triple(f(x), p,⊥4)}. (6.10)

We observe the multiplicities related to f(x) in G′′fmax, we restrict the maximum multi-

plicity to be 1 for label r and infinite for label p obtaining the following shape expression

for Tf

r :: Lit1; p :: Lit+

Finally, we obtain the shape definition for Tf by fitting the shape expressions obtained

from the minimal models (6.8), (6.9) and the maximal model (6.10). The result of this

fitting is

Tf → r :: Lit1; p :: Lit*

182 CHAPTER 6. SHAPES SCHEMA ELICITATION

6.3.1 Preliminary notions

We recall the notion of canonical instance and introduce the terminology of minimal

and maximal models. We also modify the chase procedure for purpose of construction

of the minimal and maximal models.

Canonical instance

By canonical source instance of a constructive st-tgd of the form ϕ(x,y) ⇒ ψ(y), we

mean an instance whose facts are the relational atoms of ϕ with the set of variables used

in the subject term treated as constants and the rest of variables are assigned to fresh

null values. For instance, for the st-tgd

ϕ(x, y, z) = User(x, y) ∧ Email(x, z)⇒ Triple(f(x), p, y)

the corresponding canonical instance is Iϕ = {User(x,⊥1),Email(x,⊥2)}.

Localized chase for source dependencies

The problem of using the standard chase procedure for our purposes are potential infinite

chase sequences due to inclusion dependencies. In the context of schema elicitation, we

are interested in the triples produced for a specific subject and, moreover, we have a

bound on how many similar triples are required to define the maximum multiplicity of

a triple constraint. Consequently, we can stop pursuing a branch of chase with inclusion

dependencies when we determine it will not add further information relevant to the task

at hand. We, therefore, propose a localized chase procedure, which we first illustrate in

the following example.

Example 6.3.2. Consider the relational schema with three relations R(x, y), P (x, y, z),

Q(x, y) and the set of inclusion dependencies and the corresponding tgds.

6.3. M3 ELICITATION ALGORITHM 183

R[x y] ⊆ P [y z]

P [x y] ⊆ Q[x y]

P [z] ⊆ R[y]

P [y] ⊆ R[y]

Q[y] ⊆ P [y]

R(x, y)⇒ ∃z′. P (z′, x, y) (6.11)

P (x, y, z)⇒ Q(x, y) (6.12)

P (x, y, z)⇒ ∃y′. R(y′, z) (6.13)

P (x, y, z)⇒ ∃y′. R(y′, y) (6.14)

Q(x, y)⇒ ∃y′, y′′. P (y′, y, y′′) (6.15)

The set of mappings Σst is

R(x, y)⇒ Triple(f(x), r, y), (6.16)

Q(x, y, z)⇒ Triple(f(x), q, y), (6.17)

P (y, x, z)⇒ Triple(f(x), p, x). (6.18)

We intentionally rename the variables so that the same variable is used in the IRI

constructor and this variable allows to distinguish target positions in the bodies of the

mappings that may yield a node constructed with the IRI constructor f . For map-

ping (6.16), we take the source canonical instance I = {R(x,⊥0)}. The standard

chase procedure on I with Σind is infinite because there is a cycle of triggering in-

clusion dependencies (6.11), (6.14), (6.11), obtaining an instance at step three I∗ =

{R(x,⊥0), P (⊥1, x,⊥0), R(⊥2, x), P (⊥3,⊥2, x), . . .}. Thus, we use the localized chase

that focuses on the IRI constructor f and the set of trace variables A = {x}.

First, we construct the value flow dependency graph Gf
A of Σind w.r.t. Σst in Fig-

ure 6.7. Its nodes are positions in relational names such as

nodes(Gf
A) = {(R, 1), (R, 2), (P, 1), (P, 2), (P, 3), (Q, 1), (Q, 2)},

and edges identify values that can be transferred from one position to other with the

application of an inclusion dependency. Then, we identify the distinguished target po-

sitions in relational atoms of the mappings Σst that may yield a triple with f(x) as its

subject. For ease of reference, we assign a unique label to each edge in the graph.

Now, we perform localized chase on I = {R(x,⊥0)}. We first trigger the tgd (6.11)

184 CHAPTER 6. SHAPES SCHEMA ELICITATION

(R,1)

(R,2)

(P,1)

(P,2)

(P,3)

(Q,1)

(Q,2)

e
1

e2

e3
e4

e5e
6

e
7

Figure 6.7: Value flow dependency graph.

because its body is on I and its head is not and it is productive, i.e.,the edge e1 takes

the value x that appears in the position (R, 1) in the instance I and leads the value to

the marked position (P, 2). We apply this tgd obtaining I1 = {R(x,⊥0), P (⊥1, x,⊥0)}

and we mark this tgd to prevent triggering it multiple times. Here, for the two inclusion

dependencies (6.13) and (6.14), the body is in I1 but not the head is, yet we shall not

trigger them. Consider the tgd (6.14), the corresponding edge is e3 in Figure 6.7, which

indicates that this tgd can send the values from position (P, 2) to (R, 2). We observe that

from position (R, 2) there is a cycle that does not pass by a marked a position. Therefore,

this tgd is not productive and we do not run it. Now, consider tgd (6.13), it is not produc-

tive because no path starts with e7 that leads to a marked position. We point out that the

localized chase is defined so that if the same tgd is in a cycle, then it is not triggered more

than once as we see for the next tgd. The third tgd (6.12) has not been triggered before

and it is productive because the path e4, e5, which is a cycle, leads to a marked posi-

tion. Thus, we apply it obtaining the instance I2 = {R(x,⊥), P (⊥1, x,⊥0), Q(⊥1, x)}

and we mark this tgd. Then, the tgd (6.15) is triggered on I2 and applied to it obtain-

ing the instance I3 = {R(x,⊥0), P (⊥1, x,⊥0), Q(⊥1, x), P (⊥2, x,⊥3)}. Here, we do

not trigger the inclusion dependency (6.12) any further because it is marked. Then,

there are no more inclusion dependencies to trigger. The result of the localized chase

on I = {R(x,⊥0)} with the target f(x) is the locally-chased canonical instance I3 of

mapping (6.16).

The localized chase, denoted by `-chase, has as inputs an instance I of R, a set

of inclusion dependencies Σind of the relational schema, set of mappings Σst, an IRI

constructor f and the set of trace variables A used as arguments of f . Because A and

the terms used in I (adom(I)) contain variables and null values, the constructor cannot

6.3. M3 ELICITATION ALGORITHM 185

be applied to them. Instead, we shall represent their result symbolically as terms of the

form f(x).

We construct the value flow dependency graph, denoted by Gf
A, which is a directed

graph with distinguished target nodes defined as follows. The nodes are the pairs (R, i)

where R ∈R of arity k and 1 ≤ i ≤ k, and (R, i) denotes the i-th argument of relation

R. We call each pair a position. For every ρ ∈ Σind, there is a corresponding set of

edges Eρ defined as follows (we treat inclusion dependencies as tgds):

Eρ = {((R, i), (P, j)) ∈ nodes(Gf
A)2 | t, t′ ⊆ vars(ρ). R(t) ∈ body(ρ),

P (t′) ∈ head(ρ),∃x ∈ vars(ρ). x on position i of t and on position j of t′}.

For instance, if we take the inclusion dependency (6.11), we obtain the edges (R, 1) to

(P, 2) and (R, 2) to (P, 3) that indicates that values in the sources positions are trans-

ferred to the target positions. The set of edges of Gf
A is E =

⋃
ρ∈Σind

Eρ.

Given a mapping σ ∈ Σst whose IRI constructor is f , we distinguish a target po-

sition (R, i) if there is a variable x occurring in the i-argument of R in the body of σ

and x is in vocabulary of the subject term of σ i.e., x ∈ Vocab(sub(σ)) \F, where sub

is a function that obtains the subject term of a mapping. Formally, the set of marked

positions Nm ⊆ nodes(Gf
A) for an IRI constructor f is defined as

Nm(f) = {(R, i) ∈ nodes(Gf
A) | ∃σ ∈ Σst. constructor(σ) = f. ∃x ∈ vars(σ),

t ⊆ vars(σ). R(t) ∈ body(σ), x ∈ Vocab(sub(head(σ))),

x is in position i of t},

where constructor : Σst → F is the function that returns the IRI constructor used in

the subject position of a st-tgd.

The localized chase is used only with inclusion dependencies. For each inclusion

dependency ρ, we call a variable x a transfer variable if x appears in body(ρ) and in

head(ρ). We say that a transfer variable x is relevant in the presence of I if there is a

homomorphism h : body(ρ) → I such that h(x) is a trace variable i.e., h(x) ∈ A. At

each step, ρ is triggered if ,

186 CHAPTER 6. SHAPES SCHEMA ELICITATION

• there is a homomorphism h from body(ρ) to the instance,

• there is no extension h′ of h such that h′(head(ρ)) ⊆ I , and

• there is an edge in Eρ that begins at a relevant transfer variable and can be ex-

tended to a path that leads to a target position in Gf
A.

• ρ has not been triggered more than once i.e., the inclusion dependency is not

marked.

The localized chase applies iteratively any triggered inclusion dependency and marks it.

The complexity of testing if there exists a trigger for a given instance I and an inclusion

dependency is given by the following proposition:

Proposition 6.3.3. Given an instance I of R, testing whether there is an inclusion de-

pendency that is triggered can be done in polynomial time in the size of I .

Proof. Take an inclusion dependency ρ ∈ Σind of the formR(x,y)⇒ ∃z. P (y, z). The

first condition can be verified by checking row by row in the instance if it satisfies the

body of the dependency. We also need to consider if the head of the dependency is not

satisfied in the instance by inspecting row by row. These tasks can be carried out in

polynomial time in the size of I . For the third condition, we can use a standard graph

reachability algorithm to know if a position leads to a marked position. This task is

also done in polynomial time. Thus, testing if an inclusion dependency is triggered is in

polynomial time in the size of I .

The complexity of the localized chase is given by the following proposition

Proposition 6.3.4. Let m be the maximum number of atoms in a st-tgd in Σst. Let

n be the number of inclusion dependencies of Σind. Let k be the maximum arity of a

relational name in R. Given an instance I bounded by m, the localized chase can be

done in polynomial time in n · k +m and its result is bounded by n · k +m.

Proof. Take an instance I of R bounded bym, which is the maximum number of atoms

in a st-tgd in Σst. Let n be the number of inclusion dependencies. The localized chase

tests if a dependency is triggered at most n number of times because we do no trigger

any inclusion dependency more than once. At each chase step, we add at most one

6.3. M3 ELICITATION ALGORITHM 187

atom, which varies in the arity of a head of the dependency. This arity is bounded by the

maximum arity of a relational name in R. Therefore, the result of the localized chase is

bounded by n · k+m. Also, at each step by Proposition 6.3.3, we require a polynomial

time in the size of I . Then, the localized chase is in polynomial time in n · k +m.

Additional notions

To describe next sections, we define the following auxiliary functions. We assume that

nodes of the minimal and maximal models have implicit types and we define the func-

tion node-type that identifies the type of a node as follows:

node-type(n) =

Tg, if n = g(x) for some x ∈VV

Lit , if n = x for some x ∈VV

For instance, given the graph G = {Triple(f(x), p, y)}, the function applied on the

nodes of G obtains node-type(f(x)) = f and node-type(y) = Lit .

In the sequel, we fix f ∈ F. For constructing both minimal and maximal model, we

denote by Σf
st the subsets of Σst that share the same IRI constructor f in their subject

terms. Implicitly, we rename the variables so that in all st-tgds of Σst, the same set of

variables appears in the subject term. Every variable that does not appear in the subject

term is a non-shared variable.

A locally-chased canonical instance of a st-tgd σ ∈ Σf
st, denoted by Iσ, is the in-

stance obtained from chasing locally with the source canonical instance of σ and the

set of source dependencies ΣR focusing in the IRI constructor f and its arguments. For

instance in the Example 6.3.2, I3 is the locally-chased canonical instance of mapping

(6.16) on I .

We define the function multiplicity-set Mult : 2Iri → {0, 1, +} that returns a multi-

plicity depending on the cardinality of the set A ∈ 2Iri defined as

mult(A) =

0, if |A| = 0

1, if |A| = 1

+, otherwise

188 CHAPTER 6. SHAPES SCHEMA ELICITATION

A shape expression is a function E : Iri×T → {0, 1, ?, +, *} that assigns to a pair

of predicate and type a multiplicity. We define the function ShExpr(G, n) that returns

the shape expression E that describes the neighborhood of a node n in graph G and

is defined as follows E(p, t) = Mult(Dstnp:t(G)), where Dstnp:t(G) is the set of target

nodes for a given source node n and predicate p, whose type of those nodes is t i.e.,

Dstnp:t(G) = {m | (n, p,m) ∈ G, node-type(m) = t}.

We recall that every multiplicity corresponds to an interval. Also, every interval

[n;m] has its lower bound min([n;m]) = n and its upper bound max ([n;m]) = m. We

extend the lower bound to a set of intervals min(Iv) = {min(k) | k ∈ Iv}, and the

upper bound to a set of intervals max (Iv) = {max (k) | k ∈ Iv}. A fitting of a set of

basic intervals Iv is defined as follows.

fit(Iv) = [min(min(Iv)),max (max (Iv))]

The result is an interval that is a basic interval.

A fitting of a set of shape expressions E constructs a shape expression Efit from the

set of shape expressions as follows. For every property and type (p, t) ∈ Iri×T, Efit is

defined as

Efit(p, t) = fit({E(p, t) | E ∈ E}).

Minimal models

The minimal model of σ ∈ Σf
st is a graph Gσ

min produced by Σf
st on the locally-chased

canonical instance of σ. Recall that M3 algorithm is constructing a single type for every

IRI constructor and, consequently, we consider Gσ
min a minimal model for this type.

The complexity of constructing all minimal models for a type Tf is given by the

following proposition:

Proposition 6.3.5. Let m be the maximum number of atoms in a st-tgd in Σf
st. Let l be

the number of st-tgds in Σf
st. There is at most l minimal models and the construction of

each minimal model is of polynomial size in n · k + m + l where n is the number of

inclusion dependencies and k is the maximum arity of relational name in R.

Proof. Let l be the number of st-tgds in Σf
st. Since the subject term of each st-tgd is

6.3. M3 ELICITATION ALGORITHM 189

in every minimal model and there is at most l subject terms, then there are at most

l minimal models. The construction of the minimal model is the result of chasing the

canonical source instance that is bounded bym, which is the maximum number of atoms

in a st-tgd in Σf
st. First, we chase locally, which by Proposition 6.3.4 is polynomial in

the size of n · k + m where n is the number of inclusion dependencies and k is is

the maximum arity of relational name in R. The result is the locally-chased canonical

instance. The chase with functional dependencies does not increase the size of locally-

chased canonical instance. On the other hand, at each chase step of a st-tgd, we add

one triple atom and since we have l number of st-tgds and by Beeri and Vardi [Beeri &

Vardi 1984], then the result is bounded by the size of the input instance then the minimal

model is of polynomial size in n · k +m+ l.

Maximal model

To obtain the maximal model, we introduce the following terminology. A saturated

instance of a st-tgd σ ∈ Σf
st, denoted by I∗σ, is obtained by the following process. We

create a copy of σ, denoted by σ′, such that both st-tgds share the same variables in the

subject term and every non-shared variable is renamed. Then, we compute its locally-

chase canonical instance Iσ and Jσ′ for σ and σ′ respectively. Finally, we chase the

union of these two locally-chase canonical instances with the functional dependencies

of R, I∗∗σ = chase(Iσ ∪ Iσ′ ,Σfd). A saturated instance for f , denoted by Ifmax, is the

instance obtained from the union of saturated instances of st-tgds in Σf
st, Ifmax =

⋃
{I∗∗σ |

σ ∈ Σf
st}.

The maximal model of Tf is a graph Gf
max obtained from chasing the saturated

instance for f with the set of mappings. The complexity of constructing the maximal

model for f is given by the following proposition:

Proposition 6.3.6. Let m be the maximum number of atoms in a st-tgd in Σf
st. Let l be

the number of st-tgds in Σf
st. The construction of the maximal model for f is bounded

by l · (n · k + m) + l where n is the number of inclusion dependencies and k is the

maximum arity of relational name in R.

Proof. Let l be the number of st-tgds in Σf
st. We use the localized chase twice per st-tgd

and we do repeat it l times obtaining the union of all this localized-chased canonical

190 CHAPTER 6. SHAPES SCHEMA ELICITATION

instances. By Proposition 6.3.4 the result of applying each localized chase is bounded

by n · k +m. Thus, the saturated instance for f is bounded by l · (n · k +m). Then we

chase this result with Σf
st, which by Beeri and Vardi [Beeri & Vardi 1984], we obtain

that the maximal model is bounded by l · (n · k +m) + l.

6.3.2 Algorithm

Now, we present the M3 algorithm based on the use of minimal and maximal models.

The input is a schema-less data exchange settingEd = (R,Σst,F). The aim of the elic-

itation algorithm is to generate a shape definition for each type that covers all possible

graphs produced by any instance of R with the mappings.

Algorithm 5: M3: Elicitation algorithm.
Input: a schema-less data exchange setting Ed = (R,Σst,F)
Output: a shapes schema S = (T, δ).

1 T := {Tf | ∃σ ∈ Σst, constructor(σ) = f};
2 for Tf in T do
3 G := ∅;
4 Ifmax := ∅;
5 for σ in Σf

st do
6 Iσ := {body(σ)};
7 I∗σ := `-chaseΣst

f (Iσ,Σind);
8 I∗∗σ := chase(I∗σ,Σfd);
9 Gσ

min := chase(I∗∗σ ,Σ
f
st);

10 add Gσ
min to G;

11 θ assigns to every non-share variable a fresh variable;
12 Jσ := {body(θ(σ))};
13 J∗σ := `-chaseΣst

f (Jσ,Σind);
14 I∗∗ := chase(I∗σ ∪ J∗σ ,Σfd);
15 Ifmax := Ifmax ∪ {I∗∗};
16 end
17 Gf

max := chase(Ifmax,Σ
f
st);

18 add Gf
max to G;

19 δ(Tf) := fit({ShExpr(G, f(x)) | G ∈ G});
20 end
21 return S = (T, δ);

Algorithm 5 begins with the definition of the set of types T obtained from the IRI

constructors that appeared in the subject position of a st-tgd in Σst. For each type Tf

in T, we compute its shape definition as follows. We construct all the minimal models

6.4. SOUNDNESS 191

and the maximal model. Then we fit the set of shape expressions obtained from each

model, and assign the fitted shape expression to the shape definition of Tf .

6.4 Soundness

Now, we show that M3 is sound using the notion of embedding.

Theorem 6.4.1 (Soundness). Let S be a shapes schema obtained by M3. It holds that S

is sound w.r.t. Ed.

Proof. Let S be the shapes schema obtained with M3. Take G ∈ T (Ed). We construct

implicitly the typing of G by using the type of a node n ∈ nodes(G) that corresponds

to the IRI constructor used to construct n. We prove that G ∈ LC(S). Let GS be the

shape graph of S. By definition, a graph G |= S if there is an embedding R from G

in GS. We construct a relation R and show it is an embedding. Let R = {(n, T) ∈

nodes(G) × nodes(GS) | T ∈ typing(n)}. We take two nodes n ∈ nodes(G) and

T ∈ nodes(GS) and show there is a witness of simulation of n by T . Take (n, p,m) ∈

outG(n). By construction of shape expressions of minimal and maximal models, we

know there is a triple constraint with the predicate label p and the type of the target node

i.e., p :: T ′µ ∈ δ(T) for some µ multiplicity and some T ′ the target type of m. Thus,

(T, (p, µ), T ′) ∈ GS. Then, we define the function λ : outG(n) → outGS
(T). Because

we have constructed implicitly the types of G, then for every outgoing edge of n there

is an outgoing edge in outGS
(T). Because T ′ ∈ typing(m), (m,T ′) ∈ R.

Now, we take (T, (q, µ), T ′) ∈ outGS
(T) and show by contradiction that

⊕
{occurG((n, q, o)) | (n, q, o) ∈ outG(n),

λ((n, q, o)) = (T, (q, µ), T ′)} ⊆ occurGS
((T, (q, µ), T ′).

So we have two possible cases one corresponding the lower bound and the other corre-

sponding the upper bound

1. {0, . . .} 6⊆ {1, . . .}

2. {1, 2, . . .} 6⊆ {1}

192 CHAPTER 6. SHAPES SCHEMA ELICITATION

For the first case, we assume G has no outgoing edges from n with q and target type of

the node being T ′ and assume the shape definition for T requires at least one outgoing

edge with q to a node of type T ′. By construction of the shape expression in M3, there

is a st-tgd σ ∈ Σst of the form

ϕ(u, v)⇒ Triple(f(u), q, v)

that is triggered in some locally-chased canonical instance Iσ′ of some mapping σ′. By

construction of Iσ′ , there is set of inclusion dependencies Σind that have been applied

from the canonical source instance of σ′ such that body(σ) has been triggered. Because

G ∈ T (Ed), there is an instance I ∈ Inst(R) such that I ∪ G |= Σst. Since σ ∈ Σst

and G does not have an outgoing edge from n with q, then there is no homomorphism

h(body(σ)) ⊆ I . Because σ′ ∈ Σst and not restriction is given of σ′, we assume

that there is h′(body(σ′)) ⊆ I . Since Σind exist and the value flow dependency graph

indicates that value from the position must be send to the marked position that appears

in the body of σ, then I must satisfy Σind. However, no homomorphism is in the body

of σ. Thus, I does not satisfy Σind and I 6∈ Inst(R); a contradiction.

For the second case, we assume G has more than one outgoing edge from n with q

and target type of the node being T ′ and assume the shape definition for T restricts to

have only one outgoing edge with q to a node of type T ′. By construction of the shape

expression by M3, there is σ ∈ Σst of the form ϕ(x, y) ⇒ Triple(f(x), q, y) that is

triggered in every minimal model and maximal model for T . Also, there is a functional

dependency ρ ∈ Σfd that is applied such that in the construction of the maximal model

for T , some values in the saturated instance for T are equated and from these values one

is used to generate a triple with q. This implies that there is some relation in ϕ(x, y)

such that the attributes in positions of x implies y. Because G ∈ T (Ed), there is an

instance I ∈ Inst(R) such that I ∪ G |= Σst. We apply backwards the mappings on G

and have that for σ ∈ Σst there must be different homomorphisms that assign variables

of σ to constant values such that h1(y) 6= h2(y) 6= Because there is a functional

dependency ρ ∈ Σfd, on the attributes corresponding to x, then those constant values

will be equated. Then I 6∈ Inst(R); a contradiction.

6.5. COMPLETENESS 193

6.5 Completeness

We identify a class of mappings where M3 algorithm is complete i.e., for any schema-

less data exchange setting in such class, the constructed target schema is complete. This

class is based on the classical translation of an entity-relationship diagram to mappings.

We recall the notion of an entity-relationship diagram and present a natural translation

to a schema-less data exchange setting with the following example.

Example 6.5.1. Consider ER diagram show in Figure 6.8. This diagram presents two

entities Project and Supervisor and the relationship manages that connects these two

entities. The entity Project has two attributes: id and title where the attribute id is

the key. The entity Supervisor has three attributes: id , name and office. The key

attribute of this entity is id . The orientation of relationship manages , , indicates that

we forbid a project to exist if there is no supervisor that organizes it and that for each

project there is at most one supervisor that manages it. The orientation of relationship

oversees indicates for each project zero or more supervisors can oversee it and every

supervisor can oversee zero or more projects. We use the classical translation of ER

Project

id

title manages

oversees

Supervisor

id

name

office

Figure 6.8: An example of ER diagram.

diagram to relational schema [Garcia-Molina et al. 2009]. For instance, for the entity

Project , we create a relation with the attributes id and title. We create primary key

in the relation with the key attribute of the entity Project . Because the entity Project

has a referential constraint to Supervisor , then we add the key of the entity Supervisor

as an attribute to the relation. Because of this relationship, we create the following

inclusion dependency Project [idSup] ⊆ Supervisor [id]. We do the same for entity

Supervisor . Next, we treat the relationship oversees . We create a relation with this

name and use the primary keys of Project and Supervisor as the attributes of the relation

Oversees . The primary key of this relation is all the attributes. We obtain the following

194 CHAPTER 6. SHAPES SCHEMA ELICITATION

relational schema with three relations Project(id , title, idSup), Supervisor(id , name)

and Oversees(idProj , idSup) and the set of source dependencies (left fds and right

inclusion dependencies).

Project : id → id title idSup Project [idSup] ⊆ Supervisor [id]

Supervisor : id → id name office Oversees [idProj] ⊆ Project [id]

Oversees : idProj idSup → idProj idSup Oversees [idSup] ⊆ Supervisor [id]

Now, from this ER diagram and assuming the relational schema is constructed as

above, we construct a set of mappings as follows. For every entity, we identify the

relation that corresponds to it, assign a unique IRI constructor and for every attribute

related to the entity, we create a mapping with objects as literals. If the relation has

any referential keys due to a relationship with orientation , then a mapping is created

with object as IRI node where the IRI constructor is the one assigned to the entity

and the argument is the key attributes. For instance, mapping (6.21) is created from

relation with referential constraint. The subject in these mappings is composed of the

IRI constructor assigned to the entity and the primary key of the entity. Next, for every

relationship between E1 and E2 with orientations and , we create a mapping with

subject composed of the IRI constructor assigned to E1 and the argument is the key

attributes of E1, the predicate is the name of the relation, and the object composed of

the IRI constructor assigned to E2 and the argument of this object is the key attributes

of E2. For instance, mapping (6.25). We obtain the following mappings:

Project(id , title, idSup)⇒ Triple(pro2iri(id), id, id), (6.19)

Project(id , title, idSup)⇒ Triple(pro2iri(id), title, title), (6.20)

Project(id , title, idSup)⇒ Triple(pro2iri(id),manages, sup2iri(idSup)),

(6.21)

Supervisor(id , name, office)⇒ Triple(sup2iri(id), id, id), (6.22)

Supervisor(id , name, office)⇒ Triple(sup2iri(id), name, name), (6.23)

Supervisor(id , name, office)⇒ Triple(sup2iri(id), office, office), (6.24)

Oversees(idPro, idSup)⇒ Triple(pro2iri(idPro), oversees, sup2iri(idSup))

(6.25)

6.5. COMPLETENESS 195

where pro2iri and sup2iri are the IRI constructors assigned to entities Project and

Supervisor .

The output of M3 with this schema-less data exchange setting composed of the

relational schema obtained above, the set of mappings obtained from the ER diagram,

and the IRI constructors assigned to the entities, is the following shapes schema.

TProj → id :: Lit1; title :: Lit1; manages :: T 1
Sup ; oversees :: T *

Sup .

TSup → id :: Lit1; name :: Lit1; office :: Lit1.

This shapes schema is a complete schema.

Our claim holds for a subclass of ER diagrams, which we introduce next. An entity-

relation (ER) diagram is a graphical language used to design databases. This language

uses entities and relations. A entity is a class of objects of the same type. An object

is described by a set of attributes, where a subset of them is used to identify the object

within the class. A relationship connects two entities E1 and E2. We distinguish three

types of relationship: many-to-many relationship, many-to-one relationship, and many-

to-one with referential integrity constraint. The first type indicates that an object of E1

can be related with many objects of E2 and vice-versa. The second type indicates that

two objects of E2 cannot be related with the same object of E1. The third type indicates

that an object of E1 must be related with an object of E2 and at most one.

We assume an infinite set of names N. We identify the set of entity names Ent ⊆

N, the set of attribute names A ⊆ N and the set of relation names Rel ⊆ N. We

assume that these sets are pairwise disjoint. Formally, a flat ER diagram is a tuple

ER = (Ent ,Rel , src, tgt , attr , key , orient) where

• Ent is the set of entities, which are the set of nodes,

• Rel is the set of edges,

• src : Rel → Ent and tgt : Rel → Ent identify respectively, the origin entity of

the relationship and the end entity of the relationship,

• attr : Ent → 2A assigns to an entity a finite set of attributes,

196 CHAPTER 6. SHAPES SCHEMA ELICITATION

• the function key : Ent → 2A assigns to every entity E ∈ Ent a finite set of

attributes A ⊆ attr(E) that is a key.

• orient : Rel → { , , } specifies the type of a relation as follows. The symbol

specifies the many-to-many relationship. The symbol specifies the many-to-

one relationship and the last symbol specifies the many-to-one relationship with

referential integrity constraint.

By rel -schema(ER), we denote the standard function of constructing a relational

schema from a ER diagram presented in Example 6.5.1. Formally, rel -schema(ER) =

(R, attrs ,Σfd,Σind) where

• R = {RE | ∃E ∈ Ent . } ∪ {Rr | ∃r ∈ Rel . orient(r) ∈ { , }} .

• For every E ∈ Ent , there is RE ∈R such that

– if there is no r ∈ Rel such that src(r) = E and orient(r) = , then

attrs(RE) = attr(E).

– if there exists r ∈ Rel such that src(r) = E and orient(r) = , then

attrs(RE) = attr(E) ∪⋃
{key(E ′) | r ∈ Rel . orient(r) = , src(r) = E,

tgt(r) = E ′}.

• the set of functional dependencies is

Σfd = {RE : A→ B | ∃E ∈ Ent . 6 ∃r ∈ Rel . src(r) = E, orient(r) = ,

A = key(E), B = attr(E)} ∪

{RE : A→ B | ∃E ∈ Ent .∀r ∈ Rel . src(r) = E, orient(r) = ,

A = key(E),

B =
⋃
{key(E ′) | r ∈ Rel . orient(r) = , src(r) = E, tgt(r) = E ′}} ∪

{Rr : A→ A | ∃r ∈ Rel . orient(r) = , A = key(E1) ∪ key(E2)} ∪

{Rr : A→ B | ∃r ∈ Rel . orient(r) = , A = key(E1), B = key(E2)}

6.5. COMPLETENESS 197

• the set of inclusion dependencies is

Σind = {Rr[A] ⊆ RE1 [A], Rr[B] ⊆ RE2 [B] | ∃r ∈ Rel . orient(r) ∈ { , },

src(r) = E1, tgt(r) = E2, A = key(E1), B = key(E2)} ∪

{RE1 [A] ⊆ RE2 [A] | ∃r ∈ Rel . orient(r) = , src(r) = E1, tgt(r) = E2,

A = key(E2)}

We introduce a function, denoted by mapping that takes an ER diagram and returns

a schema mapping from relational schema to graphs. By mapping(ER), we denote

the set of mappings constructed from an ER diagram. In this function, the set of IRI

constructors is defined as F = {fE | E ∈ Ent}. First, we construct its relational

schema and the construction of the set of mappings is as follows. For every E ∈ Ent ,

we assign a unique IRI constructor fE and let RE ∈R be the corresponding relation to

E of the form

RE(x, a1, . . . , an,y1, . . . ,yk)

where

• x corresponds to the primary key,

• a1, . . . , an to the attributes of the entity,

• each y1, . . . ,yk corresponds to each many-to-one relationship with referential in-

tegrity constraints of E i.e., there is an inclusion dependency RE[yl] ⊆ REl
[x′]

where l ∈ {1, . . . , k} with k being the number of many-to-one relationship with

referential integrity constraints, and

• x′ corresponds to the primary key of REl
.

For each corresponding many-to-one relationship with referential integrity constraint,

we denote as ql where l ∈ {1, . . . , k}. Then, we create the following mappings for E:

RE(x, a1, . . . , an,y1, . . . ,yk)⇒ Triple(fE(x), ai, ai)

RE(x, a1, . . . , an,y1, . . . ,yk)⇒ Triple(fE(x), ql, fEi
(yl))

198 CHAPTER 6. SHAPES SCHEMA ELICITATION

where i ∈ {1, . . . , n}.

For every many-to-many relationship and many-to-one relationship r between two

entities E1 and E2, there is a relation of the form Rr(y, z) where y and z correspond to

the primary key of E1 and E2, respectively. Moreover, there are two inclusion depen-

dencies Rr[y] ⊆ RE1 [y] and Rr[z] ⊆ RE2 [z
′]. Then, we create the following mapping

Rr(y, z)⇒ Triple(fE1(y), r, fE2(z)),

where fE1 and fE2 are two IRI constructors assigned to E1 and E2, respectively.

Interestingly, from a given ER diagram, we can produce a shapes schema for graphs

representing the information that is modeled by the ER diagram. This is a natural con-

struction. By, sh-schema(ER) we denote the function of constructing a shapes schema

as follows. For every entity E ∈ Ent , we assign a distinguish type TE and for every

attribute of E, we create a triple constraint where the attribute name is the property la-

bel and the target type is Lit . For every relationship of E that relates some other entity

E ′ ∈ Ent , we create a triple constraint where the property label is the name of the re-

lationship and the target type is E ′. The multiplicity of each triple constraint where the

target type is not a literal is assigned according to the type of relationship.

• If the relationship is many-to-one with referential integrity constraint, then the

multiplicity is 1 because this relationship allows an object of E to be related with

at most one object of E ′ and since the object is identified by some key, then is one

to one object.

• If relationship is many-to-many, then the multiplicity is * because this relationship

allows an object of E to be related with zero or more objects of E ′.

• If relationship is many-to-one, then the multiplicity is ? because this relationship

does not allow two objects of E to be related with the same object of E ′ i.e, a

object of E is related with zero or one object of E ′.

Otherwise, if the target is Lit , then the multiplicity is 1. Formally, sh-schema(ER) =

(T, δ) where

• the set of types is T = {TE | E ∈ Ent},

6.5. COMPLETENESS 199

• for every type TE its shape definition is

δ(TE) = {a :: Lit | a ∈ attr(E)} ∪

{r :: T 1
E′ | r ∈ Rel , src(r) = E, tgt(r) = E ′, orient(r) = } ∪

{r :: T *
E′ | r ∈ Rel , src(r) = E, tgt(r) = E ′, orient(r) = } ∪

{r :: T ?
E′ | r ∈ Rel , src(r) = E, tgt(r) = E ′, orient(r) = }

Now, we claim the following theorem.

Theorem 6.5.2. For any flat ER diagram ER, let F be defined in mapping(ER) and let

EER
d = (rel -schema(ER),mapping(ER),F), it holds that

ER.1 M3 on EER
d returns sh-schema(ER),

ER.2 sh-schema(ER) is a sound and complete shapes schema for EER
d .

Proof. Take a flat ER diagram ER. The proof of ER.1 follows from construction of the

algorithm and definition of sh-schema(ER) i.e., all the predicates in Σst come from re-

lationships and attributes that are mapped to property labels as done in sh-schema(ER)

and each triple constraint obtained by M3 is in sh-schema(ER) and the multiplicities

are the same.

Now, we prove ER.2 by proving that M3 is sound and complete for EER
d . By Theo-

rem 6.4.1 and because EER
d is a subclass of a schema-less data exchange setting, M3 is

sound for EER
d .

Now, we prove completeness of M3. Let S = sh-schema(ER). Take a graph

G ∈ LC(S). Assume G uses IRI nodes of the form f(k1, . . . , kn) for some f ∈ F,

ki ∈ Const where i ∈ {1, . . . , n} and n = |key(E)| for some E ∈ Ent and f cor-

responds to E. We apply backwards the mappings on G obtaining an instance I . The

form of mapping(ER) and S ensures that the backchase step is well-defined as follows.

If we take a node n ∈ nodes(G) then every outgoing edge label of n is either attribute

or relationship name, other kind of label is not accepted by S. Since every attribute

and relationship name is considered in rel -schema(ER), then for every outgoing edge

of n, there is tuple in a relation with the values of the source and target node. For

200 CHAPTER 6. SHAPES SCHEMA ELICITATION

instance, Triple(f(1), a, 3), we have a fact R(1, . . . , 3, . . .). Also, no two st-tgds ob-

tained by mapping(ER) have same subject and predicate and every argument of an IRI

constructor is a primary key in the relation that appears in the body of a st-tgd.

We prove by contradiction that I satisfies the set of dependencies of R. Assume that

I 6|= ΣR. Then, there are two possible cases.

• Not satisfying key constraints. It implies that

1. we have {R(d, a1, . . . , am), R(d, b1, . . . , bm)} ⊆ I for some a1, . . . , am ∈

Const, b1, . . . , bm ∈ Const and d ∈ Const such that for every i ∈ {1, . . . ,m},

it holds that ai 6= bi, and

2. there is R(x, a1, . . . , am,y1, . . . ,yk) in the relational schema where x is the

key for R.

Because x is a key in R and by definition of mapping(ER), x is used in some

IRI constructor f ∈ F, then M3 obtains for Tf a triple constraint a :: Lit1 for

some a ∈ attrs(R). From (1) and mapping(ER), there is mapping with IRI

constructor f assigned to R and predicate a in its triple atom. Because I is

obtained by applying backwards the mappings, G contains at least the triples

{(f(d), a, ak), (f(d), a, bk)} for some k ∈ {1, . . . ,m}. Since G ∈ LC(S) and

the shape definition for Tf has a :: Lit1, then G 6|= S; a contradiction.

• Not satisfying a foreign key. It implies that for a fact in I such as the following

R(d, a1, . . . , an,b1, . . . ,bk) ⊆ I , there is no fact with P (bl, c1, . . . , cm) ⊆ I

for some d ∈ Const, some vector of constants bl and some constants c1, . . . , cm

where l ∈ {1, . . . , k} and there is an inclusion dependency R[bk] ⊆ P [bk]. We

choose l ∈ {1, . . . , k} and u ∈ {1, . . . ,m}, and by mapping(ER), we identify

two mappings

R(x, a1, . . . , an,y1, . . . ,yk)⇒ Triple(f(x), ql, g(yl))

P (x′, z1, . . . , zm)⇒ Triple(g(x′), zu, zu)

where f, g ∈ F and f is assigned to R, and g is assigned to P . M3 obtains for

Tg a triple constraint zu :: Lit1. Because I is obtained by applying backwards the

6.5. COMPLETENESS 201

mappings, then G contains triple Triple(f(d), ql, g(bl)) and does not contain an

outgoing edge with zu from g(bl); a contradiction because the shape definition

for Tg has zu :: Lit1 and G ∈ LC(S).

Now, let chase(I,Σst) = G′. We prove by contradiction that G′ ∼= G. For the ⇒

direction, take a node n ∈ nodes(G′) and assume n not in G′. Since every node is

produced by the application of an IRI constructor then let be f the IRI constructor. The

assumption only is possible if f(x) = n and f(x) = m being m in G′; a contradiction

because the IRI constructor only generates precisely one IRI value. For the⇐ direction,

take a triple (n, a,m) ∈ G and assume this triple is not in G′. By construction of shape

expressions of minimal and maximal models and G ∈ LC(S), then there is a triple

constraint with a ::T µ for some T ∈ T and some µ ∈ {1, ?, +, *} and there is a mapping

σ with predicate a in the head atom. Since we applied backwards the mappings to obtain

I , we know there is a homomorphism h such that h(body(σ)) ⊆ I . We chase I with the

mappings and we obtain that (n, a,m) is in G′; a contradiction.

Given a flat ER diagram ER, we introduce a class of relational schemas that char-

acterizes rel -schema(ER). A relational schema R = (R, attrs ,Σfd,Σind) is flat if for

every R ∈R, it holds that

• for every fd of the form R : A → B in Σfd for some A ⊆ attrs(R), it holds that

B = attrs(R),

• for every inclusion dependency of the form R[A] ⊆ P [B] for some P ∈ R,

A ⊆ attrs(R), B ⊆ attrs(P), we have that

– B is the primary key of P ,

– if A ⊆ K where K is the primary key of R, then there is a relation Q ∈ R

such that the set E = attrs(R) \A has an inclusion dependency of the form

R[E] ⊆ Q[E ′] for some E ′ ⊆ attrs(Q),

– there is no inclusion dependency of the form P [B] ⊆ R[A].

A schema-less data exchange setting is flat if the relational schema is flat, and the set

of mappings has a single body atom, the subject is used as key in the relation and there

are no two st-tgds with the same subject and predicate. It is easy to see that the setting

202 CHAPTER 6. SHAPES SCHEMA ELICITATION

EER
d = (rel -schema(ER),mapping(ER),F) where F is defined in mapping(ER) is

flat.

The following theorem follows from Theorem 6.5.2.

Theorem 6.5.3. M3 is sound and complete elicitation algorithm for every flat schema-

less data exchange setting obtained from flat ER diagram.

6.6 Negative results

It is possible to conceive an algorithm that is complete for a larger class of schema-less

data exchange settings. However, in this section, we present two results that identify the

inherent limitations of the task of producing a sound and complete schema. First, we

show that a sound and complete output may be exponential.

Theorem 6.6.1. For any n ∈ N, there exists a relational schema and set of mappings of

size polynomial in n such that the complete target schema has at least 2n − 1 types.

Proof. For n ∈ N, we construct a relational schema Rn with n + 1 relations R =

{R(x), P1(x, y1, y2), . . . , Pn(x, y1, y2)} with the indicated key constraint and n inclu-

sion dependencies Pi[x] ⊆ R[x] for i ∈ {1, . . . , n}. The set of mappings Σst consists

of

R(x) ∧ Pi(x, y1, y2)⇒ Triple(f(x), pi, y1) ∧ Triple(f(x), qi, y2)

for i ∈ {1, . . . , n} and some f ∈ F.

Suppose we have a sound and complete schema S and assume by contradiction that

S has less than 2n − 1 types. We take a enumeration (X1, . . . , X2n−1) of the collection

P({1, . . . , n})\{∅} of non-empty subsets of {1, . . . , n}. Then, we construct an instance

as follows:

I = {R(i) | 0 ≤ i ≤ 2n − 1} ∪ {Pj(i, a, b) | 1 ≤ j ≤ n, 1 ≤ i ≤ 2n − 1, j ∈ Xi}.

Applying the mappings, we obtain a graph G with 2n IRI nodes n1, . . . , n2n such that

ni = f(i) for i ∈ {1, . . . , 2n − 1}.

Now, we type the set of nodes of G against S. Because S has less than 2n − 1

types, there are two nodes ni and nj that has the same type T where i 6= j for some

6.6. NEGATIVE RESULTS 203

i, j ∈ {1, . . . , 2n − 1}. We know Xi ÷ Xj 6= ∅ because i 6= j. We observe that

for l ∈ Xi ∩ Xj , both ni and nj have outgoing edges labeled with both pl and ql.

Therefore, the type T has in its shape definition for any l ∈ Xi ∩Xj , pl :: Litµ for some

µ ∈ {+, ?} and ql :: Litµ
′

for some µ′ ∈ {+, ?}. On the other hand, we observe that for

any l ∈ Xi÷Xj , one of the nodes ni or nj has two outgoing edges pl, ql while the other

has none. Therefore, the type T has in its shape definition for any l ∈ Xi÷Xj , pl :: Litµ

for some µ ∈ {?, *} and ql :: Litµ
′

for some µ′ ∈ {?, *}.

Since Xi÷Xj 6= ∅, we choose l ∈ Xi÷Xj and construct a graph G′ such that there

is a node m ∈ nodes(G′) that has the common parts from nodes ni, nj ∈ nodes(G) and

one outgoing edge with pl and no outgoing edge with ql. More precisely, we obtain

G′ = {Triple(m, pk, a) | k ∈ Xi ∩Xj} ∪

{Triple(m, qk, b) | k ∈ Xi ∩Xj} ∪ {Triple(m, pl, a)}.

We observe that m has type T and, therefore, G′ ∈ LC(S). Since the shapes schema

is complete, then there must exist an instance such that application of Σst produces an

isomorphic graph to G′. We evaluate the rules that can be triggered to produce G′ and

must contain at least the following set of facts.

{R(c)} ∪ {Pk(c, a, b) | k ∈ Xi ∩Xj} ∪ {Pl(c, a,⊥)},

for some c ∈ Const. We observe that the set of facts {R(c), Pl(c, a,⊥)} triggers the rule

R(x) ∧ Pl(x, y1, y2)⇒ Triple(f(x), ql, y2)

causing thatm has an outgoing edge from with label ql i.e., when applying the mappings

we obtain a graphG′′ different fromG′. Contradiction, the shapes schema needs to have

at least 2n − 1 types.

Next, we show that a sound and complete schema may not exist.

Theorem 6.6.2. There is a schema-less data exchange settingEd that does not admit a

complete target schema w.r.t. Ed.

Proof. Let the relational schema be presented in Figure 6.9 and the set of mappings Σst

204 CHAPTER 6. SHAPES SCHEMA ELICITATION

be as follows.

R(x, y)⇒ Triple(f(x), r, f(y)) (6.26)

P (x, y)⇒ Triple(f(x), q, g(y)) (6.27)

P (x, y) ∧R(x, z)⇒ Triple(g(y), p, f(z)) (6.28)

Figure 6.9 indicates the following inclusion dependencies:

R
x y

P
x y

Q
y w

Figure 6.9: A relational schema.

R[x] ⊆ R[y] R[y] ⊆ R[x]

Q[x] ⊆ P [y] P [y] ⊆ Q[x]

P [x] ⊆ R[x]

We prove by contradiction. Assume there is a complete shapes schema S such that

a graph recognized by the language can have the triangle pattern. Let

I0 = {R(2, 2), R(1, 2), P (1, 1), Q(1, 3)}

be an instance of the relational schema. The graph produced by the mappings is pre-

sented in Figure 6.10a. Since the graph satisfies the schema, then we assume that there

are the types T1, T2 and T3 such that T1 is assigned to f(1), T2 is assigned to f(2) and

T3 is assigned to g(1). We observe the triangle pattern present in this graph. We break

this pattern by cloning the node f(2) such that for every outgoing edge of f(2), we add

the same outgoing edge in the cloned node having r-edge that goes from the cloned

node to f(2). Let this cloned node be f(4). Then, we redirect the p-edge from g(1) to

be f(4). Then, we assign the type T2 to f(4). Thus, we obtain a graph G′ shown in

Figure 6.10b. We observe that G′ satisfies the schema because G′ is bisimilar to G. In

particular, f(4) must satisfy T2. Take the instance that constructs an isomorphic graph

6.7. CONCLUSION 205

to the one presented in Figure 6.10b. For edge from f(1) to f(2), we obtain the fact

R(1, 2) and for edge f(1) to g(1), we obtain the facts P (1, 1). But, we observe that this

set of facts {R(1, 2), P (1, 1)} triggers rule (6.28) adding new edge from g(1) to f(2)

to G′ obtaining the triangle pattern. Contradiction because the graph obtained from the

application of the mapping to the instance chosen is different from G′.

f(1)

T1

f(2)T2

g(1)

T3

r

q

p

r

(a) Graph G produced by Σst on I0

f(1)

T1

f(2)T2 f(4) T2

g(1)

T3

r

q

p

r

r

(b) Graph G′ obtained from breaking pattern

Figure 6.10: Graphs recognized by LC(S).

6.7 Conclusion

We have investigated the problem of shapes schema elicitation that aims at construct-

ing a target schema for a schema-less relational to RDF data exchange setting, which

is composed of the relational schema, set of mappings from relational schema to RDF

graph and library of IRI constructors. This is a practically important problem in the

context of the Web, because many RDF graphs on the Web have been exported from re-

lational databases as evidenced by the proliferation of languages for mapping relational

databases to RDF.

We have identified two desirable properties of the target shapes schema, which are

soundness and completeness. The property of completeness of the target schema en-

sures that no trivial solutions are presented for this problem. Our solution is the M3

algorithm based on minimal and maximal models, which produces a sound schema

for every schema-less data exchange setting. We have identified a practical class of

206 CHAPTER 6. SHAPES SCHEMA ELICITATION

schema-less data exchange setting that follows from relational databases modeled by

flat ER diagrams where M3 obtains a complete schema. Finally, we have shown that

the task of producing sound and complete schemas has inherent limitations: a complete

schema may be of exponential size and even the possibility of non existence of complete

schema.

6.8 Related work

Schema elicitation can be generalized as constructing a schema from a set of mappings

between two models and an input schema. We distinguish two kind of models: struc-

tured and semi-structured. By structured models, we mean relational databases where

the schema is fixed i.e., if we add data to a relational database, we need to specify

the schema. By semi-structured models, we mean XML, JSON, RDF databases and

property graphs where we can have a database without specifying the schema. The

problem of schema elicitation is trivial when both models are structured because the

target schema is part of the description and together with the mappings contains all the

information for the construction of the schema. The schema elicitation is relevant when

the target schema is semi-structured.

In the case of mappings from structured model to RDF, to our knowledge there

are no works that have tackled this problem. Our work is the first one in treating this

case. In the case of mappings between XML databases, Groppe and Groppe [Groppe

& Groppe 2008] has consider a variant of this problem because they do not have an

input schema but a set a set of XML documents and the set of mappings is in a XSLT

stylesheet, and the problem aims at constructing a XML Schema [Thompson et al. 2012]

that characterizes the output language. Authors propose an algorithm that analyzes the

XSLT stylesheet where the target schema obtained follows from the mappings. In their

algorithm, there is a merging process and they notice, however, that there is a loss

of information while during the merging. Thus, they do not consider the problem of

completeness and most importantly they do not have an input schema.

Another related problem to schema elicitation is the typechecking problem that con-

sists of evaluating if the target schema is sound w.r.t. an input schema and a set of

mappings. Noga et al. [Alon et al. 2003] has studied decidable cases where a DTD is

6.8. RELATED WORK 207

sound w.r.t. a relational schema and set of mappings. In our approach, we construct a

complete schema and we can see the typechecking as testing the containment between

the target schema provided and the one that we obtained. Also, the schema inference

problem is related with schema elicitation and it consists of constructing a schema from

a set of instances of a model. For instance, Baazizi et al. [Baazizi et al. 2019] infer a

schema from JSON databases, Li et al. [Li et al. 2019] infer a XML schema from a set

of XML documents and Kellou-Menouer and Kedad [Kellou-Menouer & Kedad 2015]

infer a RDF schema from a set of RDF databases. However, we do no present them

because the setting does not consider mappings.

208 CHAPTER 6. SHAPES SCHEMA ELICITATION

Conclusion

In this manuscript, we have investigated data exchange from relational databases to RDF

graphs with target shapes schemas. We have presented different problems of interest in

the data exchange problem due to the consideration of target schemas and use of declar-

ative formalisms for expressing mappings such as R2RML. To study those problems we

have formalized the constructive relational to RDF data exchange setting that captures

a large fragment of R2RML.

For the error-prone process of designing mappings and consistency checking prob-

lem, we have developed a static analysis tool that allows to find non trivial modeling

errors and illustrates them by constructing counter-examples, whose study allows to re-

pair the modeling errors done in the mappings. Moreover, our techniques could poten-

tially be used to manage complex process by decomposing the process into independent

components. The decomposition process allows to lower the complexity and mitigate

this error-prone process. One method to know if decomposition is possible is by testing

independency of rules for which the technique for testing node kind consistency can be

adapted to know if certain triples will appears in both results. Also, we have shown that

checking consistency for a constructive setting is coNP-complete. A future work is to

study redundancy of mappings by identifying mapping rules whose subtraction will not

change anything. However, this problem requires additional techniques that we do not

have study because redundancy is a a problem of containment and our techniques are

not enough to solve this problem.

For the problem of certain query answering, we have proposed the notion of univer-

sal simulation solution. This solution has the property of a universal solution because

certain answers for queries that are robust under simulation can be computed. Con-

trasted to other approaches, a universal simulation solution can be constructed for any

209

210 CHAPTER 6. SHAPES SCHEMA ELICITATION

kind of constructive setting. Our contribution of this notion might give the foundation

to know if a solution is good by showing that a solution must preserve the exchanged

information and contain the missing information required by the schema as encoding

of those constraints that are not satisfied. A challenge related to this problem is the

construction of a solution in low complexity. We can construct a minimal-size univer-

sal simulation solution which is exponential in the size of the schema. Compared to

other approaches, we materialize a solution, which is important in the context of data

exchange, and constructs our good solution in low complexity. We have shown that the

data complexity of computing certain answers in a universal simulation solution for for-

ward NRE and any constructive setting is PTIME. Our approach does not follow from

existing results on the standard relational data exchange, which are too limited in their

expressive power. As a future work, we plan to study computing certain answers with

full NRE-based queries and extending to non-Boolean queries.

For the problem of visual mapping language, we have proposed a visual mapping

language (VML) to overcome the barriers of non-expert users in the specification of

mappings. VML uses simple visual representations such arrows, boxes and lines, which

combined make the mapping accessible and of easy use. However, the expressivity

of VML is constrained in the tool to ensure the computation of a solution for a data

exchange setting. We have developed ShERML that uses this language to specify map-

pings and performs the relational to RDF data exchange. This tool is an answer to the

challenge of providing an interface that covers at most as possible the specification of

constructive mappings. As a future work, we plan to extend the capabilities of ShERML

so users can specify mappings with R2VML.

Finally for the problem of schema elicitation, we have defined a non-trivial algo-

rithm that constructs a shapes schema using a method of minimal and maximal models.

We can use this method to measure the quality of other algorithms. For instance, any

other solution that does not recognize a minimal model is not correct, also a solution

that recognizes graphs with more edges than the identified for the maximal model is a

trivial solution. We have identified two properties that makes a target shapes schema a

good schema. This two properties are soundness and completeness. Our algorithm is

sound for every input and complete for a particular class of inputs derived from flat ER

diagrams. As a future work, we plan to identify the precise class of inputs for which our

6.8. RELATED WORK 211

algorithm is complete. Our study also shows that inherent limitations of constructing

target shapes schemas.

Our investigation has been focused on deterministic shapes schema and constructive

st-tgds. It might be interesting to study each problem of interest in a data exchange

setting with non-deterministic shapes schema and non-constructive st-tgds.

212 CHAPTER 6. SHAPES SCHEMA ELICITATION

Bibliography

[Alon et al. 2003] Noga Alon, Tova Milo, Frank Neven, Dan Suciu and Victor Vianu.

Typechecking XML views of relational databases. ACM Trans. Comput. Log.,

vol. 4, no. 3, pages 315–354, 2003.

[Amer-Yahia et al. 2002] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan

and Divesh Srivastava. Tree pattern query minimization. VLDB J., vol. 11,

no. 4, pages 315–331, 2002.

[Arenas & Libkin 2008] Marcelo Arenas and Leonid Libkin. XML data exchange:

Consistency and query answering. J. ACM, vol. 55, no. 2, pages 7:1–7:72,

2008.

[Arenas et al. 2010] Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip Murlak.

Relational and XML data exchange. Synthesis Lectures on Data Management.

Morgan & Claypool Publishers, 2010.

[Arenas et al. 2012] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux and

Juan Sequeda. A Direct Mapping of Relational Data to RDF. https:

//www.w3.org/TR/rdb-direct-mapping/, 2012.

[Arenas et al. 2013] Marcelo Arenas, Pablo Barceló, Ronald Fagin and Leonid Libkin.

Solutions and query rewriting in data exchange. Inf. Comput., vol. 228, pages

28–61, 2013.

[Auer et al. 2010] Sören Auer, Lee Feigenbaum, Daniel Miranker, Angela Fogarolli

and Juan Sequeda. Use Cases and Requirements for Mapping Relational

Databases to RDF, 2010.

213

https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/

214 BIBLIOGRAPHY

[Baazizi et al. 2019] Amine Baazizi, Dario Colazzo, Giorgio Ghelli and Carlo Sartiani.

Parametric schema inference for massive JSON datasets. VLDB J., vol. 28,

no. 4, pages 497–521, 2019.

[Baget et al. 2011] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier and

Eric Salvat. On rules with existential variables: Walking the decidability line.

Artif. Intell., vol. 175, no. 9-10, pages 1620–1654, 2011.

[Bak et al. 2017] Jaroslaw Bak, Michal Blinkiewicz and Agnieszka Lawrynowicz.

User-friendly Visual Creation of R2RML Mappings in SQuaRE. In Valentina

Ivanova, Patrick Lambrix, Steffen Lohmann and Catia Pesquita, editors, Pro-

ceedings of the Third International Workshop on Visualization and Interaction

for Ontologies and Linked Data co-located with the 16th International Seman-

tic Web Conference (ISWC 2017), Vienna, Austria, October 22, 2017, volume

1947 of CEUR Workshop Proceedings, pages 139–150. CEUR-WS.org, 2017.

[Baker et al. 2012] Thomas Baker, Natasha Noy, Ralph Swick and Ivan Herman. Se-

mantic Web Case Studies and Use Cases, 2012.

[Barceló et al. 2011] Pablo Barceló, Leonid Libkin and Juan L. Reutter. Querying

graph patterns. In Maurizio Lenzerini and Thomas Schwentick, editors, Pro-

ceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece,

pages 199–210. ACM, 2011.

[Barceló et al. 2013] Pablo Barceló, Jorge Pérez and Juan L. Reutter. Schema mappings

and data exchange for graph databases. In Wang-Chiew Tan, Giovanna Guer-

rini, Barbara Catania and Anastasios Gounaris, editors, Joint 2013 EDBT/ICDT

Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages

189–200. ACM, 2013.

[Barceló 2009] Pablo Barceló. Logical foundations of relational data exchange. SIG-

MOD Rec., vol. 38, no. 1, pages 49–58, 2009.

[Beeri & Vardi 1984] Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data

Dependencies. J. ACM, vol. 31, no. 4, pages 718–741, 1984.

BIBLIOGRAPHY 215

[Ben-Kiki et al. 2009] Oren Ben-Kiki, Clark Evans and Brian Ingerson. YAML Ain’t

Markup Language (YAML), 9 2009.

[Benedikt et al. 2005] Michael Benedikt, Wenfei Fan and Gabriel M. Kuper. Structural

properties of XPath fragments. Theor. Comput. Sci., vol. 336, no. 1, pages 3–31,

2005.

[Benedikt et al. 2017] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca,

Boris Motik, Paolo Papotti, Donatello Santoro and Efthymia Tsamoura. Bench-

marking the Chase. In Emanuel Sallinger, Jan Van den Bussche and Floris

Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems, PODS 2017, Chicago, IL, USA,

May 14-19, 2017, pages 37–52. ACM, 2017.

[Bienvenu et al. 2013] Meghyn Bienvenu, Magdalena Ortiz and Mantas Simkus. Con-

junctive Regular Path Queries in Lightweight Description Logics. In Francesca

Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Confer-

ence on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 761–

767. IJCAI/AAAI, 2013.

[Bojańczyk et al. 2013] Mikołaj Bojańczyk, Leszek A. Kołodziejczyk and Filip

Murlak. Solutions in XML data exchange. Journal of Computer and System

Sciences, vol. 79, no. 6, pages 785 – 815, 2013. JCSS Foundations of Data

Management.

[Boneva et al. 2015] Iovka Boneva, Angela Bonifati and Radu Ciucanu. Graph Data

Exchange with Target Constraints. In Peter M. Fischer, Gustavo Alonso,

Marcelo Arenas and Floris Geerts, editors, Proceedings of the Workshops of the

EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March

27th, 2015, volume 1330 of CEUR Workshop Proceedings, pages 171–176.

CEUR-WS.org, 2015.

[Boneva et al. 2017] Iovka Boneva, José Emilio Labra Gayo and Eric G.

Prud’hommeaux. Semantics and Validation of Shapes Schemas for RDF.

In Claudia d’Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy

216 BIBLIOGRAPHY

Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange and Jeff

Heflin, editors, The Semantic Web - ISWC 2017 - 16th International Semantic

Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I,

volume 10587 of Lecture Notes in Computer Science, pages 104–120. Springer,

2017.

[Boneva et al. 2018] Iovka Boneva, Jose Lozano and Slawomir Staworko. Relational

to RDF Data Exchange in Presence of a Shape Expression Schema. In Dan

Olteanu and Barbara Poblete, editors, Proceedings of the 12th Alberto Mendel-

zon International Workshop on Foundations of Data Management, Cali, Colom-

bia, May 21-25, 2018, volume 2100 of CEUR Workshop Proceedings. CEUR-

WS.org, 2018.

[Boneva et al. 2019] Iovka Boneva, Jose Martin Lozano Aparicio and Slawomir Sta-

worko. ShERML: Mapping Relational Data to RDF. In Mari Carmen Suárez-

Figueroa, Gong Cheng, Anna Lisa Gentile, Christophe Guéret, C. Maria Keet

and Abraham Bernstein, editors, Proceedings of the ISWC 2019 Satellite Tracks

(Posters & Demonstrations, Industry, and Outrageous Ideas) co-located with

18th International Semantic Web Conference (ISWC 2019), Auckland, New

Zealand, October 26-30, 2019, volume 2456 of CEUR Workshop Proceedings,

pages 213–216. CEUR-WS.org, 2019.

[Boneva et al. 2020] Iovka Boneva, Jose Lozano and Slawek Staworko. Consistency

and Certain Answers in Relational to RDF Data Exchange with Shape Con-

straints. CoRR, 2020.

[Bray et al. 2008] Tim Bray, Jean Paoli, Eve Maler and C.M Sperberg-McQueen. XML

1.0. https://www.w3.org/TR/xml/, 2008.

[Calı̀ et al. 2012a] Andrea Calı̀, Georg Gottlob and Thomas Lukasiewicz. A general

Datalog-based framework for tractable query answering over ontologies. J.

Web Semant., vol. 14, pages 57–83, 2012.

https://www.w3.org/TR/xml/

BIBLIOGRAPHY 217

[Calı̀ et al. 2012b] Andrea Calı̀, Georg Gottlob and Andreas Pieris. Towards more

expressive ontology languages: The query answering problem. Artif. Intell.,

vol. 193, pages 87–128, 2012.

[Calvanese et al. 2005] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

Maurizio Lenzerini and Riccardo Rosati. DL-Lite: Tractable Description Log-

ics for Ontologies. In Manuela M. Veloso and Subbarao Kambhampati, editors,

Proceedings, The Twentieth National Conference on Artificial Intelligence and

the Seventeenth Innovative Applications of Artificial Intelligence Conference,

July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 602–607. AAAI Press /

The MIT Press, 2005.

[Calvanese et al. 2014] Diego Calvanese, Thomas Eiter and Magdalena Ortiz. Answer-

ing regular path queries in expressive Description Logics via alternating tree-

automata. Inf. Comput., vol. 237, pages 12–55, 2014.

[Ciucanu 2015] Radu Ciucanu. Cross-Model Queries and Schemas: Complexity and

Learning. PhD thesis, University of Lille, 2015.

[Console & Lenzerini 2014] Marco Console and Maurizio Lenzerini. Data Quality in

Ontology-based Data Access: The Case of Consistency. In Proceedings of the

Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,

Québec City, Québec, Canada, pages 1020–1026, 2014.

[Corman et al. 2018] Julien Corman, Juan L. Reutter and Ognjen Savkovic. Semantics

and Validation of Recursive SHACL. In Denny Vrandecic, Kalina Bontcheva,

Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,

Lucie-Aimée Kaffee and Elena Simperl, editors, The Semantic Web - ISWC

2018 - 17th International Semantic Web Conference, Monterey, CA, USA, Oc-

tober 8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in Com-

puter Science, pages 318–336. Springer, 2018.

[Cruz et al. 1987] Isabel F. Cruz, Alberto O. Mendelzon and Peter T. Wood. A Graph-

ical Query Language Supporting Recursion. In Umeshwar Dayal and Irving L.

218 BIBLIOGRAPHY

Traiger, editors, Proceedings of the Association for Computing Machinery Spe-

cial Interest Group on Management of Data 1987 Annual Conference, San Fran-

cisco, CA, USA, May 27-29, 1987, pages 323–330. ACM Press, 1987.

[Das et al. 2011] Souripriya Das, Seema Sundara and Richard Cyganiak. R2RML: RDB

to RDF Mapping Language. http://www.w3.org/TR/r2rml/, 2011.

[David et al. 2010] Claire David, Leonid Libkin and Filip Murlak. Certain answers for

XML queries. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of the

Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA,

pages 191–202. ACM, 2010.

[de Rougemont & Vieilleribière 2007] Michel de Rougemont and Adrien Vieil-

leribière. Approximate Data Exchange. In Database Theory - ICDT 2007, 11th

International Conference, Barcelona, Spain, January 10-12, 2007, Proceedings,

pages 44–58, 2007.

[Fagin et al. 2005a] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller and Lucian

Popa. Data exchange: semantics and query answering. Theor. Comput. Sci.,

vol. 336, no. 1, pages 89–124, 2005.

[Fagin et al. 2005b] Ronald Fagin, Phokion G. Kolaitis and Lucian Popa. Data ex-

change: getting to the core. ACM Trans. Database Syst., vol. 30, no. 1, pages

174–210, 2005.

[Fagin et al. 2009] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J.

Miller, Lucian Popa and Yannis Velegrakis. Clio: Schema Mapping Creation

and Data Exchange. In Alexander Borgida, Vinay K. Chaudhri, Paolo Giorgini

and Eric S. K. Yu, editors, Conceptual Modeling: Foundations and Applica-

tions - Essays in Honor of John Mylopoulos, volume 5600 of Lecture Notes in

Computer Science, pages 198–236. Springer, 2009.

[Fuxman et al. 2006] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho,

Renée J. Miller, Paolo Papotti and Lucian Popa. Nested Mappings: Schema

Mapping Reloaded. In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet,

http://www.w3.org/TR/r2rml/

BIBLIOGRAPHY 219

Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha and

Young-Kuk Kim, editors, Proceedings of the 32nd International Conference on

Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 67–78.

ACM, 2006.

[Garcia-Molina et al. 2009] Hector Garcia-Molina, Jeffrey D. Ullman and Jennifer

Widom. Database systems - the complete book (2. ed.). Pearson Education,

2009.

[Gayo et al. 2017] José Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva and

Dimitris Kontokostas. Validating RDF data. Synthesis Lectures on the Semantic

Web: Theory and Technology. Morgan & Claypool Publishers, 2017.

[Groppe & Groppe 2008] Sven Groppe and Jinghua Groppe. Output schemas of XSLT

stylesheets and their applications. Inf. Sci., vol. 178, no. 21, pages 3989–4018,

2008.

[Henzinger et al. 1995] Monika Rauch Henzinger, Thomas A. Henzinger and Peter W.

Kopke. Computing Simulations on Finite and Infinite Graphs. In 36th An-

nual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,

USA, 23-25 October 1995, pages 453–462. IEEE Computer Society, 1995.

[Heyvaert et al. 2016] Pieter Heyvaert, Anastasia Dimou, Aron-Levi Herregodts,

Ruben Verborgh, Dimitri Schuurman, Erik Mannens and Rik Van de Walle.

RMLEditor: A Graph-Based Mapping Editor for Linked Data Mappings. In

Harald Sack, Eva Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo

Ponzetto and Christoph Lange, editors, The Semantic Web. Latest Advances and

New Domains - 13th International Conference, ESWC 2016, Heraklion, Crete,

Greece, May 29 - June 2, 2016, Proceedings, volume 9678 of Lecture Notes in

Computer Science, pages 709–723. Springer, 2016.

[Heyvaert et al. 2018] Pieter Heyvaert, Ben De Meester, Anastasia Dimou and Ruben

Verborgh. Declarative Rules for Linked Data Generation at Your Fingertips!

In Aldo Gangemi, Anna Lisa Gentile, Andrea Giovanni Nuzzolese, Sebastian

Rudolph, Maria Maleshkova, Heiko Paulheim, Jeff Z. Pan and Mehwish Alam,

220 BIBLIOGRAPHY

editors, The Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satel-

lite Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers,

volume 11155 of Lecture Notes in Computer Science, pages 213–217. Springer,

2018.

[Hutchins et al. 1985] Edwin Hutchins, James D. Hollan and Donald A. Norman. Di-

rect Manipulation Interfaces. Hum. Comput. Interact., vol. 1, no. 4, pages 311–

338, 1985.

[Jung et al. 2018] Jean Christoph Jung, Carsten Lutz, Mauricio Martel and Thomas

Schneider. Querying the Unary Negation Fragment with Regular Path Expres-

sions. In Benny Kimelfeld and Yael Amsterdamer, editors, 21st International

Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna,

Austria, volume 98 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2018.

[Junior et al. 2017] Ademar Crotti Junior, Christophe Debruyne and Declan

O’Sullivan. Juma: An Editor that Uses a Block Metaphor to Facilitate

the Creation and Editing of R2RML Mappings. In Eva Blomqvist, Katja

Hose, Heiko Paulheim, Agnieszka Lawrynowicz, Fabio Ciravegna and Olaf

Hartig, editors, The Semantic Web: ESWC 2017 Satellite Events - ESWC 2017

Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Revised Selected

Papers, volume 10577 of Lecture Notes in Computer Science, pages 87–92.

Springer, 2017.

[Kellou-Menouer & Kedad 2015] Kenza Kellou-Menouer and Zoubida Kedad. Schema

Discovery in RDF Data Sources. In Paul Johannesson, Mong-Li Lee,

Stephen W. Liddle, Andreas L. Opdahl and Oscar Pastor López, editors, Con-

ceptual Modeling - 34th International Conference, ER 2015, Stockholm, Swe-

den, October 19-22, 2015, Proceedings, volume 9381 of Lecture Notes in Com-

puter Science, pages 481–495. Springer, 2015.

[Knublauch & Kontokostas 2017] Holger Knublauch and Dimitris Kontokostas.

Shapes Constraint Language (SHACL). https://www.w3.org/TR/

shacl/, 2017.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

BIBLIOGRAPHY 221

[Kolaitis 2005] Phokion G. Kolaitis. Schema mappings, data exchange, and meta-

data management. In Chen Li, editor, Proceedings of the Twenty-fourth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

June 13-15, 2005, Baltimore, Maryland, USA, pages 61–75. ACM, 2005.

[Lassila & Swick 1999] Ora Lassila and Ralph Swick. Resource Description Frame-

work (RDF) Model and Syntax Specification. https://www.w3.org/TR/

1999/REC-rdf-syntax-19990222/, 1999.

[Li et al. 2019] Yeting Li, Haiming Chen, Xiaolan Zhang and Lingqi Zhang. An Ef-

fective Algorithm for Learning Single Occurrence Regular Expressions with In-

terleaving. In Proceedings of the 23rd International Database Applications &

Engineering Symposium, IDEAS ’19, New York, NY, USA, 2019. Association

for Computing Machinery.

[Lohse et al. 1994] Gerald L. Lohse, Kevin Biolsi, Neff Walker and Henry H. Rueter. A

Classification of Visual Representations. Commun. ACM, vol. 37, no. 12, pages

36–49, 1994.

[Maier et al. 1979] David Maier, Alberto O. Mendelzon and Yehoshua Sagiv. Testing

Implications of Data Dependencies. ACM Trans. Database Syst., vol. 4, no. 4,

pages 455–469, 1979.

[Marnette et al. 2011] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore

Raunich and Donatello Santoro. ++Spicy: an OpenSource Tool for Second-

Generation Schema Mapping and Data Exchange. Proc. VLDB Endow., vol. 4,

no. 12, pages 1438–1441, 2011.

[Marnette 2009] Bruno Marnette. Generalized Schema-Mappings: From Termination

to Tractability. In Proceedings of the Twenty-eighth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS ’09, pages 13–

22, New York, NY, USA, 2009. ACM.

[Milner 1971] Robin Milner. An Algebraic Definition of Simulation Between Programs.

In D. C. Cooper, editor, Proceedings of the 2nd International Joint Conference

https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

222 BIBLIOGRAPHY

on Artificial Intelligence. London, UK, September 1-3, 1971, pages 481–489.

William Kaufmann, 1971.

[Nikolaou & Koubarakis 2016] Charalampos Nikolaou and Manolis Koubarakis.

Querying incomplete information in RDF with SPARQL. Artif. Intell., vol. 237,

pages 138–171, 2016.

[Pérez et al. 2010] Jorge Pérez, Marcelo Arenas and Claudio Gutiérrez. nSPARQL: A

navigational language for RDF. J. Web Semant., vol. 8, no. 4, pages 255–270,

2010.

[Pichler & Savenkov 2009] Reinhard Pichler and Vadim Savenkov. DEMo: Data Ex-

change Modeling Tool. Proc. VLDB Endow., vol. 2, no. 2, pages 1606–1609,

2009.

[Prud’hommeaux et al. 2018] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra

Gayo and Gregg Kellogg. Shape Expressions Language 2.1. http://shex.

io/shex-semantics/index.html, 2018.

[Raffio et al. 2008] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti and

Mauricio A. Hernández. Clip: a Visual Language for Explicit Schema Map-

pings. In Gustavo Alonso, José A. Blakeley and Arbee L. P. Chen, editors,

Proceedings of the 24th International Conference on Data Engineering, ICDE

2008, April 7-12, 2008, Cancún, Mexico, pages 30–39. IEEE Computer Society,

2008.

[Rodriguez-Muro & Rezk 2015] Mariano Rodriguez-Muro and Martı́n Rezk. Efficient

SPARQL-to-SQL with R2RML mappings. J. Web Semant., vol. 33, pages 141–

169, 2015.

[Sengupta et al. 2013] Kunal Sengupta, Peter Haase, Michael Schmidt and Pascal Hit-

zler. Editing R2RML Mappings Made Easy. In Eva Blomqvist and Tudor Groza,

editors, Proceedings of the ISWC 2013 Posters & Demonstrations Track, Syd-

ney, Australia, October 23, 2013, volume 1035 of CEUR Workshop Proceed-

ings, pages 101–104. CEUR-WS.org, 2013.

http://shex.io/shex-semantics/index.html
http://shex.io/shex-semantics/index.html

BIBLIOGRAPHY 223

[Sequeda et al. 2012] Juan F. Sequeda, Marcelo Arenas and Daniel P. Miranker. On di-

rectly mapping relational databases to RDF and OWL. In Alain Mille, Fabien L.

Gandon, Jacques Misselis, Michael Rabinovich and Steffen Staab, editors, Pro-

ceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon,

France, April 16-20, 2012, pages 649–658. ACM, 2012.

[Shneiderman 1983] Ben Shneiderman. Direct Manipulation: A Step Beyond Program-

ming Languages. Computer, vol. 16, no. 8, pages 57–69, 1983.

[Sicilia et al. 2017] Álvaro Sicilia, German Nemirovski and Andreas Nolle. Map-On:

A web-based editor for visual ontology mapping. Semantic Web, vol. 8, no. 6,

pages 969–980, 2017.

[Staworko & Wieczorek 2019] Slawek Staworko and Piotr Wieczorek. Containment

of Shape Expression Schemas for RDF. In Dan Suciu, Sebastian Skritek and

Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2019, Amster-

dam, The Netherlands, June 30 - July 5, 2019, pages 303–319. ACM, 2019.

[Staworko et al. 2015] Slawek Staworko, Iovka Boneva, José Emilio Labra Gayo,

Samuel Hym, Eric G. Prud’hommeaux and Harold R. Solbrig. Complexity and

Expressiveness of ShEx for RDF. In Marcelo Arenas and Martı́n Ugarte, ed-

itors, 18th International Conference on Database Theory, ICDT 2015, March

23-27, 2015, Brussels, Belgium, volume 31 of LIPIcs, pages 195–211. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[Thompson et al. 2012] Henry Thompson, Noah Mendelson, David Beech and Murray

Maloney. XML Schema Definition Language (XSD). https://www.w3.

org/TR/xmlschema11-1/, 2012.

[Treisman 1985] Anne Treisman. Preattentive processing in vision. Comput. Vis.

Graph. Image Process., vol. 31, no. 2, pages 156–177, 1985.

[Tzitzikas et al. 2012] Yannis Tzitzikas, Christina Lantzaki and Dimitris Zeginis.

Blank Node Matching and RDF/S Comparison Functions. In Philippe Cudré-

Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Man-

https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/

224 BIBLIOGRAPHY

fred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham

Bernstein and Eva Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th

International Semantic Web Conference, Boston, MA, USA, November 11-15,

2012, Proceedings, Part I, volume 7649 of Lecture Notes in Computer Science,

pages 591–607. Springer, 2012.

[Vardi 1998] Moshe Y. Vardi. Reasoning about The Past with Two-Way Automata. In

Kim Guldstrand Larsen, Sven Skyum and Glynn Winskel, editors, Automata,

Languages and Programming, 25th International Colloquium, ICALP’98, Aal-

borg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes

in Computer Science, pages 628–641. Springer, 1998.

[Vavliakis et al. 2013] Konstantinos N. Vavliakis, Theofanis K. Grollios and Peri-

cles A. Mitkas. RDOTE - Publishing Relational Databases into the Semantic

Web. J. Syst. Softw., vol. 86, no. 1, pages 89–99, 2013.

[Villazón & Hausenblas 2012] Boris Villazón and Michael Hausenblas. R2RML and

Direct Mapping Test Cases, 2012.

[W3C 2013] W3C. RDF Validation Workshop Report: Practical Assurances for Qual-

ity RDF Data. http://www.w3.org/2012/12/rdf-val/report,

2013.

[Winskel 1993] Glynn Winskel. The formal semantics of programming languages - an

introduction. Foundation of computing series. MIT Press, 1993.

http://www.w3.org/2012/12/rdf-val/report

	Contents
	Preliminaries
	Logic
	Relational databases
	Relational schema and dependencies
	Logic formalization
	Database queries

	Relational data exchange
	Data exchange setting
	Chase procedure
	Universal solution
	Certain query answering
	Consistency

	Resource description framework
	RDF graph
	Logic formalization

	Schemas for RDF graphs
	Typed RDF graph
	Shape constraints language
	Logic formalization
	Shape constraints as dependencies

	Relational to RDF data exchange
	Relational to RDF data exchange setting
	R2RML: proof of concept
	Problems of interest
	Checking consistency
	Computing certain answers
	Visual mapping language
	Schema elicitation

	Related work

	Consistency
	The opposite side of consistency: inconsistency
	Sources of inconsistency
	Importance of core pre-solution

	Value consistency
	Testing value consistency

	Node kind consistency
	Co-typing of a data exchange setting and co-typing graph
	Co-typing of a graph
	Formalization
	Necessary condition
	Algorithm for testing node kind consistency

	Deciding consistency
	Decidability

	Conclusion
	Related work

	Certain query answering
	Motivation and problems
	Results from existing approaches
	Super-weakly acyclic tgds
	Guarded tgds

	Simulation-based approach
	Preliminar notions
	Forward NRE-based Boolean query language
	Robust query classes
	Universal simulation solution

	Conclusion
	Related work

	Visual mapping language
	Motivation and use case
	Preliminary notions
	The intermediary language
	The visual mapping language
	ShERML
	Architecture
	VML Editor
	Materializer
	Converter
	Consistency checking
	Additional features

	Evaluation
	Methodology
	Results

	Discussion and conclusion
	Related work

	Shapes schema elicitation
	Motivation
	Problem statement
	Schema-less data exchange setting
	Elicitation Problem

	M3 Elicitation algorithm
	Preliminary notions
	Algorithm

	Soundness
	Completeness
	Negative results
	Conclusion
	Related work

	Bibliography

